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Preface

The 18th Theory of Cryptography Conference (TCC 2020) was held virtually during
November 16–19, 2020. It was sponsored by the International Association for Cryp-
tologic Research (IACR). The general chair of the conference was Alessandra Scafuro.

TCC 2020 was originally planned to be co-located with FOCS 2020 in Durham,
North Carolina, USA. Due to the COVID-19 pandemic both events were converted into
virtual events, and were held on the same day at the same time. The authors uploaded
videos of roughly 20 minutes prior to the conference, and at the conference had a
10-minute window to present a summary of their work and answer questions. The
virtual event would not have been possible without the generous help of Kevin and Kay
McCurley, and we would like to thank them wholeheartedly.

The conference received 167 submissions, of which the Program Committee
(PC) selected 71 for presentation. Each submission was reviewed by at least four PC
members. The 39 PC members (including PC chairs), all top researchers in the field,
were helped by 226 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 71 accepted papers. The revisions
were not reviewed, and the authors bear full responsibility for the content of their
papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions.

This was the 7th year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Perfectly-Secure MPC with
Linear Communication Complexity” by Zuzana Trubini and Martin Hirt. The Award
Committee recognized this paper “for introducing hyper-invertible matrices to perfectly
secure multiparty computation, thus enabling significant efficiency improvements and,
eventually, constructions with minimal communication complexity.”

We are greatly indebted to many people who were involved in making TCC 2020 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro and the TCC Steering Committee.

October 2020 Rafael Pass
Krzysztof Pietrzak
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Universal Composition with Global
Subroutines: Capturing Global Setup

Within Plain UC

Christian Badertscher1(B) , Ran Canetti2, Julia Hesse3, Björn Tackmann4,
and Vassilis Zikas5

1 IOHK, Zurich, Switzerland
christian.badertscher@iohk.io

2 Boston University, Boston, MA, USA
canetti@bu.edu

3 IBM Research, Zurich, Switzerland
jhs@zurich.ibm.com

4 DFINITY, Zurich, Switzerland
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5 University of Edinburgh, Edinburgh, UK
vzikas@inf.ed.ac.uk

Abstract. The Global and Externalized UC frameworks [Canetti-
Dodis-Pass-Walfish, TCC 07] extend the plain UC framework to addi-
tionally handle protocols that use a “global setup”, namely a mecha-
nism that is also used by entities outside the protocol. These frameworks
have broad applicability: Examples include public-key infrastructures,
common reference strings, shared synchronization mechanisms, global
blockchains, or even abstractions such as the random oracle. However,
the need to work in a specialized framework has been a source of confu-
sion, incompatibility, and an impediment to broader use.

We show how security in the presence of a global setup can be cap-
tured within the plain UC framework, thus significantly simplifying the
treatment. This is done as follows:

– We extend UC-emulation to the case where both the emulating pro-
tocol π and the emulated protocol φ make subroutine calls to pro-
tocol γ that is accessible also outside π and φ. As usual, this notion
considers only a single instance of φ or π (alongside γ).

– We extend the UC theorem to hold even with respect to the new
notion of UC emulation. That is, we show that if π UC-emulates φ in
the presence of γ, then ρφ→π UC-emulates ρ for any protocol ρ, even
when ρ uses γ directly, and in addition calls many instances of φ, all

C. Badertscher—Work done while author was at the University of Edinburgh, Scotland.
R. Canetti—Member of the CPIIS. Supported by NSF Awards 1931714, 1801564,
1414119, and the DARPA DEVE program.
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ported in part by the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 780477 PRIViLEDGE.
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R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12552, pp. 1–30, 2020.
https://doi.org/10.1007/978-3-030-64381-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64381-2_1&domain=pdf
http://orcid.org/0000-0002-1353-1922
https://doi.org/10.1007/978-3-030-64381-2_1


2 C. Badertscher et al.

of which use the same instance of γ. We prove this extension using
the existing UC theorem as a black box, thus further simplifying the
treatment.

We also exemplify how our treatment can be used to streamline, within
the plain UC model, proofs of security of systems that involve global
set-up, thus providing greater simplicity and flexibility.

1 Introduction

Modular security analysis of cryptographic protocols calls for an iterative pro-
cess, where in each iteration the analyst first partitions the given system into
basic functional components, then separately specifies the security properties of
each component, then demonstrates how the security of the overall system fol-
lows from the security of the components, and then proceeds to further partition
each component. The key attraction here is the potential ability to analyze the
security of each component once, in a simplified “in vitro” setting, and then
re-use the asserted security guarantees in the various contexts in which this
component is used.

A number of analytical frameworks have been devised over the years with this
goal in mind, e.g. [MR91,Bea91,HM97,Can00,PW00,Can01,BPW04,Mau11,
KMT20,HS16,CKKR19]. These frameworks allow representing protocols, tasks,
and attacks, and also offer various composition operations and associated
security-preserving composition theorems that substantiate the above analyt-
ical process. The overarching goal here is to have an analytical framework that
is as expressive as possible, and at the same time allows for a nimble and effective
de-compositional analytical process.

Modularity in these frameworks is obtained as follows. (We use here the
terminology of the UC framework [Can01], but so far the discussion applies to
all these frameworks.) We first define when a protocol π “emulates” another
protocol φ. Ideally, this definition should consider a setting with only a single
instance of π (or φ) and no other protocols. A general composition theorem
then guarantees that if π emulates protocol φ, then for any protocol ρ, that
makes “subroutine calls” to potentially multiple instances of φ, the protocol
ρφ→π emulates ρ, where ρφ→π is the protocol that is essentially identical to ρ
except that each subroutine call to an instance of φ is replaced with a subroutine
call to an instance of π.

This composition theorem is indeed a powerful tool: It allows analyzing a
protocol in a highly simplified setting that involves only a single instance of
the protocol and no other components, and then deducing security in general
multi-component systems. However, the general composition theorem can only
be applied when protocols π and φ do not share any “module” with the calling
protocol, ρ. That is, the theorem applies only when there is no module, or pro-
tocol, γ, such that γ is a subroutine of π or φ, and at the same time γ is used
directly as a subroutine of ρ. Furthermore, when ρ calls multiple instances of φ,
no module γ can be a subroutine of two different instances of φ.
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This limitation has proven to be a considerable impediment when coming to
analyze realistic systems, and in particular when trying to de-compose such sys-
tem to smaller components as per the above methodology. Indeed, realistic sys-
tems often include some basic components that require trust in external entities
or are expensive to operate. It then makes sense to minimize the number of such
components and have them shared by as many other components as possible.
Examples for such shared components include public-key infrastructure, long-
lived signing modules, shared synchronization and timing mechanisms, common
reference strings, and even more complex constructs such as blockchains and
public repositories.

Overcoming this limitation turns out to take quite different forms, depend-
ing on the underlying model of computation. When the model of computation
is static, namely the identities, programs, and connectivity graph of computing
elements are fixed throughout the computation, extending the basic composition
theorem to account for shared (or, “global”) subroutines is relatively straight-
forward. (Examples include the restricted model of [Can20, Section 2], as well
as [BPW07,KMT20].) However, restricting ourselves to a static model greatly
limits the applicability of the framework, and more importantly the power of
the composition theorem. Indeed, static models are not conducive to capturing
prevalent situations where multiple instances of a simple protocol are invoked
concurrently and dynamically, and where all sessions share some global infras-
tructure; examples include secure communication sessions, payment protocols,
cryptocurrencies, automated contracts.

In order to be able to benefit from compositional analysis with shared mod-
ules even when the analyzed protocols are dynamic in nature, new composition
theorems and frameworks were formulated, such as the Joint-State UC (JUC)
theorem [CR03] and later the Generalized UC (GUC) and Extended UC (EUC)
models [CDPW07].

However the GUC modeling is significantly more complex than the plain
UC model. Furthermore, the extended model needs to be used throughout the
analysis, even in parts that are unrelated to the global subroutine. In particular,
working in the GUC model requires directly analyzing a protocol in a setting
where it runs alongside other protocols. This stands in contrast to the plain
UC model of protocol execution, which consists only of a single instance of the
analyzed protocol, and no other “moving parts.” Additionally, while the basic
UC framework has been updated and expanded several times in recent years, the
GUC model has not been updated since its inception. Furthermore, the claimed
relationship between statements made in the EUC framework and statements
made in the GUC framework has some apparent inaccuracies.1

Our Contribution. We simplify the treatment of universal composition with
global subroutines for fully dynamic protocols. Specifically, We show how to
1 Indeed, there is at the moment no completely consistent composition theorem for

EUC protocols. For instance, the notion of a challenge protocol is not sufficiently
well specified. Also the treatment of external identities is lacking. This is discussed
further in [BCH+20].
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capture GUC-emulation with respect to global subroutines, and provide a theo-
rem akin to the GUC theorem, all within the plain UC modeling. This theorem,
which we call the Universal Composition with Global Subroutines (UCGS) theorem,
allows for fully reaping all the (de-)compositional benefits of the GUC modeling,
while keeping the model simple, minimizing the formalism, and enabling smooth
transition between components.

We present our results in two steps. First, we present the modeling and the-
orem within the restricted model of computation of [Can20, Section 2]. Indeed,
here the GUC and UCGS modeling is significantly less expressive - but it intro-
duces the basic approach, and is almost trivial to formulate and prove. Next
we explain the challenges involved in applying this approach to the full-fledged
UC framework, and describe how we handle them. This is where most of the
difficulty - and benefit - of this work lies.

Let us first briefly recall UC security within that restricted model. The model
postulates a static system where the basic computing elements (called machines)
send information to each other via fixed channels (or, ports). That is, machines
have unique identities, and each machine has a set of machine identities with
which it can communicate. Within each machine, each channel is labeled as
either input or output. A system is a collection of machines where the communi-
cation sets are globally consistent, namely if machine M can send information to
machine M ′ with channel labeled input (resp., output) then the system contains
a machine M ′ that can send information labeled output (resp., input) to M . In
this case we say that M ′ is a subroutine (resp., caller) of M .

A protocol is a set π of machines with consistent labeling as above, except
that some machines in π may have output channels to machines which are not
part of π. These channels are the external channels of π. The machines in π that
have external channels are called the top level machines of π.

An execution of a protocol π with an environment machine Z and an adver-
sary machine A is an execution of the system that consists of (π ∪ {Z, A}),
where the external channels of π are connected to Z, and A is connected to
all machines in the system via a channel (port) named backdoor. The execution
starts with an activation of Z and continues via a sequence of activations until
Z halts with some binary decision value. Let execπ,A,Z denote the random
variable describing the decision bit of Z following an execution with π and A.
We say that protocol π UC-emulates protocol φ if for any polytime adversary
A there exists a polytime adversary S such that for any polytime Z we have
execπ,A,Z ≈ execφ,S,Z .

The universal composition operation in this model is a simple machine
replacement operation: Let ρ be a protocol, let φ be a subset of the machines in
ρ that is a protocol in and of itself, and let π be a protocol that has the same set
of external identities as φ, and where π and ρ \ φ are identity-disjoint, i.e. the
identities of the machines in π are disjoint from the identities of the machines
in ρ \ φ. Then the composed protocol ρφ→π is defined as (ρ \ φ) ∪ π. The UC
theorem states that if π UC-emulates φ, then for any ρ such that π and ρ \ φ
are identity-disjoint we have that ρφ→π UC-emulates ρ. (Notice that here the
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UC operation replaces only a single “protocol instance”. Indeed, here there is no
natural concept of “multiple instances” of a protocol.)

In this restricted model, protocol γ is a global subroutine of a protocol π′ if γ
is a subroutine of π′, and at the same time some of the top level machines of π′

are actually in γ. Said otherwise, π′ consists of two parts, γ and π = π′ \γ, where
both π and γ include machines that take inputs directly from outside π′, and in
addition some machines in γ take inputs also from machines in π. Observe that
this structure allows γ to be a subroutine also of protocols other than π.

The Universal Composition with Global Subroutines (UCGS) theorem for
such protocols takes the following form: Let ρ, π, φ and γ be such that π′ = π∪γ
and φ′ = φ∪γ are protocols where π′ UC-emulates φ′ (and in addition π and ρ\φ
are identity-disjoint). Then the protocol ((ρ \ φ′) ∪ π′) UC-emulates ρ. Observe,
however, that in this model the UCGS theorem follows immediately from the
standard UC theorem: Indeed, (ρ \ φ′) ∪ π′ = (ρ \ φ) ∪ π = ρφ→π. See illustration
in Fig. 1.

Fig. 1. UC with Global Subroutines (UCGS) in the restricted setting of [Can20,
Section 2]: Protocol γ is a global subroutine of protocol π′ if γ takes input from π = π′\γ
and also from outside π′. Then plain UC theorem already guarantees that if π′ UC-
realizes protocol φ′, where φ′ = φ ∪ γ, then for any ρ that calls φ and γ, the protocol
((ρ \ φ) ∪ π) = ρφ→π UC-emulates ρ.

Extending the Treatment to the Full-Fledged UC Framework. While formulating
UC with global subroutines within the above basic model is indeed simple, it is
also of limited applicability: While it is in principle possible to use security in
this model to infer security in systems that involve multiple instances of the ana-
lyzed protocol, inference is still limited to static systems where all identities and
connectivity is fixed beforehand. The formalism breaks down when attempting
to express systems where connectivity is more dynamic in nature, as prevalent
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in reality. In order to handle such situations, the full-fledged UC framework has
a very different underlying model of distributed computation, allowing machines
to form communication patterns and generate other machines in a dynamic way
throughout the computation. Crucially, even in dynamic and evolving systems,
the framework allows delineating those sets of processes that make up “protocol
instances,” and then allows using single-instance-security of protocols to deduce
security of the entire system.

To gain this level of expressiveness, the framework introduces a number of
constructs. One such construct is the introduction of the session identifier (SID)
field, that allows identifying the machines (processes) in a protocol instance.
Specifically, an instance (or, session) of a protocol π with SID s, at a given
point during an execution of a system is the set of machines that have program
π and SID s. The extended session of π with SID s consists of the machines
of this session, their subroutines, and the transitive closure of all the machines
that were created by the these subroutines during the execution so far. Another
added construct is the concept of subroutine respecting protocols. Informally,
protocol π is subroutine respecting if, in any extended session s of π, the only
machines, that provide output to, or responds to inputs from, machines outside
this extended instance, are the actual “main” machines of this instance (namely
the machines with code π and SID s). Machines in the extended session, which
are not the main machines, only take input from and provide output to other
machines of this extended instance.

While the SIDs and the restriction to subroutine respecting protocols are key
to the ability of the UC framework to model prevalent dynamic situations, they
appear to get in the way of the ability to prove UC with global subroutines. In
particular, simply applying the UC theorem as in the basic model is no longer
possible. Indeed (referring to Fig. 1), neither π nor φ are subroutine respecting,
and the constructs π′ and φ′, which were legitimate protocols in the basic model,
are not legitimate protocols in the full-fledged model, since they don’t have the
same program or SID. Note that this is not just a technicality: In a dynamically
evolving system with multiple instances of π and γ there can be many possible
ways of delineating protocol instances, and so the composition theorem may not
even be well-defined!

We get around this barrier by providing a mechanism for encapsulating an
instance of φ and one (or more) instances of γ within a single “transparent
envelope protocol” M[φ, γ] such that a single instance of M[φ, γ] has the same
effect as the union of the instance of φ and the instances of γ used by this
instance of φ. To accomplish that, we extend the shell and body mechanism that’s
already used in the UC framework to enforce subroutine respecting behavior and
to implement the UC operation. A similar encapsulation is done for π and γ.
Furthermore, the transformation guarantees that both M[φ, γ] and M[π, γ] are
now subroutine respecting, even though neither φ nor π are. This enables us to
invoke the UC theorem (this time in the full-fledged UC model) to obtain our
main result:
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Main Theorem (Informal). Assume π, φ, γare such that M[π, γ]UC-emulates
M[φ, γ]. Then for (essentially) any protocol ρwe have that ρφ→πUC-emulates ρ.

Our result follows the spirit of the UC theorem: It allows using the security of
a single instance of π (in the presence of γ) to deduce security of a system that
involves multiple instances of π (again, in the presence of γ). Said otherwise,
the theorem allows dissecting a complex, dynamic, multi-instance system into
simple, individual components, analyze the security of a single instance of a
component, and deduce security of the overall system - even in the prevalent
cases where multiple (or even all) of the individual components are using the
same global subroutines. See depiction in Fig. 2.

We prove the new composition theorem in a modular way. That is, our proof
makes black-box use of the plain UC theorem, thus avoiding the need to re-prove
it from scratch, as in the GUC and EUC modeling.

Fig. 2. UC with global subroutines in the full-fledged UC framework: We encapsulate
a single instance of π plus one or more instances of γ within a single instance of a
protocol M[π, γ] that remains transparent to π and γ and is in addition subroutine
respecting. We then show that if M[π, γ] UC-emulates M[π, φ] then the protocol ρφ→π

UC-emulates ρ for essentially any ρ—even when ρ and all the instances of φ (resp., π)
use the same global instances of γ.

Demonstrating the Use of Our Treatment. We showcase our UCGS theorem in
two settings. A first setting is that of analyzing the security of signature-based
authentication and key exchange protocols in a setting where the signature mod-
ule is global and in particular shared by multiple instances of the authentica-
tion module, as well as by arbitrary other protocols. This setting was studied
in [CSV16] within the GUC framework. We demonstrate how our formalism
and results can be used to cast the treatment of [CSV16] within the plain UC
framework. The resulting treatment is clearer, simpler, and more general. For
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instance, in our treatment, the Generalized Functionality Composition theorem
from [CSV16] turns out to be a direct implication of the standard UC composi-
tion theorem.

The other setting is that of composable analysis of blockchains, where assum-
ing global subroutines is essential and permeates all the works in the literature.
In a nutshell, in [BMTZ17], a generic ledger was described which, as proved there,
is GUC-emulated by (a GUC version of) the Bitcoin backbone protocol [GKL15]
in the presence of a global clock functionality used to allow the parties to remain
synchronized. This ledger was, in turn, used within another protocol, also having
access to the global clock, in order to implement a cryptocurrency-style ledger,
which, for example, prevents double spending. [BMTZ17] then argues that using
the GUC composition theorem one can replace, in the latter construction, the
generic ledger by the backbone protocol. As we demonstrate here, such a generic
replacement faces several issues due to inaccuracies in GUC. Instead, we show
how to apply our theorem to directly derive the above statement in the UC
framework.

Composition with Global Subroutines in Other General Frameworks. Several
other general frameworks for defining security of protocols use a static machine
model akin to the restricted variant of the UC model described above, where
machines communicate only via connections (“ports”) that are fixed ahead of
time, and the only way to compose systems is by way of connecting them
using a pre-defined set of ports. (Examples include the reactive simulatability
of [PW00,BPW07], the IITM framework of Küsters and Thuengertal [KMT20],
the abstract cryptography of Maurer and Renner [MR11], the iUC framework
of Camenisch et al. [CKKR19].) In these frameworks, the single-instance global-
state composition theorem immediately follows from plain secure composition,
in very much the same way as the single-instance UCGS theorem follows imme-
diately from the plain UC theorem in the restricted UC model (see Fig. 1).

However, these frameworks do not provide mechanisms for modular analy-
sis of systems where the de-composition of the system to individual modules
is determined dynamically during the course of the computation. In particu-
lar, composition with global state in these frameworks does not address this
important case either. In contrast, as described above, this fully dynamic, multi-
instance case is the focus of this work. So far, this case has been addressed only
in the GUC and EUC frameworks, as well as in the work of Hofheinz and Shoup
[HS16] which proposes an extension of their model to accommodate certain spe-
cific ideal functionalities as distinguished machines.

We note that the IITM framework of Küsters and Thuengertal [KMT20] (as
well as the recent iUC model [CKKR19] that builds on top of the IITM frame-
work) does contain an additional construct that allows machines to interact in
a somewhat dynamically determined way: While each machine has a fixed set
of other machines that it can interact with, and protocols are defined as fixed
sets of machines that have globally consistent “communication sets”, the frame-
work additionally allows unboundedly many instances of each machine, where all
instances have the same identity, code, and “communication set”. Furthermore,
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if the communication sets of machines M, M ′ allows them to communicate, then
each instance of M can communicate with each instance of M ′. Indeed, this
additional feature enables the IITM framework to express systems where the
communication is arbitrarily dynamic.

However, this extra feature appears to fall short of enabling fully modular
analysis of such dynamic systems. Indeed, the IITM framework still can only
compose systems along the static, a-priori fixed boundaries of machine ports.
This means that systems that include multiple instances of some protocol, where
the boundaries of the individual instances are dynamically determined, cannot be
analyzed in a modular way—rather, the framework only allows for direct analysis
of all protocol instances at once, en bloc. This of course holds even in the presence
of global subroutines. Example of such systems include secure pairwise commu-
nication systems where the communicating parties are determined dynamically,
block-chain applications where different quorums of participants join to make
decisions at different times, etc. See e.g.. [BCL+11,CSV16,GHM+17].

In contrast, the goal of this work is to allow de-composing such systems to
individual instances, deducing the security of the overall composite system from
the security of an individual instance—and carrying this through even when
many (or all) instances use the same global subroutines (see Fig. 2).

A related work by Camenisch et al. [CDT19] introduces a new UC variant
that they call multi-protocol UC (MUC) and that allows the environment to
instantiate multiple challenge protocols that can interact with each other. It is
an interesting future research direction to formulate this more general type of UC
execution following the approach taken in this work, i.e., to model it following
standard UC and making black-box use of the UC composition theorem to derive
a composition theorem for this type of protocol.

2 Formulating and Proving the UCGS Theorem

In this section, we formulate and prove the main result of this work. In Sect. 2.1
we present the transformation that takes protocols π and γ and constructs a sin-
gle, transparent encapsulation protocol M[π, γ] that behaves like a single instance
of π along with one (or more) instances of a “global subroutine protocol” γ. We
formulate UC emulation with Global Subroutines in Sect. 2.2, state the Universal
Composition theorem with Global Subroutines composition in Sect. 2.3 and con-
clude with remarks in Sect. 2.4. We also provide a proof sketch. See [BCH+20]
for the full proof.

2.1 Treating Multiple Protocols as a Single Protocol

We start by defining the transformation that takes two protocols π and γ and
combines them into a single protocol μ = M[π, γ], such that one instance of μ
behaves like one instance of π and one or more instances of γ, and where the
instances of γ take inputs both from the instance of π within μ, and from outside
μ. We refer to μ as the management protocol.
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The goal of the construction is to ensure that an instance of protocol μ
presents the exact same behavior as one instance of π alongside one (or more)
instances of γ, while at the same time making sure that, from the point of view
of the basic UC framework, μ remains a subroutine-respecting protocol. This
will mean that incoming communication to μ specifies a session ID for μ, plus a
session identifier for either the instance of π or an instance of γ. The input is then
forwarded internally either to the instance of π or to the appropriate instance
of γ. Outgoing communication is handled similarly. Note that it is important to
make sure that the (virtual) instances of π and γ receive communication that is
formatted exactly as it would be, were it the case that π and γ are independent
machines. (This is needed so that the behavior of π and γ will remain unchanged.)
See depiction in Fig. 3.

Fig. 3. The three main components of our management protocol μ = M[π, γ] handling
access to π and γ, both equipped with shells sh[·]. For sh[π], different types of incoming
and outgoing messages are indicated in gray.

In order to allow black-box use of the UC composition theorem in the proof
of our new composition theorem, we need to make sure that an instance of μ
mimics the execution of a single instance of π (alongside one or more instances
of γ). That is, μ must make sure that the various machines of an instance of
μ maintain a single, consistent virtual instance of π. To maintain the necessary
information about the execution, we allow the management protocol μ to make
use of a directory ITI similar to the one used to ensure the subroutine-exposing
property. That is, we embed a special ITI called execution graph directory in
the operation of the management protocol (and shells) that acts as a central
accumulator of knowledge.2

2 While there are alternative solutions such as an extra shell propagating information
about the execution graph, the directory appears to be a technically simple solution
for our transformation. Our transformation is a proof technique, and as such the
transformed protocol is not meant to be deployed in reality (where one may argue
that such a central entity is unrealistic).
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We now detail the execution graph directory for the structured protocol μ.
The following generic shell mechanism—implemented by an additional, outer-
most shell of μ and all its subroutines—makes sure that this outermost shell layer
maintains information about the induced execution graph as well as additional
auxiliary information extracted from the underlying protocol (i.e. the body in
the view of this additional shell). Let pidegDIR be an exclusive identifier, i.e., an
identifier that never appears in any execution of the base protocol. Assume the
session identifier is sid.

– The ITI with special identifier (μ, sid||pidegDIR) never activates its body and
the shell processes three types of requests: first, when activated with input
(register, aux) from an ITI M , it stores the entry (M, aux) in an ordered
list (initially empty) unless M is already recorded in the list. Second, when
activated with input (invoke, M ′, aux) from an already registered ITI M and
ITI M ′ is not yet registered, then record (M → M ′). Also, record (M ′, aux)
unless M ′ is already registered. The return value to M in both cases is the
trivial output ok. The party allows any registered ITI M to query the stored
list and ignores any message on the backdoor tape.

– For any other ITI running in this instance, when activated for the first time,
the shell sends (register, aux) to ITI (μ, sid||pidegDIR) where aux can denote
any auxiliary information. (Note that reveal-sender id and forced-write flags
are set). When receiving ok it resumes processing its first activation by acti-
vating its body (which in structured protocols might be another shell oblivious
of the above interaction).

– For any other ITI running in this instance, when the shell processes an exter-
nal write request from its body to an ITI M , it sends (invoke, M, aux) to
ITI (μ, sid||pidegDIR) where aux can denote any auxiliary information, before
resuming with processing the external write request.

By exclusivity of pidegDIR, the shell operates in an oblivious fashion from the
point of view of the body. Since the shell only talks to pidegDIR, this in turn is
even oblivious to the environment and the adversary.

In fact, this is not entirely obvious: while no interaction via the backdoor tape
indeed means that the adversary can neither corrupt nor extract information
from the directory, another corrupted ITI in the system might get information
from pidegDIR via a normal query and give the result to the adversary. This,
however, is not possible: in UC, model-related instructions are organized in shell
layers, where each shell is unaware of the outer shells, and treats the inner shells
as part of the body. Now, the shell layer describing the model-related instructions
to communicate with directories is outside of the shell implementing the corrup-
tion layer and therefore, the corruption layer is unaware of the directory. For
more details, see [Can20, Section 5.1]. We note that this observation is already
crucial for the standard UC composition theorem and not novel for our work,
because corruptions must not invalidate the subroutine-exposing property of a
protocol and hence corruptions should not interfere with the subroutine-exposing
shell (or the shell introduced by the UC operator).
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To conclude, the above mechanism is used by M[π, γ] and its subsidiaries sh[·]
in the following way: first, whenever a new machine with code M[·] is about to
spawn an instance of π, it registers with the directory and defines as auxiliary
input the extended identity of the instance of π it is going to spawn (and can
also halt if it sees that another session already started). Second, the machines
running code sh[·] use the invoke calls and put as auxiliary input the information
eidsrc → eiddest of the virtual ITIs of sh[·] to additionally store the invocation
graph of the main instance of π which in particular allows to infer what the
(virtual) main instance of π is (see below for why this is important). In particular,
all ITIs in the extended session of M[π, γ] use the same execution graph directory
ITI. To see that we get all properties we need from this, we refer to Proposition 1.

We now give a formal definition of M[π, γ]. The construction uses the body
and shell formalism from [Can20].

The Management Protocol. In a nutshell, M[π, γ] is a standard UC protocol that
works as follows:

– M[π, γ] exposes its subroutine structure to a directory ITI (which the environ-
ment can access) and its invocation graph to an additional execution graph
directory ITI as discussed above to ensure that M[π, γ] is subroutine respect-
ing.

– M[π, γ] can be invoked with an arbitrary session identifier. It allows the envi-
ronment to invoke exactly one (top-level) instance of π with a freely chosen
session identifier (note that addressing this “challenge protocol” is done in an
abstract manner by using an identifier MAIN). Additionally, arbitrarily many
instances of γ (again with arbitrary session identifiers) can be invoked (again
the addressing is done in an abstract fashion using identifier GLOBAL).

– When an ITI running M[π, γ], say with party ID pid, provides input to π
in session s, then it wraps this input and invokes the ITI with code sh[π],
party id pid, and a session ID that encodes s. This ITI unwraps the received
content and provides it to the main party pid of π in session s. A similar
mechanism happens between any two machines to ensure that this instance
of π is oblivious of this overlay.

– The machines running sh[π] (resp. sh[γ]) detect, using the execution graph
directory, when a “main party of π (resp. γ)” provides subroutine output to
an external party, and can then provide this output to the correct main party
M[π, γ] which delivers it to the environment. Note that when M[π, γ] delivers
such outputs to the environment, it only reveals the party ID and session ID,
and whether the source was the global subroutine (using identifier GLOBAL) or
the single invoked instance (using identifier MAIN). Recall that the UC control
function plays a similar role. We note in passing that M[π, γ] can ensure that
at most one session of π is invoked by the concept of the execution graph
directory and block any attempt to create a new session of π if one exists
already.

– M[π, γ] refuses to communicate with the adversary, i.e., it does not commu-
nicate over the backdoor tape and is hence also incorruptible.
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In order to map this to a program, we quickly recall the message passing
mechanism in UC. UC uses the external-write mechanism via which a machine
can instruct the control function to invoke a machine with a given input on one
of three tapes. Messages are either written on the input tape (e.g., when a party
calls a subsidiary), or on the subroutine-output tape (e.g., when a subsidiary
returns an output to a caller), or on the backdoor tape (which only models the
interaction with the adversary). Therefore, our transformation has to take care
to route all the messages of the “wrapped” instance of π to the correct machines
by taking care of inputs, subroutine outputs, and backdoor messages.

Code of Transformation. The formal description of the management protocol
M[π, γ], which is parameterized by two ITMs π and γ, as well as the code of the
associated shell of the transformation, denoted sh[code] that takes as parameters
the ITM code and is a structured protocol that runs code as its body, are provided
in Appendix A.

Runtime Considerations as a Standard UC Protocol. The protocols generated by
M[·] are standard UC protocols executed by an environment Z. The run-time of
M[·] and sh[·] deserves further discussion. Recall that in a parameterized system,
each ITI only starts executing after receiving import at least k—where k is the
security parameter. That means when M[·] is first invoked it requires import k
to before executing, the execution graph directory requires additional import k,
and the sub-protocol sh[π] or sh[γ] to which the message is directed also requires
import k before executing. We define M[·] such that it begins executing only
after receiving import at least 3k; this ensures that the initial operation has
sufficient import to complete. The further operations performed by M[·] and the
shell sh of π and γ are only administrative such as copying and routing messages
between ITIs, which means that they can be accounted for by slightly increasing
the involved polynomials.

An Alternative Management Protocol. We note that defining M[π, γ] so that
the main parties of an instance of M[π, γ] consist of ITIs that run exclusively
shell code, and where the ITIs that have body π or γ are subroutines of these
main parties of M[π, γ], is a design choice that was made mainly for clarity of
exposition and to clearly delineate the various parts of the management protocol.
Alternatively, one can define a different management protocol, M[π, γ]′, where
the code of the main ITIs of M[π, γ] becomes part of the shell code of the ITIs
whose body runs either π or γ. That is, the main parties of an instance of M[π, γ]′
will be the union of the main parties of the relevant top-level instance of π, along
with the main parties of the relevant top-level instances of γ. One advantage of
this formalism is that there are no additional management-only ITIs, and so the
runtime issues mentioned in the previous paragraph do not come up. In addition,
we believe that the restriction to regular setups can be relaxed. Additional details
are provided in [BCH+20].



14 C. Badertscher et al.

2.2 UC Emulation with Global Subroutines

We now define a variant of UC emulation that intends to capture, within the
plain UC model, the notion of EUC-emulation from [CDPW07]. Namely, we say
what it means for a protocol π to UC-emulate another protocol φ, in the case
where either π or φ or both are using another protocol γ as subroutine, where γ
can be accessed as subroutine of other protocols, i.e., is “global” or “shared”.

Definition 1. (UC emulation with global subroutines). Let π, φ and γ be
protocols. We say that π ξ-UC-emulates φ in the presence of γ if protocol M[π, γ]
ξ-UC-emulates protocol M[φ, γ].

Note that in the above, ξ can be any identity bound as of standard UC. Recall
that it is a tool to get more fine-grained security statements and technically
restricts the environment to interact with the protocol instances π and γ in a
certain way.

Our definition of UC-emulation in the presence of a global subroutine is
very general, and we need further terminology in preparation for the conditions
under which the composition theorem applies. Consider the case where we want
to analyze security of multiple instances of a protocol π which individually are
subroutine respecting except that they all call a global subroutine γ. In the
terminology of [CDPW07], such protocols are called γ-subroutine respecting. We
generalize their definition and allow for more than one instance of γ.

Definition 2 (γ-subroutine respecting). A protocol π is called γ-subroutine
respecting if the four conditions of the standard subroutine respecting property
required from any (sub-)party of some instance of π are relaxed as follows:

– the conditions do not apply to those sub-parties of instance s that also belong
to some extended session s′ of protocol γ;

– (sub-)parties of s may pass input to machines that belong to some extended
session s′ of protocol γ, even if those machines are not yet part of the extended
instance of s.

While the definition above allows π to violate subroutine respecting through
subroutines with a code that is also used by γ, we are only interested in protocols
π where subsidiaries only communicate with outside protocols if they belong to
the subroutine γ. To this end, we will only consider γ-subroutine-respecting
protocols π where γ is itself subroutine respecting.

For our composition theorem to hold, we must impose a light technical condi-
tion on the shared subroutine. The condition states that (a) a shared subroutine
does not spawn new ITIs by providing subroutine output to them, and (b) the
shared subroutine may not invoke the outside protocol as a subroutine. On a
high level, this prevents that the shared subroutine itself spawns new higher-
level sessions. On a technical level, the composition theorem relies on a hybrid
argument that would not work if the shared subroutine spawns, for example,
new sessions for which it is not decidable in a dynamic fashion whether or not
they actually belong to the main instance of the protocol under consideration. To
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our knowledge, all global setups used in the literature satisfy these restrictions.
For example, a global CRS does not output the reference string to parties who
never asked for it, a global ledger requires parties to register before participating
in the protocol, and a global clock only tells the time on demand. An example
of a hypothetical functionality that violates this condition is a global channel
functionality that outputs a message to a receiver whose extended identity can
be freely chosen by the sender.

Definition 3 (Regular setup). Let φ, γ be protocols. We say that γ is a φ-
regular setup if, in any execution, the main parties of an instance of γ do not
invoke a new ITI of φ via a message destined for the subroutine output tape, and
do not have an ITI with code φ as subsidiary.

As will become clear in Proposition 1, when considering a protocol φ that is
γ-subroutine respecting, where γ itself is φ-regular and subroutine respecting,
then we naturally have a clean interaction between φ and “a global subroutine” γ
without any unexpected artifacts. For example, γ does not initiate new ITIs with
code φ, neither as new protocol sessions “outside of γ” nor as proper subroutines
of γ itself.

We next state the useful proposition that our transformation is by default
subroutine respecting and preserves the behavior of the involved protocols in
the following sense: Let π, γ be as before, and let α be a protocol that invokes
at most one session of π. Let α̂ be the protocol that executes α as a virtual ITI
within a shell. Let sidM be an otherwise unused SID.

– When α provides input m to ITI eiddest with code code ∈ {π, γ}, then α̂
instead provides input ((m, eidsrc), eid′

dest) to M[π, γ] with SID sidM, where
eidsrc is the extended identity of the virtual instance of α and eid′

dest equals
eiddest except that its code-field code′ is set to MAIN if code = π and to GLOBAL
if code = γ (and results in the same subroutine being invoked as α does).

– When α̂ obtains subroutine output ((m, eidsrc), eiddest) from M[π, γ] with SID
sidM, where eiddest is the extended identity of the virtual instance of α, then
α̂ emulates subroutine output m from eidsrc to α, overwriting code MAIN of
eidsrc with π and code GLOBAL with γ.

Proposition 1 (M[π, γ] is subroutine respecting and preserves behav-
ior). Let γ be subroutine respecting and π be γ-subroutine respecting. Then the
protocol M[π, γ] is subroutine respecting. In addition, let γ be π-regular, and let
α be a protocol that invokes at most one subroutine with code π. Denote by α̂
the transformed protocol described above. Then the transcript established by the
set of virtual ITIs in an execution of some environment with α̂ is identical to
the transcript established by the set of ITIs induced by the environment that has
the same random tape but interacts with α.

The proof is deferred to [BCH+20].
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2.3 Universal Composition with Global Subroutines

We are now ready to state a composition theorem that lets us replace protocol
instances in the presence of a global setup. See Fig. 4 for a graphical depiction.

Fig. 4. A graphical depiction of our composition theorem in the presence of global
setups. Top: π UC-emulates φ (Definition 1). Bottom: Replacement of φ by π in
some context protocol ρ. See Theorem 1 for the assumptions made on ρ, π and γ for
replacement to go through. Empty boxes indicate subroutines of ρ that are not π or φ.

Theorem 1 (Universal Composition with Global Subroutines – UCGS
Theorem). Let ρ, φ, π, γ be subroutine-exposing protocols, where γ is a φ-
regular setup and subroutine respecting, φ, π are γ-subroutine respecting and ρ
is (π, φ, ξ)-compliant and (π,M[code, γ], ξ)-compliant for code ∈ {φ, π}. Assume
π ξ-UC-emulates φ in the presence of γ, then ρφ→π UC-emulates ρ.

In line with the run-time discussion for M[·], protocol ρ only starts executing
after receiving import at least 4k. This ensures that, during the execution, the
modified version of ρ (which we refer to as ϑ in the proof) has a sufficient run-
time budget to accommodate the creation of the additional ITI M[code, γ], its
execution graph directory, as well as an additional directory introduced by the
proof technique in this theorem.

Proof (outline). In the spirit of our overall approach, we aim at applying the UC
composition theorem instead of reproving composition from scratch. Thus, we
choose the following high level structure of the proof. We modify each invocation
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of φ within ρ separately. For each i = 1, . . . , n, we first rewrite ρ such that the
management protocol M[φ, γ] is invoked instead of the i-th φ. Then, we replace
φ with π within this instance of the management protocol. This is done by
invoking the UC composition theorem. Afterwards, we remove the management
protocol instance again and let ρ instead call π directly. All modifications are
oblivious from the perspective of the environment. The full proof can be found
in [BCH+20]. ��

We point out that our composition proof makes it explicit that no changes
to the concrete interaction between φ (resp. π) and the instances of the global
subroutine γ are needed. This is important point to consider, since often all
instances of φ (resp.π) within ρ would share the same instance (or a fixed number
of instances) of γ and hence our theorem shows that this behavior is preserved.
Such specific cases (where a bounded number of instances of γ can be assumed
to exist) follow as a special case of our treatment.

2.4 On Existing Global UC Statements and Proofs

In general, statements found in the literature work in the externalized UC (EUC)
subspace of GUC. Although we argue in [BCH+20] that EUC as a framework has
some subtle issues, most known protocols do look fine in a meaningful context
(which should be made explicit). First, most global setups in the literature are
easily seen to be regular, i.e., only provide output to the requesting ITI (exam-
ples include a clock, random oracle, ledger functionality). Next, proofs typically
assume a sort of domain separation between claimed identities by the environ-
ment and real ITIs in the system. (Note that this is not given by the model:
even if the environment cannot claim external identities in the same session as
the test session, the test session does not have to exist when first accessing the
global setup.) In UC 2020 [Can20], one can define ξ as a condition on allowed
identities in the system. Two typical restrictions are found in the literature such
as in [BMTZ17]:

(a) ξ is satisfied if (i) any eid of an ITI in the system is not declared by the
environment as an external source eid in a request to γ. This is typically
a minimal requirement, as otherwise, whatever the global setup provides
to a protocol, this information could be first claimed by the environment
(for the entire test session) even before spawning the test session. This is
problematic unless we have very simple setups such as a common-reference
string or a plain global random oracle [BGK+18].

(b) As a further restriction, one could enforce that γ provides per session guar-
antees: ξ is satisfied if whenever (additionally to above) eid = (μ, sid||pid)
and eid′ = (μ′, sid||pid′) are the source extended identities in an input to γ,
then μ = μ′ has to hold. This technically does not allow any other instance to
access the shared information, but still the information is formally accessible
by the environment claiming an external identity of this session. This model
is useful when certain elements of the setup need to be programmed by a
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simulator, while keeping the overall model of execution close to standard
UC.

If proofs conducted in EUC have the above restrictions assumed when proving
indistinguishability of the simulation, then it is conceivable that these proofs are
transferable into our new model to satisfy precondition of Theorem 1 and thus
composition is again established. We discuss such “EUC statements” in the next
section. In particular, Sect. 3.2 recovers an EUC example in detail, where we also
show how our model can capture various forms of “shared subroutines” ranging
from subroutines fully accessible by the environment to subroutines shared only
by the challenge protocol (which captures joint-state UC (JUC)).

3 Applications of the UCGS Theorem

We provide two examples to showcase how to prove emulation statements in the
UC model in the presence of global subroutines and to verify that the precon-
ditions of the UCGS Theorem are satisfied. The first example is global public-
key infrastructure (specifically, adapting the treatment of [CSV16]). The second
example is a global clock (adapting the treatment of [BMTZ17]).

These examples bring forth two additional technical aspects of universal com-
position with global subroutines within the UC framework: The first has to do
with the mechanics of having one ideal functionality call another ideal function-
ality as a subroutine, and the second has to do with the need to find a judicious
way to define the external-identities predicate ξ for the management protocol
so as to make the best use of the UCGS theorem. (Indeed, these aspects of UC
with global subroutines have been lacking in the treatment of [CDPW07].)

Section 3.1 introduces the formalism for having an ideal functionality call
another ideal functionality as subroutine. Section 3.2 presents the application to
modeling global public-key infrastructure. Section 3.3 presents the application
to modeling global clock in the context of blockchains.

3.1 Interaction Between Ideal Functionality and Shared Subroutine

The UCGS theorem essentially state that if protocol π UC-emulates protocol φ
in the presence of γ, and both π and φ are γ-subroutine respecting, then ρφ→π

UC-emulates ρ for any ρ. A natural use-case of the theorem is when the emulated
protocol, φ, is an ideal protocol for some ideal functionality F , and γ is an ideal
protocol for some ideal functionality G. This means that to make meaningful use
of the theorem, F should make subroutine calls to γ, which in this case means
that F should call dummy parties for G.

A simplistic way to do that would be to simply have F directly call (and thus
create) dummy parties for G. However, in this case, by the definition of dummy
parties as per the UC framework [Can20], the PID of the created dummy party
will be the identity of F . This may be overly restrictive, since the emulating
protocol, π might have other ITIs call G. So, instead, we define a mechanism



Universal Composition with Global Subroutines: Capturing Global Setup 19

whereby F does not directly call a dummy party for G. Instead, F creates a
new “intermediate dummy party,” which serves as a relay of inputs and outputs
between F and the dummy party of G. The identity (specifically the PID) of the
intermediate dummy party is determined (by F) so as to enable realization of
φ by protocols π where the PIDs of the parties that use G are meaningful for
the overall security. (This mechanism can be viewed as a way to make rigorous
informal statements such as “provide input x to G on behalf of [sender] S”
[CSV16].) Details follow.

Definition 4 (Intermediary dummy party). Let F be an ideal functionality
and γ some protocol. We define the operation of an intermediary dummy party
with code IMF,γ as below. Let (p, s) be the party and session id indicated on
the identity tape, and let CIM (code of intermediary) be an exclusive syntactic
delimiter ending the description of the code IMF,γ .

– When activated with input (call, (s′, p′), v) from an ITI with code F and sid
s: the party only acts if the content of the identity tape matches (·||CIM, ·||·)
and the reveal-sender-id flag is set. Then, provide input v to the ITI eidt :=
(γ, s′||p′) (with reveal-sender identity and forced-write flags set).

– Upon receiving a value v′ on the subroutine output from an ITI with identity
eid = (γ, s′||p′) (for some s′, p′): the party only acts if the content of the
identity tape matches (·||CIM, ·||·) and the reveal-sender-id flag is set. Then,
provide subroutine output (return, (s′, p′), v′) to the ITI with identity eidt :=
(F , s||⊥) (with reveal-sender identity and forced-write flags set).

– Any other message on any tape that is not matching to some case above is
ignored.

A functionality F can now contain general instructions of the form “provide
input x on behalf of P in session s to an instance of γ running in session s′

and PID P ′” and is understood as the following operation: the ITI running code
F in some session sid provides input (call, (s′, P ′), x) to intermediary dummy
party with identity (s, P ) and code IMF,γ . Now, P (in session s) will appear as
the PID of the ITI invoking γ. F can process the answers when obtaining the
returned values from the intermediary dummy party on its subroutine output
tape.

Often it is clear from the context—and standard for EUC-like statements—
that only one session of γ with a predefined session identifier s̃id is expected to
be running, and that each main party (with PID) P of the challenge session s
can participate in the shared process γ (i.e. by invoking ITI with identity (s̃, P )
and code γ). In such cases, the statement “output x on behalf of P to γ” by an
ideal functionality F in (challenge) session s is understood as providing input
(call, (s̃, P ), x) to the intermediary dummy party with identity (s, P ) (and code
IMF,γ) with exactly the desired effect that the ITI with code γ, PID P and sid
s̃id is invoked, and where P in session s appears as the official caller.

Clearly, the intermediary is a modeling tool that no environment should
tamper with. Hence, for the sake of clarity, when we speak of UC realization of an
ideal functionality interacting with a global subroutine, we mean the following:
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Definition 5 (Realization with interaction with shared subroutine).
We say that π UC-realizes F in the presence of γ w.r.t. ξ-identity bounded
environments, if Definition 1 holds for the particular choice of φ := idealF and
with respect to the identity bound ξ′ that equals ξ augmented with the restriction
that no eid specified by the environment (source or destination) can specify code
with delimiter CIM.

The intermediary dummy party provides a guaranteed interaction channel
and formalizes what was implicitly assumed in prior work when a functionality
interacts with, e.g., a global setup such as an certification functionality in the
name of a party.

3.2 Example 1: Authentication with Global Certification

Authentication with respect to a global certification functionality (often called
PKI) aims at formalizing the fact that if a certified verification key for a digital
signature is globally available, then any signature generated with respect to that
key can be verified globally, by anyone, even if the signature was generated in
the context of a specific protocol. This in particular mean that protocols that
employ certified digital signatures might have global “side effects”. For example,
if Alice signs a message in a particular session, using a signing key for which
there is a globally accessible certificate, then anyone can cross-check that it was
Alice who signed the message. In particular, this might mean that Alice can
incur further liabilities.

[CSV16] provides a treatment of this situation within the GUC framework
of [CDPW07]. We use the UCGS theorem provide an alternative (and arguably
simpler) treatment within the plain UC framework.

The Global Certification Functionality. The shared subroutine is γ = idealGpid
cert

.
Note that the functionality is parameterized by a party identity pid. We assume
that the functionality is following the standard PID-wise corruption mechanism
as specified in [Can20]: this means that the functionality manages corruption
messages for party identifiers that are main parties in the execution of idealF ,
and marks those party identifiers as corrupted for which it received a corruption
message on the backdoor tape.3

Functionality Gpid
cert

Variable: pk ← ⊥.
Adversarial key registration: Upon receiving (Register, sid, v) on the back-
door tape and if pid is corrupted and pk = ⊥ then update pk ← v.

3 The functionality is also expected to provide this list upon a special request from
dummy party with PID A such that the corruption sets can be verified by the
environment to be identical in both the ideal and real worlds.
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Signature Generation: Upon receiving a value (Sign, sid, m) from a party with
PID pid (via input to the dummy party with SID sid and PID pid):

(a) If this is the first request then do:
1. If pid is not corrupted then output (KeyGen) to the adversary (via the

backdoor tape). Upon receiving (Verification Key, v) from the adver-
sary (on the backdoor tape) and if pid is still not corrupted store pk ← v
internally.

2. Check at this point that pk �= ⊥. If not, then ignore the request.
(b) Output (Sign, m) to the adversary (via the backdoor tape). Upon receiving

(Signature, m, σ) from the adversary (on the backdoor tape), verify that no
entry (m, σ, 0) is recorded. If it is, then output ⊥ to the caller. Else, output
(Signature, m, σ) to the calling party and record the entry (m, σ, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ) from party
P (including the adversary) do the following: first, if pk = ⊥ then output
(Verified, m, 0) to P . Else, output (Verify, m, σ) to the adversary (via back-
door tape). Upon receiving (Verified, m, f, φ) from the adversary (on the back-
door tape) do:

(a) If (m, σ, b′) is recorded then set f = b′.
(b) Else, if the signer is not corrupted, and no entry (m, σ′, 1) for any σ′ is

recorded, then set f = 0 and record the entry (m, σ, 0).
(c) Else set f = φ, and record the entry (m, σ, f).
(d) Output (Verified, m, f) to P .

The Protocol. The protocol φA
auth works as follows, where the shared subroutine is

γ = idealGA
cert

, where A is part of the code. Note that we use the eid of the caller
as the PID of the sender (to prevent that arbitrary machines can send messages
in the name of A), and also simply choose the session-id sid0 = A for the shared
subroutine. We further assume an unprotected medium to send messages, which
as specified in [Can20] can be modeled by simply letting the shell forward sent
messages to the adversary (via the backdoor tape) and interpret specific inputs
on the backdoor tape as received messages.

(a) Upon receiving an input (Send, sid, B, m) from party A4, verify that this
machine’s eid is (φA

auth, sid||A); otherwise, ignore the request. Then, set
sid0 = A and m′ = (m; sid; B), send (Sign, m′) to GA

cert (i.e., the input is
given to the ITI running code γ in session sid0 with pid = A) to obtain the
response (Signature, sid0, m′, σ), send (sid; A; m; σ) to ITI (φA

auth, sid||B)
(via the unprotected communication medium).

(b) Upon receiving message (sid′; A; m; σ) from the unprotected communication
medium, this party, denote its eid by (φA

auth, sid||B), sets sid0 = A, sets

4 Let us emphasize that party (i.e., machine) A is not a participant of the protocol
φA
auth (i.e., does not run the code φA

auth), but is the ITI which invokes the (sender’s
part of the) protocol φA

auth (with PID A).
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m′ = (m; sid; B), sends (Verify, sid0, m′, σ) to GA
cert (i.e., the input is given

to the ITI running code γ in session sid0 with pid = B), and obtains a
response (Verified, m′, f). If f = 1 then B outputs (Sent, sid, A, B, m)
(with target eid eidt = B) and halts. Else B halts with no output.

We also assume here standard byzantine corruption of protocol ITIs as defined
in [Can20]: for a structured protocol, this involves interaction with a special
corruption aggregation ITI that aggregates all corruption information (provided
by the shell of the protocols). The goal of this is that the environment receives
“genuine” information about the corruption sets during the execution. The cor-
ruption aggregation is identified by a special PID A .

The Realized Functionality. The realized functionality provides authenticated
message exchange between a sender A and a chosen receiver. Note that the
adversarial ability to obtain legitimate signatures on messages allows to produce
a publicly verifiable trail of the message transmission between A and B (which
is referred to by the term non-deniable in [CSV16]). As above, we follow the
standard PID-wise corruption model for functionalities [Can20].

Functionality FA
cert-auth

(a) Upon receiving an input (Send, sid, B, m) from party A, first verify that the
calling (dummy) party (running idealFA

cert-auth
in session sid by definition)

encodes the PID A. Ignore the request if this is not the case. Then, gener-
ate public delayed-output to B, i.e., first output (Sent, sid, A, B, m) to the
adversary on the backdoor tape. Once delivery is granted by the adversary,
output (Sent, sid, A, B, m) to B.a

(b) Upon receiving (External-info, sid, A, B, m′) from the adversary, if an
output was not yet delivered to B, then set sid0 = A and output
(Sign, sid0, (m′, sid, B)) on behalf of A to idealGA

cert
(in session sid0) and

forward the response to the adversary.
(c) Upon receiving a value (Corrupt-send, sid, B′, m′) from the adversaryb: if

A is marked as corrupted and an output was not yet delivered to B′, then
output (Sent, A, B′, sid; m′) to B′.

(d) Upon receiving (Report), from a party P via dummy party with pid A ,
first set sid0 = A and output (Report) on behalf of A to idealGA

cert
(in

session sid0). Upon receiving the set of corrupted parties, add the PIDs of
the marked corrupted parties of this functionality and output the list to P
(via dummy party A ).

a It is instructive to recall what “output m to B” means if no explicit dummy party
is mentioned via which this output is delivered [Can20, Section 7.3]: it means that
the functionality produces output to a main party running the dummy protocol
with session sid and pid = B and this dummy party produces the output towards
the machine with eid = B.
b This is an additional adversarial capability beyond what is minimally provided
by the standard PID-wise corruption model.
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The Identity Bound on the Environment. In order to show in which contexts
the protocol is secure, we have to specify an identity bound. For the result to
be broadly applicable, we have to find the least restrictive conditions on the
allowed interaction between the environment and the challenge protocol (and γ)
such that the realization statement holds.

In our specific case, we can give the following guarantee which basically says
that the environment cannot claim the extended identity of the signer: more
precisely, we mean that the environment is not allowed to claim source eid eid
in requests to π running in a session s if eid has been already used as the PID
to sign a value (m, s, ·) and PID is not marked as corrupted. Conversely, the
environment is not allowed to invoke γ to sign a value (m, s, ·) using as PID an
extended id eid which has been used before as the caller of π running in session
s and which is not marked as corrupted. Furthermore, it is not allowed that
the environment provides input to the ITI (γ, ·||A ) (where “not allowed” means
that the input provided by the environment is formally rejected if the condition
is satisfied by the state of the system at the moment of providing the input. See
more details in [Can20]). All other invocations are allowed.

Implications of the Above Identity Bound. Recall that any non-trivial bound ξ
restricts the class of context protocols ρ for which the UCGS theorem applies:
Essentially the theorem applies only to those protocols ρ which manage to guar-
antee that the bound ξ remains valid for any combination of φ and γ as sub-
routines within ρ, and similarly for any combination of π and γ as subroutines
of ρφ→π. In the above case, this means that authenticity of the sender iden-
tity is guaranteed as long as the context protocol ρ makes sure that the global
certification module γ only takes signature requests from entities that correctly
represent their identity. Since the underlying model guarantees that the caller
identity is correctly represented, except for the case of inputs provided by the
environment, this means that authenticity is guaranteed as long as ρ makes sure
that γ does not take inputs directly from the environment.

We note that the restriction also touches the corruption model in order to
ensure PID-wise corruption. We force the environment to obtain the system’s
corruption information only through one corruption aggregation machine, which
in our case is the functionality (resp. challenge protocol) that provides the entire
system’s view to Z. Note that this is in accordance with the approach that there
is exactly one machine in an execution that provides this information to the
environment. We thus have:

Lemma 1. Let I be an extended identity, and let ξĪ be the predicate that allows
all extended identities other than I as described above. Protocol φI

auth UC-realizes
FI

cert-auth in the presence of γ = idealGI
cert

with respect to the identity bound ξĪ .

The proof is deferred to [BCH+20].
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3.3 Example 2: Composable Blockchains with a Global Clock

Motivation. We next showcase the shared-setups composition theorem by
demonstrating how it can be applied to obtain composition (i.e., subroutine
replacement) in a context in which global (shared) setups have recently become
the norm, namely that of composable blockchains. Concretely, a number of recent
works [BGK+18,BGM+18,KKKZ18,BMTZ17] analyze the backbone protocol
(intuitively corresponding to the the consensus layer) of mainstream cryptocur-
rencies, such as Bitcoin and Ouroboros assuming a global (shared) clock func-
tionality which is used for enforcing synchrony.

In a nutshell these works prove that by providing access to a global clock
Gclock (along with some additional local or global setups) the underlying back-
bone implements a functionality FLedger that abstract a transaction ledger with
eventual consistency guarantees (more concretely, a ledger enforcing the so-called
common-prefix, liveness, and chain quality property, cf. [GKL15,PSS17].

Let us focus on [BMTZ17]. This work proved that inducing a special way
(discussed below) in which the global (shared) clock functionality is used—
i.e., a special registration/deregistration mechanism—there exists a simulator
in the {FLedger, Gclock}-hybrid world that emulates the behavior of any adver-
sary attacking the Bitcoin backbone protocol in the {Gclock, FRO, Fnet}-hybrid
world, where FRO and Fnet are standard (local to the protocol) UC functionali-
ties. The goal of this modeling is to enable abstracting the internals of the ledger
protocol, designing protocols that have access to the ledger functionality (and
the global clock), and then using the GUC theorem to argue that any protocol
which is proved security assuming access to this local ledger functionality will
remain secure when the functionality is replaced by the Bitcoin backbone pro-
tocol. Assuming existence of such a composition theorem, [BMTZ17] proceeded
in proposing a construction of a cryptocurrency ledger—namely a ledger func-
tionality that also checks signatures of parties—assuming a ledger as above and
a signatures functionality. However, as discussed, the GUC modeling does not
provide sufficiently detailed treatment of external identities so as to make the
above approach go through.

We show how the UCGS Theorem can be used by arguing that the precon-
ditions of Theorem 1 are satisfied for the involved components.

Context Restrictions. First we need to fix the (identity bound) predicate ξ used
to define the applicable context. Recall, that ξ is intended to restrict the set (or
rather the sequence) of extended identities that the environment can claim when
contacting protocols. Let us first consider what happens if we do not impose any
restriction. We argue that any such unrestricted access makes the global clock
functionality behave in a way that no longer ensures synchrony.

To this direction let us recall the basic idea behind clock Gclock. For clarity,
we show a concrete clock functionality formulated in our model in Fig. 5. The
functionality Gclock stores a monotonically increasing counter τsid (corresponding
to the current time or global round) which any party can request by issuing
a special clock-read command. Furthermore, any honest party can send a
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message clock-update to the clock which records it and once all honest parties
have sent such a request while the time was τsid, the clock increases its time, i.e.,
sets τsid := τsid + 1.

The above clock was used as follows to ensure synchrony—i.e., that no party
starts its round ρ + 1 before every party has finished round ρ—which was a
property necessary for the security proof in the above blockchain protocols: In
each round, as soon as a party has completed all its actions (sent and received
all its messages) for the current round, it signals this to the clock by sending
a clock-update command; from that point on this party keeps asking the
clock for the time whenever activated and proceeds to the next round only once
it observes that this counter advances. As the latter event requires everyone
to signal that they are done with the current round, this gives us the desired
synchrony guarantee. Notably, by design of the setup, any Gclock-ideal protocol
γ is trivially regular (according to Definition 3). This is true because the clock
has a special registration mechanism which forces it to only talk to ITIs which
have already registered with it and therefore never spawns new ITIs as required
by that definition.

So what happens to the above, when ξ is overly liberal? If the environment
is allowed to impersonate the protocol session of a party towards the clock (by
issuing an external write request with the source-ID being the session of that
party) then the environment is able to make the clock advance without waiting
for this party, thus entirely destroys the above round structure. This points
to the following natural ξ: The environment is not able to issue any request
to the clock which has source ID the ID of a party that already exists in the
system, or to spawn any ITI for which it already claimed an external identity
before in an interaction with the clock. This corresponds to item (a) in the last
paragraph of Sect. 2.4.5 This requirement is assumed and shown to be sufficient
in [BMTZ17] and therefore implies that the environment cannot make the clock
ignore existing honest parties playing the protocol, hence the clock will enable
the above synchronous rounds structure. In the following we will use this ξ to
apply Theorem 1; for clarity we denote it as ξsync.

Applying the Composition Theorem. Assume now that we want to prove that
in the aforementioned construction of the cryptocurrency ledger from the sim-
pler (backbone) ledger FLedger from [BMTZ17] we can replace the simpler ledger
FLedger by the backbone protocol. This corresponds to proving Theorem 1 for
γ being the Gclock-ideal protocol, π being the backbone protocol, φ being the
FLedger-ideal protocol, and ρ being the construction of the cryptocurrency ledger
with access to φ. All protocols, π, φ, ρ can access protocol γ. First, by inspection
of these protocols, we can verify that ρ, φ, π, γ are subroutine respecting. Note
that although the protocols logic is involved, the subroutine structure is quite
simple (i.e., subroutine calls only go to ideal protocols that formalize either local

5 Clearly, if we assume again PID-wise corruption like previous paragraphs, we need to
further restrict the environment to access only the corruption aggregation machine
of the ledger protocol to obtain the natural interpretation of “PID-wise corruption”.
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Fig. 5. A global clock functionality. We remark that due to the clean definition of
shared subroutines in our model, the depicted global clock has a simpler structure
than the clock in the original version of [BMTZ17]. Still, the clock offers the same
functionality towards calling ITIs.

or global setups). In particular, although not directly claimed in the original
version of in [BMTZ17], it is possible to convert both φ and π into subroutine-
exposing protocols by applying the exposing mechanism (by equipping the proto-
cols with the respective subroutine-exposing shell). Finally, both π and φ are by
design subroutine respecting except with calls to γ (note that this is due to the
fact that a similar concept exists in EUC). Finally, restricting the environment
via ξsync ensures that the use of γ (i.e., the clock) will induce the desired syn-
chronous structure specified for the simulation proof from [BMTZ17]. Given all of
this, the UC-realization proof of [BMTZ17] can be translated to this model (the
overhead is identical to the overhead in the previous example) to conclude that
π UC-emulate φ in the presence of γ when the environment is ξsync-identity-
bounded. Thus we can apply Theorem 1 to prove that ρφ→π UC-emulates ρ
whenever the context protocol calls the subroutine (to be replaced) in the legal
way as defined by ξsync and obtain the desired statement.

Acknowledgments. We thank the anonymous reviewers of Eurocrypt and TCC 2020
for their corrections and suggestions to improve this work.
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A The Code of the Transformation

Protocol M[π, γ]

Let eidM = (codeM, sidM||pidM) be code, SID, and PID of this ITI as written on
the identity tape. Initialize sidπ := ε as the empty string and H[.] as an empty
map. Set eidegDIR := (codeM, sidM||pidegDIR).
Subroutine exposing. Machine M[·] follows the subroutine-exposing instruc-
tions, i.e., it registers itself and all invoked subroutines in the directory ITI.
Incoming messages on the input tape.

– Upon receiving an input in := (m, eid′), where eid′ is an extended identity,
parse m := ((m′, eidsrc), eiddest) where eiddest = (code, siddest||piddest) is an
extended identity. If code = MAIN overwrite (within eiddest) code ← π, in case
of GLOBAL overwrite code ← γ. Otherwise, overwrite code ← ⊥. Additionally,
store the source machine as H[eidsrc] ← eid′. //Unwrap the real message, set
the correct code, and remember the source machine.

– If sidπ = ε then query the execution graph directory eidegDIR. If there is some
entry (M, sid) where M is an ITI with code π, then set sidπ := sid for the first
such entry. Discard and give up activation if code �∈ {π, γ} or if piddest �= pidM
or if code = π ∧ sidπ �= ε ∧ siddest �= sidπ.//Only talk to one instance of π, or
to γ

– If code = π then set sidπ := siddest. Define eid :=
(sh[code], (siddest, sidM)||pidM). Send (register, siddest) to eidegDIR. Issue
the external-write request (f := 1, eid, t, r := 1, eidM, (m′, eidsrc)), where t
denotes the input tape. //Send message to corresponding shell

Incoming messages on the subroutine-output tape.
– Upon receiving a subroutine output sub-out := (m, eid), where eid =

(code, sid||pid) is an extended identity, parse code = (sh[code′], (sid′, sid′′)||pid)
and m := ((m′, eidsrc), eiddest).

– If sidπ = ε then query eidegDIR for the list of registered ITIs, and if some entry
(M, sid) exists, where M has code π, set sidπ := sid for the first such entry.
Discard and give up activation if code′ �∈ {π, γ} or if code = π ∧ sidπ = ε or if
code′ = π but eid �= (sh[π], (sidπ, sidM)||pidM).//Only talk to one instance of
π, or to γ

– If eidsrc = (π, sid||pid) (for some pid, sid) then set eid′
src := (MAIN, sid||pid),

if eidsrc = (γ, sid||pid) (for some pid, sid) then set eid′
src := (GLOBAL, sid||pid).

Overwrite m := (m′, eid′
src). //Hide source of message from calling ITI

– Issue an external-write request: If H[eiddest] �= ⊥, then issue (f ′ =
1, H[eiddest], t, r′ = 1, eidM,m), and otherwise, issue (f ′ = 1, eiddest, t, r′ =
1, eidM,m) where t denotes in both cases the subroutine-output tape.

Incoming messages for the backdoor tape. This protocol ignores messages
to the backdoor tapes (and does not write to the backdoor tape of any other
machine).
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Shell sh[code]

Let eidsh denote the contents on the identity tape and let pidsh and
sidsh =: (sidloc, sidM) denote the PID and SID, respectively. Set eidegDIR :=
(codeM, sidM||pidegDIR) (where pidegDIR is a publicly known special PID and codeM
can be extracted from the extended identity of the sender on the input tape upon
first invocation).
Incoming messages.
//Relay message to virtual ITI
I-1: Upon receiving an input or subroutine output (m, eid), where eid =

(ψ, sid||pid) is an extended identity, parse m as (m′, eidsrc). Query eidegDIR
for the list of the registered ITIs. If eid is not contained in the list, or sid is
not either sidM or of the form (∗, sidM), then ignore the message. Otherwise,
do:

• If the virtual ITI M ′ = (code, sidloc||pidsh) already exists, then message
m′ and eidsrc are written to the corresponding tape of M ′. Virtual ITI
M ′ is then activated.

• If the virtual ITI M ′ = (code, sidloc||pidsh) does not exist yet, then a
new one is created, i.e., a new configuration for program code with the
corresponding identity is created and the request is executed as above.

//Corruption handling: only existing virtual ITIs can be corrupted, shells are incor-
ruptible

I-2: Upon receiving m on the backdoor tape, sh parses it as (m′, eiddest), where
eiddest is an extended identity. If eiddest �= (code, sidloc||pidsh) then discard the
input and give up activation (i.e., ITIs running sh[·] are not corrupted).
1: If the virtual ITM M ′ = eiddest does not exist yet, then give up activation.
2: If the virtual ITM M ′ = eiddest exists, m′ is written on its backdoor tape

and M ′ is activated.
Outgoing messages.
//Shell can give input to any subsidiary of M[]
O-1: If the virtual ITI of the body issues an external-write instruc-

tion (f, eiddest, t, r, eidsrc,m) where t denotes the input tape, then:
(∗) Parse eiddest =: (codedest, (siddest||piddest)). Send (invoke,
sh[codedest], eidsrc → eiddest) to eidegDIR. Issue an external-write instruction
(f, (sh[codedest], (siddest, sidM)||piddest), t, r, eidsh,m′) where m′ = (m, eidsrc).

//Subroutine output either goes to M[] or to another shell
O-2: If the virtual ITI of the body issues an external-write instruction

(f, eiddest, t, r, eidsrc,m) where t denotes the subroutine-output tape, query
eidegDIR to obtain the list of registered ITIs and the execution graph struc-
ture of the virtual ITIs.

• //Detecting the sessions of π and γ that produce output to the environ-
ment/context protocol.
If the obtained execution graph reveals that (1) this ITI with sidsh =
(sidloc, sidM) is a main party of the test session of π (i.e., the one
invoked by M[π, γ]) and eiddest is not part of this extended test ses-
sion or (2) eiddest is not part of the extended test session and this ITI
runs a virtual ITI with code γ: then issue an external-write instruction
(f, eidM, t, r, (sh[code], sidsh||pidsh),m′), where m′ = ((m, eidsrc), eiddest),
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eidM denotes the unique identity from the list of registered devices run-
ning code codeM with identity (sidM||pidsh).

• //Otherwise, the subroutine output goes to a ITI which must be part of
this extended instance. Else, proceed as in O-1 position (∗) and use the
subroutine relation eiddest → eidsrc when talking to eidegDIR.

//Enable communication with adversary
O-3: If the virtual ITI sends backdoor message m′ to the adversary, then define the

message m := (m′, (code, sidloc||pidsh)) and execute the external-write request
(f ′ = 0, (⊥, ⊥), t, r′ = 1, (sh[code], sidloc||pidsh),m′) destined for the adversary
ITI.
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Abstract. We show that a slight variant of Protocol SPAKE2+, which
was presented but not analyzed in [17], is a secure asymmetric password-
authenticated key exchange protocol (PAKE), meaning that the protocol
still provides good security guarantees even if a server is compromised
and the password file stored on the server is leaked to an adversary. The
analysis is done in the UC framework (i.e., a simulation-based security
model), under the computational Diffie-Hellman (CDH) assumption, and
modeling certain hash functions as random oracles. The main difference
between our variant and the original Protocol SPAKE2+ is that our
variant includes standard key confirmation flows; also, adding these flows
allows some slight simplification to the remainder of the protocol. Along
the way, we also (i) provide the first proof (under the same assumptions)
that a slight variant of Protocol SPAKE2 from [5] is a secure symmetric
PAKE in the UC framework (previous security proofs were all in the
weaker BPR framework [7]); (ii) provide a proof (under very similar
assumptions) that a variant of Protocol SPAKE2+ that is currently
being standardized is also a secure asymmetric PAKE; (iii) repair several
problems in earlier UC formulations of secure symmetric and asymmetric
PAKE.

1 Introduction

A password-authenticated key exchange (PAKE) protocol allows two
users who share nothing but a password to securely establish a session key.
Ideally, such a protocol prevents an adversary, even one who actively partici-
pates in the protocol (as opposed to an eavesdropping adversary), to mount an
offline dictionary attack. PAKE protocols were proposed initially by Bellovin
and Merrit [9], and have been the subject of intensive research ever since.

A formal model of security for PAKE protocols was first proposed by Bel-
lare, Pointcheval, and Rogaway [7]. We call this the BPR framework for
PAKE security. The BPR framework is a “game based” security definition, as
opposed to a “simulation based” security definition. A simulation-based security
definition for PAKE was later given in [14]. We shall refer to this and similar
simulation-based security definitions as the UC framework for PAKE secu-
rity. Here, UC is short for “Universal Composability”, as the definitions in [14]
are couched in terms of the more general Universal Composability framework
of [12]. As shown in [14], PAKE security in the UC framework implies PAKE
c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12552, pp. 31–60, 2020.
https://doi.org/10.1007/978-3-030-64381-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64381-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-64381-2_2


32 V. Shoup

security in the BPR framework. In fact, the UC framework for PAKE security
is stronger than the BPR framework in a number of ways that we will discuss
further below.

Abdalla and Pointcheval [5] present Protocol SPAKE2, which itself is a vari-
ant of a protocol originally presented in [9] and analyzed in [7]. Protocol SPAKE2
is a simple and efficient PAKE protocol, and was shown in [5] to be secure in
the BPR security framework. Their proof of security is in the random oracle
model [8] under the computational Diffie-Hellman (CDH) assumption.1

The protocol also makes use of a common reference string consisting of two
random group elements.

Protocol SPAKE2 has never been proven secure in the UC framework. As
we argue below, it seems very unlikely that it can be. One of our results is to
show that by adding standard key confirmation flows to (a simplified version of)
Protocol SPAKE2 (which is anyway considered to be good security practice),
the resulting protocol, which we call Protocol KC-SPAKE2, is secure in the UC
framework (under the same assumptions).

Protocols SPAKE2 and KC-SPAKE2 are symmetric PAKE protocols, mean-
ing that both parties must know the password when running the protocol. In
the typical setting where one party is a client and the other a server, while the
client may memorize their password, the server stores the password in some
type of “password file”. If this password file itself is ever leaked, then the client’s
password is totally compromised. From a practical security point of view, this
vulnerability possibly negates any perceived benefits of using a PAKE proto-
col instead of a more traditional password-based protocol layered on top of a
one-sided authenticated key exchange (which is still the overwhelming practice
today).

In order to address this security concern, the notion of an asymmetric
PAKE was studied in [19], where the UC framework of [14] is extended to
capture the notion that after a password file is leaked, an adversary must still
carry out an offline dictionary attack to retrieve a client’s password. The paper
also gives a general mechanism for transforming a secure PAKE into a secure
asymmetric PAKE.2

In [17], a variant of Protocol SPAKE2, called Protocol SPAKE2+, is intro-
duced. This protocol is meant to be a secure asymmetric PAKE, while being
simpler and more efficient than what would be obtained by directly applying
the transformation in [19] to Protocol SPAKE2 or KC-SPAKE2. However, the
security of Protocol SPAKE2+ was never formally analyzed.

In this paper, we propose adding standard key confirmation flows to (a
simplified version of) Protocol SPAKE2+, obtaining a protocol called Proto-
col KC-SPAKE2+, which we prove is a secure asymmetric PAKE in the UC
framework (under the CDH assumption, in the random oracle model, and with

1 The CDH assumption, in a group G of prime order q generated by g ∈ G, asserts
that given gα, gβ , for random α, β ∈ Zq, it is hard to compute gαβ .

2 The paper [19] was certainly not the first to study asymmetric PAKE protocols, nor
is it the first to propose a formal security definition for such protocols.



Security Analysis of SPAKE2+ 33

a common reference string). This is our main result. We also present and justify
various design choices in both the details of the protocol and the ideal function-
ality used in its security analysis. As we discuss below, some changes in the ideal
functionality in [19] were necessary in order to obtain meaningful results. Since
some changes were necessary, we also made other changes in the name of making
things simpler.

Comparison to OPAQUE. In [23], a stronger notion of asymmetric PAKE secu-
rity is introduced, wherein the adversary cannot initiate an offline dictionary
attack until after the password file is leaked. None of the protocols analyzed
here are secure in this stronger sense. Nevertheless, the protocols we analyze
here may still be of interest. First, while an offline dictionary attack may be
initiated before the password file is leaked, such a dictionary attack must be
directed at a particular client. Second, the protocols we analyze here are quite
simple and efficient, and unlike the OPAQUE protocol in [23], they do not require
hashing a password to a group element. Third, the protocols we analyze here
are proved secure under the CDH assumption, while the OPAQUE protocol is
proved secure under the stronger “one-more Diffie-Hellman assumption”.

In Defense of Programmable Random Oracles. Our main results are proofs of
security in the UC framework using programmable random oracles. The same
is true for many other results in this area (including [23]), and results in [20]
suggest that secure asymmetric PAKE protocols may only be possible with pro-
grammable random oracles.

Recently, results that use programmable random oracles in the UC framework
have come to be viewed with some skepticism (see, for example, [11,15]). We wish
to argue (briefly) that such skepticism is a bit overblown (perhaps to sell a new
“brand” of security) and that such results are still of considerable value.

Besides the fact that in any security analysis the random oracle model is at
best a heuristic device (see, for example, [13]), there is a concern that in the UC
framework, essential composability properties may be lost. (In fact, this com-
posability concern applies to any type of “programmable” set-up assumption,
such as a common reference string, and not just to random oracles.)

While composability with random oracles is a concern, in most applications,
it is not an insurmountable problem. First, the ideal functionalities we define
in this paper will all be explicitly in a multi-user/multi-instance setting where
a single random oracle is used for all users and user instances. Second, even if
one wants to use the same random oracle in this and other protocols, that is
not a problem, so long as all of the protocols involved coordinate on how their
inputs are presented to the random oracle. Specifically, as long as all protocols
present their inputs to the random oracle using some convention that partitions
the oracle’s input space (say, by prefixing some kind of “protocol ID” and/or
“protocol instance ID”), there will be no unwanted interactions, and it will be “as
if” each different protocol (or protocol instance) is using its own, independent
random oracle. In the UC framework, this is all quite easily justified using the
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public system parameters: random a, b ∈ G

shared secret password: π

QP

α ←R
Zq, u ← gαaπ β ←R

Zq, v ← gβbπ

u−−−−−−−−−−−−→
v←−−−−−−−−−−−−

w ← (v/bπ)α

k ← H(π, idP , idQ, u, v, w)
w ← (u/aπ)β

k ← H(π, idP , idQ, u, v, w)

session key: k

Fig. 1. Protocol SPAKE2

JUC theorem [16]. Granted, such coordination among protocols in a protocol
stack may be a bit inconvenient, but is not the end of the world.

Full Version of the Paper. Because of space limitations, a number of details have
been omitted from this extended abstract. We refer the reader to the full version
of the paper [25] for these details.

2 Overview

We start by considering Protocol SPAKE2, which is shown in Fig. 1, and which
was first presented and analyzed in [5]. Here, G is a group of prime order q,
generated by g ∈ G, and H is a hash function that outputs elements of the
set K of all possible session keys. Passwords are viewed as elements of Zq. The
protocol also assumes public system parameters a, b ∈ G, which are assumed to
be random elements of G that are generated securely, so that no party knows
their discrete logarithms.

This protocol is perfectly symmetric and can be implemented with the two
flows sent in any order or even concurrently. In [5], it was shown to be secure in
the BPR framework, under the CDH assumption, and modeling H as a random
oracle.

Their security analysis, however, did not take corruption queries (which leak
passwords to the adversary) into account, which must be done in order to prove
forward security in the BPR framework. Later, [1] show that Protocol SPAKE2
does indeed provide forward security in the BPR framework,3 also in the random
oracle model, but under the stronger Gap CDH assumption.4

3 The security theorem in [1] only applies to so-called “weak” corruptions in the BPR
framework, in which corrupting a party reveals to the adversary only its password,
and not the internal state of any corresponding protocol instance.

4 The Gap CDH assumption asserts that the problem of computing gαβ , given gα, gβ

for random α, β ∈ Zq, is hard even if the attacker has access to a DDH oracle. Such
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public system parameters: random a, b ∈ G

password: π, (φ0, φ1) := F (π, idP , idQ)

QP

secret: φ0, φ1 secret: φ0, c := gφ1

α ←R
Zq, u ← gαaφ0 β ←R

Zq, v ← gβbφ0

u−−−−−−−−−−→
v←−−−−−−−−−−

w ← (v/bφ0)α, d ← (v/bφ0)φ1

k ← H(φ0, idP , idQ, u, v, w, d)
w ← (u/aφ0)β , d ← cβ

k ← H(φ0, idP , idQ, u, v, w, d)

session key: k

Fig. 2. Protocol SPAKE2+

A major drawback of Protocol SPAKE2 is that if one of the two parties repre-
sents a server, and if the server’s password file is leaked to the adversary, then the
adversary immediately learns the user’s password. The initial goal of this research
was to analyze the security of Protocol SPAKE2+, shown in Fig. 2, which was
designed to mitigate against such password file leakage. Protocol SPAKE2+ was
presented in [17], but only some intuition of security was given, rather than a
proof. The claim in [17] was that it is secure under the CDH assumption in
the random oracle model, but even the security model for this claim was not
specified.

The goal is to analyze such a protocol in the model where the password file
may be leaked. In the case of such a leakage, the basic security goal is that the
adversary cannot log into the server unless it succeeds in an offline dictionary
attack (note that the adversary can certainly impersonate the server to a client).

In terms of formal models for this setting, probably the best available model
is the UC framework for asymmetric PAKE security in [19], which builds on
the UC framework for ordinary (i.e., symmetric) PAKE security in [14]. Even
without password file leakage, the UC framework is stronger than, and preferable
to, the BPR framework in a number of important aspects.

• The UC framework models arbitrary password selection, where some pass-
words may be related, and where the choice of password can be arbitrary,
rather than chosen from some assumed distribution. In contrast, the BPR
framework assumes that all passwords are independently drawn from some
specific distribution.

an oracle is given triples (gμ, gν , gκ), and returns “yes” if κ = μν and “no” otherwise.
This is not a falsifiable assumption (as defined in [24]). This is in contrast to the
weaker interactive CDH assumption, in which it is required that gμ = gα. This is
the same assumption used to analyze the well-known DHIES and ECIES schemes
(which are essentially just “hashed” ElGamal schemes) in the random oracle model.
See [3], where is called the Strong Diffie-Hellman assumption.
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• In the BPR framework, when the adversary guesses any one password, the
game is over and the adversary wins. This means that in a system of 1,000,000
users, if the adversary guesses any one user’s password in an online dictionary
attack, there are no security guarantees at all for the remaining 999,999 users.
In contrast, in the UC framework, guessing one password has no effect on
the security of other passwords (to the extent, of course, that those other
passwords are independent of the guessed password).

• It is not clear what the security implications of the BPR framework are for
secure-channel protocols that are built on top of a secure PAKE protocol.
(We will discuss this in more detail in the following paragraphs.) In contrast,
PAKE security in the UC framework implies simulation-based security of any
secure-channel protocol built on top of the PAKE protocol.

For these reasons, we prefer to get a proof of security in the UC framework.
However, Protocol SPAKE2 itself does not appear to be secure in UC frame-
work for symmetric PAKE (as defined in [14]), and for the same reason, Proto-
col SPAKE2+ is not secure in UC framework for asymmetric PAKE (as defined
in [19]). One way to see this is as follows. Suppose that in Protocol SPAKE2 an
adversary interacts with Q, and runs the protocol honestly, making a guess that
the correct password is π′. Now, at the time the adversary delivers the random
group element u to Q, no simulator can have any idea as to the adversary’s guess
π′ (even if it is allowed to see the adversary’s queries to the random oracle H),
and Q will respond with some v, and from Q’s perspective, the key exchange
protocol is over, and Q may start using the established session key k in some
higher-level secure-channel protocol. For example, at some later time, the adver-
sary might see a message together with a MAC on that message using a key
derived from k. At this later time, the adversary can then query H at the appro-
priate input to determine whether its guess π′ was correct or not. However, in
the ideal functionality presented in [14], making a guess at a password after the
key is established is not allowed. On a practical level, good security practice dic-
tates that any reasonable ideal functionality should not allow this, as any failed
online dictionary attack should be detectable by the key exchange protocol. On
a more fundamental level, in any reasonable UC formulation, the simulator (or
the simulator together with ideal functionality) must decide immediately, at the
time a session key is established, whether it is a “fresh” key, a copy of a “fresh”
key, or a “compromised” key (one that may be known to the adversary). In the
above example, the simulator cannot possibly classify Q’s key at the time that
the key is established, because it has no way of knowing if the password π′ that
the adversary has in mind (but which at that time is completely unknown to the
simulator) is correct or not. Because it might be correct, that would suggest we
must classify the key as “compromised”, even though it may not be. However,
if the ideal functionality allowed for that, this would be an unacceptably weak
notion of security, as then every interaction with the adversary would result in
a “compromised” session key.

The obvious way to solve the problem noted above is to enhance Proto-
col SPAKE2 with extra key confirmation flows. This is anyway considered good
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security practice, and the IETF draft specification [26] already envisions such
an enhancement.

Note that [1] shows that Protocol SPAKE2 provides forward security in the
BPR framework. This suggests that the notion of forward security defined in [7]
is not really very strong; in particular, it does not seem strong enough to prove
a meaningful simulation-based notion of security for a channel built on top of a
PAKE protocol.

In concurrent and independent work, [2] show that Protocol SPAKE2 is
secure in the UC framework, but with respect to a weak ideal functionality
(which, again, does not seem strong enough to prove a meaningful simulation-
based notion of security for a channel built on top of a PAKE protocol). They
also show that Protocol SPAKE2 with additional key confirmation flows is secure
in the UC framework, with respect to an ideal functionality very similar to that
considered here. We note that all of their security proofs make use of the very
strong Gap CDH assumption, mentioned above, whereas all of our results only
make use of the standard CDH assumption.

2.1 Outline

In Sect. 3, we introduce Protocol KC-SPAKE2, which is a variation of Proto-
col SPAKE2 that includes key confirmation. In Sect. 4 we give a fairly self-
contained overview of the general UC framework, and in Sect. 4.2, we spec-
ify the symmetric PAKE ideal functionality that we will use to analyze Proto-
col KC-SPAKE2 in the UC framework (discussing why we made certain changes
to the UC formulation in [14]). In Sect. 5, we introduce Protocol KC-SPAKE2+,
which is to Protocol KC-SPAKE2 as Protocol SPAKE2+ is to Protocol SPAKE2.
In Sect. 6, we specify the asymmetric PAKE ideal functionality that we will use
to analyze Protocol KC-SPAKE2+ in the UC framework, and we discuss why we
made certain changes to the UC formulation in [19]. Section 7 describes Proto-
col IETF-SPAKE2+, which is a variant of Protocol KC-SPAKE2+ that gener-
alizes the protocol described in the IETF draft specification [26]. Section 8 gives
formal statements of our security theorems. All of our security proofs are in the
random oracle model under the CDH assumption (with some additional, stan-
dard assumptions on some symmetric primitives for Protocol IETF-SPAKE2+).
Although we do not have space in this extended abstract to present proofs of
these theorems (but which are presented in the full version of the paper [25]), in
Sect. 9 we present a very brief sketch of some of the main ideas.

3 Protocol KC-SPAKE2

We begin by presenting a protocol, KC-SPAKE2 , which is a simplified version of
Protocol SPAKE2 with key confirmation flows. This protocol is essentially Pro-
tocol PFS-SPAKE2 presented in the paper [6]. In that paper, this protocol was
shown to provide perfect forward secrecy in the BPR framework [7] (under the
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public system parameter: random a ∈ G

shared secret password: π

QP

α ←R
Zq, u ← gαaπ u−−−−−−→ β ←R

Zq, v ← gβ

w ← (u/aπ)β

(k, k1, k2) ← H(π, idP , idQ, u, v, w)

w ← vα

(k, k1, k2) ← H(π, idP , idQ, u, v, w)
validate k1

v, k1←−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 3. Protocol KC-SPAKE2

CDH assumption in the random oracle model). Our goal here is to analyze Pro-
tocol KC-SPAKE2 in the UC model, and then to augment Protocol KC-SPAKE2
so that it is secure against server compromise in the UC framework. Note that in
the paper [4], a protocol that is very similar to Protocol KC-SPAKE2 was also
shown to provide perfect forward secrecy in the BPR framework (also under the
CDH assumption in the random oracle model).

Protocol KC-SPAKE2 makes use of a cyclic group G of prime order q gen-
erated by g ∈ G. It also makes use of a hash function H, which we model as
a random oracle, and which outputs elements of the set K × Kauth × Kauth,
where K is the set of all possible session keys, and Kauth is an arbitrary set
of super-polynomial size, used for explicit key confirmation. The protocol has
a public system parameter a ∈ G, which is assumed to be a random element
of G that is generated securely, so that no party knows its discrete logarithm.
Furthermore, passwords are viewed as elements of Zq. Protocol KC-SPAKE2 is
described in Fig. 3. Both users compute the value w = gαβ , and then compute
(k, k1, k2) ← H(π, idP , idQ, u, v, w). Note that P “blinds” the value gα by mul-
tiplying it by aπ, while Q does not perform a corresponding blinding. Also, P
checks that the authentication key k′

1 it receives is equal to the authentication
key k1 that it computed; otherwise, P aborts without sending k2. Likewise, Q
checks that the authentication key k′

2 it receives is equal to the authentication
key k2 that it computed; otherwise, Q aborts. The value k is the session key.

In this protocol, it is essential that the P first sends the flow u, and then Q
responds with v, k1, and only then (if k1 is valid) does P respond with k2. Also,
in this protocol, as well as Protocol KC-SPAKE2+ (in Sect. 5), it is essential
that P validates that v ∈ G and Q validates that u ∈ G.

It is useful to think of P as the client and Q as the server. From a practical
point of view, this is a very natural way to assign roles: the client presumably
initiates any session with the server, and the first flow of Protocol KC-SPAKE2
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can piggyback on that initial message. In addition, as we transition from Pro-
tocol KC-SPAKE2 to Protocol KC-SPAKE2+, we will also assign P the role of
client and Q the role of server.

Detecting Failed Online Dictionary Attacks. From a practical perspective, it
is desirable to be able to detect a failed online dictionary attack and to take
preventive action. In Protocol KC-SPAKE2, a client P can detect a (potential)
failed online dictionary attack when it receives an invalid authentication key k1
(of course, the authentication key could be invalid for other, possibly benign,
reasons, such as a transmission error). Moreover, the adversary can only learn if
its password guess was correct by seeing how P responds. Indeed, the adversary
learns nothing at all if it does not send the second flow to P . Now consider how
a server Q may detect a (potential) failed online dictionary attack. After the
server sends out k1, the adversary can already check if its guess was correct. If
its guess was incorrect, it cannot feasibly respond with a valid k2, and such an
adversary would presumably not even bother sending k2. Thus, if Q times out
waiting for k2, then to be on the safe side, Q must consider such a time-out
to be a potential online dictionary attack. If, from a security perspective, it is
viewed that online dictionary attacks against the server are more likely, it might
be advantageous to flip the roles of P and Q, so that it is the client that sends
the first authentication key. Unfortunately, in the typical setting where the client
sends the first flow, this will increase the number of flows from 3 to 4. Although
we do not analyze this variant or its asymmetric secure “+” variant, it should
be straightforward to modify the proofs presented here to cover these variants as
well. Finally, as we already mentioned above, in the original Protocol SPAKE2,
which provides no explicit key confirmation, it is impossible to detect a failed
online dictionary attack in the key exchange protocol itself.

4 Simulation-Based Definition of Secure PAKE

Protocol KC-SPAKE2 was already analyzed in the BPR framework. Our goal
is to analyze Protocol KC-SPAKE2 in the UC framework. The main motiva-
tion for doing so is that we eventually want to analyze the asymmetric Proto-
col KC-SPAKE2+ in the UC framework.

We give a fairly self-contained definition of a secure PAKE. Our definition is
a simulation-based definition that is essentially in the UC framework of [12]. We
do not strictly adhere to all of the low-level mechanics and conventions given
in [12]. Indeed, it is not really possible to do so, for a couple of reasons. First,
between the time of its original appearance on the eprint archive and the time
of this writing, the paper [12] has been revised a total of 14 times, with some of
those revisions being quite substantial. So it is not clear what “the” definition of
the UC framework is. Second, as pointed out in [22] and [21], the definitions in
the contemporaneous versions of [12] were mathematically inconsistent. While
there are more recent versions of [12], we have not yet been able to independently
validate that these newer versions actually correct the problems identified in [22]



40 V. Shoup

(a) The real world

H

Z

A
· · ·

· · ·

ΠΠΠ

(b) The ideal world

Z

S

· · ·

Fig. 4. The real and ideal worlds in the UC framework

and [21], while not introducing new problems. Our point of view, however, is that
even though it is extremely difficult to get all of the details right, the core of the
UC framework is robust enough so as to give meaningful security guarantees even
if some of the low-level mechanics are vaguely or even inconsistently specified,
and that these security guarantees are mainly independent of small changes to
these low-level mechanics. In fact, it is fair to say that most papers that purport
to prove results in the UC framework are written without any serious regard
toward, or even knowledge of, most of these low-level mechanics.

Our definitions of security for PAKE differ from that presented in [14], which
was the first paper to formally define secure PAKE in the UC framework. Some of
these differences are due to the fact that we eventually will modify this function-
ality to deal with server corruptions, and so we will already modify the definition
to be more compatible with this. While the paper [19] builds on [14] to model
asymmetric PAKE, the paper [20] identifies several flaws in the model of [19].
Thus, we have taken it upon ourselves to correct these flaws in a reasonable way.

4.1 Review of the UC Framework

We begin with a very brief, high-level review of the UC framework. Figure 4a
shows a picture of the “real world” execution of a Protocol Π. The oval shapes
represent individual machines that are faithfully executing the protocol Π. The
environment Z represents higher-level protocols that use Π as a sub-protocol, as
well as any adversary that is attacking those higher-level protocols. However, all
of these details are abstracted away, and Z can be quite arbitrary. The adversary
A represents an adversary attacking Protocol Π. Adversary A communicates
continuously with Z, so as to coordinate its attack on Π with any ongoing attack
on a higher-level protocol. The protocol machines receive their inputs from Z
and send their outputs to Z. Normally, one would think of these inputs as coming
from and going to a higher-level protocol. The protocol machines also send and
receive messages from A, but not with each other. Indeed, among other things,



Security Analysis of SPAKE2+ 41

the adversary A essentially models a completely insecure network, effectively
dropping, injecting, and modifying protocol messages at will. Figure 4a also
shows a box labeled H. In our analysis of Protocol KC-SPAKE2, we model H a
random oracle. This means that in the “real world”, the protocol machines and
the adversary A may directly query the random oracle H. The environment Z
does not have direct access to H; however, it can access H indirectly via A.

Figure 4b shows a picture of the “ideal world” execution. The environment
Z is exactly the same as before. The box labeled F is an ideal functionality that
is essentially a trusted third party that we wish we could use to run the protocol
for us. The small oval shapes also represent protocol machines, but now these
protocol machines are just simple “repeaters” that pass their inputs directly from
Z to F , and their outputs directly from F to Z. The box labeled S is called a
simulator, but really it is just an adversary that happens to operate in the “ideal
world”. The simulator S can converse with Z, just as A did in the “real world”.
The simulator S can also interact with F , but its influence on F will typically
be limited: the precise influence that S can exert on F is determined by the
specification of F itself. Typically, while S cannot cause any “bad events” that
would violate security, it can still determine the order in which various events
occur.

Roughly speaking, we say that Protocol Π securely emulates ideal function-
ality F if for every efficient adversary A, there exists an efficient simulator S,
such that no efficient environment Z can effectively distinguish between the “real
world” execution and the “ideal world” execution. The precise meaning of “effi-
cient” here is a variant of polynomial time that adequately deals with a complex,
multi-party system. We suggest the definitions in [21,22], but other definitions
are possible as well. In the UC framework, saying that Protocol Π is “secure”
means that it securely emulates F . Of course, what “secure” means depends on
the specification of F .

4.2 An Ideal Functionality for PAKE

We now give our ideal functionality for PAKE. As mentioned above, the func-
tionality we present here is a bit different from that in [14], and some of the
low-level mechanics (relating to things like “session identifiers”) is a bit different
from those in [12].

• Party P inputs: (init-client, rid , π)
Intuition: This models the initialization of a client and its relationship to a
particular server, including the shared password π.

◦ We say that P is initialized as a client, where rid is its relationship ID
and π is its password.

◦ Assumes (i) that P has not been previously initialized as either a client
or server, and (ii) that no other client has been initialized with the same
relation ID.5

5 As we describe it, the ideal functionality imposes various pre-conditions on the inputs
it receives. The reader may assume that if these are not met, an “error message”
back to whoever sent the input. However, see Remark 1 below.



42 V. Shoup

◦ The simulator is sent (init-client, P, rid).
◦ Note that rid is a relationship ID that corresponds to a single client/server

pair. In practice (and in the protocols analyzed here), such a relationship
ID is a pair rid = (idP , idQ).

• Party Q inputs: (init-server, rid , π)
Intuition: This models the initialization of a server and its relationship to a
particular client, including the shared password π.

◦ We say that Q is initialized as a server, where rid is its relationship ID
and π is its password.

◦ Assumes (i) that Q has not been previously initialized at either a client
or server, and (ii) that no other server has been initialized with the same
relationship ID.

◦ Assumes that if a client and server are both initialized with the same
relationship ID rid , then they are both initialized with the same password
π.

◦ The simulator is sent (init-server, Q, rid).
◦ Note: for any relationship ID, there can be at most one client and one

server with that ID, and we call this client and server partners.

• Party P inputs: (init-client-instance, iidP , π∗)
Intuition: This models the initialization of a client instance, which corre-
sponds to a single execution of the key exchange protocol by the client, using
possibly mistyped or misremembered password π∗.

◦ Party P must have been previously initialized as a client.
◦ The value iidP is an instance ID, and must be unique among all instances

of P .
◦ The simulator is sent (init-client-instance, P, iidP , type), where

type := 1 if π∗ = π, and otherwise type := 0, and where π is P ’s password.
◦ We call this instance (P, iidP ), and the ideal functionality sets the state

of the instance to original.
◦ We call π∗ the password of this instance, and we say that this instance is

good if π∗ = π, and bad otherwise.
◦ Note: a bad client instance is meant to model the situation in the actual,

physical world where the human client mistypes or misremembers their
password associated with the server.

• Party Q inputs: (init-server-instance, iidQ)
Intuition: This models the initialization of a server instance, which corre-
sponds to a single execution of the key exchange protocol by the server.

◦ Party Q must have been previously initialized as a server.
◦ The value iidQ is an instance ID, and must be unique among all instances

of Q.
◦ The simulator is sent (init-server-instance, Q, iidQ).
◦ We call this instance (Q, iidQ), and the ideal functionality sets the state

of the instance to original.
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◦ If π is Q’s password, we also define π∗ := π to be the password of this
instance. Unlike client instances, server instances are always considered
good.

• Simulator inputs: (test-pwd,X, iidX , π′)
Intuition: This models an on-line dictionary attack, whereby an attacker
makes a single guess at a password by interacting with a particular
client/server instance.

◦ Assumes (i) that there is an instance (X, iidX), where X is either a
client or server, (ii) that this is the first test-pwd for (X, iidX), and (iii)
that the state of (X, iidX) is either original or abort.
◦ The ideal functionality tests if π′ is equal to the password π∗ of instance
(X, iidX):

– if π′ = π∗, then the ideal functionality does the following: (i) if the
state of the instance is original, it changes the state to correct-guess,
and (ii) sends the message (correct) to the simulator.

– if π′ �= π∗, then the ideal functionality does the following: (i) if the
state of the instance is original, it changes the state to incorrect-guess,
and (ii) sends the message (incorrect) to the simulator.

◦ Note: if X is a server or (X, iidX) is a good client instance, then π∗ = π,
where π is X’s password.

• Simulator inputs: (fresh-key,X, iidX , sid)
Intuition: This models the successful termination of a protocol instance that
returns to the corresponding client or server a fresh key, i.e., a key that is
completely random and independent of all other keys and of the attacker’s
view, along with the given session ID sid . This is not allowed if a password
guess was made against this instance.

◦ Note: if X is a server or (X, iidX) is a good client instance, then π∗ = π,
where π is X’s password. The value sid is a session ID that is to be
assigned to the instance (X, iidX).

◦ Assumes (i) that (X, iidX) is an original, good instance, where X is either
a client or a server, (ii) that there is no other instance (X, iid ′

X) that has
been assigned the same session ID sid , (iii) that X has a partner Y , and
(iv) that there is no instance (Y, iidY ) that has been assigned the same
session ID sid .

◦ The ideal functionality does the following: (i) assigns the session ID sid to
the instance (X, iidX), (ii) generates a random session key k, (iii) changes
the state of the instance (X, iidX) to fresh-key, and (iv) sends the output
(key, iidX , sid , k) to X.

• Simulator inputs: (copy-key,X, iidX , sid)
Intuition: This models the successful termination of a protocol instance that
returns to the corresponding client or server a copy of a fresh key, along with
the given session ID sid . Note that a fresh key can be copied only once and
only from an appropriate partner instance with a matching session ID. This
is not allowed if a password guess was made against this instance.
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◦ Assumes (i) that (X, iidX) is an original, good instance, where X is either
a client or server, (ii) that there is no other instance (X, iid ′

X) that has
been assigned the same session ID sid , (iii) that X has a partner Y , (iv)
that there is a unique instance (Y, iidY ) that has been assigned the same
session ID sid , and (v) the state of (Y, iidY ) is fresh-key.

◦ The ideal functionality does the following: (i) assigns the session ID sid
to the instance (X, iidX), (ii) changes the state of the instance (X, iidX)
to copy-key, and (iii) sends the output (key, iidX , sid , k) to X, where k
is the key that was previously generated for the instance (Y, iidY ).

• Simulator inputs: (corrupt-key,X, iidX , sid , k)
Intuition: This models the successful termination of a protocol instance that
returns to the corresponding client or server a corrupt key, i.e., a key that
is known to the adversary, along with the given session ID sid . This is only
allowed if a corresponding password guess against this particular instance was
successful.

◦ Assumes (i) that (X, iidX) is a correct-guess instance, where X is either
a client or server, (ii) that there is no other instance (X, iid ′

X) that has
been assigned the same session ID sid , and (iii) that if X has a partner
Y , there is no instance (Y, iidY ) that has been assigned the same session
ID sid .

◦ The ideal functionality does the following: (i) assigns the session ID sid
to the instance (X, iidX), (ii) changes the state of the instance (X, iidX)
to corrupt-key, and (iii) sends the output (key, iidX , sid , k) to X.

• Simulator inputs: (abort,X, iidX)
Intuition: This models the unsuccessful termination of a protocol instance.
Note that an incorrect password guess against an instance can only lead to
its unsuccessful termination.

◦ Assumes that (X, iidX) is either an original, correct-guess, or incorrect-
guess instance, where X is either a client or server.

◦ The ideal functionality does the following: (i) changes the state of the
instance (X, iidX) to abort, and (ii) sends the output (abort, iidX) to X.

4.3 Well-Behaved Environments

In the above specification of our ideal functionality, certain pre-conditions must
be met on inputs received from the environment (via the parties representing
clients and servers). To this end, we impose certain restrictions on the environ-
ment itself.

We say that an environment Z is well behaved if the inputs from clients
and servers (which come from Z) do not violate any of the stated preconditions.
Specifically, this means that for the init-client and init-server inputs: (i)
no two clients are initialized with same relationship ID, (ii) no two servers are
initialized with the same relationship ID, and (iii) if a client and server are
initialized with the same relationship ID, then they are initialized with the same
password; moreover, for the init-client-instance and init-server inputs
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(iv) no two instances of a given client or server are initialized with the same
instance ID.

In formulating the notion that a concrete protocol “securely emulates” the
ideal functionality, one restricts the quantification over all environments to all
such well-behaved environments. It is easy to verify that all of the standard UC
theorems, including dummy-adversary completeness, transitivity, and composi-
tion, hold when restricted to well-behaved environments.

Remark 1. In describing our ideal functionality, in processing an input from a
client, server, or simulator, we impose pre-conditions on that input. In all cases,
these pre-conditions can be efficiently verified by the ideal functionality, and
one may assume that if these pre-conditions are not satisfied, then the ideal
functionality sends an “error message” back to whoever sent it the input.

However, it is worth making two observations. First, for inputs from a client
or server, these pre-conditions cannot be “locally” validated by the given client or
server; however, the assumption that the environment is well-behaved guarantees
that the corresponding pre-conditions will always be satisfied (see Remark 2
below for further discussion). Second, for inputs from simulator, the simulator
itself has enough information to validate these pre-conditions, and so without loss
of generality, we can also assume that the simulator does not bother submitting
invalid inputs to the ideal functionality.

4.4 Liveness

In general, UC security by itself does not ensure any notion of protocol “liveness”.
For a PAKE protocol, it is natural to define such a notion of liveness as follows.
In the real world, if the adversary faithfully delivers all messages between a good
instance I of a client P and an instance J of P ’s partner server Q, then I and
J will both output a session key and their session IDs will match. All of the
protocols we examine here satisfy this notion of liveness.

With our PAKE ideal functionality, UC security implies that if an instance
I of a client P and an instance J of P ’s partner server Q both output a session
key, and their session IDs match, then one of them will hold a “fresh” session
key, while the other will hold a copy of that “fresh” key.

If we also assume liveness, then UC security implies the following. Suppose
that the adversary faithfully delivers all messages between a good instance I
of a client P and an instance J of P ’s partner server Q. Then I and J will
both output a session key, their session IDs will match, and one of them will
hold a “fresh” session key, while the other will hold a copy of that “fresh” key.
Moreover, by the logic of our ideal functionality, this implies that in the ideal
world, the simulator did not make a guess at the password. See further discussion
in Remark 7 below.

4.5 Further Discussion

Remark 2. As in [14], our ideal functionality does not specify how passwords are
chosen or how a given clients/server pair come to agree upon a shared password.
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All of these details are relegated to the environment. Our “matching password
restriction”, which says that in any well-behaved environment (Sect. 4.3), a
client and server that share the same relationship ID must be initialized with
the same password, really means this: whatever the mechanism used for a client
and server to agree upon a shared password, the agreed-upon password should be
known to the client (resp., server) before the client (resp., server) actually runs
an instance of the protocol.

This “matching password restriction” seems perfectly reasonable and making
it greatly simplifies both the logic of the ideal functionality and the simulators
in our proofs.

Note that the fact that client inputs this shared password to the ideal func-
tionality during client initialization is not meant to imply that in a real protocol
the client actually stores this password anywhere. Indeed, in the actual, physical
world, we expect that a human client may memorize their password and not
store it anywhere (except during the execution of an instance of the protocol).
Our model definitely allows for this.

Also note that whatever mechanisms are used to choose a password and
share it between a client and server, as well as to choose relationship IDs and
instance IDs, these mechanisms must satisfy the requirements of a well-behaved
environment. These requirements are quite reasonable and easy to satisfy with
well-known techniques under reasonable assumptions.

Remark 3. Our formalism allows us to model the situation in the actual, physical
world where a human client mistypes or misremembers their password. This is
the point of having the client pass in the password π∗ when it initializes a client
instance. The “matching password restriction” (see Remark 2) makes it easy for
the ideal functionality to immediately classify a client as good or bad, according
to whether or not π∗ = π, where π is the password actually shared with the
corresponding server.6 The logic of our ideal functionality implies that the only
thing that can happen to a bad instance is that either: (a) the instance aborts,
or (b) the adversary makes one guess at π∗, and if that guess is correct, the
adversary makes that instance accept a “compromised” key. In particular, no
instance of the corresponding server will ever share a session ID or session key
with a bad client instance.

Mistyped or misremembered passwords are also modeled in [14] and subse-
quent works (such as [19] and [20]). All of these works insist on “hiding” from
the adversary, to some degree or other, whether or not the client instance is bad.
It is not clear what the motivation for this really is. Indeed, in [14], they observe
that “we are not aware of any application where this is needed”. Moreover, in
the typical situation where a client is running a secure-channels protocol on top
of a PAKE protocol, an adversary will almost inevitably find out that a client
6 Otherwise, if the corresponding server had not yet been initialized with a password

π at the time this client instance had been initialized with a password π∗, the ideal
functionality could not determine (or inform the simulator) whether or not π∗ = π
at that time. This would lead to rather esoteric complications in the logic of the
ideal functionality and the simulators in our proofs.
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instance is bad, because it will most likely abort without a session key (or pos-
sibly, as required in [14], will end up with a session key that is not shared with
any server instance).

So to keep things simple, and since there seems little motivation to do oth-
erwise, our ideal simply notifies the simulator if a client instance is good or bad,
and it does so immediately when the client instance is initialized. Indeed, as
pointed out in [20], the mechanism [19] for dealing with mistyped or misremem-
bered passwords was flawed. In [20], another mechanism is proposed, but our
mechanism is much simpler and more direct.

Remark 4. One might ask: why is it necessary to explicitly model mistyped or
misremembered passwords at all? Why not simply absorb bad client instances
into the adversary. Indeed, from the point of view of preventing such a bad client
from logging into a server, this is sufficient. However, it would not adequately
model security for the client: if, say, a human client enters a password that is
nearly identical to the correct password, this should not compromise the client’s
password in any way; however, we cannot afford to model this situation by giving
this nearly-identical password to the adversary.

Note that the BPR framework [7] does not model mistyped or misremem-
bered passwords at all. We are not aware of any protocols that are secure in
the BPR framework that become blatantly insecure if a client enters a closely
related but incorrect password.

Remark 5. In our formalism, in the real world, all instances of a given client
are executed by a single client machine. This is an abstraction, and should not
be taken too literally. In the real, physical world, a human client may choose
to run instances of the protocol on different devices. Logically, there is nothing
preventing us from mapping those different devices onto the same client machine
in our formalism.

Remark 6. In our formalism, in the real world, a server instance must be ini-
tialized (by the environment) before a protocol message can be delivered (from
the adversary) to that instance. This is an abstraction, and should not be taken
too literally. In practice, a client could initiate a run of the protocol by sending
an initial message over the network to the server, who would then initialize an
instance of the protocol and then effectively let the adversary deliver the initial
message to that instance.

Remark 7. As in all UC formulations of PAKE, the simulator (i.e., ideal-world
adversary) gets to make at most one password guess per protocol instance, which
is the best possible, since in the real world, an adversary may always try to
log in with a password guess. Moreover, as discussed above in Sect. 4.4, then
assuming the protocol provides liveness, the simulator does not get to make any
password guesses for protocol executions in which the adversary only eavesdrops.
This corresponds to the “Execute” queries in the BPR framework, in which
an adversary passively eavesdrops on protocol executions, and which do not
increase the odds of guessing a password. Unlike the formulation in [14], where
this property requires a proof, this property is explicitly built in to the definition.
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Remark 8. Our ideal functionality is explicitly a “multi-session” functionality:
it models all of the parties in the system and all runs of the protocol.

Formally, for every client/server pair (P,Q) that share a relationship ID rid ,
this ID will typically be of he form rid = (idP , idQ), where idP is a client-ID
and idQ is a server-ID. This is how relationship IDs will be presented Proto-
col KC-SPAKE2, but it is not essential. In practice, the same client-ID may be
associated with one user in relation to one server, and with a different user in
relation to another server.

For a given party X, which may either be a client P or server Q, it will have
associated with it several instances, each of which has an instance ID iidX . Note
that in the formal model, identifiers like P and Q denote some kind of formal
identifier, although these are never intended to be used in any real protocols.
Similarly, instance IDs are also not intended to be used in any real protocols.
These are all just “indices” used in the formalism to identify various partici-
pants. It is the relationship IDs and session IDs that are meant to be used by
and have meaning in higher-level protocols. Looking ahead, the session IDs for
KC-SPAKE2 will be the partial conversations (u, v).

Also note that every instance of a server Q in our formal model establishes
sessions with instances of the same client P . In practice, of course, a “server”
establishes sessions with many clients. One maps this onto our model by mod-
eling such a “server” as a collection of several of our servers.

Remark 9. What we call a relationship ID corresponds to what is called a “ses-
sion ID” in the classical UC framework [12]. Our ideal functionality explicitly
models many “UC sessions”—this is necessary, as we eventually need to con-
sider several such “UC sessions” since all of the protocols we analyze make use
of common reference string and random oracles shared across many such “UC
sessions”. What we call a session ID actually corresponds most closely what
is called a “subsession ID” in [14] (in the “multi-session extension” of their
PAKE functionality). Note that [14], a client and server instance have to agree
in advance on a “subsession ID”. This is actually quite impractical, as it forces
an extra round of communication just to establish such a “subsession ID”. In
contrast, our session IDs are computed as part of the protocol itself (which more
closely aligns with the notion of a “session ID” in the BPR framework [7]).

In our model, after a session key is established, a higher-level protocol would
likely use a string composed of the relationship ID, the session ID, and perhaps
other elements, as a “session ID” in the sense of [12].

Remark 10. Our ideal functionality models explicit authentication in a fairly
strict sense. Note that [14] does not model explicit authentication at all. Fur-
thermore, as pointed out in [20], the formulation of explicit authentication in
[19] is flawed. Our ideal functionality is quite natural in that when an adversary
makes an unsuccessful password guess on a protocol instance, then when that
instance terminates, the corresponding party will receive an abort message. Our
formulation of explicit authentication is similar to that in [20], but is simpler
because (as discussed above in Remark 3) we do not try to hide the fact that a
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client instance is bad. Another difference is that in our formulation, the simulator
may first force an abort and then only later make its one password guess—this
behavior does not appear to be allowed in the ideal functionality in [20]. This
difference is essential to be able to analyze KC-SPAKE2, since an adversary may
start a session with a server, running the protocol with a guessed password, but
after the server sends the message v, k1, the adversary can send the server some
garbage, forcing an abort, and then at a later time, the adversary may evaluate
the random oracle at the relevant point to see if its password guess was correct.

Remark 11. We do not explicitly model corrupt parties, or corruptions of any
kind for that matter (although this will change somewhat when we model server
compromise in the asymmetric PAKE model in Sect. 6). In particular, all client
and server instances in the real world are assumed to faithfully follow their pre-
scribed protocols. This may seem surprising, but it is not a real restriction. First
of all, anything a statically corrupt party could do could be done directly by the
adversary, as there are no authenticated channels in our real world. In addition,
because the environment manages passwords, our formulation models adaptively
exposing passwords, which corresponds to the “weak corruption model” of the
BPR framework [7]. Moreover, just like the security model in [14], our security
model implies security in the “weak corruption model” of the BPR framework.7

The proof is essentially the same as that in [14]. However, just like in [14] (as well
as in [19] and [20]), our framework does not model adaptive corruptions in which
an adversary may obtain the internal state of a running protocol instance.8

5 Protocol KC-SPAKE2+

We present Protocol KC-SPAKE2+ in Fig. 5. Given a password π, a client
derives a pair (φ0, φ1) ∈ Z

2
q using a hash function F , which we model as a random

oracle. The server, on the other hand, just stores the pair (φ0, c), where c :=
gφ1 ∈ G. Note that unlike Protocol KC-SPAKE2, in Protocol KC-SPAKE2+,
a password π need not be an element of Zq, as it first gets passed through the
hash function F .

6 An Ideal Functionality for Asymmetric PAKE

First, as we already noted, the attempt to formulate an asymmetric PAKE func-
tionality in [19] was fundamentally flawed, as was demonstrated in [20]. One
major problem identified in [20] was that after a server is compromised, we need
7 Actually, our framework does not model the notion in [7] that allows password infor-

mation stored on the server to be changed. That said, we are ultimately interested
asymmetric PAKE, and we are not aware of any asymmetric PAKE functionality in
the literature that models this notion.

8 This type of corruption would correspond to the “strong corruption model” of the
BPR framework [7]. Note that the protocol analyzed in [7] is itself only proven secure
in the “weak corruption model”.
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public system parameter: random a ∈ G

password: π, (φ0, φ1) := F (π, idP , idQ)

QP

secret: φ0, φ1 secret: φ0, c := gφ1

α ←R
Zq, u ← gαaφ0 u−−−−−−→ β ←R

Zq, v ← gβ

w ← (u/aφ0)β , d ← cβ

(k, k1, k2) ←
H(φ0, idP , idQ, u, v, w, d)

w ← vα, d ← vφ1

(k, k1, k2) ←
H(φ0, idP , idQ, u, v, w, d)

validate k1

v, k1←−−−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 5. Protocol KC-SPAKE2+

a good way to bound the number of “offline test” queries in the ideal world in
terms of the number of “random oracle” queries in the real world. The paper
[20] points out that the ideal functionality suggested in [19] cannot actually be
realized by any protocol (including the protocol presented in [19]) for which the
“password file record” stored on the server is efficiently and deterministically
computable from the password. However, the “fix” proposed in [20] relies in an
essential way on the notion of polynomial running time in the UC framework
as formulated in [12], and as pointed out in [22], this notion of running time is
itself flawed (and may or may not have been repaired in later versions of [12]).
Moreover, ignoring these technical problems, the “fix” in [20] is not very satis-
factory, as it does not yield a strict bound on the number of “offline test” queries
in terms of the number “random oracle” queries. Rather, it only guarantees that
the simulator runs in time bounded by some polynomial in the number of bits
passed to the adversary from the environment.

We propose a simple and direct way of dealing with this issue. It is a some-
what protocol-specific solution, but it gets the job done, and is hopefully of more
general utility. We assume that the protocol in question makes use of a hash func-
tion F , which we model as a random oracle, and that inputs to F are of the form
(π, rid), where rid is a relationship ID, and π is a password. However, the ideal
functionality for accessing this random oracle is a bit non-standard. Specifically,
in the real world, the adversary is not allowed direct access to this random oracle.
Rather, for the adversary to obtain the output value of the random oracle at some
input, the environment must specifically instruct the random oracle functionality
to give this output value to the adversary. More precisely, the environment may
send an input message (oracle-query, π, rid) to the random oracle functionality,
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who responds by sending the message (oracle-query, π, rid , F (π, rid)) to the
adversary.9 Note that machines representing clients and servers may access F
directly.

Now, in our ideal functionality for asymmetric PAKE, when the environment
sends an input (oracle-query, π, rid), this is sent to the asymmetric PAKE
functionality, who simply forwards the message (oracle-query, π, rid) to the
simulator.10 Moreover, when the simulator makes an “offline test” query to the
ideal functionality, the ideal functionality will only allow such a query if there
was already a corresponding oracle-query. This simple mechanism restricts the
number of “offline line” test queries made against a particular rid in the ideal
world strictly in terms of the number of “random oracle” queries made with the
same rid in the real world.

In addition to supporting the oracle-query interface discussed above, the
following changes are made to the ideal functionality in Sect. 4.2. There is a new
interface:

• Server Q inputs: (compromise-server)
◦ The simulator is sent (compromise-server, Q).
◦ We say that Q is compromised.

Note that in the real world, upon receiving (compromise-server), server Q
sends to the adversary its “password file record” for this particular client/server
pair (for Protocol KC-SPAKE2+, this would be the pair (φ0, c)).11 However, the
server Q otherwise continues to faithfully execute its protocol as normal. There
is a second new interface, which allows for “offline test” queries:

• Simulator inputs: (offline-test-pwd, Q, π′)
◦ Assumes (i) that Q is a compromised server, and (ii) that the environ-

ment has already submitted the query (oracle-query, rid , π′) to the ideal
functionality, where rid is Q’s relationship ID.

◦ The simulator is sent (correct) if π′ = π, and (incorrect) if π′ �= π.

Finally, to model the fact that once a server Q is corrupted, the simula-
tor is always able to impersonate the server to its partner P , we modify the
corrupt-key interface as follows. Specifically, condition (i), which states:

(i) that (X, iidX) is a correct-guess instance, where X is either a client or server

is replaced by the following:

(i) that either: (a) (X, iidX) is a correct-guess instance, where X is either a client
or server, or (b) (X, iidX) is an original, good instance and X’s partner is a
compromised server

7 Protocol IETF-SPAKE2+

9 Note that in the specific UC framework of [12], the environment sends this message to
the random oracle functionality via a special “dummy” party.

10 This allows the simulator to “program” the random oracle.
11 As in [21], we model this type of compromise simply by a message sent from the

environment, rather than the more indirect mechanism in [12].
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public system parameters: random a, b ∈ G

password: π, (φ0, φ1) := F (π, idP , idQ)

associated data: D

QP

secret: φ0, φ1 secret: φ0, c := gφ1

α ←R
Zq, u ← gαaφ0 u−−−−−−→ β ←R

Zq, v ← gβbφ0

w ← (u�/aλφ0)β , d ← cλβ

(k, k1, k2) ←
H(φ0, idP , idQ, u, v, w, d, D)

w ← (v�/bλφ0)α, d ← (v�/bλφ0)φ1

(k, k1, k2) ←
H(φ0, idP , idQ, u, v, w, d, D)

validate k1

v, k1←−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 6. Protocol IETF-SPAKE2+

Here we describe Protocol IETF-SPAKE2+, which is generalization of the
protocol called SPAKE2+ in the IETF draft specification [26]. The protocol
is presented in Fig. 6. Unlike the previous PAKE protocols we have presented,
both client and server take as input associated data D, and the session key is
computed as (u, v,D). We will discuss below in detail the semantic significance
of this associated data.

Unlike in Protocol KC-SPAKE2+, group elements received by a party may
lie in some larger group G containing G as a subgroup. It is assumed that
parties validate membership in G (which is generally cheaper than validating
membership in G). Specifically, P should validate that v ∈ G and Q should
validate that u ∈ G. We also assume that the index of G in G is �, where � is
not divisible by q. Note that for all x ∈ G, we have x� ∈ G.

We shall denote by λ the image of � in Zq. Note that λ �= 0. We will be
rather careful in our notation involving exponents on group elements. Namely,
on elements in G, exponents will always be elements of Zq. On elements that lie
in G but not necessarily in G, the only exponent that will be used is the index
�.

Unlike in Protocol KC-SPAKE2+, the functions F and H in Proto-
col IETF-SPAKE2+ are not modeled as random oracles; rather, they are defined
as follows:

F (π, idP , idQ) := (φ0, φ1)
where (φ0, φ1) := F1(f) and f := F0(π, idP , idQ).

(1)
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and

H(φ0, idP , idQ, u, v, w, d,D) := (k, k1, k2),
where k1 := H1(h; 1, u,D), k2 := H1(h; 2, v,D)
and (k, h) := H0(φ0, idP , idQ, u, v, w, d).

(2)

Here, the functions F0, F1,H0,H1 are modeled as follows:

• F0 is modeled as a random oracle producing an output f ∈ F , where F is
some large finite set.

• F1 is modeled as a pseudorandom generator (PRG) with seed space F and
output space Zq × Zq.

• H0 is modeled as a random oracle producing an output (k, h) ∈ K×H, where
H is some large finite set.

• H1 is modeled as a pseudorandom function (PRF) with key space H, input
space {1, 2} ×G× D, and output space Kauth. As before, we assume that the
size of Kauth is super-polynomial.

Remark 12. We can actually prove security under significantly weaker assump-
tions on F1 and H1. See the full version of the paper [25] for details.

Remark 13. The second public parameter b ∈ G is not necessary, and all of our
proofs of security hold even if the discrete log of b is fixed and/or known to the
adversary. In particular, one can set b = 1.

Remark 14. In the IETF draft specification [26], the function F0 is defined to be
PBKFD , which outputs two bit strings p0 and p1, and F1(p0, p1) = (φ0, φ1) =
(p0 mod q, p1 mod q), where p0 and p1 are viewed as the binary representations
of integers. Here, PBKFD is a password-based key derivation function designed
to slow down brute-force attackers. Examples are Scrypt [RFC7914] and Argon2
[10]. The inputs to PBKFD are encoded using a prefix-free encoding scheme.
The lengths of p0 and p1 should be significantly longer than the bit length of q
to ensure that φ0 and φ1 have distributions that are statistically close to uniform
on Zq. In order to minimize the reliance on random oracles, it is also possible to
incorporate the final stage of PBKFD in the function F1.

Remark 15. In the IETF draft specification, the function H0 is defined to be a
hash function Hash, which may be SHA256 or SHA512 [RFC6234]. The inputs
to Hash are encoded using a prefix-free encoding scheme. The output of Hash is a
bit string h ‖ k. The computation of the function H1(h; i, x,D), where i ∈ {1, 2},
x ∈ G, and D ∈ D, is defined as follows. First, we compute

(h2 ‖ h1) = KDF(nil, h, "ConfirmationKeys" ‖ D).

Here, KDF is a key derivation function such as HKDF [RFC5869], which takes
as input a salt (here, nil), intermediate keying material (here, h), info string
(here, "ConfirmationKeys" ‖ D), as well as a derived-key-length parameter
(not shown here). The output of H1 is MAC (hi, x), where MAC is a message
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authentication code, such as HMAC [RFC2104] or CMAC-AES-128 [RFC4493],
which takes as input a key (here, hi) and a message (here, x). In the modes of
operation used here, it is reasonable to view KDF as a PRF (with key h), and
to view MAC (with key hi) as a PRF. Assuming both of these are PRFs implies
that H1 itself is a PRF.

Remark 16. We model the above implementations of H0 and F0 as indepen-
dent random oracles. Ideally, this would be verified by carrying out a complete
analysis in the indifferentiability framework [18]. As proved in [18], the imple-
mentation of H0 as a standard hash function, like SHA256 or SHA512, with
prefix-free input encoding, is indeed a random oracle in the indifferentiability
framework, under appropriate assumptions on the underlying compression func-
tion. We are not aware of an analogous analysis for the implementation of F0 as
a standard password-based key derivation function, like Scrypt, or of any pos-
sible interactions between the hash functions used in both (which may be the
same). Also, for H0, it would be preferable that its inputs were prefixed with
some sort of protocol ID, and that higher-level protocols that use the same hash
function similarly prefix their inputs with an appropriate protocol ID. (which
includes the system parameters a and b). This would ensure that there are no
unwanted interactions between random oracles used in different protocols. Sim-
ilarly, it would be preferable if F0 were implemented by first hashing its input
using the same hash function used for H0, but prefixed with a different protocol
ID (and which includes the system parameters a and b). This would ensure no
unwanted interactions between these two random oracles. Despite these recom-
mendations, it seems highly unlikely that the current IETF draft specification
[26] has any real weaknesses.

Remark 17. The IETF draft specification allows idP and/or idQ to be omitted
as inputs to H0 and F0 under certain circumstances. Our analysis does not cover
this.

Remark 18. The IETF draft specification allows the parties to negotiate a
ciphersuite. Our analysis does not cover this. We assume a fixed ciphersuite
is used by all parties throughout the lifetime of the protocol.

Remark 19. Including u and v as inputs to H1 is superfluous, and could have
been omitted without any loss in security. Equivalently, in the IETF draft speci-
fication discussed above in Remark 15, we could just set (k1, k2) := (h1, h2), and
forgo the MAC entirely.

Remark 20. The IETF draft specification insists that the client checks that v� �=
1 and that the server checks that u� �= 1. This is superfluous. We will ignore this.
Indeed, one can easily show that a protocol that makes these checks securely
emulates one that does not. Note, however, that by making these checks, the
“liveness property” (see Sect. 4.4) only holds with overwhelming probability
(rather than with probability 1).
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Remark 21. The IETF draft specification allows the server to send v and k1
as separate messages. We will ignore this. Indeed, one can easily show that a
protocol that sends these as separate messages securely emulates one that does
not. This is based on the fact that in the IETF draft specification, even if v and
k1 are sent by the server as separate messages, they are sent by the server only
after it receives u, and the client does nothing until it receives both v and k1.

7.1 Extending the Ideal Functionality to Handle Associated Data

The only change required to deal with associated data are the init-client-
instance and init-client-instance interfaces. In both cases, the associated
data D is passed along as an additional input to the ideal functionality, which
in turn passes it along immediately as an additional output to the simulator.

Remark 22. In practice, the value of D is determined outside of the protocol
by some unspecified mechanism. The fact that D is passed as an input to
init-client-instance and init-server-instance means that D must be
fixed for that instance before the protocol starts. The fact that the value is
sent to the simulator means that the protocol does not treat D as private data.

Remark 23. Our ideal functionality for PAKE allows a client instance and a
server instance to share a session key only if their session IDs are equal. For
Protocol IETF-SPAKE2+, since the session ID is computed as (u, v,D), the
ideal functionality will allow a client instance and a server instance to share
a session key only if their associated data values are equal. In fact, as will be
evident from our proof of security, in Protocol IETF-SPAKE2+, if an adversary
faithfully delivers messages between a client instance and a server instance, but
their associated data values do not match, then neither the client nor the server
instance will accept any session key at all. Our ideal functionality does not model
this stronger security property.

8 Statement of Main Results

Our main results are the following:

Theorem 1. Under the CDH assumption for G, and modeling H as a ran-
dom oracle, Protocol KC-SPAKE2 securely emulates the ideal functionality in
Sect. 4.2 (with respect to all well-behaved environments as in Sect. 4.3).

Theorem 2. Under the CDH assumption for G, and modeling H and F as
random oracles, Protocol KC-SPAKE2+ securely emulates the ideal functionality
in Sect. 6 (with respect to all well-behaved environments as in Sect. 4.3).

Theorem 3. Under the CDH assumption for G, assuming F1 is a PRG,
assuming H1 is a PRF, and modeling H0 and F0 as random oracles, Proto-
col IETF-SPAKE2+ securely emulates the ideal functionality in Sect. 6 (with
respect to all well-behaved environments as in Sect. 4.3, and with associated data
modeled as in Sect. 7.1).
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Because of space limitations, we refer the reader to the full version of the
paper [25] for proofs of these theorems. In the full version of the paper, we
also briefly discuss alternative proofs under an the interactive CDH assumption,
which yield tighter reductions.

9 Sketch of Proof Ideas

Although we do not have space to provide detailed proofs, we can give a sketch
of some of the main ideas.

Protocol KC-SPAKE2. We start by giving an informal argument that Proto-
col KC-SPAKE2 is a secure symmetric PAKE under the CDH assumption, and
modeling H as a random oracle. We make use of a “Diffie-Hellman operator”,
defined as follows: for α, β ∈ Zq, define

[gα, gβ ] = gαβ . (3)

We first make some simple observations about this operator. For all x, y, z ∈ G

and all μ, ν ∈ Zq, we have

[x, y] = [y, x], [xy, z] = [x, z][y, z], and [xμ, yν ] = [x, y]μν .

Also, note that [x, gμ] = xμ, so given any two group elements x and y, if we
know the discrete logarithm of either one, we can efficiently compute [x, y].

Using this notation, the CDH assumption can be stated as follows: given
random s, t ∈ G, it is hard to compute [s, t].

First, consider a passive adversary that eavesdrops on a run of the proto-
col between an instance of P and an instance of Q. He obtains a conversation
(u, v, k1, k2). The session key and authentication values are computed by P and
Q is

(k, k1, k2) = H(π, idP , idQ, u, v, [u/aπ, v]). (4)

Intuitively, to mount an offline dictionary attack, the adversary’s goal is to query
the random oracle H at as many relevant points as possible, where here, a
relevant point is one of the form

(π′, idP , idQ, u, v, [u/aπ′
, v]), (5)

where π′ ∈ Zq. By evaluating H at relevant points, and comparing the outputs
to the values k1, k2 (as well as values derived from k), the adversary can tell
whether or not π′ = π.

The following lemma shows that under the CDH assumption, he is unable to
make even a single relevant query:

Lemma 1. Under the CDH assumption, the following problem is hard: given
random a, u, v ∈ G, compute γ ∈ Zq and w ∈ G such that w = [u/aγ , v].
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Proof. Suppose we have an adversary that can efficiently solve the problem in
the statement of the lemma with non-negligible probability. We show how to use
this adversary to solve the CDH problem with non-negligible probability. Given
a challenge instance (s, t) for the CDH problem, we compute

μ ←R
Zq, a ← gμ,

and then we give the adversary

a, u := s, v := t.

Suppose now that the adversary computes for us γ ∈ Zq and w ∈ G such that
w = [u/aγ , v]. Then we have

w = [u, v][a, v]−γ (6)

Since we know the discrete log of a, we can compute [a, v], and therefore, we can
compute [u, v] = [s, t]

��
Next, consider an active adversary that engages in the protocol with an

instance of server Q.
Now, in the adversary’s attack, he submits the first message u to Q. Next,

Q chooses v at random and sends this to the adversary. Server Q also computes
k, k1, k2 as in (4) and also sends k1 to the adversary. Again, the adversary’s goal
is to evaluate the random oracle H at as many relevant points, as in (5), as
possible. Of course, an adversary that simply follows the protocol using some
guess π′ for the password can always make one relevant query. What we want
to show is that it is infeasible to make more than one relevant query. This is
implied by the following lemma:

Lemma 2. Under the CDH assumption, the following problem is hard: given
random a, v ∈ G, compute γ1, γ2 ∈ Zq and u,w1, w2 ∈ Zq such that γ1 �= γ2 and
wi = [u/aγi , v] for i = 1, 2.

Proof. Suppose that we are given an instance (s, t) of the CDH problem. We
give the adversary

a := s, v := t.

The adversary computes for us γ1, γ2 and w1, w2 such that γ1 �= γ2, and

wi = [u/aγi , v] = [u, v][a, v]−γi (i = 1, 2).

Then we have
w2/w1 = [a, v]γ1−γ2 . (7)

This allows us to compute [a, v] = [s, t]. ��
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Note that if an adversary tries to mount a dictionary attack by interacting
with an instance of a client P , by design, the adversary gets only one guess at
the password: the only random oracle query that matters is the one that yields
the value k1 that the adversary sends to the client instance.

Protocol KC-SPAKE2+. It is not hard to argue that Protocol KC-SPAKE2+
offers the same level of security as protocol KC-SPAKE2 under normal condi-
tions, when the server is not compromised. However, consider what happens
if the server Q is compromised in protocol KC-SPAKE2+, and the adversary
obtains φ0 and c. At this point, the adversary could attempt an offline dictio-
nary attack, as follows: evaluate F at points (π′, idP , idQ) for various passwords
π′, trying to find π′ such that F (π′, idP , idQ) = (φ0, ·). If this succeeds, then
with high probability, π′ = π, and the adversary can easily impersonate the
client P .

The key property we want to prove is the following: if the above dictionary
attack fails, then under the CDH assumption, the adversary cannot impersonate
the client.

To prove this property, first suppose that an adversary compromises the
server, then attempts a dictionary attack, and finally, attempts to log in to the
server. Compromising the server means that the adversary obtains φ0 and c =
gφ1 . Now suppose the dictionary attack fails, which means that the adversary has
not evaluated F at the point (π, idP , idQ). The value φ1 is completely random,
and the adversary has no other information about φ1, other than the fact that
c = gφ1 . When he attempts to log in, he sends the server Q some group element
u′, and the server responds with v := gβ for random β ∈ Zq. To successfully
impersonate the client, he must explicitly query the random oracle H at the
point (φ0, idP , idP , u′, v, [u′/aφ0 , v], [c, v]), which means, in particular, he has to
compute [c, v]. But since, from the adversary’s point of view, c and v are random
group elements, computing [c, v] is tantamount to solving the CDH problem.

The complication we have not addressed in this argument is that the adver-
sary may also interact with the client P at some point, giving some arbitrary
message (v′, k′

1) to an instance of P , and in the above algorithm for solving the
CDH, we have to figure out how the CDH solver should respond to this message.
Assuming that (v′, k′

1) did not come from an instance of Q, the only way that P
will not abort is if k′

1 is the output of a query to H explicitly made by the adver-
sary; moreover, this query must have been (φ0, idP , idP , u, v′, [u/aφ0 , v′], [c, v′]),
where u is the random group element generated by this instance of P . Now,
with overwhelming probability, there is at most one query to H that outputs k′

1;
however, we have to determine if it is of the required form. We may assume that
our CDH solver knows logg a (in addition to φ0), and so our CDH solver needs
to be able to determine, given adversarially chosen v′, w′, d′ ∈ G, whether or not
w′ = [u, v′] and d′ = [c, v′]. Since it does not know logg c, our CDH solver would
appear to need an oracle to answer such queries. Without the additional con-
dition w′ = [u, v′], we would require the interactive CDH assumption; however,
with this additional condition, we can use the “Twin Diffie-Hellman Trapdoor
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Test” from [17] to efficiently implement this oracle, and so we only need the
standard CDH assumption.
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Abstract. We explore the problem of traitor tracing where the pirate
decoder can contain a quantum state. Our main results include:

– We show how to overcome numerous definitional challenges to give
a meaningful notion of tracing for quantum decoders

– We give negative results, demonstrating barriers to adapting classical
tracing algorithms to the quantum decoder setting.

– On the other hand, we show how to trace quantum decoders in the
setting of (public key) private linear broadcast encryption, capturing
a common approach to traitor tracing.

1 Introduction

Quantum computers pose a looming threat to cryptography. By an unfortunate
coincidence, the enhanced computational power of quantum computers allows
for solving the exact mathematical problems, such as factoring and discrete log,
underlying the bulk of public-key cryptography used today [Sho94]. The good
news is that “quantum-safe” mathematical tools—such as lattices, multivariate
equations, or isogenies—exist that can be used as a drop-in replacement in many
setting. Nevertheless, many challenges remain. For example, using a quantum-
safe drop-in replacement does not always guarantee the security of the overall
protocol, as many of the classical proof techniques fail to carry over to the quan-
tum setting [VDG98,ARU14,BDF+11]. It may also be that quantum attackers
may get “superposition access” to the honest parties, opening up new avenues
of attack [KM10,Zha12a,DFNS14,KLLN16].

In this work, we consider an entirely different threat from quantum comput-
ers, which to our knowledge has not been identified before: quantum piracy!

Traitor Tracing. The focus of this work will be the setting of traitor tracing, one
of the fundamental goals in cryptography. Originally defined by Chor, Fiat and
Naor [CFN94], traitor tracing helps protect content distributors from piracy. In
such a system, every legitimate user has their own secret decryption key which
can decrypt ciphertexts. The content distributor is worried about a user dis-
tributing their key to unauthorized users. Of course, little can be done to stop
a user from distributing their key. Instead, in the event that the distributor dis-
covers an unauthorized decryption key, the distributor would like to identify the
c© International Association for Cryptologic Research 2020
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source of the key, so that the user (deemed a “traitor”) can be prosecuted or
have their credentials revoked. This “tracing” should be possible even if the user
tries to hide their identity, say, by embedding their key in an obfuscated pirate
decoder program. What’s more, tracing should still succeed even if many mali-
cious users pool their keys into a single decoder. As sketched in [CFN94], classical
tracing can readily be build from generic public key encryption, albeit with large
ciphertexts. Therefore, the goal is typically to devise traitor tracing with small
ciphertexts. Numerous number-theoretic [BSW06,GGH+13,BZ14,GKW18] and
combinatorial schemes [CFN94,BN08] have been shown, with various trade-
offs between system parameters and the computational assumptions needed for
security.

Most of cryptography concerns several honest parties communicating with
each other, while an adversary eavesdrops or manipulates the communication
between them. Traitor tracing is in some sense the opposite: several dishonest
parties (namely, the traitor(s) and the receiver of the pirate decoder) communi-
cate, while the honest party (the content distributor) is intercepting this com-
munication (the decoder). This role reversal makes traitor tracing a fascinating
problem, as the very cryptographic techniques employed to help secure commu-
nication between honest partiescan be employed by the dishonest parties in an
attempt to hide their identity and protect themselves from being traced.

Traitor Tracing Meets Quantum Attackers. The aforementioned role reversal
also has interesting consequences once quantum computers are involved, as we
now highlight. Certainly, the underlying mathematical tools now need to be
quantum resistant; for example, post-quantum obfuscation [BGMZ18] or LWE-
based traitor tracing [GKW18] can be used. The proofs of security must also
work for quantum attackers; existing traitor tracing schemes satisfy this as well.
What is obtained is the following: if a classical pirate decoder is intercepted from
a quantum traitor, that traitor can be identified.

But now suppose the traitor has a quantum computer and is sending its
decoder to a quantum recipient. Just as a classical traitor can attempt to
use classical cryptographic techniques to evade detection, this quantum traitor
could now try to leverage quantum cryptography. Quantum cryptography uses
the unusual features of quantum physics such as no-cloning to achieve never-
before-possible applications, such as information-theoretic key agreement [BB87],
unforgeable currency [Wie83,AC12], unclonable programs [Aar09], certifiable
randomness [BCM+18], and secret keys that self-destruct after use [AGKZ20].

Therefore, we can imagine the traitors creating and sending a decoder com-
prising a quantum state. We stress that the entire system remains classical
under normal operation: keys, ciphertexts, encryption, and decryption are all
entirely classical and can be run on classical computers and classical networks.
The attacker only ever receives classical communication from the honest parties.
Even so, the quantum attackers can use a communication channel outside of the
system: they can meet in person to exchange the decoder, or perhaps send the
decoder over an outside quantum-enabled network. Nothing the content distrib-
utor does can prevent the traitor from sending a quantum decoding device.
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Existing traitor tracing results do not handle such quantum decoders. In
more detail, essentially all classical tracing algorithms work by testing a decoder
on a variety of different ciphertexts and examining the outputs. When moving
to quantum decoders, the measurement principle in quantum mechanics means
that extracting information from a quantum state may irreversibly alter it. This
means, after potentially the first ciphertext is decrypted, the decoder’s state
may be irreversibly altered into a state that is no longer capable of decrypting,
essentially self-destructing. Now, a useful pirate decoder would likely not self-
destruct on valid ciphertexts. However, a decoder that eventually self-destructs
but evades tracing may be a worthwhile compromise for a traitor. Moreover, all
classical tracing algorithms will also run the decoder on many invalid ciphertexts,
and the utility of the decoder does not require it to decrypt such ciphertexts.

The above discussion means even the most basic of classical traitor trac-
ing results—for example, the aforementioned generic scheme from public key
encryption—may no longer work in the setting of quantum decoders. In fact,
it turns out that even defining tracing in this setting is non-trivial, for reasons
discussed in Sect. 1.2 below.

We note that similar issues may arise any time there is adversarial communi-
cation that the honest party is trying to learn information from. In such cases,
the adversary may benefit from using quantum communication, even if the cryp-
tosystem itself entirely classical. Software watermarking [BGI+01,CHN+16] is
another example of where such issues may arise. In such cases, classical security
proofs should be revisited, and new techniques are likely needed. In this work,
we focus exclusively on the case of traitor tracing, but we expect the tools we
develop to be useful for other similar settings.

1.1 Our Results

Definition. Our first result is a new definition for what it means to be a secure
tracing scheme in the presence of quantum decoders. As we will see, the obvious
“quantumization” of the classical definition leads to a nonsensical definition. We
must therefore carefully devise a correct quantum definition of traitor tracing,
which requires developing new ideas.

Negative Result. One could have hoped that the tracing algorithm could be
entirely classical, except for the part where it runs the decoder. We show barriers
to such classical tracing algorithms, in particular showing that such algorithms
cannot trace according to our security notion. Thus, any tracing algorithm sat-
isfying our definition must be inherently quantum.

Positive Result. Finally, we develop a quantum tracing algorithm. Our tracing
algorithm works on any private linear broadcast encryption (PLBE) scheme
satisfying certain requirements. This in particular captures the constructions
from generic public key encryption and from obfuscation, simply replacing the
classical tracing algorithm with ours. As demonstrated by our negative result,
our tracing requires new inherently quantum ideas. In particular, we employ a
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technique of [MW04], which was previously used in the entirely different setting
of quantum Arthur-Merlin games.

1.2 Technical Overview

Live Quantum Decoders. For simplicity in the following discussion, we will
assume the message space is just a single bit. Classically, the definition of security
for a traitor tracing system is roughly as follows: define a “good” pirate decoder
as one that can guess the message with probability noticeably larger than 1/2.
Then security requires that any good pirate decoder can be traced with almost
certainty to some user identity controlled by the adversary.

First, we will change terminology slightly. For a classical decoder, whether the
decoder is good or bad is a fixed and immutable property. However, quantumly,
whether the decoder can decrypt or not is potentially in flux as we disrupt the
decoder by interrogating it. Therefore, we prefer the terms “live” and “dead”
to “good” and “bad”: a live decoder is one that, in its current state, would
successfully decrypt a random ciphertext. Unlike the classical case, a live decoder
may become dead after such decryption.

We now describe several examples which illustrate the difficulties in defining
liveness of quantum decoders.

Example 1. We will consider two simple attacks. In both cases, the adversary
controls a single secret key ski for user i. It creates two programs, D0 which has
ski hard-coded and decrypts according to the honest decryption procedure, and
D1 which simply outputs a random bit.

The first adversary, A, chooses a random bit b, and outputs the decoder Db.
A is entirely classical, and any reasonable notion of liveness would assign D0 to
be live and D1 to be dead, so A outputs a live decoder with probability 1/2.

The second adversary, B, chooses a random bit b, and outputs the decoder

Here, is a quantum superposition of the two decoders D0, D1, with a “phase”
that depends on b. To run the decoders, simply run in superposition to get the
superposition of outputs of the decoders, finally measuring and outputting the
result. The question is then: with what probability does B output a live decoder?

On one hand, we might be tempted to assign both decoders , to be
live, since both decoders can readily be verified to have a probability 3/4 > 1/2 of
decrypting. In any case, the phase does not fundamentally change the nature of
the decoders, so any reasonable notion of liveness should assign and
either both live or both dead. In this case, B’s output is deterministically either
live or dead. In particular, A and B have different distributions of liveness.

On the other hand, consider the density matrices of the outputs of A and
B. For a quantum process outputting state |ψi〉 with probability pi, the den-
sity matrix is

∑
i pi|ψi〉〈ψi|. According to the postulates of quantum mechanics,
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no physical operation (even computationally unbounded) can distinguish states
with identical density matrices. But a routine calculation shows that the density
matrices of A and B are in fact identical, meaning that the notion of liveness
must be non-physical! Such a non-physical security definition cannot possibly
reflect real-world security goals. We note that this example can be readily gen-
eralized to any non-trivial1 way to assign liveness to quantum states.

Idea 1: Measuring the Decoder. We observe that in the above example are
really just simple quantum versions of probability distributions: the decoders

can be roughly thought of as being D0 with probability 1/2 and D1 with
probability 1/2. For classical pirate decoders, similar issues arise if we try to
apply the notion of “live” to the entire probability distribution over decoders.
Instead, classically we would only consider the goodness of actual concrete pirate
decoder produced by the adversary. The only thing quantum about our example
is that it turned a probability distribution—which models uncertainty in the
outcome, and is therefore non-physical—into a well-defined physical object.

Motivated by the role of measurements in quantum mechanics, the natural
solution to the above example is to consider as being a superposition over
live and dead decoders2. The security definition and challenger will then measure
whether the decoder is live or dead, rather than try to assign liveness to the
overall quantum state. In the example above, this is done by simply measuring

, obtaining a random choice of D0, D1, and then performing the classical test
for liveness. If the decoder measures to be live, then we require the decoder to
actually be live, and moreover we require tracing to succeed. This easily resolves
the above example, since measuring live vs dead will simply collapse the quantum
decoder to a classical probability distribution.

More abstractly, a decoder has some actual probability p̂ of decrypting ran-
dom ciphertexts; in our example, p̂ = 3/4. However, this probability is
hidden inside the quantum state and cannot be accessed in a physically mean-
ingful way. The solution is instead to measure or observe the success probability,
resulting in a measured success probability p. For as given above, when we
observe p, we find that it can be either 1/2 or 1, each with 50% probability.

Example 2. In the case of more general decoders, however, defining the proce-
dure to measure success probabilities is non-trivial. We cannot in general sim-
ply perform the standard measurement as above, as doing so might break the
decoder. As a simple example, the decoder’s state could be the quantum Fourier
transform applied to from the example above. Evaluation simply applies
the inverse transform, recovering , and then running the decoder as above.
If we try to observe p by performing a standard measurement on this “encoded”
decoder, the measurement will result in garbage. The observed p will therefore
be 1/2, despite the actual overall success probability of the decoder still being
3/4.
1 By non-trivial, we mean there is at least one live state and one dead state.
2 In much the same way that Schrödinger’s cat is neither live nor dead, but is rather

a superposition over live and dead cats.
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In Example 2, we could of course define our measurement for p as: perform the
inverse Fourier transform, and then perform the standard measurement. While
this works for this particular case, the example illustrates that care is needed
in determining how to measure liveness, and that the exact way we measure p
will depend on the decoder itself. We need an automated way to determine the
appropriate measurement that works, regardless of how operates.

Example 3. In the classical setting, the goodness or liveness of a decoder is deter-
mined by deciding whether the probability that the decoder correctly decrypts
is above a given threshold. However, the exact probability cannot be computed
efficiently: it amounts to determining the precise number of accepting inputs of
a circuit, which is NP-hard. Therefore, most definitions of classical tracing are
actually inefficient, in the sense that determining whether or not an adversary
broke the security experiment cannot be determined in polynomial time.

Now, one could imagine estimating the success probability by simply running
the decoder on several random ciphertexts. This gives rise to a definition of
liveness that actually can be meaningfully translated to the quantum setting:
namely, to measure liveness, run the decoder on several random ciphertexts in
sequence, compute the fraction of ciphertexts that were correctly decrypted, and
finally outputting “live” if the fraction exceeded a given threshold.

On the other hand, this notion of liveness has some limitations. First, suppose
the measurement used q ciphertexts. Then the decoder could potentially decrypt
q ciphertexts correctly and self-destruct. The decoder would measure as live, but
actually result in a dead decoder, which would subsequently be untraceable.

Another issue is that this attempted notion of liveness is rather weak. A
decoder may start off with a very high probability of decryption, and then reverse
to a high probability of failure, so that overall the decoder appears dead to this
test. Defining security relative to this notion of liveness would not guarantee any
traceability for such decoders. Yet, such decoders would reasonably be considered
useful, and would ideally be traced.

Motivated by the above discussion, we now give a “wish list” of features a
liveness measurement should posses:

– It should collapse to the classical notion of goodness for a classical decoder.
– It should be “encoding independent”. That is, if we apply some quantum

transformation to the decoder’s state (that gets undone when running the
decoder), this should not affect the goodness of the decoder.

– If the same measurement is applied twice in a row (without any operations
in between), it should return the same outcome both times. In other words,
if a decoder is measured to be live, the resulting decoder should still be live.

– It should label decoders that start off with a high probability of decryption
live, even if the decoder starts failing later.

Idea 2: Projective Implementations. In order to describe our solution, we recall
some basic quantum measurement theory. A quantum state is simply a complex
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unit vector |ψ〉 of dimension d. For example, if the state consists of k qubits,
d will be 2k, with the components of |ψ〉 specifying weights for each of the d
possible k-bit strings.

Any quantum measurement can be described as a positive operator valued
measure (POVM). Such a measurement M is described by n Hermitian positive
semi-definite matrices M1, . . . , Mn such that

∑
i Mi = I. When applying M to

|ψ〉, the measurement results in outcome i with probability pi = 〈ψ|Mi|ψ〉. The
normalization on |ψ〉 and M ensures that this is a valid probability distribution.
We stress that the matrices Mi and the weights in the vector |ψ〉 are not explicitly
written out, but are implicitly defined by the measurement apparatus and the
procedure that generates |ψ〉.

In our setting, we have the following POVM measurement: encrypt a random
message bit m, run the pirate decoder on the resulting ciphertext, and then
output 1 or 0 depending on whether the decoder correctly decrypts or not.

While the POVM formalism describes the probability distribution of the mea-
surement, it does not describe the post-measurement quantum state. Indeed,
many measurement apparatus could yield the same POVM, but result in dif-
ferent post-measurement states. A general quantum measurement, in contrast,
determines both the measurement outcomes and the post-measurement states.

Our goal, given a POVM M and a state |ψ〉, is to learn the probability dis-
tribution from applying M to |ψ〉. The discussion above demonstrates that the
actual probability distribution is information-theoretically hidden and inaccessi-
ble. Instead, we want a measurement M′ that measures the distribution, such
that |ψ〉 is a superposition over states with “well-defined” output distributions.

We interpret the above as the following. For a POVM M over outputs
{1, . . . , n}, we want a measurement M′ which outputs a distribution (as in,
it outputs a probability vector) over {1, . . . , n} such that M generates the same
distribution of outputs as the following procedure:

– First, measure M′ to obtain an observed distribution D
– Then sample a random value in {1, . . . , n} according to D.

Additionally, we want that subsequently applying M to the post-
measurement state will yield exactly the distribution D, corresponding to mea-
suring a decoder as live actually yielding a live decoder. We will call M′ the
projective implementation of M 3. See Sect. 3 for a precise definition.

For general M, there is no way to come up with a projective implementa-
tion M′. In fact, we show that the existence of M′ is equivalent to the matri-
ces M1, . . . , Mn in M all commuting, and when it exists M′ is unique. Con-
cretely, M′ is the projective measurement in the simultaneous eigenbasis of the
M1, . . . , Mn.

In our case, M has two outcomes, either correct or incorrect decryption,
and normalization (M0 + M1 = I) implies that M0 and M1 = I − M0 always
commute. Therefore, M′ must exist. Our test of liveness, essentially, will perform
3 This terminology comes from the fact that we will ultimately set M′ to be a “pro-

jective” measurement.



68 M. Zhandry

the measurement M′ to get a distribution over {0, 1}—which is equivalent to
measuring a success probability p—and then output “live” if p is sufficiently
large; otherwise it outputs “dead”.

We note that this liveness measurement satisfies all of our “wish list” items.
In the case of classical decoders, M0, M1 are diagonal matrices whose entries are
the success probabilities of the various classical decoders. As such, our projective
implementation reduces to the classical goodness notion. Applying any encoding
to the decoder state simply rotates the eigenbases of (M0, M1), but our notion
automatically adjusts to such a rotation. The measurement is projective, imply-
ing that applying it twice will always yield the same answer. Finally, the notion
captures the success probability of decrypting the very first ciphertext, and is
not dependent on any subsequent decrypting abilities.

Our Quantum Tracing Model. With a notion of liveness in hand, we now
turn to our tracing model. Even in the classical case there are potentially multiple
tracing models. The most permissive for the tracing algorithm is to give the
tracer the entire code of the decoder. This tracing model captures the setting
where the decoder is an actual piece of software that the tracer has access to.
Analogously, in the quantum setting we could give the tracer the actual quantum
state representing the decoder, corresponding to a quantum software model.

On the other hand, over twenty-plus years of work on classical traitor trac-
ing, the community has largely settled on a weaker “black box” model where the
tracer can only query the decoder on ciphertexts and see the responses, but oth-
erwise cannot observe how the decoder works. This is motivated in part due to
the possibility of the decoder being obfuscated [BGI+01,GGH+13]—which infor-
mally hides everything about a program except for its input/output behavior—
meaning the tracing algorithm does not gain much by inspecting the decoder’s
code. Moreover, in many cases it is desirable to trace an actually physical decoder
box constructed by the traitors. In this case, various hardware security measures
might be in place to prevent inspecting the decoder’s operation.

In the black box setting, however, it is trivial to devise untraceable decoders:
the decoder simply maintains a counter and ceases to function after a certain
number of decryptions. If the number of ciphertexts the decoder decrypts is
set small enough, tracing will become impossible. Such decoders are clearly less
useful to pirates, but nonetheless represent a way for traitors to evade tracing.

The classical solution is to restrict attention to stateless decoders. The
implicit assumption in this model is that the tracer has some way to reset or
rewind the decoder to its original state. In the software setting, such resets are
trivial. Such resets may also be plausible—perhaps a hard reboot or cutting
power will cause the counter to reset—depending on the hardware employed by
the traitors.

Motivated by the years of development leading to the classical black box
stateless decoder model, we would like to develop an analogous model for quan-
tum decoders. However, we immediately face a definitional issue: for a general
quantum decoder, it may be information-theoretically impossible to rewind the
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decoder to its initial state. This holds true even if we consider the software
setting where the tracer has complete unfettered access to the decoder.

Our Solution. We now describe our solution. Recall that, outside of measure-
ments, quantum operations are indeed reversible. Therefore, we can imagine
running the decoder until the measurement that produces the decrypted value.
Then, we assume the ability to run all the operations, save for the final measure-
ment, in reverse. This rewinding cannot possibly recover the initial state of the
decoder, but in some sense it represents the closest we can get to a full rewinding.
For example, in this model, the decoder’s operation is “projective,” which implies
that a second decryption of the same ciphertext immediately following the first
actually will not further alter the decoder’s state, and moreover is guaranteed to
give the same output. Analogous to the gentle measurement lemma [Aar04], if
a particular decoder output occurs with overwhelming probability, a projective
measurement will only negligibly affect the decoder’s state. In particular, such
projections collapse to the notion of stateless decoders in the classical setting.

Our black box decoder model therefore assumes that the decoder’s operation
is a projective measurement. Our precise formalization of a quantum black box
model is somewhat delicate; see Sect. 4 for details. At a high level, what gets
measured is not the adversary’s output itself, but rather the single bit indicating
whether the decoder was correct. This is done partly to accommodate relaxed
decoder models from the classical literature [GKW18], and also motivated by
the level of access that our ultimate tracing algorithm will need.

Our black box quantum decoder model is a natural generalization of the
classical stateless decoder model. However, it remains to be seen whether it
actually represents a realistic model of quantum hardware devices. Nevertheless,
we emphasize that in the setting of quantum software decoders, it is always
possible to perform the rewinding to implement a projective decoder. As a result,
our model at least captures what is possible in the software setting.

Negative Result for Classical Black Box Tracing. One may hope that
existing classical tracing algorithms for stateless decoders might also work for
projective decoders, or at least that alternate classical tracing4 could be devised.
We show, unfortunately, that such classical tracing is unlikely. Concretely, for
any 0 < ε < 1/2, we devise a quantum projective black box pirate decoder such
that:

– The decoder starts out with decryption probability at least 1/2 + ε.
– For any polynomial-length sequence of classical ciphertext queries, there is a

non-negligible probability that the decoder will respond to all queries with 0.

If the decoder outputs zero on all queries, it is clearly impossible to trace. The
usual classical notions of tracing require that the tracing algorithm identifies

4 By classical tracing, we mean that the tracer only queries the decoder on classical
ciphertexts, and then uses the classical outputs in some way to accuse a user.
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a traitor with overwhelming probability by making q = poly(1/ε) queries. Our
counterexample would invalidate this definition.

We note that the definition of tracing could be relaxed to allow for some
inverse polynomial probability τ that tracing fails, and then allow the number
of queries by the tracer to be q = poly(1/ε, 1/τ). Our counterexample does not
rule out such a weaker tracing notion. Nevertheless, our counter example shows
that the existing guarantees of classical tracing algorithms do not carry over to
the quantum projective decoder setting. Additionally, it shows that if one wants
to achieve the strong tracing guarantees analogous to tracing classical decoders,
the tracing algorithm should make quantum queries to the decoder. Thus, our
model of black box decoders will allow for such quantum queries. Again, such
queries are always possible for software decoders.

Our Quantum Tracing Algorithm. We now turn to our tracing algorithm.
We observe that essentially all classical traitor tracing solutions work abstractly
as follows: the tracer generates ciphertexts from invalid distributions DS for
various subsets S of users, where decryption is possible only for users in S. An
additional guarantee is typically that only users in the symmetric difference of
S and T can distinguish DS from DT . The tracer estimates the probabilities p̂S

that the pirate decoder decrypts DS by testing the decoder on various samples
from DS . Typically, the first S is the set of all users, corresponding to DS being
all valid ciphertexts. Subsequently, additional sets S are considered. Large gaps
between the p̂S then give information about the identities of the traitor(s).

This framework is very broad, encompassing essentially the entire body of
traitor tracing literature. For example, it encompasses the private linear broad-
cast encryption (PLBE) approach of [BSW06], which is the backbone of most
of the various algebraic traitor tracing constructions [BSW06,GGH+13,BZ14,
GKW18]. Here, the sets S have the form [i] = {1, 2, . . . , i} for various i. This
framework also encompasses combinatorial schemes such as [CFN94,BN08]. For
example, the most basic scheme of [CFN94] uses the bit-fixing sets Si,b = {x ∈
{0, 1}k : xi = b}. The fingerprinting code-based construction of [BN08] uses a
set structure that is actually kept secret, except to the tracer.

Our goal will be to upgrade classical tracing algorithms to work with quantum
decoders. As we will see, there are numerous problems that must be overcome.

Approximating M′ Efficiently. We first aim to build a quantum analog of this
classical probability estimation. For exactly the same reasons encountered when
defining traitor tracing, the actual success probabilities p̂S cannot be accessed
in any physical way for a quantum decoder. As in the discussion leading to our
tracing definition, the most natural alternative is to instead measure the success
probability, obtaining a measurement pS . In the case of S being all users, this
means the tracing algorithm would need to implement the measurement M′

from above, and for other S analogous measurements will be needed.
However, while a projective implementation M′ is guaranteed to exist, we

have not guaranteed that it is computationally efficient. In fact, it cannot be
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computationally efficient, even classically. This is simply because, even classi-
cally, we cannot efficiently learn the exact output distribution of a program5.
Classically, this is resolved by having the tracer estimate the success probability
of the decoder, and demonstrating that an estimate is good enough for tracing.

We would therefore like to develop a procedure that approximates the mea-
surement M′. Yet the matrices Mi are exponentially-large, being only implic-
itly defined by the measurement apparatus of the decoder. Therefore, eigen-
decomposition would be intractable. Our negative result also means cannot use
classical estimation techniques, since those work by running the decoder on clas-
sical ciphertexts.

Instead, we devise an operation on the quantum pirate decoder that tries
ciphertexts in superposition; our operation will still work in the black box
projection model for pirate decoders, which allows for such quantum queries.
Our algorithm makes use of the fact that M′ is projective. More precisely, if
Mc = (Mc,0, Mc,1) is the measurement which tests if the decoder correctly
decrypts c, then Mc is guaranteed to be projective by our decoder model. The
overall measurement POVM Mc = (M0, M1) for testing correctness on a random
ciphertext is then the average or mixture of the Mc:

Mb =
∑

c

Pr[c]Mc,b .

Our black box decoder model allows us to evaluate the projective Mc for any
ciphertext c, or even evaluate the Mc for superpositions of c values. We demon-
strate how to use this ability to compute an approximation of M′.

To do so, we employ a technique of Watrous and Marriott [MW04], which
was originally used for decreasing error in quantum Arthur-Merlin games. We
show that their algorithm, with some small modifications, works in our setting to
achieve a reasonable approximation of M′. At a very high level, the algorithm
runs Mc over a superposition of c, and getting a measurement outcome b1.
Then we apply a particular measurement to the superposition of c, obtaining
measurement d1. We interleave and repeat both measurements a number of times,
obtaining a sequence d0 = 0, b1, d1, b2, d2 . . . . The output is p′ where 1−p′ is the
fraction of bit flips in the sequence.

Following the analysis from [MW04], we show that the output of this measure-
ment indeed approximates the distribution of M′. One wrinkle is that [MW04]
did not care about the post-measurement state of the decoder, whereas we want
the post-measurement states for M′ and the approximation to be “close” in
some sense. We show that, by being careful about exactly when the sequence of
measurements is terminated, we can guarantee the necessary closeness.

On Computational Indistinguishability. Recall that, in addition to estimating
probabilities pS , classical tracing algorithms typically rely on pS and pT being

5 This means that the security experiment is inefficient. However, the same is true of
classical traitor tracing experiments for essentially the same reason.
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close for different sets S, T , as long as the adversary controls no users in the sym-
metric difference between S, T . Classically, such closeness follows readily from
the indistinguishability between (many samples of) DS , DT . Indeed, if pS , pT

were far, a distinguisher could use the samples to compute an estimate of the
success probability, and then guess which distribution the samples came from.

Quantumly, such closeness is non-obvious. Since the POVMs corresponding
to DS , DT simply run the decoder on a single classical ciphertext, we know that
the probability the decoder is correct on the two distributions must be close.
This implies that the means of the distributions on pS and pT must be close. But
this alone is insufficient. For example, for a given decoder, pS might be always
measure to be 3/4, whereas pT measures to be 1/2 or 1 with equal probability.
Both distributions have the same mean, but are nevertheless far apart.

Now, our algorithm for approximating the projective implementation allows
us to efficiently estimate pS or pT , which would therefore allow us to distinguish
the two cases above. However, our algorithm runs the decoder on quantum super-
positions of exponentially-many ciphertexts, and this quantumness is somewhat
inherent, per our negative result. But perhaps such superpositions are actually
distinguishable, even if the individual ciphertext samples are not? For exam-
ple, [GKZ19] shows that superpositions over LWE samples can be distinguished,
despite individual samples being presumably indistinguishable.

We show that, nonetheless, if polynomially-many samples of DS and DT are
computationally indistinguishable, then the distributions over measured pS and
pT must be close, in some sense6. We show this by a careful application of the
small-range distributions of Zhandry [Zha12a]. These distributions allow us to
approximate the measurements of pS or pT using only a polynomial number of
classical samples from either ciphertext distribution.

Handling Non-simultaneous Measurements. Based on the above indistinguisha-
bility result, we know, for a given decoder state, that pS and pT being far means
the attacker must in fact control a user in the symmetric difference between S
and T . As in the classical case, we would therefore like to use this information
to narrow down our list of suspected traitors. Unfortunately, we cannot actually
simultaneously measure pS and pT for the same state: once we measure one of
them, say pS , the decoder state is potentially irreversibly altered. If we then
measure pT , we will get a result, but pT and pS will be measurements from
different states, and it is not obvious what comparing pS and pT yields.

Nevertheless, we show that if pS and pT are measured in succession, and if
the underlying distributions DS and DT are indistinguishable (for polynomially
many samples), then pS and pT will in fact be close. Supposing we applied the
actual projective implementation corresponding to DS , we know that the result-
ing decoder is an eigenstate of the measurement. Thus, if we applied the
projective implementation a second time to , obtaining a second measure-
ment p′

S of p̂S , then pS = p′
S . We show that if we relax to using our approxima-

6 Statistical closeness is too-strong a requirement, which is also true classically. Instead,
we consider a weaker notion of distance based on the Euclidean distance.
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tion algorithm, then p′
S ≈ pS . If we replace this second measurement on

with our approximation of pT , then by our computational indistinguishability
guarantee, pT ≈ p′

S ≈ pS (notice that p′
S is never actually computed; it is just

used in the analysis). Thus, if pS and pT are far, the adversary must control a
user in the symmetric difference between S and T , as desired.

How to Trace PLBE. Up until this point, our discussion has applied broadly to
most tracing algorithms and one may hope to simply swap out the probability
estimation steps of classical tracing algorithms with our approximate projective
implementation algorithm. Unfortunately, this does not appear to work in gen-
eral. To see the issue, consider a tracing algorithm which first computes (an
estimate of) pS . We know that the decoder is live, so p[N ] (the success probabil-
ity for valid ciphertexts) must be noticeably higher than 1/2; let’s say p[N ] = 1.
Suppose pS is measured to be 1/2 � p[N ]. We therefore know that the adversary
must control a user in [N ] \ S. However, this might not be sufficient for accusing
a user: perhaps S only contains N/2 users, in which case we have only narrowed
the attacker down to half the users. Tracing must then proceed to compute pT for
a different set T . But at this point, perhaps the decoder has actually collapsed
to a dead decoder and we can no longer learn any information from it.

The takeaway is: the very first time any gap is found, the decoder could
potentially now be dead, and we should therefore be ready to accuse a user. In
the example above, if S contained all but one user, say user N , we could then
immediately accuse user N . We would then satisfy the desired tracing guarantee,
despite having a now-useless decoder. If on the other hand pS were measured to
be greater than 1/2, we can continue to measure pT . The same issue occurs if
there is more than one user in S \ T , so we would want to have T contain all
users in S except a single user, say user N − 1.

What is needed, therefore, is a linear set structure, where it is possible to
encrypt to subsets [j] of users, j = N, N − 1, . . . , 0, where users i ≤ j can
decrypt, users i > j cannot, and it is impossible to distinguish [j] from [j − 1]
unless the adversary controls user j. In other words, we need private linear
broadcast encryption (PLBE) as defined by [BSW06]. Based on the above, we
show that any PLBE with the right properties (elaborated below) can be traced.
Our tracing algorithm proceeds essentially as the classical tracing algorithm
given in [BSW06], except that we use our quantum approximation algorithm
to compute the various probabilities p[j]. We also must compute the p[j] in a
particular order, namely in order of decreasing j, whereas the order does not
matter in [BSW06].

Applications and Limitations. Fortunately, PLBE is the most common approach
to building traitor tracing, and therefore our tracing algorithm is broadly appli-
cable. For example, sufficiently strong PLBE can be instantiated from
– Generic public key encryption, resulting in ciphertexts and public keys that

grow linearly with the number of users.
– From post-quantum obfuscation [BGMZ18], following [GGH+13,BZ14],

resulting in constant-sized ciphertexts.
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– In the setting of bounded collusions, we can use bounded-collusion secure func-
tional encryption, which can be instantiated from generic public key encryp-
tion [AV19]. The resulting scheme has ciphertexts growing linearly in the
collusion bound (but independent of the total number of users).

We note that PLBE can also be constructed from pairings [BSW06], though
this instantiation is not useful in our context since pairings are insecure against
quantum attackers.

Unfortunately, our analysis does not seem to extend to a variant of PLBE that
was recently constructed from LWE by Goyal, Koppula, and Waters [GKW18]
for subtle reasons. Indeed, their version of PLBE has encryptions to sets [j] for
j < N requiring a secret encryption key, and indistinguishability of D[j] and
D[j−1] only holds for those who do not know the secret encryption key. The
implication is that tracing can only be carried out by the holder of the secret
key. The fact that tracing requires a secret key is itself not a problem for us,
as we can similarly consider a secret key version of tracing. The issue is that,
when we prove p[j] is close to p[j−1], we need indistinguishability between [j]
and [j − 1] to hold for polynomially ciphertexts. On the other hand, [GKW18]
only remains secure for a constant number of ciphertexts, and the natural ways
of extending [GKW18] to handle more ciphertexts will blow up the ciphertext
too much. We therefore leave tracing quantum decoders for [GKW18] as an
important open problem.

We also note that our approach does not appear to extend to combinatorial
traitor tracing schemes, such as [CFN94,BN08]. In these schemes, the sets S do
not have the needed linear structure. As discussed above, this means that the
decoder could fail on the first distribution DS for S �= [N ], and no longer work
for any other distribution. Since [N ] \ S contains more than 1 identity, there is
no way to accuse a user using our approach. We leave as an interesting open
question developing a tracing algorithm for these combinatorial constructions,
or alternatively demonstrating a quantum pirate decoder that cannot be traced.

1.3 Paper Outline

Section 2 gives a basic background in quantum notation and operations. In
Sect. 3, we develop our notion of projective implementations, which will be used
in Sect. 4 to define traitor tracing for pirate decoders. In Sect. 5, we demonstrate
that quantum access to a quantum decoder is necessary for tracing. In Sect. 6, we
develop our algorithm for estimating the success probability of a pirate decoder,
which is then used in our tracing algorithm in Sect. 7.

2 Quantum Preliminaries

In this work, we will make use of two formalisms for quantum measurements. The
first, a positive operator valued measure (POVM), is a general form of quantum
measurement. A POVM M is specified by a finite index set I and a set {Mi}i∈I
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of hermitian positive semidefinite matrices Mi with the normalization require-
ment

∑
i∈I Mi = I. The matrices Mi are called items of the POVM. When

applying a POVM M to a quantum state |ψ〉, the result of the measurement is
i with probability pi = 〈ψ|Mi|ψ〉. The normalization requirements for M and
|ψ〉 imply that

∑
i pi = 1, and therefore this is indeed a probability distribution.

We denote by M(|ψ〉) the distribution obtained by applying M to |ψ〉.
The POVM formalism describes the probabilities of various outcomes, but it

does not specify how |ψ〉 is affected by measurement. Indeed, there will be many
possible implementations of a measurement giving rise to the same probability
distribution of outcomes, but resulting in different post-measurement states.

To account for this, the second formalism we will use is simply called a
quantum measurement. Here, a quantum measurement E is specified by a finite
index set I and a set {Ei}i∈I of matrices Ei (not necessarily hermitian nor
positive) such that

∑
i∈I E†

i Ei = I. The matrices Ei are called measurement
operators. When applying a quantum measurement E to a quantum state |ψ〉,
the result of the measurement is i with probability pi = 〈ψ|E†

i Ei|ψ〉 = ‖Ei|ψ〉‖2.
Conditioned on the outcome being i, the post-measurement state is Ei|ψ〉/√

pi,
where the factor √

pi is to ensure that the state is normalized.
We note that any quantum measurement E is associated with a POVM M =

POVM(E) with Mi = E†
i Ei. We will call E an implementation of M. We note

that while each quantum measurement implements exactly one POVM, each
POVM may be implemented by many possible quantum measurements.

A projective measurement is a quantum measurement where the Ei are projec-
tions: Ei are hermitian and satisfy E2

i = Ei. We note that
∑

i Ei =
∑

i E†
i Ei = I

implies that EiEj = 0 for i �= j.
A projective POVM is a POVM where Mi are projections. We note that

the POVM associated with a projective measurement is projective. However, a
projective POVM may be implemented by non-projective measurements. As with
quantum measurements, a projective POVM will satisfy MiMj = 0 for i �= j.

3 Commutative POVMs and Projective Implementations

In this section, we give some additional definitions for quantum measurements
and POVMs, as well as some basic results. In Sect. 4, we use these definitions
and results to define our notion of traitor tracing for pirate decoders.

Definition 1. A POVM M = {Mi}i∈I is commutative if MiMj = MjMi∀i, j.

Let I be an index set, and let D be a finite set of distributions over I. Let
E = {ED}D∈D be a projective measurement with index set D. Consider the
POVM M = {Mi}i∈I where Mi =

∑
D∈D ED Pr[D = i]. Then M is equivalent

to the following measurement process:

– First apply the measurement E to obtain a distribution D
– Then choose a random sample i according to D
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Definition 2. For E , M be as above, E is the projective implementation of M.

Lemma 1. A POVM M = {Mi}i∈I is commutative if and only if it has a
projective implementation; the projective implementation is unique.

Proof. The proof is given in the Full Version [Zha20]. The basic idea is that
a projective implementation corresponds to an eigenbasis for the simultaneous
diagonalization of the Mi; such simultaneous diagonalization is possible if and
only if the Mi commute.

Therefore, for a commutative POVM M, we will let ProjImp(M) denote the
unique projective measurement.

4 Defining Tracing of Quantum Pirates

4.1 Traitor Tracing Syntax

Here, we give the syntax for public key traitor tracing with public traceability.
Variants with secret key encryption and/or secret key tracing are defined analo-
gously. A traitor tracing system is a tuple of four algorithms (Gen,Enc,Dec,Trace)
defined as follows:

– Gen(1λ, 1N ) is a classical probabilistic polynomial time (PPT) algorithm that
takes as input the security parameter and a number N of users, and samples
a public key pk, and N secret keys sk1, . . . , skN .

– Enc(pk, m) is a classical PPT algorithm that takes as input the public key pk
and a message m, and outputs a ciphertext c.

– Dec(ski, c) is a classical deterministic algorithm that takes as input a secret
key ski for user i and a ciphertext, and outputs a message m′.

– takes as input the public key pk, two messages m0, m1,
and a parameter ε. It makes queries to a pirate decoder . It ultimately
outputs a subset of [N ], which are the accused users.

4.2 Decoder Models

We now specify and what a query to does. consists of a collection of
qubits |ψ〉 and the description of an efficient procedure U . U maps a ciphertext
c to an efficiently computable unitary operation U(c) which acts on |ψ〉.

The assumed operation of the decoder in this model, denoted , is
the following: on input a ciphertext c, compute U(c). Then apply U(c) to |ψ〉.
Finally, measure the first qubit of U(c)|ψ〉, and output the result.

In the classical setting, various levels of access to the decoder may be possible.
For example, the decoder may be a digital program, and the tracer actually
obtains the program code. Alternatively, the decoder may be an actually physical
piece of hardware, and the tracer has only access to the input/output behavior.
In the quantum setting, one can imagine analogous scenarios. Below, we describe
decoder models to capture some scenarios in the quantum decoder setting.
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Software Decoder Model. The Software Decoder model will be the quantum
analog of the classical setting where the decoder is a software program. In this
model, a query to consists of the empty string ε, and in response the Trace
receives the entire state (including U). In this sense, Trace has complete
access to the entire decoder. Next, we will consider decoder models where Trace
has limited access. Such models will be potential useful in hardware settings.

The Black Box Projection Model. We now develop a black box model of quantum
decoders, which hopefully generalizes the classical notion of stateless decoders.
Of course, some limitations of the decoder are necessary, to prevent simple coun-
terexamples like self-destructing after a counter reaches a certain value. Our
goal is to identify the minimal type of query access needed to allow tracing. The
result is our Black Box Projection model. In our model, a query to has the
form

∑
aux,c,b αaux,c,b|aux, c, b〉, where c ranges over ciphertexts, b over bits, and

aux over an arbitrary domain. In response to the query, does the following:

1. First, it performs the following action on basis states:

|aux, c, b〉 ⊗ |ψ〉 → |aux, c, b〉 ⊗ U(c)|ψ〉 .

2. Apply a controlled NOT (CNOT) to the b register, where the control bit is
the first qubit of the decoder’s state.

3. Next, it applies the inverse of Step 1:

|aux, c, b〉 ⊗ |ψ〉 → |aux, c, b〉 ⊗ U†(c)|ψ〉 .

4. Finally, it measures the b register, and then returns the result b as well as
whatever remains in the aux, c registers.

Note that the query is a projective measurement on |ψ〉. Recall that applying
a projective measurement twice in a row will always result in identical outcomes.
This is similar to how a classical stateless (deterministic) decoder will always
produce the same outcome on repeated ciphertexts. Thus projective measure-
ments are a generalization of stateless decoders, though other generalizations
are possible.

Lemma 2. Let be any quantum polynomial-time algorithm that takes
as input x and makes queries to in the Black Box Projection model. Then
there exists another quantum polynomial-time algorithm in the Software
Decoder model such that, for any x, y, .

Since the Black Box Projection model is the weakest model we consider,
ability to trace in this model gives the strongest guarantees. We now discuss
some of the choice made in our Black Box Projection model.

Superposition Queries. Our model allows queries on superpositions of cipher-
texts. We could have instead required classical queries. Unfortunately, such a
model seems untraceable, evidenced by our negative result in Sect. 5.
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Returning the Ciphertext Registers. One could alternatively only return b′ and
not the ciphertext (the aux registers being held privately by Trace). This is
equivalent to measuring the ciphertext, resulting in effectively a classical query
model.

The Role of b. An alternative is to measure the first qubit of the decoder’s state
directly (that is, the intended output of the decoder), instead of measuring the
result of XORing with b. We have two reasons for our modeling choice:

– The standard query model for quantum operations has the query response
XORed into some registers provided as part of the query. Our modeling mim-
ics this query behavior. We thus have the measurement applied to only the
output of the decoder in the XOR query model, rather than having the mea-
surement applied to the private state of the decoder.

– If we initialize the b registers to initially contain the correct answer expected
from the decoder, the result of the query measurement will tell us whether
the decoder answered correctly or incorrectly, as opposed to telling us the
actual answer. This turns out to be crucial for our tracing algorithm. Indeed,
as we will see in Sect. 6, the given Black Box Projection model will allow us
to measure the success probability of the decoder. On the other hand, if the
measurement were applied directly to the decoder state, we would be able to
measure either of the probabilities pr that the decoder outputs 1 on a random
encryption of the bit r. To to get the success probability, we would need to
know both p0 and p1. But in the quantum case it may not be possible to learn
both values simultaneously if the measurements are “incompatible.”

4.3 Correctness and Security

Definition 3. A traitor tracing system is correct if, for all messages m and
functions N = N(λ), i = i(λ),

Pr[Dec(ski,Enc(pk, m)) = m : (pk, sk1, . . . , skN ) ← Gen(λ, N)] ≥ 1 − negl(λ)

For brevity, we omit the semantic security requirement and focus on tracing. Our
definition is inspired by that of [GKW18], adapted to use our decoder model. For
a decoder , two messages m0, m1, consider the operation on |ψ〉:
– Choose a random bit b ← {0, 1}
– Run c ← Enc(pk, mb) to get a random encryption of mb.
– Run .
– Output 1 if and only if b = b′; otherwise output 0.

Let M = (M0, M1) be the POVM given by this operation, which we call the
associated POVM to the decoder. Note that M0 and M1 = I− M0 commute, so
M has a projective implementation M′ = ProjImp(M) = {M ′

p}p, where each M ′
p

corresponds to the probability distribution on {0, 1} that is 1 with probability p.
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Tracing Experiment. For an adversary A, function ε(·), and security parameter
λ, we consider the following experiment on A:

– A gets λ, and replies with a number N . Both λ, N are represented in unary.
– Run (pk, sk1, . . . , skN ) ← Gen(1λ, 1N ), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N ];

in response it receives ski. Let S be the set of i queried by A.
– Next, A outputs for decoder and messages m0, m1.

Now consider two possible operations on :

– . Let BadTrace as the event that S \ S′ �= ∅. We
define the event GoodTrace as the event that S′ �= ∅

– Apply the measurement M′ to , obtaining a probability p. Let Live be the
event that p ≥ 1/2 + ε.

Definition 4. A tracing system is quantum traceable if for all quantum polyno-
mial time adversaries A and for every inverse polynomial ε, there is a negligible
negl such that Pr[BadTrace] < negl(λ) and Pr[GoodTrace] ≥ Pr[Live] − negl(λ).

5 On the Necessity of Quantum Queries

We consider a variant of our Black Box Projection model where queries to the
decoder are only on classical ciphertexts c. Concretely, when a query is made to

, the c registers are additionally measured, to ensure that only a classical
ciphertext is input. We call this the Classical Black Box Projection model.

Theorem 1. Any traitor tracing scheme which operates in the Classical Black
Box Projection model is not quantum traceable according to Definition 4.

Proof. We construct an adversary A which chooses an arbitrary polynomial N ,
a random j ∈ [N ], and queries for secret key skj . It then chooses two arbitrary
distinct messages m0, m1 and constructs the following decoder . First let

Dec′(c) :=
{

b if Dec(skj , c) = mb

0 otherwise

Let H have basis {|c〉}c ∪ {|⊥〉}, where c ranges over all possible ciphertexts.
The decoder’s initial state is |⊥〉 ⊗ |0〉|m0, m1, skj〉. That is, the decoder’s state
consists of the system H initialized to |⊥〉, a qubit H2 initialized to |0〉, as well
as the messages m0, m1 and the secret key skj . Define the vectors |φc〉 ∈ H as
|φc〉 =

√
2ε|⊥〉 +

√
1 − 2ε|c〉. Let U(c) be the unitary over H2 ⊗ H:

U(c) = (|1 − Dec′(c)〉〈1| + |Dec′(c)〉〈0|) ⊗ |φc〉〈φc| + I ⊗ (I − |φc〉〈φc|)

The output register for is set to H2. Informally, U(c) applies the projec-
tive measurement (Pc, Qc = I − Pc), where Pc := |φc〉〈φc|. Then conditioned on
the measurement output being 1, it XORs Dec′(c) into the output register.
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In the Full Version [Zha20], we demonstrate that will almost certainly
measure to be live for parameter ε; that is, Pr[Live] ≥ 1 − negl. On the other
hand, we show that Pr[GoodTrace] < 1 − δ, for some inverse polynomial δ that
depends on the number of queries made by the tracing algorithm. This is proved
by showing that there is some inverse polynomial probability that all tracing
queries are answered with 0, in which case tracing is impossible. ��

6 On Mixtures of Projective Measurements

We now develop some additional tools that will be used in our quantum tracing
algorithm in Section 7. We will explore efficient approximations of projective
implementations, as well as questions of computational indistinguishability.

We consider the following abstract setup. We have a collection P = {Pi}i∈I
of binary outcome projective measurements Pi = (Pi, Qi) over the same Hilbert
space H. Here, Pi corresponds to output 0, and Qi corresponds to output 1. We
will assume we can efficiently measure the Pi for superpositions of i, meaning
we can efficiently perform the following projective measurement over I ⊗ H:

(
∑

i

|i〉〈i| ⊗ Pi ,
∑

i

|i〉〈i| ⊗ Qi

)

(1)

Here, we call P a collection of projective measurements, and call I the control.
For a distribution D over I, let PD be the POVM which samples a random i ← D,
applies the measurement Pi, and outputs the resulting bit. We call PD a mixture
of projective measurements. The POVM is given by the matrices (PD, QD) where

P =
∑

i∈I
Pr[i ← D]Pi and Q =

∑

i∈I
Pr[i ← D]Qi

In this section, we will address two questions:
– Since PD has a binary outcome, there exists a projective implementation

M = ProjImp(PD). Can we efficiently approximate the measurement?
– If D0, D1 are computationally indistinguishable, what does that say about

the outcomes of M0 = ProjImp(PD0) and M1 = ProjImp(PD1)?

6.1 Additional Definitions
Shift Distance. For a ∈ R and interval [b, c] ⊆ R, denote the distance between a
and [b, c] as |a− [b, c]| := minx∈[b,c] |a−x|. For a ∈ [b, c], the distance is 0 and for
a /∈ [b, c], the distance is max(a − c, b − a). Let D0, D1 be two distributions over
R, with cumulative density functions f0, f1, respectively. Let ε ∈ R. The Shift
distance with parameter ε is defined as:

Δε
Shift(D0, D1) := sup

x∈R

∣
∣f0(x) − [f1(x − ε), f1(x + ε)]

∣
∣

Note that small shift distance does not imply small statistical difference, as
distributions with disjoint supports can have small shift distance. Also note the
triangle-like inequality Δε1+ε2

Shift (D0, D2) ≤ Δε1
Shift(D0, D1) + Δε2

Shift(D1, D2).
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Shift Distance for Measurements. Let M = (Mi)i∈I and N = (Nj)j∈J be
real-valued quantum measurements over the same quantum system H. The shift
distance between M, N , denoted Δε

Shift(M, N ) is defined as

Δε
Shift(M, N ) := sup

|ψ〉
Δε

Shift( M(|ψ〉) , N (|ψ〉) )

Almost Projective Measurements. We define “almost” projectivity, based on the
fact that repeated consecutive projective measurements yield the same output.

Definition 5. A real-valued quantum measurement M = (Mi)i∈I is (ε, δ)-
almost projective if the following is true: for any quantum state |ψ〉, apply M
twice in a row to |ψ〉, obtaining measurement outcomes x, y. Then Pr[|x − y| ≤
ε] ≥ 1 − δ.

6.2 Approximating Projective Implementations

We now address the question of efficiently approximating the projective imple-
mentation M = ProjImp(PD) of a mixture of projective measurements PD.
We note that exact measurement is computationally infeasible, as it captures
computing acceptance probabilities of circuits. Instead, we employ techniques
from [MW04] to develop an algorithm API which efficiently approximates the
projective implementation of PD. We first define two subroutines.

Controlled Projection. Let P = {Pi = (Pi, Qi)}i∈I be a collection of projec-
tive measurements over H. Let D a distribution with random coin set R. We
will abuse notation and let R also denote the |R|-dimensional Hilbert space.
The controlled projection is the measurement CProjP,D = (CProj0P,D,CProj1P,D)
where

CProj0P,D =
∑

r∈R
|r〉〈r| ⊗ PD(r) , CProj1P,D =

∑

r∈R
|r〉〈r| ⊗ QD(r) .

CProjP,D is readily implemented using the measurement in Eq. 1. First, initialize
control registers I to 0. Then perform the map |r〉|i〉 → |r〉|i⊕D(r)〉 to the R×I
registers. Next, apply the mixture of projective measurements assumed in Eq. 1.
Finally, perform the map |r〉|i〉 → |r〉|i ⊕ D(r)〉 again to un-compute the control
registers, and discard the control registers.

Uniform Test. Define IsUniformR = (|1R〉〈1R|, I − |1R〉〈1R|) where

|1R〉 = 1
√|R|

∑

r∈R
|r〉 .
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The Algorithm API. Our algorithm is parameterized by a distribution D, collec-
tion of projective measurements P, and real values 0 < ε, δ ≤ 1, and is denoted
as APIε,δ

P,D. On input a quantum state |ψ〉 over Hilbert space H, it works as
follows:

1. Initialize a new register R to the state |1R〉.
2. Initialize a classical list L = (0).
3. Repeat the following “main loop” a total of T = �ln(4/δ)/ε2� times:

(a) Apply the controlled projection CProjP,D over the joint system R ⊗ H,
resulting in measurement outcome b2i−1. Append b2i−1 to the end of L.

(b) Apply the Uniform Test IsUniformR to the system R, resulting in measure-
ment outcome b2i. Append b2i to the end of L.

4. Let t be the number of bit flips in the sequence L = (0, b1, b2, . . . , b2T ), and
let p̃ = t/2T be the fraction of bit flips

5. If in the last iteration of the “main loop” b2T = 1, repeat the “main loop”
until the first time b2i = 0.

6. Discard the R registers, and output p̃.

Theorem 2. For any ε, δ, P, D, we have that:

– Δε
Shift(API

ε,δ
P,D,ProjImp(PD)) ≤ δ. That is, API approximates the projective

implementation ProjImp(PD).
– APIε,δ

P,D is (ε, δ)-almost projective.
– The expected run time of APIε,δ

P,D is X × poly(1/ε, log(1/δ)), where X is the
combined run time of D, the procedure mapping i to the measurement (Pi, Qi),
and the run-time of the measurement (Pi, Qi).

Proof. Let |ψ〉 be an arbitrary state. Write |ψ〉 =
∑

p αp|ψp〉 where |ψp〉 are
eigenvectors of PD with eigenvalue p7. In other words, QD|ψp〉 = p|ψp〉. Define
the following states:

– |u0
p〉 = 1√

(1−p)|R|
∑

r |r〉PD(r)|ψp〉. Notice that

〈u0
p|u0

p〉 = 1
(1 − p)|R|

(
∑

r

〈r|〈ψp|PD(r)

) (
∑

s

|s〉PD(s)|ψp〉
)

= 1
(1 − p) 〈ψp|

(
1

|R|
∑

r

PD(r)

)

|ψp〉 = 1
1 − p

〈ψp|PD|ψp〉 = 1 .

Also, notice that CProj0P,D|u0
p〉 = |u0

p〉 whereas CProj1P,D|u0
p〉 = 0.

– |u1
p〉 = 1√

p|R|
∑

r |r〉QD(r)|ψp〉. By an analogous calculation for |u0
p〉, we have

that 〈u1
p|u1

p〉 = 1. Since different eigenvectors of PD are orthogonal, we also
have that 〈u1

p|u1
p′〉 = 0 for p �= p′. Since PiQi = 0, we have 〈u1

p|u0
p′〉 = 0 for

any p, p′ (not necessarily distinct). This means B = {|ub
p〉}b,p is orthonormal.

Also, notice that CProj0P,D|u1
p〉 = 0 whereas CProj1P,D|u1

p〉 = |u1
p〉.

7 Note that there may be repeated eigenvalues. The |ψp〉 are therefore the projections
of |ψ〉 onto the eigenspaces.
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– |v0
p〉 = |1R〉 ⊗ |ψp〉. Notice that |v0

p〉 =
√

1 − p|u0
p〉 + √

p|u1
p〉. Also notice that

IsUniform0
R ⊗ I|v0

p〉 = |v0
p〉 and IsUniform1

R ⊗ I|v0
p〉 = 0

– |v1
p〉 = −√

p|u0
p〉 +

√
1 − p|u1

p〉. Notice that 〈vb
p|vb′

p′〉 is 1 if b = b′ ∧ p = p′ and 0
otherwise. This means B′ = {|vb

p〉} is orthonormal, spanning the same space
as B. Finally, notice that IsUniform0

R⊗I|v1
p〉 = 0 and IsUniform1

R⊗I|v1
p〉 = |v1

p〉.
At the beginning of the first run of the “main loop” (Step 3), the state of the
system is |ψ∅〉 := |1R〉 ⊗ |ψ〉. Writing this state in the basis B′, we have

|1R〉 ⊗ |ψ〉 =
∑

p

αp|v0
p〉 .

Let |ψL〉 for L ∈ {0, 1}z denote the unnormalized state of the system after
the first z measurements, if the sequence of measurement outcomes is L. Let
t(L) denote the number of bit flips in the sequence 0, L1, L2, . . . , Lz.

Claim. |ψL〉 = θL

∑
p αp(√p)t(L)(

√
1 − p)z−t(L)

{
|vLz

p 〉 if z mod 2 = 0
|uLz

p 〉 if z mod 2 = 1
where

θL is a global phase factor, |θL| = 1.

Proof. We prove by induction. The base case z = 0 is true. Now assume that the
claim is true for z − 1. We prove the odd z case, the even case being essentially
identical. Let L′ be L but with the last entry removed. By induction we have

|ψL′〉 = θL′
∑

p

αp(√p)t(L′)(
√

1 − p)z−1−t(L′)|vL′
z

p 〉 .

Observe that |vb
p〉 =

√
1 − p|ub

p〉 − (−1)b|u1−b
b 〉. We apply CProjP,D; if the

outcome is b, this projects onto {|ub
p〉}p. If Lz = L′

z−1 ⊕ c, then t(L) = t(L′) + c,
and

|ψL〉 = θL′(−1)cLz

∑

p

αp(√p)t(L′)+c(
√

1 − p)z−t(L′)−c|uLz
p 〉

Setting θL appropriately gives the desired outcome. ��
At Step 4, the unnormalized state is |ψL〉 as defined above, where L contains

the results of measurements. The probability of obtaining a particular L is

〈ψL|ψL〉 =
∑

p

|αp|2(p)t(L)(1 − p)2T −t(L) .

L is therefore distributed according to the following distribution:

– First apply ProjImp(PD) to |ψ〉 to obtain a value p
– Let K be a list of 2T independent coin flips with expected value p.
– Set Li to be the parity of the first i bits of K.
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Then 2T p̃ = t(L) is just the number 1s in K. Hoeffding’s inequality then gives

Pr[|p̃ − p| ≥ ε/2] ≤ 2e−2(2T )(ε/2)2 ≤ δ/2 < δ ,

for T ≥ ln(4/δ)/ε2. This implies that Δε
Shift(p, p̃) ≤ Δ

ε/2
Shift(p, p̃) ≤ δ/2 ≤ δ.

We now analyze the run-time, which is dominated by the number of iterations
of the main loop, including Step 5. Note that Step 5 terminates once the number
of bit flips in L is even. The number of iterations is identically distributed to:

– Sample p by running ProjImp(PD).
– Flip 2T biased random coins whose probability of outputting 1 is p.
– Flip an even number of additional coins until the overall parity is 0.
– Output the total number of coin tosses, divided by 2.

We can simplify this experiment by pairing off the coin tosses, and only
looking at the parity of each pair, which itself is a biased coin with expectation
q = 2p(1 − p):

– Sample p by running ProjImp(PD).
– Flip T biased random coins whose probability of outputting 1 is q = 2p(1−p).
– Flip additional coins until the overall parity is 0.
– Output the total number of coin tosses.

Let T ′(q) be the expected number of additional coins for a given q; note that
q ∈ [0, 1/2]. Note that T ′(0) = 0, since the parity is always even. For q > 0, if
the parity is even after T steps, no additional flips are needed. Assuming T is
even, a routine calculation shows that the probability the parity is odd after the
first T steps is (1 − (1 − 2q)2T )/2, in which case an expected 1/q additional flips
are needed. Thus T ′(q) := (1 − (1 − 2q)2T )/2q for q > 0. For q ∈ (0, 1/2], T ′ is
monotonically decreasing, and limq→0 T ′(q) = 2T . Therefore, for any fixed q, we
can upper bound the total expected number of coin tosses to T + 2T = 3T . By
linearity of expectation, this also holds over any distribution over q. Thus, the
expected number of runs of the main loop is at most 3T .

Finally, we consider applying API twice to the same state. Notice that, since
the first run of API is guaranteed to stop when the last bit of L is 0, this
corresponds to R containing a uniform superposition. But this means that when
we start the second run of API, the state going into the main loop will actually
be identical to the state at the end of the first run. We can therefore view the
two runs of API as a single run, but with a larger value of T . The overall list
K produced by both runs, but stopping at Step 4 in the second run, is then
distributed according to:

– Sample p by running ProjImp(PD).
– Flip 2T biased random coins whose probability of outputting 1 is p.
– Flip an even number of additional random coins, until a 0 is found.
– Then flip 2T more biased random coins.
– Let K be the overall list of coin flips.
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The first output, p̃1, is then just the fraction of 1’s in the first 2T bits of
K, whereas the second output, p̃2, is the fraction of 1’s in the last 2T bits of K.
These fractions are independent. Recalling that

Pr[|p̃ − p| ≥ ε/2] ≤ δ/2,

we have that Pr[|p̃1 − p̃2| ≥ ε] ≤ δ. Thus API is (ε, δ)-almost projective. ��

6.3 On Computational Indistinguishability

Here, we show that if the underlying distributions D0, D1 are computation-
ally indistinguishable, then the resulting projective implementations M0 =
ProjImp(PD0) and M1 = ProjImp(PD1) are close.

Theorem 3. Let ρ be an efficiently constructible mixed state, and D0, D1
efficiently sampleable, computationally indistinguishable distributions. For any
inverse polynomial ε, there exists a negligible δ such that Δε

Shift(M0(ρ), M1(ρ)) ≤
δ.

Proof. The rough idea is that we will switch from the projective implementation
Mb to our approximation API. Since API is efficient, we argue that the results of
API must be close. The difficulty is that API makes queries on a superposition of
exponentially-many samples from the respective Db distribution, whose indistin-
guishability does not follow from the indistinguishability of single samples. We
nevertheless show that the outputs of API under the two distributions must be
close by using the small-range distributions of Zhandry [Zha12a].

Consider an adversary A producing a mixture ρ. Let R be the space of
random coins for D0, D1; we can assume wlog that they share the same random
coin space. We now define the following sequence of hybrid distributions:

Hybrid 0. The distribution is p0 ← M0(ρ) where ρ is generated by A.

Hybrid 1. Here, we choose a random permutation Π on R. Let DΠ
0 (r) =

D0(Π(r)). Run p1 ← ProjImp(PDΠ
0

). Since D0 and DΠ
0 are identical distribu-

tions, the measurements PD0 and PDΠ
0

are identical, and therefore so are their
projective implementations. Thus, p0 and p1 are identically distributed.

Hybrid 2. Here, we will generate p2 ← APIε
′,δ′

P,DΠ
0

(ρ), for a function δ′ and
an inverse polynomial ε′ to be chosen later. By Theorem 2, we have that
Δε′

Shift(p1, p2) ≤ δ′.

Hybrid 3. Now we change Π to be the small-range functions Σ = G ◦ F of
Zhandry [Zha12a], where F : R → [s] and G : [s] → R are random functions,
and s is a parameter. Let p3 ← APIε

′,δ′

P,DΣ
0

(ρ). Let Φ be the distribution of random
functions on R. Yuen and Zhandry show the following:
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Theorem 4 ([Yue14,Zha15]). For any quantum algorithm B making Q quan-
tum queries to Π or Φ, | Pr[BΠ() = 1] − Pr[BΦ() = 1]| ≤ O(Q3/|R|).
Theorem 5 ([Zha12a]). For any quantum algorithm B making Q quantum
queries to Φ or Σ, | Pr[BΦ() = 1] − Pr[BΣ() = 1]| ≤ O(Q3/|R|).
Theorems 4 and 5 in particular means that Δ0

Shift(p2, p3) ≤ O(Q3/s + Q3/|R|).

Hybrid 4. This is the same as Hybrid 3, except that we change F to be a 2Q-
wise independent function E. Let p4 ← APIε

′,δ′

P,DG◦E
0

(ρ). Since API only makes Q

queries to F or E, the following theorem implies that p3 and p4 are identically
distributed:

Theorem 6 ([Zha12b]). For any quantum algorithm B making Q quantum
queries to F or E, Pr[BF () = 1] = Pr[BE() = 1].

Assume |R| > s, adding random coins to R that are ignored by D0, D1 if
necessary. Then Δε′

Shift(p0, p4) ≤ O(Q3/s) + δ′.

Hybrid 5. Next, we switch to using the distribution DG◦E
1 (r) = D1(G(E(r))).

Let p5 ← APIε
′,δ′

P,DG◦E
1

(ρ). Note that Db(G(·)) can be interpreted as a list of
s samples from Db, which the input selecting which sample to use. Since D0
and D1 are computationally indistinguishable, so are s samples. Notice that the
entire experiment in Hybrids 4/5 are efficient. Therefore, by a straightforward
argument, we have that Δ0

Shift(p5, p6) ≤ γ where γ is negligible.

Hybrids 6–9. Hybrid 6 + g is identical to Hybrid 5 − g except for replacing
D0 with D1. In Hybrid 9, the output is exactly M1(ρ). Putting everything
together, we have that Δ2ε′

Shift(M0(ρ), M1(ρ)) ≤ O(Q3/s) + 2δ′ + γ.
Let ε be an inverse polynomial, and suppose δ := Δε

Shift(M0(ρ), M1(ρ))
is non-negligible, lower bounded by an inverse-polynomial w infinitely often.
Set ε′ = ε/2 and δ′ = w/4. Then log(1/δ′) is logarithmic. Recall Q =
O(log(1/δ′)3/(ε′)2). For the infinitely-many values of the security parameter
where δ ≥ w, we have that w ≤ δ ≤ O(Q3/s) + w/2 + γ, which re-arranges to
w ≤ O(log(1/w)3/ε6s)+2γ. But now choose s = 2×O( (1/ε)6(1/w) log(1/w)3 ),
a polynomial. This gives w ≤ w/2 + 2γ, or w ≤ 4γ, which can only happen for
finitely many security parameters since γ is negligible, a contradiction. Thus δ
must be negligible. ��
Corollary 1. Let ρ be an efficiently constructible, potentially mixed state, and
let D0, D1 be two computationally indistinguishable distributions. Then for any
inverse polynomial ε and any function δ, there exists a negligible negl such that
Δ3ε

Shift(API
ε,δ
P,D0

,APIε,δ
P,D1

) ≤ 2δ + negl.
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7 Tracing PLBE
7.1 Private Linear Broadcast Encryption
Our construction will use the Private Linear Broadcast Encryption (PLBE)
framework of Boneh, Sahai, and Waters [BSW06]. A PLBE scheme is a triple of
probabilistic classical polynomial time algorithms (Gen′,Enc′,Dec′) where:
– Gen′(1N , 1λ) takes as input a number of users N and a security parameter λ.

It outputs a public key pk, plus N user secret keys ski for i ∈ [N ].
– Enc′(pk, j, m) takes as input the public key, an index j ∈ [0, N ], and a message

m. It outputs a ciphertext c.
– Dec′(ski, c) takes as input a secret key ski for user i and a ciphertext, and

outputs a message m′ or a special abort symbol ⊥.

Correctness. For correctness, we require that user i can decrypt ciphertexts with
index j, so long as i ≤ j. That is there exists a negligible function negl(λ) such
that for every λ and N ≤ 2λ, for every i ∈ [N ] and j ≥ i, we have that

Pr[Dec′(ski,Enc′(pk, j, m)) = m : (pk, {ski}i∈[N ]) ← Gen′(N, λ)] > 1 − negl(λ) .

Security. We need two security requirements. The first is indistinguishability
security, which requires semantic security for encryptions to j = 0:
Definition 6. A PLBE scheme (Gen′,Enc′,Dec′) is indistinguishable secure if
for all quantum polynomial time adversaries A, there exists a negligible negl such
that the probability A wins in the following game is at most 1/2 + negl(λ):
– A gets λ as input, and sends a number N represented in unary.
– Run (pk, sk1, . . . , skN ) ← Gen′(λ, N), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N ];

in response it receives ski.
– Next, A outputs a pair of messages (m0, m1). In response, choose a random

bit b and send A the ciphertext c ← Enc′(pk, j = 0, mb).
– A makes more queries for ski.
– Finally, A outputs a guess b′ for b. Output “win” if and only if b′ = b.

Second, we need index hiding security which says that encrypts to j − 1 and
j are only distinguishable to an adversary that has the secret key for user j.
Definition 7. A PLBE scheme (Gen′,Enc′,Dec′) is index hiding secure if for
all quantum polynomial time adversaries A, there exists a negligible function negl
such that the probabilities A wins in the following game is at most 1/2 +negl(λ):
– A gets λ as input, and sends a number N represented in unary.
– Run (pk, sk1, . . . , skN ) ← Gen′(λ, N), and send pk to A.
– A then makes an arbitrary number of classical queries on identities i ∈ [N ];

in response it receives ski. Let S be the set of i queried by A.
– Next, A outputs a pair of (j, m) for j ∈ [N ] such that j /∈ S. Choose a random

bit b and send A the ciphertext c ← Enc′(pk, j − b, m) to index j − b
– A is allowed to make more queries on identities i ∈ [N ]\j, to which it receives

ski in response.
– Finally, A outputs a guess b′ for b. Output “win” if and only if b′ = b.
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From PLBE to Traitor Tracing. Following [BSW06], the first three algorithms of
our traitor tracing construction (Gen,Enc,Dec,Trace) we be immediately derived
from the PLBE scheme: Gen = Gen′, Enc(pk, m) = Enc′(pk, j = N, m), and
Dec = Dec′. Correctness is immediate. In the following, we describe Trace.

7.2 The Quantum Algorithm Trace

Where we depart from [BSW06] is in our tracing algorithm, which we now need
to trace quantum pirates. First, we briefly explain how to implement API using
Black Box Projection queries.

Concretely, let be , except that we augment the decoder with a qubit
H2 originally set to |0〉. Let H′

2 × C be control registers, where H′
2 is another

qubit and C is a ciphertext register. Consider the following measurement process
on registers H′

2 ⊗ C ⊗ H2 ⊗ H:

– Perform the map |b′〉|b〉 → |b′〉|b ⊕ b′〉 on the H′
2 ⊗ H2 registers

– Make a Black Box Projection query using the registers C ⊗ H2 as the query
registers. Let o be the result.

– Perform the map |b′〉|b〉 → |b′〉|b ⊕ b′〉 on the H′
2 ⊗ H2 registers

– Output 1 − o.

This measurement process has exactly the form of a collection of projec-
tive measurements P in Eq. 1. For a decoder in its initial state (meaning H2 is
initialized to |0〉) and for a given bit/ciphertext pair (b, c), the corresponding
measurement P(b,c) outputs 1 exactly when the decoder would output b. Thus,
we can run the algorithm API on .

We now give our algorithm :

1. Let ε′ = ε/4(N + 1) and δ′ = 2−λ.

2. Run , where Dj is the following distribution:
– Run b ← {0, 1}
– Compute c ← Enc′(pk, j, mb)
– Output (b, c).

3. If p̃N < 1/2 + ε − ε′, abort and output the empty set {}.
4. Otherwise, initialize S′ = {}. Then for j = N to j = 1,

– Compute
– If p̃j−1 < p̃j − 4ε′, add j to S′.
Finally, output S′.

Theorem 7. If (Gen′,Enc′,Dec′) is indistinguishable secure and index hiding
secure for quantum adversaries, then (Gen,Enc,Dec,Trace) is quantum traceable.

Proof. Consider an adversary A which has secret keys for identities in S, and
produces a pirate decoder . Let ε be an inverse polynomial. Define the events
GoodTrace,BadTrace, Live as in Definition 4.
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We first argue that Pr[BadTrace] is negligible. Suppose that there is a non-
negligible probability s that BadTrace happens. Then for a random choice of j, it
is the case that with (non-negligible) probability at least s/N , both (1) A never
queries j, and (2) p̃j−1 < p̃j − 4ε′.

Let ρ be the state produced by the following process:

– Choose a random j, and run the tracing experiment
– If A ever makes a query on j, abort and output an arbitrary quantum state.
– Next run Trace, stopping immediately after p̃j is computed.
– Output the state .

Consider running Trace for one more iteration, applying APIε
′,δ′

P,Dj−1
to ρ to

obtain a measurement p̃j−1. By assumption, we have that p̃j−1 ≥ p̃j − 4ε′ with
non-negligible probability s/N .

Now consider instead stopping Trace at iteration j to obtain ρ, but then
applying APIε

′,δ′
P,Dj

to ρ a second time, obtaining a second measurement p̃′
j of

pj . We stress that in this case, we do not compute p̃j−1. Since API is (ε′, δ′)
projective, we know that |p̃j − p̃′

j | ≤ ε′ except with probability at most δ′.
Since j was never queried, encryptions to index j and j − 1 are indistin-

guishable. By Corollary 1, this means the distributions on p̃′
j and p̃j−1 sat-

isfy Δ3ε′
Shift(p̃′

j , p̃j−1) ≤ negl. But by our triangle-like inequality, this means that
p̃j−1 ≥ p̃j − 4ε′ except with negligible probability, a contradiction.

We now argue that Pr[GoodTrace] ≥ Pr[Live] − negl(λ). First, let Abort be
the event that tracing aborts in Step 3. Let pN be the probability obtained from
applying M′ to the decoder outputted by A. Note that Live is the event that
pN > 1/2 + ε. We then have that Δε′

Shift(pN , p̃N ) ≤ δ′. Therefore, Pr[¬Abort] ≥
Pr[Live] − δ′

Next, let Fail be the event that p̃0 ≥ 1/2 + 4ε′. Let ρ be the state right
before measuring p̃0. Let p0 be the random variable corresponding to applying
PD0 to ρ. Recall that for j = 0, encryptions of m0 and m1 are computationally
indistinguishable. This means that p0 ≤ 1/2 + negl. By Corollary 1, this means
Pr[Fail] < negl. Thus, Pr[¬Abort ∧ ¬Fail] ≥ Pr[Live] − negl.

Finally, we note that if neither of Fail or Abort happen, then p̃N −p̃0 > ε−4ε′ =
4Nε′. But then it must have been some j such that p̃j − p̃j−1 > 4ε′, meaning S′ is
non-empty and therefore GoodTrace happens. Thus Pr[GoodTrace] ≥ Pr[¬Abort∧
¬Fail] ≥ Pr[Live] − negl, as desired. ��
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Abstract. Given a ciphertext, is it possible to prove the deletion of the
underlying plaintext? Since classical ciphertexts can be copied, clearly
such a feat is impossible using classical information alone. In stark con-
trast to this, we show that quantum encodings enable certified deletion.
More precisely, we show that it is possible to encrypt classical data into
a quantum ciphertext such that the recipient of the ciphertext can pro-
duce a classical string which proves to the originator that the recipient
has relinquished any chance of recovering the plaintext should the key
be revealed. Our scheme is feasible with current quantum technology:
the honest parties only require quantum devices for single-qubit prepa-
ration and measurements; the scheme is also robust against noise in
these devices. Furthermore, we provide an analysis that is suitable in the
finite-key regime.

1 Introduction

Consider the following scenario: Alice sends a ciphertext to Bob, but in addition,
she wants to encode the data in a way such that Bob can prove to her that
he deleted the information contained in the ciphertext. Such a deletion should
prevent Bob from retrieving any information on the encoded plaintext once the
key is revealed. We call this certified deletion.

Informally, this functionality stipulates that Bob should not be able to do
the following two things simultaneously: (1) Convince Alice that he has deleted
the ciphertext; and (2) Given the key, recover information about the encrypted
message. To better understand this concept, consider an analogy to certified
deletion in the physical world: “encryption” would correspond to locking infor-
mation into a keyed safe, the “ciphertext” comprising of the locked safe. In this
case, “deletion” may simply involve returning the safe in its original state. This
“deletion” is intrinsically certified since, without the safe (and having never had
access to the key and the safe at the same time), Bob is relinquishing the pos-
sibility of gaining access to the information (even in the future when the key
may be revealed) by returning the safe. However, in the case that encryption is
digital, Bob may retain a copy of the ciphertext; there is therefore no meaningful
way for him to certify “deletion” of the underlying information, since clearly a
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copy of the ciphertext is just as good as the original ciphertext, when it comes
time to use the key to decrypt the data.

Quantum information, on the other hand, is known for its no-cloning prin-
ciple [8,19,36], which states that quantum states cannot, in general, be copied.
This quantum feature has been explored in many cryptographic applications,
including unforgeable money [35], quantum key distribution (QKD) [2], and
more (for a survey, see [4]).

1.1 Summary of Contributions

In this work, we add to the repertoire of functionalities that are classically impos-
sible but are achievable with unconditional security using quantum information.
We give a formal definition of certified deletion encryption and certified deletion
security. Moreover, we construct an encryption scheme which, as we demonstrate,
satisfies these notions (in addition, our proofs are applicable in the finite-key
regime). Furthermore, our scheme is technologically simple since it can be imple-
mented by honest parties who have access to rudimentary quantum devices (that
is, they only need to prepare single-qubit quantum states, and perform single-
qubit measurements); we also show that our scheme is robust against noise in
these devices. We now elaborate on these contributions.

Definitions. In order to define our notion of encryption, we build on the quan-
tum encryption of classical messages (QECM) framework [3]1 (for simplicity, our
work is restricted to the single-use, private-key setting). To the QECM, we add
a delete circuit which is used by Bob if he wishes to delete his ciphertext and
generate a corresponding verification state, and a verify circuit which uses the
key and is used by Alice to determine whether Bob really deleted the ciphertext.

Next, we define the notion of certified deletion security for a QECM scheme
(See Fig. 1 and Definition 13). Our definition is inspired by elements of the def-
inition in [33]. The starting point for this definition is the well-known indistin-
guishability experiment, this time played between an adversary A = (A0,A1,A2)
and a challenger. After running the Key Generation procedure, the adversary A0

submits an n-bit plaintext msg0 to the challenger. Depending on a random bit b,
the challenger either encrypts msg0 or a dummy plaintext 0n, and sends the
ciphertext to A1. The adversary A1 then produces a candidate classical “dele-
tion certificate”, y. Next, the key is sent to the adversary A2 who produces an
output bit b′ ∈ {0, 1}.2 A scheme is deemed secure if the choice of b does not
change the probability of the following event: “b′ = 1 and the deletion certifi-
cate y is accepted”. We note that it would be incorrect to formulate a definition

1 Apart from sharing this basic definition, our work differs significantly from [3]. For
instance, the adversarial models are fundamentally different, since we consider here
a single adversary, while [3] is secure against two separate adversaries.

2 The key is leaked after y is produced; this is required because otherwise, with access
to the ciphertext and the key, the adversary could (via purification), retrieve the
plaintext without affecting the ciphertext, and therefore could decrypt while simul-
taneously producing a convincing proof of deletion.
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that conditions on y being accepted (see discussion in [33]). We note that certi-
fied deletion security does not necessarily imply ciphertext indistinguishability;
hence these two properties are defined and proven separately.

KeyGen k
Encb k Ver ok

A0

msg0
A1

y
k A2 b′

Fig. 1. Schematic representation of the security notion for certified deletion security.
The game is parametrized by b ∈ {0, 1} and Enc0 outputs an encryption of 0n while
Enc1 encrypts its input, msg0. Security holds if for each adversary A = (A0, A1, A2),
the probability of (b′ = 1 and ok = 1) is essentially the same, regardless of the value
of b.

Scheme. In Sect. 4, we present our scheme. Our encoding is based on the well-
known Wiesner encoding [35]. Informally, the message is encoded by first gener-
ating m random Wiesner states, |r〉θ (r, θ ∈ {0, 1}m) (for notation, see Sect. 2.1).
We let r|I be the substring of r where qubits are encoded in the computational
basis, and we let r|Ī be the remaining substring of r (where qubits are encoded in
the Hadamard basis). Then, in order to create a classical proof of deletion, Bob
measures the entire ciphertext in the Hadamard basis. The result is a classical
string, and Alice accepts the deletion if all the bits corresponding to positions
encoded in the Hadamard basis are correct according to r|Ī . As for the mes-
sage msg, it is encoded into x′ = msg ⊕ H(r|I) ⊕ u, where H is a two-universal
hash function and u is a fresh, random string. Intuitively speaking, the use of the
hash function is required in order to prevent that partial information retained
by Bob could be useful in distinguishing the plaintext, while the random u is
used to guarantee security in terms of an encryption scheme. Robustness of the
protocol is achieved by using an error correcting code and including an encrypted
version of the error syndrome. We note that while our definitions do not require
it, our scheme provides a further desirable property, namely that the proof of
deletion is a classical string only.

Proof. In Sect. 5, we present the security analysis of our scheme and give con-
crete security parameters (Theorem 3 and its proof). First, the fact that the
scheme is an encryption scheme is relatively straightforward; it follows via a
generalization of the quantum one-time pad (see Sect. 5.1). Next, correctness
and robustness (Sect. 5.2) follow from the properties of the encoding and of the
error correcting mechanism.

Next, the proof of security for certified deletion has a number of key steps.
First, we apply the security notion of certified deletion (Definition 13) to our
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concrete scheme (Scheme 1). This yields a “prepare-and-measure” security game
(see Game 1). However, for the purposes of the analysis, it is convenient to con-
sider instead an entanglement-based game (this is a common proof technique for
quantum protocols that include the preparation of random states [17,25]). In
this game (Game 2), the adversary, Bob, creates an initial entangled state, from
which Alice derives (via measurements in a random basis θ of her choosing) the
value of r ∈ {0, 1}m. We show that, without loss of generality, Bob can produce
the proof of deletion, y, before he receives any information from Alice (this is
due, essentially, to the fact that the ciphertext is uniformly random from Bob’s
point of view). Averaging over Alice’s choice of basis θ, we arrive at a very pow-
erful intuition: in order for Bob’s probability of creating an acceptable proof of
deletion y (i.e. he produces a string where the positions corresponding to θ = 1
match with r|Ī) to be high, he must unavoidably have a low probability of cor-
rectly guessing r|I . The above phenomenon is embodied in the following entropic
uncertainty relation for smooth entropies [30,31]. We consider the scenario of Eve
preparing a tripartite state ρABE with Alice, Bob, and Eve receiving the A, B
and E systems, respectively (here, A and B contain n qubits). Next, Alice either
measures all of her qubits in the computational basis to obtain string X, or she
measures all of her qubits in the Hadamard basis to obtain string Z; meanwhile,
Bob measures his qubits in the Hadamard basis to obtain Z ′. We then have the
relation:

Hε
min(X | E) + Hε

max(Z | Z ′) ≥ n, (1)

In the above, ε ≤ 0 is a smoothing parameter which represents a probability
of failure, and the smooth min-entropy Hε

min(X | E) characterizes the average
probability that Eve guesses X correctly using her optimal strategy and given her
quantum register E, while the smooth max-entropy Hε

max(Z | Z ′) corresponds
to the number of bits that are needed in order to reconstruct Z from Z ′ up to a
failure probability ε (for details, see Sect. 2.4).

Our proof technique thus consists in formally analysing the entanglement-
based game and applying the appropriate uncertainty relation in the spirit of
the one above. Finally, we combine the bound on Bob’s min-entropy with a
universal2 hash function and the Leftover Hashing Lemma of [21] to prove indis-
tinguishability between the cases b = 0 and b = 1 after Alice has been convinced
of deletion.

1.2 Related Work

To the best of our knowledge, the first use of a quantum encoding to certify that
a ciphertext is completely “returned” was developed by Unruh [33] in the con-
text of revocable timed-release encryption3: in this case, the revocation process
is fully quantum. Our main security definition (Definition 13) is closely related
3 Revocable time-release encryption can equivalently be thought of as a revocable

time-lock puzzle [23], which does not satisfy standard cryptographic security (since
the plaintexts are recoverable, by design, in polynomial time). In contrast, here we
achieve a semantic-security-type security definition.
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to the security definitions from this work. On the technical side, our work differs
significantly since [33] uses techniques related to CSS codes and quantum ran-
dom oracles, whereas we use privacy amplification and uncertainty relations. Our
work also considers the concept of “revocation” outside the context of timed-
release encryption, and it is also a conceptual and technical improvement since
it shows that a proof of deletion can be classical. Fu and Miller [11] gave the first
evidence that quantum information could be used to prove deletion of informa-
tion and that this could be verified using classical interaction only: they showed
that, via a two-party nonlocality game (involving classical interaction), Alice
can become convinced that Bob has deleted a single-bit ciphertext (in the sense
that the deleted state is unreadable even if Bob were to learn the key). Their
results are cast in the device-independent setting (meaning that security holds
against arbitrarily malicious quantum devices). Further related work (that is
independent from ours) by Coiteux-Roy and Wolf [7] touches on the question
of provable deletion using quantum encodings. However, their work is not con-
cerned with encryption schemes, and therefore does not consider leaking of the
key. By contrast, we are explicitly concerned with what it would mean to delete
a quantum ciphertext. We note, however, that there are similarities between our
scheme and the proposed scheme in [7], namely the use of conjugate coding, with
the message encoded in one basis and its conjugate basis, to prove deletion.

Relationship with Quantum Key Distribution. It can be instructive to compare
our results to the ones obtained in the analysis of QKD [29]. Firstly, our adversar-
ial model appears different since in certified deletion, we have one honest party
(Alice, the sender) and one cheating party (Bob, the receiver), whereas QKD
involves two honest parties (Alice and Bob) and one adversary (Eve). Next, the
interaction model is different since certified deletion is almost non-interactive,
whereas QKD involves various rounds of interaction between Alice and Bob.
However, the procedures and proof techniques for certified deletion are close to
the ones used in QKD: we use similar encodings into Wiesner states, similar pri-
vacy amplification and error correction, and the analysis via an entanglement-
based game uses similar entropic uncertainty relations, leading to a security
parameter that is very similar to the one in [29]. While we are not aware of
any direct reduction from the security of a QKD scheme to certified deletion,
we note that, as part of our proof technique, we manage to essentially map the
adversarial model for certified deletion to one similar to the QKD model since
we split the behaviour of our adversarial Bob into multiple phases: preparation
of the joint state ρABE , measurement of a register B in a determined basis, and
finally bounding the advantage that the adversary has in simultaneously making
Alice accept the outcome of the measurement performed on B and predicting
some measurement outcome on register A given quantum side-information E.
This scenario is similar to QKD, although we note that the measurement bases
are not chosen randomly but are instead consistently in the Hadamard basis (for
Bob’s measurement) and that Eve’s challenge is to predict Alice’s measurement
in the computational basis only (this situation is reminiscent of the single-basis
parameter estimation technique [20,29]).
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1.3 Applications and Open Questions

While the main focus of this work is on the foundations of certified deletion, we
can nevertheless envisage potential applications which we briefly discuss below
(we leave the formal analyses for future work).

Protection Against Key Leakage. Almost all encryption schemes suffer from
the drawback that, eventually (given enough computational time and power),
keys are leaked. Here, certified deletion could be used to mitigate this risk. For
instance, using certified deletion, a sender using a storage server for encrypted
data could at any time (and in particular, as soon as the sender has doubts that
the keys are about to be leaked) request a proof of deletion of the data. This
could give some reassurance on the secrecy of the data; in contrast, classical
solutions clearly are inadequate.

Protection Against Data Retention. In 2016, the European Union adopted a
regulation on the processing and free movement of personal data [26]. Included
is a clause on the “right to be forgotten”: a person should be able to have their
data erased whenever its retention is no longer necessary. See also [12]. Certified
deletion encryption might help facilitate this scenario in the following way: if
a party were to provide their data to an organization via a certified deletion
encryption, the organization would be able to certify deletion of the data using
the deletion circuit included in the scheme. Future work could develop a type of
homomorphic encryption with certified deletion so that the ciphertexts could be
useful to some extent while a level of security, in terms of deletion, is maintained.
Also useful would be a type of “public verifiability” which would enable parties
other than the originator to verify deletion certificates. Contact tracing [5] is
another relevant scenario where individual data could be safeguarded against
data retention by using certified deletion.

Encryption with Classical Revocation. The concept of ciphertext revocation
allows a recipient to provably return a ciphertext (in the sense that the sender
can confirm that the ciphertext is returned and that the recipient will not be
able to decrypt, even if the key is leaked in the future); such a functionality is
unachievable with classical information alone, but it is known to be achievable
using quantum ciphertexts [33]. In a sense, our contribution is an extension of
revocation since from the point of view of the recipient, whether quantum infor-
mation is deleted or returned, the end result is similar: the recipient is unable
to decrypt even given the key. Our scheme, however, has the advantage of using
classical information only for the deletion.

As a use case for classical revocation, consider a situation where Bob loans
Alice an amount of money. Alice agrees to pay back the full amount in time T
plus 15 % interest if Bob does not recall the loan within that time. To implement
this scheme, Alice uses a certified deletion encryption scheme to send Bob an
encrypted cheque and schedules her computer to send Bob the key at time T . If
Bob wishes to recall the loan within time T , he sends Alice the deletion string.
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Another possible application is timed-release encryption [33], where the key is
included in the ciphertext, but with the ciphertext encoded in a classical timed-
release encryption.

Composable and Everlasting Security. We leave as an open question the com-
posability of our scheme (as well as security beyond the one-time case). We note
that through a combination of composability with our quantum encoding, it may
be possible to transform a long-term computational assumption into a tempo-
rary one. That is, a computational assumption would need to be broken during
a protocol, or else the security would be information-theoretically secure as soon
as the protocol ends. This is called everlasting security [32].

For example, consider the situation encountered in a zero-knowledge proof
system for a Σ-protocol (for instance, for graph 3-colouring [14]): the prover
commits to an encoding of an NP-witness using a statistically binding and com-
putationally concealing commitment scheme. The verifier then randomly chooses
which commitments to open, and the prover provides the information required
to open the commitment. If, in addition, we could encode the commitments with
a scheme that provides composable certified deletion, then the verifier could also
prove that the unopened commitments are effectively deleted. This has the poten-
tial of ensuring that the zero-knowledge property becomes statistical as long as
the computational assumption is not broken during the execution of the proof
system. This description assumes an extension of our certified deletion encoding
to the computational setting and also somehow assumes that the verifier would
collaborate in its deletion actions (we leave for future work the formal statement
and analysis). Nevertheless, since zero-knowledge proofs are building blocks for
a host of cryptographic protocols, certified deletion has the potential to unleash
everlasting security; this is highly desirable given steady progress in both algo-
rithms and quantum computers. Another potential application would be proving
erasure (in the context where there is no encryption) [7].

Outline. The remainder of this paper is structured as follows. Section 2 is an
introduction to concepts and notation used in the rest of this work. Section 3
lays out the novel security definitions which appear in this paper. Section 4 is
an exposition of our main scheme, while Sect. 5 provides a security analysis.

2 Preliminaries

In this section, we outline certain concepts and notational conventions which are
used throughout the article. We assume that the reader has a basic familiarity
with quantum computation and quantum information. We refer to [18] for further
background.

2.1 Notation

We make use of the following notation: for a function f : X → R, we denote

E
x

f(x) =
1

|X|
∑

x∈X

f(x). (2)



Quantum Encryption with Certified Deletion 99

We represent the Hamming weight of strings as the output of a Ham-
ming weight function ω : {0, 1}∗ → N. If x1, . . . , xn are strings, then we define
(x1, . . . , xn) to be the concatenation of these strings. Let [n] denote the set
{1, 2, . . . , n}. Then, for any string x = (x1, . . . , xn) and any subset I ⊆ [n], we
use x|I to denote the string x restricted to the bits indexed by I. We call a
function η : N → R≥0 negligible if for every positive polynomial p, there exists
an integer N such that, for all integers n > N , it is true that η(n) < 1

p(n) .
We let Q := C

2 denote the state space of a single qubit, and we use the
notation Q(n) := Q⊗n for any n ∈ N. Let H be a Hilbert space. The group of
unitary operators on H is denoted by U(H), and the set of density operators
on H is denoted by D(H). Through density operators, a Hilbert space may
correspond to a quantum system, which we represent by capital letters. The set
of diagonal density operators on H is denoted by D(H)—the elements of this set
represent classical states. Discrete random variables are thus modeled as finite-
dimensional quantum systems, called registers. A register X takes values in X . A
density operator |x〉〈x| will be denoted as Γ(x). We employ the operator norm,
which we define for a linear operator A : H → H′ between finite-dimensional
Hilbert spaces H and H′ as ‖A‖ = sup{‖Av‖ | v ∈ H, ‖v‖ = 1}. Moreover, for
two density operators ρ, σ ∈ D(H), we use the notation ρ ≤ σ to say that σ − ρ
is positive semi-definite.

In order to illustrate correlations between a classical register X and a quan-
tum state A, we use the formalism of a classical-quantum state:

ρXA =
∑

x∈X
PX(x)Γ(x)X ⊗ ρA|X=x, (3)

where PX(x) := Pr[X = x]ρ = Tr[Γ(x)XρXA] and ρA|X=x is the state of A
conditioned on the event that X = x.

Let Γ(xi) ∈ D(H) be classical states for integers i such that 1 ≤ i ≤ n. Then
we use the notation Γ(x1, x2, . . . , xn) := Γ(x1) ⊗ Γ(x2) ⊗ · · · ⊗ Γ(xn).

Let H ∈ U(Q) denote the Hadamard operator, which is defined by |0〉 �→
|0〉+|1〉√

2
, |1〉 �→ |0〉−|1〉√

2
. For any strings x, θ ∈ {0, 1}n, we define |xθ〉 = Hθ |x〉 =

Hθ1 |x1〉⊗Hθ2 |x2〉⊗· · ·⊗Hθn |xn〉. States of the form |xθ〉 are here called Wiesner
states in recognition of their first use in [35].

We make use of the Einstein-Podolsky-Rosen (EPR) state [10], defined as
|EPR〉 = 1√

2
(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉).

We use x
$←− X to denote sampling an element x ∈ X uniformly at random

from a set X. This uniform randomness is represented in terms of registers in
the fully mixed state which is, given a d-dimensional Hilbert space H, defined
as 1

d1d, where 1d denotes the identity matrix with d rows.
For two quantum states ρ, σ ∈ D(H), we define the trace distance ‖ρ−σ‖Tr :=

1
2‖ρ − σ‖. Note also an alternative formula for the trace distance: ‖ρ − σ‖Tr =
maxP Tr[P (ρ − σ)], where P ≤ 1d is a positive operator. Hence, in terms of a
physical interpretation, the trace distance is the upper bound for the difference
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in probabilities with respect to the states ρ and σ that a measurement outcome
P may occur on the state.

We define purified distance, which is a metric on quantum states.

Definition 1. (Purified Distance). Let A be a quantum system. For two (sub-
normalized) states ρA, σA, we define the generalized fidelity,

F (ρA, σA) :=
(

Tr
[√√

ρAσA
√

ρA

]
+

√
1 − Tr[ρA]

√
1 − Tr[σA]

)2

, (4)

and the purified distance,

P (ρA, σA) :=
√

1 − F (ρA, σA). (5)

2.2 Hash Functions and Error Correction

We make use of universal2 hash functions, first introduced by Carter and Weg-
man [6].

Definition 2. (Universal2 Hashing). Let H = {H : X → Z} be a family of
functions. We say that H is universal2 if Pr[H(x) = H(x′)] ≤ 1

|Z| for any two
distinct elements x, x′ ∈ X , when H is chosen uniformly at random from H.

Such families exist if |Z| is a power of two (see [6]). Moreover, there exist
universal2 families of hash functions which take strings of length n as input
and which contain 2O(n) hash functions; therefore it takes O(n) bits to specify a
hash function from such a family [34]. Thus, when we discuss communication of
hash functions, we assume that both the sender and the recipient are aware of
the family from which a hash function has been chosen, and that the transmit-
ted data consists of O(n) bits used to specify the hash function from the known
family.

In the context of error correction, we note that linear error correcting codes
can generate syndromes, and that corrections to a message can be made when
given the syndrome of the correct message. This is called syndrome decoding.
Therefore, we implicitly refer to syndrome decoding of an [n, n − s]-linear code
which handles codewords of length n and generates syndromes of length s < n
when we use functions synd: {0, 1}n → {0, 1}s and corr : {0, 1}n × {0, 1}s →
{0, 1}n, where synd is a syndrome-generating function and corr is a string-
correcting function. We also make reference to the distance of an error correcting
code, which is the minimum distance between distinct codewords.

2.3 Quantum Channels and Measurements

Let A and B be two quantum systems, and let X be a classical register. A
quantum channel Φ: A → B is a completely positive trace-preserving (CPTP)
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map. A generalized measurement on A is a set of linear operators {Mx
A}x∈X ,

where x ∈ X are potential classical outcomes, such that
∑

x∈X
(Mx

A)†(Mx
A) = 1A. (6)

A positive-operator valued measure (POVM) on A is a set of Hermitian positive
semidefinite operators {Mx

A}x∈X , where x ∈ X are potential classical outcomes,
such that ∑

x∈X
(Mx

A) = 1A. (7)

We also represent measurements with CPTP maps such as MA→X , which map
quantum states in system A to classical states in register X using POVMs.

For two registers X and Y , if we have a function, f : X → Y then we denote
by Ef : X → XY the CPTP map

Ef [·] :=
∑

x∈X

|f(x)〉Y Γ(x)X · Γ(x)X〈f(x)|Y . (8)

In this work, measurement of a qubit in our scheme will always occur in
one of two bases: the computational basis ({|0〉, |1〉}) or the Hadamard basis
({|+〉, |−〉}). Thus, for a quantum system A, we notate these measurements as
{Mθ,x

A }x∈{0,1}, where x ∈ {0, 1} ranges over the possible outcomes, and where
θ ∈ {0, 1} determines the basis of measurement (θ = 0 indicates computational
basis and θ = 1 indicates Hadamard basis).

Let {Mx
A}x and {Ny

A}y be two POVMs acting on a quantum system A. We
define the overlap

c({Mx
A}x, {Ny

B}y) := max
x,y

∥∥∥∥
√

Mx
A

√
Ny

A

∥∥∥∥
2

∞
. (9)

wherever dealing with an m-qubit quantum system A, we define, for all i =
1, . . . ,m,

ci := c
(
{M0,x

Ai
}x, {M1,y

Ai
}y

)
. (10)

We assume our measurements are ideal, so ci = 1/2.

2.4 Entropic Uncertainty Relations

The purpose of entropy is to quantify the amount of uncertainty an observer
has concerning the outcome of a random variable. Since the uncertainty of ran-
dom variables can be understood in different ways, there exist different kinds of
entropy. Key to our work are min- and max-entropy, first introduced by Renner
and König [15,21], as a generalization of conditional Rényi entropies [22] to the
quantum setting. Min-entropy, for instance, quantifies the degree of uniformity
of the distribution of a random variable.
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Definition 3. (Min-entropy). Let A and B be two quantum systems. For any
bipartite state ρAB, we define

Hmin(A | B)ρ := sup{ξ ∈ R | ∃ state σB such that ρAB ≤ 2−ξ1A ⊗ σB}. (11)

Max-entropy quantifies the size of the support of a random variable, and is
here defined by its dual relation to min-entropy.

Definition 4. (Max-entropy). Let A and B be two quantum systems. For any
bipartite state ρAB, we define

Hmax(A | B)ρ := −Hmin(A | C)ρ, (12)

where ρABC is any pure state with TrC [ρABC ] = ρAB, for some quantum sys-
tem C.

In order to deal with finite-size effects, it is necessary to generalize min- and
max-entropy to their smooth variants.

Definition 5. (Smooth Entropies). Let A and B be two quantum systems.
For any bipartite state ρAB, and ε ∈

[
0,

√
Tr[ρAB ]

)
, we define

Hε
min(A | B)ρ := sup

ρ̃AB

P (ρ̃AB ,ρAB)≤ε

Hmin(A | B)ρ̃, (13)

Hε
max(A | B)ρ := inf

ρ̃AB

P (ρ̃AB ,ρAB)≤ε

Hmax(A | B)ρ̃. (14)

It is of note that smooth entropies satisfy the following inequality, commonly
referred to as the data-processing inequality [28].

Proposition 1. Let ε ≥ 0, ρAB be a quantum state, and E : D(HA) → D(HC)
be a CPTP map. Define σAC := (1D(HA) ⊗ E)(ρAB). Then,

Hε
min(A | B)ρ ≤ Hε

min(A | C)σ and Hε
max(A | B)ρ ≤ Hε

max(A | C)σ. (15)

We use one half of the generalized uncertainty relation theorem found in [27],
the precursor of which was introduced by Tomamichel and Renner [31]. The
original uncertainty relation was understood in terms of its application to QKD,
and was used to prove the secrecy of the key in a finite-key analysis of QKD [30].

Proposition 2. Let ε ≥ 0, let ρACE be a tripartite quantum state, let {Mx
A}x∈X

and {Nz
A}z∈Z be two POVMs acting on A, and let {P k

A}k∈K be a projective
measurement acting on A. Then the post-measurement states

ρXKC =
∑

x,k

〈x|x〉 ⊗ 〈k|k〉 ⊗ TrAE

[√
Mx

AP k
AρACEP k

A

√
Mx

A

]
(16)
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and

ρY KE =
∑

y,k

〈y|y〉 ⊗ 〈k|k〉 ⊗ TrAC

[√
Ny

AP k
AρACEP k

A

√
Ny

A

]
(17)

satisfy

Hε
min(X | KC)ρ + Hε

max(Y | KE)ρ ≥ log
1
cK

(18)

where cK = maxk,x,y

∥∥∥
√

Mx
AP k

√
Ny

A

∥∥∥
∞

.

We also use the Leftover Hashing Lemma, introduced by Renner [21]. It is
typically understood in relation to the privacy amplification step of QKD. We
state it in the form given in [29].

Proposition 3. Let ε ≥ 0 and σAX be a classical-quantum state, with X a
classical register which takes values on X = {0, 1}s. Let H be a universal2 family
of hash functions from X to Y = {0, 1}n. Let χY = 1

2n 1D(Y) be the fully mixed
state, ρSH = 1

|H|
∑

H∈H Γ(H)SH and ζAY SH = TrX [Ef (σAX ⊗ ρSH )] for the
function f : (x,H) �→ H(x) be the post-hashing state. Then,

‖ζAY SH − χY ⊗ ζASH ‖Tr ≤ 1
2
2− 1

2 (Hε
min(X|A)σ−n) + 2ε. (19)

2.5 Statistical Lemmas

The following lemmas are required to bound a specific max-entropy quantity.
They are both proven in [29] as part of a security proof of finite-key QKD, and
this line of thinking originated in [30].

The following lemma is a consequence of Serfling’s bound [24].

Lemma 1. Let Z1, . . . Zm be random variables taking values in {0, 1}. Let m =
s+k. Let I be an independent and uniformly chosen subset of [m] with s elements.
Then, for ν ∈ [0, 1] and δ ∈ (0, 1),

Pr

⎡

⎣
∑

i∈I
Zi ≤ kδ ∧

∑

i∈Ī
Zi ≥ s(δ + ν)

⎤

⎦ ≤ exp
(−2ν2 sk2

m(k + 1)

)
. (20)

It will also be useful to condition a quantum state on future events. The
following lemma from [29] states that, given a classical-quantum state, there
may exist a nearby state on which a certain event does not occur.

Lemma 2. Let ρAX be a classical-quantum state with X a classical register,
and Ω: X → {0, 1} be an event with Pr[Ω]ρ = ε < Tr[ρAX ]. Then there exists a
classical-quantum state ρ̃AX with Pr[Ω]ρ̃ = 0 and P (ρAX , ρ̃AX) ≤ √

ε.
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2.6 Quantum Encryption and Security

Whenever an adversary A is mentioned, it is assumed to be quantum and to
have unbounded computational power, and we allow it to perform generalized
measurements.

Considering that the scheme introduced in this paper is an encryption scheme
with a quantum ciphertext, we rely on the “quantum encryption of classical
messages” framework developed by Broadbent and Lord [3]. This framework
describes an encryption scheme as a set of parameterized CPTP maps which
satisfy certain conditions.

Definition 6. (Quantum Encryption of Classical Messages). Let n be
an integer. An n-quantum encryption of classical messages (n-QECM) is a tuple
of uniform efficient quantum circuits S = (key, enc, dec) implementing CPTP
maps of the form

– Φkey
λ : D(C) → D(HK,λ),

– Φenc
λ : D(HK,λ ⊗ HM ) → D(HT,λ), and

– Φdec
λ : D(HK,λ ⊗ HT,λ) → D(HM ),

where HM = Q(n) is the plaintext space, HT,λ = Q((λ)) is the ciphertext space,
and HK,λ = Q(κ(λ)) is the key space for functions , κ : N+ → N

+.
For all λ ∈ N

+, k ∈ {0, 1}κ(λ), and m ∈ {0, 1}n, the maps must satisfy

Tr[Γ(k)Φkey(1)] > 0 ⇒ Tr[Γ(m)Φdec
k ◦ Φenc

k Γ(m)] = 1, (21)

where λ is implicit, Φenc
k is the CPTP map defined by ρ �→ Φenc(Γ(k) ⊗ ρ), and

we define Φdec
k analogously. We also define the CPTP map Φenc

k,0 : D(HM ) →
D(HT,λ) by

ρ �→ Φenc
k (Γ(0)) (22)

where 0 ∈ {0, 1}n is the all-zero bit string, and the CPTP map Φenc
k,1 : D(HM ) →

D(HT,λ) by
ρ �→

∑

m∈{0,1}n

Tr[Γ(m)ρ] · Φenc
k (Γ(m)). (23)

As part of the security of our scheme, we wish to ensure that should an
adversary obtain a copy of the ciphertext and were to know that the original
message is one of two hypotheses, she would not be able to distinguish between
the hypotheses. We refer to this notion of security as ciphertext indistinguisha-
bility (called indistinguishable security in [3]). It is best understood in terms of
a scheme’s resilience to an adversary performing what we refer to as a distin-
guishing attack.

Definition 7. (Distinguishing Attack). Let S = (key, enc, dec) be an n-
QECM. A distinguishing attack is a quantum adversary A = (A0,A1) imple-
menting CPTP maps of the form

– A0,λ : D(C) → D(HM ⊗ HS,λ) and
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– A1,λ : D(HT,λ ⊗ HS,λ) → D(Q)

where HS,λ = Q(s(λ)) for a function s : N+ → N
+.

Definition 8. (Ciphertext Indistinguishability). Let S = (key, enc, dec) be
an n-QECM. Then we say that S has ciphertext indistinguishability if for all
distinguishing attacks A there exists a negligible function η such that

E
b

E
k←K

Tr[Γ(b)A1,λ ◦ (Φenc
k,b ⊗ 1S) ◦ A0,λ(1)] ≤ 1

2
+ η(λ) (24)

where λ is implicit on the left-hand side, b ∈ {0, 1}, and Kλ is the random
variable distributed on {0, 1}κ(λ) such that

Pr[Kλ = k] = Tr[Γ(k)Φkey
λ (1)]. (25)

3 Security Definitions

In this section, we introduce a new description of the certified deletion security
notion. First, however, we must augment our QECM framework to allow it to
detect errors on decryption.

Definition 9. (Augmented Quantum Encryption of Classical Mes-
sages). Let n be an integer. Let S = (key, enc, dec) be an n-QECM. An n-
augmented quantum encryption of classical messages (n-AQECM) is a tuple of
uniform efficient quantum circuits Ŝ = (key, enc, d̂ec), where d̂ec implements a
CPTP map of the form

Φ̂dec
λ : D(HK,λ ⊗ HT,λ) → D(HM ⊗ Q). (26)

For all λ ∈ N
+, k ∈ {0, 1}κ(λ), and m ∈ {0, 1}n, the maps corresponding to the

circuits must satisfy

Tr[Γ(k)Φkey(1)] > 0 ⇒ Tr[Γ(m) ⊗ Γ(1)Φ̂dec
k ◦ Φenc

k Γ(m)] = 1, (27)

where λ is implicit, Φenc
k is the CPTP map defined by ρ �→ Φenc(Γ(k) ⊗ ρ), and

we define Φdec
k analogously.

The extra qubit (which will be referred to as a flag), though by itself without any
apparent use, may serve as a way to indicate that the decryption process did not
proceed as expected in any given run. In the case of decryption without error,
the circuit should output Γ(1), and in the case of decryption error, the circuit
should output Γ(0). This allows us to define a criterion by which an AQECM
might be robust against a certain amount of noise.

Since the original QECM framework will no longer be used for the rest of this
paper, we henceforth note that all further references to the QECM framework
are in fact references to the AQECM framework.
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Definition 10. (Robust Quantum Encryption of Classical Messages).
Let S = (key, enc, dec) be an n-QECM. We say that S is ε-robust if, for all
adversaries A implementing CPTP maps of the form

A : D(HT,λ) → D(HT,λ), (28)

and for two distinct messages m,m′ ∈ HM , we have that

E
k←K

Tr[Γ(m′) ⊗ Γ(1)Φdec
k ◦ A ◦ Φenc

k Γ(m)] ≤ ε. (29)

In other words, a QECM is ε-robust if, under interference by an adversary, the
event that decryption yields a different message than was encrypted and that
the decryption circuit approves of the outcome is less than or equal to ε. This
is functionally equivalent to a one-time quantum authentication scheme, where
messages are classical (see e.g. [1,9,13]).

Our description takes the form of an augmentation of the QECM framework
described in Definition 9. Given a QECM with key k and encrypting message m,
the certified deletion property should guarantee that the recipient, Bob, cannot
do the following two things simultaneously: (1) Make Alice, the sender, accept
his certificate of deletion; and (2) Given k, recover information about m.

Definition 11. (Certified Deletion Encryption). Let S = (key, enc, dec) be
an n-QECM. Let del and ver be efficient quantum circuits implemented by CPTP
maps of the form

– Φdel
λ : D(HT,λ) → D(HD,λ)

– Φver
λ : D(HK,λ ⊗ HD,λ) → D(Q)

where HD,λ = Q(d(λ)) for a function d : N+ → N
+.

For all λ ∈ N
+, k ∈ {0, 1}κ(λ), and m ∈ {0, 1}n, the maps must satisfy

Tr[Γ(k)Φkey(1)] > 0 =⇒ Tr[Γ(1)Φver ◦ (
Γ(k) ⊗ (

Φdel ◦ Φenc
k Γ(m)

))
] = 1 (30)

where λ is implicit.
We call the tuple S ′ = (key, enc, dec, del, ver) an n-certified deletion encryp-

tion (n-CDE).

Definition 12. (Certified Deletion Attack). Let S = (key, enc, dec, del, ver)
be an n-CDE. A certified deletion attack is a quantum adversary A =
(A0,A1,A2) implementing CPTP maps of the form

– A0,λ : D(C) → D(HM ⊗ HS,λ),
– A1,λ : D(HT,λ ⊗ HS,λ) → D(HD,λ ⊗ HS,λ ⊗ HT ′,λ), and
– A2,λ : D(HK,λ ⊗ HS,λ ⊗ HT ′,λ) → D(Q)

where HS,λ = Q(s(λ)) and HT ′,λ = Q(′(λ)) for functions s, ′ : N+ → N
+.

We are now ready to define our notion of certified deletion security. We refer
the reader to Sect. 1.1 for an informal explanation of the definition, and we recall
that notation Φenc

k,b is defined in Eq. (22).
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Definition 13. (Certified Deletion Security). Let S = (key, enc, dec, del,
ver) be an n-CDE. For any fixed and implicit λ ∈ N

+, we define the CPTP map
Φver

k : D(HK,λ ⊗ HD,λ) → D(Q ⊗ HK,λ) by

ρ �→ Φver(Γ(k) ⊗ ρ) ⊗ Γ(k). (31)

Let b ∈ {0, 1}, let A be a certified deletion attack, and let

pb = [Ek←K Tr[(Γ(1, 1))(1⊗A2)◦ (Φver
k ⊗1ST ′)◦A1 ◦ (Φenc

k,b ⊗1S)◦A0(1)], (32)

where λ is implicit, and where Kλ is the random variable distributed on {0, 1}κ(λ)

such that
Pr[Kλ = k] = Tr[Γ(k)Φkey

λ (1)]. (33)

Then we say that S is η-certified deletion secure if, for all certified deletion
attacks A, there exists a negligible function η such that

|p0 − p1| ≤ η(λ). (34)

4 Constructing an Encryption Scheme with Certified
Deletion

Scheme 1 aims to exhibit a noise-tolerant prepare-and-measure n-CDE with
ciphertext indistinguishability and certified deletion security.

Table 1. Overview of nomenclature used in Sect. 4 and Sect. 5

Mθ,x
A Measurement operator acting on system A with setting θ and

outcome x

MI
A→X|SΘ Measurement map applied on the qubits of system A indexed by

I, with setting SΘ, and outcome stored in register X

λ Security parameter

n Length, in bits, of the message

m = κ(λ) Total number of qubits sent from encrypting party to decrypting
party

k Length, in bits, of the string used for verification of deletion

s = m − k Length, in bits, of the string used for extracting randomness

τ = τ(λ) Length, in bits, of error correction hash

μ = μ(λ) Length, in bits, of error syndrome

θ Basis in which the encrypting party prepares her quantum state

δ Threshold error rate for the verification test

(continued)
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Table 1. (continued)

Θ Set of possible bases from which θ is chosen

Hpa Universal2 family of hash functions used in the privacy
amplification scheme

Hec Universal2 family of hash functions used in the error correction
scheme

Hpa Hash function used in the privacy amplification scheme

Hec Hash function used in the error correction scheme

SΘ Seed for the choice of θ

SHpa Seed for the choice of the hash function used in the error
correction scheme

SHec Seed for the choice of the hash function used in the privacy
amplification scheme

synd Function that computes the error syndrome

corr Function that computes the corrected string

Scheme 1. (Prepare-and-Measure Certified Deletion) Let n, λ, τ, μ,m =
s + k be integers. Let Θ = {θ ∈ {0, 1}m | ω(θ) = k}. Let both Hec :=
{h : {0, 1}s → {0, 1}τ} and Hpa := {h : {0, 1}s → {0, 1}n} be universal2 families
of hash functions. Let synd: {0, 1}n → {0, 1}μ be an error syndrome function, let
corr : {0, 1}n ×{0, 1}μ → {0, 1}n be the corresponding function used to calculate
the corrected string, and let δ ∈ [0, 1] be a tolerated error rate for verification.
We define a noise-tolerant prepare-and-measure n-CDE by Circuits 1–5. This
scheme satisfies both Eq. (21) and Eq. (30). It is therefore an n-CDE.

5 Security Analysis

In this section, we present the security analysis for Scheme 1: in Sect. 5.1, we show
the security of the scheme in terms of an encryption scheme, then, in Sect. 5.2,
we show that the scheme is correct and robust. Finally in Sect. 5.3, we show
that the scheme is a certified deletion scheme.

5.1 Ciphertext Indistinguishability

In considering whether Scheme 1 has ciphertext indistinguishability (Defini-
tion 8), one need only verify that an adversary, given a ciphertext, would not be
able to discern whether a known message was encrypted.
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Circuit 1: The key generation circuit key.
Input : None.
Output: A key state ρ ∈ D(Q(k + m + n + μ + τ) ⊗ Hpa ⊗ Hec)).

1 Sample θ
$←− Θ.

2 Sample r|Ī $←− {0, 1}k where Ī = {i ∈ [m] | θi = 1}.

3 Sample u
$←− {0, 1}n.

4 Sample d
$←− {0, 1}μ.

5 Sample e
$←− {0, 1}τ .

6 Sample Hpa
$←− Hpa.

7 Sample Hec
$←− Hec.

8 Output ρ = Γ(r|Ī , θ, u, d, e, Hpa, Hec).

Circuit 2: The encryption circuit enc.
Input : A plaintext state Γ(msg) ∈ D(Q(n)) and a key state

Γ(r|Ī , θ, u, d, e, Hpa, Hec) ∈ D(Q(k + m + n + μ + τ) ⊗ Hpa ⊗ Hec).
Output: A ciphertext state ρ ∈ D(Q(m + n + τ + μ)).

1 Sample r|I $←− {0, 1}s where I = {i ∈ [m] | θi = 0}.
2 Compute x = Hpa(r|I) where I = {i ∈ [m] | θi = 0}.
3 Compute p = Hec(r|I) ⊕ d.
4 Compute q = synd(r|I) ⊕ e.

5 Output ρ = Γ(rθ) ⊗ Γ(msg ⊕ x ⊕ u, p, q).

Circuit 3: The decryption circuit dec.
Input : A key state

Γ(r|Ī , θ, u, d, e, Hpa, Hec) ∈ D(Q(k + m + n + μ + τ) ⊗ Hpa ⊗ Hec)
and a ciphertext ρ ⊗ Γ(c, p, q) ∈ D(Q(m + n + μ + τ)).

Output: A plaintext state σ ∈ D(Q(n)) and an error flag γ ∈ D(Q).
1 Compute ρ′ = Hθ ρHθ.
2 Measure ρ′ in the computational basis. Call the result r.
3 Compute r′ = corr(r|I , q ⊕ e) where I = {i ∈ [m] | θi = 0}.
4 Compute p′ = Hec(r

′) ⊕ d.
5 If p �= p′, then set γ = Γ(0). Else, set γ = Γ(1).
6 Compute x′ = Hpa(r

′).
7 Output σ ⊗ γ = Γ(c ⊕ x′ ⊕ u) ⊗ γ.

Circuit 4: The deletion circuit del.
Input : A ciphertext ρ ⊗ Γ(c, p, q) ∈ D(Q(m + n + μ + τ)).
Output: A certificate string state σ ∈ D(Q(m)).

1 Measure ρ in the Hadamard basis. Call the output y.
2 Output σ = Γ(y).
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Circuit 5: The verification circuit ver.
Input : A key state

Γ(r|Ī , θ, u, d, e, Hpa, Hec) ∈ D(Q(k + m + n + μ + τ) ⊗ Hpa ⊗ Hec)
and a certificate string state Γ(y) ∈ D(Q(m)).

Output: A bit.
1 Compute ŷ′ = ŷ|Ī where Ī = {i ∈ [m] | θi = 1}.
2 Compute q = r|Ī .
3 If ω(q ⊕ ŷ′) < kδ, output 1. Else, output 0.

Theorem 1. Scheme 1 has ciphertext indistinguishability.

Proof. For any distinguishing attack A = (A0,A1), any state ρ = ρS ⊗Γ(msg) ∈
D(HS ⊗ Q(n)), and where k = (r|Ī , θ, u, d, e,Hpa,Hec) ∈ {0, 1}k+m+n+μ+τ ×
Hpa × Hec is a key, we have that

E
k

(
1S ⊗ Φenc

k,1

)
(ρ) =

1
2m+n+μ+τ |Hpa||Hec|

∑

k

ρS ⊗ Γ(rθ) ⊗ Γ(msg ⊕ x ⊕ u, p, q)

=
1

2m+n+μ+τ |Hpa||Hec|
∑

k

ρS ⊗ Γ(rθ) ⊗ Γ(x ⊕ u, p, q)

= E
k

(
1S ⊗ Φenc

k,0

)
(ρ),

where the second equality is due to the uniform distribution of both msg⊕x⊕u
and u. Therefore, an adversary can do no better than guess b correctly half of the
time in a distinguishing attack. This implies perfect ciphertext indistinguisha-
bility with η = 0. ��

5.2 Correctness

Thanks to the syndrome and correction functions included in the scheme, the
decryption circuit is robust against a certain amount of noise; that is, below
such a level of noise, the decryption circuit outputs Alice’s original message with
high probability. This noise threshold is determined by the distance of the linear
code used. In particular, where Δ is the distance of the code, decryption should
proceed normally as long as fewer than �Δ−1

2 � errors occur to the quantum
encoding of r|I during transmission through the quantum channel.

To account for greater levels of noise (such as may occur in the presence of an
adversary), we show that the error correction measures implemented in Scheme 1
ensure that errors in decryption are detected with high probability. In other
words, we show that the scheme is εrob-robust, where εrob := 1

2τ .
Recall that τ is the length of the error correction hash, and that μ is the length

of the error correction syndrome. Consider that Bob has received a ciphertext
state ρB ⊗ Γ(c, p, q) ∈ D(Q(m + n + μ + τ)) and a key (r|Ī , θ, u, d, e,Hpa,Hec) ∈
Θ×{0, 1}n+μ+τ ×Hpa ×Hec. Given θ, Bob learns I. This allows him to perform
the following measurement on ρB :



Quantum Encryption with Certified Deletion 111

MI
B→Y (·) =

∑

y∈{0,1}s

|y〉Y

(
M0,y

BI

)
·
(
M0,y

BI

)†
〈y|Y (35)

The new register Y contains a hypothesis of the random string Alice used in
generating c. Since ρB was necessarily transmitted through a quantum channel,
it may have been altered due to noise. Bob calculates a corrected estimate:
x̂ = corr(y, q ⊕ e). Finally, he compares a hash of the estimate with p ⊕ d, which
is the hash of Alice’s corresponding randomness. This procedure is represented
by a function ec : {0, 1}s × {0, 1}μ × Hec → {0, 1} defined by

ec(x, y) =

{
0 if Hec(x) �= y

1 else.
(36)

To record the value of this test, we use a flag F ec := ec(x̂, p ⊕ d). It is very
unlikely that both F ec = 1 and the outcome of Bob’s decryption procedure is
not equal to Alice’s originally intended message. This is shown in the following
proposition, the proof of which follows that of an analogous theorem in [29].

Theorem 2. If r|I ∈ {0, 1}s is the random string Alice samples in encryption,
and x̂ = corr(y, q ⊕ e), then

Pr[Hpa(r|I) �= Hpa(x̂) ∧ F ec = 1] ≤ 1
2τ

. (37)

Proof.

Pr[Hpa(r|I) �= Hpa(x̂) ∧ F ec = 1]
= Pr[Hpa(r|I) �= Hpa(x̂) ∧ Hec(p ⊕ d) = Hec(x̂)]

(38)

= Pr[Hpa(r|I) �= Hpa(x̂) ∧ Hec(r|I) = Hec(x̂)] (39)
≤ Pr[r|I �= x̂ ∧ Hec(r|I) = Hec(x̂)] (40)
= Pr[r|I �= x̂] Pr[Hec(r|I) = Hec(x̂)] (41)
≤ Pr[Hec(r|I) = Hec(x̂) | r|I �= x̂] (42)

≤ 1
‖Hec‖ =

1
2τ

. (43)

��

5.3 Certified Deletion Security

We now prove certified deletion security of Scheme 1. Our technique consists in
formalizing a game (Game 1) that corresponds to the security definition (Defini-
tion 13) applied to Scheme 1. Next, we develop an entanglement-based sequence
of interactions (Game 2) which accomplish the same task as in the previous
Game. We analyze this game and, afterwards, we show formally that the afore-
mentioned analysis, via its relation to Game 1, implies the certified deletion
security of Scheme 1. To begin, we describe a game which exhibits a certified
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deletion attack on Scheme 1, and which thus allows us to examine whether the
scheme has certified deletion security. In what follows, the challenger represents
the party who would normally encrypt and send the message (Alice), and the
adversary A represents the recipient (Bob). The adversary sends the challenger
a candidate message msg0 ∈ {0, 1}n and Alice chooses, with uniform random-
ness, whether to encrypt 0n or msg0; security holds if, for any adversary, the
probabilities of the following two events are negligibly close:

– verification passes and Bob outputs 1, in the case that Alice encrypted 0n;
– verification passes and Bob output 1, in the case that Alice encrypted msg0.

Game 1. (Prepare-and-Measure Game). Let S = (key, enc, dec, del, ver) be
an n-CDE with λ implicit, and with circuits defined as in Scheme 1. Let A =
(A0,A1,A2) be a certified deletion attack. The game is parametric in b

$←− {0, 1}
and is called Game 1(b).

1. Run Γ(msg0)M ⊗ ρS ← A0(1). Generate

Γ(θ, u, d, e,Hpa,Hec, r|Ī)K ← Φkey. (44)

Denote

msg :=

{
0n if b = 0
msg0 if b = 1.

(45)

Compute

Γ(rθ)T ⊗ Γ(msg ⊕ x ⊕ u, p, q)T

← Φenc(Γ(θ, u, d, e,Hpa,Hec, r|Ī)K ⊗ Γ(msg)M ).
(46)

2. Run

Γ(y)D ⊗ ρ′
S ⊗ ρT ′ ← A1(Γ(rθ)T ⊗ Γ(msg ⊕ x ⊕ u, p, q)T ⊗ ρS). (47)

Compute

Γ(ok) ← Φver(Γ(θ, u, d, e,Hpa,Hec, r|Ī)K ⊗ Γ(y)D). (48)

3. If ok = 1, run

Γ(b′) ← A2(Γ(r|Ī , θ, u, d, e,Hpa,Hec)K′ ⊗ ρ′
S ⊗ ρT ′); (49)

else, b′ := 0.

Let pb be the probability that the output of Game 1(b) is 1. Comparing
Game 1 with Definition 13, we note that the former runs the adversary to the
end only in the case that ok = 1, while the latter runs the adversary to the end
in both cases. However, the obtained distribution for pb is the same, since in
Game 1, pb = 1 whenever the adversary outputs 1 and ok = 1. Hence we wish
to bound |p0 − p1| in Game 1. Instead of directly analyzing Game 1, we analyze
a game wherein the parties use entanglement; this allows us to express the game
in a format that is conducive for the analysis that follows.
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Game 2. (EPR Game). Alice is the sender, and Bob is the recipient and

adversary. The game is parametric in b
$←− {0, 1} and is called Game 2(b).

1. Bob selects a string msg0 ∈ {0, 1}n and sends msg0 to Alice. Bob prepares a
tripartite state ρABB′ ∈ D(Q(3m)) where each system contains m qubits. Bob
sends the A system to Alice and keeps the systems B and B′. Bob measures
the B system in the Hadamard basis and obtains a string y ∈ {0, 1}m. Bob
sends y to Alice.

2. Alice samples θ
$←− Θ, u

$←− {0, 1}n, d
$←− {0, 1}μ, e

$←− {0, 1}τ , Hpa
$←− Hpa,

and Hec
$←− Hec. She applies a CPTP map to system A which measures Ai

according to the computational basis if θi = 0 and the Hadamard basis if
θi = 1. Call the result r. Let I = {i ∈ [m] | θi = 0}. Alice computes
x = Hpa(r|I), p = Hec(r|I)⊕d, and q = synd(r|I)⊕e. Alice selects a message:

msg :=

{
0n if b = 0
msg0 if b = 1.

(50)

If ω(y ⊕ r|Ī) < kδ, ok := 1 and Alice sends

(msg ⊕ x ⊕ u, r|Ī , θ, u, d, e, p, q,Hpa,Hec) (51)

to Bob. Else, ok := 0 and b := 0.
3. If ok = 1, Bob computes

Γ(b′) ← E(ρB′⊗
Γ(msg ⊕ x ⊕ u,msg0, rĪ , θ, u, d, e, p, q,Hpa,Hec))

(52)

for some CPTP map E ; else b′ := 0.

Game 2 is intended to model a purified version of Game 1. Note that Bob’s
measuremement of B in the Hadamard basis is meant to mimic the del circuit
of Scheme 1. Although it may seem strange that we impose a limitation of
measurement basis on Bob here, it is in fact no limitation at all; indeed, since
Bob prepares ρABB′ , he is in total control of the state that gets measured,
and hence may assume an arbitrary degree of control over the measurement
outcome. Therefore, the assumption that he measures in the Hadamard basis is
made without loss of generality.

It may also appear that the adversary in Game 1 has more information when
producing the deletion string than Bob in Game 2. This, however, is not true, as
the adversary in Game 1 has only received information from Alice that appears
to him to be uniformly random (as mentioned, the statement is formalized later,
in Sect. 5.4). In order to further the analysis, we assign more precise notation
for the maps described in Game 2.

Bob’s Measurements. Measurement of Bob’s system B of m qubits in Step 1 is
represented using two CPTP maps: one acting on the systems in I, with outcome
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recorded in register Y ; and one acting on the systems in Ī, with outcome recorded
in W . Note, however, that Bob has no access to θ, and therefore has no way of
determining I. The formal separation of registers Y and W is simply for future
ease of specifying the qubits to which we refer.
Recall the definition of the measurements Mx,y

B from Sect. 2.3.
The first measurement, where the outcome is stored in register Y , is defined by

MI
B→Y (·) =

∑

y∈{0,1}s

|y〉Y

(
M1,y

BI

)
·
(
M1,y

BI

)†
〈y|Y (53)

and the second, where the outcome is stored in register W , is defined by

MĪ
B→W (·) =

∑

w∈{0,1}k

|w〉W

(
M1,w

BĪ

)
·
(
M1,w

BĪ

)†
〈w|W , (54)

where M1,y
BI :=

⊗
i∈I M1,yi

Bi
, and the definition of M1,w

BĪ
is analogous.

Alice’s Measurements. We represent the randomness of Alice’s sampling using
seed registers. Thus, the randomness used for Alice’s choice of basis is represented
as

ρSΘ =
1(
m
k

)
∑

θ∈Θ

Γ(θ)SΘ . (55)

Similarly, Alice’s randomness for choice of a hash function for privacy amplifi-
cation is represented as

ρSHpa =
1

|Hpa|
∑

h∈Hpa

Γ(h)SHpa . (56)

Recall that m = s+k, where k is the weight of all strings in Θ. Measurement
of Alice’s system A of m qubits in Step 2 is represented using two CPTP maps:
one acting on the systems in I, with outcome recorded in register X (by def-
inition, these qubits are measured in the computational basis); and one acting
on the systems in Ī, with outcome recorded in register V (by definition, these
qubits are measured in the Hadamard basis).

MI
A→X|SΘ(·) =

∑

θ∈Θ

∑

x∈{0,1}s

|x〉X

(
M0,x

AI ⊗ Γ(θ)SΘ

)
·
(
M0,x

AI ⊗ Γ(θ)SΘ

)†
〈x|X ;

and the second measurement, where the outcome is stored in register V , is
defined by

MĪ
A→V |SΘ(·) =

∑

θ∈Θ

∑

v∈{0,1}k

|v〉V

(
M1,v

AĪ
⊗ Γ(θ)SΘ

)
·
(
M1,v

AĪ
⊗ Γ(θ)SΘ

)†
〈v|V ,

where M0,x
AI :=

⊗
i∈I M0,xi

Ai
and the definition of M1,v

AĪ
is analogous.
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We also introduce a hypothetical measurement for the sake of the secu-
rity analysis. Consider the case where Alice measures all of her qubits in the
Hadamard basis. In this case, instead of MI

A→X|SΘ , Alice would use the mea-
surement

MI
A→Z|SΘ(·) =

∑

θ∈Θ

∑

z∈{0,1}s

|z〉Z

(
M1,z

AI ⊗ Γ(θ)SΘ

)
·
(
M1,z

AI ⊗ Γ(θ)SΘ

)†
〈z|Z .

Each of Alice’s and Bob’s measurements commute with each other as they
all act on distinct quantum systems. We can thus define the total measurement
map

MAB→V WXY |SΘ = MI
A→X|SΘ ◦ MĪ

A→V |SΘ ◦ MI
B→Y ◦ MĪ

B→W . (57)

The overall post-measurement state (i.e. the joint state held by Alice and Bob
after both their measurements) is denoted σV WXY SΘ . We analogously define the
hypothetical post-measurement state σ̂V WZY SΘ (which is the joint state of Alice
and Bob given Alice has used MA→Z|SΘ).

Alice’s Verification: Alice completes the verification procedure by comparing
the V register to the W register. If they differ in less than kδ bits, then the test
is passed. The test is represented by a function comp: {0, 1}k ×{0, 1}k → {0, 1}
defined by

comp(v, w) =

{
0 if ω(v ⊕ w) ≥ kδ

1 else.
(58)

To record the value of this test, we use a flag F comp := comp(v, w).
The import of the outcome of this comparison test is that if Bob is good

at guessing Alice’s information in the Hadamard basis, it is unlikely that he is
good at guessing Alice’s information in the computational basis. This trade-off
is represented in the uncertainty relation of Proposition 2.

Note that we can define the post-comparison test state, since A|I is disjoint
from A|Ī and B|I is disjoint from B|Ī . The state is denoted τABV WSΘ|F comp=1.

The following proposition shows that in order to ensure that Bob’s knowledge
of X is limited after a successful comparison test, and receiving the key, his
knowledge about Alice’s hypothetical Hadamard measurement outcome must
be bounded below.

Proposition 4. Let ε ≥ 0. Then

Hε
min(X ∧ F comp = 1|V WSΘB′)σ + Hε

max(Z ∧ F comp = 1|Y )σ ≥ s. (59)

Proof. We apply Proposition 2 to the state τABV WSΘ|F comp=1. To do this, we
equate C = V WSΘB′ and E = SΘB. Using the measurement maps MA→X|SΘ

and MA→Z|SΘ as the POVMS and using {〈θ|θ〉} as the projective measurement,
applying Proposition 2 yields

Hε
min(X ∧ F comp = 1|V WSΘB′)σ + Hε

max(Z ∧ F comp = 1|SΘB)τ ≥ s. (60)
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We then apply the measurement map MB→Y |SΘ and discard SΘ. Finally,
by Proposition 1, we note that

Hε
max(Z ∧ F comp = 1 | SΘB)τ ≤ Hε

max(Z ∧ F comp = 1 | Y )σ̂, (61)

which concludes the proof. ��
In the spirit of [29], we provide an upper bound for the max-entropy quantity,

thus establishing a lower bound for the min-entropy quantity.

Proposition 5. Letting ν ∈ (0, 1), we define

ε(ν) := exp
( −sk2ν2

m(k + 1)

)
. (62)

Then, for any ν ∈ (0, 1
2 −δ] such that ε(ν)2 < Pr[F comp = 1]σ = Pr[F comp = 1]σ̂,

Hε(ν)
max(Z ∧ F comp = 1 | Y )σ̂ ≤ s · h(δ + ν) (63)

where
h(x) := −x log x − (1 − x) log(1 − x). (64)

Proof. Define the event

Ω :=

{
1 if ω(Z ⊕ Y ) ≥ s(δ + ν)
0 else.

(65)

Using Lemma 1, we get that

Pr [F comp = 1 ∧ Ω]σ̂ = Pr [ω(V ⊕ W ) ≤ kδ ∧ ω(Z ⊕ Y ) ≥ s(δ + ν)]σ (66)

≤ ε(ν)2. (67)

Given the state σ̂ZY F comp=1, we use Lemma 2 to get the state σ̃ZY F comp with
Pr[Ω]σ̃ = 0 and

P (σ̂ZY F comp=1, σ̃ZY F comp) ≤ ε(ν). (68)

Since Pr[F comp = 1]σ̃ = 1, we get that

Hε(ν)
max(Z ∧F comp = 1 | Y )σ̂ ≤ Hmax(Z ∧F comp = 1 | Y )σ̃ = Hmax(Z | Y )σ̃. (69)

Expanding this conditional max-entropy [27, Sect. 4.3.2], we obtain

Hmax(Z | Y )σ̃ = log

⎛

⎝
∑

y∈{0,1}s

Pr[Y = y]σ̃2Hmax(Z|Y )σ̃

⎞

⎠ (70)

≤ max
y∈{0,1}s

Pr[Y =y]σ̃>0

Hmax(Z | Y = y)σ̃ (71)

≤ max
y∈{0,1}s

Pr[Y =y]σ̃>0

log |{z ∈ {0, 1}s : Pr[Z = z | Y = y]σ̃ > 0}| (72)

= max
y∈{0,1}s

log |{z ∈ {0, 1}s : Pr[Z = z ∧ Y = y]σ̃ > 0}| . (73)
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Since Pr[Ω]σ̃ = 0, we have

|{z ∈ {0, 1}s : Pr[Z = z ∧ Y = y]σ̃ > 0}|
≤ |{z ∈ {0, 1}s : ω(z ⊕ y) < s(δ + ν)}| (74)

=
�s(δ+ν)�∑

γ=0

(
s

γ

)
. (75)

When δ + ν ≤ 1/2 (see [16, Sect. 1.4]), we have that
∑�s(δ=ν)�

γ=0

(
s
γ

) ≤ 2s·h(δ+ν).
��

At this point, we use Proposition 3, the Leftover Hashing Lemma, to turn
the min-entropy bound into a statement about how close to uniformly ran-
dom the string X̃ = Hpa(X) is from Bob’s perspective. We name this final
state ζX̃SF compE∧F comp=1 = TrX [Ef (σXSΘSHecF comp ⊗ ρSHpa )] for the function
f : (X,Hpa) �→ Hpa(X). We compare this to the state χX̃ ⊗ ζSF compE∧F comp=1

where χX̃ is the fully mixed state on X̃.

Proposition 6. Let ε(ν) be as defined in (62). Then for any ν ∈ (0, 1
2 − δ] such

that ε(ν)2 < Pr[F comp = 1]σ, we have

‖ζX̃SF compE∧F comp=1 − χX̃ ⊗ ζSF compE∧F comp=1‖Tr ≤ 1
2
2− 1

2 g(ν) + 2ε(ν), (76)

where g(ν) := s(1 − h(δ + ν)) − n.

Proof. By Proposition 5, we see that

Hε(ν)
max(Z ∧ F comp = 1 | Y )σ ≤ s · h(δ + ν). (77)

Together, with Proposition 4, and taking q = 1 − h(δ + ν), we get:

Hε
min(X ∧ F comp = 1|V WSΘB′)σ ≥ sq. (78)

Finally, applying Proposition 3, we obtain the desired inequality. ��
For the case where ε(ν)2 ≥ Pr[F comp = 1]σ, we note that the trace dis-

tance ‖ζX̃SF compE∧F comp=1 − χX̃ ⊗ ζSF compE∧F comp=1‖Tr is upper bounded by
Pr[F comp = 1]ζ . Hence, considering the inequality Pr[F comp = 1]ζ ≤ ε(ν)2 ≤ ε(ν)
results in the proof of the following corollary.

Corollary 1. For any ν ∈ (0, 1
2 − δ], the following holds:

‖ζX̃SF compE∧F comp=1 − χX̃ ⊗ ζSF compE∧F comp=1‖Tr (79)

≤ 1
2

√
2−s(1−h(δ+ν))+n + 2ε(ν). (80)

Finally, we would like to translate this into a statement about |p0 − p1|
in Game 2.
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Corollary 2. The difference of probabilities

|Pr[b′ = 1 ∧ ok = 1 | Game 2(0)] − Pr[b′ = 1 ∧ ok = 1 | Game 2(1)]| (81)

is negligible.

Proof. Let ζb
X̃SF compE∧F comp=1

be the state of ζX̃SF compE∧F comp=1 in the case
that b ∈ {0, 1} was selected at the beginning of Game 2. Note that the following
trace distance is bounded above by a negligible function:

‖ζ0
X̃SF compE∧F comp=1 − ζ1

X̃SF compE∧F comp=1
‖Tr (82)

≤ ‖ζ0
X̃SF compE∧F comp=1

− χX̃ ⊗ ζSF compE∧F comp=1‖Tr

+‖ζ1
X̃SF compE∧F comp=1

− χX̃ ⊗ ζSF compE∧F comp=1‖Tr

(83)

≤ 2
(

1
2

√
2−s(1−h(δ+ν))+n + 2ε(ν)

)
. (84)

Next, note the following equality:

Pr[b′ = 1 ∧ ok = 1 | Game 2(b)] (85)

=
∑

ζ

Tr[ζX̃SF compE∧F comp=1] Pr[b′ = 1 | Game 2(b)] (86)

Hence,

|Pr[b′ = 1 ∧ ok = 1 | Game 2(0)] − Pr[b′ = 1 ∧ ok = 1 | Game 2(1)]| (87)

≤
∑

ζ

Tr[ζX̃SF compE∧F comp=1]‖ζ0
X̃SF compE∧F comp=1

− ζ1
X̃SF compE∧F comp=1

‖Tr

(88)

≤
∑

ζ

2Tr[ζX̃SF compE∧F comp=1]
(

1
2

√
2−s(1−h(δ+ν))+n + 2ε(ν)

)
(89)

= 2
(

1
2

√
2−s(1−h(δ+ν))+n + 2ε(ν)

)
. (90)

The conclusion follows from convexity and the physical interpretation of the trace
distance (see Sect. 2). In particular, the difference in probabilities of obtaining
the measurement outcome b′ = 1 given states ζ0 and ζ1 is bounded above by
the aforementioned trace distance. ��

5.4 Security Reduction

We now show that the security of Game 1 can be reduced to that of Game 2. In
order to do so, we construct a sequence of games starting at Game 1 and ending
at Game 2, and show that each transformation can only increase the advantage
in distinguishing the case b = 0 from b = 1. For a game G, let Adv(G) = |p0 −p1|
be the advantage, as defined in Eq. (34).
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Proposition 7. Adv(Game 1) ≤ Adv(Game 2) .

Proof. We show a sequence of games, transforming Game 1 to Game 2, such
that each successive transformation either has no effect on, or can potentially
increase the advantage.

Let G be a game like Game 1 except that in G, we run

A1(Γ(rθ)T ⊗ Γ(α1, α2, α3)T ⊗ ρS) , (91)

where α1, α2, α3 are uniformly random bit strings of the appropriate length.
Verification is performed as usual, and if ok = 1, we run

A2(Γ(r|Ī , θ,msg⊕x⊕α1,Hec(r|I)⊕α2, synd(r|I)⊕α3,Hpa,Hec)K′ ⊗ρ′
S ⊗ρT ′).

(92)
By a change of variable, Adv(Game 1) = Adv(G).
Next, we obtain G′ from G by defining a new adversary A′

1 which is like A′
1,

but only receives part of register T . Thus we run

A′
1(Γ(rθ)T ⊗ ρS) , (93)

and to compensate, we directly give A′
2 the information that was previously

hidden by the α values:

A′
2(Γ(r|Ī , θ,msg ⊕ x,Hec(r|I), synd(r|I),Hpa,Hec)K′ ⊗ ρ′

S ⊗ ρT ′) (94)

Then Adv(G) ≤ Adv(G′), since an adversary A′ for G′ can simulate any adver-
sary A in G, and win with the same advantage. To do this, A′ simply creates
its own randomness for α1, α2 and α3, and adjusts the input to A2 based on its
own knowledge of msg ⊕ x,Hec(r|I) and synd(r|I).

Let G′′ be a game like G′ except that, in G′′, instead of A′
1 being given Γ(rθ),

m EPR pairs are prepared, yielding quantum systems A and B, of which the
adversary A′

1 is given B. System A is measured in basis θ yielding a string r,
and A′

1 then computes

Γ(y)D ⊗ ρ′
S ⊗ ρT ′ ← A′

1(ρB ⊗ ρS). (95)

We show that, due to the measurement of system A, adversary A′
1 receives Γ(rθ),

where r is uniformly random. The post-measurement state, conditioned on the
measurement of system A yielding outcome r, will be equivalent to

|ψr〉 =
(
Hθ Γ(r)Hθ ⊗1m

)
|EPRm〉 (96)

=
(
Hθ ⊗1m

)
(Γ(r) ⊗ 1m)

(
1m ⊗ Hθ

)
|EPRm〉 (97)

=
∑

r̃∈{0,1}m

1
2m/2

(
Hθ Γ(r)|r̃〉

) (
Hθ |r̃〉

)
(98)

=
1

2m/2

(
Hθ |r〉

) (
Hθ |r〉

)
(99)

=
1

2m/2
|rθ〉 ⊗ |rθ〉, (100)
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which occurs with probability ‖|ψr〉‖2 = 1
2m . Therefore, the advantage in G′ is

the same as the advantage in G′′.
Let G′′′ be a game like G′′ except that, in G′′′, instead of system A being

measured before running A′
1, system A is measured after running A′

1. Then
the advantage is unchanged because the measurement and A1 act on distinct
systems, and therefore commute.

We note that G′′′ is like Game 2 except that, in the latter game, Bob is
the party that prepares the state. Since allowing Bob to select the initial state
can only increase the advantage, we get that Adv(G′′′) ≤ Adv(Game 2). This
concludes the proof. ��
Theorem 3. Scheme 1 is certified deletion secure.

Proof. Through a combination of Corollary 2 and Proposition 7, we arrive at
the following inequality:

|Pr[b′ = 1 ∧ ok = 1 | Game 2(0)] − Pr[b′ = 1 ∧ ok = 1 | Game 1(1)]| (101)

≤ 2
(

1
2

√
2−s(1−h(δ+ν))+n + 2ε(ν)

)
. (102)

Since Game 1 is a certified deletion attack for Scheme 1, we see that Scheme 1
is η-certified deletion secure for

η(λ) = 2
(

1
2

√
2−(s(λ))(1−h(δ+ν))+n + 2 exp

( −(s(λ))(k(λ))2ν2

(m(λ))((k(λ)) + 1)

))
, (103)

which is negligible for large enough functions s, k. ��
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1. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of
quantum messages. In: FOCS 2002, pp. 449–485 (2002). https://doi.org/10.1109/
SFCS.2002.1181969

2. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing, pp. 175–179 (1984)

3. Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In: TQC
2020, pp. 4:1–4:22 (2020). https://doi.org/10.4230/LIPIcs.TQC.2020.4

4. Broadbent, A., Schaffner, C.: Quantum cryptography beyond quantum key distri-
bution. Des. Codes Crypt. 78(1), 351–382 (2015). https://doi.org/10.1007/s10623-
015-0157-4

https://doi.org/10.1109/SFCS.2002.1181969
https://doi.org/10.1109/SFCS.2002.1181969
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.1007/s10623-015-0157-4


Quantum Encryption with Certified Deletion 121

5. Canetti, R., Trachtenberg, A., Varia, M.: Anonymous collocation discovery: har-
nessing privacy to tame the coronavirus (2020). https://arxiv.org/abs/2003.13670

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comp. Syst.
Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/0022-0000(79)90044-8

7. Coiteux-Roy, X., Wolf, S.: Proving erasure. In: IEEE International Symposium on
Information Theory, ISIT 2019 (2019). https://doi.org/10.1109/ISIT.2019.8849661

8. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982).
https://doi.org/10.1016/0375-9601(82)90084-6

9. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: CRYPTO 2012, pp. 794–811 (2012). https://doi.org/10.
1007/978-3-642-32009-5 46

10. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev. Lett. 47(10), 777–780 (1935).
https://doi.org/10.1103/physrev.47.777

11. Fu, H., Miller, C.A.: Local randomness: examples and application. Phys. Rev. A
97(3), 032324 (2018). https://doi.org/10.1103/PhysRevA.97.032324

12. Garg, S., Goldwasser, S., Vasudevan, P.N.: Formalizing data deletion in the context
of the right to be forgotten. CRYPTO 2020 (2020)

13. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: CRYPTO 2017, vol. 2, pp. 342–371 (2017).
https://doi.org/10.1007/978-3-319-63715-0 12

14. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 690–728
(1991). https://doi.org/10.1145/116825.116852

15. König, R., Renner, R., Schaffner, C.: The operational meaning of min-and max-
entropy. IEEE Trans. Inform. Theo. 55(9), 4337–4347 (2009). https://doi.org/10.
1109/TIT.2009.2025545

16. van Lint, J.H., van der Geer, G.: Introduction to Coding Theory and Algebraic
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Abstract. Knowledge extraction, typically studied in the classical set-
ting, is at the heart of several cryptographic protocols. The prospect of
quantum computers forces us to revisit the concept of knowledge extrac-
tion in the presence of quantum adversaries.

We introduce the notion of secure quantum extraction protocols. A
secure quantum extraction protocol for an NP relation R is a classical
interactive protocol between a sender and a receiver, where the sender
gets as input the instance y and witness w while the receiver only gets
the instance y as input. There are two properties associated with a secure
quantum extraction protocol: (a) Extractability: for any efficient quantum
polynomial-time (QPT) adversarial sender, there exists a QPT extrac-
tor that can extract a witness w′ such that (y,w′) ∈ R and, (b) Zero-
Knowledge: a malicious receiver, interacting with the sender, should not
be able to learn any information about w.

We study and construct two flavors of secure quantum extraction pro-
tocols.

– Security against QPT malicious receivers: First we consider
the setting when the malicious receiver is a QPT adversary. In this
setting, we construct a secure quantum extraction protocol for NP
assuming the existence of quantum fully homomorphic encryption
satisfying some mild properties (already satisfied by existing con-
structions [Mahadev, FOCS’18, Brakerski CRYPTO’18]) and quan-
tum hardness of learning with errors. The novelty of our construction
is a new non-black-box technique in the quantum setting. All previ-
ous extraction techniques in the quantum setting were solely based
on quantum rewinding.

– Security against classical PPT malicious receivers: We also
consider the setting when the malicious receiver is a classical prob-
abilistic polynomial time (PPT) adversary. In this setting, we con-
struct a secure quantum extraction protocol for NP solely based
on the quantum hardness of learning with errors. Furthermore, our
construction satisfies quantum-lasting security: a malicious receiver
cannot later, long after the protocol has been executed, use a quan-
tum computer to extract a valid witness from the transcript of the
protocol.

Both the above extraction protocols are constant round protocols.
We present an application of secure quantum extraction protocols

to zero-knowledge (ZK). Assuming quantum hardness of learning with

c© International Association for Cryptologic Research 2020
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errors, we present the first construction of ZK argument systems for
NP in constant rounds based on the quantum hardness of learning with
errors with: (a) zero-knowledge against QPT malicious verifiers and, (b)
soundness against classical PPT adversaries. Moreover, our construction
satisfies the stronger (quantum) auxiliary-input zero knowledge property
and thus can be composed with other protocols secure against quantum
adversaries.

1 Introduction

Knowledge extraction is a quintessential concept employed to argue the security
of classical zero-knowledge systems and secure two-party and multi-party com-
putation protocols. The seminal work of Feige, Lapidot and Shamir [19] shows
how to leverage knowledge extraction to construct zero-knowledge protocols. The
ideal world-real world paradigm necessarily requires the simulator to be able to
extract the inputs of the adversaries to argue the security of secure computation
protocols.

Typically, knowledge extraction is formalized by defining a knowledge extrac-
tor that given access to the adversarial machine, outputs the input of the adver-
sary. The prototypical extraction technique employed in several cryptographic
protocols is rewinding. In the rewinding technique, the extractor, with oracle
access to the adversary, rewinds the adversary to a previous state to obtain more
than one protocol transcript which in turn gives the ability to the extractor to
extract from the adversary. While rewinding has proven to be quite powerful, it
has several limitations [22]. Over the years, cryptographers have proposed novel
extraction techniques to circumvent the barriers of rewinding. Each time a new
extraction technique was invented, it has advanced the field of zero-knowledge
and secure computation. As an example, the breakthrough work of Barak [7] pro-
posed a non-black-box extraction technique – where the extractor crucially uses
the code of the verifier for extraction – and used this to obtain the first feasibility
result on constant-round public-coin zero-knowledge argument system for NP.
Another example is the work of Pass [35] who introduced the technique of super-
polynomial time extraction and presented the first feasibility result on 2-round
concurrent ZK argument system albeit under a weaker simulation definition.

Extracting from Quantum Adversaries. The prospect of quantum computers
introduces new challenges in the design of zero-knowledge and secure computa-
tion protocols. As a starting step towards designing these protocols, we need to
address the challenge of knowledge extraction against quantum adversaries. So
far, the only technique used to extract from quantum adversaries is quantum
rewinding [42], which has already been studied by a few works [3,27,38,40,42]
in the context of quantum zero-knowledge protocols.

Rewinding a quantum adversary, unlike its classical counterpart, turns out
to be tricky due to two reasons, as stated in Watrous [42]: firstly, intermediate
quantum states of the adversary cannot be copied (due to the universal no-
cloning theorem) and secondly, if the adversary performs some measurements
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then this adversary cannot be rewound since measurements in general are irre-
versible processes. As a result, the existing quantum rewinding techniques tend
to be “oblivious” [38], to rewind the adversary back to an earlier point, the
extraction should necessarily forget all the information it has learnt from that
point onwards. As a result of these subtle issues, the analysis of quantum rewind-
ing turns out to be quite involved making it difficult to use it in the security
proofs. Moreover, existing quantum rewinding techniques [38,42] pose a bottle-
neck towards achieving a constant round extraction technique; we will touch
upon this later.

In order to advance the progress of constructing quantum-secure (or post-
quantum) cryptographic protocols, it is necessary that we look beyond quantum
rewinding and explore new quantum extraction techniques.

1.1 Results

We introduce and study new techniques that enable us to extract from quantum
adversaries.

Our Notion: Secure Quantum Extraction Protocols. We formalize this by first
introducing the notion of secure quantum extraction protocols. This is a classical
interactive protocol between a sender and a receiver and is associated with a NP
relation. The sender has an NP instance and a witness while the receiver only
gets the NP instance. In terms of properties, we require the following to hold:

– Extractability: An extractor, implemented as a quantum polynomial time algo-
rithm, can extract a valid witness from an adversarial sender. We model the
adversarial sender as a quantum polynomial time algorithm that follows the
protocol but is allowed to choose its randomness; in the classical setting, this
is termed as semi-malicious and we call this semi-malicious quantum adver-
saries1.

We also require indistinguishability of extraction: that is, the adversarial
sender cannot distinguish whether it’s interacting with the honest receiver or
an extractor. In applications, this property is used to argue that the adver-
sary cannot distinguish whether it’s interacting with the honest party or the
simulator.

– Zero-Knowledge: A malicious receiver should not be able to extract a valid
witness after interacting with the sender. The malicious receiver can either
be a classical probabilistic polynomial time algorithm or a quantum poly-
nomial time algorithm. Correspondingly, there are two notions of quantum
extraction protocols we study: quantum extraction protocols secure against
quantum adversarial receivers (qQEXT) and quantum extraction protocols
secure against classical adversarial receivers (cQEXT).

1 In the literature, this type of semi-malicious adversaries are also referred to as
explainable adveraries.
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There are two reasons why we only study extraction against semi-malicious
adversaries, instead of malicious adversaries (who can arbitrarily deviate from
the protocol): first, even extracting from semi-malicious adversaries turns out to
be challenging and we view this as a first step towards extraction from malicious
adversaries and second, in the classical setting, there are works that show how
to leverage extraction from semi-malicious adversaries to achieve zero-knowledge
protocols [9,11] or secure two-party computation protocols [4].

Quantum extraction protocols are interesting even if we only consider clas-
sical adversaries, as they present a new method for proving zero-knowledge. For
instance, to demonstrate zero-knowledge, we need to demonstrate a simulator
that has a computational capability that a malicious prover doesn’t have. Allow-
ing quantum simulators in the classical setting [28] is another way to achieve this
asymmetry between the power of the simulator and the adversary besides the
few mentioned before (rewinding, superpolynomial, or non-black-box). Further-
more, quantum simulators capture the notion of knowledge that could be learnt
if a malicious verifier had access to a quantum computer.

Quantum-Lasting Security. A potential concern regarding the security of cQEXT
protocols is that the classical malicious receiver participating in the cQEXT
protocol could later, long after the protocol has been executed, use a quantum
computer to learn the witness of the sender from the transcript of the protocol
and its own private state. For instance, the transcript could contain an ElGamal
encryption of the witness of the sender; while a malicious classical receiver cannot
break it, after the protocol is completed, it could later use a quantum computer
to learn the witness. This is especially interesting in the event (full-fledged)
quantum computers might become available in the future. First introduced by
Unruh [39], we study the concept of quantum-lasting security; any quantum
polynomial time (QPT) adversary given the transcript and the private state of
the malicious receiver, should not be able to learn the witness of the sender. Our
construction will satisfy this security notion and thus our protocol is resilient
against the possibility of quantum computers being accessible in the future.

Result #1: Constant Round qQEXT protocols. We show the following result.

Theorem 1 (Informal). Assuming quantum hardness of learning with errors
and a quantum fully homomorphic encryption scheme (for arbitrary poly-time
computations)2, satisfying, (1) perfect correctness for classical messages and, (2)
ciphertexts of poly-sized classical messages have a poly-sized classical description,
there exists a constant round quantum extraction protocol secure against quantum
poly-time receivers.

We clarify what we mean by perfect correctness. For every public key, every
valid fresh ciphertext of a classical message can always be decrypted correctly.
Moreover, we require that for every valid fresh ciphertext, of a classical message,
the evaluated ciphertext can be decrypted correctly with probability negligibly
2 As against leveled quantum FHE, which can be based on quantum hardness of LWE.
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close to 1. We note that the works of [14,31] give candidates for quantum fully
homomorphic encryption schemes satisfying both the above properties.

En route to proving the above theorem, we introduce a new non black extrac-
tion technique in the quantum setting building upon a classical non-black extrac-
tion technique of [11]. We view identifying the appropriate classical non-black-
box technique to also be a contribution of our work. A priori it should not be
clear whether classical non-black-box techniques are useful in constructing their
quantum analogues. For instance, it is unclear how to utilize the well known
non-black-box technique of Barak [7]; at a high level, the idea of Barak [7] is
to commit to the code of the verifier and then prove using a succinct argument
system that either the instance is in the language or it has the code of the veri-
fier. In our setting, the verifier is a quantum circuit which means that we would
require succinct arguments for quantum computations which we currently don’t
know how to achieve.

Non-black-box extraction overcomes the disadvantage quantum rewinding
poses in achieving constant round extraction; the quantum rewinding employed
by [42] requires polynomially many rounds (due to sequential repetition) or
constant rounds with non-negligible gap between extraction and verification
error [38].

This technique was concurrently developed by Bitansky and Shmueli [12]
(see “Comparison with [12]” paragraph) and they critically relied upon this to
construct a constant-round zero-knowledge argument system for NP and QMA,
thus resolving a long-standing open problem in the round complexity of quan-
tum zero-knowledge.

Subsequent Work. Many followup works have used the non-black-box extraction
technique we introduce in this work to resolve other open problems in quantum
cryptography. For instance, our technique was adopted to prove that quantum
copy-protection is impossible [6]; resolving a problem that was open for more
than a decade. It was also used to prove that quantum VBB for classical circuits
is impossible [2,6]. In yet another exciting follow up work, this technique was
developed further to achieve the first constant round post-quantum secure MPC
protocol [1].

Result #2: Constant Round cQEXT protocols. We also present a construction of
quantum extraction protocols secure against classical adversaries (cQEXT). This
result is incomparable to the above result; on one hand, it is a weaker setting
but on the other hand, the security of this construction can solely be based on
the hardness of learning with errors.

Theorem 2 (Informal). Assuming quantum hardness of learning with errors,
there exists a constant round quantum extraction protocol secure against classical
PPT adversaries and satisfying quantum-lasting security.

Our main insight is to turn the “test of quantumness” protocol introduced in [15]
into a quantum extraction protocol using cryptographic tools. In fact, our tech-
niques are general enough that they might be useful to turn any protocol that
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can verify a quantum computer versus a classical computer into a quantum
extraction protocol secure against classical adversaries; the transformation addi-
tionally assumes quantum hardness of learning with errors. Our work presents
a new avenue for using “test of quantumness” protocols beyond using them just
to test whether the server is quantum or not.

We note that it is conceivable to construct “test of quantumness” proto-
cols from DDH (or any other quantum-insecure assumption). The security of
the resulting extraction protocol would then be based on DDH and quantum
hardness of learning with errors – the latter needed to argue quantum-lasting
security. However, the security of our protocol is solely based on the quantum
hardness of learning with errors.

Result #3: Constant Round QZK for NP with Classical Soundness. As an appl-
ication, we show how to construct constant quantum zero-knowledge argument
systems secure against quantum verifiers based on quantum hardness of learning
with errors; however, the soundness is still against classical PPT adversaries.

Moreover, our protocol satisfies zero-knowledge against quantum verifiers
with arbitrary quantum auxiliary state. Such protocols are also called auxiliary-
input zero-knowledge protocols [24] and are necessary for composition. Specifi-
cally, our ZK protocol can be composed with other protocols to yield new pro-
tocols satisfying quantum security.

Theorem 3 (Constant Round Quantum ZK with Classical Soundness;
Informal). Assuming quantum hardness of learning with errors, there exists a
constant round black box quantum zero-knowledge system with negligible sound-
ness against classical PPT algorithms. Moreover, our protocol satisfies (quan-
tum) auxiliary-input zero-knowledge property.

A desirable property from a QZK protocol is if the verifier is classical then
the simulator is also classical. While our protocol doesn’t immediately satisfy
this property, we show, nonetheless, that there is a simple transformation that
converts into another QZK protocol that has this desirable property.

Application: Authorization with Quantum Cloud. Suppose Eva wants to con-
vince the cloud services offered by some company that she has the authorization
to access a document residing in the cloud. Since the authorization informa-
tion could leak sensitive information about Eva, she would rather use a zero-
knowlede protocol to prove to the cloud that she has the appropriate authoriza-
tion. While we currently don’t have scalable implementations of quantum com-
puters, this could change in the future when organizations (e.g. governments,
IBM, Microsoft, etc.) could be the first ones to develop a quantum computer.
They could in principle then use this to break the zero-knowledge property of
Eva’s protocol and learn sensitive information about her. In this case, it suffices
to use a QZK protocol but only requiring soundness against malicious classical
users; in the nearby future, it is reasonable to assume that even if organizations
with enough resources get to develop full-fledged quantum computers, it’ll take
a while before everyday users will have access to one.
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1.2 Related Work

Quantum Rewinding. Watrous [42] introduced the quantum analogue of the
rewinding technique. Later, Unruh [38] introduced yet another notion of quan-
tum rewinding with the purpose of constructing quantum zero-knowledge proofs
of knowledge. Unruh’s rewinding does have extractability, but it requires that
the underlying protocol to satisfy strict soundness. Furthermore, the probability
that the extractor succeeds is not negligibly close to 1. The work of [3] shows
that relative to an oracle, many classical zero-knowledge protocols are quantum
insecure, and that the strict soundness condition from [38] is necessary in order
for a sigma protocol to be a quantum proofs of knowledge.

Quantum and Classical Zero-Knowledge. Zero-knowledge against quantum
adversaries was first studied by Watrous [42]. He showed how the GMW
protocol [23] for graph 3-colorability is still zero-knowledge against quantum
verifiers. Other works [18,26,27,29,33,38] have extended the study of classi-
cal protocols that are quantum zero-knowledge, and more recently, Broadbent
et al. [17] extended the notion of zero-knowledge to QMA languages. By using
ideas from [32] to classically verify quantum computation, the protocol in [17]
was adapted to obtained classical argument systems for quantum computation
in [41]. All known protocols, with non-negligible soundness error, take non-
constant rounds.

On the other hand, zero knowledge proof and argument systems have been
extensively studied in classical cryptography. In particular, a series of recent
works [8–11] resolved the round complexity of zero knowledge argument systems.

Comparison with [12]. In a recent exciting work, [12] construct a constant round
QZK with soundness against quantum adversaries for NP and QMA.

– The non-black-box techniques used in their work was concurrently developed
and are similar to the techniques used in our QEXT protocol secure against
quantum receivers3.

– Subsequent to their posting, using completely different techniques, we devel-
oped QEXT secure against classical receivers and used it to build a constant
round QZK system with classical soundness. There are a few crucial differ-
ences between our QZK argument system and theirs:
1. Our result is based on quantum hardness of learning with errors while

their result is based on the existence of quantum fully homomorphic
encryption for arbitrary polynomial computations and quantum hardness
of learning with errors.

2. The soundness of their argument system is against quantum polynomial
time algorithms while ours is only against classical PPT adversaries.

3 A copy of our QEXT protocol secure against quantum receivers was privately com-
municated to the authors of [12] on the day of their public posting and our paper
was posted online in about two weeks from then [5].
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1.3 Quantum Extraction with Security Against Classical Receivers:
Overview

We start with the overview of quantum extraction protocols with security against
classical receivers.

Starting Point: Noisy Trapdoor Claw-Free Functions. Our main idea is to turn
the “test of quantumness” from [15] into an extraction protocol. Our starting
point is a noisy trapdoor claw-free function (NTCF) family [15,31,32], param-
eterized by key space K, input domain X and output domain Y. Using a key
k ∈ K, NTCFs allows for computing the functions, denoted by fk,0(x) ∈ Y and
fk,1(x) ∈ Y 4, where x ∈ X . Using a trapdoor td associated with a key k, any
y in the support of fk,b(x), can be efficiently inverted to obtain x. Moreover,
there are “claw” pairs (x0, x1) such that fk,0(x0) = fk,1(x1). Roughly speaking,
the security property states that it is computationally hard even for a quantum
computer to simultaneously produce y ∈ Y, values (b, xb) and (d, u) such that
fk,b(xb) = y and 〈d, J(x0)⊕J(x1)〉 = u, where J(·) is an efficienctly computable
injective function mapping X into bit strings. What makes this primitive inter-
esting is its quantum capability that we will discuss when we recall below the
test of [15].

Test of Quantumness [15]. Using NTCFs, [15] devised the following test5:

– The classical client, who wants to test whether the server it’s interacting
with is quantum or classical, first generates a key k along with a trapdoor td
associated with a noisy trapdoor claw-free function (NTCF) family. It sends
k to the server.

– The server responds back with y ∈ Y.
– The classical client then sends a challenge bit a to the server.
– If a = 0, the server sends a pre-image xb along with bit b such that

fk,b(xb) = y. If a = 1, the server sends a vector d along with a bit u sat-
isfying the condition 〈d, J(x0) ⊕ J(x1)〉 = u, where x0, x1 are such that
fk,0(x0) = fk,1(x1) = y.

The client can check if the message sent by the server is either a valid pre-image
or a valid d that is correlated with respect to both the pre-images.

Intuitively, since the (classical) server does not know, at the point when it
sends y, whether it will be queried for (b, xb) or (d, u), by the security of NTCFs,
it can only answer one of the queries. While the quantum capability of NTCFs
allows for a quantum server to maintain a superposition of a claw at the time it
sent y and depending on the query made by the verifier it can then perform the
appropriate quantum operations to answer the client; thus it will always pass
the test.
4 The efficient implementation of f only approximately computes f and we denote

this by f ′. We ignore this detail for now.
5 As written, this test doesn’t have negligible soundness but we can achieve negligible

soundness by parallel repetition.
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From Test of Quantumness to Extraction. A natural attempt to achieve extrac-
tion is the following: the sender takes the role of the client and the receiver takes
the role of the server and if the test passes, the sender sends the witness to the
receiver. We sketch this attempt below.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run a “test of quantumness” protocol where the receiver (taking the role
of the server) needs to convince the sender (taking the role of the classical
client) that it is a quantum computer.

– If the receiver succeeds in the “test of quantumness” protocol then the sender
w, else it aborts.

Note that a quantum extractor can indeed succeed in the test of quantumness
protocol and hence, it would receive w while a malicious classical adversary will
not.

However, the above solution is not good enough for us. It does not satisfy
indistinguishability of extraction: the sender can detect whether it’s interacting
with a quantum extractor or an honest receiver.

Achieving Indistinguishability of Extraction. To ensure indistinguishability of
extraction, we rely upon a tool called secure function evaluation [9,21] that
satisfies quantum security. A secure function evaluation (SFE) allows for two
parties P1 and P2 to securely compute a function on their inputs in a such a
way that only one of the parties, say P2, receives the output of the function.
In terms of security, we require that: (i) P2 doesn’t get information about P1’s
input beyond the output of the function and, (ii) P1 doesn’t get any information
about P2’s input (in fact, even the output of the protocol is hidden from P1).

The hope is that by combining SFE and test of quantumness protocol, we
can guarantee that a quantum extractor can still recover the witness by passing
the test of quantumness as before but the sender doesn’t even know whether
the receiver passed or not. To implement this, we assume a structural property
from the underlying test of quantumness protocol: until the final message of
the protocol, the client cannot distinguish whether it’s talking to a quantum
server or a classical server. This structural property is satisfied by the test of
quantumness protocol [15] sketched above.

Using this structural property and SFE, here is another attempt to construct
a quantum extraction protocol: let the test of quantumness protocol be a k-round
protocol.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run the first (k − 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking
the role of the receiver) that it can perform quantum computations.
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– Sender and receiver then run a SFE protocol for the following functionality
G: it takes as input w and the first (k − 1) rounds of the test of quantum-
ness protocol from the sender, the kth round message from the receiver6 and
outputs w if indeed the test passed, otherwise output ⊥. Sender will take the
role of P1 and the receiver will take the role of P2 and thus, only the receiver
will receive the output of G.

Note that the security of SFE guarantees that the output of the protocol is
hidden from the sender and moreover, the first (k − 1) messages of the test of
quantumness protocol doesn’t reveal the information about whether the receiver
is a quantum computer or not. These two properties ensure the sender doesn’t
know whether the receiver passed the test or not. Furthermore, the quantum
extractor still succeeds in extracting the witness w since it passes the test.

The only remaining property to prove is zero-knowledge.

Challenges in Proving Zero-Knowledge. How do we ensure that a malicious
classical receiver was not able to extract the witness? The hope would be to
invoke the soundness of the test of quantumness protocol to argue this. However,
to do this, we need all the k messages of the test of quantumness protocol.

To understand this better, let us recall how the soundness of the test of
quantumness works: the client sends a challenge bit a = 0 to the server who
responds back with (b, xb), then the client rewinds the server and instead sends
the challenge bit a = 1 and it receives (d, u): this contradicts the security of
NTCFs since a classical PPT adversary cannot simultaneously produce both a
valid pre-image (b, xb) and a valid correlation vector along with the prediction
bit (d, u).

Since the last message is fed into the secure function evaluation protocol and
inaccessible to the simulator, we cannot use this rewinding strategy to prove the
zero-knowledge of the extraction protocol.

Final Template: Zero-Knowledge via Extractable Commitments [36,37]. To over-
come this barrier, we force the receiver to commit, using an extractable com-
mitment scheme, to the kth round of the test of quantumness protocol before
the SFE protocol begins. An extractable commitment scheme is one where there
is an extractor who can extract an input x being committed from the party
committing to x. Armed with this tool, we give an overview of our construction
below.

– Sender on input instance-witness pair (y,w) and receiver on input instance
y run the first (k − 1) rounds of the test of quantumness protocol where the
receiver (taking the role of the server) needs to convince the sender (taking
the role of the receiver) that it can perform quantum computations.

6 It follows without loss of generality that the server (and thus, the receiver of the
quantum extraction protocol) computes the final message of the test of quantumness
protocol.
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– The kth round of the test of quantumness protocol is then committed by the
receiver, call it c, using the extractable commitment scheme7.

– Finally, the sender and the receiver then run a SFE protocol for the following
functionality G: it takes as input w and the first (k − 1) rounds of the test
of quantumness protocol from the sender, the decommitment of c from the
receiver and outputs w if indeed the test passed, otherwise output ⊥. Sender
will take the role of P1 and the receiver will take the role of P2 and thus, only
the receiver will receive the output of G.

Let us remark about zero-knowledge since we have already touched upon the
other properties earlier. To argue zero-knowledge, construct a simulator that
interacts honestly with the malicious receiver until the point the extraction pro-
tocol is run. Then, the simulator runs the extractor of the commitment scheme to
extract the final message of the test of quantumness protocol. It then rewinds the
test of quantumness protocol to the point where the simulator sends a different
challenge bit (see the informal description of [15] given before) and then runs
the extractor of the commitment scheme once again to extract the kth round
message of the test of quantumness protocol. Recall that having final round
messages corresponding to two different challenge bits is sufficient to break the
security of NTCFs; the zero-knowledge property then follows.

A couple of remarks about our simulator. Firstly, the reason why our simu-
lator is able to rewind the adversary is because the adversary is a classical PPT
algorithm. Secondly, our simulator performs double rewinding – not only does
the extractor of the commitment scheme perform rewinding but also the test of
quantumness protocol is rewound.

1.4 Constant Round QZK Argument Systems with Classical
Soundness

We show how to use the above quantum extraction protocol secure against clas-
sical receivers (cQEXT) to construct an interactive argument system satisfying
classical soundness and quantum ZK.

From Quantum Extraction to Quantum Zero-Knowledge. As a starting point, we
consider the quantum analogue of the seminal FLS technique [19] to transform
a quantum extraction protocol into a quantum ZK protocol. A first attempt to
construct quantum ZK is as follows: let the input to the prover be instance y
and witness w while the input to the verifier is y.

– The verifier commits to some trapdoor td. Call the commitment c and the
corresponding decommitment d.

– The prover and verifier then execute a quantum extraction protocol with the
verifier playing the role of the sender, on input (c,d), while the prover plays
the role of the receiver on input c.

7 In the technical sections, we use a specific construction of extractable commitment
scheme by [36,37] since we additionally require security against quantum adversaries.
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– The prover and the verifier then run a witness-indistinguishable protocol
where the prover convinces the verifier that either y belongs to the language
or it knows td.

At first sight, it might seem that the above template should already give us
the result we want; unfortunately, the above template is insufficient. The veri-
fier could behave maliciously in the quantum extraction protocol but the quan-
tum extraction protocol only guarantees security against semi-malicious senders.
Hence, we need an additional mechanism to protect against malicious receivers.
Of course, we require witness-indistinguishability to hold against quantum ver-
ifiers and we do know candidates satisfying this assuming quantum hardness of
learning with errors [13,30].

Handling Malicious Behavior in QEXT. To check that the verifier behaved hon-
estly in the quantum extraction protocol, we ask the verifier to reveal the inputs
and random coins used in the quantum extraction protocol. At this point, the
prover can check if the verifier behaved honestly or not. Of course, this would
then violate soundness: the malicious prover upon receiving the random coins
from the verifier can then recover td and then use this to falsely convince the
verifier to accept its proof. We overcome this by forcing the prover to commit
(we again use the extractable commitment scheme of [36]) to some string td′

just before the verifier reveals the inputs and random coins used in the quantum
extraction protocol. Then we force the prover to use the committed td′ in the
witness-indistinguishable protocol; the prover does not gain any advantage upon
seeing the coins of the verifier and thus, ensuring soundness.

One aspect we didn’t address so far is the aborting issue of the verifier: if the
verifier aborts in the quantum extraction protocol, the simulator still needs to
produce a transcript indistinguishable from that of the honest prover. Luckily
for us, the quantum extraction protocol we constructed before already allows for
simulatability of aborting adversaries.

To summarise, our ZK protocol consists of the following steps: (i) first, the
prover and the verifier run the quantum extraction protocol, (ii) next the prover
commits to a string td′ using [36], (iii) the verifier then reveals the random coins
used in the extraction protocol and, (iv) finally, the prover and the verifier run
a quantum WI protocol where the prover convinces the verifier that it either
knows a trapdoor td′ or that y is a YES instance.

1.5 Quantum Extraction with Security Against Quantum Receivers:
Overview

We show how to construct extraction protocols where we prove security against
quantum receivers. At first sight, it might seem that quantum extraction and
quantum zero-knowledge properties are contradictory since the extractor has the
same computational resources as the malicious receiver. However, we provide
more power to the extractor by giving the extractor non-black-box access to the
semi-malicious sender. There is a rich literature on non-black-box techniques in
the classical setting starting with the work of [7].
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Quantum Extraction via Circular Insecurity of QFHE. The main tool we employ
in our protocol is a fully homomorphic encryption qFHE scheme8 that allows for
public homomorphic evaluation of quantum circuits. Typically, we require a fully
homomorphic encryption scheme to satisfy semantic security. However, for the
current discussion, we require that qFHE to satisfy a stronger security property
called 2-circular insecurity:

Given qFHE.Enc(PK1, SK2) (i.e., encryption of SK2 under PK1),
qFHE.Enc(PK2,SK1), where (PK1,SK1) and (PK2, SK2) are indepen-
dently generated public key-secret key pairs, we can efficiently recover
SK1 and SK2.

Later, we show how to get rid of 2-circular insecurity property by using lockable
obfuscation [25,43]. Here is our first attempt to construct the extraction protocol:

– The sender, on input instance y and witness w, sends three cipher-
texts: CT1 ← qFHE.Enc(PK1, td), CT2 ← qFHE.Enc(PK1,w) and CT3 ←
qFHE.Enc(PK2,SK1).

– The receiver sends td′.
– If td′ = td then the sender sends SK2.

A quantum extractor with non-black-box access to the private (quantum) state
of the semi-malicious sender S does the following:

– It first encrypts the private (quantum) state of S under public key PK1.
– Here is our main insight: the extractor can homomorphically evaluate the

next message function of S on CT1 and the encrypted state of S. The result
is CT∗

1 = qFHE.Enc(PK1, S(td)). But note that S(td) is nothing but SK2;
note that S upon receiving td′ = td outputs SK2. Thus, we have CT∗

1 =
qFHE.Enc(PK1, SK2).

– Now, the extractor has both CT3 = qFHE.Enc(PK2,SK1) and CT∗
1 =

qFHE.Enc(PK1, SK2). It can then use the circular insecurity of qFHE to
recover SK1, SK2.

– Finally, it decrypts CT2 to obtain the witness w!

The correctness of extraction alone is not sufficient; we need to argue that the
sender cannot distinguish whether it’s interacting with the honest receiver or
the extractor. This is not true in our protocol since the extractor will always
compute the next message function of S on td′ = td whereas an honest receiver
will send td′ = td only with negligible probability.

Indistinguishability of Extraction: SFE Strikes Again. We already encountered a
similar issue when we were designing extraction protocols with security against
classical receivers and the tool we used to solve that issue was secure function
evaluation (SFE); we will use the same tool here as well.

Using SFE, we make another attempt at designing the quantum extraction
protocol.
8 Recall that a classical FHE scheme [16,20] allows for publicly evaluating an encryp-

tion of a message x using a circuit C to obtain an encryption of C(x).



136 P. Ananth and R. L. La Placa

– The sender, on input instance y and witness w, sends three ciphertexts:
CT1 ← qFHE.Enc(PK1, td), CT2 ← qFHE.Enc(PK1,w) and CT3 ← qFHE.Enc(
PK2,SK1).

– The sender and the receiver executes a secure two-party computation pro-
tocol, where the receiver feeds td′ and the sender feeds in (td,w). After the
protocol finishes, the receiver recovers w if td′ = td, else it recovers ⊥. The
sender doesn’t receive any output.

The above template guarantees indistinguishability of extraction property9.
We next focus on zero-knowledge. To do this, we need to argue that the

td′ input by the malicious receiver can never be equal to td. One might falsely
conclude that the semantic security of qFHE would imply that td is hidden from
the sender and hence the argument follows. This is not necessarily true; the
malicious receiver might be able to “maul” the ciphertext CT1 into the messages
of the secure function evaluation protocol in such a way that the implicit input
committed by the receiver is td′. We need to devise a mechanism to prevent
against such mauling attacks.

Preventing Mauling Attacks. We prevent the mauling attacks by forcing the
receiver to commit to random strings (r1, . . . , r�) in the first round, where |td| =
�, even before it receives the ciphertexts (CT1,CT2,CT3) from the sender. Once
it receives the ciphertexts, the receiver is supposed to commit to every bit of the
trapdoor using the randomness r1, . . . , r�; that is, the ith bit of td is committed
using ri.

Using this mechanism, we can then provably show that if the receiver was able
to successfully maul the qFHE ciphertext then it violates the semantic security
of qFHE using a non-uniform adversary.

Replacing Circular Insecurity with Lockable Obfuscation [25,43]. While the
above protocol is a candidate for quantum extraction protocol secure against
quantum receivers; it is still unsatisfactory since we assume a quantum FHE
scheme satisfying 2-circular insecurity. We show how to replace 2-circular inse-
cure QFHE with any QFHE scheme (satisfying some mild properties already
satisfied by existing candidates) and lockable obfuscation for classical circuits. A
lockable obfuscation scheme is an obfuscation scheme for a specific class of func-
tionalities called compute-and-compare functionalities; a compute-and-compare
functionality is parameterized by C,α (lock), β such that on input x, it outputs
β if C(x) = α. As long as α is sampled uniformly at random and independently
of C, lockable obfuscation completely hides the circuit C, α and β. The idea
to replace 2-circular insecure QFHE with lockable obfuscation10 is as follows:

9 There is a subtle point here that we didn’t address: the transcript generated by
the extractor is encrypted under qFHE. But after recovering the secret keys, the
extractor could decrypt the encrypted transcript.

10 It shouldn’t be too surprising that lockable obfuscation can be used to replace cir-
cular insecurity since one of the applications [25,43] of lockable obfuscation was to
demonstrate counter-examples for circular security.
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obfuscate the circuit, with secret key SK2, ciphertext qFHE.Enc(SK2, r) hard-
wired, that takes as input qFHE.Enc(PK1, SK2), decrypts it to obtain SK ′

2, then
decrypts qFHE.Enc(SK2, r) to obtain r′ and outputs SK1 if r′ = r. If the adver-
sary does not obtain qFHE.Enc(PK1, SK2) then we can first invoke the security
of lockable obfuscation to remove SK1 from the obfuscated circuit and then it
can replace qFHE.Enc(PK1,w) with qFHE.Enc(PK1,⊥). The idea of using fully
homomorphic encryption along with lockable obfuscation to achieve non-black-
box extraction was first introduced, in the classical setting, by [11].

Unlike our cQEXT construction, the non-black-box technique used for
qQEXT does not directly give us a constant round quantum zero-knowledge
protocol for NP. This is because an adversarial verifier that aborts can distin-
guish between the extractor or the honest prover (receiver in qQEXT). The main
issue is that the extractor runs the verifier homomorphically, so it cannot detect
if the verifier aborted at any point in the protocol without decrypting. But if
the verifier aborted, the extractor wouldn’t be able to decrypt in the first place
– it could attempt to rewind but then this would destroy the initial quantum
auxiliary state.

2 Preliminaries

We denote the security parameter by λ. We denote (classical) computational
indistiguishability of two distributions D0 and D1 by D0 ≈c,ε D1. In the case
when ε is negligible, we drop ε from this notation.

Languages and Relations. A language L is a subset of {0, 1}∗. A relation R is a
subset of {0, 1}∗ × {0, 1}∗. We use the following notation:

– Suppose R is a relation. We define R to be efficiently decidable if there exists
an algorithm A and fixed polynomial p such that (x,w) ∈ R if and only if
A(x,w) = 1 and the running time of A is upper bounded by p(|x|, |w|).

– Suppose R is an efficiently decidable relation. We say that R is a NP relation
if L(R) is a NP language, where L(R) is defined as follows: x ∈ L(R) if and
only if there exists w such that (x,w) ∈ R and |w| ≤ p(|x|) for some fixed
polynomial p.

2.1 Learning with Errors

In this work, we are interested in the decisional learning with errors (LWE)
problem. This problem, parameterized by n,m, q, χ, where n,m, q ∈ N, and
for a distribution χ supported over Z is to distinguish between the distributions
(A,As+e) and (A,u), where A $←− Z

m×n
q , s $←− Z

n×1
q , e $←− χm×1 and u ← Z

m×1
q .

Typical setting of m is n log(q), but we also consider m = poly(n log(q)).
We base the security of our constructions on the quantum hardness of learn-

ing with errors problem.
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2.2 Notation and General Definitions

For completeness, we present some of the basic quantum definitions, for more
details see [34].

Quantum States and Channels. Let H be any finite Hilbert space, and let
L(H) := {E : H → H} be the set of all linear operators from H to itself (or
endomorphism). Quantum states over H are the positive semidefinite operators
in L(H) that have unit trace. Quantum channels or quantum operations acting
on quantum states over H are completely positive trace preserving (CPTP) lin-
ear maps from L(H) to L(H′) where H′ is any other finite dimensional Hilbert
space.

A state over H = C
2 is called a qubit. For any n ∈ N, we refer to the quantum

states over H = (C2)⊗n as n-qubit quantum states. To perform a standard basis
measurement on a qubit means projecting the qubit into {|0〉, |1〉}. A quantum
register is a collection of qubits. A classical register is a quantum register that
is only able to store qubits in the computational basis.

A unitary quantum circuit is a sequence of unitary operations (unitary gates)
acting on a fixed number of qubits. Measurements in the standard basis can be
performed at the end of the unitary circuit. A (general) quantum circuit is a
unitary quantum circuit with 2 additional operations: (1) a gate that adds an
ancilla qubit to the system, and (2) a gate that discards (trace-out) a qubit
from the system. A quantum polynomial-time algorithm (QPT) is a uniform
collection of quantum circuits {Cn}n∈N.

Quantum Computational Indistinguishability. When we talk about quantum dis-
tinguishers, we need the following definitions, which we take from [42].

Definition 1 (Indistinguishable collections of states). Let I be an infinite
subset I ⊂ {0, 1}∗, let p : N → N be a polynomially bounded function, and let ρx

and σx be p(|x|)-qubit states. We say that {ρx}x∈I and {σx}x∈I are quantum
computationally indistinguishable collections of quantum states if for
every QPT E that outputs a single bit, any polynomially bounded q : N → N, and
any auxiliary q(|x|)-qubits state ν, and for all x ∈ I, we have that

|Pr [E(ρx ⊗ ν) = 1] − Pr [E(σx ⊗ ν) = 1]| ≤ ε(|x|)

for some negligible function ε : N → [0, 1]. We use the following notation

ρx ≈Q,ε σx

and we ignore the ε when it is understood that it is a negligible function.

Definition 2 (Indistinguishability of channels). Let I be an infinite subset
I ⊂ {0, 1}∗, let p, q : N → N be polynomially bounded functions, and let Dx,Fx

be quantum channels mapping p(|x|)-qubit states to q(|x|)-qubit states. We say
that {Dx}x∈I and {Fx}x∈I are quantum computationally indistinguishable
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collection of channels if for every QPT E that outputs a single bit, any poly-
nomially bounded t : N → N, any p(|x|) + t(|x|)-qubit quantum state ρ, and for
all x ∈ I, we have that

|Pr [E ((Dx ⊗ Id)(ρ)) = 1] − Pr [E ((Fx ⊗ Id)(ρ)) = 1]| ≤ ε(|x|)

for some negligible function ε : N → [0, 1]. We will use the following notation

Dx(·) ≈Q,ε Fx(·)

and we ignore the ε when it is understood that it is a negligible function.

Interactive Models. We model an interactive protocol between a prover, Prover,
and a verifier, Verifier, as follows. There are 2 registers RProver and RVerifier corre-
sponding to the prover’s and the verifier’s private registers, as well as a message
register, RM, which is used by both Prover and Verifier to send messages. In other
words, both prover and verifier have access to the message register. We denote
the size of a register R by |R| – this is the number of bits or qubits that the
register can store. We will have 2 different notions of interactive computation.
Our honest parties will perform classical protocols, but the adversaries will be
allowed to perform quantum protocols with classical messages.

1. Classical protocol: An interactive protocol is classical if RProver, RVerifier,
and RM are classical, and Prover and Verifier can only perform classical com-
putation.

2. Quantum protocol with classical messages: An interactive protocol is
quantum with classical messages if either one of RProver or RVerifier is a quan-
tum register, and RM is classical. Prover and Verifier can perform quantum
computations if their respective private register is quantum, but they can
only send classical messages.

When a protocol has classical messages, we can assume that the adversarial party
will also send classical messages. This is without loss of generality, because the
honest party can enforce this condition by always measuring the message register
in the computational basis before proceeding with its computations.

Non-Black-Box Access. Let S be a QPT party (e.g. either prover or verifier in
the above descriptions) involved in specific quantum protocol. In particular, S
can be seen as a collection of QPTs, S = (S1, ..., S�), where � is the number of
rounds of the protocol, and Si is the quantum operation that S performs on the
ith round of the protocol.

We say that a QPT Q has non-black-box access to S, if Q has access to an
efficient classical description for the operations that S performs in each round,
(S1, ..., S�), as well as access to the initial auxiliary inputs of S.
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Interaction Channel. For a particular protocol (Prover,Verifier), the interaction
between Prover and Verifier on input y induces a quantum channel Ey acting
on their private input states, ρProver and σVerifier. We denote the view of Verifier
when interacting with Prover by

ViewVerifier (〈Prover (y, ρProver) ,Verifier (y, σVerifier)〉) ,

and this view is defined as the verifiers output. Specifically,

ViewVerifier (〈Prover (y, ρProver) ,Verifier (y, σVerifier)〉) := TrRProver [Ey (ρProver ⊗ σVerifier)] .

From the verifier’s point of view, the interaction induces the channel Ey,V (σ) =
Ey(σ ⊗ ρProver) on its private input state.

3 Secure Quantum Extraction Protocols

We define the notion of quantum extraction protocols below. An extraction pro-
tocol, associated with an NP relation, is a classical interactive protocol between a
sender and a receiver. The sender has an NP instance and a witness; the receiver
only has the NP instance.

In terms of properties, we require the property that there is a QPT extractor
that can extract the witness from a semi-malicious sender (i.e., follows the pro-
tocol but is allowed to choose its own randomness) even if the sender is a QPT
algorithm. Moreover, the semi-malicious sender should not be able to distinguish
whether it’s interacting with the extractor or the honest receiver.

In addition, we require the following property (zero-knowledge): the inter-
action of any malicious receiver with the sender should be simulatable without
the knowledge of the witness. The malicious receiver can either be classical or
quantum and thus, we have two notions of quantum extraction protocols corre-
sponding to both of these cases.

In terms of properties required, this notion closely resembles the concept of
zero-knowledge argument of knowledge (ZKAoK) systems. There are two impor-
tant differences:

– Firstly, we do not impose any completeness requirement on our extraction
protocol.

– In ZKAoK systems, the prover can behave maliciously (i.e., deviates from the
protocol) and the argument of knowledge property states that the probability
with which the extractor can extract is negligibly close to the probability
with which the prover can convince the verifier. In our definition, there is no
guarantee of extraction if the sender behaves maliciously.

Definition 3 (Quantum extraction protocols secure against quantum
adversaries). A quantum extraction protocol secure against quantum
adversaries, denoted by qQEXT is a classical protocol between two classical
PPT algorithms, sender S and a receiver R and is associated with an NP relation
R. The input to both the parties is an instance y ∈ L(R). In addition, the sender
also gets as input the witness w such that (y,w) ∈ R. At the end of the protocol,
the receiver gets the output w′. The following properties are satisfied by qQEXT:
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– Quantum Zero-Knowledge: Let p : N → N be any polynomially bounded
function. For every (y,w) ∈ R, for any QPT algorithm R∗ with private
quantum register of size |RR∗ | = p(λ), for any large enough security parameter
λ ∈ N, there exists a QPT simulator Sim such that,

ViewR∗
(〈S(1λ,y,w),R∗(1λ,y, ·)〉) ≈Q Sim(1λ,R∗,y, ·).

– Semi-Malicious Extractability: Let p : N → N be any polynomially
bounded function. For any large enough security parameter λ ∈ N, for every
(y,w) ∈ L(R), for every semi-malicious11 QPT S∗ with private quantum
register of size |RS∗ | = p(λ), there exists a QPT extractor Ext = (Ext1,Ext2)
(possibly using the code of S∗ in a non-black box manner), the following holds:

• Indistinguishability of Extraction: ViewS∗
(〈S∗(1λ,y,w, ·),R(1λ,y)〉)

≈Q Ext1
(
1λ,S∗,y, ·)

• The probability that Ext2 outputs w′ such that (y,w′) ∈ R is negligibly
close to 1.

Definition 4 (Quantum extraction protocols secure against classical
adversaries). A quantum extraction protocol secure against classi-
cal adversaries cQEXT is defined the same way as in Definition 3 except
that instead of quantum zero-knowledge, cQEXT satisfies classical zero-knowledge
property defined below:

– Classical Zero-Knowledge: Let p : N → N be any polynomially bounded
function. For any large enough security parameter λ ∈ N, for every (y,w) ∈
R, for any classical PPT algorithm R∗ with auxiliary information aux ∈
{0, 1}poly(λ), there exists a classical PPT simulator Sim such that

ViewR∗
(〈S(1λ,y,w),R∗(1λ,y, aux)〉) ≈c Sim(1λ,R∗,y, aux).

Quantum-Lasting Security. A desirable property of cQEXT protocols is that a
classical malicious receiver, long after the protocol has been executed cannot use
a quantum computer to learn the witness of the sender from the transcript of the
protocol along with its own private state. We call this property quantum-lasting
security; first introduced by Unruh [39]. We formally define quantum-lasting
security below.

Definition 5 (Quantum-Lasting Security). A cQEXT protocol is said to be
quantum-lasting secure if the following holds: for any large enough security
parameter λ ∈ N, for any classical PPT R∗, for any QPT adversary A∗, for any
auxiliary information aux ∈ {0, 1}poly(λ), for any auxiliary state of polynomially
many qubits, ρ, there exist a QPT simulator Sim∗ such that:

A∗ (
ViewR∗

〈
S(1λ,y,w),R∗(1λ,y, aux)

〉
, ρ

) ≈Q Sim∗(1λ,y, aux, ρ)

11 A QPT algorithm is said to be semi-malicious in the quantum extraction protocol if
it follows the protocol but is allowed to choose the randomness for the protocol.
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4 QEXT Secure Against Classical Receivers

In this section, we show how to construct quantum extraction protocols secure
against classical adversaries based solely on the quantum hardness of learning
with errors.

Tools

– Quantum-secure computationally-hiding and perfectly-binding non-inter-
active commitments, Comm.

We instantiate the underlying commitment scheme in [36] using Comm
to obtain a quantum-secure extractable commitment scheme. Instead of pre-
senting a definition of quantum-secure extractable commitment scheme and
then instantiating it, we directly incorporate the construction of [36] in the
construction of the extraction protocol.

– Noisy trapdoor claw-free functions {fk,b : X → DY}k∈K,b∈{0,1}.
– Quantum-secure secure function evaluation protocol SFE = (SFE.S,SFE.R).

Construction. We present the construction of the quantum extraction protocol
(S,R) in Fig. 2 for an NP language L.

We prove the following lemma in the full version.

Lemma 1. Assuming the quantum security of Comm,SFE and NTCFs, the pro-
tocol (S,R) is a quantum extraction protocol secure against classical adversaries
for NP. Moreover, (S,R) satisfies quantum-lasting security.

5 Application: Classical ZK Arguments Secure Against
Quantum Verifiers

In this section, we show how to construct a quantum zero-knowledge, classical
prover, argument system for NP secure against quantum verifiers; that is, the
protocol is classical, the malicious prover is also a classical adversary but the
malicious verifier can be a polynomial time quantum algorithm. To formally
define this notion, consider the following definition.

Definition 6 (Classical arguments for NP). A classical interactive protocol
(Prover,Verifier) is a classical ZK argument system for an NP language L,
associated with an NP relation L(R), if the following holds:

– Completeness: For any (y,w) ∈ L(R), we have that Pr[〈Prover(1λ,y,w),
Verifier(1λ,y)〉 = 1] ≥ 1 − negl(λ), for some negligible function negl.

– Soundness: For any y /∈ L, any classical PPT adversary Prover∗,
and any polynomial-sized auxiliary information aux, we have that
Pr[〈Prover∗(1λ,y, aux),Verifier(1λ,y)〉 = 1] ≤ negl(λ), for some negligible
function negl.
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F

Input of sender:
({

c(j)i,0 , c(j)i,1 , (sh(j)
i,wi

)′, (d(j)
i,wi

)′, tdi,ki, yi, vi, w
(j)
i

}

i,j∈[k]
,w

)

Input of receiver:
({

sh
(j)
i,wi

,d(j)
i,wi

}

i,j∈[k]

)

– If for any i, j ∈ [k], c(j)i,wi
�= Comm

(
1λ, (sh(j)

i,wi
)′; (d(j)

i,wi
)′

)
or c(j)i,wi

�=
Comm

(
1λ, sh

(j)
i,wi

;d(j)
i,wi

)
, output ⊥.

– For every i ∈ [k], let (xi,0, xi,1) ← Inv(ki, tdi, yi).
• Check if the commitments commit to the same message: Output ⊥ if the

following does not hold: for every j, j′ ∈ [k], we have
(
sh

(j)
i,wi

)′
⊕ sh

(j)
i,wi

=
(
sh

(j′)
i,wi

)′
⊕ sh

(j′)
i,wi

.

• If vi = 0: let (bi, J(x′
i,bi

)) = (sh(j)
i,wi

)′ ⊕ sh
(j)
i,wi

, where J(·) is the injection in
the definition of NTCF. Since J(·) can be efficiently inverted, recover x′

i,bi
.

If x′
i,bi

�= xi,bi , output ⊥.

• If vi = 1: let (ui, di) =
(
sh

(j)
i,wi

)′
⊕ sh

(j)
i,wi

. If 〈di, J(xi,0) ⊕ J(xi,1)〉 �= ui, or if
di /∈ Gki,0,xi,0 ∩ Gki,1,xi,1 output ⊥.

– Otherwise, output w.

Fig. 1. Description of the function F associated with the SFE.

We say that a classical argument system for NP is a QZK (quantum zero-
knowledge) classical argument system for NP if in addition to the above prop-
erties, a classical interactive protocol satisfies zero-knowledge against malicious
receivers.

Definition 7 (QZK classical argument system for NP). A classical inter-
active protocol (Prover,Verifier) is a quantum zero-knowledge classical
argument system for a language L, associated with an NP relation L(R) if
both of the following hold.

– (Prover,Verifier) is a classical argument for L (Definition 6).
– Quantum Zero-Knowledge: Let p : N → N be any polynomially bounded

function. For any QPT Verifier∗ that on instance y ∈ L has private register
of size |RVerifier∗ | = p(|y|), there exist a QPT Sim such that the following two
collections of quantum channels are quantum computationally indistinguish-
able,
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Input of sender: (y,w).
Input of receiver: y

– S: Compute ∀i ∈ [k], (ki, tdi) ← Gen(1λ; ri), where k = λ. Send {ki}i∈[k]
)
.

– R: For every i ∈ [k], choose a random bit bi ∈ {0, 1} and sample a random yi ←
f ′
ki,bi

(xi,bi), where xi,bi
$←− X . Send {yi}i∈[k]. (Recall that f ′

k,b(x) is a distribution
over Y.)

– S: Send bits (v1, . . . , vk), where vi
$←− {0, 1} for i ∈ [k].

– R: For every i, j ∈ [k], compute the commitments c(j)i,0 ← Comm(1λ, sh
(j)
i,0 ;d(j)

i,0 )

and c(j)i,1 ← Comm(1λ, sh
(j)
i,1 ;d(j)

i,1 ), where sh
(j)
i,0 , sh

(j)
i,1

$←− {0, 1}poly(λ) for i, j ∈ [k].

Send
({

c(j)i,0 , c(j)i,1

}

i,j∈[k]

)
.

Note: The reason why we have k2 commitments above is because we repeat (in
parallel) the test of quantumness protocol k times and for each repetition, the
response of the receiver is committed using k commitments; the latter is due
to [36].

– S: For every i, j ∈ [k], send random bits w
(j)
i ∈ {0, 1}.

– R: Send
({

(sh(j)
i,wi

)′, (d(j)
i,wi

)′
}

i,j∈[k]

)
.

– S and R run SFE, associated with the two-party functionality F defined in Fig-
ure 1; S takes the role of SFE.S and R takes the role of SFE.R. The input to

SFE.S is
({

c(j)i,0 , c(j)i,1 , (sh(j)
i,wi

)′, (d(j)
i,wi

)′, tdi,ki, yi, vi, w
(j)
i

}

i,j∈[k]
,w

)
and the in-

put to SFE.R is
({

sh
(j)
i,wi

,d(j)
i,wi

}

i,j∈[k]

)
.

Fig. 2. Quantum extraction protocol (S,R) secure against classical receivers.

• {Sim(y,Verifier∗, ·)}y∈L
• {ViewVerifier∗(〈Prover(y, aux1),Verifier∗(y, ·)〉)}y∈L.

In other words, that for every y ∈ L, for any bounded polynomial q : N → N,
for any QPT distinguisher D that outputs a single bit, and any p(|y|)+q(|y|)-
qubits quantum state ρ,

∣
∣ Pr [D (Sim(y,Verifier∗, ·) ⊗ I)(ρ)) = 1]

− Pr [D ((ViewVerifier∗(〈Prover(y, aux1),Verifier∗(y, ·)〉) ⊗ I)(ρ)) = 1]
∣
∣ ≤ ε(|y|)
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Witness-Indistinguishability Against Quantum Verifiers. As a building block, we
also consider witness indistinguishable (WI) argument systems for NP languages
secure against quantum verifiers. We define this formally below.

Definition 8 (Quantum WI for an L ∈ NP). A classical protocol (Prover,
Verifier) is a quantum witness indistinguishable argument system for an
NP language L if both of the following hold.

– (Prover,Verifier) is a classical argument for L (Definition 6).
– Quantum WI: Let p : N → N be any polynomially bounded function. For

every y ∈ L, for any two valid witnesses w1 and w2, for any QPT Verifier∗

that on instance y has private quantum register of size |RVerifier∗ | = p(|y|), we
require that

ViewVerifier∗ (〈Prover(y,w1),Verifier
∗(y, ·)〉) ≈Q ViewVerifier∗ (〈Prover(y,w2),Verifier

∗(y, ·)〉).

If (Prover,Verifier) is a quantum proof system (sound against unbounded provers),
we say that (Prover,Verifier) is a quantum witness indistinguishable proof
system for L.

Instantiation. By suitably instantiating the constant round WI argument sys-
tem of Blum [13] with perfectly binding quantum computational hiding com-
mitments, we achieve a constant round quantum WI classical argument system
assuming quantum hardness of learning with errors.

Construction. We present a construction of constant round quantum zero-
knowledge classical argument system for NP.

Tools

– Perfectly-binding and quantum-computational hiding non-interactive com-
mitments Comm.

– Quantum extraction protocol secure against classical adversaries cQEXT =
(S,R) associated with the relation REXT as constructed in Sect. 6.

– Quantum witness indistinguishable classical argument system ΠWI =
(ΠWI.Prover,ΠWI.Verifier) (Definition 8) for the relation Rwi (Fig. 3).

Construction. Let L be an NP language. We describe a classical interactive
protocol (Prover,Verifier) for L in Fig. 4.

We prove following lemma in the full version.

Lemma 2. Assuming the security of Comm, cQEXT and ΠWI, the classical
interactive protocol (Prover,Verifier) is a quantum zero-knowledge classical argu-
ment system for NP.
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Instance:
(
y, td,

{
(c(j)0 )∗, (c(j)1 )∗

}

j∈[k]

)

Witness:
(
w,

{
(sh(j)

0 ,d(j)
0 , sh

(j)
1 ,d(j)

1 )
}

j∈[k]

)

NP verification: Accept if one of the following two conditions are satisfied:

– (y,w) ∈ R.
– If for every j ∈ [k], it holds that

• (c(j)0 )∗ = Comm(1λ, sh
(j)
0 ;d(j)

0 )
• (c(j)1 )∗ = Comm(1λ, sh

(j)
1 ;d(j)

1 )
• td = sh

(j)
0 ⊕ sh

(j)
1

Fig. 3. Relation Rwi associated with ΠWI.

6 QEXT Secure Against Quantum Adversaries

6.1 Construction of QEXT

We present a construction of quantum extraction protocols secure against quan-
tum adversaries, denoted by qQEXT. First, we describe the tools used in this
construction.

– Quantum-secure
computationally-hiding and perfectly-binding non-interactive commitments
Comm.

– Quantum fully homomorphic encryption scheme with some desired properties,
(qFHE.Gen, qFHE.Enc, qFHE.Dec, qFHE.Eval).

• It admits homomorphic evaluation of arbitrary computations,
• It admits perfect correctness,
• The ciphertext of a classical message is also classical.

We show in the full version that there are qFHE schemes satisfying the above
properties.

– Quantum-secure two-party secure computation SFE with the following prop-
erties:

• Only one party receives the output. We designate the party receiving the
output as the receiver SFE.R and the other party to be SFE.S.

• Security against quantum passive senders.
• IND-Security against quantum malicious receivers.
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– Trapdoor Committment by Verifier: Verifier: sample td ← {0, 1}λ. Compute
c ← Comm(1λ, td;d), where d ← {0, 1}poly(λ) is the randomness used in the
commitment. Send c to Prover.

– Trapdoor Extraction Phase: Prover and Verifier run the quantum extraction
protocol cQEXT with Verifier taking the role of the sender cQEXT.S and Prover
taking the role of the receiver cQEXT.R. The input of cQEXT.S is (1λ, c,d; rqext)
and the input of cQEXT.R is 1λ, c

)
, where rqext is the randomness used by the

sender in cQEXT. Let the transcript generated during the execution of cQEXT be
Verifier→Prover.

Note: The trapdoor extraction phase will be used by the simulator, while proving
zero-knowledge, to extract the trapdoor from the malicious verifier.

– Trapdoor Commitment by Prover:
• Let k = λ. For every j ∈ [k], Prover sends (c(j)0 )∗ = Comm(1λ, sh

(j)
0 ;d(j)

0 ) and

(c(j)1 )∗ = Comm(1λ, sh
(j)
1 ;d(j)

1 ), where sh
(j)
0 , sh

(j)
1

$←− {0, 1}poly(λ).

• For every j ∈ [k], Verifier sends bit b(j)
$←− {0, 1} to Prover.

• Prover sends
{(

sh
(j)
b(j)

,d(j)
b(j)

)

j∈[k]

}
to Verifier.

– Check if Verifier cheated in Trapdoor Extraction Phase: Verifier sends
rqext,d, td to Prover. Then Prover checks the following:

• Let Verifier→Prover be (mS
1 , mR

1 , . . . , mS
t′ , mR

t′ ), where the message mR
i (resp.,

mS
i ) is the message sent by the receiver (resp., sender) in the ith round

and t′ is the number of rounds of cQEXT. Let the message produced by
S 1λ, c,d; rqext

)
in the ith round be m̃S

i .

• If for any i ∈ [t′], m̃S
i �= mS

i then Prover aborts. If c �= Comm(1λ, td;d) then
Prover aborts.

– Quantum WI: Prover and Verifier run ΠWI with Prover taking the role
of ΠWI prover ΠWI.Prover and Verifier taking the role of ΠWI verifier
ΠWI.Verifier. The input to ΠWI.Prover is the security parameter 1λ, instance(
y, td,

{
(c(j)0 )∗, (c(j)1 )∗

}

j∈[k]

)
and witness (w,⊥). The input to ΠWI.Verifier is

the security parameter 1λ and instance
(
y, td,

{
(c(j)0 )∗, (c(j)1 )∗

}

j∈[k]

)
.

– Decision step: Verifier computes the decision step of ΠWI.Verifier.

Fig. 4. (Classical Prover) Quantum zero-knowledge argument systems for NP.
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C

Input: CT
Hardwired values: r (lock),k,SK1,CT

∗.

– SK′
2 ← qFHE.Dec(SK1,CT)

– r′ ← qFHE.Dec(SK′
2,CT

∗)

– If r′ = r, output k. Else, output ⊥.

Fig. 5. Circuits used in the lockable obfuscation

f

Input of sender: (td, c, c∗
1, . . . , c

∗
� ,SK2)

Input of receiver: (d, r1, . . . , r�)

– If c ← Comm 1λ, (r1, . . . , r�);d
)) ∧ ∀i ∈ [�], c∗

i ← Comm 1λ, tdi; ri

))
, output

SK2. Here, tdi denotes the ith bit of td.

– Otherwise, output ⊥.

Fig. 6. Description of the function f associated with the SFE.

– Quantum-secure lockable obfuscation LObf = (Obf,ObfEval) for C, where
every circuit C, parameterized by (r,k,SK1,CT

∗), in C is defined in Fig. 5.
Note that C is a compute-and-compare functionality.

Construction. We construct a protocol (S,R) in Fig. 7 for a NP language L, and
the following lemma shows that (S,R) is a quantum extraction protocol.

We prove the following lemma in the full version.

Lemma 3. Assuming the quantum security of Comm, SFE, qFHE and LObf ,
(S,R) is a quantum extraction protocol for L secure against quantum adversaries.
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Input of sender: (y,w).
Input of receiver: y

– R: sample (r1, . . . , r�)
$←− {0, 1}�·poly(λ). Compute c ← Comm 1λ, (r1, . . . , r�);d

)
,

where � = λ and d is the randomness used to compute c. Send c to S.

– S:
• Compute the qFHE.Setup twice; (PKi,SKi) ← qFHE.Setup(1λ) for i ∈ {1, 2}.

• Compute CT1 ← qFHE.Enc(PK1, (td||w)), where td
$←− {0, 1}λ.

• Compute C̃ ← Obf(1λ,C[r,k,SK1,CT
∗]), where r $←− {0, 1}λ and k $←− {0, 1}λ,

CT∗ is defined below and C[r,k,SK1,CT
∗] is defined in Figure 5.

∗ CT∗ ← qFHE.Enc (PK2, r)
Send msg1 =

(
CT1, C̃, otp := k ⊕ SK1

)
.

– R: compute c∗
i ← Comm 1λ, 0; ri

)
for i ∈ [�]. Send (c∗

1, . . . , c
∗
� ) to S.

– S and R run SFE, associated with the two-party functionality f defined in Figure 6;
S takes the role of SFE.S and R takes the role of SFE.R. The input to SFE.S is
(td, c, c∗

1, . . . , c
∗
� ,SK2) and the input to SFE.R is (d, r1, . . . , r�).

Fig. 7. Quantum extraction protocol (S,R)
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Abstract. In a recent breakthrough, Mahadev constructed an interac-
tive protocol that enables a purely classical party to delegate any quan-
tum computation to an untrusted quantum prover. We show that this
same task can in fact be performed non-interactively (with setup) and
in zero-knowledge.

Our protocols result from a sequence of significant improvements to
the original four-message protocol of Mahadev. We begin by making
the first message instance-independent and moving it to an offline setup
phase. We then establish a parallel repetition theorem for the result-
ing three-message protocol, with an asymptotically optimal rate. This,
in turn, enables an application of the Fiat-Shamir heuristic, eliminating
the second message and giving a non-interactive protocol. Finally, we
employ classical non-interactive zero-knowledge (NIZK) arguments and
classical fully homomorphic encryption (FHE) to give a zero-knowledge
variant of this construction. This yields the first purely classical NIZK
argument system for QMA, a quantum analogue of NP.

We establish the security of our protocols under standard assumptions
in quantum-secure cryptography. Specifically, our protocols are secure in
the Quantum Random Oracle Model, under the assumption that Learn-
ing with Errors is quantumly hard. The NIZK construction also requires
circuit-private FHE.

1 Introduction

Quantum computing devices are expected to solve problems that are infeasible
for classical computers. However, as significant progress is made toward con-
structing quantum computers, it is challenging to verify that they work cor-
rectly, particularly when devices reach scales where classical simulation is infea-
sible. This problem has been considered in various models, such as with multiple
entangled quantum provers [18,24,25,27,30,35,37,42] or with verifiers who have
limited quantum resources [2,13,14,36]. Such solutions are not ideal since they
require assumptions about the ability of the provers to communicate or require
the verifier to have some quantum abilities.
c© International Association for Cryptologic Research 2020
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In a major breakthrough, Mahadev recently described the first secure proto-
col enabling a purely classical verifier to certify the quantum computations of a
single untrusted quantum prover [34]. The Mahadev protocol uses a quantum-
secure cryptographic assumption to give the classical verifier leverage over the
quantum prover. The protocol is sound under the assumption that Learning
with Errors (LWE) does not admit a polynomial-time quantum algorithm. This
assumption is widely accepted, and underlies some of the most promising can-
didates for quantum-secure cryptography [3].

The Mahadev Protocol. Mahadev’s result settled a major open question concern-
ing the power of quantum-prover interactive arguments (QPIAs). In a QPIA, two
computationally-bounded parties (a quantum prover P and a classical verifier V)
interact with the goal of solving a decision problem. Mahadev’s result showed
that there is a four-round1 QPIA for BQP with negligible completeness error
and constant soundness error δ ≈ 3/4. The goal of the protocol is for the ver-
ifier to decide whether an input Hamiltonian H from a certain class (which is
BQP-complete) has a ground state energy that is low (YES) or high (NO).

The protocol has a high-level structure analogous to classical Σ-
protocols [21]:

1. V generates a private-public key pair (pk, sk) and sends pk to P;
2. P prepares the ground state of H and then coherently evaluates a certain

classical function fpk. This yields a state of the form
∑

x αx|x〉X |fpk(x)〉Y ,
where the ground state is in a subregister of X. P measures Y and sends the
result y to V. P holds a superposition over the preimages of y.

3. V replies with a uniformly random challenge bit c ∈ {0, 1}.
4. If c = 0 (“test round”), P measures X in the computational basis and sends

the outcome. If c = 1 (“Hadamard round”), P measures X in the Hadamard
basis and sends the outcome.

After the four message rounds above are completed, the verifier uses their knowl-
edge of H and the secret key sk to either accept or reject the instance H.

Our Results. In this work, we show that the Mahadev protocol can be trans-
formed into protocols with significantly more favorable parameters, and with
additional properties of interest. Specifically, we show how to build non-
interactive protocols (with setup) for the same task, with negligible completeness
and soundness errors. One of our protocols enables a verifier to publish a single
public “setup” string and then receive arbitrarily many proofs from different
provers, each for a different instance. We also construct a non-interactive proto-
col that satisfies the zero-knowledge property [10].

In principle, one could ask for slightly less interaction: the prover and the
verifier receive the instance from a third party, and then the prover simply sends
a proof to the verifier, with no setup. While we cannot rule such a protocol out,

1 We take one round to mean a single one-way message from the prover to the verifier,
or vice-versa. The Mahadev protocol involves four such messages.
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constructing it seems like a major challenge (and may even be impossible). Such
a proof must be independent of the secret randomness of the verifier, making
it difficult to apply Mahadev’s “cryptographic leash.” Without cryptographic
assumptions, such a protocol would imply BQP ⊆ MA [1], which is unlikely.

All of our results are conditioned on the hardness of the LWE problem for
quantum computers; we call this the LWEassumption. This assumption is inher-
ited from the Mahadev protocol. For the zero-knowledge protocol, we also require
fully-homomorphic encryption (FHE) with circuit privacy [38]. Our security
proofs hold in the Quantum Random Oracle Model (QROM) [11]. For simplic-
ity, we assume that the relevant security parameters are polynomial in the input
BQP instance size n, so that efficient algorithms run in time poly(n) and errors
are (ideally) negligible in n.

Transforming the Mahadev Protocol. We apply several transformations to the
Mahadev protocol:

1. making the first message instance-independent (i.e., moving it to an offline
setup phase);

2. applying parallel repetition, via a new parallel repetition theorem;
3. adding zero-knowledge, by means of classical NIZKs and classical FHE; and
4. applying Fiat-Shamir (in the QROM [11]).

Establishing that these transformations satisfy desirable properties is challeng-
ing. For instance, since cheating provers can now be quantum, classical parallel
repetition theorems do not apply.

Instance-Independent Setup. Our first transformation is relatively simple, at a
high level. Instead of setting the basis choice depending on the 2-local term of
that we want to measure, we can just pick the basis uniformly at random and
the choice is correct with probability 1

4 . When we consider multiple copies of
the ground state, and each copy is assigned both a random choice of basis and
a 2-local terms, then about 1

4 of the copies get a consistent assignment. Thus,
we can make the initial message instance-independent (and move it to an offline
setup phase) by increasing the number of parallel measurements by a constant
factor. We explain this transformation in more detail in Sect. 3. We refer to the
resulting protocol as “the three-round Mahadev protocol,” denoted by M.

Parallel Repetition. Parallel repetition of a protocol is a very desirable prop-
erty since it decreases the soundness error exponentially, without increasing the
number of rounds of interaction (as in serial repetition). Given the importance
of the Mahadev protocol, parallel repetition could be a useful tool for applying it
in practice. However, several complications arise when attempting to show this.
First, the Mahadev protocol is clearly private-coin, which is precisely the cate-
gory of protocol that is challenging even in the classical setting [6,29]. Second,
classical proofs of parallel repetition typically involve constructing a single-copy
prover that uses many rounds of nested rejection sampling. The quantum ana-
logue of such a procedure, quantum rewinding, can only be applied in special
circumstances [5,45] and seems difficult to apply to parallel repetition.
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We establish our new parallel repetition theorem with alternative techniques,
suited specifically for the Mahadev protocol. We show that, for NO instances, the
accepting paths of the verifier for the two different challenges (c = 0 and c = 1)
correspond to two nearly (computationally) orthogonal projectors. We also show
that this persists in k-fold parallel repetition, meaning that each pair of distinct
challenge strings c, c′ ∈ {0, 1}k corresponds to nearly orthogonal projectors.
From there, a straightforward argument shows that the prover cannot succeed
on a non-negligible fraction of challenge strings. We show that k-fold parallel
repetition yields the same optimal soundness error δk as sequential repetition.

Taken together with the first transformation, the result is a three-round
QPIA (with offline setup) for verifying BQP. We denote the k-fold parallel rep-
etition of M by Mk.

Theorem 1.1. Under the LWE assumption, Mk is a three-round protocol (with
offline setup) for verifying BQP with completeness 1 − negl(n) and soundness
error 2−k + negl(n).

Zero-Knowledge. Zero-knowledge is a very useful cryptographic property of proof
systems. Roughly, a protocol is zero-knowledge if the verifier “learns nothing”
from the interaction with the honest prover, except that they have a “yes”
instance. This notion is formalized by requiring an efficient simulator whose
output distribution is indistinguishable from the distribution of the protocol
outcomes.

In our next result, we show how to modify the protocol Mk of Theorem 1.1
to achieve zero-knowledge against arbitrary classical verifiers. Our approach is
similar to that of [19], but uses a purely classical verifier. Instead of the prover
providing the outcomes of the measurements to be checked by the verifier (as
in Mk), a classical non-interactive zero-knowledge proof (NIZK) is provided.
However, the NP statement “the measurements will pass verification” depends on
the inversion trapdoor of the verifier, which must remain secret from the prover.
To overcome this obstacle, we use classical fully homomorphic encryption (FHE).
In the setup phase, an encryption of the verifier’s secret keys is provided to the
prover, enabling the prover to later compute the NIZK homomorphically. To
establish the zero-knowledge property, we require the FHE scheme to have circuit
privacy, which means that the verifier cannot learn the evaluated circuit from
the ciphertext provided by the prover. To prove the zero-knowledge property, we
also need the extra assumption that the setup phase is performed by a trusted
third party, since we cannot rely on the verifier to perform it honestly anymore.

In classical zero-knowledge arguments, it is common to consider efficient
provers who are provided an NP-witness of the statement to prove. In the quan-
tum setting, if we assume that the quantum polynomial-time prover has access
to a quantum proof of a QMA statement,2 we achieve the following.

2 QMA is a quantum analogue of NP. In QMA, an untrusted quantum proof is given
to a quantum poly-time verifier.
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Theorem 1.2 (Informal). Under the LWE assumption, if circuit-private FHE
exists, then there exists a three-round zero-knowledge argument for QMA (with
trusted setup) with negligible completeness and soundness error.

Fiat-Shamir Transformation. In the above protocols (both Mk and its ZK-
variant), the second message of the verifier is a uniformly random c ∈ {0, 1}k.
In the final transformation, we eliminate this “challenge” round via the well-
known Fiat-Shamir transform [23]: the prover generates the challenge bits c ∈
{0, 1}k themselves by evaluating a public hash function H on the transcript
of the protocol thus far. In our case, this means that the prover selects3 c :=
H(H, pk, y). Of course, the verifier also needs to adapt their actions at the verdict
stage, using c = H(H, pk, y) when deciding acceptance/rejection. The resulting
protocols now only have a setup phase and a single message from the prover to
the verifier.

Fiat-Shamir (FS) is typically used to establish security in the Random Oracle
Model, in the sense that FS preserves soundness up to negligible loss provided
H has superpolynomially large range [7,40]. It is straightforward to see that
this last condition is required; it is also the reason we applied parallel repetition
prior to FS. A well-known complication in the quantum setting is that quantum
computers can evaluate any public classical function H in superposition via
the unitary operator UH : |x〉|y〉 �→ |x〉|y ⊕ H(x)〉. This means we must use the
Quantum Random Oracle Model (QROM) [11], which grants all parties oracle
access to UH. Proving the security of transformations like FS in the QROM is the
subject of recent research, and newly developed techniques have largely shown
that FS in the QROM preserves soundness for so-called Σ-protocols [22,33].
Extending those results to our protocols is relatively straightforward. Applying
FS to Mk then yields the following.

Theorem 1.3. Let k = ω(log n), and let FS(Mk) denote the protocol result-
ing from applying Fiat-Shamir to the k-fold parallel repetition of the three-round
Mahadev protocol. Under the LWE assumption, in the QROM, FS(Mk) is a non-
interactive protocol (with offline setup) for verifying BQP with negligible com-
pleteness and soundness errors.

If we instead apply the Fiat-Shamir transform to the zero-knowledge protocol
from Theorem 1.2, we achieve the following.4

Theorem 1.4 (Informal). Under the LWE assumption, in the QROM, there
exists a classical non-interactive zero-knowledge argument (with trusted offline
setup) for QMA, with negligible completeness and soundness errors.

Related Results. After an initial version of our work was made public, showing
how the Mahadev protocol can be reduced to four rounds using parallel rep-
etition and the Fiat-Shamir transform, Chia, Chung, and Yamakawa posted a
3 Here pk and y are k-tuples since we are transforming parallel-repeated protocols.
4 Note that FS(Mk) in Theorem 1.3 is also a protocol for verifying QMA with negligible

error if the prover is given a quantum witness.
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preprint [17] describing the same result, with an alternative proof of parallel
repetition. They also showed how to make the verifier run in polylog time using
indistinguishability obfuscation. Our work was performed independently, and
we subsequently improved our result to make the protocol non-interactive with
setup and zero-knowledge.

Radian and Sattath [41] recently established what they call “a parallel rep-
etition theorem for NTCFs,” which are the aforementioned classical functions
fpk. However, the context of [41] is very different from ours and their parallel
repetition theorem follows from a purely classical result.

Broadbent, Ji, Song, and Watrous [16] presented the first quantum zero-
knowledge proofs for QMA with efficient provers. Vidick and Zhang [44] com-
bined this protocol with the Mahadev protocol [34] to make the communication
classical. Broadbent and Grilo [15] showed a “quantum Σ” zero-knowledge proof
for QMA (with a quantum verifier). In the non-interactive setting, Coladangelo,
Vidick, and Zhang [19] constructed a non-interactive zero-knowledge argument
with quantum setup and Broadbent and Grilo [15] showed a quantum statistical
zero-knowledge proof in the secret parameter model.

Open Problems. This work raises several natural open questions. First, is it
possible to prove the soundness of our protocol when the oracle H is instantiated
with a concrete (e.g., correlation-intractable [39]) hash function? Our current
analysis only applies in an idealized model.

Another natural line of work is studying parallel repetition for other QPIAs
such as [12,26,44], perhaps including small modifications such as “random ter-
mination” as needed in purely classical private-coin protocols [8,29,31].

Finally, a similar classical NIZK protocol can also be achieved using the
techniques of locally simulatable proofs [15,28]. We leave as an open problem
understanding whether such a protocol could give us extra useful properties.

2 Preliminaries and Notation

Most algorithms we consider are efficient, meaning that they run in time poly-
nomial in both the input size (typically n) and the security parameter (typically
λ). We assume that n and λ are polynomially-related. The two main classes
of algorithms of interest are PPT (probabilistic poly-time) and QPT (quantum
poly-time). We say that f = negl(n) if f = o(n−c) for every constant c. We
denote by Uf the efficient map that coherently implements a classical function
f : {0, 1}n → {0, 1}m, i.e., Uf |x〉|y〉 = |x〉|y⊕f(x)〉, when there exists an efficient
deterministic circuit that computes f .

2.1 The Local Hamiltonian Problem and Verification for BQP

Any promise problem L = (Lyes, Lno) ∈ QMA can be reduced to the local Hamil-
tonian problem such that for x ∈ Lyes, the Hamiltonian Hx has a low-energy
ground state |ψx〉, and for x ∈ Lno, all quantum states have large energy [32].
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While the quantum witness |ψx〉 may be hard to prepare for general L ∈ QMA,
it can be prepared efficiently if L ∈ BQP. Furthermore, the problem remains
QMA-complete even with a Hamiltonian that can be measured by performing
standard (Z) and Hadamard (X) basis measurements [9,20,36].

Problem 2.1. The 2-local ZX-Hamiltonian promise problem zxa,b = (zxyes,
zxno), with parameters a, b ∈ R, b > a and gap b − a > poly(n)−1, is defined as
follows. An instance is a local Hamiltonian H =

∑
i<j Jij(XiXj + ZiZj), where

Jij ∈ R with 2
∑

i<j |Jij | = 1 and each Xi (resp. Zi) is a Pauli X (resp. Pauli
Z) gate acting on the ith qubit. For H ∈ zxyes, the smallest eigenvalue of H is
at most a, while if H ∈ zxno, the smallest eigenvalue of H is at least b.

Note that given the normalization factors, we can see that each term (XiXj

or ZiZj) is associated with the probability pij = |Jij |. When working with
Hamiltonian terms S, we overload the notation for convenience. First, we write
Sj to denote the Pauli operator assigned by S to qubit j, so that S =

⊗
j Sj .

Second, we write i ∈ S to indicate that i is a qubit index for which S does not
act as the identity, i.e., Si 	= 1. We let pS := pij for i, j ∈ S and mS ∈ {±1} be
the sign of Jij .

Morimae and Fitzsimons present a protocol (the “MF protocol”) with a quan-
tum prover P and a limited verifier V who only needs to perform single-qubit
X and Z basis measurements [36]. P prepares the ground state of the Hamil-
tonian and sends it to V, who then samples a term S with probability pS and
performs the corresponding measurement {M±1 = 1±S

2 }. Notice that Z or X
basis measurements suffice to estimate the energy of S. The success probability
with input state ρ is

∑
S pS tr(M−mS

ρ) = 1
2 − 1

2 tr(Hρ), and negligible error can
be achieved with parallel repetition.5

In the following discussion, we encode S by an n-bit string h(S): for each
i ∈ S, set hi = 0 (resp. 1) for a Z (resp. X) basis measurement. For other
qubits, the choice is irrelevant but we set hi = 0 for concreteness. We let αh,ρ :=
tr(M−mS

ρ) denote the success probability of the MF protocol described above
with the state ρ, conditioned on the event that h = h(S) is sampled. Thus the
success probability with ρ is E

h
[αh,ρ].

2.2 The Mahadev Protocol for BQP Verification

The Mahadev protocol relies crucially on two special classes of functions: Noisy
Trapdoor Claw-free Functions (NTCFs) F and Noisy Trapdoor Injective Func-
tions (NTIFs) G. Both can be constructed based on the LWE assumption [12,34]
and come with four polynomial-time algorithms (GenF ,ChkF , InvF ,SampF ) and
(GenG ,ChkG , InvG ,SampG). For complete details, and for the LWE construction,
see [12,34].
5 V receives T copies of the ground state of H and performs an independent test on

each copy. By accepting if at least (2−a−b)T/4 copies accept, both the completeness
and soundness errors are suppressed to negligible with polynomial T (|x|) (cf. [34,
Theorem 8.4]). See [43, Sect. 3] for details.
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The Mahadev protocol [34] for BQP verification allows V to request an X or
Z basis measurement outcome without revealing the basis to P. The aim of the
protocol is to verify that the prover’s response, when appropriately decoded, is
close to the measurement outcomes of some n-qubit quantum state ρ. Crucially,
this guarantee holds simultaneously for all basis choices h ∈ {0, 1}n, where 0
(resp. 1) denotes a Z (resp. X) basis measurement. With this guarantee, the
verifier can then apply the verification procedure of the MF protocol to the
decoded responses of the prover in order to decide acceptance or rejection.

In the following protocol, for each qubit, if Z (resp. X) basis measurement
is desired, then an NTIF (resp. NTCF) key is sent. Since ChkF and ChkG (resp.
SampF and SampG) are identical [34], we denote them by Chk (resp. Samp). We
let Gen(1λ, h) for h ∈ {0, 1}∗ denote the following key generation algorithm: for
every bit i of h, run (pki, ski) ← GenG(1λ) if hi = 0 and (pki, ski) ← GenF (1λ)
if hi = 1. Set pk = (pki)i and sk = (ski)i and output the key pairs (pk, sk).

Protocol 1 (Mahadev Protocol).

Setup Choose a security parameter λ ≥ n. Both P and V receive an instance of
Problem 2.1, namely H =

∑
S pS

1+mSS
2 .

Round V1. V samples r terms S = (S1, . . . , Sr) and computes h = h(S), the con-
catenation of h(S1), . . . , h(Sr). V generates the key pair (pk, sk) ← Gen(1λ, h)
and sends pk to P.

Round P1. P prepares |φ〉⊗r =
∑

b∈{0,1}nr φb|b〉W , r copies of the n-qubit
ground state of H. For j ∈ [r], 
 ∈ [n] and each qubit Wj� in W , P per-
forms Samp on input the key pkj� coherently and yields a state negligibly
close to 1

|X |n/2

∑
x∈X n

∑
b∈{0,1}nr φb|b〉W |x〉X |ψfpk(b,x)〉Y , where |ψfpk(b,x)〉 :=

⊗
j∈[r],�∈[n] |ψfpkj�

(bj�,xj�)〉. Next, P measures Y and sends the outcome y to
V.

Round V2. V responds with a uniformly random “challenge” bit c ∈ {0, 1}. We
call c = 0 =: t a “test round” and c = 1 =: h a “Hadamard round.”

Round P2. If c = t, P measures WX in the computational basis. If c = h, P
measures WX in the Hadamard basis. In either case, P sends the measure-
ment outcome (w, t) to V.

Verdict If c = t, V accepts if
∧

j∈[r],�∈[n] Chk(pkj�, wj�, tj�, yj�) = 1.
If c = h, V performs the following: for each copy j and qubit 
 ∈ [n],
1. if hj� = 0, run (ej�, xbj�,yj�

) ← InvG(skj�, yj�). If hj� = 1, run x0,yj�
←

InvF (skj�, 0, yj�) and x1,yj�
← InvF (skj�, 1, yj�) to get both preimages.

Then compute ej� = tj� · (x0,yj�
⊕ x1,yj�

) ⊕ wj�.
If any of the above the algorithms returns reject for any j, 
, or tj� is
trivial (e.g., 0n, see [12]), reject. Otherwise store e = (ej�)j∈[r],�∈[n] as
the witness to the next check.

2. V sets vj = 1 if the witness (ej�)�∈Sj
satisfies M−mSj

(defined in
Section 2.1).6

Finally, V accepts if
∑

j∈[r] vj ≥ (2 − a − b)r/4.

6 A string e satisfies a projector M if 〈e|M |e〉 = 1, i.e., |e〉 lies in the support of M .



Non-interactive Classical Verification of Quantum Computation 161

Theorem 2.1 (Theorems 1.1 and 8.6 in [34]). Under the LWE assumption,
Protocol 1 is a four-message quantum-prover interactive argument for the class
BQP with completeness error negl(n) and soundness error 3/4 + negl(n).

3 Instance-Independent Key Generation

We now show how to generate the keys in the Mahadev protocol before the par-
ties receive the input Hamiltonian, in an offline setup phase. To that end, we
modify the MF protocol so the sampling of the Hamiltonian term is independent
of the performed measurements. In our variant, for some r = poly(n), V sam-
ples n-bit strings h1, . . . , hr uniformly and independent 2-local terms S1, . . . , Sr

according to distribution π (in which S is sampled with the probability pS from
Sect. 2.1). We say the bases hi and the terms Si are consistent if, when the
observable for the jth qubit in Si is Z (resp., X) then the jth bit of hi is 0
(resp., 1). Since hi is uniformly sampled and Si is 2-local, they are consistent
with probability at least 1

4 .
In an r-copy protocol, we let A := {i ∈ [r] : hi and Si are consistent} and

denote t = |A|. For each i ∈ A, Vi decides as in the MF protocol: if i /∈ A, then
Vi accepts. Thus we consider the following protocol.

Protocol 2 (A Modified Parallel-Repeated MF Protocol for zxa,b)

Setup. V samples the bases h1, . . . , hr ← {0, 1}n uniformly.
Round 1. P sends the witness state ρ (r copies of the ground state).
Round 2. V measures the quantum state ρ in the bases h1, . . . , hr. For each

copy i ∈ [r], V samples terms S1, . . . , Sr ← π. V records the subset A ⊆ [r] of
consistent copies. For each copy i ∈ A, V sets vi = 1 if the outcome satisfies
M−mS

and 0 otherwise. V accepts if
∑

i∈A vi ≥ (2 − a − b)|A|/4.

For sufficiently large r, with high probability, there are around r/4 consistent
copies. Thus to achieve the same completeness and soundness, it suffices to
increase the number of copies by a constant factor. We thus have the following
fact.

Lemma 3.1. The completeness error and soundness error of Protocol 2 are
negligible, provided r = ω

(
log n

(b−a)2

)
copies are used.

Proof. First we observe that for each copy, with probability 1/4, V measures
the quantum state with a term sampled from the distribution π; otherwise V
accepts. Thus for an instance H, the effective Hamiltonian to verify is H̃⊗r

where H̃ = 31+H
4 . Following the standard parallel repetition theorem for QMA,

we know that P’s optimal strategy is to present the ground state of H̃, which is
also the ground state of H.

With probability
(
r
t

)
( 14 )t( 34 )r−t, there are t consistent copies. Now for i ∈ A,

we let Xi be a binary random variable corresponding to the decision of Vi. For
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soundness, by Hoeffding’s inequality7 the success probability for A such that
|A| = t is

Pr[accept|A] = Pr

[
1
t

∑

i∈A

Xi ≥ c + s

2

]

≤ Pr

[
1
t

∑

i∈A

Xi − s ≥ c − s

2

]

≤ 2e− tg2

2 ,

where g = c − s is the promise gap. Then the overall success probability is

Pr[accept] = 2 · 4−r
r∑

t=0

(
r

t

)

3r−te−tg2/2 (1)

= 2

(
e−g2/2 + 3

4

)r

≤ 2(1 − g2/16)r ≤ 2e−rg2/16

since 1 − x/2 ≥ e−x for x ∈ [0, 1] and 1 − x ≤ e−x for x ≥ 0. Thus r =
ω(g−2 log n) suffices to suppress the soundness error to n−ω(1). Since g−1 =
poly(n), polynomially many copies suffice to achieve negligible soundness error.

For completeness, again by Hoeffding’s inequality,

Pr[reject|A] = Pr

[
1
t

∑

i∈A

Xi <
c + s

2

]

≤ Pr

[

c − 1
t

∑

i∈A

Xi >
c − s

2

]

≤ 2e− tg2

2 .

By the same calculation as in (1), the completeness error is negligible if we set
r = ω(g−2 log n). �
Remark 3.1. The terms Si are sampled independently of the interaction in the
protocol. We let term(H, s) denote the deterministic algorithm that outputs a
term from H according to distribution π when provided the randomness s ∈
{0, 1}p for sufficiently large polynomial p. For bases h ∈ {0, 1}nr and s ∈ {0, 1}p,
αh,s,ρ denotes the success probability when P sends the quantum state ρ.

The modifications to the MF protocol which resulted in Protocol 2 above can
also be made (with minor adjustments) to the Mahadev protocol (Protocol 1).
These changes are as follows:

1. In Round V1, the measurement bases h are sampled uniformly at random
and S is not sampled.

2. In the Verdict stage for a Hadamard round (c = 1), V computes the mea-
surement outcomes, as in check 1. Then V samples terms S1, . . . , Sr ← π and
for the consistent copies, V performs the check in 2.

We refer to this variant of Protocol 1 as “the three-round Mahadev protocol”,
and denote it by M.
7 Pr[ 1

n

∑
i Xi − μ ≥ δ] ≤ e−2tδ2 for i.i.d. X1, . . . , Xn ∈ [0, 1].
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4 A Parallel Repetition Theorem for the Mahadev
Protocol

In a k-fold parallel repetition of M, an honest prover runs the honest single-
fold prover independently for each copy of the protocol. Meanwhile, the honest
verifier runs the single-fold verifier independently for each copy, accepting if and
only if all k verifiers accept. The completeness error clearly remains negligible.
To control soundness error, we establish a parallel repetition theorem.

In preparation, we fix the following notation related to the Verdict stage of
M. We refer frequently to the notation from our description of Protocol 1 above,
which applies to M as well. First, the check

∧
j∈[r],�∈[n] Chk(pkj�, wj�, tj�, yj�) = 1

in a test round is represented by a projection Πsk,t acting on registers WXY .
Specifically, this is the projector whose image is spanned by all inputs (w, t, y)
that are accepted by the verifier in the Verdict stage. Note that running Chk
does not require the trapdoor sk, but the relation implicitly depends on it. For
notational convenience, we also denote Πsk,t as Πs,sk,t, though the projector
does not depend on s (defined in Remark 3.1). Second, the two Hadamard round
checks 1 and 2 of the Verdict stage are represented by a projector Πs,sk,h.

4.1 A Lemma for the Single-Copy Protocol

We begin by showing an important fact about the single-copy protocol: the
verifier’s accepting paths associated to the two challenges correspond to nearly
orthogonal8 projectors. Moreover, in a certain sense this property holds even for
input states that are adaptively manipulated by a dishonest prover after they
have learned which challenge will take place. This fact is essential in our analysis
of the parallel repetition of many copies in the following sections.

The Setup. As discussed in [34], any prover P can be characterized as follows.
First, pick a state family |Ψpk〉; this state is prepared on registers WXY E after
receiving pk. Here Y is the register that will be measured in Round P1, W and
X are the registers that will be measured in Round P2, and E is the private
workspace of P. Then, choose two unitaries Ut and Uh to describe the Round P2

actions of P before any measurements, in the test round and Hadamard round,
respectively. Both Ut and Uh act on WXY E, but can only be classically con-
trolled on Y , as they must be implemented after P has measured Y and sent the
result to the verifier. (Of course, a cheating prover is not constrained to follow
the honest protocol, but we can nevertheless designate a fixed subsystem Y that
carries their message.) We will write P = (|Ψpk〉, Ut, Uh), where it is implicit that
|Ψpk〉 is a family of states parameterized by pk.

At the end of the protocol, the registers WXY are measured and given to
the verifier. Recall that we can view the final actions of the verifier as apply-
ing one of two measurements: a test-round measurement or a Hadamard-round

8 Strictly speaking, the projectors are only nearly orthogonal when applied to states
prepared by efficient provers.
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measurement. Let Πs,sk,t and Πs,sk,h denote the “accept” projectors for those
measurements, respectively. For a given prover P, we additionally define

ΠUt

s,sk,t := U†
t (Πs,sk,t ⊗ 1E)Ut , Π

Uh

s,sk,h := U†
h(HWXΠs,sk,hHWX ⊗ 1E)Uh ,

where HWX denotes the Hadamard transform on registers WX, i.e., the
Hadamard gate applied to every qubit in those registers. These projectors have
a natural interpretation: they describe the action of the two accepting projectors
of the verifier on the initial state |Ψpk〉 of the prover, taking into account the
(adaptive) attacks the prover makes in Round P2.

A Key Lemma. We now prove a fact about the single-copy protocol. The proof
is largely a matter of making some observations about the results from [34], and
then combining them in the right way.

Recall that, after the setup phase, for any instance H of the ZX-Hamiltonian
problem (Problem 2.1), M begins with the verifier V making a measurement
basis choice h ∈ {0, 1}nr for all the qubits. After interacting with a prover P,
the verifier either rejects or produces a candidate measurement outcome, which
is then tested as in Protocol 2. We let DP,h denote the distribution of this
candidate measurement outcome for a prover P and basis choice h, averaged
over all measurements and randomness of P and V. It is useful to compare DP,h

with an “ideal” distribution Dρ,h obtained by simply measuring some (nr)-qubit
quantum state ρ (i.e., a candidate ground state) according to the basis choices
specified by h, with no protocol involved. Formally, we state the following lemma.

Lemma 4.1. Let P = (|Ψpk〉, Ut, Uh) be a prover in M such that, for every
h ∈ {0, 1}nr and s ∈ {0, 1}p,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUt

s,sk,t|Ψpk〉] ≥ 1 − negl(n) . (2)

Then there exists an (nr)-qubit quantum state ρ such that, for every h, s,

E(pk,sk)←Gen(1λ,h)[〈Ψpk|ΠUh

s,sk,h|Ψpk〉] ≤ αh,s,ρ + negl(n) ,

where αh,s,ρ (see Remark 3.1) is the success probability in the MF protocol with
basis choice h and quantum state ρ.

Proof. Up to negligible terms, (2) means that P is what Mahadev calls a perfect
prover. She establishes two results ([34, Claim 7.3] and [34, Claim 5.7]) which,
when taken together, directly imply the following fact about perfect provers.
For every perfect prover P, there exists an efficiently preparable quantum state
ρ such that DP,h is computationally indistinguishable from Dρ,h for all basis
choices h ∈ {0, 1}nr. In particular, the proof is obtained in two steps. First,
for every perfect prover, there exists a nearby “trivial prover” whose attack in a
Hadamard round commutes with standard basis measurement on the committed
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state [34, Claim 5.7]. Second, for every trivial prover, the distribution is compu-
tationally indistinguishable from measuring a consistent quantum state ρ in any
basis h [34, Claim 7.3]. Mahadev shows this for exactly perfect provers, but the
proofs can be easily adapted to our “negligibly-far-from-perfect” case.

Now consider two ways of producing a final accept/reject output of the ver-
ifier. In the first case, an output is sampled from the distribution DP,h and the
verifier applies the final checks in M. In this case, the final outcome is obtained
by performing the measurement {Π

Uh

s,sk,h,1 − Π
Uh

s,sk,h} on the state |Ψpk〉, and
accepting if the first outcome is observed. In the second case, an output is sam-
pled from the distribution Dρ,h and the verifier applies the final checks in the MF
protocol. In this case, the acceptance probability is αh,s,ρ simply by definition.
The result then follows directly. �

Notice that for the soundness case, there is no state that succeeds non-
negligibly in the MF protocol. In this case, Lemma 4.1 implies that for perfect
provers the averaged projection

E
(pk,sk)←Gen(1λ,h),h,s

[〈Ψpk|ΠUh

s,sk,h|Ψpk〉]

is negligible. In other words, provers who succeed almost perfectly in the test
round must almost certainly fail in the Hadamard round. We emphasize that
this is the case even though the prover can adaptively change their state (by
applying Ut or Uh) after learning which round will take place. This formalizes
the intuitive claim we made at the beginning of the section about “adaptive
orthogonality” of the two acceptance projectors corresponding to the two round
types.

4.2 The Parallel Repetition Theorem

Characterization of a Prover in the k-Fold Protocol. We now discuss the behavior
of a general prover in a k-fold protocol. We redefine some notation, and let V be
the verifier and P an arbitrary prover in the k-fold protocol.

In the Setup phase, the key pairs (pk1, sk1), . . . , (pkk, skk) are sampled
according to the correct NTCF/NTIF distribution.9 The secret keys sk =
(sk1, . . . , skk)10 are given to V, whereas pk = (pk1, . . . , pkk) is given to P.

In Round P1, without loss of generality, the action of P prior to mea-
surement is to apply a unitary U0,pk on the zero state |0〉WXY E , produc-
ing the state |Ψpk〉WXY E := U0,pk|0〉WXY E . Each of W,X, Y is now a k-
tuple of registers, and E is the prover’s workspace. To generate the “commit-
ment” message to V, P performs standard basis measurement on Y . We write
|Ψpk〉WXY E =

∑
y βy|Ψpk,y〉WXE |y〉Y . When the measurement outcome is y, the

side state P holds is then |Ψpk,y〉WXE . In the following analysis of the success

9 Recall that the keys are sampled by choosing uniform bases h and running Gen(1λ, h).
10 The verifier can learn the corresponding bases h from sk; see [34] for details.
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probability of P, we consider the superposition |Ψpk〉WXY E instead of a classical
mixture of the states |Ψpk,y〉WXE using the principle of deferred measurement.

In Round P2, without loss of generality, the action of P consists of a general
operation (that can depend on c), followed by the honest action. The general
operation is some efficient unitary Uc on WXY E. The honest action is measure-
ment in the right basis, i.e., for each i, WiXi is measured in the standard basis
(if ci = 0) or the Hadamard basis (if ci = 1). Equivalently, the honest action is
(i.) apply Hc

WX :=
⊗k

i=1(H
ci)WiXi

, i.e., for each {i : ci = 1} apply a Hadamard
to every qubit of WiXi, and then (ii.) apply standard basis measurement.

In the Verdict stage, V first applies for each i the two-outcome measurement
corresponding to the Πsi,ski,ci

from the single-copy protocol. The overall decision
is then to accept if the measurements accept for all i. We let

(Πs,sk,c)WXY :=
k⊗

i=1

(Πsi,ski,ci
)WiXiYi

(3)

denote the corresponding acceptance projector for the entire k-copy protocol.
The effective measurement on |Ψpk〉WXY E is then described by the projection

(
ΠUc

s,sk,c

)

WXY E
:= (U†

c )WXY E(HcΠs,sk,c,yH
c ⊗ 1E)(Uc)WXY E .

The success probability of P, which is characterized by the state |Ψpk〉 and family
of unitaries {Uc}c∈{0,1}n , is thus E

(pk,sk)←Gen(1λ,h),h,s,c

[〈Ψpk|ΠUc

s,sk,c|Ψpk〉].

The Proof of Parallel Repetition. Recall that Lemma 4.1 states that the pro-
jectors corresponding to the two challenges in M are nearly orthogonal, even
when one takes into account the prover’s adaptively applied unitaries. We show
that this property persists in the k-copy protocol. Specifically, we show that all
2k challenges are nearly orthogonal (in the same sense as in Lemma 4.1) with
respect to any state |Ψpk〉 and any post-commitment unitaries Uc of the prover.

This can be explained informally as follows. For any two distinct challenges
c 	= c′, there exists a coordinate i such that ci 	= c′

i, meaning that one enters
a test round in that coordinate while the other enters a Hadamard round. In
coordinate i, by the single-copy result (Lemma 4.1), the prover who succeeds
with one challenge should fail with the other. A complication is that, since we are
dealing with an interactive argument, we must show that a violation of this claim
leads to an efficient single-copy prover that violates the single-copy result. Once
we have shown this, we can then apply it to any distinct challenge pairs c 	= c′.
It then follows that we may (approximately) decompose |Ψpk〉 into components
accepted in each challenge, each of which occurs with probability 2−k. We can
then use this decomposition to express the overall success probability of P in
terms of this decomposition. As |Ψpk〉 is of course a normalized state, it will
follow that the overall soundness error is negligibly close to 2−k.

The “adaptive orthogonality” discussed above is formalized in Lemma 4.2.
Recall that any prover in the k-fold parallel repetition of M can be characterized
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by a state family {|Ψpk〉}pk that is prepared in Round P1 and a family of unitaries
{Uc}c∈{0,1}k that are applied in Round P2.

Lemma 4.2. Let P be a prover in the k-fold parallel repetition of M that pre-
pares |Ψpk〉 in Round P1 and performs Uc in Round P2. Let a, b ∈ {0, 1}k such
that a 	= b and choose i such that ai 	= bi. Then there is an (nr)-qubit quantum
state ρ such that for every basis choice h and randomness s,

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua

s,sk,a + ΠUa

s,sk,aΠUb

s,sk,b|Ψpk〉
]

≤ 2α
1/2
hi,si,ρ

+ negl(n) ,

where αhi,si,ρ (see Remark 3.1) is the success probability with ρ conditioned on
the event that hi is sampled.

Proof. Since we are proving an upper bound for a quantity that is symmetric
under the interchange of b and a, we can assume that bi = 0 and ai = 1 without
loss of generality.

We first claim that there exists a quantum state ρ such that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua

s,sk,aΠUb

s,sk,b|Ψpk〉
]

≤ αhi,si,ρ + negl(n) (4)

for all basis choices h and randomness s. For a contradiction, suppose that is
not the case. Then there exists a basis choice h∗ and s∗ and a polynomial η such
that for every state ρ,

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua

s∗,sk,aΠUb

s∗,sk,b|Ψpk〉
]

> αh∗
i ,s∗

i ,ρ + 1/η(n) .

We show that this implies the existence of an efficient prover P∗ for the single-
copy three-round Mahadev protocol M who violates Lemma 4.1. Define the
following projector on WXY E:

Σa := U†
a(Ha ⊗ 1E)((1 ⊗ · · · ⊗ 1 ⊗ Π ⊗ 1 ⊗ · · · ⊗ 1) ⊗ 1E)(Ha ⊗ 1E)Ua .

Here Π denotes the single-copy protocol acceptance projector for the Hadamard
round, with key ski and basis choice h∗

i , s
∗
i . In the above, Π acts on the ith

set of registers, i.e., WiXiYi. The projector Σa corresponds to performing the
appropriate Hadamard test in the ith protocol copy, and simply accepting all
other copies unconditionally. It follows that ΠUa

s,sk,a � Σa, and we thus have

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠUb

s∗,sk,b|Ψpk〉
]

≥ E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua

s∗,sk,aΠUb

s∗,sk,b|Ψpk〉
]

> αh∗
i ,s∗

i ,ρ + 1/η. (5)

The single-copy prover P∗ interacts with the single-copy verifier V∗ as follows.
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– In the Setup phase, after receiving the public key pk∗, initialize k−1 internally
simulated verifiers, and set pk to be the list of their keys, with pk∗ inserted
in the ith position. Let h = (h1, . . . , hk) be the basis choices, and note that
all but hi are known to P∗.

– Using the algorithms of P, perform the following repeat-until-success (RUS)
procedure for at most q = η4 steps.
1. Prepare the state |Ψpk〉 on registers WXY E, and then apply the unitary

Ub.
2. Apply the measurement determined by Πs,sk,b (defined in (3)); for index

i we can use pk∗ because bi = 0; for the rest we know the secret keys.
3. If the measurement rejects, go to step (1.), and otherwise apply U†

b and
output the state.

If the RUS procedure does not terminate within q steps, then P∗ prepares
a state11 |Φ∗

pk〉 by performing Samp coherently on |0n〉W (see Round 2 of
Protocol 1).
Note that if P∗ terminates within q steps, the resulting state is

|Φpk〉 :=
ΠUb

s∗,sk,b|Ψpk〉
‖ΠUb

s∗,sk,b|Ψpk〉‖ ;

otherwise |Φ∗
pk〉 is prepared.

– For the Round P1 message, measure the Yi register of |Φpk〉 and send the
result to V∗.

– When V∗ returns the challenge bit w in Round 3, if w = bi = 0, apply Ub

(resp. 1) to |Φpk〉 (resp. |Φ∗
pk〉), and otherwise apply Ua. Then behave honestly,

i.e., measure WiXi in computational or Hadamard bases as determined by w,
and send the outcomes.

By the RUS construction and the fact that bi = 0, the state |Φpk〉 or |Φ∗
pk〉 is in the

image of the test-round acceptance projector in the ith coordinate. This means
that, when V∗ enters a test round, i.e., w = 0 = bi, P∗ is accepted perfectly.
In other words, P∗ is a perfect prover12 and thus satisfies the hypotheses of
Lemma 4.1.

Now consider the case when V∗ enters a Hadamard round, i.e., w = 1. Let

Ω := {(pk, sk) : 〈Ψpk|ΠUb

s∗,sk,b|Ψpk〉 > q−1/2}
denote the set of “good” keys. For (pk, sk) ∈ Ω, the probability of not termi-
nating within q = poly(n) steps is at most (1 − q−1/2)q ≤ e−√

q. Therefore, the
success probability of RUS for the good keys is 1 − negl(n). Thus we have

E
sk|Ω

[〈Φpk|Σa|Φpk〉] Pr[Ω] ≤ αh∗
i ,s∗

i ,ρ + negl(n)

11 To pass the test round, any efficiently preparable state suffices.
12 While we used Πh∗,sk,b in the RUS procedure, and h∗

i is (almost always) not equal
to the hi selected by V∗, the result is still a perfect prover state. This is because, as
described in Protocol 1, the acceptance test in the test round is independent of the
basis choice.
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where we let E
X|E

[f(X)] := 1
Pr[E]

∑
x∈E p(x)f(x) denote the expectation value

of f(X) conditioned on event E for random variable X over finite set X with
distribution p and function f : X → [0, 1]. Now we divide (5) into two terms and
find

αh∗
i ,s∗

i ,ρ + η−1 < E
(pk,sk)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠUb

s∗,sk,b|Ψpk〉
]

= Pr[Ω] E
(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠUb

s∗,sk,b|Ψpk〉
]

+ Pr[Ω] E
(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠUb

s∗,sk,b|Ψpk〉
]

≤ Pr[Ω] E
(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠUb

s∗,sk,b|Ψpk〉
]

+ q−1/2

≤ αh∗
i ,ρ + negl(n) + q−1/2.

Since q = η4, this is a contradiction. Therefore (4) holds for every h, s, i.e.,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUb

s,sk,bΠ
Ua

s,sk,aΠUb

s,sk,b|Ψpk〉] ≤ αhi,si,ρ + negl(n).

It then follows that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a + ΠUa

h,sk,aΠ
Ub
h,sk,b|Ψpk〉

]

= 2 E
(pk,sk)←Gen(1λ,h)

[
Re(〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉)

]

≤ 2 E
(pk,sk)←Gen(1λ,h)

[
|〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉|

]

≤ 2 E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉1/2

]

≤ 2 E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉

]1/2

≤ 2α
1/2
hi,si,ρ + negl(n)

as claimed. �
We remark that this adaptive orthogonality is guaranteed under a computa-
tional assumption. Assuming that no efficient quantum adversary can break the
underlying security properties based on plain LWE, the projections are pairwise
orthogonal in the sense of averaging over the key pairs (pk, sk) and with respect
to any quantum state |Ψpk〉 prepared by an efficient quantum circuit.

We also emphasize that, in Lemma 4.2, for each pair a 	= b the left-hand side
is upper-bounded by the acceptance probability of measuring some state ρ in the
basis hi, and the quantum state ρ may be different among distinct choices of (a, b)
and i. This implies that if P succeeds with one particular challenge perfectly13

when we average over h and s, Lemma 4.2 and standard amplification techniques
13 More concretely, if for some fixed a, Πs,sk,a|Ψpk〉 = |Ψpk〉.
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(see Sect. 3) imply that it succeeds on challenge b 	= a with probability at most
E

(pk,sk)←Gen(1λ)
〈Ψpk|Πs,sk,b|Ψpk〉 ≤ negl(n). We note that this strategy leads to

acceptance probability at most 2−k + negl(n).
Since pairwise orthogonality holds with respect to any efficiently preparable

quantum state by Lemma 4.2, our parallel repetition theorem follows.
First, we state a key technical lemma.

Lemma 4.3. Let A1, . . . , Am be projectors and |ψ〉 be a quantum state. Suppose
there are real numbers δij ∈ [0, 2] such that 〈ψ|AiAj+AjAi|ψ〉 ≤ δij for all i 	= j.
Then 〈ψ|A1 + · · · + Am|ψ〉 ≤ 1 +

(∑
i<j δij

)1/2.

Proof. Let α := 〈ψ|A1 + . . . + Am|ψ〉. We have

α2 ≤ 〈ψ|(A1 + · · · + Am)2|ψ〉
= α +

∑

i<j

〈ψ|AiAj + AjAi|ψ〉 (6)

≤ α +
∑

i<j

δij

The first inequality holds since |ψ〉〈ψ| � 1, and thus

〈ψ|(A1 + · · · + Am)|ψ〉〈ψ|(A1 + · · · + Am)|ψ〉 ≤ 〈ψ|(A1 + · · · + Am)2|ψ〉.

The equality (6) holds since each Ai is idempotent, and thus

〈ψ|(A1 + · · · + Am)2|ψ〉 = 〈ψ|A2
1 + · · · + A2

m|ψ〉 +
∑

i<j

〈ψ|AiAj + AjAi|ψ〉

= 〈ψ|A1 + · · · + Am|ψ〉 +
∑

i<j

〈ψ|AiAj + AjAi|ψ〉.

Now observe that for β > 0, x2 ≤ x + β implies x ≤ 1
2 (1 +

√
1 + 4β) ≤ 1

2 (1 +

(1 + 2
√

β)) = 1 +
√

β. Thus α ≤ 1 +
√∑

i<j δij as claimed. �

Observe that when the projectors are mutually orthogonal, we have A1 + · · · +
Am � 1 and the bound clearly holds. Lemma 4.3 describes a relaxed version
of this fact. In our application, the projectors and the state are parameterized
by the key pair, and we use this bound to show that the average of pairwise
overlaps is small. We are now ready to establish our parallel repetition theorem.

Lemma 4.4. Let k be a positive integer and let {Uc}c∈{0,1}k be any set of uni-
taries that may be implemented by P after the challenge coins are sent. Let |Ψpk〉
be any state P holds in the commitment round, and suppose P applies Uc fol-
lowed by honest measurements when the coins are c. Then there exists a negligible
function ε such that V1, . . . ,Vk accept P with probability at most 2−k + ε(n).
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Proof. The success probability of any prover in the k-fold protocol is

Pr[success] = 2−k
E

(pk,sk)←Gen(1λ,h),h,s
[〈Ψpk|

∑

c

ΠUc

s,sk,c|Ψpk〉]

where h, s are drawn from uniform distributions.
Define a total ordering on {0, 1}k such that a < b if ai < bi for the smallest

index i such that ai 	= bi. Then by Lemma 4.3, we have

Pr[success] ≤ 2
−k

+ 2
−k

E
h,s

⎡
⎣∑

a<b

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa
s,sk,aΠ

Ub
s,sk,b + Π

Ub
s,sk,bΠ

Ua
s,sk,a|Ψpk〉]

⎤
⎦

1/2

.

By Lemma 4.2, there exists a negligible function δ such that

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa

s,sk,aΠUb

s,sk,b + ΠUb

s,sk,bΠ
Ua

s,sk,a|Ψpk〉] ≤ 2α
1/2
hi(a,b),ρab

+ δ

for every pair (a, b). Here i(a, b) is the smallest index i such that ai 	= bi and ρab

is the reduced quantum state associated with a, b, as guaranteed by Lemma 4.2.
Let μ be the soundness error of the MF protocol. We have

Pr[success] ≤ 2−k + 2−k
E
h,s

[
∑

a<b

(
2α

1/2
hi(a,b),si(a,b),ρab

+ δ
)
]1/2

≤ 2−k + 2−k
E
h,s

[
∑

a<b

2α
1/2
hi(a,b),si(a,b),ρab

]1/2

+ 2−k

√(
2k

2

)

δ1/2

≤ 2−k + 2−k

[
∑

a<b

2
(

E
h,s

[αhi(a,b),si(a,b),ρab
]
)1/2

]1/2

+ δ1/2

≤ 2−k + 2−k

[
∑

a<b

2μ1/2

]1/2

+ δ1/2

≤ 2−k + 2−k
[
2k(2k − 1)μ1/2

]1/2

+ δ1/2

≤ 2−k + μ1/4 + δ1/2

where the second and third inequalities hold by Jensen’s inequality. Amplifying
the soundness of the MF protocol, μ is negligible using polynomially many copies
by Lemma 3.1. Thus the soundness error is negligibly close to 2−k. �

We note that Mahadev shows the soundness error for a single-copy protocol
is negligibly close to 3/4 [34], whereas Lemma 4.4 implies the error can be
upper bounded by 1/2+negl(n). Mahadev obtains soundness error 3/4+negl(n)
by considering a general prover P who, for each basis h, succeeds in the test
round (characterized by Πh,sk,t) with probability 1 − ph,t, in the first stage of
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the Hadamard round with probability 1 − ph,h, and in the second stage of the
Hadamard round with probability at most √

ph,t + ph,h + αh,ρ + negl(n) for
some state ρ [34, Claim 7.1]. These contributions are combined by applying the
triangle inequality for trace distance. This analysis is loose since the two stages
are both classical, and P must pass both stages to win the Hadamard round.

Finally, Lemma 4.4 immediately implies the following theorem.

Theorem 4.1. Let Mk be the k-fold parallel repetition of the three-round
Mahadev protocol M. Under the LWE assumption, the soundness error of Mk is
at most 2−k + negl(n).

For completeness, we present the three-round protocol Mk.

Protocol 3 (Verification with instance-independent setup).

Setup V samples random bases h ∈ {0, 1}nrk and runs the key generation algo-
rithm (pk, sk) ← Gen(1λ, h). V samples a string s ∈ {0, 1}prk uniformly. V
sends the public keys pk to P.

Round P1. P queries Samp coherently on the witness state |ψ〉⊗rk, followed by
a standard basis measurement on register Y . The outcome is sent to V.

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P.
Round P2. For each i ∈ [k], j ∈ [r], 
 ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets uij� =
(wij�, tij�);

2. if ci = 1, P performs a Hadamard basis measurment and gets uij� =
(wij�, tij�).

P sends u to V.
Verdict For each i ∈ [k],

1. If ci = 0, V accepts iff
∧

j,� Chk(pkj�, wj�, tj�, yj�) = 1.
2. If ci = 1, V records the set Ai ⊆ [r] of consistent copies. For each j ∈ Ai

and 
 ∈ [n]:
(a) If hij� = 0, run (bij , xbij ,yij

) ← InvG(skij , yij). Set eij� = bij�; if
hij = 1, compute x0,yij�

, x1,yij�
and eij� = tij� · (x0,yij�

⊕x1,yij�
)⊕wij.

If any of the algorithms rejects or any of tij� is trivial (e.g., tij� = 0,
see [34]), V sets vij = 0; otherwise enters the next step.

(b) V computes the terms Sij = term(H, sij) for each i ∈ [k], j ∈ [r]. Set
vij = 1 if (eij�)�∈Sij

satisfies M−mSij
and vij = 0 otherwise.

Then V sets vi = 1 if
∑

j∈Ai
vij ≥ (2 − a − b)|Ai|/4 and 0 otherwise.

V accepts iff vi = 1 for every i ∈ [k].
The verdict function is verdict(H, s, sk, y, c, u) :=

∧k
i=1 vi.

Theorem 4.2. For r = ω( log n
(b−a)2 ) and k = ω(log n), Protocol 3 is a quan-

tum prover interactive argument for zxa,b with negligible completeness error and
soundness error.
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5 A Classical Zero-Knowledge Argument for QMA

To turn Mk into a zero-knowledge protocol, we first consider an intermediate
protocol in which P first encrypts the witness state |ψ〉⊗rk with a quantum one-
time pad. Then in Round P2, P sends the one-time pad key β, γ along with the
response u. In the verdict stage, V uses the keys to decrypt the response. We
denote the verdict function as

verdict′(H, s, sk, y, c, β, γ, u) := verdict(Hβ,γ , s, sk, y, c, u) (7)

where Hβ,γ := XβZγHZγXβ is the instance conjugated by the one-time pad.
Obviously, this is not zero-knowledge yet, as the verifier can easily recover

the original measurement outcomes on the witness state. To address this issue,
we take the approach of [16,19] and invoke a NIZK protocol for NP languages.
The language L that we consider is defined as follows:

L := {(H, s, sk, ξ, y, c, χ) : ∃ τ = (β, γ, u, r1, r2),
ξ = commit(u; r1) ∧ χ = commit(β, γ; r2)
∧ verdict′(H, s, sk, y, c, β, γ, u) = 1},

where r1, r2 are the randomness for a computationally secure bit commitment
scheme. However, this alone is insufficient since, to agree on an instance without
introducing more message exchanges, V must reveal sk, s before P sends a NIZK
proof. Revealing sk, s enables a simple attack on soundness: P can ensure the
verifier accepts all instances by using the secret key to forge a valid response u,
committing to it, and computing the NIZK proof.

The solution is to invoke a quantum-secure classical FHE scheme and to
let P homomorphically compute a NIZK proof. This requires P to only use
an encrypted instance. In the setup phase, P is given the ciphertexts csk =
FHE.Enchpk(sk) and cs = FHE.Enchpk(s). Next, in Round P2, P computes
cx = FHE.Enchpk(x) where x := (H, s, sk, ξ, y, c, χ) since the partial transcript
(y, c, ξ, χ) has already been fixed. P then computes

ce = FHE.Evalhpk(NIZK.P, cc, cx, cτ) = FHE.Enchpk(NIZK.P(crs, x, τ)),

where cτ = FHE.Enchpk(τ), and sends ce to V. Finally, V decrypts the encrypted
NIZK proof ce and outputs NIZK.V(crs, x, e). The above transformation yields a
three-message zero-knowledge protocol for quantum computation with trusted
setup from a third party, described as follows.

Protocol 4 (Setup phase setup(λ,N,M)). The algorithm setup takes two
integers N,M as input, and outputs two strings stV , stP with the following steps.

1. Run crs ← NIZK.Setup(1λ).
2. Sample uniform bases h ← {0, 1}N and run (pk, sk) ← Gen(1λ, h).
3. Run the FHE key generation algorithm (hpk, hsk) ← FHE.Gen(1λ).
4. Run encryption on the secret key csk ← FHE.Enchpk(sk).
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5. Choose keys (β, γ) and randomness r1 uniformly and compute ξ =
commit(β, γ; r1).

6. Sample a random string s1, . . . , sM ∈ {0, 1}p (see Remark 3.1) uniformly and
compute its encryption cs = FHE.Enchpk(s).

Output stV = (crs, sk, hsk, hpk, ξ) and stP = (crs, pk, hpk, csk, cs, β, γ, r1).

Protocol 5 (An interactive protocol).

Setup Run stV , stP ← setup(λ, nrk, rk). Send stV = (crs, sk, hsk, hpk, ξ) to V
and stP = (crs, pk, hpk, csk, cs, β, γ, r1) to P.

Round P1. P aborts if pk is invalid. P queries Samp coherently on the witness
state XβZγ |ψ〉⊗rk.

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P.
Round P2. For each i ∈ [k], j ∈ [r], 
 ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets uij� =
(wij�, tij�).

2. if ci = 1, P performs a Hadamard basis measurement and gets uij� =
(wij�, tij�).

P sends χ := commit(u; r2) and

ce := FHE.Evalhpk(NIZK.P, cc, cx, cτ),

where cc, cx and cτ are the encryptions of crs, x and τ respectively.
Verdict. V accepts if NIZK.V(crs, x,FHE.Dechsk(ce)) = 1.

We show Protocol 5 is complete, sound, and zero-knowledge. For the detailed
proofs, see the full version [4].

Theorem 5.1. Protocol 5 has negligible completeness and soundness errors.

Theorem 5.2. Assuming the existence of a non-interactive bit commitment
scheme with perfect binding and computational hiding, Protocol 5 is zero-
knowledge.

6 Round Reduction by Fiat-Shamir Transformation

In this section we show that the Fiat-Shamir transformation can be used make
the k-fold parallel three-round Mahadev protocol M non-interactive with a setup
phase, while keeping both the completeness and the soundness errors negligible.
This will also be the case for the zero-knowledge variant of the same, i.e., Pro-
tocol 5.
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6.1 Fiat-Shamir for Σ-protocols in the QROM

The Fiat-Shamir (FS) transformation turns any public-coin three-message inter-
active argument, also called a Σ-protocol, into a single-message protocol in the
random oracle model (ROM). In the standard approach, one proves that the
Fiat-Shamir transformation preserves soundness in the ROM. In this idealized
cryptographic model, all parties receive oracle access to a uniformly random
function H. Against quantum adversaries, there is a well-known complication:
a quantum computer can easily evaluate any actual instantiation of H (with a
concrete public classical function) in superposition via

UH : |x, y〉|z〉 �→ |x, y〉|z ⊕ H(x, y)〉 .

We thus work in the Quantum Random Oracle Model (QROM), in which all
parties receive quantum oracle access to UH.

We make use of the following theorem of [22]; we describe the underlying
reduction in the full version [4].

Theorem 6.1. (Quantum Security of Fiat-Shamir [22, Theorem 2]). For
every QPT prover AH in the transformed protocol, there exists a QPT prover S
for the underlying Σ-protocol such that

Pr
Θ

[V (x, y,Θ,m) = 1 : (y,m) ← 〈SA, Θ〉]

≥ 1
2(2q + 1)(2q + 3)

Pr
H

[V (x, y,H(x, y),m) = 1, (y,m) ← AH(x)] − 1
(2q + 1)|Y| .

In the above, (y,m) ← 〈SA, Θ〉 indicates that y and m are the first-round and
third-round (respectively) messages of SA, when it is given the random challenge
Θ in the second round.

6.2 Extension to Generalized Σ-protocols

In this section, we show that Fiat-Shamir also preserves soundness for a more
general family of protocols, which we call “generalized Σ-protocols.” In such a
protocol, V can begin the protocol by sending an initial message to P.

Protocol 6 (Generalized Σ-protocol). Select a public function f : R×L →
W, a finite set C, and a distribution D over R. The protocol begins with P and
V receiving an input x.

Round 1. V samples randomness r ∈ R from distribution D and computes
message w = f(r, x), which is sent to P.

Round 2. P sends a message y to V.
Round 3. V responds with a uniformly random classical challenge c ∈ C.
Round 4. P sends a response m to V.
Verdict. V outputs a bit computed by a Boolean function V (r, x, y, c,m).
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Notice that the original Mahadev protocol [34] is a generalized Σ-protocol:
the distribution D describes the distribution for the secret key, and f com-
putes the public key. Similarly, the k-fold parallel repetition of our instance-
independent protocol is also a generalized Σ-protocol since our trusted setup
phase can be seen as a message from the verifier.
Fiat-Shamir for generalized Σ protocols. The FS transformation for generalized
Σ-protocols is similar to standard ones: in the Verdict stage, V computes c =
H(x,w, y) and accepts if and only if V (r, x, y, c,m) = 1.

Protocol 7. (FS-transformed generalized Σ protocol). Select a public
function f : R × L → W, a finite set C, and a distribution D over R. P and V
receive an input x and are given access to a random oracle H.

Round 1. V samples randomness r ∈ R from distribution D, and computes
message w = f(r, x), which is sent to P.

Round 2. P sends a message (y,m) to V.
Verdict. V computes c = H(x,w, y) and then outputs a bit computed by a

Boolean function V (r, x, y, c,m).

To show that generalized Σ-protocols remain secure under the FS transfor-
mation, similarly to the idea for Σ-protocols, we give a reduction. Conditioned
on any randomness r, the prover is AH

r (x) := AH(x, f(r, x)).14 The prover B in
the Σ-protocol runs SAr and outputs its decision. Given the success probability
of A, we establish a lower bound on that of B, as follows. For the proof, see the
full version [4].

Lemma 6.1 (Fiat-Shamir Transformation for generalized Σ protocol).
Suppose that

Pr
r,H

[V (r, x, y,H(x, f(r, x), y),m) = 1 : (y,m) ← AH(x, f(r, x))] = ε.

Then

Pr
r,Θ

[V (r, x, y,Θ,m) = 1 : (y,m) ← 〈B, Θ〉] ≥ ε

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y| .

Lemma 6.1 immediately gives the following theorem.

Theorem 6.2. If a language L admits a generalized Σ-protocol with soundness
error s, then after the Fiat-Shamir transformation, the soundness error against
provers who make up to q queries to a random oracle is O(sq2 + q|Y|−1).

Proof. Suppose there is a prover who succeeds in the transformed protocol with
success probability ε. Then by Lemma 6.1, we may construct a prover who
succeeds with probability at least ε

O(q2) −O
(

1
q|Y|

)
. By the soundness guarantee,

we have ε
O(q2) − O

(
1

q|Y|
)

≤ s and thus ε ≤ O(q2s + q|Y|−1). �
14 Though the prover does not learn the private randomness r, its action depends on

r implicitly.
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By Theorem 6.2, if both s and |Y|−1 are negligible in security parameter λ,
the soundness error of the transformed protocols remains negligible against an
efficient prover who makes q = poly(λ) queries. Theorem 1.3 follows directly
from Theorem 6.2.

6.3 Non-interactive Zero-Knowledge for QMA

We now show that, using the Fiat-Shamir transformation, our three-round proto-
col proposed in Protocol 5 can be converted into a non-interactive zero-knowledge
argument (with trusted setup) for QMA in the Quantum Random Oracle model.
The resulting protocol is defined exactly as Protocol 5, with two modifications:
(i.) instead of Round V2, the prover P computes the coins c by evaluating the
random oracle H on the protocol transcript thus far, and (ii.) the NIZK instance
x is appropriately redefined using these coins.

We remark that since the setup in this protocol is trusted, it follows from
Theorem 6.2 that the compressed protocol is complete and sound, and therefore
we just need to argue about the zero-knowledge property.

Theorem 6.3. The Fiat-Shamir transformation of Protocol 5 is zero-
knowledge.

Proof. The simulator SV∗
2 can sample the trapdoor keys for NTCF/NTIF func-

tions and private keys for the FHE scheme, enabling simulation of the transcript
for every challenge sent by the verifier. In particular, one can run the same proof
with the variant SH that queries the random oracle H for the challenges instead
of receiving it from a malicious verifier V∗. �
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Abstract. In this paper, we extend the protocol of classical verification
of quantum computations (CVQC) recently proposed by Mahadev to
make the verification efficient. Our result is obtained in the following
three steps:

– We show that parallel repetition of Mahadev’s protocol has negligible
soundness error. This gives the first constant round CVQC protocol
with negligible soundness error. In this part, we only assume the
quantum hardness of the learning with error (LWE) problem similar
to Mahadev’s work.

– We construct a two-round CVQC protocol in the quantum random
oracle model (QROM) where a cryptographic hash function is ideal-
ized to be a random function. This is obtained by applying the Fiat-
Shamir transform to the parallel repetition version of Mahadev’s
protocol.

– We construct a two-round CVQC protocol with an efficient veri-
fier in the CRS+QRO model where both prover and verifier can
access a (classical) common reference string generated by a trusted
third party in addition to quantum access to QRO. Specifically, the
verifier can verify a QTIME(T ) computation in time poly(n, log T )
where n is the security parameter. For proving soundness, we assume
that a standard model instantiation of our two-round protocol with
a concrete hash function (say, SHA-3) is sound and the existence
of post-quantum indistinguishability obfuscation and post-quantum
fully homomorphic encryption in addition to the quantum hardness
of the LWE problem.

1 Introduction

Quantum computers that outperform classical supercomputers have been real-
ized recently [7] and may play a role similar to the super clusters in the foresee-
able future. Indeed, this is happening now—IBM has provided an online platform
c© International Association for Cryptologic Research 2020
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for public users to run their computational tasks on IBM’s quantum computing
server [1]. Since quantum computers would be accessed by clients with only clas-
sical devices, verifying quantum computation by a classical computer has become
a major issue in this setting. To address this problem, there are several works
toward reducing the verifier’s quantum resource for verifying quantum compu-
tation [5,15,21,35]. However, it was unknown if the verifier could be purely
classical until Mahadev [32] finally gave an affirmative solution. Specifically, she
constructed an interactive protocol between an efficient classical verifier (a BPP
machine) and an efficient quantum prover (a BQP machine) where the verifier
can verify the result of the BQP computation. (In the following, we call such
a protocol a CVQC protocol.1) Soundness of her protocol relies on a compu-
tational assumption that the learning with error (LWE) problem [40] is hard
for an efficient quantum algorithm, which has been widely used in the field of
cryptography. We refer to the extensive survey by Peikert [38] for details about
LWE and its cryptographic applications.

Although the verifier in Mahadev’s protocol is purely classical, it is not “effi-
cient”. In the classical cryptographic literature of delegating (classical) compu-
tation, efficient verifier that can verify a delegated time T computation in o(T )
time is a necessary requirement (as otherwise, the verifier performs the compu-
tation on its own). Indeed, many previous works suggested that the verifier’s
runtime can be poly log(T ) in the classical setting [9,14,16,25–30,34,42]. In con-
trast, in the literature of delegating quantum computation, the focus is mainly
on reducing the required quantum power for the verifier, and all existing proto-
cols with a single prover (e.g., in blind quantum computation [15] and Mahadev’s
protocol [32]) inherently requires the verifier to run in poly(T ) time to verify the
delegated computation, even for verifiers with weak quantum power.

Therefore, whether a CVQC protocol with an efficient verifier (i.e., with run-
time o(T )) exists is a natural and fundamental theoretical question. Also, from
a technical perspective, classical efficient verifier protocols are closely related to
PCP proofs, where many protocols are constructed based on PCP proofs, and
a partial converse result is proven by Rothblum and Vadhan [43]. On the other
hand, whether a quantum version of the PCP theorem holds is still an open
question in quantum complexity theory [4]. Thus, the challenge of constructing
a protocol with an efficient verifier is potentially related to the challenge of con-
structing quantum PCP proofs. While our construction relies on several strong
and non-standard assumptions, our protocol provides the first feasibility result
(in any reasonable models) that answers this question of efficient verifier CVQC
protocol affirmatively.

1.1 Our Results

In this paper, our main result is a CVQC protocol with an efficient verifier,
and we have also reached two milestones on the path to the final result. We
summarize them as follows:

1 “CVQC” stands for “Classical Verification of Quantum Computations”.
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Parallel Repetition of Mahadev’s Protocol. We first show that parallel repe-
tition version of Mahadev’s protocol has negligible soundness error. Note that
Mahadev’s protocol has soundness error 3/4, which means that a cheating prover
may convince the verifier even if it does not correctly computes the BQP com-
putation with probability at most 3/4. Though we can exponentially reduce
the soundness error by sequential repetition, we need super-constant rounds to
reduce the soundness error to be negligible. If parallel repetition works to reduce
the soundness error, then we need not increase the number of round. However,
parallel repetition may not reduce soundness error for computationally sound
protocols in general [11,39]. Thus, it was open to construct constant round pro-
tocol with negligible soundness error. We manage to answer this question by
giving the first constant round CVQC protocol with negligible soundness error.

Two-Round CVQC Protocol. Based on the parallel repetition version of
Mahadev’s protocol with negligible soundness, we then construct a two-round
CVQC protocol in the quantum random oracle model (QROM) [12] where a
cryptographic hash function is idealized to be a random function that is only
accessible as a quantum oracle. This is obtained by applying the Fiat-Shamir
transform [19,20,31] to the parallel repetition version of Mahadev’s protocol.

CVQC Protocol with an Efficient Verifier. Finally, we construct a two-round
CVQC protocol with logarithmic-time verifier in the CRS+QRO model where
both prover and verifier can access to a (classical) common reference string
generated by a trusted third party in addition to quantum access to QRO. For
proving soundness, we assume that a standard model instantiation of our two-
round protocol with a concrete hash function (say, SHA-3) is sound and the
existence of post-quantum indistinguishability obfuscation [10,22] and (post-
quantum) fully homomorphic encryption (FHE) [23] in addition to the quantum
hardness of the LWE problem.

1.2 Technical Overview

Overview of Mahadev’s Protocol. First, we recall the high-level structure of
Mahadev’s 4-round CVQC protocol.2 On input a common input x, a quantum
prover and classical verifier proceeds as below to prove and verify that x belongs
to a BQP language L.

First Message: The verifier generates a pair of “key” k and a “trapdoor” td,
sends k to the prover, and keeps td as its internal state.

Second Message: The prover is given the key k, generates a classical “com-
mitment” y along with a quantum state |stP 〉, sends y to the verifier, and
keeps |stP 〉 as its internal state.

Third Message: The verifier randomly picks a “challenge” c
$← {0, 1} and

sends c to the prover. Following the terminology in [32], we call the case of
c = 0 the “test round” and the case of c = 1 the “Hadamard round”.

2 See Sect. 3.1 for more details.
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Fourth Message: The prover is given a challenge c, generates a classical
“answer” a by using the state |stP 〉, and sends a to the verifier.

Final Verification: Finally, the verifier returns � indicating acceptance or
⊥ indicating rejection. In case c = 0, the verification can be done publicly,
that is, the final verification algorithm need not use td.

Mahadev showed that the protocol achieves negligible completeness error
and constant soundness error against computationally bounded cheating provers.
More precisely, she showed that if x ∈ L, then the verifier accepts with probabil-
ity 1−negl(n) where n is the security parameter, and if x /∈ L, then any quantum
polynomial time cheating prover can let the verifier accept with probability at
most 3/4. For proving this, she first showed the following lemma:3

Lemma 1 (informal). For any x /∈ L, if a quantum polynomial time cheat-
ing prover passes the test round with probability 1 − negl(n), then it passes the
Hadamard with probability negl(n) assuming the quantum hardness of the LWE
problem.

Given the above lemma, it is easy to prove the soundness of the protocol.
Roughly speaking, we consider a decomposition of the Hilbert space HP for
the prover’s internal state |ψP 〉 into two subspaces S0 and S1 so that S0 (resp.
S1) consists of quantum states that lead to rejection (resp. acceptance) in the
test round. That is, we define these subspaces so that if the cheating prover’s
internal state after sending the second message is |s0〉 ∈ S0 (resp. |s1〉 ∈ S1),
then the verifier returns rejection (acceptance) in the test round (i.e., the case
of c = 0). Here, we note that the decomposition is well-defined since we can
assume that a cheating prover just applies a fixed unitary on its internal space
and measures some registers for generating the fourth message in the test round
without loss of generality. Let Πb be the projection onto Sb and |ψb〉 := Πb|ψP 〉
for b ∈ {0, 1}. Then |ψ0〉 leads to rejection in the test round (with probability 1),
so if the verifier uniformly chooses c

$← {0, 1}, then |ψ0〉 leads to acceptance with
probability at most 1/2. On the other hand, since |ψ1〉 leads to the acceptance
in the test round (with probability 1), by Lemma 1, |ψ1〉 leads to the acceptance
in the Hadamard round with only negligible probability. Therefore, the verifier
uniformly chooses c

$← {0, 1}, then |ψ1〉 leads to acceptance with probability at
most 1/2 + negl(n). Therefore, intuitively speaking, |ψP 〉 = |ψ0〉 + |ψ1〉 leads to
acceptance with probability at most 1/2 + negl(n), which completes the proof
of soundness. We remark that here is a small gap since measurements are not
linear and thus we cannot simply conclude that |ψP 〉 leads to acceptance with
probability at most 1/2 + negl(n) even though the same property holds for both
|ψ0〉 and |ψ1〉. Indeed, Mahadev just showed that the soundness error is at most

3 Strictly speaking, she just proved a similar property for what is called a “measure-
ment protocol” instead of CVQC protocol. But this easily implies a similar state-
ment for CVQC protocol since CVQC protocol can be obtained by combining a
measurement protocol and the (amplified version of) Morimae-Fitzsimons protocol
[35] without affecting the soundness error as is done in [32, Section 8].



Classical Verification of Quantum Computations with Efficient Verifier 185

3/4 instead of 1/2+negl(n) to deal with this issue. A concurrent work by Alagic
et al. [6] proved that the Mahadev’s protocol actually achieves soundness error
1/2 + negl(n) with more careful analysis.

Parallel Repetition. Now, we turn our attention to parallel repetition version of
Mahadev’s protocol. Our goal is to prove that the probability that the verifier
accepts on x /∈ L is negligible if the verifier and prover run the Mahadev’s
protocol m-times parallelly for sufficiently large m and the verifier accepts if
and only if it accepts on the all coordinates.

Our first step is to consider a decomposition of the prover’s space HP into
two subspaces Si,0 and Si,1 for each i ∈ [m] similarly to the stand-alone case.
Specifically, we want to define these subspaces so that Si,0 (resp. Si,1) consists of
quantum states that lead to rejection (resp. acceptance) in the test round on the
i-th coordinate. However, such subspaces are not well-defined since a cheating
prover’s behavior in the fourth round depends on challenges c = c1....cm ∈
{0, 1}m on all coordinates. Thus, even if we focus on the test round on the i-th
coordinate, all other challenges c−i = c1...ci−1ci+1...cm still have flexibility, and
a different choice of c−i leads to a different prover’s behavior. In other words, the
prover’s strategy should be described as a unitary over HC ⊗HP where HC is a
Hilbert space to store a challenge. Therefore Si,0 and Si,1 cannot be well-defined
as a decomposition of HP if we define them as above.

Therefore, we need to define these subspaces in a little different way. Specif-
ically, our idea is to define them as subspaces that “know” and “do not know”
an answer for the test round on i-th coordinate. More precisely, for any fixed
noticeable “threshold” γ = 1/poly(n), we ideally require the followings:

1. (Si,0 “does not know” an answer.) If the fourth message generation algo-
rithm of the cheating prover runs with an internal state |ψi,0〉 ∈ Si,0, then it
passes the test round on i-th coordinate with probability at most γ when the
challenge c is uniformly chosen from {0, 1}m such that ci = 0.

2. (Si,1 “knows” an answer.) There is an efficient algorithm that is given any
|ψi,1〉 ∈ Si,1 as input and outputs an accepting answer for the test round on
i-th coordinate with overwhelming probability.

3. (Efficient projection.) A measurement described by {ΠSi,0 ,ΠSi,1} can be
performed efficiently where ΠSi,0 and ΠSi,1 denote projections to Si,0 and
Si,1, respectively.

Unfortunately, we do not know how to achieve these requirements in the
above clean form. Nonetheless, we can show that a “noisy” version of the above
requirements can be achieved by using the techniques taken from works on an
amplification theorem for QMA [33,36]. We will explain this in more detail in
the next paragraph since this is the technical core of our proof. In the rest of
this paragraph, we explain how to prove the soundness of the parallel repetition
version of Mahadev’s protocol assuming that the above requirements are satisfied
in the clean form as above for simplicity. Here, we observe that for any i ∈ [m]
and b ∈ {0, 1}, any efficiently generated |ψi,b〉 ∈ Si,b leads to acceptance in the
verification on i-th coordinate for any fixed c such that ci = b with probability at
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most 2m−1γ+negl(n). This can be seen by a similar argument to the stand-alone
case: The case of b = 0 follows from the above requirement 1 considering that
the number of c ∈ {0, 1}m such that ci = 0 is 2m−1. The case of b = 1 follows
from the above requirement 2 combined with Lemma 1 assuming the quantum
hardness of LWE.

Our next step is to sequentially apply projections onto Si,0 and Si,1 for
i = 1, ...,m to further decompose the prover’s state |ψP 〉. More precisely, for any
fixed c = c1...cm ∈ {0, 1}m, we define

|ψ0〉 := ΠS1,0 |ψP 〉, |ψ1〉 := ΠS1,1 |ψP 〉

and

|ψc̄1,...,c̄i−1,0〉 := ΠSi,0 |ψc̄1,...,c̄i−1〉, |ψc̄1,...,c̄i−1,1〉 := ΠSi,1 |ψc̄1,...,c̄i−1〉

for i = 2, ...,m where c̄i denotes 1 − ci. Then we have

|ψ〉 = |ψc1〉 + |ψc̄1,c2〉 + · · · + |ψc̄1,...,c̄m−1,cm
〉 + |ψc̄1,...,c̄m

〉.

Here, for each i ∈ [m], we have |ψc̄1,...,c̄i−1,ci
〉 ∈ Si,ci

by definition. There-
fore, |ψc̄1,...,c̄i−1,ci

〉 leads to acceptance on the verification on i-th coordinate
with probability at most 2m−1γ + negl(n) when the challenge is c. Moreover,
if we consider the above decomposition for a randomly chosen c, then we
have E

c
$←{0,1}m

[‖|ψc̄1,...,c̄m
〉‖] ≤ 2−m since an expected norm is halved when-

ever we apply either of projections onto Si,0 or Si,1 randomly. Therefore, we
can conclude that the verifier accepts on the all coordinates with probabil-
ity at most 2m−1γ + 2−m + negl(n). This is not negligible since we need to
assume that γ is noticeable due to a technical reason. However, we can make
2m−1γ +2−m +negl(n) as small as any noticeable function by appropriately set-
ting m = O(log n) and γ = 1/poly(n). This implies that a cheating adversary’s
winning probability is negl(n) if we set m = ω(log n).

How to Define Si,0 and Si,1. In this paragraph, we explain how to define
subspaces Si,0 and Si,1 and achieve a noisy version of the requirements in the
previous paragraph. For defining these subspaces, we borrow a lemma from [36],
which was originally used for proving an amplification theorem for QMA. Since
their lemma is a little complicated to state in a general form, we only explain
what is ensured by their lemma in our context. In our context, their lemma
ensures that there is an efficient operator Q over HC × HP where HC is a
register for storing a challenge c ∈ {0, 1}m such that

1. (Eigenvectors span HP .) there is a orthonormal basis {|α̂j〉}j of HP such that
|0m〉C|α̂j〉P is an eigenvector of Q with eigenvalue eiθj for some θj ,

2. (Eigenvalue corresponds to success probability.) if the fourth message gener-
ation algorithm of the cheating prover runs with an internal state |α̂j〉, then
it passes the test round on i-th coordinate with probability pj := cos2(θj/2)
when the challenge c is uniformly chosen from {0, 1}m such that ci = 0, and
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3. (Extractable) there is an extraction algorithm that is given a state |α̂j〉 and
outputs an accepting answer for the test round on i-th coordinate with over-
whelming probability in time poly(n, p−1

j ).

Given this lemma, our rough idea is to define Si,0 (resp. Si,1) as a subspace
spanned by |α̂j〉 such that pj ≤ γ (resp. pj > γ). Then, it is easy to see that Si,0

and Si,1 satisfy the requirements 1 and 2 (i.e., Si,0 “does not know” an answer
and Si,1 “knows” an answer). However, we do not know how to efficiently perform
a projection onto Si,0 or Si,1 since there is no known efficient algorithm for phase
estimation without an approximation error. On the other hand, we can efficiently
approximate a phase with an approximation error 1/poly(n) [36]. Then, our next
idea is to introduce an inverse polynomial gap between thresholds for Si,0 and
Si,1, i.e., we define Si,0 (resp. Si,1) as a subspace spanned by |α̂j〉 such that
pj ≤ γ (resp. pj ≥ γ + 1/poly(n)). Then, we can efficiently perform a projection
to Si,0 or Si,1 by using the phase estimation algorithm with an approximation
error 1/poly(n) if the original state does not have a “grey area”, which is a space
spanned by |α̂j〉 such that pj ∈ (γ, γ + 1/poly(n)). However, it may be the case
that the original state is dominated by the grey area. To resolve this issue, we
randomly set the threshold γ from T possible choices so that we can upper bound
the expected norm of the grey area component by O(1/T ). In the main body, we
formalize this “noisy” version of the decomposition and show that this suffices
for proving the soundness of parallel repetition version of Mahadev’s protocol.

Remark 1. We remark that parallel repetition of Mahadev’s protocol is also
analyzed in a concurrent work of Alagic et al. [6], who gave an elegant analysis.
Their analysis starts from the same observation (Lemma 1) but is interestingly
different from ours (see Sect. 1.3 for further discussion). An advantage of our
analysis is that it is more constructive. Namely, we show that the (“noisy” version
of) projection to Si,0 and Si,1 can be constructed efficiently. This is a useful
feature that has found application in the work of [18], who constructed CVQC
protocols for quantum sampling problems. They used the technique developed
here to analyze parallel repetition of their protocol (while the analysis of [6] does
not seem to generalize).

Two-Round Protocol via Fiat-Shamir Transform. Here, we explain how to con-
vert the parallel repetition version of Mahadev’s protocol to a two-round pro-
tocol in the QROM. First, we observe that the third message of the Mahadev’s
protocol is public-coin, and thus the parallel repetition version also satisfies this
property. Then by using the Fiat-Shamir transform [20], we can replace the third
message with hash value of the transcript up to the second round. Though the
Fiat-Shamir transform was originally proven sound only in the classical ROM,
recent works [19,31] showed that it is also sound in the QROM. This enables us to
apply the Fiat-Shamir transform to the parallel repetition version of Mahadev’s
protocol to obtain a two-round protocol in the QROM.

Making Verification Efficient. Finally, we explain how to make the verification
efficient. Our idea is to delegate the verification procedure itself to the prover
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by using delegation algorithm for classical computation. Since the verification is
classical, this seems to work at first glance. However, there are the following two
problems:

1. There is not a succinct description of the verification procedure since the
verification procedure is specified by the whole transcript whose size is poly(T )
when verifying a language in QTIME(T ). Then the verifier cannot specify the
verification procedure to delegate within time O(log(T )).

2. Since the CVQC protocol is not publicly verifiable (i.e., verification requires a
secret information that is not given to the prover), the prover cannot know the
description of the verification procedure, which is supposed to be delegated
to the prover.

We solve the first problem by using a succinct randomized encoding, which
enables one to generate a succinct encoding of a Turing machine M and an input
x so that the encoding only reveals the information about M(x) and not M or
x. Then our idea is that instead of sending the original first message, the verifier
just sends a succinct encoding of (V1, s) where V1 denotes the Turing machine
that takes s as input and works as the first-message-generation algorithm of the
CVQC protocol with randomness PRG(s) where PRG is a pseudorandom num-
ber generator. This enables us to make the transcript of the protocol succinct
(i.e., the description size is logarithmic in T ) so that the verifier can specify the
verification procedure succinctly. To be more precise, we have to use a strong
output-compressing randomized encoding [8], where the encoding size is inde-
pendent of the output length of the Turing machine. They construct a strong
output-compressing randomized encoding based on iO and other mild assump-
tions in the common reference string. Therefore our CVQC protocol also needs
the common reference string.

We solve the second problem by using FHE. Namely, the verifier sends an
encryption of the trapdoor td by FHE, and the prover performs the verification
procedure over the ciphertext and provides a proof that it honestly applied the
homomorphic evaluation by SNARK. Then the verifier decrypts the resulting
FHE ciphertext and accepts if the decryption result is “accept” and the SNARK
proof is valid.

In the following, we describe (a simplified version of) our construction. Sup-
pose that we have a 2-round CVQC that works as follows:

First message: Given an instance x, the verifier generates a pair (k, td) of
a“key” and “trapdoor”, sends k to P , and keeps td as its internal state.

Second message: Given x and k, the prover generates a response e and sends
it to the verifier.

Verification: Given x, k, td, e, the verifier returns � indicating acceptance or
⊥ indicating rejection.

Then we construct a CVQC protocol with efficient verification as follows.

Setup: It generates a CRS for a strong output-compressing randomized
encoding.
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First Message: Given a CRS and an instance x, the verifier picks a seed s

for PRG and a public and secret keys (pkfhe, skfhe) of FHE, computes ct
$←

FHE.Enc(pkfhe, s) and generates a succinct encoding ̂Minp of M(s) where M
is a classical Turing machine that works as follows:
M(s): Given a seed s for PRG, it generates (k, td) as in the building block

CVQC protocol by using a randomness PRG(s) and outputs k.
Then the verifier sends ( ̂Minp, pkfhe, ct) to the prover and keeps skfhe as its
internal state.

Second Message: The prover obtains k by decoding ̂Minp, computes e as in
the building block CVQC protocol, and homomorphically evaluates a classical
circuit C[x, e] on ct to generate ct′ where C[x, e] is a circuit that works as
follows:
C[x, e](s): Given a seed s for PRG, it generates (k, td) as in the building

block CVQC protocol by using a randomness PRG(s) and returns 1 if
and only if e is an accepting answer in the building block CVQC w.r.t. x
and (k, td).

Then the prover generates a SNARK proof πsnark that proves that there exists
e′ such that ct′ is a result of a homomorphic evaluation of the circuit C[x, e]
on ct. Then it sends (ct′, πsnark) to the verifier

Verification: The verifier accepts if the decryption result of ct′ is 1 and πsnark

passes the verification of SNARK.

Intuitively, the soundness of the above protocol can be proven by considering
the following hybrids. In the first hybrid, the verifier extracts the witness e′ from
πsnark by using the extractability of SNARK and runs the original verification
of the building block CVQC on the second message e′ instead of checking if
the decryption result of ct′ is 1. This decreases the cheating prover’s success
probability by a factor of poly(n) since the extraction succeeds with probability
1/poly(n) and if the extraction succeeds, the verifier’s output should be the
same. In the next hybrid, we change ct to an encryption of 0|s| instead of s.
Since the verifier no longer uses skfhe, this hybrid is indistinguishable from the
previous one by the CPA security of FHE. In the next hybrid, we generate
̂Minp by a simulation algorithm of the strong output-compressing randomized
encoding from M(s) = k. This hybrid is indistinguishable from the previous one
by the security of the strong output-compressing randomized encoding. In the
next hybrid, we replace k that is used as an input of the simulation algorithm of
the strong output-compressing randomized encoding with a one generated with
a true randomness instead of PRG(s). This hybrid is indistinguishable from
the previous one by the security of PRG noting that s is no longer used for
generating ct. In this final hybrid, a cheating prover is essentially only given
k and has no information about td, and it wins if and only if the extraction
algorithm of SNARK extracts an accepting second message e′ of the building
block CVQC. Thus, the winning probability in the final hybrid is negligible
due to the soundness of the building block CVQC. Therefore the above efficient
verification version is also sound.
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Though the above proof sketch can be made rigorous if we assume adaptive
extractability for SNARK, we want to instantiate SNARK in the QROM [17],
which is only proven to have non-adaptive extractability. Specifically, it only
ensures the extractability in the setting where the statement is chosen before
making any query to the random oracle. To deal with this issue, we first expand
the protocol to the four-round protocol where the verifier randomly sends a “salt”
z, which is a random string of a certain length, in the third round and the prover
uses the “salted” random oracle H(z, ·) for generating the SNARK proof. Since
the statement to be proven by SNARK is determined up to the second round,
and the salting essentially makes the random oracle “fresh”, we can argue the
soundness of the CVQC protocol even with the non-adaptive extractability of
the SNARK. At this point, we obtain four-round CVQC protocol with efficient
verification. Here, we observe that the third message is just a salt z, which is
public-coin. Therefore we can just apply the Fiat-Shamir transform again to
make the protocol two-round.

1.3 Related Works

Verification of Quantum Computation. There is a long line of researches on
verification of quantum computation. Except for solutions relying on computa-
tional assumptions, there are two type of settings where verification of quantum
computation is known to be possible. In the first setting, instead of considering
purely classical verifier, we assume that a verifier can perform a certain kind
of weak quantum computations [5,15,21,35]. In the second setting, we assume
that a prover is splitted into two remote servers that share entanglement but do
not communicate [41]. Though these works do not give a CVQC protocol in our
sense, the advantage is that we need not assume any computational assumption
for the proof of soundness, and thus they are incomparable to Mahadev’s result
and ours.

Subsequent to Mahadev’s breakthrough result, Gheorghiu and Vidick [24]
gave a CVQC protocol that also satisfies blindness, which ensures that a prover
cannot learn what computation is delegated. We note that their protocol requires
polynomial number of rounds.

Post-quantum Indistinguishability Obfuscation. There are several candidates of
post-quantum indistniguishability obfuscation [2,3,13,44]. Especially, the recent
work by Brakerski et al. [13] gave a construction of indistniguishability obfus-
cation based on the LWE assumption and a certain type of circular security of
LWE-based encryption schemes against subexponential time adversaries.

Concurrent Work. In a concurrent and independent work, Alagic et al. [6] also
shows similar results to our first and second results, parallel repetition theorem
for the Madadev’s protocol and a two-round CVQC protocol by the Fiat-Shamir
transform. We note that our third result, a two-round CVQC protocol with
efficient verification, is unique in this paper. On the other hand, they also give
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a construction of non-interactive zero-knowledge arguments for QMA, which is
not given in this paper.

We mention that we have learned the problem of parallel repetition for
Mahadev’s protocol from the authors of [6] on March 2019, but investigated
the problem independently later as a stepping stone toward making the veri-
fier efficient. Interestingly, the analyses of parallel repetition in the two works
are quite different. Briefly, the analysis in [6] relies on the observation that for
any two different challenges c1 �= c2 ∈ {0, 1}m, the projections of an efficient-
generated prover’s state on the accepting subspaces corresponding to c1 and c2
are almost orthogonal, which leads to an elegant proof of the parallel repetition
theorem.

As mentioned, we additionally show that the projections can be approxi-
mated “efficiently” by constructing an efficient quantum procedure (Lemma 4).
This is the main technical step in our proof, where we combine several tools such
as Jordan’s lemma, phase estimation, and random thresholding to construct the
efficient projector. We then use this efficient projector iteratively to bound the
success probability of the prover. Our construction of the efficient projection has
found applications in a related context in [18].

2 Preliminaries

Notations. For a bit b ∈ {0, 1}, b̄ denotes 1− b. For a finite set X , x
$← X means

that x is uniformly chosen from X . For finite sets X and Y, Func(X ,Y) denotes
the set of all functions with domain X and range Y. A function f : N → [0, 1]
is said to be negligible if for all polynomial p and sufficiently large n ∈ N, we
have f(n) < 1/p(n) and said to be overwhelming if 1 − f is negligible. We
denote by poly an unspecified polynomial and by negl an unspecified negligible
function. We say that a classical (resp. quantum) algorithm is efficient if it
runs in probabilistic polynomial-time (resp. quantum polynominal time). For a
quantum or randomized algorithm A, y

$← A(x) means that A is run on input x
and outputs y and y := A(x; r) means that A is run on input x and randomness
r and outputs y. For an interactive protocol between a “prover” P and “verifier”
V , y

$← 〈P (xP ), V (xV ))〉(x) means an interaction between them with prover’s
private input xP verifier’s private input xV , and common input x outputs y. For
a quantum state |ψ〉, MX ◦ |ψ〉 means a measurement in the computational basis
on the register X of |ψ〉. We denote by QTIME(T ) a class of languages decided
by a quantum algorithm whose running time is at most T . We use n to denote
the security parameter throughout the paper.

2.1 Learning with Error Problem

Roughly speaking, the learning with error (LWE) is a problem to solve system
of noisy linear equations. Regev [40] proved that the hardness of LWE can be
reduced to hardness of certain worst-case lattice problems via quantum reduc-
tions. We do not give a definition of LWE in this paper since we use the hardness
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of LWE only for ensuring the soundness of the Mahadev’s protocol (Lemma 3),
which is used as a black-box manner in the rest of the paper. Therefore, we use
exactly the same assumption as that used in [32], to which we refer for detailed
definitions and parameter settings for LWE.

2.2 Quantum Random Oracle Model

The quantum random oracle model (QROM) [12] is an idealized model where
a real-world hash function is modeled as a quantum oracle that computes a
random function. More precisely, in the QROM, a random function H : X → Y
of a certain domain X and range Y is uniformly chosen from Func(X ,Y) at the
beginning, and every party (including an adversary) can access to a quantum
oracle OH that maps |x〉|y〉 to |x〉|y ⊕H(x)〉. We often abuse notation to denote
AH to mean a quantum algorithm A is given oracle OH .

2.3 Lemma

Here, we give a simple lemma, which is used in the proof of soundness of parallel
repetition version of the Mahadev’s protocol in Sect. 3.3.

Lemma 2. Let |ψ〉 =
∑m

i=1 |ψi〉 be a quantum state and M be a projective
measurement. Then we have

Pr[M ◦ |ψ〉 = 1] ≤ m
m

∑

i=1

‖|ψi〉‖2 Pr
[

M ◦ |ψi〉
‖|ψi〉‖ = 1

]

A proof can be found in the full version.

3 Parallel Repetition of Mahadev’s Protocol

3.1 Overview of Mahadev’s Protocol

Here, we recall Mahadev’s protocol [32]. We only give a high-level description of
the protocol and properties of it and omit the details since they are not needed
to show our result.

The protocol is run between a quantum prover P and a classical verifier V on
a common input x. The aim of the protocol is to enable a verifier to classically
verify x ∈ L for a BQP language L with the help of interactions with a quantum
prover. The protocol is a 4-round protocol where the first message is sent from
V to P . We denote the i-th message generation algorithm by Vi for i ∈ {1, 3} or
Pi for i ∈ {2, 4} and denote the verifier’s final decision algorithm by Vout. Then
a high-level description of the protocol is given below.

V1: On input the security parameter 1n and x, it generates a pair (k, td) of
a“key” and “trapdoor”, sends k to P , and keeps td as its internal state.

P2: On input x and k, it generates a classical “commitment” y along with a
quantum state |stP 〉, sends y to P , and keeps |stP 〉 as its internal state.
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V3: It randomly picks a “challenge” c
$← {0, 1} and sends c to P .4 Following the

terminology in [32], we call the case of c = 0 the “test round” and the case
of c = 1 the “Hadamard round”.

P4: On input |stP 〉 and c, it generates a classical “answer” a and sends a to P .
Vout: On input k, td, y, c, and a, it returns � indicating acceptance or ⊥ indicating

rejection. In case c = 0, the verification can be done publicly, that is, Vout

need not take td as input.

For the protocol, we have the following properties:

Completeness: For all x ∈ L, we have Pr[〈P, V 〉(x)] = ⊥] = negl(n).
Soundness: If the LWE problem is hard for quantum polynomial-time algo-
rithms, then for any x /∈ L and a quantum polynomial-time cheating prover P ∗,
we have Pr[〈P ∗, V 〉(x)] = ⊥] ≤ 3/4.

We need a slightly different form of soundness implicitly shown in [32], which
roughly says that if a cheating prover can pass the “test round” (i.e., the case of
c = 0) with overwhelming probability, then it can pass the “Hadamard round”
(i.e., the case of c = 1) only with a negligible probability.

Lemma 3 (implicit in [32]). If the LWE problem is hard for quantum
polynomial-time algorithms, then for any x /∈ L and a quantum polynomial-
time cheating prover P ∗ such that Pr[〈P ∗, V 〉(x)] = ⊥ | c = 0] = negl(n), we
have Pr[〈P ∗, V 〉(x)] = � | c = 1] = negl(n).

We will also use the following simple fact:

Fact 1 There exists an efficient prover that passes the test round with probability
1 (but passes the Hadamard round with probability 0) even if x /∈ L.

3.2 Parallel Repetition

Here, we prove that the parallel repetition of Mahadev’s protocol decrease the
soundness bound to be negligible. Let Pm and V m be m-parallel repetitions of
the honest prover P and verifier V in Mahadev’s protocol. Then we have the
following:

Theorem 1 (Completeness). For all m = Ω(log2(n)), for all x ∈ L, we have
Pr[〈Pm, V m〉(x)] = ⊥] = negl(n).

Theorem 2 (Soundness). For all m = Ω(log2(n)), if the LWE problem is
hard for quantum polynomial-time algorithms, then for any x /∈ L and a quantum
polynomial-time cheating prover P ∗, we have Pr[〈P ∗, V m〉(x)] = �] ≤ negl(n).

The completeness (Theorem 1) easily follows from the completeness of
Mahadev’s protocol. In the next subsection, we prove the soundness (Theo-
rem 2).
4 The third message is just a public-coin, and does not depend on the transcript so

far or x.
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3.3 Proof of Soundness

First, we remark that it suffices to show that for any μ = 1/poly(n), there exists
m = O(log(n)) such that the success probability of the cheating prover is at most
μ. This is because we are considering ω(log(n))-parallel repetition, in which case
the number of repetitions is larger than any m = O(log(n)) for sufficiently large
n, and thus we can just focus on the first m coordinates ignoring the rest of the
coordinates. Thus, we prove the above claim in this section.

Characterization of Cheating Prover. Any cheating prover can be charac-
terized by a tuple (U0, U) of unitaries over Hilbert space HC ⊗HX ⊗HZ ⊗HY ⊗
HK.5 A prover characterized by (U0, U) works as follows.6

Second Message: Upon receiving k = (k1, ..., km), it applies U0 to the state
|0〉X ⊗ |0〉Z ⊗ |0〉Y ⊗ |k〉K, and then measures the Y register to obtain y =
(y1, ..., ym). Then it sends y to V and keeps the resulting state |ψ(k, y)〉X,Z

over HX,Z.
fourth Message: Upon receiving c ∈ {0, 1}m, it applies U to |c〉C|ψ(k, y)〉X,Z

and then measures the X register in computational basis to obtain a =
(a1, ..., am). We denote the designated register for ai by Xi.

For each i ∈ [m], we denote by Accki,yi
the set of ai such that the verifier accepts

ai in the test round on the i-th coordinate when the first and second messages
are ki and yi, respectively. Note that one can efficiently check if ai ∈ Accki,yi

without knowing the trapdoor behind ki since verification in the test round can
be done publicly as explained in Sect. 3.1.

We first give ideas about Lemma 4 that is the main lemma for this section.
For each coordinate i ∈ [m], we would like to decompose the space HX,Z into
a subspace Si,0 that “does not know” ai ∈ Accki,yi

and a subspace Si,1 that
“knows” ai ∈ Accki,yi

. Ideally, we want to prove the following statement: For
any i ∈ [m] and |ψ〉 ∈ HX,Z, if we decompose it as

|ψ〉 = |ψ0〉 + |ψ1〉

where |ψ0〉 ∈ Si,0 and |ψ1〉 ∈ Si,1, then we have the followings:7

1. (|ψ0〉 “does not know” ai ∈ Accki,yi
.) If we apply U to |c〉C|ψ0〉X,Z for

c
$← {0, 1}m such that ci = 0 and measures the Xi register in computational

basis to obtain ai, then ai ∈ Accki,yi
with “small” probability.8

2. (|ψ1〉 “knows” ai ∈ Accki,yi
.) There is an efficient algorithm that is given

|ψ1〉 as input and outputs ai ∈ Accki,yi
with overwhelming probability.

5 HX ⊗ HZ corresponds to HP in Sect. 1.2.
6 Here, we hardwire into the cheating prover the instance x /∈ L on which it will cheat

instead of giving it as an input.
7 |ψ0〉 and |ψ1〉 correspond to |ψi,0〉 and |ψi,1〉 in Sect. 1.2, respectively.
8 The threshold for “small” can be set to be any noticeable function.
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3. (Efficient projection.) A measurement described by {ΠSi,0 ,ΠSi,1} can be
performed efficiently where ΠSi,0 and ΠSi,1 denote projections to Si,0 and
Si,1, respectively.

If this is true, then the rest of the proof would be easy following the outline
described in Sect. 1.2. However, we do not know how to prove it in the above
clean form. Therefore we prove a noisy version of the above claim where

1. the way of decomposition is randomized,
2. there is an error term, i.e., we decompose |ψ〉 as

|ψ〉 = |ψ0〉 + |ψ1〉 + |ψerr〉

by using a state |ψerr〉 whose norm is “small” on average, and
3. we have ‖|ψ0〉‖2+‖|ψ1〉‖2 ≤ ‖|ψ〉‖2. We note that this condition automatically

follows if |ψ0〉 and |ψ1〉 are orthogonal as in the above clean version, but they
may not be orthogonal in our case.

Specifically, our lemma is stated as follows:

Lemma 4. Let (U0, U) be any prover’s strategy. Let m = O(log n), i ∈ [m], γ0 ∈
[0, 1], and T ∈ N such that γ0

T = 1/poly(n). Let γ be sampled uniformly randomly
from [γ0

T , 2γ0
T , . . . , Tγ0

T ]. Then, there exists an efficient quantum procedure Gi,γ

such that for any (possibly sub-normalized) quantum state |ψ〉X,Z,

Gi,γ |0m〉C|ψ〉X,Z|0t〉ph|0〉th|0〉in =z0|0m〉C|ψ0〉X,Z|0t01〉ph,th,in

+ z1|0m〉C|ψ1〉X,Z|0t11〉ph,th,in + |ψ′
err〉

where t is the number of qubits in the register ph, z0, z1 ∈ C such that |z0| =
|z1| = 1, and z0, z1, |ψ0〉X,Z, |ψ1〉X,Z, and |ψ′

err〉 may depend on γ.
Furthermore, the following properties are satisfied.

1. (Error is Small.) If we define |ψerr〉X,Z := |ψ〉X,Z−|ψ0〉X,Z−|ψ1〉X,Z, then
we have Eγ [‖|ψerr〉X,Z‖2] ≤ 6

T + negl(n).
2. (Efficient projection.) For any fixed γ, Pr[Mph,th,in ◦ |ψ′

err〉 ∈
{0t01, 0t11}] = 0. This implies that if we apply the measurement Mph,th,in

on Gi,γ |0m〉C|ψ〉X,Z|0t〉ph|0〉th|0〉in

‖|ψ〉X,Z‖ , then the outcome is 0tb1 with probability

‖|ψb〉X,Z‖2 and the resulting state in the register (X,Z) is |ψb〉X,Z

‖|ψb〉X,Z‖ ignor-
ing a global phase factor.

3. (Projection halves the squared norm.) For any fixed γ, Eb∈{0,1}
[‖|ψb〉X,Z‖2] ≤ 1

2‖|ψ〉X,Z‖2.
4. (|ψ0〉 “does not know” ai ∈ Accki,yi

.) For any fixed γ and c ∈ {0, 1}m such
that ci = 0, we have

Pr
[

MXi
◦ U

|c〉C|ψ0〉X,Z

‖|ψ0〉X,Z‖ ∈ Accki,yi

]

≤ 2m−1γ + negl(n).
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Procedure 1 Gi,γ

1. Do quantum phase estimation Uest on Q = (2Πin −I)(2Πi,out −I) with input
state |0m〉C |ψ〉X,Z and τ -bit precision and failure probability 2−n where the
parameter τ will be specified later, i.e.,

Uest |u〉C,X,Z |0t〉ph →
∑

θ∈(−π,π]

αθ |u〉C,X,Z |θ〉ph .

such that
∑

θ/∈θ̄±2−τ |αθ|2 ≤ 2−n for any eigenvector |u〉C,X,Z of Q with

eigenvalue eiθ̄.

2. Apply Uth : |u〉C,X,Z |θ〉ph |0〉th

Uth−−→ |u〉C,X,Z |θ〉ph |b〉th, where b = 1 if

cos2(θ/2) ≥ γ − δ.
3. Apply U†

est.

4. Apply Uin : |c〉C |0〉in

Uin−−→ |c〉C |b′〉in, where b′ = 1 if c = 0m.

5. (|ψ1〉 “knows” ai ∈ Accki,yi
.) For any fixed γ, there exists an efficient quan-

tum algorithm Exti such that

Pr
[

Exti

( |0m〉C|ψ1〉X,Z

‖|ψ1〉X,Z‖
)

∈ Accki,yi

]

= 1 − negl(n).

We prove that the algorithm Gi,γ given in Fig. 1 satisfies the above conditions.
The proof is based on a lemma about two projectors shown by Nagaj, Wocjan,
and Zhang [36], which in turn is based on the Jordan’s lemma. See the full
version for a proof.

In Lemma 4, we showed that by fixing any i ∈ [m], we can partition any
prover’s state |ψ〉X,Z into |ψ0〉X,Z, |ψ1〉X,Z, and |ψerr〉X,Z with certain proper-
ties. In the following, we sequentially apply Lemma 4 for each i ∈ [m] to further
decompose the prover’s state.

Lemma 5. Let m, γ0, T be as in Lemma 4, and let γi
$← [γ0

T , 2γ0
T , . . . , Tγ0

T ] for
each i ∈ [m]. For any c ∈ {0, 1}m, a state |ψ〉X,Z can be partitioned as follows.

|ψ〉X,Z = |ψc1 〉X,Z + |ψc̄1,c2 〉X,Z + · · · + |ψc̄1,...,c̄m−1,cm 〉X,Z + |ψc̄1,...,c̄m 〉X,Z + |ψerr〉X,Z

where the way of partition may depend on the choice of γ̂ = γ1...γm. Further,
the following properties are satisfied.

1. For any fixed γ̂ and any c, i ∈ [m] such that ci = 0, we have

Pr
[

MXi
◦ U

|0m〉C|ψc̄1,...,c̄i−1,0〉X,Z

||ψc̄1,...,c̄i−1,0〉X,Z| ∈ Accki,yi

]

≤ 2m−1γ0 + negl(n).

2. For any fixed γ̂ and any c, i ∈ [m] such that ci = 1, there exists an efficient
algorithm Exti such that

Pr
[

Exti

( |0m〉C|ψc̄1,...,c̄i−1,1〉X,Z

‖|ψc̄1,...,c̄i−1,1〉X,Z‖
)

∈ Accki,yi

]

= 1 − negl(n).
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3. For any fixed γ̂, we have Ec[‖|ψc̄1,...,c̄m
〉X,Z‖2] ≤ 2−m.

4. For any fixed c, we have Eγ̂ [‖|ψerr〉X,Z‖2] ≤ 6m2

T + negl(n).
5. For any fixed γ̂ and c there exists an efficient quantum algorithm Hγ̂,c that

is given |ψ〉X,Z as input and produces
|ψc̄1,...,c̄i−1,ci

〉X,Z

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖ with probability

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖2 ignoring a global phase factor.

Proof. We inductively define |ψc1〉X,Z,...,|ψc̄1,...,c̄m
〉X,Z as follows.

First, we apply Lemma 4 for the state |ψ〉X,Z with γ = γ1 to give a decom-
position

|ψ〉X,Z = |ψ0〉X,Z + |ψ1〉X,Z + |ψerr,1〉X,Z

where |ψerr,1〉X,Z corresponds to |ψerr〉X,Z in Lemma 4.
For each i = 2, ...,m, we apply Lemma 4 for the state |ψc̄1,...,c̄i−1〉X,Z with

γ = γi to give a decomposition

|ψc̄1,...,c̄i−1〉X,Z = |ψc̄1,...,c̄i−1,0〉X,Z + |ψc̄1,...,c̄i−1,1〉X,Z + |ψerr,i〉X,Z

where |ψc̄1,...,c̄i−1,0〉X,Z, |ψc̄1,...,c̄i−1,1〉X,Z, and |ψerr,i〉X,Z corresponds to |ψ0〉X,Z,
|ψ1〉X,Z, and |ψerr〉X,Z in Lemma 4, respectively.

Then it is easy to see that we have

|ψ〉X,Z = |ψc1 〉X,Z + |ψc̄1,c2 〉X,Z + · · · + |ψc̄1,...,c̄m−1,cm 〉X,Z + |ψc̄1,...,c̄m 〉X,Z + |ψerr〉X,Z

where we define |ψerr〉X,Z :=
∑m

i=1 |ψerr,i〉X,Z.
The first and second claims immediately follow from the fourth and fifth

claims of Lemma 4 and γi ≤ γ0 for each i ∈ [m].
By the third claim of Lemma 4, we have Ec1...ci

[‖|ψc̄1,...,c̄i
〉X,Z‖] ≤

1
2Ec1...ci−1 [‖|ψc̄1,...,c̄i−1〉X,Z‖]. This implies the third claim.

By the first claim of Lemma 4, we have Eγi
[‖|ψerr,i〉X,Z‖2] ≤ 6

T + negl(n).
The fourth claim follows from this and the Cauchy-Schwarz inequality.

Finally, for proving the fifth claim, we define the procedure Hγ̂,c as described
in Procedure 2 We can easily see that Hγ̂,c satisfies the desired property by the
second claim of Lemma 4.

Given Lemma 5, we can start proving Theorem 2.

Proof (Proof of Theorem 2).
First, we recall how a cheating prover characterized by (U0, U) works. When the
first message k is given, it first applies

U0|0〉X,Z|0〉Y|k〉K measure Y−−−−−−−−→ |ψ(k, y)〉X,Z|k〉K.

to generate the second message y and |ψ(k, y)〉X,Z. Then after receiving the third
message c, it applies U on |c〉C|ψ(k, y)〉X,Z and measures the register X in the
computational basis to obtain the fourth message a. In the following, we just
write |ψ〉X,Z to mean |ψ(k, y)〉X,Z for notational simplicity. Let Mi,ki,tdi,yi,ci

be
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Procedure 2 Hγ̂,c

On input |ψ〉X,Z, it works as follows:
For each i = 1, ..., m, it applies
1. Prepare registers C, (ph1, th1, in1),..., (phm, thm, inm) all of which are ini-

tialized to be |0〉.
2. For each i = 1, ..., m, do the following:

1. Apply Gi,γi on the quantum state in the registers (C,X,Z, phi, thi, ini).
2. Measure the registers (phi, thi, ini) in the computational basis.
3. If the outcome is 0tci1, then it halts and returns the state in the register

(X,Z). If the outcome is 0tc̄i1, continue to run. Otherwise, immediately
halt and abort.

the measurement that outputs the verification result of the value in the register
Xi w.r.t. ki, tdi, yi, ci, and let Mk,td,y,c be the measurement that returns � if
and only if Mi,ki,tdi,yi,ci

returns � for all i ∈ [m] where k = (k1, ..., km), td =
(td1, ..., tdm), y = (y1, ..., ym) and c = (c1, ..., cm). With this notation, a cheating
prover’s success probability can be written as

Pr
k,td,y,c

[Mk,td,y,c ◦ U |c〉C|ψ〉X,Z = �].

Let γ0, γ̂, and T be as in Lemma 5. According to Lemma 5, for any fixed γ̂
and c ∈ {0, 1}m, we can decompose |ψ〉X,Z as

|ψ〉X,Z = |ψc1 〉X,Z + |ψc̄1,c2 〉X,Z + · · · + |ψc̄1,...,c̄m−1,cm 〉X,Z + |ψc̄1,...,c̄m−1,c̄m 〉X,Z + |ψerr〉X,Z.

To prove the theorem, we show the following two inequalities. First, for any fixed
γ̂, i ∈ [m], c ∈ {0, 1}m such that ci = 0, ki, tdi, and yi, we have

Pr
[

Mi,ki,tdi,yi,0 ◦ U |c〉C|ψc̄1,...,c̄i−1,0〉X,Z

‖|ψc̄1,...,c̄i−1,0〉X,Z‖ = �
]

≤ 2m−1γ0 + negl(n). (1)

This easily follows from the first claim of Lemma 5
Second, for any fixed γ̂, i ∈ [m], and c ∈ {0, 1}m such that ci = 1, we have

E
k,td,y

[
‖|ψc̄1,...,c̄i−1,1〉X,Z‖2 Pr

[
Mi,ki,tdi,yi,1 ◦ U

|c〉C|ψc̄1,...,c̄i−1,1〉X,Z

‖|ψc̄1,...,c̄i−1,1〉X,Z‖ = �
]]

= negl(n)

(2)

assuming the quantum hardness of LWE problem.
For proving Eq. 2, we consider a cheating prover against the original

Mahadev’s protocol on the i-th coordinate described below:

1. Given ki, it picks k−i = k1...ki−1, ki+1, ..., km as in the protocol and computes
U0|0〉X,Z|0〉Y|k〉K and measure the register Y to obtain y = (y1, ..., ym) along
with the corresponding state |ψ〉X,Z = |ψ(k, y)〉X,Z.
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2. Apply Hγ̂,c (which is defined in the fifth claim of Lemma 5) to generate the

state
|ψc̄1,...,c̄i−1,1〉X,Z

‖|ψc̄1,...,c̄i−1,1〉X,Z‖ , which succeeds with probability ‖|ψc̄1,...,c̄i−1,1〉X,Z‖2
(ignoring a global phase factor). We denote by Succ the event that it succeeds
in generating the state. If it fails to generate the state, then it overrides yi

by picking it in a way such that it can pass the test round with probability
1, which can be done according to Fact 1. Then it sends yi to the verifier.

3. Given a challenge c′
i, it works as follows:

– When c′
i = 0 (i.e., Test round), if Succ occurred, then it runs Exti in

the second claim of Lemma 5 on input
|0m〉C|ψc̄1,...,c̄i−1,1〉X,Z

‖|ψc̄1,...,c̄i−1,1〉X,Z‖ to generate

a fourth message accepted with probability 1 − negl(n). If Succ did not
occur, then it returns a fourth message accepted with probability 1, which
is possible by Fact 1.

– When c′
i = 1 (i.e., Hadamard round), if Succ occurred, then it computes

U
|c〉C|ψc̄1,...,c̄i−1,1〉X,Z

‖|ψc̄1,...,c̄i−1,1〉X,Z‖ and measure the register Xi to obtain the fourth
message ai. If Succ did not occur, it just aborts.

Then we can see that this cheating adversary passes the test round with over-
whelming probability and passes the Hadamard round with the probability equal
to the LHS of Eq. 2. Therefore, Eq. 2 follows from Lemma 3 assuming the quan-
tum hardness of LWE problem.

Now, we are ready to prove the soundness of the parallel repetition version
of Mahadev’s protocol (Theorem 2). As remarked at the beginning of Sect. 3.3,
it suffices to show that for any μ = 1/poly(n), there exists m = O(log(n)) such
that the success probability of the cheating prover is at most μ. Here we set
m = log 1

μ2 , γ0 = 2−2m, and T = 2m. Note that this parameter setting satisfies
the requirement for Lemma 5 since m = log 1

μ2 = log(poly(n)) = O(log n) and
γ0
T = 2−3m = μ6 = 1/poly(n). Then we have

Pr
k,td,y,c

[
Mk,td,y,c ◦ U|c〉C|ψ〉X,Z = �]

= Pr
k,td,y,c,γ̂

[

Mk,td,y,c ◦ U|c〉C
(

m∑

i=1

|ψc̄1,...,c̄i−1,ci
〉X,Z + |ψc̄1,...,c̄m 〉X,Z + |ψerr〉X,Z

)

= �
]

≤ (m + 2) E
k,td,y,c,γ̂

[
m∑

i=1

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖2

Pr

⎡

⎣Mk,td,y,c ◦ U
|c〉C|ψc̄1,...,c̄i−1,ci

〉X,Z

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖ = �

⎤

⎦

+ ‖|ψc̄1,...,c̄m 〉X,Z‖2
Pr

[

Mk,td,y,c ◦ U
|c〉C|ψc̄1,...,c̄m 〉X,Z

‖|ψc̄1,...,c̄m 〉X,Z

= �
]

+ ‖|ψerr〉X,Z‖2
Pr

[

Mk,td,y,c ◦ U
|c〉C|ψerr〉X,Z

‖|ψerr〉X,Z‖ = �
]]

≤ (m + 2) E
k,td,y,c,γ̂

[
m∑

i=1

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖2

Pr

⎡

⎣Mi,ki,tdi,yi,ci
◦ U

|c〉C|ψc̄1,...,c̄i−1,ci
〉X,Z

‖|ψc̄1,...,c̄i−1,ci
〉X,Z‖ = �

⎤

⎦

+ ‖|ψc̄1,...,c̄m 〉X,Z‖2
+ ‖|ψerr〉X,Z‖2

]

≤ (m + 2)(m(2
m−1

γ0 + negl(n)) + 2
−m

+
6m2

T
+ negl(n))

≤ poly(log μ
−1

)μ
2
+ negl(n).
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The first equation follows from Lemma 5. The first inequality follows from
Lemma 2. The second inequality holds since considering the verification on
a particular coordinate just increases the acceptance probability and probabil-
ities are at most 1. The third inequality follows from Eq. 1 and 2, which give
an upper bound of the first term and Lemma 5, which gives upper bounds
of the second and third terms. The last inequality follows from our choices of
γ0, T , and m. For sufficiently large n, this can be upper bounded by μ. Since
Prk,td,y,c[Mk,td,y,c ◦ U |c〉C|ψ〉X,Z = �] is the success probability of a cheating
prover, the above inequality means that for any μ = 1/poly(n), there exists
m = O(log(n)) such that the success probability of the cheating prover is at
most μ. As remarked at the beginning of Sect. 3.3, this suffices for proving that
a chearing prover’s success probability is negligible when m = ω(log n).

4 Two-Round Protocol via Fiat-Shamir Transform

In this section, we show that if we apply the Fiat-Shamir transform to m-parallel
version of the Mahadev’s protocol, then we obtain two-round protocol in the
QROM. That is, we prove the following theorem.

Theorem 3. Assuming LWE assumption, there exists a two-round CVQC pro-
tocol with overwhelming completeness and negligible soundness error in the
QROM.

Proof. Let m > n be a sufficiently large integer so that m-parallel version of the
Mahadev’s protocol has negligible soundness. For notational simplicity, we abuse
the notation to simply use Vi, Pi, and Vout to mean the m-parallel repetitions of
them. Let H : Y → {0, 1}m be a hash function idealized as a quantum random
oracle where X is the space of the second message y and Y = {0, 1}m. Our
two-round protocol is described below:

First Message: The verifier runs V1 to generate (k, td). Then it sends k to the
prover and keeps td as its state.

Second Message: The prover runs P2 on input k to generate y along with the
prover’s state |stP 〉. Then set c := H(y), and runs P4 on input |stP 〉 and y to
generate a. Finally, it returns (y, a) to the verifier.

Verification: The verifier computes c = H(y), runs Vout(k, td, y, c, a), and out-
puts as Vout outputs.

It is clear that the completeness is preserved given that H is a random oracle.
We can reduce the soundness of this protocol to the soundness of m-parallel
version of the Mahadev’s protocol by using the result of [19], which shows that
Fiat-Shamir transform preserves soundness in the QROM. See the full version
for details.
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5 Making Verifier Efficient

In this section, we construct a CVQC protocol with efficient verification in the
CRS+QRO model where a classical common reference string is available for both
prover and verifier in addition to quantum access to QRO. Our main theorem
in this section is stated as follows:

Theorem 4. Assuming LWE assumption and existence of post-quantum iO,
post-quantum FHE, and two-round CVQC protocol in the standard model, there
exists a two-round CVQC protocol for QTIME(T ) with verification complexity
poly(n, log T ) in the CRS+QRO model.

Remark 2. One may think that the underlying two-round CVQC protocol can
be in the QROM instead of in the standard model since we rely on the QROM
anyway. However, this is not the case since we need to use the underlying two-
round CVQC in a non-black box way, which cannot be done if that is in the
QROM. Since our two-round protocol given in Sect. 4 is only proven secure in
the QROM, we do not know any two-round CVQC protocol provably secure in
the standard model. On the other hand, it is widely used heuristic in cryptog-
raphy that a scheme proven secure in the QROM is also secure in the standard
model if the QRO is instantiated by a well-designed cryptographic hash func-
tion. For example, many candidates for the NIST post-quantum standardization
[37] give security proofs in the QROM and claim their security in the real world.
Therefore, we believe that it is reasonable to assume that a standard model
instantiation of the scheme in Sect. 4 with a concrete hash function is sound.

Remark 3. One may think we need not assume CRS in addition to QRO since
CRS may be replaced with an output of QRO. This can be done if CRS is just
a uniformly random string. However, in our construction, CRS is non-uniform
and has a certain structure. Therefore we cannot implement CRS by QRO.

5.1 Four-Round Protocol

First, we construct a four-round scheme with efficient verification, which is trans-
formed into two-round protocol in the next subsection. Our construction is based
on the following building blocks. Definitions of them can be found in the full ver-
sion.

– A two-round CVQC protocol Π = (P = P2, V = (V1, Vout)) in the standard
model, which works as follows:
V1: On input the security parameter 1n and x, it generates a pair (k, td) of

a“key” and “trapdoor”, sends k to P , and keeps td as its internal state.
P2: On input x and k, it generates a response e and sends it to V .
Vout: On input x, k, td, e, it returns � indicating acceptance or ⊥ indicating

rejection.
– A post-quantum PRG PRG : {0, 1}�s → {0, 1}�r where 
r is the length of

randomness for V1.
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– An FHE scheme ΠFHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) with
post-quantum CPA security.

– A strong output compressing randomized encoding scheme ΠRE =
(RE.Setup,RE.Enc,RE.Dec) with post-quantum security. We denote the sim-
ulator for ΠRE by Sre.

– A SNARK ΠSNARK = (Psnark, Vsnark) in the QROM for an NP language Lsnark

defined below:
We have (x, pkfhe, ct, ct

′) ∈ Lsnark if and only if there exists e such that ct′ =
FHE.Eval(pkfhe, C[x, e], ct) where C[x, e] is a circuit that works as follows:
C[x, e](s): Given input s, it computes (k, td) $← V1(1n, x;PRG(s)), and

returns 1 if and only if Vout(x, k, td, e) = � and 0 otherwise.

Let L be a BPP language decided by a quantum Turing machine QTM (i.e.,
for any x ∈ {0, 1}∗, x ∈ L if and only if QTM accepts x), and for any T , LT

denotes the set consisting of x ∈ L such that QTM accepts x in T steps. Then
we construct a 4-round CVQC protocol (Setupeff , Peff = (Peff,2, Peff,4), Veff =
(Veff,1, Veff,3, Veff,out)) for LT in the CRS+QRO model where the verifier’s effi-
ciency only logarithmically depends on T . Let H : {0, 1}2n × {0, 1}2n → {0, 1}n

be a quantum random oracle.

Setupeff(1n): The setup algorithm takes the security parameter 1n as input, gen-
erates crsre

$← {0, 1}� and computes ekre
$← RE.Setup(1n, 1�, crsre) where 
 is

a parameter specified later. Then it outputs a CRS for verifier crsVeff
:= ekre

and a CRS for prover crsPeff
:= crsre.9

V H
eff,1: Given crsVeff

= ekre and x, it generates s
$← {0, 1}�s and

(pkfhe, skfhe)
$← FHE.KeyGen(1n), computes ct

$← FHE.Enc(pkfhe, s) and
̂Minp

$← RE.Enc(ekre,M, s, T ′) where M is a Turing machine that works as
follows:
M(s): Given an input s ∈ {0, 1}�s , it computes (k, td) $← V1(1n, x;PRG(s))

and outputs k
and T ′ is specified later. Then it sends ( ̂Minp, pkfhe, ct) to Peff and keeps skfhe

as its internal state.
PH

eff,2: Given crsPeff
= crsre, x and the message ( ̂Minp, pkfhe, ct) from the ver-

ifier, it computes k ← RE.Dec(crsre, ̂Minp), e
$← P2(x, k), and ct′ ←

FHE.Eval(pkfhe, C[x, e], ct) where C[x, e] is a classical circuit defined above.
Then it sends ct′ to Veff and keeps (pkfhe, ct, ct

′, e) as its state.
V H

eff,3 Upon receiving ct′, it randomly picks z
$← {0, 1}2n and sends z to Peff .

PH
eff,4 Upon receiving z, it computes πsnark

$← P
H(z,·)
snark ((x, pkfhe, ct, ct

′), e) and
sends πsnark to Veff .

V H
eff,out: It returns � if V

H(z,·)
snark ((x, pkfhe, ct, ct

′), πsnark) = � and 1 ←
FHE.Dec(skfhe, ct

′) and ⊥ otherwise.

9 We note that we divide the CRS into crsVeff and crsPeff just for the verifier efficiency
and soundness still holds even if a cheating prover sees crsVeff .
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Choice of Parameters.

– We set 
 to be an upper bound of the length of k where (k, td) $← V1(1n, x)
for x ∈ LT . We note that we have 
 = poly(n, T ).

– We set T ′ to be an upperbound of the running time of M on input s ∈ {0, 1}�s

when x ∈ LT . We note that we have T ′ = poly(n, T ).

Verification Efficiency. By encoding efficiency of ΠRE and verification efficiency
of ΠSNARK, Veff runs in time poly(n, |x|, log T ).

Remark 4. We note that the running time of the setup algorithm is poly(T ).
This can be done by a trusted party that has a strong (classical) computational
power. Alternatively, as in the classical delegating computation literature, we
can consider an offline/online setting where the verifier can spend a one-time
cost of poly(T ) to setup the CRS in the offline stage, and use it to delegate
multiple quantum computation efficiently in the online stage.

Theorem 5 (Completeness). For any x ∈ LT ,

Pr
[〈PH

eff (crsPeff
), V H

eff (crsVeff
)〉(x) = ⊥]

= negl(n)

where (crsPeff
, crsVeff

) $← Setupeff(1n).

Proof. This easily follows from completeness and correctness of the underlying
primitives.

Theorem 6 (Soundness). For any x /∈ LT any efficient quantum cheating
prover A,

Pr
[〈AH(crsPeff

, crsVeff
), V H

eff (crsVeff
)〉(x) = �]

= negl(n)

where (crsPeff
, crsVeff

) $← Setupeff(1n).

A proof can be found in the full version.

5.2 Reducing to Two-Round via Fiat-Shamir

Since the third message is public-coin in the four-round protocol in the previous
section, we can apply the Fiat-Shamir transform similarly to Sect. 4. Then we
obtain the two-round CVQC protocol in the QROM, which completes the proof
of Theorem 4. Details can be found in the full version.
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Abstract. This paper makes three contributions. First, we present a
simple theory of random systems. The main idea is to think of a proba-
bilistic system as an equivalence class of distributions over deterministic
systems. Second, we demonstrate how in this new theory, the optimal
information-theoretic distinguishing advantage between two systems can
be characterized merely in terms of the statistical distance of proba-
bility distributions, providing a more elementary understanding of the
distance of systems. In particular, two systems that are ε-close in terms of
the best distinguishing advantage can be understood as being equal with
probability 1 − ε, a property that holds statically, without even consid-
ering a distinguisher, let alone its interaction with the systems. Finally,
we exploit this new characterization of the distinguishing advantage to
prove that any threshold combiner is an amplifier for indistinguishability
in the information-theoretic setting, generalizing and simplifying results
from Maurer, Pietrzak, and Renner (CRYPTO 2007).

1 Introduction

1.1 Random Systems

A random system is an object of general interest in computer science and in
particular in cryptography. Informally, a random system is an abstract object
which operates in rounds. In the i-th round, an input (or query) Xi is answered
with a random output Yi, and each round may (probabilistically) depend on
the previous rounds. In previous work [9,12], a random system S is defined by a
sequence of conditional probability distributions pS

Yi|XiY i−1 (or pS
Y i|Xi) for i ≥ 1.

This captures exactly the input-output behavior of a probabilistic system, as it
gives the probability distribution of any output Yi, conditioned on the previous
inputs Xi = (X1, . . . , Xi) and outputs Y i−1 = (Y1, . . . , Yi−1).

For example, a uniform random function (URF) from X to Y is a random
system R corresponding to the following behavior: Every new input xi ∈ X is
answered with an independent uniform random value yi ∈ Y and every input
that was given before is answered consistently. Similarly, a uniform random
permutation is a random system P (different from R).

Many statements appearing in the cryptographic literature are about ran-
dom systems (even though they are usually expressed in a specific language,
for example using pseudo-code). For example, the optimal distinguishing advan-
tage AdvD(S,T) of a distinguisher class D between two systems S and T only
c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12552, pp. 207–240, 2020.
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depends on the behavior of S and T. In particular, it is independent of how
S is implemented (in program code), whether it is a Turing Machine, or how
efficient it is. For example, the well-known URP-URF switching lemma [3,10] is
a statement about the optimal information-theoretic distinguishing advantage
between the two random systems R and P (see above). Clearly, the switching
lemma holds irrespective of the concrete implementations of the systems R or
P, e.g., whether they employ eager or lazy sampling.

1.2 Random Systems as Equivalence Classes

An abstract object can (usually) be represented as an equivalence class of objects
from a lower abstraction layer. Perhaps surprisingly, this can give new insight
about the object and also be technically useful. As an example, assume our
(abstract) objects are pairs (X,Y) of probability distributions over the same set.
If we let [(X,Y)] denote the equivalence class of all random experiments E with
two arbitrarily correlated random variables X and Y distributed according to X
and Y, we can express the statistical distance as follows (also known as Coupling
Lemma [1]):

δ(X,Y) = inf
E∈[(X,Y)]

PrE(X �= Y ).

Note that the statistical distance δ(X,Y) is defined at the level of probability
distributions, and thus does not require any joint distribution between X and
Y (let alone a random experiment with accordingly distributed random vari-
ables). Nevertheless, the coupling interpretation provides a very intuitive and
elementary understanding of the statistical distance. Moreover, it is a powerful
technique that can be used to show the closeness (in statistical distance) of two
probability distributions X and Y: one exhibits any random experiment E with
cleverly correlated random variables X and Y (distributed according to X and
Y) such that PrE(X = Y ) is close to 1. This coupling technique has been used
extensively for example to prove that certain Markov chains are rapidly mixing,
i.e., they converge quickly to their stationary distribution (see for example [1]).

The gist of such reasoning is to lower the level of abstraction in order to
define or interpret a property, or to prove a statement in a more elementary and
intuitive manner.

In this paper, we apply the outlined way of thinking to random systems. We
explore a lower level of abstraction which we call probabilistic discrete systems.
A probabilistic discrete system (PDS) is defined as a (probability) distribution
over deterministic discrete systems (DDS). Loosely speaking, this captures the
fact that for any implementation of a random system we can fix the randomness
(say, the “random tape”) to obtain a deterministic system. We then observe that
there exist different PDS that are observationally equivalent, i.e., their input-
output behavior is equal, implying that they correspond to the same random
system. Thus, we propose to think of a random system S as an equivalence class
of PDS and write S ∈ S for a PDS S that behaves like S (i.e., it is an element



Coupling of Random Systems 209

of the equivalence class S). For example, a uniform random function R can be
implemented by a PDS R that initially samples the complete function table and
by a PDS R′ that employs lazy sampling. These are two different PDS (R �= R′),
but they are behaviorally equivalent and thus correspond to the same random
system, i.e., R ∈ R and R′ ∈ R (see also the later Example 5).

Many interesting properties of random systems depend on what interaction is
allowed with the system. Usually, this is formalized based on the notion of envi-
ronments and, in cryptography, the notion of distinguishers. Such environments
are complex objects (similar to random systems) which maintain state and can
ask adaptive queries. This can pose a significant challenge for example when
proving indistinguishability bounds, and naturally leads to the following ques-
tion:

Is it possible to express properties which classically involve environments
equivalently as natural intrinsic properties of the systems themselves, i.e.,
without the explicit concept of an environment?

We answer this question in the positive. The key idea is to exploit the equivalence
classes: we prove that the optimal information-theoretic distinguishing advan-
tage Adv(S,T) is equal to Δ(S,T), the infimum statistical distance δ(S,T) for
PDS S ∈ S and T ∈ T. By combining this result with the above coupling inter-
pretation of the statistical distance, we can think of the distinguishing advantage
Adv(R, I) between a real system R and an ideal system I as a failure probability
of R, i.e., the probability that R is not equal to I. This is quite surprising since
being equal is a purely static property, whereas the traditional distinguishing
advantage appears to be inherently dynamic.

The coupling theorem for random systems is not only of conceptual interest.
It also represents a novel technique to prove indistinguishability bounds in an
elementary fashion: in the core of such a proof, one only needs to bound the
statistical distance of probability distributions over deterministic systems (for
example by using the Coupling Method mentioned above). Usually, the fact that
the distribution is over systems will be irrelevant. In particular, the interaction
with the systems and the complexity of (adaptive) environments is completely
avoided.

1.3 Security and Indistinguishability Amplification

Security amplification is a central theme of cryptography. Turning weak objects
into strong objects is useful as it allows to weaken the required assumptions.
Indistinguishability amplification is a special kind of security amplification,
where the quantity of interest is the closeness (in terms of adaptive indistin-
guishability) to some idealized system. Most of the well-known constructions
achieving indistinguishability amplification do this by combining many moder-
ately close systems into a single system that is very close to its ideal form.

In this paper, we take a more general approach to indistinguishability ampli-
fication and present results that allow (for example) to combine many moder-
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ately close systems into multiple systems that are jointly very close to inde-
pendent instances of their ideal form. This is useful, since many cryptographic
protocols need several independent instantiations of a scheme, for example a
(pseudo-)random permutation.

1.4 Motivating Examples for Indistinguishability Amplification

As a first motivating example, consider the following construction C that com-
bines three independent random1 permutations2 π1, π2, and π3 into two random
permutations by cascading (composing) them as follows:

C(π1,π2,π3) = (π1 ◦ π3,π2 ◦ π3).

π1

π2

π3

If, say, the second constructed permutation is (forward-)queried with x, the value
x is input to π2 and the output x′ = π2(x) is forwarded to π3. The output of
π3(x′) is the response to the query x.

Clearly, if any two of the three random permutations πi are a (perfect)
uniform random permutation P, then (π1 ◦π3,π2 ◦π3) behaves exactly as if all
three random permutations πi are perfect uniform random permutations (i.e.,
it behaves as two independent uniform random permutations (P,P′)). Thus, we
call C a (2, 3)-combiner for the pairs (π1,P), (π2,P), (π3,P).

What, however, can we say when the πi are only εi-close3 to a uniform
random permutation? A straightforward hybrid argument shows that

Adv((π1 ◦ π3,π2 ◦ π3), (P,P′)) ≤ min(ε1 + ε2, ε1 + ε3, ε2 + ε3),

where Adv(·, ·) denotes the optimal distinguishing advantage over all adaptive
(computationally unbounded) distinguishers. Intuitively though, one might hope
that if all εi (as opposed to only two of them) are small, a better bound is
achievable. Ideally, this bound should be smaller than the individual εi, i.e., we
want to obtain indistinguishability amplification. A consequence of one of our
results (Theorem 3) is that this is indeed possible. We have

Adv((π1 ◦ π3,π2 ◦ π3), (P,P′)) ≤ 2(ε1ε2 + ε1ε3 + ε2ε3) − 3ε1ε2ε3.

1 Throughout this paper, we use the word random as in random variable, i.e., not
implying uniformity of a distribution.

2 We assume the permutations to be stateless and both-sided (though all claims remain
true if the permutations are all one-sided). A both-sided permutation is a permuta-
tion that allows forward- and backward-queries, i.e., queries to π and π−1.

3 By ε-close we mean that any adaptive (computationally unbounded) distinguisher
has distinguishing advantage at most ε.
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More generally, it is natural to ask the following question4:

How many independent random permutations that are ε′-close to a uni-
form random permutation need to be combined to obtain m random per-
mutations that are (jointly) ε-close (for ε � ε′) to m independent uniform
random permutations?

This question has been studied for the special case m = 1 (see for exam-
ple [12,18,19]), and it is known that the cascade of n independent random
permutations (each ε-close to a uniform random permutation) is 1

2 (2ε)n-close
to a uniform random permutation. Of course, there is a straightforward way to
use such a construction for m = 1 multiple times in order to obtain a basic indis-
tinguishability result for m > 1: one simply partitions the n independent random
permutations π1, . . . ,πn into sets of equal size and cascades the permutations
in each set.

Example 1. We can construct four random permutations from 20 random per-
mutations as follows:

π1 π2 π3 π4 π5

π6 π7 π8 π9 π10

π11 π12 π13 π14 π15

π16 π17 π18 π19 π20

If the πi are independent and all ε-close (say, 2−10-close) to a uniform random
permutation, Theorem 1 of [12] implies that the construction above yields four
random permutations that are jointly 64ε5-close ((2.3ε)5-close, 2−44.0-close) to
four independent uniform random permutations.

Naturally, one might ask whether it is possible to construct four random per-
mutations to get stronger amplification (i.e., a larger exponent) without using
more random permutations. This is indeed possible, as the following example
illustrates.

Example 2. Consider the following construction of four random permutations:

4 For the following examples we assume for simplicity some fixed upper bound ε′ on
the individual εi (where the i-th component system is εi-close to its ideal form).
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π1 π2 π3

π4 π5 π6

π7 π8 π9

π10 π11 π12

π13 π14 π15

The main advantage of this construction is that it makes use of only 15
(instead of 20) random permutations. Our results imply that if the πi are inde-
pendent and ε-close (say, 2−10-close) to a uniform random permutation, then
the constructed four random permutations are jointly 320ε6-close ((2.7ε)6-close,
2−51.6-close) to four independent uniform random permutations.

Instead of random permutations one can just as well combine random functions:
the same constructions and bounds as in Example 1 and Example 2 apply if we
replace the cascade ◦ with the elementwise XOR ⊕. However, in this setting,
we show that the additional structure of random functions can be exploited to
achieve even stronger amplification than in the examples above.

Example 3. Let F1, . . . ,F10 be independent random functions over a finite field
F, and let A be a 4 × 10 MDS5 matrix over F. Consider the following construc-
tion of four random functions (F′

1,F
′
2,F

′
3,F

′
4), making use of only 10 random

functions (as opposed to the above constructions with 20 and 15, respectively):

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

(i, x) x

A

y =
∑10

j=1 Aij · yj

i

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

On input x to the i-th constructed function F′
i (for i ∈ {1, 2, 3, 4}), all ran-

dom functions F1, . . . ,F10 are queried with x, and the answers y1, . . . , y10 are
combined to the result y =

∑10
j=1 Aij · yj .

5 An MDS (maximum distance separable) matrix [8,16] is a matrix over a finite field
for which every square submatrix is non-singular.
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Our results imply that if the Fi are independent and ε-close (say, 2−10-
close) to a uniform random function, the four random functions (F′

1,F
′
2,F

′
3,F

′
4)

are jointly 7680ε7-close ((3.6ε)7-close, 2−57.0-close) to four independent uniform
random functions.

1.5 Contributions and Outline

We briefly state our main contributions in a simplified manner. In Sect. 3, we
define deterministic discrete systems and probabilistic discrete systems together
with an equivalence relation capturing the input-output behavior. Moreover, we
argue that we can characterize a random system by an equivalence class of PDS.

In Sect. 4, we define the distance Δ for random systems as

Δ(S,T) := inf
S∈S
T∈T

δ(S,T).

We then present Theorem 1, stating that for any two random systems6 S and T
we have

Δ(S,T) = Adv(S,T),

and there exist PDS S ∈ S and T ∈ T such that δ(S,T) = Δ(S,T). By combining
this result with the coupling interpretation of the statistical distance (see above),
we can think in a mathematically precise sense of the distinguishing advantage
Adv(R, I) between a real system R and an ideal system I as the probability
of a failure event, i.e., the probability of the event that R and I are not equal.
More specifically, we phrase a coupling theorem for random systems (Theorem
2), stating that for any two random systems S and T there exist PDS S ∈ S and
T ∈ T with a joint distribution (or coupling) such that

Adv(S,T) = Pr(S �= T).

The coupling theorem also represents a novel technique to prove indistinguisha-
bility bounds in an elementary fashion: in the core of such a proof, one only needs
to bound the statistical distance of probability distributions over deterministic
systems (for example by using the Coupling Method mentioned above). Often,
the fact that the distribution is over systems will be irrelevant. In particular,
the interaction with the systems and the complexity of (adaptive) environments
is completely avoided, as the potential failure event can be thought of as being
triggered before the interaction started.

Finally, in Sect. 5, we demonstrate how our coupling theorem can be used to
prove indistinguishability bounds. We present Theorem 3, stating that any
(k, n)-combiner is an amplifier for indistinguishability. A simplified variant of
6 Recall that a random system is an equivalence class of probabilistic discrete systems

with the same input-output behavior.
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the bound can be expressed as follows (see Corollary 1): If C is a (k, n)-combiner
for (F1, I1), . . . , (Fn, In) and Adv(Fi, Ii) ≤ ε for all i ∈ [n], then

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 1
2

(
n

k − 1

)

· (2ε)n−k+1.

The indistinguishability amplification results of [12] are a special case of this
corollary (for k = 1 and n = 2).

Moreover, we demonstrate how these indistinguishability results can be
instantiated by combiners transforming n independent random functions (ran-
dom permutations) into m < n random functions (random permutations),
obtaining indistinguishability amplification.

1.6 Related Work

There exists a vast amount of literature on information-theoretic indistinguisha-
bility of various constructions, in particular for the analysis of symmetric key
cryptography. Prominent examples are constructions transforming uniform ran-
dom functions into uniform random permutations or vice-versa: the Luby-
Rackoff construction [6] (or Feistel construction), similar constructions by Naor
and Reingold [14], the truncation of a random permutation [5], and the XOR of
random permutations [2,7].

Random Systems. The characterization of random systems by their input-
output behavior in the form of a sequence of conditional distributions pYi|XiY i−1

(or pY i|Xi) was first described in [9].

Indistinguishability Proof Techniques. There exist various techniques for
proving information-theoretic indistinguishability bounds. A prominent app-
roach is to define a failure condition such that two systems are equivalent before
said condition is satisfied (see also [9]). Maurer, Pietrzak, and Renner proved
in [12] that there always exists such a failure condition that is optimal, showing
that this technique allows to prove perfectly tight indistinguishability bounds.
At first glance, the lemma of [12] seems to be similar to our coupling theorem.
While both statements are tight characterizations of the distinguishing advan-
tage, the crucial advantage of our result is that it allows to remove the complexity
of the adaptive interaction when reasoning about indistinguishability of random
systems. This enables reasoning at the level of probability distributions: one
can think of a failure event occurring or not before the interaction even begins.
The interactive hard-core lemma shown by Tessaro [17] in the computational
setting allows this kind of reasoning as well, though it only holds for so-called
“cc-stateless systems”.

More involved proof techniques include directly bounding the statistical dis-
tance of the transcript distributions, such as Patarin’s H-coefficient method [15],
and most recently, the Chi-squared method [4].
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Indistinguishability Amplification. Examples of previous indistinguishabil-
ity amplification results are the various computational XOR lemmas, Vaudenay’s
product theorem for random permutations [18,19], as well as the more abstract
product theorem for (stateful) random systems [12] (and so-called neutralizing
constructions). In [13], some of the results of [12] have been proved in the com-
putational setting.

A different type of indistinguishability amplification is shown in [11,12],
where the amplification is with respect to the distinguisher class, lifting non-
adaptive indistinguishability to adaptive indistinguishability.

2 Preliminaries

Notation. For n ∈ N, we let [n] denote the set {1, . . . , n} with the convention
[0] = ∅. The set of sequences (or strings) of length n over the alphabet A is
denoted by An. An element of An is denoted by an = (a1, . . . , an) for ai ∈ A.
The empty sequence is denoted by ε. The set of finite sequences over alphabet A
is denoted by A∗ := ∪i∈NAi and the set of non-empty finite sequences is denoted
by A+ := A∗ − {ε}. A set A ⊆ A∗ is prefix-closed if (a1, a2, . . . , ai) ∈ A implies
(a1, a2, . . . , aj) ∈ A for any j ≤ i. For two sequences xi ∈ X i and x̂j ∈ X j , the
concatenation xi|x̂j is the sequence (x1, . . . , xi, x̂1, . . . , x̂j) ∈ X i+j .

A (total) function from X to Y is a binary relation f ⊆ X × Y such that for
every x ∈ X there exists a unique y ∈ Y with (x, y) ∈ f . A partial function from
X to Y is a total function from X ′ to Y for a subset X ′ ⊆ X. The domain of
a function f is denoted by dom(f). The support of a function f : X → Y with
0 ∈ Y , for example a distribution, is defined by supp(f) := {x | x ∈ X, f(x) �= 0}.

A multiset over A is a function M : A → N. We represent multisets in set
notation, e.g., M = {(a, 2), (b, 7)} denotes the multiset M with domain {a, b},
M(a) = 2, and M(b) = 7. The cardinality |M | of a multiset is

∑
a∈dom(M) M(a).

The union ∪, intersection ∩, sum +, and difference − of two multisets is defined
by the pointwise maximum, minimum, sum, and difference, respectively. Finally,
the symmetric difference M �M ′ of two multisets is defined by M∪M ′−M∩M ′.

Throughout this paper, we use the following notion of a (finite) distribution.

Definition 1. A distribution (or measure) over A is a function X : A → R≥0

with finite support. The weight of a distribution is defined by

|X| :=
∑

a∈A
X(a).

A probability distribution is a distribution X with weight 1 (i.e., |X| = 1). More-
over, overloading the notation, we define for a distribution X over A and A ⊆ A

X(A) :=
∑

a∈A

X(a).
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In the following, we do not demand that a distribution has weight 1, i.e., we do
not assume probability distributions (unless stated explicitly). This is important,
as the proof of one of our main results (Theorem 1) relies on distributions of
arbitrary weight.

Definition 2. The marginal distribution Xi of a distribution X over A1 × · · ·×
An is defined as

Xi(ai) =
∑

a′∈A1×···×An,a′
i=ai

X(a′).

Lemma 1. Let X1, . . . ,Xn be distributions over A1, . . . , An, respectively, such
that all Xi have the same weight p ∈ R≥0. Then, there exists a (joint) distribution
X over A1 × · · · × An with weight p and marginals Xi.

Proof. A possible choice is X(a1, . . . , an) := p−(n−1)
∏

i∈[n] Xi(ai).

Definition 3. The statistical distance of two distributions X : A → R≥0 and
Y : A → R≥0 is

δ(X,Y) :=
∑

a∈A
max(0,X(a) − Y(a)) = |X| −

∑

a∈A
min(X(a),Y(a)).

Note that for distributions X and Y of different weight, i.e., |X| �= |Y|, the statis-
tical distance is not symmetric (δ(X,Y) �= δ(Y,X)). Moreover, for distributions
of the same weight, i.e., |X| = |Y|, we have δ(X,Y) = 1

2

∑
a∈A|X(a) − Y(a)|.

The following lemma, proved in Appendix A, is an immediate consequence
of the definition of the statistical distance.

Lemma 2. Let 〈Ai〉i∈[n] be a partition of a set A, and let X1, . . . ,Xn as well as
Y1, . . . ,Yn be distributions over A such that supp(Xi) ⊆ Ai and supp(Yi) ⊆ Ai

for all i ∈ [n]. For X :=
∑

i∈[n] Xi and Y :=
∑

i∈[n] Yi we have

δ(X,Y) =
∑

i∈[n]

δ(Xi,Yi).

Definition 4. For a distribution X : A → R≥0 and a function f : A → B, the
f -transformation of X, denoted by f(X), is the distribution over B defined by7

f(X) := X ◦ f−1.

The following lemma states that the statistical distance of two distributions
cannot increase if a function f is applied (to both distributions). This is well-
known for the case in which X and Y are probability distributions. We prove the
claim in Appendix A.

7 In the expression X◦f−1, the function X is such that X(A) =
∑

a∈A X(a) for A ⊆ A.
Moreover, f−1 denotes the preimage of f , i.e., f−1(b) := {a | a ∈ A, f(a) = b}.



Coupling of Random Systems 217

Lemma 3. For two distributions X and Y over A and any total function f :
A → B we have

δ(X,Y) ≥ δ(f(X), f(Y)).

Lemma 4. (Coupling Lemma, Lemma 3.6 of [1]). Let X,Y be probability
distributions over the same set.

1. For any joint distribution of X and Y we have

δ(X,Y) ≤ Pr(X �= Y).

2. There exists a joint distribution of X and Y such that

δ(X,Y) = Pr(X �= Y).

3 Discrete Random Systems

3.1 Deterministic Discrete Systems

A deterministic discrete (X ,Y)-system is a system with input alphabet X and
output alphabet Y. The system’s first output (or response) y1 ∈ Y is a function
of the first input (or query) x1 ∈ X . The second output y2 is a priori a function
of the first two inputs x1, x2 and the first output y1. However, since y1 is already
a function of x1, it is more minimal to define y2 as a function of the first two
inputs x2 = (x1, x2) ∈ X 2. In general, the i-th output yi ∈ Y is a function of the
first i inputs xi ∈ X i.

Definition 5. A deterministic discrete (X ,Y)-system (or (X ,Y)-DDS) is a
partial function

s : X+ → Y
with prefix-closed domain. An (X ,Y)-DDS s is finite if X is finite and dom(s) ⊆
∪i≤nX i for some n ∈ N. Moreover, we let dom1(s) denote the input alphabet for
the first query, i.e., dom1(s) = dom(s) ∩ X 1.

A DDS is an abstraction capturing exactly the input-output behavior of a deter-
ministic system. Thus, it is independent of any implementation details that
describe how the outputs are produced. One can therefore think of a DDS as
an equivalence class of more explicit implementations. For example, different
programs (or Turing machines) can correspond to the same DDS. Moreover, the
fact that there is state is captured canonically by letting each output depend
on the previous sequence of inputs, as opposed to introducing an explicit state
space.

In this paper, we restrict ourselves to finite systems. We note that the defi-
nitions and claims can be generalized to infinite systems. Alternatively, one can
often interpret an infinite system as a parametrized family of finite systems.
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00
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flip

Fig. 1. The four single-query ({0, 1}, {0, 1})-DDS zero, one, id, flip.

Example 4. Figure 1 depicts the four single-query ({0, 1}, {0, 1})-DDS zero, one,
id, and flip, i.e., all total functions from {0, 1} to {0, 1}

zero(x) := 0, one(x) := 1, id(x) := x, flip(x) := 1 − x.

An environment is an object (similar to a DDS) that interacts with a system s by
producing the inputs xi for s and receiving the corresponding outputs yi. Envi-
ronments are adaptive and stateful, i.e., a produced input xi is a function of all
the previous outputs yi−1 = (y1, . . . , yi−1). Moreover, we allow an environment
to stop at any time.

Definition 6. A deterministic discrete environment for an (X ,Y)-DDS (or
(Y,X )-DDE) is a partial function

e : Y∗ → X

with prefix-closed domain.

Definition 7. The transcript of a system s in environment e, denoted by
tr(s, e), is the sequence of pairs (x1, y1), (x2, y2), . . . , (xl, yl), defined for i ≥ 1 by

xi = e(y1, . . . , yi−1) and yi = s(x1, . . . , xi).

We require the environment e to be compatible with s, i.e., the environment
must not query s outside of the system’s domain. Formally, this means that yi =
s(x1, . . . , xi) is defined whenever xi = e(y1, . . . , yi−1) is defined. If e(y1, . . . , yi−1)
is undefined (the environment stops), the transcript ends and has length l = i−1.

3.2 Probabilistic Discrete Systems

We define probabilistic systems (environments) as distributions over determinis-
tic systems (environments). Note that even though we use the term probabilistic,
we do not assume that the corresponding distributions are probability distribu-
tions (i.e., they do not need to sum up to 1, unless explicitly stated).

Definition 8. A probabilistic discrete (X ,Y)-system S (or (X ,Y)-PDS) is a
distribution over (X ,Y)-DDS such that all DDS in the support of S have the
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same domain, denoted8 by dom(S). We always assume that S is finite, i.e., X is
finite and dom(S) ⊆ ∪i≤nX i for some n ∈ N.

Definition 9. A probabilistic discrete environment for an (X ,Y)-PDS (or
(Y,X )-PDE) is a distribution over (Y,X )-DDE.

Observe that a PDS contains all information for a system that can be executed
arbitrarily many times, i.e., a system that can be rewound and then queried
again on the same randomness. We consider the standard setting in which a
system can only be executed once (see Definition 7). In this setting, there exist
different PDS that behave identically from the perspective of any environment,
i.e., they exhibit the same behavior. The following example demonstrates this.

Example 5. Let V be the uniform probability distribution over the set of all
single-query ({0, 1}, {0, 1})-DDS {zero, one, id, flip} (see Fig. 1), i.e.,

V := {(zero, 1/4) , (one, 1/4) , (id, 1/4) , (flip, 1/4)} .

For any input x ∈ {0, 1}, the system V outputs a uniform random bit. Formally,
the transcript distribution tr(V, ex) for an environment ex that inputs x ∈ {0, 1}
(i.e., ex(ε) = x) is

tr(V, ex) = {((x, 0), 1/2) , ((x, 1), 1/2)} .

The PDS V represents a system that samples the answers for both possible inputs
x ∈ {0, 1} independently (even though only one query is answered). Clearly, the
exact same behavior can be implemented by sampling a uniform bit and using
it for whatever query is asked, resulting in the PDS

V′ := {(zero, 1/2) , (one, 1/2) , (id, 0) , (flip, 0)} .

It is easy to verify that for any α ∈ [0, 1/2], the following PDS Vα has the same
behavior as V:

Vα := {(zero, α) , (one, α) , (id, 1/2 − α) , (flip, 1/2 − α)} .

Actually, it is not difficult to show that every PDS with the behavior of V is of
the form Vα. Thus, we can think of the random system V (that responds for
every input x ∈ {0, 1} with a uniform random bit) as the equivalence class

[V] = {Vα | α ∈ [0, 1/2]} .

More generally, we define two PDS to be equivalent if their transcript distri-
butions are the same in all environments. It is easy to see that considering
only deterministic environments results in the same equivalence notion that is
obtained when considering probabilistic environments.
8 Note that we are overloading the notation of dom(·), as S is a function from deter-

ministic systems to R≥0.
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Definition 10. Two (X ,Y)-PDS S and T are equivalent, denoted by S ≡ T, if
they have the same domain and9

tr(S, e) = tr(T, e) for all compatible (Y,X )-DDE e.

The equivalence class of a PDS S is denoted by [S] := {S′ | S′,S ≡ S′}.
The following lemma, proved in Appendix A, states that for S and T to be
equivalent it suffices that the transcript distribution tr(S, e) is equal to tr(T, e)
for all non-adaptive10 deterministic environments e.

Lemma 5. For any two (X ,Y)-PDS S and T with the same domain we have
S ≡ T if and only if

tr(S, e) = tr(T, e) for all compatible non-adaptive (Y,X )-DDE e.

Stated differently, an equivalence class [S] of PDS can be characterized by the
transcript distributions for all non-adaptive deterministic environments. Since
a non-adaptive deterministic environment is uniquely described by a sequence
xk ∈ X k of inputs and the corresponding transcript distribution tr(S, e) is essen-
tially the distribution of observed outputs under the input sequence xk, it follows
immediately that an equivalence class of PDS describes exactly a random sys-
tem as introduced in [9] (where a characterization in the form of a sequence of
conditional distributions pYi|XiY i−1 or pY i|Xi was used).

Notation 1. We use bold-face font S to denote a random system, an equivalence
class of PDS. Since the transcript distribution tr(S, e) does (by definition) only
depend on the random system S and not on the concrete element S ∈ S of the
equivalence class, we write

tr(S, e)

to denote the transcript distribution of the random system S in environment e.

4 Coupling Theorem for Discrete Systems

4.1 Distance of Equivalence Classes and the Coupling Theorem

The optimal distinguishing advantage is widely-used in the (cryptographic) lit-
erature to quantify the distance between random systems. It can be defined as
the supremum statistical distance of the transcripts under all compatible (Y,X )
-DDE. In the information-theoretic setting, this is equivalent to the classical
definition as the supremum difference of the probability that a (probabilistic)
distinguisher outputs 1 when interacting with each system.
9 tr(S, e) denotes the tr(·, e)-transformation of the distribution S (see Definition 4).

10 A non-adaptive environment must choose every query xi independently of the previ-
ous outputs y1, . . . , yi−1. Formally, e(yi) only depends on the length i of the sequence
yi, i.e., we have e(yi) = e(ŷi) for any i ∈ N and yi, ŷi ∈ Yi.
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Definition 11. For two random (X ,Y)-systems S and T with the same
domain, the optimal distinguishing advantage Adv(S,T) is defined by

Adv(S,T) := sup
e

δ(tr(S, e), tr(T, e)),

where the supremum is over all compatible (Y,X )-DDE.

Understanding a random system as an equivalence class of probabilistic discrete
systems gives rise to the following distance notion Δ:

Definition 12. For two random (X ,Y)-systems S and T with the same domain
we define

Δ(S,T) := inf
S∈S
T∈T

δ(S,T).

Note that since there exist PDS S and S′ that are equivalent (S ≡ S′) even
though δ(S,S′) = 1 (for example V0 and V1/2 from Example 5), taking the
infimum seems to be necessary to quantify the distance of random systems in a
meaningful way. We can now state the first theorem.

Theorem 1. For any two random (X ,Y)-systems S and T with the same
domain we have

Δ(S,T) = Adv(S,T),

and there exist PDS S ∈ S and T ∈ T such that δ(S,T) = Δ(S,T).

The coupling theorem for random systems is an immediate consequence of The-
orem 1 and the classical Coupling Lemma (Lemma 4).

Theorem 2 (Coupling Theorem for Random Systems). For any two ran-
dom systems S and T there exist PDS S ∈ S and T ∈ T with a joint distribution
(or coupling) such that

Adv(S,T) = Pr(S �= T).

4.2 Proof of Theorem 1

The Single-Query Case. We start by proving Theorem 1 for single-query
random systems. Let S and T be two single-query (X ,Y)-systems, represented
by the two (X ,Y)-PDS S ∈ S and T ∈ T. Observe that a single-query (X ,Y)
-DDS s is a function from X to Y, and can thus be represented by a tuple

(yx1 , yx2 , . . . , yxn
) ∈ Yn, where X = {x1, . . . , xn} and s(xi) = yxi

.

Hence, we can represent S and T as distributions over Yn for n = |X |. If Si and
Ti are the marginal distributions of the i-th index of S and T, respectively, then
an environment that inputs the value xi ∈ X will observe either Si or Ti. From
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Definition 11 it follows that an optimal environment chooses i such that δ(Si,Ti)
is maximized, so we have

Adv(S,T) = max
i∈[n]

δ(Si,Ti).

The following lemma directly implies that there exist PDS S′ ∈ S and T′ ∈ T
such that δ(S′,T′) = Adv(S,T). This proves Theorem 1 for single-query systems.

Lemma 6. For each i ∈ [n], let Xi and Yi be distributions over Ai, such that all
Xi have the same weight pX ∈ R≥0 and all Yi have the same weight pY ∈ R≥0.
Then there exist (joint) distributions X and Y over A1 ×· · ·×An with marginals
Xi and Yi, respectively, such that

δ(X,Y) = max
i∈[n]

δ(Xi,Yi).

Proof. As δ(Xi,Yi) = pX −∑a∈Ai
min(Xi(a),Yi(a)), we have

max
i∈[n]

δ(Xi,Yi) = pX − min
i∈[n]

∑

a∈Ai

min(Xi(a),Yi(a)).

Let τ := mini∈[n]

∑
a∈Ai

min(Xi(a),Yi(a)). Clearly, for every i ∈ [n], there exist
distributions Ei, X′

i, and Y′
i such that Ei has weight τ (i.e., |Ei| = τ) and

Xi = Ei + X′
i and Yi = Ei + Y′

i.

By invoking Lemma 1 three times, we obtain the joint distributions E, X′, and Y′

of all Ei, X′
i, and Y′

i, respectively. We let X := E+X′ and Y := E+Y′. It is easy
to verify that X has the marginals Xi and Y has the marginals Yi. Moreover,

∑

v∈A1×···×An

min(X(v),Y(v)) ≥
∑

v∈A1×···×An

E(v) = |E| = τ,

which implies δ(X,Y) ≤ pX − τ = maxi∈[n] δ(Xi,Yi).
Finally, we have δ(X,Y) ≥ δ(Xi,Yi) for all i ∈ [n] due to Lemma 3 and thus

δ(X,Y) ≥ maxi∈[n] δ(Xi,Yi), concluding the proof. ��

The General Case. Before proving the general case of Theorem 1, we introduce
the following notion of a successor system.

Notation 2. For an (X ,Y)-DDS s and any first query x ∈ dom1(s), we let s↑x

denote the (X ,Y)-DDS that behaves like s after the first query x has been
input. That is, if s answers at most q queries, s↑x answers at most (q − 1)
queries. Formally,

s↑x(x̂i) := s(x|x̂i).

Analogously, we define for a (Y,X )-DDE e the successor e↑y(ŷi) := e(y|ŷi).
Finally, for an (X ,Y)-PDS S, we let S↑x↓y denote the transformation of S with
the partial function s �→ s↑x↓y (see Definition 4), where s↑x↓y is equal to s↑x if
s(x) = y and undefined otherwise.
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We stress that if S is a probability distribution (i.e., it sums to 1), S↑x↓y is in gen-
eral not a probability distribution anymore: the weight

∣
∣S↑x↓y

∣
∣ is the probability

that S responds with y to the query x.

Proof. (of Theorem 1). We prove the theorem using (arbitrary) representatives
S and T of the equivalence classes, i.e., S and T correspond to [S] and [T],
respectively. First, observe that Δ(S,T) ≥ Adv(S,T), since we have for any
environment e and any S′ ∈ [S] and T′ ∈ [T]

δ(S′,T′) ≥ δ(tr(S′, e), tr(T′, e)) = δ(tr(S, e), tr(T, e)).

The inequality is due to Lemma 3 and the equality is due to Definition 10. Thus,
it only remains to prove that for all q-query PDS S and T with the same domain
there exist S′ ∈ [S] and T′ ∈ [T] such that

δ(S′,T′) = sup
e

δ(tr(S, e), tr(T, e)). (1)

The proof of (1) is by induction over the maximal number of answered queries
q ∈ N. If q = 0, the claim follows immediately. Otherwise (q ≥ 1), let X ′ ⊆ X be
the input alphabet for the first query, i.e., X ′ = dom1(S) = dom1(T). We have

sup
e

δ(tr(S, e), tr(T, e)) = max
x∈X ′

sup
e

e(ε)=x

δ(tr(S, e), tr(T, e))

= max
x∈X ′

sup
e

e(ε)=x

∑

y∈Y
δ(tr(S↑x↓y, e↑y), tr(T↑x↓y, e↑y))

= max
x∈X ′

∑

y∈Y
sup
e′

δ(tr(S↑x↓y, e′), tr(T↑x↓y, e′)).

The second step is due to Lemma 2. In the last step, we used that the environ-
ment is adaptive: for each possible value y ∈ Y, the subsequent query strategy
may be chosen separately.

As S↑x↓y and T↑x↓y are systems answering at most q − 1 queries, we can
invoke the induction hypothesis to obtain Sxy ∈ [S↑x↓y] and Txy ∈ [T↑x↓y] for
each (x, y) ∈ X ′ × Y such that

sup
e′

δ(tr(S↑x↓y, e′), tr(T↑x↓y, e′)) = δ(Sxy,Txy).

For each (x, y) ∈ X ′×Y, we prepend an initial query to the deterministic systems
in the support of Sxy to obtain the q-query PDS S′

xy that answers the first query
x (deterministically) with y, that is undefined for all x′ �= x as first query, and
S′↑x↓y

xy = Sxy. T′
xy is defined analogously. This does not change the statistical

distance: we have for every (x, y) ∈ X ′ × Y

δ(Sxy,Txy) = δ(S′
xy,T′

xy).
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Next, we define the PDS S′
x :=
∑

y∈Y S′
xy and T′

x :=
∑

y∈Y T′
xy. We obtain via

Lemma 2 that
∑

y∈Y
δ(S′

xy,T′
xy) = δ(S′

x,T′
x).

By Lemma 6, there exists a joint distribution11 S′ of all S′
x and a joint distribution

T′ of all T′
x such that

max
x∈X ′

δ(S′
x,T′

x) = δ(S′,T′).

Finally, observe that S′ ∈ [S] and T′ ∈ [T], which concludes the proof. ��

5 Indistinguishability Amplification from Combiners

The goal of indistinguishability amplification is to construct an object which is
ε-close to its ideal from objects which are only ε′-close to their ideal for ε much
smaller than ε′. The most basic type of this construction is to XOR two inde-
pendent bits B1 and B2. It is easy to verify that if B1 and B2 are ε1- and ε2-close
(in statistical distance) to the uniform bit U, respectively, then B1 ⊕ B2 will be
2ε1ε2-close to the uniform bit. The crucial property of the XOR construction is
the following: if at least one of the bits B1 or B2 is perfectly uniform, then their
XOR is perfectly uniform as well. This property is satisfied not only for single
bits, but actually also for bitstrings (with bitwise XOR) and even for any quasi-
group. Interestingly, it was shown in [12] that an analogous indistinguishability
amplification result to the XOR of two bits holds for constructions based on
(stateful) random systems, and it is sufficient to assume only such a combiner
property of a construction.

In this section, we prove that indistinguishability amplification is obtained
from more general combiners. All of the above examples are special cases of
such a combiner. In particular, Theorem 1 of [12] is a simple corollary to our
Theorem 3.

5.1 Constructions and Combiners

Usually (see for example [12]), an n-ary construction C is defined as a system
communicating with component systems S1, . . . ,Sn and providing an outer com-
munication interface. This means that C(S1, . . . ,Sn) is a system for any (com-
patible) component systems S1, . . . ,Sn. In this paper, we use a more abstract
notion of a construction, ignoring the details of the interfaces and messages. The

11 It is easy to see that a DDS s which is defined for first inputs from the set {x1, . . . , xq}
can be represented equivalently as a tuple (sx1 , . . . , sxq ), where sxi is a DDS which
is only defined for xi as first input. Analogously, a probabilistic discrete system can
be understood as a joint distribution of PDS Sxi . Clearly, such a representation does
not influence the statistical distance.
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amplification statements we make are independent of these details, and thereby
simpler and stronger. Nevertheless, it may be easier for the reader to simply
think of a construction C as a random system.

Definition 13. Let S1, . . . ,Sn,Sn+1 be sets of (X ,Y)-DDS such that for all
i ∈ [n + 1], the elements of Si have the same domain. An n-ary construction C
is a probability distribution over functions from S1 × · · · × Sn to Sn+1 such that
for any probability distributions Si and S′

i over Si with Si ≡ S′
i we have12

C(S1, . . . ,Sn) ≡ C(S′
1, . . . ,S

′
n).

In many settings (especially in cryptography), we have a pair of random systems
(F, I), where F is the real system, and I is the ideal system. A combiner is a
construction that combines component systems S1, . . . ,Sn such that only some
of the component systems Si need to be ideal for the whole resulting system
C(S1, . . . ,Sn) to behave as if all component systems were ideal. The following
definition makes this rigorous.

Definition 14. Let A ⊆ {0, 1}n be a monotone13 set. An n-ary construction
C is an A-combiner for (F1, I1), . . . , (Fn, In) if for any choice of bits bn ∈ A we
have

C(〈F1/I1, . . . ,Fn/In〉bn) ≡ C(I1, . . . , In),

where 〈x1/y1, . . . , xn/yn〉bn = (z1, . . . , zn) where zi = xi if bi = 0 and zi = yi

otherwise.

A special case of an A-combiner is a threshold construction where the whole
system behaves as if all component systems were ideal if only k (arbitrary)
component systems are ideal. We call such a construction a (k, n)-combiner.

Definition 15. An A-combiner C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In)
if {bn | bn ∈ {0, 1}n,

∑
i bi ≥ k} ⊆ A.

For example, it is easy to see that for any two random functions14 F1 and F2

and the uniform15 random functions R and R′ on n-bit strings, we have

F1 ⊕ R′ ≡ R ⊕ F2 ≡ R ⊕ R′ ≡ R,

12 In the following, all distributions are probability distributions (i.e., all distributions
sum up to 1). Moreover, certain expressions involving multiple distributions make
only sense if a joint distribution is defined. For all such expressions, we mean the
independent joint distribution.

13 A set A ⊆ {0, 1}n is monotone if for every bn ∈ A we have b̂n ∈ A for every
b̂n ∈ {0, 1}n with b̂i ≥ bi.

14 A random function from X to Y is a system that answers queries consistently, i.e., if
a query xi ∈ X is answered with yi ∈ Y, the system answers any subsequent query
xj = xi again with the same value yj = yi.

15 A uniform random function from X to Y is a random function that answers every
query xi that has not been asked before with an independent uniform response
yi ∈ Y.
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where ⊕ is the binary construction that forwards every query xi to both com-
ponent systems and returns the bitwise XOR of both answers. Thus, ⊕ is a
(deterministic) (1, 2)-combiner for (F1,R) and (F2,R

′). Note that in [12], a (1, 2)-
combiner is called “neutralizing construction”.

5.2 Proving Indistinguishability Amplification Results

Due to the coupling theorem for random systems, we can think of the distin-
guishing advantage Adv(Fi, Ii) as a failure probability of Fi, i.e., the probability
that Fi is not equal to Ii. Since an A-combiner behaves as if all component sys-
tems were ideal if the component systems described by any a ∈ A are ideal, one
might (naively) hope that the failure probability of C(F1, . . . ,Fn) was at most
the probability that certain component systems fail, i.e.,

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))
?≤ Pr(X /∈ A), (2)

where X = (X1, . . . , Xn) for independent Bernoulli random variables Xi with
Pr(Xi = 0) = Adv(Fi, Ii). However, the reasoning behind this is unsound because
it assumes the real system Fi to behave ideally (as Ii) with probability 1 −
Adv(Fi, Ii). This is too strong (and not true): when we condition on the event
(with probability 1 − Adv(Fi, Ii)) in which the real and ideal systems are equal,
we also condition the ideal system, changing its original behavior.

Not only is the above reasoning unsound, the bound (2) simply does not
hold, since it would for example imply that

δ(B1 ⊕ · · · ⊕ Bn,U)
?≤

n∏

i=1

δ(Bi,U)

for independent bits Bi and the uniform bit U. However, it is easy to verify that
δ(B1 ⊕ · · · ⊕ Bn,U) = 2n−1

∏n
i=1 δ(Bi,U), i.e., there is an extra factor 2n−1.

The following technical lemma describes a general proof technique and can
be used as a tool to prove indistinguishability amplification results for any A-
combiner. The key idea is to consider distributions B and B′ over A ∪ {0n},
inducing distributions C(〈F1/I1, . . . ,Fn/In〉B) and C(〈F1/I1, . . . ,Fn/In〉B′) (recall
Definition 14 for the notation). We then use Theorem 1 to exhibit a coupling in
which systems Fi and Ii are equal with probability 1−Adv(Fi, Ii) and argue that
the two constructions are equal (in the coupling) unless for one of the indices
i ∈ [n] where Fi �= Ii we have Bi �= B′

i. The proof of Theorem 3 shows how to
instantiate this lemma, choosing suitable distributions B and B′.

Lemma 7. Let C be an A-combiner for (F1, I1), . . . , (Fn, In) and let B,B′ be any
probability distributions over A ∪ {0n} such that B(0n) > 0 and B′(0n) = 0.
Then,

Adv(C(F1, . . . ,Fn), C(I1, . . . , In))

≤ B(0n)−1 ·
∑

e∈{0,1}n

δ(blind(B, e),blind(B′, e)) · Pr(E = e),
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where blind(x,m) is the tuple derived from x by removing all elements at the
indices at which mi = 0, and E = (E1, . . . , En) for independent Bernoulli ran-
dom variables Ei with Pr(Ei = 1) = Adv(Fi, Ii).

Proof. By Lemma 9 (see Appendix A) we have for probability distribution B′′

over {0, 1} with B′′(0) = B(0n)

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))

= B(0n)−1 · Adv(〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ,C(I1, . . . , In)).

Observe that we have 〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ≡ C(〈F1/I1, . . . ,Fn/In〉B)
and C(I1, . . . , In) ≡ C(〈F1/I1, . . . ,Fn/In〉B′), since C is an A-combiner. Thus,

Adv(〈C(F1, . . . ,Fn)/C(I1, . . . , In)〉B′′ ,C(I1, . . . , In))
= Adv(C(〈F1/I1, . . . ,Fn/In〉B),C(〈F1/I1, . . . ,Fn/In〉B′)).

According to Theorem 1 there exist (F′
i, I

′
i) ∈ [Fi]× [Ii] for every i ∈ [n] such that

δ(F′
i, I

′
i) = Adv(Fi, Ii). Thus,

Adv(C(〈F1/I1, . . . ,Fn/In〉B),C(〈F1/I1, . . . ,Fn/In〉B′))
= Adv(C(〈F′

1/I
′
1, . . . ,F

′
n/I′n〉B),C(〈F′

1/I
′
1, . . . ,F

′
n/I′n〉B′))

≤ δ(C(〈F′
1/I

′
1, . . . ,F

′
n/I′n〉B),C(〈F′

1/I
′
1, . . . ,F

′
n/I′n〉B′))

≤ δ(〈F′
1/I

′
1, . . . ,F

′
n/I′n〉B, 〈F′

1/I
′
1, . . . ,F

′
n/I′n〉B′),

where the last step is due to Lemma 3.
We exhibit a random experiment E with random variables16 F ′

i ∼ F′
i, I

′
i ∼ I′i,

B ∼ B, and B′ ∼ B′, such that L := 〈F ′
1/I ′

1, . . . , F
′
n/I ′

n〉B ∼ 〈F′
1/I

′
1, . . . ,F

′
n/I′n〉B

and R := 〈F ′
1/I ′

1, . . . , F
′
n/I ′

n〉B′ ∼ 〈F′
1/I

′
1, . . . ,F

′
n/I′n〉B′ . Define Ei := [F ′

i �= I ′
i]

and E := (E1, . . . , En).
Observe that the joint distribution of F ′

i and I ′
i as well as B and B′ can be

chosen arbitrary (as long as the marginal distributions are respected). Let Cδ(·, ·)
denote the joint distribution described in Lemma 4, and let the joint distribution
of F ′

i and I ′
i be Cδ(F′

i, I
′
i). Moreover, the joint distribution of B and B′ is chosen

such that17

PrE(blind(B, e) = b,blind(B′, e) = b′, E = e)

= Cδ(blind(B, e),blind(B′, e))(b, b′) · PrE(E = e).

16 We write X ∼ X to denote that the random variable X is distributed according to
the distribution X.

17 Note that even though the joint distribution of B and B′ depends on E, the random
variable B is still independent of ((F ′

1, I
′
1), . . . , (F

′
n, I ′

n)).



228 D. Lanzenberger and U. Maurer

Thus we have by Lemma 4

δ(〈F′
1/I

′
1, . . . ,F

′
n/I′n〉B,〈F′

1/I
′
1, . . . ,F

′
n/I′n〉B′)

≤ PrE(L �= R)

=
∑

e∈{0,1}n

PrE(L �= R,E = e)

=
∑

e∈{0,1}n

PrE(blind(B, e) �= blind(B′, e), E = e)

=
∑

e∈{0,1}n

δ(blind(B, e),blind(B′, e)) · PrE(E = e),

which concludes the proof. ��
Observe that Lemma 7 by itself does not imply indistinguishability amplifica-
tion for any combiner. In particular, one needs to prove the existence of suitable
distributions B and B′ such that the distance δ(blind(B, e),blind(B′, e)) is small
for many e ∈ {0, 1}n (ideally it is zero for all e /∈ A, where e is the bitwise com-
plement of e). We show the following indistinguishability amplification theorem
for all (k, n)-combiners.

Theorem 3. If C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In), then

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
n∑

i=n−k+1

ξi−(n−k),i · Pr

⎛

⎝
∑

j∈[n]

Ej = n − k + 1

⎞

⎠,

where

ξl,m :=
1
2

·
(

1 +
m∑

j=l

(
m

j

)

·
(

j − 1
l − 1

))

,

and the Ei are jointly independent Bernoulli random variables with Pr(Ei = 1) =
Adv(Fi, Ii).

As discussed before, one might (naively) hope for threshold combiners to achieve
the indistinguishability bound

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))
?≤ Pr

⎛

⎝
∑

j∈[n]

Ej ≥ n − k + 1

⎞

⎠.

This bound does not hold and thus correction factors as in Theorem 3 (i.e., the
factors ξi−(n−k),i) are in general unavoidable. As we have ξ1,2 = 2, Theorem 1
of [12] is an immediate corollary of Theorem 3 (for k = 1 and n = 2). More
generally we have ξ1,n = 2n−1, which is tight due to the above discussed example.
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Proof (of Theorem 3). For k ≥ 1 and n ≥ k we represent distributions Bk,n,B′
k,n

using multisets Ak,n, A′
k,n over A ∪ {0n}, with the natural understanding that

Bk,n (B′
k,n) is the probability distribution with Bk,n(a) = Ak,n(a)/|Ak,n|.

Let

A′
k,n :=

⋃

j∈{k,k+2,...,n}

{(

b,

(
j − 1
k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n,

∑

i∈[n]

bi = j

}

and

Ak,n := {(0n, 1)} ∪
⋃

j∈{k+1,k+3,...,n}

{(

b,

(
j − 1
k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n,

∑

i∈[n]

bi = j

}

.

For a multiset M over {0, 1}n, let blindm(M) be the multiset over {0, 1}n−m

derived from M by removing the bits at m fixed positions, say the first m
bits, for every element. We only consider multisets for which blindm(M) is well-
defined, i.e., it does not matter at which m positions the bits are removed. We
prove below the following statement:

∀k ≥ 1, ∀n ≥ k : |Ak,n| = |A′
k,n| = ξk,n

∧ ∀j ≥ k : blindj(Ak,n) = blindj(A′
k,n)

∧ ∀j < k : |blindj(Ak,n) �blindj(A′
k,n)| = 2ξk−j,n−j .

(3)

This implies the claim via Lemma 7, since we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In))

≤ Bk,n(0n)−1 ·
∑

e∈{0,1}n

δ(blind(Bk,n, e),blind(B′
k,n, e)) · Pr(E = e)

= |Ak,n| ·
n∑

i=0

|blindn−i(Ak,n) �blindn−i(A′
k,n)|

2|Ak,n| · Pr

(
∑

j∈[n]

Ej = i

)

=
n∑

i=n−k+1

ξi−(n−k),i · Pr

(
∑

j∈[n]

Ej = i

)

.

In the second step we have used that for any two multisets M,M ′ representing
probability distributions M,M′ we have δ(M,M′) = |M �M ′|/(2|M |) if |M | =
|M ′| .

We prove (3) by induction over n. Observe that

blind1(A′
k,n) =

⋃

j∈{k,k+2,...,n−1}

{(

b,

(
j − 1
k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

∪
⋃

j∈{k−1,k+1,...,n−1}

{(

b,

(
j

k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

.
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Similarly, we see that

blind1(Ak,n) = {(0n−1, 1)}

∪
⋃

j∈{k+1,k+3,...,n−1}

{(

b,

(
j − 1
k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

∪
⋃

j∈{k,k+2,...,n−1}

{(

b,

(
j

k − 1

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

.

If k = 1, it is easy to see that |Ak,n| = |A′
k,n| = ξk,n, as well as blind1(A′

k,n) =
blind1(Ak,n) and |blind0(Ak,n) �blind0(A′

k,n)| = 2ξk,n (since Ak,n and A′
k,n are

disjoint). Otherwise (k ≥ 2), we use the identity
(

j
k−1

)−(j−1
k−1

)
=
(

j−1
k−2

)
to obtain

blind1(A′
k,n) − blind1(Ak,n) ∩ blind1(A′

k,n)

=
⋃

j∈{k−1,k+1,...,n−1}

{(

b,

(
j − 1
k − 2

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

= A′
k−1,n−1.

Analogously, we see that

blind1(Ak,n) − blind1(Ak,n) ∩ blind1(A′
k,n)

= {(0n−1, 1)} ∪
⋃

j∈{k,k+2,...,n−1}

{(

b,

(
j − 1
k − 2

)) ∣∣
∣
∣
∣
b ∈ {0, 1}n−1,

∑

i∈[n]

bi = j

}

= Ak−1,n−1.

As by induction hypothesis blindk−1(Ak−1,n−1) = blindk−1(A′
k−1,n−1), we have

blindk(Ak,n) = blindk(A′
k,n). Since blinding does not change the cardinality of

a multiset, it follows |Ak,n| = |A′
k,n| = ξk,n. Moreover, as Ak,n and A′

k,n are
disjoint we have |blind0(Ak,n) �blind0(A′

k,n)| = 2ξk,n. Finally, for j ≥ 1 and
j < k we have

|blindj(Ak,n) �blindj(A′
k,n)| = |blindj−1(Ak−1,n−1) �blindj−1(A′

k−1,n−1)|
(I.H.)
= 2ξ(k−1)−(j−1),(n−1)−(j−1) = 2ξk−j,n−j ,

which concludes the proof. ��
The following corollary to Theorem 3 provides simpler (but worse) bounds.

Corollary 1. If C is a (k, n)-combiner for (F1, I1), . . . , (Fn, In), then

(i)

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤

2n−k
n∑

j=n−k+1

(
j − 1
n − k

)

· Pr

(
∑

i∈[n]

Ei = j

)

,
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where the Ei are jointly independent Bernoulli random variables with
Pr(Ei = 1) = Adv(Fi, Ii).

(ii) if Adv(Fi, Ii) ≤ ε for all i ∈ [n] we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 1
2

(
n

k − 1

)

· (2ε)n−k+1.

(iii) if Adv(Fi, Ii) ≤ ε for all i ∈ [n] we have

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
(

2e
n

n − k + 1
· ε

)n−k+1

.

Proof. Lemma 10 in Appendix A states that ξl,m ≤ 2m−l
(
m−1
l−1

)
. This immedi-

ately implies the bound (i) via Theorem 3.
We use bound (i) to obtain the bound (ii) as follows

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤ 2n−k
n∑

j=n−k+1

(
j − 1
n − k

)

· Pr

(
∑

i∈[n]

Ei = j

)

≤ 2n−k
n∑

j=n−k+1

(
j − 1
n − k

)

·
(

n

j

)

εj(1 − ε)n−j

≤ 2n−k
n∑

j=n−k+1

(
j

n − k + 1

)

·
(

n

j

)

εj(1 − ε)n−j

= 2n−k

(
n

n − k + 1

)

εn−k+1

=
1
2

(
n

k − 1

)

· (2ε)n−k+1.

The first equality is due to the identity
∑n

j=m

(
j
m

)(
n
j

)
εj(1 − ε)n−j =

(
n
m

)
εm.

An easy proof of the identity is by considering n independent Bernoulli random
variables Xi with Pr(Xi = 1) = ε and their sum X := X1 + · · · + Xn. The
left-hand expression of the identity is simply the expected value

E

[(
X

m

)]

= E

⎡

⎢
⎢
⎣

∑

I⊆[n]
|I|=m

[
∧

i∈I

(Xi = 1)

]
⎤

⎥
⎥
⎦ =

∑

I⊆[n]
|I|=m

Pr

(
∧

i∈I

(Xi = 1)

)

=
(

n

m

)

εm.

Finally, bound (iii) is derived from bound (ii) via the well-known inequality(
n
k

) ≤ (2en/k)k. ��
The bound

Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) ≤
(

2e
n

n − k + 1
· ε

)n−k+1

from Corollary 1 (iii) is perhaps suited best (even though it is the loosest) in
order to intuitively understand the behavior of the obtained indistinguishability
amplification.



232 D. Lanzenberger and U. Maurer

On the Number of Queries. Many indistinguishability bounds are presented
with a dependency on the number of queries q the adversary is allowed to ask.
For reasons of simplicity, we understand the number of queries as a property
of a discrete system, i.e., the number of queries that a system answers. This
is only a conceptual difference, and all of our results can still be used with
the former perspective. For example, this means that if the indistinguishabil-
ity of the component systems is for distinguishers asking up to q queries, our
results can be applied to the corresponding systems that answer only q queries.
Usually, if the component systems F1, . . . ,Fn answer only q queries, then the
overall constructed system C(F1, . . . ,Fn) will answer only up to q′ queries, for
some q′ depending on q. As a consequence, the resulting indistinguishability
bound Adv(C(F1, . . . ,Fn),C(I1, . . . , In)) holds for any distinguisher asking up to
q′ queries.

5.3 A Simple (k, n)-Combiner for Random Functions

We present a simple (k, n)-combiner for arbitrary k and n ≥ k. For a finite field
F, let A ∈ F

k×n be a (k × n)-matrix with k ≤ n, and let A ⊆ {0, 1}n be the
(monotone) set containing all v ∈ {0, 1}n with vi1 = · · · = vik = 1 for k distinct
indices, such that the columns i1, . . . , ik of A are linearly independent. Consider
the deterministic n-ary construction C : Fn → F

k defined by18

C(x1, . . . , xn) := A · (x1, . . . , xn)T.

It is easy to see that C is an A-combiner for (X1,U), . . . , (Xn,U), where Xi are
arbitrary probability distributions over F and U is the uniform distribution over
F. Moreover, if A is an MDS matrix19, it is straightforward to verify using basic
linear algebra that C is a (k, n)-combiner. Assuming the field F has sufficiently
many elements (|F| ≥ k + n) such a matrix is easy to construct (for example,
one can take a Vandermonde matrix or a Cauchy matrix [8]).

The above construction can be generalized to a (k, n)-combiner C′ which
combines n independent random functions F1, . . . ,Fn (from X to F) to k random
functions F′

1, . . . ,F
′
k as depicted in Fig. 2. By the argument above, C′ is a (k, n)-

combiner for (F1,R), . . . , (Fn,R), where the Fi are arbitrary random functions
and R is a uniform random function (assuming A is an MDS matrix).

Assuming Adv(Fi,R) ≤ ε, Corollary 1 implies that

Adv((F′
1, . . . ,F

′
k),Rk) ≤ 1

2

(
n

k − 1

)

(2ε)n−k+1,

where Rk are k independent parallel uniform random functions.

18 One can think of an element of Fl as a single-query DDS with unary input alphabet
{�} and output alphabet F

l.
19 Recall that an MDS (maximum distance separable) matrix [8,16] is a matrix over a

finite field for which every square submatrix is non-singular.
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F1 F2 Fn−1 Fn

(i, x) x

A

y =
∑n

j=1 Aij · yj

i

y1 y2 yn−1 yn

Fig. 2. Construction C′ transforms the n random functions F1, . . . ,Fn to k random
functions, where k is the number of rows of the matrix A. For an input x ∈ F to
the i-th constructed function F′

i, the output is the dot product
∑n

j=1 Aij · yj , where
yi = Fi(x).

5.4 Combining Systems Forming a Quasi-Group

We consider the setting of combining random systems forming a quasigroup20

with some construction �. Examples of such systems include one- or both-sided
stateless random permutations with the cascade ◦, or (possibly stateful) random
functions with the elementwise XOR ⊕. Given n independent such systems, the
goal is to obtain m < n systems that are (jointly) close to m independent uni-
form systems. The known results from [12] lead to the following straightforward
construction: we partition the n systems into m sets of size n/m, and then use
the (1, n/m)-combiner � to combine each set into one system (see Example 1).
Assuming that each component system is ε-close to uniform, this will yield an
indistinguishability bound of21

m

2
(2ε)n/m.

In the following, we show that by sharing a few systems among the m com-
bined sets, much stronger indistinguishability amplification is obtained, roughly
squaring the above bound. As a result, only about half as many systems need
to be combined in order to obtain the same indistinguishability as with the
straightforward construction.

Lemma 8. Assume a set of deterministic discrete systems Q forming a quasi-
group with the construction �. Let Q1, . . . ,Qn be PDS over Q with Adv(Qi,U) ≤
ε, where U is the uniform distribution over Q. Let 〈Si〉i∈[m+1] be a partition of

20 A quasigroup is a set X with a binary operation �: X 2 → X such that for any
a, b ∈ X there exist unique x, y ∈ X such that a � x = b and y � a = b.

21 The factor m accounts for the joint indistinguishability of the m systems.
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[n] with |Si| = n
m+1 for all22 i. Then, the deterministic construction C defined

by23

C(q1, . . . , qn) :=

⎛

⎜
⎜
⎝

(
⊙

j∈S1
qj) �⊙j∈Sm+1

qj

(
⊙

j∈S2
qj) �⊙j∈Sm+1

qj

. . .
(
⊙

j∈Sm
qj) �⊙j∈Sm+1

qj

⎞

⎟
⎟
⎠

satisfies

Adv(C(Q1, . . . ,Qn),Un) ≤ m(m + 1)
4

(2ε)2n/(m+1),

where Un are n independent parallel instances of U.

Proof. We rewrite C as the application of multiple combiners

C(Q1, . . . ,Qn) = C′
m,m+1

(⊙

j∈S1

Qj , . . . ,
⊙

j∈Sm+1

Qj

)
, (4)

where C′
m,m+1 is the (m,m + 1)-combiner defined by

C′
m,m+1(q1, . . . , qm+1) := (q1 � qm+1, . . . , qm � qm+1).

Since each inner argument (
⊙

j∈Si
·) to the construction C′

m,m+1 in (4) is a
(1, n/(m + 1))-combiner, we have by Corollary 1 for any i ∈ [m + 1]

Adv
(⊙

j∈Si

Qj ,U
)

≤ 1
2
(2ε)n/(m+1).

Again invoking Corollary 1 for c′
m,m+1 yields

Adv(C(Q1, . . . ,Qn),Un) ≤ 2 ·
(

m + 1
2

)(

max
i∈[m+1]

Adv
(⊙

j∈Si

Qj ,U

))2

≤ m(m + 1)
4

(2ε)2n/(m+1).

��

6 Conclusions and Open Problems

We presented a simple systems theory of random systems. The key insight was
to interpret a random system as probability distribution over deterministic sys-
tems, and to consider equivalence classes of probabilistic systems induced by the
22 This requires n to be divisible by m + 1.
23 Since a quasigroup operation may be non-commutative and non-associative, we

assume a fixed combination tree to be defined with each set Si.
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behavior equivalence relation. We demonstrated how this perspective on random
systems provides an elementary characterization of the classical distinguishing
advantage and is also a useful tool to prove indistinguishability bounds.

Finally, we have shown a general indistinguishability amplification theorem
for any (k, n)-combiner. We demonstrated how the theorem can be instantiated
to combine n stateless random permutations (one- or both-sided), which are only
moderately close to uniform random permutations, into m < n random permu-
tations that are jointly very close to uniform random permutations. For random
functions, we have shown that even stronger indistinguishability amplification
can be obtained. Several open questions remain:

(i) Any A-combiner is also a (k, n)-combiner for sufficiently large k. In this
sense, the bound of Theorem 3 applies also to any A-combiner. A natural
question is whether significantly better indistinguishability amplification
is possible for general (non-threshold) A-combiners. In particular, can the
presented technique (Lemma 7) be used to prove such a bound? It seems
that a new idea is necessary to prove such a bound, considering that the
current proof strongly relies on the symmetry in the threshold case.

(ii) It is easy to see that the proved indistinguishability bound for (k, n)-
combiners is perfectly tight for the case k = 1. Is it also tight for general k?
For special cases, such as (k, n) = (2, 3), it is not too difficult to show that
the presented bound is very close to tight.

(iii) We have shown how MDS matrices allow to combine n independent random
functions over a field to m random functions. However, the same technique
does not immediately apply to random permutations. The bounds shown
in Lemma 8 are the first non-trivial ones in the more general setting of
combining systems forming a quasigroup. It may be possible to improve
substantially over said bounds, possibly also by making stronger assump-
tions (e.g., explicitly assuming permutations). In particular, one might hope
to improve the exponent 2n/(m + 1).

(iv) Our treatment is in the information-theoretic setting. A natural question is
whether our results can be extended to the computational setting. Under
certain assumptions on the component systems, the special case of a (1, n)-
combiner was shown to provide computational indistinguishability amplifi-
cation in [13].

(v) Can the coupling theorem be used to prove amplification results that
strengthen the distinguisher class? For example, can we get more general
lifting of non-adaptive indistinguishability to adaptive indistinguishability
than what is shown in [11,12]?
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Appendix

A Proofs of Basic Lemmas

Proof. (of Lemma 2). By the definition of the statistical distance we have

δ(X,Y) =
∑

a∈A
max(0,X(a) − Y(a))

=
∑

i∈[k]

∑

a∈Ai

max(0,X(a) − Y(a))

=
∑

i∈[k]

∑

a∈Ai

max(0,Xi(a) − Yi(a))

=
∑

i∈[k]

δ(Xi,Yi).

��
Proof. (of Lemma 3). We have

δ(f(X), f(Y)) =
∑

b∈B
max(0, f(X)(b) − f(Y)(b))

=
∑

b∈B
max(0,

∑

a∈f−1(b)

X(a) − Y(a))

≤
∑

b∈B

∑

a∈f−1(b)

max(0,X(a) − Y(a))

=
∑

a∈A
max(0,X(a) − Y(a))

= δ(X,Y).

In the fourth step, we used that f is a total function from A to B. ��
Proof. (of Lemma 5). It suffices to show that if we have

tr(S, e) = tr(T, e) for all compatible non-adaptive (Y,X )-DDE e,

then the same is true for all compatible (Y,X )-DDE e (even adaptive ones).
Assume there exists an adaptive (Y,X )-DDE e such that

tr(S, e) �= tr(T, e),

implying that there exists a transcript t̂ = (x̂1, ŷ1), (x̂2, ŷ2), . . . , (x̂l, ŷl) such
that24 tr(S, e)(t̂) �= tr(T, e)(t̂). Let e′ be the environment which queries the
24 Recall that tr(S, e) denotes the transcript distribution of the interaction between S

and e, so tr(S, e)(t̂) is the probability of transcript t̂ in this interaction.
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inputs of t̂, i.e., (x̂1, x̂2, . . . , x̂l). Clearly, e′ is non-adaptive and deterministic.
Observe moreover that for any (X ,Y)-DDS s and any compatible (Y,X )-DDE
ẽ, the transcript tr(s, ẽ) is t̂ if and only if s(x̂i) = ŷi and ẽ(ŷi−1) = x̂i for all
i ∈ [l]. Since we have e(ŷi−1) = e′(ŷi−1) = x̂i for all i ∈ [l], we obtain

tr(S, e′)(t̂) = S({s | s ∈ dom(S),∀i ∈ [l] : s(x̂i) = ŷi}) = tr(S, e)(t̂) and

tr(T, e′)(t̂) = T({s | s ∈ dom(T),∀i ∈ [l] : s(x̂i) = ŷi}) = tr(T, e)(t̂).

Hence, tr(S, e′)(t̂) �= tr(T, e′)(t̂) and therefore tr(S, e′) �= tr(T, e′), concluding the
proof. ��
Lemma 9. (cf. Lemma 3 of [12]). For any two compatible PDS S,T and any
probability distribution B over {0, 1}

Adv(〈S/T〉B,T) = B(0) · Adv(S,T).

Proof. Observe that

AdvD(〈S/T〉B,T) = PrDT(Z = 1) − PrD〈S/T〉B(Z = 1)

= B(0) ·
(
PrDT(Z = 1) − PrDS(Z = 1)

)

+ B(1) ·
(
PrDT(Z = 1) − PrDT(Z = 1)

)

= B(0) ·
(
PrDT(Z = 1) − PrDS(Z = 1)

)

= B(0) · AdvD(S,T).

��
Lemma 10. Let ξl,m for l,m ∈ N\{0} be defined by

ξl,m :=
1
2

·
⎛

⎝1 +
m∑

j=l

(
m

j

)

·
(

j − 1
l − 1

)
⎞

⎠ .

Then,

(i)

ξl,m = 2 · ξl,m−1 + ξl−1,m−1 − 1

(ii)

2m−l ·
(

m − 1
l − 1

)

∈ [ξl,m, 2ξl,m − 1].

Proof. Consider the expression tl,m :=
∑m

j=l

(
m
j

)(
j−1
l−1

)
. Observe that tl,m is the

number of possibilities to select a first subset of [m] with size at least l and
then selecting exactly l − 1 elements (but never the smallest one) of the first
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subset for a second subset. Consider the element m ∈ [m]. There are tl−1,m−1

possibilities for it to be in the second subset (and thus also in the first), and
2tl,m−1 possibilities for it not to be in the second subset (either it is in the first
subset or not). Thus, we have tl,m = 2tl,m−1 + tl−1,m−1.

We have ξl,m = 1
2 (1 + tl,m), and therefore

2 · ξl,m−1 + ξl−1,m−1 − 1 = (1 + tl,m−1) +
1
2
(1 + tl−1,m−1) − 1

=
1
2
(1 + 2tl,m−1 + tl−1,m−1)

=
1
2
(1 + tl,m)

= ξl,m.

The bound (iii) can be proved by induction over m. For m = 1 or m = l, the
claim trivially holds. For m > 1 and l < m we have (using (i))

ξl,m = 2ξl,m−1 + ξl−1,m−1 − 1

≤ 2 · 2m−1−l

(
m − 2
l − 1

)

+ 2m−l

(
m − 2
l − 2

)

= 2m−l ·
((

m − 2
l − 1

)

+
(

m − 2
l − 2

))

= 2m−l

(
m − 1
l − 1

)

.

Moreover,

2ξl,m − 1 = 2 (2ξl,m−1 + ξl−1,m−1 − 1) − 1
= 2(2ξl,m−1 − 1) + (2ξl−1,m−1 − 1)

≥ 2 · 2m−1−l

(
m − 2
l − 1

)

+ 2m−l

(
m − 2
l − 2

)

= 2m−l ·
((

m − 2
l − 1

)

+
(

m − 2
l − 2

))

= 2m−l

(
m − 1
l − 1

)

.

This concludes the proof. ��
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Abstract. In the backdoored random-oracle (BRO) model, besides
access to a random function H, adversaries are provided with a back-
door oracle that can compute arbitrary leakage functions f of the func-
tion table of H. Thus, an adversary would be able to invert points,
find collisions, test for membership in certain sets, and more. This
model was introduced in the work of Bauer, Farshim, and Mazaheri
(Crypto 2018) and extends the auxiliary-input idealized models of Unruh
(Crypto 2007), Dodis, Guo, and Katz (Eurocrypt 2017), Coretti et al.
(Eurocrypt 2018), and Coretti, Dodis, and Guo (Crypto 2018). It was
shown that certain security properties, such as one-wayness, pseudoran-
domness, and collision resistance can be re-established by combining two
independent BROs, even if the adversary has access to both backdoor
oracles.

In this work we further develop the technique of combining two or
more independent BROs to render their backdoors useless in a more
general sense. More precisely, we study the question of building an indif-
ferentiable and backdoor-free random function by combining multiple
BROs. Achieving full indifferentiability in this model seems very chal-
lenging at the moment. We however make progress by showing that the
xor combiner goes well beyond security against preprocessing attacks and
offers indifferentiability as long as the adaptivity of queries to different
backdoor oracles remains logarithmic in the input size of the BROs. We
even show that an extractor-based combiner of three BROs can achieve
indifferentiability with respect to a linear adaptivity of backdoor queries.
Furthermore, a natural restriction of our definition gives rise to a notion
of indifferentiability with auxiliary input, for which we give two positive
feasibility results.

To prove these results we build on and refine techniques by Göös et al.
(STOC 2015) and Kothari et al. (STOC 2017) for decomposing distribu-
tions with high entropy into distributions with more structure and show
how they can be applied in the more involved adaptive settings.
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1 Introduction

Hash functions are one of the most fundamental building blocks in protocol
design. For this reason, both the cryptanalysis and provable security of hash func-
tions have been active areas of research in recent years. The first known instances
of collisions and chosen-prefix collisions in SHA-1 were recently demonstrated
by Stevens et al. [26] and Leurent and Peyrin [20], respectively. Furthermore,
feasibility of built-in adversarial weaknesses (aka. backdoors) in efficient hash
functions have been demonstrated by Fischlin, Janson, and Mazaheri [13]. A
practical way to provide safeguards against similar failures of hash functions is
to combine a number of independent hash functions so that the resulting func-
tion is at least as secure as their strongest. Most works in this area have focused
attention on a setting where at least one of the hash functions is secure, although
positive results when all underlying hash functions have weaknesses have also
been demonstrated [15,22].

In this work we are interested in protecting hash functions against a variety
of attacks that may arise due to backdoors, cryptanalytic advances, or prepro-
cessing attacks. We carry out our study in the recent backdoored random-oracle
(BRO) model, which uniformly treats these settings and also permits strong
adversarial settings where all hash functions may be weak.

1.1 The BRO Model

Bauer, Farshim, and Mazaheri (BFM) [3] at Crypto 2018 formulated a new
model for the analysis of hash functions that substantially weakens the tradi-
tional random-oracle (RO) model. Here an adversary, on top of direct access to
the random oracle, is able to obtain arbitrary functions of the function table of
the random oracle.1 The implications of this weakening are manifold. To start
with, positive results in this model imply positive results in the traditional set-
ting where all but one of the hash functions is weak. Second, this model captures
arbitrary preprocessing attacks on hash functions, another highly active area of
research [6,7,10,27]. Finally, it allows to model unrestricted adversarial capabil-
ities, which can adaptively depend on input instances, and thus captures built-in
as well as inadvertent weaknesses that may or may not be discovered in course
of time.

BFM studied three natural combiners in this setting: those of concatenation,
cascade, and xor combiners:

CH1,H2
| (x) := H1(x)|H2(x) CH1,H2◦ (x) := H2(H1(x))

1 The model allows for a parameterization of the class of functions that can be com-
puted. Both BFM and we here work with respect to the full set of functions.
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CH1,H2
⊕ (x) := H1(x) ⊕ H2(x) .

They showed, using new types of reductions to problems with high communica-
tion complexity, that central cryptographic security properties, such as one-way
security, pseudorandomness, and collision resistance are indeed achievable by
these combiners.

The reductions to communication complexity problems are at times tedious
and very specific to the combiner. Moreover, the hardness of the communica-
tion complexity problem underlying collision resistance is conjectural and still
remains to be proven. Furthermore, a number of deployed protocols have only
been shown to be secure in the random-oracle model, and thus may rely on
properties beyond one-wayness, pseudorandomness, or collision resistance.

This raises the question whether or not other cryptographic properties
expected from a good hash function are also met by these combiners. In other
words: Can combining two or more backdoored random oracles render access to
independent but adaptive auxiliary information useless? We formalize and study
this question in the indifferentiability framework, which has been immensely
successful in justifying the soundness of hash-function designs.

1.2 Indifferentiability

A common paradigm in the design of hash functions is to start with some under-
lying primitive, and through some construction build a more complex one. The
provable security of such constructions have been analyzed through two main
approaches. One formulates specific goals (such as collision resistance) and goes
on to show that the construction satisfies them if its underlying primitives sat-
isfy their own specific security properties. Another is a general approach, whose
goal is to show that a (wide) class of security goals are simultaneously met.

The latter has been formalized in a number of frameworks, notably in the
UC framework of Canetti [5], the reactive systems framework of Pfitzmann
and Waidner [24], and the indifferentiability framework of Maurer, Renner, and
Holenstein [23]. The latter is by now a standard methodology to study the sound-
ness of cryptographic constructions, particularly symmetric ones such as hash
functions [4,8] and block-ciphers [1,9,12,16] in idealized models of computation.

In the MRH framework, a public primitive H is available and the goal is to
build another primitive, say a random oracle RO, from H through a construc-
tion CH. Indifferentiability formalizes a set of necessary and sufficient conditions
for the construction CH to securely replace its ideal counterpart RO in a wide
range of environments: for a simulator Sim, the systems (CH,H) and (RO,SimRO)
should be indistinguishable. The composition theorem proved by MRH states
that, if CH is indifferentiable from RO, then CH can securely replace RO in
arbitrary single-stage contexts. A central corollary of this composition theorem
is that indifferentiability implies any single-stage security goal, which includes
among others, one-wayness, collision resistance, PRG/PRF security, and more.
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1.3 Contributions

With the above terminology in hand, the central question tackled in this
work is whether or not combiners that are indifferentiable from a conventional
(backdoor-free) random oracle exist, when the underlying primitives are two (or
more) backdoored random oracles.

Let us consider the concatenation combiner H1(x)|H2(x), where H1 and H2

are both backdoored. This construction was shown to be one-way, collision
resistant, and PRG secure if both underlying functions are highly compressing.
Despite this, the concatenation combiner cannot be indifferentiable from a ran-
dom oracle: using the backdoor oracle for H1 an attacker can compute two inputs
x and x′ such that H1(x) = H1(x′), query them to the construction and return 1
iff the left sides of the outputs match. However, any simulator attempting to find
such a pair with respect to a backdoor-free random oracle must place an expo-
nentially large number of queries. Attacks on the cascade combiner H2(H1(x))
were also given in [3, Section D.2] for a wider range of parameter regimes, leav-
ing only the expand-then-compress case as potentially indifferentiable. Finally,
the xor combiner H1(x) ⊕H2(x), which is simpler, more efficient, and one of the
most common ways to combine hash functions, resists these.2

Decomposition of Distributions. When proving results in the presence of
auxiliary input, Uhruh [27] observed that pre-computation (or leakage) on a
random oracle can reveal a significant amount of information only on restricted
parts of its support. The problem of dealing with auxiliary input was later revised
in a number of works [6,7,10]. In particular Coretti et al. [7], building on work
in communication complexity, employed a pre-sampling technique to prove a
number of positive results in the RO model with auxiliary input with tighter
bounds. At a high level, this method permits writing a high min-entropy dis-
tribution (here, over a set of functions) as the convex combination of a (large)
number of distributions which are fixed on a certain number (p) of points and
highly unpredictable on the rest, the so-called (p, 1−δ)-dense distributions. This
technique was originally introduced in the work of Göös et al. [14].

The Simulator. Our simulator for the xor combiner builds on this technique
to decompose distributions into a convex combination of (p, 1 − δ)-dense distri-
butions. Simulation of backdoor oracles is arguably quite natural and proceeds
as follows. Starting with uniform random oracles H1 and H2, on each backdoor
query f for H1 the simulator computes z = f(H1) and updates the distribution
of the random oracle H1 to be uniform conditioned on the output of f being z.
This distribution is then decomposed into a convex combination of (p, 1 − δ)-
dense distributions, from which one function is sampled. For all of the p fixed
points, the simulator sets the value of H2 consistently with the random oracle
and the distribution of H2 is updated accordingly. An analogous procedure is
implemented as the simulator for the second backdoored random oracle.

2 Further, an indifferentiability proof of the expand-then-compress cascade combiner
would closely follow that of the xor combiner and thus we focus on the latter here.
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Technical Analysis. The first technical contribution of our work is a refine-
ment of the decomposition technique which can be used to adaptively decompose
distributions after backdoor queries. We show that this refinement is sufficiently
powerful to allow proving indifferentiability up to a logarithmic (in the input
size of the BROs) number of switches between the backdoor queries. We prove
this via a sequence of games which are carefully designed so as to be compati-
ble with the decomposition technique. A key observation is that in contrast to
previous works in the AI-RO model, we do not replace the dense (intuitively,
unpredictable) part of the distribution of random oracles with uniform: backdoor
functions “see” the entire table of the random oracle and this replacement would
result in a noticeable change. Second, we modify the number of fixed points in
the (partially) dense distributions so that progressively smaller sets of points are
fixed. Even though each leakage corresponds to fixing a large number of points,
it is proportionally smaller than the previous number of fixed points. Thus the
overall bound remains small.

Simulator Efficiency. Our simulator runs in doubly exponential time in the
bit-length of the random oracle and thus is of use in information-theoretic set-
tings. These include the vast majority of symmetric constructions. Protocols
based on computational assumptions (such as public-key encryption) escape
this treatment: the overall adversary obtained via the composition would run
the decomposition algorithm and hence will not be poly-time. This observation,
however, also applies to the BRO model as the backdoor oracles also allow for
non-polynomial time computation, trivially breaking any computational assump-
tion if unrestricted. Despite this, in a setting where the computational assump-
tion holds relative to the backdoor oracles, positive results may hold. We can
for example restrict the backdoor capability to achieve this. Another promising
avenue is to rely on an independent idealized model such as the generic-group
model (GGM) and for instance, prove IND-CCA security of Hashed ElGamal in
the BRO and (backdoor-free) GGM models. We leave exploring these solutions
to future work.

An Extractor-Based Combiner with Improved Security. We apply the
above proof technique to the analysis of an alternative combiner for three inde-
pendent backdoored random oracles, which relies on 2-out-of-3-source extractors
that output good randomness as long as two out of the three of the inputs have
sufficient min-entropy. Given such an extractor Ext, our combiner is

CH1,H2,H3
3ext (x) := Ext

(
H1(x),H2(x),H3(x)

)
.

As mentioned above, our simulator for the xor combiner programs H2 on the
fixed points for H1 (and vice versa) using the random oracle. This results in a
loss since dense values are replaced with uniform values. In contrast, here the
extractor ensures that image values are closer to uniform and thus the overall
loss is lower. We show that a 2-out-of-3-source extractor can tolerate even a
number of switches between the backdoor oracles which is slightly sub-linear in
the size of the BRO inputs. This gives us more hope for unbounded adaptivity,
in case improved decomposition techniques are found.
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Composition. Let c denote the number of times the adversary switches between
one backdoor oracle to the other. Regarding the query complexities of our simu-
lators, each query to the backdoor oracle translates to roughly N1−2−c

queries to
the random oracle for the xor combiner and roughly N1−3/(c+1)/ log M queries
to the random oracle for the extractor combiner. This in particular means that,
for a wide range of parameters, composition is only meaningful with respect
to security notions whereby the random oracle can tolerate a large number of
queries. This, for example, would be the case for one-way, PRG, and PRF secu-
rity notions where the security bounds are of the form O(q/N). However, with
respect to a smaller number of switches (as well as in the auxiliary-input setting
with no adaptivity), collision resistance can still be achieved.

Indifferentiability with Auxiliary Input. When our definition of indiffer-
entiability is restricted so that only a single backdoor query to each hash function
at the onset is allowed, we obtain a notion that formalizes indifferentiability with
auxiliary input. This definition is interesting as it is sufficiently strong to allow
for the generic replacement of random oracles with iterative constructions even
in the presence of preprocessing attacks. Accordingly, our positive results in the
BRO model when considered with no adaptivity translate to indifferentiability
with independent preprocessing attacks. To complement this picture, we also dis-
cuss the case of auxiliary-input indifferentiability with a single BRO and show,
as expected, that a salted indifferentiable construction is also indifferentiable
with auxiliary input.

Open Problems. In order to overcome the bounded adaptivity restriction
and prove full indifferentiability, one would require an improved decomposition
technique which fixes considerably less points after each leakage. This, at the
moment, seems (very) challenging and is left as an open question. In particular,
such a result would simultaneously give new proofs of known communication
complexity lower bounds for a host of problems, such as set-disjointness and
intersection, potentially a proof of the conjecturally hard problem stated in [3],
and many others. (We note that improved decomposition techniques can poten-
tially also translate to improved bounds.) Indeed the xor combiner may achieve
security well beyond what we establish here (and indeed the original work of
BFM does so for specific games). Finally, as the extractor combiner suggests,
the form of the combiner and the number of underlying BROs can also affect
the overall bounds.

2 Preliminaries

Throughout the paper, when we write [N ] for any uppercase letter N , we use
the convention that N is an integer and a power of two, i.e., N = 2n for some
n ∈ N. Let [N ] := {0, . . . , N −1} denote the set of all n-bit strings. We use [M ]N

to denote the set of all bit-strings of length N · log M , which corresponds to the
set of all functions F : [N ] → [M ]. We denote the uniform distribution over an
arbitrary finite set S by US .
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For F ∈ [M ]N and I ⊆ [N ] we denote by FI the projection of F onto the
points in I. Let μ be a probability density function over [M ]N . We define μ(D) :=
PrF∼μ[F ∈ D] as the probability that a sample randomly drawn from μ falls into
the domain D ⊆ [M ]N . By μ|D we denote the density μ conditioned on the
domain D. For a function f : [M ]N → {0, 1}� and z ∈ {0, 1}�, by μ|f(·)=z we
denote μ conditioned on f(F) = z for all F ∼ μ|f(·)=z.

For a set of assignments A ⊆ {(a, b) : (a, b) ∈ [N ] × [M ]}, by μ|A we denote
μ conditioned on F{a} = b for all (a, b) ∈ A and all F ∼ μ|A. We further let
A.1 ⊆ [N ] (resp. A.2 ⊆ [M ]) denote the set containing the first (resp. second)
coordinates of all elements in A.

For an algorithm Alg we denote by Alg[param](input) a call of the algorithm
with (constant) parameters param and variable inputs input . This is to increase
clarity among multiple calls to the algorithm about the main input, while the
parameters remain unchanged.

2.1 Backdoored Random Oracles

We recall the definition of the backdoored random-oracle model from [3]. The
BRO(N1,M1, . . . , Nk,Mk) model (for some k ∈ N) defines a setting where all
parties have access to k functions H1, . . . ,Hk, where Hi’s are chosen uniformly
and independently at random from [Mi]Ni , while the adversarial parties also
have access to the corresponding backdoor oracles Bdi’s. A backdoor oracle Bdi

can be queried on functions f and return f(Hi). If for all i ∈ [k] we have Ni = N
and Mi = M , we simply refer to this model as k-BRO(N,M) and when N and
M are clear from the context, we simply use k-BRO.

These models may be weakened by restricting the adversary to query Bdi

only on functions f in some capability class Fi. However our results as well as
those in [3] hold for arbitrary backdoor capabilities. In other words an adversary
can (adaptively) query arbitrary functions f to any of the backdoor oracles.

2.2 Indifferentiability in the BRO Model

We follow the indifferentiability framework of Maurer, Renner, and Holenstein
(MRH) [23]. Here the underlying honest interfaces are k random oracles Hi

and respective adversarial interfaces Bdi. We define the advantage of a dif-
ferentiator D with respect to a construction CHi and a simulator SimRO :=
(SimHRO

i ,SimBDRO
i ) as

Advindiff
CHi ,Sim(D) :=

∣
∣
∣Pr

[
DCHi ,Hi,Bdi

]
− Pr

[
DRO,SimHRO

i ,SimBDRO
i

] ∣
∣
∣ ,

where RO is a random oracle whose domain and co-domain match those of C.
We emphasize that the simulators do not get access to any backdoor oracles.

This ensures that any attack against a construction with backdoors translates
to one against the underlying random oracles without any backdoors.
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2.3 Randomness Extractors

Let X be a random variable. The min-entropy of X is defined as H∞(X) :=
− log maxx Pr[X = x]. The random variable X is called a (weak) k-source if
H∞(X) ≥ k, i.e., Pr[X = x] ≤ 2−k. The min-entropy of a distribution typically
determines how many bits can be extracted from it which are close to uniform.
The notion of closeness is formalized by the statistical distance. For two random
variables X and Y over a common support D, their statistical distance is defined
as SD(X,Y ) := 1

2

∑
z∈D |Pr[X = z] − Pr[Y = z]|.

In this paper we are interested in extractors that do not require seeds but
rather rely on multiple weak sources.

Definition 1 (Multi-source extractors). An efficient function Ext : [N1] ×
. . . × [Nt] → [M ] is a (k1, . . . , kt, ε)-extractor if for all weak ki-sources Xi over
domains [Ni], we have:

SD
(
Ext(X1, . . . , Xt),U[M ]

) ≤ ε ,

where ε is usually defined as a function of k1, . . . , kt. We call Ext an s-out-of-t
(k1, . . . , kt, ε)-extractor if Ext(X1, . . . , Xt) is ε-close to uniform even if only s
sources fulfill the min-entropy condition.

Below we define useful classes of distributions, the so-called (partially) dense
distributions, resp. dense probability density functions. Intuitively, bit strings
from a dense distribution are unpredictable not only as a whole but also in any
of their substrings and any combination of those substrings.

Definition 2 (Dense distributions). Let μ be a probability density function
over [M ]N . Then

– μ is called (1 − δ)-dense if for F ∼ μ, it holds that for every subset I ⊆ [N ]
we have H∞(FI) ≥ (1 − δ) · |I| · log M .

– μ is called (p, 1 − δ)-dense if for F ∼ μ there exists a set I ⊆ [N ] of size
|I| ≤ p such that H∞(FI) = 0, while for every subset J ⊆ [N ] \ I we have
H∞(FJ ) ≥ (1 − δ) · |J | · log M . That is, μ is fixed on at most p coordinates
and (1 − δ)-dense on the rest.

We call a distribution dense, if the corresponding density function is dense.

3 Decomposition of High Min-Entropy Distributions

Any high min-entropy distribution can be written as a convex combination of
distributions that are fixed on a number of points and dense on the rest (i.e.,
(p, 1 − δ)-dense distributions for some p and δ > 0).3 The decomposition tech-
nique introduced by Göös et al. [14] has its origins in communication complexity
3 A convex combination of distributions μ1, . . . , μn is a distribution that can be written

as α1 · μ1 + . . . + αn · μn, where α1, . . . , αn are non-negative real numbers that sum
up to 1.
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theory. We generalize this technique, with a terminology closer to that of Kothari
et al. [18], in order to allow for adaptive leakage. The original lemma, also used
by Coretti et al. [7], can be easily derived as a special case of our lemma. For
this, one assumes that the starting distribution before the leakage was uniform,
in other words (0, 1)-dense.

When proving results in the auxiliary-input random-oracle (AI-RO) model,
Uhruh [27] observed that pre-computation (or leakage) on a random oracle can
cause a significant decrease of its min-entropy only on restricted parts of its sup-
port (i.e., on p points), causing that part to become practically fixed, while the
rest remains indistinguishable from random to a bounded-query distinguisher.
This means that after fixing p coordinates of the random oracle, the rest can
be lazily sampled from a uniform distribution. Coretti et al. [7] recently gave a
different and tighter proof consisting of two main steps. First, the decomposition
technique is used to show that the distribution of a random oracle given some
leakage is statistically close to a (p, 1− δ)-dense distribution. Second, they prove
that no bounded-query algorithm can distinguish a (p, 1 − δ)-dense distribution
from one that is fixed on the same p points and is otherwise uniform (a so-called
p-bit-fixing distribution), as suggested by Unruh [27].

Since in the BRO model adaptive queries are allowed, a function queried
to the backdoor oracle is able to “see” the entire random oracle, rather than a
restricted part of it. Hence, when analyzing the distribution of a random oracle
after adaptive leakage, it is crucial that we keep the distributions statistically
close. In other words we use (p, 1− δ)-dense distributions instead of p-bit-fixing.

In the k-BRO model, we are concerned with multiple queries to the back-
door oracles, i.e., continuous and adaptive leakage that can depend on previously
leaked information about both hash functions. Intuitively, since the leakage func-
tion can be arbitrary, it can in particular depend on the previously leaked val-
ues. We still need to argue that the distribution obtained after leakage about a
(pprv, 1 − δprv) distribution, which is not necessarily uniform, is also close to a
convex combination of (p, 1− δ) distributions. Naturally, we have δ ≥ δprv, since
min-entropy decreases after new leakage, and p ≥ pprv, since additional points
are fixed. Looking ahead, in the indifferentiability proofs, this refined decom-
position lemma allows us to simply fix a new portion pfrsh of the simulated
hash function after each leakage (i.e., backdoor query) and not to worry about
the rest, which still has high entropy and can be lazily sampled (from a dense
distribution) upon receiving the next query.

Lemma 1 (Refined decomposition after leakage). Let μ be a (pprv, 1 −
δprv)-dense density function over [M ]N for some pprv, δprv ≥ 0. Let f : [M ]N →
{0, 1}� be an arbitrary function and z ∈ {0, 1}� be a bit string. Then for any
pfrsh, γ > 0, the density function conditioned on the leakage μ|f(·)=z is γ-close
to a convex combination of finitely many (p, 1 − δ)-dense density functions for
some p and δ such that

pprv ≤ p ≤ pprv + pfrsh and δprv ≤ δ ≤ δprv · logM · (N−pprv) + �z + log γ−1

pfrsh · logM
,
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where �z := H∞(G) − H∞(F) is the min-entropy deficiency of F ∼ μ|f(·)=z

compared to G ∼ μ.

Proof. This refined decomposition lemma differs from the original lemma in that
the starting density function μ is (pprv, 1−δprv)-dense. As a first step, we modify
the original decomposition algorithm from [14,18] so that it additionally gets the
set of pprv indices Iprv ⊆ [N ] that are already fixed in μ from the start.

Our refined decomposition algorithm RefinedDecomp, given below, recur-
sively decomposes the domain [M ]N , according to the density function after
leakage μz := μ|f(·)=z, into d + 1 partitions D1, . . . , Dd,Derr ⊆ [M ]N such that
( ⋃d

i=1 Di

)∪Derr = [M ]N , where err stands for erroneous. For all i with 1 ≤ i ≤ d
the partition Di defines a (p, 1 − δ)-dense density function μz|Di

.
Each recursive call on a domain D to RefinedDecomp (other than the call

leading to Derr, which we will discuss shortly) returns a pair (Di, Ii), where Di

represents a subset of [M ]N , where the images of all points in the set Ii ⊂ [N ]
are fixed to the same values under all functions H ∈ Di. In other words, we
have HIi

= αi for some αi ∈ [M ]|Ii|. The algorithm finds such a pair (Di, Ii) by
considering the biggest set Ii (excluding those points fixed from the start, i.e.,
Iprv) such that the min-entropy of FIi

(for F ∼ μz|D) is too small (as determined
by the rate δ) and then finding some αi which is a very likely value of FIi

. Then
Ii is returned with some Di as the partition that contains all H with HIi

= αi.
The next recursive call will exclude Di from the considered domain.

Decomposition halts either if the probability of a sample falling into the
current domain is smaller than γ (i.e., μz(D) ≤ γ) or the current distribution
is already (pprv, 1 − δ)-dense. In both cases the algorithm returns the current
domain D together with an empty set. In the former case the returned domain
is marked as an erroneous domain Derr := D, since it may not define a (p, 1 −
δ)-dense distribution. Let us without loss of generality assume that μz is not
(pprv + pfrsh, 1 − δ)-dense, as otherwise the claim holds trivially.

The formal definition of the algorithm RefinedDecomp is given below. We
initialize the desired density rate as δ := δprv·log M ·(N−pprv)+�z+log γ−1

pfrsh·log M before
calling RefinedDecomp.

RefinedDecomp[μz, δ, γ, Iprv](D)

if μz(D) ≤ γ then return (Derr ← D, ∅)

if μz|D is (|Iprv|, 1 − δ)-dense then return (D, ∅)

for F ∼ μz|D let I ⊆ [N ] be a maximal set such that

H∞(FI) < (1 − δ) · |I| · log M and I ∩ Iprv = ∅.

let α ∈ [M ]|I| be such that Pr[FI = α] > 2−(1−δ)·|I|·log M .

Dα ← D ∩ {F ∈ [M ]N | FI = α}
D�=α ← D ∩ {F ∈ [M ]N | FI 	= α}
return ((Dα, I),RefinedDecomp[μz, δ, γ, Iprv](D�=α))
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Now we turn our attention to proving that every partition Di (other than
Derr) returned by the above decomposition algorithm defines a density function
μz|Di

which is (p, 1 − δ)-dense.

Claim 1. For all values of i with 1 ≤ i ≤ d it holds that the density function
μz|Di

is (p, 1− δprv·log M ·(N−pprv)+�z+log γ−1

pfrsh·log M )-dense, where pprv ≤ p ≤ pprv+pfrsh.

Proof. Let δ := δprv·log M ·(N−pprv)+�z+log γ−1

pfrsh·log M . Let I be the set of freshly fixed
points in μz|Di

and I ∪ Iprv := [N ] \ (I ∪ Iprv). Let α∪ ∈ [N ]|I∪Iprv| be such that
FI∪Iprv = α∪ for F ∼ μz|Di

. We first argue for the (1 − δ)-density of μz|Di
on

values projected to I ∪ Iprv and afterwards bound the size of I.

1. Suppose μz|Di
is not (1−δ)-dense on I ∪ Iprv. Then there exists a non-empty

set which violates the density property. That is, there exists a non-empty set
J ⊆ I ∪ Iprv and some β ∈ [N ]|J| such that, with the probability taken over
F ∼ μz|Di

, we have:

Pr[FJ = β] > 2−(1−δ)·|J|·log M .

Now the union of the three sets I∗ := I ∪ Iprv ∪ J forms a new set such that
for some β∗ ∈ [N ]|I∪Iprv∪J| we have

Pr[FI∗ = β∗] = Pr[FI∪Iprv = α∪ ∧ FJ = β]
= Pr[FI∪Iprv = α∪] · Pr[FJ = β|FI∪Iprv = α∪]

> 2−(1−δ)·|I∪Iprv|·log M · 2−(1−δ)·|J|·log M

= 2−(1−δ)·|I∪Iprv∪J|·log M .

Since J was assumed to be non-empty and disjoint from I ∪ Iprv (and in par-
ticular with I), its existence violates the maximality of I. Therefore, FI∪Iprv

is (1 − δ) dense.
2. We now bound the size of I, given that δ = δprv·log M ·(N−pprv)+�z+log γ−1

pfrsh·log M . Let
F ∼ μz and G ∼ μ. We have H∞(F) = H∞(G) − �z ≥ (1 − δprv) · (N −
pprv). log M − �z, where the inequality holds, since μ is (1 − δprv)-dense in
N − pprv rows. Let β ∈ [M ]|I|. Then we have:

Pr
μz|Di

[FI = β] ≤ Pr
μz

[FI = β]/μz(Di)

≤ Pr
μz

[FI = β]/γ

=
∑

β′∈[M ]N−|I|−|Iprv|

Pr
μz

[FI = β ∧ F[N ]\(I∪Iprv) = β′]/γ

≤ 2(N−|I|−pprv)·log M · 2−H∞(F)/γ

≤ 2(N−|I|−pprv)·log M · 2−((1−δprv)·(N−pprv)·log M−�z)/γ

= 2δprv·N ·log M−δprv·pprv·log M−|I|·log M+�z/γ

= 2δprv·log M ·(N−pprv)−|I|·log M+�z+log γ−1
.
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Since by definition of the decomposition algorithm, there exists an α ∈ [M ]I

such that Prμz|Di
[FI = α] > 2−(1−δ)·|I|·log M , we obtain

|I| ≤ δprv · log M · (N − pprv) + �z + log γ−1

δ · log M
.

Substituting δ by δprv·log M ·(N−pprv)+�z+log γ−1

pfrsh·log M , we obtain |I| ≤ pfrsh and
therefore, for the total number of fixed points p := |I ∪ Iprv| we get
pprv ≤ p ≤ pprv + pfrsh, as stated in the claim.

�
Therefore, μz can be written as a convex combination of μz|D1 , . . . , μz|Dd

and μz|Derr , i.e., μz =
∑d

i=1 μz(Di) · μz|Di
+ μz(Derr) · μz|Derr . Since μz(Derr) ≤ γ

when the algorithm RefinedDecomp terminates, the distribution μz is γ-close to
a convex combination of (p, 1 − δ) distributions. �

A special case of the above lemma for a uniform (i.e., (0, 1)-dense) starting
distribution μ, where pprv = 0 and δprv = 0, implies the bound δ ≤ (�z +
log γ−1)/(pfrsh · log M) used by Coretti et al. [7].

Remark. Note that the coefficient of δprv in the right hand side of the inequality
established in the lemma is of the order O(N/pfrsh). Looking ahead (see discus-
sions on parameter estimation) this results in an increase in the number of points
that the simulator needs to set. Thus any improvement in the bound established
in this lemma would translate to tolerating a higher level of adaptivity and/or
obtaining an improved bound.

Below we show that the expected min-entropy deficiency after leaking � bits
of information can be upper-bounded by � bits.

Lemma 2. Let F be a random variable over [M ]N and f : [M ]N → {0, 1}� be
an arbitrary function. Let �z := H∞(F) − H∞(F|f(F) = z) be the min-entropy
deficiency of F|f(F)=z. Then, we have Ez∈f(supp(F))[�z] ≤ �.

Proof. Recall that H̃∞(A|B) := − log
(
Eb

[
maxa Pr[A = a|B = b]

])
defines the

average min-entropy of A, given B.

Ez∈f(supp(F))[�z] = H∞(F) − Ez∈f(supp(F))[H∞(F|f(F) = z)]

≤ H∞(F) − H̃∞(F|f(F) = z)
≤ H∞(F) − H∞(F) + log |f(supp(F))| ≤ � ,

where for deriving the second line we have used Jensen’s inequality and for the
third line we have used [11, Lemma 2.2.b].4 �

4 The lemma is as follows. Let A, B be random variables. Then we have ˜H∞(A|B) ≥
H∞(A, B) − n ≥ H∞(A) − n, where B has at most 2n possible values.
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4 The Xor Combiner

In this section, we study the indifferentiability of the xor combiner CH1,H2
⊕ (x) :=

H1(x) ⊕ H2(x) in the 2-BRO model from a random oracle RO. We show indif-
ferentiability against adversaries that switch between the two backdoor oracles
Bd1 and Bd2 only a logarithmic number of times, while arbitrarily interleaving
queries to the underlying BROs H1 and H2, as well as to the random oracle RO.

To prove indifferentiability we need to show that there exists a simulator
Sim := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2 ) such that no distinguisher plac-

ing a “reasonable” number of queries can distinguish

(CH1,H2
⊕ ,H1,H2,Bd1,Bd2) and (RO,SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2 ).

Such a simulator is described in Fig. 1. Simulating the evaluation queries
to H1 and H2 is straightforward. In simulating the backdoor queries, we take
advantage of the decomposition technique (discussed in Sect. 3) for transforming
high min-entropy distributions into distributions that have a number of fixed
points and are dense otherwise. The backdoor simulator SimBD1 (resp. SimBD2)
computes the queried function f on the truth table of H1 (resp. H2), where H1 and
H2 are initialized by picking two functions uniformly at random. For the sake of
simplicity, we consider an adversary that makes Q consecutive queries, ignoring
evaluation and RO-queries in between, to one backdoor oracle before moving to
the other. After the i-th sequence of Q queries to one of the backdoor oracles, the
leaked backdoor information is translated into fixing pi rows of the hash function
such that the rest is dense and the resulting distribution is statistically close to
the true one. In other words, the distribution conditioned on the leakage is γ-
close (for some γ > 0) to a convex combination of (p, 1 − δ)-dense distributions
obtained after decomposition.

Regarding the density rates δi’s, we use odd values of i for the distributions
obtained after backdoor queries on H1 and even values of i for distributions of
H2. Note that is crucial for the statistical distance of these two distributions on
the entire table to remain small, since the distinguisher can adaptively query a
backdoor oracle which sees and can depend on the entire hash function table (as
opposed to a limited number of rows).

Finding a distribution, which is partly fixed and partly dense, is performed
by the FixRows algorithm from Fig. 1. On input of a distribution μz, integer
p ∈ N, and a set Iprv ∈ [N ], the algorithm FixRows returns a new distribution
which is fixed on points in a set I of size at most p + |Iprv| and is for some δ,
(1 − δ)-dense on the rest, together with a set of assignments A for elements in
I according to the output distribution. The FixRows algorithm internally calls
the refined decomposition algorithm, whose existence is guaranteed by Lemma 1
and its output distribution is one of the distributions in the convex combination
returned by RefinedDecomp.

Upon fixing rows of one simulated BRO, the same rows in the other simulated
BRO have to be fixed in a way that consistency with RO is assured. More
precisely, for any x if H1(x) is fixed, the simulator SimBD1 will immediately
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Fig. 1. Indifferentiability simulator for the xor combiner. We assume initial values
hst1 = hst2 = hstRO := ∅, μ1 = μ2 := U[M ]N , H1,H2 ←← U[M ]N , q := 0, and s := 0.

set H2(x) := RO(x) ⊕ H1(x) (and, analogously, so does SimBD2). The simulator
specifies the number of points that it can afford to fix (since every such query
requires a call to RO) and the statistical distance that it wants. Such a strategy
to assure consistency with RO is also followed by evaluation simulators SimH1

and SimH2, where only one coordinate of each BRO is fixed.
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Note that the simulator SimBD1 programs values of H2, which were supposed
to be dense (after a first SimBD2 query), to values that are uniform instead.
Hence, we need to argue later that the statistical distance between a uniform
and a dense distribution is small for the number of points that are being treated
this way. This is formalized in Claim 2, below. Looking ahead, the need to keep
the advantage of the differentiator small is the reason why the simulator adapts
the number of fixed points with a differentiator’s switch to the other backdoor
oracle. Finally, via a hybrid argument we can upper bound the total number of
random oracle queries by the simulator and the advantage of the differentiator.

Claim 2. Let U be the uniform distribution and V be a (1−δ)-dense distribution,
both over the domain [M ]t. Then we have SD(U ,V) ≤ t · δ · log M .

Proof. This proof follows that of [7, Claim 3]. Let V+ be the set of all values
z ∈ [M ]t for which Pr[V = z] > 0 holds. We can write the statistical distance
between U and V as:

SD(U ,V) =
∑

z∈[M ]t

max
{
0,Pr[V = z] − Pr[U = z]

}

=
∑

z∈V+

max
{
0,Pr[V = z] − Pr[U = z]

}

=
∑

z∈V+

Pr[V = z] · max
{

0, 1 − Pr[U = z]
Pr[V = z]

}
.

Now, observe that for any value z ∈ [M ]t, we have Pr[V = z] ≤ M−(1−δ)·t and
Pr[U = z] = M−t. Hence we have:

SD(U ,V) ≤ 1 − M−δ·t ≤ t · δ · log M ,

where the last inequality uses the fact that for all x ≥ 0, it holds that 2−x ≥ 1−x
(and hence, x ≥ 1 − 2−x). �

The following theorem states our indifferentiability result for xor.

Theorem 1 (Indifferentiability of xor in 2-BRO with bounded adap-
tivity). Consider the xor combiner CH1,H2

⊕ (x) := H1(x) ⊕ H2(x) in the 2-BRO
model with backdoored hash functions H1,H2 ∈ [M ]N . It holds that for any
p̄ := (p1, . . . , pc+1) ∈ N

c+1, 0 < γ < 1, and an integer c ≥ 0, there exists
a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 [p̄, γ],SimBDRO
2 [p̄, γ]) such

that for any differentiator D that always makes Q queries to a backdoor oracle
(starting from Bd1 and always receiving an �-bit response) before switching to
the other, with a total number of c switches, while being allowed to arbitrarily
interleave up to qH primitive queries as well as qC construction queries, we have

Advindiff

C
H1,H2
⊕ ,Sim[p̄,γ]

(D) ≤ (c + 1) · γ

+ log M · ( c∑

i=1

pi · δi−1 + qH · δc+1 + qC · (δc + δc+1)
)

,
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where δ−1 := δ0 := 0 and the density rate after the i-th sequence of Q-
many backdoor queries is δi :=

(
δi−2 · (N − ∑i−2

j=1 pj) · log M + Q · � + log γ−1
)
/

(
pi · log M

)
. The simulator places at most qSim ≤ qH +

∑c+1
i=1 pi queries to the

random oracle RO.

Proof. We prove indifferentiability by (1) defining a simulator, (2) upper bound-
ing the advantage of any differentiator in distinguishing the real and the simu-
lated worlds, and (3) upper bounding the number of queries that the simulator
makes to the random oracle.

Simulator. All four sub-algorithms of the simulator are described in Fig. 1. They
share state, in particular, variables to keep track of the fixed history and the cur-
rent distribution of the hash functions. Two sets hst1, hst2 are used to keep track
of the fixed coordinates of the simulated hash functions H1 and H2, respectively.
The density functions, from which the simulated backdoored hash functions will
be sampled, are denoted by μ1 and μ2. Furthermore, the simulator uses a counter
s to recognize switches from one backdoor oracle to the other in order to use the
appropriate number of points to fix from the list p̄. It also maintains a counter
q for counting the number of consecutive queries to a backdoor oracle in order
to decompose, i.e., substitute the current distribution with a partially fixed and
partially dense distribution, only when necessary which is the case after each
set of Q backdoor queries. We assume the initial values μ1 = μ2 := U[M ]N ,
H1,H2 ←← U[M ]N , hst1 = hst2 = hstRO := ∅, q := 0, and s := 0.

Security Analysis. Here we analyze the indifferentiability of the xor combiner
using a sequence of eight games Game0, . . . ,Game7, where Game0 and Game7
are the real and ideal indifferentiability games, respectively. In the following
we use the shorthand notation Pr[DGamei ] := Pr[DGamei = 1], where DGamei

indicates the interaction of an adversary D with a game Gamei. We define the
intermediate games Game1 through Game6 by gradually modifying the oracles
and highlighting the changes in each step. Unchanged oracles are omitted in
games and correspond to those from their direct predecessor. We bound the
advantage of differentiators in distinguishing every two consecutive games.

Game0 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)

y ← y1 ⊕ y2

return y

Game0 : H1(x)

y1 ← H1(x)

return y1

Game0 : H2(x)

y2 ← H2(x)

return y2

Game0 : Bd1(f)

z ← f(H1)

return z

Game0 : Bd2(f)

z ← f(H2)

return z

Game1. We next update the distributions of hash functions based on past evalu-
ation queries, backdoor queries, and the history of coordinates that are fixed



Towards Defeating Backdoored Random Oracles 257

through construction queries. The distributions μi are conditioned on these
updates, but are never actually used (i.e., sampled from) in the game. Hence
it is easy to see that these two games are identical, i.e., SD(Game0,Game1) = 0.

Game1 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
μ1 ← μ1|hst1 ; μ2 ← μ2|hst2
y ← y1 ⊕ y2

return y

Game1 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}
μ1 ← μ1|hst1
return y1

Game1 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}
μ2 ← μ2|hst2
return y2

Game1 : Bd1(f)

z ← f(H1)

μ1 ← μ1|f(·)=z

return z

Game1 : Bd2(f)

z ← f(H2)

μ2 ← μ2|f(·)=z

return z

Game2. Here, after each sequence of Q queries to a backdoor oracle, i.e., right
before a switch, a (p, 1−δ)-dense distribution μ′

i is obtained using the algorithm
FixRows by decomposing the distribution of the corresponding hash function
after responding to the last query (i.e., μi|f(·)=z). However, since the new distri-
butions μ′

i are never actually used elsewhere, Game2 remains identical to Game1,
i.e., SD(Game1,Game2) = 0.

Game2 : Bd1(f)

q ← q + 1

z ← f(H1); μ1 ← μ1|f(·)=z

if q = Q then

(μ
′
1, A1) ←← FixRows[γ](μ1, p2s+1, hst1.1)

q ← 0

return z

Game2 : Bd2(f)

q ← q + 1

z ← f(H2); μ2 ← μ2|f(·)=z

if q = Q then

(μ
′
2, A2) ←← FixRows[γ](μ2, p2s+2, hst2.1)

q ← 0

s ← s + 1

return z

Game3. In this game, evaluation queries on a value x, fix the image of both
functions, i.e., to H1(x) and H2(x). Similarly, in backdoor simulation the rows in
the assignments A1 (resp. A2) are fixed for the other hash function H2 (resp. H1)
according to its current distribution. In both games, the oracles’ responses are
at all times consistent with their past responses (and the construction) and we
still do not sample from the updated distributions. Hence, it does not matter,
if more or less of the hash function tables are fixed in each query and therefore
the two games are identical, i.e., SD(Game2,Game3) = 0.
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Game3 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,H2(x)}
μ1 ← μ1|hst1 ; μ2 ← μ2|hst2
return y1

Game3 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,H1(x))}
μ2 ← μ2|hst2 ; μ1 ← μ1|hst1
return y2

Game3 : Bd1(f)

q ← q + 1

z ← f(H1); μ1 ← μ1|f(·)=z

if q = Q then

(μ
′
1, A1) ←← FixRows[γ](μ1, p2s+1, hst1.1)

for x ∈ A1.1 do

hst2 ← hst2 ∪ {(x,H2(x))}
μ2 ← μ2|hst2
q ← 0

return z

Game3 : Bd2(f)

q ← q + 1

z ← f(H2); μ2 ← μ2|f(·)=z

if q = Q then

(μ
′
2, A2) ←← FixRows[γ](μ2, p2s+2, hst2.1)

for x ∈ A2.1 do

hst1 ← hst1 ∪ {(x,H1(x))}
μ1 ← μ1|hst1
q ← 0

s ← s + 1

return z

Game4. In this game the distributions obtained by decomposition actually
replace the distributions conditioned on leakage. Hence, the histories are also
updated and a new hash function Hi is later sampled for potential usage in
the construction. According to Lemma 1, there is a convex combination of
(p, 1 − δ)-dense distributions which is γ-close to the real distribution, one of
such distributions being the one returned by FixRows. Hence, the distinguish-
ing advantage can increase by γ for every Q sequence of backdoor queries. I.e.,∣
∣ Pr[DGame3 ] − Pr[DGame4 ]

∣
∣ ≤ (c + 1) · γ .

Game4 : Bd1(f)

q ← q + 1

z ← f(H1); μ1 ← μ1|f(·)=z

if q = Q then

(μ1 , A1) ←← FixRows[γ](μ1, p2s+1, hst1.1)

hst1 ← hst1 ∪ A1

H1 ←← μ1

for x ∈ A1.1 do

hst2 ← hst2 ∪ {(x,H2(x))}
μ2 ← μ2|hst2
q ← 0

return z

Game4 : Bd2(f)

q ← q + 1

z ← f(H2); μ2 ← μ2|f(·)=z

if q = Q then

(μ2 , A2) ←← FixRows[γ](μ2, p2s+2, hst2.1)

hst2 ← hst2 ∪ A2

H2 ←← μ2

for x ∈ A2.1 do

hst1 ← hst1 ∪ {(x,H1(x))}
μ1 ← μ1|hst1
q ← 0

s ← s + 1

return z

Game5. This game behaves exactly as Game4 except when fixing the same
rows for the distribution of the other BRO. It fixes those points by calling
C⊕ (rather than directly) and then redundantly updates the history with e.g..,
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some (x,H1(x) ⊕ C⊕(x)) and samples a new BRO from the updated distri-
bution. However, since the construction C⊕ itself calls the BROs, Game5 is
only taking a detour and the two games are perfectly indistinguishable. Hence
SD(Game4,Game5) = 0.

Game5 : H1(x)

y1 ← H1(x)

hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,C⊕(x) ⊕ y1}
μ1 ← μ1|hst1 ; μ2 ← μ2|hst2
H2 ←← μ2

return y1

Game5 : H2(x)

y2 ← H2(x)

hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,C⊕(x) ⊕ y2)}
μ2 ← μ2|hst2 ; μ1 ← μ1|hst1
H1 ←← μ1

return y2

Game5 : Bd1(f)

q ← q + 1

z ← f(H1); μ1 ← μ1|f(·)=z

if q = Q then

(μ1, A1) ←← FixRows[γ](μ1, p2s+1, hst1.1)

hst1 ← hst1 ∪ A1

H1 ←← μ1

for (x, y1) ∈ A1 do

hst2 ← hst2 ∪ {(x,C⊕(x) ⊕ y1)}
μ2 ← μ2|hst2
H2 ←← μ2

q ← 0

return z

Game5 : Bd2(f)

q ← q + 1

z ← f(H2); μ2 ← μ2|f(·)=z

if q = Q then

(μ2, A2) ←← FixRows[γ](μ2, p2s+2, hst2.1)

hst2 ← hst2 ∪ A2

H2 ←← μ2

for (x, y2) ∈ A2 do

hst1 ← hst1 ∪ {(x,C⊕(x) ⊕ y2)}
μ1 ← μ1|hst1
H1 ←← μ1

q ← 0

s ← s + 1

return z

Game6. We now modify C⊕ to start to resemble a lazily sampled random oracle.
In the new construction oracle, a query is stored together with its image in the
history hstRO. In case a query is repeated, its stored image is simply returned.
Otherwise, there are three cases to consider: the corresponding row to the current
query x is fixed in both hash functions, in one of them, or in neither one. In the
first case the output of the construction is computed by xoring the individual
images stored in hst1 and hst2. In the second case, a uniformly random value is
chosen (and later stored in hstRO). In the final case, Game6 behaves exactly as
Game5. So, the distinguishing advantage is bounded by distinguishing uniform
points (set to uniform when xoring with the returned uniform value of C⊕) from
dense points. In fact, according to Claim 2, for each evaluation query it adds at
most δc+1 · log M , since δi’s are increasing. Further, for all points that are fixed
upon a backdoor query this adds pi · δi−1 · log M , except for the last one, since
there will be no backdoor query after that which can see the entire pc+1 points.

∣
∣ Pr[DGame5 ] − Pr[DGame6 ]

∣
∣ ≤ log M · ( c∑

i=1

pi · δi−1 + qH · δc+1

)
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Game6 : CH1,H2
⊕ (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y
′ ∈ [M ] s.t. (x, y

′
) ∈ hst1 ∨ (x, y

′
) ∈ hst2 then

y ←←[M ]

else

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
μ1 ← μ1|hst1 ; μ2 ← μ2|hst2
y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}
return y

Game7. The construction oracle in this game differs from Game6 in that it never
evaluates the individual hash functions anymore. Here, we can safely remove
the second case distinction, where x is in both hst1 and hst2, since this case is
covered by the first case where x has been queried to the construction itself. It
remains to bound the distinguisher’s advantage in distinguishing the two games
while making queries x to the construction that are prior to the query fixed for
neither hash function.

Claim. Let X and Y be two independent (1−δ) and (1−δ′)-dense distributions
over a domain [M ]N . Then the xor distribution X ⊕ Y is (1 − (δ + δ′))-dense
over the same domain [M ]N .

Proof. Let I ⊆ [N ] and z ∈ [M ]|I| be arbitrary. Then we have:

Pr[XI ⊕ YI = z] =
∑

x

Pr[XI =x ∧ YI =x ⊕ z] =
∑

x

Pr[XI =x] · Pr[YI =x ⊕ z]

≤ 2|I|·log M · 2−(1−δ)·|I|·log M · 2−(1−δ′)·|I|·log M

= 2−(1−(δ+δ′))·|I|·log M .

�
We can now bound the distinguisher’s advantage by computing the distance

between the sum of two dense distributions from uniform, given that only qC
queries to C⊕ are allowed. Below, in the second line, we use the fact that accord-
ing to Lemma 1, δ’s should increase.
∣
∣ Pr[DGame6 ] − Pr[DGame7 ]

∣
∣ ≤ qC ·log M · max

0≤i≤c
{δi + δi+1} = qC ·log M ·(δc + δc+1).
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Game7 : CH1,H2
⊕ (x)

if ∃y ∈ [M ] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M ] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y
′ ∈ [M ] s.t. (x, y

′
) ∈ hst1 ∨ (x, y

′
) ∈ hst2 then

y ←←[M ]

else

y1 ← H1(x); y2 ← H2(x)

hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
μ1 ← μ1|hst1 ; μ2 ← μ2|hst2
y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}
return y

The last game Game7 is identical to the simulated world. Therefore, the
overall advantage of D is as stated in the theorem.

Query Complexity. The queries made by the simulator to RO consist of those
made when simulating evaluation queries and those made when simulating back-
door queries. Responding to each evaluation query requires exactly one query to
RO, which makes a total of qH queries. Right after the Q-th consecutive back-
door query (i.e., right before a switch), the simulator fixes some rows of the other
BRO, where for each fixed row one query to the random oracle RO is made. The
maximum number of rows that should be fixed after each sequence of Q queries
to Bd1 (resp. Bd2) is predetermined by the simulator’s parameter p̄. Hence we
obtain the claimed query complexity qH +

∑c+1
i=1 pi. �

We now provide estimates for the involved parameters.

Corollary 1. Let the number of switches be c ≥ 1. Then for any α1 >
1 − 1/Fc+1, where Fi are the Fibonacci numbers, there is an indifferentiabil-
ity simulator Sim for the C⊕ construction in the 2-BRO model which has query
complexity qH + (c + 1) · Nα1 for any distinguisher with qH queries to the under-
lying BROs. Furthermore, any such distinguisher which places qC construction
queries and Q consecutive queries to the same backdoor oracle before switching
has advantage at most

(c + 1) · γ + log M · (c2B + 2qH + 2qC) · N (1−α1)·Fc+1/Fc+2−1/Fc+2 ,

against the simulator. Asymptotically in the query complexity is qH +
O(N1−1/Fc+2) and the advantage O((qH + qC) · Q · �/N0.38/Fc+2).

Proof. From Lemma 1 we have that

δi ≤ (δi−2 · A + B)/pi ,

where A = N and B = (Q�+log γ−1)/ log M . Recursively applying the equation
we get for odd i

δi ≤ B

pi
+

AB

pipi−2
+ · · · +

A(i−1)/2B

pipi−2 · · · p1
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Using pi < A, the terms progressively get larger. Thus, in general

δi ≤ c · N (i−2+i mod 2)/2B

pipi−2 · · · p1+(i+1) mod 2
.

For the indifferentiability advantage to be small, we would need to minimize

c∑

i=1

pi · δi−1 + (qH + qC)(δc + δc+1).

Let’s assume pi = Nαi for some αi ∈ [0, 1). Then the i-th summand for i > 1 is

c · B · Nαi−αi−1−αi−3−···−α1+i mod 2+(i−3+(i−1) mod 2)/2 .

To minimize, we set al.l terms equal to a common value c · B · Nθ. We obtain

αi − αi−1 − . . . − α1+i mod 2 + (i − 3 + (i − 1)mod 2)/2 = θ ,

Solving this system of linear equations gives

αi = Fi · θ + Fi−1 · (α1 − 1) + 1 ,

where Fi are the Fibonacci numbers with F0 = 0 and F1 = 1.
We may arrange the terms so that (δc + δc+1) = 2 · Nθ (not including the

(qH + qC) factor). To this end, we set αc+2 = 0 so that δc+1 = Nθ/pc+2 = Nθ

and δc = Nθ/pc+1 ≤ Nθ/pc+2 = Nθ. Thus we set αc+2 = 0. This gives θ =
(1−α1)·Fc+1/Fc+2−1/Fc+2. Now for θ < 0 we would need that α1 > 1−1/Fc+1.
This means that the query complexity of the simulator is qH + (c + 1) · Nα1 and
its advantage is

(c + 1) · γ + log M · (c2B + 2qH + 2qC) · N (1−α1)·Fc+1/Fc+2−1/Fc+2 .

We obtain the bound stated in the asymptotic part of the corollary by setting
α1 := 1 − 1/Fc+2 > 1 − 1/Fc+1. �

We note that in the special case where c = 1, we must have that α1 >
1−1/F2 = 0. In particular we can set α1 := 1/4 to obtain a simulator that places
Nα1 = N1/4 ≤ √

N queries. Thus in this case we obtain collision resistance.
Note, however, that as soon as c ≥ 2 we would need to have that α1 > 1−1/F3 =
1/2, which means the simulator places at least

√
N queries, and we do not get

collision resistance.
The above corollary shows that the xor combiner can only tolerate a logarith-

mic number of switches in log N , which we think of as the security parameter.
This is due to the fact that the simulator complexity needs to be less than N/2
for it to be non-trivial. Although our bounds are arguably weak, they are still
meaningful, and we conjecture that much better bounds in reality hold.
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5 An Extractor-Based Combiner

In this section we study the indifferentiability of extractor-based combiners and
show that they can give better security parameters compared to the xor com-
biner of Sect. 4. Recall that in the k-BRO model one considers adversaries that
have access to all k backdoor oracles. A query to the backdoor oracle Bdi reveals
some information about the underlying BRO Hi. The resulting distribution con-
ditioned on the leakage can, using the decomposition technique, be translated
into a distribution with a number of fixed coordinates, while the distribution of
the rest remains dense. An indifferentiability simulator then fixes the same rows
of the other BRO(s) in a way that consistency with the random oracle (which is
to be indistinguishable from the construction) is ensured.

We demonstrated this idea for the xor combiner, where, before a switch to
the other backdoor oracle, the simulator substituted p images of that BRO by
uniformly random values, i.e., the result of the random oracle values xored with
the ones just fixed. This causes a security loss of p · δ · log M per switch, which
corresponds to the advantage of an adversary distinguishing p uniform values
from (1 − δ)-dense ones. Now consider a multi-source (k1, . . . , kt, ε)-extractor as
the combiner in t-BRO. The hope would be that as long as the images of the
BROs have high min-entropy, the output of the extractor is ε-close to uniform.
This makes it possible for us to express the loss described above in terms of a
negligible ε and forgo the requirement on δ to be negligible.

In this section we focus on 2-out-of-3-source extractors as combiners, i.e.,
extractors that only require a minimal amount of min-entropy from two of the
sources. More formally, let Ext : [M ]3 → [2] be a 2-out-of-3-source (k1, k2, k3, ε)-
extractor. For three functions H1,H2,H3 : [N ] → [M ], the combiner CH1,H2,H3

3ext :
[N ] → [2] is defined as CH1,H2,H3

3ext (x) := Ext
(
H1(x),H2(x),H3(x)

)
. Here we show

that in the 3-BRO model the construction CH1,H2,H3
3ext is indifferentiable from a

random oracle.

Why not a Two-Source Extractor? Note that we cannot guarantee that
images which are being fixed by the simulator in some Hi as a result of a Bdi-
query have any min-entropy whatsoever. To understand why, simply consider an
adversary that makes a backdoor query to Bd1 requesting a preimage of the zero-
string y∗ := 0log M under H1. Suppose Bd1 responds to this query with x∗ ∈ [N ].
In this case H1(x∗) has no min-entropy, since y∗ = H1(x∗) was chosen by the
adversary and is, therefore, completely predictable. Hence, H1(x∗) cannot be
used in a (k1, k2, ε)-two-source extractor, i.e., Ext(H1(x∗),H2(x∗)), which relies
on min-entropy from both sources for its output to be ε-close to uniform. Overall,
using a two-source extractor does not seem to have any advantage over the xor
combiner in the 2-BRO model. On the contrary, when using a 2-out-of-3-source
extractor, assuming that the rows under consideration are not already fixed in
the function tables of all three BROs due to some previous query, there will be
two images with high min-entropy, from which we can extract a value ε-close to
uniform. We give a proof of the following theorem, which is relatively similar to
the one for xor, in the full version of the paper.
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Theorem 2 (Indifferentiability of 2-out-of-3-source extractors in the
3-BRO model with bounded adaptivity). Let Ext : [M ]3 → [2] be a
(k1, k2, k3, ε)-2-out-of-3-source randomness extractor, where ε is a function of
k1, k2, k3. Consider the combiner CH1,H2,H3

3ext (x) := Ext(H1(x),H2(x),H3(x)) in the
3-BRO model with backdoored hash functions H1,H2,H3 ∈ [M ]N . It holds that
for all values of p̄ := (p1, . . . , pc+1) ∈ N

c+1, 0 < γ < 1, and an integer c ≥ 0,
there exists a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,SimHRO

3 ,SimBDRO
1 [p̄, γ],

SimBDRO
2 [p̄, γ],SimBDRO

3 [p̄, γ]) such that for any differentiator D that always
makes Q queries to one backdoor oracle (always receiving an �-bit response)
before switching to the next, with a total number of c switches, while arbitrarily
interleaving up to qH primitive queries and qC construction queries, we have

Advindiff

C
H1,H2,H3
3ext ,Sim[p̄,γ]

(D) ≤ (c + 1) · γ

+
c∑

i=1

SD
(
E1| · · · |Epi

,U[2]pi

)
+ qH · SD

(
E1,U[2]

)

+ qC ·ε((1−δc−1)·log M, (1−δc)·log M, (1−δc+1)·log M
)
,

where for all n ∈ N, we define En := Ext(X,Y,Z) for some random variables
X,Y,Z over [M ] such that at least 2 of them have min-entropy (1 − δc) · log M .
Furthermore, we let δ−2 := δ−1 := δ0 := 0 and for other values of i ≤ c + 1 let
δi :=

(
δi−3 · (N−∑i−3

j=1 pj) · log M + Q · � + log γ−1
)
/
(
pi · log M

)
be the density

rate after the i-th sequence of Q-many backdoor queries. The simulator places at
most qSim ≤ qH +

∑c+1
i=1 pi queries to the random oracle RO.

We include the proof of the above theorem in the full version of the paper.

5.1 Instantiation with the Pairwise Inner-Product Extractor

Next we investigate a concrete instantiation of such a 2-out-of-3-source extractor.
General multi-source extractors such as those from [2,21,25] which require a
minimal amount of min-entropy from every source are inapplicable in our setting.
We can, however, use the pairwise inner-product extractor as introduced by Lee
et al. [19], which roughly speaking needs the sum of min-entropies to be sufficient.
Formally a pairwise inner-product extractor Extpip : [M ]t → [2] is defined as:

Extpip(x1, . . . , xt) :=
∑

1≤i<j≤t

xi · xj .

This extractor is proven ([19], Corollary 1) to be a (k1, . . . , kt, ε)-extractor
with ε = 2−(k+k′−log M+1)/2, where k and k′ are the two largest values among
k1, . . . , kt. Hence, Extpip is also a 2-out-of-t extractor.

We obtain the following corollary for the indifferentiability of the pairwise-
inner-product, which we prove in the full version of the paper.
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Corollary 2. Let Extpip : [M ]t → [2] be a pairwise inner-product extractor.
Then the construction CH1,H2,H3

pip (x) := Extpip(H1(x),H2(x),H3(x)) in the 3-BRO
model is indifferentiable from a random oracle, where

Advindiff

C
H1,H2,H3
3ext ,Sim[p,γ]

(D) ≤ (c + 1) · γ

+ c ·
√

(ep·M−(1−2δc) − 1)/2

+
(
qH + qC

) · 2−((1−2δc+1)·log M+1)/2,

while the simulator makes up to qSim ≤ qH + (c + 1) · p queries to RO.

We now provide estimates for the involved parameters.

Corollary 3. Let the number of switches be c ≥ 1 and assume the range size
of the three random oracles are M ≥ N9. Then there is an indifferentiability
simulator Sim for the Cpip construction in the 3-BRO model that places at most

qH + (c + 1) ·
(

6Q�

log M

)1/α(c)

· N1−1/α(c)

queries to RO, where α(c) :=
⌊

c
3

⌋
+ 1, against any distinguisher with qH queries

to the underlying BROs. Further, any such distinguisher with qC construction
queries and Q consecutive queries to the same backdoor oracle before switching,
has advantage at most (c + 1) · γ + (c + qH + qC)/N against this simulator.

Proof. The recurrence relations for δi in the statement of Theorem 2 can be
written as

δi ≤ A · δi−3 + B ,

where A := N/p and B := (Q� + log γ−1)/p log M . Solving this recurrence
relation we get

δi ≤ A� i−1
3 �+1 − 1
A − 1

· B .

We set δc+1 ≤ 1/3 so that the term 1 − 2δc+1 is positive. To this end, it is
sufficient to have that

A� c
3�+1 − 1
A − 1

· B ≤ 1
3

.

Substituting A and B and removing the −1 in the numerator we need to have
that
(

N

p

)� c
3�+1

≤ A − 1
3B

=
(N/p − 1)p log M

3Q�
=

N log M − p log M

3Q�
≤ N log M

6Q�
,

where for the last inequality we have assumed that p ≤ N/2. Thus,

p ≥
(

6Q�

log M

)1/α(c)

· N1−1/α(c) ,
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where α(c) :=
⌊

c
3

⌋
+ 1. For sufficiently large c, the factor above is at most 2.

The advantage stated in Corollary 2 is

(c + 1) · γ + c ·
√

p/M1−2δc + (qH + qC) ·
√

1/M1−2δc+1 .

Since 1 − 2δc+1 ≤ 1 − 2/3 = 1/3, δc ≤ δc+1, p ≤ N and M ≥ N9, the advantage
is upper-bounded by (c + 1) · γ + (c + qH + qC)/N . �

Note that for c = 1, 2 the query complexity of the simulator does not involve
the N1−1/α(c) factor, and hence we obtain collision resistance. For c ≥ 3, however
there is a factor of at least N1/2.

The above corollary shows that the extractor combiner can tolerate a linear
number of switches in log N (which can be thought of as the security parameter)
for the simulator query complexity to be less than N/2. As for the xor combiner
we conjecture that (much) better bounds for the extractor combiner are possible.

6 Indifferentiability with Auxiliary Input

In this section we discuss indifferentiability in a setting where there is no adap-
tivity and the backdoor oracles are called only once at the onset. Although this
may seem overly restrictive, the resulting definition is sufficiently strong to model
indifferentiability in the presence of auxiliary input, whereby we would like to
securely replace random oracles in generic applications even in the presence of
auxiliary input.

In this setting we can view an indifferentiability simulator as operating in
two stages: An off-line stage which responds to the single backdoor queries for
each BRO, and an on-line stage which simulates direct evaluation calls to the
underlying BROs. As defined, the off-line phase of the simulator can pass an
arbitrary state to its on-line phase. Further, both stages have access to the
reference object oracles (although the query complexities of both stages need
to be small). More precisely, this definition in the 2-BRO requires that for any
(D0,1,D0,2,D1) in the real world with two BROs H1 and H2 with

z1 ←← D0,1(H1); z2 ←← D0,2(H2, z1); b ←← DCH1,H2 ,H1,H2
1 (z1, z2) ,

there exists some (SimRO
0,1,Sim

RO
0,2,Sim

RO
1,1,Sim

RO
1,2) in the ideal (simulated) world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b ←← DRO,SimRO
1,1[st],SimRO

1,2[st]

1 (z1, z2) ,

with indistinguishable outputs b. The on-line simulators can also share state.

Let us now take a step back and define indifferentiability with auxiliary input
driven by a composition theorem: for any game G and any attacker A1 in this
game against CH1,H2 which receives auxiliary input on H1 and H2, there is an
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attacker B1 on RO in the same game G but now without auxiliary input. More
explicitly, the real world

z ←← A0(H1,H2); b ←← GCH1,H2 ,AH1,H2
1 (z)

and the ideal world

(z, st)←← BRO
0 (); b ←← GRO,BRO

1 (z,st)

are indistinguishable. Once again the query complexity of B0 should be small (or
even zero) to obtain a definition which meaningfully formalizes indifferentiability
from random oracles without auxiliary input. This definition, however, turns out
to be unachievable: A0 can simply encode a pair of collisions for the construction,
which B0 will not be able to match (with respect to RO) without an exponentially
large number of queries to RO.5

There are two natural ways to overcome this: (1) restrict the interface of the
construction; or (2) restrict the form of preprocessing. The former is motivated by
use of salting as a means to defeat preprocessing, and the latter by independence
of preprocessing for BROs.

A final question arises here: is it possible to simplify this definition further by
removing the quantification over A1 (as done for standard indifferentiability)?
This could be done in the standard way by absorbing A1 into G to form a differ-
entiator D. However, this means that D must receive the auxiliary information z.
The resulting notion is stronger and models composition with respect to games
that also depend on preprocessing. Thus, due to its simplicity, strength, and the
fact that we can establish positive results for it, we focus on this definitional
approach. We now make the two definitions arising from (1) and (2) explicit.

Salted AI-indifferentiability. We call a construction CH salted if the con-
struction takes a salt hk ∈ {0, 1}k as input and prepends all calls to H with hk .
We define salted AI-indifferentiability from a random oracle by requiring that
for any (D0,D1) in the real world

z ←← D0(H); hk ←←{0, 1}k; b ←← DCH(hk,·)(hk ,·),H
1 (hk , z)

there is a simulator (SimRO
0 ,SimRO

1 ) in the ideal world

(z, st)←← SimRO
0 (); hk ←←{0, 1}k; b ←← DRO(hk ,·),SimRO

1 [st]
1 (hk , z)

5 One can formulate an intermediate notion of indifferentiability from random oracle
with auxiliary input. Without salting, this notion would not be of great help. Con-
sider, for example, the case of domain extension via an iterative hashing mode. Due
to Joux’s multi-collision attack [17] one can encode exponentially many collisions for
the construction in a small auxiliary input, whereas this would not be possible for
the random oracle.
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resulting in indistinguishable outputs b. We denote the advantage of D in the
salted AI-indifferentiability game with simulator Sim for a construction CH by
Advs-ai-indiff

CH,Sim (D). Notice that in the above definition, the distinguisher gets access
to a salted RO. A different definition arises when the distinguisher gets access
to an unsalted RO instead. However, since the simulated auxiliary information
is computed given access to an unsalted RO (which can be interpreted as having
implicit access to the salt), such a definition calls for the existence of a more
powerful simulator. In particular, such Sim0 and D1 can easily call RO on com-
mon points. The practical implications of such a definition are unclear to us, and
moreover, it is strictly weaker than our definition.

AI-indifferentiability with Independent Preprocessing. We define AI-
indifferentiability with independent preprocessing by requiring that for any
adversary (D0,1,D0,2,D1) in the real world

z1 ←← D0,1(H1); z2 ←← D0,2(H2); b ←← DCH1,H2 ,H1,H2
1 (z1, z2)

there is a simulator (SimRO
0,1,Sim

RO
0,2,Sim

RO
1,1,Sim

RO
1,2) in the ideal world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b ←← DRO,SimRO
1,1[st],SimRO

1,2[st]

1 (z1, z2)

resulting in indistinguishable outputs b. Note that this is slightly weaker than
the definition of indifferentiability in 2-BRO since z2 is fully independent of
z1, whereas BRO indifferentiability allows for a limited amount of dependence.
We denote by Advai-indiff

CH,Sim (D) the advantage of D in the AI-indifferentiability
game with independent preprocessing with respect to a simulator Sim and a
construction CH1,H2 in the 2-BRO model.

We are now ready to prove our feasibility results for AI-indifferentiability.

Theorem 3. (AI-Indifferentiability). Any construction CH1,H2 that is indif-
ferentiable with backdoors from a random oracle with no adaptive backdoor
queries is also AI-indifferentiable from a random oracle with respect to indepen-
dent preprocessing attacks. More precisely, for any auxiliary-input differentiator
D := (D0,1,D0,2,D1) with independent preprocessing for two random oracles
there is a 2-BRO differentiator D̃ with one-time non-adaptive access to each
backdoor oracle such that for any 2-BRO indifferentiability simulator ˜Sim there
is an auxiliary-input simulator Sim := (Sim0,1,Sim0,2,Sim1,1,Sim1,2) such that

Advai-indiff
CH1,H2 ,Sim(D) = Advindiff

CH1,H2 , ˜Sim
(D̃) .

Further, any salted construction CH that is indifferentiable (in the standard
sense) from a random oracle is also salted AI-indifferentiable from a random
oracle. More precisely, for any auxiliary-input differentiator D := (D0,D1), with
an auxiliary input of size �, there is a (standard) differentiator D̃ such that
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for any indifferentiability simulator ˜Sim there is an auxiliary-input simulator
Sim := (Sim0,Sim1) such that for any p ∈ N and any γ > 0

Advs-ai-indiff
CH,Sim (D) ≤ Advindiff

CH, ˜Sim
(D̃) +

� + log γ−1

p
+

p

2k
+ γ .

Proof. The first part of the theorem follows directly from the discussion above
that indifferentiability with backdoors and no adaptivity is stronger than indif-
ferentiability with auxiliary input for independent preprocessing.

We now prove the second part of the theorem.

Game0:. We start with the real game in the salted AI-indifferentiability game:

z ←← D0(H); hk ←←{0, 1}k; b ←← DCH(hk,·)(hk ,·),H
1 (hk , z) .

Game1:. We now move to the bit-fixing RO model

(z,A)←← D̃0(); hk ←←{0, 1}k; b ←← DCH[A](hk,·)(hk ,·),H[A]
1 (hk , z) .

Here D̃0 runs D0 by simulating an H for it and then runs the decomposition
algorithm to get a set of assignments A for p fixed points (for any p ∈ N). We
may now apply [7, Theorem 5] to deduce that for any γ > 0,

Pr[Game1] − Pr[Game0] ≤ � + log γ−1

p
+ γ ,

where � is the size of auxiliary information.

Game2:. We now move to a setting where C uses H rather than H[A]

(z,A)←← D̃0(); hk ←←{0, 1}k; b ←← DCH(hk,·)(hk ,·),H[A]
1 (hk , z) .

This modification is justified by the fact that the probability that a uniform hk
is (the prefix of the first component of some point) in A is at most p/2k. We
have that Pr[Game2] − Pr[Game1] ≤ p/2k.

Game3: We now move to a world where D1 is replaced by a differentiator D̃1

that gets the list A and does not query H on points in A:

(z,A)←← D̃0(); hk ←←{0, 1}k; b ←← D̃CH(hk,·)(hk ,·),H
1 (hk , z, A) .

Here D̃1(hk , z, A) runs D1(hk , z) relaying its queries to the first oracle to its own
first oracle and the second oracle queries to its own second oracle except when a
queried point appears as a prefix of the first component of an entry in A in which
case D̃1 uses A to answer the query. We have that Pr[Game3] − Pr[Game2] = 0.
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Game4:. We now absorb D̃0 and D̃1 into a single differentiator D̃:

b ←← D̃CH(hk,·)(hk ,·),H .

Here D̃ simply runs D̃0, followed by picking hk ←←{0, 1}k, and then running D̃1.
We have that Pr[Game4] − Pr[Game3] = 0.

Game5:. We now use the standard indifferentiability of the construction to move
to the world

b ←← D̃RO(hk ,·), ˜Sim
RO

,

where ˜Sim is an indifferentiability simulator. We have that Pr[Game3] −
Pr[Game2] ≤ Advindiff

CH, ˜Sim
(D̃).

Game6:. We now syntactically unroll D̃ into (D̃0, D̃1):

(z,A)←← D̃0(); hk ←←{0, 1}k; b ←← D̃RO(hk ,·), ˜Sim
RO

1 (hk , z, A) .

We have that Pr[Game6] − Pr[Game5] = 0.

Game7:. We further unroll D̃1 into D1 and define Sim1[A] to be ˜Sim except that
it uses A to answers queries in A:

(z,A)←← D̃0(); hk ←←{0, 1}k; b ←← DRO(hk ,·),SimRO
1 [A]

1 (hk , z) .

We have that Pr[Game7] − Pr[Game6] = 0.

Game8:. Finally we define Sim0 := D̃0 and arrive at the simulated world

(z,A)←← Sim0(); hk ←←{0, 1}k; b ←← DRO(hk ,·),SimRO
1 [A]

1 (hk , z) .

We have that Pr[Game8] − Pr[Game7] = 0.

The second part of theorem follows by summing the (in)equalities established
above; that is for any p ∈ N and any γ > 0 we get that

Advs-ai-indiff
CH,(Sim0,Sim1)

(D0,D1) = Pr[Game0] − Pr[Game8]

≤ Advindiff
CH, ˜Sim

(D̃) +
� + log γ−1

p
+

p

2k
+ γ .

�
We may instantiate the first part of the theorem with the xor combiner and an

indifferentiability simulator for it given in Sect. 4. In this case the off-line phase
of the simulator makes no queries to the RO (and outputs simulated auxiliary
inputs by picking hash functions for the queried backdoor functions to Bd1 and
Bd2). This off-line phase also outputs two sets of p1 and p2 preset points as
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its state, which will be shared with the on-line phase of simulation. The second
phase of the simulator is a simple xor indifferentiability simulator which ensures
consistency with the preset points. Here our simulator fixes p1 points for H1 and
p2 points for H2. This results in simulator query complexity of qH + p1 + p2. The
corresponding advantage bound is at most 2γ +qH · log M ·δ2 +qC · log M(δ1 +δ2)
which is of order O(qH�/p2 + qC(�/p1 + �/p2)). Setting p1 = p2 = p we get
a simulator with O(qH + p) queries for an advantage O((qH + 2qC)�/p). For
p = o(

√
N) we get a bound that is meaningful for collision resistance.

As a result, we get that the xor combiner is collision resistant in the pres-
ence of independent auxiliary input (with no-salting). We note that the xor
construction comes with added advantage that its security goes beyond AI-
indifferentiability, and is also more domain efficient. Strictly speaking, however,
the two settings are incomparable as the form of auxiliary information changes.
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Abstract. We introduce a new primitive in information-theoretic cryp-
tography, namely zero-communication reductions (zcr), with different
levels of security. We relate zcr to several other important primitives,
and obtain new results on upper and lower bounds.

In particular, we obtain new upper bounds for PSM, CDS and OT
complexity of functions, which are exponential in the information com-
plexity of the functions. These upper bounds complement the results of
Beimel et al. [BIKK14] which broke the circuit-complexity barrier for
“high complexity” functions; our results break the barrier of input size
for “low complexity” functions.

We also show that lower bounds on secure zcr can be used to estab-
lish lower bounds for OT-complexity. We recover the known (linear) lower
bounds on OT-complexity [BM04] via this new route. We also formulate
the lower bound problem for secure zcr in purely linear-algebraic terms,
by defining the invertible rank of a matrix.

We present an Invertible Rank Conjecture, proving which will
establish super-linear lower bounds for OT-complexity (and if accom-
panied by an explicit construction, will provide explicit functions with
super-linear circuit lower bounds).

1 Introduction

Modern cryptography has developed a remarkable suite of information-theoretic
primitives, like secret-sharing and its many variants, secure multi-party com-
putation (MPC) in a variety of information-theoretic settings, (multi-server)
private information retrieval (PIR), randomness extractors, randomized encod-
ing, private simultaneous messages (PSM) protocols, conditional disclosure of
secrets (CDS), and non-malleable codes, to name a few. Even computationally
secure primitives are often built using these powerful tools. Further, a rich web
of connections tie these primitives together.

Even as these primitives are often simple to define, and even as a large
body of literature has investigated them over the years, many open questions
remain. For instance, the efficiency of secret-sharing, communication complexity
in MPC, PIR, and CDS, characterization of functions that admit MPC (without
honest majority or setups) all pose major open problems. Interestingly, recent
progress in some of these questions have arisen from surprising new connections
c© International Association for Cryptologic Research 2020
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across primitives (e.g., MPC from PIR [BIKK14], CDS from PIR [LVW17], and
secret-sharing from CDS [LVW18,AA18]).

In this work, we introduce a novel information-theoretic primitive called Zero-
Communication Reductions (zcr) that fits right into this toolkit, and provides
a bridge to information theoretic tools which were so far not brought to bear on
cryptographic applications. The goal of a zcr scheme is to let two parties com-
pute a function on their joint inputs, without communicating with each other!
Instead, in a zcr from a function f to a predicate φ, each party locally pro-
duces an output candidate along with an input to the predicate. The correctness
requirement is that when the predicate outputs 1 (“accepts”), then the output
candidates produced by the two parties should be correct; when the predicate
outputs 0, correctness is not guaranteed. The non-triviality requirement places
a (typically exponentially small) lower bound on the acceptance probability. We
also define a natural security notion for zcr, resulting in a primitive that is
challenging to realize, and requires predicates with cryptographic structure.

Thanks to its minimalistic nature, zcr emerges as a fundamental primitive.
In this work we develop a theory that connects it with other fundamental crypto-
graphic and information-theoretic notions. We highlight two classes of important
applications of zcr to central questions in information-theoretic cryptography –
one for upper bounds and one for lower bounds. On the former front, we derive
new upper bounds for communication in PSM and CDS protocols and for “OT-
complexity” of a function – i.e., the number of OTs needed by an information-
theoretically secure 2-Party Computation (2PC) protocol for the function – in
terms of (internal) information complexity, a fundamental complexity measure
of a 2-party function closely related to its communication complexity. On the
other hand, we present a new potential route for strong lower bounds for OT-
complexity, via Secure zcr (szcr), which has a much simpler combinatorial and
linear algebraic structure compared to 2PC protocols.

Barriers: Avoiding and Confronting. One of the key questions that moti-
vates our work is that of lower bounds for “cryptographic complexity” of 2-party
functions – i.e., the number of accesses to oblivious transfer (or any other finite
complete functionality) needed to securely evaluate the function (say, against
honest-but-curious adversaries). Proving such lower bounds would imply lower
bounds on representations that can be used to construct protocols. Specifically,
small circuits and efficient private information retrieval (PIR) schemes imply low
cryptographic complexity. As such, establishing strong lower bounds for crypto-
graphic complexity will entail showing breakthrough results on circuit complex-
ity and also on PIR lower bounds (which in turn has implications to Locally
Decodable Codes).

Nevertheless, there is room to pursue cryptographic complexity lower bound
questions without necessarily breaking these barriers. Firstly, there are existen-
tial questions of cryptographic complexity lower bounds that remain open, while
the corresponding questions for circuit lower bounds are easy and pose no barrier
by themselves. Secondly, when perfect correctness is required, the cryptographic
lower bound questions are interesting and remain open for randomized func-
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tions with very fine-grained probability values. In these cases, since the input
(or index) must be long enough to encode the random choice, the corresponding
circuit lower bounds and PIR lower bounds are already implied.

Finally, cryptographic complexity provides a non-traditional route—though
still difficult—to attack these barriers. In fact, this work could be seen as provid-
ing a step along this path. We formulate szcr lower bounds as a linear algebraic
question of lower bounding what we call the invertible rank, which in turn implies
cryptographic complexity and hence circuit complexity and PIR lower bounds.
We conjecture that there exist matrices (representing the truth table of func-
tions) that have a high invertible rank. Attacking the circuit complexity lower
bound question translates to finding such matrices explicitly.

1.1 Our Results

We summarize our main contributions, and elaborate on them below.

– New Primitives. We define zero-communication reductions with different
levels of security (zcr, wzcr, and szcr). We kick-start a theory of zero-
communication reductions with several basic feasibility and efficiency results.

– New Upper Bounds via Information Complexity. Building on results of
[BW16,KLL+15] which related information complexity of functions to com-
munication complexity and “partition” complexity, we obtain constructions
of zcr whose complexity is upper bounded by the information complexity of
the function. This in turn lets us obtain new upper bounds for statistically
secure PSM, CDS, and OT complexity, which are exponential in the infor-
mation complexity of the functions. As a concrete illustration of our upper
bounds based on information complexity, for the “bursting noise function” of
Ganor, Kol and Raz [GKR15], we obtain an exponential improvement over
all existing constructions.

– A New Route to Lower Bounds. We show that an upper bound on OT-
complexity of a function f implies an upper bound on the complexity of a
szcr from f to a predicate corresponding to OT. Hence lower bounding the
latter would provide a potential route to lower bounding OT-complexity.

– We motivate the feasibility of this new route in a couple of ways:
• We recover the known (linear) lower bounds on OT-complexity [BM04]
via this new route by providing lower bounds on szcr complexity.
• We formulate the lower bound problem for szcr in purely linear-
algebraic terms, by defining the invertible rank of a matrix. We present
our Invertible Rank Conjecture, proving which will establish super-
linear lower bounds for OT-complexity (and if accompanied by an explicit
construction, will provide explicit functions with super-linear circuit lower
bounds).

Defining zcr and szcr. Our first contribution is definitional. The zero-
communication model that we introduce is a powerful framework that, on the
one hand, is convenient to analyze and, on the other hand, has close connec-
tions to a range of cryptographic primitives. Our definition builds on a line of
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work that used zero-communication protocols for studying communication and
information complexity, in classical and quantum settings (see, e.g., [KLL+15]
and references therein), but we extend the model significantly to enable the
cryptographic connections we seek. In Sect. 2, we define three variants – zcr,
wzcr, and szcr– with three levels of security (none, weak, and standard or
strong). All these reductions relate a function f to a predicate φ, and, option-
ally, a correlation ψ, with the primary complexity measure being “non-triviality”
or “acceptance probability” of the reduction: A μ-zcr (or μ-wzcr, or μ-szcr)
needs to accept the outputs produced by the non-communicating parties with
probability at least 2−μ, and may abort otherwise.

(In)Feasibility Results. We follow up on the definitions with several basic
positive and negative results about szcr, presented in Sect. 4. In particular, we
show that every function f has a non-trivial szcr to some predicate φf (using no
correlation); also every function f has a szcr to the AND predicate, using some
correlation ψf . Complementing these results, we show that for many natural
choices of the predicate (AND, OR, or XOR), there are functions f which do
not have a szcr to the predicate, if no correlation is used. In fact, we completely
characterize all functions that have a szcr to these predicates.

On the other hand, there are predicates which are complete in the sense that
any function f has a szcr to it (possibly using a common random string). In a
dual manner, a correlation ψ can be considered complete if any function f can be
reduced to a constant-sized predicate like AND using ψ. Our results (discussed
below) show that the predicate φsupp(OT+)– which checks if its inputs are in the
support of one or more instances of the oblivious transfer (OT) correlation – is
a complete predicate (Theorem 3) and OT is a complete correlation (Theorem
12). These results rely on OT being complete for secure 2-party computation
and having a “regularity” structure.

We also consider reducing randomized functionalities without inputs to ran-
domized predicates; in this case, we characterize the optimal non-triviality achiev-
able (Theorem 9).

Upper Bounds. Our upper bounds for CDS, PSM and 2PC for a function f
are obtained by first constructing a zcr (or wzcr) from f to a simple predicate.
We offer two sets of results – perfectly secure constructions with complexity
exponential in the communication complexity of f , and statistically secure con-
structions with complexity exponential in the information complexity.

The first set of results presented in Sect. 6.1, may be informally stated as
follows.
Theorem 1 (Informal). For a deterministic function f : X × Y → {0, 1},
with communication complexity �, there exist perfectly secure protocols for CDS,
PSM and 2PC using OTs, all with communication complexity O(2�). Further,
the 2PC protocol uses O(2�) invocations of OT.
They follow from a sequence of connections illustrated below:

Communication
complexity → Tiling → Deterministic

wzcr
→ CDS, PSM

and 2PC
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Here tiling refers to partitioning the function’s domain X ×Y into monochromatic
rectangles – i.e., sets X ′ × Y ′ on which the function’s value remains constant.

We significantly improve on these results (while sacrificing perfect security)
in our second set of constructions presented in Sect. 6.2. They follow the outline
below.

Information
complexity → Relaxed

partition → wzcr → CDS, PSM
and 2PC

Note that now, instead of a tiling of f , we only require a (relaxed) partition
of f [JK10,KLL+15], which allows overlapping monochromatic rectangles with
fractional weights. The connection between information complexity and relaxed
partition is a non-trivial result of Kerenidis et al. [KLL+15], that builds on
[BW16]. We then construct a wzcr from a relaxed partition, and finally show
how a wzcr (in fact, a zcr) can be turned into a CDS, PSM or 2PC proto-
col. This leads us to the following theorem, stated in terms of the information
complexity of f , ICε(f), and statistical PSM, CDS and 2PC.

Theorem 2 (Informal). Let f : X × Y → {0, 1} be a deterministic function.
For any constant ε > 0, the communication complexity of ε-PSM of f , com-
munication complexity of ε-CDS for predicate f , and OT and communication
complexity of ε-secure 2PC of f are upperbounded by 2O(ICε/8(f)).

This result is all the more interesting because it is known that information com-
plexity can be exponentially smaller than communication complexity. In partic-
ular, Ganor, Kol and Raz described an explicit (partial) function in [GKR15],
called the “bursting noise function,” which on inputs of size n, have a commu-
nication complexity lower bound of Ω(log log n) and an information complexity
upper bound of O(log log log n). Note that the existing general 2PC techniques
do not achieve sub-linear OT-complexity. Theorem 1 would allow O(log n) OT-
complexity, whereas Theorem 2 brings it down to O(log log n).

Our results can be seen as complementing [BIKK14] which offered improve-
ments over the circuit size for “very high complexity” functions. We offer the
best known protocols, improving over the input size, and even the communica-
tion complexity, for “very low complexity” functions.
Constructions of szcr and Connection to Lower Bounds. We show
that for a function f with OT-complexity m, there is a μ-szcr from f to the
constant-depth predicate φsupp(OT+)(which checks if its inputs are in the support
of oblivious transfer (OT) correlations), where μ is roughly m:

Theorem 3 (Informal). If a deterministic functionality f with domain
{0, 1}n×{0, 1}n and has OT-complexity m, then there exists an (m+O(n))-szcr
from f to φsupp(OTm+1), possibly using a common random string.

This result is proved more generally in Theorem 11, where it is also shown
that the common random string can be avoided for a natural class of functions
f (which are “common-information-free”). The results also extend to a “dual
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version” where the reduction is to a simple AND predicate, but uses a correlation
that provides m copies of OT (Theorem 12).

A consequence of Theorem 3 is that it can recover the best known lower bound
for OT-complexity in terms of one-way communication complexity [BM04]. We
show

One-way communication
complexity ≤ Predicate-domain

complexity of szcr ≤ OT-complexity

where the first bound is shown using a simple support based argument (Lemma
2), and the second one follows from the upper bound on the domain size of
the predicate φsupp(OTk) in Theorem 3. This is formally stated and proved as
Corollary 2.
Invertible Rank. Theorem 3 provides a new potential route for lower bounding
OT-complexity of f , by lower bounding μ or k in a μ-szcr from f to φsupp(OTk).
In turn, this problem can be formulated as a purely linear-algebraic question
of what we term “invertible rank” (Sect. 5.1). Compared to previous paths for
lower bounding OT-complexity [BM04,PP14], this new route is not known to be
capped at linear bounds, and could even be seen as a stepping stone towards a
fresh line of attack on circuit complexity lower bounds (as they are implied by
OT-complexity lower bounds).

Invertible rank characterizes the best complexity – in terms of non-triviality
and predicate-domain complexity – achievable by a szcr from f to φ+ (con-
junction of one or more instances of φ). Specifically, for a matrix Mf encoding
a function f and a matrix Pφ encoding a predicate, we have:

Theorem 4 (Informal). If a function f has a perfect μ-szcr to φk then the
invertible rank of Mf w.r.t. Pφ is at most μ + k.

This characterization, combined with Theorem 3 implies that if a determin-
istic n-bit input functionality f has OT-complexity m, then its invertible rank
w.r.t. POT is O(m + n). Hence, a super-linear lower bound on invertible rank
w.r.t. POT would imply super-linear OT-complexity, and consequently, super-
linear circuit complexity for f . We conjecture the existence of function families
f with super-linear invertible rank, and leave it as an important open problem
to resolve it.

1.2 Related Work

As mentioned above, zero-communication protocols have been used to study
communication and information complexity, in classical and quantum settings.
The model can be traced back to the work of Gisin and Gisin [GG99], who pro-
posed it as a local-hidden variable model (i.e., no quantum effects) that could
explain apparent violation of the Bell inequality, when there is a significant
probability of abort (i.e., missed detection) built into the system. More recently,
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Kerenidis et al. [KLL+15], using a compression lemma by Braverman and Wein-
stein [BW16], presented a zero-communication protocol with non-abort proba-
bility of at least 2−O(IC), given a protocol for computing f with information
complexity IC.

OT-complexity was explicitly introduced as a fundamental measure of com-
plexity of a function f by Beimel and Malkin [BM04], who also presented a lower
bound for f ’s OT-complexity in terms of the one-way communication complexity
of f . In [PP14] an information-theoretic measure called tension was developed,
and was shown to imply lower bounds for OT-complexity, among other things.
Unfortunately, both these techniques can yield lower bounds on OT-complexity
that are at most the length of the inputs. On the other hand, the best known fea-
sibility result for OT-complexity, achieved via connections to PIR, by Beimel et
al. [BIKK14], is sub-exponential (a.k.a. weakly exponential) in the input length.
Closing this gap, even existentially, is an open problem.

In the PSM model, all functions are computable [FKN94] and efficient pro-
tocols are known when the function has small non-deterministic branching pro-
grams [FKN94,IK97]. Upper bounds on communication complexity were stud-
ied by Beimel et al. [BIKK14]. See [AHMS18] and references therein for lower
bounds. In CDS, protocols have been constructed with communication complex-
ity linear in the formula size [GIKM00]. Efficient protocols were later developed
for branching programs [KN97] and arithmetic span programs [AR17]. Liu et
al. [LVW17] obtained an upper bound of 2O(

√
k log k) for arbitrary predicates

with domain {0, 1}k × {0, 1}k. Applebaum et al. [AA18] showed that amortized
complexity over very long secrets can be brought down to a constant.

1.3 Technical Overview

We discuss some of the technical aspects of a few of our contributions mentioned
above.
A New Model of Secure Computation. zcr and its secure variants present
a fundamentally new cryptographic primitive, highlighting aspects of secure
computation common to many seemingly disparate notions like PSM, CDS and
secure 2PC using correlated randomness.

Recall that in a zcr from a function f to a predicate φ, each party locally
produces an output candidate along with an input to the predicate. The output
candidates produced by the two parties should be correct when the predicate
outputs 1. Instances of zero-communication models have appeared in the com-
munication complexity literature (see [KLL+15]), but they typically prescribed
a specific predicate as part of the model (e.g.., the equality predicate). By allow-
ing an arbitrary predicate rather than one that is fixed as part of the model, we
view our protocols as reductions from 2-party functionalities to predicates. This
generalization is key to obtaining the various connections we develop.

Secondly, we add security requirements to the model. One may expect that
a zero-communication protocol is naturally secure, as neither party receives any
information about the other party’s input or output. While that is the case
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for honest parties, we shall allow the adversary to learn the outcome of the
predicate as well. This is the “right” definition, in that it allows interpreting a
zero-communication protocol as a standard secure computation protocol when
the predicate is implemented by a trusted party, who announces its result to the
two parties. The secure version of zcr – called szcr – admits stronger lower
bounds (and even impossibility results), as discussed below.

We further generalize the notion of zero-communication reduction to allow
the two parties access to a correlation ψ, rather than just common randomness
as in the original models in the literature.

In Fig. 1, we illustrate a zero communication reduction from a functionality
f = (fA, fB) to a predicate φ, using a correlation ψ.

A B

φ

ψx y

A B

R S

U V

D

Fig. 1. The random variables involved in
a zcr.

The reduction is specified as a pair of
randomized algorithms (A,B) executed
by two parties, Alice and Bob. Alice,
given input x and her part of the cor-
relation R, samples (A,U) ← A(x,R),
where A is her proposed output for the
functionality f , and U is her input to
φ. Similarly, Bob computes (B, V ) ←
B(y, S). The non-triviality guarantee is
that φ(U, V ) = 1 with a positive proba-
bility 2−μ, and correctness guarantee is
that conditioned on φ(U, V ) = 1, the
outputs of Alice and Bob are (almost
always) correct.

The security definitions we attach
to wzcr and szcr could be seen
as based on the standard simulation
paradigm. However, when defining sta-
tistical (rather than perfect) security in the case of szcr, a novel aspect emerges
for us. Note that a μ-szcr needs to accept an execution with probability only
2−μ, which can be negligible. As such, allowing a negligible statistical error in
security would allow one to have no security guarantees at all whenever the
execution is not aborting, and would render szcr no different from wzcr. The
“right” security definition of szcr with statistical security is to require security
to hold conditioned on acceptance (as well as over all).
PSM, CDS, and 2PC from zcr. Due to its minimalistic nature, a zcr can
be used as a reduction in the context of PSM, CDS, and 2PC. At a high-level, a
zcr from f to a predicated φ could be thought of as involving a “trusted party”
which implements φ. Since the reduction itself involves no communication, it
can easily be turned into a PSM, CDS or 2PC scheme for the function f , if
we can “securely implement” a trusted party for φ in the respective model. One
complication however, is that a zcr can abort with a high probability. This is
handled by repeating the execution several times (inversely proportional to the
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acceptance probability), and using the answer produced in an execution that is
accepted.

While it may appear at first that zcr with a security guarantee will be needed
here, we can avoid it. This is done by designing the secure component (PSM,
CDS, or 2PC) to not implement the predicate φ directly, but to implement a
selector function as described below. Recall that in an execution of the zcr
protocol, Alice and Bob will generate candidate outputs (a, b) as well as inputs
(u, v) for φ. The parties will now carry out this protocol n times in parallel,
to generate (ai, bi) and (ui, vi), for i = 1 to n. The selector function accepts all
(ai, bi, ui, vi) as inputs and outputs a pair (ai, bi) such that φ(ui, vi) = 1, without
revealing i itself (we choose n sufficiently large as to guarantee that there will
be at least one such instance, except with negligible probability; if multiple such
i exist, then, say, the largest index is selected).

The overall communication complexity of the resulting protocol is exactly
determined by the PSM, CDS, or 2PC protocol for the selector function (as the
zcr itself adds no communication overhead). By instantiating our results for the
predicate φAND, the selector function has a small formula complexity, and hence
efficient PSM, CDS, and 2PC protocols.
zcr and Information Complexity.wzcr and the notion of relaxed partition
[JK10,KLL+15] are intimately connected to each other. A relaxed partition of a
2-input function f could be seen as a tiling of the function table with fractionally
weighted tiles such that each cell in the table is covered by (almost) 1 unit worth
of tiles, (almost) all of them having the same color (i.e., output value) as the cell
itself. The goal of a partition is to use as few tiles as possible – or more precisely,
to minimize the total weight of all the tiles used. In Lemma 4, we show that a
relaxed partition can be turned into a wzcr of f to the predicate φAND, with
acceptance probability roughly equal to the reciprocal of the total weights of the
tile. (In fact, if no error were to be allowed, a wzcr with maximum acceptance
probability exactly corresponds to a partition with minimum total weight.) A
result of [KLL+15] can then be used to relate this acceptance probability to the
information complexity of f .

Thus, via zcr, we can upper bound PSM, CDS, and OT-complexity of func-
tions by a quantity exponential in their information complexity. While this upper
bound is rather loose in the worst case, in general, it appears incomparable to
all other known upper bounds.
szcr from 2PC. Any boolean function f has a szcr to a predicate φf with
acceptance probability of at least 1/4 (Theorem 5). However, the computational
complexity (measured in size or depth) of φf is as much as that of f . An impor-
tant question is whether – and how well can – a function be reduced to a uni-
versal, constant-depth predicate.

We show that if the predicate is φAND, and no correlations are used (except
possibly common randomness), then only simple functions have a szcr to the
predicate. (Simple functions are those that are not complete [MPR13].)

On the other hand, there is a universal constant-depth predicate φsupp(OT+),
which simply checks if its inputs are in the support of several copies of oblivious
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transfer correlations, such that every function f has a szcr to it. In fact, we show
that f has a μ-szcr (i.e., a szcr with acceptance probability 2−μ) to φsupp(OT+)

where μ is at most the OT complexity of f . (Corollary 1). (In this result, OT
can be replaced by a general class of correlations, called “regular correlations.”)

The idea is to transform a 2-party protocol ΠOT that (against passive cor-
ruption) perfectly securely realizes f using OT correlations, into a szcr from
f to φsupp(OT+). The transformation relies on the fact that any protocol admits
transcript factorization: i.e., the probability of a transcript q occurring in an exe-
cution of ΠOT, given inputs (x, y) and OT correlation (u, v) to the two parties
respectively, can be written as

PrΠOT(q|x, y, u, v) = ρ(x, u, q) · σ(y, v, q),

for some functions ρ and σ. This could be exploited by the parties to non-
interactively sample an instance of the protocol execution, and derive their out-
puts from it. One issue here is that since the parties have access to OTs, the
product structure on the transcript distribution applies only conditioned on their
respective views from the OT. Thus, it is in fact the views in the OT, u and
v that the two parties sample locally, conditioned on their own inputs and a
transcript q that is determined by a common random string.1 φsupp(OT+) is used
to check if the two views of the OT correlations sampled thus are compatible
with each other.

Several technical complications arise in the above plan. In particular, ensuring
that the abort event does not reveal any information beyond the input and out-
put to each party, requires a careful choice of probabilities with which each party
selects its view of the OT correlations; also, each party unilaterally forces an
abort with some probability (implemented using a couple of extra OTs included
in the input to φsupp(OT+)). For simplicity, here we summarize the scheme for a
common-information-free function f . In this case, there will be no common ran-
dom string. We fix an arbitrary transcript q∗ (which has a non-zero probability
of occurring), and define

ρ† := max
x

∑

u

ρ(x, u, q∗), σ† := max
y

∑

v

σ(y, v, q∗). (1)

Recall that a szcr is given by a pair of algorithms (A,B) which, respectively,
take x and y as inputs, and output (U,A) and (V,B) (Fig. 1). We define these
algorithms below. In addition to the quantities mentioned above, we also refer
to the algorithms Πout

A and Πout
B which are the output computation algorithms

of the protocol Π.

A(x): For each u ∈ U , let (U, A) = (u, Πout
A (x, u, q∗)) with probability ρ(x,u,q∗)

ρ† , and (⊥, ⊥) with

remaining probability (if any).
B(y): For each u ∈ U , let (V, B) = (v, Πout

B (y, v, q∗)) with probability σ(y,v,q∗)
σ† , and (⊥, ⊥) with

remaining probability (if any).

1 For secure protocols for common-information-free functions, a transcript can be
fixed, avoiding the need for a common random string.
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Note that for x which maximizes the expression defining ρ†, A(x) does not
set (u, a) = (⊥,⊥), but in general, this costs the szcr in terms of non-triviality.
This sacrifice in acceptance probability is needed for Alice to even out the accep-
tance probability across her different inputs, so that Bob’s view combined with
the acceptance event, does not reveal information about x (beyond f(x, y)). Nev-
ertheless, we can show that the probability of acceptance is lower bounded by
2−(m+n), where m is the number of OTs (so u, v are each 2m-bit strings) and
the combined input of f is n bits long.

The construction is somewhat more delicate when f admits common-
information. This means that there is some common information that Alice and
Bob could agree on if they are given (x, fA(x, y)) and (y, fB(x, y)) respectively.
For such functions, the szcr construction above is modified so that a candidate
value for the common information is given as a common random string; it is
arranged that the execution is rejected by the predicate if the common informa-
tion in the common random string is not correct. Also, in this case, we can no
more choose an arbitrary transcript (even after fixing the common information);
instead we argue that there is a “good” transcript for each value of common
information, that would let us still obtain a similar non-triviality guarantee as
in the case of common-information-free f .

We give an analogous result for szcr to φAND, but using OT correlations.
Here, each party locally checks if their input is consistent with a given transcript
(determined by common randomness) and their share of OT correlations. Here
also, for the sake of security, even if it is consistent, the party aborts with a
carefully calibrated probability.

In both the above transformations from a secure 2PC protocol Π for f to a
szcr, an important consideration is the probability of not aborting. To establish
our connection with OT-complexity, we need a μ-szcr where μ is directly related
to the number of OTs used in Π, and not the length of the transcripts. One
element in establishing such a szcr is an analysis of the given 2PC protocol
when it is run with correlations drawn using a wrong distribution. We refer the
reader to Theorem 11 and its proof for further details.
Invertible Rank. The conditions of a szcr (from a possibly randomized func-
tion to a possible randomized predicate) without correlations can be captured
purely in linear algebraic terms, leading to the definition of a new linear-algebraic
complexity measure for functions.

The correctness condition for μ-szcr of f to φ has the form AᵀPB = 2−μM ,
where M and P are matrices that encode the function f and the predicate φ in
a natural way. If P were to be replaced with the identity matrix, and μ by 0,
the smallest possible size of P would correspond to the rank of M . In defining
invertible rank with respect to a finite matrix Pφ, we let P = P⊗k

φ and ask for
the smallest k possible, for a given μ (thus the invertible rank is analogous to
log-rank). Also, A,B are required to satisfy natural stochasticity properties so
that they correspond to valid probabilistic actions.

In addition to the correctness guarantees, we also incorporate the security
guarantees of szcr into our complexity measure. This takes the form of the



Zero-Communication Reductions 285

existence of simulators, which are again captured using linear transformations.
The “invertibility” in the term invertible rank refers to the existence of such
simulators.

We remark that linear-algebraic complexity measures have been prevalent in
studying the computational or communication complexity of functions – matrix
rigidity [Val77], sign rank [PS86], the “rank measure” of Razborov [Raz90],
approximate rank [ALSV13] and probabilistic rank [AW17] have all led to impor-
tant advances in our understanding of functions. In particular, Razborov’s rank
measure was instrumental in establishing exponential lower bounds for linear
secret-sharing schemes [RPRC16,PR17]. Invertible rank provides a new linear-
algebraic complexity measure that is closely related to secure two-party compu-
tation, via our results on szcr; this is in contrast with the prior measures which
were motivated by computational complexity, (insecure) two-party communica-
tion complexity, or secret-sharing (which does not address the issues of secure
two-party computation),

Organization of the Rest of the Paper

We present the formal definitions of zcr, wzcr and szcr in Sect. 2. Before
continuing to our results, we summarize relevant background information in
Sect. 3. The basic feasibility results in our model are presented in Sect. 4. The
connections with lower bounds are given in Sect. 5, and the upper bounds on
CDS, PSM and 2PC are given in Sect. 6. Several proof details are given in in the
full version [NPP20].

2 Defining Zero-Communication Secure Reductions

We refer the reader to Fig. 1, which illustrates the random variables involved in a
zero communication reduction from a functionality f = (fA, fB) to a predicate
φ, using a correlation ψ. The reduction is specified as a pair of randomized
algorithms (A,B) executed by two parties, Alice and Bob. Alice, given input x
and her part of the correlation R, samples (A,U) ← A(x,R), where A is her
proposed output for the functionality f , and U is her input to φ. Similarly, Bob
computes (B, V ) ← B(y, S). The non-triviality guarantee is that φ(U, V ) = 1
with a positive probability 2−μ, and correctness guarantee is that conditioned
on φ(U, V ) = 1, the outputs of Alice and Bob are almost always correct.

We shall define three notions of such a reduction (zcr, wzcr and szcr)
depending on the level of security implied (no security, weak security and stan-
dard security).
Notation: Below, p (R) denotes the distribution of a random variable R, Pr(r, s)
stands for Pr(R = r, S = s), where R,S are random variables, and PrA(α|β)
denotes the probability that a probabilistic process A outputs α on input β.
|D1 − D2| denotes the statistical difference between two distributions D1,D2.
(Further notes on notation are given in Sect. 3.)
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Definition 1. Let f : X × Y → A × B and φ : U × V → {0, 1} be randomized
functions, and let ψ be a distribution over R×S. For any μ, ε ≥ 0, a (μ, ε)-zero-
communication reduction (zcr) from f to the predicate φ using ψ is a pair of
probabilistic algorithms A : X × R → U × A and B : Y × S → V × B such that
the following holds.

Define jointly distributed random variables (R,S, U, V,A,B,D), conditioned
on each (x, y) ∈ X × Y, as

Pr(r, s, u, v, a, b, d|x, y) = Prψ(r, s) · PrA(u, a|x, r) · PrB(v, b|y, s) · Prφ(d|u, v).

– Non-Triviality: ∀(x, y) ∈ X × Y, Pr(D = 1|x, y) ≥ 2−μ.
– Correctness: ∀(x, y) ∈ X × Y, |p ((A,B)|x, y,D = 1) − f(x, y)| ≤ ε.

In other words, in a zcr, Alice and Bob compute “candidate outputs” a
and b, as well as two messages u and v, respectively, such that correctness (i.e.,
f(x, y) = (a, b)) is required only when φ “accepts” (u, v). We allow Alice and
Bob to coordinate their actions using the output of ψ. We also allow a small
error probability of ε. To be non-trivial, we require a lower bound 2−μ on the
probability of φ accepting. Note that as μ increases from 0 to ∞, the non-
triviality constraint gets relaxed.

Next, we add a weak security condition to zcr as follows: Consider an “eaves-
dropper” who gets to observe whether the predicate φ accepts or not. We require
that this reveals (almost) no information about the inputs (x, y) to the eaves-
dropper. Technically, we require the probability of accepting to remain within a
multiplicative factor of (1 − ε)±1 as the inputs are changed.

Definition 2. For any μ ≥ 0, ε ≥ 0, a (μ, ε)-zcr (A,B) from f to φ using ψ

is a (μ, ε)-weakly secure zero-communication reduction (wzcr) if the following
condition holds.

– Weak Security: ∀(x, y), (x′, y′) ∈ X × Y,

Pr(D = 1|x, y) ≥ (1 − ε)Pr(D = 1|x′, y′),

where D is the random variable corresponding to the output of φ, as defined
in Definition 1.

Finally, we present our strongest notion of security, szcr. The definition cor-
responds to security against passive corruption of one of Alice and Bob in a
secure computation protocol (using φ and ψ as trusted parties) that realizes the
following functionality fμ′ (for some μ′ ≤ μ): After computing (a, b) ← f(x, y),
with probability 2−μ′

the functionality sends the respective outputs to the two
parties (“accepting” case); with the remaining probability, it sends the output
only to the corrupt party. The definition of szcr involves a refinement not present
in (statistical) security of secure computation: We require that even conditioned
on the execution “accepting” – which could occur with a negligible probability –
security holds. The formal definition of szcr includes the correctness and (weak)
security properties of a wzcr, and further requires the existence of two simula-
tors ŜA (for corrupt Alice) and ŜB (for corrupt Bob), with separate conditions
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for the accepting and non-accepting cases. We formalize these conditions below.

Definition 3. For any μ ≥ 0, ε ≥ 0, a (μ, ε)-wzcr (A,B) from f to φ using
ψ is a (μ, ε)-secure zero-communication reduction (szcr) if the following condi-
tions hold.

• Security: ∀x ∈ X , y ∈ Y, and a, b s.t. Prf (a, b|x, y) > 0

∣∣∣p (R,U |x, y, a, b,D = 1) − ŜA(x, a, 1)
∣∣∣ ≤ ε, (2)

∣∣∣p (S, V |x, y, a, b,D = 1) − ŜB(y, b, 1)
∣∣∣ ≤ ε, (3)

∣∣∣p (R,U |x, y,D = 0) − ŜA(x, fA(x, y), 0)
∣∣∣ ≤ ε, (4)

∣∣∣p (S, V |x, y,D = 0) − ŜB(y, fB(x, y), 0)
∣∣∣ ≤ ε. (5)

where the random variables R,S, U, V,D are as defined in Definition 1, and ŜA :
X × A × D → R × U and ŜB : Y × B × D → S × V are randomized functions.

Above, (2) and (4) correspond to corrupting Alice, with the first one being
the accepting case. (The other two equations correspond to corrupting Bob.)
Note that in these cases the adversary’s view consists of (R,U), in addition to
the input x and the boolean variable D (accepting or not), which are given to
the environment as well. In the accepting case, the environment also observes
the outputs (a, b). In either case, ŜA is given (x, fA(x, y),D) as inputs; in the
accepting case, we naturally require that the simulated view has the same output
a as fA(x, y) given to ŜA.

Special Cases. A few special cases of the above definitions will be of interest,
and we use specialized notation for them. A perfect reduction guarantees perfect
correctness and security, wherein ε = 0. In this case instead of (μ, 0)-zcr (wzcr,
szcr), we simply say μ-zcr (wzcr, szcr).

For deterministic f , when ε = 0, the security conditions (2)–(5) in Definition
3 can be replaced with the following equivalent conditions: ∀x, y, r, s, u, v, d,

Pr(r, u, d|x, y1) = Pr(r, u, d|x, y2), if fA(x, y1) = fA(x, y2), (6)
Pr(s, v, d|x1, y) = Pr(s, v, d|x2, y), if fB(x1, y) = fB(x2, y). (7)

A formal proof of this equivalence is provided in the full version [NPP20].
We would consider perfect szcr of a functionality f to a predicate φ using

no correlation. This notion of reduction still suffices for many of our connections
(e.g., to lower bounds on OT complexity), while being simpler to analyze. A
correlation ψ which only offers a common random string to the two parties
is denoted as ψCRS. Indeed, for zcr and wzcr, ψCRS is the only non-trivial
correlation one may consider.
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3 Preliminaries for the Remainder

Before proceeding further, we present background material and some notation
needed for the remainder of the paper.

Probability Notation. The probability assigned by a distribution D (or a
probabilistic process D) to a value x is denoted as PrD(x), or simply Pr(x),
when the distribution is understood. We write x ← D to denote sampling a
value according to the distribution D. Given two distributions D1,D2, we write
|D1 − D2| to denote the statistical difference (a.k.a. total variation distance)
between the two.

For a random variable X, we write p (X) to denote the probability distri-
bution associated with it. We write p (X|Y = y) (or simply p (X|y), letting the
lower case y signify that it is the value of the random variable Y ), to denote the
distribution of a random variable X, conditioned on the value y for a random
variable Y that is jointly distributed with X.

Functionalities. We denote a 2-party functionality as f : X × Y → A × B, to
indicate that the functionality accepts an input x ∈ X from Alice and y ∈ Y
from Bob, computes (a, b) = f(x, y), and sends a to Alice and b to Bob. We
allow f to be a randomized function too, in which case f(x, y) stands for a
probability distribution over A × B, for each (x, y) ∈ X × Y; for readability, we
write Prf (a, b|x, y) instead of Prf(x,y)(a, b) to denote the probability of f(x, y)
outputting (a, b). We write f = (fA, fB), where fA : X × Y → A and fB : X ×
Y → B are such that (making the randomness ξ used by f explicit), f(x, y; ξ) =
(fA(x, y; ξ), fB(x, y; ξ)). If fB is a constant function, we identify f with fA and
refer to it as a one-sided functionality. Similarly, if fA = fB , then we may use
f to refer to either of these functions; in this case, we refer to f as a symmetric
functionality.

Correlations. A correlation ψ over a domain R × S is the same as a 2-party
randomized functionality ψ : {⊥} × {⊥} → R × S (i.e., a functionality with
no inputs). supp(ψ) = {(r, s)|Prψ(r, s) > 0} is the support of ψ. We say that a
correlation is regular if (1) ∀(r, s) ∈ supp(ψ), Prψ(r, s) = 1

|supp(ψ)| , (2) ∀r ∈ R,
∑

s∈S Prψ(r, s) = 1
|R| , and (3) ∀s ∈ S,

∑
r∈R Prψ(r, s) = 1

|S| . Common exam-
ples of regular correlations are those corresponding to Oblivious Transfer (OT)
and Oblivious Linear Function Evaluation (OLE), and their n-fold repetitions.
Another regular correlation of interest is the common randomness correlation
ψCRS, in which (r, s) ∈ supp(ψCRS) if only if r = s.

We denote t independent copies of a correlation ψ by ψt. It will be convenient
to denote ψt for an unspecified t by ψ+.

Predicates. We shall also refer to predicates of the form φ : U × V → {0, 1}.
Again, as in the case of functionalities above, a predicate could be random-
ized. Given a correlation ψ over U × V, we define the predicate φsupp(ψ) so that
φsupp(ψ)(u, v) = 1 iff (u, v) ∈ supp(ψ). The predicate φsupp∗(ψ) is defined identi-
cally, except that we allow the domain of φsupp∗(ψ) to be (U ∪ {⊥})× (V ∪ {⊥})
where ⊥ is a symbol not in U ∪ V.
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It will also be convenient to define supp(ψ+) :=
⋃∞

t=1 supp(ψ
t).

Evaluation Graph Gf . For a functionality f , it is useful to define a bipartite
graph Gf [MPR13].

Definition 4. For a randomized functionality f : X ×Y → A×B, the weighted
graph Gf is defined as the bipartite graph on vertices (X × A) ∪ (Y × B) with
weight on edge ((x, a), (y, b)) = Prf (a, b|x, y).

Note that for deterministic f , the graph Gf is unweighted (all edges have weight
1 or 0). If f is a correlation, with no inputs, the nodes in the graph Gf can be
identified with A ∪ B.

Definition 5. In an evaluation graph Gf , a connected component is a set of
edges that form a connected component in the unweighted graph consisting only of
edges in Gf with positive weight. A function f is said to be common-information-
free if all the edges in Gf belong to the same connected component.

For each connected component C in Gf , we define XC ⊆ X as the set
{x|∃y, a, b s.t. ((x, a), (y, b)) ∈ C}; YC ⊆ Y is defined analogously. Also, we
define C|X×Y := {(x, y)|∃(a, b) s.t. ((x, a), (y, b)) ∈ C}.

For a correlation ψ, we will denote by ψ|C the restriction of ψ to the con-
nected component C. That is, Prψ|C (a, b) ∝ Prψ(a, b) for (a, b) ∈ C and 0 oth-
erwise.

A simple functionality [MPR12,MPR13] is one whose graph Gf consists of
connected components that are all product graphs. For deterministic functional-
ities, it can be defined as follows:

Definition 6. A deterministic functionality f = (fA, fB) with domain X × Y
is a simple functionality if there exist no x, x′ ∈ X and y, y′ ∈ Y such that
fA(x, y) = fA(x, y′) and fB(x, y) = fB(x′, y) but either fA(x′, y) �= fA(x′, y′) or
fB(x, y′) �= fB(x′, y′).

Simple functionalities satisfy the following (see [MPR12]).

Lemma 1. If (fA, fB) is a simple deterministic functionality, then there exists
a partition X × Y into k rectangles (Ai × Bi)i∈[k] for some number k such that
the following properties are satisfied.

1. For each i ∈ [k], for any x ∈ Ai, whenever y, y′ ∈ Bi, fA(x, y) = fA(x, y′).
Similarly, for each y ∈ Bi whenever x, x′ ∈ Ai, fB(x, y) = fB(x′, y).

2. For distinct i, j ∈ [k], if Ai ∩ Aj �= ∅ (in this case Bi and Bj are disjoint), if
x ∈ Ai ∩ Aj and y ∈ Bi and y′ ∈ Bj then fA(x, y) �= fA(x, y′).

3. For distinct i, j ∈ [k], if Bi ∩ Bj �= ∅, if y ∈ Bi ∩ Bj and x ∈ Ai and x′ ∈ Aj

then fB(x, y) �= fB(x′, y).

Secure Protocols and OT Complexity. A standard (interactive) 2-party pro-
tocol using a correlation ψ, denoted as Πψ, consists of a pair of computationally
unbounded randomized parties Alice and Bob. We write (r, s, q, a, b) ← Πψ(x, y)
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to denote the outcome of an execution of Πψ on inputs (x, y), as follows: Sample
(r, s) ← ψ, and give r to Alice and s to Bob. Then they exchange messages to
(probabilistically) generate a transcript q. Finally, Alice samples a based on her
view (x, r, q) and outputs it; similarly, Bob outputs b based on (y, s, q).

We are interested in passive secure protocols for computing a 2-party function
f : X × Y → A × B, possibly with a statistical error. See the full version
[NPP20] for a formal definition of secure 2-party computation protocols that use
correlations.

It is well-known that there are correlations – like randomized oblivious trans-
fer (OT) correlation – that can be used to perfectly securely compute any func-
tion f using its circuit representation (see [Gol04]) or sometimes more efficiently
using its truth table [BIKK14]. The OT-complexity of a functionality f is the
smallest number of independent instances of OT-correlations needed by a per-
fectly secure 2-party protocol that securely realizes f against passive adversaries.

Transcript Factorization. An important and well-known property (e.g..,
[CK91]) of a protocol Πψ is that the probability of generating the transcript, as a
function of (x, y, r, s), can be factorized into separate functions of (x, r) and (y, s).
More formally, there exist transcript factorization functions ρ : X×R×Q → [0, 1]
and σ : Y × S × Q → [0, 1], such that

PrΠψ(q|x, y, r, s) = ρ(x, r, q) · σ(y, s, q). (8)

To see this, note that a transcript q = (m1, . . . ,mN ) is generated by Πψ(x, y),
given (r, s) from ψ, if Alice produces the message m1 given (x, r), and then Bob
produces m2 given (y, s) as well as m1, and so forth. That is,

PrΠψ(m1, . . . ,mN |x, y, r, s) = Pr(m1|x, r) · Pr(m2|y, s,m1) · Pr(m3|x, r,m1,m2) · . . . .
We get (8) by collecting the products of odd factors and of even factors separately
as ρ(x, r,m1, . . . ,mN ) and σ(y, s,m1, . . . ,mN ).

We remark that the only property regarding the nature of a protocol we
shall need in our results is the transcript factorization property. As such, our
results stated for protocols in Theorems 11 and 12 are applicable more broadly to
“pseudo protocols” which are distributions over transcripts satisfying (8), without
necessarily being realizable using protocols [PP16].

The following claim about protocols (which holds for pseudo protocols as
well) would be useful in our proofs. The proof for the same is provided in the
full version [NPP20].

Claim 1. Let Πψ be a perfectly secure protocol for computing a deterministic
functionality f . For any two edges ((x1, a1), (y1, b1)) and ((x2, a2), (y2, b2)) in
the same connected component of Gf , for all transcripts q ∈ Q, it holds that
PrΠψ(q|x1, y1, a1, b1) = PrΠψ(q|x2, y2, a2, b2).

Private Simultaneous Messages & Conditional Disclosure of Secrets.
We refer to the full version [NPP20] for a detailed description of private simul-
taneous messages (PSM) and conditional disclosure of secrets (CDS). In this



Zero-Communication Reductions 291

paper, we use statistically secure variants of both these models of secure com-
putation. An ε-secure PSM protocol (represented as ε-PSM) guarantees that for
every input (x, y), Carol recovers f(x, y) with at least 1− ε probability and that
whenever f evaluates to the same value for two different inputs, Carol’s view for
these inputs are at most ε far in statistical distance. An ε-secure CDS protocol
(represented as ε-CDS) is defined similarly.

4 Feasibility Results

In this section, we present several feasibility and infeasibility results for our
various models. For want of space, we defer the proofs of these results to the full
version [NPP20]. Note that all our feasibility results are backward compatible
and all the impossibility results are forward compatible. That is, a szcr implies
a wzcr which in turn implies a zcr, whereas, impossibility of a zcr implies
impossibility of wzcr which implies impossibility of szcr. We define a simple
predicate of interest, φAND : {0, 1} × {0, 1} → {0, 1}, which refers to the AND
predicate. The following show that any functionality has a szcr with ε = 0, i.e.,
perfect correctness and security, to appropriate predicates using no correlation.

Theorem 5. For every (possibly randomized) functionality f : X ×Y → A×B,
there exists a predicate φf such that f has a perfect log(|A||B|)-szcr to φf using
no correlation.

Following theorem establishes that any functionality has a perfect szcr to φAND

using an appropriate correlation.

Theorem 6. For every deterministic functionality f : X × Y → A × B, there
exists a correlation ψf such that f has a perfect log(|X ||Y|)-szcr to φAND using
ψf .

We next look at the computational power of the predicate φAND in the context
of reductions using common randomness (ψCRS). As we shall see in Lemma 3,
every deterministic functionality has a perfect wzcr to φAND. In contrast, the
next theorem shows that only simple functionalities have perfect szcr to φAND

using common randomness.

Theorem 7. A deterministic functionality f has a perfect μ-szcr to φAND using
ψCRS, for some μ < ∞, if and only if it is simple.

An even simpler predicate φXOR : {0, 1} × {0, 1} → {0, 1} refers to the XOR
predicate. The following theorem shows that it has very limited power and even
the AND function does not have a reduction to φXOR.

Theorem 8. A deterministic functionality f = (fA, fB) has a perfect μ-szcr
to φXOR using ψCRS, for some μ < ∞, if and only if there exists sets A ⊆ X and
B ⊆ Y such that,

1. For all x ∈ X , fA(x, y) = fA(x, y′) if and only if y, y′ ∈ B or y, y′ ∈ B̄.
2. For all y ∈ Y, fB(x, y) = fB(x′, y) if and only if x, x′ ∈ A or x, x′ ∈ Ā.
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Finally, we consider reducing a randomized functionality without inputs (i.e.,
a correlation) to a randomized predicate. To state our result, we define a measure
of “productness” of a correlation ψ over R × S:

K(ψ) = max
(λ1,λ2)

min
r∈R,s∈S

Prλ1(r)Prλ1(s)
Prψ(r, s)

, (9)

where the maximum2 is taken over all pairs of distributions λ1,λ2 over R and
S respectively.

Theorem 9. For any correlation ψ there exists a predicate φψ such that ψ has
a perfect μ-szcr to φψ using no correlation, where μ = − log(K(ψ)). Further,
if ψ has a perfect μ′-szcr to any predicate φ using no correlation, then μ′ ≥ μ.

5 Lower Bounds via szcr

szcr provides a new route for approaching lower bound proofs. The high-level
approach, for showing a lower bound for a certain complexity measure is in two
parts:

– First show that an upper bound on that complexity measure implies an upper
bound on a complexity measure related to szcr.

– Then showing a lower bound for szcr implies the desired lower bound.

The complexity measure related to szcr that we use is what we call the invertible
rank of a matrix associated with the function. In Sect. 5.2, we upper bound
invertible rank by OT complexity. While invertible rank of a matrix (with respect
to another matrix) is easy to define, establishing super-linear lower bounds for
it is presumably difficult (circuit complexity lower bounds being a barrier). But
currently, even showing the existence of functions whose matrices have super-
linear invertible rank remains open. One may wonder if invertible rank would
turn out to not have interesting lower bounds at all. In Sect. 5.3, we present
some evidence that invertible rank has non-trivial lower bounds, as it is an upper
bound on communication complexity, and use it to recover the best known lower
bounds on OT complexity.

5.1 Linear Algebraic Characterization of szcr

Conditions for szcr naturally yield a linear algebraic characterization. In this
section, we focus on perfect szcr using no correlation (i.e., (μ, 0)-szcr).

A brief introduction to invertible rank was given in Sect. 1.3. Below, we shall
formally define this quantity. But first, we set up some notation. It will be
convenient to consider matrices as having elements indexed by pairs of elements
(a, b) ∈ A×B for arbitrary finite sets A and B. Below, for clarity, we write M(a, b)

2 The supremum is achieved since we are maximizing a continuous function over a
compact set.
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instead of Ma,b to denote the element indexed by (a, b) in the matrix M . For a
matrix M indexed by A × B, [M ]� be the matrix indexed by A × (B × A) and
[M ]� be the matrix indexed by A × (A × B) defined as follows: For all a, a′ ∈ A
and b ∈ B,

[M ]�(a, (b, a′)) = [M ]�(a, (a′, b)) =

{
M(a, b) if a = a′,
0 otherwise.

A matrix M with non-negative entries indexed by A×B, is said to be stochas-
tic if ∀a ∈ A,

∑
b∈B M(a, b) = 1. A matrix M indexed by A × (B × C), is said

to be B-block stochastic if ∀b ∈ B,
∑

a∈A,c∈C
M(a, (b, c)) = 1.

Though we shall define invertible rank generally for a matrix (w.r.t. another
matrix), our motivation is to use it as a complexity measure of a possibly ran-
domized function (w.r.t. a predicate). Towards this, we represent a function f
using a matrix Mf , and also define a 0–1 matrix Pφ for a predicate φ.

Definition 7. For a (possibly randomized) function f : X × Y → A × B, Mf is
the matrix indexed by (X × A)×(Y×B), defined as follows: For all (x, a) ∈ X ×A
and (y, b) ∈ Y × B,

Mf ((x, a), (y, b)) = Prf (a, b|x, y).

For a predicate φ : U × V → {0, 1}, the matrix Pφ indexed by U × V is defined
as follows. For all (u, v) ∈ U × V,

Pφ(u, v) = φ(u, v)

Given a matrix P indexed by U×V, the tensor-power P⊗k is a matrix indexed by
Uk × Vk, where P⊗k((u1, . . . , uk), (v1, . . . , vk)) =

∏k
i=1 P (ui, vi). We note that

for the k-fold conjunction φk of a predicate φ, we have Pφk = P⊗k
φ .

Now, we are ready to define the invertible rank of a matrix M w.r.t. a matrix
P . To motivate the definition, consider M to be of the form Mf for a function
f : X × Y → A × B, and P to be of the form Pφ for some predicate φ : U × V →
{0, 1}. Suppose (A,B) is a (perfect) μ-zcr from f to φ. Consider a U × (X × A)
dimensional matrix A and a V × (Y × B) dimensional matrix B corresponding
to A and B, respectively, as follows:

A(u, (x, a)) = PrA(u, a|x) B(v, (y, b)) = PrB(v, b|y).
Note that A is X -block stochastic and B is Y-block stochastic. Given a 0-1
matrix Q indexed by U × V, with Q(u, v) = φ(u, v) for a predicate φ, we can
write the function implemented by the zcr as a matrix W = AᵀQB, indexed by
(X × A) × (Y × B). The probability of the zcr accepting, given input (x, y), is∑

a,b W ((x, a), (y, b)). If (A,B) is a (perfect) μ-wzcr from f to φ, then we have
W = 2−μ′

Mf for some μ′ ≤ μ. This corresponds to the condition (10) below.
Now, if (A,B) is a szcr, we also have a security guarantee when either party
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is corrupt. Note that when both parties are honest, the environment’s view of
the protocol, consisting of (x, y, a, b), is specified by the matrix W above. But
when Bob, say, is corrupt, the view also includes the message v that Bob sends
to φ, and hence it would be specified by a matrix indexed by (X × A) × (Y ×
B ×V). This matrix can be written as Aᵀ ·Q · [B]� (where [B]� “copies” the row
index information of B to the column index, corresponding to v becoming visible
outside the protocol). On the other hand, the security condition says that this
view can be simulated by having ŜB sample v given (y, b); ŜB can be encoded in
a stochastic matrix H indexed by (Y×B)×V. The view of the environment in the
simulated execution, taking into account the fact that it aborts with probability
1 − 2−μ, can be written as 2−μ Mf · [H]� (where [H]� is derived from H by
adding the row index information (y, b) to the column index v). This aspect of
szcr is reflected in (12) in the definition below. Similarly, (11) corresponds to
security against corruption of Alice.

Thus the linear algebraic conditions in the definition below correspond to
the existence of a μ-szcr from f to φk. The invertible rank of Mf w.r.t. Pφ

corresponds to minimizing μ and k simultaneously (or more concretely, their
sum).

Definition 8. Given a matrix M indexed by (X × A) × (Y × B) and matrix P
indexed by U × V, the μ∗-invertible rank of M w.r.t. P is defined as

IR
(μ∗)
P (M) = min

A,B,G,H,μ
k

subject to μ ≤ μ∗ and

Aᵀ · P⊗k · B = 2−μ M, (10)

[A]ᵀ� · P⊗k · B = 2−μ [G]ᵀ� · M, (11)

Aᵀ · P⊗k · [B]� = 2−μ M · [H]�, (12)

where A is a X -block stochastic matrix indexed by Uk × (X × A), B is a Y-block
stochastic matrix indexed by Vk × (Y × B), G is a stochastic matrix indexed by
(X × A) × Uk, and H is a stochastic matrix indexed by (Y × B) × Vk.

The invertible rank of M w.r.t. P is defined as

IRP (M) = min
μ

IR
(μ)
P (M) + μ.

As discussed above, a (μ, 0)-szcr from f to φk (using no correlation) corre-
sponds to the existence of matrices A,B,G,H that satisfy the conditions (10)–
(12). Then the invertible rank of Mf w.r.t. Pφ would be upper bounded by μ+k.
This is captured in the following theorem (proven in the full version [NPP20].

Theorem 10. For a (possibly randomized) functionality f : X ×Y → A×B and
a predicate φ : U × V → {0, 1}, f has a perfect μ-szcr to φ using no correlation
if and only if IR(μ)

Pφ
(Mf ) ≤ 1. Further, if f has a perfect μ-szcr to φk using no

correlation then IRPφ
(Mf ) ≤ μ + k.
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Invertible Rank w.r.t. OT. Let POT denote the matrix that corresponds to
the predicate φsupp(OT).3 It can be written as the following circulant matrix:

POT =

⎡

⎢⎢⎣

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤

⎥⎥⎦

We present a conjecture on the existence of functions f which have super-linear
invertible ranks with respect to POT.

Conjecture 1 (Invertible Rank Conjecture). There exists a family of func-
tions fn : {0, 1}n × {0, 1}n → {0, 1} × {0, 1} such that IRPOT

(Mfn
) = ω(n).

Proving this conjecture, for a family of common-information-free functions,
would imply super-linear lower bounds for OT complexity, thanks to Corollary 1
in the sequel. Finding such an explicit family fn would be a major breakthrough,
as it would give a function family with super-linear circuit complexity.

On the other hand, a weakly exponential upper bound of 2Õ(
√

n) exists on
invertible rank of n-bit input functions, as implied by an upper bound on OT-
complexity [BIKK14], re-instantiated using the 2-server PIR protocols of [DG16].

The following corollary of Theorems 10 and 3 gives a purely linear algebraic
problem – namely, lower bounding invertible rank – that can yield OT complexity
lower bounds.

Corollary 1. If a deterministic common-information-free functionality f :
{0, 1}n × {0, 1}n → A × B has OT-complexity m, then IRPOT

(Mf ) = O(m + n).

Proof: Recall that by Theorem 3, there exists a μ-szcr from f to φsupp(OTm+1),
where μ = m+O(n). We will use the further guarantee that, since f is common-
information-free, this szcr does not use any correlation. Then, by Theorem 10,
we have IRPOT

(Mf ) ≤ (m + 1) + μ = O(m + n).4 ��

5.2 szcr vs. OT Complexity

In this section we prove Theorem 3 and its extensions, that show that szcr
lower bounds translate to lower bounds for OT-complexity, or more generally,
2PC complexity w.r.t. any regular correlation ψ (see Sect. 3). Our main result in
this section is Theorem 11, where we transform a perfectly secure 2PC protocol
for a general deterministic functionality f using a regular correlation ψ, into a
szcr from f to the predicate φsupp∗(ψ). (Recall from Sect. 3 that φsupp∗(ψ) is a
predicate that evaluates to 1 on inputs (u, v) ∈ supp(ψ); it allows u or v to be
the symbol ⊥, in which case it evaluates to 0.) Theorem 3 follows from this result
when ψ is taken as OTm.
3 More generally, for a correlation ψ, the 0-1 matrix corresponding to the associated

predicate φsupp(ψ) will be denoted as Pψ.
4 Using the sharper statement from Theorem 11, we would have µ = m + 2n, and

hence we have IRPOT(Mf ) ≤ 2(m+ n) + 1.
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Theorem 11. If protocol Πψ using regular correlation ψ distributed over U ×V
computes a deterministic functionality f : X × Y → A × B with perfect security,
then f has a μ-szcr to φsupp∗(ψ) using ψCRS, where μ = log |U| |V||X |2|Y|2

|supp(ψ)| .
Additionally, if f is common-information-free, then f has a μ′-szcr to

φsupp∗(ψ) using no correlation, where μ′ = log |U| |V||X ||Y|
|supp(ψ)| .

A proof of this theorem is provided in the full version [NPP20]. Theorem 3
is obtained by specializing the above result to the correlation of OT.

Proof: [Proof of Theorem 3] A single instance of OT is a regular correlation with
its support being a 1/2 fraction of its entire domain (see the matrix POT).
Hence m independent OTs form a regular correlation OTm distributed over
U × V = {0, 1}2m × {0, 1}2m such that |supp(OTm)|

|U||V| = 1
2m . Invoking Theorem

11 for |X | = |Y| = 2n, we get a μ-szcr from f to φsupp∗(OTm) using ψCRS, where

μ = log |U||V||X |2|Y|2
|supp(OTm)| = m + 4n. (If f is common-information-free, i.e., it has a

single connected component in Gf , then ψCRS is not needed and μ = m + 2n.)
Recall that the domain of φsupp∗(OTm) contains a special symbol ⊥, in addition

to 2m bit long strings that are in the support of OTm. It is not hard to see that we
can implement the functionality of this symbol ⊥ using an additional instance of
OT. That is, every (u, v) in the domain of φsupp∗(OTm) can be encoded as (û, v̂) in
the domain of φsupp(OTm+1) so that φsupp∗(OTm)(u, v) = φsupp(OTm+1)(û, v̂). Hence,
f has a μ-szcr to φsupp(OTm+1) using a ψCRS (or, if f is common-information-free,
using no correlation). ��

We also prove Theorem 12, which is a “dual version” of Theorem 11: Here,
when the protocol Πψ is transformed into a szcr, instead of ψ transforming
into the predicate, it remains a correlation that is used by the reduction; this
reduction is to the constant-sized predicate φAND.

Theorem 12. Suppose Πψ is a perfectly secure protocol for a deterministic func-
tionality f : X ×Y → A×B, that uses a regular correlation ψ over R×S. Then
f has a μ-szcr to φAND using ψ, where μ = log |X ||Y||R||S|.
The reduction and its analysis is similar to that in Theorem 11. A detailed proof
is provided in the full version [NPP20].

5.3 Communication Complexity vs. szcr

In this section, we lower bound the domain size of a predicate φ to which a
functionality has a non-trivial szcr. In combination with Theorem 11, which
provides an upper bound on the domain size of the predicate in terms of OT
complexity, we obtain a lower bound on OT complexity in terms of (one-way)
communication complexity, reproducing a result of [BM04].

More precisely, the connection between the domain size of φ and the com-
munication complexity of f is captured below. To be able to base the lower
bound on the one-way communication complexity of f , we consider a one-sided
functionality f .
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Lemma 2. Let f : X ×Y → A×{⊥} be a deterministic one-sided functionality
such that for all y, y′ there exists some x such that fA(x, y) �= fA(x, y′). For any
predicate φ : U × V → {0, 1}, and μ > 0, f has a perfect μ-szcr to φ using no
correlation only if |V| ≥ |Y|.
Proof: We will show that if f has a perfect μ-szcr to φ using no correlation,
then there exists a one-way communication protocol for computing fA, where
the message is an element of the set V. By our assumption, no two inputs of
Bob are equivalent w.r.t. fA. Hence in a one-way communication protocol for
fA, Bob must communicate his exact input to Alice. This implies that |V| ≥ |Y|.

Suppose (A,B) is a μ-szcr from f to the predicate φ using no correlation.
Consider the jointly distributed random variables (U,A, V,D) (as described in
Fig. 1), conditioned on input (x, y). Since fB(x, y) = ⊥ for all (x, y), the security
condition (3) (for ε = 0) guarantees that Pr(v|x, y,D = 1) = Pr(ŜB(y,⊥, 1) = v),
for all x, y, v.

The one-way communication protocol for computing f when Alice and Bob
have inputs x and y, respectively can be described as follows. Bob picks a v in
the support of the distribution ŜB(y,⊥, 1), and sends it to Alice. Alice, chooses
(u, a) ∈ U × A such that PrA(u, a|x) > 0 and φ(u, v) = 1, and outputs a.
Existence of such a pair (u, a) is argued as follows. By non-triviality of the szcr,
Pr(D = 1|x, y) > 0 and since v is in the support of ŜB(y,⊥, 1),

Pr(v|x, y,D = 1) = Pr(ŜB(y,⊥, 1) = v) > 0.

Hence, Pr(D = 1|x, y, v) > 0. This implies that there exists (u, a) such that
Pr(a, u, v,D = 1|x, y) > 0. The new one-way communication protocol is correct
since the perfect correctness of (A,B) implies that a = fA(x, y). ��
Corollary 2. If f is a deterministic functionality with one-sided output, such
that for all y, y′ there exists some x such that fA(x, y) �= fA(x, y′), then its OT
complexity is lower bounded by its one-way computation complexity.

Proof: Since f is a one-sided (hence common-information-free) functionality, by
Theorem 11 f has a perfect non-trivial szcr to φsupp(OTm+1) using no correlation
if the OT complexity of f is m. Since f is one-sided, by Lemma 2, 2m+1 is at
least the size of the domain of the non-computing user. This proves the claim. ��

6 Upper Bounds

In this section, we show that zcr provides a new path to protocols in different
secure computation models. In Sect. 6.1, we obtain upper bounds on CDS, PSM
and 2PC, in terms of the communication complexity of the functions being com-
puted, followed by improved upper bounds in Sect. 6.2 which leverage zcr and
its connections to information complexity.
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6.1 Upper Bounds Using Communication Complexity

In this section, we follow the outline below to prove Theorem 1.

Communication
complexity → Tiling → Deterministic

wzcr
→ CDS, PSM

and 2PC

For a deterministic function f : X ×Y → Z, a k-tiling is the partition of X ×Y
into k monochromatic rectangles – i.e., sets R1, . . . , Rk such that Ri = Xi × Yi

and ∃zi ∈ Z s.t., ∀(x, y) ∈ Ri, f(x, y) = zi. (Then, abusing the notation, we
write f(Ri) to denote zi.) We refer to the smallest number k such that f has a k-
tiling, as the tiling number of f . The first step above is standard: Communication
complexity of � implies a protocol with at most 2� transcripts, and the inputs
consistent with each transcript corresponds to a monochromatic tile.

The last step requires a (non-trivial) perfect deterministic wzcr from f to
(say) φAND using ψCRS. If � is the length of the common random string supplied
by ψCRS, the resulting CDS, PSM or 2PC (in the OT-hybrid model) protocols
for f , will have O(2�) communication complexity (as well as OT complexity,
in the case of 2PC). Further, we show that such a wzcr can be readily con-
structed from a tiling for f , with 2� tiles. Lemma 3 summarizes the upperbounds
we obtain using such constructions under different secure computation models.
The detailed construction of all the protocols are relegated to the full version
[NPP20].

Lemma 3. For a deterministic function f : X × Y → Z, if f admits a k-tiling,
then the following exist.

1. A perfectly secure CDS for predicate f (when Z = {0, 1}) with O(k) commu-
nication.

2. A perfectly secure PSM for f with O(k log |Z|) communication.
3. A perfectly secure 2-party symmetric secure function evaluation protocol for

f , against passive corruption, with O(k log |Z|) communication and OT invo-
cations.

Remark 1. In our proof of the above lemma, we show a (μ, 0)-wzcr for any
deterministic functionality g : X × Y → A × B to φAND (with μ = log(k1 · k2)
where k1 and k2 are the tiling numbers of gA and gB , respectively). This is in
contrast with Theorem 7 where we showed that only simple functions have a
(μ, 0)-szcr to φAND for any μ > 0.

Lemma 3, combined with the fact that a communication complexity of �
implies a tiling with at most 2� tiles, proves Theorem 1.

6.2 Upper Bounds Using Information Complexity

In this section we follow the outline below to prove Theorem 2.

Information
complexity → Relaxed

partition → wzcr → CDS, PSM
and 2PC



Zero-Communication Reductions 299

In Sect. 6.2.1, we present the definitions as well as the first step from [KLL+15],
and show how a relaxed partition of f can be turned into a wzcr for f . Then,
in Sect. 6.2.2, we show how a wzcr (in fact, a zcr) can be transformed into
(statistically secure) PSM, CDS, and 2PC protocols. A detailed form of the final
result is presented in Theorem 13 (from which Theorem 2 follows).

6.2.1 Information Complexity and Relaxed Partition
First, we define information complexity and relaxed partition bound.

Information Complexity. Consider a deterministic function f : X × Y → Z
and a possibly randomized non-secure protocol Π for computing f . When Π is
executed with x ∈ X and y ∈ Y, respectively, as inputs of Alice and Bob, let
Π(x, y) be the random variable for the transcript of the protocol, and let A and B
denote the outputs of Alice and Bob, respectively. For jointly distributed random
variables (X,Y ) over X × Y, the error of the protocol errorfX,Y (Π) = Pr[A �=
f(X,Y ) or B �= f(X,Y )]. For ε ≥ 0, information complexity of a function is
defined as

ICε(f) = max
p(X,Y )

min
Π:errorfX,Y (Π)≤ε

I(X;Π(X,Y )|Y ) + I(Y ;Π(X,Y )|X).

Relaxed Partition. Relaxed partition bound was originally defined
in [KLL+15], extending partition bound defined in [JK10]. Here we provide an
equivalent definition of the relaxed partition bound that makes the connection
with wzcr clearer.

Definition 9 (Relaxed partition bound). Consider a deterministic func-
tion f : X × Y → Z. For every rectangle R ∈ 2X × 2Y and z ∈ Z, let
w(R, z) ∈ [0, 1]. The relaxed partition bound for ε ≥ 0, denoted by p̄rtε(f),
is defined as min 1

η subject to:
∑

R,z w(R, z) = 1,

∑

R:(x,y)∈R

w(R, f(x, y)) ≥ η(1 − ε), ∀(x, y) ∈ X × Y
∑

R:(x,y)∈R

∑

z∈Z
w(R, z) ≤ η, ∀(x, y) ∈ X × Y

w(R, z) ≥ 0. ∀R ∈ 2X × 2Y , z ∈ Z
The following proposition restates a theorem due to Kerenidis et al. [KLL+15]

that gives a connection between relaxed partition bound and information com-
plexity. The statement has been modified for our purposes.

Proposition 1 (Theorem 1.1 in [KLL+15]). There is a positive constant C
such that for every function f : X × Y → Z and ε > 0,

log p̄rt2ε(f) ≤
(
9C · ICε(f)

ε2
+

3C
ε

+ log |Z|
)

.



300 V. Narayanan et al.

See the full version [NPP20] for details on the modification of [KLL+15, The-
orem 1.1] which gives the above form. Interestingly, this result is established
in [KLL+15] via a notion of zero communication protocols, which is similar to
(albeit more restricted than) our notion of zcr. This is not surprising given the
close connection between relaxed partition bound and wzcr that we establish
below. The following lemma is proved in the full version [NPP20].

Lemma 4. For any f : X × Y → Z, functionality (f, f) has a (μ, ε)-wzcr to
φAND using ψCRS, where μ = log p̄rtε(f)

1−ε .

6.2.2 From zcr to Secure Computation
In this section we use zcr to construct protocols for statistically secure PSM,
CDS and secure 2PC. To accomplish this, the parties carry out the zcr protocol
n times, for n sufficiently large as to guarantee (except with negligible probabil-
ity) that there will be at least one instance which would accept. Amongst these
n executions, a selector function selects the candidate outputs corresponding to
a reduction in which the predicate is accepted, without revealing the execution
itself. For this we use the notion of selector functions, which we next define. We
conclude this section with Theorem 13, which formally states and proves the
claim in Theorem 2.

Definition 10. For a predicate φ : U × V → {0, 1}, finite set Z and t ∈ N, we
define selector function Selφ,Z,t : U t × Zt × Vt → Z as follows.
For ut := (u1, . . . , ut) ∈ U t, vt := (v1, . . . , vt) ∈ Vt and zt := (z1, . . . , zt) ∈ Zt,

Selφ,Z,t(ut, vt, zt) =

{
zi if ∃i s.t. φ(ui, vi) = 1,∀j > i,φ(uj , vj) = 0,
z∗ otherwise.

Here, z∗ is a fixed arbitrary member of Z. For the specific case where Z = {0, 1},
we will set z∗ = 0.

Selector function for the predicate φAND is of special interest. The following
lemma shows that for t ∈ N and finite set Z, there is an efficient PSM protocol
and a secure 2-party protocol that compute SelφAND,Z,t, when Alice and Bob
get inputs (ut, zt) ∈ U t × Zt and vt ∈ Vt, respectively. When Z = {0, 1},
there is an efficient protocol for CDS with predicate SelφAND,Z,t. We use this to
show upper bounds for communication complexity of statistically secure PSM
and CDS protocols, and for OT complexity and communication complexity of
statistically secure 2PC.

Lemma 5. The following statements hold for the predicate φAND, t ∈ N and a
finite set Z.

(i). SelφAND,Z,t : (U t × Zt) × Vt → Z has perfect PSM with communication
complexity O(t2 · log |Z|).

(ii). CDS for the predicate SelφAND,{0,1},t : (U t × {0, 1}t) × Vt → {0, 1} and
domain {0, 1} has communication complexity O(t).
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(iii). The functionality
(
SelφAND,Z,t,SelφAND,Z,t,

)
: (U t × Zt) × Vt → Z × Z has

a perfectly secure 2PC protocol with communication complexity and OT
complexity O(t · log |Z|).

Since there are efficient PSM protocols for branching programs, the first state-
ment is shown by providing a small branching program for SelφAND,Z,t. Statements
(ii) and (iii) are proved by showing that SelφAND,{0,1},t and SelφAND,Z,t, respectively,
have small formulas [FKN94], [IK97]. The detailed proof is provided in the full
version [NPP20].

We now proceed to give constructions for statistically secure PSM, CDS and
2PC using zcr. All the three constructions follow the same framework. We start
with zcr of a functionality f to predicate φ. The zcr is executed (independently)
sufficiently many times to guarantee that at least one of the executions satisfy
the predicate but with negligible probability. The output of a reduction in which
the predicate was accepted is securely chosen using the selector function for
the predicate. Following lemma summarizes the upper bounds we obtain for
statistically secure PSM, CDS and 2PC via. constructions using zcr. Detailed
proof of the lemma is provided in the full version [NPP20].

Lemma 6. Let f : X × Y → Z be a deterministic function and ⊥ be a constant
function with the same domain If (f,⊥) has a (μ, ε)-zcr to φ using ψCRS, then
for t = 2μ ln 1

ε , we obtain the following upper bound.

1. The 4ε-PSM complexity of f is at most the PSM complexity of the selector
function Selφ,Z,t : (U t × Zt) × Vt → Z.

2. The communication complexity of 4ε-CDS for predicate f (when Z = {0, 1})
is at most that of CDS for predicate Selφ,Z,t : (U t × Zt) × Vt → Z.

3. The communication complexity (respectively, OT complexity) of 4ε-secure
computation of the functionality (f, f) is at most the communication com-
plexity (respectively, OT complexity) of perfectly secure computation of the
symmetric functionality

(
Selφ,Z,t,Selφ,Z,t

)
: (U t × Zt) × Vt → Z × Z.

Theorem 13. Let f : X × Y → Z be a deterministic function and ε > 0. There
exists a positive constant C such that for

K = 2(
9C·ICε(f)

ε2
+ 3C

ε +log |Z|) ·
(
ln(1/2ε)
1 − 2ε

)
,

1. The communication complexity of 8ε-PSM of f is O
(
K2 log |Z|).

2. The communication complexity of 8ε-CDS for predicate f (when Z = {0, 1})
and domain {0, 1} is O(K).

3. The OT complexity and communication complexity of 8ε-secure computation
of f is O (K log |Z|).

Proof: The statistically secure protocols described in the above lemma taken
together with the connection between wzcr and information complexity allow
us to prove our upper bounds on complexities in terms of information complexity
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for these models. Specifically, it follows from Proposition 1 and Lemma 4 that
(f, f) (hence (f,⊥)) has a (μ, 2ε)-zcr to φAND using ψCRS, where

μ ≤ log
1

1 − 2ε
·
(
9C · ICε(f)

ε2
+

3C
ε

+ log |Z|
)

.

Using the statement 1 in Lemma 6 along with Lemma 5, we can now show
that there exists an 8ε-PSM protocol for f with communication complexity
O

((
2μ · log 1

2ε

)2 · log |Z|
)
. Similarly, using statement 2 in Lemmas 6 and 5, we

can show that there is an 8ε-CDS protocol for predicate f with communica-
tion complexity O

(
2μ · log 1

2ε · log |{0, 1}|). And using statement 3 in Lemmas
6 and 5, we can show that there is an 8ε-secure 2-party protocol for f with
communication complexity O

(
2μ · log 1

2ε · log |Z|). This proves the theorem. ��

Acknowledgement. This research was supported by Ministry of Science and Tech-
nology, Israel and Department of Science and Technology, Government of India,
under Joint Indo-Israel Project DST/INT/ISR/P-16/2017. V. Narayanan and V. Prab-
hakaran were supported by the Department of Atomic Energy, Government of India,
under project no. RTI4001; M. Prabhakaran was supported by the Dept. of Science
and Technology, India via the Ramanujan Fellowship; V. Narayanan acknowledges the
discussions with Tulasi Mohan Molli on various topics in communication complexity.

References

[AA18] Applebaum, B., Arkis, B.: On the power of amortization in secret shar-
ing: d-uniform secret sharing and CDS with constant information rate.
In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239,
pp. 317–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03807-6_12

[AHMS18] Applebaum, B., Holenstein, T., Mishra, M., Shayevitz, O.: The communi-
cation complexity of private simultaneous messages, revisited. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 261–286.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_9

[ALSV13] Alon, N., Lee, T., Shraibman, A., Vempala, S.S.: The approximate rank of
a matrix and its algorithmic applications. In: STOC, pp. 675–684 (2013)

[AR17] Applebaum, B., Raykov, P.: From private simultaneous messages to zero-
information arthur-merlin protocols and back. J. Cryptology 30, 961–988
(2017)

[AW17] Alman, J., Williams, R.R.: Probabilistic rank and matrix rigidity. In:
STOC, pp. 641–652 (2017)

[BIKK14] Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic
complexity of the worst functions. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 317–342. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8_14

[BM04] Beimel, A., Malkin, T.: A quantitative approach to reductions in secure
computation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
238–257. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24638-1_14

https://doi.org/10.1007/978-3-030-03807-6_12
https://doi.org/10.1007/978-3-030-03807-6_12
https://doi.org/10.1007/978-3-319-78375-8_9
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-540-24638-1_14
https://doi.org/10.1007/978-3-540-24638-1_14


Zero-Communication Reductions 303

[BW16] Braverman, M., Weinstein, O.: A discrepancy lower bound for information
complexity. Algorithmica, pp. 846–864 (2016)

[CK91] Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. SIAM J.
Discrete Math. 4(1), 36–47 (1991)

[DG16] Dvir , Z., Gopi, S.: 2-server PIR with subpolynomial communication. J.
ACM 63(4), 39:1–39:15 (2016)

[FKN94] Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation
(extended abstract). In: STOC, pp. 554–563 (1994)

[GG99] Gisin, N., Gisin, B.: A local hidden variable model of quantum correlation
exploiting the detection loophole. Phys. Lett. A 260(5), 323–327 (1999)

[GIKM00] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy
in private information retrieval schemes. J. Comput. Syst. Sci. 60(3), 592–
629 (2000)

[GKR15] Ganor, A., Kol, G., Raz, R.: Exponential separation of information and
communication for boolean functions. In: STOC, pp. 557–566 (2015)

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, New York (2004)

[IK97] Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with
applications. In: ISTCS, pp. 174–184 (1997)

[JK10] Jain, R., Klauck, H.: The partition bound for classical communication com-
plexity and query complexity. In: CCC, pp. 247–258 (2010)

[KLL+15] Kerenidis, I., Laplante, S., Lerays, V., Roland, J., Xiao, D.: Lower bounds
on information complexity via zero-communication protocols and applica-
tions. SIAM J. Comput. 44(5), 1550–1572 (2015)

[KN97] Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univer-
sity Press, New York (1997)

[LVW17] Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via
non-linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7_25

[LVW18] Liu, T., Vaikuntanathan, V., Wee, H.: Towards breaking the exponen-
tial barrier for general secret sharing. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10820, pp. 567–596. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9_21

[MPR12] Maji, H.K., Prabhakaran, M., Rosulek, M.: A unified characterization of
completeness and triviality for secure function evaluation. In: Galbraith, S.,
Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 40–59. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_4

[MPR13] Maji, H., Prabhakaran, M., Rosulek, M.: Complexity of Multi-Party Com-
putation Functionalities. Cryptology and Information Security Series, vol.
10, pp. 249–283. IOS Press, Amsterdam (2013)

[NPP20] Narayanan, V., Prabhakaran, M., Prabhakaran, V.: Zero-communication
reductions. In: Cryptology ePrint Archive (2020)

[PP14] Prabhakaran, V., Prabhakaran, M.: Assisted common information with an
application to secure two-party sampling. IEEE Trans. Inf. Theory 60(6),
3413–3434 (2014)

[PP16] Prabhakaran, M.M., Prabhakaran, V.M.: Rényi information complexity
and an information theoretic characterization of the partition bound. In:
ICALP, pp. 88:1–88:14 (2016)

[PR17] Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone
computation. In: STOC, pp. 1246–1255 (2017)

https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-78381-9_21
https://doi.org/10.1007/978-3-642-34931-7_4


304 V. Narayanan et al.

[PS86] Paturi, R., Simon, J.: Probabilistic communication complexity. J. Comput.
Syst. Sci. 33(1), 106–123 (1986)

[Raz90] Razborov, A.A.: Applications of matrix methods to the theory of lower
bounds in computational complexity. Combinatorica 10(1), 81–93 (1990)

[RPRC16] Robere, R., Pitassi, T., Rossman, B., Cook, S.A.: Exponential lower bounds
for monotone span programs. In: FOCS, pp. 406–415 (2016)

[Val77] Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Math-
ematical Foundations of Computer Science, pp. 162–176 (1977)



Lower Bounds on the Time/Memory
Tradeoff of Function Inversion

Dror Chawin(B), Iftach Haitner, and Noam Mazor

School of Computer Science, Tel Aviv University, Tel Aviv, Israel
quefumas@gmail.com, iftachh@cs.tau.ac.il, noammaz@gmail.com

Abstract. We study time/memory tradeoffs of function inversion: an
algorithm, i.e., an inverter, equipped with an s-bit advice on a randomly
chosen function f : [n] �→ [n] and using q oracle queries to f , tries to
invert a randomly chosen output y of f , i.e., to find x ∈ f−1(y). Much
progress was done regarding adaptive function inversion—the inverter
is allowed to make adaptive oracle queries. Hellman [IEEE transactions
on Information Theory ’80] presented an adaptive inverter that inverts
with high probability a random f . Fiat and Naor [SICOMP ’00] proved
that for any s, q with s3q = n3 (ignoring low-order terms), an s-advice,
q-query variant of Hellman’s algorithm inverts a constant fraction of the
image points of any function. Yao [STOC ’90] proved a lower bound of
sq ≥ n for this problem. Closing the gap between the above lower and
upper bounds is a long-standing open question.

Very little is known of the non-adaptive variant of the question—the
inverter chooses its queries in advance. The only known upper bounds,
i.e., inverters, are the trivial ones (with s + q = n), and the only lower
bound is the above bound of Yao. In a recent work, Corrigan-Gibbs
and Kogan [TCC ’19] partially justified the difficulty of finding lower
bounds on non-adaptive inverters, showing that a lower bound on the
time/memory tradeoff of non-adaptive inverters implies a lower bound
on low-depth Boolean circuits. Bounds that, for a strong enough choice
of parameters, are notoriously hard to prove.

We make progress on the above intriguing question, both for the adap-
tive and the non-adaptive case, proving the following lower bounds on
restricted families of inverters:
Linear-advice (adaptive inverter). If the advice string is a linear

function of f (e.g., A × f , for some matrix A, viewing f as a vector
in [n]n), then s+ q ∈ Ω(n). The bound generalizes to the case where
the advice string of f1 + f2, i.e., the coordinate-wise addition of the
truth tables of f1 and f2, can be computed from the description of
f1 and f2 by a low communication protocol.

Affine non-adaptive decoders. If the non-adaptive inverter has an
affine decoder—it outputs a linear function, determined by the
advice string and the element to invert, of the query answers—then
s ∈ Ω(n) (regardless of q).
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Affine non-adaptive decision trees. If the non-adaptive inversion
algorithm is a d-depth affine decision tree—it outputs the evalu-
ation of a decision tree whose nodes compute a linear function of the
answers to the queries—and q < cn for some universal c > 0, then
s ∈ Ω(n/d log n).

Keywords: Function inverters · Random functions · Time/memory
tradeoff

1 Introduction

In the function-inversion problem, an algorithm, inverter, attempts to find a
preimage for a randomly chosen y ∈ [n] of a random function f : [n] → [n]. The
inverter is equipped with an s-bit advice on f , and may make q oracle queries
to f . Since s lowerbounds the inverter space complexity and q lowerbounds the
inverter time complexity, it is common to refer to the relation between s and q
as the inverter’s time/memory tradeoff. The function-inversion problem is cen-
tral to both theoretical and practical cryptography. On the theoretical end, the
security of many systems relies on the existence of one-way functions. While
the task of inverting one-way functions is very different from that of inverting
random functions, understanding the latter task is critical towards developing
lower bounds on the possible (black-box) implications of one-way functions, e.g.,
Impagliazzo and Rudich [18], Gennaro et al. [14]. But advances on this problem
(at least on the positive side, i.e., inverters) are likely to find practical applica-
tions. Indeed, algorithms for function inversion are used to expose weaknesses
in existing cryptosystems.

Much progress was done regarding adaptive function inversion—the inverter
may choose its queries adaptively (i.e., based on answers for previous queries).
Hellman [17] presented an adaptive inverter that inverts with high probability a
random f . Fiat and Naor [12] proved that for any s, q with s3q = n3 (ignoring
low-order terms), an s-advice q-query variant of Hellman’s algorithm inverts a
constant fraction of the image points of any function. Yao [27] proved a lower
bound of s · q ≥ n for this problem. Closing the gap between the above lower
and upper bounds is a long-standing open question. In contrast, very little is
known about the non-adaptive variant of this problem—the inverter performs all
queries at once. This variant is interesting since such inverter is likely be highly
parallelizable, making it significantly more tractable for real world applications.
The only known upper bounds for this variant, i.e., inverters, are the trivial ones
(i.e., s + q = n), and the only known lower bound is the above bound of Yao
[27]. In a recent work, Corrigan-Gibbs and Kogan [9] have partially justified
the difficulty of finding lower bounds on this seemingly easier to tackle problem,
showing that lower bounds on non-adaptive inversion imply circuit lower bounds
that, for strong enough parameters, are notoriously hard (see further details in
Sect. 1.1).
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1.1 Our Results

We make progress on this intriguing question, proving lower bounds on restricted
families of inverters. To state our results, we use the following formalization to
capture inverters with a preprocessing phase: such inverters have two parts, the
preprocessing algorithm that gets as input the function to invert f and outputs
an advice string a, and the decoding algorithm that takes as input the element
to invert y, the advice string a, and using restricted query access to f tries to
find a preimage of y. We start with describing our bound for the time/memory
tradeoff of linear-advice (adaptive) inverters, and then present our lower bounds
for non-adaptive inverters. In the following, fix n ∈ N and let F be the set of all
functions from [n] to [n].

Linear-Advice Inverters. We start with a more formal description of adaptive
function inverters.

Definition 1.1. (Adaptive inverters, informal). An s-advice, q-query adap-
tive inverter is a deterministic algorithm pair C := (Cpre,Cdec), where Cpre : F →
{0, 1}s, and C

(·)
dec : [n] × {0, 1}s → [n] is a q-query algorithm. We say that C

inverts F with high probability if

Pr
f←F

a:=Cpre(f)

⎡
⎣ Pr

x←[n]
y:=f(x)

[
Cf
dec(y, a) ∈ f−1(y)

]
≥ 1/2

⎤
⎦ ≥ 1/2.

It is common to refer to a (:= Cpre(f)) as the advice string. In linear-advice
inverters, the preprocessing algorithm Cpre is restricted to output a linear func-
tion of f . That is, Cpre(f1) + Cpre(f2) = Cpre(f1 + f2), where the addition f1 + f2
is coordinate-wise with respect to an arbitrary group over [n], and the addition
Cpre(f1)+Cpre(f2) is over an arbitrary group that contains the image of Cpre. An
example of such a preprocessing algorithm is Cpre(f) := A×f , for A ∈ {0, 1}s×n,
viewing f ∈ F as a vector in [n]n. For such inverters, we present the following
bound.

Theorem 1.2. (Bound on linear-advice inverters). Assume there exists
an s-advice q-query inverter with linear preprocessing that inverts F with high
probability. Then s + q · log n ∈ Ω(n).

We prove Theorem 1.2 via a reduction from set disjointness, a classical prob-
lem in the study of two-party communication complexity. The above result gen-
eralizes to the following bound that replaces the restriction on the decoder (e.g.,
linear and short output) with the ability to compute the advice string of f1 + f2
by a low-communication protocol over the inputs f1 and f2.

Theorem 1.3. (Bound on additive-advice inverters, informal). Assume
there exists a q-query inverter C := (Cpre, ·) and an s-bit communication two-
party protocol (P1,P2) such that for every f1, f2 ∈ F , the output of P1 in
(P1(f1),P2(f2)) equals with constant probability to Cpre(f1 + f2). Then s + q ·
log n ∈ Ω(n).
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The above bound indeed generalizes Theorem 1.2: a preprocessing algorithm of
the type required by Theorem 1.2 immediately implies a two-party party protocol
of the type required by Theorem 1.3.

Non-adaptive Inverters. In the non-adaptive setting, the decoding algorithm
has two phases: the query selection algorithm that chooses the queries as a
function of the advice and the element to invert y, and the actual decoder that
receives the answers to these queries along with the advice string and y.

Definition 1.4. (Non-adaptive inverters, informal). An s-advice, q-query
non-adaptive inverter is a deterministic algorithm triplet of the form C :=
(Cpre,Cqry,Cdec), where Cpre : F → {0, 1}s, Cqry : [n] × {0, 1}s → [n]q and
Cdec : [n] × {0, 1}s × [n]q → [n]. We say that C inverts F with high probability
if

Pr
f←F

a=Cpre(f)

⎡
⎢⎢⎣ Pr

x←[n]
y=f(x)

v=Cqry(y,a)

[
Cdec(y, a, f(v)) ∈ f−1(y)

]
≥ 1/2

⎤
⎥⎥⎦ ≥ 1/2.

Note that the query vector v is of length q, so the answer vector f(v) contains q
answers. Assuming there exists a field F of size n (see Remark 1.7), we provide
two lower bounds for such inverters.

Affine Decoders. The first bound regards inverters with affine decoders. A
decoder algorithm Cdec is affine if it computes an affine function of f ’s answers.
That is, for every image y ∈ [n] and advice a ∈ {0, 1}s, there exists a q-sparse
vector αa

y ∈ F
n and a field element βa

y ∈ F such that Cdec(y, a, f(Cqry(y, a))) =
〈αa

y, f〉 + βa
y for every f ∈ F . For this type of inverters, we present the following

lower bound.

Theorem 1.5. (Bound on non-adaptive inverters with affine decoders,
informal). Assume there exists an s-advice non-adaptive function inverter with
an affine decoder, that inverts F with high probability. Then s ∈ Ω(n).

Note that the above bound on s holds even if the inverter queries f on all inputs.
While Theorem 1.5 is not very insightful for its own sake, as we cannot expect a
non-adaptive inverter to have such a limiting structure, it is important since it
can be generalized to affine decision trees, a much richer family of non-adaptive
inverters defined below. In addition, the result should be contrasted with the
question of black-box function computation, see Sect. 1.2, for which linear algo-
rithm are optimal. Thus, Theorem 1.5 highlights the differences between these
two related problems.

Affine Decision Trees. The second bound regards inverters whose decoders are
affine decision trees. An affine decision tree is a decision tree whose nodes
compute an affine function, over F, of the input vector. A decoder algorithm
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Cdec is an affine decision tree, if for every image y ∈ [n], advice a ∈ {0, 1}s

and queries v = Cqry(y, a), there exists an affine decision tree T y,a such that
Cdec(y, a, f(v)) = T y,a(f) (i.e., the output of T y,a on input f) for every f ∈ F .
For such inverters, we present the following bound.

Theorem 1.6. (Bounds on non-adaptive inverters with affine decision-
tree decoders). Assume there exists an s-advice q-query non-adaptive function
inverter with a d-depth affine decision-tree decoder, that inverts F with high
probability. Then the following hold:

– q < cn, for some universal constant c, =⇒ s ∈ Ω(n/d log n).
– q ∈ n1−Θ(1) =⇒ s ∈ Ω(n/d).

That is, we pay a factor of 1/d comparing to the affine decoder bound, and the
bound on s only holds for not too large q. Affine decision trees are much stronger
than affine decoders, since the choice of the affine operations it computes can be
adaptively dependent on the results of previous affine operations. For example, a
depth d affine decision tree can compute any function on d linear combinations
of the inputs. In particular, multiplication of function values, e.g., f(1) · f(2),
which cannot be computed by an affine decoder, can be computed by a depth two
decision tree. We note that an affine decision tree of depth q can compute any
function of its q queries. Unfortunately, for d = q, our bound only reproduces
(up to log factors) the lower bound of Yao [27].

Remark 1.7. (Field size). In Theorems 1.5 and 1.6, the field size is assumed to
be exactly n (the domain of the function to invert). Decoders over fields smaller
than n are not particularly useful, since their output cannot cover all possible
preimages of f . Our proof breaks down for fields of size larger than n, since we
cannot use linear equations to represent the constraint that the decoder’s output
must be contained in the smaller set [n].

Applications to Valiant’s Common-Bit Model. Corrigan-Gibbs and
Kogan [9] showed that a lower bound on the time/memory tradeoff of strongly
non-adaptive function inverters—the queries may not depend on the advice—
implies a lower bound on circuit size in Valiant’s common-bit model [23,24].
Applying the reduction of [9] with Theorem 1.6 yields the following bound: for
every n ∈ N for which there exists an n-size field F, there is an explicit function
f : Fn �→ F

n that cannot be computed by a three-layer circuit of the following
structure:

1. It has o(n/d log n) middle layer gates.
2. Each output gate is connected to n1−Θ(1) inputs gates (and to an arbitrary

number of middle-layer gates).
3. Each output gate computes a function which is computable by a d-depth linear

decision tree in the inputs (and depends arbitrarily on the middle layer).

In fact, our bound yields that such circuits cannot even approximate f so that
every output gate outputs the right value with probability larger than 1/2, over
the inputs.



310 D. Chawin et al.

1.2 Additional Related Work

Adaptive Inverters

Upper Bounds. The main result in this setting is the s-advice, q-query inverter
of Hellman [17], Fiat and Naor [12] that inverts a constant fraction of the image
of any function, for any s, q such that s3q = n3 (ignoring low-order terms). When
used for random permutations, a variant on the same idea implies an optimum
inverter with s · q = n. The inverter of Hellman, Fiat and Naor has found
application to practical cryptanalysis, e.g., Biryukov and Shamir [5], Biryukov
et al. [6], Oechslin [20].

Lower Bounds. A long line of research (Gennaro et al. [14], Dodis et al. [11],
Abusalah et al. [1], Unruh [22], Coretti et al. [8], De et al. [10]) provides lower
bounds for various variations on the classical setting, such as that of randomized
inversion algorithms that succeed on a sub-constant fraction of functions. None
of these lower bounds, however, manage to improve on Yao’s lower bound of
s · q = n, leaving a large gap between this lower bound and Hellman, Fiat and
Naor’s inverter.

Non-adaptive Inverters

Upper Bounds. In contrast with the adaptive case, it is not clear how to exploit
non-adaptive queries in a non trivial way. Indeed, the only known inverters are
the trivial ones (roughly, the advice is the function description, or the inverter
queries the function on all inputs).

Lower Bounds. Somewhat surprisingly, the only known lower bound for non-
adaptive inverters is Yao’s, mentioned above. This defies the basic intuition that
this task should be easier than the adaptive case, due to the extreme limitations
under which non-adaptive inverters operate. This difficulty was partially justi-
fied by the recent reduction of Corrigan-Gibbs and Kogan [9] (see Sect. 1.1) that
implies that a strong enough lower bound on even strongly non-adaptive invert-
ers, would yield a lower bound on low-depth Boolean circuits that is notoriously
hard to prove.

Relation to Data Structures. The problem of function inversion with advice
may also be phrased as a problem in data structures, where the advice string
serves as a succinct data structure for answering questions about f . In particular,
it bears strong similarity to the substring search problem using the cell-probe
model [25]. This is the task of ascertaining the existence of a certain element
within a large, unsorted database, using as few queries to the database and
as little preprocessing as possible. Upper and lower bounds easily carry over
between the two problems, a connection which was made in Corrigan-Gibbs and
Kogan [9], where it was used to obtain previously unknown upper bounds on
substring search.
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Index Coding and Black-Box Function Computation. A syntactically
related problem to function inversion is the so-called black-box function com-
putation: an algorithm tries to compute f(x), for a randomly chosen x, using
an advice of length s on f , and by querying f on q inputs other than x. Yao
[26] proved that s · q ≥ n, and presented a linear, non-adaptive algorithm that
matches this lower bound.

A much-researched special case of this problem is known as the index coding
problem [4], originally inspired by information distribution over networks. In
this setting, a single party is in possession of a vector f , and broadcasts a short
message a such that n different recipients may each recover a particular value
of f , using the broadcast message and knowledge of certain other values of
f , as determined by a knowledge graph. The analogy to non-adaptive black-box
function computation is obvious when considering a as the advice string, and the
access to various values of f as queries. While Yao’s bound on the time/memory
tradeoff also holds for the index coding problem, other lower bounds, some of
which consider “linear” algorithms [3,4,15,16,19], do not seem to be relevant for
the function inversion problem.

Open Questions

The main challenge remains to gain a better understanding on the power of
adaptive and non-adaptive function inverters. A more specific challenge is to
generalize our bound on affine decoders and decision trees to affine operations
over arbitrary (large) fields.

Paper Organization

A rather detailed description of our proof technique is given in Sect. 2. Basic
notations, definitions and facts are given in Sect. 3, where we also prove several
basic claims regarding random function inversion. The bound on linear-advice
inverters is given in Sect. 4, and the bounds on non-adaptive inverters are given
in Sect. 5.

2 Our Technique

In this section we provide a rather elaborate description of our proof technique.
We start with the bound on linear-advice inverters in Sect. 2.1, and then in
Sect. 2.2 describe the bounds for non-adaptive inverters.

2.1 Linear-Advice Inverters

Our lower bound for inverters with linear advice (and its immediate generaliza-
tion to additive-advice inverters) is proved via a reduction from set disjointness,
a classical problem in the study of two-party communication complexity. In the
set disjointness problem, two parties, Alice and Bob, receive two subsets, X
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and Y ⊆ [n], respectively, and by communicating with each other try to deter-
mine whether X ∩ Y = ∅. The question is how many bits the parties have to
exchange in order to output the right answer with high probability. Given an
inverter with linear advice, we use it to construct a protocol that solves the
set disjointness problem on all inputs in Q := {X ,Y ⊆ [n] : |X ∩ Y| ≤ 1} by
exchanging s + q · log n bits. Razborov [21] proved that to answer with con-
stant success probability on all input pairs in Q, the parties have to exchange
Ω(n) bits. Hence, the above reduction implies the desired lower bound on the
time/memory tradeoff of such inverters.

Fix a q-query s-advice inverter C := (Cpre,Cdec) with linear advice, and
assume for simplicity that C’s success probability is one. The following obser-
vation immediately follows by definition: let af := Cpre(f) and ag := Cpre(g)
be the advice strings for some functions f and g ∈ F , respectively. The lin-
earity of Cpre yields that a := af + ag = Cpre(f + g). That is, a is the advice
for the function f + g (all additions are over the appropriate groups). Given
this observation, we use C to solve set disjointness as follows: Alice and Bob
(locally) convert their input sets X and Y to functions fA and fB respectively,
such that for any x ∈ X ∩ Y it holds that f(x) := (fA + fB)(x) = 0, and f(x)
is uniform for x /∈ X ∩ Y. Alice then sends aA := Cpre(fA) to Bob who uses it
to compute a := Cpre(f) = aA + Cpre(fB). Equipped with the advice a and the
help of Alice, Bob then emulates Cdec(0, a) and finds x ∈ f−1(0), if such exists.
Since f is unlikely to map many elements outside of X ∩Y to 0, finding such x is
highly correlated with X ∩ Y = ∅. In more details, the set disjointness protocol
is defined as follows.

Protocol 2.1. (Set disjointness protocol Π = (A(X ),B(Y)))

1. A samples fA ∈ F by letting fA(i) :=

{
0 i ∈ X
∼ [n] otherwise.

2. B samples fB ∈ F analogously, with respect to Y.
– Let f := fA + fB.

3. A sends aA := Cpre(fA) to B, and B sets a := aA + Cpre(fB).1

4. B emulates Cf
dec(0, a) while answering each query r that Cdec makes to f as

follows:
(a) B sends r to A.
(b) A sends wA := fA(r) back to B.
(c) B replies w := wA + fB(r) to Cdec (as the value of f(r)).

– Let x be Cdec’s answer at the end of the above emulation.
5. The parties reject if x ∈ X ∩ Y (using an additional Θ(log n) bits to find it

out), and accept otherwise.

1 If the inverter is only assumed to have additive advice, this step is replaced with the
parties interacting in the guaranteed protocol for computing the advice for f from
the descriptions of fA and fB.
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The communication complexity of Π is essentially s+q ·log n. It is also clear that
the parties accept if X ∩ Y = ∅. For the complementary case, by construction,
the intersection point of X ∩Y is in f−1(0). Furthermore, since f(i) is a random
value for all i /∈ X ∩ Y, with constant probability only the intersection point is
in f−1(0). Therefore, the protocol is likely to answer correctly also in the case
that |X ∩ Y| = 1.

2.2 Non-adaptive Inverters

We focus on inverters with an affine decoder, and discuss the extension to affine
decision tree decoders in Sect. 2.2. The proof follows by bounding the suc-
cess probability of zero-advice inverters—the preprocessing algorithm outputs
an empty string. In particular, we prove that the success probability of such
inverters is at most 2−Ω(n). Thus, by a union bound over all advice strings, in
order to invert F with high probability, the advice string of a general (non-zero-
advice) inverter has to be of length Ω(n).2 Let C := (Cqry,Cdec) be a zero-advice
q-query non-adaptive inverter with an affine decoder. Let F be a random element
of F , and for i ∈ [n], let Yi be a randomly and independently selected element of
[n]. Let Xi := Cdec(Yi, F (Cqry(Yi))), i.e., C’s answer on challenge Yi, and let Zi

be the indicator for {F (Xj) = Yj} for all j ∈ [i], i.e., the event that C answers
the first i challenges correctly. We prove the bound by showing that for some
m ∈ Θ(n) it holds that

Pr [Zm] ∈ 2−Ω(m) (1)

Note that Eq. (1) bounds the probability that C inverts m random elements
drawn from [n] (where some of them might have no preimage at all), whereas we
are interested in bounding the probability that C inverts a random output of F .
Yet, since F is a random function, its image covers with very high probability
a constant fraction of [n], and thus Eq. (1) can be easily manipulated to derive
that

Pr
f←F

⎡
⎢⎢⎣ Pr

x←[n]
y=f(x)

v=Cqry(f,y)

[
Cdec(y, f(v)) ∈ f−1(y)

]
≥ 1/2

⎤
⎥⎥⎦ < 2−Ω(m) = 2−Ω(n) (2)

Hence, in order to invert a random function with high probability, a non-zero-
advice inverter has to use advice of length Ω(n).

We prove Eq. (1) by showing that for every i ∈ [m] it holds that

Pr [Zi | Zi−1] < 3/5 (3)

That is, for small enough i, the algorithm C is likely to fail on inverting the ith

challenge, even when conditioned on the successful inversion of the first i − 1

2 This first part of the proof is rather standard, cf., Akshima et al. [2].
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challenges. We note that it is easy to bound Pr [Zi | Zi−1] for zero-query invert-
ers. The conditioning on Zi−1 roughly gives Θ(i) bits of information about F .
Thus, this conditioning gives at most one bit of information about F−1(Yi), and
the inverter does not have enough information to invert Yi. When moving to
non-zero-queries inverters, however, the situation gets much more complicated.
By making the right queries, that may depend on Yi, the inverter can exploit
this “small” amount of information to find the preimage of Yi. This is what hap-
pens, for instance, in the adaptive inverter of Hellman [17]. Hence, for bounding
Pr [Zi | Zi−1], we critically exploit the assumption that C is non-adaptive and
has an affine decoder. In particular, we bound Pr [Zi | Zi−1] by translating the
event Zi into an affine system of equations and then use a few observations about
the structure of the above system to derive the desired bound. These equations
will have the form M × F = V , viewing F as a random vector in [n]n, for

M :=
(
Mi−1

Mi

)
and V :=

(
V i−1

V i

)
, such that:

1. Mi−1 is a deterministic function of (X<i, Y<i) and Mi is a deterministic
function of Yi, letting X<i stand for (X1, . . . , Xi−1) and likewise for Y<i.

2. The event M i−1 × F ′ = V i−1 is the event
∧

j<i{(F ′(Xj) = Yj) ∧
(Cdec(Yj , F

′(Cqry(Yj))) = Xj)}, for F ′ being a uniform, and independent,
element of F .
(In particular, M i−1×F = V i−1 implies that Zi−1 holds, and binds the value
of (X<i, Y<i) to V i−1.)

3. The event M i × F ′ = V i is the event {Cdec(Yi, F
′(Cqry(Yi))) = Xi}.

(In particular, M i × F = V i binds the value of Xi to V i.)

The above M and V are defined as follows: assume for ease of notation that
C has a linear, and not affine, decoder. That is, for every y ∈ [n] there exists a
(q-sparse) vector αy ∈ F

n such that 〈αy, F 〉 = Xy. By definition, for every j < i:

1. 〈αYj
, F 〉 = Xj .

Conditioning on Zi−1 further implies that for every j < i:

2. F (Xj) = Yj .

Let � := 2i − 2, and let Mi−1 ∈ F
�×n be the (random) matrix defined by

Mi−1
2k−1 := αYk

and Mi−1
2k := eXk

, letting ej being the unit vector (0j−1, 1, 0n−j).
Let V i−1 ∈ F

� be the (random) vector defined by V i−1
2k−1 := Xk and V i−1

2k = Yk.
By definition, the event Zi−1 is equivalent to the event Mi−1 × F = V i−1. The
computation C makes on input Yi can also be described by the linear equation

〈αYi
, F 〉 = Xi. Let M :=

(
Mi−1

αYi

)
and V :=

(
V i−1

Xi

)
. We make use of the

following claims (see proofs in Sect. 3.2).

Definition 2.2. (Spanned unit vectors). For a matrix A ∈ F
a×n, let

E(A) := {j ∈ [n] : ej ∈ Span(A)}, for Span(A) being the (linear) span of A’s
rows.
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That is, E(A) is the set of indices of all unit vectors spanned by A. It is clear that
|E(A)| ≤ rank(A) ≤ min {a, n}. The following claim states that for j /∈ E(A),
knowing the value of A × F gives no information about Fj .

Claim 2.3. Let A ∈ F
a×n and v ∈ Im(A). Then for every j ∈ [n] \ E(A) and

y ∈ [n], it holds that Prf←[n]n [fj = y | A × f = v] = 1/n.

The second claim roughly states that by concatenating a c-row matrix to a
given matrix A, one does not increase the spanned unit set of A by more than
c elements.

Claim 2.4. For every A ∈ F
�×n there exists an �-size set SA ⊆ [n] such that

the following holds: for every B ∈ F
c×n there exists a c-size set SB ⊆ [n] such

that E
(
A
B

)
⊆ SA ∪ SB.

For bounding Pr [Zi | Zi−1] using the above observations, we write

Pr [Zi | Zi−1] = Pr [Zi ∧ Xi ∈ E(M) | Zi−1] + Pr [Zi ∧ Xi /∈ E(M) | Zi−1] (4)

and finish the proof by separately bounding the two terms of the above equation.
Let H := (Xi, Y≤i,M, V ). We first note that

Pr [Zi ∧ Xi /∈ E(M) | Zi−1] ≤ Pr [Zi | Xi /∈ E(M), Zi−1]
= E

(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m × F = v, Y≤i = y≤i]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m × F = v]]

= 1/n. (5)

The first equality holds by definition of Zi−1, the second equality since F is
independent of Y , and the last one follows by Claim 2.3. For bounding the left-
hand term of Eq. (4), let S and T be the �-size set and the index guaranteed by
Claim 2.4 for the matrices Mi−1 and vector αYi

, respectively. Compute,

Pr [Zi ∧ Xi ∈ E(M) | Zi−1] ≤ Pr [Yi ∈ F (E(M)) | Zi−1]
≤ Pr [Yi ∈ F (S ∪ {T}) | Zi−1]
≤ Pr [Yi ∈ F (S) | Zi−1] + Pr [Yi = F (T ) | Zi−1] .

(6)

The second inequality is by Claim 2.4. Since F (S) is independent of Yi, it holds
that

Pr [Yi ∈ F (S) | Zi−1] ≤ |S| /n = �/n (7)

Bounding Pr [Yi = F (T ) | Zi−1] is more involved since T might depend on Yi.3

Yet since f is a random function, a simple counting argument yields that for any
3 Indeed, this dependency between the queries to f and the value to invert is exactly

what makes (efficient) inversion by adaptive inverters possible.
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(fixed and independent of f) function g:

Pr
f←F

[
Pr

y←[n]
[y = f(g(y))] ≥ 1/2

]
≤ n−n/3 (8)

Let H := (X<i, Y<i), and for h = (x<i, y<i) ∈ Supp(H) compute

Pr
f←F |Zi−1,H=h

[Pr [Yi = f(T ) | H = h] ≥ 1/2]

≤ 1
Pr [H = h,Zi−1 | Y<i = y<i]

· Pr
f←F |Y<i=y<i

[Pr [Yi = F (T ) | H = h] ≥ 1/2]

=
1

Pr [H = h,Zi−1 | Y<i = y<i]
· Pr

f←F
[Pr [Yi = F (T ) | H = h] ≥ 1/2]

≤ 1
Pr [H = h,Zi−1 | Y<i = y<i]

· n−n/3

≤ nn/4 · n−n/3 ∈ o(1). (9)

The first equality holds since F is independent of Y . The second inequality
holds by Eq. (8), noting that under the conditioning on H = h, the value of T is
a deterministic function of Yi. The third inequality holds since for not too big i,
Pr [H = h,Zi−1 | Y<i = y<i] ≥ n−n/4, since this probabilistic event is essentially
a system of linear equations over a randomly selected vector. Since the above
holds for any h, we conclude that Pr [Yi = F (T ) | Zi−1] ≤ 1/2 + o(1). Putting it
all together, yields that Pr [Zi | Zi−1] < 1/n + �/n + 1/2 + o(1) < 3/5, for not
too large i.

Affine Decision Trees. Similarly to the affine decoder case, we prove the
theorem by bounding Pr [Zi | Zi−1] for all “not too large i”. Also in this case,
we bound this probability by translating the conditioning on Zi−1 into a system
of affine equations. In particular, we would like to find proper definitions for the

matrix M =
(
Mi−1

Mi

)
and vector V =

(
V i−1

V i

)
, functions of (X≤i, Y≤i), such

that conditions 1–3 mentioned in the affine decoder case hold.
We achieve these conditions by adding for each j < i an equation for each

of the linear computations done in the decision tree that computes Xj from
Yj . The price is that rather than having Θ(i) equations, we now have Θ(d · i),
for d being the depth of the decision tree. In order to have Mi a deterministic
function of Yi alone, we cannot simply make Mi reflect the d linear computations
performed by the decoder, since each of these may depend on the results of
previous computations, and thus depend on F . So rather, we have to add a row
(i.e., an equation) for each of the q queries the decoder might use (queries that
span all possible computations), which by definition also imply the dependency
on q. Taking these additional rows into account yields the desired bound.
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3 Preliminaries

3.1 Notation

All logarithms considered here are in base two. We use calligraphic letters
to denote sets, uppercase for random variables and probabilistic events, low-
ercase for functions and fixed values, and bold uppercase for matrices. Let
[n] := {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its ith entry, let
v<i := v1,...,i−1 and let v≤i := v1,...,i. Let

(
[n]
k

)
denote the set of all subsets

of [n] of size k. The vector v is q-sparse if it has no more than q non-zero entries.

Functions. We naturally view functions from [n] to [m] as vectors in [m]n,
by letting fi = f(i). For a finite ordered set S := {s1, . . . , sk}, let f(S) :=
{f(s1), f(s2), . . . , f(sk)}. Let f−1(y) := {x ∈ [n] : f(x) = y} and let Im(f) =
{f(x) : x ∈ [n]}. A function f : Fn → F , for a field F and n ∈ N, is affine if there
exist a vector v ∈ F

n and a constant β ∈ F such that f(x) = 〈v, x〉 + β for every
x ∈ F

n, letting 〈v, x〉 :=
∑

vi · xi (all operations are over F).

Distributions and Random Variables. The support of a distribution P over a
finite set S is defined by Supp(P ) := {x ∈ S : P (x) > 0}. For a set S, let s ← S
denote that s is uniformly drawn from S. For δ ∈ [0, 1], let h(δ) := −δ log δ −
(1 − δ) log(1 − δ), i.e., the binary entropy function.

3.2 Matrices and Linear Spaces

We identify the elements of a finite field of size n with the elements of the
set [n], using some arbitrary, fixed, mapping. Let ei denote the ith unit vector
ej = (0j−1, 1, 0n−j).

For a matrix A ∈ F
a×b, let Ai denote the ith row of A. The span of A’s

rows is defined by Span(A) :=
{
v ∈ F

b : ∃δ1, . . . , δa ∈ F : v =
∑a

i=1 δiAi

}
. Let

Im(A) =
{
v ∈ F

a : ∃w ∈ F
b : A × w = v

}
, or equivalently, the image set of the

function fA(w) := A × w. We use the following well-known fact:

Fact 3.1. Let F be a finite field of size n, let A ∈ F
a×b, let v ∈ Im(A), and

let F ⊆ F
b be the solution set of the system of equations A × F = v. Then

|F| = nb−rank(A).

We also make use of the following less standard notion.

Definition 3.2. (Spanned unit vectors). For a matrix A ∈ F
a×b, let

E(A) := {j ∈ [b] : ej ∈ Span(A)}.
That is, E(A) is the indices of all unit vectors spanned by A. It is clear that
|E(A)| ≤ rank(A) ≤ min {a, b}. It is also easy to see that for any v ∈ Im(A),
E(A) holds those entries that are common to all solutions w of the system A ×
w = v.4 The following claim states that for i /∈ E(A), the number of solutions w
of the system A × w = v with wi = y, is the same for every y.
4 That is, for every i ∈ E(A), wi can be described as a linear combination of the

entries of v, and thus wi is fixed by v.
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Claim 3.3. Let F be a finite field of size n, let A ∈ F
a×b and v ∈ Im(A). Then

for every i ∈ [n]\E(A) and y ∈ [n], it holds that Prf←[n]b [fi = y | A × f = v] =
1/n.

Proof. Let FA,v :=
{
f ∈ [n]b : A × f = v

}
be the set of solutions for the equa-

tion A × F = v. Since, by assumption, A × F = v has a solution, by Fact 3.1

it holds that |FA,v| = nb−rank(A). Next, let A′ :=
(
A
ei

)
, v′ :=

(
v
y

)
, and

FA,v,i,y :=
{
f ∈ [n]b : A′ × f = v′} (i.e., FA,v,i,y is the set of solutions for

A′ × F = v′). Since, by assumption, ei /∈ Span(A), it holds that A′ × F = v′

has a solution and |FA,v,i,y| = nb−rank(A′) = nb−rank(A)−1. We conclude that
Prf←[n]b [fi = y | A × f = v] = |FA,v,i,y|

|FA,v| = 1/n.

The following claim states that adding a small number of rows to a given
matrix A does not increase the set E(A) by much.

Claim 3.4. For every A ∈ F
�×n there exists an �-size set SA ⊆ [n] such that

the following holds: for any B ∈ F
c×n there exists a c-size set SB ⊆ [n] for which

E
(
A
B

)
⊆ SA ∪ SB.

Proof. Standard row operations performed on a matrix M do not affect
Span(M), and thus do not affect E(M). Therefore, we may assume that both
A and B are in row canonical form.5 For a matrix M in row canonical form,
let L(M) := {i ∈ [n] : the ith column of M contains a leading 1 }. Let
SA := L(A) and note that |SA| = rank(A) ≤ �. Perform Gaussian elimina-

tion on
(
A
B

)
to yield a matrix E in row canonical form, and let SE := L(E).

Note that SA ⊆ SE, since adding rows to a matrix may only expand the
set of leading ones. Furthermore, |SE| = rank(E) ≤ rank(A) + c. Clearly,
E(E) ⊆ SE, and we can write SE = SA ∪ SB, for SB := (SE \ SA). Finally,
|SB| = |SE| − |SA| ≤ rank(A) + c − rank(A) = c, and the proof follows.

3.3 Random Functions

Let Fn be the set of all functions from [n] to [n]. We make the following obser-
vations.

Claim 3.5. Let S1, . . . ,Sn ⊆ [n] be c-size sets, and for f ∈ Fn let Kf :=
{y ∈ [n] : y ∈ f(Sy)}. Then for any μ ∈ [0, 1

2 ]:

Pr
f←Fn

[|Kf | ≥ μn] ≤ 22�μn� log(1/μ)+�μn� log(c/n).

5 (1) all zero rows are at the bottom (2) the first non-zero entry in each row is equal
to 1 (known as the “leading 1”) (3) the leading 1 in each row appears strictly to the
right of the leading 1 in all the rows above it (4) a column that contains a leading
1 is zero in all other entries. It is a well-known fact that a matrix can be reduced to
row canonical form using Gaussian elimination, and the set of columns containing a
leading 1 is unique.
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Proof. For T :=
{
t1, . . . , t�μn�

}
⊆ [n], let FT := {f ∈ Fn : T ⊆ Kf}. We make

a rough over-counting for the size of FT : one can describe f ∈ FT by choosing
xi ∈ [n] for each set Sti

, and require that f(xi) = ti (to ensure ti ∈ f(Sti
)).

There are at most c�μn� ways to perform these choices. There are no constraints
on the remaining n − �μn� values of f . Therefore |FT | ≤ c�μn� · nn−�μn�. This
immediately implies that Pr

f←Fn,T ←( [n]
�μn�)

[T ⊆ Kf ] ≤
(

c
n

)�μn�. We conclude

that

Pr
f←Fn

[|Kf | ≥ μn] = Pr [∃T ⊆ Kf : |T | = �μn�]

≤
∑

T ∈( [n]
�μn�)

Pr
f←Fn

[T ⊆ Kf ] ≤
(

n

�μn�

)
·
( c

n

)�μn�
≤ 22�μn� log(1/μ)+�μn� log(c/n).

The last inequality follows from Facts 3.11 and 3.10, and the fact that log(1/μ) ≥
log(n/�μn�).

Claim 3.6. Let n ∈ N, let F ← Fn and let W be an event (jointly distributed
with F ) of probability at least p. Let Y ← [n] be independent of F and W . Then
for every c-size sets S1, . . . ,Sn ⊆ [n] and γ ∈ [0, 1

2 ], it holds that

Pr [Y ∈ F (SY ) | W ] ≤ γ + 22�γn� log(1/γ)+�γn� log(c/n)+log(1/p).

Proof. Let Kf := {y ∈ [n] : y ∈ f(Sy)}. For γ ∈ [0, 1], compute:

Pr [Y ∈ F (SY ) | W ] = Pr [Y ∈ KF | W ]
≤ Pr [|KF | ≥ γn | W ] · Pr [Y ∈ KF | W, |KF | ≥ γn]

+ Pr [|KF | < γn | W ] · Pr [Y ∈ KF | W, |KF | < γn]
≤ Pr [|KF | ≥ γn | W ] + γ. (10)

The last inequality holds since Y is independent of W and F . Since Pr [W ] ≥ p,
it holds that:

Pr [|KF | ≥ γn | W ] ≤ Pr [|KF | ≥ γn]
Pr [W ]

≤ 22�γn� log(1/γ)+�γn� log(c/n)+log(1/p)

(11)

The second inequality is by Claim 3.5. We conclude that:

Pr [Y ∈ F (SY ) | W ] ≤ γ + 22�γn� log(1/γ)+�γn� log(c/n)+log(1/p).

The next claim bounds the probability that a random function compresses
an image set.

Claim 3.7. For any n ∈ N and τ, δ ∈ [0, 1
2 ], it holds that

ατ,δ := Prf←Fn
[∃X ⊆ [n] : |X | ≥ τn ∧ |f(X )| ≤ δn] ≤ 2n(h(τ)+h(δ))+	τn
 log δ.
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Proof. Compute:

ατ,δ = Pr
f←Fn

[∃X ,Y ⊆ [n] : |X | ≥ τn ∧ |Y| ≤ δn ∧ f(X ) ⊆ Y]

≤ Pr
f←Fn

[∃X ,Y ⊆ [n] : |X | = �τn� ∧ |Y| = �δn� ∧ f(X ) ⊆ Y]

≤
∑

Y∈( [n]
�δn�)

∑

X∈( [n]
�τn�)

Pr [f(X ) ⊆ Y] ≤
(

n

�δn�

)(
n

�τn�

)
· δ	τn


≤ 2n(h(τ)+h(δ))+	τn
 log δ.

The last inequality follows from Fact 3.11, and since h is monotone in [0, 1
2 ].

The last claim states that an algorithm that inverts f(x) with good proba-
bility, is likely to return x itself.

Claim 3.8. Let C be a function from Fn × [n] to [n] such that
Prf←Fn

x←[n]

[
C(f, f(x)) ∈ f−1(f(x))

]
≥ α. Then, Prf←Fn

x←[n]
[C(f, f(x)) = x] ≥ α2

8 .

Proof. For f ∈ Fn let Pf (x) := f−1(f(x)) \ {x}. We would like to provide a
bound on the size of this set to ensure that x is output with high probability.
Compute

Pr
f←Fn

x←[n]

[C(f, f(x)) = x] = Pr
[
C(f, f(x)) = x ∧ C(f, f(x)) ∈ f−1(f(x))

]

≥ Pr
[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]
· α. (12)

We now provide a lower bound for the left-hand term. For d ≥ 1 compute

Pr
f←Fn

x←[n]

[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]

≥Pr
[
C(f, f(x)) = x ∧ |Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]

= Pr
[
C(f, f(x)) = x | |Pf (x)| ≤ d,C(f, f(x)) ∈ f−1(f(x))

]

· Pr
[
|Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]

≥ 1
d + 1

· Pr
[
|Pf (x)| ≤ d | C(f, f(x)) ∈ f−1(f(x))

]

=
1

d + 1
(
1 − Pr

[
|Pf (x)| > d | C(f, f(x)) ∈ f−1(f(x))

])
. (13)

By linearity of expectation, Ef←Fn
[|Pf (x)|] = n−1

n < 1. Hence by Markov’s
inequality,

Prf←Fn

x←[n]

[|Pf (x)| > d] < 1/d. It follows that

Pr
f←Fn
x←[n]

[|Pf (x)| > d | C(f, f(x)) ∈ f−1(f(x))
] ≤ Pr [|Pf (x)| > d]

Pr [C(f, f(x)) ∈ f−1(f(x))]
≤ 1

dα

(14)
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Combining Eqs. (13) and (14) yields that

Pr
f←Fn

x←[n]

[
C(f, f(x)) = x | C(f, f(x)) ∈ f−1(f(x))

]
≥ 1

d + 1

(
1 − 1

dα

)
(15)

Finally, by Eqs. (12) and (15) we conclude that

Pr
f←Fn

x←[n]

[C(f, f(x)) = x] ≥ α

d + 1

(
1 − 1

dα

)
≥ α

2d

(
1 − 1

dα

)
=

α

2d
− 1

2d2
.

Setting d = 2
α yields that Prf←Fn

x←[n]

[C(f, f(x)) = x] ≥ a2

4 − α2

8 = α2

8 .

3.4 Additional Inequalities

We use the following easily-verifiable facts:

Fact 3.9. For x ≥ 1: log x ≥ 1 − 1/x.

Fact 3.10. For δ ≤ 1/2: h(δ) ≤ −2δ log δ.

We also use the following bound:

Fact 3.11. ([13])
(
n
k

)
≤ 2nh( k

n ).

4 Linear-Advice Inverters

In this section we present lower bounds on the time/memory tradeoff of adaptive
function inverters with linear advice. The extension to additive-advice inverters
is given in Sect. 4.1.

To simplify notation, the following definitions and results are stated with
respect to a fixed n ∈ N. Let F be the set of all functions from [n] to [n]. All
asymptotic notations (e.g., Θ) hide constant terms that are independent of n.
We start by formally defining adaptive function inverters.

Definition 4.1. (Adaptive inverters). An s-advice, q-query adaptive inverter
is a deterministic algorithm pair C := (Cpre,Cdec), where Cpre : F → {0, 1}s, and
C
(·)
dec : [n] × {0, 1}s → [n] makes up to q oracle queries. For f ∈ F and y ∈ [n],

let
C(y; f) := Cf

dec(y,Cpre(f)).

That is, Cpre is the preprocessing algorithm that takes as input the function
description and outputs a string of length s that we refer to as the advice string.
The oracle-aided Cdec is the decoder algorithm that performs the actual inversion
action. It receives the element to invert y and the advice string, and using q
(possibly adaptive) queries to f , attempts to output a preimage of y. Finally,
C(y; f) is the candidate preimage the algorithms of C produce for the element
to invert y given the (restricted) access to f . We define adaptive inverters with
linear advice as follows, recalling that we may view f ∈ F as a vector ∈ [n]n.
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Definition 4.2. (Linear preprocessing). A deterministic algorithm Cpre :
F → {0, 1}s is linear if there exist an additive group G ⊆ {0, 1}s that con-
tains Cpre(F), and an additive group K of size n such that for every f1, f2 ∈ F
it holds that Cpre(f1 +K f2) = Cpre(f1) +G Cpre(f2), letting f1 +K f2 := ((f1)1 +K
(f2)1, . . . , (f1)n +K (f2)n).

Below we omit the subscripts from +G and +K when clear from the context.
We prove the bound for inverters with linear preprocessing by presenting a

reduction from the well-known set disjointness problem.

Definition 4.3. (Set disjointness). A protocol Π = (A,B) solves set dis-
jointness with error ε over all inputs in Q ⊆ {(X ,Y) : X ,Y ⊆ [N]}, if for every
(X ,Y) ∈ Q

Pr
rA←{0,1}∗,rB←{0,1}∗

rp←{0,1}∗

[(A(X ; rA),B(Y; rB))(rp) = (δX ,Y, δX ,Y)] ≥ 1 − ε

for δX ,Y being the indicator for X ∩ Y = ∅.

Namely, except with probability ε over their private and public randomness, the
two parties find out whether their input sets intersect. Set disjointness is known
to require large communication over the following set of inputs.

Definition 4.4. (Communication complexity). The communication com-
plexity of a protocol Π = (A,B), denoted CC(Π), is the maximal number of bits
the parties exchange in an execution (over all possible inputs and randomness).

Theorem 4.5. (Hardness set disjointness, Razborov [21]). Exists ε > 0
such that for every protocol Π that solves set disjointness over all inputs in
Q := {X ,Y ⊆ [n] : |X ∩ Y| ≤ 1} with error ε, it holds that CC(Π) ≥ Ω(n).6

Our main result is the following reduction from set disjointness to function
inversion.

Theorem 4.6. (From set disjointness to function inversion). Assume
exists an s-advice, q-query linear-advice inversion algorithm with
Pr f←F

x←[n]

[
C(f(x); f) ∈ f−1(f(x))

] ≥ α, and let Q := {X ,Y ⊆ [n] : |X ∩ Y| ≤ 1}.
Then for every ε > 0 there exists a protocol that solves set disjointness with (one-
sided) error ε and communication O

(
log(ε)

log(1−α2/8) · (s + q log n)
)
, on all inputs

in Q.

Combining Theorems 4.5 and 4.6 yields the following bound on linear-advice
inverters.

6 [21] proved a stronger result: there exists a distribution that fails all low communi-
cation protocols. For the sake of our argument, however, it is easier to work with
the weaker statement of Theorem 4.5.
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Corollary 4.7. (Theorem 1.2, restated). Let C = (Cpre,Cdec) be an
s-advice q-query inversion algorithm with linear preprocessing such that
Pr f←F

x←[n]

[
C(f(x); f) ∈ f−1(f(x))

]
≥ α. Then s + q log n ∈ Ω(α2 · n).

Proof. (Proof of Corollary 4.7). By Theorem 4.6, the existence of an s-advice,
q-query linear-advice inverter C with success probability ≥ α implies that
set disjointness can be solved over Q, with error ε > 0 and communica-
tion complexity O

(
log(ε)

log(1−α2/8) · (s + q log n)
)
. Thus, Theorem 4.5 yields that

log(ε)
log(1−α2/8) · (s + q log n) ∈ Ω(n). Since log(ε)

log(1−α2/8) = log(1/ε) · 1
log(1/(1−α2/8)) ,

and since, by Fact 3.9, it holds that log(1/(1 − α2/8)) ≥ α2/8, it follows that
s + q log n ∈ Ω(α2 · n).

The rest of this section is devoted to proving Theorem 4.6. Fix an s-advice, q-
query inverter C = (Cpre,Cdec) with linear preprocessing. We use C in Protocol 4.8
to solve set disjointness. In the protocol below we identify a vector v ∈ {0, 1}n

with the set {i : vi = 1}.

Protocol 4.8. (Π = (A,B))

A’s input: a ∈ {0, 1}n.
B’s input: b ∈ {0, 1}n.
Public randomness: d ∈ [n].
Operation:
1. B chooses y ← [n].
2. A constructs a function fA : [n] → [n] as follows:

– for i such that ai = 0, it samples fA(i + d mod n) uniformly at
random.

– for i such that ai = 1, it sets fA(i + d mod n) = 0.
3. B constructs a function fB : [n] → [n] as follows:

– for i such that bi = 0, it samples fB(i + d mod n) uniformly at ran-
dom.

– for i such that bi = 1, it sets fB(i + d mod n) = y.
– Let f := fA + fB.

4. A sends Cpre(fA) to B.
5. B sets c := Cpre(fA) +G Cpre(fB) = Cpre(f).
6. B emulates Cf

dec(y, c): whenever Cdec sends a query r to f , algorithm B
forwards it to A, and feeds fA(r) + fB(r) back into Cdec.
– Let x be Cdec’s output in the above emulation, and let i = x − d

mod n.
7. B sends (i, bi) to A. If ai = bi = 1, algorithm A outputs False and informs

B.
8. Otherwise, both parties output True.

In the following we analyze the communication complexity and success proba-
bility of Π.
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Claim 4.9. (Π’s communication complexity). It holds that CC(Π) ≤
s + 2q(log n + 1) + log n + 3.

Proof. 1. In Step 4, party A sends Cpre(fA) to B.
2. In Step 6, the parties exchange at most 2 log n + 2 bits for every query Cdec

makes.
3. In Step 7, the parties exchange at most log n + 3 bits.

Thus, the total communication is bounded by s + 2q(log n + 1) + log n + 3.

Claim 4.10. (Π’s success probability).

1. Pr [(A(a),B(b)) = (True,True)] = 1
for every (a, b) ∈ Q0 := {X ,Y ⊆ [n] : |X ∩ Y| = 0}.

2. Pr [(A(a),B(b)) = (False,False)] ≥ α2

8
for every (a, b) ∈ Q1 := {X ,Y ⊆ [n] : |X ∩ Y| = 1}.

Proof. By construction, it is clear that Π always accepts (the parties output
True) on inputs (a, b) ∈ Q0. Fix (a, b) ∈ Q1, and let Y,D, F, FA, FB and I be the
values of y, d, f, fA, fB and i respectively, in a random execution of (A(a),B(b)).
By construction, F (j) = FA(j)+FB(j) for all j ∈ [n]. For j not in the intersection,
either FA(j) or FB(j) is chosen uniformly at random by one of the parties, and
therefore F (j) is uniformly distributed and independent of all other outputs. For
the intersection element w, it holds that F (w) = y, which is uniform, and since
there is exactly one intersection, is independent from all other outputs.

Let W := w + D mod n. Note that W is uniformly distributed over [n]
and is independent of F . Also note that, by construction, Y = F (W ). There-
fore, (F,W, Y ) is distributed exactly as (F,X, F (X)) for X ← [n]. Hence, the
assumption on C yields that

Pr
[
C(Y ;F ) ∈ F−1(Y )

]
≥ α

and by Claim 3.8,

Pr [C(Y ;F ) = W ] ≥ α2/8.

Therefore, both parties output False with probability at least α2/8.

Proving Theorem 4.6. We now use Claims 4.9 and 4.10 to prove Theorem 4.6.

Proof. (Proof of Theorem 4.6). Let t =
⌈

log(ε)
log(1−α2/8)

⌉
, and consider the protocol

Πt, in which on input (a, b) the parties interact in protocol Π for t times, and
accept only if they do so in all iterations. By Claims 4.9 and 4.10, the communi-
cation complexity and success probability of Πt in solving set disjointness over
Q match the theorem statement.
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4.1 Additive-Advice Inverters

The following result generalizes Corollary 4.7 by replacing the restriction on the
decoder (e.g., linear and short output) with the ability to compute the advice
string of f1 + f2 by a low-communication protocol over the inputs f1 and f2.

Theorem 4.11. (Bound on additive-advice inverters). Let C = (Cpre,Cdec)
be an q-query inversion algorithm such that Pr f←F

x←[n]

[
C(f(x); f) ∈ f−1(f(x))

]
≥

α. Assume exists a two-party protocol (P1,P2) with communication complexity
k such that for every f1, f2 ∈ F , the output of P2 in (P1(f1),P2(f2)) equals to
Cpre(f1 + f2) with probability at least 1 − γ for some γ ≥ 0, letting f1 + f2 be
according to Definition 4.2. Then k + q log n ∈ Ω(α2(1 − γ) · n).

Proof. The proof follows almost the exact same lines as that of Theorem 4.6,
with the following changes: first, steps 4. and 5. in Protocol 4.8 are replaced by
the parties A and B interacting in (P1(fA),P2(fB)), resulting in B outputting
Cpre(fA + fB) (thus, transmitting a total of k + 2q(log n + 1) + log n + 3 ∈
O(k + q log n) bits over the entire execution of the protocol). Second, note that
due to the constant failure probability of (P1,P2) in computing Cpre(fA + fB),
the success probability of each execution of the protocol is now lowered by a
constant factor (1 − γ). This means that the rate of success when X ∩ Y = ∅ is
now bounded from below by only α2(1 − γ)/8 (rather than α2/8). The rest of
the analysis is identical to that of Theorem 4.6.

5 Non-adaptive Inverters

In this section we present lower bounds on the time/memory tradeoff of non-
adaptive function inverters. In Section 5.1, we present a bound for non-adaptive
affine decoders, and in Section 5.2 we extend this bound to non-adaptive affine
decision trees. To simplify notation, the following definitions and results are
stated with respect to some fixed n ∈ N, for which there exists a finite field of
size n which we denote by F. Let F be the set of all functions from [n] to [n].
All asymptotic notations (e.g., Θ) hide constant terms that are independent of
n. We start by formally defining non-adaptive function inverters.

Definition 5.1. (Non-adaptive inverters). An s-advice q-query non-adaptive
inverter is a deterministic algorithm triplet of the form C := (Cpre,Cqry,Cdec),
where Cpre : F → {0, 1}s, Cqry : [n]×{0, 1}s → [n]q, and Cdec : [n]×{0, 1}s×[n]q →
[n]. For f ∈ F and y ∈ [n], let

C(y; f) := Cdec (y,Cpre(f), f (Cqry(y,Cpre(f)))) .

That is, Cpre is the preprocessing algorithm. It takes the function description
as input and outputs a string of length s, to which we refer as the advice string.
In the case that s = 0, we say that C has zero-advice, and omit Cpre from the
notation. Algorithm Cqry is the query selection algorithm. It chooses the queries
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according to the element to invert y and the advice string, and outputs q indices,
to which we refer as the queries. Algorithm Cdec is the decoder algorithm that
performs the actual inversion. It receives the element y, the advice string and
the function’s answers to the (non-adaptive) queries selected by Cqry (the query
indices themselves may be deduced from y and the advice), and attempts to
output a preimage of y. Finally, C(y; f) is the candidate preimage of y produced
by the algorithms of C given the (restricted) access to f .

5.1 Affine Decoders

In this section we present our bound for non-adaptive affine decoders, defined
as follows:

Definition 5.2. (Affine decoder). A non-adaptive inverter C :=
(Cpre,Cqry,Cdec) has an affine decoder, if for every y ∈ [n] and a ∈ {0, 1}s there
exists a q-sparse vector αa

y ∈ F
n and a field element βa

y ∈ F, such that for every
f ∈ F : Cdec(y, a, f(Cqry(y, a))) = 〈αa

y , f〉 + βa
y .

The following theorem bounds the probability, over a random function f , that a
non-adaptive inverter with an affine decoder inverts a random output of f with
probability τ .

Theorem 5.3. Let C = (Cpre,Cqry,Cdec) be an s-advice non-adaptive inverter
with an affine decoder and let τ ∈ [0, 1]. Then for every δ ∈ [0, 1] and m ≤ n/16,
it holds that

Pr
f←F

⎡

⎣ Pr
x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

] ≥ τ

⎤

⎦ ≤ ατ,δ + 2sδ−m
m∏

j=1

(
2j

n
+ max

{
1
4
√

n
,
4j

n

})

for ατ,δ := Prf←F [∃τn-size set X ⊂ [n] : |f(X )| ≤ δn].

While it is not easy to see what is the best choice, per τ , of the parameters δ
and m above, the following corollary (proven in the full version) exemplifies the
usability of Theorem 5.3 by considering the consequences of such a choice.

Corollary 5.4. (Theorem 1.5, restated). Let C be as in Theorem 5.3, let
τ ≥ 2 · n−1/8 and assume

Prf←F

[
Pr x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

]
≥ 1/2, then s ∈ Ω(τ2 · n).7

Our key step towards proving Theorem 5.3 is showing that even when con-
ditioned on the (unlikely) event that a zero-advice inverter successfully inverts
i − 1 random elements, the probability the inverter successfully inverts the next
element is still low. To formulate the above statement, we define the following
jointly distributed random variables: let F be uniformly distributed over F and
let Y = (Y1, ..., Yn) be a uniform vector over [n]n. For a zero-advice inverter, we
define the following random variables (jointly distributed with F and Y ).
7 The constant 1/2 lowerbounding the probability is arbitrary.
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Notation 5.5. For a zero-advice inverter D, let XD
i := D(Yi;F ), let ZD

i be the
event

∧
j∈[i]

{
F (XD

j ) = Yj

}
, and let XD = (XD

1 , . . . , XD
n ).

That is, XD
i is D’s answers to the challenges Yi, and ZD

i indicates whether D
successfully answered each of the first i challenges. Given the above notation,
our main lemma is stated as follows:

Lemma 5.6. Let D be a zero-advice, non-adaptive inverter with affine decoder
and let ZD be as in Notation 5.5. Then for every i ∈ [n] and μ ∈ [0, 1

2 ]:

Pr
[
ZD

i | ZD
i−1

]
≤ 2i − 1

n
+ μ + 22�μn� log(1/μ)−�μn� log(n)+(2i−2) log n.

We prove Lemma 5.6 below, but first use it to prove Theorem 5.3.

Proving Theorem 5.3. Lemma 5.6 immediately yields a bound on the probability
that D, a zero-advice inverter, successfully inverts the first i elements of Y . For
proving Theorem 5.3, however, we need to bound the probability that D, and
later on, an inverter with non-zero advice, finds a preimage of a random output of
f . Yet, the conversion between these two measurements is rather straightforward.
Hereafter we assume n ≥ 16, as otherwise Theorem 5.3 is trivial, as m = 0.

Proof. (Proof of Theorem 5.3.). Let C = (Cpre,Cqry,Cdec), τ ∈ [0, 1], δ ∈ [0, 1]
and m be as in the theorem statement. Fix an advice string a ∈ {0, 1}s, and let
Ca = (Ca

qry,C
a
dec) denote the zero-advice inverter obtained by hardcoding a as

the advice of C (i.e., Ca
pre(f) = a for every f). For j ∈ [n], let Zj = ZCa

j and let

μj := max
{

4
√

1/n, 4j
n

}
. We start by showing that for every j ≤ n/16 it holds

that

Pr [Zj | Zj−1] ≤ 2j

n
+ μj (16)

Indeed, by Lemma 5.6

Pr [Zj | Zj−1] ≤ 2j − 1
n

+ μj + 2

2�μjn� log(1/μj) − �μjn� log n + (2j − 2) log n︸ ︷︷ ︸
β

(17)

We write,

β = 2�μjn� log(1/μj) − �μjn�
2

log n
︸ ︷︷ ︸

β1

+
(

−�μjn�
2

)
log n + (2j − 2) log n

︸ ︷︷ ︸
β2

(18)

Since

β1 ≤ �μjn�
(

log
1
μ2

j

− log
√

n

)
= �μjn�

(
log

1
μ2

j

√
n

)
≤ 0
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and

β2 =
−�μjn	

2
log n + 2j log n − 2 log n ≤ −2j

n
n log n + 2j log n − 2 log n ≤ −2 log n,

we conclude that Pr [Zj | Zj−1] ≤ 2j−1
n +μj+2−2 log n ≤ 2j

n +μj , proving Eq. (16).
Eq. (16) immediately yields that

Pr [Zm] =
m∏

j=1

Pr [Zj | Zj−1] ≤
m∏

j=1

(
2j

n
+ μj

)
(19)

We use the above to produce a bound on the number of elements that Ca suc-
cessfully inverts. Let Ga

Y(f) :=
{
y ∈ [n] : Ca(y; f) ∈ f−1(y)

}
, and compute:

Pr [Zm] = Pr
f←F

[
∀j ∈ [m] : Yj ∈ Ga

Y(f)
]

≥ Pr
f←F

[
∀j ∈ [m] : Yj ∈ Ga

Y(f)
∧

|Ga
Y(f)| ≥ δn

]

= Pr
f←F

[
∀j ∈ [m] : Yj ∈ Ga

Y(f) | |Ga
Y(f)| ≥ δn

]
· Pr

f←F

[
|Ga

Y(f)| ≥ δn
]

≥ δm · Pr
f←F

[
|Ga

Y(f)| ≥ δn
]
. (20)

Combining Eqs. (19) and (20) yields the following bound on the number of
images Ca successfully inverts:

Pr
[
|Ga

Y(f)| ≥ δn
]

≤ δ−m ·
m∏

j=1

(
2j

n
+ μj

)
(21)

We now adapt the above bound to (the non zero-advice) C. Let GY(f) :={
y ∈ [n] : C(y; f) ∈ f−1(y)

}
and let GX (f) = f−1(GY(f)). By Eq. (21) and a

union bound,

Pr
f←F

[|GY(f)| ≥ δn] ≤ 2s · δ−m ·
m∏

j=1

(
2j

n
+ μj

)
(22)

We conclude that

Pr
f←F

⎡
⎣ Pr

x←[n]
y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

⎤
⎦ = Pr

f←F
[|GX (f)| ≥ τn]

= Pr
f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| < δn

]
+ Pr

f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| ≥ δn

]

≤ Pr
f←F

[
|GX (f)| ≥ τn

∧
|GY(f)| < δn

]
+ Pr

f←F
[|GY(f)| ≥ δn]

≤ ατ,δ + 2s · δ−m ·
m∏

j=1

(
2j

n
+ μj

)
.

The second inequality follows by the definition of ατ,δ and Eq. (22).
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Proving Lemma 5.6 In the rest of this section we prove Lemma 5.6. Fix a zero-
advice non-adaptive inverter with an affine decoder D = (Dqry,Ddec), i ∈ [n] and
μ ∈ [0, 1

2 ]. Let X := XD and, for j ∈ [n] let Zj := ZD
j . We start by proving the

following claim that bounds the probability in hand, assuming Xi, the inverter’s
answer, is coming from a small linear space. (Recall, from Definition 3.2, that
E(M) = {j ∈ [m] : ej ∈ Span(M)}, where ej is the jth unit vector in F

n.)

Claim 5.7. Let A ∈ F
�×n, let v ∈ Im(A), let B1, . . . ,Bn ∈ F

t×n, and, for

y ∈ [n], let Ay :=
(
A
By

)
. Then

Pr
[
Yi ∈ F (E(AYi)) | A × F = v

]
≤

(
�

n
+ μ

)
+ 22�μn� log(1/μ)+�μn� log(t/n)+� log n.

Proof. By Claim 3.4 there exist an �-size set S := SA and t-size sets
{Sk := SBk}k∈[n] such that

E(Ay) ⊆ S ∪ Sy (23)

for every y ∈ [n]. By Fact 3.1,

Pr [A × F = v] =
nn−rank(A)

nn
≥ n−� (24)

Compute,

Pr
[
Yi ∈ F (E(AYi)) | A × F = v

]
≤ Pr [Yi ∈ F (S ∪ SYi

) | A × F = v]

≤ Pr [Yi ∈ F (S) | A × F = v] + Pr [Yi ∈ F (SYi
) | A × F = v]

≤ �

n
+ Pr [Yi ∈ F (SYi

) | A × F = v] . (25)

The first inequality holds since E(AYi) ⊆ S ∪ SYi
, and the last one since |S| ≤ �

and Yi is independent of F . Applying Claim 3.6 with respect to p := n−�, γ := μ,
W := {A × F = v}, Y := Yi and the sets S1, . . . Sn, yields that

Pr [Yi ∈ F (SYi
) | A × F = v] ≤ μ + 22�μn� log(1/μ)+�μn� log(t/n)+� log n (26)

We conclude that Pr [Yi ∈ F (E(A(Yi))) | A × F = v] ≤ �
n + μ +

22�μn� log(1/μ)+�μn� log(t/n)+� log n.

Given the above claim, we prove Lemma 5.6 as follows.

Proof. (Proof of Lemma 5.6). Since D has an affine decoder, for every y ∈ [n]
and X := D(y;F ) there exist a q-sparse vector αy ∈ F

n and a field element
βy ∈ F such that 〈αy, F 〉 + βy = X. Therefore, for every j < i:

1. 〈αYj , F 〉 = −βYj + Xj .

Conditioning on Zi−1 further implies that for every j < i:
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2. F (Xj) = Yj .

Let � := 2i − 2, and let Mi−1 ∈ F
�×n be the (random) matrix defined, for every

j ∈ [i − 1], by Mi−1
2j−1 := αYj and Mi−1

2j := eXj
. Let V i−1 ∈ F

� be the (random)
vector defined by V i−1

2j−1 := −βYj +Xj and V i−1
2j = Yj . By definition, conditioned

on Zi−1 it holds that Mi−1 × F = V i−1. This incorporates in a single equation
all that is known about F given Zi−1. To take into account the knowledge gained
from the queries made while attempting to invert Yi, we combine the above with

αYi and 〈αYi , F 〉, into the matrix M :=
(
Mi−1

αYi

)
and vector V :=

(
V i−1

〈αYi , F 〉

)
.

By definition, M × F = V . We write

Pr [Zi | Zi−1] = Pr [Zi ∧ Xi ∈ E(M) | Zi−1] + Pr [Zi ∧ Xi /∈ E(M) | Zi−1] (27)

and prove the lemma by separately bounding the two terms of the above equa-
tion. Let H := (Y<i,Mi−1, V i−1), and note that

Pr [Zi ∧ Xi ∈ E(M) | Zi−1] ≤ Pr [Yi ∈ F (E(M)) | Zi−1]

= E
h←H|Zi−1

[Pr [Yi ∈ F (E(M)) | H = h, Zi−1]]

= E
h=(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E

(
mi−1

αYi

))
| H = h, mi−1 × F = vi−1

]]

= E
(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E

(
mi−1

αYi

))
| Y<i = y<i, m

i−1 × F = vi−1

]]

= E
(y<i,mi−1,vi−1)←H|Zi−1

[
Pr

[
Yi ∈ F

(
E

(
mi−1

αYi

))
| mi−1 × F = vi−1

]]

≤
(

2i − 2

n
+ μ

)
+ 22�μn� log(1/μ)+�μn� log(1/n)+(2i−2) log n. (28)

The first inequality holds by the definition of Zi. The second equality
holds by the definition of Zi−1. The third equality holds since the event{
Y<i = y<i,m

i−1 × F = vi−1
}

implies that
{
Mi−1 = mi−1, V i−1 = vi−1

}
. The

last equality holds since F is independent of Y , and the last inequality fol-
lows by Claim 5.7 with respect to A := mi−1, v := vi−1, and (B1, . . . ,Bn) :=
(α1, . . . , αn) (viewing αi as a matrix in F

1×n).
For bounding the right-hand term of Eq. (27), let H := (Xi, Y≤i,M, V ), and

compute

Pr [Zi ∧ Xi /∈ E(M) | Zi−1] ≤ Pr [Zi | Xi /∈ E(M), Zi−1]
= E

h←H|Xi /∈E(M),Zi−1

[Pr [Zi | H = h,Zi−1]]

= E
h=(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | H = h,m × F = v]]

= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | Y≤i = y≤i,m × F = v]]
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= E
(xi,y≤i,m,v)←H|Xi /∈E(M),Zi−1

[Pr [F (xi) = yi | m × F = v]]

= 1/n. (29)

The second equality holds by the definition of Zi−1. The third equality holds
since the event {Y≤i = y≤i,m × F = v} implies that {M = m,V = v}, and Xi

is a function of V . The fourth equality holds since F is independent from Y . The
last inequality follows by Claim 3.3. Combining Eqs. (27) to (29), we conclude
that

Pr [Zi | Zi−1] ≤
(

2i − 2
n

+ μ

)
+ 22�μn� log(1/μ)+�μn� log(1/n)+(2i−2) log n + 1/n

=
2i − 1

n
+ μ + 22�μn� log(1/μ)−�μn� log(n)+(2i−2) log n.

5.2 Affine Decision Trees

In this section we present lower bounds for non-adaptive affine decision trees.
These are formally defined as follows:

Definition 5.8. (Affine decision trees). An n-input affine decision tree over
F is a labeled, directed, degree |F| tree T . Each internal node v of T has label
αv ∈ F

n, each leaf � of T has label o� ∈ F, and the |F| outgoing edges of every
internal node are labeled by the elements of F. Let ΓT (v, γ) denote the (direct)
child of v connected via the edge labeled by γ. The node path p = (p1, . . . , pd+1)
of T on input w ∈ F

n is defined by:

– p1 is the root of T .
– pi+1 = ΓT (pi, 〈αpi

, w〉).

The edge path of T on w is defined by (〈αp1 , w〉, · · · , 〈αpd
, w〉). Lastly, the output

of T on w, denoted T (w), is the value of opd+1 .

Note that the edge path determines the computation path and output. Given
the above, affine decision tree decoders are defined as follows.

Definition 5.9. (Affine decision tree decoder). An inversion algorithm
C := (Cpre,Cqry,Cdec) has a d-depth affine decision tree decoder, if for every
y ∈ [n], a ∈ {0, 1}s and v = Cqry(y, a), there exists an n-input, d-depth affine
decision tree T y,a such that Cdec(y, a, f(v)) = T y,a(f).

Note that such a decision tree may be of size O(nd). The following theorem
bounds the probability, over a random function f , that a non-adaptive inverter
with an affine decision tree decoder inverts a random output of f with probabil-
ity τ .
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Theorem 5.10. Let C be an s-advice, (q ≤ n/16)-query, non-adaptive inverter
with a d-depth affine decision tree decoder, and let τ ∈ [0, 1]. Then for every
δ ∈ [0, 1] and m ≤ n log(n/q)

4(d+1) log n it holds that

Pr
f←F

⎡
⎣ Pr

x←[n]
y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

⎤
⎦

≤ ατ,δ + 2s · δ−m
m∏

j=1

(
(d + 1)j

n
+ max

{
4
√

q/n,
2(d + 1)j log n

n log(n/q)

})

for ατ,δ := Prf←Fn
[∃τn-size set X ⊂ [n] : |f(X )| ≤ δn].

Comparing to the bound we derive on affine decoders (Theorem 5.3), we
are paying above for the tree depth d, but also for the number of queries q.
In particular, we essentially multiply each term of the above product by the
tree depth d, and by log n

log(n/q) . In addition, the theorem only holds for smaller
values of m. The following corollary exemplifies the usability of Theorem 5.10
by considering the consequences of two choices of parameters.

Corollary 5.11. (Theorem 1.6, restated). Let C be as in Theorem 5.10 and
assume

Prf←F

[
Pr x←[n]

y=f(x)

[
C(y; f) ∈ f−1(y)

]
≥ τ

]
≥ 1/2, then the following holds:

– If q ≤ n · (τ/2)8, then s ∈ Ω(n/d · τ2
/log n).

– If q ≤ n1−ε, then s ∈ Ω(n/d · τ2ε).

Proof. Omitted, follows by Theorem 5.10 using very similar lines to those used
to derive Corollary 5.4 from Theorem 5.3.

The proof of Theorem 5.10 is omitted and can be found in the full version of
this paper.
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Abstract. We build symmetric encryption schemes from a pseudoran-
dom function/permutation with domain size N which have very high
security – in terms of the amount of messages q they can securely encrypt
– assuming the adversary has S < N bits of memory. We aim to minimize
the number of calls k we make to the underlying primitive to achieve a
certain q, or equivalently, to maximize the achievable q for a given k. We
target in particular q � N , in contrast to recent works (Jaeger and Tes-
saro, EUROCRYPT ’19; Dinur, EUROCRYPT ’20) which aim to beat
the birthday barrier with one call when S <

√
N .

Our first result gives new and explicit bounds for the Sample-then-
Extract paradigm by Tessaro and Thiruvengadam (TCC ’18). We show
instantiations for which q = Ω

(
(N/S)k

)
. If S < N1−α, Thiruvengadam

and Tessaro’s weaker bounds only guarantee q > N when k = Ω(log N).
In contrast, here, we show this is true already for k = Θ(1/α).

We also consider a scheme by Bellare, Goldreich and Krawczyk
(CRYPTO ’99) which evaluates the primitive on k independent random
inputs, and masks the message with the XOR of the outputs. Here, we

show q = Ω
(
(N/S)k/2

)
, using new combinatorial bounds on the list-

decodability of XOR codes which are of independent interest. We also
study best-possible attacks against this construction.

1 Introduction

A number of very recent works [2,19,20,28,29,39,45,48] extend the concrete
security treatment of provable security to account for the memory complex-
ity of an adversary. For symmetric encryption, Jaeger and Tessaro [39] showed
for example that randomized counter-mode encryption (CTR) is secure against
attackers encrypting q = Θ(N/S) messages, where S is the memory complexity
of the adversary and N = 2n is the domain size of the underlying PRF/PRP,
which is assumed to be sufficiently secure. This is a linear time-memory trade-off
– reducing S by a multiplicative factor ε < 1 allows us to increase by a factor
1/ε the tolerable data complexity of the attack.
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The benefit of such a trade-off is that if S <
√

N , one can tolerate q >
√

N ,
which is beyond the so-called “birthday barrier.” Building schemes with beyond-
birthday security is a prime line of research in symmetric cryptography, but con-
structions are generally less efficient without imposing any memory restrictions
on the adversary.

Our contributions: Super-linear trade-offs. The trade-off for CTR
relies on a thin margin: For N = 2128, we only improve upon memory-unbounded
analyses if S � 264. While 264 bits is a large amount of memory, it is not
unreasonably large. One should therefore ask whether we can do better – either
take advantage of a weaker memory limitation or be able to encrypt a much
larger number of messages. More broadly, we want to paint a full picture of
what security is attainable under a given memory restriction – complementing
our understanding of the landscape without memory constraints.

More concretely, we consider constructions which make k calls to a given
block cipher1 with domain size N , and ask the following question:

If the adversary is bounded to S < N bits of memory, what is the highest
security we can achieve (in terms of allowable encryptions q) by a con-
struction making k calls?

Tessaro and Thiruvengadam [45] showed that one can achieve security for q � N
encrypted messages at the cost of k = Ω(log N), whereas here we do much better
by giving schemes that can do so already for k = O(1): They can in particular
encrypt up to q = Θ((N/S)c(k)) messages, for c(k) > 1. (This is what we refer to
as a super-linear trade-off.) For one of our two constructions (in fact, the same
construction as [45], but with a much better analysis), we get c(k) = k − 1 for
messages of length n, and c(k) = k for bit messages. These trade-offs appear
best-possible (or close to best-possible), but proving optimality for now seems
to be out of reach – we move first steps by studying attacks against one of our
constructions.

These schemes can securely encrypt q � N messages as long as S < N . It
is important to appreciate that without the restriction, q < N is an inherent
barrier for current proof techniques (cf. [45] for a discussion).

On practice and theory. We stress that our approach is foundational. Even
for k � 2, practitioners may find the resulting constructions not viable. Still,
security beyond q > N may be interesting in practice – we may want to imple-
ment a block cipher with smaller block length (e.g., N = 280) and then be able
to still show security against q = 2128 encryptions, as long as S < 280, which is
a reasonable assumption.

We also stress that the question we consider here is natural in its own right,
and is a cryptographic analogue and a scaled-up version of the line of works
initiated by Raz [43], with a stronger focus on precise bounds and thus different
techniques. (We discuss the connection further in Sect. 1.4 below.)

1 Assumed to be a secure PRP/PRF.
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1.1 Our Contributions

We start with a detailed overview of our contributions. (A technical overview is
deferred to the next two sections.) Our constructions make k calls to a function
FK : {0, 1}n → {0, 1}n keyed with a key K – this is generally obtained from
a block cipher like AES (in which case, n = 128). We will use the shorthand
N = 2n. For the presentation of our results in this introduction, it is helpful to
assume FK behaves as a random function or a random permutation – this can
be made formal via suitable PRF/PRP assumptions, and we discuss this at the
end of this section in more detail.

The Sample-then-Extract Construction. The first part of this paper
revisits the Sample-then-Extract (StE) construction of [45]. StE depends on a
parameter k � 1 as well as a (strong) randomness extractor2 Ext : ({0, 1}n)k ×
{0, 1}s → {0, 1}�. The encryption of a message M ∈ {0, 1}� under key K is then

C = (R1, . . . , Rk, sd,Ext(FK(0 ‖R1) ‖ · · · ‖FK(k − 1 ‖Rk), sd) ⊕ M) , (1)

where sd ∈ {0, 1}s and R1, . . . , Rk ∈ {0, 1}n−log k are chosen afresh upon each
encryption. We also extend StE to encrypt arbitrary-length messages (which
can have variable length), amortizing the cost of including sd, R1, . . . , Rk, in
the ciphertext. (For this introduction, however, we only deal with fixed-length
messages for ease of exposition.)

Prior work only gives a sub-optimal analysis: For k = Θ(log N) = Θ(n),
Tessaro and Thiruvengadam [45] show security against q = N1.5 encryptions
whenever S = N1−α for a constant α > 0. Here, we prove a much better bound.
For example, for � = n, and a suitable choice of Ext, we show security up to

q = Θ((N/S)k−1)

encryptions. This is improved to q = Θ((N/S)k) for bit messages. Therefore, if
S < N1−α, we can achieve security up to q = N1.5 encryptions with k = 1+ 1.5

α ,
which is constant if α is constant.

The k-XOR Construction. Our second result considers a generalization of
randomized counter-mode encryption, introduced by Bellare, Goldreich, and
Krawczyk [7], which we refer to as the k-XOR construction. For even k � 1,
to encrypt M ∈ {0, 1}n, we pick random R1, . . . , Rk ∈ {0, 1}n, and output

C = (R1, . . . , Rk,FK(R1) ⊕ · · · ⊕ FK(Rk) ⊕ M) . (2)

Alternatively, k-XOR can be viewed as an instance of StE with a seedless Ext.
For this construction, we prove security up to q = Θ((N/S)k/2) encryptions. We
note that in [7], a memory-independent bound of q = Θ(N/k) was proved for
the case where q � N . The two results are complementary. The bound from [7]
does not tell us anything for q > N , in contrast to our bound, but can beat (in
2 Recall that this means that (Ext(X, sd), sd) and (U, sd) are (statistically) indistin-

guishable for sd $← {0, 1}s, U
$← {0, 1}�, whenever X has sufficient min-entropy.
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concrete terms) our bound for q < N/k. Different from our results on StE, our
proof only works if we assume that FK is a random function. We note however
that this is consistent with the fact that even for the memory-unbounded setting,
no bound based on a random permutation is known. We however discuss how to
instantiate FK from a PRP, and this will result in a construction similar to the
above, just with a high number of calls to F.

It is also clear that we cannot expect to prove any better bound, unless we
change the sampling of the indices R1, . . . , Rk. This is because after q = Nk/2

queries we will see, with very high probability, an encryption with R2i−1 = R2i

for all i = 1, . . . , k/2. This attack only requires S = O(k log N). However, it
is not clear whether this attack extends to leverage larger values of S. Further
discussion of attacks can be found in the full version.

Our proof relies on new tight combinatorial bounds on the list-decodability
of XOR codes which are of independent interest and improve upon earlier works.
Indeed, using existing best-possible bounds in our proof would result in a weaker
bound with exponent k/4 (More details in the full version).

Reducing the ciphertext size. In the above constructions, the ciphertext
size grows with k. An interesting question is whether we can avoid this – in the
full version we do so for the case S = Ω(N). For this setting, our StE analysis
gives k = Ω(n), and thus, the ciphertext has Ω(n2) extra random bits in addition
to the masked plaintext. In contrast, we present a variant of the StE construction
where the number of extra bits in the ciphertext is reduced to O(n). To this
end, we use techniques from randomness extraction and randomness-efficient
sampling to instantiate our construction.

Instantiating FK . We instantiate FK from a keyed function/permutation
which we assume to be a pseudorandom function (PRF) or permutation (PRP).
The catch is that if we aim for security against q > N queries, we need FK to be
secure for adversaries that also run with time complexity larger than t > q > N .

This assumption is not unreasonable, as already discussed in [45] – one nec-
essary condition is that the key is longer than log q bits to prevent a memory-less
key-recovery distinguisher (e.g., one would use AES-256 instead of AES-128).3

This is also easily seen to be sufficient in the ideal-cipher model, where PRP
security only depends on the key length. Furthermore, our reductions give adver-
saries using memory S < N , and it is plausible that non-trivial attacks against
block ciphers may use large amounts of memory. And finally, key-extension tech-
niques [9,26,27,33] can give ciphers with security beyond N .

1.2 Our Techniques – Sample-Then-Extract

We discuss both constructions, StE and k-XOR, in separate sections, starting
with the former.

Tighter hybrids. Our proof follows a paradigm (first introduced explicitly
in [16], and then adapted in [39] to the memory-bounded setting) developing
3 The best non-trivial attack against AES-256 uses time approximately 2254 [12].
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hybrid-arguments in terms of Shannon-type metrics. This results in bounds of
the form

√
q · ε, whereas a classical hybrid arguments would give us bounds of the

form q
√

ε. We do not know whether the square root can be removed – Dinur [19]
shows how to do so in the Switching Lemma of [39], but it is unclear whether
his techniques apply here.4

The core of our approach relies on understanding the distance from the uni-
form distribution for a sample with form

Y (F) = (R1, . . . , Rk, sd,Ext(F(0 ‖R1) ‖ · · · ‖F(k − 1 ‖Rk), sd)) ,

for a randomly chosen function F : {0, 1}n → {0, 1}n, given additionally access to
(arbitrary) S bits of leakage L(F). We will measure this distance in terms of KL
divergence, by lower bounding the conditional Shannon entropy H(Y (F)|L(F)).
Giving a bound which is as large as possible will require the use of a number of
tools in novel ways.

Decomposition lemma. For starters, we will crucially rely on the decomposi-
tion lemma of Göös et al. [32]: It shows that Fz – which is defined as F conditioned
on L(F) = z – is statistically γ-close to a convex combination of (P, 1−δz)-dense
random variable. A (P, 1 − δ)-dense random variable, in this context, is dis-
tributed over functions F′ : {0, 1}n → {0, 1}n and is such that there exists a set
P ⊆ {0, 1}n of size P with the property that: (1) the outputs F′(x) are fixed for
all x ∈ P, whereas (2) for any subset I ⊆ {0, 1}n \ P, the outputs {F′(x)}x∈I

have jointly min-entropy at least |I| ·(1−δ)n. It is important to notice that there
is a trade-off between γ, δ, and P , in that δz = (Sz + log(1/γ))/(Pn), where
Sz = n2n − H∞(Fz).

Extraction from varying amounts of min-entropy. Our analysis will
choose the parameters δ and P carefully – the key point, however, is that
when we replace Fz with a (P, 1 − δ)-dense function F′, the total min-entropy
of F′(0 ‖R1) ‖ · · · ‖F′(k − 1 ‖Rk) grows with the number of probes Ri such that
(i ‖Ri) /∈ P, i.e., the set of “good” probes which land on an input for which the
output is not fixed. To get some intuition, if one ignores the pre-pended probe
index i, the number of good probes g ∈ {0, 1, . . . , k} would follow a binomial
distribution with parameter |P| /N , and overall min-entropy is g · (1 − δ)n.

Therefore, the extractor is now applied to a random variable which has
variable amount of min-entropy, which depends on g. Here, it is useful to
use an extractor based on a 2-universal hash function: Indeed, the Leftover-
Hash Lemma (LHL) [38] guarantees a very useful property, namely that while
the extractor itself is fixed, the entropy of its output increases as the entropy
of its input increases. Specifically, the entropy of the �-bit output becomes
� − min{�, 2�+1−h} when the input has min-entropy h ≈ g(1 − δ)n.

Our approach is dual to the smoothed min-entropy approach of Vadhan [47],
which is used to build locally-computable extractors in a way that resembles
4 This improvement is irrelevant as long as we only infer the resources needed for con-

stant advantage, which is the standard angle on tightness in symmetric cryptography.
However, as pointed out e.g. in [33], exact bounds also often matter.
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ours. In our language, but with different techniques, he shows that with good
probability, g = Θ(k), where k = Θ(λ). This does not work well for us (we care
mostly about k = O(1)), and thus we take a more fine-grained approach geared
towards understanding the behavior of g.

The advantage of Shannon entropy. It is crucial for the quality of the
established trade-off to adopt a Shannon-entropy version of the LHL. The more
common version bounds the statistical distance as 2(�+1−h)/2, and following this
path would only give us a lower bound on q which is (roughly) the square root
of what we prove. We note that a Shannon-theoretic version of the LHL was
already proved by Bennet, Brassard, Crépeau, and Maurer [10], and the fact
that a different distance metric can reduce the entropy loss is implicit in [4].5

Extra remarks. A few more remarks are in order. Our approach is similar,
but also different from that of Coretti et al. [14,15]. They use the decomposition
lemma in a similar way to transition to (what they refer to as) the bit-fixing
random oracle (BF-RO), i.e., a model where F is fixed on P positions, and
completely random on the remaining ones (as opposed to being just (1−δ)-dense,
as in our case). Using the BF-RO abstraction yields very suboptimal bounds.
Their generic approach would incur an additive factor of (S + log(1/γ))k/P ,
which is too large.

1.3 Our Techniques - k-XOR

Our approach for StE given above does not yield usable results for k-XOR –
namely, any choice of δ prevents us from proving that Fz(0 ‖R1) ⊕ · · · ⊕ Fz(k −
1 ‖Rk) is very close to uniform, even if none of the probes lands in P. A unifying
treatment of both constructions appears to require finding a strengthening of the
decomposition lemma. Instead, we follow a different path.

Predicting XORs. The core of our analysis bounds the ability of predicting
F(R1)⊕· · ·⊕F(Rk) for a random function F : {0, 1}n → {0, 1}, given (arbitrary)
S bits of leakage on F. We aim to upper bound the advantage Δ(N,S, k) which
measures how much beyond probability 1

2 an adversary can guess the XOR given
the leakage and R1, . . . , Rk. The focus is on single-bit outputs – a bound for
the multi-bit case will follow from a hybrid argument. Although this problem
has been studied [17,22,35,37,46], both in the contexts of locally-computable
extractors for the bounded-storage model and of randomness extraction, none
of these techniques gives bounds which are tight enough for us. (We elaborate
on this below.) Here, we shall prove that

Δ(N,S, k) = O((S/N)k/2) .

The coding connection. Our solution leverages a connection with the list-
decoding of the k-fold XOR code (or k-XOR code, for short): This encodes F

5 The benefits of reducing entropy loss by targeting Shannon-like metrics were also
very recently studied by Agrawal [1] in a different context.
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(which we think now as an N -bit string F ∈ {0, 1}N ) as an Nk-dimensional
bit-vector k-XOR(F ) ∈ {0, 1}Nk

such that its component (R1, . . . , Rk) ∈ [N ]k

takes value F (R1) ⊕ · · · ⊕ F (Rk). At the same time, a (deterministic) adversary
A which on input R1, . . . , Rk and the leakage Z = L(F ) attempts to predict
F (R1) ⊕ · · · ⊕ F (Rk) can be thought of as family of 2S “noisy strings” {CZ =
A(·, Z)}Z∈{0,1}S .

Prior works (such as [17]) focused (directly or indirectly) on approximate list-
decoding, as they give reductions, transforming A and L into some predictor for
F , under some slightly larger leakage. (How much larger the leakage is depends
on the approximate list size.) Here, instead, we follow a combinatorial blueprint
inspired by [6,8], albeit very different in its execution. Concretely, we introduce a
parameter ε > 0 (to be set to a more concrete value later), and for all Z ∈ {0, 1}S ,
let BZ be the Hamming Ball of radius (1/2−ε)Nk around CZ . Now, when picking
F

$← {0, 1}N , exactly one of two cases can arise:

(i) k-XOR(F ) ∈ BZ for some Z ∈ {0, 1}S , in which case the overlap between
CZ and k-XOR(F ) is potentially very high.

(ii) F /∈ ⋃
Z BZ , in which case A will be able to predict F (R1) ⊕ · · · ⊕ F (Rk)

with probability at most 1/2 + ε over the random choice of R1, . . . , Rk - no
matter how L(F ) is defined!

Now, let Lk
ε be an upper bound on the number of codewords k-XOR(F ) within

any of the BZ . Then,

Δ(N,S, k) � ε + 2S · Lk
ε/2N . (3)

Tight bounds on list-decoding size. What remains to be done here is to
find a bound on Lk

ε – we are not aware of any tight bounds in the literature, and
we give such bounds here.

Our approach (and its challenges) are illustrated best in the case k = 1.
Specifically, define random variables T1, . . . , TN , where, for all R ∈ [N ], TR = 1
if CZ(R) = F (R) and TR = 0 else. When we pick F at random, the Ti’s are
independent, and a Chernoff bound tells us that

Pr

[
N∑

R=1

TR �
(

1
2

+ ε

)

N

]

� 2−Ω(ε2N) ,

which in turn implies L1
ε � 2N(1−ε2). Therefore, setting ε to be of order slightly

larger than
√

S/N gives us the right bound.
Our proof for k > 1 will follow a similar blueprint, except that this will require

us to prove a (much harder!) concentration bound on a sum of Nk variables
which are highly dependent. We will prove such concentration using the method
of moments. The final bound will be of the form Lk

ε � 2N(1−ε2/k).

Relationship to past works. We are not aware of any prior work address-
ing the question of proving tight bounds for the XOR code directly, but prior
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techniques can non-trivially be combined to obtain non-trivial bounds. The best-
possible bound we could derive is (S/N)k/4. This can be obtained by combin-
ing the approach of De and Trevisan [17] with the combinatorial approximate
list-decoding bounds of [37]. Alternatively, one could use the approximate list
decoding bounds from [11]. The resulting indistinguishability bound is harder
to evaluate, but it is inferior for small values of S (roughly, S < N2/3). Further
details are in the full version.

Optimality. We discuss attacks against k-XOR in the full version. In particular,
one can easily see that if we want the bound to hold for all values of S, then
it cannot be improved, as it is tight for small S = O(k log N). For a broader
range of values of S, we give an attack which succeeds with q = Θ((Nk/Sk−1)
messages and for k = 2 we provide an attack that succeeds with q = Θ((N/S)2)
– it is a good question whether our bound can be improved for larger values of
S, or in the case where the R1, . . . , Rk are distinct. (This would preclude our
small-memory attack.)

Our general attack that works for any S and k, stores all linear equations
that have all variables fall in x1, . . . , xS and checks consistency. It is expected
that a linear dependent equation would appear within q = O(Nk/Sk−1) queries.
Our next attack addresses the case where k = 2. By modeling each variable
as a vertex and representing each equation as an edge in the graph, the attack
exploits the tree structure formed by linear independent equations and succeeds
within q = O((N/S)2) queries. However, for k � 3, similar analysis no longer
applies as the hypergraph structure is hard to analyze.

1.4 Further Related Work

Space-time trade-offs for learning problems. A related line of works is
that initiated by Raz [43] on space-time trade-offs for learning problems, which
has by now seen several follow-ups [5,24,25,40,44]. In particular, Raz proposes
a scheme encrypting each bit mi as (ai, 〈ai, s〉 + mi) where s

$← {0, 1}n is a
secret key, and ai

$← {0, 1}n is freshly sampled for each bit. This scheme allows
to encrypt 2n bits as long as the adversary’s memory is at most n2/c bits, for
some (small) constant c > 1. We can scale up this setting to ours, by thinking of
s as the exponentially large table of a random function, but the resulting scheme
would also incur exponential complexity. Some follow-up works consider the cases
where the ai’s are sparse [5,25], but they only study the problem of recovering s,
and it does not seem possible to obtain (sufficiently sharp) indistinguishability
bounds from these results.

Closest to our work on k-XOR is a recent concurrent paper [24] by Garg,
Kothari and Raz, which studies the streaming indistinguishability of Goldreich’s
PRG [30] against memory bounded adversaries. Their target are bounds for
arbitrary predicates for Goldreich’s PRG, and they prove indistinguishability
for up to q = Θ

(
(N/S)k/9

)
output bits when the predicate is k-XOR. The

setting of the analysis is almost identical to ours, with the difference being that
we think of the PRG seed as being an exponentially large random table. Thus our
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techniques also yield a tighter bound in their setting for this special case,6 and
we believe they should also yield improved bounds for more general predicates.

On the flip side, it is an exciting open question whether the branching-
program framework underlying all of these works can be adapted to obtain
bounds as sharp as ours in the indistinguishability setting.

The Bounded-Storage Model. In both cases, our proofs consider the inter-
mediate setting where S bits of leakage Z = L(F ) are given about F , and
we want to show that the output of some locally computable function g(F,R)
is random enough given Z, where R is potentially public randomness. This is
exactly what is considered in the Bounded Storage Model (BSM) [3,17,23,42,47]
and in the bounded-retrieval model (BRM) [18,21]. Indeed, our StE construction
can be traced back to the approach of locally-computable extractors [47], and
the k-XOR construction resembles the constructions of [3,23,42]. A substantial
difference, however, is that we are inherently concerned about the small-probe
setting (i.e., k = O(1)) and the case where S = N1−α, whereas generally the
BSM considers S = O(N) and a linear number of probes. We also take a more
concrete approach towards showing as-tight-as-possible bounds for a given tar-
get k. It would be beneficial to address whether our techniques can be used to
improve existing BSM/BRM schemes.

Another difference is that our bounds are typically multiplied by the number
of encryption queries. This can be done non-trivially, for example, by using
Shannon entropy as a measure of randomness, and relying on the reduced entropy
loss for extraction with respect to Shannon entropy, as we do for StE.

2 Definitions

Let N = {0, 1, 2, . . . }. For N ∈ N let [N ] = {1, 2, . . . , N}. If A and B are finite
sets, then Fcs(A,B) denotes the set of all functions F : A → B and Perm(A)
denotes the set of all permutations on the set A. The set of size k subsets of A
is

(
A
k

)
. Picking an element uniformly at random from A and assigning it to s

is denoted by s
$← A. The set of finite vectors with entries in A is (A)∗ or A∗.

Thus {0, 1}∗ is the set of finite length strings.
If M ∈ {0, 1}∗ is a string, then |M | denotes its bit length. If m ∈ N and

M ∈ ({0, 1}m)∗, then |M |m = |M |/m denote the block length of M and Mi

denote the i-th m-bit block of M . When using the latter notation, m will be
clear from context. The Hamming weight hw(x) of x ∈ {0, 1}n is defined as
hw(x) = |{i ∈ [n] | xi �= 0}|. The Hamming ball of radius r around z ∈ {0, 1}n is
defined as B(z; r) = {x ∈ {0, 1}n | hw(x ⊕ z) � r}.

We say that a random variable X is a convex combination of random variables
X1, ...,Xt (with the same range as X) if there exists α1, ..., αt � 0 such that∑t

i=1 αi = 1 and for any x in the range of X, it holds that Pr[X = x] =
∑t

i=1 αiPr[Xi = x].

6 There is a small formal difference, in that our analysis of k-XOR evaluates the given
function on random indices, whereas in [24] these indices are distinct.
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Games. Our cryptographic reductions will use pseudocode games (inspired by
the code-based framework of [9]). See Fig. 1 for some example games. We let
Pr [G] denote the probability that game G outputs true. It is to be understood
that the model underlying this pseudocode is the formalism we now describe.

Computational model. Our algorithms are randomized when not specified
otherwise. If A is an algorithm, then y ← AO1,O2,...(x1, . . . ; r) denotes running
A on inputs x1, . . . and coins r with access to oracles O1,O2, . . . to produce
output y. The notation y

$← AO1,O2,...(x1, . . . ) denotes picking r at random then
running y ← AO1,O2,...(x1, . . . ; r). The set of all possible outputs of A when run
with inputs x1, . . . is [A(x1, . . . )]. Adversaries and distinguishers are algorithms.
The notation y ← O(x1, . . . ) is used for calling oracle O with inputs x1, . . . and
assigning its output to y (even if the value assigned to y is not deterministically
chosen).

We say that an algorithm (or adversary) A runs in time t if its description
size and running time are at most t. We say that adversary A is S-bounded if it
uses at most S bits of memory during its execution, for any possible oracle it is
given access to and any possible input.

Information theory. For a random variable X with probability distribution
P (x) = Pr [X = x], the Shannon entropy H(X) and collision entropy H2(X)
are defined as H(X) = −∑

x P (x) log P (x) and H2(X) = − log
(∑

x P (x)2
)
.

The min-entropy of X is H∞(X) = − log maxx P (x). For two random vari-
ables X,Y with joint distribution Q(x, y) = Pr [X = x, Y = y], the condi-
tional Shannon entropy and conditional min-entropy are defined by H(Y |X) =
∑

x,y Q(x, y) log Q(x)
Q(x,y) and H∞(Y |X) = − log

∑
x maxy Q(x, y), where Q(x) =

∑
y Q(x, y) is the marginal distribution of X.

2.1 Streaming Indistinguishability

We review the streaming indistinguishability framework of Jaeger and Tes-
saro [39], which considers a setting where a sequence, X, of random variables

X1,X2, . . . , Xq

with range [N ] is given, one by one, to a (memory-bounded) distinguisher A.
The distinguisher will need to tell apart this setting from another one, where it
is given Y = (Y1, Y2, . . . , Yq) instead.

The streaming model. More formally, in the i-th step (for i ∈ [q]), the dis-
tinguisher A has a state σi−1 and stage number i. Then it receives Vi ∈ {Xi, Yi}
based on which it updates its state to σi. We denote by σi(A(X)) and σi(A(Y))
the state after receiving Xi and Yi when running A on streams X and Y, respec-
tively. We say here that A is S-bounded if all states have bit-length at most S.7

7 Note, quite crucially, that this is different from the definition of S-bounded algo-
rithms, in that we relax our notion of space-boundedness to only consider the states
between stages. This is sufficient for our applications, although the model can be
restricted.
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Fig. 1. Security games for PRF/PRP security of a family of functions (Left) and INDR
security of an encryption scheme (Right).

We also assume that σq ∈ {0, 1}, and think of σq as the output of A. We define
the following streaming-distinguishing advantage

AdvdistX,Y(A) = Pr [A(X) ⇒ 1] − Pr [A(Y) ⇒ 1] .

We shall use the following lemma by [39].

Lemma 1. Let X = (X1, . . . , Xq) be independent and uniformly distributed over
[N ] and let Y = (Y1, . . . , Yq) be distributed over the same support as X. Then,

AdvdistX,Y(A) � 1√
2

√
√
√
√q log N −

q∑

i=1

H(Yi | σi−1(A(Y))) .

2.2 Cryptographic Preliminaries

Family of functions. A function family F is a function of the form F : F.Ks×
F.Dom → F.Rng. It is understood that there is some algorithm that samples from
the set F.Ks, and that fixing K ∈ F.Ks, there is some algorithm that computes
the function FK(·) = F(K, ·). For our purposes, it suffices to restrict to function
families where F.Dom = {0, 1}n and F.Rng = {0, 1}m for some n and m.

A blockcipher is a family of functions F for which F.Dom = F.Rng and for all
K ∈ F.Ks the function F(K, ·) is a permutation.

We let RFn,m : Fcs({0, 1}n, {0, 1}m)×{0, 1}n → {0, 1}m be the function fam-
ily of all functions mapping n-bits to m-bits, i.e. for any F ∈ Fcs({0, 1}n, {0, 1}m)
and x ∈ {0, 1}n, we define RFn,m(F, x) = F (x). We let RPn : Perm({0, 1}n) ×
{0, 1}n → {0, 1}n be the function family of all permutations on n bits. It is
defined so that for any P ∈ Perm({0, 1}n) and x ∈ {0, 1}n, RPn(P, x) = P (x).

Pseudorandomness security. For security we will consider both pseudoran-
dom function (PRF) and pseudorandom permutation (PRP) security.

Let F be a function family with F.Dom = {0, 1}n and F.Rng = {0, 1}m. PRF
security asks F to be indistinguishable from RFn,m. More formally, consider the
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function evaluation game Gfn
F (A), in which adversary simply gets access to an

oracle evaluating FK for a random and fixed key K. The PRF advantage of A
against F is defined to be

AdvprfF (A) = Pr[Gfn
F (A)] − Pr[Gfn

RFn,m
(A)] .

Similarly, PRP security of a blockcipher F with F.Dom = {0, 1}n is defined
to be

AdvprpF (A) = Pr[Gfn
F (A)] − Pr[Gfn

RPn
(A)] .

Symmetric encryption. A symmetric encryption scheme SE specifies key
space SE.Ks, and algorithms SE.Enc, and SE.Dec (where the last of these is deter-
ministic) as well as set SE.M. Encryption algorithm SE.Enc takes as input key
K ∈ SE.Ks and message M ∈ SE.M to output a ciphertext C. We assume there
exists a constant expansion length SE.xl ∈ N such that |C| = |M |+SE.xl. Decryp-
tion algorithm SE.Dec takes as input ciphertext C to output M ∈ SE.M ∪ {⊥}.
We write K

$← SE.Ks, C
$← SE.Enc(K,M), and M ← SE.Dec(C).

Correctness requires for all K ∈ SE.Ks and all sequences of messages M ∈
(SE.M)∗ that Pr[∀i : M i = M ′

i] = 1 where the probability is over the coins of
encryption in the operations Ci

$← SE.Enc(K,M i) and M ′
i ← SE.Dec(K,Ci)

for i = 1, . . . , |M |.
For security we will require the output of encryption to look like a random

string. Consider the game Gindr
SE,b(A) shown on the right side of Fig. 1. It is param-

eterized by a symmetric encryption scheme SE, adversary A, and bit b ∈ {0, 1}.
The adversary is given access to an oracle Enc which, on input a message M ,
returns either the encryption of that message or a random string of the appro-
priate length according to the secret bit b. The advantage of A against SE is
defined by AdvindrSE (A) = Pr[Gindr

SE,1(A)] − Pr[Gindr
SE,0(A)].

3 Sample-Then-Extract

The StE = StE[F, k,Ext] scheme is defined in Fig. 2: It was originally proposed
by Tessaro and Thiruvengadam [45], and it is based on ideas from the context
of locally-computable extractors [47]. The scheme is extended here to encrypt
multiple blocks of message with the same randomness R1 . . . , Rk, and the same
extractor seed sd. The scheme StE[F, k,Ext] uses a keyed function family F which
maps {0, 1}n to {0, 1}n, as well as an extractor Ext : {0, 1}kn ×{0, 1}s → {0, 1}�.

Below, we instantiate the extractor Ext with 2-universal hash function [13].
We recall that h : {0, 1}w × {0, 1}s → {0, 1}� is 2-universal if for all distinct
x, y ∈ {0, 1}w, it holds that Pr[sd $← {0, 1}s : h(x, sd) = h(y, sd)] = 2−�. For
conciseness, we often write hsd(x) = h(x, sd). If � � s, a construction with w = s
interprets both the input x and the seed sd as elements of the extension field
F2w , and h(x, sd) consists of the first � bits of the product of x and sd.
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Fig. 2. The sample-then-extract encryption scheme SE = StE[F, k,Ext], with F.Dom =
{0, 1}n. All additions and subtractions are done under modulus 2n−�log k�. The key
space and message space of SE are SE.Ks = F.Ks and SE.M = ({0, 1}�)+.

A small-ciphertext version of StE. We also study a version of StE which
produces small ciphertexts, using techniques from randomness efficient sampling.
The proof resembles that for StE given below, and the details are deferred to the
full version due to limited space.

3.1 Security of StE

The security of StE scheme is captured by the following theorem. We first con-
sider the case where F is a PRF – which we prove below first. We will state a
very similar theorem for the PRP case below.8

The proof of the main theorem is deferred to Sect. 3.2.

Theorem 1. (Security of StE). Let N = 2n, let F : F.Ks × {0, 1}n → {0, 1}n

be a keyed function family. Let Ext be a 2-universal hash function h : {0, 1}kn ×
{0, 1}kn → {0, 1}�. For any S-bounded q-query adversary Aindr, where each query
consists of messages of at most B �-bit blocks such that B � N/k, there exists
an (S +B�)-bounded PRF adversary Aprf (with similar time complexity as Aindr)
that issues at most qkB queries to the oracle, such that

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√
1
2
qBε ,

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(2S + 2kn)B

N

)t

· min{�, 2�+1 · (2/N)k−t} .

8 The PRP assumption leads to more straightforward instantiations via a block cipher.
The PRF instantiation is trickier, as we need PRFs that are highly secure – these
can be instantiated with a much higher cost from a good PRP.
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Instantiations and interpretations. We discuss instantiations of the above
theorem for specific parameter regimes. We consider two choices of �, which result
in different bounds. In fact, a subtle aspect of the bound is the appearance of a
min: Depending on the choice of � (relative to N), we will have different t∗ such
that 2�+1 · (2/N)k−t > � for all t < t∗, and the value t∗ affects the bound.

We give two corollaries. The first one dispenses with any fine-tuning, and just
upper bounds the min with 2�+1 · (2/N)k−t. This bound however is enough to
give us a strong trade-off of q = Ω(Nk/Sk) for � = O(1). However, for another
common target, � = n, this would give us q = Ω(Nk−1/Sk). Our second corollary
will show how the setting t∗ in that case will lead to a stronger lower bound of
q = Ω(Nk−1/Sk−1). (In both cases, we are stating this for B = 1.)

Corollary 1. With the same setup as Theorem 1, we have

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√

2�qB

(
(2S + 2kn)B + 3

N

)k

.

Corollary 2. With the same setup as Theorem 1, in addition to n = �, n � 4,
and k � 2, we have

AdvindrStE[F,k,h](Aindr) � AdvprfF (Aprf) +

√

2qBk

(
(2S + 2kn)B + 4n

N

)k−1

.

We defer the proof of both corollaries to the full version.
We further provides an analysis over parameters of practical interests. Con-

cretely, if we instantiate F by a PRF that maps 128-bit to 128-bit, that is,
N = 2128, and we let the block size � = 128 bit. Then for any adversary that
uses at most S = 280 bit of memory and encrypts at most 1 GB message per query
(i.e. B = 233−7 = 226), by following the coarse analysis of Corollary 1 and let-
ting k = 15, our scheme can tolerate roughly q = 2(128−80−26−1)·15−128−26 = 2161

queries. However, we do not need such a large k to achieve q > N . Notice that
� = n = 128, we can use Corollary 2 to improve the analysis. Then by setting
k = 9, we have q = 2(128−80−26−1)·(k−1)−26−1 = 221·8−27 = 2141 queries encrypt-
ing 1GB message. Note that similar analysis can be obtained when adapting the
following PRP instantiation.

PRP instantiation. The security of StE instantiated by a PRP is captured by
the following theorem. Since the StE-PRP security proof is similar to StE-PRF
proof (the latter is slightly easier to present), we provide a proof sketch for the
PRP case in the full version, highlighting the modifications from the PRF case.

Theorem 2. (Security of StE in PRP). Let N = 2n � 16, let F : F.Ks ×
{0, 1}n → {0, 1}n be a keyed permutation family. Let Ext be a 2-universal hash
function h : {0, 1}kn × {0, 1}kn → {0, 1}�. For any S-bounded q-query adversary
Aindr, where each query consists of messages of at most B �-bit blocks such that
(S + k(n + 1))B � N/2, there exists an (S + B�)-bounded PRP adversary Aprp
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(with similar time complexity as Aindr) that issues at most qkB queries to the
oracle, such that

AdvindrStE[F,k,h](Aindr) � AdvprpF (Aprp) +

√
1
2
qBε ,

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(4S + 4kn)B

N

)t

· min{�, 2�+1 · (16/N)k−t} .

3.2 Proof of Theorem 1

Outline and preliminaries. Most of the proof will consider the StE scheme
with direct access to a random function RFn,n. It is immediate to derive a bound
when the scheme is instantiated by F at the cost of an additive term AdvprfF (Aprf).

We will be using Lemma 1, applied to a stream consisting of encryptions of
the all-zero plaintext (padded to B blocks) or truly random ciphertexts, which
we define more formally below. In particular, this will require upper bound-
ing the difference in Shannon entropy (from uniform) of the output of the i-th
query, given the adversary’s state at that point. As in the proof of the k-XOR
construction, we relax our requirements a little, and assume the adversary can
generate arbitrary S bits of leakage of RF. We will then be using a version of the
leftover-hash lemma for bounding Shannon entropy (Proposition 1) to prove the
desired bound.

We would naturally need (at the very least) to understand the min-entropy
of Vi,1‖ · · · ‖Vi,k conditioned on the state σi of stage i. In fact, we will use an even
more fine-grained approach, and see Vi,1‖ · · · ‖Vi,k as the convex combination of
variables with different levels of entropy. To this end, we will use an approach
due to Göös et al. [32] which decomposes a random variable with high min-
entropy (in this case, the random function table conditioned on σi) into a convex
combination of (easier to work with) dense variables. We use here the definition
from [15]:

Definition 1. A random variable X with range [M ]N is called:

– (1 − δ)-dense if for every subset I ⊆ [N ], the random variable XI , which is
X restricted on coordinates set I, satisfies

H∞(XI) � (1 − δ) · |I| · log M .

– (P, 1− δ)-dense if at most P coordinates of X is fixed and X is (1− δ)-dense
on the rest coordinates

Streaming setup. We first define some notations. We use bold-face to denote
a vector R = (R1, . . . , Rk). Moreover, we define

R{j} = (R1 + j − 1, R2 + j − 1, ..., Rk + j − 1) ,
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and R{1:j} = (R{1},R{2}, . . . ,R{j}). For a function F with n-bit inputs, we can
further define

F [R{j}] := F (0 ‖ R1 + j − 1) ‖ · · · ‖ F (k − 1 ‖ Rk + j − 1)) .

Naturally, we extend this to

F [R{1:j}] := (F [R{1}], F [R{2}], ..., F [R{j}])

Below, we first prove an upper bound for streaming indistinguishability and
later upper bound AdvindrStE[RF,k,h] via the streaming distinguishing advantage. To
this end, we define the following two sequences X = (X1, . . . , Xq) and Y =
(Y1, . . . , Yq) of random variables such that:

– Xi = (Wi, sdi,Ri), where Wi
$← {0, 1}B·�,

– Yi = (hsdi(F [R{1}
i ]), . . . , hsdi(F [R{B}

i ]), sdi,Ri), where F is randomly chosen
function from n bits to n bits. (Note that the same sampled function is used
across all Yi’s.)

In both streams, sdi
$← {0, 1}s, and Ri = (Ri,1, . . . , Ri,k) is a vector of k random

probes. We use L to denote the string length of the stream elements, i.e.,

L = |Xi| = |Yi| = B� + s + k(n − log k) .

Main lemma. We will use Lemma 1, and rely on the following lemma, which is
the core of our analysis.

Lemma 2. For any S-bounded adversary A and for all i ∈ [q],

H(Yi | σi−1(A(Y))) � L − Bε

where

ε =
�

Nk
+

k∑

t=0

(
k

t

)(
(2S + 2kn)B

N

)t

· min

{

�, 2�+1

(
2
N

)k−t
}

.

Proof (of Lemma 2). First, we point out that we can easily find a deterministic
function L such that

H(Yi | σi−1(A(Y))) � H(Y | L(F )) .

The function L is first easily described in randomized form: given F , first simu-
lates the first i − 1 steps of the interaction of A with the stream (Y1, . . . , Yi−1)
(by sampling sd1, . . . , sdi−1, as well as R1, . . . ,Ri−1 itself), and then outputs
σi−1(A(Y)). Then, L can be made deterministic by fixing the randomness.
Therefore, we will now lower bound H(Y | L(F )) for an arbitrary function L.

We now want to better characterize the distribution of F conditioned on
L(F ). To this end, we use the following lemma, originally due to Göös et al. [32],
here in a format stated in [14,15].
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Lemma 3. If Γ is a random variable with range [N ]N with min-entropy defi-
ciency SΓ = n · N − H∞(Γ ), then for every δ > 0, γ > 0, Γ can be represented
as a convex combination of finitely many (P, 1 − δ)-dense variables {Λ1, Λ2, ...}
for

P =
SΓ + log 1/γ

δ · n

and an additional random variable Λend whose weight is less than γ.

For every z ∈ {0, 1}S , we define Fz to be the random function F conditioned
on L(F ) = z. We define accordingly its min-entropy deficiency Sz = n · N −
H∞(Fz). Also, we set δz = Sz+log 1/γ

P ·n , for some P to be chosen below. By applying
Lemma 3, Fz is decomposed into finite number of (P, 1 − δz)-dense variables
{Λz,1, Λz,2, . . . }, and an additional variable Λz,end with weight less than γ. We
use αi to denote the weight of each decomposed dense variable in the convex
combination. It holds that

∑
t αt � 1 − γ. Also, by the concavity of conditional

entropy over probability mass functions,

H(hsd(Fz[R{j}]) | sd,R, Fz[R{1:j−1}])

�
∑

t

αt · H(hsd(Λz,t[R{j}]) | sd,R, Λz,t[R{1:j−1}]) .(4)

It will be sufficient now to give a single entropy lower bound for any variable
Λ which is (P, 1 − δz)-dense, and apply the bound to all {Λz,1, Λz,2, . . . }. In
particular, now note that

H(hsd(Λ[R{j}]) | sd,R, Λ[R{1:j−1}]) = E
r

[
H(hsd(Λ[r{j}]) | sd, Λ[r{1:j−1}])

]

� � − E
r

[
min

{
�, 2�+1 · 2−H∞(Λ[r{j}] | Λ[r{1:j−1}])

}]
. (5)

The last inequality follows from the following version of the Leftover Hash
Lemma for Shannon entropy. (We give a proof in the full version for complete-
ness, but note that the proof is similar to that of [10].)

Proposition 1. If h : {0, 1}w ×{0, 1}s → {0, 1}� is a 2-universal hash function,
then for any random variables W ∈ {0, 1}w and Z, if seed sd ← {0, 1}s

H(hsd(W ) | sd, Z) � � − min{�, 2�+1 · 2−H∞(W |Z)} .

First off, note that

H∞(Λ[r{j}] | Λ[r{1:j−1}]) = − log

⎛

⎝
∑

V ∈([N ]k)j−1

max
v∈[N ]k

Pr
[
Λ[r{1:j}] = V ‖ v

]
⎞

⎠

where V enumerates all possible outcome of Λ[r{1:j−1}] = (Λ[r{1}], ...,
Λ[r{j−1}]), and v iterates over all possible outcome of Λ[r{j}].
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Now, suppose that exactly t probes of r{j} hit the P fixed coordinates of Λ
and assume that t0 coordinates of r{1:j−1} are fixed. Then, using the fact that
Λ is (1 − δ)-dense on the remaining jk − t − t0 coordinates, by the union bound,
the following inequality holds (the details of calculation can be found in the full
version).

log

⎛

⎝
∑

V ∈([N ]k)j−1

max
v∈[N ]k

Pr
[
Λ[r{1:j}] = V ‖ v

]
⎞

⎠ � n [δk(j − 1) − (1 − δ)(k − t)] .

Therefore, if t probes of r{j} hit the P fixed coordinates of Λ, we have

H∞(Λ[r{j}] | Λ[r{1:j−1}]) � n [(1 − δ)(k − t) − δk(j − 1)] . (6)

Now, for 1 � t � k, we let Pt to be the number of fixed coordinates in the
domain of t-th probe – in particular, 0 � Pt � N/k and

∑
t Pt = P . Then, let

μ := E
r

[
min{�, 2�+1 · 2−H∞(Λ[r{j}]|Λ[r{1:j−1}])}

]

as in (5). Then,

μ �
k∑

t=0

∑

U∈([k]
t )

⎛

⎝
∏

u∈U

(
Pu

N/k

) ∏

v �∈U

(

1 − Pv

N/k

)

min{�, 2�+1N δ(j−1)k+(δ−1)(k−t)}
⎞

⎠

�
k∑

t=0

∑

U∈([k]
t )

(
∏

u∈U

(
Pu

N/k

)

· min{�, 2�+1 · N δ(j−1)k+(δ−1)(k−t)}
)

.

The above expression is maximized when Pu = P/k for all u. The proof can be
found in the full version. Thus we have

μ �
k∑

t=0

(
k

t

)(
P

N

)t

· min{�, 2�+1 · N δ(j−1)k+(δ−1)(k−t)}

=
k∑

t=0

(
k

t

)(
P

N

)t

· min{�, 2�+1 · 2
(Sz+log(1/γ))

P (jk−t) 1
Nk−t

} =: ν .

Plugging this into (4) yields

H(hsd(Fz[R{j}]) | sd,R, Fz[R{1:j−1}]) � (1 − γ) · (� − ν) . (7)

Next, we will need to take everything in expectation over the sampling of F (and
hence of z = L(F )). To this end, we use the following claim to compute Ez[ν].

Claim. For any 0 � t � k, 1 � j � B, if P � Bk − t, then it holds that:

Ez[2
Sz(jk−t)

P ] � 2
S(Bk−t)

P .
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We left the proof of claim to the full version, but note that the proof is similar
to the one from [15]. Now, note that for any function f ,

Ez[min{�, f(z)}] =
∑

z

Pr [z] · min{�, f(z)} � min{�,Ez[f(z)]} , (8)

because min{a, b} + min{c, d} � min{a + c, b + d} for any a, b, c, d. Using (8),
combined with linearity of expectation and the above claim,

Ez[μ] �
k∑

t=0

(
k

t

)(
P

N

)t

· Ez

[

min

{

�,
2�+1 · 2

(Sz+log(1/γ))
P (jk−t)

Nk−t

}]

�
k∑

t=0

(
k

t

)(
P

N

)t

· min

{

�, 2�+1 · Ez

[
2

(Sz+log(1/γ))
P (jk−t)

Nk−t

]}

�
k∑

t=0

(
k

t

)(
P

N

)t

· min

{

�,
2�+1 · 2

(S+log(1/γ))
P (Bk−t)

Nk−t

}

.

Further, we will now finally set γ = N−k and P = (S +kn)B � Bk and simplify
this to

Ez[μ] �
k∑

t=0

(
k

t

)(
(S + kn)B

N

)t

· min
{

�,
2�+1 · 2k

Nk−t

}

=
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
}

,

(9)

because S+log 1/γ
P · (Bk − t) � 1

B Bk � k. Therefore, taking expectations of (7),
and using (9), yields

H(hsd(F [R{j}]) | sd,R, F [R{1:j−1}],L(F ))

� (1 − 1
Nk

) ·
(

� −
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
})

� � −
k∑

t=0

(
k

t

)(
2(S + kn)B

N

)t

· min

{

�, 2�+1 ·
(

2
N

)k−t
}

− �

Nk
.

The proof is concluded by applying chain rule of conditional entropy and obtain

H(hsd(F [R{1}]), ..., hsd(F [R{B}]), sd,R | L(F ))

= H(sd,R | L(F )) + H(hsd(F [R{1}]), ..., hsd(F [R{B}]) | sd,R,L(F ))

= L − B� +
B∑

j=1

H(hsd(F [R{j}]) | sd,R, hsd(F [R{1}]), ..., hsd(F [R{j−1}]),L(F ))

� L − B

(
k∑

t=0

((
k

t

)(
(2S + 2kn)B

N

)t

· min{�, 2�+1 · (2/N)k−t}
)

+
�

Nk

)

.

��
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4 Time-Memory Trade-Off for the K-XOR Construction

In this section, we show that the k-XOR construction (given in Fig. 3), first
analyzed by Bellare, Goldreich, and Krawczyk [7] in the memory-independent
setting, is secure upto q = (N/S)k/2 queries for S-bounded adversaries. For the
rest of the section, we fix positive integers n and k (required to be even) and let
N = 2n.

Fig. 3. The k-XOR encryption scheme, SE = Xor[F, k]. The key space and message
space of SE are SE.Ks = F.Ks and SE.M = F.Rng.

Theorem 3. Let F : F.Ks × {0, 1}n → {0, 1}m be a function family. Let SE =
Xor[F, k] be the k-XOR encryption scheme for some positive integer k. Let Aindr

be an S-bounded INDR-adversary against SE that makes at most q queries to
Enc. Then, an S-bounded PRF-adversary Aprf can be constructed such that

AdvindrSE (Aindr) � AdvprfF (Aprf) + 2mq ·
√
(

4(S + nk)
N

)k

. (10)

Moreover, Aprf makes at most q ·k queries to its Fn oracle and has running time
about that of Aindr.

Discussion of bounds. Our bound supports q > N even with relative small
k. Concretely, suppose S = 280 and N = 2128. Then for k = 6, we can already
support upto roughly q = 2(128−80)·(6/2)−8 = 2136 queries. Note that it does not
makes sense to set q < S in our bound. This is because q queries can be stored
with O(q) memory. Furthermore, if q < N/k, then one can apply the memory
independent bound of Bellare, Goldreich, and Krawczyk [7] which is of the form
O(q2/Nk). Hence, our bound really shines when q � N . Lastly, we suspect that
our bound is likely not tight in general (it is when S = O(k log N)). In the full
version, we show attacks for a broader range of values of S that achieve constant
success advantage with q = O(

(
N
S

)k
).

The above theorem also requires F to be a good PRF – in the full version we
discuss how to instantiate it from a block cipher.

Theorem 3 follows from standard hybrid arguments and the single-bit case
under random functions, i.e. INDR security of Xor[RFn,1, k], which is captured
by the following lemma.
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Lemma 4. Let SE = Xor[RFn,1, k] be the k-XOR encryption scheme for some
positive integer k. For any S-bounded adversary Aindr that makes q queries to
Enc,

AdvindrSE (Aindr) � 2q ·
√
(

4(S + nk)
N

)k

. (11)

The proof of Theorem 3 from Lemma 4 consists of standard hybrid arguments
(over switching PRF output to random, then over m-output bits to indepen-
dently random). We shall first prove Lemma 4 and defer the hybrid arguments
for later in this section.

Bit-distinguishing to bit-guessing. It shall be convenient to consider the
following information theoretic quantity Guess(·), defined for any bit-value
random variable B as Guess(B) = |2 · Pr[B = 1] − 1|. As usual, we extend
this to conditioning via Guess(B | Z) = Ez [Guess(B | Z = z)]. Intuitively,
Guess(B | Z) denotes the best possible guessing advantage for bit B, which
is also the best bit-distinguishing advantage. Note that if U is a uniform ran-
dom bit that is independent of Z (B and Z could be correlated), then for any
adversary A,

Pr [A(B,Z) ⇒ 1] − Pr [A(U,Z) ⇒ 1] � Guess(B | Z) . (12)

Proof of Lemma 4. Consider the INDR games Gindr
SE,0 and Gindr

SE,1. We would like to
bound

AdvindrSE (Aindr) = Pr[Gindr
SE,1(Aindr)] − Pr[Gindr

SE,0(Aindr)]

Towards this end, let us consider hybrid games H0, . . . ,Hq as follows.

Note that H0 = Gindr
SE,0(Aindr) (ideal) and Hq = Gindr

SE,1(Aindr) (real). Fix some
i ∈ {1, . . . , q}. Let Bi = F (Ri,1) ⊕ · · · ⊕ F (Ri,k). It holds (by (12)) that

Pr [Hi] − Pr [Hi−1] � Guess(Bi | σi−1(Aindr), (Ri,1, . . . , Ri,k)) , (13)

where σi−1(Aindr) is the state of Aindr right the point where it makes its i-th
query to Enci (and we assume this query to contain M), and Ri,1, . . . , Ri,k are
the random inputs generated in that query. Note that |σi−1(Aindr)| � S and σi−1

is a (randomized-)function of the function table F . However, there must exist a
deterministic function Li : {0, 1}N → {0, 1}S , so that

Guess(Bi | σi−1(Aindr), Ri,1, . . . , Ri,k) � Guess(Bi | Li(F ), Ri,1, . . . , Ri,k) .

Hence, to prove Lemma 4, it suffices to show the following lemma.
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Lemma 5. Let L : {0, 1}N → {0, 1}S be any function. Then, for F
$← {0, 1}N ,

and R1, . . . , Rk
$← [N ],

Guess(F [R1] ⊕ · · · ⊕ F [Rk] | L(F ), R1, . . . , Rk) � 2 ·
(

4(S + nk)
N

)k/2

. (14)

Assuming Lemma 5, we can derive that

AdvindrSE (Aindr) =
q∑

i=0

Pr[Hi] − Pr[Hi−1]

�
q∑

i=1

Guess(Bi | σi−1(Aindr), Ri,1, . . . , Ri,k))

�
q∑

i=1

Guess(Bi | Li(F ), Ri,1, . . . , Ri,k) � 2q ·
(

4(S + nk)
N

)k/2

,

which concludes the proof of Lemma 4. ��
Connection to list-decodability of k-XOR code. Lemma 5 is the techni-
cal core of our result. Before we go into the details of the proof, we need to recall
the definition of list-decoding. Consider the code k-XOR : {0, 1}N → {0, 1}Nk

,
which is defined by

k-XOR(x)[I] = x[I1] ⊕ · · · ⊕ x[Ik] ,

for any I = (I1, . . . , Ik) ∈ [N ]k. We say that k-XOR : {0, 1}N → {0, 1}Nk

is
(ε, L)-list-decodable if for any z ∈ {0, 1}Nk

, there exists at most L codewords
within a Hamming ball of radius εNk around z. The proof of Lemma 5 consists of
two steps. First, we translate the left-hand side of (14) in terms of list-decoding
properties of k-XOR code. Second, we apply a new list-decoding bound for k-
XOR code to obtain (14). We now give some intuition on how Guess relates to
list-decoding. First, we fix some deterministic guessing strategy g for F [R1] ⊕
· · ·⊕F [Rk] given leakage L(F ) and indices R1, . . . , Rk, which is a function of the
form g : {0, 1}S × [N ]k → {0, 1} (looking ahead, g shall be fixed to be the “best”
one). Note that g can be interpreted as 2S elements of {0, 1}Nk

. In particular,
let g′ : {0, 1}S → {0, 1}Nk

be the function defined to be

g′(x) = g(x, (0, . . . , 0)) ‖ · · · ‖ g(x, (1, . . . , 1)) .

We let G be the set {g′(0S), g′(0S−11), . . . , g′(1S)}. Our set G of 2S guesses lie
in the co-domain of the k-XOR code. We now consider a partition of the {0, 1}N

into sets Good and Bad, where

Good =
{

F ∈ {0, 1}N |� ∃z ∈ G : hw(k-XOR(F ), z) �
(

1
2

− ε/2
)

Nk

}

,

Bad =
{

F ∈ {0, 1}N | ∃z ∈ G : hw(k-XOR(F ), z) �
(

1
2

− ε/2
)

Nk

}

.
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Note that conditioned on F ∈ Good, then the guessing strategy g should not
achieve advantage better than ε. Using Lemma 6 given below, whose proof shall
be given in Sect. 4.1, we can upper-bound the total number of codewords in Bad,
as a function of ε.

Lemma 6. The k-XOR code is ( 12 −ε/2, 2N−ε2/kN/4)-list decodable, i.e. for any
z ∈ {0, 1}Nk

, there are at most 2N−ε2/kN/4 codewords that are within hamming
distance (12 − ε/2)Nk of z.

Finally, obtaining the right-hand size of (14) amounts to picking an ε to
minimize Pr[F ∈ Bad]+ ε. We proceed to the proof, which formalizes the above
intuition.

Proof. (of Lemma 5). Consider the code k-XOR : {0, 1}N → {0, 1}Nk

defined by

k-XOR(x)[I] = x[I1] ⊕ · · · ⊕ x[Ik] ,

for any I ∈ [N ]k. For notational convenience, let B = F [R1] ⊕ · · · ⊕ F [Rk] and
Z = L(F ). Consider the following function Q : {0, 1}S × [N ]k → [−1, 1],

Q(z, I) = 2 · Pr [B = 1 | L(F ) = z, (R1, . . . , Rk) = I] − 1 , (15)

where the probability is taken over F . By definition of Guess,

Guess(B | L(F ), R1, . . . , Rk) = E [|Q(Z, I)|] , (16)

where Z = L(F ) and I
$← [N ]k. Now, we would like to describe the best guessing

strategy gz[I] for bit B given L(F ) = z and indices I. For each z ∈ {0, 1}S , we
define gz ∈ {0, 1}Nk

as follows. For each I ∈ [N ]k we let gz[I] = 1 if Q(z, I) � 0
and set gz[I] = 0 otherwise. Intuitively, gz[I] encodes the best guess for B =
F [I1] ⊕ · · · F [Ik] given that L(F ) = z. Hence, for any z and I

1 − |Q(z, I)|
2

= Pr [B �= gz,I | L(F ) = z, (R1, . . . , Rk) = I] . (17)

Taking expectation of both sides over I
$← [N ]k,

1 − E [|Q(z, I)|]
2

= Pr [B �= gz,I | L(F ) = z] =
hw(k-XOR(F ) ⊕ gz)

Nk
, (18)

where, recall, hw(·) denotes the hamming weight (number of 1’s) of a given
string. With slight abuse of notation, we define Q(z) to be

Q(z) = E
I

$←[N ]k
[|Q(z, I)|] = 1 − 2 · hw(k-XOR(F ) ⊕ gz)

Nk
. (19)

Q(z) encodes the best possible guessing advantage when L(F ) = z, i.e.

Guess(B | L(F ), R1, . . . , Rk) = E [Q(Z)] .
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Define E to be the event that k-XOR(F ) is of distance more than (12 − ε/2)Nk

from gL(F ) for some ε to be determined later. Note that given E, then

hw(k-XOR(F ) ⊕ gL(F )) �
(

1
2

− ε/2
)

Nk

which means that and Q(L(F )) � ε. Hence,

E [Q(Z)] = Pr [E] · E [Q(Z) | E] + Pr [¬E] · E [Q(Z) | ¬E] (20)

� ε + Pr

[

hw(k-XOR(F ) ⊕ gL(F )) �
(

1
2

− ε/2
)

Nk

]

(21)

� ε + Pr

[

∃s ∈ {0, 1}S : hw(k-XOR(F ) ⊕ gs) �
(

1
2

− ε/2
)

Nk

]

(22)

� ε +
∑

s∈{0,1}S

Pr

[

hw(k-XOR(F ) ⊕ gs) �
(

1
2

− ε/2
)

Nk

]

(23)

� ε + 2S · 2−ε2/kN/4 , (24)

where the last equation is by the ((12 − ε), 2−ε2/kN/4)-list decodability of k-XOR-
code (Lemma 6). We now set

ε =

√
(

4(S + nk)
N

)k

,

which makes it so that E [Q(f(X))] � ε + 2−nk � 2 · ε. Hence,

Guess(Y | f(X), R1, . . . , Rk) � 2 ·
(

4(S + nk)
N

)k/2

. (25)

This justifies Lemma 5. ��

4.1 List Decodability of K-XOR Codes

We relied on the list-decodability of k-XOR code in the proof of Lemma 5.
Recall that k-XOR : {0, 1}N → {0, 1}Nk

is (ε, L)-list-decodable if for any
z ∈ {0, 1}Nk

, there exists at most L codewords within a Hamming ball of
radius εNk around z. The list-decoding property of XOR-code has been studied
extensively in complexity theory in the context of hardness amplification. The
connection between Yao’s XOR Lemma (for a good survey, see [31]) and the
list-decodability of XOR-code was first observed by Trevisan [46]. So proofs of
hardness amplification results (e.g. [34,41]) using XOR in fact yields algorithmic
list-decoding bounds for xor-codes. More recently, [36] has also given approx-
imate list-decoding bounds for k-XOR. We discuss in the full version how the
approximate list-decoding bound by [36] can be viewed as (non-approximate)
list-decoding bound which lead to an inferior result for the k-XOR construction
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that promise security upto q = (N/S)k/4 instead of q = (N/S)k/2. Where as pre-
vious works on list-decoding of k-XOR-code focus on algorithmic list-decoding,
we are interested in the setting of combinatorial list-decoding, and the best
trade-off possible between error ε (especially when it is very close to 1/2) and
the list size L.

Before we begin, we first show the following moment bound on sum of
{−1, 1}-valued random variables.

Lemma 7. Let F1, . . . , FN be i.i.d random variables with Fi
$← {−1, 1}. Then,

for any even m ∈ N

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � (mN)m/2
. (26)

Proof. Let us first expand the expectation.

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ =
∑

I∈[N ]m

E

[
∏

i∈I

Fi

]

.

We claim that the inside expectation, E
[∏

i∈I Fi

]
, is either 0 or 1 depending on

I. In particular, define I to be even if for every i ∈ [N ], the number of i contained
in I is even. First, for any i ∈ [N ], since Fi takes value in {−1, 1}, it holds that
Fi · Fi = 1. Hence, observe that E

[∏
i∈I Fi

]
is 1 if I is even. Otherwise, if I is

not even, we claim that expectation is 0. To see this, suppose i0 appears an odd
number of times in the vector I. We can expand the expectation by conditioning
on the value of Fi0 being 1 or −1:

E

[
∏

i∈I

Fi

]

= E

⎡

⎣Fi0 ·
∏

i�=i0

Fi

⎤

⎦ = E

⎡

⎣
∏

i�=i0

Fi

⎤

⎦ − E

⎡

⎣
∏

i�=i0

Fi

⎤

⎦ = 0 .

Therefore,

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � |{I ∈ [N ]m | I is even }| .

For an upper bound of number of even I’s, consider the following way of gen-
erating even I’s. First, we pick a perfect matching (recall that a perfect match-
ing on the complete graph on m vertices is a subset of m/2-edges that uses
all m vertices) on the complete graph of m-vertices, Km. Then, for each edge,
e = (v0, v1), in the matching, we assign a value i ∈ [N ] to nodes v0 and v1, i.e.
�(v0) = �(v1) = i. Now, reading the labels off of each node (wlog we can assume
the set of nodes is [m]), we obtain an I = (�(0), . . . , �(m − 1)) ∈ [N ]m that is
even. Note that any even I can be generated in such a way, since given any even
I it is easy to find a perfect matching and labeling that results in I.
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We move on to compute the number of ways the above can be done. Note
that the number of perfect matching is (m − 1) × (m − 3) × · · · × 1. To see this,
let us fix an order of vertices [m], say 1, . . . , m. At each step, we shall assign an
edge to the smallest vertex that does not yet have an edge. Note that at the i-th
step (with i starting at 0), there are exactly (m − 2i − 1) ways to pick the next
edge. Hence, the number of perfect matchings on Km is bounded above by

m!
2m/2(m/2)!

=

(
m

m/2

)

2m/2
· (m/2)! � 2m

2m/2
· (m/2)m/2 � mm/2 .

Next, for each perfect matching, there are Nm/2 ways of assigning values to
edges, since each one of the m/2 edges can be assigned any of the N -values.
Hence,

E

⎡

⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

m⎤

⎦ � (m)m/2 · Nm/2 = (mN)m/2 .

Equipped with Lemma 7, we proceed to prove Lemma 6.

Proof (of Lemma 6). We identify the sets [Nk] with [N ]k. Fix some z ∈ {0, 1}Nk

.
Let Z = (Z1, . . . , ZNk) be the Nk-vector such that ZI = (−1)zI for any I ∈ [N ]k.
Let F1, . . . , Fn

$← {−1, 1}. For each I ∈ [N ]k, we define random variable BI =∏
i∈I Fi. Note that if we map BI to {0, 1}, i.e. define bI such that BI = (−1)bI ,

then (b1, . . . , bNk) is just a uniformly random codeword in {0, 1}Nk

. We have now
that for any I ∈ [Nk], (−1)bI⊕zI = ZI · BI . Fix some codeword (b1, . . . , bNk) ∈
{0, 1}Nk

. The hamming distance between it and z is the hamming weight of
s = (bI ⊕ zI)I∈[N ]k . Now, note that hw(s) � (1/2 − ε/2)Nk if and only if
∑

I(−1)sI � εNk. Hence, to show that there are at most 2N−ε2/kN/4 codewords
within radius (1/2 − ε/2)Nk of z, it suffices to show the following bound,

Pr

⎡

⎣
∑

I∈[N ]k

ZI · BI � εNk

⎤

⎦ � 2−ε2/kN/4 . (27)
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Let us compute the p-th moment of
∑

I∈[N ]k ZI · BI for some even p (we shall
fix the particular value of p later).

E

⎡

⎣

⎛

⎝
∑

I∈[N ]k

ZI · BI

⎞

⎠

p⎤

⎦ = E

⎡

⎣
∑

I1,...,Ip

ZI1 · · · ZIp
BI1 · · · BIp

⎤

⎦ (28)

=
∑

I1,...,Ip

(ZI1 · · · ZIp
)E

[
BI1 · · · BIp

]
(29)

�
∑

I1,...,Ip

E
[
BI1 · · · BIp

]
(30)

= E

⎡

⎣

⎛

⎝
∑

I∈[N ]k

BI

⎞

⎠

p⎤

⎦ (31)

= E

⎡

⎢
⎣

⎛

⎝
∑

i∈[N ]

Fi

⎞

⎠

k·p⎤

⎥
⎦ (32)

� (kpN)kp/2 , (33)

where (30) is because E
[
BI1 · · · BIp

] ∈ {0, 1} and ZI1 · · · ZIp
∈ {−1, 1}. To see

the former claim, compute that

E
[
BI1 · · · BIp

]
= E

⎡

⎣
∏

j∈[p]

∏

i∈Ij

Fi

⎤

⎦ =
∑

i∈[N ]

E
[
F ki

i

]
,

for some k1, . . . , kN . Note that E
[
F k

i

]
= 1 for any even power k, and E

[
F k

i

]
= 0

for any odd power k. We note that after (30), the expression is independent
of Z. This is the crucial fact that we rely on when computing the moments of∑

I∈[N ]k ZI ·BI . Applying Markov’s inequality to the p-th moment of
∑

I∈[N ]k ZI ·
BI and using (33) as well as Lemma 7, we get

Pr

⎡

⎣
∑

I∈[N ]k

ZI · BI � εNk

⎤

⎦ � (kpN)kp/2

εpNkp
�

(
kp

ε2/kN

)kp/2

. (34)

Now, we would be done if we could set p so that kp
ε2/kN

= 1
2 . We cannot do so

directly since it only makes sense when p is an even integer. However, we can set
p = p0 to be the smallest even integer such that 2kp0 � ε2/kN . In other words,
we set p = p0 = 2 · � ε2/kN

4k �. Note that the right hand side of (34) is minimized
when kp

ε2/kN
= 1

e and increases as p deviates from this value. Hence, to derive
the final bound, as long as kp0

ε2/kN
� 1

e (which is easily checked), we can plug
p = p1 = (ε2/kN)/2k into the right-hand side of (34) to derive the final bound
of 2−ε2/kN/4. ��
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Abstract. The algebraic group model, introduced by Fuchsbauer, Kiltz
and Loss (CRYPTO ’18), is a substantial relaxation of the generic group
model capturing algorithms that may exploit the representation of the
underlying group. This idealized yet realistic model was shown useful
for reasoning about cryptographic assumptions and security properties
defined via computational problems. However, it does not generally cap-
ture assumptions and properties defined via decisional problems. As such
problems play a key role in the foundations and applications of cryptog-
raphy, this leaves a significant gap between the restrictive generic group
model and the standard model.

We put forward the notion of algebraic distinguishers, strengthening
the algebraic group model by enabling it to capture decisional problems.
Within our framework we then reveal new insights on the algebraic inter-
play between a wide variety of decisional assumptions. These include the
decisional Diffie-Hellman assumption, the family of Linear assumptions
in multilinear groups, and the family of Uber assumptions in bilinear
groups.

Our main technical results establish that, from an algebraic perspec-
tive, these decisional assumptions are in fact all polynomially equivalent
to either the most basic discrete logarithm assumption or to its higher-
order variant, the q-discrete logarithm assumption. On the one hand,
these results increase the confidence in these strong decisional assump-
tions, while on the other hand, they enable to direct cryptanalytic efforts
towards either extracting discrete logarithms or significantly deviating
from standard algebraic techniques.

1 Introduction

One of the most successful and influential idealized models in cryptography is
the generic group model [Nec94,BL96,Sho97,Mau05], most often used to analyze
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the security of group-based cryptographic assumptions and constructions. The
generic group model captures group-based computations that do not exploit any
specific property of the representation of the underlying group, by withholding
from algorithms the concrete representations of group elements. At a high level,
the access of generic algorithms to group elements is mediated by an oracle, and
is restricted to the abstract group operation and to checking equalities among
group elements throughout the computation. On the one hand, the generic group
model captures a wide and natural class of algorithms, and a proof of security in
this model means that a successful adversary must step outside this class. This
enables, in particular, to direct candidate constructions and cryptanalytic efforts
away from generic impossibility or hardness results. On the other hand, however,
the assumption that adversaries are completely oblivious to the representation
of the group and its elements is often unrealistic to some extent (see for example
[FKL18,JS13] and the discussion therein).

The Algebraic Group Model. With this gap in mind, Fuchsbauer, Kiltz and
Loss [FKL18] elegantly introduced the algebraic group model, as an intermedi-
ary model between the generic group model and the standard model.1 Roughly
speaking, an algebraic algorithm may use the representation of group elements in
any arbitrary manner, but whenever it outputs a group element, it must supply
together with it an “algebraic explanation” for how it came up with this element.
Informally, this explanation is a representation of the outputted element, in the
basis of all group elements that the algorithm has received so far.

Fuchsbauer et al. showed that though a considerable weakening of the generic
group model, the algebraic group model provides a very advantageous framework
for proving security reductions which are unknown to hold in the standard model.
For example, within the algebraic group model, they reduced the security of
very useful cryptographic schemes such as the BLS signature scheme [BLS01]
and Groth’s zero-knowledge SNARK [Gro16], to the hardness of very simple
variants of the discrete logarithm problem. Follow-up works have continued to
exemplify the usefulness of the model, by providing security reductions from the
hardness of a large class of computational Diffie-Hellman-like problems to the
hardness of the discrete logarithm problem [MTT19]; and from the unforgeability
of blind Schnorr signatures [Sch91,Sch01] and variants thereof to the hardness of
simple computational problems in cyclic groups [FPS20]. Moreover, the recent
work of Agrikola, Hofheinz and Kastner [AHK20] provided a standard-model
implementation of (a relaxation of) the algebraic group model.

Computational vs. Decisional Problems. One commonality which is shared
by all of the aforesaid results, is that they all deal with assumptions and security
properties that are defined via computational problems (i.e., search problems in
which an algorithm is required to output group elements). This should come as
no surprise: Algorithms for decisional problems are challenged with outputting
a decision bit, and do not, generally speaking, output any group elements. As

1 Previous, extraction-based, definitions may be found in the earlier works of Boneh
and Venkatesan [BV98] and of Paillier and Vergnaud [PV05].
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Fuchsbauer et al. point out, this means that such algorithms (to which we refer as
distinguishers) are vacuously algebraic, and that in principal, decisional problems
are not captured within the algebraic group model. Fuchsbauer et al. posed
the important open problem of whether or not their approach can be extended
to capture decisional algebraic problems and algebraic distinguishers, as these
play key roles in the foundations and applications of cryptography. Developing
such a model will enable to analyze the security of indistinguishability-based
cryptographic problems and constructions while enjoying the key advantages of
the algebraic group model.

1.1 Our Contributions

Algebraic Distinguishers. We put forward a generalized framework that cap-
tures algebraic distinguishers within the algebraic group model. Following Fuchs-
bauer et al. [FKL18], our framework fits the intuition according to which the
algebraic group model “lies in between the standard model and the generic group
model”. Concretely, our notion of algebraic distinguishers allows such algorithms
to rely on the explicit representation of group elements in any arbitrary manner,
while still requiring that they “explain” their decision via an “algebraic witness”.

In our framework this witness corresponds to a non-trivial equality relation
satisfied by a subset of the group elements which the algebraic distinguisher
has received or has computed throughout its execution. We carefully formulate
an additional requirement regarding this witness in order to guarantee its non-
triviality and usefulness: Loosely speaking, we ask that whenever the algebraic
distinguisher can tell two distributions apart, then this witness serves as a “good
differentiator” between these two distributions. Our requirement is a rather mild
one (much stronger requirements hold in the generic group model), and it is suf-
ficient for proving highly non-trivial reductions, as discussed below. Our notion
of algebraic distinguishers is formulated in a general manner, allowing for flex-
ibility and versatility in its applications (e.g., it can be used to reason about
the indistinguishability of hybrid distributions that are introduced within proofs
of security and are not part of the original formulation of the problem under
consideration – as we demonstrate, for example, in Sect. 5). We refer the reader
to Sect. 1.2 for a high-level description of our framework.

From Discrete Logarithms to Decisional Uber Assumptions. Within
our framework we reveal new insights on the algebraic interplay between a wide
variety of decisional assumptions. These include the seemingly modest decisional
Diffie-Hellman assumption and the family of Linear assumptions [Sha07], as well
as the seemingly substantially stronger family of decisional Uber assumptions
[BBG05,Boy08].

Our main technical results show that, from an algebraic perspective, these deci-
sional assumptions are in fact all polynomially equivalent to either the most basic
discrete logarithmassumption (in the case of the decisionalDiffie-HellmanandLin-
ear assumptions) or to its generalizedhigher-order variant, the q-discrete logarithm
assumption (in the case of the entire family of decisional Uber assumptions). We
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refer the reader to Sect. 1.2 for a high-level description of our results and for infor-
mal theorem statements.

Interpreting Our Framework and Results. Prior to our work, these deci-
sional assumptions that we consider were simply known to unconditionally hold
in the generic group model, without any indication of a non-trivial interplay
among them. Moreover, prior to our work, the algebraic group model enabled
to reason only about computational problems, whereas our framework enables
both to reason about decisional problems and to reduce their algebraic hard-
ness to that of computational problems. In this light, the contributions of our
framework and technical results can be interpreted in the following, somewhat
equivalent, manners:

– From the perspective of designing cryptographic schemes, our equivalence
between the algebraic hardness of extracting discrete logarithms and that
of seemingly much stronger assumptions increases the confidence in such
stronger assumptions.

– From the perspective of cryptanalytic efforts, the introduction of the fam-
ily of Uber assumptions [BBG05,Boy08] enabled directing nearly all such
efforts towards a specific and well-defined family of decisional assumptions.
Our results show that these efforts either can be significantly further directed
towards extracting discrete logarithms, or should deviate from all algebraic
techniques that are captured within our framework.

1.2 Overview of Our Framework and Results

In this section we provide a high-level overview of our framework and technical
results. We start by reviewing our definition of algebraic distinguishers, and the
intuition behind it, in more detail. For a formal exposition and discussion of the
definition, see Sect. 3.

A First Attempt. As a first attempt of defining algebraic distinguishers, con-
sider demanding that whenever an algebraic distinguisher accepts (i.e., outputs
1), it should output a “decision” vector �w such that

∏
i gi

wi = 1, where g1, g2, . . .
are the group elements that the distinguisher has observed, and 1 is the unity
of the group. This is inspired by the approach of Fuchsbauer et al. who adapted
from the generic group model the restriction of producing new group elements
only as combinations of previously observed elements. The above requirement
couples this restriction with another constraint posed on algorithms in the
generic group model: The fact that essentially the only useful information on
which generic algorithms can base their decisions is the equality pattern among
the group elements that they have observed. Put differently, the basic algebraic
information which can lead a generic distinguisher to accept (or to reject), is
a non-trivial equality relation among the group elements that it has observed.
Thus, the vector �w captures the zero test induced by this relation.

Of course, such a zero test can always be produced by setting �w to be the all-
zeros vector, and so we need to add some non-triviality requirement. A possible
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route is demanding that whenever an algebraic algorithm accepts, the vector
�w has to be non-zero (i.e., �w �= �0). Such a demand, however, seems unrealistic
since a distinguisher can always accept even without “having knowledge” of such
a non-zero vector �w. Moreover, it is not enough to ask that �w �= �0. Consider,
for example, the decisional Diffie-Hellman problem in which the distinguisher is
asked to distinguish between a tuple of the form (g, gx, gy, gx·y) and a tuple of
the form (g, gx, gy, gz) for a uniform choice of x, y and z. In this case, a vector
�w whose any of the last three entries is 0, cannot be used in order to distinguish
between the distributions, since when projected onto the support of such a vector
�w, the two distributions coincide.

Our Definition. In light of the above discussion, our definition of algebraic
distinguishers is somewhat more subtle. Informally, it asks that if an algebraic
distinguisher A runs in time t and distinguishes between two distributions D0

and D1 with advantage ε, then there exists some bit b ∈ {0, 1} such that the
following holds: On input drawn from Db, the distinguisher A outputs a “good”
vector �w with probability at least ε/t2 (this is in addition to the requirement that∏

i gi
wi = 1 with probability 1). We define a “good” vector �w to be such that D0

and D1 remain distinct even when projected onto the support of �w. Informally,
by projecting a distribution onto the support of �w, we mean “erasing” all group
elements whose corresponding entry in �w is 0 (See Sect. 3.2 for a formal definition
of this operation). This requirement (and even stronger forms thereof) indeed
holds in the generic group model (as we discuss in Sect. 3.3), implying that our
definition of the algebraic group model in fact lies between the generic group
model and the standard one. We remark that even stronger requirements might
be justifiable, and refer the reader to Sect. 3.2.

In groups which are equipped with a k-linear map, a distinguisher has addi-
tional algebraic power: It can infer information from equalities in the target
group as well. Whereas in the generic group model, equalities in the source
group induce linear polynomials in the exponent, equalities in the target group
induce polynomials of degree up to k. We capture this fact by allowing the dis-
tinguisher to output a “degree k zero test” as its algebraic witness, and refer
the reader to Sect. 5.1 and to the full version of this paper [RS20] for the formal
definition.

The Algebraic Hardness of the Decisional Uber Assumption in Bilin-
ear Groups. In the setting of bilinear groups, Boneh, Boyen and Goh [BBG05]
and Boyen [Boy08] introduced the Uber family of decisional assumptions.
Each assumption in the family is parameterized by two tuples of m-variate
polynomials �r = (r1, . . . , rt) and �s = (s1, . . . , st) and an m-variate poly-
nomial f . Roughly, the assumption states that given a generator g of the
source group, and given the group elements gr1(x1,...,xm), . . . , grt(x1,...,xm) and
e(g, g)s1(x1,...,xm), . . . , e(g, g)st(x1,...,xm), it is infeasible to distinguish between
e(g, g)f(x1,...,xm) and a uniformly-random element in the target group for a uni-
form choice of x1, . . . , xm. Boneh et al. proved that as long as �r, �s and f do not
admit a trivial solution, the (�r,�s, f)-Uber problem is hard in the generic group
model.
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Within our framework, we reduce the hardness of the (�r,�s, f)-Uber problem
to the hardness of the q-discrete logarithm problem in the source group, where in
the q-discrete logarithm problem an adversary needs to retrieve a secret exponent
x given (g, gx, . . . , gxq

), and q is polynomial in the number of polynomials in �r
and in �s and in the their degree.

Theorem 1.1 (Informal). Let (�r,�s, f) represent m-variate polynomials which
do not admit a trivial solution to the (�r,�s, f)-Uber problem, and let A be an alge-
braic algorithm for the (�r,�s, f)-Uber problem relative to a source group G and
a target group GT . Then, there exists an algorithm B for the q-Discrete Loga-
rithm problem in G, whose running time and success probability are polynomially-
related to those of A.

The proof of Theorem 1.1 consists of two parts. First, inspired by the work
of Ghadafi and Groth [GG17], we consider an intermediate variant of the Uber
assumption which is univariate, in the sense that it involves only a single secret
exponent x (instead of m secret exponents x1, . . . , xm). We observe that the
work of Ghadafi and Groth immediately implies that for any triplet (�r,�s, f), the
existence of a successful algebraic distinguisher for the (�r,�s, f)-Uber assumption
implies the existence of a successful algebraic distinguisher for the univariate
variant as well.

In the second (and main) part of the proof, we reduce within our framework
the hardness of this univariate variant to that of the q-discrete logarithm prob-
lem. Technical details omitted, the main idea is to embed the secret exponent
x of the q-discrete logarithm challenge as the secret exponent used to generate
the input in the univariate Uber assumption. This is where the parameter q
comes into play; since the polynomials (�r,�s, f) may be of high degree, gener-
ating the input to the univariate Uber assumption may require knowledge of
group elements of the form gxi

for different values of i. As discussed above, a
successful algebraic distinguisher for univariate Uber assumption returns a zero
test as an algebraic witness for its decision. We observe that if (�r,�s, f) do not
admit a trivial solution to the (�r,�s, f)-Uber problem, this witness induces a non-
zero univariate polynomial with one of its roots being x. Consequently, we can
retrieve x by finding the roots of this polynomial (for example, by using the
Berlekamp-Rabin algorithm [Ber70,Rab80]) and searching for the root which is
consistent with the input to the q-discrete logarithm problem.

The Algebraic Hardness of the Decisional k-Linear Problem in k-Linear
Groups. In theDecisionalk-Linearproblem introducedbyShacham [Sha07], adis-
tinguisher is given an input of the form (g, gα1 , . . . , gαk , gβ , gα1·r1 , . . . , gαk·rk) and
needs to distinguish between the group element gβ·∑k

i=1 ri and a uniformly random
group element gz. Observe that this family of assumptions generalizes the Deci-
sional Diffie-Hellman assumption (which corresponds to k = 1) and the Decisional
Linear assumption [BBS04] (which corresponds to k = 2). Seemingly, this family
forms a hierarchy; for any k, the k-Linear assumption implies the (k + 1)-Linear
assumption. As for the other direction, Shacham proved that in a generic group
equippedwitha (k+1)-linearmapthe (k+1)-Linearassumptionholds, even though
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it is easy to break the k-Linear assumption. Within our algebraic framework, we
prove a more refined relation among the different assumptions in the family: For k-
linear groups, we show an equivalence between the k-Linear problem in the source
group and the discrete logarithm in the source group.

Theorem 1.2 (Informal). Let A be an algebraic algorithm for the k-Linear
problem relative to a group G equipped with a k-linear map. Then, there exists
an algorithm B for Discrete Logarithm assumption in G, whose running time
and success probability are polynomially-related to those of A.

An immediate corollary of Theorem 1.2 is an equivalence (within our frame-
work) between the Decisional Diffie-Hellman assumption and the discrete loga-
rithm assumption in groups without a bilinear map (see Sect. 3.2 for our model
which captures such groups); and an equivalence between the Decisional Linear
assumption and the discrete logarithm assumption in bilinear groups (without a
trilinear map – see Sect. 5.1 for definition of such groups in our model). We refer
the reader to the full version of this paper [RS20] for the formal statement and
proof of Theorem 1.2. For concreteness, we now provide a more detailed account
of the proof outline for Theorem 1.2 for the simple case of k = 1.

Warm-Up: From Decisional Diffie-Hellman to Discrete Logarithms.
Consider an algebraic distinguisher D which runs in time t and has advantage ε
in breaking the Decisional Diffie-Hellman assumption in a group G. As discussed
above, this means that on input of the form (g, gx, gy, gx·y+b·z) for some b ∈ {0, 1}
and a uniform choice of x, y and z, D outputs a vector �w = (w0, w1, w2, w3) such
that:

1. gw0 · gw1·x · gw2·y · gw3·(x·y+b·z) = 1; and
2. There exists σ ∈ {0, 1} such that if b = σ, then with probability at least ε/t2

it holds that w1, w2 and w3 are all non-zero.

These facts can be used to construct an algorithm A breaking the discrete loga-
rithm problem in G. For concreteness and brevity, in this overview we focus on
the case in which σ = 0.2 The adversary A receives as input a group element
R := gr and embeds it as part of the input to D: With probability 1/2, it embeds
r instead of x by sampling y on its own and invoking D on (g,R, gy,Ry); and
with probability 1/2 it embeds r instead of y. Suppose that D returns a vector �w
for which 0 �∈ {w1, w2, w3} (which, according to condition 2 above, happens with
probability at least ε/t2). We can rewrite the first condition in additive notation
to deduce the bilinear bivariate equation w0 + w1 · x + w2 · y + w3 · x · y = 0. If r
was embedded to replace x then A, knowing y, can solve the equation for x and
output the correct discrete logarithm r. This works as long as the coefficient of
x in this equation is non-zero; i.e., as long as w1 + w3 · y �= 0. But whenever
0 �∈ {w1, w2, w3}, this can only happen if y = −w1/w3. Hence, if r was embed-
ded to replace y, A may simply return −w1/w3 in order to output the correct
discrete logarithm r.
2 In the full reduction (Sect. 4), we consider two attacks, one per each possible value of

σ, and the adversary A chooses which one of them to execute uniformly at random.
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1.3 Additional Related Work

Beullens and Wee [BW19] have put forth the Knowledge of Orthogonality
Assumption (KOALA), which is similar in spirit to our extension of the algebraic
group model. The assumption deals with the problem of distinguishing between
vectors of group elements whose exponents are uniformly drawn from some lin-
ear subspace V and vectors of independently (and uniformly) sampled group ele-
ments. Roughly speaking, KOALA holds if for any probabilistic polynomial-time
algorithm which can distinguish between the two afore-described distributions,
there exists an extractor which outputs a vector from the orthogonal comple-
ment V ⊥. Though similar in spirit, our model significantly generalizes KOALA.
First, our model supports interactive security games, whereas KOALA considers
a non-interactive game. In interactive games, our model also accounts for the
entire view of the adversary, which may extend beyond just vectors of group ele-
ments. Second, and more importantly, KOALA seems to be tailored to prove the
security of concrete obfuscation schemes, and hence only deals with the pseu-
dorandomness of very specific distributions. In contrast, even when restricted
to non-interactive games, our model can be used to reason about the ability to
distinguish between any two distributions over group elements.

More generally speaking, these aforesaid differences between our model and
KOALA precisely exemplify the motivation of the our work. Over the years, var-
ious knowledge assumptions in cyclic groups have been introduced in order to
reason about the security of different constructions. The algebraic group model
provides a unified framework for capturing computational knowledge assump-
tions. The motivation behind the introduction of our model is to capture in a
similar manner decisional knowledge assumptions, such as KOALA, as well.

In a recent and independent work, Bauer, Fuchsbauer and Loss [BFL20] have
considered (among other things) the computational variant of the Uber prob-
lem of Boneh, Boyen and Goh [BBG05,Boy08] in bilinear groups. Concretely,
Bauer et al. reduced this variant to the q-Discrete Logarithm problem within the
algebraic group model of Fuchsbauer et al. [FKL18], where q is the maximum
(total) degree of the challenge polynomials in the instance of the Uber problem.
Our result regarding the Uber problem (Theorem 1.1) differs from theirs in that
we consider the decisional variant of the Uber problem within our decisional
algebraic group model. Both our work and theirs utilize a similar technique of
embedding randomizations of the secret exponent of the q-Discrete Logarithm
instance into the secret exponents of the Uber problem instance (the concrete
randomizations, however, are different). This is in contrast to our proof of The-
orem 1.2, which employs a different technique.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we review the
basic notation and definitions underlying the algebraic group model. In Sect. 3 we
present our generalized framework capturing algebraic distinguishers, and as a
warm-up, Sect. 4 includes a proof of the equivalence within our framework of the
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decisional Diffie-Hellman problem and the discrete logarithm problem. In Sect. 5
we extend our framework to bilinear groups, and prove our hardness result for
the Uber family of decisional problems in such groups. In the full version of this
paper [RS20], we generalize our framework to multilinear groups, and prove our
hardness result for the decisional k-Linear problem in k-linear groups.

2 Preliminaries

In this section we briefly review the basic notions and definitions underlying the
algebraic-group model [FKL18]. Throughout this work, for a distribution X we
denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . For an integer n ∈ N, we use the notation
[n] to denote the set {1, . . . , n}.

Game-Based Security Definitions. Notions of security within the algebraic-
group model are formalized using “security games”, following the classic frame-
work of Bellare and Rogaway [BR06]. A game G is parameterized by a set par
of public parameters, and is comprised of an adversary A interacting with a
challenger via oracle access. Such a game is described by a main procedure and
possibly additional oracle procedures, which describe the manner in which the
challenger replies to oracle queries issued by the adversary. We denote by Gpar a
game G with public parameters par, and we denote by GA

par the output of Gpar

when executed with an adversary A (note that GA
par is a random variable defined

over the randomness of both A and the challenger). We denote by TimeGpar

A

the worst-case running time of Gpar when executed with an adversary A. An
adversary A participating in a game Gpar is said to win whenever GA

par = 1,

and the advantage of A in Gpar is defined as AdvGpar

A
def= Pr

[
GA

par = 1
]
.

All security games in this paper are algebraic, which means that their public
parameters consist of a description G = (G, p, g) of a cyclic group G of prime
order p generated by the generator g (generally speaking, one can consider def-
initions in which par may include additional parameters, but this will not be
necessary for our purposes). In actual instantiation of cryptographic primitives
that rely on cyclic groups, such a description G is usually generated via a group-
generation algorithm GroupGen(1λ), where λ ∈ N is the security parameter that
determines the bit-length of the prime p. However, we will abstract this fact
away in the paper, since our reductions hold for fixing of the security parameter
or of the underlying group.

Similarly to Fuchsbauer et al. we use boldface upper-case letters (e.g., Z)
to denote elements of the group G in algebraic games, in order to distinguish
them from other variables in the game. Figure 1 exemplifies the notion of an
algebraic game by describing the games associated with the Discrete Logarithm
problem and the q-Discrete Logarithm problem that we consider in Sects. 4 and
5, respectively.
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Fig. 1. Examples of algebraic games relative to a cyclic group G = (G, p, g) and an
adversary A. The game DLOGA

G (on the left) captures the Discrete Logarithm problem,
and the game q-DLOGA

G (on the right) captures the q-Discrete Logarithm problem
(note that setting q = 1 corresponds to the Discrete Logarithm problem).

Algebraic Algorithms. Fuchsbauer et al. [FKL18] presented the following
notion of algebraic algorithms. In order to differentiate their notion from our
extension which captures algorithms in decisional security games as well, we will
refer to algorithms that satisfy their definition as computationally-algebraic ones.
Roughly speaking, an algorithm A is computationally algebraic if whenever it
outputs a group element Z, it also outputs a representation of this element in
the basis comprised of all group elements A has observed so far.

Definition 2.1 ([FKL18]). Let G = (G, p, g) be a description of a cyclic group.
An algorithm A participating in an algebraic game with parameters G is said to
be computationally algebraic if whenever A outputs a group element Z ∈ G, it
also outputs a vector �z = (z0, . . . , zk) ∈ Z

k+1
p such that Z =

∏k
i=0 Xzi

i , where
X1, . . . ,Xk are the group elements that A has received so far in the game and
X0 = g.

3 Our Framework: Algebraic Distinguishers

In this section we present our framework, extending that of Fuchsbauer et al.
[FKL18] to consider algebraic distinguishers. We start by defining decisional alge-
braic games; then move on to present and discuss our notion of (fully-)algebraic
algorithms, which covers in particular algebraic distinguishers; and finally, we
observe that every generic algorithm is also an algebraic one within our frame-
work.

3.1 Decisional Algebraic Games

The game-based definitions presented in Sect. 2 are suitable for computational
games, which are aimed at capturing the hardness of computational problems
(e.g., the computational Diffie-Hellman problem) and computational security
properties of cryptographic primitives (e.g., unforgeability of signature schemes).
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Decisional games on the other hand are aimed at capturing decisional cryp-
tographic problems (e.g., the decisional Diffie-Hellman problem) and indistin-
guishability based security properties of cryptographic primitives (e.g., semantic
security of an encryption scheme). At the end of a decisional game, the adver-
sary outputs either the acceptance symbol Acc, in which case the output of the
game is 1, or the rejection symbol Rej, in which case the output of the game
is 0. The advantage of an adversary A in distinguishing between two decisional
games Gpar and G′

par′ is defined as

Adv
Gpar,G′

par′
A

def=
∣
∣
∣Pr

[
GA

par = 1
] − Pr

[
G′A

par′ = 1
]∣
∣
∣ .

Typically, a decisional security definition will be obtained by a single deci-
sional game G with an additional parameter bit b, where the adversary needs
to distinguish between the cases b = 0 and b = 1. For brevity, we will refer
to the advantage of an adversary A in distinguishing between Gpar,0 and
Gpar,1 simply as the advantage of A in Gpar, and we will use the notation

AdvGpar

A
def= AdvGpar,0,Gpar,1

A . The running time of GA
par is defined as the max-

imum of the running times of GA
par,0 and of GA

par,1.
Figure 2 exemplifies the notion of a decisional algebraic game by presenting

the game associated with the Decisional Diffie-Hellman problem that we consider
in Sect. 4. As discussed in Sect. 2, recall that we use boldface upper-case letters
(e.g., Z) to denote elements of the underlying group G in order to distinguish
them from other variables in the game.

Fig. 2. An example of a decisional algebraic game relative to a cyclic group G =
(G, p, g) and an adversary A. The game DDHA

G,b captures the Decisional Diffie-Hellman
problem.

3.2 Extending the Notion of Algebraic Algorithms

In order to define (fully-)algebraic algorithms, we first introduce some additional
notation. For an algebraic game G, a group description G = (G, p, g) and an
algorithm A, we use ViewGG

A to denote the random variable which is the view of
A in the game GG . As is standard, the view of A consists of its randomness, its
input, and all incoming messages that it receives throughout the game (if any
such messages exist). Moreover, for an additional fixed vector �w of elements in
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Zp, we denote by
[
ViewGG

A

]

supp(�w)
the random variable obtained from ViewGG

A

by omitting all group elements whose corresponding entry in �w is 0 (where the
ith group element observed by A is naturally associated with the ith entry of �w).
That is, for a fixed vector �w of k group elements, the distribution associated with[
ViewGG

A

]

supp(�w)
is defined by first sampling a view V according to ViewGG

A ; and

then for each i ∈ [min{k,m}] for which wi = 0, replacing the ith group element
in V with the unique erasure symbol ⊥, where m is the number of group elements
in V . Hence, fixing �w, the random variable

[
ViewGG

A

]

supp(�w)
is defined over the

randomness of A and of the challenger in GG . For two random variables X1 and
X2, we use the notation X1 �≡ X2 to indicate that X1 and X2 are not identically
distributed.

Definition 3.1. Let G = (G, p, g) be a description of a cyclic group. An algo-
rithm A participating in an algebraic game with parameters G is said to be
algebraic if it is computationally-algebraic (per Definition 2.1) and in addition,
whenever A outputs either the Acc or the Rej symbols, it also outputs a vector �w
of elements in Zp such that the following conditions hold:

1.
∏k

i=0 Xwi
i = 1G, where X1, . . . ,Xk are the group elements that A has received

so far in the game, X0 = g and 1G is the identity element of G.
2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′}

such that

Pr
�w

[[
ViewGG

A

]

supp(�w)
�≡

[
ViewG′G

A

]

supp(�w)

]

≥ ε

t2
,

where ε = AdvGG ,G′G
A , t = TimeHG

A and the probability is taken over the
choice of �w induced by a random execution of HG with A.

We clarify that the probability in the second condition of Definition 3.1 is
over the choice of vector �w in a random execution of HG with A; meaning, it is
taken over the randomness of A and of the challenger in HG . The event inside the
probability means that for the chosen �w, the random variable

[
ViewGG

A

]

supp(�w)

is distributed differently than the random variable
[
ViewG′G

A

]

supp(�w)
.

Intuitively, whenever an algebraic algorithm accepts or rejects in an algebraic
game, it also produces a zero test, defined by the vector �w, which is passed by
the group elements that the algorithm has observed during the game. Of course,
such a zero test can always be produced by simply setting the vector �w to be
the all zeros vector.

One possible way to mend this situation is by requiring that whenever an
algebraic algorithm accepts (by outputting the symbol Acc), the vector �w which
it outputs has to be non-zero. Alas, this approach suffers from two caveats.
Firstly, this requirement is unrealistic, as an algorithm can always accept even
without “having knowledge” of such a non-zero vector �w. Concretely, following
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Fuchsbauer et al. [FKL18], we aim to have a definition which distills some fun-
damental algebraic principle from many hardness results in the generic group
model; while simultaneously getting rid of the unrealistic assumption that algo-
rithms are oblivious to the concrete representation of group elements. Secondly,
the intuition behind Definition 3.1 is that the vector �w serves as a “witness”
which explains the adversary’s decision and differentiates between the two games
(just like the vector �z in the definition of Fuchsbauer et al. – Definition 2.1 –
serves as a witness which explains how the algorithm has come up with the group
element Z). Therefore, it is not enough to ask that �w �= �0, since even then it
might be that the joint distribution of the group elements in the support of �w
is identical in both games, rendering the zero test associated with �w useless in
distinguishing between them.

The second condition in Definition 3.1 accommodates these two lines of rea-
soning. It is descriptive of generic group algorithms (see Sect. 3.3 for further
details; this also sheds light as to where the term t2 comes from), and it makes
sure that the views of the adversary in both games remain different even when
projected onto the support of �w. Theoretically speaking, it still might be the case
that the zero test associated �w passes with equal probabilities in both games,3

but we are not aware of a natural construction or assumption for which this is
the case, and in particular for the applications of the model presented in this
paper the second condition of Definition 3.1 is sufficient. Hence, we opted not to
strengthen our definition beyond that. We do believe however, that if one finds
an application for which it is necessary to require that the zero test associated
�w passes with distinct probabilities in both games, then such a strengthening of
the definition is justifiable.

3.3 Generic Algorithms Are Algebraic

Our definition of algebraic algorithms fits the intuition provided by Fuchsbauer
et al. [FKL18] according to which the algebraic group model “lies in between
the standard model and the generic group model”. Informally, the generic group
model captures algorithms that do not exploit the representation of the under-
lying group in any way, and as such, they should perform identically among all
groups which are isomorphic to each other.

This intuition is typically formalized by withholding the group description
from the generic algorithm and supplying it only with the group order p. The con-
crete representation of group elements is then replaced with some representation-
independent handle (a random label in Shoup’s model [Sho97] and an opaque

3 Consider for example a decisional game GG,b in which if b = 0, then the adversary
A receives as input the tuple (X,Xa,Y,Ya) for some distinct fixed X and Y and a
randomly chosen a, and if b = 1 then A receives as input the tuple (Y,Ya,X,Xa).
On the one hand, the witness �w = (a, −1, a, −1) satisfies both of the conditions of
Definition 3.1. On the other hand, it is always the case that Xw1 · (Xa)w2 · Yw3 ·
(Ya)w4 = 1G = Yw1 · (Ya)w2 · Xw3 · (Xa)w4 , and hence the zero test induced by �w
is not actually helpful in distinguishing GG,0 from GG,1.
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“pointer” in Maurer’s model [Mau05]). Group operations are performed via
queries to an oracle which curates the “true values” behind the handles.

Fuchsbauer et al. observed that any generic algorithm for a computational
problem is an algebraic algorithm according to their framework (recall Sect. 2).
Here, we show that our framework enables in addition to capture generic algo-
rithms for decisional problems, thus providing a unified framework for relaxing
the somewhat too-strict generic group model. This is captured by the following
informal proposition.

Proposition 3.2. Let G = (G, p, g) be a description of cyclic group, and let
G0 and G1 be decisional algebraic games. Let Agen be a generic algorithm that
distinguishes between G0 and G1 with advantage ε = ε(p) in time t = t(p).
Then, there exists an algebraic algorithm Aalg such that AdvG0,G ,G1,G

AAlg
≈ ε and

AAlg runs in time ≈ t.

The proof of Proposition 3.2 is based on the fact that the algebraic algorithm
Aalg can run the generic algorithm Agen and return the same output, while sim-
ulating the generic group oracle to Agen. This simulation relies on the following
two well-established observations resulting from the fact that Agen is a generic
algorithm:

1. For any group element Y which Agen computes throughout the game, Aalg can
produce a representation of Y as

∏
i X

vi
i , where {Xi}i are the group elements

which Agen has observed so far and {vi}i are values in Zp known to Aalg.
2. Since the access that Agen has to the group is representation independent, the

only useful information it acquires throughout the game is the equality pat-
tern among the group elements that it receives or produces during the game.
Hence, in order to distinguish between G0 and G1 with advantage ε, there
must exist an equality relation which occurs in one game with probability
which is greater by at least ε than the probability that this equality relation
occurs in the other game. In particular, such an equality relation occurs with
probability at least ε.

Once Agen terminates, Aalg can choose at random one pair of elements out of
all pairs of equal elements that arose throughout the computation, allowing
repetition (that is, Aalg may chose the same element twice, so there is always
at least one pair of equal elements). Let the representation of these two equal
elements be

∏
i X

vi
i and

∏
i X

v′
i

i . The vector �w which Aalg outputs together with
its decision symbol is then defined by wi = vi−v′

i for each i. The fact that the two
group elements are equal guarantees that

∏
i X

wi
i = 1G (this guarantees the first

requirement of Definition 3.1). Moreover, there exists a bit b ∈ {0, 1}, such that
with probability at least ε the list of elements produced by Agen in Gb includes

a pair
∏

i X
vi
i and

∏
i X

v′
i

i such that
[
View

G0,G
Aalg

]

supp(�w)
�≡

[
View

G1,G
Aalg

]

supp(�w)
(for

�w = �v − �v′). This is due to the fact that there exists b ∈ {0, 1} for which some
equality has to arise Gb with probability which is greater by ε than in G1−b.
Finally, conditioned on such a pair being present in the list of elements produced
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by Agen, the probability that Aalg chooses it is at least 1/t2, since Agen produces
at most t group elements; meaning there are at most t2 pairs of elements (this
guarantees the second requirement of Definition 3.1).

4 Warm-Up: The Algebraic Equivalence of DDH and
DLog

As a first example for the usefulness of our new framework, we show that the
hardness of the Decisional Diffie-Hellman problem with respect to algebraic dis-
tinguishers is implied by that of the Discrete Logarithm problem. Recall that
the Discrete Logarithm and Decisional Diffie-Hellman problems are defined via
the computational algebraic game DLOGG and the decisional algebraic game
DDHG described in Figs. 1 and 2, respectively. We prove the following theorem:

Theorem 4.1. Let G = (G, p, g) be a description of a cyclic group. For any alge-
braic algorithm A there exists an algorithm B such that AdvDLOGG

B ≥ ε/(4 · t2)
and TimeDLOGG

B ≤ t + poly(log p), where ε = AdvDDHG
A and t = TimeDDHG

A .

Note that Theorem 4.1 implies an equivalence between the algebraic hard-
ness of the Decisional Diffie-Hellman problem and the hardness of the Discrete
Logarithm problem. Informally, given as input (in addition to G) a triplet of
group elements (X,Y,Z) and (black-box) access to an algorithm ADLOG break-
ing the Discrete Log problem, an algebraic distinguisher ADDH can be defined as
follows. First, it invokes ADLOG on X to retrieve its potential discrete logarithm
x, and then checks whether Z = Yx. If so, it accepts and outputs the vector
�w = (x,−1,−x, 1), and if not (or if ADLOG fails), it rejects and outputs �w = �0.
This straightforward algorithm satisfies our two requirements specified in Defini-
tion 3.1 (note that a similar algorithm that outputs the vector �w = (0, 0,−x, 1)
instead of the vector �w = (x,−1,−x, 1) would satisfy our first requirement but
not our second one).

Proof of Theorem 4.1. Let A be an algebraic algorithm participating in the
game DDHG,b for b ∈ {0, 1}. We construct an algorithm B participating in
DLOGG .

Algorithm B

Input: A group element X sampled uniformly at random by the challenger.

1. Sample b ← {0, 1} and y, z ← Zp, and set Y := gy.
2. If b = 0:

(a) Set Z := gz.
(b) Invoke A(X,Y,Z) to obtain a decision symbol Sym ∈ {Acc,Rej} along

with a vector �w = (w0, w1, w2, w3) ∈ Z
4
p such that gw0 · Xw1 · Yw2 ·

Zw3 = 1G.
(c) If w1 = 0 then output ⊥, and otherwise x∗ := −(w0+w2 ·y+w3 ·z)/w1.

3. If b = 1:
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(a) Set Z := Xy.

(b) Sample c ← {0, 1} and set ˜X := X1−c · Yc and ˜Y := Xc · Y1−c.

(c) Invoke A(˜X, ˜Y,Z) to obtain a decision symbol Sym ∈ {Acc,Rej} along

with a vector �w = (w0, w1, w2, w3) ∈ Z
4
p such that gw0 · ˜Xw1 · ˜Yw2 ·

Zw3 = 1G.
(d) If c = 0:

• If w1 + w3 · y = 0 then output ⊥, and otherwise output x∗ :=
−(w0 + w2 · y)/(w1 + w3 · y).

(e) If c = 1:
• If w3 = 0 then output ⊥, and otherwise output x∗ := −w1/w3.

Let ε := AdvDDHG
A and t := TimeDDHG

A . By our definition of an algebraic
algorithm, there exists a bit b∗ ∈ {0, 1} such that

Pr
�w

[[
View

DDHG,0
A

]

supp(�w)
�≡

[
View

DDHG,1
A

]

supp(�w)

]

≥ ε

t2
,

where the probability is taken over the choice of �w induced by a random exe-
cution of DDHG,b∗ with A. Say that the vector �w outputted by A is good if
0 �∈ {w1, w2, w3}, where w1, w2, w3 are the entries of �w which correspond to the
three group elements that A receives as inputs. The predicate inside the prob-
ability is satisfied if and only if �w is good; hence, Pr [�w is good] ≥ ε/t2 over a
random execution of DDHG,b∗ with A.

Denote by Hit the event in which the bit b = b∗, where b is the bit chosen
by B in Step 1. Regardless of the value of b∗, it holds that Pr [Hit] = 1/2, and
that Pr [�w is good|Hit] ≥ ε/t2 since conditioned on Hit, B perfectly simulates the
game DDHG,b∗ to A. Consider two cases:

1. If b∗ = 0: In this case, when �w is good and Hit occurs, the linear equation
X · w1 + w0 + w2 · y + w3 · z = 0 in the indeterminate X has a unique
solution X = x∗ and this is the output of B. Moreover, by the requirement
gw0 · Xw1 · Yw2 · Zw3 = 1G, it holds that gx∗

= X. Therefore,

AdvDLOGG
B = Pr

[
DLOGB

G = 1
]

≥ Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit

]
· Pr [�w is good ∧ Hit]

=
1
2

· Pr [�w is good|Hit]

≥ ε

2 · t2
.

2. If b∗ = 1: Let C be the random variable describing the bit c sampled by B in
Step 3(b), and let E denote the event in which w1 +w3 · ỹ = 0 in an execution
of DDHG,1 with A, where gỹ is the group element given as the second input
to A in the game. On the one hand, when �w is good and E and Hit occur, the
linear equation X · (w1 +w3 · ỹ)+w0 +w2 · ỹ +w3 · z = 0 in the indeterminate
X has a unique solution X = x∗. Moreover, conditioned also on C = 0, this
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is the output of B, and by the requirement gw0 ·X̃w1 ·Ỹw2 ·Zw3 = 1G, it holds
that gx∗

= X. Hence,

Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E

]

≥ Pr
[
DLOGB

G = 1 ∧ C = 0
∣
∣
∣�w is good ∧ Hit ∧ E

]

= Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E ∧ C = 0

]
· Pr [C = 0] (1)

=
1
2
, (2)

where (1) follows from the fact that the bits b and c that B samples are chosen
independently, and since the view of A as invoked by B is independent of the
bit c, and hence the events E and �w is good are independent of the event
C = 0.
On the other hand, when �w is good, the linear equation X · w3 + w1 = 0 in
the indeterminate X has a unique solution X = x∗. Moreover, conditioned
on Hit and on C = 1, this x∗ is the output of B, and conditioned on E, it also
holds that gx∗

= X. It follows that,

Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E

]

≥ Pr
[
DLOGB

G = 1 ∧ C = 1
∣
∣
∣�w is good ∧ Hit ∧ E

]

= Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E ∧ C = 1

]
· Pr [C = 1] (3)

=
1
2
, (4)

where (3) holds for the same reasons as (1).
Putting (2) and (4) together,

AdvDLOGG
B

= Pr
[
DLOGB

G = 1
]

≥ Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit

]
· Pr [�w is good ∧ Hit]

≥ ε

2 · t2
·
(
Pr

[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E

]
· Pr [E|�w is good ∧ Hit]

+ Pr
[
DLOGB

G = 1
∣
∣
∣�w is good ∧ Hit ∧ E

]
· Pr

[
E
∣
∣�w is good ∧ Hit

])

≥ ε

4 · t2
.

This concludes the proof of Theorem 4.1.

��
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5 The Algebraic Hardness of the Uber Family
of Decisional Problems

In this section we prove that the hardness of the Uber family of decisional prob-
lems in bilinear groups [BBG05,Boy08] with respect to algebraic distinguishers
is equivalent to that of the computational q-discrete logarithm problem, for an
appropriate choice of q, in the source group (we formally define these assump-
tions in Sect. 5.2).

5.1 Algebraic Algorithms in Bilinear Groups

Before presenting our main theorem for this section, we first need to extend our
framework to bilinear groups. We focus on symmetric bilinear groups for ease
of presentation, but the definitions in this section easily generalize to capture
asymmetric pairings as well. An algebraic game which is defined with respect to
a symmetric bilinear group is parameterized by a group description of the form
G = (G,GT , p, g, e), where G and GT are both cyclic groups of order p, g is a
generator of G, and e : G × G → GT is a non-degenerate bilinear map. We will
often use the notation gT := e(g, g).

Mizuide et al. [MTT19] extended the definition of Fuchsbauer et al. [FKL18]
of computationally-algebraic algorithms to the setting of symmetric bilinear
groups. We start by reviewing their definition (with slight notational modifi-
cations).

Definition 5.1. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group. An algorithm A participating in an algebraic game with parameters G is
said to be computationally-algebraic if:

1. Whenever A outputs a group element Z ∈ G, it also outputs a vector �z of
elements in Zp such that Z =

∏k
i=0 Xzi

i , where X1, . . . ,Xk are the elements
of G that A has received so far in the game and X0 = g.

2. Whenever A outputs a group element V ∈ GT , it also outputs vectors �v and �v′

of elements in Zp such that V =
∏

0≤i≤j≤k e (Xi,Xj)
vk·i+j · ∏�

i=1 Yv′
i

i , where
X1, . . . ,Xk are the elements of G and Y1, . . . ,Y� are the elements of GT that
A has received so far in the game and X0 = g.

Before defining fully-algebraic algorithms in bilinear groups, we introduce
some additional notation. The random variable ViewGG

A is defined analogously

to its definition in Sect. 3.2. For vectors �v and �v′, we denote by
[
ViewGG

A

]

supp(�v,�v′)

the random variable obtained from ViewGG
A by:

1. Omitting each element of G for which all of the corresponding entries in �v
are 0. That is, we omit the ith element of G that A observes if for all j ≥ i it
holds that vk·i+j = 0 and for all 0 ≤ j < i it holds that vk·j+i = 0 (where k
is the number of elements of G that A observes in the game).
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2. Omitting all elements of GT whose corresponding entry in �v′ is 0 (where the
ith element of GT observed by A is naturally associated with the ith entry of
�v′).

Definition 5.2. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group. An algorithm A participating in an algebraic game with parameters G is
said to be algebraic if it is computationally-algebraic (per Definition 5.1) and in
addition, whenever A outputs either the Acc or the Rej symbols, it also outputs a
pair (�v, �v′) of vectors of elements in Zp such that the following conditions hold:

1.
∏

0≤i≤j≤k e (Xi,Xj)
vk·i+j · ∏�

i=1 Yv′
i

i = 1GT
, where X1, . . . ,Xk are the ele-

ments of G and Y1, . . . ,Y� are the elements of GT that A has received so far
in the game, and 1GT

is the identity element in GT .
2. For any two decisional algebraic games G and G′, there exists H ∈ {G,G′}

such that

Pr
(�v,�v′)

[[
ViewGG

A

]

supp(�v,�v′)
�≡

[
ViewG′G

A

]

supp(�v,�v′)

]

≥ ε

t2
,

where ε = AdvGG ,G′G
A , t = TimeHG

A , and the probability is taken over the

choice of
(
�v, �v′

)
induced by a random execution of HG with A.

5.2 Algebraic Equivalence of the Uber and q-DLOG Problems

Before presenting the main reduction of this section, we first define the q-discrete
logarithm problem and the Uber family of decisional problems [BBG05,Boy08].
The q-discrete logarithm problem is a parameterized generalization of the dis-
crete logarithm problem, in which the adversary receives

(
gxi

)

i∈{0,...,q}
and

needs to compute x. The “Uber assumption” is a family of decisional assump-
tions in bilinear maps: It is parameterized by two tuples of m-variate polynomials
�r = (r1, . . . , rt) and �s = (s1, . . . , st) and an m-variate polynomial f ; each choice
of �r,�s and f yields a specific assumption. Roughly, the assumption states that
given gr1(x1,...,xm), . . . , grt(x1,...,xm) and g

s1(x1,...,xm)
T , . . . , g

st(x1,...,xm)
T , it is diffi-

cult to distinguish between g
f(x1,...,xm)
T and a uniformly-random element in GT

for a uniform choice of x1, . . . , xm in Zp. Both assumptions are formally defined
via the algebraic games q-DLOG and (�r,�s, f)-UBER in Fig. 3.

Note that there are choices of �r,�s and f for which the (�r,�s, f)-UBER game
can be easily won. If given access to g�r(X1,...,Xm) and to g

�s(X1,...,Xm)
T , one can

obtain g
f(X1,...,Xm)
T through a sequence of group operations and bilinear map

operations (where Xi is a indeterminate replacing xi), then one can distinguish
between the case where b = 0 and the case where b = 1 by comparing g

f(X1,...,Xm)
T

to Z. To rule out such trivial attacks, Boneh et al. introduced the following
definition.
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Fig. 3. The game q-DLOGA
G (on the left) captures the q-Discrete Logarithm assump-

tion; and the game (�r,�s, f)-UBERA
G,b (on the right) defines the Uber assumption of

Boneh, Boyen and Goh [BBG05] parameterized by a triplet (�r,�s, f) where �r and �s
are vectors of m-variate polynomials and f is an m-variate polynomial. The notation
�X := g�r(x1,...,xm) is a shorthand for �X := (gr1(x1,...,xm), . . . , grt(x1,...,xm)) and the nota-

tion �Y := g
�s(x1,...,xm)
T is defined similarly. Both games are defined relative to a bilinear

group G = (G,GT , p, g, e) and an adversary A. The q-DLOG game in bilinear groups
is the same as the game defined in Sect. 2, when considering the discrete logarithm to
the source group.

Definition 5.3. Let p ∈ N be a prime, let t,m ∈ N, let �r,�s ∈ (Fp[X1, . . . , Xm])t

be t-tuples of polynomials such that r1 = s1 = 1, and let f ∈ F[X1, . . . , Xm]
be a polynomial. We say that f is dependent on (�r,�s) if there exist integers
{αi,j}0≤i≤j≤t and {βk}k∈[t] such that

f =
∑

0≤i≤j≤t

αi,j · ri · rj +
∑

k∈[t]

βk · sk.

If f is not dependent on (�r,�s), we say that it is independent of (�r,�s).

Observe, that we can only hope to reduce (�r,�s, f)-UBER to q-DLOG for
triplets (�r,�s, f) such that f is independent of (�r,�s). The following theorem, which
is the main result of this section, states that such a reduction in fact applies to
any such triplet (�r,�s, f).

Theorem 5.4. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group, let t,m ∈ N, let �r,�s ∈ (Fp[X1, . . . , Xm])t be t-tuples of polynomials of
degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial of degree at most d
which is independent of (�r,�s). Then, for any algebraic algorithm A there exists an
algebraic algorithm B such that Advq-DLOGG

B ≥ ε/(4 ·T 2)−d · (t2 + t + 2)/(8 ·p)
and Timeq-DLOGG

B ≤ T + poly(m, t, d, log p), where q = d · (t2 + t + 2)/2, ε =

Adv
(�r,�s,f)-UBERG
A and T = Time

(�r,�s,f)-UBERG
A .

As a first step towards proving Theorem 5.4, we define an intermediate
assumption which we call the “Randomized Univariate Uber Assumption”. This
assumption is obtained from (�r,�s, f)-UBER by the following modification:
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Fig. 4. The game (�r,�s, f)-RUUA
G,b which captures our Randomized Univariate Uber

assumption. The assumption is parameterized by a triplet (�r,�s, f) where �r and �s are
vectors of m-variate polynomials and f is an m-variate polynomial. The game is defined
relative to a bilinear group G = (G,GT , p, g, e) and an adversary A.

Instead of sampling x1, . . . , xm uniformly at random from Zp, the challenger
samples a single x ← Zp alongside m random polynomials c1, . . . , cm, and sets
xi := ci(x). The Randomized Univariate Uber assumption is formalized via the
game (�r,�s, f)-RUU described in Fig. 4.

The following lemma follows from the work of Ghadafi and Groth [GG17],
and reduces the security of the Uber assumption to that of the Randomized
Univariate Uber assumption.

Lemma 5.5. ([GG17]). Let G = (G,GT , p, g, e) be a description of a symmetric
bilinear group, let t,m ∈ N, let �r,�s ∈ (Fp[X1, . . . , Xm])t be t-tuples of polyno-
mials of degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial which is
independent of (�r,�s). Then, the following holds:

1. For any algebraic algorithm A there exists an algebraic algorithm B such that

Adv
(�r,�s,f)-RUUG
B = Adv

(�r,�s,f)-UBERG
A

and

Time
(�r,�s,f)-RUUG
B ≤ Time

(�r,�s,f)-UBERG
A + poly(m, t, log p).

2. With probability at least 1−d · (t2 + t+2)/(2 ·p) over the choice of c1, . . . , cm,
the univariate polynomial f(�c(X)) is independent of (�r′, �s′), where �c(X) =
(c1(X), . . . , cm(X)), �r′ = (r1(�c(X)), . . . , rt(�c(X))) and �s′ = (s1(�c(X)), . . . ,
st(�c(X))).

We note that there are some small technical differences between the theorem
proven by Ghadafi and Groth and Lemma 5.5. Ghadafi and Groth deal with a
computational variant of the Uber assumption, in which the adversary can choose
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the polynomial f .4 Additionally, they do not consider algebraic adversaries. We
stress, however, that their reduction readily applies to imply Lemma 5.5.5

The main part of the proof of Theorem 5.4 is consists of the following
lemma which reduces the security of the randomized univariate Uber assump-
tion (against algebraic adversaries) to the security of the q-DLOG assumption.
Together with Lemma 5.5, this immediately implies Theorem 5.4.

Lemma 5.6. Let G = (G,GT , p, g, e) be a description of a symmetric bilinear
group, let t,m ∈ N, let �r,�s ∈ (Fp[X1, . . . , Xm])t be t-tuples of polynomials of
degree at most d, and let f ∈ F[X1, . . . , Xm] be a polynomial of degree at most d
which is independent of (�r,�s). Then, for any algebraic algorithm A there exists an
algebraic algorithm B such that Advq-DLOGG

B ≥ ε/(4 ·T 2)−d · (t2 + t + 2)/(8 ·p)
and Timeq-DLOGG

B ≤ T + poly(d, t, log p), where q = d · (t2 + t + 2)/2, ε =

Adv
(�r,�s,f)-RUUG
B and T = Time

(�r,�s,f)-RUUG
B .

The proof of Lemma 5.6 can be found in the full version of this paper [RS20].
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Abstract. Time-lock puzzles—problems whose solution requires some
amount of sequential effort—have recently received increased interest
(e.g., in the context of verifiable delay functions). Most constructions

rely on the sequential-squaring conjecture that computing g2
T

mod N
for a uniform g requires at least T (sequential) steps. We study the
security of time-lock primitives from two perspectives:
1. We give the first hardness result about the sequential-squaring con-

jecture in a non-generic model of computation. Namely, in a quanti-
tative version of the algebraic group model (AGM) that we call the
strong AGM, we show that any speed up of sequential squaring is as
hard as factoring N .

2. We then focus on timed commitments, one of the most important
primitives that can be obtained from time-lock puzzles. We extend
existing security definitions to settings that may arise when using
timed commitments in higher-level protocols, and give the first con-
struction of non-malleable timed commitments. As a building block
of independent interest, we also define (and give constructions for)
a related primitive called timed public-key encryption.

1 Introduction

Time-lock puzzles, introduced by Rivest, Shamir, and Wagner [29], refer to a
fascinating type of computational problem that requires a certain amount of
sequential effort to solve. Time-lock puzzles can be used to construct timed
commitments [7], which “encrypt a message m into the future” such that m
remains computationally hidden for some time T , but can be recovered once
this time has passed. Time-lock puzzles can be used to build various other prim-
itives, including verifiable delay functions (VDFs) [5,6,28,33], zero-knowledge
proofs [13], and non-malleable (standard) commitments [19], and have applica-
tions to fair coin tossing, e-voting, auctions, and contract signing [7,23]. In this
work, we (1) provide the first formal evidence in support of the hardness of the
most widely used time-lock puzzle [29] and (2) give new, stronger security defini-
tions (and constructions) for timed commitments and related primitives. These
contributions are explained in more detail next.
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Hardness in the (strong) AGM. The hardness assumption underlying the
most popular time-lock puzzle [29] is that, given a random generator g in the
group of quadratic residues1 QRN (where N is the product of two safe primes),
it is hard to compute g2

T

mod N in fewer than T sequential steps. We study
this assumption in a new, strengthened version of the algebraic group model
(AGM) [15] that we call the strong AGM (SAGM) that lies in between the
generic group model (GGM) [24,32] and the AGM. Roughly, an algorithm A in
the AGM is constrained as follows: for any group element x that A outputs, A
must also output coefficients showing how x was computed from group elements
previously given to A as input. The SAGM imposes the stronger constraint
that A output the entire path of its computation (i.e., all intermediate group
operations) that resulted in output x. We show that if QRN is modeled as a
strongly algebraic group, then computing g2

T

mod N from g using fewer than
T squarings is as hard as factoring N . Our result is the first formal argument
supporting the sequential hardness of squaring in QRN , and immediately implies
the security of Pietrzak’s VDF [28] in the SAGM (assuming the hardness of
factoring). Our technique deviates substantially from known proofs in the AGM,
which use groups of (known) prime order. We also show that in the AGM, it
is not possible to reduce the hardness of speeding up sequential squaring to
factoring (assuming factoring is hard in the first place).

Non-malleable Timed Commitments. The second part of our paper is con-
cerned with the security of non-interactive timed commitments (NITCs). A timed
commitment differs from a regular one in that it additionally has a “forced
decommit” routine that can be used to force open the commitment after a cer-
tain amount of time in case the committer refuses to open it. Moreover, a com-
mitment comes with a proof that it can be forced open if needed. We introduce a
strong notion of non-malleability for such schemes. To construct a non-malleable
NITC, we formalize as a stepping stone a timed public-key analogue that we call
timed public-key encryption (TPKE). We then show how to achieve an appropri-
ate notion of CCA-security for TPKE. Finally, we show a generic transformation
from CCA-secure TPKE to non-malleable NITC. Although our main purpose
for introducing TPKE is to obtain a non-malleable NITC, we believe that TPKE
is an independently interesting primitive worthy of further study.

1.1 Related Work

We highlight here additional works not already cited earlier. Mahmoody et
al. [22] show constructions of time-lock puzzles in the random-oracle model, and
Bitansky et al. [4] give constructions based on randomized encodings. In recent
work, Malavolta and Thyagarajan [23] study a homomorphic variant of time-lock
puzzles. Another line of work initiated by May [25] and later formalized by Rivest
et al. [29] studies a model for timed message transmission between a sender and

1 The problem was originally stated over the ring ZN . Subsequent works have studied
it both over QRN [28] and JN (elements of Z∗

N with Jacobi symbol +1) [23].
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receiver in the presence of a trusted server. Bellare and Goldwasser [3] considered
a notion of “partial key escrow” in which a server can store keys in escrow and
learn only some of them unless it expends significant computational effort; this
model was subsequently studied by others [11,12] as well. Liu et al. [21] propose
a time-released encryption scheme based on witness encryption in a model with
a global clock.

Concurrent Work. In work concurrent with our own, Baum et al. [2] formalize
time-lock puzzles and timed commitments in the framework of universal com-
posability (UC) [9]; universally composable timed commitments are presumably
also non-malleable. Baum et al. present constructions in the (programmable)
random-oracle model that achieve their definitions, and show that their defi-
nitions are impossible to realize in the plain model. Ephraim et al. [14] also
recently formalized a notion of non-malleable timed commitments that is some-
what different from our own. They do not distinguish between time-lock puzzles
and timed commitments, which makes a direct comparison somewhat difficult.
They also give a generic construction of a time-lock puzzle from a VDF in the
random-oracle model. Finally, the work of Rotem and Segev [30] analyzes the
hardness of speeding up sequential squaring and related functions over the ring
ZN . Their analysis is in the generic ring model [1], where an algorithm can only
perform additions and multiplications modulo N , but the algorithm does not get
access to the actual representations of ring elements. This makes their analysis
incomparable to our analysis in the strong AGM.

1.2 Overview of the Paper

We introduce notation and basic definitions in Sect. 2. In Sect. 3 we introduce the
SAGM and state our hardness result about the sequential squaring assumption.
We give definitions for TPKE and NITC in Sect. 2, and give a construction of
CCA-secure TPKE in Sect. 4.2. In Sect. 4.3, we then show a simple, generic
conversion from CCA-secure TPKE to non-malleable NITC.

2 Notation and Preliminaries

Notation. We use “:=” to denote a deterministic assignment, and “←” to
denote assignment via a randomized process. In particular, “x ← S” denotes
sampling a uniform element x from a set S. We denote the length of a bitstring
x by |x|, and the length of the binary representation of an integer n by ||n||. We
denote the security parameter by κ. We write ExptA for the output of experiment
Expt involving adversary A.

Running Time. We consider running times of algorithms in some unspecified
(but fixed) computational model, e.g., the Turing machine model. This is done
both for simplicity of exposition and generality of our results. To simplify things
further, we omit from our running-time analyses additive terms resulting from
bitstring operations or passing arguments between algorithms, and we scale units
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so that multiplication in the group QRN under consideration takes unit time.
All algorithms are assumed to have arbitrary parallel computing resources.

The Quadratic Residue Group QRN . Let GenMod be an algorithm that,
on input 1κ, outputs (N, p, q) where N = pq and p �= q are two safe primes
(i.e., such that p−1

2 and q−1
2 are also prime) with ||p|| = ||q|| = τ(κ); here, τ(κ)

is defined such that the fastest factoring algorithm takes time 2κ to factor N
with probability 1

2 . GenMod may fail with negligible probability, but we ignore
this from now on. It is well known that QRN is cyclic with |QRN | = φ(N)

4 =
(p−1)(q−1)

4 .
For completeness, we define the factoring problem.

Definition 1. For an algorithm A, define experiment FACA
GenMod as follows:

1. Compute (N, p, q) ← GenMod(1κ), and then run A on input N .
2. When A outputs integers p′, q′ /∈ {1, N}, the experiment evaluates to 1 iff

N = p′q′.

The factoring problem is (t, ε)-hard relative to GenMod if for all A running in
time t,

Pr
[
FACA

GenMod = 1
]

≤ ε.

The Repeated Squaring Algorithm. Given an element g ∈ QRN , it is pos-
sible to compute g1, . . . , g2

i

(all modulo N) in i steps: in step i, simply multiply
each value g1, . . . , g2

i−1
by g2

i−1
. (Recall that we allow unbounded parallelism.)

In particular, it is possible to compute gx for any positive integer x in �log x�
steps. We denote by RepSqr the algorithm that on input (g,N, x) computes gx

in this manner.
Given a generator g of QRN , it is possible to sample a uniform element of

QRN by sampling x ← {0, . . . , |QRN | − 1} and running RepSqr(g,N, x). This
assumes that |QRN | (and hence factorization of N) is known; if this is not the
case, one can instead sample x ← ZN2 , which results in a negligible statistical
difference that we ignore for simplicity. Sampling a uniform element of QRN in
this way takes at most

�log x� ≤ �log N2� ≤ 4τ(κ)

steps. We denote by θ(κ) = 4τ(κ) the time to sample a uniform element of QRN .

The RSW Problem. We next formally define the repeated squaring problem
in the presence of preprocessing. This problem was first proposed by Rivest,
Shamir, and Wagner [29] and hence we refer to it as the RSW problem. We write
elements of G (except for the fixed generator g) using bold, upper-case letters.

Definition 2. For a stateful algorithm A, define experiment T -RSWA
GenMod as

follows:

1. Compute (N, p, q) ← GenMod(1κ).
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2. Run A on input N in a preprocessing phase to obtain some intermediate state.
3. Sample g ← QRN and run A on input g in the online phase.
4. When A outputs X ∈ QRN , the experiment evaluates to 1 iff X = g2

T

mod N .

The T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all algorithms
A running in time tp in the preprocessing phase and to in the online phase,

Pr
[
T -RSWA

GenMod = 1
]

≤ ε.

Clearly, an adversary A can run RepSqr(g,N, 2T ) to compute g2
T

mod N in
T steps. This means there is a threshold t∗ ≈ T such that the T -RSW problem is
easy when to ≥ t∗. In Sect. 3.1 we show that in the strong algebraic group model,
when to < t∗ the T -RSW problem is (tp, to, ε)-hard (for negligible ε) unless N
can be factored in time roughly tp + to. To put it another way, the fastest way
to compute g2

T

mod N (short of factoring N) is to run RepSqr(g,N, 2T ).
We also introduce a decisional variant of the RSW assumption where, roughly

speaking, the problem is to distinguish g2
T

mod N from a uniform element
of QRN in fewer than T steps.

Definition 3. For a stateful algorithm A, define experiment T -DRSWGenMod

as follows:

1. Compute (N, p, q) ← GenMod(1κ).
2. Run A on input N in a preprocessing phase to obtain some intermediate state.
3. Sample g,X ← QRN and a uniform bit b ← {0, 1}. If b = 0, run A on inputs

g,X; if b = 1, run A on inputs g, g2
T

mod N in the online phase.
4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

The decisional T -RSW problem is (tp, to, ε)-hard relative to GenMod if for all
algorithms A running in time tp in the preprocessing phase and to in the online
phase,

∣∣∣ Pr
[
T -DRSWA

GenMod = 1
]

− 1
2

∣∣∣ ≤ ε.

The decisional T -RSW problem is related to the generalized BBS (GBBS)
assumption introduced by Boneh and Naor [7]; however, there are several differ-
ences. First, the adversary in the GBBS assumption is given the group elements
g, g2, g4, g16, g256, . . . , g2

2k

and then asked to distinguish g2
2k+1

from uniform.
Second, the GBBS assumption does not account for any preprocessing. Our def-
inition is also similar to the strong sequential squaring assumption [23] except
that we do not give g to A in the preprocessing phase.

Non-interactive Zero-Knowledge. We recall the notion of a non-interactive
zero-knowledge proof system, defined as follows.



On the Security of Time-Lock Puzzles and Timed Commitments 395

Definition 4. Let LR be a language in NP defined by relation R. A (tp, tv, tsgen,
tsp)-non-interactive zero-knowledge proof (NIZK) system (for relation R) is a
tuple of algorithms NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) with the fol-
lowing behavior:

– The randomized parameter generation algorithm GenZK takes as input the
security parameter 1κ and outputs a common reference string crs.

– The randomized prover algorithm Prove takes as input a string crs, an
instance x, and a witness w. It outputs a proof π and runs in time at most
tp for all crs, x and w.

– The deterministic verifier algorithm Vrfy takes as input a string crs, an
instance x, and a proof π. It outputs 1 (accept) or 0 (reject) and runs in
time at most tv for all crs, x and π.

– The randomized simulation parameter generation algorithm SimGen takes as
input the security parameter 1κ. It outputs a common reference string crs and
a trapdoor td and runs in time at most tsgen.

– The randomized simulation prover algorithm SimProve takes as input an
instance x and a trapdoor td. It outputs a proof π and runs in time at most
tsp.

We require perfect completeness: For all crs ∈ {GenZK(1κ)}, all (x,w) ∈ R, and
all π ∈ {Prove(crs, x, w)}, it holds that Vrfy(crs, x, π) = 1.

We next define zero-knowledge and soundness properties of a NIZK.

Definition 5. Let NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) be a NIZK
for relation R. For an algorithm A, define experiment ZKNIZK as follows:

1. Compute crs0 ← GenZK(1κ) and crs1 ← SimGen(1κ), and choose a uniform
bit b ← {0, 1}.

2. Run A on input crsb with access to a prover oracle PROVE, which behaves
as follows: on input (x,w), PROVE returns ⊥ if (x,w) �∈ R; otherwise it
generates π0 ← Prove(crs0, x, w), π1 ← SimProve(crs1, x, w) and returns πb.

3. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

NIZK is (t, ε)-zero-knowledge if for all adversaries A running in time t,

Pr
[
ZKA

NIZK = 1
]

≤ 1
2

+ ε.

Definition 6. Let NIZK = (GenZK,Prove,Vrfy,SimGen,SimProve) be a NIZK
for relation R. For an algorithm A, define experiment SNDNIZK as follows:

1. Compute crs ← GenZK(1κ).
2. Run A on input crs.
3. When A outputs (x, π), the experiment evaluates to 1 iff Vrfy(crs, x, π) = 1

and x �∈ LR.

NIZK is (t, ε)-sound if for all adversaries A running in time t,

Pr
[
SNDA

NIZK = 1
]

≤ ε.
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In our applications we also need the stronger notion of simulation soundness,
which says that the adversary cannot produce a fake proof even if it has oracle
access to the simulated prover algorithm.

Definition 7 (Simulation Soundness). Let NIZK = (GenZK,Prove,Vrfy,
SimGen,SimProve) be a NIZK for relation R. For an algorithm A, define exper-
iment SIMSNDNIZK as follows:

1. Compute crs ← SimGen(1κ) and initialize Q := ∅.
2. Run A on input crs with access to a simulated prover oracle SPROVE, which

behaves as follows: on input (x,w), SPROVE generates π ← SimProve(x, t),
sets Q := Q ∪ {x}, and returns π.

3. When A outputs (x, π), the experiment evaluates to 1 iff x �∈ Q, Vrfy(crs, x, π)
= 1, and x �∈ LR.

NIZK is (t, ε)-simulation sound iff for all adversaries A running in time t,

Pr
[
SIMSNDA

NIZK = 1
]

≤ ε.

3 Algebraic Hardness of the RSW Problem

We briefly recall the AGM, and then introduce a refinement that we call the
strong AGM (SAGM) that lies in between the GGM and the AGM. As the
main result of this section, we show that the RSW assumption can be reduced
to the factoring assumption in the strong AGM. (Unfortunately, it does not
seem possible to extend this result to prove hardness of the decisional RSW
assumption based on factoring in the same model.) For completeness, we also
show that it is not possible to reduce hardness of RSW to hardness of factoring
in the AGM (unless factoring is easy).

3.1 The Strong Algebraic Group Model

The algebraic group model (AGM), introduced by Fuchsbauer, Kiltz, and
Loss [15], lies between the GGM and the standard model. As in the standard
model, algorithms are given actual (bit-strings representing) group elements,
rather than abstract handles for (or random encodings of) those elements as in
the GGM. This means that AGM algorithms are strictly more powerful than
GGM algorithms (e.g., when working in Z∗

N an AGM algorithm can compute
Jacobi symbols), and in particular means that the computational difficulty of
problems in the AGM depends on the group representation used. (In contrast,
in the GGM all cyclic groups of the same order are not only isomorphic, but
identical.) On the other hand, an algorithm in the AGM that outputs group
elements must also output representations of those elements with respect to any
inputs the algorithm has received; this restricts the algorithm in comparison to
the standard model (which imposes no such restriction).

In the AGM all algorithms are algebraic [8,27]:
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Definition 8 (Algebraic Algorithm). An algorithm A over G is called alge-
braic if whenever A outputs a group element X ∈ G, it also outputs an integer
vector λ with X =

∏
i Lλi

i , where L denotes the (ordered) list of group elements
that A has received as input up to that point.

The original formulation of the AGM assumes that G is a group of (known)
prime order but this is not essential and we do not make that assumption here.

The Strong AGM. The AGM does not directly provide a way to measure the
number of (algebraic) steps taken by an algorithm. This makes it unsuitable for
dealing with “fine-grained” assumptions like the hardness of the RSW problem.
(This point is made more formal in Sect. 3.3. On the other hand, as we will
see, from a “coarse” perspective any algebraic algorithm can be implemented
using polylogarithmically many algebraic steps.) This motivates us to consider
a refinement of the AGM that we call the strong AGM (SAGM), which provides
a way to directly measure the number of group operations performed by an
algorithm.

In the AGM, whenever an algorithm outputs a group element X it is required
to also provide an algebraic representation of X with respect to all the group
elements the algorithm has received as input so far. In the SAGM we strengthen
this, and require an algorithm to express any group element as either (1) a
product of two previous group elements that it has either received as input or
already computed in some intermediate step, or (2) an inverse of a previous
group element. That is, we require algorithms to be strongly algebraic:

Definition 9 (Strongly Algebraic Algorithm). An algorithm A over G is
called strongly algebraic if in each (algebraic) step A does arbitrary local com-
putation and then outputs2 one or more tuples of the following form:

1. (X,X1,X2) ∈ G3, where X = X1 · X2 and X1,X2 were either provided as
input to A or were output by A in some previous step(s);

2. (X,X1) ∈ G2, where X = X−1
1 and X1 was either provided as input to A or

was output by A in some previous step.

Note that we allow arbitrary parallelism, since we allow strongly algebraic
algorithms to output multiple tuples per step. As an example of a strongly alge-
braic algorithm, consider the following algorithm3 M̃ult computing the prod-
uct of n input elements X1, . . . ,Xn in �log n� steps: If n = 1 then M̃ult(X1)
outputs X1; otherwise, M̃ult(X1, . . . ,Xn) runs Y := M̃ult(X1, . . . ,X�n/2�) and
Z := M̃ult(X�n/2�+1, . . . ,Xn) in parallel, and outputs (YZ,Y,Z). It is also easy
to see that the repeated squaring algorithm RepSqr described previously can be
cast as a strongly algebraic algorithm R̃epSqr such that R̃epSqr(g, x) computes
gx in �log x� steps.

Any algebraic algorithm with polynomial-length output can be turned into
a strongly algebraic algorithm that uses polylogarithmically many steps:
2 Formally, we require A to output a flag in its final step to indicate its final output.
3 In general we use ·̃ to indicate that an algorithm is strongly algebraic.
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Theorem 1. Let A be an algebraic algorithm over G taking as input n group
elements X1, . . . ,Xn and outputting a group element X along with its algebraic
representation (λ1, . . . , λn) (so X = Xλ1

1 · · ·Xλn
n ), where λi ≤ 2κ. Then there is

a strongly algebraic algorithm Ã over G running in κ + �log n� steps such that
the final group element output by Ã is identically distributed.

Proof. Consider the following strongly algebraic algorithm Ã(X1, . . . ,Xn):

1. Run A(X1, . . . ,Xn) and receive A’s output X together with (λ1, . . . , λn).
(Note that this is not an algebraic step, since all computation is “internal”
to Ã and no group element is being output by Ã here.)

2. Run Xλ1
1 := R̃epSqr(X1, λ1), . . . ,Xλn

n := R̃epSqr(Xn, λn) in parallel.
3. Run M̃ult(Xλ1

1 , . . . ,Xλn
n ).

The theorem follows.

Running Time in the SAGM. The SAGM directly allows us to count the
number of algebraic steps used by an algorithm. So far, we have treated all steps
in our discussion as algebraic steps. In some settings, however, we may also wish
to account for other (non-group) computation that an algorithm does, measured
in some underlying computational model (e.g., the Turing machine model). In
this case we will express the running time of algorithms as a pair and say that
a strongly algebraic algorithm runs in time (t1, t2) if it uses t1 algebraic steps,
and has running time t2 in the underlying computational model.

3.2 Hardness of the RSW Problem in the Strong AGM

If the factorization of N (and hence φ(N)) is known, then g2
T

mod N can
be computed in at most �log φ(N)/4� algebraic steps by first computing z :=
2T mod φ(N)/4 and then computing R̃epSqr(g, z). Thus, informally, if the T -
RSW problem is hard then factoring must be hard as well. Here we prove a con-
verse in the SAGM, showing that the hardness of factoring implies the hardness
of solving the T -RSW problem in fewer than T sequential steps for a strongly
algebraic algorithm. We rely on a concrete version of the well-known result that
N can be efficiently factored given any positive multiple of φ(N) (A proof follows
by straightforward adaptation of the proof of [17, Theorem 8.50]):

Lemma 1. Suppose N ← GenMod(1κ) and m = α ·φ(N) (where α ∈ Z+). Then
there exists an algorithm Factor(N,m) which runs in time at most 4�log α·τ(κ)+
τ(κ)2� and outputs p′, q′ �∈ {1, N} such that N = p′q′ with probability at least 1

2 .

We now show:

Theorem 2. Assume that factoring is (tp +to +θ(κ)+4�log α ·τ(κ)+τ(κ)2�, ε)-
hard relative to GenMod, and let T be any positive integer. Then the T -RSW
problem is

(
(0, tp) , (T − 1, to) , 2ε

)
-hard relative to GenMod in the SAGM.
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Proof. Let A be a strongly algebraic algorithm that runs in time tp and uses no
algebraic steps in the preprocessing phase, and runs in time to and uses at most
T − 1 algebraic steps in the online phase. Let g be the generator given to A at
the beginning of the online phase of T -RSWGenMod. For any X ∈ QRN output
by A as part of an algebraic step during the online phase of T -RSWGenMod, we
recursively define DLA(g,X) ∈ Z+ as:

– DLA(g, g) = 1;
– If A outputs (X,X1,X2) in an algebraic step, then DLA(g,X) =

DLA(g,X1) + DLA(g,X2);
– If A outputs (X,X1) in an algebraic step, then DLA(g,X) = −DLA(g,X1).

Obviously, gDLA(g,X) = X for any X ∈ QRN output by A. We have:

Claim. For any strongly algebraic algorithm A given only g as input and running
in s ≥ 1 algebraic steps, every X ∈ QRN output by A satisfies |DLA(g,X)| ≤ 2s.

Proof. The proof is by induction on s. If s = 1, the only group elements A can
output are g−1 or g2, so the claim holds. Suppose the claim holds for s − 1.
If A outputs (X,X1,X2) in step s, then X1,X2 must either be equal to g or
have been output in a previous step. So the induction hypothesis tells us that
|DLA(g,X1)|, |DLA(g,X2)| ≤ 2s−1. It follows that

|DLA(g,X)| = |DLA(g,X1) + DLA(g,X2)| ≤ |DLA(g,X1)| + |DLA(g,X2)| ≤ 2s.

Similarly, if A outputs (X,X1) in step s, then |DLA(g,X)| = |DLA(g,X1)| ≤
2s−1. In either case, the claim holds for s as well.

We construct an algorithm R that factors N as follows. R, on input N ,
runs the preprocessing phase of A(N), and then samples g ← QRN and runs
the online phase of A(g). When A produces its final output X, then R (recur-
sively) computes x = DLA(g,X). Finally, R sets m := 4 · (2T − x) and out-
puts Factor(N,m).

When X = g2
T

mod N we have x = 2T mod φ(N)/4, i.e., φ(N) divides
m = 4 · (2T − x). Since, by the claim, |x| < 2T , we have m �= 0 and so m is a
nontrivial (integer) multiple of φ(N) in that case. We thus see that R factors N

with probability at least 1
2 · Pr

[
T -RSWA

GenMod = 1
]
. The running time of R is

at most tp + to + θ(κ) + 4�log α · τ(κ) + τ(κ)2�. This completes the proof.

3.3 The RSW Problem in the AGM

In the previous section we have shown that the hardness of the RSW problem can
be reduced to the hardness of factoring in the strong AGM. Here, we show that
a similar reduction in the (plain) AGM is impossible, unless factoring is easy.
Specifically, we give a “meta-reduction” M that converts any such reduction R
into an efficient algorithm for factoring. In the theorem that follows, we write RA

to denote execution of R given (black-box) oracle access to another algorithm A.
When we speak of the running time of R we assign unit cost to its oracle calls.
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Theorem 3. Let R be a reduction running in time tR and such that for any
algebraic algorithm A with Pr

[
T -RSWA

GenMod = 1
]

= 1, algorithm B = RA

satisfies Pr
[
FACB

GenMod = 1
]

> ε′. Then there is an algorithm M running in

time at most tR · (T + 1) with Pr
[
FACM

GenMod = 1
]

> ε′.

Proof. Let R be as described in the theorem statement. Intuitively, M simply
runs R, handling its oracle calls by simulating the behavior of an (algebraic)
algorithm A that solves the RSW problem with probability 1. (Note that the
running time of doing so is irrelevant insofar as analyzing the behavior of R,
since R cannot observe the running time of A. For this reason, we also ignore
the fact that A is allowed preprocessing, and simply consider an algorithm A for
which A(N, g) outputs (g2

T

mod N, 2T ).) Formally, M(N) runs R(N). When R
makes an oracle query A(N ′, g), algorithm M answers the query by computing
X = g2

T

mod N ′ (using RepSqr) and returning the answer (X, 2T ) to R. Finally,
M outputs the factors that are output by R.

The assumptions of the theorem imply that M factors N with probability
at least ε′. The running time of M is the running time of R plus the time to
run RepSqr (i.e., T steps) each time R calls A.

4 Non-malleable Timed Commitments

In this section we provide appropriate definitions for non-interactive (non-
malleable) timed commitments (NITCs). As a building block toward our con-
struction of NITCs, we introduce the notion of time-released public-key encryp-
tion (TPKE) and show how to construct CCA-secure TPKE.

4.1 Definitions

Timed commitments allow a committer to generate a commitment to a message
m such that binding holds as usual, but hiding holds only until some designated
time T ; the receiver can “force open” the commitment by that time. Boneh and
Naor [7] gave a (somewhat informal) description of the syntax of interactive
timed-commitments and provided some specific constructions. We introduce the
syntax of non-interactive timed commitments and then give appropriate security
definitions.

Definition 10. A (tcm, tcv, tdv, tfo)-non-interactive timed commitment scheme
(NITC) is a tuple of algorithms TC = (PGen,Com,ComVrfy,DecomVrfy,
FDecom) with the following behavior:

– The randomized parameter generation algorithm PGen takes as input the
security parameter 1κ and outputs a common reference string crs.

– The randomized commit algorithm Com takes as input a string crs and a
message m. It outputs a commitment C and proofs πCom, πDecom in time at
most tcm.
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– The deterministic commitment verification algorithm ComVrfy takes as input
a string crs, a commitment C, and a proof πCom. It outputs 1 (accept) or 0
(reject) in time at most tcv.

– The deterministic decommitment verification algorithm DecomVrfy takes as
input a string crs, a commitment C, a message m, and a proof πDecom. It
outputs 1 (accept) or 0 (reject) in time at most tdv.

– The deterministic forced decommit algorithm FDecom takes as input a string
crs and a commitment C. It outputs a message m or ⊥ in time at least tfo.

We require that for all crs ∈ {PGen(1κ)}, all m ∈ {0, 1}κ, and all C, πCom, πDecom

output by Com(crs,m), it holds that

ComVrfy(crs, C, πCom) = DecomVrfy(crs, C,m, πDecom) = 1

and FDecom(crs, C) = m.

To commit to message m, the committer runs Com to get C, πCom, and πDecom,
and sends C and πCom to a receiver. The receiver can run ComVrfy to check that
C can be forcibly decommitted (if need be). To decommit, the committer sends
m and πDecom to the receiver, who can then run DecomVrfy to verify the claimed
opening. If the committer refuses to decommit, C be opened using FDecom.
NITCs are generally only interesting when tfo � tcv, tdv, i.e., when forced open-
ing of a commitment takes longer than the initial verification and decommitment
verification.

NITCs must satisfy appropriate notions of both hiding and binding.

Hiding. For hiding, we introduce a notion of non-malleability for NITCs based
on the CCA-security notion for (standard) commitments by Canetti et al. [10].
Specifically, we require hiding to hold even when the adversary is given access to
an oracle that provides the (forced) openings of commitments of the adversary’s
choice. In the timed setting, the motivation behind providing the adversary with
such an oracle is that (honest) parties may be running machines that can force
open commitments at different speeds. As such, the adversary (as part of the
higher-level protocol) could trick some party into opening commitments of the
attacker’s choice. Note that although the adversary could run the forced opening
algorithm itself, doing so would incur a cost; in contrast, the adversary only
incurs a cost of one time unit to make a query to the oracle.

Definition 11. For an NITC scheme TC and algorithm A, define experiment
IND-CCATC as follows:

1. Compute crs ← PGen(1κ).
2. Run A on input crs with access to a decommit oracle FDecom(crs, ·) in a

preprocessing phase.
3. When A outputs (m0,m1), choose a uniform bit b ← {0, 1}, compute

(C, πCom, 
) ← Com(crs,mb), and run A on input (C, πCom) in the online
phase. A continues to have access to FDecom(crs, ·), except that A may not
query this oracle on C.
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4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TC is (tp, to, ε)-CCA-secure if for all adversaries A running in preprocessing
time tp and online time to,

Pr
[
IND-CCAA

TC = 1
]

≤ 1
2

+ ε.

Binding. The binding property states that a commitment cannot be opened to
two different messages. It also ensures that the receiver does not accept commit-
ments that cannot be forced open to the correct message.

Definition 12 (BND-CCA Security for Commitments). For a NITC
scheme TC and algorithm A, define experiment BND-CCATC as follows:

1. Compute crs ← PGen(1κ).
2. Run A on input crs with access to a decommit oracle FDecom(crs, ·).
3. When A outputs (m,C, πCom, πDecom,m′, π′

Decom), the experiment evaluates to
1 iff ComVrfy(crs, C, πCom) = DecomVrfy(crs, C,m, πDecom) = 1 and either of
the following holds:
– m′ �= m and DecomVrfy(crs, C,m′, π′

Decom) = 1;
– FDecom(crs, C) �= m.

TC is (t, ε)-BND-CCA-secure if for all adversaries A running in time t,

Pr
[
BND-CCAA

TC = 1
]

≤ ε.

Time-Released Public-Key Encryption. TPKE can be thought of the coun-
terpart of timed commitments for public-key encryption. As in the case of stan-
dard public-key encryption (PKE), a sender encrypts a message for a designated
recipient using the recipient’s public key; that recipient can decrypt and recover
the message. Timed PKE additionally supports the ability for anyone (and not
just the sender) to also recover the message, but only by investing more compu-
tational effort.

Definition 13. A (te , tfd , tsd)-timed public-key encryption (TPKE) scheme is a
tuple of algorithms TPKE = (KGen,Enc,Decf ,Decs) with the following behavior:

– The randomized key-generation algorithm KGen takes as input the security
parameter 1κ and outputs a pair of keys (pk , sk). We assume, for simplicity,
that sk includes pk.

– The randomized encryption algorithm Enc takes as input a public key pk and
a message m, and outputs a ciphertext c. It runs in time at most te .

– The deterministic fast decryption algorithm Decf takes as input a secret key
sk and a ciphertext c, and outputs a message m or ⊥. It runs in time at most
tfd .

– The deterministic slow decryption algorithm Decs takes as input a public key
pk and a ciphertext c, and outputs a message m or ⊥. It runs in time at
least tsd .
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We require that for all (pk , sk) output by KGen(1κ), all m, and all c output by
Enc(pk ,m), it holds that Decf (sk , c) = Decs(pk , c) = m.

Such schemes are only interesting when tfd  tsd , i.e., when fast decryption is
much faster than slow decryption.

We consider security of TPKE against chosen-ciphertext attacks.

Definition 14. For a TPKE scheme TPKE and algorithm A, define experiment
IND-CCAA

TPKE as follows:

1. Compute (pk , sk) ← KGen(1κ).
2. Run A on input pk with access to a decryption oracle Decf (sk , ·) in a pre-

processing phase.
3. When A outputs (m0,m1), choose b ← {0, 1}, compute c ← Enc(pk ,mb),

and run A on input c in the online phase. A continues to have access to
Decf (sk , ·), except that A may not query this oracle on c.

4. When A outputs a bit b′, the experiment evaluates to 1 iff b′ = b.

TPKE is (tp, to, ε)-CCA-secure iff for all A with preprocessing time tp and online
time to,

Pr
[
IND-CCAA

TPKE = 1
]

≤ 1
2

+ ε.

We remark that in order for TPKE to be an independently interesting prim-
itive, one might require that even for maliciously formed ciphertexts c, Decs

and Decf always produce the same output (a property indeed enjoyed by our
TPKE scheme in the next section). However, since our primary motivation is to
obtain commitment schemes, we do not require this property and hence opt for
a simpler definition that only requires correctness (i.e., of honestly generated
ciphertexts).

4.2 CCA-Secure TPKE

Here we describe a construction of a TPKE scheme that is CCA-secure under the
decisional RSW assumption. While our construction is in the standard model,
it suffers from a slow encryption algorithm. In the full version of our paper, we
describe a CCA-secure construction in the ROM in which encryption can be
sped up, using the secret key.

The starting point of our construction is a CPA-secure TPKE scheme based
on the decisional RSW assumption. In this scheme, the public key is a modulus
N and a generator g ∈ QRN ; the secret key contains φ(N). To encrypt a message
m ∈ ZN s.t. ||m|| < τ(κ) − 1, the sender encodes m as M := m2 ∈ QRN . It
then first computes a random generator R (by raising g to a random power mod-
ulo N), and then computes the ciphertext (R, R2T ·M mod N). This ciphertext
can be decrypted quickly using φ(N), but can also be decrypted slowly without
knowledge of the secret key. (To decode to the original m, one can just compute
the square root over the integers, since m2 < N).
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For any modulus N1, N2 and integer T , define the relation

RN1,N2,T =

{
((R1,R2,X1,X2),M) |

∧
i=1,2

Xi = R2T

i · M mod Ni

}

Let (GenZK,Prove,Vrfy) be a (tpr, tv, tsgen, tsp)-NIZK proof system for this rela-
tion. Define a TPKE scheme (parameterized by T ) as follows:

– KGen(1κ): For i = 1, 2 run (Ni, pi, qi) ← GenMod(1κ), compute φi :=
φ(Ni) = (pi − 1)(qi − 1), set zi := 2T mod φi. Choose gi ← QRNi

and run crs ← GenZK(1κ). Output pk := (crs, N1, N2, g1, g2) and sk :=
(crs, N1, N2, g1, g2, z1, z2).

– Enc((crs, N1, N2, g1, g2),M): For i = 1, 2, choose ri ← ZN2
i
and compute

Ri := gri
i mod Ni, Zi := R2T

i mod Ni, Ci := Zi · M mod Ni,

where the exponentiations are computed using RepSqr. Also compute π ←
Prove(crs, (R1,R2,C1,C2),M). Output the ciphertext (R1,R2,C1,C2, π).

– Decf ((crs, N1, N2, g1, g2, z1, z2), (R1,R2,C1,C2, π)): If
Vrfy(crs, (R1,R2,C1,C2), π) = 0, then output ⊥. Else compute
Z1 := Rz1

1 mod N1 (using RepSqr) and M := C1Z
−1
1 mod N , and then

output M if ||M|| < τ(κ) and ⊥ otherwise.
– Decs((crs, N1, N2, g1, g2), (R1,R2,C1,C2, π)): If Vrfy(crs, (R1,R2,C1,C2), π)

= 0, then output ⊥. Else compute Z1 := R2T

1 mod N1 (using RepSqr) and
M := C1Z

−1
1 mod N1, and then output M if ||M|| < τ(κ) and ⊥ otherwise..

Fig. 1. A CCA-secure TPKE scheme

We can obtain a CCA-secure TPKE scheme by suitably adapting the Naor-
Yung paradigm [26,31] to the setting of timed encryption. The Naor-Yung app-
roach constructs a CCA-secure encryption scheme by encrypting a message twice
using independent instances of a CPA-secure encryption scheme accompanied by
a simulation-sound NIZK proof of consistency between the two ciphertexts. In
our setting, we need the NIZK proof system to also have “fast” verification and
simulation (specifically, linear in the size of the input instance). We present the
details of our construction in Fig. 1.

Subtleties in the Simulation. The proof of security in our context requires
the ability to simulate both the challenge ciphertext and the decryption oracle
using a “fast” decryption algorithm. The reason behind this is that if it were
not possible to simulate decryption fast, then the reduction from the decisional
RSW assumption would take too much time simulating the experiment for the
adversary. Fast simulation is possible for two reasons. First, in the proof of the
Naor-Yung construction, the simulator knows (at least) one of the secret keys at
any time. Second, we use a NIZK with simulation soundness for which verification
and proof simulation take linear time in the size of the instance (but not in the
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size of the circuit). Using these two components, the simulator can perform fast
decryption on any correctly formed ciphertext. To reduce from decisional RSW,
it embeds the decisional RSW challenge into the challenge ciphertext component
for which the secret key is not known.

Concretely, for integers N s.t. N = pq for primes p and q, let C be an
arithmetic circuit over ZN , and let SATC denote the set of all (x,w) ∈ {0, 1}∗

s.t. w is a satisfying assignment to C when C’s wires are fixed according to the
instance x. The works of Groth and Maller [16] as well as Lipmaa [20] show
NIZK constructions for SATC which have soundness and simulation soundness
(with suitable parameters), perfect zero-knowledge, perfect correctness and are
such that for all crs ∈ {GenZK(1κ)}, (crs′, td) ∈ {SimGen(1κ)}, all (x,w) ∈ SATC
and all x′ ∈ {0, 1}∗:

– For all π ∈ {Prove(crs, x, w)}, Vrfy runs within time O(|x|) on input (crs, x, π).
– For all π′ ∈ {SimProve(x′, td)}, Vrfy runs within time O(|x′|) on input

(crs′, x′, π′).
– On input (x′, td), SimProve runs in time O(|x′|).
In other words, both Vrfy and SimProve run in a fast manner, i.e., linear in the
scale of the input instance.

We remark that both of the above constructions work over Zp for primes p
only, but can be translated to circuits over ZN , where N is composite, with small
overhead, as shown in [18]. The idea is very simple: any arithmetic operation
over ZN is emulated using multiple (smaller) values in Zp. The multiplicative
overhead in this construction is roughly linear in the size difference between p
and N and is ignored here for readability.

Theorem 4. Suppose NIZK is (tp + to, 2εZK)-zero-knowledge and (tp + to +
θ(κ), εSS)-simulation sound, and the decisional T -RSW problem is (tp+T +tsg +
θ(κ), to + tsp, εDRSW )-hard relative to GenMod. Then the (tpr +T, tv + θ(κ), T +
θ(κ))-TPKE scheme in Fig. 1 is (tp, to, εZK + εSS + 2εDRSW )-CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to. We
define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATPKE. Denote
A’s challenge ciphertext by (R∗

1,R
∗
2,C

∗
1,C

∗
2, π

∗).

Expt1: Expt1 is identical to Expt0, except that crs and π∗ are simulated. That
is, in Gen run (crs, td) ← SimGen(1κ), and in the challenge ciphertext compute
π∗ ← SimProve((R∗

1,R
∗
2,C

∗
1,C

∗
2), td).

We upper bound |Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| by constructing a reduc-
tion RZK to the zero-knowledge property of NIZK. RZK runs the code of Expt0,
except that it publishes the CRS from the zero-knowledge challenger, and uses
the zero-knowledge proof from the zero-knowledge challenger as part of the chal-
lenge ciphertext. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, for i = 1, 2 runs (Ni, pi, qi) ← GenMod(1κ),
computes φi := φ(Ni) = (pi − 1)(qi − 1), sets zi := 2T mod φi, and chooses
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gi ← QRNi
. Then RZK runs A(N, g, crs∗).

RZK answers A’s DEC queries using the fast decryption algorithm Decf .
That is, on A’s query DEC(R1,R2,C1,C2, π), RZK computes Z1 := RepSqr

(R1, N1, z1) and M :=
C1

Z1
mod N1; if Vrfy(R1,R2,C1,C2, π) = 1 then RZK

returns M, otherwise RZK returns ⊥.
– Online phase: When A makes its challenge query on (M0,M1), RZK chooses

b ← {0, 1} and for i = 1, 2 chooses r1, r2 ← ZN2 , and computes

R∗
i := RepSqr(gi, Ni, ri), Z∗

i := RepSqr(R∗
i , Ni, zi), C∗

i := Z∗
i · M mod Ni,

π∗ ← PROVE((R∗
1,R

∗
2,C

∗
1,C

∗
2),Mb),

and outputs (R∗
1,R

∗
2,C

∗
1,C

∗
2, π

∗). After that, RZK answers A’s DEC queries
just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

RZK runs in time tp + to +2θ(κ) (tp in the setup phase and to +2θ(κ) in the
online phase), and

|Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| ≤ εZK .

Expt2: Expt2 is identical to Expt1, except that C∗
2 is computed as U2 ·Mb mod N2

(instead of Z∗
2 · Mb mod N2), where U2 := RepSqr(g2, N2, u2) and u2 ← ZN2

2
.

We upper bound |Pr[ExptA2 = 1] − Pr[ExptA1 = 1]| by constructing a reduc-
tion RDRSW to the decisional T -RSW problem. RDRSW runs the code of Expt2,
except that it does not know φ2, and uses the group elements from the deci-
sional T -RSW challenger as part of the challenge ciphertext. (Note that A’s DEC
queries can still be answered in a fast manner, since the decryption algorithm
only uses R1, and RDRSW knows φ1.) Concretely, RDRSW works as follows:

– Preprocessing phase: RDRSW , on input N , runs (N1, p1, q1) ← GenMod(1κ),
computes φ1 := φ(N1) = (p1 − 1)(q1 − 1), sets z1 := 2T mod φ1, and chooses
g1 ← QRN1

, g ← QRN ; runs (crs, td) ← SimGen(1κ). Then RDRSW runs
A(crs, N1, N, g1, g). RDRSW answers A’s DEC queries as described in Expt1.

– Online phase: When A makes its challenge query on (M0,M1), RDRSW asks
for (g∗,X∗) from the decisional RSW challenger, chooses b ← {0, 1} and
r1 ← ZN2

1
, and computes

R∗
1 := RepSqr(g1, N1, r1), Z∗

1 := RepSqr(R∗
1, N1, z1), C∗

1 := Z∗
1 · Mb mod N1,

π∗ ← SimProve((R∗
1, g

∗,C∗
1,X

∗ · Mb), td),

and returns (R∗
1, g

∗,C∗
1,X

∗ ·Mb, π
∗). R answers A’s DEC queries as described

in Expt1.
– Output: On A’s output bit b′, RDRSW outputs 1 if b′ = b, and 0 otherwise.
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RDRSW runs in time tp + tsgen in the preprocessing phase, and time to + tsprove

in the online phase, and

|Pr[ExptA2 = 1] − Pr[ExptA1 = 1]| ≤ εDRSW .

Expt3: Expt3 is identical to Expt2, except that C∗
2 is computed as U2 (instead of

U2 · Mb). Since the distributions of U2 and U2 · Mb are both uniform, this is
merely a conceptual change, so

Pr[ExptA3 = 1] = Pr[ExptA2 = 1].

Expt4: Expt4 is identical to Expt3, except that the DEC oracle uses R2 (instead
of R1) to decrypt. That is, when A queries DEC(R1,R2,C1,C2, π), compute

Z2 := RepSqr(R2, N2, z2) and M :=
C2

Z2
mod N2.

Expt4 and Expt3 are identical unless A makes a query DEC(R1,R2,C1,C2, π)

s.t.
C1

R2T
1

mod N1 �= C2

R2T
2

mod N2 (over Z) but Vrfy(R1,R2,C1,C2, π) = 1 (in

which case A receives
C1

R2T
1

mod N1 in Expt3 and
C2

R2T
2

mod N2 in Expt4; in all

other cases A receives either ⊥ in both experiments, or
C1

R2T
1

mod N1 =
C2

R2T
2

mod

N2 in both experiments). Denote this event Fake. We upper bound Pr[Fake] by
constructing a reduction RSS to the simulation soundness of NIZK:

– Setup: RSS , on input crs, for i = 1, 2 runs (Ni, pi, qi) ← GenMod(1κ), com-
putes φi := φ(Ni) = (pi − 1)(qi − 1), sets zi := 2T mod φi, and chooses
gi ← QRNi

. Then RSS runs A(N, g, crs).
On A’s query DEC(R1,R2,C1,C2, π), RSS computes Z1 and Z2 as

described in Expt1. If Vrfy(R1,R2,C1,C2, π) = 0, then RSS returns ⊥;

otherwise RSS checks if
C1

R2T
1

mod N1 =
C2

R2T
2

mod N2, and if so, it returns

C1

R2T
1

mod N1, otherwise it outputs ((R1,R2,C1,C2), π) to its challenger (and

halts).
– Online phase: When A makes its challenge query on (M0,M1), RSS chooses

b ← {0, 1} and computes

R∗
1 := RepSqr(g1, N1, r1), Z∗

1 := RepSqr(R∗
1, N1, z1), C∗

1 := Z∗
1 · Mb mod N1,

u2 ← ZN2
2
,C∗

2 := RepSqr(g2, N2, u2),

π∗ ← SPROVE((R∗
1,R

∗
2,C

∗
1,C

∗
2), td),

and outputs (R∗
1,R

∗
2,C

∗
1,C

∗
2, π

∗). After that, RSS answers A’s DEC(R1,R2,
C1,C2, π) query just as in setup.
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RSS runs in time at most tp+to+θ(κ) (i.e., tp in the setup phase and to+θ(κ)
in the online phase). Up to the point that RSS outputs, RSS simulates Expt4

perfectly. If Fake happens, then RSS outputs ((R1,R2,C1,C2), π) s.t.
C1

R2T
1

mod

N1 �= C2

R2T
2

mod N2 but Vrfy(R1,R2,C1,C2, π) = 1, winning the simulation-

soundness experiment. It follows that

|Pr[ExptA4 = 1] − Pr[ExptA3 = 1]| ≤ Pr[Fake] ≤ Pr[RSS wins] ≤ εSS .

Expt5: Expt5 is identical to Expt4, except that C∗
1 is computed as U ·Mb mod N1

(instead of Z∗
1 · Mb mod N1), where U1 := RepSqr(g1, N1, u1) and u1 ← ZN2

1
.

The argument is symmetric to the one from Expt1 to Expt2; the reduction works
because R1 is not used in DEC. We have

|Pr[ExptA5 = 1] − Pr[ExptA4 = 1]| ≤ εDRSW .

Expt6: Expt6 is identical to Expt5, except that C∗
1 is computed as U1 (instead of

U1 ·Mb). The argument is symmetric to the one from Expt2 to Expt3. We have

Pr[ExptA6 = 1] = Pr[ExptA5 = 1].

Furthermore, since b is independent of A’s view in Expt6, we have

Pr[ExptA6 = 1] =
1
2
.

Summing up the results above, we conclude that

Pr
[
IND-CCAA

TPKE = 1
]

≤ 1
2

+ εZK + εSS + 2εDRSW ,

which completes the proof.

4.3 Constructing Non-malleable Timed Commitments

In this section, we show how our notion of CCA-secure TPKE implies non-
malleable timed commitments. The idea is very simple. At setup, the committer
generates the parameters and keys for a TPKE TPKE and NIZKs NIZKCom

and NIZKDecom. To commit to a message m, the committer computes c :=
Enc(pk ,m; r) (for some random coins r) and uses NIZKCom and NIZKDecom to
prove that (1) it knows (m, r) s.t. c = Enc(pk ,m; r). This proof will be used as
πCom, i.e., to prove that the commitment is well-formed; and (2) it knows r s.t.
c = Enc(pk ,m; r). This proof will be used as πDecom, i.e., to prove (efficiently)
that the opening to the commitment is the correct one. Our construction is
presented in Fig. 2.

To be able to reduce from CCA-security of the underlying TPKE scheme
for meaningful parameters, we require that proofs of the NIZK scheme can be
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simulated and verified (very) efficiently, i.e., take much less time than a forced
decommit. This is satisfied when instantiating the TPKE scheme with our con-
struction from the previous section, where this relation can be expressed via an
arithmetic circuit. More generally, any scheme whose encryption algorithm can
be expressed via an arithmetic circuit would satisfy our requirements.

Let TPKE = (KGen,Enc,Decf ,Decs) be a (te , tfd , tsd)-TPKE scheme, NIZKCom =
(GenZKCom,ProveCom,VrfyCom, SimGenCom, SimProveCom) be a (tcp, tcv, tcsgen, tcsp)-
NIZK for relation

RCom = {(c, (m, r)) | c = Enc(pk , m; r)},

and NIZKDecom = (GenZKDecom,ProveDecom,VrfyDecom, SimGenDecom, SimProveDecom)
be a (tdp, tdv, tdsgen, tdsp)-NIZK for relation

RDecom = {((c, m), r) | c = Enc(pk , m; r)}.

Define an NITC scheme as follows:

– PGen(1κ): Run (pk , sk) ← KGen(1κ), crsCom ← GenZKCom(1κ), crsDecom ←
GenZKDecom(1κ), and output crs := (pk , crsCom, crsDecom).

– Com((pk , crsCom, crsDecom), m): Choose random coins r, compute
c := Enc(pk , m; r), πCom ← Prove(crsCom, c, (m, r)), πDecom ←
Prove(crsDecom, (c, m), r), and output (c, πCom, πDecom).

– ComVrfy((pk , crsCom, crsDecom), c, πCom): Output VrfyCom(crsCom, c, πCom).
– DecomVrfy((pk , crsCom, crsDecom), c, m, πDecom): Output VrfyDecom(crsDecom,

(c, m), πDecom).
– FDecom((pk , crsCom, crsDecom), c): Output Decs(pk , c).

Fig. 2. An NITC scheme.

Correctness of this scheme follows immediately from correctness of the under-
lying TPKE and NIZK schemes; we next show its CCA-security.

Theorem 5. Suppose TPKE is (tp + tcsgen, tcsp, εTPKE)-CCA-secure, and
NIZKCom is (tp + to + te, εZK)-zero-knowledge. Then the (te + max

{
tcp,

tdp

}
, tcv, tdv, tsd)-NITCS scheme in Fig. 2 is (tp, to, εZK + εCCA)-CCA-secure.

Proof. Let A be an adversary with preprocessing time tp and online time to.
Suppose A’s challenge is (c∗, π∗). We define a sequence of experiments as follows.

Expt0: This is the original CCA-security experiment IND-CCATC.
Expt1: Expt1 is identical to Expt0, except that crsCom and π∗ are simulated. That
is, in the setup phase run (crsCom, td) ← SimGenCom(1κ), and in the challenge
compute π∗ ← SimProveCom(c∗, td).
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We upper bound |Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| by constructing a reduc-
tion RZK to the zero-knowledge property of NIZKCom. RZK runs the code of
Expt1, except that it publishes the CRS from the zero-knowledge challenger, and
uses the zero-knowledge proof from the zero-knowledge challenger as part of the
challenge ciphertext; also, RZK simulates the decommit oracle DEC by running
the fast decryption algorithm. Concretely, RZK works as follows:

– Setup: RZK , on input crs∗, runs P ← PGen(1κ), (sk , pk) ← KGen(P ) and
crsDecom ← GenZKDecom(1κ), sets crs := (pk , crs∗, crsDecom), and runs A(crs).
On A’s query DEC(c), RZK returns Decs(sk , c).

– Online phase: When A makes its challenge query on (m0,m1), RZK chooses
b ← {0, 1}, computes c∗ ← Enc(pk ,mb) and π∗ ← PROVE(c∗,mb), and out-
puts (c, π∗). After that, R answers A’s DEC queries just as in setup.

– Output: On A’s output bit b′, RZK outputs 1 if b′ = b, and 0 otherwise.

RZK runs in time tp + to + te (tp in the setup phase and to + te in the online
phase), and

|Pr[ExptA1 = 1] − Pr[ExptA0 = 1]| ≤ εZK .

Now we analyze A’s advantage in Expt1. Since the challenge is (c, π) where
c = Enc(pk ,m; r) and π is simulated without knowledge of m or r, and DEC
simply runs Decs, A’s advantage can be upper bounded directly by the CCA-
security of TPKE. Formally, we upper bound A’s advantage by constructing a
reduction RCCA to the CCA-security of TPKE (where RCCA’s decryption oracle
is denoted DECTPKE):

– Preprocessing phase: RCCA, on input pk , computes (crsCom, td) ← SimGenCom
(1κ), and runs A(crsCom). On A’s query DEC(c), RCCA queries DECTPKE(c)
and returns the result.

– Challenge query: When A outputs (m0,m1), RCCA makes its challenge
query on (m0,m1), and on its challenge ciphertext c∗, RCCA computes
π∗ ← SimProveCom(c∗, td) and sends (c∗, π∗) to A. After that, R answers
A’s DEC queries just as in preprocessing phase.

– Output: When A outputs a bit b′, RCCA also outputs b′.

RCCA runs in time at most tp + tcsgen in the preprocessing phase, and time
at most to + tcsp in the online phase. RCCA simulates Expt1 perfectly, and wins
if A wins. It follows that

Pr[ExptA1 = 1] = Pr[RCCA wins] ≤ 1
2

+ εCCA.

Summing up all results above, we conclude that

Pr
[
IND-CCAA

TC = 1
]

≤ 1
2

+ εZK + εCCA,

which completes the proof.
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We give a sketc.h of the argument of why our scheme satisfies our notion of
binding. Recall that if A can win BND-CCATC, then it can produce a com-
mitment c along with messages m,m′ and proofs πCom, πDecom s.t. ComVrfy((pk ,
crsCom, crsDecom), c, πCom) = DecomVrfy((pk , crsCom, crsDecom), c,m, πDecom) = 1,
m′ �= m and either

(1) : FDecom((pk , crsCom, crsDecom), c) = m′

or

(2) : DecomVrfy((pk , crsCom, crsDecom), c,m′, π′
Decom) = 1.

Both (1) and (2) can be reduced from soundness of NIZK. For (1), unless A can
come up with a fake proof πCom, then ComVrfy((pk , crsCom, crsDecom), c, πCom) = 1
implies that there exists m and r s.t. Enc(pk,m; r) = c. Now, correctness of TPKE
implies that FDecom((pk , crsCom, crsDecom), c) = Decs(pk , c) = Decf (sk , c) =
m. Similarly, for (2), unless A can come up with a fake proof πDecom, then
DecomVrfy((pk , crsCom, crsDecom), c,m, πDecom) = 1 implies that there exists r s.t.
Enc(pk ,m; r) = c. In this case, correctness of TPKE asserts that Decs(pk , c) =
Decf (sk , c) = m �= m′. Hence the proof π′

Decom must be fake, as otherwise, this
would contradict correctness of TPKE with regard to m′.
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Abstract. This paper studies concrete security with respect to expected-
time adversaries. Our first contribution is a set of generic tools to obtain
tight bounds on the advantage of an adversary with expected-time guar-
antees. We apply these tools to derive bounds in the random-oracle and
generic-group models, which we show to be tight.

As our second contribution, we use these results to derive concrete
bounds on the soundness of public-coin proofs and arguments of knowl-
edge. Under the lens of concrete security, we revisit a paradigm by Boo-
tle et al. (EUROCRYPT ’16) that proposes a general Forking Lemma
for multi-round protocols which implements a rewinding strategy with
expected-time guarantees. We give a tighter analysis, as well as a modular
statement. We adopt this to obtain the first quantitative bounds on the
soundness of Bulletproofs (Bünz et al., S&P 2018), which we instantiate
with our expected-time generic-group analysis to surface inherent depen-
dence between the concrete security and the statement to be proved.

Keywords: Concrete security · Proof systems

1 Introduction

Cryptography usually adopts a worst-case angle on complexity. For example,
in the context of concrete security, a typical theorem shows that an adversary
running for at most t steps succeeds with advantage at most ε. In this paper, we
instead study the concrete security of cryptographic schemes and assumptions
as a function of the expected running time of the adversary.

Expected-time complexity is a natural measure in its own right – e.g., it
is very common in cryptanalysis, as it is often much easier to analyze. But
it is also a useful technical tool – indeed, simulators and extractors are often
expected time, sometimes inherently so [1]. To use these technical tools, we need
assumptions to hold with respect to expected time.

The problem has been studied closely by Katz and Lindell [14], who also
suggest expected-time adversaries as a natural model, which however also comes
with several technical challenges. Either way, the resulting common wisdom is
c© International Association for Cryptologic Research 2020
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that assumptions which are true with respect to (non-uniform) worst-case poly-
nomial time are true for expected polynomial-time, and often more fine-grained
statements are possible via Markov’s inequality (see below). However, for con-
crete security, such generic argument fail to give tight bounds.

Summary of contributions. This paper makes progress on two fronts.
First, as our main technical contribution, we introduce general tools to give

tight concrete security bounds in information-theoretic settings (e.g., in the
random-oracle or generic-group models) for expected-time adversaries. Our tools
can easily translate many existing proofs from the worst-case to the expected-
time regime. We derive for example tight bounds for finding collisions in a ran-
dom oracle, for the PRF security of random oracles, and for computing discrete
logarithms in the generic-group model. We also obtain bounds for the security
of key-alternating ciphers against expected-time adversaries.

Second, we study a “Forking Lemma” to prove soundness of multi-round
public-coin proofs and arguments (of knowledge) satisfying a generalized notion
of special soundness, enabling witness extraction from a suitable tree of accepting
interactions. In particular, we follow a blueprint by Bootle et al. [6], which has
also been adopted by follow-up works [7,8,24]. In contrast to prior works, we
provide a concrete analysis of the resulting expected-time witness extraction
strategy, and also give a modular treatment of the techniques which may be of
independent interest.

We showcase these tools by deriving concrete bounds for the soundness of
Bulletproofs [7] in terms of the expected-time hardness of solving the discrete
logarithm problem. Instantiating the bound with our generic-group model analy-
sis will in particular illustrate the dependence of soundness on group parameters
and on the complexity of the statement to be proved. We are unaware of any
such result having been proved, despite the practical appeal of these protocols.

The remainder of this introduction provides a detailed overview of our results.

1.1 Information-Theoretic Bounds for Expected-Time Adversaries

Our first contribution is a framework to prove tight bounds with respect to
expected-time adversaries. We focus on information-theoretic analyses, such as
those in the random oracle [3] and the generic group [18,22] models.

Our focus on tight bounds is what makes the problem hard. Indeed, one
can usually obtain a non-tight bound using Markov’s inequality. For example,
the probability ε(T,N) of a T -time adversary finding a collision in a random
oracle with N outputs satisfies ε(T,N) � T 2/2N , and this bound is tight. If we
instead aim to upper bound the probability ε(μT , N) of finding a collision for
an adversary that runs in expected time μT = E[T ], Markov’s inequality yields,
for every T ∗ > μT ,

ε(μT , N) � Pr [T > T ∗] +
(T ∗)2

2N
� μT

T ∗ +
(T ∗)2

2N
� 2 · 3

√
μ2

T

2N
, (1)
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where the right-most inequality is the result of setting T ∗ such that μT

T ∗ = (T ∗)2

2N .
Here, we prove the better upper bound

ε(μT , N) �
√

μ2
T

2N
, (2)

as a corollary of the techniques we introduce below. This bound is tight: To see
this, take an adversary which initially flips a biased coin, which is heads with
probability μT /

√
N . If the coin is tails, it aborts, failing to find a collision. If

the coin is heads, it makes
√

N queries to find a collision with high probability.
Then, this adversary succeeds with probability Ω(μT /

√
N) = Ω(

√
μ2

T /N), and
its expected run time is μT .

Both (1) and (2) show that μT � Ω(
√

N) must hold to find a collision with
probability one. However, exact probability bounds are important in the regime
μT = o(

√
N). For example, say we are asked to find a collision in at least one out

of u independent random oracles, and the expected number of queries to each is
μT . Then, a hybrid argument bounds the probability by u ·ε(μT , N), making the
difference between a square-root and a cube-root bound on ε(μT , N) important.

A Generic Approach for bad-flag analyses. We aim for a general app-
roach to transform information-theoretic bounds for worst-case query complexity
into bounds with respect to expected query complexity. If an existing analysis
(with respect to worst-case complexity) follows a certain pattern, then we easily
obtain an expected query complexity bound.

More concretely, many security proofs follow the “equivalent-until-bad” for-
mat (as formalized by Bellare and Rogaway [4], but equivalent formulations can
be derived from the works of Maurer [17] and Shoup [23]). The goal here is to
upper bound the advantage of an adversary A distinguishing two games G0 and
G1, which behave identically until some bad flag bad is set. Then, the distinguish-
ing advantage is upper bounded by the probability of setting bad to true – an
event we denote as BADA. Typically, G0 is the “real world” and G1 is the “ideal
world”. Now, let Q1 be the number of queries by an adversary A in G1, which is
a random variable. Then, we say that this game pair satisfies δ-boundedness if

Pr
[
BADA | Q1 = q

]
� δ(q)

for all q � 1 and adversaries A. This condition is not without loss of generality,
but it can be ensured in all examples we verified.

Our first main theorem (Theorem 1) shows that if δ(q) = Δ · qd/N , then
the probability of setting BADA (in either of the two games), and hence the
advantage of distinguishing G0 and G1, is upper bounded as

Pr
[
BADA

]
� 5 ·

(
ΔE[Q0]d

N

)1/d

,

where (quite) crucially Q0 is the number of queries of A in G0. This asymmetry
matters in applications - we typically measure complexity in the real world, but
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δ-boundedness only holds in the ideal world.

Proof idea. The key step behind the proof of Theorem 1 is the introduction of
an early-terminating adversary B, which behaves as A in attempting to set bad,
but aborts early after U =

⌊
d
√

Nu/Δ
⌋

= Θ( d
√

N/Δ) queries, where u = 2−d.
One can then show that (we can think of the following probabilities in G0)

Pr
[
BADA

]
� Pr

[
BADB

]
+ Pr [Q0 > U ] ,

because Pr
[
BADA ∧ Q0 � U

]
� Pr

[
BADB

]
. Markov’s inequality then yields

Pr [Q0 > U ] � E [Q0]
U

= Θ

(
d

√
ΔE [Q0]

d
/N

)
,

which is of the right order.

Therefore, the core of the proof is to show Pr
[
BADB

]
= O

(
d

√
ΔE [Q0]

d
/N

)
.

This will require using δ-boundedness first, but a careful reader may observe that
this will only upper bound the probability with respect to E [Q1], and not E [Q0].
The bulk of the proof is then to switch between the two.

Examples. We apply the above framework to a few examples, to show its appli-
cability. We show bounds on the hardness of discrete logarithms in the generic-
group model [18,22], and on the collision-resistance and PRF security of random
oracles. In particular, our framework also works for notions which are not indis-
tinguishability based, such as collision-resistance of a random oracle, by intro-
ducing a suitable world G1 where it is hard to win the game.

The H-Coefficient method. Equivalent-until-bad analyses are not always the
simplest way to prove security (despite the fact that in principle every analysis
can be cast in this format, as shown in [19]). We also give a variant of the above
approach tailored at proving security in a simpler version of the H-coefficient
method [9,20] which considers what is referred to as pointwise-proximity in [12].
This amounts to using the standard H-coefficient method without bad tran-
scripts. (To the best of our knowledge, this simpler version of the method is
due to Bernstein [5].) This allows us to obtain expect-time versions of security
bounds for the PRF/PRP switching lemma and for key-alternating ciphers, the
latter building on top of work by Hoang and Tessaro [12].We defer details on
this to the full version of this paper [13].

1.2 Forking Lemmas and Concrete Soundness

One motivation for studying expected-time adversaries is as a tool to prove
bounds for worst-case complexity, rather than as a goal on itself. We expose here
one such application in the context of proving soundness bounds for public-coin
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proofs/arguments (of knowledge). In particular, soundness/proof-of-knowledge
proofs for several protocols (like [6–8,24]) rely on generalizations of the Fork-
ing Lemma (originally proposed by Pointcheval and Stern [21] for three-round
protocols) which adopt expected-time witness extraction strategies. These have
only been analyzed in an asymptotic sense, and our goal is to give a concrete-
security treatment. We propose here a modular treatment of these techniques,
and instantiate our framework to provide concrete bounds on the soundness of
Bulletproofs [7], a succinct proof system which has enjoyed wide popularity.

Forking Lemmas. Pointcheval and Stern’s original “Forking Lemma” [21] deals
with Σ-protocols that satisfy special soundness - these are three-round protocols,
where a transcript takes the form (a, c, d), with c being the verifier’s single ran-
dom challenge. Here, given common input x, the prover P proves knowledge to
V of a witness w for a relation R. The proof of knowledge property is proved by
giving an extractor B which produces a witness for x given (black-box) access to
a prover P∗ – if P∗ succeeds with probability ε, then B succeeds with probability
(roughly) ε2. Concretely, B simulates an execution of P∗ with a random chal-
lenge c, which results in a transcript (a, c, d), and then rewinds P∗ to just before
obtaining c, and feeds a different challenge c′ to obtain a transcript (a, c′, d′). If
both transcripts are accepting, and c �= c′, a witness can be extracted via special
soundness. Bellare and Neven [2] give alternative Forking Lemmas where B’s
success probability approaches ε, at the cost of a larger running time.

Expected-time extraction. It is natural to expect that the success probabil-
ity of B above degrades exponentially in the number of required accepting tran-
scripts. Crucially, however, one can make the Forking Lemma tight with respect
to probability if we relax B to have bounded expected running time. Now, B runs
P∗ once with a random challenge c and, if it generates a valid transcript (a, c, d),
we rewind P∗ to before receiving the challenge c, and keep re-running it from there
with fresh challenges until we obtain a second valid transcript (a, c′, d′) for c �= c′.
The expected running time is only twice that of P∗.

A general Forking Lemma. An extension of this idea underlies the anal-
ysis of recent succinct public-coin multi-round interactive arguments of knowl-
edge [6–8,24], following a workflow introduced first by Bootle et al. (BCCGP) [6]
which extracts a witness from a tree of multi-round executions obtained by clever
rewinding of P∗. In particular, since the number of generated accepted inter-
actions is large (i.e., exponential in the number of rounds), the usage of an
expected-time strategy is essential to extract with good enough probability.

These works in fact prove the stronger property of witness-extended emula-
tion [11,16]. This means that with black-box access to a prover P∗, an expected-
time emulator E (1) generates a transcript with the same distribution as in an
interaction between P∗ and the verifier V, and (2) if this transcript is accepting,
then a valid witness is produced along with it. In the case of arguments, it is
possible that (2) fails, but this would imply breaking an underlying assumption.

The BCCGP framework was refined in follow-up works [7,8,24], but these
remain largely asymptotic. We give here a clean and modular treatment of the



Expected-Time Cryptography 419

BCCGP blueprint, which makes it amenable to a concrete security treatment.
This will in particular require using our tools from the first part of the paper to
analyze the probability that we generate a well-formed tree of transcripts from
which a witness can be generated. We believe this to be of independent interest.

In the full version of this paper [13], we compare this expected-time forking
lemma to one with strict running-time guarantees and confirm that the expected-
time approach achieves a clear benefit in terms of tightness of the reduction.

Application to Bulletproofs. Finally, we apply the above framework to
obtain a bound on the concrete soundness for public-coin interactive argument
systems, and focus on Bulletproofs [7]1. We obtain a bound in terms of the
expected-time hardness of the discrete logarithm problem, and we combine this
with our generic-group analysis to get a bound on the soundness in the generic-
group model2. Of independent interest, the result relies on a tight reduction of
finding non-trivial discrete log relations to the plain discrete log problem – which
we give in Lemma 3.

Our bound is in particular on the probability AdvsoundPS,G(P∗) of a cheating
prover P∗ convincing a verifier V (from proof system PS) on input x generated
by a (randomized) instance generator G, and we show that

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + O

(
qP∗ · LM3 log2(M)√|G|

)
,

where qP∗ measures the number of group operations by P∗, M is the number of
multiplication gates for a circuit representing the relation R, L is a parameter
of that circuit (which we assume is small for this discussion, but may be as
large as 2M), AdvwitPS,G(B) is the probability of B extracting a witness w for an x
sampled by G, where B is an extractor whose (expected) running time amounts
to roughly M3 that of P∗.

This bound is interesting because it highlights the dependence of the sound-
ness probability on the group size |G| and on M . It in fact shows that for typical
instantiations, where |G| ≈ 2256, the guaranteed security level is fairly low for
modest-sized circuits (say with M = 220). It is a good question whether this
bound can be made tighter, in particular with respect to its dependence on M .

We also note that for specific instance generators G our tools may be helpful
to estimate AdvwitPS,G(B).

1 Our focus is somewhat arbitrary, and motivated by the popularity of this proof
system.

2 This bound is helped by the fact that our casting of the generic-group model allows
multi-exponentiations (g0, . . . , gn, a0, . . . , an → ∏n

i=0 gai
i ) as a unit operation. This

does not change the derived bound in the generic-group model, while decreasing the
number of generic-group queries made by the Bulletproofs verifier.
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2 Preliminaries

Let N = {0, 1, 2, . . . } and N>0 = N\{0}. For N ∈ N, let [N ] = {1, 2, . . . , N}. For
j > k we adopt the conventions that

∏k
i=j ni = 1 and (mj ,mj+1, . . . , mk) = ().

Equivalence mod p is denoted ≡p.
We let Perm(S) denote the set of all permutations on set S and Fcs(S, S′)

denote the set of all functions from S to S′. Sampling x uniformly from the
set S is denoted x ←$ S. The notation S = S′ 	 S′′ means that S = S′ ∪ S′′

and S′ ∩ S′′ = ∅, i.e., S′ and S′′ partition S. We let {0, 1}∗ denote the set of
finite-length bitstrings and {0, 1}∞ denote the set of infinite-length bitstrings.

We let y ← AO(x1, x2, . . . ; c) denote the execution of A on input x1, x2, . . .
and coins c ∈ {0, 1}∞ with access to oracle(s) O, producing output y. When
c is chosen uniformly we write y ←$ AO(x1, x2, . . . ). For a stateful algorithm A
with state s we use y ← AO(x1, x2, · · · : s; c) as shorthand for the expression
(y, s) ← AO(x1, x2, . . . , s; c). When some of an algorithm’s output is not going
to be used we will write · in place of giving it a variable name.

We use pseudocode games, inspired by the code-based game framework of
Bellare and Rogaway [4]. See Fig. 1 for some example games. If H is a game,
then Pr[H] denotes the probability that it outputs true. We use ∧, ∨, ⇔, and ¬
for the logical operators “and”, “or”, “iff”, and “not”.

Running-time conventions. The most commonly used notion for the running
time of an algorithm is worst-case. For this, one first fixes a computational model
with an associated notion of computational steps. Then an algorithm A has
worst-case running time t if for all choice of x1, x2, . . . and c it performs at
most t computation steps in the execution AO(x1, x2, . . . ; c), no matter how O

responds to any oracle queries A makes.
In this paper we are interested in proving bounds that instead depend on

the expected number of computation steps that A performs. There may be ran-
domness in how the inputs x1, x2, . . . to A and the responses to O queries are
chosen (in addition to the random selection of c).

There is more variation in how expected running time may be defined. We
will provide our bounds in terms of the expected running time of adversaries
interacting with the “real” world that they expect to interact with. Such a notion
of expected runtime is brittle because the expected runtime of the adversary
may vary greatly when executing in some other world; however, this notion
is the strongest for the purposes of our results because it will guarantee the
same bounds for notions of expected running time which restrict the allowed
adversaries more. See [10,15] for interesting discussion of various ways to define
expected polynomial time.

For many of the results of this paper, rather than directly measuring the
runtime of the adversary we will look at the (worst-case or expected) number
of oracle queries that it makes. The number of oracle queries can, of course, be
upper bounded by the number of computational steps.
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Fig. 1. Left: Game defining discrete log security of group G. Middle: Game defining
discrete log relation security of group G. Right: Reduction adversary for Lemma 3.

Useful lemmas. We will make use of Markov’s inequality and the Schwartz-
Zippel Lemma, which we reproduce here.

Lemma 1 (Markov’s Inequality). Let X be a non-negative random variable
and c > 0 be a non-negative constant, then

Pr[X > c] � Pr[X � c] � E[X]/c.

Lemma 2 (Schwartz-Zippel Lemma). Let F be a finite field and let p ∈
F[x1, x2, . . . xn] be a non-zero polynomial with degree d � 0. Then

Pr[p(r1, . . . , rn) = 0] � d/|F|
where the probability is over the choice of r1, . . . , rn according to ri ←$ F.

Discrete Logarithm Assumptions. Let G be a cyclic group of prime order p
with identity 1G and G

∗ = G\{1G} be its set of generators. Let (g0, . . . , gn) ∈ G
n

and (a0, . . . , an) ∈ Zp. If
∏n

i=0 gai
i = 1G and a least one of the ai are non-zero,

this is said to be a non-trivial discrete log relation. It is believed to be hard to
find non-trivial discrete log relations in cryptographic groups (when the gi are
chosen at random). We refer to computing

∏n
i=0 gai

i as a multi-exponentiation
of size n + 1.

Discrete log relation security is defined by the game in the middle of Fig. 1.
In it, the adversary A is given a vector g = (g0, . . . , gn) and attempts to find a
non-trivial discrete log relation. We define Advdl-rel

G,n (A) = Pr[Hdl-rel
G,n (A)]. Normal

discrete log security is defined by the game in the left panel of Fig. 1. In it, the
adversary attempts to find the discrete log of h ∈ G with respect to a generator
g ∈ G

∗. We define Advdl
G
(A) = Pr[Hdl

G
(A)].

It is well known that discrete log relation security is asymptotically equivalent
to discrete log security. The following lemma makes careful use of self-reducibility
techniques to give a concrete bound showing that discrete log relation security
is tightly implied by discrete log security.

Lemma 3. Let G be a group of prime order p and n � 1 be an integer. For any
B, define C as shown in Fig. 1. Then

Advdl-rel
G,n (B) � Advdl

G
(C) + 1/p.



422 J. Jaeger and S. Tessaro

Fig. 2. Identical-until-bad games defined from game specification (G, G′).

The runtime of C is that of B plus the time to perform n+1 multi-exponentiations
of size 2 and some computations in the field Zp.

The proof of this theorem is deferred to the full version of the paper [13].

3 Bad Flag Analysis for Expected-Time Adversaries

In this section we show how to (somewhat) generically extend the standard
techniques for analysis of “bad” flags from worst-case adversaries to expected-
time adversaries. Such analysis is a fundamental tool for cryptographic proofs
and has been formalized in various works [4,17,23]. Our results are tailored
for the setting where the analysis of the bad flag is information theoretic (e.g.,
applications in ideal models), rather than reliant on computational assumptions.

We start by introducing our notation and model for identical-until-bad games
in Sect. 3.1. Then in Sect. 3.2 we give the main theorem of this section which
shows how to obtain bounds on the probability that an expected time adver-
sary causes a bad flag to be set. Finally, in Sect. 3.3 we walk through some
basic applications (collision-resistance and PRF security in the random oracle
model and discrete log security in the generic group model) to show the analysis
required for expected time adversaries follows from simple modifications of the
techniques used for worst-case adversaries.

3.1 Notation and Experiments for Identical-Until-Bad Games

Identical-until-bad games. Consider Fig. 2 which defines a pair of games
G

(G,G′)
0 and G

(G,G′)
1 from a game specification (G,G′). Here G and G′ are stateful

randomized algorithms. At the beginning of the game, coins c0, c1, and cA are
sampled uniformly at random3. The first two of these are used by G and G′

3 In the measure-theoretic probability sense with each individual bit of the coins being
sampled uniformly and independently.
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while the last is used by A4. The counter t is initialized to 0, the flag bad is set
to false, and states s and s′ are initialized for use by G and G′.

During the execution of the game, the adversary A repeatedly makes queries
to the oracle Orac. The variable t counts how many queries A makes. As long
as bad is still false (so ¬bad is true), for each query made by A the algorithm
G′ will be given this query to determine if bad should be set to true. When
b = 1, the behavior of Orac does not depend on whether bad is set because the
output of the oracle is always determined by running G(1, x : s; c1, c1). When
b = 0, the output of the oracle is defined in the same way up until the point
that bad is set to true. Once that occurs, the output is instead determined by
running G(0, x : s; c1, c0). Because these two games are identical except in the
behavior of the code d ← b which is only executed once bad = true, they are
“identical-until-bad”.

In this section, the goal of the adversary is to cause bad to be set to true.
Bounding the probability that A succeeds in this can be used to analyze secu-
rity notions in two different ways. For indistinguishability-based security notions
(e.g., PRG or PRF security), the two games Gb would correspond to the two
worlds the adversary is attempting to distinguish between. For other security
notions (e.g., collision resistance or discrete log security), we think of one of the
Gb as corresponding to the game the adversary is trying to win and the other
as corresponding to a related “ideal” world in which the adversary’s success
probably can easily be bounded. In either case, the fundamental lemma of game
playing [4] can be used to bound the advantage of the adversary using a bound
on the probability that bad is set.

A combined experiment. For our coming analysis it will be useful to relate
executions of G(G,G′)

0 (A) and G
(G,G′)
1 (A) to each other. For this we can think of

a single combined experiment in which we sample c0, c1, and cA once and then
run both games separately using these coins.

For b ∈ {0, 1}, we let QA
b be a random variable denoting how many oracle

queries A makes in the execution of G(G,G′)
b (A) during this experiment. We let

BADA
t [b] denote the event that G′ sets badt to true in the execution of G(G,G′)

b (A).
Note that BADA

t [0] will occur if and only if BADA
t [1] occurs, because the behavior

of both games are identical up until the first time that bad is set and G′ is never
again executed once bad is true. Hence we can simplify notation by defining
BADA

t to be identical to the event BADA
t [0], while keeping in mind that we can

equivalently think of this event as occurring in the execution of either game.
We additionally define the event that bad is ever set BADA =

∨∞
i=1 BAD

A
i , the

event that bad is set by one of the first j queries the adversary makes BADA
�j =∨j

i=1 BAD
A
j , and the event that bad is set after the j-th query the adversary

makes BADA
>j =

∨∞
i=j+1. Clearly, Pr[BADA] = Pr[BADA

�j ] + Pr[BADA
>j ]. Again

we can equivalently think of these events as occurring in either game. When the

4 We emphasize that these algorithms are not allowed any randomness beyond the use
of these coins.
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adversary is clear from context we may choose to omit it from the superscript
in our notation.

The fact that both games behave identically until bad is set true allows us
to make several nice observations. If BAD does not hold, then Q0 = Q1 must
hold. If BADt holds for some t, then both Q0 and Q1 must be at least t. One
implication of this is that if Q1 = q holds for some q, then BAD is equivalent to
BAD�q. Additionally, we can see that Pr[BAD>q] � Pr[Qb > q] must hold.

Defining our events and random variables in this single experiment will later
allow to consider the expectation E[Qd

0|Q1 = q] for some d, q ∈ N. In words, that
is the expected value of Q0 raised to the d-th power conditioned on c0, c1, cA
having been chosen so that Q1 = q held. Since Q0 and Q1 can only differ if BAD
occurs we will be able to use Pr[BAD|Q1 = q] to bound how far E[Qd

0|Q1 = q]
can be from E[Qd

1|Q1 = q] = qd.

δ-boundedness. Existing analysis of identical-until-bad games is done by
assuming a worst-case bound qA on the number of oracle queries that A makes
(in either game). Given such a bound, one shows that Pr[BADA] � δ(qA) for
some function δ. We will say that a game specification (G,G′) is δ-bounded if
for all A and q ∈ N we have that

Pr[BADA|Q1 = q] � δ(q).

As observed earlier, if Q1 = q holds then badt cannot be set for any t > q. Hence
Pr[BADA|Q1 = q] = Pr[BADA

�q|Q1 = q].
We will, in particular, be interested in that case that δ(q) = Δ · qd/N for

some Δ, d,N � 15. We think of Δ and d as “small” and of N as “large”. The
main result of this section bounds the probability that an adversary sets bad by
O

(
d
√

δ (E[Qb])
)

for either b if (G,G′) is δ-bounded for such a δ.
While δ-boundedness may seem to be a strange condition, we show in Sect. 3.3

that the existing techniques for proving results of the form Pr[BADA] � δ(qA)
for A making at most qA queries can often be easily extended to show the
δ-boundedness of a game (G,G′). The examples we consider are the collision-
resistance and PRF security of a random oracle and the security of discrete log
in the generic group model. In particular, these examples all possess a com-
mon form. First, we note that the output of G(1, . . . ) is independent of c0.
Consequently, the view of A when b = 1 is independent of c0 and hence Q1

is independent of c0. To analyze Pr[BAD|Q1 = q] we can then think of c′ and
c1 being fixed (fixing the transcript of interaction between A and its oracle in
GG

1 ) and argue that for any such length q interaction the probability of BAD is
bounded by δ(q) over a random choice of c0.

We note that this general form seems to typically be implicit in the existing
analysis of bad flags for the statistical problems one comes across in ideal model
analysis, but would not extend readily to examples where the probability of the

5 We could simply let ε = Δ/N and instead say δ(q) = εqd, but for our examples we
found it more evocative to write these terms separately.
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bad flag being set is reduced to the probability of an adversary breaking some
computational assumption.

3.2 Expected-Time Bound from δ-boundedness

We can now state our result lifting δ-boundedness to a bound on the probability
that an adversary sets bad given only its expected number of oracle queries.

Theorem 1. Let δ(q) = Δ · qd/N for Δ, d,N � 1. Let (G,G′) be a δ-bounded
game specification. If N � Δ · 6d, then for any A,

Pr[BADA] � 5
d

√
Δ · E[QA

0 ]d

N
= 5 d

√
δ
(
E[QA

0 ]
)
.

If N � Δ · 2d, then for any A,

Pr[BADA] � 3
d

√
Δ · E[QA

1 ]d

N
= 3 d

√
δ
(
E[QA

1 ]
)
.

We provide bounds based on the expected runtime in either of the two games
since they are not necessarily the same. Typically, one of the two games will
correspond to a “real” world and it will be natural to desire a bound in terms of
the expected runtime in that game. The proof for Q0 is slightly more complex
and is given in this section. The proof for Q1 is simpler and deferred to the full
version of this paper [13]. In the full version we show via a simple attack that
the d-th root in these bounds is necessary.

Proof (of Theorem 1). Let u = 2−d and U =
⌊

d
√

Nu/Δ
⌋
. Note that δ(U) � u.

Now let B be an adversary that runs exactly like A, except that it counts the
number of oracle queries made by A and halts execution if A attempts to make
a U + 1-th query. We start our proof by bounding the probability of BADA by

the probability of BADB and an O
(

d

√
δ
(
E[QA

0 ]
))

term by applying Markov’s
inequality. In particular we perform the calculations

Pr[BADA] = Pr[BADA
�U ] + Pr[BADA

>U ] (3)

= Pr[BADB
�U ] + Pr[BADA

>U ] (4)

� Pr[BADB] + Pr
[
QA

0 > U
]

(5)

� Pr[BADB] + E[QA
0 ]/U (6)

� Pr[BADB] + 3E[QA
0 ] d

√
Δ/N. (7)

Step 4 follows because for all queries up to the U -th, adversary B behaves identi-
cally to A (and thus BADA

i = BADB
i for i � U). Step 5 follows because BADB

>U

cannot occur (because B never makes more than U queries) and BADA
>U can

only occur if QA
0 is at greater than U . Step 6 follows from Markov’s inequality.
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Step 7 follows from the following calculation which uses the assumption that
N � Δ · 6d and that u = 2−d,

U =
⌊

d
√

Nu/Δ
⌋

� d
√

Nu/Δ − 1 = d
√

N/Δ
(

d
√

u − d
√

Δ/N
)

� d
√

N/Δ

(
d
√

2−d − d

√
Δ/(Δ · 6d)

)
= d

√
N/Δ (1/2 − 1/6) .

In the rest of the proof we need to establish that Pr[BADB] � 2E[QA
0 ] d

√
Δ/N .

We show this with E[QB
0 ], which is clearly upper bounded by E[QA

0 ]. We will do
this by first bounding Pr[BADB] in terms of E[(QB

1 )d], then bounding E[(QB
1 )d]

in terms of E[(QB
0 )d], and then concluding by bounding this in terms of E[QB

0 ].
For the first of these steps we expand Pr[BADB] by conditioning on all possible
values of QB

1 and applying our assumption that (G,G′) is δ-bounded to get

Pr[BADB] =
U∑

q=1

Pr[BADB|QB
1 = q]Pr[QB

1 = q] �
U∑

q=1

(Δ · qd/N)Pr[QB
1 = q]

= Δ/N
U∑

q=1

qdPr[QB
1 = q] = ΔE[(QB

1 )d]/N.

So next we will bound E[(QB
1 )d] in terms of E[(QB

0 )d]. To start, we will give
a lower bound for E[(QB

0 )d|QB
1 = q] (when q � U) by using our assumption that

(G,G′) is δ-bounded. Let R0 be a random variable which equals QB
0 if BADB

does not occur and equals 0 otherwise. Clearly R0 � QB
0 always. Recall that

if BADB does not occur, then QB
0 = QB

1 (and hence R0 = QB
1 ) must hold. We

obtain

E[(QB
0 )d|QB

1 = q] � E[Rd
0|QB

1 = q]

= qdPr[¬BADB|QB
1 = q] + 0dPr[BADB|QB

1 = q]

= qd(1 − Pr[BADB|QB
1 = q])

� qd(1 − δ(q)) � qd(1 − u).

The last step used that δ(q) � δ(U) � u because q � U .
Now we proceed by expanding E[(QB

1 )d] by conditioning on the possible value
of QB

1 and using the above bound to switch E[(QB
0 )d|QB

1 = q] in for qd. This gives,

E[(QB
1 )d] =

U∑
q=1

qd · Pr[QB
1 = q]

=
U∑

q=1

E[(QB
0 )d|QB

1 = q] · qd

E[(QB
0 )d|QB

1 = q]
· Pr[QB

1 = q]

�
U∑

q=1

E[(QB
0 )d|QB

1 = q] · qd

qd(1 − u)
· Pr[QB

1 = q]

= (1 − u)−1E[(QB
0 )d]
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Our calculations so far give us that Pr[BADB] � (1−u)−1E[(QB
0 )d] ·Δ/N . We

need to show that this is bounded by 2E[QB
0 ] d

√
Δ/N . First note that QB

0 � U
always holds by the definition of B, so

(1 − u)−1E[(QB
0 )d] · Δ/N � (1 − u)−1E[QB

0 ] · Ud−1 · Δ/N.

Now since U =
⌊

d
√

Nu/Δ
⌋
, we have Ud−1 � (Nu/Δ)(d−1)/d which gives

(1 − u)−1E[QB
0 ] · Ud−1 · Δ/N � (1 − u)−1(u(d−1)/d)E[QB

0 ] d
√

Δ/N.

Finally, recall that we set u = 2−d and so

(1 − u)−1(u(d−1)/d) =
2−d·(d−1)/d

1 − 2−d
=

21−d

1 − 2−d
� 21−1

1 − 2−1
= 2.

Bounding E[QB
0 ] � E[QA

0 ] and combining with our original bound on Pr[BADA]
completes the proof. �	

3.3 Example Applications of Bad Flag Analysis

In this section we walk through some basic examples to show how a bound of
Pr[bad|Q1 = q] � Δ · qd/N can be proven using essentially the same techniques
as typical bad flag analysis for worst-case runtime, allowing Theorem 1 to be
applied. All of our examples follow the basic structure discussed earlier in this
section. We write the analysis in terms of two games which are identical-until-
bad and parameterized by a bit b. In the b = 1 game, the output of its oracles
will depend on some coins we identify as c1, while in the b = 0 case the output
will depend on both c1 and independent coins we identify as c0. Then we think
of fixing coins c1 and the coins used by the adversary, which together fix Q1 (the
number of queries A would make in the b = 1 case), and argue a bound on the
probability that bad is set over a random choice of c0.

We write the necessary games in convenient pseudocode and leave the map-
ping to a game specification (G,G′) to apply Theorem 1 implicit. We will abuse
notation and use the name of our pseudocode game to refer to the corresponding
game specification.

Collision-resistance of a random oracle. Our first example is the colli-
sion resistance of a random oracle. Here an adversary is given access to a random
function h : {0, 1}∗ → [N ]. It wins if it can find x �= y for which h(x) = h(y),
i.e., a collision in the random oracle. One way to express this is by the game
Hcr

0 shown in Fig. 3. The random oracle is represented by the oracle Ro and the
oracle Fin allows the adversary to submit supposed collisions.

In it, we have written Ro in a somewhat atypical way to allow comparison to
Hcr

1 with which it is identical-until-bad. The coins used by these games determine
a permutation π sampled at the beginning of the game and a value X chosen
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Fig. 3. Game capturing collision-resistance of a random oracle (when b = 0).

Fig. 4. Games capturing PRF security of a random oracle.

at random from [N ] during each Ro query6. We think of the former as c1 and
the latter as c0. Ignoring repeat queries, when in Hcr

1 the output of Ro is simply
π[1], π[2], . . . in order. Thus clearly, Pr[Hcr

1 (A)] = 0 since there are no collisions
in Ro. In Hcr

0 the variable X modifies the output of Ro to provide colliding
outputs with the correct distribution.

These games are identical-until-bad, so the fundamental lemma of game play-
ing [4] gives us,

Pr[Hcr
0 (A)] � Pr[Hcr

0 (A) sets bad] + Pr[Hcr
1 (A)] = Pr[Hcr

0 (A) sets bad].

Now think of the adversary’s coins and the choice of π as fixed. This fixes a
value of Q1 and a length Q1 transcript of A’s queries in Hcr

1 (A). If A made all
of its queries to Fin, then Ro will have been executed 2Q1 times. On the i-th
query to Ro, there is at most an (i − 1)/N probability that the choice of X will
cause bad to be set. By a simple union bound we can get,

Pr[BAD|Q1 = q] � q(2q − 1)/N.

6 We define π[i] = i for i > N just so the game Hcr
1 is well-defined if A makes more

than N queries.
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Setting δ(q) = 2q2/N we have that Hcr is δ-bounded, so Theorem 1 gives

Pr[Hcr
0 (A)] � 5

2

√
2 · E[QA

0 ]2

N
.

Pseudorandomness of a random oracle. Now consider using a random
oracle with domain [N ] × D and range R as a pseudorandom function. The
games for this are shown in Fig. 4. The real world is captured by b = 0 (because
to output of the random oracle Ro is made to be consistent with output of the
real-or-random oracle Ror) and the ideal world by b = 1.

The coins of the game are random tables T and F as well as a random key
K. We think of the key as c0 and the tables as c1. Because we have written the
games so that the consistency check occurs in Ro, we can clearly see the output
of the oracles in Hprf

1 are independent of c0 = K.
These games are identical-until-bad so from the fundamental lemma of game

playing we have,

Pr[Hprf
0 (A)] − Pr[Hprf

1 (A)] � Pr[Hprf
0 (A) sets bad].

Now we think of c1 and the coins of A as fixed. Over a random choice of K, each
Ro query has a 1/N change of setting bad. By a simple union bound we get,

Pr[BAD|Q1 = q] � q/N.

Defining δ(q) = q/N we have that Hprf is δ-bounded, so Theorem 1 gives

Pr[Hprf
0 (A)] − Pr[Hprf

1 (A)] � 5 · E[QA
0 ]/N.

Discrete logarithm security in the generic group model. Next we
consider discrete logarithm security in the generic group model for a prime order
group G with generator g. One way to express this is by the game Hdl

0 shown in
Fig. 5. In this expression, the adversary is given labels for the group elements
it handles based on the time that this group element was generated by the
adversary. The more general framing of the generic group model where gx ∈ G

is labeled by σ(x) for a randomly chosen σ : Z|G| → {0, 1}l for some l � �log |G|�
can easily be reduced to this version of the game.

At the beginning of the game polynomials p0(·) = 0, p1(·) = 1, and p2(·) = X
are defined. These are polynomials of the symbolic variable X, defined over
Z|G|. Then a random x is sampled and the goal of the adversary is to find
this x. Throughout the game, a polynomial pi represents the group element
gpi(x). Hence p0 represents the identity element of the group, p1 represents the
generator g, and p2 represents gx. We think of the subscript of a polynomial as
the adversary’s label for the corresponding group element. The variable t tracks
the highest label the adversary has used so far.

We let Pi denote the set of the first i polynomials that have been generated
and Pi

x be the set of their outputs when evaluated on x. The oracle Init tells
the adversary if x happened to be 0 or 1 by returning the appropriate value
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Fig. 5. Game capturing discrete logarithm security of a generic group (when b = 0).
For i ∈ N and x ∈ Z|G|, we use the notation Pi = {p0, . . . , pi} ⊂ Z|G|[X] and Pi

x =
{p(x) : p ∈ Pi} ⊂ Z|G|.

of 
. The oracle Op allows the adversary to perform multi-exponentiations. It
specifies a vector j of labels for group elements and a vector α of coefficients.
The variable t is incremented and its new value serves as the label for the group
element

∏
i g

α [i]
j [i] where gj [i] is the group element with label j[i], i.e., gpj [i](x). The

returned value 
 is set equal to the prior label of a group element which equals
this new group element (if 
 = t, then no prior labels represented the same group
element).

The only coins of this game are the choice of x which we think of as c0. In Hdl
1 ,

the adversary is never told when two labels it handles non-trivially represent the
same group element so the view of A is independent of c0, as desired7. Because
the view of A is independent of x when b = 1 we have that Pr[Hdl

1 (A)] = 1/|G|.
From the fundamental lemma of game playing,

Pr[Hdl
0 (A)] � Pr[Hdl

0 (A) sets bad] + Pr[Hdl
1 (A)] = Pr[Hcr

0 (A) sets bad] + 1/|G|
Now thinking of the coins of A as fixed, this fixes a value of Q1 and a length
Q1 transcript of queries that would occur in Hdl

1 (A). This in turn fixes the set of
polynomials PQ1+2. The flag bad will be set iff any of polynomials in the set

{p(·) − r(·)|p �= r ∈ PQ1+2}
have the value 0 when evaluated on x. Note these polynomials are non-zero and
have degree at most 1. Thus, applying the Schwartz-Zippel lemma and a union
bound we get,

Pr[BAD|Q1 = q] �
(

q + 3
2

)
· (1/|G|) � 6q2/|G|.

7 Two labels trivially represent the same group element if they correspond to identical
polynomials.
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Note the bound trivially holds when q = 0, since Pr[bad|Q1 = q] = 0, so we have
assumed q � 1 for the second bound. Defining δ(q) = 6q2/|G| we have that Hdl

is δ-bounded, so Theorem 1 gives

Pr[Hdl
0 (A)] � 5 2

√
6 · E[QA

0 ]2

|G| +
1

|G| .

4 Concrete Security for a Forking Lemma

In this section we apply our techniques to obtaining concrete bounds on the
soundness of proof systems. Of particular interest to us will be proof systems
that can be proven to achieve a security notion known as witness-extended emu-
lation via a very general “Forking Lemma” introduced by Bootle, Cerulli, Chai-
dos, Groth, and Petit (BCCGP) [6]. Some examples include Bulletproofs [7],
Hyrax [24], and Supersonic [8]. Our expected-time techniques arise naturally for
these proof systems because witness-extended emulation requires the existence
of an expected-time emulator E for a proof system which is given oracle access
to a cheating prover and produces transcripts with the same distribution as the
cheating prover, but additionally provides a witness w for the statement being
proven whenever it outputs an accepting transcript.

In this section we use a new way of expressing witness-extended emulation
as a special case of a more general notion we call predicate-extended emulation.
The more general notion will serve as a clean, modular way to provide a concrete
security version of the BCCGP forking lemma. This modularity allows us to hone
in on the steps where our expected time analysis can be applied to give concrete
bounds and avoid some technical issues with the original BCCGP formulation
of the lemma.

In the BCCGP blueprint, the task of witness-extended emulation is divided
into a generic tree-extended emulator which for any public coin proof system
produces transcripts with the same distribution as a cheating prover together
with a set of accepting transcripts satisfying a certain tree structure and an
extractor for the particular proof system under consideration which can extract
a witness from such a tree of transcripts. The original forking lemma of BCCGP
technically only applied for extractors that always output a witness given a
valid tree with no collisions. However, typical applications of the lemma require
that the extractor be allowed to fail when the cheating prover has (implicitly)
broken some presumed hard computational problem. Several works subsequent
to BCCGP noticed this gap in the formalism [7,8,24] and stated slight variants
of the BCCGP forking lemma. However, these variants are still unsatisfactory.
The variant lemmas in [7,24] technically only allows extractors which fail in
extracting a witness with at most negligible probability for every tree (rather
than negligible probably with respect to some efficiently samplable distribution
over trees, as is needed). The more recent variant lemma in [8] is stated in such
a way that the rewinding analysis at the core of the BCCGP lemma is omitted
from the variant lemma and (technically) must be shown separately anytime it
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Fig. 6. Predicates we use. Other predicates Πbind and Πrsa are only discussed informally.

is to be applied to a proof system. None of these issues represent issues with the
security of the protocols analyzed in these works. The intended meaning of each
of their proofs is clear from context and sound, these issues are just technical
bugs with the formalism of the proofs. However, to accurately capture concrete
security it will be important that we have a precise and accurate formalism of
this. Our notion of predicate-extended emulation helps to enable this.

In Sect. 4.1, we provide the syntax of proof systems as well as defining
our security goals of predicate-extended emulation (a generalization of witness-
extended emulation) and generator soundness (a generalization of the standard
notion of soundness). Then in Sect. 4.2, we provide a sequence of simple lemmas
and show how they can be combined to give our concrete security version on the
forking lemma. Finally in Sect. 4.3, we discuss how our forking lemma can easily
be applied to provide concrete bounds on the soundness of various existing proof
systems. As a concrete example we give the first concrete security bound on the
soundness of the Bulletproof zero-knowledge proof system for arithmetic circuits
by Bünz et al. [7].

4.1 Syntax and Security of Proof Systems

Proof System. A proof system PS is a tuple PS = (S,R,P,V, μ) specifying a
setup algorithm S, a relation R, a prover P, verifier V, and μ ∈ N. The setup
algorithm outputs public parameters π. We say w is a witness for the statement
u if (u,w) ∈ Rπ. The prover (with input (u,w)) and the verifier (with input u)
interact via 2μ + 1 moves as shown in Fig. 7.

Fig. 7. Interaction between (honest) prover P and
verifier V with public parameters π. Here tr is the
transcript and d ∈ {0, 1} is the decision.

Here tr is the transcript
of the interaction and d ∈
{0, 1} is the decision of V (with
d = 1 representing accep-
tance and d = 0 represent-
ing rejection). Perfect com-
pleteness requires that for all
π and (u,w) ∈ Rπ, Pr[d = 1 :
(·, d) ←$ 〈Pπ(u,w),Vπ(u)〉] =
1. If PS is public-coin, then
m2i−1 output by V each round
is set equal to its random
coins. In this case, we let
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Vπ(u, tr) ∈ {0, 1} denote V’s decision after an interaction that produced tran-
script tr8. Throughout this section we will implicitly assume that any proof
systems under discussion is public-coin. We sometimes refer to the verifier’s out-
puts as challenges.

Predicate-extended emulation. The proof systems we consider were all
analyzed with the notion of witness-extended emulation [11,16]. This requires
that for any efficient cheating prover P∗ there exists an efficient emulator E
which (given oracle access to P∗ interacting with V and the ability to rewind
them) produces transcripts with the same distribution as P∗ and almost always
provides a witness for the statement when the transcript it produces is accepting.
We will capture witness-extended emulation as a special case of what we refer to
as predicate-extended emulation. We cast the definition as two separate security
properties. The first (emulation security) requires that E produces transcripts
with the same distribution as P∗. The second (predicate extension) is parame-
terized by a predicate Π and requires that whenever E produces an accepting
transcript, its auxiliary output must satisfy Π. As we will see, this treatment will
allow a clean, modular treatment of how BCCGP and follow-up work [6–8,24]
analyze witness-extended emulation.

We start by considering game Hemu defined in Fig. 8. It is parameterized by a
public-coin proof system PS, emulator E, and bit b. The adversary consists of a
cheating prover P∗ and an attacker A. This game measures A’s ability to distin-
guish between a transcript generated by 〈P∗

π(u, s),Vπ(u)〉 and one generated by
E. The emulator E is given access to oracles Next and Rew. The former has P∗

and V perform a round of interaction and returns the messages exchanged. The
latter rewinds the interaction to the prior round. We define the advantage func-
tion Advemu

PS,E(P
∗,A) = Pr[Hemu

PS,E,1(P
∗,A)] − Pr[Hemu

PS,E,0(P
∗,A)]. For the examples

we consider there will be an E which (in expectation) performs a small number
of oracle queries and does a small amount of local computation such that for
any P∗ and A we have Advemu

PS,E(P
∗,A) = 0.

Note that creating a perfect emulator is trivial in isolation; E can just make
μ+1 calls to Next to obtain a tr with the exactly correct distribution. Where it
gets interesting is that we will consider a second, auxiliary output of E and insist
that it satisfies some predicate Π whenever tr is an accepting transcript. The
adversary wins whenever tr is accepting, but the predicate is not satisfied. This
is captured by the game Hpredext shown in Fig. 8. We define AdvpredextPS,E,Π(P∗,A) =
Pr[Hpredext

PS,E,Π(P∗,A)]. Again this notion is trivial in isolation; E can just output
rejecting transcripts. Hence, both security notions need to be considered together
with respect to the same E.

The standard notion of witness-extended emulating is captured by the pred-
icate Πwit which checks if aux is a witness for u, that is, Πwit(π, u, aux) =
((u, aux) ∈ Rπ). Later we will define some other predicates. All the predicates we
will make use of are summarized in Fig. 6. A proof system with a good witness-

8 We include m−1 = ⊥ in tr as a notational convenience.



434 J. Jaeger and S. Tessaro

Fig. 8. Games defining predicate-extended emulation security of proof system PS.

extended emulator under some computational assumption may be said to be an
argument of knowledge.
Hard predicates. One class of predicates to consider are those which embed
some computational problem about the public parameter π that is assumed
to be hard to solve. We will say that Π is witness-independent if its output
does not depend on its second input u. For example, if S outputs of length n
vector of elements from a group G (we will denote this setup algorithm by Sn

G
)

we can consider the predicate ΠG,n
dl which checks if aux specifies a non-trivial

discrete log relation. This predicate is useful for the analysis of a variety of proof
systems [6,7,24]. Other useful examples include: (i) if S output parameters for
a commitment scheme with Πbind that checks if aux specifies a commitment and
two different opening for it [6,8,24] and (ii) if S outputs a group of unknown
order together with an element of that group and Πrsa checks if aux specifies a
non-trivial root of that element [8].

Whether a witness-independent predicate Π is hard to satisfy given the out-
put of S is captured by the game Hpred shown on the left side of Fig. 9. We
define AdvpredS,Π (A) = Pr[Hpred

S,Π (A)]. Note, for example, that if Sn
G

and ΠG,n
dl is used,

then this game is identical to discrete log relation security, i.e., Advpred
Sn
G

,ΠG,n
dl

(A) =

Advdl-rel
G,n (A) for any adversary A.

Generator soundness. Consider the games shown on the right side of Fig. 9.
Both are parameterized by a statement generator G which (given the parameters
π) outputs a statement u and some auxiliary information s about the statement.
The first game Hsound measure how well a (potentially cheating) prover P∗ can
use s to convince V that u is true. The second game Hwit measures how well
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Fig. 9. Left. Game defining hardness of satisfying predicate Π. Right. Games defining
soundness of proof system PS with respect to instance generator G and difficulty of
finding witness for statements produced by G.

an adversary B can produce a witness for u given s. We define AdvsoundPS,G(P∗) =
Pr[Hsound

PS,G(P∗)] and AdvwitPS,G(B) = Pr[Hwit
PS,G(B)].

Note that the standard notion of soundness (that proving false statements is
difficult) is captured by considering G which always outputs false statements. In
this case, AdvwitPS,G(A) = 0 for all A. In other contexts, it may be assumed that
it is computationally difficult to find a witness for G’s statement.

4.2 Concrete Security Forking Lemma

Now we will work towards proving our concrete security version of the BCCGP
forking lemma. This lemma provides a general framework for how to provide a
good witness-extended emulator for a proof system. First, BCCGP showed how
to construct a tree-extended emulator T which has perfect emulation security
and (with high probability) outputs a set of transcripts satisfying a tree-like
structure (defined later) whenever it outputs an accepting transcript. Then one
constructs, for the particular proof system under consideration, an “extractor”
X which given such a tree of transcripts can always produce a witness for the
statement or break some other computational problem assumed to be difficult.
Combining T and X appropriately gives a good witness-extended emulator.

Before proceeding to our forking lemma we will provide the necessary defini-
tions of a tree-extended emulator and extractor, then state some simple lemmas
that help build toward our forking lemma.

Transcript Tree. Fix a proof system PS = (S,R,P,V, μ) and let the vector
n = (n1, . . . , nμ) ∈ N

μ
>0 be given. Let π be an output of S and u be a statement.

For h = 0, . . . , μ we will inductively define an (nμ−h+1, . . . , nμ)-tree of transcripts
for (PS, π, u). We will often leave some of (PS, π, u) implicit when they are clear
from context.

First when h = 0, a ()-tree is specified by a tuple (m2μ−1,m2μ, 
) where
m2μ−1,m2μ ∈ {0, 1}∗ and 
 is an empty list. Now an (nμ−(h+1), . . . , nμ)-tree is
specified by a tuple (m2(μ−h)−1,m2(μ−h), 
) where m2(μ−h)−1,m2(μ−h) ∈ {0, 1}∗

and 
 is a length nμ−(h+1) list of (nμ−h, . . . , nμ)-trees for (PS, π, u, tr).
When discussing such trees we say their height is h. When h < μ we will

sometimes refer to it as a partial tree. We use the traditional terminology of
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nodes, children, parent, root, and leaf. We say the root node is at height h, its
children are at height h − 1, and so on. The leaf nodes are thus each at height
0. If a node is at height h, then we say it is at depth μ − h.

Every path from the root to a leaf in a height h tree gives a sequence
(m2(μ−h)−1,m2(μ−h), . . . , m2μ−1,m2μ) where (m2(μ−i)−1,m2(μ−i)) are the pair
from the node at height i. Now if we fix a transcript prefix tr′ = (m−1,m0, . . . ,
m2(μ−h−1)−1,m2(μ−h−1)), then we can think of tr′ and the tree as inducing∏μ

i=1 ni different transcripts tr = (m0, . . . , m2μ−1,m2μ), one for each path. We
will say that the tree is valid for tr′ if Vπ(u, tr) = 1 for each transcript tr induced
by the tree. Note that tr′ is an empty list when h = μ so we can omit reference
to tr′ and simply refer to the tree as valid.

Suppose V’s coins are drawn from S ×Zp for some set S and p ∈ N. We will
refer to the second component of its coins are the integer component. Let node
be a parent node at height i > 0. If any two of its children have m2(μ−i+1)−1 with
identical integer components, then we say that node has a challenge collision. A
tree has a challenge collision if any of its nodes have a challenge collision.

A tree-extractor emulator should return trees which are valid and have no
challenge collision. We capture this with the predicates Πn

val and Πn
nocol defined

by:

– Πn
val(π, u, aux) returns true iff aux is a valid n-tree.

– Πn
nocol(π, u, aux) returns true iff aux is an n-tree that does not have a challenge

collision.

Tree-extended Emulator. Let a proof system PS = (S,R,P,V, μ) and let
(n1, . . . , nμ) ∈ N

μ
>2 be given. Then consider the tree-extended emulator T given

in Fig. 10 which comes from BCCGP. The sub-algorithms Ti are given a partial
transcript tr. They call Next to obtain the next messages of a longer partial
transcript and attempt to create a partial tree with is valid for it. This is done
by repeatedly calling Ti+1 to construct each branch of the tree. Should the first
such call fail, then Ti will abort. Otherwise, it will continue calling Ti+1 as many
times as necessary to have ni+1 branches. The base case of this process is Tμ

which does not need children branches and instead just checks if its transcript
is accepting, returning ⊥ to its calling procedure if not. The following result
shows that T emulates any cheating prover perfectly and almost always outputs
a valid tree whenever it outputs an accepting transcript. The technical core of
the lemma is in the bound on the expected efficiency of T.

Lemma 4. Let PS = (S,R,P,V, μ) be a public coin proof system. Suppose V’s
challenges are uniformly drawn from S × Zp for set S and p ∈ N. Let n =
(n1, . . . , nμ) ∈ N

μ
>0 be given. Let N =

∏μ
i=1 ni. Let P∗ be a cheating prover and

A be an adversary. Define T as shown in Fig. 10. Then the following all hold:

1. Advemu
PS,T(P∗,A) = 0

2. AdvpredextPS,T,Πn
val

(P∗,A) = 0

3. AdvpredextPS,T,Πn
nocol

(P∗,A) � 5μN/
√

2p

4. The expected number of times T executes Vπ(u, ·) is N .
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Fig. 10. The BCCGP tree-extended emulator.

5. The expected number of queries that T makes to Next is less than μN + 19.
Exactly one of these queries is made while i = 1 in Next.

For comparison, in the full version of this paper [13] we analyze a natural
tree-extended emulator with a small bounded worst-case runtime. Its ability to
produce valid trees is significantly reduced by its need to work within a small
worst-case runtime, motivating the need for T to only be efficient in expected
runtime.

Proof (of Lemma 4). All of the claims except the third follow from BCCGP’s
analysis of T. The advantage AdvpredextPS,T,Πn

nocol
(P∗,A) can be upper-bounded by the

probability that the integer component of V’s output is repeated across any of
T’s queries to Next. BCCGP bounded this probability by applying Markov’s
inequality to obtain an upper bound on T’s running time and then applying the
birthday bound to get an O(μN/ 3

√
p) bound. We can instead apply our switching

lemma analysis from the full version of this paper [13] (or the techniques from
our analysis of the collision resistance of a random oracle in Sect. 3.3) to obtain
the stated bound because V will sample μN challenges in expectation. �	
Extractors. Let X be an algorithm and Π1,Π2 be predicates. We say that
X is a (Π1,Π2)-extractor if Π1(π, u, aux) ⇒ Π2(π, u,X(π, u, aux)). Let T be an
emulator. Then we define E†[T,X] to be the emulator that on input (π, u) with
oracle access to Next and Rew will first compute (tr, aux) ←$ TNext,Rew(π, u)
and then returns (tr,X(π, u, aux)). The following straightforward lemma relates
the security of T and E†.

Lemma 5. Let PS be a proof system, T be an emulator, Π1 and Π2 be predicates,
P∗ be a cheating prover, and A be an adversary. Let X be a (Π1,Π2)-extractor.
Then the following hold:
9 More precisely, the expected number of queries that T makes to Next is the number

of nodes in a (n1, . . . , nµ)-tree. This is
∑µ

i=0

∏i
j=1 nj , where

∏0
j=1 nj = 1.
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Fig. 11. Reduction adversary for Theorem 2.

– Advemu
PS,E†[T,X](P

∗,A) = Advemu
PS,T(P∗,A)

– Advpredext
PS,E†[T,X],Π2

(P∗,A) � AdvpredextPS,T,Π1
(P∗,A)

Forking lemma. Finally, we can state and prove our concrete security version of
the BCCGP forking lemma. It captures the fact that any protocol with a (Πn

val ∧
Πn

nocol,Πwit ∨ Π∗)-extractor has a good witness-extended emulator (assuming Π∗

is computationally difficult to satisfy)10.

Theorem 2 (Forking Lemma). Let PS = (S,R,P,V, μ) be a public coin proof
system. Suppose V’s challenges are uniformly drawn from S × Zp for set S and
p ∈ N. Let n = (n1, . . . , nμ) ∈ N

μ
>0 be given. Let N =

∏μ
i=1 ni. Let P∗ be a

cheating prover and A be an adversary. Define T as shown in Fig. 10. Let Π∗ be
a witness-independent predicate. Let X be a (Πn

val ∧ Πn
nocol,Πwit ∨ Π∗)-extractor.

Let E = E†[T,X]. Let BE be as defined in Fig. 11. Then the following all hold:

1. Advemu
PS,E(P

∗,A) = 0
2. AdvpredextPS,E,Πwit

(P∗,A) � AdvpredPS,Π∗(BE) + 5μN/
√

2p
3. The expected number of times T executes Vπ(u, ·) (inside of E) is N .
4. The expected number of queries that E makes to Next is less than μN + 1.

Exactly one of these queries is made while i = 1 in Next.
5. The expected runtime of BE is approximately TA + QE · TP∗ + TE where Tx is

the worst-case runtime of x ∈ {A,P∗,E} and QE < μN + 1 is the expected
number of queries that E makes to Next in Hpredext

PS,E,Π∗(P∗,A).

It will be useful to have the following simple lemma for comparing Advpredext

with different choices of predicate that are related by logical operators. It can
be derived from basic probability calculations.

Lemma 6. Let PS be a proof system, E be an emulator, Π1 and Π2 be predicates,
P∗ be a cheating prover, and A be an adversary. Then,

AdvpredextPS,E,Π1∨Π2
(P∗,A)+ AdvpredextPS,E,Π1∧Π2

(P∗,A)

=

AdvpredextPS,E,Π1
(P∗,A)+ AdvpredextPS,E,Π2

(P∗,A).

10 The existence a (Πn
val∧Πn

nocol, Πwit∨Π∗)-extractor is a natural generalization of special
soundness.
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and

AdvpredextPS,E,Π1
(P∗,A) � AdvpredextPS,E,Π1∨Π2

(P∗,A) + AdvpredextPS,E,¬Π2
(P∗,A).

Proof (of Theorem 2). Applying Lemmas 4 and 5, and observing how E is con-
structed give us the first, third, and fourth claim. For the other claims we
need to consider the adversary BE. Note that it runs E just it would be run
in Hpredext

PS,E,Π∗(P∗,A), so the distribution over (π, aux) is identical in Hpred
S,Π (BE) as

in that game. Furthermore, recall that Π∗ is witness-independent, so it ignores
its second input. It follows that,

AdvpredextPS,E,¬Π∗(P∗,A) = Pr[Vπ(u, tr) ∧ ¬(¬Π∗(π, u, aux)) in Hpredext]

� Pr[Π∗(π, u, aux) in Hpredext]

= Pr[Π∗(π, ε, aux) in Hpred] = AdvpredS,Π (BE).

The claimed runtime of B is clear from its pseudocode (noting that the view of
E is distributed identically to its view in Hpredext so its expected number of Next

queries is unchanged).
For the second claim, we perform the calculations

AdvpredextPS,E,Πwit
(P∗,A) � AdvpredextPS,E,Πwit∨Π∗(P∗,A) + AdvpredextPS,E,¬Π∗(P∗,A)

= AdvpredextPS,E,Πn
val∧Πn

nocol
(P∗,A) + AdvpredPS,Π∗(B)

= AdvpredextPS,E,Πn
val

(P∗,A) + AdvpredextPS,E,Πn
nocol

(P∗,A) + AdvpredPS,Π∗(B)

� 5μN/
√

2p + AdvpredPS,Π∗(B).

This sequence of calculation uses (in order) Lemma 6, Lemma 5 and the bound
we just derived, Lemma 6 (again), and Lemma 4.

4.3 Concrete Bounds on Soundness

Now we discuss how the forking lemma we just derived can be used to pro-
vide concrete bounds on soundness. First we make the generic observation that
witness-extended emulation implies soundness. Then we discuss how we can use
these results together with our expected-time generic group model bound on
discrete log security to give concrete bounds on the soundness of various proof
systems based on discrete log security, in particular giving the first concrete
bound on the soundness of the Bulletproofs proof system for arithmetic circuits.

Witness-extended emulation implies soundness. The following theorem
observes that finding a witness for u cannot be much more difficult that con-
vincing a verifier u if an efficient witness-extended extractor exists.

Theorem 3. Let PS = (S,R,P,V, μ) be a proof system, G be a statement gen-
erator, E be an emulator, and P∗ be a cheating prover. Define A and B as shown
in Fig. 12. Then,

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + Advemu
PS,E(P

∗,A) + AdvpredextPS,E,Πwit
(P∗,A).
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Fig. 12. Adversaries used in Theorem 3.

The runtime of that A is roughly that of G plus that of V. The runtime of B is
roughly that of E when given oracle access to P∗ and V interacting.

Proof (Sketch). The use of V in A ensures that the probability E outputs an
accepting transcript must be roughly the same as the probability that P∗ con-
vinces V to accept. The difference between these probabilities is bounded by
Advemu

PS,E(P
∗,A). Then the Πwit security of E ensures that the probability it out-

puts a valid witness cannot be much less than the probability it outputs an
accepting transcript. The difference between these probabilities is bounded by
AdvpredextPS,E,Πwit

(P∗,A). Adversary B just runs E to obtain a witness, so AdvwitPS,G(B)
is the probability that E would output a valid witness.

Discrete log proof systems. A number of the proof systems in [6,7,24]
were shown to have a (Πn

val ∧Πn
nocol,Πwit ∨ΠG,n

dl )-extractor X. For any such proof
system PS, Theorem 3 and Theorem 2 bound the soundness of PS by the discrete
log relation security of G against an expected-time adversary BE†[T,X]. Moreover,
we can then apply Lemma 3 to tightly bound this adversary’s advantage by the
advantage of an expected-time adversary against normal discrete log security.
We know how to bound the advantage of such an adversary in the generic group
model from Sect. 3.3.

So to obtain a bound on the soundness of these proof systems in the generic
group model we can just apply these results to the proof system. To obtain our
final concrete security bound in the generic group model we need only to read
the existing analysis of the proof system and extract the following parameters,

– p: the size of the set V draws the integer component of its challenges from
– |G|: the size of the group used
– N =

∏μ
i=1 ni: the size of the tree that X requires

– n � 1: the number of group elements in the discrete log relation instance
– qV: the number of multi-exponentiations V performs11
– qX: the number of multi-exponentiations that X performs

We say such a proof system PS = (S,R,P,V, μ) and extractor X have param-
eters (p, |G|, N, n, qV, qX). We obtain the following theorem for such a system,
bounding its soundness in the generic group model.
11 Note that the size of these multi-exponentiations does not matter.
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Theorem 4. Let PS = (S,R,P,V, μ) be a proof system and X be an extractor
that has parameters (p, |G|, N, n, qV, qX). Let G be a statement generator perform-
ing at most qG multi-exponentiations and P∗ be a cheating prover that performs
at most qP∗ multi-exponentiations each time it is run. Define B as shown in
Fig. 12. Then in the generic group model we have,

AdvsoundPS,G(P∗) � AdvwitPS,G(B) + 5

√
6 · Q2

C
|G| +

2
|G| +

5μN√
2p

where QC = qG + (μN + 1)qP∗ + qX + NqV + n + 1. The runtime of B is roughly
that of E†[T,X] when given oracle access to P∗ and V interacting.

Proof. The result follows by applying Theorem 3, Theorem 2, Lemma 3, and the
generic group model bound from Sect. 3.3 as discussed above. �	
Concrete security of bulletproofs. Finally, we can use the above to
obtain a concrete security bound on the soundness of the Bulletproofs proof
system for arithmetic circuits of Bünz et al. [7]12. To do so we only need to
figure out the parameters discussed above. Suppose the proof system is being
used for an arithmetic circuit with M multiplication gates. Using techniques of
BCCGP [6] this is represented by a size M Hadamard product and L � 2M linear
constraints. Then per Bünz et al. the proof system has the following parameters:

– p = (|G| − 1)/213

– |G| is the size of group G in which discrete logs are assumed to be hard
– N = 7(L + 1)M3

– n = 2M + 2
– qV = 3M + log2(M) + 4
– qX = 0

Having proven our discrete log bound in a generic group model allowing multi-
exponentiations is helpful here; it makes our bound not depend on the size of
V’s multi-exponentiations.

Corollary 1. Let PS be the Bulletproofs proof system for arithmetic circuits
define in Sect. 5.2 of [7] using a group of size |G|. Let M denote the number of
multiplication gates in the circuit and L � 2M the number of linear constraints.
Let G be a statement generator performing at most qG multi-exponentiations
and P∗ be a cheating prover that performs at most qP∗ multi-exponentiations

12 In particular, throughout this section we refer to the logarithmic-sized arithmetic
circuit protocol described in Section 5.2 of their paper.

13 As described in [7], the challenges are drawn from Z
∗
|G|. For some rounds of the

protocol x, y ∈ Z
∗
|G| would be considered colliding if x ≡|G| ±y. We capture this by

thinking of coins drawn from {+, −} × Zp. Then (+, x) represents x + 1 ∈ Z
∗
|G| and

(−, x) represents −x − 1 mod |G| = |G| − x − 1 ∈ Z
∗
|G|. Hence the collision condition

corresponds to equality in the Zp component.
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each time it is run. Define B as shown in Fig. 12. Assume |G| � 2, L � 1, and
M � 16. Then in the generic group model,

AdvsoundPS,G(P∗) < AdvwitPS,G(B) +
13qG + 258qP∗ · LM3 log2(M) + 644 · LM4√|G| .

The runtime of B is roughly that of E†[T,XB ] when given oracle access to P∗

and V interacting, where XB is the Bulletproofs extractor.

We expect qP∗ to be the largest of the parameters, so the bound is dominated
by the O

(
qP∗ · LM3 log2(M)/

√|G|
)

term.

Proof. The bound was obtained by plugging our parameters (and μ = 3 +
log2(M)) into Theorem 4, then simplifying the expression using that |G| � 2,
L � 1, and M � 16. The (straightforward) details of this are provided in the
full version of this paper [13]. �	
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Abstract. Since the mid 2000s, asymptotically-good strongly-multi-
plicative linear (ramp) secret sharing schemes over a fixed finite field
have turned out as a central theoretical primitive in numerous constant-
communication-rate results in multi-party cryptographic scenarios, and,
surprisingly, in two-party cryptography as well.

Known constructions of this most powerful class of arithmetic secret
sharing schemes all rely heavily on algebraic geometry (AG), i.e., on
dedicated AG codes based on asymptotically good towers of algebraic
function fields defined over finite fields. It is a well-known open ques-
tion since the first (explicit) constructions of such schemes appeared in
CRYPTO 2006 whether the use of “heavy machinery” can be avoided
here. i.e., the question is whether the mere existence of such schemes
can also be proved by “elementary” techniques only (say, from classical
algebraic coding theory), even disregarding effective construction. So far,
there is no progress.

In this paper we show the theoretical result that, (1) no matter
whether this open question has an affirmative answer or not, these
schemes can be constructed explicitly by elementary algorithms defined
in terms of basic algebraic coding theory. This pertains to all relevant
operations associated to such schemes, including, notably, the genera-
tion of an instance for a given number of players n, as well as error
correction in the presence of corrupt shares. We further show that (2)
the algorithms are quasi-linear time (in n); this is (asymptotically) sig-
nificantly more efficient than the known constructions. That said, the
analysis of the mere termination of these algorithms does still rely on
algebraic geometry, in the sense that it requires “blackbox application”
of suitable existence results for these schemes.

Our method employs a nontrivial, novel adaptation of a classical (and
ubiquitous) paradigm from coding theory that enables transformation
of existence results on asymptotically good codes into explicit construc-
tion of such codes via concatenation, at some constant loss in parame-
ters achieved. In a nutshell, our generating idea is to combine a cascade
of explicit but “asymptotically-bad-yet-good-enough schemes” with an
asymptotically good one in such a judicious way that the latter can be
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selected with exponentially small number of players in that of the com-
pound scheme. This opens the door to efficient, elementary exhaustive
search.

In order to make this work, we overcome a number of nontrivial
technical hurdles. Our main handles include a novel application of the
recently introduced notion of Reverse Multiplication-Friendly Embed-
dings (RMFE) from CRYPTO 2018, as well as a novel application of a
natural variant in arithmetic secret sharing from EUROCRYPT 2008.

1 Introduction

Background

This paper deals with linear secret sharing schemes (LSSS for short) defined
over a finite field Fq, with the additional property of being strongly-multiplicative
[12]. We first briefly recall these (well-known) notions below (for precise defini-
tions, see Sect. 2). We consider LSSS with share-space dimension 1, i.e., each of
the n players is assigned a single Fq-element as a share. The dimension of the
secret-space or the size of the secret, however, is not restricted, i.e., the secret is
generally a vector in F

k
q (for some given positive integer k) instead of an element

of Fq. As a matter of terminology, we speak of an LSSS for F
k
q over Fq (on n

players).1

The linearity property means that an Fq-linear combination of “input” shar-
ings, adding shares “player-wise” (similar for scalar multiplication), results in a
correct “output” sharing where the corresponding secret is defined by taking the
same combination over the secrets of the input sharings. There is t-privacy if the
shares of any t out of n players jointly give no information about the secret and
there is r-reconstruction if the shares of any r out of n players jointly always
determine the secret uniquely, as follows: for each set of r-players, there is an
Fq-linear map that, when applied to the vector consisting of their shares, always
gives the secret,

An LSSS Σ for F
k
q over Fq on n players is t-strong-multiplicative2 if there is

t-privacy (t ≥ 1) and if “the square of the LSSS” has (n − t)-reconstruction. For
a vector (s0, s1, . . . , sn) ∈ Σ, (s1, . . . , sn) ∈ F

n
q is said to be a full share-vector

with secret s0 ∈ F
k
q . The latter is equivalent to the statement that, if x,x′ ∈ F

n
q

are full share-vectors with respective secrets s0, s′
0 ∈ F

k
q , then, for each set A of

n − t players, the “player-wise” product xA ∗ x′
A ∈ F

n−t
q of the respective share-

vectors xA,x′
A held by A determines the coordinate-wise product s0 ∗ s′

0 ∈ F
k
q of

the secrets uniquely in that, for each such A, there exists an Fq-linear map φ(A)

such that φ(A)(xA ∗ x′
A) = s0 ∗ s′

0 always holds.3 We may also refer to the t as
1 Secret space can be easily adapted to F

k
Q where FQ is an extension field of Fq [6].

2 In [13]. A t-strongly multiplicative LSSS on n players for Fk
q over Fq is also called an

(n, t, 2, t)-arithmetic secret sharing scheme with secret space F
k
q and share space Fq.

3 The coordinate-wise product of the secrets being thus uniquely determined does not
imply that corresponding maps are linear. (See [7]) As linearity is essential in many
applications, it is not sufficient to simply require this uniqueness.
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the adversary-parameter. We note that t-strong-multiplicativity trivially implies
(n − t)-reconstruction. Also, it implies an effective algorithm for recovering the
secret from n shares even if at most t of them are corrupted, by a generalization
of the Berlekamp-Welch algorithm (see [13]).

We note that the classical application of these schemes is in information-
theoretic multiparty computation (MPC) perfectly secure against an active
adversary (in [1] and follow-up work based on Shamir’s secret sharing scheme,
abstracted and generalized in [12] for linear secret sharing). Although the Shamir
secret sharing scheme satisfies the t-strong-multiplicativity mentioned above, the
share size grows with the number of players, i.e., the share size of the Shamir
secret sharing scheme on n players is n log n. On the other hand, there does
exist secret sharing scheme that the share size does not grow with the number
of players. We call it asymptotically good secret sharing scheme.

For an infinite family of such schemes, with Fq fixed and n tending to infin-
ity, we say it is asymptotically good if k, t ∈ Ω(n). We emphasize that, in this
asymptotic context, there is yet another parameter of importance to some (the-
oretical) applications, namely the density (within the set of positive integers)
of the infinite sequence of player-numbers n1, n2, . . . realized by the successive
instances. Concretely, we equate this density to lim supi→∞ ni+1/ni. If this is
bounded by a constant (as is the case for known constructions), i.e., not infinity,
then we may as well assume that the family realizes any given player-number
n if it is large enough. Briefly, this is by folding the schemes and by slightly
generalizing the definitions as follows. For n ∈ (ni, ni+1) we simply give each
player an appropriate constant number of shares in the ni+1-st scheme, thereby
shrinking the length to its desired magnitude. Effectively, the share-space is now
a product over a constant number of copies of Fq, endowed with coordinate-wise
multiplication (and-addition). This will affect the adversary parameter t only by
a constant multiplicative factor (and will not affect the secret-space dimension
k). The definitions are trivially adapted to this situation. Finally, note that if
the density equals 1, then there is essentially no such loss.4

This asymptotic notion was first considered and realized in [3] in 2006,
thereby enabling an “asymptotic version” of the general MPC theorem from [1].
Since 2007, with the advent of the so-called “MPC-in-the-head paradigm” [19],
these asymptotically-good schemes have been further exposed as a central theo-
retical primitive in numerous constant communication-rate results in multi-party
cryptographic scenarios, and, surprisingly, in two-party cryptography as well.

As to the construction of these schemes, all known results [3,5,9] rely heavily
on algebraic geometry, more precisely, on dedicated algebraic geometric codes
based on good towers of algebraic function fields defined over finite fields. It is a
well-known open question since 2006 whether the use of “heavy machinery” can
be avoided here. I.e., the question is whether the mere existence of such schemes
can also be proved by “elementary” techniques only (say, from classical algebraic

4 Whenever it is deemed convenient, one may even drop the condition that n is large
enough, by inserting into the family a finite number of schemes for small player-
numbers consistent with asymptotic parameters.
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coding theory), even disregarding effective construction. So far, no progress on
this question has been reported. For a full account on history, constructions and
applications, see [13].

Our Results

In this paper we show the theoretical result that, no matter whether this open
question has an affirmative answer or not, these schemes can be constructed
explicitly by elementary algorithms defined in terms of basic algebra. This per-
tains to all relevant operations associated to such schemes: the generation of
an instance for a given number of players n, the generation of shares, the com-
putation of the linear maps associated to the strongly-multiplicative property,
as well as error correction in the presence of corrupt shares. In fact, we show
the algorithms are quasi-linear time (in n). To the best of our knowledge, the
asymptotically-good strongly-multiplicative LSSS based on algebraic geometry
code has time complexity at least quadratic [22]. The density in our construction
is minimal, i.e., it equals 1. As a contrast, the best explicit algebraic geometry
codes lead to an strongly-multiplicative LSSS over Fq with density

√
q. On the

other hand, the algebraic geometry code derived from Shimura curve achieves
density 1 but is non-constructive.

In spite of the elementary nature of the algorithms, the analysis of their mere
termination does currently rely on algebraic geometry, in that it is founded, in
part, on “blackbox use” of suitable existence results on asymptotically good
schemes. Thus. in particular, there is no paradox here. In some sense, we may
conclude that, even though algebraic geometry may be essential to the existence
of these schemes (as the state-of-the-art may seem to suggest), it is not essential
to their explicit construction.

We do note, however, that the positive adversary rate t/n we achieve is
smaller than the optimal rate achieved by known results. Namely, here we achieve
rate 1/27 instead of getting arbitrarily close to 1/3. Also, we do not achieve t-
uniformity of the shares (i.e., the additional property that, besides t-privacy,
the shares of any t players are uniformly random in F

t
q, But, for (almost) all

theoretical applications, this does not matter.
Finally, though this is somewhat besides the theoretical point we are making

here, our quasi-linear time algorithms may perhaps help to show that some of
the theoretical applications enjoy overall quasi-linear time complexity as well.
This could be interesting in its own right, but it still remains to be seen.

Overview of Our Method

A naive hope for elementary, effective (Monte-Carlo) construction would be the
following. At the core of all known constructions is the observation that it suffices
to find linear codes C over Fq such that each of the codes C, C⊥ (its dual)
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and C∗2 (its square5) is asymptotically-good.6 If such codes could be shown
to be “sufficiently dense”, then an approach by selecting random codes could
potentially work. However, using the theory of quadratic forms over finite fields,
it has been shown in [8] that, over a fixed finite field Fq, a random linear code C of
length n and dimension

√
n+λ, has the property that C∗2 = F

n
q with probability

exponentially (in λ) close to 1. Thus, although C and C⊥ can be rendered
asymptotically good in this way (by Gilbert-Varshamov arguments), the code
C∗2 would be “maximally-bad” almost certainly; the powering operation on
codes is very destructive, almost always.

Instead, our method employs a nontrivial, novel adaptation of a classical
paradigm from coding theory that enables transformation of existence results
on asymptotically good codes into explicit construction of such codes via con-
catenation, at some constant loss in parameters achieved. In a nutshell, the idea
is to combine an effective construction of “asymptotically-bad-yet-good-enough
codes” with asymptotically good ones in such a judicious way that the latter can
be selected with exponentially small length in that of the compound code. This
opens the door to efficient, elementary exhaustive search. That said, the analysis
of the time-complexity of these algorithms (in fact, that there exists correct such
algorithms at all, even disregarding their actual complexity) continues to rely on
algebraic geometry. We note that this complexity is superior to that of previous
schemes. On the other hand, the adversary-rate is some small factor below the
optimal rate of 1/3 achieved by previous schemes.

The approach taken in this paper is inspired by a classical idea from coding
theory, going back to the 1960s [14]: results on the existence of asymptotically
good linear codes may be transformed into effective construction of such codes
via concatenation, incurring just a constant loss in the parameters achieved.

On a high level, this works as follows. One can take a “sufficiently good”
code defined over an extension of the target “base field” as the outer code. This
code needs not to be asymptotically good. Viewing the extension field as a vector
space over the base field, one then encodes each coordinate to a vector over the
base field through an asymptotically good code defined over the base field, the
inner code. This compound scheme is linear over the base field and its length is
the product of the lengths of the outer and inner codes.

The point is now that, if the outer code has constant rate and relative
minimum distance as a function of its length and the degree of the extension
grows very slowly with respect to its length, say logarithmically (which could be
achieved e.g. with Reed-Solomon codes), then, in order for the compound code
to be asymptotically good, it suffices that the inner code has exponentially small
length as a function of the length of the outer code. This makes it possible to
derandomize the random argument for Gilbert-Varshamov bound so as to find
a linear inner code attaining this bound in polynomial time with respect to the

5 The Fq-linear code generated by all terms of the form x ∗ y, where x, y ∈ C and
where x ∗ y is the coordinate-wise product of two vectors.

6 I.e., The finite field Fq is fixed, the length of the codes tends to infinity, and the
relative dimension and relative minimum distance are positive.
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length of the outer code [17].7 The concatenation idea that reduces the dimen-
sion of the searching space also enlightens us to look for a similar result in linear
secret sharing scheme with strong multiplication.

In order to make such a paradigm work for us here, we overcome a number
of nontrivial obstacles.

1. How to define a proper and useful concatenation for linear secret sharing
schemes with strong multiplication. The purpose of concatenation is to bring
down the field size so as to make our exhaustive search run in quasi-linear time.
Let Σ1 be an LSSS on n1 players for FQm over FQ and Σ2 be an LSSS on n2

players for FQ over Fq where FQ is an extension field of Fq. Let us call Σ1 an outer
LSSS and Σ2 an inner LSSS. The concatenation Σ1◦Σ2 of Σ1 with Σ2 is an LSSS
on n1n2 players defined as follows: (s0, z1, . . . , zn1) ∈ Σ1 ◦ Σ2 ⊆ FQm × (Fn2

q )n1

if (si, zi) ∈ Σ2 ⊆ FQ × F
n2
q for i = 1, . . . , n1 and (s0, s1, . . . , sn1) ∈ Σ1 ⊆

FQm × F
n1
Q .8 As an analogy to concatenated codes, we show that if Σ1 is a t1-

strongly-multiplicative LSSS on n1 players and Σ2 is a t2-strongly-multiplicative
LSSS on n2 players, then Σ1 ◦Σ2 is a t1t2-strongly-multiplicative LSSS on n1n2

players.
2. The exhaustive search space should be small. We first describe what we can

achieve for one concatenation. We set our outer LSSS Σ1 to be a Shamir secret
sharing scheme. The encoding and decoding time of this LSSS is quasi-linear.
Since our compound scheme is defined over a constant field, we set q = O(1)
and n2 = log Q in Σ2 defined above. Now, the search space has dimension
log Q. Since the Shamir secret sharing scheme is asymptotically-bad, the com-
pound scheme Σ1 ◦ Σ2 is not asymptotically-good strongly-multiplicative LSSS
unless Σ2 is asymptotically-good strongly-multiplicative LSSS. The existence of
asymptotically-good strongly-multiplicative LSSS is ensured by algebraic geom-
etry codes. However, to meet our elementary algorithm claim, we have to replace
the explicit construction with an exhaustive search algorithm which enumerates
every linear subspace. This can only be done in time exp(Ω(log2 Q)). Clearly,
the search space is not small enough to meet our quasi-linear time claim. We
resolve this issue by concatenating twice. Let Σ1 be an Shamir secret sharing
scheme Σ1 on O(Q) players for FQm over FQ and Σ2 be another Shamir secret
sharing scheme on O(q) players for FQ over Fq with q = O(log Q). The com-
pound scheme Σ := Σ1 ◦ Σ2 is a strongly-multiplicative LSSS for FQm over Fq.
Let Σ3 be an asymptotically-good strongly-multiplicative LSSS on O(log log Q)
players for Fq over Fp with p = O(1) which is found by an exhaustive search
and ensured by algebraic geometry codes. The final scheme Σ ◦ Σ3 turns out to
be an asymptotically-good strongly-multiplicative LSSS on O(Q log Q log log Q)
players for FQm over Fp with p = O(1). We can see that this two-rounds

7 More precisely, this random argument is applied to the Toeplitz matrix which only
has O(n) independent entries, i.e., a random linear code whose generator matrix is
a Toeplitz matrix reaches Gilbert-Varshamov bound with high probability.

8 This can be viewed as a twist of re-sharing the share in MPC protocols.
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concatenation brings down the field size so small that an exhaustive search only
runs in time complexity polynomial in log Q.

3. The dimension of secret space should be linear in the number of play-
ers. When we overcome the above two obstacles, we already obtain an
asymptotically-good strongly-multiplicative LSSS Σ ◦ Σ3 for FQm over Fp that
runs in quasi-linear time. Note that the secret space is still FQm . We are not
done yet since we claim that our LSSS has secret space F

k
p with k = Ω(Q). We

resort to a recent developed tool called reverse multiplication friendly embed-
ding (RMFE) [10] to overcome this obstacle. An RMFE is a pair of maps
(φ, ψ) with φ : F

k
q → Fqm and ψ : Fqm → F

k
q such that for any x,y ∈ F

k
q ,

x ∗ y = ψ(φ(x) · φ(y)). This RMFE keeps multiplication property and bring
down the field size at a price of constant loss in rate, i.e., the component-wise
product of two secrets x,y ∈ F

k
q are mapped to the product of two elements

φ(x), φ(y) ∈ Fqm with m = O(k). By applying RMFE to our secret space, we are
able to obtain an strongly-multiplicative LSSS with a linear-dimensional secret
space. The original paper [5] about RMFE does not take quasi-linear time and
elementary algorithm into account. To meet quasi-linear time and elementary
algorithm claim, we apply above paradigm to our RMFE as well.

4. The last obstacle is the density issue. The density issue affects the per-
formance of LSSS in the following way. Assume that we have a class of LSSSs
on the number of players n1, . . . , such that lim infi→∞

ni+1
ni

= τ . Then, we have
to use the same LSSS on the number of players between ni + 1 to ni+1. The
density issue implies that the LSSS on ni + 1 players is only 1

τ -fractionally as
good as arithmetic secret sharing schemes on ni+1. Thus, we prefer LSSS with
density 1. We observe that our compound scheme Σ ◦Σ3 can be made to satisfy
density 1 even if Σ3 has any constant density larger than 1. This is because Σ
is a concatenation of two Shamir secret sharing scheme which yields a secret
sharing scheme on any desired number of players. By exploiting this property
and carefully tuning the length of Σ so as to cope with the length of Σ3, we
manage to produce an LSSS with density 1. It is worth emphasizing that LSSS
based on algebraic geometry codes has density either significantly bigger than
1 or density 1 but non-explicit. To see this, let us first take a look at the best
constructive algebraic geometry codes derived from Garcia-Stichtenoth function
field tower. Unfortunately, the density of these algebraic geometry codes over Fq

is merely
√

q. On the other hand, there does exist families of algebraic geome-
try codes with density 1, e.g. the Shimura curve. To our best knowledge, none
of them is explicit. In conclusion, our strongly-multiplicative LSSS is explicit
and has density 1 both of which can not be simultaneously satisfied by previous
constructions.

The paper is organized as follows. In Sect. 2, we briefly recall linear secret
sharing schemes, then introduce the concatenation of linear secret sharing
schemes. In Sect. 3, we present a quasi-linear time elementary algorithm to gener-
ate an asymptotically-good strongly-multiplicative linear secret sharing schemes.
To convert the secret space from the extension field Fqm to F

k
q , we resort to

reverse multiplication friendly embedding that was recently developed in [10].
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In the appendix, we include linear secret sharing from algebraic curves and the
decoding of concatenated codes.

2 Linear Secret Sharing Schemes and Concatenation

The relation between linear secret sharing schemes and linear codes has been
well understood since the work of [20]. Further details on this relation can be
found in [5,9]. In this section, we briefly introduce strongly-multiplicative LSSS
and some related notational convention that will be used throughout this paper.

Denote by [n] the set {1, 2, . . . , n} and denote by 2[n] the set of all subsets of
[n]. Let q be a prime power and denote by Fq the finite field of q elements. For
vectors u = (u0, u1, . . . , un) and v = (u0, v1, . . . , vn) in Fqk0 × Fqk1 × · · · × Fqkn

with integers ki � 1, we define the Schur product u ∗v to be the componentwise
product of u and v, i.e., u∗v = (u0v0, u1v1, . . . , unvn). The notion Schur product
plays a crucial role in multiplicative LSSS. Although the secret space Fqk0 and
share spaces Fqi can be different, both of them are Fq-linear.

For an subset A of {0} ∪ [n], define the projection projA(u) of u at A by
(ui)i∈A. For an Fq-subspace C of Fs

qk0 ×Fqk1 × · · ·×Fqkn , we denote by C∗2 the
Fq-linear span of {b ∗ c : b, c ∈ C}. Motivated by multiplicative secret sharing
schemes, the square codes C∗2 have been extensively studied [8,21,23,24]. To
have a good multiplicative secret sharing scheme from an Fq-linear code C,
we require that the square code C∗2 and its dual code C⊥ should have large
minimum distance. That means, we need a special class of linear codes so that
we can control the dimension and minimum distance of C∗2. There are some
candidates satisfying this requirement, e.g. Reed-Solomon codes and algebraic
geometry codes.

For convenience, we require that all-one vector 1 belongs to C. If this hap-
pens, then C becomes an Fq-linear subspace of C∗2. C is said to be unitary if C
contains the all-one vector 1.

Definition 1. A q-ary linear secret sharing scheme on n players with secret
space F

s
q� , share space Fqk is an Fq-subspace C of F

s
q� × F

n
qk such that (i)

proj{0}(C) = F
s
q� ; and (ii) the map C → proj[n](C); (c0, c1, c2, . . . , cn) 
→

(c1, c2, . . . , cn) is a bijection, i.e., for any c ∈ C, proj[n](c) = 0 if and only
if c = 0. Thus, for a codeword (c0, c1, c2, . . . , cn) ∈ C, the map ρ sending
(c1, c2, . . . , cn) to c0 is well defined. We call ρ the share-to-secret map. Fur-
thermore, ci is called the i-th share and c0 is called the secret.

It can be easily shown that (i) a subset A of [n] is authorized9 if projA(c) = 0
implies projA∪{0}(c) = 0; and (ii) a subset B of [n] is unauthorized10 if for
any c0 ∈ proj0(C), there is a codeword c ∈ C such that projB(c) = 0 and
proj{0}(c) = c0. The projA plays the same role as the map πA in Definition 1
[5].

9 The shares hold by players in A can recover the secret.
10 The shares hold by players in B imply nothing about the secret.
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Definition 2. Let C ⊆ F
s
q� × F

n
qk be an LSSS.

(i) C is said to have r-reconstruction if for any subset A of [n] of size at least r
and c ∈ C, one has that projA(c) = 0 if and only if projA∪{0}(c) = 0 (note
that an LSSS on n players always has n-reconstruction).

(ii) We say that C has t-privacy if for any subset A of [n] of size at most
t and u ∈ F

s
q� , there is a codeword c ∈ C such that projA(c) = 0 and

proj{0}(c) = u.
(iii) We say that C is a t-strongly multiplicative LSSS if C has t-privacy and

C∗2 has r-reconstruction for any r � n − t (note that C is 0-strongly mul-
tiplicative if and only if C∗2 is an LSSS). In this case, t is called corruption
tolerance of C.

(iv) Let C = {Ci}∞
i=1 be a family of LSSS. Suppose that each Ci is a ti-strongly

multiplicative LSSS on ni players. If limi→∞ ni = ∞ and limi→∞ ti

ni
= τ ,

we say that C is τ -strongly multiplicative.
(v) Let C = {Ci}∞

i=1 be a family of LSSS. Suppose that each Ci has ni players.
We say C has density θ if limi→∞ ni = ∞ and lim supi→∞

ni

ni−1
� θ.

Lemma 1. Let C ⊆ F
s
q� × F

n
qk be an LSSS. Then C∗2 has t-privacy as long as

C has t-privacy.

Proof. Let c0 ∈ proj0(C∗2). Let B be a subset of [n] of size at most t. Let c =∑
λibi∗ci ∈ C∗2 with proj0(c) = c0 for some λi ∈ Fq and bi, ci ∈ C. Then there

exist ui,vi ∈ C such that projB(ui) = projB(vi) = 0 and proj0(ui) = proj0(bi),
proj0(vi) = proj0(ci). Put w =

∑
λiui ∗ vi ∈ C∗2. Then projB(w) = 0 and

proj0(w) =
∑

λiproj0(ui) ∗ proj0(vi) =
∑

λiproj0(bi) ∗ proj0(ci) = c0. The
proof is completed.

One of the key ideas of this paper is to exploit concatenation techniques which
have been widely used in coding theory. We resort to this concatenation tech-
nique to achieve quasi-linear time strongly-multiplicative LSSS. Let us briefly
describe the concatenation technique in coding theory. Let C0 ⊆ F

n0
q be a linear

code over Fq of dimension k0 and let C1 ⊆ F
n1
qk0

be an Fq-linear code of dimen-
sion k1. Fix an Fq-linear isomorphism φ from Fqk0 to C0. Then the concatenated
code C = {(φ(c1), φ(c2), . . . , φ(cn1) : (c1, c2, . . . , cn1) ∈ C1} is an Fq-linear code
of length n0n1 and dimension k1. There are various purposes in coding theory
for concatenation. For instance, one can construct long codes over small field
through long codes over large field. As for secret sharing scheme, we can also
apply this concatenation technique accordingly with some variation. One can
view this technique as re-sharing the share. The formal definition is given below.

Definition 3. Let C0 be a q-ary linear secret sharing scheme on n0 players with
secret space Fqk , share space Fq. Let C1 be a q-ary linear secret sharing scheme
on n1 players with secret space Fq� , share space Fqk . Then the concatenated
LSSS is a q-ary linear secret sharing scheme on n0n1 players with secret space
Fq� , share space given by

C = {(c0, c1, . . . , cn1) ∈ Fq� × (proj[n0](C0))n1 : (c0, ρ(c1), . . . , ρ(cn1)) ∈ C1},
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where ρ is the share-to-secret map for the LSSS C0. Then C is a subset of
Fq� × F

n0n1
q .

Remark 1. (i) Let us verify that this concatenated scheme is an LSSS with secret
space Fq� . Suppose (c0, c1, . . . , cn1) ∈ C with ci = 0 for all 1 � i � n1. Then
we have ρ(ci) = 0. This forces c0 = 0 as C1 is an LSSS. To prove that
proj{0}(C) = Fq� , we pick an arbitrary element c0 ∈ Fq� . Then there exists
a vector (c0, a1, a2, . . . , an) ∈ C1 ⊆ Fq� × F

n1
qk . As proj{0}(C0) = Fqk , there

exists ci ∈ proj[n0](C0) such that (ai, ci) ∈ C0 for all 1 � i � n1. This implies
that (c0, c1, . . . , cn1) ∈ C. Hence, proj{0}(C) = Fq� .

(ii) It is clear that the concatenated LSSS is still Fq-linear. The Fq-dimension
of C is dim(C1) + n1(dim(C0) − k). To see this, each secret α ∈ Fqk , there
are qdim(C0)−k possible ways of re-sharing. Thus, for a given a (n+1)-tuple
(c0, c1, . . . , cn1), there are qn1(dim(C0)−k) ways of re-sharing. Hence, the total
number of elements in C is qdim(C1)+n1(dim(C0)−k).

Let C be a unitary LSSS and assume that C∗2 is an LSSS. Let ρ be the
share-to-secret map of C. Then ρ can be extended to the share-to-secret map of
C∗2, i.e., the share-to-secret map ρ′ of C∗2 satisfies ρ′|C = ρ.

Definition 4. Let C be a unitary LSSS and ρ be the share-to-secret map of C.
We say ρ is multiplicative if ρ(u ∗ v) = ρ(u)ρ(v) for any u,v ∈ proj[n](C). C is
said to be multiplicative if C∗2 is an LSSS and ρ is multiplicative.

Remark 2. Whenever we say that the share-to-secret map ρ of a q-ary LSSS C
is multiplicative, the conditions that C is unitary and ρ can be extended to the
share-to-secret map of C∗2 are satisfied.

Lemma 2. Let C0 be a q-ary linear secret sharing scheme on n0 players with
secret space Fqk , share space Fq. Let C1 be a q-ary linear secret sharing scheme
on n1 players with secret space Fq� , share space Fqk . Let ρi be the share-to-secret
map of Ci for i = 0, 1. If Ci is multiplicative for i = 0, 1, then

(i) C∗2 is an Fq-subspace of the concatenated LSSS Σ of C∗2
0 with C∗2

1 , where
C is the concatenated LSSS C0 with C1, i.e., C = {(c0, c1, . . . , cn1) ∈ Fq� ×
(proj[n0](C0))n1 : (c0, ρ0(c1), . . . , ρ0(cn1)) ∈ C1}.

(ii) C is also multiplicative.

Proof. To prove Part (i), we have to show that (b0,b)∗(c0, c) = (b0c0,b∗c) ∈ Σ
for any (b0,b), (c0, c) ∈ C. This is true since

(b0c0, ρ0(b1 ∗ c1), . . . , ρ0(bn1 ∗ cn1))
= (b0c0, ρ0(b1)ρ0(c1), . . . , ρ0(bn1)ρ0(cn1)) ∈ C∗2

1 ,

and (ρ0(bi)ρ0(ci),bi ∗ ci) ∈ C∗2
0 . We conclude C∗2 is an Fq-subspace of Σ.

It remains to check that C is multiplicative. By the definition of
share-to-secret map ρ of C, for any (c0, c1, . . . , cn1) ∈ C, we have
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ρ1(ρ0(c1), . . . , ρ0(cn1)) = c0 = ρ(c1, . . . , cn1). Then, for any (b0,b), (c0, c) ∈ C
with b = (b1, . . . ,bn1) and c = (c1, . . . , cn1), we have

ρ(b ∗ c) = ρ1(ρ0(b1 ∗ c1), . . . , ρ0(bn1 ∗ cn1))
= ρ1(ρ0(b1)ρ0(c1), . . . , ρ0(bn1)ρ0(cn1))
= ρ1((ρ0(b1), . . . , ρ0(bn1)) ∗ (ρ0(c1), . . . , ρ0(cn1))
= ρ1(ρ0(b1), . . . , ρ0(bn1))ρ1(ρ0(c1), . . . , ρ0(cn1)) = ρ(b)ρ(c)

This completes the proof.

The above lemma shows that a concatenated LSSS is multiplicative as long
as both C0 and C1 are multiplicative. In fact we can further show that this
concatenated LSSS is strongly-multiplicative as long as both C0 and C1 are
strongly-multiplicative.

Lemma 3. Let C0 be a q-ary LSSS on n0 players with secret space Fqk , share
space Fq. Let C1 be a q-ary LSSS on n1 players with secret space Fq� , share space
Fqk . If Ci has ri-reconstruction and ti-privacy for i = 0, 1. Then the concatenated
LSSS C defined in Definition 3 has n0n1−(n0−r0+1)(n1−r1+1)-reconstruction
and has (t0 + 1)t1-privacy.

Furthermore, if C∗2
1 (and C∗2

0 , respectively) has r′
1 (and r′

0, respectively)-
reconstruction and the share-to-secret maps ρi of Ci are multiplicative for i =
0, 1, then C is a t-strongly multiplicative LSSS with t = min{(t0 + 1)t1, (n0 −
r′
0 + 1)(n1 − r′

1 + 1)}.
Proof. Given a codeword c in C, we can write c = (c0, c1,1, . . . , c1,n0 , c2,1, . . . ,
c2,n0 , . . . , cn1,n0) where ci = (ci,1, . . . , ci,n0) is a share-vector of C0. Let S be the
collection of indices of C, i.e., S := {0, (1, 1), . . . , (1, n0), (2, 1), . . . , (2, n0), · · · ,
(n1, 1), . . . , (n1, n0)}. Let A be a subset of S\{0} and Ai = A∩{(i, 1), . . . , (i, n0)}
for i = 1, 2, , . . . , n1. Then A is partitioned into ∪n

i=1Ai. Let Bi = {j : (i, j) ∈
Ai}. It is clear that |Bi| = |Ai| and Bi is a subset of [n0]. This gives

∑n1
i=1 |Bi| =

|A|.
If |A| � n0n1 − (n0 − r0 + 1)(n1 − r1 + 1), then there exists a subset I ⊆ [n1]

with |I| � r1 such that |Bi| � r0 for all i ∈ I. Otherwise, we have |A| ≤
n1(r0 − 1) + (n0 − r0 + 1)(r1 − 1) < n0n1 − (n0 − r0 + 1)(n1 − r1 + 1). If c =
(c0, c1, . . . , cn1) ∈ C such that projA(c) = 0, then projBi

(ci) = 0 for all i ∈ I.
As |Bi| � r0 and C0 has r0-reconstruction, we must have ρ0(projBi

(ci)) = 0.
Thus, projI(ρ0(c1), . . . , ρ0(cn1)) = 0. This implies that c0 = 0 since |I| � r1.

Now we consider the case where |A| � (t0 + 1)t1. Let J be the subset of [n1]
such that |Bj | � t0+1 if and only if j ∈ J . Then |J | � t1. Let α ∈ Fq� . We choose
a vector c = (c0, c1, . . . , cn1) ∈ C1 such that projJ(c) = 0 and proj{0}(c) = α.
For j ∈ J , let uj = 0. For j �∈ J , choose uj ∈ C0 such that ρ0(uj) = cj and
projBj

(uj) = 0. This implies that u := (α,u1, . . . ,un1) ∈ C and projA(u) = 0.
Now, we turn to furthermore part of the claim. The assumption says that

C∗2
1 and C∗2

0 has r′
1 and r′

0-reconstruction respectively. By Lemma 2, C∗2 is an
Fq-subspace of the concatenated LSSS Σ of C∗2

0 with C∗2
1 . By the first part of
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the proof, Σ has (n0n1−(n0−r′
0+1)(n1−r′

1+1))-reconstruction and hence C∗2

also has (n0n1 − (n0 − r′
0 + 1)(n1 − r′

1 + 1))-reconstruction. The desired result
follows.

Remark 3. To the best of our knowledge, no prior work considered concatenation
of two strongly-multiplicative LSSSs. Perhaps the most relevant reference is the
multiplication friendly embedding in [5]. Multiplication friendly embedding can
be viewed as a multiplicative LSSS without privacy.

3 Quasi-linear Time LSSS with Strong Multiplication

3.1 Secret Space Is the Extension Field Fqm

The parameters of LSSS based on Reed-Solomon codes and algebraic geometry
codes can be found in appendix. In general, those codes derived from algebraic
curves can be converted into a LSSS with strong multiplication. This becomes
the building block of our quasi-linear time LSSS. Our LSSS is obtained via
the concatenation of two LSSS, one based on Reed-Solomon codes and another
one based on algebraic geometry codes. The following theorem shows that the
density of our LSSS can be 1 as long as we pick an asymptotically good algebraic
geometry code as an inner code.

Theorem 1. Let q be an even power of a prime. Then for any positive real
ε ∈

(
0, 1

2 − 2√
q−1

)
and η ∈ (0, 1

2 ), there exists a family C = {Γi}∞
i=1 of τq-

strongly multiplicative q-ary LSSS with density 1, each Γi has Ni players, secret
space Fqsi and quasi-linear time (depending on ε) for share generation and secret
reconstruction, where

τq =
1
9
(1 − 2η)

(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εη.

Proof. Let {Ci}∞
i=1 be the family of q-ary LSSS with the same ε and γ given in

Theorem 6. We can set γ = 1
3 (1 + ε + 2√

q−1 ). Note that we have ki

ki−1
→ √

q and
ni

ni−1
→ √

q. Put ti = ni − 2�γni�, ri = �γni� and α = 1√
q , λ = 1

3 (1 + η).
Consider Σij := RSki,Rij

[Nij ,Kij ]q with Nij = αqki−1 + j and Kij = �λNij�,
Rij = �ηNij� for j = 0, 1, 2, . . . , qki − αqki−1 and i � 2. Then by Lemma 2, the
concatenated LSSS of Ci with Σij is a q-ary LSSS Γij on niNij players of secret
space FqkiRij , share space Fq. By Lemmas 2, 3 and Theorem 6, it has tij-privacy
with tij = (ti +1)(Kij −Rij − 1). Furthermore, Γ ∗2

ij has rij-reconstruction with

rij = Nijni − (Nij − 2Kij + 1)(ni − 2ri + 1).

where ri = �γni�. Put τij = min{(ti+1)(Kij −Rij −1), (Nij −2Kij +1)(ni−2ri+
1)}. Due to the setting of our parameters, ti ≈ ni−2ri and Kij−Rij ≈ Nij−2Kij ,
we come to the conclusion that

rij = (Nij − 2Kij + 1)(ni − 2ri + 1),
τij

NΓij

=
τij

niNij
→ τq.
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As the secret space of Γij is FqkiRij and the number of players is niNij , we have
kiRij

niNij
→ ηε.

Now we arrange the order of Γij in the following way

Γ1,0, Γ2,0, . . . , Γ2,qk2−αqk1 , Γ3,0, . . . , Γ3,qk3−αqk2 , Γ4,0, . . . , Γ4,qk4−αqk3 , . . . . (1)

The number of players NΓij
of Γij is ni(αqki−1 + j). Thus we have, (i) for 1 �

j � qki − αqki−1

NΓi,j

NΓi,j−1

=
ni(αqki−1 + j)

ni(αqki−1 + j − 1)
= 1 +

1
αqki−1 + j − 1

→ 1,

and (ii) for i � 2

NΓ(i+1),0

NΓ
i,qki −αq

ki−1

=
ni+1αqki

niqki
=

αni+1

ni
→ 1.

By abuse of notation, we denote the ith LSSS in (1) by Γi. Let Ni be the number
of players of Γi. Then we have Ni

Ni−1
→ 1 as i tends to ∞.

Finally, we analyze time complexity for share generation and secret recon-
struction. Note that Nij � niq

ki−1 . As ki = Ωε(ni), we have ni = Oε(logq Nij).
The share generation consists of encoding of Σij which is quasi-linear in qki ,
and share generation of LSSS in Theorem 6 which is polynomial in ni. Hence,
the total time complexity of share generation is quasi-linear in the number of
players. As for secret reconstruction, by Lemma 15, a similar analysis shows that
the time complexity is also quasi-linear in the number of players. This completes
the proof.

Our concatenation idea can greatly reduce the complexity of construction,
sharing secret and reconstructing secret by letting this algebraic geometry code
to be an inner LSSS. If the number of players of this inner LSSS is small enough,
we do not even need an explicit construction of it. In fact, we can brute force
all possible generator matrix of algebraic geometry code C such that C, its
dual code C⊥ and its square code C∗2 are all asymptotically good. All we have
to acknowledge is the existence of such code. This could allow us to present an
explicit construction of strongly multiplicative LSSS based on a quasi-linear time
searching algorithm without any prior knowledge of algebraic geometry codes.

Theorem 2. Let q be an even power of a prime. Then for any positive real
ε ∈

(
0, 1

2 − 2√
q−1

)
, λ ∈ (0, 1

2 ) and η ∈ (0, 1
2 ), there exists an quasi-linear

time elementary algorithm to generate a family C of τq-strongly multiplicative
q-ary LSSS on Ni players with density 1, secret space Fqsi and quasi-linear time
(depending on ε) for share generation and secret reconstruction, where

τq =
1
27

(1 − 2η)(1 − 2λ)(1 − 2ε − 4√
q − 1

),
si

Ni
→ ηλε.
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Proof. We notice that it takes qO(n2) times to enumerate generator matrices of
all linear codes in F

n
q . For each linear code C, we check its multiplicative property

by checking minimum distance, dual distance and the distance of C∗2. We know
the existence of this linear code by algebraic geometry codes given in Sect. 3.
This algorithm must find at least one such a code. The question is now reduced
to how to make our exhaustive search algorithm run in quasi-linear time. It turns
out that if n = log log N , the running time is then sublinear in N . Moreover, the
encoding and reconstructing time is bounded by exp(O(n)) = O(log N).

To let our exhaustive search to be quasi-linear, we have to concatenate twice
instead of once. Theorem 1 says there exists a class of 1

9 (1 − 2η)(1 − 2ε − 4√
q−1 )-

strongly multiplicative q-ary LSSS Ci on ni players with secret space Fqsi and
share space Fq such that limi→∞

ni+1
ni

= 1 and si

ni
= ηε. We use this Ci to be

our new inner LSSS. Our outer LSSS is a Shamir secret sharing scheme defined
as follows. Let Dij be a Shamir secret sharing scheme on Nij players with secret
space FqλNijsi and share space Fqsi such that Nij = qsi−1 + j for j = 1, . . . , qsi −
qsi−1 . By Lemma 13, Dij is a class of (1− 2λ)-strongly multiplicative LSSS with
density 1. Then by Lemma 2 and Lemma 3, the concatenation Σij of Dij with
Ci yields a τqNijni-strongly LSSS on Nijni players with secret space FqλNijsi

and share space Fq where λNijsi

Nijni
= λsi

ni
= ληε. Moreover, Σij has density 1 as

both of the inner LSSS Ci and the outer LSSS Dij have density 1. Note that the
inner LSSS in Ci is derived from algebraic geometry code. We want to construct
it via exhaustive search instead of exploiting its mathematical structure. By
Theorem 1, the number of players in Ci is O(logq si) = O(logq logq Nij). Our
desired result follows.

Remark 4. (i) Reducing time complexity via concatenation is not a new tech-
nique for coding theorists and it can be dated back to 1966 [14]. They dis-
covered that the concatenation of codes yields a large constructive family of
asymptotically good codes. To show the existence of codes with some special
property, we usually resort to randomness argument. The concatenation idea
allows us to reduce the space of our inner code and make it possible to find
it in polynomial time. Different from the traditional randomness argument,
our existence argument depends on the result from algebraic geometry codes,
i.e., showing the existence of asymptotically-good code C, its dual C⊥ and
its square code C∗2. This extra multiplicative property creates some difficul-
ties in finding the desirable codes by concatenating only once. Instead, we
concatenate twice so as to further narrowing down the searching space.

(ii) If we abandon either quasi-linear time construction claim or elementary
algorithm claim, we only need to concatenate once. As a result, this con-
catenated LSSS is 1

9 (1 − 2λ)(1 − 2ε − 4√
q−1 )-strongly multiplicative.

3.2 Reverse Multiplication Friendly Embedding

As we have seen, the secret space of LSSS in the previous subsection is an
extension field Fqm . In order to convert Fqm to a secret space F

k
q , we need reverse

multiplication friendly embeddings (RMFE for short).
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Before introducing RMFEs, let us recall multiplication friendly embedding
that have found various applications such as complexity of multiplication in
extension fields [4], hitting set construction [18] and concatenation of LSSS [5].

Definition 5. Let q be a power of a prime and let Fq be a field of q elements,
let k,m � 1 be integers. A pair (σ, π) is called a (k,m)q-multiplication friendly
embedding (MFE for short) if σ : Fqk → F

m
q and π : Fm

q → Fqk are two Fq-linear
maps satisfying

αβ = π(σ(α) ∗ σ(β))

for all α, β ∈ Fqk . A multiplication friendly embedding (σ, π) is called unitary if
σ(1) = 1.

It is easy to verify that the map σ must be injective and σ(Fqk) is a q-ary [m, k]-
linear code with minimum distance at least k. So far, the only way to construct
(k,m)q-multiplication friendly embedding with m = O(k) is via algebraic curves
over finite fields [4]. Now we explain how multiplication friendly embeddings are
used to concatenate LSSS.

Assume that C ⊂ Fqm × F
n
qk is an LSSS and let (σ, π) be a (k,m)q-

multiplication friendly embedding. Consider the concatenation:

σ(C) = {(c0, σ(c1), σ(c2), . . . , σ(cn)) : (c0, c1, c2, . . . , cn) ∈ C}.

Then σ(C) ⊆ F
m(n+1)
q .

Lemma 4. Let (σ, π) be a unitary multiplication friendly embedding. Then σ(C)
is a multiplicative LSSS as long as C is a multiplicative LSSS.

Proof. Assume that C is a multiplicative LSSS. If (c0, c1, c2, . . . , cn) ∈ C and
(σ(c1), . . . , σ(cn)) = 0, then σ(ci) = 0 for all 1 � i � n. As σ is injective, we
have ci = 0. Hence, c0 = 0. This means that σ(c0) = 0. Thus, σ(C) is an LSSS.

Next we show that σ(C)∗2 is an LSSS. Let (b0, b1, b2, . . . , bn), (c0,
c1, c2, . . . , cn) ∈ C and σ(b1, b2, . . . , bn)∗σ(c1, c2, . . . , cn) = 0, i.e., σ(bi)∗σ(ci) =
0 for all 1 � i � n. Then we have 0 = π(σ(bi) ∗ σ(ci)) = bici. This implies that
b0c0 = 0 since C∗2 is an LSSS.

To prove multiplicativity, let ρ and ρ′ be the share-to-secret maps of C and
σ(C), respectively. Let (b0, b1, b2, . . . , bn), (c0, c1, c2, . . . , cn) ∈ C. Since C is mul-
tiplicative,

ρ((b1, b2, . . . , bn) ∗ (c1, c2, . . . , cn)) = b0c0.

On the other hand, we have

ρ′(σ(b1, b2, . . . , bn) ∗ σ(c1, c2, . . . , cn)) = b0c0 = ρ′(σ(b1, b2, . . . , bn))ρ′(σ(c1, c2, . . . , cn)).

This completes the proof.
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Remark 5. Concatenation of an LSSS via a unitary multiplication friendly
embedding does not maintain privacy although it maintains multiplitivity
because dual distance of σ(C) is destroyed. That is why we introduce our concate-
nation of LSSS given in this paper to maintains both privacy and multiplitivity
as shown in Lemmas 2 and 3.

By applying the concatenation techniques given in this paper, we are able
to bring down share size to a constant at a constant fractional loss in privacy
and reconstruction (see Lemma 3). However, our secret is still defined over the
extension field of the share space. For most applications of multiplicative secret
sharing schemes, the share space is a fixed finite field Fq and the secret space
is desirably F

k
q for some integer k � 1. We make use of reverse multiplication

friendly embedding to convert the secret space from the extension field Fqm to
F

k
q while still maintaining strong multiplitivity.

Let us first give a formal definition of RMFE.

Definition 6. Let q be a power of a prime and let Fq be a field of q elements,
let k,m � 1 be integers. A pair (φ, ψ) is called an (k,m)q-reverse multiplication
friendly embedding if φ : Fk

q → Fqm and ψ : Fqm → F
k
q are two Fq-linear maps

satisfying

x ∗ y = ψ(φ(x) · φ(y))

for all x,y ∈ F
k
q .

The definition of RMFE was first proposed in [10]. Thanks to this technique,
the authors managed to bring down the amortized complexity of communication
complexity from O(n log n) to O(n) for Shamir-based MPC protocols over any
finite field. The key observation is that the classic threshold MPC protocols
requires large field to implement the hyper-invertible matrix technique and the
threshold secret sharing scheme. Therefore, even faced with MPC protocol over
binary field, one has to choose an extension field for its share while the secret
is still restricted to the binary field, a subfield of its secret space. This causes
another Ω(log n) overhead. In fact, the authors in [10] noticed that such overhead
can be amortized away if one can convert the extension field of the secret space
into a vector space so that it is possible to implement several multiplication in
parallel via RMFE.

In this work, we need RMFE for a different purpose, namely, we convert the
extension field Fqm of the secret space into a vector space F

k
q via RMFE while

maintaining strong multiplicitivity.

Lemma 5. If (φ, ψ) is a (k,m)q-RMFE, then φ is injective and m � 2k − 1.

Proof. Let x,y ∈ F
k
q such that φ(x) = φ(y). Let 1 ∈ F

k
q be the all-one vector.

Then we have

x = 1 ∗ x = ψ(φ(1)φ(x)) = ψ(φ(1)φ(y)) = 1 ∗ y = y.

This shows the injectivity of φ.
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To show the second claim, let us show that ψ is surjective. For any x ∈ F
k
q , we

have ψ(φ(1)φ(x)) = 1∗x = x. This means that ψ is surjective. Let u ∈ F
k
q be the

vector (1, 0, 0, . . . , 0). Consider the set A := {x ∈ F
k
q : ψ(φ(u)φ(x)) = 0}. As

ψ(φ(u)φ(x)) = u ∗ x = (x1, 0, 0, . . . , 0), we have A = {(0, c) : c ∈ F
k−1
q }.

It is clear that φ(u)φ(A) is a subspace of the kernel of ψ. As the dimen-
sion of φ(u)φ(A) is k − 1, we have that m = dim(ker(ψ)) + dim(Im(ψ)) �
dim(φ(u)φ(A)) + k = k − 1 + k = 2k − 1.

Though we have the inequality m � 2k − 1, it was shown in [10] that, via
construction of algebraic function fields, one has m = O(k) with a small hidden
constant.

Lemma 6 (see [10]). Let F/Fq be a function field of genus g with k distinct
rational places P1, P2, . . . , Pk. Let G be a divisor of F such that supp(G) ∩
{P1, . . . , Pk} = ∅ and deg(G) � 2g − 1 + k. If there is a place R of degree
m with m > 2 deg(G), then there exists an (k,m)q-RMFE.

Let us briefly recall construction of the RMFE given in Lemma 6. Consider
the map

π : L(G) → F
k
q ; f 
→ (f(P1), . . . , f(Pk)).

Then π is surjective. Thus, we can choose a subspace V of L(G) of dimension
k such that π(V ) = F

k
q . We write by cf the vector (f(P1), . . . , f(Pk)), and by

f(R) the evaluation of f in the higher degree place R, for a function f ∈ L(2G).
We now define

φ : π(V ) = F
k
q → Fqm ; cf 
→ f(R) ∈ Fqm .

Note that the above f ∈ V is uniquely determined by cf . The map ψ can
then be defined (see the detail in [10, Lemma 6]). Thus, the time complexity of
constructing such a RMFE consists of finding a basis of L(G) and evaluation of
functions of L(G) at the place R and the rational places P1, P2, . . . , Pk.

As the algebraic geometry code associated with this function field tower can
not run in quasi-linear time, we need to apply our concatenation idea again so
as to give rise to a quasi-linear time RMFE.

Lemma 7 (see [10]). Assume that (φ1, ψ1) is an (n1, k1)qk2 -RMFE and
(φ2, ψ2) is an (n2, k2)q-RMFE. Then φ : F

n1n2
q → Fqk1k2

(x1, . . . ,xn1) 
→ (φ2(x1), . . . , φ2(xn1)) ∈ F
n1
qk2


→ φ1(φ2(x1), . . . , φ2(xn1))

and ψ : Fqk1k2 → F
n1n2
q

α 
→ ψ1(α) = (u1, . . . ,un1) ∈ F
n1
qk2


→ (ψ2(u1), . . . , ψ2(un1))

give an (n1n2, k1k2)q-RMFE.
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Lemma 8. The Reed-Solomon code leads to a (k, r)q-RMFE (φ, ψ) for all 2 ≤
r ≤ 2q and k � r/2. Furthermore, the pair (φ, ψ) can be computed in quasi-linear
time.

Proof. Apply the rational function field Fq(x) to the construction of RMFE
given in Lemma 6. Choose an irreducible polynomial R of Fq[x] of degree r and k
distinct elements α1, α2, . . . , αk of Fq. Then it turns out that the codes are Reed-
Solomon codes and hence (φ, ψ) can be computed in time O(k log2 k log log k)
(see [2]).

By applying the Garcia-Stichtenoth tower to the construction of the RMFE
given in Lemma 6, we obtain the following result.

Lemma 9. For any integer a > 1, there exists a family of (k, a)q-RMFEs with
k → ∞ and limk→∞ a

k → 2 + 4√
q−1 that can be computed in time O(a3).

Lemma 10. For any integers a > 1 and r with 2r � qa, there exists a family of
(k, ar)q-RMFEs with k → ∞ and limk→∞ ar

k = 4 + 8√
q−1 that can be computed

in time O(a3 + r log2 r log log r).

Proof. Let (φ1, ψ1) be a (k1, r)qa -RMFE with k1 = �r/2� given in Lemma 8 and
let (φ2, ψ2) be a (k2, a)q-RMFE with a

k2
→ 2 + 4√

q−1 given in Lemma 9. By
Lemma 7, concatenation of these two RMFEs gives an (k1k2, ar)q-RMFE (φ, ψ)
with ar

k1k2
→ 4+ 8√

q−1 . Moreover, since (φ1, ψ1) is associated with Reed-Solomon

codes, it can be computed in time O(r log2 r log log r). As (φ2, ψ2) is constructed
via the Garcia-Stichtenoth tower, it can be computed in time O(a3). The overall
running time for (φ, ψ) is then upper bounded by O(a3 + r log2 r log log r).

Recall that we claim that our LSSS is generated by an elementary algorithm.
In this sense, This RMFE should also be produced by an elementary algorithm.
We again resort to exhaustive search instead of using Garcia-Stichtenoth tower
to find this RMFE. As we argue in Theorem2, we need to concatenate twice
instead of once. The first two RMFEs are associated with Reed-Solomon codes
and the third one is found by exhaustive search and guaranteed by Lemma9.
The exhaustive search consists of enumerating all linear subspaces C ⊆ F

log log n
q

and determining the distance, dual distance of C and the distance of its square
code C∗2. The first step takes time 2Ω(log log n)2 and the second step takes time
2Ω(log log n). Therefore, this exhaustive search will find the desired linear sub-
spaces in less than O(n) time. Emulating the proof of Lemma10 gives the fol-
lowing result.

Lemma 11. There exists an quasi-linear time elementary algorithm to gener-
ate a family of (ki,mi)q-RMFEs with ki → ∞ and limi→∞ mi

ki
= 8 + 16√

q−1 that

can be computed in time O(mi log2 mi log log mi).

Given a LSSS Σ with secret space Fqm , the following theorem shows how to
obtain a LSSS with secret space F

k
q by applying RMFE to the secret space of Σ.
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Theorem 3. Assume that there is a t-strongly multiplicative linear secret shar-
ing scheme C with secret space Fqm and share space Fq. If there exists a (k,m)q-
RMFE (φ, ψ), then there exists a t-strongly multiplicative linear secret sharing
scheme Σ with secret space F

k
q . Moreover, the time complexity of share genera-

tion and secret reconstruction of Σ is bounded by that of C and (φ, ψ).

Proof. Note that for any s ∈ F
k
q , φ(s) ∈ Fqm . Let

C1 = {(s, c1, . . . , cn) : s ∈ F
k
q , (φ(s), c1, . . . , cn) ∈ C}

where s is the secret and ci is the i-th share. Let us show that C1 is indeed
a LSSS with the secret space F

k
q . If (s, c1, . . . , cn) ∈ C1 with (c1, . . . , cn) = 0,

then we must have φ(s) = 0 since (φ(s), c1, . . . , cn) ∈ C. As φ is injective, this
forces that s = 0. Hence, C1 is a LSSS. To show that the secret space is F

k
q , we

choose an arbitrary s ∈ F
k
q . Then φ(s) ∈ Fqm . As the secret space of C is Fqm ,

there exists a vector (c1, . . . , cn) ∈ F
n
q such that (φ(s), c1, . . . , cn) ∈ C. Thus,

(s, c1, . . . , cn) belongs to C1.
It is clear that C1 is an Fq-LSSS as φ is a linear map and C is an Fq-LSSS. We

next show that C1 has t-privacy and C∗2
1 has (n−t)-reconstruction. The t-privacy

argument follows from the fact that C has t-privacy and {(φ(s), c1, . . . , cn) ∈ C :
s ∈ F

k
q} is a subset of C. As C is multiplicative, we can find the secret-to-

share map ρ such that for (b0,b), (c0, c) ∈ C with b = (b1, . . . , bn) and c =
(c1, . . . , cn),

ρ(b ∗ c) = ρ(b)ρ(c) = b0c0.

For any (s, c1, . . . , cn) ∈ C1, we define the share-to-secret map

ρ1(c1, . . . , cn) = ψ ◦ ρ(c1, . . . , cn) = ψ(φ(s) · φ(1)) = s.

The second step is due to the fact that C is unitary. To see that C1 is multi-
plicative, for any (x, x1, . . . , xn), (y, y1, . . . , yn) ∈ C1, we have

ρ1(x1y1, . . . , xnyn) = ψ ◦ ρ(x1y1, . . . , xnyn) = ψ(φ(x) · φ(y)) = x ∗ y.

The last step comes from the definition of RMFE. It remains to prove the
(n − t)-reconstruction of C∗2

1 . We note that (s, c1, . . . , cn) ∈ C∗2
1 indicates that

(φ(s), c1, . . . , cn) ∈ C∗2. That means we can reconstruct φ(s) from any (n − t)
shares in (c1, . . . , cn) due to the (n − t)-reconstruction property of C∗2. The
desired result follows as s = ψ ◦ φ(s).

3.3 Make the Secret Space to Be F
k
q

Putting Theorems 1, 3 and Lemma 10 together leads to our main results.

Theorem 4. Let q be any even power of prime. Then for any positive real ε ∈
(0, 1

2 − 2√
q−1 ) and η ∈ (0, 1

2 ), there exists a family C of τq-strongly multiplicative
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q-ary LSSS on Ni players with density 1, secret space F
si
q and quasi-linear time

for share generation and secret reconstruction, where

τq =
1
9
(1 − 2η)

(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εη

(
1

4 + 8√
q−1

)

.

Proof. Note that the secret space of Γi in Theorem 1 is FqkiRij . By Lemma 10,

there exists a (si, kiRij)q-RMFE (φ, ψ) with kiRij

si
→ 1

4+ 8√
q−1

that can be

computed in time O(k3
i + Rij log2 Rij log log Rij) = O(Ni log2 Ni log log Ni) as

ki = O(log Rij). The desired result follows from Theorem 3.

By emulating the proof of Theorem2 and referring to RMFE in Lemma11,
we can also obtain a similar result without resorting to the Garcia-Stichtenoth
tower at a cost of slightly worse strong multiplicative property.

Theorem 5 (Elementary construction of LSSS with strong multiplica-
tive property). Let q be any even power of prime. Then for any positive real
ε ∈ (0, 1

2 − 2√
q−1 ) and η ∈ (0, 1

2 ), there exists a quasi-linear time elementary
algorithm to generate a family C of τq-strongly multiplicative q-ary LSSS on Ni

players with density 1, secret space F
si
q and quasi-linear time (depending on ε)

for share generation and secret reconstruction, where

τq =
1
27

(1 − 2η)(1 − 2λ)
(

1 − 2ε − 4√
q − 1

)

,
si

Ni
→ εηλ

8 + 16√
q−1

.
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A LSSS from Algebraic Curves

As we have seen, a concatenated LSSS consists of two LSSSs, one used as an
inner LSSS and another one used as an outer LSSS. In this section, we provide
a construction of LSSS via algebraic function fields. This gives us LSSSs with
desired property. Let us briefly recall some background on algebraic function
fields. The reader may refer to [27] for the details.

A function field F/Fq is an algebraic extension of the rational function field
Fq(x), that contains all fractions of polynomials in Fq[x]. Associated to a function
field, there is a non-negative integer g called the genus, and an infinite set of
“places” P , each having a degree deg P ∈ N. The number of places of a given
degree is finite. The places of degree 1 are called rational places. Given a function
f ∈ F and a place P , two things can happen: either f has a pole in P , or f
can be evaluated in P and the evaluation f(P ) can be seen as an element of
the field Fqdeg P . If f and g do not have a pole in P then the evaluations satisfy
the rules λ(f(P )) = (λf)(P ) (for every λ ∈ Fq), f(P ) + g(P ) = (f + g)(P ) and
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f(P ) · g(P ) = (f · g)(P ). Note that if P is a rational place (and f does not have
a pole in P ) then f(P ) ∈ Fq. The functions in F always have the same zeros
and poles up to multiplicity (called order). An important fact of the theory of
algebraic function fields is as follows: call N1(F ) the number of rational places of
F . Then over every finite field Fq, there exists an infinite family of function fields
{Fn} such that their genus gn grow with n and limn→∞ N1(Fn)/gn = cq with
cq ∈ R, cq > 0. The largest constant cq satisfying the property above is called
Ihara’s constant A(q) of Fq. It is known that 0 < A(q) ≤ √

q − 1 for every finite
field Fq. Moreover, A(q) =

√
q−1 for a square q. The result is constructive, since

explicit families of function fields attaining these values are known and given in
[15,16].

A divisor G is a formal sum of places, G =
∑

cP P , such that cP ∈ Z and
cP = 0 except for a finite number of P . We call this set of places where cP �= 0 the
support of G, denoted by supp(G). The degree of G is deg G :=

∑
cP deg P ∈ Z.

The Riemann-Roch space L(G) is the set of all functions in F with certain
prescribed poles and zeros depending on G (together with the zero function).
More precisely if G =

∑
cP P , every function f ∈ L(G) must have a zero of

order at least |cP | in the places P with cP < 0, and f can have a pole of order
at most cP in the places with cP > 0. The space L(G) is a vector space over Fq.
Its dimension is governed by certain laws (given by the so-called Riemann-Roch
theorem). A weaker version of that theorem called Riemann’s theorem states
that if deg G ≥ 2g − 1 then dimL(G) = deg(G) − g + 1. On the other hand, if
deg G < 0, then dimL(G) = 0.

Lastly, we note that, given f, g ∈ L(G), its product f ·g is in the space L(2G).

Lemma 12. Let F/Fq be a function field of genus g with n+1 distinct rational
places P∞, P1, P2, . . . , Pn. If there is a place P0 of degree k > 1 and n/2 > m �
k + 2g − 1, then there exists a q-ary LSSS C satisfying

(i) C has (m + 1)-reconstruction and (m − k − 2g + 1)-privacy.
(ii) The share-to-secret map ρ of C is multiplicative.
(iii) C∗2 has (2m + 1)-reconstruction.

Proof. Denote by FP0 the residue class field of place P0. Then we know that
FP0 � Fqk . For a function f that is regular at P0, we denote by f(P0) the residue
class of f in FP0 . Consider the map π : f ∈ L(G) 
→ (f(P0), f(P1), . . . , f(Pn)) ∈
FP0 × F

n
q � Fqk × F

n
q and define

C := Im(π) = {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(mP∞)} ⊆ FP0 × F
n
q .

For a subset A of {0} ∪ [n], we denote by πA the map

f ∈ L(G) 
→ projA(f(P0), f(P1), . . . , f(Pn)).

Since the kernel of π{0} is L(mP∞ −P0) and dimL(mP∞)−dim L(mP∞ −P0) =
k, π{0} is surjective. Hence, we have proj0(C) = Fqk .
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Let A be a subset of [n]. If |A| � m+1 and projA(f(P0), f(P1), . . . , f(Pn)) =
0. Then f ∈ L(mP∞ − ∑

i∈A Pi). This implies that f = 0 as deg (mP∞−
∑

i∈A Pi

)
< 0. Therefore, f(P0) = 0.

If |A| � m−k−2g+1, then dim L (mP∞)−dim L (
mP∞ − ∑

i∈A Pi − P0

)
=

k + |A|. This implies that π{0}∪A is surjective. Hence, for any α ∈ FP0 , there is
a function f such that projA(f(P0), f(P1), . . . , f(Pn)) = 0 and f(P0) = α.

Next we will prove that the share-to-secret map of C is multiplicative. First,
we note that C is unitary as 1 ∈ L(mP∞). Consider the Fq-linear space

Σ = {(f(P0), f(P1), . . . , f(Pn)) : f ∈ L(2mP∞)} ⊆ FP0 × F
n
q .

Then Σ contains C∗2. As 2m + 1 � n, the vector (f(P1), . . . , f(Pn)) deter-
mines the function f ∈ L(2mP∞) uniquely, and hence f(P0). Therefore,
Σ has n-reconstruction. Thus, we can define the share-to-secret map ρ:
ρ(f(P1), . . . , f(Pn)) = f(P0). It is clear that ρ is an extension of the share-
to-secret map of C. Furthermore, for any two functions f, g ∈ L(mP∞), we have
fg ∈ L(2mP∞). Hence, we have

ρ((f(P1), . . . , f(Pn)) ∗ (g(P1), . . . , g(Pn))) = ρ((fg)(P1), . . . , (fg)(Pn))
= (fg)(P0) = f(P0)g(P0).

Since Σ has (2m + 1)-reconstruction, so does C∗2.

A.1 Construction via Reed-Solomon Codes

Let α1, . . . , αN ∈ Fqk be N pairwise distinct nonzero elements. Let α0 be a root
of an irreducible polynomial over Fqk of degree �. Denote by Fqk [x]<K the set of
polynomials over Fqk of degree less than K. The Reed-Solomon code is defined
by

RSk,�[N,K]q := {(f(α0), f(α1), . . . , f(αN )) : f ∈ Fqk [x]<K} ⊂ Fqk� × F
N
qk .

Applying Lemma 12 to the rational function fields gives the following result.

Lemma 13. Let RSk,�[N,K]q be the Reed-Solomon code defined above. If N/2 >
K − 1 � � − 1, then it is a qk-ary LSSS on N players with secret space Fqk� ,
share space Fqk . Moreover, we have the following properties

(i) It has K-reconstruction and (K − �)-privacy.
(ii) The share-to-secret of RSk,�[N,K]q is multiplicative.
(iii) RSk,�[N,K]∗2q has (2K − 1)-reconstruction.
(iv) If N = Ω(qk), then the share generation and secret reconstruction can be

computed in time O(N log2 N log log N).

Proof. The first three parts follows from Lemma 12 when applying the rational
function field Fqk(x). As the encoding and decoding of a Reed-Solomon code can
be run in time O(N log2 N log log N) (see [2]), the last claim follows.
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A.2 Garcia-Stichtenoth Tower

In the Garcia-Stichtenoth tower {Ei} over Fq, each extension Ei/Ei−1 has degree√
q. The detailed result is given below.

Lemma 14 (via Garcia-Stichtenoth tower). Let q be an even power of a
prime. Then there exists a family {Fi/Fq} function fields such that

(i) The number N(Fi) of Fq-rational places is strictly increasing as i increases.
(ii) limi→∞

N(Fi)
g(Fi)

=
√

q − 1, where g(Fi) denotes the genus of Fi.

(iii) limi→∞
N(Fi)

N(Fi−1)
=

√
q.

Furthermore, algebraic-geometry codes of length n based on this family can be
encoded and decoded in time O(n3 log2 q) (see [26]).

A.3 Construction via Garcia-Stichtenoth Tower

By applying the Garcia-Stichtenoth tower given in Lemma 14 and the construc-
tion of LSSS given in Lemma 12, we obtain the following result.

Theorem 6 (via Garcia-Stichtenoth tower). Assume q is an even power of
a prime. Let ε ∈

(
0, 1

2 − 2√
q−1

)
and γ ∈ (

0, 1
2

)
be two reals with γ � ε + 2√

q−1 .
Then there exists a sequence {Ci} of q-ary LSSS on ni players with the secret
space Fqki , the share space Fq such that

(i) ki

ki−1
→ √

q.

(ii) limi→∞ ki

ni
= ε.

(iii) Ci has �γni�-reconstruction and ti-privacy satisfying ti

ni
→ γ − 2√

q−1 − ε.
(iv) C∗2

i has 2�γni�-reconstruction.
(v) the share-to-secret map ρi of Ci is multiplicative.
(vi) Ci can be constructed and computed in time O(n3

i ).

Proof. Let {Fi/Fq} be the family of the function fields given in Lemma14. Put
ni = N(Fi)−1, mi = �γni�−1 and ki = �εni�. Then ni/2 > mi � ki+2g(Fi)−1
and

ki

ki−1
=

�εni�
�εni−1� → √

q.

The desired results on Parts (i)–(v) follow from Lemma 12.

B Decode Concatenated Codes up to Its Unique
Decoding Radius

A naive decoding algorithm for concatenated code can not correct errors up to its
unique decoding radius. Let us explain why a naive algorithm fails to achieve this
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goal. Let C be a concatenated code with an inner code C1 and outer code C0. Let
En0 and En1 be the encoding algorithm of C0 and C1 respectively. Let Dec0 and
Dec1 be the decoding algorithm of C0 and C1 respectively. Given a codeword
c ∈ C, we can write c = (c1, . . . , cn) with ci ∈ C1. Let y = (y1, . . . ,yn) be
a corrupted codeword. The naive decoding algorithm goes as follows: we first
decode each substring yi by running the unique decoding algorithm Dec1(yi).
Let ci = Dec1(yi) and xi be the message encoded to ci, i.e., En1(xi) = ci.
The second step of our decoding algorithm is to decode (x1, . . . , xn) by running
Dec0. Since the decoding algorithm of inner code and outer code can correct
errors up to half of its minimum distance, this decoding strategy can correct
errors up to one-fourth of its minimum distance.

Forney [14] proposed a randomized algorithm to decoding concatenated code
up to its unique decoding radius provided that the decoding algorithms of inner
code and outer code are available. The time complexity of this random decoding
algorithm is the same as that of the naive decoding algorithm. Let us briefly
introduce this algorithm. This randomized algorithm first runs the decoding
algorithm of inner code on each yi of y = (y1, . . . ,yn), i.e., ci := Dec1(yi). Let
ei = ci − yi be the error vector. This randomized algorithm labels coordinate
i an erasure error with probability 2wt(ei)

d . Then, we run the erasure and error
decoding algorithm of the outer code on (x1, . . . , xn) with En1(xi) = ci or
xi =⊥. This randomized algorithm can be further derandomized at the cost of
log n factor increase in the time complexity [17] by setting a threshold w such
that an erasure error happens when 2wt(ei)

d ≥ w. We summarize the result in
the following lemma and refer interested readers to Chap. 12 in [17] for details.

Lemma 15. Let C be a concatenated code whose inner code C1 is a linear code
of length N and minimum distance D and outer code C0 is a linear code of
length n and minimum distance d. Assume that the decoding algorithm of C0

can correct e errors and r erasures with 2e + r ≤ D − 1 in time T0(N) and
the decoding algorithm of C1 can correct errors up to its unique decoding radius
d−1
2 in time T1(n). Then, there exists a deterministic decoding algorithm for C

that can correct errors up to its unique decoding radius Dd−1
2 and run in time

O((T1(n)N + T0(N))n).

Remark 6. If we let n = O(log N), T0(N) be quasi-linear in N and T1(n) is
a polynomial in n. Then, the total running time is quasi-linear in N and thus
quasi-linear in the code length of C. We will see that our concatenated LSSS
meets this condition. Thus, we can assume that our concatenated LSSS can be
decoded up to its unique decoding radius.
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with nonlinear product reconstruction. SIAM J. Discrete Math. 29(2), 1114–1131
(2015)

8. Cascudo, I., Cramer, R., Mirandola, D., Zémor, G.: Squares of random linear codes.
IEEE Trans. Inf. Theory 61(3), 1159–1173 (2015)

9. Cascudo, I., Cramer, R., Xing, C.: The torsion-limit for algebraic function fields
and its application to arithmetic secret sharing. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 685–705. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22792-9 39

10. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-
theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 14

11. Cramer, R., Damg̊ard, I., Dziembowski, S.: On the complexity of verifiable secret
sharing and multi-party computation. In: STOC 2000, pp. 325–334 (2000)

12. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

13. Cramer, R., Damgard, I., Nielsen, J.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

14. Forney, G.D.: Generalized minimum distance decoding. IEEE Trans. Inf. Theory
12(2), 125–131 (1966)

15. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields
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Abstract. We show a robust secret sharing scheme for a maximal
threshold t < n/2 that features an optimal overhead in share size, offers
security against a rushing adversary, and runs in polynomial time. Pre-
vious robust secret sharing schemes for t < n/2 either suffered from a
suboptimal overhead, offered no (provable) security against a rushing
adversary, or ran in superpolynomial time.

1 Introduction

Background. Robust secret sharing is a version of secret sharing that enables
the reconstruction of the shared secret s in the presence of incorrect shares:
given all n shares but with t of them possibly incorrect, and of course without
knowing which ones are incorrect, it should still be possible to recover s. If
t < n/3 then this can be achieved by standard error-correction techniques, while
for t ≥ n/2 the task is impossible. When n/3 ≤ t < n/2, robust secret sharing
is possible, but only if one accepts a small failure probability and an overhead
in the share size, i.e., shares of bit size larger than the bit size of s. The goal
then is to minimize the overhead in the share size for a given (negligible) failure
probability 2−k. Following up on earlier work on the topic [2,4–7,10], Bishop et
al. proposed a scheme with optimal overhead O(k) in the share size, neglecting
polylogarithmic terms (in n and k and the bit size of s) [3]. In particular, their
scheme was the first robust secret sharing with an overhead that is independent
of n (neglecting polylog(n) terms). However, as pointed out by Fehr and Yuan [8],
the Bishop et al. scheme does not (appear to) offer security in the presence of a
rushing adversary that may choose the incorrect shares depending on the shares
of the honest parties. This is in contrast to most of the earlier schemes, which
do offer security against such rushing attacks (but are less efficient in terms of
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share size).1 Towards recovering security against a rushing adversary, Fehr and
Yuan [8] proposed a new robust secret sharing scheme that features security
against a rushing adversary and an overhead “almost independent” of n, i.e.,
O(nε) for an arbitrary ε > 0. Furthermore, a variation of their scheme offers
security against a rushing adversary and an overhead that is truly independent
of n (neglecting polylogarithmic terms), but this version of the scheme has a
running time that is superpolynomial.

Our Result. In this work, we close the final gap left open in [8]: we propose
and analyze a new robust secret sharing scheme that is secure against a rushing
adversary, has an overhead independent of n as in [3] (i.e., independent up to
the same poly-logarithmic O(log4 n + log n log m) term as in [3], where m is the
bit size of the secret), and has a polynomial running time.

Our new scheme recycles several of the ideas and techniques of [8]. The basic
idea, which goes back to [3], is to have each share si be authenticated by a
small randomly chosen subset of the other parties. Following [8], our approach
here differs from [3] in that the keys for the authentication are not authenticated.
Indeed, this “circularity” of having the authentication keys authenticated causes
the solution in [3] to not allow a rushing adversary; on the other hand, by
not authenticating the authentication keys, we give the dishonest parties more
flexibility in lying, making the reconstruction harder.

The reconstruction is in terms of a careful (and rather involved) inspection
of the resulting consistency graph, exploiting that every honest party can verify
the correctness of the shares of a small but random subset of parties, and that
these choices of random “neighborhoods” become known to the adversary only
after having decided about which shares si to lie about. As a matter of fact,
in our scheme, every honest party can verify the correctness of the shares of
several randomly chosen small neighborhoods, giving rise to several global ver-
ification graphs. Furthermore, to ensure “freshness” of each such neighborhood
conditioned on the adversary’s behavior so far, these neighborhoods are revealed
sequentially in subsequent rounds of communication during the reconstruction
phase.

As in [8], in our scheme the reconstructor first learns from the consistency
graph whether the number p of “passive” parties, i.e., dishonest parties that did
not lie about the actual share si (but possibly about other pieces of information),
is “large” or “small”. For p small, we can recycle the solution from [8], which
happens to also work for the tighter parameter setting we consider here. When p
is large though, the solution in [8] is to exploit the given redundancy in the shares
si by means of applying list decoding, and then to find the right candidate from
the list by again resorting to the consistency graph. However, this list decoding

1 In order to achieve security against a rushing adversary when n/3 ≤ t < n/2,
it is necessary that the shares are disclosed part-by-part in subsequent rounds of
communication; for the adversary to be rushing then means that he can choose his
messages in each communication round depending on the parts of the shares of
the honest parties that are communicated in this round (and earlier ones), but not
depending on what the honest parties will communicate in the upcoming rounds.
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technique only works in a parameter regime that then gives rise to the O(nε)
overhead obtained in [8]. To overcome this in our solution, we invoke a new
technique for dealing with the case of a large p.

We quickly explain this new part on a very high level. The idea is to design
a procedure that works assuming the exact value of p is known. This procedure
is then repeated for every possible choice of p, leading to a list of possible candi-
dates; similarly to how the scheme in [8] finds the right candidate from the list
produced by the list decoding, we can then find the right one from the list. As
for the procedure assuming p is known, exploiting the fact that p is large and
known, we can find subsets V and V1 so that either we can recover the shared
secret from the shares of the parties in V ∪V1 by standard error correction (since
it happens that there is more redundancy than errors in this collection of shares),
or we can argue that the complement of V is a set for which the small-p case
applies and thus we can again resort to the corresponding technique in [8].

One technical novelty in our approach is that we also invoke one layer of
random neighborhoods that are publicly known. In this case, the adversary can
corrupt parties depending on who can verify whose share, but the topology of
the global verification graph is fixed and cannot be modified by dishonest parties
that lie about their neighborhoods.

Following [3,8], we point out that it is good enough to have a robust secret
sharing scheme with a constant failure probability and a (quasi-)constant over-
head; a scheme with 2−k failure probability and a (quasi-) O(k) overhead can
then be obtained by means of parallel repetition. This is what we do here as
well: at the core is a scheme where each party is given a quasi-constant number
of bits on top of the actual share si (i.e., the size of the authentication keys and
the size of the random neighborhoods are chosen to be quasi-constant), and we
show that this scheme has a constant failure probability.

Concurrent Work. In concurrent and independent work [9], a very similar
result as ours was obtained (using rather different techniques though). They
also show an optimal (up to poly-logarithmic terms) robust secret sharing scheme
with security against a rushing adversary. Compared to our scheme, their scheme
has a slightly better poly-logarithmic dependency on n: O(log2 n + log m log n).
On the other hand, in a setting where the reconstruction is towards an external
reconstructor R, our scheme works simply by revealing the shares to R (over
multiple rounds) and R doing some local computation, whereas their scheme
requires interaction among the shareholders and, as far as we can see, the share-
holders will then learn the shared secret as well. For instance in the context of
robust storage, the latter is undesirable.

2 Preliminaries

2.1 Graph Notation

We follow the graph notation in [8], which we briefly recall. Let G = ([n], E) be a
graph with vertex set [n] := {1, . . . , n} and edge set E. By convention, (v, w) ∈ E
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represents an edge directed from v to w is . We let G|S be the restriction of G
to S for any S ⊆ [n], i.e., G|S = (S,E|S) with E|S = {(u, v) ∈ E : u, v ∈ S}.

For vertex v ∈ [n], we set

Nout(v) = {w ∈ [n] : (v, w) ∈ E} and N in(v) = {w ∈ [n] : (w, v) ∈ E}.

We use Ev as a short hand for Nout(v), the neighborhood of v. For S ⊆ [n], we
set

Nout
S (v) = Nout(v) ∩ S and N in

S (v) = N in(v) ∩ S.

This notation is extended to a labeled graph, i.e., when G comes with a
function L : E → {good, bad} that labels each edge. Namely, for v ∈ [n] we set

Nout(v, good) = {w ∈ Nout(v) : L(v, w) = good},

N in(v, good) = {w ∈ N in(v) : L(w, v) = good},

and similarly Nout(v, bad) and N in(v, bad). Also, Nout
S (v, good), N in

S (v, good),
Nout

S (v, bad) and N in
S (v, bad) are defined accordingly for S ⊆ [n]. Finally, we set

nout(v) = |Nout(v)| and nin
S (v, bad) = |N in

S (v, bad)|

and similarly for all other variations.

2.2 Random Graphs

We call a graph G = ([n], E) a randomized graph if each edge in E is actu-
ally a random variable. We are particularly interested in randomized graphs
where (some or all of) the Ev’s are uniformly random and independent subsets
Ev ⊂ [n] \ {v} of a given size d. For easier terminology, we refer to such neigh-
borhoods Ev as being random and independent. G is called a random degree-d
graph if Ev is a random subset of size d in the above sense for all v ∈ [n]. The
following properties are direct corollaries of the Chernoff-Hoeffding bound: the
first follows from Chernoff-Hoeffding with independent random variables, and
the latter from Chernoff-Hoeffding with negatively correlated random variables
(see Appendix A).2

Corollary 1. Let G = ([n], E) be a randomized graph with the property that,
for some fixed v ∈ [n], the neighborhood Ev is a random subset of [n] \ {v} of
size d. Then, for any fixed subset T ⊂ [n], we have

Pr
[
nout

T (v) ≥ μ + Δ
]

≤ 2− Δ2
3μ and Pr

[
nout

T (v) ≤ μ − Δ
]

≤ 2− Δ2
2μ ,

where μ := |T |d
n .

2 We refer to [1] for more details, e.g., for showing that the random variables Xj = 1
if j ∈ Ev and 0 otherwise are negatively correlated for Ev as in Corollary 1.
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Corollary 2. Let G = ([n], E) be a randomized graph with the property that, for
some fixed T ⊂ [n], the neighborhoods Ev for v ∈ T are random and independent
of size d (in the sense as explained above). Then, for any v 
∈ T , we have

Pr
[
nin

T (v) ≥ μ + Δ
]

≤ 2− Δ2
3μ and Pr

[
nin

T (v) ≤ μ − Δ
]

≤ 2− Δ2
2μ ,

where μ := |T |d
n .

We will also encounter a situation where the set T may depend on the graph G;
this will be in the context of a random but publicly known verification graph,
where the adversary can then influence T dependent on G. The technical issue
then is that conditioned on the set T , the neighborhood Ev may not be random
anymore, so that we cannot apply the above two corollaries. Instead, we will
then use the following properties, which require some more work to prove.

Lemma 1. Let G = ([n], E) be a random degree-d graph. Then, there exists no
γ ∈ 1

nZ ∩
[
0, 1

2

]
and T ⊂ [n] of size |T | ≥ (γ − α)n for α2d = 24 log n with the

property that

|{v ∈ [n] : nin
T (v) < d(γ − 2α)}| ≥ γn

2
,

except with probability n1−5n.3

Proof. See appendix.

Lemma 2. Let G = ([n], E) be a random degree-d graph. Then, there exists no
γ ∈ 1

nZ ∩
[

1
log n , 1

2

]
and T ⊂ [n] of size |T | ≤ (γ − 3α)n for α2d = 24 log n with

the property that

|{v ∈ [n] : nin
T (v) ≥ d(γ − 2α)}| ≥ γn

2
,

except with probability n1−3n.

The proof goes along the very same lines as for Lemma 1.

2.3 Robust Secret Sharing

A robust secret sharing scheme consists of two interactive protocols: the sharing
protocol Share and the reconstruction protocol Rec. There are three different
roles in this scheme, a dealer D, a receiver R and n parties labeled 1, . . . , n. The
sharing protocol is executed by D and n parties: D takes as input a message
msg, and each party i ∈ {1, . . . , n} obtains as output a share. Typically, D
generates these shares locally and then sends to each party the corresponding
share. The reconstruction protocol is executed by R and the n parties: each
party is supposed to use its share as input, and the goal is that R obtains msg
3 We emphasize that γ and T are allowed to depend on G.
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as output. Ideally, the n parties simply send their shares to R—possibly using
multiple communication rounds—and R then performs some local computation
to reconstruct the message.4

We want a robust secret sharing scheme to be secure in the presence of an
active adversary who can corrupt up to t of n parties. Once a party is corrupted,
the adversary can see the share of this party. In addition, in the reconstruc-
tion protocol, the corrupt parties can arbitrarily deviate from the protocol. The
following captures the formal security requirements of a robust secret sharing
scheme.

Definition 1 (Robust Secret Sharing). A pair (Share,Rec) of protocols is
called a (t, δ)-robust secret sharing scheme if the following properties hold for
any distribution of msg (from a given domain).

– Privacy: Before Rec is started, the adversary has no more information on
the shared secret msg than he had before the execution of Share.

– Robust reconstructability: At the end of Rec, the reconstructor R outputs
msg′ = msg except with probability at most δ.

As for the precise corruption model, we consider an adversary that can cor-
rupt up to t of the n parties (but not the dealer and receiver). We consider the
adversary to be rushing, meaning that the messages sent by the corrupt parties
during any communication round in the reconstruction phase may depend on
the messages of the honest parties sent in that round. Also, we consider the
adversary to be adaptive, meaning that the adversary can corrupt parties one
by one (each one depending on the adversary’s current view) and between any
two rounds of communication, as long as the total number of corrupt parties is
at most t. We point out that we do not allow the adversary to be “corruption-
rushing”, i.e., to corrupt parties during a communication round, depending on
the messages of (some of) the honest parties in this round, and to then “rush”
and modify this round’s messages of the freshly corrupt parties.5

2.4 Additional Building Blocks

We briefly recall a couple of techniques that we use in our construction. For more
details, see AppendixB.

Message Authentication Codes. The construction uses unconditionally secure
message authentication codes (MAC) that satisfy the usual authentication secu-
rity, but which also feature a few additional properties: (1) an authentica-
tion tag σ is computed in a randomized way as a function MACkey(m, r)
of the message m, the key key, and freshly chosen randomness r, (2) it is
ensured that for any � keys key1, . . . , key� (with � a parameter), the list of

4 This is not the case in [9]; see our discussion at the very end of Sect. 1.
5 It is not fully clear to us what the impact would be of such a “corruption-rushing”

adversary to our scheme.
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tags MACkey1(m, r), . . . ,MACkey�
(m, r) is independent of m over the choice

of random string r , and (3) for any message m and fixed randomness r, the
tag MACkey(m, r) is uniformly distributed (over the random choice of the key).
The specific construction we use is polynomial-evaluation construction

MAC(x,y) : Fa × F
� → F, (m, r) �→

a∑

i=1

mix
i+� +

�∑

i=1

rix
i + y,

with F a finite field of appropriate size and the key being key = (x, y) ∈ F
2.

Robust Distributed Storage. Following [3,8], the tags in the construction of our
robust secret sharing scheme will be stored robustly yet non-privately; the latter
is the reason why the extra privacy property (2) for the MAC is necessary. This
design ensures that cheaters cannot lie about the tags that authenticate their
shares to, say, provoke disagreement among honest parties about the correctness
of the share of a dishonest party.

Formally, a robust distributed storage scheme is a robust secret sharing
scheme but without the privacy requirement, and it can be achieved using a
list-decodable code (see Appendix B or [8] for more details). Important for us
will be that the share of each party i consists of two parts, pi and qi, and robust-
ness against a rushing adversary is achieved by first revealing pi and only then,
in a second communication round, qi. Furthermore, we can do with pi and qi

that are (asymptotically) smaller than the message by a fraction 1/n, and with
correct reconstruction except with probability 2−Ω(log2 n).

3 The Robust Secret Sharing Scheme

3.1 The Sharing Protocol

Let t be an arbitrary positive integer and n = 2t + 1. Let d = 600 log3 n.6

We consider the message msg to be shared to be m bits long. We let F be a
field with log |F| = log m + 3 log n, and we set a := m

log m+3 log n so that msg ∈
F

a. Our robust secret sharing scheme uses the following three building blocks.
A linear secret sharing scheme Sh that corresponds to a Reed-Solomon code
of length n and dimension t + 1 over an extension field K over F with [K :
F] = a,7 together with its corresponding error-correcting decoding algorithm
Dec, the MAC construction from Theorem 6 with � = 10d, and the robust
distributed storage scheme from Theorem 7. On input msg ∈ F

a, our sharing
protocol Share(msg) works as follows.

1. Let (s1, . . . , sn) ← Sh(msg) to be the non-robust secret sharing of msg.
2. Sample MAC randomness r1, . . . , rn ← F

10d and repeat the following 5 times.

6 We are not trying to optimize this constant. We specify the constant 600 for the
convenience of probability estimate.

7 So that we can identify msg ∈ F
a with msg ∈ K.
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(a) For each i ∈ [n], choose a random set Ei ⊆ [n] \ {i} of size d. If there
exists j ∈ [n] with in-degree more than 2d, do it again.8

(b) For each i ∈ [n], sample a random MAC keys keyi,j ∈ F
2 for each j ∈ Ei,

and set Ki = (keyi,j)j∈Ei
.

(c) Compute the MACs9

σi→j = MACkeyi,j
(sj , rj) ∈ F ∀j ∈ Ei

and set tagi = (σi→j)j∈Ei
∈ F

d.
Let E

(m)
i , K(m)

i and tag(m)
i be the resulting choices in the m-th repetition.

3. Set tag = (tag(m)
i )m∈[5],i∈[n] ∈ F

5nd, and use the robust distributed storage
scheme to store tag together with E(2). Party i gets pi and qi.

4. For i ∈ [n], define si =
(
si, E

(1)
i , E

(3)
i , E

(4)
i , E

(5)
i ,K(1)

i , . . . ,K(5)
i , ri, pi, qi

)
to

be the share of party i. Output (s1, . . . , sn).

We emphasize that the topology of the graph G2, determined by the ran-
dom neighborhoods E

(2)
i , is stored robustly (yet non-private). This means that

the adversary will know G(2) but dishonest parties cannot lie about it. For
G1, G3, G4, G5 it is the other way round: they remain private until revealed
(see below), but a dishonest party i can then lie about E

(m)
i .

3.2 The Reconstruction Protocol

The reconstruction protocol Rec works as follows. First, using 5 rounds of com-
munication, the different parts of the shares (s1, . . . , sn) are gradually revealed
to the reconstructor R:

Round 1: Every party i sends (si, ri, pi) to the reconstructor R.
Round 2: Every party i sends (qi, E

(1)
i ,K(1)

i ,K(2)
i ) to the reconstructor R.

Round 3: Every party i sends (E(3)
i ,K(3)

i ) to the reconstructor R.
Round 4: Every party i sends (E(4)

i ,K(4)
i ) to the reconstructor R.

Round 5: Every party i sends (E(5)
i ,K(5)

i ) to the reconstructor R.

Remark 1. We emphasize that since the keys for the authentication tags are
announced after the Shamir/Reed-Solomon shares si, it is ensured that the MAC
does its job also in the case of a rushing adversary. Furthermore, it will be crucial
that also the E

(1)
i ’s are revealed in the second round only, so as to ensure that

once the (correct and incorrect) Shamir shares are “on the table”, the E
(1)
i ’s for

the honest parties are still random and independent. Similarly for the E
(m)
i ’s

in the m-th round for m = 3, 4, 5. The graph G2 is stored robustly; hence, the
adversary knows all of it but cannot lie about it.

Then, second, having received the shares of n parties, the reconstructor R locally
runs the reconstruction algorithm given in the box below.
8 This is for privacy purposes.
9 The same randomness rj is used for the different i’s and the 5 repetitions.
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Local reconstruction algorithm

Collecting the data:

1. R collects s := (s1, . . . , sn) and (r1, . . . , rn), and, round by round, all the

authentication keys key
(m)
i,j and the graphs G1, G3, G4, G5.

2. R reconstructs all the tags σ
(m)
i→j and the graph G2 from (pi, qi)i∈[n].

3. R turns G1, . . . , G5 into labeled “consistency” graphs by marking any edge
(i, j) ∈ E(m) as good for which σ

(m)
i→j = MAC

key
(m)
i,j

(sj , rj).

Exploring the consistency graphs:

1. Estimate the number p of “passive parties” by running Check(G1,
n

log n
).

2. If the output is yes (indicating a “large” p) then compute

cγ := BigP(G1, G2, G3, G4, γ, s)

for every γ ∈ Γ := [ 1
log n

, 1
4
] ∩ 1

n
Z, set c1 = Dec(s), and output

c := Cand
({cγ}γ∈Γ ∪ {c1}, G5, s

)
.

3. Otherwise, i.e., if the output is no (indicating a “small” p), compute

ci = GraphB
(
G3, G4,

4n
log n

, i, s
)

for every i ∈ [n], and output c := maj(c1, . . . , cn), the majority.

In a first step, this reconstruction algorithm considers the graphs
G1, G2, G3, G4 and all the authentication information, and turns there graphs
into labeled graphs by marking edges as good or bad depending on whether the
corresponding authentication verification works out. Then, makes calls to vari-
ous subroutines; we will describe and analyze them at a time. As indicated in
the description of the reconstruction algorithm, the overall approach is to first
find out if the number p of passive parties10 is small or large, i.e., if there is
either lots of redundancy or many errors in the Shamir shares, and then use a
procedure that is tailored to that case. Basically speaking, there are three sub-
routines to handle p in three different ranges. The unique decoding algorithm
Dec(s) handles the case p ≥ n

4 where there is sufficient redundancy in the shares
to uniquely decode (this is the trivial case, which we do not discuss any further
below but assume for the remainder that p ≤ n

4 ). The graph algorithm GraphB
handles the case p ≤ 4n

log n , and the algorithm BigP deals with p ∈ [ n
log n , n

4 ]; there
is some overlap in those two ranges as will not be able to pinpoint the range
precisely.

10 Formally, p is defined as t minus the number of active parties; thus, we implicitly
assume that t parties are corrupt (but some of them may behave honestly).
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In order to complete the description of the reconstruction procedure and to
show that it does its job (except with at most constant probability), we will
show the following in the upcoming sections.

1. An algorithm Check that distinguishes “small” from “large” p.
2. An algorithm BigP that, when run with γ = p/n and given that p is “large”,

outputs a valid codeword c for which ci = si for all honest i, and thus which
decodes to s. Given the p is not know, this algorithm is run with all possible
choices for p, and all the candidates for c are collected.

3. An algorithm Cand that finds the right c in the above list of candidates.
4. An algorithm GraphB that, when run with an honest party i and given that

p is “small”, outputs the codeword corresponding to the correct secret s. This
algorithm very much coincides with the algorithm used in [8] to deal with the
case of a “small” p, except for an adjustment of the parameters. We defer
description of this algorithm to our appendix as the security analysis is quite
similar to the graph algorithm in BigP.

3.3 “Active” and “Passive” Dishonest Parties

As in previous work on the topic, for the analysis of our scheme, it will be con-
venient to distinguish between corrupt parties that announce the correct Shamir
share si and the correct randomness ri in the first round of the reconstruction
phase (but may lie about other pieces of information) and between corrupt par-
ties that announce an incorrect si or ri. Following the terminology of previous
work on the topic, the former parties are called passive and the latter are called
active parties, and we write P and A for the respective sets of passive and active
parties, and we write H for the set of honest parties.

A subtle issue is the following. While the set A of active parties is determined
and fixed after the first round of communication, the set of passive parties P
may increase over time, since the adversary may keep corrupting parties as long
as |A ∪ P | ≤ t, and make them lie in later rounds. Often, this change in P is no
concern since many of the statements are in terms of H ∪ P , which is fixed like
A. In the other cases, we have to be explicit about the communication round we
consider, and P is then understood to be the set of passive parties during this
communication round.

3.4 The Consistency Graphs

As in [8], using a lazy sampling argument, it is not hard to see that after
every communication round (including the subsequent “corruption round”) in
the reconstruction procedure, the following holds. Conditioned on anything that
can be computed from the information announced up to that point, the neigh-
bourhoods E

(m)
i of the currently honest parties that are then announced in the

next round are still random and independent. For example, conditioned on the
set A of active parties and the set P of passive parties after the first round,
the E

(1)
i ’s announced in the second round are random and independent for all
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i ∈ H = [n] \ (A ∪ P ). Whenever we make probabilistic arguments, the ran-
domness is drawn from these random neighbourhoods. The only exception is the
graph G2, which is robustly but non-privately stored, and which thus has the
property that the E

(2)
i ’s are random and independent for all parties, but not

necessarily anymore when conditioned on, say, A and/or P .
Furthermore, by the security of the robust distributed storage of tag (The-

orem 7) and the MAC (Theorem 6) with our choice of parameters, it is ensured
that all of the labeled graphs G1, . . . , G5 satisfy the following property except
with probability O

(
log3(n)/n2

)
. For any edge (i, j) in any of these graphs Gm,

if i is honest at the time it announces E
(m)
i then (i, j) is labled good whenever

j is honest or passive.11 Also, (i, j) is labeled bad whenever j is active.
These observations give rise to the following definition, given a partition

[n] = H ∪ P ∪ A into disjoint subsets with |H| ≥ t + 1.

Definition 2. A randomized labeled graph G = ([n], E) is called a degree-d con-
sistency graph (w.r.t. the given partition) if the following two properties hold.

(Randomness) The neighborhoods Ei = {j | (i, j) ∈ E} of the vertices i ∈ H are
uniformly random and independent subsets of [n] \ {i} of size d.

(Labelling) For any edge (i, j) ∈ E with i ∈ H, if j ∈ H ∪ P then L(i, j) =
good and if j ∈ A then L(i, j) = bad.

In order to emphasize the randomness of the neighborhoods Ei given the
partition [n] = H ∪P ∪A (and possibly of some other information X considered
at a time), we also speak of a fresh consistency graph (w.r.t. to the partition
and X). When we consider a variant of a consistency graph that is a random
degree-d graph, i.e., the randomness property holds for all i ∈ [n], while the
partition [n] = H ∪P ∪A (and possibly of some other information X considered
at a time) may depend on the choice of the random edges, we speak of a random
but non-fresh consistency graph.

Using this terminology, we can now capture the above remarks as follows:

Proposition 1. The graphs G1, G3, G4, G5, as announced in the respective com-
munication rounds, are fresh consistency graphs w.r.t. the partition [n] = H ∪
P ∪A given by the active and (at that time) passive parties and w.r.t. any infor-
mation available to R or the adversary prior to the respective communication
round, except that the labeling property may fail with probability O

(
log3(n)/n2

)

(independent of the randomness of the edges). On the other hand, G2 is a ran-
dom but non-fresh consistency graph (where, again, the labeling property may
fail with probability O

(
log3(n)/n2

)
).

In the following analysis we will suppress the O
(
log3(n)/n2

)
failure proba-

bility for the labeling property; we will incorporate it again in the end. Also, we
take it as understood that the partition [n] = H ∪ P ∪ A always refers to the
honest, the passive and the active parties, respectively.
11 Note that we are exploiting here the fact that the authentication tags are robustly

stored; thus, passive parties cannot lie about them.
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3.5 The Check Subroutine

Let A be the set of active parties (well defined after the first communication
round), and let p := t − |A|, the number of (potential) passive parties. The
following subroutine distinguishes between p ≥ n

log n and p ≤ 4n
log n . This very

subroutine was already considered and analyzed in [8]; thus, we omit the proof.
The intuition is simply that the number of good outgoing edges of the honest
parties reflects the number of active parties.

Check(G, ε)

Output yes if

|{i ∈ [n] : nout(i, good) ≥ d

2
(1 + ε)}| ≥ t + 1 ;

otherwise, output no.

Proposition 2 [8]. Except with probability εcheck ≤ 2−Ω(εd), Check(G, ε) out-
puts yes if p ≥ εn and no if p ≤ εn/4 (and either of the two otherwise).

3.6 The Cand Subroutine

For simplicity, we next discuss the algorithm Cand. Recall that the set of correct
Shamir sharings form a (Reed-Solomon) code with minimal distance t, and s
collected by R is such a codeword, but with the coordinates in A (possibly)
altered. The task of Cand is to find “the right” codeword c, i.e., the one with
ci = si for all i 
∈ A, out of a given list L of codewords. The algorithm is
given access to a “fresh” consistency graph, i.e., one that is still random when
conditioned on the list L, and it is assumed that p is not too small.

Cand(L, G, s)

For each codeword c ∈ L, set

S := {i ∈ [n] | ci = si} and T := {v ∈ S : nout
[n]\S(v, good) = 0}

until |T | ≥ t + 1, and output c then.

Proposition 3. If p ≥ n
log n , L is a set of codewords of cardinality O(n2) for

which there exists c ∈ L with ci = si for all i ∈ H ∪ P , and G is a fresh
consistency graph, then Cand(L, G, s) outputs this c ∈ L except with probability
εcand ≤ e−Ω(log2 n).
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Proof. Consider first a codeword c ∈ L for which ci 
= si for some i ∈ H ∪ P .
Then, due to the minimal distance of the code, |(H ∪ P ) ∩ S| ≤ t. Therefore,

|(H ∪ P ) \ S| ≥ |H ∪ P | − t > p ≥ n

log n
.

By the properties of G and using Corollary 1, this implies that for any v ∈ H

Pr[nout
[n]\S(v, good) = 0] ≤ Pr[nout

(H∪P )\S(v, good) = 0] ≤ 2−Ω( d
log n ),

which is 2−Ω(log2 n) by the choice of d. Taking a union bound over all such c ∈ L
does not affect this asymptotic bound.

Next, if c ∈ L with ci = si for all i ∈ H ∪ P , i.e., [n] \ S ⊆ A, then, by the
properties of G,

nout
[n]\S(v, good) ≤ nout

A (v, good) = 0

for any v ∈ H ⊆ S. This proves the claim. ��

4 The Algorithm for Big p

We describe and discuss here the algorithm BigP, which is invoked when p is
large. We show that BigP works, i.e., outputs a codeword c for which ci = si

for all i ∈ H ∪ P , and thus which decodes to the correct secret s, if it is given
p as input. Since, p is not known, in the local reconstruction procedure BigP is
run with all possible choices for p, producing a list of codewords, from which the
correct one can be found by means of Cand, as shown above.

BigP(G1, G2, G3, G4, γ, s)

1. Find V with no active parties and many honest parties:

V := Filter(G1, γ) .

2. Find a correct codeword assuming V ∩ P to be small or V to be large:

c := Find(G2, V, γ, s) .

3. Find a list of candidate codewords otherwise: Let W := [n] \ V and

ci := Graph(G3, G4,W, γ, i) for i ∈ W .

4. Output {c} ∪ {c1, . . . , c|W |}.

Below, we describe the different subroutines of BigP and show that they do
what they are supposed to do. Formally, we will prove the following.
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Theorem 1. If the number p := t−|A| of passive parties satisfies n
log n ≤ p ≤ n

4 ,
and γ := p

n , then BigP will output a list that contains the correct codeword except
with probability εbigp ≤ O(n−3). Moreover, it runs in time poly(n,m).

For the upcoming description of the subroutines of BigP, we define the global
constant

α :=
1

5 log n
so that α2d =

600 log3 n

25 log2 n
= 24 log n.

Also, recall that 1
log n ≤ γ = p

n ≤ 1
4 .

4.1 Filter Out Active Parties

The goal of the algorithm Filter is to find a set V with no active parties and
many honest parties. It has access to γ and to a fresh consistency graph.

Filter(G, γ)

Compute
T :=

{
v ∈ [n] : nout

[n] (v, bad) ≤ d(1−2γ+α)
2

}

and
V :=

{
v ∈ T : nin

T (v, bad) ≤ d(1−α)
2

}

and output V .

Proposition 4. If γ = (t − |A|)/n and G is a fresh consistency graph then
Filter(G, γ) outputs a set V that satisfies

|V ∩ H| ≥ |H| − t + (γ − α)n ≥ (γ − α)n and V ∩ A = ∅ (1)

except with probability O(n−3).

We point out that the statement holds for the set of honest parties H as it is
before Round 2 of the reconstruction procedure, but lower bound (γ − α)n will
still hold after Round 2, since |H| remains larger than t.

Proof. By the property of G and using Corollary 1, recalling that |A|
n ≤ 1−2γ

2 ,
we have

Pr
[
nout(v, bad) ≥ d(1−2γ+α)

2

]
= Pr

[
nout

A (v, bad) ≥ d(1−2γ+α)
2

]
≤ 2−α2d/6 = n−4

for all v ∈ H. Taking a union bound over all honest parties, we conclude that
all v ∈ H are contained in T , except with probability n−3.

In order for an honest party v ∈ H to fail the test for being included in V ,
there must be d(1 − α)/2 bad incoming edges, coming from dishonest parties
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in T . However, there are at most t dishonest parties in T , each one contributing
at most d(1 − 2γ + α)/2 bad outgoing edges; thus, there are at most

td(1 − 2γ + α)
d(1 − α)

≤ t(1 − 2γ + 2α) = t − (γ − α)n

honest parties excluded from V , where the inequality holds because

1 − 2γ + α

1 − 2γ + 2α
≤ (1 − 2γ + α) + 2(γ − α)

(1 − 2γ + 2α) + 2(γ − α)
= 1 − α,

using γ − α ≥ 0. This proves the claim on the number of honest parties in V .
For an active party v ∈ A, again by the properties of G but using Corollary 2

now, it follows that

Pr
[
nin

T (v, bad) ≤ d(1−α)
2

]
≤ Pr

[
nin

H(v, bad) ≤ d(1−α)
2

]
≤ 2−α2d/4 = n−6,

recalling that |H|
n ≥ 1

2 and H ⊆ T . Taking the union bound, we conclude that
V contains no active party, except with probability O(n−5).

4.2 Find the Correct Codeword—In Some Cases

On input the set V as produced by Filter above, the goal of Find is to find
the correct decoding of s. Find is given access to γ and to a modified version
of a consistency graph G. Here, the consistency graph has uniformly random
neighbourhoods Ei for all parties, but the set V as well as the partition of [n]
into honest, passive and active parties may depend on the topology of G. Indeed,
this is the property of the graph G2, on which Find is eventually run.

Find(G,V, γ, s)

If |V | < (2γ + 2α)n then set

V1 :=
{
v ∈ [n] \ V : nin

V (v, good) ≥ d(γ − 2α)
}

,

while
V1 :=

{
v ∈ [n] \ V : nin

V (v, good) ≥ d(γ + 2α)
}

otherwise. Then, run the unique decoding algorithm on the shares si

for i ∈ V1 ∪ V , and output the resulting codeword c.

We will show that the algorithm Find succeeds as long as

|V ∩ P | ≤ (γ − 3α)n or |V | ≥ (2γ + 2α)n. (2)

This condition implies that honest parties outnumber passive parties by at least
2αn in V . We notice that 2αn is a very narrow margin which may become
useless if passive parties in V can lie about their neighbours by directing all
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their outgoing edges to active parties. This behaviour may result in many active
parties admitted to V1. To prevent passive parties in V from lying about their
neighbours, we introduce a non-fresh consistency graph G whose topology is
publicly known but can not be modified. With the help of this graph G, we first
prove that under condition (2), V ∪V1 contains many honest and passive parties
with high probability. Then, we further prove that under the same condition,
V ∪ V1 contains very few active parties with high probability.

We stress that in the following statement, the partition [n] = H ∪P ∪A (and
thus γ) and the set V may depend on the choice of the (random) edges in G.

Lemma 3. For γ = (t − |A|)/n, V ⊆ [n] and G a random but non-fresh consis-
tency graph, the following holds except with probability 2−Ω(n). If

|V ∩ H| ≥ (γ − α)n and |V | < (2γ + 2α)n,

or

|V | ≥ (2γ + 2α)n,

then V1 produced by Find(G,V, γ) satisfies |(H ∪ P ) \ (V ∪ V1)| ≤ γn
2 .

Proof. Consider T := V ∩ H. Note that for v ∈ H ∪ P

nin
T (v) = nin

V ∩H(v) = nin
V ∩H(v, good) ≤ nin

V (v, good),

and thus

B :=
{
v ∈ H ∪ P : nin

V (v, good) < d(γ − 3α)
} ⊆ {

v ∈ H ∪ P : nin
T (v) < d(γ − 3α)

}
.

By Lemma 1 the following holds, except with probability 2−Ω(n). If |V ∩ H| ≥
(γ − α)n then |B| < γn

2 . But also, by definition of V1 in case |V | < (2γ + 2α)n,
(H ∪ P ) \ (V ∪ V1) ⊆ B. This proves the claim under the first assumption on V .

The proof under the second assumption goes along the same lines, noting
that the lower bound on |V | then implies that |V ∩ H| ≥ |V | − |P | ≥ (γ + 2α)n,
offering a similar gap to the condition nin

V (v, good) < d(γ + α) in the definition
of V1 then.

We proceed to our second claim.

Lemma 4. For γ = (t − |A|)/n, V ⊆ [n] and G a random but non-fresh consis-
tency graph, the following holds except with probability 2−Ω(n). If V ∩ A = ∅, as
well as

|V ∩ P | ≤ (γ − 3α)n and |V | < (2γ + 2α)n

or

|V | ≥ (2γ + 2α)n,

then V1 produced by Find(G,V, γ) satisfies |V1 ∩ A| ≤ γn
2 .
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Proof. Consider T := V ∩ P . Note that for v ∈ A

nin
T (v) = nin

V ∩P (v) ≥ nin
V ∩P (v, good) = nin

V (v, good),

and thus

C :=
{
v ∈ A : nin

V (v, good) ≥ d(γ − 2α)
}

⊆
{
v ∈ A : nin

T (v) ≥ d(γ − 2α)
}

.

By Lemma 2 the following holds, except with probability 2−Ω(n). If |V ∩ P | ≤
(γ − 3α)n then |C| < γn

2 . But also, by definition of V1 in case |V | < (2γ + 2α)n,
V1 ∩ A ⊆ C. This proves the claim under the first assumption on V .

The proof under the second assumption goes along the same lines, noting that
|V ∩ P | ≤ |P | ≤ γn offers a similar gap to the condition nin

V (v, good) < d(γ + α)
in the definition of V1 then.

The following theorem is a consequence of Lemma 3 and Lemma 4. The state-
ment holds for P and H after Round 2 in the reconstruction procedure.

Proposition 5. The following holds except with probability 2−Ω(n). If (1) is
satisfied, i.e., |V ∩ H| ≥ (γ − α)n and V ∩ A = ∅, and additionally

|V ∩ P | ≤ (γ − 3α)n or |V | ≥ (2γ + 2α)n

holds, and if G is a non-fresh consistency graph, then Find(G,V, γ, s) will output
the correct codeword (determined by the si for i ∈ H).

Proof. It follows from Lemma 3 and Lemma 4 that, except with the claimed
probability, |(V ∪V1)∩A| ≤ γn

2 and |(V ∪V1)∩ (P ∪H)| ≥ t+1+ γn
2 . Therefore,

the punctured codeword, obtained by restricting to the coordinates in V ∪ V1,
has more redundancy than errors, thus unique decoding works and produces the
correct codeword.

Remark 2. Given that (1), i.e., |V ∩ H| ≥ (γ − α)n and V ∩ A = ∅, is promised
to be satisfied (except with small probability), the only case when Find fails is
|V | < (2γ + 2α)n yet |V ∩ P | > (γ − 3α)n, where P is the set of passive parties
before the third communication round. These conditions together with (1) imply
that

|V | = |V ∩ H| + |V ∩ P | ≥ (γ − α)n + (γ − 3α)n = (2γ − 4α)n

and
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|V ∩ H| = |V | − |V ∩ P | ≤ |V | − |V ∩ P | ≤ (2γ + 2α)n − (γ − 3α)n ≤ (γ + 5α)n

This holds for set of honest parties H even before Round 4 as the set of honest
parties before Round 4 is a subset of that before Round 3. Combine this observa-
tion with Proposition 4, we come to conclusion that |V ∩H| ∈ [(γ−α)n, (γ+5α)n]
holds for the set of honest parties H before Round 4, i.e., the number of honest
parties within V is in the above range.

We can thus conclude that if Find fails then the set W := [n] \ V satisfies

(1 − 2γ − 2α)n ≤ |W | ≤ (1 − 2γ + 4α)n

and, given that |W ∩ H| = t + 1 − |V ∩ H|,

(
1
2

− γ − 5α)n ≤ |W ∩ H| ≤ (
1
2

− γ + α)n + 1.

As we mention before, this holds for the set of honest parties H before Round
4. Moreover,

|W ∩ P | = |P | − |V ∩ P | = |P ∪ H| − |H| − |V ∩ P | ≤ γn − (γn − 3αn) ≤ 3γn.

as |P | ≤ γn. We point out that the statement |W ∩ P | ≤ 3γn holds even for the
set of passive parties P before Round 4 as |P ∪ H| = t + 1 + γn, |H| remains
bigger than t + 1 and |V ∩ P | remains bigger than γ − 3αn. In the following
section we show that if W satisfies the above constraints then the algorithm
Graph finds the correct decoding of s (when initiated with an honest party v
and two fresh consistency graphs).

4.3 Graph Algorithm

Recall that n′ out
W refers to nout

W but for the graph G′ rather than G, and similarly
for n′ in

W . This graph algorithm resembles the one in [8], due to that they share
the same goal of finding a subset of parties that contains all honest parties and a
few dishonest parties whose majority are the passive parties. The differences lie
in the range of parameters due to that the graph algorithm in this paper takes
the subset of n parties as an input instead of n parties and honest parties may
not be a majority in this subset.
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The algorithm Graph(G,G′,W, γ, v)

i. Set X := {v}.

ii. Expand X to include more honest parties:

While |X| ≤ αt

2d
do X := Expan(G,W,X, 1

2 − γ).

iii. Include all honest parties into V :

V := V ∪
{
v ∈ W \ X : nin

X(v, good) ≥ d|X|
2n

}
.

iv. Remove all active parties from V (and maybe few honest parties):

U :=
{
v ∈ X : nin

X(v, bad) ≥ d
10

}
and X := X \ U.

v. 1. Bound the degree of parties in X:

V := V \
{
v ∈ X : n′ out

U (v) ≥ d
8

}
.

2. Include the honest parties from U (and perhaps few active par-
ties):

X := X ∪
{
v ∈ U : n′ in

V (v, good) ≥ d
6

}
.

3. Error correction:
Run the unique decoding algorithm algorithm on the shares of
parties in X ∪ ([n] \ W ) and output the result.

In this section, we assume that the graph algorithm Graph(G,G′,W, ε, v)
starts with an honest party v. Set c = 1

2 − γ and we have c ∈ [ 14 , 1
2 ] as γ ≤ 1

4 .
Note that P and H now become the set of passive parties and honest parties
before Round 3. According to Remark 2, it suffices to prove the correctness of
this graph algorithm under the condition that

|W | ∈ [(2c−2α)n, (2c+4α)], |W ∩H| ∈ [c−5α, c+α], |W ∩P | ≤ 3αn. (3)

Recall that α = 1
5 log n and α2d = 24 log n. We also note that by Remark 2, the

above condition also holds for the set of passive parties and honest parties before
Round 4. In what follows, when we claim that some event happens with high
probability, we mean this holds for all set W,P and H in above range.

Let HW = H ∩ W and PW = P ∩ W . The subset of active parties in W is
still A. The out-degree of vertices in G|W and G′|W is expected to be d |W |

n ∈
[(2c − 2α)d, (2c + 4α)d] and that (due to the MAC’s) the edges from honest
parties to active parties are labeled bad, and the edges from honest parties to
honest or passive parties are labeled good.

We also recall that whether a corrupt party i is passive or active, i.e., in P or
in A, depends on si and ri only, as announced in the first communication round
in the reconstruction phase. Note that a passive party may well lie about, say, his
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neighborhood Ei. Our reasoning only relies on the neighborhoods of the honest
parties, which are random and independent conditioned on the adversary’s view,
as explained in Proposition 1.

Theorem 2. Under the claim of Proposition 1, and assuming that v is honest
and W satisfies (3), the algorithm will output a correct codeword except with
probability εgraph ≤ n−15. Moreover, it runs in time poly(m,n).

The proof follows almost literally the one of [8] adjusted to the parameter
regime considered here. For completeness, we provide the proof of this theo-
rem. The proof of Theorem 2 consists of the analysis of Step ii to Step v and
the Graph expansion algorithm. The analysis of Step ii to Step v is deferred to
the Appendix.

4.4 Graph Expansion

We start by analyzing the expansion property of G|HW
, the subgraph of G

restricted to the set of honest parties HW .

Lemma 5 (Expansion property of G|HW
). If H ′ ⊂ HW is so that |H ′| ≤

α|HW |
2d and the Ev’s for v ∈ H ′ are still random and independent in G when

given H ′ and H, then

nout
H (H ′) :=

∣
∣
∣
∣

⋃

v∈H′
Nout

H (v)
∣
∣
∣
∣ ≥ (c − 7α)d|H ′|

except with probability O(n−23).

Graph expansion algorithm Expan(G,W,X, c)

Set X ′ = ∅. For each vertex v ∈ X do the following:

if nout
W (v, good) ≤ d(c + 5α) then X ′ := X ′ ∪ Nout

W (v, good).

Then, output X ′ ∪ X.

Proof. By Remark 2, we know that the size of HW is at least (c − 5α)n. By
assumption on the Ei’s and by Corollary 1, for any vertex v ∈ H ′, Pr[nout

HW
(v) <

(c−6α)d] ≤ 2−α2d/2c = O(n−24) as α2d = 24 log n and c ≤ 1/2. Taking the union
bound, this hold for all v ∈ H ′ except with probability O(n−23). In the remainder
of the proof, we may thus assume that Nout

HW
(v) consist of d′ := (c−6α)d random

outgoing edges.
Let N := |HW |, N ′ := |H ′|, and let v1, . . . , vd′N ′ denote the list of neighbours

of all v ∈ H ′, with repetition. To prove the conclusion, it suffices to bound the
probability pf that more than αdN ′ of these d′N ′ vertices are repeated.
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The probability that a vertex vi is equal to one of v1, . . . , vi−1 is at most

i

N − 1
≤ d′N ′

N − 1
= (c − 6α)d · α|N |

2d
· 1
N − 1

≤ α

4
.

as c ≤ 1
2 .

Taking over all vertex sets of size αdN ′ in these d′N ′ neighbours, the union
bound shows that pf is at most

(
d′N ′

αdN ′

)(α

4

)αdN ′

≤
(

dN ′

αdN ′

)(α

4

)αdN ′

≤ 2dN ′H(α)+αdN ′(log α−2)

≤ 2αdN ′( 1
ln 2−2+O(α)) ≤ 2−Ω(αdN ′) ≤ 2−Ω(log2 n).

The first inequality is due to that
(
n
k

)
≤ 2nH( k

n ) and the second due to

H(α) = −α log α − (1 − α) log(1 − α) = −α log α +
α

ln 2
+ O(α2)

for α = 1
5 log n and the Taylor series ln(1 − α) = α + O(α2).

5 Parallel Repetition

The failure probability δ of our local reconstruction scheme includes the failure
probability of recovering tag εtag, the failure probability of labelling of consis-
tency graph εmac, the failure probability of algorithm GraphB εgraph, the failure
probability of algorithm BigP εbigP , the failure probability of algorithm Cand
εCand and the failure probability of Check εcheck. Therefore, we have

δ = εmac + εtag + εcheck + (t + 1)εgraph + εbigP + εcand = O(
log3 n

n2
).

Note that our graph has degree d = Ω(log3 n) and F is a finite field with
mn3 elements. The total share size is m +O(d(log n + log m)) = m + O(log4 n +
log m log3 n). We summarize our result as follows.

Theorem 3. The scheme (Share, Rec) is a 2t + 1-party (t, O( log
3 n

n2 ))-robust
secret sharing scheme with running time poly(m,n) and share size m+O(log4 n+
log m log3 n).

The error probability can be made arbitrarily small by several independent
executions of (Share, Rec), except that the same Shamir shares si would be
used in all the instances. This could be done in a same manner in [8] or [3]. We
skip the details but refer interested reader to [8] or [3]. In conclusion, we obtain
the following main result.
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Theorem 4. For any set of positive integers t, n, κ,m with t < n/2, there exists
a n-party (t, 2−κ)-robust secret sharing scheme against rushing adversary with
secret size m, share size m + O(κ(log4 n + log3 n log m)), and running time
poly(m,n).

Acknowledgments. Chen Yuan has been funded by the ERC-ADG-ALGSTRONG
CRYPTO project. (no. 740972)

A Chernoff Bound

Like for [3], much of our analysis relies on the Chernoff-Hoeffding bound, and
its variation to “sampling without replacement”. Here and throughout, [n] is a
short hand for {1, 2, . . . , n}.

Definition 3 (Negative Correlation [1]). Let X1, . . . , Xn be binary random
variables. We say that they are negatively correlated if for all I ⊂ [n]:

Pr[Xi = 1 ∀ i ∈ I] ≤
∏

i∈I

Pr[Xi = 1] and Pr[Xi = 0 ∀ i ∈ I] ≤
∏

i∈I

Pr[Xi = 0].

Theorem 5 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random vari-
ables that are independent and in the range 0 ≤ Xi ≤ 1, or binary and negatively
correlated, and let u = E

[∑n
i=1 Xi

]
. Then, for any 0 < δ < 1:

Pr

[
n∑

i=1

Xi ≤ (1 − δ)u

]

≤ 2−δ2u/2 and Pr[

[
n∑

i=1

Xi ≥ (1 + δ)u

]

≤ 2−δ2u/3.

B Building Blocks

B.1 MAC Construction

We adopt the definition as well as the construction of message authentication
codes (MAC) from [8].

Definition 4. A message authentication code (MAC) for a finite message space
M consists of a family of functions {MACkey : M × R → T }key∈K. This MAC
is said to be (�, ε)-secure if the following three conditions hold.

1. Authentication security: For all (m, r) 
= (m′, r′) ∈ M×R and all σ, σ′ ∈ T ,

Pr
key←K

[MACkey(m′, r′) = σ′|MACkey(m, r) = σ] ≤ ε.

2. Privacy over Randomness: For all m ∈ M and key1, . . . , key� ∈ K, the distri-
bution of � values σi = MACkeyi

(m, r) is independent of m over the choice
of random string r ∈ R, i.e.,

Pr
r←R

[(σ1, . . . , σ�) = c|m] = Pr
r←R

[(σ1, . . . , σ�) = c]

for any c ∈ T �.
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3. Uniformity: For all (m, r) ∈ M × R, the distribution of σ = MACkey(m, r)
is uniform at random over the random element key ∈ K.

The following variation of the standard polynomial-evaluation MAC construction
meets the requirements.

Theorem 6 (Polynomial Evaluation [8]). Let F be a finite field. Let M =
F

a, R = F
� and T = F such that a+�

|F| ≤ ε. Define the family of MAC functions
{MAC(x,y) : Fa × F

� → F}(x,y)∈F2 such that

MAC(x,y)(m, r) =
a∑

i=1

mix
i+� +

�∑

i=1

rix
i + y

for all m = (m1, . . . ,ma) ∈ F
a, r = (r1, . . . , r�) ∈ F

� and (x, y) ∈ F
2. Then, this

family of MAC functions is (�, ε)-secure.

B.2 Robust Distributed Storage

Following [3] and [8], the authentication tags in the construction of our robust
secret sharing scheme will be stored robustly yet non-privately; indeed, the latter
is the reason why the extra privacy property 2 in Definition 4 is necessary. The
purpose of this design is to make sure that dishonest parties can not lie about the
tags that authenticate their share e.g., to provoke disagreement among honest
parties about the correctness of the share of a dishonest party.

Formally, a robust distributed storage scheme is a robust secret sharing scheme
as in Definition 1 but without the privacy requirement. Such a scheme can easily
be obtained as follows; we refer the interested readers to [3] or [8] for details.
First of all, a list-decodable code is used to store the messages robustly. Then,
the share of each party i consists of pi and qi, where pi is the i-th component of
list-decodable encoding of the message, and qi is a hash-key and the hash of the
message. Reconstruction works in the obvious way: a list of candidate messages
is obtained by applying list decoding, and the correct message is then filtered out
by means of checking the hashes. The robustness against a rushing adversary is
achieved by first revealing pi and only then, in a second communication round,
qi.

The following summarizes the result obtained by adapting the scheme in [8]
to our parameter setting.

Theorem 7. For any n = 2t + 1 and u = O(log3 n), there exists a robust dis-
tributed storage against rushing adversary with messages of length m = Ω(nu),
shares of length O(u) that can recover the message with probability 1−2−Ω(log2 n)

up to t corruptions.
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C Graph Algorithm for Small p

The graph algorithm GraphB that is invoked for small p is exactly the same as
that in [8] (for completeness, we recall it below); GraphB is also very similar to
the graph algorithm Graph appearing inside the algorithm BigP. Thus, we omit
the analysis of GraphB and rely on Theorem 8 from [8], re-stated below using
our terminology and instantiated with our choice of parameters. Note that n′ out

W

refers to nout
W but for the graph G′ rather than G, and similarly for n′ in

W .

Theorem 8 (Theorem 8, [8]). If G is a fresh consistency graph, and G′ is a
fresh consistency graphy w.r.t. G′, and if |P | ≤ 4 log n

n and v is an honest party,
then GraphB(G,G′, ε, v, s) will output the correct secret except with probability
εgraph ≤ 2−Ω(d/ log2 n) = O(n−3). Moreover, it runs in time poly(n,m).

The algorithm GraphB(G, G′, ε, v, s) for small p

i. Input G = ([n], E, L), G′ = ([n], E′, L′), d, ε and v ∈ [n].

ii. Expand set V = {v} to include more honest parties:

While |V | ≤ εt

d
do T = {v ∈ V : nout(v, good) ≤ d

2
(1 + 3ε)}

and V := V ∪
⋃

v∈T

N out(v, good).

iii. Include all honest parties into V :

V := V ∪ {
v /∈ V : nin

V (v, good) ≥ d|V |
2n

}
.

iv. Remove all active parties from V (and maybe few honest parties
as well):

W :=
{
v ∈ V : nin

V (v, bad) ≥ d
4

}
and V := V \ W.

v. 1. Bound the degree of parties in V :

V := V \ {
v ∈ V : n′ out

W (v) ≥ d
8

}
.

2. Include the honest parties from W (and perhaps few active
parties):

V := V ∪ {
v ∈ W : n′ in

V (v, good) ≥ d
4

}
.

3. Error correction: run the unique decoding algorithm algo-
rithm on the shares si of parties in V and output the result.
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D Proof of Lemma1

For fixed γ ∈ 1
nZ ∩

[
0, 1

2

]
and T ⊆ [n] with |T | = (γ − α)n, by Corollary 2,

Pr[nin
T (v) < d(γ − 2α)] ≤ 2− α2d

2γ .

Thus, setting Σ(T ) := {v ∈ [n] : nin
T (v) < d(γ − 2α)} and considering another

arbitrary but fixed subset S ⊆ [n], we have (by negative correlation)

Pr[S ⊆ Σ(T )] = Pr[nin
T (v) < d(γ − 2α) ∀ v ∈ S] ≤ 2− α2d

2γ |S|.

Therefore, noting that Σ(T ) ⊆ Σ(T ′) for T ′ ⊆ T ,

Pr
[
∃ γ, T : |T | ≥ (γ − α)n ∧ |Σ(T )| ≥ γn

2

]

= Pr
[
∃ γ, T : |T | = (γ − α)n ∧ |Σ(T )| ≥ γn

2

]

= Pr
[
∃ γ, T, S : |T | = (γ − α)n ∧ |S| = γn

2 ∧ S ⊆ Σ(T )
]
.

Taking union bound by summing over all γ ∈ 1
nZ ∩

[
0, 1

2

]
and T, S ⊆ [n] with

|T | = (γ − α)n ∧ |S| = γn
2 , this is bounded by

≤
∑

γ

∑

S,T

Pr[S ⊆ Σ(T )] ≤
∑

γ

(
n
γn
2

)(
n

(γ − α)n

)
2− α2d

4 n

≤
∑

γ

n
γn
2 · nγn · n−6n ≤ n1−5n,

proving the claim. ��

E Analysis of Step ii to Step v

E.1 Analysis of Step ii

Set ε = 1
log log n and recall that α = 1

5 log n . The following shows that after Step ii,
at most an O(ε)-fraction of the parties in X is dishonest.

Proposition 6. At the end of Step ii, with probability at least 1−O(n−15), X is
a set of size Ω(εn) with |HW ∩X| ≥ (1−O(ε))|X| and |(P ∪A)∩X| ≤ O(ε|X|).

Proof. First of all, we observe that for every honest party v, the number of its
good outgoing edges is expected to be |PW ∪HW |d

n ≤ (c + 4α)d since only honest
parties and passive parties can pass the verification of v. By assumption on the
Ev’s and by Corollary 1, we have

Pr[nout
W (v, good) ≥ d(c + 5α)] ≤ 2α2d/3c = O(n−16).

Taking an union bound over all v ∈ HW leads to the claim that except with
probability O(n−15), all honest parties in X will be included in the expansion
of Expan(G,W,X, c).
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Recall that Expan(G,W,X, c) has been invoked multiple times. Let Xi be the
set X after Expan has been invoked i times, X0 = {v}, X1 = Expan(G,W,X0, c)
etc., and let H0 = {v} and H1 = Expan(G,W,H0, c)∩H, etc. be the correspond-
ing sets when we include only honest parties into the sets.

Using a similar lazy-sampling argument as for Proposition 1, it follows that
conditioned on H0,H1, . . . , Hi, the Ev’s for v ∈ Hi \ Hi−1 are random and
independent for any i. Therefore, we can apply Lemma 5 to H ′

i = Hi \ Hi−1 to
obtain that |Hi+1| ≥ |H ′

i|d(c − 7α). It follows that |Hi| ≥ (d(1 − 7α))i except
with probability O(n−23). Our algorithm jumps out of Step ii when X is of size
Ω(αn). We next bound the number of rounds in this step. For i = log n

log log n , noting
that d ≥ log3 n and c ≥ 1

4 , it thus follows that

|Xi| ≥ |Hi| ≥
(
d(c − 7α)

)i

≥ (log3 n)
log n

log log n (c − 7α)
log n

log log n

≥ n3 · c
log n

log log n ≥ Ω(n3).

This means Expan(G,W,X, c) is invoked r ≤ log n
log log n times assuming n is large

enough.
On the other hand, we trivially have |Xr| ≤ (d(c + 5α))r by specification of

Expan. Thus,

|Xr| − |Hr| ≤
(
d(c + 5α)

)r

−
(
d(c − 7α)

)r

= 12αd

(
r−1∑

i=0

(
(d(c + 5α)

)i(
d(c − 7α)

)r−1−i

)

≤ 12αrd
(
(d(c + 5α)

)r−1

= O(
1

log log n
|Xr|) = O(ε|Xr|),

as ε = 1
log log n . The first equality is due to an − bn = (a − b)(

∑n−1
i=0 aibn−1−i)

and the last one is due to r ≤ log n
log log n and α = 1

5 log n .
This upper bound implies that there are at least |Xr|(1−O(ε)) honest parties

in Xr while the number of dishonest parties is at most O(ε|Xr|).

E.2 Analysis of Step iii

The analysis of Step iii is based on the intuition that every honest party v outside
HW \X will get sufficient support from parties in X as X consists almost entirely
of honest parties in HW . In particular, any such v is expected have have close
to d

n |X| good incoming edges from the parties in X.

Proposition 7. At the end of Step iii, with probability at least 1 − 2−Ω(αd), X
contains all honest parties in HW and O(εn) dishonest parties.

Proof. Recall that conditioned on Hr, the Ev’s for v ∈ Hr \ Hr−1 are random
and independent.
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Set H̃ := Hr \ Hr−1 and d1 := |X|d
n = Ω(αd). This implies |H̃| = (1 −

o(1))|Hr| = (1 − o(1))|X| as Hr−1 = o(Hr) and X contains at most O(ε|X|) =
O( |X|

log log n ) dishonest parties. Using Corollary 2 for the final bound, it follows
that for a given honest party v ∈ HW /H̃,

Pr
[
nin

X(v, good) <
d1
2

]
≤ Pr

[
nin

H̃
(v, good) <

d1
2

]

= Pr
[
nin

H̃
(v) <

d1
2

]
≤ 2−Ω(αd).

By union bound over all honest parties in HW \ H̃, all these honest parties are
added to X except with probability at most 2−Ω(αd).

On the other hand, Admitting any active party w outside X requires at least
d1
2 good incoming edges. Recall that only dishonest party can verify active party.
Therefore, these edges must be directed from dishonest parties in X. Since there
are at most O(ε)|X| dishonest parties in X and each of them contributes to at
most d good incoming edges, the number of active parties admitted to X is at
most O(ε)|X|d

d1/2 = O(εn) = O( n
log log n ).

E.3 Analysis of Step iv

The goal of Step iv is to remove all active parties from X. This can be done by
exploiting the fact that the vast majority of X are honest parties.

Proposition 8. At the end of Step iv, with probability at least 1 − 2−Ω(d), X
consists of |HW | −O(εn) honest parties and no active parties, and U consists of
the rest of honest parties in HW and O(εn) dishonest parties.

Proof. Observe that |HW |d
n ≥ (c − 5α)d ≥ d

5 as c ≥ 1
4 and α = 1

5 log n . It follows,
again using Corollary 2, that for an active party v in X, we have

Pr
[
nin

X(v, bad) <
d

10

]
≤ Pr

[
nin

HW
(v, bad) <

d

10

]
= Pr

[
nin

HW
(v) <

d

10

]
≤ 2−Ω(d).

By union bound over all active parties in X, all of them are removed from X
with probability at least 1 − t2−Ω(d) = 1 − 2−Ω(d).

On the other hand, if the honest party v is removed from X, v must receive
at least d

10 bad incoming edges from dishonest parties in X. Since the number of
dishonest parties is at most a := O(εn), there are at most ad

d/10 = O(εn) honest
parties removed from X.

E.4 Analysis of Step v

From the analysis of Step iv, we learn that |U | = O(εn) and X has size |HW | −
O(εn) = cn − O(εn). In order to analyze this step, we introduce the following
notation. Let P and H be the set of passive parties and honest parties before the
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fourth communication round respectively. According to Remark 2, the condition
(3) still holds. Then, HW = H∩W has size cn−O(αn) and HP = P ∩W has size
at most 3αn. By Proposition 8, this implies that X consists of cn−O(εn) honest
parties and a few passive parties and U is as set of size O(ε) which contains all
honest parties in HW \ X. Let X = XH ∪ XP where XH is a of honest parties
and XP is a set of passive parties. Let U = UH ∪UC where UH is a set of honest
parties and UC is a set of dishonest parties. Then, we have XH ∪UH = HW and
|UH | ≤ |U | = O(εn) as U and X together contains all honest parties in HW .

Note that in Step v, we introduce a new fresh consistency graph G′. Given the
adversary’s strategy, all the previous steps of the graph algorithm are determined
by the graph G and thus independent of the new fresh consistency graph G′.
Therefore, by Proposition 1, at this point in the algorithm the E′

v’s for v ∈ HW

are still random and independent conditioned on XH ,XP , UC , UH .

Proposition 9. Except with probability 2−Ω(d), after Step v the set X will con-
tain all honest parties in HW and at least as many passive parties as active
ones. Therefore, Step v will output the correct codeword with probability at least
1 − 2−Ω(d).

Proof. Step v.1. For any i ∈ XH , n′ out
U (i) is expected to be |U |d

n = O(εd). By
Corollary 1 we thus have

Pr
[
n′ out

U (i) ≥ d

8

]
≤ 2−Ω(d).

Hence, by union bound, all honest parties in X remain in X except with prob-
ability 2−Ω(d).

Let X ′
P be the set of passive parties left in X after this step, and set p := |X ′

P |.
Note that nout

U (v) ≤ d/8 for every v ∈ X.
Step v.2. Observe that d|XH |

n = (c − O(ε))d ≥ ( 14 − O(ε))d as d ≤ 1
4 . It

follows from Corollary 2 that for any honest party i ∈ UH ,

Pr
[
n′ in

X (i, good) ≤ d

6

]
≤ Pr

[
n′ in

XH
(i, good) ≤ d

6

]
= Pr

[
n′ in

XH
(i) ≤ d

6

]
≤ 2−Ω(d).

Thus, all honest parties in U are added to X, except with probability 2−Ω(d).
On the other hand, the good incoming edges of the active parties must be

directed from passive parties in X ′
P . Observe that each party in X is allowed

to have at most d
8 outgoing neighbours in U . This implies there are at most

|XP |d/8
d/6 = 3|XP |

4 active parties admitted to X in this step, proving the first part
of the statement.

Step v.3. Observe that the set [n] \ W consists of the rest of honest parties
and passive parties. This implies that ([n] \ W ) ∪ X contains all honest parties
and is a set where the number of active parties is less than the number of passive
parties. The shares of the parties in ([n] \ W ) ∪ X form a Reed-Solomon code.
Since the number of errors is less than the redundancy of this code, the unique
decoding algorithm will output a correct codeword.
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Abstract. The share size of general secret-sharing schemes is poorly
understood. The gap between the best known upper bound on the total
share size per party of 20.64n (Applebaum et al., STOC 2020) and the
best known lower bound of Ω(n/ log n) (Csirmaz, J. of Cryptology 1997)
is huge (where n is the number of parties in the scheme). To gain some
understanding on this problem, we study the share size of secret-sharing
schemes of almost all access structures, i.e., of almost all collections of
authorized sets. This is motivated by the fact that in complexity, many
times almost all objects are hardest (e.g., most Boolean functions require
exponential size circuits). All previous constructions of secret-sharing
schemes were for the worst access structures (i.e., all access structures)
or for specific families of access structures.

We prove upper bounds on the share size for almost all access struc-
tures. We combine results on almost all monotone Boolean functions
(Korshunov, Probl. Kibern. 1981) and a construction of (Liu and Vaikun-
tanathan, STOC 2018) and conclude that almost all access structures

have a secret-sharing scheme with share size 2Õ(
√

n).
We also study graph secret-sharing schemes. In these schemes, the

parties are vertices of a graph and a set can reconstruct the secret if
and only if it contains an edge. Again, for this family there is a huge
gap between the upper bounds – O(n/ log n) (Erdös and Pyber, Discrete
Mathematics 1997) – and the lower bounds – Ω(log n) (van Dijk, Des.
Codes Crypto. 1995). We show that for almost all graphs, the share size
of each party is no(1). This result is achieved by using robust 2-server con-
ditional disclosure of secrets protocols, a new primitive introduced and
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constructed in (Applebaum et al., STOC 2020), and the fact that the
size of the maximal independent set in a random graph is small. Finally,
using robust conditional disclosure of secrets protocols, we improve the
total share size for all very dense graphs.

1 Introduction

A dealer wants to store a string of secret information (a.k.a. a secret) on a
set of computers such that only some pre-defined subsets of the computers can
reconstruct the information. We will refer to the computers as the parties, their
number as n, and the collection of authorized sets that can reconstruct the secret
as an access structure. To achieve this goal the dealer uses a secret-sharing
scheme – a randomized function that is applied to the secret and produces n
strings, called shares. The dealer gives the i-th share to the i-th party, and any
authorized set of parties can reconstruct the secret from its shares. Nowadays,
secret-sharing schemes are used as a building box in many cryptographic tasks
(see, e.g., [10,13]). We consider schemes where unauthorized sets of parties gain
absolutely no information on the secret from their shares, i.e., the security is
information theoretic. We will mainly try to reduce the sizes of the shares given
to the parties. To understand why minimizing the share size is important, let
us consider the original secret-sharing schemes of [44] for an arbitrary access
structure; in these schemes the size of each share is greater than 2n, making
them impractical when, for example, n = 100. Even in the most efficient scheme
known today, the share size is 20.64n [5] (improving on [4,48]).

We ask the question if the above share size can be reduced for almost all
access structures. One motivation for this question is that in complexity the-
ory, almost all Boolean functions are often the hardest functions. For example,
Shannon [58] showed that almost all Boolean functions require circuits of size
2Ω(n), this lower bound applies also to other models, e.g., formulas. Furthermore,
almost all monotone Boolean functions require monotone circuits and monotone
formulas of size 2Ω(n). Dealing with properties of almost all objects is a common
theme in combinatorics, e.g., properties of almost all graphs. A famous exam-
ple states that the size of the maximum independent set (and clique) of almost
all n-vertex graphs is approximately 2 log n [43]; we use this property in our
constructions. Using a result on almost all monotone Boolean functions [47], we
show that almost all access structures can be realized by a secret-sharing scheme
with maximum share size 2Õ(

√
n).

In this paper, we also study graph secret-sharing schemes. In a secret-sharing
scheme realizing a graph G, the parties are vertices of the graph G and a set
can reconstruct the secret if and only if it contains an edge. The naive scheme
to realize a graph is to share the secret independently for each edge; this result
implies a share of size O(n) per party. A better scheme with share size O(n/ log n)
per party is implied by a result of Erdös and Pyber [38]. Graph secret-sharing
schemes were studied in many previous works. One motivation for studying
graph secret-sharing schemes is that they are simpler than secret-sharing schemes
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for general access structures and phenomena proved for graph secret-sharing
schemes were later generalized to general access structures (e.g., Blundo et al. [26]
proved that in any non-ideal access structure the share size of at least one party
is at least 1.5 times the size of the secret, a result that was later proved for
every access structure [51]). Another motivation is that, by [54, Section 6.3.1],
for every 0 < c < 1/2 any graph secret-sharing scheme with share size O(nc)
per party implies a secret-sharing scheme for any access structure with share
size 2(0.5+c/2+o(1))n; thus, major improvement in the share size for all graphs
will result in improved schemes for all access structures. However, in spite of
the recent improvements in the share size for general access structures [4,5,48]
and for specific families of access structures (e.g., forbidden graphs [18,41,49]
and uniform access structures [2,4,19]), no such improvement was achieved for
schemes for graphs. We show that almost all graphs can be realized by a secret-
sharing scheme with share size no(1) per party.

1.1 Previous Results

We next describe the most relevant previous results. We refer the reader to Fig. 1
for a description of the maximum share size in previous constructions and our
constructions.

Share size

(one bit secret)

Share size of linear schemes

over Fq (log q-bit secret)

Inf. ratio multi-linear

schemes (long secrets)

Forbidden

graphs

no(1) [49]

Ω(1)

Õ(
√

n log q) [41]

Ω(
√

n) [15]

O(logn) [2]

Ω(1)

Almost all

graphs

no(1) Th. 5.1

Ω(log logn) [35]

Õ(
√

n log q) Th. 5.1

Ω(
√

n) [15]

Õ(log n) Th. 5.1

Ω(log1/2 n) Th. 5.5

All graphs
O(n/ logn) [38]

Ω(logn) [37,36]

O( n
log n

log q) [38]

Ω(
√

n log q) [17]

O(n/ log n) [38]

Ω(
√

n) [11,17]

Almost all

access

structures

2O(
√

n log n) Th. 3.3

Ω(1)

20.5n+o(n) log q Th. 3.3

Ω(2n/2−o(n)) [9], Th. 3.11

Ω(2n/3−o(n) log q)

[56], Th. 3.10

2O(
√

n log n) Th. 3.3

Ω(1)

All access

structures

20.64n [5]

Ω(n/ log n) [34]

20.76n log q [5]

2Ω(n) log q [55]

20.64n [5]

nΩ(log n) [11,17]

Fig. 1. A summary of the upper and lower bounds on the maximum share size for
secret-sharing schemes for forbidden graph access structures, almost all graph access
structures, graph access structures, almost all access structures, and all access struc-
tures. The results proved in this paper are in boldface.
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Measures of Share Size. The size of a share is simply the length of the string
representing it. For a secret-sharing scheme, two measures of for the share size
were considered: (1) the maximum share size, i.e., the maximum over all parties
in the scheme of the size of the share of the party, (2) the total share size, i.e.,
the sum over all parties in the scheme of the size of the share of the party.
For a given scheme, the maximum share size is bounded from above by the
total share size, which is bounded from above by n times the maximum share
size. The distinction between these two measures is important for graph secret-
sharing schemes, and there might be trade-offs between optimizing one measure
and optimizing the other. On the other hand, the share size in the secret-sharing
schemes considered in this paper for general access structures is larger than 2

√
n,

thus for these schemes the distinction between the measures is less important.
We will also consider the normalized total (respectively, maximum) share size,

i.e., the ratio between the sum of the share sizes (respectively, maximum share
size) and the size of the secret. This normalized maximum share size (also known
as information ratio) is similar in spirit to measures considered in information
theory and it is interesting since the length of each share is at least the length
of the secret [46]. In this work, we will consider the normalized share size for
two regimes: (1) Moderately short secrets of size Õ(n), and (2) Following [2,3],
we also consider exponentially long secrets of size 2n2

. The latter size is not
reasonable, however, these schemes may lead to schemes with the same share
size for shorter secrets and they provide barriers for proving lower bounds via
information inequalities.

Bounds on the Share Size. Secret-sharing schemes were introduced by
Blakely [24] and Shamir [57] for the threshold case and by Ito, Saito, and
Nishizeki [44] for the general case. In the original secret-sharing schemes for arbi-
trary access structures of Ito et al. [44] the maximum share size is 2n−1. Addi-
tional constructions of secret-sharing schemes followed, e.g., [22,23,29,45,59].
For specific access structures, the share size in these schemes is less than the
share size in the scheme of [44]; however, the share size in the above schemes for
arbitrary access structures is 2n−o(n). In a recent breakthrough work, Liu, and
Vaikuntanathan [48] (using results of [50]) constructed a secret-sharing scheme
for arbitrary access structures with share size 20.944n and a linear secret-sharing
scheme with share size 20.999n. Applebaum et al. [5] (using results of [4,50])
improved these results, constructing a secret-sharing schemes for arbitrary access
structures with share size 20.637n and a linear secret-sharing scheme with share
size 20.762n. It is an important open problem if the share size can be improved
to 2o(n) (or even smaller). Lower bounds for secret-sharing were proven in,
e.g., [25,30,33,34,37]. These lower bounds are very far from the upper bounds
– the best lower bound is Ω(n2/ log n) for the normalized total share size for an
explicit access structure (proven by Csirmaz [33]).

For graph secret-sharing schemes there is also a big gap between the upper
bounds and lower bounds. Erdös and Pyber [38] have proved that every graph can
be partitioned into complete bipartite graphs such that each vertex is contained
in at most O(n/ log n) complete bipartite graphs. Blundo et al. [25] observed
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that this implies that the normalized maximum share size of realizing every n-
vertex graph is O(n/ log n) (for secrets of size log n). Van Dijk [37] proved a lower
bound of Ω(log n) on the normalized maximum share size of realizing an explicit
n-vertex graph. Csirmaz [35] extended this lower bound to the n-vertex Boolean
cube. He observed that a lower bound of Ω(log n) on a specific graph implies a
lower bound of Ω(log log n) for almost all graphs (as almost all n-vertex graphs
contain a copy of every log n-vertex graph [28]). Furthermore, Csirmaz asked
if for almost every graph there is a scheme with normalized maximum share
size o(n/ log n). We answer this question affirmatively by showing for almost all
graphs a secret-sharing scheme with maximum share size no(1).

Linear Secret-Sharing Schemes. Linear secret-sharing schemes, introduced
by [29,45], are schemes in which the random string is a vector of elements over
some finite field Fq, the domain of secrets is also Fq, and the shares are computed
as a linear map over Fq. Many known schemes are linear, e.g., [22,24,57] and
the schemes for graphs implied by [38]. They are equivalent to a linear-algebraic
model of computation called monotone span programs [45]. Linear secret-sharing
schemes are useful as they are homomorphic: given shares of two secrets s, s′,
each party can locally add its shares and obtain a share of s + s′. For many
applications of secret sharing, linearity is essential, e.g., [8,32,61], hence, con-
structing linear secret-sharing schemes is important. The size of the shares in
the best known linear secret-sharing scheme is 20.76n [5] (improving upon [48]).
Pitassi and Robere [55] proved an exponential lower bound of 2cn log q on the
share in linear secret-sharing schemes over Fq for an explicit access structure
of (where 0 < c < 1/2 is a constant). Babai et al. [9] proved a lower bound of
2n/2−o(n)

√
log q on the share in linear secret-sharing schemes over Fq for almost

all access structures.
Multi-linear secret-sharing schemes, introduced by [23], are a generalization

of linear secret-sharing schemes in which the domain of secrets is F
�
q for some

integer �. In [2,5], such schemes improve the normalized maximum share size
compared to the linear secret-sharing schemes constructed in those papers (i.e.,
the multi-linear schemes share a longer secret while using the same share size as
the linear schemes). Beimel et al. [11] proved that every lower bound proved for
linear secret-sharing schemes using the Gal-Pudlák criteria [40] also applies to
multi-linear secret-sharing schemes. In particular, this implies that the nΩ(log n)

lower bound of [9] for the normalized maximum share size for an explicit access
structure and the Ω(

√
n) lower bound of [17] for the normalized maximum share

size for an explicit graph access structure hold also for multi-linear secret-sharing
schemes. We note that it is not clear if multi-linear secret-sharing schemes can
replace linear secret-sharing schemes in many applications, e.g., in the MPC
protocols of [32] that are secure against general adversarial structures.

Conditional Disclosure of Secrets (CDS) Protocols [42]. A CDS protocol for a
Boolean function f involves k servers and a referee. Each server holds a common
secret s, a common random string r, and a private input xi; using these r, s,
and xi the i-th server computes one message (without seeing any other input or
message) and sends it to the referee. The referee, knowing the inputs x1, . . . , xk
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and the messages, should be able to compute s iff f(x1, . . . , xk) = 1. CDS pro-
tocols were used in many cryptographic applications, such as symmetric private
information retrieval protocols [42], attribute based encryption [8,41,61], priced
oblivious transfer [1], and secret-sharing schemes [4,5,48]. Applebaum et al. [5]
defined robust CDS protocols (see Definition 2.10) and used them to construct
secret-sharing schemes for arbitrary access structures. We use robust CDS pro-
tocols to construct schemes for almost all graphs and for all very dense graphs.

The original construction of k-server CDS protocols for general k-input func-
tions, presented in [42], has message size O(Nk) (where N is the input domain
size of each server). This construction is linear. Recently, better constructions of
CDS protocols for general functions have been presented. Beimel et al. [18] have
shown a non-linear 2-server CDS protocol with message size O(N1/2) and Gay
et al. [41] constructed a linear 2-server CDS protocol with the same message size.
Then, Liu et al. [49] have designed a 2-server non-linear CDS protocol with mes-
sage size 2O(

√
log N log log N) and Liu et al. [50] have constructed a k-server CDS

protocol with message size 2Õ(
√

k log N). Beimel and Peter [20] and Liu et al. [50]
have constructed a linear CDS protocol with message size O(N (k−1)/2); by [20],
this bound is optimal for linear CDS protocols (up to a factor of k). Applebaum
and Arkis [2] (improving on Applebaum et al. [3]) have showed that there is a
CDS protocol with long secrets – of size Θ(2Nk

) – in which the message size is
4 times the secret size. Lower bounds on the message size in CDS protocols and
in linear CDS protocols have been proven in [3,6,7,41].

Forbidden Graph Access Structures. In a forbidden-graph secret-sharing scheme
for a graph G, introduced by Sun and Shieh [60], the parties are the vertices of the
graph G and a set is authorized if it is an edge or its size is at least 3. A forbidden-
graph secret-sharing scheme for a graph G is not harder than a graph secret-
sharing realizing G: Given a secret-sharing scheme realizing a graph, one can
construct a forbidden-graph secret-sharing scheme for G by giving a share of the
graph secret-sharing scheme and a share of a 3-out-of-n threshold secret-sharing
schemes. Furthermore, forbidden graph secret-sharing schemes are closely related
to 2-server CDS protocols: Beimel et al. [18] have described a transformation
from a CDS protocol for a function describing the graph G to a forbidden graph
secret-sharing scheme for G in which the maximum share size of the scheme is
O(log n) times the message size of the CDS protocol. Furthermore, by [2,18],
if we consider secrets of size at least O(log2 n), then there is a transformation
in which the normalized maximum share size is a constant times the message
size of the CDS protocol. As a result, we get that every forbidden graph G can
be realized by a secret-sharing with maximum share size no(1) (using the CDS
protocol of [49]), by a linear secret-sharing scheme over Fq with maximum share
size Õ(

√
n log q) for every prime power q (using the CDS protocol of [41]), and

a multi-linear secret-sharing scheme with normalized maximum share size O(1)
for secrets of length 2n2

[2]. We nearly match these bounds for graph access
structures for almost all graphs.
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1.2 Our Results and Techniques

We next describe the results we achieve in this paper. We again refer the reader
to Fig. 1 for a description of the maximum share size in previous constructions
and our constructions.

Almost All Access Structures. We prove upper bounds on the share size for almost
all access structures, namely almost all access structures have a secret-sharing
scheme with share size 2Õ(

√
n), a linear secret-sharing scheme with share size

2n/2+o(n), and a multi-linear secret-sharing scheme with maximum share size
Õ(log n) for secrets of size 2n2

. Our linear secret-sharing scheme for almost all
access structures are optimal (up to a factor of 2o(n)) for a one-bit secret (by a
lower bound of Babai et al. [9]).

The construction for almost all access structures is a simple combination of
previous results. The first result, proved by Korshunov [47] in 1981, is that in
almost all access structures with n parties all minimum authorized sets are of size
between n/2−1 and n/2+2, i.e., all sets of size at most n/2−2 are unauthorized
and all sets of size at least n/2 + 3 are authorized. The second result we use,
proved by Liu and Vaikuntanathan [48], is that such access structures can be
realized by secret-sharing schemes with share size as above. These results are
presented in Sect. 3.

We also prove lower bounds on the normalized share size in linear secret-
sharing schemes for almost all access structures. Rónyai et al. [56] proved that
for every finite field Fq for almost all access structures the normalized share size
of linear secret-sharing schemes over Fq realizing the access structure is at least
Ω(2n/3−o(n)). The result of Rónyai et al. [56] does not rule-out the possibility
that for every access structures there exists some finite field Fq (possibly with a
large q) such that the access structure can be realized by a linear secret-sharing
schemes over Fq with small normalized share size. This could be plausible since
we know that there are access structures that can be realized by an efficient
linear secret-sharing scheme over one field, but require large shares in any linear
secret-sharing scheme over fields with a different characteristic [21,55]. Pitassi
and Robere [55] proved that there exists an explicit access structure for which
this is not true, i.e., there exists a constant c > 0 such that in any linear secret-
sharing scheme realizing it the normalized share size is 2cn. In Theorem 3.10, we
prove that this is not true for almost all access structures, namely, for almost
every access structure the normalized share size in any linear secret-sharing
scheme realizing the access structure is Ω(2n/3−o(n)). Our proof uses a fairly
recent result on the number of representable matroids [53].

(G, t)-Graph Secret-Sharing Schemes and Robust CDS. We define a hierarchy of
access structures between forbidden graph access structures and graph access
structures. In a (G, t)-secret-sharing scheme, every set containing an edge is
authorized and, in addition, every set of size t + 1 is authorized. In other words,
the unauthorized sets are independent sets in G of size at most t. We show that
(G, t)-secret-sharing schemes are equivalent to 2-server t-robust CDS protocols.
As a result, using the robust CDS protocols of [5], we get efficient (G, t)-secret-
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sharing schemes, e.g., schemes with maximum share size no(1)t. These results are
presented in Sect. 4. We note that, for an arbitrary graph G, our (G,n)-secret-
sharing scheme, which is a graph secret-sharing scheme realizing G, the share
size does not improve upon the scheme of [38].

Almost All Graph Secret-Sharing Schemes. We show that for almost all graphs,
there exists a secret-sharing scheme with maximum share size no(1), a linear
secret-sharing scheme with normalized maximum share size Õ(

√
n) (for moder-

ately short secrets), and a multi-linear secret-sharing scheme with normalized
maximum share size Õ(log n) for exponentially long secrets. By [11,17], there
exists a graph such that in every multi-linear secret-sharing scheme realizing the
graph the normalized maximum share size is Ω(

√
n), thus, we get a separation

for multi-linear secret-sharing schemes between the normalized maximum share
size for almost all graphs and the maximum share size of the worst graph. These
results are presented in Sect. 5.

To construct our scheme for almost all graphs, we use the fact that if the size
of every independent set in a graph G is at most t, then a (G, t)-secret-sharing
scheme is a graph secret-sharing scheme realizing G. Our construction follows
from the fact that for almost every graph, the size of the maximal independent
set in a random graph is O(log n) [43].

We also consider the maximum share size of random n-vertex graphs drawn
from the Erdös-Rényi [39] distribution G (n, p), that is, each pair of vertices is
independently connected by an edge with probability p. For example, G (n, 1/2)
is the uniform distribution over the n-vertex graphs. On one hand, with prob-
ability nearly 1 the size of the maximum independent set in a graph drawn
from G (n, p) is at most O( 1p log n), thus, using (G, t)-secret-sharing schemes with
t = O( 1p log n), we realize a graph in G (n, p) with normalized maximum share size
no(1)/p. On the other hand, with probability nearly 1 the degree of all vertices
in the graph drawn from G (n, p) is O(pn), thus, it can be realized by the trivial
secret-sharing scheme with maximum share size O(pn). Combining these two
schemes, the hardest distribution in our construction is G (n, 1/

√
n) for which

the normalized maximum share size is
√

n. We do not know if there is a better
secret-sharing scheme for graphs drawn from G (n, 1/

√
n) or this distribution

really requires shares of size nΩ(1).

Dense Graph Secret-Sharing Schemes. Following [14], we study graph secret-
sharing schemes for very dense graphs, i.e., graphs with at least

(
n
2

) − n1+β

edges for some constant β. For these graphs, Beimel et al. [14] have constructed
a linear secret-sharing scheme with maximum share size Õ(n1/2+β/2) and another
linear secret-sharing scheme with total share size Õ(n5/4+3β/4). We improve on
the latter result and show that all very dense graphs can be realized by a secret-
sharing scheme with normalized total share size of n1+β+o(1) for moderately
short secrets of size Õ(n). To put this result in perspective, this total share size
matches (up to a factor of no(1)) to the total share size of the naive secret-
sharing scheme for sparse graphs with n1+β edges. These schemes are presented
in Sect. 6.



The Share Size for Almost All Access Structures and Graphs 507

We next describe the high-level ideas of our construction realizing a graph G
with at least

(
n
2

) − n1+β edges. If every vertex in G has degree at least n − nβ ,
then the size of every independent set in G is at most nβ + 1, and we can
use a (G,nβ +1)-secret-sharing schemes, resulting in normalized total share size
O(n1+β+o(1)). While in a graph with at least

(
n
2

)−n1+β edges the average degree
is at least n − O(nβ), the graph can contain vertices whose degree is small. To
overcome this problem, we use an idea of [14]. We consider the set of vertices A
whose degree is smallest in G and execute a secret-sharing scheme realizing the
graph restricted to this set (denoted G′). We choose the size of this set such that:
(1) the size of the set is small, thus, the total share size in realizing G′ is small,
and (2) the degree of the each vertex not in A is big, thus, we can realize the
graph without the edges between vertices in A by a (G, t)-secret-sharing scheme
for a relatively small t. We apply the above construction iteratively to get our
scheme.

Hypergraph Secret-Sharing Schemes. A secret-sharing realizes a hypergraph H
if the parties of the scheme are the vertices of H and a set of parties can recon-
struct the secret if and only if it contains a hyperedge. In this work, we con-
struct schemes for k-hypergraphs, that is, hypergraphs whose hyperedges are all
of size k. The access structures of these schemes are also called k-homogeneous.
The best secret-sharing scheme for k-hypergraphs known to date is the origi-
nal scheme of [44], which have maximum share size O(

(
n

k−1

)
). Extending the

results explained above, we show a connection between k-hypergraph secret-
sharing schemes and k-server t-robust CDS protocols. For any constant k, we
show that for almost every k-hypergraph there exists a secret-sharing scheme
with maximum share size is no(1), a linear secret-sharing scheme with normal-
ized maximum share size Õ(n(k−1)/2), and a multi-linear secret-sharing scheme
with normalized maximum share size Õ(logk−1 n) for exponentially long secrets.
These schemes are presented in the full version of this paper [13].

Interpretation of Our Results. In this work we have shown that for almost all
access structures there exist secret-sharing schemes that are more efficient than
the known secret-sharing schemes for the worst access structures. Similarly, we
have constructed for almost every graph G a secret-sharing schemes realizing G
that are more efficient than the known secret-sharing schemes realizing the worst
graph. One possible conclusion from this result is that in secret-sharing schemes
almost all access structures might not be the hardest access structures. Another
possible interpretation is that our results may be generalized to all access struc-
tures. We note that in one case we know that the former interpretation is true:
there is a graph for which the normalized maximum share size for multi-linear
schemes is at least Ω(

√
n) (for every size of secrets) [11,17], while we show an

upper bound for almost all graphs of Õ(log n) (for long secrets).

Open Problems. Can the normalized share size of almost all access structures
can be improved? We do not have any non-trivial lower-bound on the normalized
share size for them. Recall that an access structure is n/2-uniform if all sets of size
less than n/2 are unauthorized, all sets of size greater than n/2 are authorized,
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and sets of size exactly n/2 can be either authorized or unauthorized. By [4]
(using results of [2]), every n/2-uniform access structure can be realized by a
scheme with normalized maximum share size O(n2) (with exponentially long
secrets). Since almost all access structures somewhat resemble uniform access
structures (see Theorem 3.2), one can hope that almost every access structure
can be realized by a scheme with polynomial normalized share size.

Another research problem is to study the complexity of almost all func-
tions for other primitives with information-theoretic security, for example, pri-
vate simultaneous messages (PSM) protocols, MPC protocols, MPC protocols
with constant number of rounds, and private information retrieval (PIR) proto-
cols for almost all databases. For all these primitives there is a huge gap between
the known upper bounds and lower bounds on the message size. Are there more
efficient protocols for any of these primitives for almost all functions than the
protocols for all functions?

2 Preliminaries

In the section, we present the preliminary results needed for this work. First, we
define secret-sharing schemes, linear secret-sharing schemes, graph secret-sharing
schemes, and homogeneous access structures. Second, we define conditional dis-
closure of secrets (CDS) protocols, and robust CDS protocols. We also present
several CDS and robust CDS protocols from [2,20,49,50] that are used in this
work. Finally, we present a short introduction to random graphs and random
access structures.

Secret-Sharing Schemes. We present the definition of secret-sharing scheme
as given in [12,31]. For more information about this definition and secret-sharing
in general, see [10].

Definition 2.1 (Access Structures). Let P = {P1, . . . , Pn} be a set of par-
ties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ .
An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of
P . Sets in Γ are called authorized, and sets not in Γ are called forbidden.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π with
domain of secrets S, such that |S| ≥ 2, is a mapping from S×R, where R is some
finite set called the set of random strings, to a set of n-tuples S1 ×S2 ×· · ·×Sn,
where Sj is called the domain of shares of Pj. A dealer distributes a secret s ∈ S
according to Π by first sampling a random string r ∈ R with uniform distribution,
computing a vector of shares Π(s, r) = (s1, . . . , sn), and privately communicating
each share sj to party Pj. For a set A ⊆ P , we denote ΠA(s, r) as the restriction
of Π(s, r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access struc-
ture Γ if the following two requirements hold:
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Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any set B =

{
Pi1 , . . . , Pi|B|

} ∈ Γ there exists a reconstruction
function ReconB : Si1 × · · · × Si|B| → S such that ReconB (ΠB(s, r)) = s for
every secret s ∈ S and every random string r ∈ R.

Privacy. Any forbidden set cannot learn anything about the secret from its
shares. Formally, for any set T =

{
Pi1 , . . . , Pi|T |

}
/∈ Γ and every pair of secrets

s, s′ ∈ S, the distributions ΠT (s, r) and ΠT (s′, r) are identical, where the distri-
butions are over the choice of r from R at random with uniform distribution.

Given a secret-sharing scheme Π, define the size of the secret as log |S|, the
share size of party Pj as log |Sj |, the maximum share size as max1≤j≤n {log |Sj |},
and the total share size as

∑n
j=1 log |Sj |.

A secret-sharing scheme is multi-linear if the mapping that the dealer uses to
generate the shares given to the parties is linear, as we formalize at the following
definition.

Definition 2.3 (Multi-linear and Linear Secret-Sharing Schemes). Let
Π be a secret-sharing scheme with domain of secrets S. We say that Π is
a multi-linear secret-sharing scheme over a finite field F if there are integers
�d, �r, �1, . . . , �n such that S = F

�d , R = F
�r , S1 = F

�1 , . . . , Sn = F
�n , and the

mapping Π is a linear mapping over F from F
�d+�r to F

�1+···+�n . We say that a
scheme is linear over F if S = F (i.e., when �d = 1).

Definition 2.4 (Graph secret-sharing schemes). Let G = (V,E) be an
undirected graph with |V | = n; for simplicity we assume that E �= ∅. We define
ΓG as the access structure whose minimal authorized subsets are the edges in G,
that is, the unauthorized sets are independent sets in the graph. A secret-sharing
scheme realizing an access structure ΓG is said to be a secret-sharing scheme
realizing the graph G and is called a graph secret-sharing schemes.

These schemes are one of the main topics in this work. In this paper, we study
very dense graphs, graphs with at least

(
n
2

) − n1+β edges for some 0 ≤ β < 1.
We also study k-homogeneous access structures, which are access structures

whose minimal authorized subsets are of the size k. For example, graph access
structures are 2-homogeneous access structures. For k > 2, it is convenient to
define k-homogeneous access structures from hypergraphs. A hypergraph is a
pair H = (V,E) where V is a set of vertices and E ⊆ 2V \ {∅} is the set of
hyperedges. A hypergraph is k-uniform if |e| = k for every e ∈ E. A k-uniform
hypergraph is complete if E =

(
V
k

)
= {e ⊆ V : |e| = k}. Observe that there

is a one-to-one correspondence between uniform hypergraphs and homogeneous
access structures, and that complete uniform hypergraphs correspond to thresh-
old access structures. Given a hypergraph H = (V,E), we define ΓH as the
access structure whose minimal authorized sets are the hyperedges of H.

We contrast homogeneous access structures with uniform access structures
(studied, e.g., in [2,4,19,60]). A k-uniform access structures is also described by
a k-uniform hyper-graph and its authorized sets are all the hyper-edges and all
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sets of size at least k + 1. Thus, k-homogeneous access structures are harder to
realize as they might contain forbidden sets of size much larger than k.1

Conditional Disclosure of Secrets. We define k-server conditional disclosure
of secrets protocols, originally defined in [42].

Definition 2.5 (Conditional Disclosure of Secrets Protocols). Let f :
X1 × · · · × Xk → {0, 1} be a k-input function. A k-server CDS protocol P for f
with domain of secrets S consists of:

1. A finite domain of common random strings R, and k finite message domains
M1, . . . ,Mk,

2. Deterministic message computation functions Enc1, . . . ,Enck, where Enci :
Xi × S × R → Mi for every i ∈ [k] (we also say that Enci(xi, s, r) is the
message sent by the i-th server to the referee), and

3. A deterministic reconstruction function Dec : X1×· · ·×Xk×M1×· · ·×Mk →
{0} , 1.

We denote Enc(x, s, r) = (Enc1(x1, s, r), . . . ,Enck(xk, s, r)). We say that a
CDS protocol P is a CDS protocol for a function f if the following two require-
ments hold:

Correctness. For any input (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 1, every secret s ∈ S, and every common random string r ∈ R,

Dec(x1, . . . , xk,Enc1(x1, s, r), . . . ,Enck(xk, s, r)) = s.

Privacy. For any input x = (x1, . . . , xk) ∈ X1 × · · · × Xk for which
f(x1, . . . , xk) = 0 and for every pair of secrets s, s′, the distributions Enc(x, s, r)
and Enc(x, s′, r) are identical, where the distributions are over the choice of r
from R at random with uniform distribution.

The message size of a CDS protocol P is defined as the size of largest message
sent by the servers, i.e., max1≤i≤k {log |Mi|}.

Next, we present the properties of three CDS protocols that are used in
this work. The CDS protocol presented in Theorem2.6 has linear properties:
the messages are generated from the secret and the randomness with linear
mappings. Theorem 2.6 is a particular case of Theorem 6 of [2], while Theorem 2.7
is from [49].

Theorem 2.6 ([2]). For any 2-input function f : [n] × [n] → {0, 1} there is a
2-server CDS protocol in which, for sufficiently large secrets, i.e., secrets of size
2n2

, each server communicates at most 3 bits per each bit of the secret.

1 For example, given a secret-sharing realizing the k-homogeneous access structures of
a hyper-graph H, we can realize the k-uniform access structures of H by additionally
sharing the secret in a (k + 1)-out-of-k secret-sharing scheme.
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Theorem 2.7 ([49]). For any 2-input function f : [n]×[n] → {0, 1} there is a 2-
server CDS protocol with a one bit secret and message size nO(

√
log log n/ log n) =

no(1).

Theorem 2.8 ([50]). For any k-input functions f : [n]k → {0, 1} there is a k-
server CDS protocol with a one bit secret and message size nO(

√
k/ log n log(k log n)).

Robust Conditional Disclosure of Secrets. In a recent work [5], Applebaum
et al. define a stronger notion of CDS protocols that is useful for constructing
secret-sharing schemes. In a k-server CDS protocol, we assume that each server
sends one message to the referee. Therefore, the referee only has access to k
messages. In a robust k-server CDS protocol, we consider the case that the
referee can have access to more than one message from some servers (generated
with the same common random string), and privacy is guaranteed even if an
adversary sees a bounded number of messages from each server.

Definition 2.9 (Zero sets). Let f : X1 × · · · × Xk → {0, 1} be a k-input
function. We say that a set of inputs Z ⊆ X1 × · · · × Xk is a zero set of f
if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we denote Enci(Zi, s, r) =
(Enci(xi, s, r))xi∈Zi

, and

Enc(Z1 × · · · × Zk, s, r) = (Enc1(Z1, s, r), . . . ,Enck(Zk, s, r)).

Definition 2.10 (Robust conditional disclosure of secrets (RCDS) pro-
tocols). Let P be a k-server CDS protocol for a k-input function f : X1 × · · · ×
Xk → {0, 1} and Z = Z1 × · · · × Zk ⊆ X1 × · · · × Xk be a zero set of f . We
say that P is robust for the set Z if for every pair of secrets s, s′ ∈ S, it holds
that Enc(Z, s, r) and Enc(Z, s′, r) are identically distributed. Let t1, . . . , tk be
integers. We say that P is a (t1, . . . , tk)-robust CDS protocol if it is robust for
every zero set Z1 × · · · × Zk such that |Zi| ≤ ti for every i ∈ [k] and it is a
t-robust CDS protocol if it is (t, . . . , t)-robust.

In this work we use several constructions of robust CDS protocols presented
in [4], which are based on non-robust CDS protocols. Theorem 2.11 presents
linear and multi-linear robust CDS protocols in which the underlying CDS pro-
tocol is from [41]. Then, Theorem 2.12 presents a generic transformation from
non-robust CDS protocols to robust CDS protocols. In this transformation, if
the original CDS is linear, then the resulting robust CDS is multi-linear.

Theorem 2.11 ([5, Theorem D.5]). Let f : [N ]× [N ] → {0, 1} be a function.
Then, for every finite field Fq and every integer t ≤ N/(2 log2 N), there is a
linear 2-server (t,N)-robust CDS protocol for f with one element secrets in which
the message size is O((t log2 t+

√
N)t log t log2 N log q). Furthermore, there is p0

such that for every prime-power q > p0 there is a multi-linear 2-server (t,N)-
robust CDS protocol for f over Fq with secrets of size Θ(t2 log q log t log3 N) in
which the normalized message size is O(t log2 t +

√
N).
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Theorem 2.12 ([5, Theorem E.2]). Let f : [N ]k → {0, 1} be a k-input func-
tion, for some integer k > 1, and t ≤ min{kN/2, 2

√
N/k} be an integer. Assume

that for some integer m ≥ 1, there is a k-server CDS protocol P for f with
secrets of size m in which the message size is c(N,m). Then, there is a k-server
t-robust CDS protocol for f with secrets of size m in which the message size is
O

(
c(N,m)k3k−12ktk log2k−1 t log2(N)

)
. If P is a linear protocol over F2m , then

the resulting protocol is also linear. Furthermore, there is a k-server t-robust CDS
protocol for f with secrets of size Θ(mk2t log t log2(N)) in which the normalized
message size is O

(
c(N,m)

m k3k−32ktk−1 · log2k−2 t
)

.

Random Graphs and Access Structures. In this work, we use several results
on random graphs to construct secret-sharing schemes for almost all graphs
with improved share size. First, we present the Erdös-Rényi model for random
graphs [39]. For an introduction to this topic see, e.g., [27].

Let Gn be the family of graphs with the vertex set V = {1, . . . , n}. Given
0 < p < 1, the model G (n, p) is a probability distribution over Gn in which each
edge is chosen independently with probability p, that is, if G is a graph with m

edges, then Pr[{G}] = pm(1−p)(
n
2)−m. Note that when p = 1/2, any two graphs

are equiprobable.
We say that almost every graph in G (n, p) has a certain property Q if Pr[Q] →

1 as n → ∞. For p = 1/2, saying that almost every graph in G (n, p) has a certain
property Q is equivalent to saying that the number of graphs in Gn satisfying Q
divided by |Gn| tends to 1 as n → ∞. In this case, we will say that almost all
graphs satisfy Q.

Analogously, we will use the same expression for any family of access struc-
tures Fn. We say that almost all access structures in Fn satisfy Q if the number
of access structures in Fn satisfying Q divided by |Fn| tends to 1 as n → ∞. In
particular, we study the family of homogeneous access structures and the family
of all access structures.

Next, we present some properties of the maximum independent sets of graphs
in G (n, p). Lemma 2.13 was presented by Grimmett and McDiarmid in [43]. Sev-
eral subsequent results gave more accurate bound on the size of maximum inde-
pendent sets, but it is enough for our purposes. In Lemma2.14 we give bounds
to the maximum independent sets in G (n, p) for non-constant p. In Lemma 2.15
and Theorem 2.16 we present further properties of almost all graphs. The proofs
of Lemmas 2.14 and 2.15 are in the full version of this paper [13].

Lemma 2.13 ([43]). Let 0 < p < 1 be a constant. Then the size of a
maximum independent set in almost every graph in G (n, p) is smaller than
2 log n/ log( 1

1−p ) + o(log n).

As a consequence of Lemma 2.13, the size of a maximum independent set in
almost every graph in Gn is smaller than (2 + o(1)) log n.
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Lemma 2.14. The size of a maximum independent set in almost every graph
in G (n, p) is O( log n

p ) if 1/n ≤ p ≤ 1/2, and 1 + 2+o(1)
α if p = 1 − n−α for some

1/ log n ≤ α ≤ 1.

With a similar proof, we can also show that for every 0 ≤ β ≤ 1 − 1
log n ,

almost all graph with n1+β edges have maximal independent sets of size at most
O(n1−β log n), and almost all graphs with

(
n
2

)−n1+β have maximal independent
sets of size at most 1 + 2+o(1)

1−β .

Lemma 2.15. Almost all graphs in G (n, p) with p = ω(log n/n) have degree at
most 2pn.

Lemma 2.16 ([28, Theorem 1]). Almost every graph with n = �r22r/2� ver-
tices contains every graph of r vertices as an induced subgraph.

3 Secret-Sharing Schemes for Almost All Access
Structures

This section is dedicated to the study of general access structures. Combining
results on monotone Boolean functions by Korshunov [47] and secret-sharing
schemes from [2,48], we obtain secret-sharing schemes for almost all access struc-
tures. Then, we present lower bounds on the maximum share size for almost all
access structures.

3.1 Upper Bounds for Almost All Access Structures

First, we define the family of slice access structures. These access structures have
a special role in the general constructions presented in [4,5,48]. In Theorem 3.2,
we present a family of slice access structures that contains almost all access
structures. It is direct consequence of the results in [47] for monotone Boolean
functions (also presented in [62, p. 99]).

Definition 3.1. Let a, b be two integers satisfying 1 ≤ a < b ≤ n. We define
Sa,b as the family of access structures Γ satisfying that, for every A ⊆ P : if
|A| > b, then A ∈ Γ , and if |A| < a, then A /∈ Γ .

Theorem 3.2 ([47]). Let � = n/2�. Almost all access structures (i.e., mono-
tone collections of sets) are in S�−1,�+1 if n is even, and in S�−1,�+2 if n is
odd.

Theorem 3.3. Almost all access structures can be realized by the following
secret-sharing schemes.

1. A secret-sharing scheme with maximum share size 2O(
√

n log n).
2. A linear secret-sharing scheme with maximum share size 2n/2+o(n).
3. A multi-linear secret-sharing scheme with normalized maximum share size

2O(
√

n log n) for secrets of size 2n2
.
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Proof. By Theorem 3.2, constructing secret-sharing schemes for access structures
in S�−1,�+2 suffices for constructing secret-sharing schemes for almost all access
structures.

Assume that for every k-input function f : [N ]k → {0, 1} and secret of size
m there is a k-server CDS protocol for f in which the message size is c(N,m).
By [48], for every k there is a secret-sharing scheme for Γ ∈ Sa,b with maximum
share size at most

c(N,m)2(b−a+1)n/kO(n)
(

n

a

)
/

(
n/k

a/k

)k

for N =
(
n/k
a/k

)
. In our case, a = n

2 � − 1 and b = n
2 � + 2. Choosing k =

√
n

log n ,

we have

c(N,m)24n/kO(n)
(

n

n/2 − 1

)
/

(
n/k

(n − 2)/2k

)k

=

= c(N,m)24
√

n log nO(poly(n))
(n

k

) k
2

= c(N,m)2O(
√

n log n).

Taking thek-serverCDSprotocolwithmessage size c(N,m) = 2O(
√
log N log log N ≤

2O(
√

n log n) from [50], we get the first secret-sharing scheme. If we take the linear
k-serverCDSprotocol from [20,50] withmessage size O(N (k−1)/2) ≤ 2n/2+o(n), we
get the second secret-sharing scheme. The third secret-sharing scheme is obtained
by using the k-server CDS protocol with message size c(N,m) ≤ 4m from [2]. ��

As a consequence of this result, Hypotheses 1 and 3 in [2] are true for almost
all access structures:

Hypothesis 3.4 (SS is short). Every access structure over n parties is real-
izable with small information ratio (say 2o(n)).

Hypothesis 3.5 (SS is amortizable). For every access structure over n par-
ties, and every sufficiently long secret s, there exists a secret-sharing scheme with
small information ratio (e.g., sub-exponential in n).

3.2 Almost All Access Structures Require Long Shares in Linear
Secret-Sharing Schemes

Rónyai et al. [56] proved that for every finite field Fq for almost every access
structure Γ the normalized total share size of linear secret-sharing schemes over
Fq realizing Γ is at least 2n/3−o(n). We reverse the order of quantifiers and prove
that for almost every access structure Γ , for every finite field Fq the normalized
total share size of linear secret-sharing schemes over Fq realizing Γ is at least
2n/3−o(n).

The rest of the section is organized as follows. We start by defining monotone
span program and representable matroids; these notions are used to prove the
lower bounds. Thereafter, we prove our new lower bound on the normalized total
share size of linear secret-sharing schemes. More details about these results can
be found in [13].
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Definitions. A linear secret-sharing scheme with total share size m can be
described by a matrix M with m rows such that the shares are computed by
multiplying M by a vector whose first coordinate is the secret s and the other
coordinates are random field elements. It is convenient to describe a linear secret-
sharing scheme by a monotone span program, a computational model introduced
by Karchmer and Wigderson [45]. The reader is referred to [10] for more back-
ground on monotone span programs and their connections to secret sharing.

Definition 3.6 (Monotone Span Program [45]). A monotone span program
is a triple M = (F,M, ρ), where F is a field, M is an d × b matrix over F, and
ρ : {1, . . . , d} → {p1, . . . , pn} labels each row of M by a party.2 The size of M is
the number of rows of M (i.e., d). For any set A ⊆ {p1, . . . , pn}, let MA denote
the sub-matrix obtained by restricting M to the rows labeled by parties in A. We
say that M accepts B if the rows of MB span the vector e1 = (1, 0, . . . , 0). We
say that M accepts an access structure Γ if M accepts a set B if and only if
B ∈ Γ .

Theorem 3.7 ([45]). There exists a linear secret-sharing scheme over Fq real-
izing an access structure Γ with secrets of size log q and total share size d log q
if and only if there exists a monotone span program M = (Fq,M, ρ) accepting
the access structure Γ such that M is an d × d matrix.

We next define representable matroids and quote the result of [53]. For our
proof, we do not need the definition of matroids; we note that they are an
axiomatic abstraction of linear independency.

Definition 3.8. A matroid representable over a field F is a pair (A, r), where
A is a finite set, called a ground set, and r : 2A → {0, 1, . . . , |A|} is a function,
called a rank function, such that there are vectors {va}a∈A in F

|A| for which for
every B ⊆ A

r(B) = rank({va}a∈B),

where rank(V ) is the linear-algebraic rank of vectors, i.e., the maximum num-
ber of linearly independent vectors in V . A representable matroid is a matroid
representable over some field.

Theorem 3.9 ([53]). For every d ≥ 12, there are at most 2d3/4 representable
matroids with ground set [d].

The following theorem generalize the lower bounds of [9,56].

Theorem 3.10. For almost every access structure Γ with n parties the following
property holds: For every prime-power q, the normalized total share size in every
linear secret-sharing scheme realizing Γ over the field Fq is at least 2n/3−o(n).

2 For simplicity, in this paper we label a row by a party pj rather than by a variable
xj as done in [45].
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Proof. The proof is similar to the proof of [9], with a more complex upper bound
on the number of access structure that can be realized with a monotone span
program of size d.

Fix some labeling function ρ0 : [d] → {p1, . . . , pn} and assume that there is a
monotone span program M = (Fq,M, ρ0) accepting an access structure Γ where
M is matrix over some field Fq of size d × d. Let Mi be the i-th row of M and
M0 = e1 and define a representable matroid with a ground set A = {0, . . . , d}
and a rank function r(B) = rank {Mi : i ∈ B}. We next show that the rank
function r together with ρ0 determines the access structure Γ accepted by M.
Indeed, B ∈ Γ if and only if e1 ∈ span

{
Mi : pρ0(i) ∈ B

}
if and only if

rank(
{
Mi : pρ0(i) ∈ B

}
) = rank(

{
Mi : pρ0(i) ∈ B

} ∪ {e1})

if and only if r(
{
i : pρ0(i) ∈ B

}
= r(

{
i : pρ0(i) ∈ B

} ∪ {0}). Thus, the number
of access structures that can be realized by a linear scheme with normalized
total share size is upper-bounded by the number of labeling functions ρ times
the number of representable matroids with ground set {0, . . . , d}, i.e., by nd ×
2(d+1)3/4 ≤ 2d3/2. To conclude, for d = 2n/3/n1/6, almost all access structures do
not have a linear secret-sharing scheme with normalized total share size smaller
than d. ��

A Lower Bound on the Share Size in Linear Secret-Sharing Schemes
with a One Bit Secret. Finally, for a one-bit secret, we obtain in Theorem3.11
a lower bound of 2n/2−o(n) on the total share size of linear secret-sharing schemes
over any field realizing almost all access structures, even if the secret is a bit.
Notice that this lower bound is on the total share size (and not on the normalized
total share size). When we share a bit using a linear secret-sharing scheme over
Fq for q > 2, we only use the scheme to share the secrets 0, 1 ∈ Fq. Since we are
proving a lower bound the total share size, assuming that the secret is a bit only
makes the result stronger.

The constant in the exponent in Theorem3.11 is 1/2 (compared to a constant
1/3 in Theorem 3.10), matching the construction of linear secret-sharing schemes
for almost all access structures in Theorem 3.3 (up to lower order terms). This
theorem is a special case of [4, Theorem 5.5], however, the proof of this special
case is simpler.

Theorem 3.11. For almost every access structure Γ with n parties the fol-
lowing property holds: For every prime-power q, the total share size in every
linear secret-sharing scheme over Fq realizing Γ with a one bit secret is at least
2n/2−o(n).

Proof. There are at most ndqd2
monotone span programs of size d over Fq (as

there are qd2
matrices and n ways to label each row by a party). For d > log n,

ndqd2
< q2d2

. The total share size in the linear secret-sharing scheme constructed
from such monotone span program is D = d log q. Thus, the number of linear
secret-sharing schemes over Fq with total share size D is at most q2(D/ log q)2 <
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22D2
. Furthermore, when q > 2D, the share size of each party is at least log q > D

as each share contains at least on element from Fq. Thus, the number of linear
secret-sharing schemes with total share size D is at most

∑

q : q≤2D,q is a prime power

22D2 ≤ 2D · 22D2 ≤ 23D2
.

Taking D = 0.4·2n/2−0.25 log n, the number of access structures that have a linear
secret-sharing scheme over any field with total share size at most D is less than
23·0.16·2n/

√
n, i.e., almost all access structures require total share size larger than

D in all linear secret-sharing schemes. ��

4 (G, t)-Secret-Sharing Schemes

In this section, we present a new family of schemes that we call (G, t)-secret-
sharing schemes. We show that there is a close bi-directional connection between
these schemes and 2-server robust CDS protocols, generalizing the connec-
tion between (non-robust) CDS protocols and forbidden graphs secret-sharing
schemes. These schemes will be later used to construct graph secret-sharing
schemes.

4.1 The Definition of (G, t)-Secret-Sharing Schemes

Definition 4.1. Let G = (V,E) be an undirected graph with |V | = n such that
E �= ∅ and let ΓG be the graph access structure determined by G (that is, each
edge is a minimal authorized set and each independent set is forbidden). For
any 0 ≤ t ≤ n − 1, define Γt as the t-out-of-n threshold access structure on V
(that is, Γt = {A ⊆ X : |A| ≥ t}) and define the access structure ΓG,t on V
as ΓG,t = ΓG ∪ Γt+1. We say a secret-sharing scheme is a (G, t)-secret-sharing
scheme if it realizes the access structure ΓG,t.

Next, we present some properties of these schemes. If Π is a (G, t)-secret-
sharing scheme, then all subsets containing edges are authorized, independent
subsets of G of size at most t are forbidden, and subsets of size greater than t are
authorized. If t = 2, then ΓG,t is a forbidden graph access structure determined by
a graph G (for an introduction to these access structures, see [16], for example).
If the size of a largest independent set of G is μ, then every subset of size
μ + 1 is authorized in ΓG. Therefore, ΓG,t = ΓG for every t ≥ μ. In particular,
ΓG,n−1 = ΓG for every graph G.

4.2 (G, t)-Secret-Sharing Schemes from Robust CDS Protocols

We now present constructions of (G, t)-secret-sharing schemes. First, we present
a transformation from robust CDS protocols to (G, t)-secret-sharing schemes.
Then, using the robust CDS schemes presented in Sect. 2, we provide explicit
(G, t)-secret-sharing schemes.



518 A. Beimel and O. Farràs

Lemma 4.2. Let G = (V,E) be a graph with |V | = n, and let 0 < t < n. If there
exists a 2-server t-robust CDS protocol with secrets of size m and messages of
size c(N,m) for functions f : [n]2 → {0, 1}, then there is a (G, t)-secret-sharing
scheme with secrets of size m and shares of size 2 · c(N,m)+max {m,O(log n)}.
Moreover, if CDS protocol is linear, then the secret-sharing scheme is also linear.

Proof. We construct the (G, t)-secret-sharing scheme using the scheme in Fig. 2.
Next we prove the correctness and privacy properties.

Correctness: Let A ⊆ [n] be a minimal authorized subset in ΓG,t. Then A
is either in E or A is of size t + 1. If A = {i, j} is in E, then f(i, j) = 1, i.e.,
the message of Alice (the first server) on i and the message of Bob (the second
server) on j determines s, so the pair {i, j} can recover s. If |A| = t + 1, then A
can recover s using the (t + 1)-out-of-n secret-sharing scheme.

Privacy: Let A be a maximal forbidden subset. Then A does not contain any
edge in E and |A| ≤ t. The shares received from the threshold secret-sharing
scheme do not provide any information about s. Now we analyze the information
provided by the messages of P. The parties in A receive Alice’s messages for A
and Bob’s messages for A. Observe that the set A × A does not contain edges
of G, thus, A × A is a zero-set of f and the t-robustness of P guarantees the
privacy of the scheme.

The maximum share size of the resulting scheme is twice the message size of
P plus the share size of the (t + 1)-out-of-n secret-sharing scheme.

If P is a linear protocol over Fq, we can choose a Shamir (t + 1)-out-of-n
secret-sharing scheme over a finite field Fq� with q� > n. Since this scheme is
also linear over Fq, the resulting secret-sharing scheme is also linear over Fq. ��

In Lemma 4.2, we showed a way to construct (G, t)-secret-sharing schemes
from t-robust CDS protocols. Conversely, we can also construct robust CDS
protocols from (G, t)-secret-sharing schemes, as shown in Lemma 4.3.

Lemma 4.3. Let f : [n] × [n] → {0, 1} be a function and let 0 < t < n. Define
G = (([n]×{1})∪ ([n]×{2}), E) as the bipartite graph with E = {((i, 1), (j, 2)) :
i ∈ [n], j ∈ [n], f(i, j) = 1}. If there exists a (G, 2t)-secret-sharing scheme with
secrets of size m and maximum share size c(2n,m), then there exists a 2-server
t-robust CDS protocol for f with message size c(2n,m).

Proof. Let Π be a (G, 2t)-secret-sharing scheme. We define a 2-server t-robust
CDS protocol P for f as follows. The message spaces M1 and M2 of the servers
are the spaces of shares of parties [n] × {1} and [n] × {2}, respectively. The
common randomness r is the randomness of the dealer in Π. The function
Enci(j, s, r) for i ∈ {1, 2} outputs the share of party (j, i) with the secret s
and randomness r, and Dec is the reconstruction function of Π.

The correctness of P is guaranteed because every pair in E is authorized in
Π. The t-robustness of P is guaranteed because every zero-set Z1 × Z2 where
|Z1|, |Z2| ≤ t corresponds to an independent set (Z1×{1})∪ (Z2×{2}) of size at
most 2t in G, thus the messages of the inputs in Z1∪Z2 are shares of a forbidden
set in Π. ��
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The secret: An element s ∈ S.
The parties: V = {1, . . . , n}.
The access structure: ΓG,t for some graph G = (V, E) and 0 ≤ t ≤ n−1.
The scheme:

– Let f : [n] × [n] → {0, 1} be the function defined as f(i, j) = 1 if and
only if (i, j) ∈ E.

– Let P be a 2-server t-robust CDS protocol with secrets from {0, 1}m

for the function f ; denote its servers by Alice and Bob.

Then,

1. Execute the protocol P for the secret s.
2. Share s independently among V with a (t+1)-out-of-n secret-sharing

scheme.
3. The share of party i ∈ V is the message of Alice on the input i, the

message of Bob on the input i, and the share of i in the (t+1)-out-of-n
secret-sharing scheme.

Fig. 2. A (G, t)-secret-sharing scheme Π for a graph G = (V, E).

Now that we showed the connection between (G, t)-secret-sharing schemes
from t-robust CDS protocols, we present (G, t)-secret-sharing schemes that use
Theorems 2.12 and 2.11.

Lemma 4.4. Let G = (V,E) be a graph with |V | = n, and let 1 ≤ t < n/2.
If there exist a 2-server CDS protocol with message size c(N,m) for functions
with domain size n and secrets of size m, then there exists a (G, t)-secret-sharing
scheme with maximum share size O(t2 log3 t log2 n ·c(N,m)), and a (G, t)-secret-
sharing scheme with secrets of size Θ(mt log t log2 n) and normalized maximum
share size O(t log2 t · c(N,m)/m).

Proof. Theorem 2.12 guarantees that there exists a 2-server t-robust CDS pro-
tocol with message size �(n) = O(t2c(N,m) log3 t log2 n), and a 2-server t-robust
CDS protocol with secrets of size m′ = Θ(mt log t log2 n) with normalized mes-
sage size �(n)/m′ = O(t log2 t · c(N,m)/m). Using these 2-server t-robust CDS
protocols and Lemma 4.2 we obtain the lemma. ��

We conclude this section presenting different (G, t)-secret-sharing schemes
that are obtained from robust CDS schemes applying Lemma4.2 and Theo-
rem 4.4.

Theorem 4.5. Let G = (V,E) be a graph with |V | = n and let 1 < t < n.

1. There exists a (G, t)-secret-sharing scheme with moderately-short secrets of
size O(t log3 n), normalized maximum share size

nO(
√

log log n/ log n)t log2 n = no(1)t log2 n,

and normalized total share size n1+O(
√

log log n/ log n)t log2 n = n1+o(1)t log2 n;
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2. For every prime power q, there exists a linear (G, t)-secret-sharing scheme
over Fq with and maximum share size O

(
(t log2 t +

√
n)t log t log2 n log q

)
;

3. There exists an integer p0 such that for every prime power q > p0, there
exists a multi-linear (G, t)-secret-sharing scheme over Fq with moderately-
short secrets of size Θ(t2 log t log2 n log n log q) and normalized maximum
share size O(t log2 t +

√
n);

4. There exists a multi-linear (G, t)-secret-sharing scheme over F2 with secrets
of size 2n2

and normalized maximum share size O(t log2 t).

Proof. Scheme 1: By Theorem 2.7, for any function f : [n]2 → {0, 1} there
exists a 2-server CDS protocol with secret of size m = 1 and messages size
c(n, 1) = nO(

√
log log n/ log n). Applying Theorem2.12 with the CDS protocol

from Theorem 2.7 results in a 2-server t-robust CDS protocol with secrets of
size O(t log t log2 n) = O(t log3 n), message size O(nO(

√
log log n/ log n)t2 log5 t),

and normalized message size O(nO(
√

log log n/ log n)t log2 t). By Lemma 4.2,
there is a (G, t)-secret-sharing with secrets of size O(t log3 n) and maxi-
mum share size O(nO(

√
log log n/ log n)t2 log5 t), thus with normalized maximum

share size O(nO(
√

log log n/ log n)t log2 n) and with normalized total share size
O(n1+O(

√
log log n/ log n)t log2 n).

Scheme 2: Theorem 2.11 guarantees that for t ≤ n/(2 log2 n) there
exists a linear 2-server t-robust CDS protocol over Fq with message size
O

(
(t log2 t +

√
n)t log t log2 n log q

)
. Thus, by Lemma 4.2 there is a (G, t)-secret-

sharing scheme where the maximum share size is the above message size. For
t > n/(2 log2 n), the upper bound also holds because there is always a linear
(G, t)-secret-sharing with maximum share size O(n/ log n) [38].

Scheme 3: Theorem 2.11 also guarantees, for a large enough q, a 2-server
(t, n)-robust CDS protocol with secrets of size Θ(t2 log t log2 n log q) and nor-
malized message size O(t log2 t +

√
n). Again, we construct the desired (G, t)-

secret-sharing with from the robust CDS protocol applying Lemma4.2.
Scheme 4: By Theorem 2.6, there exists a multi-linear CDS protocol over F2

with normalized message size c(N,m)/m = 3 for secrets of size 2n2
. Applying

Theorem 4.4, we obtain a multi-linear (G, t)-secret-sharing over F2 with normal-
ized maximum share size O(t log2 t · c(N,m)/m) = O(t log2 t). ��

5 Secret-Sharing Schemes for Almost All Graphs

In this section we study the maximum share size of secret-sharing schemes for
almost all graphs and for almost all graphs in G (n, p) for different values of p.
The previous and new results for almost all graphs are summarized in Fig. 1,
while the results for G (n, p) are summarized in Fig. 4.

Schemes presented in this section rely on the properties of almost all graphs
shown in the end of Sect. 2, and use the (G, t)-secret-sharing schemes presented
in Sect. 4. In order to understand the share size of secret-sharing schemes for
almost all graphs, we provide lower bounds for them in Theorems 5.5 and 5.7.
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5.1 Schemes for Almost All Graphs

As a consequence of Lemma 2.13, the size of every independent set in almost
every graph in Gn is O(log n). We observed in Sect. 4 that a (G, t)-secret-sharing
scheme is also a secret-sharing scheme realizing G when t is bigger than the size
of a largest independent set of G. Hence, we consider the four constructions pre-
sented in Theorem 4.5 for t = O(log n). In Theorem 5.1 we present the resulting
schemes.

Theorem 5.1. Almost all graphs with n vertices can be realized by the following
schemes.

1. A secret-sharing scheme with maximum share size nO(
√

log log n/ log n) = no(1),
2. A linear secret-sharing scheme over Fq with maximum share size Õ(

√
n log q)

for every prime power q,
3. A multi-linear secret-sharing scheme over Fq with normalized maximum share

size O(
√

n) and moderately-short secrets of size Θ(log q log3 n log log n) for a
large enough q, and

4. A multi-linear secret-sharing scheme over F2 with normalized maximum share
size O

(
log n(log log n)2

)
for secrets of size 2n2

.

5.2 Secret-Sharing Schemes for G (n, p)

In order to study properties of sparse graphs, we study G (n, n−α) for a constant
0 < α < 1. Almost all graphs in G(n, n−α) have maximal independent sets
of size at most t = O(nα log n). Following the procedure we developed in the
previous section, we can construct secret-sharing schemes for almost all graphs in
G(n, n−α) using Theorem 4.5. Similar bounds can be obtained for linear schemes
and multi-linear schemes. They are presented in Fig. 4.

Theorem 5.2. Let 0 < α < 1 be a constant. Almost every graph in G (n, n−α)
can be realized by a secret-sharing scheme with normalized maximum share size
nmin(α,1−α)+o(1) and secret of size Õ(

√
n).

Proof. We present two schemes Π1 and Π2 for almost all graphs in G (n, n−α).
The scheme Π1 consists on sharing the secret for each edge independently. By
Lemma 2.15, almost every graph in G (n, n−α) has maximum degree of at most
2n1−α. Therefore, the maximum share size of Π1 is 2n1−α for almost all graphs
in G (n, n−α).

The second scheme Π2 is obtained from Theorem 4.5. For almost every
graph in G (n, n−α) the size of a maximum independent set is O(nα log n) (by
Lemma 2.14). Thus, we let Π2 be the (G,O(nα log n))-secret-sharing scheme of
Theorem 4.5 with secret of size Θ(t log3 n) = Θ(nα log4 n) and normalized max-
imum share size O(no(1)t log2 n) = O(nα+o(1) log3 n) = nα+o(1).

Therefore, almost every graph in G (n, n−α) can be realized by a secret-
sharing scheme with normalized maximum share size min(2n1−α, nα+o(1)) ≤
nmin(1−α,α)+o(1). ��
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For α ≤ 1/2, the best choice is Π1, and for α > 1/2, the best choice is Π2. For
α = 1/2, the normalized maximum share size of almost all graphs in G (n, n−α)
in our scheme is O(

√
n). This is the constant α that gives the worst upper bound

on the normalized maximum share size of secret-sharing schemes for G (n, n−α).
Finally, we study properties of very dense graphs by analyzing G (n, 1−n−α)

for a constant 0 < α < 1. By Lemma 2.14, the size of a maximum independent
set for almost all graphs in G (n, 1 − n−α) is constant. As we saw above, graphs
with small independent sets admit more efficient schemes. In Theorem 5.4 we
present secret-sharing schemes for almost all graphs in G (n, 1 − n−α). Two of
the schemes we present in Theorem 5.4 follow quite easily from our previous
results. In contrast, the linear scheme we construct in Theorem 5.4 does not
follow from previous results on robust CDS protocols. Rather, it follows from
the following theorem of [16] on the total share size for forbidden graph secret
sharing schemes and the techniques of [5].

Theorem 5.3 ([16, Theorem 6]). Let G = (V,E) graph with n vertices and at
least

(
n
2

) − n1+β edges, for some 0 ≤ β < 1. Then for every prime-power q > n
there is a linear (G, 2)-secret-sharing scheme over Fq that with total share size
Õ(n1+β/2 log q).

Theorem 5.4. Let 0 ≤ β < 1 be a constant. Almost all graphs in G (n, 1−nβ−1)
can be realized by a secret-sharing scheme with maximum share size no(1), a
linear secret-sharing scheme over Fq with total share size Õ(n1+β/2 log q) for
every prime-power q > n, and a multi-linear secret-sharing scheme over F2 with
exponentially long secrets of size 2n2

and normalized maximum share size O(1).

Proof. By Lemma 2.14, the size of a maximum independent set for almost all
graphs in G (n, 1−n−α) is some constant c. The non-linear secret-sharing scheme
and the secret-sharing scheme with long secrets are obtained by applying The-
orem 4.5 with t = O(1).

To construct the linear secret-sharing scheme we note that the maximum
degree of almost every graph G in G (n, 1 − nβ−1) is at least n − 2nβ (by
Lemma 2.15 applied to G), thus the number of edges in G is at least

(
n
2

)−n1+β .
The linear scheme is derived by using the technique of [5] to transform the (G, 2)-
secret-sharing scheme from Theorem 5.3 to a (G, c)-secret-sharing scheme: Let
H =

{
hi : [n] → [c2] : 1 ≤ i ≤ �

}
be a family of perfect hash functions,3 where

|H| = � = O(log n). The (G, c)-secret-sharing scheme, denoted Π, is as follows:

– Input: a secret s ∈ Fq.
– Choose � − 1 random elements s1, . . . , s�−1 from Fq and let s� = s − (s1 +

· · · + s�−1).

3 A family H is a family of perfect hash functions for sets of size at most c if for
every B ⊂ {1, . . . , n} such that |B| ≤ c, there exists a function h ∈ H such that h
is one-to-one on B, that is, h(u) �= h(v) for every distinct u, v ∈ B. By a standard
probabilistic argument, such family of size O(c log n) exists. For a constant c, the
size of the family is O(log n).
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– For every i ∈ {1, . . . , �} and every a, b ∈ {
1, . . . , c2

}
, independently share si

using the (G, 2)-secret-sharing scheme and give the share of vertex v to v if
and only if hi(v) ∈ {a, b}.

For the correctness of the scheme Π, let (u, v) be an edge in G (i.e., an
authorized set). For every i, the parties u, v can reconstruct si from the scheme
for a = h(u), b = h(v). For the privacy of Π, let B be an independent set in
G (i.e., a forbidden set). By Lemma 2.14, we can assume that the size of B is
at most c, thus, there exists a hash function hi ∈ H such that hi(u) �= hi(v)
for every distinct u, v ∈ B. Therefore, in any sharing of si for some values a, b
the parties in B hold at most 2 shares, and these shares are of a forbidden set.
The privacy of the (G, 2)-secret-sharing scheme implies that the parties in B do
not get any information on si from this execution. Since all executions of the
(G, 2)-secret-sharing scheme are executed with an independent random string,
the parties in B do not get any information on si from the shares of Π, hence
they get no information on s. Note that the total share size in Π is O(log n)
times the total share size of the (G, 2)-secret-sharing scheme. ��

5.3 Lower Bounds for the Share Size for Almost All Graphs

Next, we present lower bounds for the maximum share size of secret-sharing
schemes for almost all graphs. This question was first addressed by Csirmaz
in [35], where he proved a lower bound which we include in Theorem5.5.

Theorem 5.5. For almost every graph G, the normalized maximum share size
of every secret-sharing scheme realizing G is Ω(log log n), and the normalized
maximum share size of every multi-linear secret-sharing scheme realizing G is
Ω(log1/2 n).

Proof (Sketch). Both bounds are a consequence of Theorem 2.16 (which says
that almost all n-vertex graphs contain all graphs of size log n as an induced
graph), taking different graphs with log n vertices. The first bound was proved
by Csirmaz in [35], taking the family of hypercube graphs (or the graphs of [37]).
The second bound is a consequence of the results in [11,17]. The complete proof
is in the full version of this paper [13]. ��
Remark 5.6. Theorem 2.16 provides a connection between the maximum share
size of schemes for every graph access structure with r = log n vertices and the
maximum share size of schemes for almost all graph access structures with n ver-
tices. In Theorem 5.5 we used it in one direction, but it could also be used in the
converse direction. For instance: if there exist secret-sharing schemes for almost
all n-vertex graphs with (normalized) maximum share size � log n

log log n , then there
exist secret-sharing schemes realizing every r-vertex graph with (normalized)
maximum share size � r/ log r, which is currently the best upper bound [38].

In Theorem 5.7, we quote a lower bound on the maximum share size for linear
graph secret-sharing schemes, proved in [15,52]. Notice, however, that this bound
does not grow as a function of the size of the secrets.
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Theorem 5.7 ([15,52]). For almost every graph G, the maximum share size of
every linear secret-sharing scheme realizing G is Ω(

√
n).

6 Secret-Sharing Schemes for Very Dense Graphs

In this section we study secret-sharing schemes for very dense graphs, i.e., graphs
with n vertices and at least

(
n
2

) − n1+β edges for some 0 ≤ β < 1. This problem
was originally studied in [14], and the best previously known upper bounds on
the maximum share size and the total share size are presented in Theorems 6.1
and 6.2.

Theorem 6.1 ([14]). Let G = (V,E) be a graph with |V | = n and |E| ≥ (
n
2

) −
n1+β for some 0 ≤ β < 1. Then, there exists a linear secret-sharing scheme
realizing G with maximum share size Õ(n1/2+β/2), total share size Õ(n3/2+β/2),
and secret of size O(log n).

The above theorem hides poly-logarithmic factors in the share size. It was also
shown in [14] that these poly-logarithmic factors can be avoided if we consider
multi-linear secret-sharing schemes and normalized share size: for the graphs
considered in Theorem 6.1, there exists a multi-linear secret-sharing scheme with
normalized maximum share size O(n1/2+β/2) and secret of size O(log2 n).

In [14], there is another secret-sharing construction for very dense graphs,
presented in Theorem 6.2. The total share size of this scheme is smaller than the
one in Theorem 6.1, but the maximum share size may be larger.

Theorem 6.2 ([14]). Let G = (V,E) be a graph with |V | = n and |E| ≥ (
n
2

) −
n1+β for some 0 ≤ β < 1. There exists a linear secret-sharing scheme realizing
G with total share size Õ(n5/4+3β/4).

As an observation, notice that as a direct implication of the results in previous
sections we can construct a scheme whose maximum share size is similar to the
maximum share size as in the scheme of Theorem 6.2 (see the full version of this
paper [13]).

We use (G, t)-secret-sharing schemes, described in the Sect. 4, to construct
secret-sharing schemes for all very dense graphs. Our main result for dense
graphs is Theorem 6.4, where we show that graphs with at least

(
n
2

) − n1+β

edges admit secret-sharing schemes with normalized total share size n1+β+o(1).
This result nearly matches the best total share size for sparse graphs with at
most n1+β edges (for which we share the secret independently for each edge).
The construction follows the ideas described in the introduction.

In Fig. 3, we present a secret-sharing scheme Πdense realizing very dense
graphs. In Theorem 6.4, we use Πdense recursively to obtain our improved secret-
sharing scheme for dense graphs. The proofs of Lemma 6.3 and Theorem 6.4 are
presented in the full version of this paper [13].

Lemma 6.3. Let G = (V,E) be a graph with |V | = n and |E| ≥ (
n
2

) − n1+β

for some 0 ≤ β < 1. The scheme described in Fig. 3 is a secret-sharing scheme
realizing G.
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The secret: An element s ∈ S.
The parties: V = {1, . . . , n}
The scheme:

1. Let β < α < (1 + β)/2 and n′ = n1+β−α.
2. Let A ⊆ V be a subset of n′ vertices of lowest degree and G′ =

(A, E ∩ (A × A)).
3. Share s among A using Π1, a secret-sharing scheme realizing G′.
4. Choose r ∈ S uniformly at random.
5. Share r using Π2, a (G, 2nα + 1)-secret-sharing scheme.
6. Share r + s using Π3, a secret-sharing scheme where A is the only

maximal forbidden subset (that is, give r + s to every party not in
A).

Fig. 3. A secret-sharing scheme Πdense realizing a graph G = (V, E) with |E| ≥ (
n
2

) −
n1+β for some 0 ≤ β < 1.

total inf. ratio

(moderate

short secrets)

total share size

of linear schemes over Fq

total inf. ratio

multi-linear schemes

n1+β edges
n1+β [44]

Ω(n logn) [36]

n1+β log q [44]

Ω(nmin(1+β,3/2) log q)

[17]

n1+β [44]

Ω(nmin(1+β,3/2))

[17,11]

G (n, nβ−1)
nmin(1+β,2−β)+o(1)

Th. 5.2

nmin(1+β,3−2β)+o(1) log q

Th. 5.2

nmin(1+β,2−β)

Th. 5.2
n
2

) − n1+β

edges

n1+β+o(1) Th. 6.4

Ω(n logn) [14]

Õ(n5/4+β/4 log q) [14]

Ω(n1+β/2 log q) [14]

Õ(n1+β) Rem. 6.5

Ω(n1+β/2) [14,11]

G (n, 1 − nβ−1) n1+o(1) Th. 5.4 O(n1+β/2) log q Th. 5.4 O(1) Th. 5.4

Fig. 4. Total share size for different families of graphs and constant 0 < β < 1. Note
that almost all graphs in G (n, nβ−1) and in G (n, 1 − nβ−1) have Θ(n1+β) and

(
n
2

) −
Θ(n1+β) edges, respectively.

Theorem 6.4. Let G = (V,E) be a graph with |V | = n and |E| ≥ (
n
2

) − n1+β

for some 0 ≤ β < 1. Then G can be realized by a secret-sharing schemes with
secrets of size O(n log3 n) and normalized total share size n1+β+o(1).

Remark 6.5. In Theorem 6.4, we combine the secret-sharing scheme for very
dense graphs in Theorem 6.1 with several instances of the first scheme of
Theorem 4.5. Instead, if we replace the former by the fourth scheme of
Theorem 4.5, we obtain a multi-linear secret-sharing scheme with secrets of
exponential size and normalized total share size Õ(n1+β) for exponentially long
secrets.
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In Fig. 4, we summarize the current bounds on the total share size for graphs
with at most n1+β edges, graphs with at least

(
n
2

)−n1+β edges, G (n, nβ−1), and
G (n, 1 − nβ−1), for constant 0 < β < 1. Additional remarks and observations
are presented in the full version of this paper [13].
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Abstract. We construct uniquely decodable codes against channels
which are computationally bounded. Our construction requires only a
public-coin (transparent) setup. All prior work for such channels either
required a setup with secret keys and states, could not achieve unique
decoding, or got worse rates (for a given bound on codeword corruptions).
On the other hand, our construction relies on a strong cryptographic hash
function with security properties that we only instantiate in the random
oracle model.

1 Introduction

Error correcting codes (ECCs) are a tool for handling errors when transmitting
messages over an unreliable communication channel. They work by first encoding
the message with additional redundant information, which is then sent over
the channel. This allows the recipient to recover the original encoded message,
even in the presence of a limited number of errors that might occur during
transmission.

Since their introduction in the 1950s, error correcting codes [Ham50] have
been a thriving research area due to their role both in practical applications
and in theoretical computer science. One of the central open questions concerns
the exact tradeoff between a code’s rate (message length divided by codeword
length) and the code’s error tolerance (the number of errors that its decoding
algorithm can tolerate). There are several known fundamental bounds (e.g. the
Hamming, Singleton, and Plotkin bounds) on the maximum rate of a code in
terms of its distance, and state of the art codes (especially over small alphabets)
often only achieve significantly lower rates.

To achieve better rates, two major relaxations of error correction have been
proposed. In the first, called list decoding [Eli57,Woz58], a decoding algorithm
is no longer required to output the originally encoded message, but may instead
output a short list of messages which is required to contain the original message.
In this work, we will focus on standard (unique) decoding, but we will use list-
decodable codes as a central building block.
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In the second relaxation, the communication channel between the sender and
receiver is assumed to be restricted in some way. In other words, the code is no
longer required to handle fully worst-case errors. The most relevant model for us
is the computationally bounded channel [Lip94], which loosely speaking, models
codeword errors as generated by a polynomial-time process.

Lipton [Lip94] and Micali et al. [MPSW10] construct codes for the com-
putationally bounded channel with better rates than are achievable by codes
for worst-case errors, but their codes require a trusted setup. Specifically, the
encoding algorithms for their codes (and in the case of [Lip94], also the decod-
ing algorithm) require a secret key that, if leaked, allows an efficient channel to
thwart the decoding algorithm with a relatively small number of corruptions.
Secret randomness is much more difficult to instantiate than public randomness
(also known as transparent), which leads us to ask:

Are there “good” uniquely decodable codes for the computationally bounded
channel with transparent setup?

An additional drawback of the constructions of [Lip94] and [MPSW10] is
that they require a stateful encoder, which may render them unsuitable for use
in data storage or in applications requiring concurrent transmission of multiple
messages. In [Lip94], it is essential for security that the encoder’s state never
repeats, and essential for correctness that the decoder’s state is synchronized
with the encoder’s state. In [MPSW10], the decoder is stateless, but it is essential
for security that errors are chosen in an online fashion. In other words, there are
no guarantees if a codeword c is corrupted after seeing a codeword c′ that was
encoded after c. This exemplifies the undesirable dependence, induced by the
encoder’s statefulness, of the code’s error tolerance on the precise environment
in which it is used. Thus we ask:

Are there “good” uniquely decodable codes for the computationally bounded
channel with a stateless encoder?

1.1 Our Contributions

We answer both questions affirmatively, constructing a code for computationally
bounded channels (with transparent setup and stateless encoding) that outper-
forms codes for worst-case errors. As a contribution that may be of independent
interest, we also construct codes with high “pseudodistance”, i.e., codes for which
it is hard to find two codewords that are close in Hamming distance.

Pseudounique Decoding. The main goal of an error correcting code C is to facil-
itate the recovery of a transmitted message given a partially corrupted copy of
C(m). To formalize this (in the information-theoretic setting), a polynomial-time
algorithm D is said to be a unique decoding algorithm for C against ρ errors
if for all messages m and all strings c′ that are ρ-close in Hamming distance to
C(m), we have D(c′) = m.
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In reality, messages and noise are created by nature, which can be conserva-
tively modeled as a computationally bounded adversary. We thus relax the above
for all quantification and only require efficient decoding when both m and c′ are
chosen by a computationally bounded process. Our codes will be described by a
randomly generated seed that is used in the encoding and decoding procedures.
In other words, we will work with a seeded family of codes {Cpp}, where pp is
the seed, which we will also refer to as the public parameters for the code. In our
constructions, the public parameters are merely unstructured uniformly random
strings of a certain length.

More formally, we say that a polynomial-time algorithm D is a pseudounique
decoding algorithm for {Cpp} against ρ errors if no polynomial-time adversary A
can win the following game with noticeable probability. The public parameters
pp are first sampled uniformly at random and given to A. The adversary then
produces a message m and a string c′, and is said to win if c′ is ρ-close to Cpp(m)
and D(pp, c′) �= m.

Under cryptographic assumptions (or in the random oracle model), we con-
struct codes with pseudounique decoding algorithms for a larger fraction of errors
than is possible in the standard setting. Our main theorem requires a “good”
cryptographic hash function (which is used as a black box), where we defer the
formalization of the necessary security requirements to Sect. 3. For now, we sim-
ply mention that it is a multi-input generalization of correlation intractability,
and in Section 3 we show that it can be instantiated by a (non-programmable)
random oracle. The precise statement and details about the construction appear
in Sect. 4.

Informal Theorem 1. For any r ∈ (0, 1) and any ρ < min(1 − r, 1
2 ) there

exist rate-r codes, over large (polynomial-sized) alphabets, that are efficiently
pseudouniquely decodable against up to a ρ fraction of errors, assuming good
hash functions exist (or in the random oracle model).

This should be contrasted with the Singleton bound, which rules out (standard)
unique decoding for more than min(1−r

2 , 1
2 ) errors. Our positive result is a corol-

lary of a more general connection to efficient list-decodability, which we prove in
Sect. 4. This connection also implies results over binary alphabets, albeit with
bounds that are harder to state (see Corollary 3) because known binary codes
do not achieve list-decoding capacity and instead have messy rate vs. error cor-
rection tradeoffs.

Pseudodistance. Our second notion is an analogue of distance. Recall that a code
C is said to have distance d if for all pairs of distinct messages m0, m1, their
encodings C(m0) and C(m1) have Hamming distance d. We can similarly replace
this for all quantifier and only require Cpp(m0) and Cpp(m1) to be far for pairs
m0, m1 that are computed from pp by a computationally bounded adversary.

We note that a code’s pseudodistance may be arbitrarily high without imply-
ing anything about its decodability, even by an inefficient algorithm. It is instruc-
tive to imagine a rate-1 code whose encoding algorithm is given by a (sufficiently
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obfuscated) random permutation mapping {0, 1}n → {0, 1}n. The pseudodis-
tance of this code will be roughly n/2, but it is information theoretically impos-
sible to decode in the presence of even a single error.

Still, pseudodistance is a useful intermediate notion for us in the construc-
tion of pseudouniquely decodable codes, and the notion may be of independent
interest.

1.2 Main Definitions and Main Theorem Statement

The preceding discussion is formalized in the following definitions.

Definition 1. A seeded code with alphabet size q(·) is a pair C = (Setup,Enc)
of polynomial-time algorithms with the following syntax:

– Setup is probabilistic, takes a domain length k ∈ Z
+ (in unary), and outputs

public parameters pp.
– Enc is deterministic, takes parameters pp and a message m ∈ {0, 1}k, and

outputs a codeword c ∈ [q(k)]n(k), where n(·) is called the length of C.

When limk→∞ k
n(k) log2 q(k) ∈ [0, 1] is well-defined it is called the rate of C. If

Setup simply outputs a uniformly random binary string of some length that
depends on k, then we say that C is public-coin.

Definition 2. A seeded code C = (Setup,Enc) is said to have
(
s(·), ε(·)) - pseu-

dodistance d(·) if for all size-s(·) circuit ensembles {Ak}k∈Z+ , we have

Pr
pp←Setup(1k)

(m0,m1)←Ak(pp)

[
Δ

(
Enc(pp,m0),Enc(pp,m1)

)
< d

] ≤ ε(k),

where Δ(·, ·) denotes the (absolute) Hamming distance.
C is said simply to have pseudodistance d(·) if for all s(k) ≤ kO(1), there

exists ε(k) ≤ k−ω(1) such that C has (s, ε)-pseudodistance d.

Definition 3. An algorithm Dec is said to be an
(
s(·), ε(·))-pseudounique

decoder for C = (Setup,Enc) against d(·) errors if for all size-s(·) circuit ensembles
{Ak}k∈Z+

Pr
pp←Setup(1k)
(m,c)←Ak(pp)

[
Δ

(
c,Enc(pp,m)

) ≤ d(k) ∧ Dec(pp, c) �= m
] ≤ ε(k).

We say that C is efficiently
(
s(·), ε(·))-pseudouniquely decodable against d(·) errors

if there is a polynomial-time algorithm Dec that is an
(
s(·), ε(·))-pseudounique

decoder for C. We omit s and ε in usage of the above definitions when for all
s(k) ≤ kO(1), there exists ε(k) ≤ k−ω(1) such that the definition is satisfied.

We sometimes say a “ρ fraction of errors” to refer to some d(k) such that
limk→∞

d(k)
n(k) = ρ, where n(·) is the length of C.
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As in the previous theorem, we assume the existence of random-like hash
functions to obtain our result. These hash functions can be instantiated in the
random oracle model.

Informal Theorem 2. If {C : {0, 1}k → [q]nk} is a rate-r ensemble of codes
that is efficiently list-decodable against a ρ fraction of errors, and if good hash
functions exist, then there exists a rate-r seeded code that is efficiently pseu-

douniquely decodable against a min
(

ρ,
H−1

q

(
r+Hq(ρ)

)

2

)
fraction of errors.

The above bound has a nice interpretation when C approaches capacity, i.e.

when r + Hq(ρ) ≈ 1. Then H−1
q (r+Hq(ρ))

2 ≈ 1
2 · (

1 − 1
q

)
, which upper bounds the

pseudo-unique decodability of any positive-rate code (implied by the proof of
the Plotkin bound, and made explicit in [MPSW10]). So if C achieves capacity,
Theorem 2 says that one can uniquely decode up to the (efficient) list-decoding
radius of C, as long as that doesn’t exceed 1

2 · (
1 − 1

q

)
.

1.3 Related Work

The notion of a computationally bounded channel was first studied by Lip-
ton [Lip94], and has subsequently been studied in a variety of coding the-
ory settings including local decodability, local correctability, and list decoding,
with channels that are bounded either in time complexity or space complex-
ity [DGL04,GS16,BGGZ19,MPSW10,SS16,HOSW11,HO08,OPS07]. We com-
pare some of these works in Table 1. Focusing on unique decoding against
polynomial-time computationally bounded errors, the work most relevant to us
is [MPSW10], improving on [Lip94].

Lipton [Lip94] showed that assuming one-way functions, any code that is
(efficiently) uniquely decodable against ρ random errors can be upgraded to a
“secret-key, stateful code” that is (efficiently) uniquely decodable against any
ρ errors that are computed in polynomial time. Using known results on codes
for random errors, this gives rate-r (large alphabet) codes that are uniquely
decodable against a 1 − r fraction of errors. However, these codes require the
sender and receiver to share a secret key, and to be stateful (incrementing a
counter for each message sent/received).

Micali et al. [MPSW10] improve on this result, obtaining a coding scheme
where only the sender needs a secret key (the receiver only needs a corresponding
public key), and only the sender needs to maintain a counter. They show that
these limitations are inherent in the high-error regime; namely, it is impossible
to uniquely decode beyond error rates 1/4 (in the binary case) and more gen-
erally 1

2 · (1 − 1
q ) over q-ary alphabets, even if the errors are computationally

bounded. Compared to [Lip94], [MPSW10] starts with codes that are efficiently
list decodable, rather than codes that are uniquely decodable against random
errors. The crux of their technique is using cryptographic signatures to “sieve”
out all but one of the candidate messages returned by a list-decoding algorithm.
Our construction also uses list decodability in a similar way. The key difference



Transparent Error Correcting in a Computationally Bounded World 535

is that we use a different sieving mechanism that is stateless and transparent
(i.e., the only setup is a public uniformly random string), but is only applicable
for error rates below 1

2 · (1 − 1
q ).

Our work improves over [MPSW10] in the amount of setup required for the
code. In [MPSW10], the sender must initially create a secret key and share the
corresponding public key with the receiver (and the adversarial channel is also
allowed to depend on the public key). In contrast, our code allows anyone to send
messages—no secret key is needed. This property may be useful in applications
such as Wi-Fi and cellular networks, where many parties need to communicate.

Another important difference between [MPSW10] and our work is that in
[MPSW10], the sender is stateful. That is, whenever the sender sends a mes-
sage, he updates some internal state which affects the way the next message
will be encoded. We do not make such an assumption. Note that in some situa-
tions, maintaining a state may not be possible. For example, if there are multiple
senders (or a single sender who is operating several servers in different locations),
it is unclear how to collectively maintain state. Whenever one of the senders
sends a message, he must inform all the other senders so they can update their
state accordingly, which may not be possible, or significantly slow down com-
munication. Moreover, the guarantees of [MPSW10] only apply to adversaries
that operate in a totally “online” fashion. The error tolerance guarantees break
down if an adversary is able to corrupt a codeword after seeing a subsequently
encoded message. In our construction, the sender and receiver are both stateless,
so these issues do not arise.

One drawback of our construction compared to [MPSW10] is that our con-
struction is not applicable in the high-error regime (error rates above 1/4 for
binary codes or 1/2 for large alphabet codes). However, over large alphabets we
match the performance of [MPSW10] for all error rates below 1/2.

2 Preliminaries

2.1 Combinatorics

Definition 4. The ith falling factorial of n ∈ R is (n)i
def= n ·(n−1) · · · (n−i+1).

Definition 5. The q-ary entropy function Hq : [0, 1] → [0, 1] is defined as

Hq(x) def= x logq(q − 1) − x logq x − (1 − x) logq(1 − x).

We write H∞(x) to denote limq→∞ Hq(x), which is equal to x. If we write H(x),
omitting the subscript, we mean H2(x) by default.

Definition 6. For any alphabet Σ, any n, and any u, v ∈ Σn, the Hamming
distance between u and v, denoted Δ(u, v), is

Δ(u, v) def=
∣
∣
∣
{
i ∈ [n] : ui �= vi

}∣
∣
∣.

When Δ(u, v) ≤ δn, we write u ≈δ v. If S is a set, we write Δ(u, S) to denote
minv∈S Δ(u, v).
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Table 1. Summary of related work. The column “message” refers to how the message
are generated. The column “noise” describes the computational power of the adversary
adding noise. URS stands for uniform random string (shared publicly between the
sender, receiver, and adversary), BSC for binary symmetric channel, and PRG for
pseudorandom generator.

Work Setup Noise Decoding Rate Assumptions

This paper URS P/poly unique arbitrarily close

to 1 − p for large

alphabets

two-input

correlation

intractablility

[GS16] URS SIZE(nc) list arbitrarily close

to 1 − H(p)

no assumptions

[SS16] none SIZE(nc) list arbitrarily close

to 1 − H(p)

PRGs for small

circuits

[SS20] none SPACE(nδ) unique arbitrarily close

to 1 − H(p)

none

[MPSW10] public key P/poly unique matches list

decoding radius

stateful sender

and one-way

functions

[OPS07] private shared

randomness

P/poly local Ω(1) (for error

rate Ω(1))

one-way

functions

[HOSW11] public key P/poly local Ω(1) (for error

rate Ω(1))

public-key

encryption

[BGGZ19] URS P/poly local correction Ω(1) (for error

rate Ω(1))

collision-

resistant hash

function

[Lip94] private shared

randomness

P/poly unique matches BSC

channel

stateful sender

and one-way

functions

2.2 Codes

Definition 7. A deterministic q-ary code is a function C : [K] → [q]n, where n is
called the block length of C, [K] is called the message space, and [q] is called the
alphabet. The distance of C is the minimum Hamming distance between C(m)
and C(m′) for distinct m,m′ ∈ [K]. A probabilistic q-ary code of block length n

and message space [K] is a randomized function C : [K] $→ [q]n.

When discussing the asymptotic performance of (deterministic or probabilis-
tic) codes, it makes sense to consider ensembles of codes {Ci : [Ki] → [qi]ni} with
varying message spaces, block lengths, and alphabet sizes. We will assume sev-
eral restrictions on Ki, ni, and qi that rule out various pathologies. Specifically,
we will assume that:

– Ki, qi, and ni increase weakly monotonically with i and are computable from
i in polynomial time (i.e. in time polylog(i)).

– qi is at most polylog(Ki).
– There is a polynomial-time algorithm E that given (i, x) for x ∈ [Ki] outputs

Ci(x).
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– The limit r = limi→∞ log Ki

ni·log qi
exists with r ∈ (0, 1). We call r the rate of the

ensemble.
– lim supi→∞

log Ki+1
log Ki

= 1. This is important so that the cost of padding (to
encode arbitrary-length messages) is insignificant.

One implication of these restrictions is that without loss of generality we can
assume that {Ki}i∈Z+ =

{
2k

}
k∈Z+ and we can index our codes by k rather than

by i.

Definition 8. We say that an ensemble of codes
{
Ck : {0, 1}k → [qk]nk

}
k∈Z+

is combinatorially ρ-list decodable if for any y ∈ [qk]nk , there are at most poly(k)
values of m ∈ {0, 1}k for which Ck(m) ≈ρ y. If there is a polynomial-time
algorithm that outputs all such m given y (and 1k), we say that {Ck} is efficiently
ρ-list decodable.

2.3 Pseudorandomness

Definition 9. Random variables X1, . . . , Xn are said to be t-wise independent if
for any set S ⊆ [n] with size |S| = t, the random variables {Xi}i∈S are mutually
independent.

Definition 10. Discrete random variables X1, . . . , Xn are said to be t-wise β-
dependent in Rényi∞-divergence if for all sets S ⊆ [n] of size |S| = t, it holds
for all (xi)i∈S that

Pr

[
∧

i∈S

Xi = xi

]

≤ β ·
∏

i∈S

Pr[Xi = xi].

Permutations. If X is a finite set, we write SX to denote the set of all permu-
tations of X.

Definition 11. A family of permutations Π ⊆ SX is said to be t-wise ε-
dependent if for all distinct x1, . . . , xt ∈ X, the distribution of

(
π(x1), . . . , π(xt)

)

for uniformly random π ← Π is ε-close in statistical distance to uniform on
{(y1, . . . , yt) : y1, . . . , yt are distinct.}

To avoid pathological issues regarding the domains of permutation families
(e.g. their sampleability, decidability, and compressability), we will restrict our
attention to permutations on sets of the form {0, 1}k for k ∈ Z

+.

Definition 12. We say that an ensemble {Πk ⊆ S{0,1}k}k∈Z+ of permutation
families is fully explicit if there are poly(k)-time algorithms for:

– sampling a description of π ← Πk; and
– computing π(x) and π−1(x) given x and a description of π ∈ Πk.

Imported Theorem 3 ([KNR09]). For any t = t(k) ≤ kO(1), and any
ε = ε(k) ≥ 2−kO(1)

, there is a fully explicit t-wise ε-dependent ensemble
{Πk ⊆ S{0,1}k}k∈Z+ of permutation families.
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The following non-standard variation on the notion of t-wise almost-
independence will prove to be more convenient for us.

Definition 13. A probability distribution P is said to be β-close in Rényi∞-
divergence to a distribution Q if for all x, P (x) ≤ β · Q(x).

Definition 14. We say that a family Π ⊆ SX is t-wise β-dependent in Rényi∞-
divergence if for all distinct x1, . . . , xt ∈ X, the distribution of

(
π(x1), . . . , π(xt)

)

is β-close in Rényi∞-divergence to the uniform distribution on Xt.

It is easily verified that any family of permutations Π ⊆ S[K] that is t-wise
ε-dependent as in Definition 11 is also t-wise β-dependent in Rényi∞-divergence
with β = ε · Kt + Kt

(K)t
. Thus Theorem 3 gives us the following.

Corollary 1. For any t = t(k) ≤ kO(1), there is a fully explicit t-wise O(1)-
dependent (in Rényi∞-divergence) ensemble {Πk ⊆ S{0,1}k}k∈Z+ of permutation
families.

3 Multi-input Correlation Intractability

Correlation intractability was introduced by Canetti Goldreich and Halevi
[CGH04] as a way to model a large class of random oracle-like security properties
of hash functions. Roughly speaking, H is said to be correlation intractable if
for any sparse relation R it is hard to find x such that (x,H(x)) ∈ R. In recent
years, CI hash functions have been under the spotlight with surprising results
on instantiating CI hash families from concrete computational assumptions (e.g.,
[CCR16,KRR17,CCRR18,CCH+18,PS19]).

In this work, we need a stronger multi-input variant of correlation intractabil-
ity. We formulate a notion of multi-input sparsity such that a hash function can
plausibly be correlation intractable for all sparse multi-input relations. Indeed,
we prove that a random oracle has this property.

Definition 15 (Multi-input Relations). For sets X and Y, an 
-input rela-
tion on (X ,Y) is a subset R ⊆ X � × Y�.

We say that R is p-sparse if for all i ∈ [
], all distinct x1, . . . , x� ∈ X , and
all y1, . . . , yi−1, yi+1, . . . , y� ∈ Y, we have

Pr
yi←Y

[(x1, . . . , x�, y1, . . . , y�) ∈ R] ≤ p.

An ensemble of 
-input relations {Rλ}λ∈Z+ is said simply to be sparse if there
is a negligible function p : Z+ → R such that each Rλ is p(λ)-sparse.

Remark 1. A natural but flawed generalization of single-input sparsity for
an 
-input relation R might instead require that for all x1, . . . , x�, it holds
with overwhelming probability over a uniform choice of y1, . . . , y� that
(x1, . . . , x�, y1, . . . , y�) /∈ R. Unfortunately this definition does not account for an
adversary’s ability to choose some xi adaptively. Indeed, even a random oracle
would not be 2-input correlation intractable under this definition for the rela-
tion {(x1, x2, y1, y2) : x2 = y1}, which does satisfy the aforementioned “sparsity”
property.
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Definition 16 (Multi-Input Correlation Intractability). An ensemble
H = {Hλ}λ∈Z+ of function families Hλ = {Hk : Xλ → Yλ}k∈Kλ

is 
-input(
s(·), ε(·))-correlation intractable for a relation ensemble {Rλ ⊆ X �

λ × Y�
λ} if for

every size-s(λ) adversary A:

Pr
k←Kλ

(x1,...,x�)←A(k)

[(
x1, . . . , x�,Hk(x1), . . . , Hk(x�)

) ∈ Rλ

]
≤ ε(λ).

3.1 Multi-input Correlation Intractability of Random Oracles

We show that a random oracle is 
-input correlation intractable as in Defini-
tion 16.

Theorem 4. Let F be a uniformly random function mapping X → Y, and let

 ∈ Z

+ be a constant. Then, for any p-sparse 
-distinct-input relation R on
(X ,Y), and any T -query oracle algorithm A(·), we have

Pr
[AF outputs (x1, . . . , x�) ∈ X � s.t.

(
x1, . . . , x�, F (x1), . . . , F (x�)

) ∈ R
]

≤ p · (T )� ≤ p · T �.

Proof Overview. We give an overview of the proof which should give some intu-
ition as to why get the expression p · T �. Fix a set of elements x1, . . . , x� then
the probability, over the random oracle, that these elements will be in the rela-
tion with respect with the random oracle is at most p, which follows from the
definition of sparsity. However, for a longer list of elements of length, we would
need to take into account all the possible tuples of size 
 in that list, and apply
a union bound. Since the number of queries is bounded by T , we get that the
probability is at most p · T �.

The above arguments work for a fixed list of elements, and gives intuition for
the probability expression achieved in the theorem. However, an oracle algorithm
is allowed to perform adaptive queries where the next query might depend on
the result of the random oracle for previous queries. This makes the proof more
challenging and, in particular, much more technical.

Proof. We begin the proof by stating a few assumptions about the algorithm A,
and observe that these assumption hold without loss of generality:

– A is deterministic;
– A never makes repeated queries to F nor does A output non-distinct

x1, . . . , x�; and
– If at any point A has made queries q1, . . . , qj and received answers a1, . . . , aj

such that for some i1, . . . , ik ∈ [j]� the tuple (qi1 , . . . , qi�
, ai1,, . . . , ai�

) is in
R, then A immediately outputs one such tuple (without making any further
queries).

We denote the random variables representing the various queries of the algorithm
A, and their responses from the oracle. Let M be a random variable denoting
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the number of queries made by A, let Q1, . . . , QM denote the queries made by
A to F , let A1, . . . , AM denote the corresponding evaluations of F , let Q denote
{Q1, . . . , QM}, let X1, . . . , X� denote the output of AF , and let Y1, . . . , Y� denote
the corresponding evaluations of F .

We split our analysis into two cases: either (X1, . . . , X�) ∈ Qk, or not, mean-
ing that the algorithm did not query all of the 
 elements it outputs. We argue
about each case separately and at the end combine to the two to a single argu-
ment. We begin with the second case.

Claim. For any algorithm A it holds that

Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) /∈ Q�

] ≤ p · 
.

where the probability is over the random oracle.

Proof Sketch. There exists some component of A’s output whose image under F
is independent of A’s view, and thus is uniformly random. Since R is p-sparse,
this ensures that (X1, . . . , X�, Y1, . . . , Y�) is in R with probability at most p.

Proof. Fix any i ∈ [
] and any (q1, . . . , q�, a1, . . . , ai−1, ai+1, . . . , a�). Since the
relation is p-sparse, we know that

Pr[(q1, . . . , q�, a1, . . . , ai−1, Yi, ai+1, . . . , a�) ∈ R] ≤ p.

Thus, we can write:

Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) /∈ Q�

]

≤
∑

i∈[�]

Pr [(X1, . . . , X�, Y1, . . . , Y�) ∈ R | Xi ∈ Q] · Pr[Xi /∈ Q]

≤
∑

i∈[�]

∑

q1,...,q�
a1,...,ai−1,ai+1,...,a�

Pr [(q1, . . . , q�, a1, . . . , ai−1, Yi, ai+1, . . . , a�) ∈ R] ·

Pr[∀j �= i : Xj = qj , Yj = aj ,Xi = ai] · Pr[Xi /∈ Q]

≤ p ·
∑

i∈[�]

Pr[Xi /∈ Q] ·
∑

q1,...,q�
a1,...,ai−1,ai+1,...,a�

Pr[∀j �= i : Xj = qj , Yj = aj ,Xi = ai]

≤ p ·
∑

i∈[�]

Pr[Xi /∈ Q] ≤ p · 
.

We turn to prove the first case, where all the elements in the algorithm’s
output where queried. This case is where we pay the p · T k in the probability.

Claim. For any T -query algorithm A it holds that:

Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) ∈ Q�

] ≤ p · T k.
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Proof. For any m ∈ [T ], let Zm be an indicator random variable to the event
that the mth query of the algorithm A along with some 
 − 1 previous queries
form an instance in the relation. Formally, we define:

Zm ={
1 if ∃i1, . . . , i� ∈ [m] s.t. (Qi1 , . . . , Qi�

, Ai1 , . . . , Ai�−1 , Am)∈R and m ∈ {i1, . . . , i�}
0 otherwise

.

Observe that using this notation, we have that if the event (X1, . . . , X�, Y1, . . . ,
Y�) ∈ R implies that there exist an m ∈ [T ] such that Zm = 1. Using the fact that
R is p-sparse, we bound Pr[Zm = 1], for any m ∈ [T ] as follows:

Pr[Zm] = 1

Pr[∃i1, . . . , i� ∈ [m] such that (Qi1 , . . . , Qi� , Ai1 , . . . , Ai�) ∈ R and m ∈ {i1, . . . , i�}]

≤
∑

i1,...,i�∈[m], m∈{i1,...,i�}
Pr[(Qi1 , . . . , Qi� , Ai1 , . . . , Ai�) ∈ R]

≤
∑

i1,...,i�∈[m], m∈{i1,...,i�}
p ≤ p · � · (m − 1)�−1.

Then, we union bound over all zm for m ∈ [T ] and get that

Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) ∈ Q�

] ≤ Pr[∃m ∈ [T ] : Zm = 1]

≤
T∑

m=1

Pr[Zm = 1] ≤
T∑

m=1

p · 
 · (m − 1)�−1 ≤ p · (T )�.

Finally, using the two claims we get that

Pr [(X1, . . . , X�, Y1, . . . , Y�) ∈ R]

= Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) ∈ Q�

]
· Pr[(X1, . . . , X�) ∈ Q�]

+ Pr
[
(X1, . . . , X�, Y1, . . . , Y�) ∈ R | (X1, . . . , X�) /∈ Q�

]
· Pr[(X1, . . . , X�) /∈ Q�]

≤ p · (T )� · Pr[(X1, . . . , X�) ∈ Q�] + p · � · Pr[(X1, . . . , X�) /∈ Q�]

≤ p · (T )� · Pr[(X1, . . . , X�) ∈ Q�] + p · (T )� · Pr[(X1, . . . , X�) /∈ Q�]

= p · (T )� ≤ p · T �.

4 Our Construction

We have defined the notion of a multi-input correlation intractable hash, and
showed that they can be constructed in the random oracle model. We now con-
struct a seeded family of codes that is pseudouniquely decodable against a large
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fraction of errors, using 2-input correlation intractable hash functions as a cen-
tral tool (in a black-box way). Loosely speaking, our construction starts with
any efficiently list-decodable code C : {0, 1}k → [q]n, and modifies it in several
steps.

1. We first apply a decodability- and rate-preserving seeded transformation to
C to obtain (a seeded family of) stochastic codes in which with all pairs of
messages are mapped to far apart codewords with overwhelmingly probabil-
ity.
Specifically, the seed is (loosely speaking) a pseudorandom permutation
π : {0, 1}k → {0, 1}k, and the stochastic code maps m′ ∈ {0, 1}k−� to
C
(
π
(
m′‖r

))
for uniformly random r ← {0, 1}�, where 
 satisfies ω(k) ≤


 ≤ o(k).
2. We derandomize these codes by generating randomness deterministically as

a hash of the message.

More formally, we will consider the following parameterized construction of
a seeded code family.

Construction 5. Suppose that

– C = {Ck : {0, 1}k → [qk]nk}k∈Z+ is a fully explicit ensemble of codes,
– Π = {Πk ⊆ S{0,1}k}k∈Z+ is a fully explicit ensemble of permutation families,

and
– H = {Hk} is a fully explicit ensemble of hash function families, where

functions in Hk map {0, 1}k−�k to {0, 1}�k for some 
 = 
k satisfying
ω(log k) ≤ 
k ≤ o(k).

Then we define a seeded family of codes SC[C,Π,H] by the following algorithms
(Setup,Enc):

– Setup takes 1k as input, samples π ← Πk and h ← Hk, and outputs (π, h).
– Enc takes (π, h) as input, as well as a message m ∈ {0, 1}k−�, and outputs

Ck

(
π
(
m,h(m)

))
.

SC[C,Π,H] inherits several basic properties from C, including alphabet size
and block length. We only consider hash family ensembles {Hk} in which the
output length 
k of functions in Hk satisfies 
k ≤ o(k). With such parameters,
the resulting coding scheme SC[C,Π,H] has the same rate as C.

4.1 From 2-Input Correlation Intractability to Pseudodistance

In this section, we show that if C is a sufficiently good ensemble of codes, H is
a two-input correlation intractable hash with an appropriate output length, and
Π is pseudorandom, then SC[C,Π,H] has high pseudodistance.
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Proposition 1. For any:

– rate-r (combinatorially) ρ-list decodable ensemble of codes {Ck : {0, 1}k →
[qk]nk}k∈Z+ ;

– ensemble Π = {Πk ⊆ S{0,1}k}k∈Z+ of ω(1)-wise O(1)-dependent (in Rényi∞-
divergence) permutation families;

– δ ∈ (0, 1) satisfying Hq(δ) − Hq(ρ) < r, where q = limk→∞ qk

SC[C,Π,H] has relative pseudodistance δ as long as H is 2-input correlation
intractable for a specific family of sparse relations.

Proof. By construction, SC[C,Π,H] has relative pseudodistance δ if and only if
given π ← Πk and h ← Hk, it is hard to find m0,m1 ∈ {0, 1}k−�k such that
Ck

(
π
(
m0, h(m0)

)) ≈δ Ck

(
π
(
m1, h(m1)

))
, i.e. if

(
m0,m1, h(m0), h(m1)

)
is in

the relation:

Rclose
C,π,δ,�k

⊆ ({0, 1}k−�k
)2 × ({0, 1}�k

)2

Rclose
C,π,δ,�k

def=
{

(m0,m1, r0, r1) : Ck

(
π
(
m0, r0

)) ≈δ Ck

(
π
(
m1, r1

))}
.

To finish the proof of Proposition 1, it suffices to show that this relation is
sparse with high probability (over the choice of π ← Πk), which is established
by the following claim.

Claim. For any:

– rate-r combinatorially ρ-list decodable ensemble of codes {Ck : {0, 1}k →
[qk]nk}k∈Z+ ;

– δ ∈ (0, 1) satisfying limk

(
Hqk

(δ) − Hqk
(ρ)

)
< r;

for tk ≥ ω(1) and all tk-wise O(1)-dependent (in Rényi∞-divergence) permuta-
tion families {Πk ⊆ S{0,1}k} and all 
k ≤ o(k), it holds for random π ← Πk that
the relation Rclose

Ck,π,δ,�k
is tk · 2−�k -sparse with all but 2−Ω(k·tk) probability.

Proof (Proof of Section 4.1). For simplicity of presentation, we omit the explicit
dependencies of Ck, Πk, qk, nk, tk, and 
k on k, simply writing C, q, n, t, and 

respectively in statements that are to be interpreted as holding for all sufficiently
large k.

Fix any (x1, y1) ∈ {0, 1}k−�×{0, 1}� and consider the Hamming ball B ⊆ [q]n
of relative radius δ around C(x1, y1). Using Theorem 12, we get that B can be
covered by qn·(Hq(δ)−Hq(ρ)) · poly(n) balls of relative radius ρ. By C’s combina-
torial ρ-list decodability, each such ball contains at most poly(k) codewords of
C. The total number of codewords in C is at most 2k ≈ qrn which lets us write:

Pr
c←C

[c ≈δ C(x1, y1)] ≤ poly(k) · poly(n) · qn·
(

Hq(δ)−Hq(ρ)
)

· q−nr ≤ q−Ω(n) ≤ 2−Ω(k).

Now, observe that as long as t ≥ 2, by the t-wise O(1)-dependence of Π, there
exists a constant c such that for any x1, x2, y1, y2 with x1 �= x2 it holds that:

Pr
π

[(x1, x2, y1, y2) ∈ Rclose
C,π,δ,�] ≤ c · Pr

c←C
[c ≈δ C(x1, y1)] ≤ 2−Ω(k).
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Thus, the expected number μ of y′
2 for which (x1, x2, y1, y

′
2) ∈ Rclose

C,π,δ,� satisfies
μ ≤ 2�−Ω(k). Applying a concentration bound for t-wise almost-dependent ran-
dom variables (Theorem 10), we see that for any fixed x1, x2, y1 with x1 �= x2 it
holds that

Pr
π

[
Pr

y2←{0,1}�

[
(x1, x2, y1, y2) ∈ Rclose

C,π,δ,�

] ≥ t + 1
2�

]
≤ O

(
μt

(t + 1)!

)
≤ O

(
μt

)
.

Thus, by a union bound over x1, x2, y1, it holds that, with all but O
(
22k−� · μt

)

probability, for all x1, x2, y1,

Pr
y2←{0,1}�

[
(x1, x2, y1, y2) ∈ Rclose

C,π,δ,�

] ≤ t

2�
. (1)

By a symmetric argument, it holds with all but O
(
22k−� · μt

)
probability that

for all x1, x2, y2,

Pr
y1←{0,1}�

[
(x1, x2, y1, y2) ∈ Rclose

C,π,δ,�

] ≤ t

2�
. (2)

Applying one last union bound, Eqs. (1) and (2) hold simultaneously with prob-
ability all but

O
(
22k−� · μt

) ≤ 22k−� · 2t
(
�−Ω(k)

)

≤ 2−Ω(tk),

where the last inequality is because 
 ≤ o(k) and t ≥ ω(1).

This concludes the proof of Proposition 1.

4.2 From Efficient List Decodability to Pseudounique Decodability

We next observe that if C is efficiently ρ-list decodable then so is C′ = SC[C,Π,H]
(as long as Π and H are fully explicit). We show that this, combined with the
high pseudodistance that we have already established, implies that C′ has a
pseudounique decoding algorithm against a large fraction of errors.

We first define the straight-forward adaptation of list decoding for seeded
families of codes.

Definition 17. We say that Dec is an
(
L(·), ρ)

-list decoding algorithm for a
seeded family of codes (Setup,Enc) if for all pp in the support of Setup(1k),
all m ∈ {0, 1}k, and all y ≈ρ Enc(pp,m), Dec(pp, y) is an L(k)-sized set that
contains m. We say that Dec is simply a ρ-list decoding algorithm if it is an(
L(·), ρ)

-list decoding algorithm for some L(k) ≤ kO(1).
We say that C = (Setup,Enc) is efficiently ρ-list decodable if there exists a

polynomial-time ρ-list decoding algorithm for C.
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Proposition 2. If C = {Ck} is efficiently ρ-list decodable and Π and H are
fully explicit, then so is SC[C,Π,H].

Proof. Given public parameters (π, h) ← Setup(1k) and a noisy codeword c′, we
can list-decode by:

1. Running the list-decoding algorithm for Ck to obtain strings y1, . . . , yL ∈
{0, 1}k,

2. Inverting each yi under π to obtain pairs (m1, r1), . . . , (mL, rL),
3. Outputting the set {mi : ri = h(mi) ∧ Ck(π(mi, ri)) ≈ρ c′}.

Proposition 3. If C = (Setup,Enc) is a seeded family of codes that:

– is efficiently list-decodable against a ρ fraction of errors; and
– has relative pseudodistance δ̃,

then C is efficiently pseudouniquely decodable against a ρ′ fraction of errors for
any ρ′ < min(ρ, δ̃

2 ).

Proof. Let q = q(k) and n = n(k) denote the alphabet and block length of
C, respectively. The efficient pseudounique decoding algorithm Dec operates as
follows, given public parameters pp and corrupted codeword y ∈ [q]n as input:

1. Run the list-decoding algorithm for C on (pp, y) to obtain a list of messages
m1, . . . ,mL (and corresponding codewords c1, . . . , cL).

2. Output mi for the i ∈ [L] minimizing Δ(ci, y).

This algorithm clearly runs in polynomial-time, so it suffices to analyze cor-
rectness. Suppose we have (m, y) ← A(pp), where A is a polynomial-size adver-
sary and Δ

(
y,Enc(pp,m)

) ≤ ρ′n. We first observe that some mi = m by the list-
decodability of C. No other mj can also have Δ

(
y,Enc(pp,m)

) ≤ ρ′n, because
otherwise we would have Δ(mi,mj) ≤ 2ρ′n < δ̃n by the triangle inequality.
This contradicts the C’s pseudodistance since the above process for generating
{m1, . . . ,mL} is efficient.

In other words, ci is the closest codeword to y, and the decoding algorithm
outputs mi = m as desired.

4.3 Main Theorem

We are now ready to state our main theorem:

Theorem 6. For any:

– rate-r (efficiently) ρ-list decodable fully explicit ensemble C of codes {Ck :
{0, 1}k → [qk]nk}k∈Z+ ;

– ensemble Π = {Πk ⊆ S{0,1}k}k∈Z+ of ω(1)-wise O(1)-dependent (in Rényi∞-
divergence) permutation families;

– ensemble H = {Hk} of 2-input correlation intractable hash families, where
functions in Hk map {0, 1}k to {0, 1}k−�k for ω(log k) ≤ 
k ≤ o(k);
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– ρ′ < min
(

ρ,
H−1

q

(
r+Hq(ρ)

)

2

)
where q = limk→∞ qk,

SC[C,Π,H] is efficiently pseudouniquely decodable against a ρ′ fraction of errors.

Proof. Follows immediately by combining Propositions 1 to 3.

4.4 Instantiations with Known Codes

Finally, we apply Theorem6 with some known codes, first recalling applicable
results from coding theory. We focus on large alphabets (qk → ∞) and binary
alphabets (qk = 2).

Imported Theorem 7 ([GR08]). For all r, ρ ∈ (0, 1) satisfying r + ρ < 1,
there is a rate-r, efficiently ρ-list decodable, fully explicit ensemble of codes {Ck :
{0, 1}k → [qk]nk}k∈Z+ with qk ≤ poly(k).

Imported Theorem 8 ([GR09]). For all r, ρ satisfying 0 < ρ < 1/2 and

0 < r < RBZ(ρ) def= 1 − H(ρ) − ρ ·
∫ 1−H(ρ)

0

dx

H−1(1 − x)
, (3)

there is a rate-r, efficiently ρ-list decodable, fully explicit ensemble of codes {Ck :
{0, 1}k → {0, 1}nk}k∈Z+ . The bound of Eq. (3) is called the Blokh-Zyablov bound.

Plugging these codes into Theorem 6, we get

Corollary 2. For all r, ρ with r+ρ < 1, there is a rate-r seeded family of codes
(with alphabet size qk ≤ poly(k)), that is efficiently pseudouniquely decodable
against a ρ fraction of errors.

This result should be contrasted with the Singleton bound, which states that if
rate-r code is uniquely decodable against a ρ fraction of errors, then r + 2ρ ≤ 1.

Corollary 3. For all 0 < ρ < 1/2 and all 0 < r < RBZ(ρ), there is a rate-r
seeded family of binary codes that is efficiently pseudouniquely decodable against

a min
(
ρ,

H−1
(
r+H(ρ)

)

2

)
fraction of errors.
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A Limited Independence Tail Bound

We rely on the following:

Imported Theorem 9 ([LL14]). Let X1, . . . , XN be {0, 1}-valued random
variables, let t, τ ∈ Z

+ satisfy 0 < t < τ < N . Then

Pr

[
N∑

i=1

Xi ≥ τ

]

≤ 1
(
τ
t

) ·
∑

A∈([N]
t )

E

[
∏

i∈A

Xi

]

.

We apply this theorem to obtain a concentration bound on t-wise almost-
dependent random variables.

Theorem 10. Let X1, . . . , Xn be {0, 1}-valued random variables that are t-wise
β-dependent in Rényi∞-divergence with E [

∑
i Xi] = μ.

Then for any τ ∈ Z
+ with τ > μ,

Pr

[
∑

i

Xi ≥ τ

]

≤ β · μk

(τ)k
,

where k = min(t, �τ − μ�) and (τ)k = τ · (τ − 1) · · · (τ − k + 1) denotes the kth

falling factorial of τ .

Proof. We invoke Theorem 9. For any k < τ and k ≤ t, we have

Pr

[
N∑

i=1

Xi ≥ τ

]
≤

(
τ

k

)−1

·
∑

A∈([n]
k )

E

[
∏

i∈A

Xi

]

≤ β ·
(

τ

k

)−1

·
∑

A∈([n]
k )

∏

i∈A

E [Xi] (by k-wise β-dependence)

= β ·
(

τ

k

)−1

·
∑

1≤i1<···<ik≤[n]

∏

j∈[k]

E
[
Xij

]

≤ β

k!
·
(

τ

k

)−1

·
∑

distinct i1,...,ik

∏

j∈[k]

E
[
Xij

]

≤ β

k!
·
(

τ

k

)−1

·
∑

i1,...,ik

∏

j∈[k]

E
[
Xij

]

=
β

k!
·
(

τ

k

)−1

· μk

= β · μk

(τ)k
.

This is minimized by picking k ≤ t as large as possible subject to τ − k + 1 ≥ μ,
i.e. k = min(t, �τ − μ + 1�).
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B Covering Number Bounds

Definition 18. q-ary n-dimensional Hamming space is the metric space
([q]n,Δ), where Δ(x, y) =

∣
∣{i : xi �= yi}

∣
∣.

Definition 19. In a metric space (X, d), the ball of radius r centered at x, which
we denote by Br(x), is the set {y : d(x, y) ≤ r}. The sphere of radius r centered
at x, which we denote by Sr(x), is {y : d(x, y) = r}.

Definition 20. The q-ary entropy function is Hq(x) def= x logq(q−1)−x logq(x)−
(1 − x) logq(1 − x).

The following bounds are well-known.

Fact 11. In q-ary n-dimensional Hamming space, we have qn·Hq(r/n) ·n−O(1) ≤
|Br(x)| ≤ qn·Hq(r/n) for all r ≤ n · (1 − 1/q).

Fact 12. In q-ary n-dimensional Hamming space, any ball of radius r1 ≤ n ·
(1 − 1/q) can be covered by poly(n) · ln(q) · qn·

(
Hq(r1/n)−Hq(r0/n)

)
balls of radius

r0 for any r0 ≤ r1.
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Abstract. A proof of replication system is a cryptographic primitive
that allows a server (or group of servers) to prove to a client that it is
dedicated to storing multiple copies or replicas of a file. Until recently, all
such protocols required fine-grained timing assumptions on the amount
of time it takes for a server to produce such replicas.

Damg̊ard, Ganesh, and Orlandi (CRYPTO’ 19) [11] proposed a novel
notion that we will call proof of replication with client setup. Here,
a client first operates with secret coins to generate the replicas for a
file. Such systems do not inherently have to require fine-grained timing
assumptions. At the core of their solution to building proofs of replica-
tion with client setup is an abstraction called replica encodings. Briefly,
these comprise a private coin scheme where a client algorithm given a
file m can produce an encoding σ. The encodings have the property that,
given any encoding σ, one can decode and retrieve the original file m.
Secondly, if a server has significantly less than n · |m| bit of storage, it
cannot reproduce n encodings. The authors give a construction of encod-
ings from ideal permutations and trapdoor functions.

In this work, we make three central contributions.
– Our first contribution is that we discover and demonstrate that

the security argument put forth by [11] is fundamentally flawed.
Briefly, the security argument makes assumptions on the attacker’s
storage behavior that does not capture general attacker strategies.
We demonstrate this issue by constructing a trapdoor permutation
which is secure assuming indistinguishability obfuscation, serves as
a counterexample to their claim (for the parameterization stated).

– In our second contribution we show that the DGO construction
is actually secure in the ideal permutation model (or ideal cipher
model) and the random oracle (or random function) model from any
trapdoor permutation when parameterized correctly. In particular,
when the number of rounds in the construction is equal to λ · n · b
where λ is the security parameter, n is the number of replicas and b
is the number of blocks. To do so we build up a proof approach from
the ground up that accounts for general attacker storage behavior
where we create an analysis technique that we call “sequence-then-
switch”.
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– Finally, we show a new construction that is provably secure in the
random oracle model. Thus requiring less structure on the ideal func-
tion.

1 Introduction

In a proof of replication system [5,6], a user wants to distribute a file m and
ensure that a server or group of servers will dedicate the resources to storing
multiple copies or replicas of it. That is, the server should either receive or gen-
erate n replicas σ1, . . . , σn where the file m can be efficiently decoded from any
single replica. In the original notion of proofs of replication, a server could take
a file m as input and independently generate all the replicas σ1, . . . , σn. Later
it could prove possession if challenged. Since the introduction of this concept,
several such solutions [7,9,16,17,25] have emerged.

However, in these solutions, there exist a tension that stems from the follow-
ing attack. Consider a non-compliant server that stores just a single copy of m.
When challenged to prove possession of replicas, it on the fly, generates σ1, . . . , σn

using the legitimate generation algorithm and proceeds to prove replication using
the ephemeral values as though it were storing these replicas all along.

It is easy to see that achieving meaningful security against such an attack
is impossible without imposing a concrete time-bound between when a server is
challenged and when it must answer. The setting of this time-bound must be
coupled with an understanding of how long it takes an honest system to retrieve
the replicas and produce a proof and balanced against how fast a highly provi-
sioned server might take to produce the replicas from scratch. This balancing act
creates a certain tension in that more costly replica generation will help secu-
rity, but also imposes a higher burden on initiation. Moreover, other issues can
arise in the context of a more extensive system. For example, if audit challenges
come out at a predictable time (e.g., daily), then a cheating server could start
generating the response ahead of time.

To address these issues, Damg̊ard, Ganesh, and Orlandi [11] proposed a novel
notion that we will call proof of replication with client setup. In this notion, a
client that wishes to store a file m will generate replicas σ1, . . . , σn, along with
a (short) public verification key vk. The system will have the properties that
(1) one can reconstruct the file from any replica along with the verification
key, and (2) a server can prove possession of the replicas to any client that
holds the verification key. Unlike the previous systems, proof of replication with
client setup need not require fine-grained timing assumptions as a server will
not be able to regenerate the replicas from only the message m and vk. Indeed
the security definition says (informally) that any poly-time server that devotes
significantly fewer resources than n times message length will not be able to pass
the possession test.

The solution proposed in [11] combines two high-level ingredients. The first is
a proof of retrievability system as proposed in prior work [8,12,29]. Roughly, if a
server executes a proof of retrievability for data d with a client, this means that
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now, the server was capable of reconstructing d. However, a proof of retrievabil-
ity in and of itself gives no guarantee about the amount of resources required to
store d.

Second, the authors introduce a notion of a replica encoding. A replica encod-
ing system consists of three algorithms: (rSetup, rEnc, rDec). The setup algorithm
on input, a security parameter κ and the maximum number of replicas n of a
scheme, outputs a public and secret key pair as (pk, sk) ← rSetup(1κ, 1n). The
encoding algorithm takes as input the secret key and a message m to produce
an encoding as y ← rEnc(sk,m). Finally, the decoding algorithm takes as input
an encoding y and the public key to retrieve the message as m ← rDec(pk, y) or
outputs ⊥ to indicate failure. The algorithms are randomized, and the encoding
procedure can be run multiple times to produce multiple encodings. The cor-
rectness of the scheme dictates that if one encodes any message m under a secret
key and then decodes it under the corresponding public key, m will be decoded.

To capture security, we will consider a soundness game which uses a two-
stage attacker (A1,A2). In the first stage, A1 will be given a challenger-generated
public key pk and reply with a message m. It is then given n encodings generated
by the challenger as y1, . . . , yn. The attacker outputs a state variable state, which
we will generally think of as being smaller than |m| · n. At the second phase,
the algorithm A2 is given the input state and is tasked with outputting guesses
ỹ1, . . . , ỹn. The security property intuitively states that if the size of the storage
|state| is significantly less than v · |m|, then the number of i where yi = ỹi will
be less than v. That is, the attacker cannot do much better than simply storing
a set of values yi.

Damg̊ard, Ganesh, and Orlandi showed how a natural compilation of existing
proof of retrievability schemes along with replica encodings gave way to proofs
of storage with client setup. Also, they provided a candidate construction for
replica encodings from trapdoor permutations under the ideal cipher model and
the random oracle model. We turn our attention to these.

The DGO Construction: We now outline (a slight variant of the) construction
for [11], which is given in the ideal permutation and the random oracle model.
We remark that the DGO construction itself is an adaptation of one of the
“hourglass” schemes of van Dijk et al. [30]. The building blocks will consists
of a trapdoor permutation f, f−1, along with the ideal cipher T,T−1, and a
random oracle H. We again let κ be the security parameter and let λ = λ(κ)
be the output length of the trapdoor permutation as well as the block length of
an ideal permutation T : {0, 1}λ → {0, 1}λ. For pedagogical purposes, we will
assume for the sketch below that messages consist of λ bits, but in our main
body, we consider the more realistic case of many block messages.

The setup algorithm simply chooses a TDP public/secret key pair as
KeyGen(1κ) outputs (pk, sk) where KeyGen is the trapdoor permutation key gen-
eration algorithm. The public and secret key pair of the TDP serve as the keypair
of the replicated encoding scheme.

The encoding algorithm rEnc(sk,m) takes as input the TDP secret key and
message m. It first chooses a string ρ

R←− {0, 1}κ. It then initializes a value
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Y0 = m ⊕H(ρ) where H is modeled as a random oracle function. Then for j = 1
to r rounds it computes Yj = f−1(sk,T(Yj−1)) where r is the number of rounds,
which grows linearly with the number of replicas. The encoding is output as
(Yr, ρ).

Finally, the decoding algorithm rDec(pk, y = (Yr, ρ)) recovers a message as
follows. For setting j from r−1 down to 0 compute Yj = T−1(f(pk, Yj+1)). Then
output m = Y0 ⊕ H(ρ).

The fact that the decoding step recovers the message follows straightfor-
wardly from the correctness of the trapdoor permutation and ideal permutation.
We also observe that it is publicly computable since it uses the public key and
forward direction of the trapdoor permutation.

1.1 Our Contributions

We make three core contributions to this area:

1. Our first contribution is that we discover and demonstrate that the security
argument put forth by [11] is fundamentally flawed. The security argument
makes implicit assumptions about an attacker’s behavior which are not gener-
ally true. More specifically, in the security game applied to the DGO construc-
tion (in the ideal permutation and random oracle model) an attacker works
in two phases. The first stage attacker A1 receives the replicas, can make
several queries to the ideal permutation and then records some state state of
limited size. This state state is passed to a stage two attacker A2 which can
make further permutation queries and attempts to reconstruct the queries.
In general a first stage attacker can apply arbitrary strategies to breaking the
scheme so long as it poly-time and state state is sufficiently small. However,
the proof argument of [11] assume that the ideal permutation queries made
by the attacker will be “uniquely stored”. Roughly, they will argue that a
query output bit will either be stored explicitly or not at all. This discounts
the possibility of an attacker strategy such as making several oracle queries
and storing the XOR of all the outputs together.
We demonstrate that the above error manifests in a false theorem statement
in [11]. The authors claim that the scheme is secure for any trapdoor per-
mutation (TDP) if r = λ · n rounds are applied when doing n encodings of b
blocks with security parameter λ. (I.e. Claim the number of rounds does not
need to scale with b.) We provide an explicit counterexample to this claim
in Sect. 7. We give a TDP that is secure assuming indistinguishability obfus-
cation, but for which the scheme is attackable using these parameters. The
attacker strategy actually works by XORing several query values together and
is thus directly tied to the flaw in the security proof. There does not appear
to be any simple “fix” to the security argument of [11] as we will see that
addressing general attacker storage strategies comprises the core difficulty of
proving security.
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We also note that an explicit “partitioning assumption” appears in the secu-
rity definition of [30] for “hourglass schemes” where the authors conjecture
(but do not prove) that it seems implausible that mixing together two repre-
sentations can give an advantage to an attacker. Although we do not do so
formally, we believe that our counterexample can be adapted to the work of
[30] as well (at least if one considered the scheme for general trapdoor per-
mutations) and demonstrates the danger of making assumptions that restrict
adversarial strategies.

2. For our second contribution we show that the DGO construction is actu-
ally secure when parameterized correctly. In particular, when the number of
rounds is equal to λ · n · b. To do so we need to build up a proof approach
from the ground up that accounts for general attacker storage behavior. We
first develop an analysis technique that we call “sequence-then-switch”. We
show how in this framework, we can prove security against an attacker that
arbitrarily assigns state. In particular, we show how to analyze the security
of a close variant of the [11] construction in the ideal permutation and ran-
dom oracle model. In addition, we give an explicit construction of a trapdoor
permutation using indistinguishability obfuscation which allows for an attack
strategy not covered by their restricted model, showing the [11] construction
as given is in fact explicitly insecure against general adversaries.

3. The prior construction and proof relies on the ideal permutation model. A
perhaps better goal would be to have a construction secure in the random
oracle or random function model as this assumes less structure on the ideal
object. Typically, this is dealt with by building a random permutation from
a function using a Feistel network and showing that this is “indifferentiable”
in the indifferentiability framework of Mauer et al. [22]. Prior works have
shown this for 14 [20] and then 8 round Feistel [10]. However, Ristenpart,
Shacham, and Shrimpton [27] show that the framework does not compose
for multi-round games. Since the above construction relies on a multi-round
game, proof from an ideal permutation cannot be reduced to a proof to an
ideal function.
We give a new construction that relies only on the ideal function model and
analyze its security. Our construction uses the random function to embed a
Feistel like structure into the construction. However, instead of arguing in
the indifferentiablity framework, we provide direct proof of security, which
bypasses any composability issues. In both proofs, we allow the attacker to
assign its storage arbitrarily.

1.2 Our Techniques

We begin by describing our analysis for the first construction using a TDP and
ideal permutation. We focus on the construction producing many replicas on a
single block, as described in the introduction for simplicity. Also, for simplicity,
we consider the particular case where an attacker that asks for n replicas in
the first stage and wants to produce all n of these replicas, but we significantly
less than n · λ storage. In particular consider an adversary with state of length
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n · λ − n · ω(log κ) bits of storage for security parameter κ and block length λ.
Our central idea is to organize the proof into two parts where we first show that
any storage bounded A2 must make “sequential” oracle queries on at least one
replica. Then we show that on this particular replica, how one can swap out
permutation output for another.

1. Sequentiality: In our security game, the challenger first creates n replicas of
m. To create the i-th replica by choosing ρi randomly. It sets Y

(i)
0 = m⊕H(ρi).

Then for j = 1 to r rounds it computes Y
(i)
j = f−1(sk,T(Y (i)

j−1)). The encoding

is output to A1 as (Y (i)
r , ρi) for i ∈ [n]. The attacker A1 receives the encodings,

makes some more oracles queries before producing state of n · λ − n · ω(log κ)
bits and passing it to A2.
Let’s examine the behavior of A2 whose job it is to output the encodings
using the state plus oracle queries. We say that A2 “queries sequentially”
on replica i if for all j ∈ [0, r − 1] it queries the oracle T on Y

(i)
j before it

queries the oracle on Y
(i)
j+1. (We will think of outputting the encoding Y

(i)
r

at the end as implicitly querying on the final value.) That is for A2 to query
sequentially on replica i it must both make all r + 1 oracle queries and make
them in (relative) order. However, there could be many other queries outside
the replica chain interspersed between Y

(i)
j and Y

(i)
j+1.

We will first argue that except with negligible probability whenever A2 pro-
duces all the encodings, it queries sequentially on at least one replica. Observe
that we cannot hope to say that it queried sequentially on all replicas as state
could directly store several of the replica encodings, which allows the algo-
rithm to bypass any additional queries related to that replica.
To prove this, we first define and prove a useful matching pairs lemma.
Consider an algorithm B that takes as input a string advice of length
n · λ − n · ω(log κ) and gets access to a string oracle access to a randomly
chosen permutation T(·),T−1 of block length λ. The goal of B is to provide
n distinct pairs (xi, yi) such that T(xi) = yi, but without querying the oracle
a either xi nor yi. Thus B can make several oracle queries on many values;
however, once a query is made on some x, it spoils using x as a value from one
of the pairs. Note that to win in this game, B needs to produce the pairs—
not just distinguish them from random. Also observe that B can use advice
to help it win this game. For example, advice might encode the several pairs.
We prove that no attacker B that makes a polynomially bounded number
of queries can win in this game by a simple application of the union bound.
Consider a fixed value of an advice string a—that is a is fixed before the
permutation is chosen. We show that the probability of B(a) winning is at
most poly(λ)

2nλ . Then by the union bound the probability that there exists any
string a which it could win with is at most 2n·λ−n·ω(log κ) · poly(λ)

2nλ which is
negligible in λ.
Now we need to show that an attacker that wins but is not sequentially query-
ing on any replica will break our matching pairs game. We consider (A1,A2)
that does this. Let’s think of the algorithm pair as deterministic. (If they are
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randomized for each security parameter, we can fix their coins that maximize
success probability.) We construct an algorithm B along with the process of
determining an advice string that does this. Conceptually we can think of
a preprocessing algorithm B′ that generates the advice. B′ will first run A1,
which makes several queries and then produce state. It then runs A2 on state.
If A2 either did not produce all the replica encodings or it did sequentially
query on some replica i, then abort. However, if it did not make sequential
queries on all replicas, then there must be values j1, . . . , jn where A2 made
an oracle query on Y

(i)
ji

(or f(pk, Y (i)
ji

)), but had not yet made a query on

Y
(i)
ji−1. Let q1, . . . , qn be the indices of the queries (ordered chronologically)

for which this occurs. Note the number of queries A2 can make is polynomial
in κ, but in general, it could be much more than r · n · λ. The preprocess-
ing algorithm will package its advice string as state along with j1, . . . , jn and
q1, . . . , qn. Importantly, the size of this information is bounded by lg(poly(κ))
for some polynomial poly since n, r, and the number of replicas is polynomi-
ally bounded. This means that if state is of size n · λ − n · ω(log κ), then the
advice string will be within n · λ − ω(log κ).
We now consider algorithm B, which receives the advice string. B will run
A2 with the following modifications. Suppose A2 makes its q-th query where
q = qi for some i. This means that A2 is querying on Y

(i)
ji

, but had not

yet made a query on Y
(i)
ji−1. At this point B determines Y

(i)
ji−1 by query-

ing Y
(i)
1 = f−1(sk,T(Y (i)

0 )) up to Y
(i)
ji−1 = f−1(sk,T(Y (i)

ji−2)). It then submits

(Y (i)
ji−1, f(pk, Y

(i)
ji

)) as one of its matching pairs noting that neither T(Y (i)
ji−1)

nor T−1(f(pk, Y (i)
ji

)) were made before. It can also continue to run A2 with-
out making either of these queries to the oracles since it already knows the
answers to them. As this process proceeds, B will eventually recover n such
pairs which breaks our matching pairs lemma and arrives at a contradiction.

2. Switching:
Once sequentiality is established, we will proceed to argue that the adversary
must still be sequential with good probability even when we “switch” the
random oracle output of some Y

(γ)
j to a random value only for A2, allowing

us to embed a trapdoor permutation challenge.
In more detail, we now consider a new switched game that is almost equivalent
to the prior one. In the switched game the challenger first chooses r random
values Ai,b ∈ {0, 1}λ for j ∈ [1, r], b ∈ {0, 1} along with a bit string x ∈ {0, 1}.
It programs the oracle T such that Y

(γ)
j = Ai,b. This game can be shown to

be almost equivalent to the previous one.
Next, we consider a game where the challenger answers queries according to a
string x with A1, but switches to using a string x′ (and keeps everything else
the same) when responding to A2. The challenger chooses the string x′ such
that the output state given by A1 is the same as if the queries are answered
according to x′ in the first phase. The attacker is considered to win only if
it would produce sequential queries both for when x was used with A2 and
when x′ was used with A2.
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With high probability, such an x′ will exist from the fact that |state| ≤ n ·λ−
ω(log κ) and r is set to be n · λ. We emphasize that to make this argument
we do not make any further assumptions on how A1 assigns state other than
the bound on the size. We can then use the heavy row lemma [24] to argue
that if an attacker wins with probability ε in the previous game, it wins with
probability ≈ ε in this game. We note that the game takes exponential time to
find such an x′, but this is not an issue as the closeness lemma is information-
theoretic.
Finally, in order to embed a TDP challenge, we need to move to a security
game that can be efficiently simulated. While it might take exponential time
to find x′ from x above, we observe that this is not necessary. Instead, we can
embed the challenge from just knowing the shortest common prefix of x and
x′. Moreover, given x, we can simply guess what the prefix is with a 1

r loss.
Thus we move to a final game where the challenger simply chooses a random
value j and a random permutation T in the first phase and then replaces the
oracle output of Y

(i)
j with a random R in the second phase. The attacker wins

if it queries f−1(sk, R). A simple reduction then shows that any attacker that
wins in this game breaks the TDP security.

Extending to the Ideal Function Model. We can now return to our goal of
building a secure construction by replacing the ideal permutation model with a
random oracle model. As argued earlier, doing so is desirable as an ideal function
imposes less structure and appears to be a less risky heuristic. Our solution
will build upon the analysis principles established above, but proving security
involves more complications.

We begin by sketching out the encoding construction. In this setting, we will
have a TDP in the domain λ bits and use a random oracle T′ that outputs λ
bits. We will use blocks of length 2λ, and for this sketch, focus on the particular
case where each replica consists of a single block message.

The setup algorithm again chooses a TDP public/secret key pair as
KeyGen(1κ) → (pk, sk) as before. The encoding algorithm rEnc(sk,m) takes as
input the TDP secret key and message m ∈ {0, 1}2λ. It first chooses a string
ρ

R←− {0, 1}κ. It then initializes values Y0 = L(m ⊕H(ρ)) and Y1 = R(m ⊕H(ρ))
where H is a random oracle that produces an 2λ bit output and L,R are func-
tions that take the left and right halves. Then on rounds j from 2 to r compute
Yj from Yj−1 and Yj−2 as

Yj = f−1(sk, Yj−2 ⊕ T′(Yj−1)).

The replica encoding value is 2λ bits long and consists of the last two values as
Yr−1||Yr. The decoding algorithm rDec works backward down the Feistel struc-
ture to recover the message.

In this setting, we want to prove that in the security game, an attacker with
n · 2λ−n ·ω(log κ) cannot produce n replica encodings. (The extra factor of two
is solely due to blocks being 2λ bits here.)
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Our proof will follow in the same theme of showing that there must be a
form of sequential querying made on at least one replica. However, the new
structure of the construction presents additional complications. For example, we
could imagine an attacker A1, which stores all the values Y i

j for some j. This is
possible since storing these only take nλ bits, and our assumption is only that the
storage is less than 2nλ bits. On the one hand, it is unclear how the attacker can
leverage storing all these values because one needs consecutive values (e.g., Y

(i)
j ,

Y
(i)
j+1) to propagate further. And, storing n different consecutive pairs requires

2nλ bits of storage. On the other hand, the attacker can store these means at
the very least we need a new notion of sequentiality.

For our new notion of sequentiality, we say that the queries to replica i meet
our requirements if the longest common subsequence of the queries made and
Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
r is of length at least r−3. Intuitively, this is close to our original

notion but allows for a little skipping. To prove this form of sequentiality, we
invoke a random function analog of our matching pairs lemma from before. The
reduction to matching pairs follows in a similar spirit to before but requires a
more nuanced case analysis.

Once that is in place, our proof proceeds analogously, but again with more
nuances and complications arising from the fact that we only can guarantee the
weaker form of longest common subsequence.

The Proposed Construction Is Round Optimal. We now consider the gen-
eral case of a message having b blocks and give intuition that our construction
is round optimal up to constant factors. We construct a secure trapdoor per-
mutation scheme from indistinguishability obfuscation which gives an insecure
replica encoding scheme for any number of rounds /∈ Ω(b · n) (i.e. ∈ o(b · n)).
Incidentally, this also shows that the construction provided by [11], which claims
to only requires O(n) rounds, is insecure against general adversaries.

We provide the intuition for our construction by considering the ideal VBB
notion of obfuscation. The overall idea is to construct a trapdoor permutation
family where we can amortize the ‘state’ space required to invert multiple inde-
pendent instances. We will consider our permutations to be on domain {0, 1}λ.
If we assume we have VBB obfuscation, then consider a program that takes in
b many inputs {yi}i∈b where yi ∈ {0, 1}λ and an advice string also in {0, 1}λ

and outputs the preimages of the messages {xi = f−1(sk, yi)}i∈b iff the advice
string that was input was equal to

⊕
i∈b xi. The program has the secret key

hardcorded and simply computes xi and makes the check against the advice
string and outputs {xi}i∈b if the check succeeds. The VBB obfuscation of this
program is then posted in the public parameters and provides a way for the
adversary to compress b · λ bits to λ bits and still preserve information. Thus
an adversary with outputting r · λ bits can recompute the replica from storing
o(b · nλ) information. This would violate the security if we proved soundness for
the same parameters as our scheme. A formal treatment is presented in Sect. 7.
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1.3 Additional Prior Work

Proofs of Retrievability:
Proofs of retrievability guarantee to a verifier that a server is storing all of client’s
data. The notion was formalized in [21], where, in an audit protocol the verifier
stores a (short) verification key locally and interacts with the server to enforce
accountability of the storage provider. If the server can pass an audit, then there
exists an extractor algorithm, that must be able to extract the file on interaction
with the server. There are different constructions for this primitive, [8,12,29].
The construction of [29] showed how to do this in the random oracle model that
allow public verifiability.

Proofs of Space: Proof of space are interactive protocols between a prover
(server) and a verifier (client) that guarantee that a prover has dedicated a
specific amount of space. It guarantees that it would be more expensive for a
dishonest prover to deviate from the honest protocol. They were introduced in
[14] and have been further studied in [1,26]. Compared to a proof of replicated
storage, they have an additional requirement of communication being succinct
between a prover and verifier and are usually studied in the public-key setting.

Other examples of works which are different from proofs of space but enforce
storage requirements similar to our soundness game on the prover are storage-
enforcing commitments [19], hourglass scheme [30] and the model of computation
considered by [15].

Proofs of Replicated Storage:
The formal treatment of proofs of replicated storage was given by [9,11,16].
The idea was introduced in [5,6] where they proposed Filecoin, a decentralized
storage network that performs consensus using proofs of replication. Recently,
[7,9,16,17,25] have given constructions for proof of replication using timing
assumptions (encoding process is much slower so that a server cannot replicate
data on demand). On the other hand, the scheme of [11] is not based on timing
assumptions and considers the protocol with a client setup. They introduce the
notion of a replica encoding that can be combined with a public verifiable proof
of retrievability [29] to give a proof of replicated storage. Please see [11] for other
related works such as proof of data replication.

Hourglass Scheme:
Our constructions and the construction from [11] are reminiscent of the hourglass
scheme of [30]. Our construction in the ideal permutation model differs from the
RSA based hourglass function of [30] in explicitly ensuring that the encoding
blocks are uniformly distributed by applying a random oracle H and increasing
the number of rounds suggested by their scheme. Because of our explicit encoding
function, we do not need to make a partitioning assumption in our security proof.
The brief analysis of their scheme gives a similar intuition to the security as used
by [11] and gives a construction for the number of rounds independent of the
number of blocks. But as we see in Sect. 7, this intuition does not hold true for
general adversaries.
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Technique Similarities in Literature:
Some of our techniques have a flavor that appears in the study of pebbling strate-
gies on random oracle graphs and the memory hardness literature [2–4,13,15].
Pebbling strategies on random oracle graphs look at the amount of resources
(the list of random-oracle calls) made by the adversary and help in proving com-
plexity lower-bounds on the resources. Our notion of “sequentiality” is similar to
the notion of a legal “ex-post-facto pebbling” on a directed acyclic graph (see [4]
for details). The reductions there are proven using a core lemma which looks at a
legal ex-post-facto pebbling given hints; Lemma 1 of [4,13,15] which is similar to
our core lemmas for proving sequentiality Lemma 1. Interestingly, [2] considered
adversaries that can store secret shares of the random oracle queries (such as
a xor) and introduced the notion of an entangled pebbling game. They look at
the resource of “Cumulative Memory Complexity (CMC)” and constructed an
example to show that such strategies can help the adversary reduce it’s resource
requirement. The followup work of [3] improved on their lower bounds results
for any general adversarial strategy.

1.4 Concurrent Work

After completing our work we learned of a concurrent and independent work
of Moran and Wichs [23]. They introduce a variant of replica encodings which
they call incompressible encodings, and proceed to provide constructions in the
random-oracle model (and the common random string model) using the Deci-
sional Composite Residuosity or Learning with Errors assumptions. Their con-
struction utilizes some new techniques to apply lossiness to construct said encod-
ings. In addition, they introduce an additional “big-key” application for intrusion
resilience which applies to our constructions and proofs as well.

At a very high level, our work depends on the general assumption of trap-
door permutations, whereas they use the specific number theoretic assumptions
of Decisional Composite Residuosity and Learning with Errors. Comparing our
construction instantiated with RSA trapdoor permutation to their DCR con-
struction, their construction appears to be more practically efficient from a
computational perspective due to the round complexity required for our con-
struction, however, ours makes tighter use of space for small “s” values used in
the DCR construction. An interesting future direction could be to explore con-
crete space and computational efficiency tradeoffs for increasing the s parameter
in their DCR construction.

Similar to us, Moran and Wichs discovered foundational issues in the proof
arguments of [11]. In a personal communication Wichs noted that there is a
simple heuristic counterexample to the claim of [11] if one uses the heuristic of
ideal obfuscation. We subsequently developed a counterexample based on the
concrete assumption of indistinguishability obfuscation that we added as Sect. 7
of our work.
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2 Preliminaries

Notation. These notations are used consistently throughout the text.
We use κ to denote the security parameter. y ← B(x) denotes the output of the
algorithm B when we run x on it. A negligible function negl(x) is a function
such that for every positive integer c, there exists an integer Nc such that for
all x > Nc, negl(x) < 1

xc . [n] denotes the set {1, 2, . . . , n} and [a, b] denotes

the interval between a and b inclusive. y
R←− D implies that we are uniformly

sampling y from a domain set D. We say an adversary or an algorithm A is
probabilistic poly time (PPT) if there is a polynomial poly(·) such that for all
κ, A will halt in ≤ poly(κ) time in expectation on any input of length κ.

A trapdoor permutation is defined as a collection of three PPT algorithms
KeyGen(.), f(., .), f−1(., .). iO(κ,C) is an indistinguishability obfuscator for a cir-
cuit class {Cκ} and security parameter κ. A puncturable pseudorandom function
family (PPRF) on domain Dκ and range Rκ is defined using a set of algorithms
(PPRF.KeyGen,PPRF.Eval,PPRF.Puncture). Due to space limitations, please find
the complete definitions in the full version of the paper [18].

3 Defining Replica Encoding

A Replica Encoding scheme - ReplicaEncoding is defined as a tuple of algorithms
(rSetup, rEnc, rDec), where rSetup takes in the security parameter denoted by
1κ and the maximum number of replicas a client wishes to replicate denoted
by 1n and outputs a public key secret key pair (pk, sk), rEnc is a randomized
algorithm which takes a message m ∈ {0, 1}∗, a secret key sk and outputs a
replica encoding. rDec is a deterministic algorithm that takes as input a public
key pk, a replica encoding and outputs a message m. Formally,

(pk, sk) ← rSetup(1κ, 1n), y ← rEnc(sk,m), m ← rDec(pk, y).

Definition 1. A tuple (rSetup,rEnc,rDec) is a replica encoding if the following
holds:

– Correctness: For any choice of coins of rSetup, the probability of incorrect
decoding is

∀n,m, Pr
[

(pk, sk) ← rSetup(1κ, 1n)
rDec(pk, rEnc(sk,m)) 
= m

]

≤ negl(κ)

where the probability is over the coins of rEnc 1.
1 There exists a generic method for converting a scheme with negligible correctness

error into a perfectly correct scheme. To do so augment the rEnc algorithm so that it
first produces the encoding. Then the new rEnc algorithm run the deterministic rDec
algorithm on the encoding to check that the message was recovered. If not, output
the message in the clear and a flag bit indicating that the message is output in plain
instead of the encoding. This adds a negligible hit in the security as opposed to the
correctness.
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– Length of the encoding scheme is denoted by a function len(·, ·) : N × N → N

that takes in the security parameter and the length of the message and outputs
the length of the encoding, formally for any κ,m, choice of coins of rSetup,

∀κ,m, Pr
[

(pk, sk) ← rSetup(1κ, 1n)
len(κ, |m|) 
= |rEnc(sk,m)|

]

≤ negl(κ)

where the probability is over the coins of rEnc.
– s-Sound: Consider the game SoundA1,A2(κ, n) between an adversary pair

(A1,A2) and a challenger defined in Fig. 1. A replica encoding scheme is
s-sound (s : N × N → [0, 1]), if for any probabilistic poly-time adversaries
(A1,A2), for all n ∈ N, there exists a function negl such that the following
holds.

Pr
[

(v, state,m) ← SoundA1,A2(κ, n), s.t.
|state| < v · s(κ, |m|) · len(κ, |m|)

]

≤ negl(κ).

where the probability is over the coins with the challenger and the two adver-
saries A1,A2.

A Remark on the Efficiency. We remark that there can exist trivial construc-
tions of replica encoding by simply concatenating a string m with the randomness
ρ i.e. let rEnc(sk,m) = m||ρ. These schemes are secure for s ∈ |ρ|

|m|+|ρ| − ω(log κ)
|m|+|ρ| .

If we consider long ρ, we can construct a sound replica encoding scheme for
arbitrary s(κ, |m|). As a specific example, imagine rEnc(sk,m) = m||ρ where
ρ

R←− {0, 1}99|m|. This scheme is trivially correct as m is output in the clear and
len(κ, |m|) = 100|m|. For all functions s such that s(κ, |m|) ∈ 99

100 − ω(log κ)
100m| , the

proposed scheme is s sound. Intuitively, for each encoding A2 has 99|m|−ω(log κ)
information in state and is supposed to output 99|m| random bits. Even if they
randomly guess the remaining bits the probability of success will be negligible in
κ. For this reason we are interested in schemes that do better than the soundness
efficiency tradeoffs of this trivial solution.

Definitions in Prior Work. The formal definition of proof of replica encoding
was given by Damg̊ard et al. [11]. The soundness game can also be defined from
the proof of space literature where the input message to be stored is generated
through a private key setup (not revealed to the prover and the verifier) and
the time bound for the prover is polynomial. We simply clean up the definitions
proposed by [11] and highlight a few differences.

The earlier soundness definition is stated in terms of a constant c,

Pr
[|state| < c · v · len(κ, |m|) | (v, state,m) ← SoundA1,A2(κ, n)

] ≤ negl(κ).

We make 2 changes to this definition. First, rather than using a constant c,
our soundness is stated in terms of a function s(κ, |m|). This change is purely
for increasing the flexibility of the definition, as we can always take s(κ, |m|) to
be a constant function. It also highlights our theorem statement (Theorems 1
and 2) parameters: s soundness for a larger class of functions. Next, we consider
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Game SoundA1,A2(κ, n)

– Setup: The challenger(denoted by C) runs (pk, sk) ← rSetup(1κ, 1n) and sends pk
to A1. It keeps the secret key sk for itself.

– File Challenge: The adversary A1, on input (1κ, pk), chooses a file m ∈ {0, 1}∗.
It sends m to C.

– The challenger outputs n encodings of m by calling rEnc n times.

∀i ∈ [n], y(i) ← rEnc(sk, m)

and returns y(1), . . . , y(n) to A1.
– State Sharing: A1 outputs state ← A1(1κ, pk, y(1), . . . , y(n)) and sends state, the

number of replicas 1n and message m to A2.
– Guess: A2 on receiving state state, outputs the replica guess to C,

(ỹ(1), . . . , ỹ(n)) ← A2(1κ, 1n, pk, m, state)

– Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Output (v =
∑n

i=1 vi, state, m).

Fig. 1. The soundness game for the replica encoding scheme.

the total probability of the adversary winning the soundness game with any
number v replicas rather than the conditional probability per fixed v value. In
the original definition, the security can trivially be broken. Consider an attack
algorithm that tries to guess the secret information used by C when constructing
the challenge (e.g. it tries to guess the TDP secret key and the randomness used
during the encryption algorithms). If its guess is correct, it can recover the replica
encodings by running rEnc in the forward direction and outputs the n replicas;
otherwise, it simply gives up and outputs all 0’s. Clearly such an adversary
should not be viewed as successful since it only succeeds a negligible fraction
of the time. However, if its guess is correct (which happens only with negligible
probability) it wins the game with v = n and no state bits used. Otherwise,
if the guess is incorrect even for some encoding then v < n. Even though the
winning probability of winning is negligible, when conditioned on v = n, this
adversary succeeds with probability 1.

Tweaking their definition to include v, state as output of the game and not
conditioning on events where the correct replica is output solves the issue.

Other minor differences between our definitions include a rSetup algorithm
that sets up the parameters for the scheme. We do this to formalize the alignment
and use the KeyGen environment of the underlying trapdoor permutation. The
formal definition of replica encoding in DGO includes an efficiency condition
defined as exactly |m| + O(κ). We do not restrict the efficiency in the formal
definition in our work and state it as a desired property that should be required
for a practical replica encoding scheme.
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4 Lemmas on Random Functions and Permutations

This section contains useful information theoretic lemmas on analyzing random
permutations. The first is a result on the hardness of outputting relations on the
required ideal primitive given limited advice and restricted behavior. We will
use this later in showing adversaries capable in distinguishing between certain
games will be able to do the following with noticeable probability. Due to space
constraints, we defer the proofs of these lemmas to the full version [18]. Addi-
tionally, in the full version we discuss and prove the random function analogues
of these lemmas.

Lemma 1. Let T, T−1 : {0, 1}λ → {0, 1}λ be oracles to a random permutation
and its inverse. Consider any computationally unbounded adversary B that makes
polynomially bounded (in λ) queries to T,T−1 on input a bounded advice and
outputs n pairs (xi, yi) without querying them explicitly. If advice is bounded by
n · λ − ω(log λ) bits where n is polynomial in λ, the probability that it succeeds
is negligible in λ.

More formally, let the inputs and outputs by B to oracle O be denoted by lists
sOB , SO

B respectively. Then,

Pr

⎡

⎣
∃ advice ∈ {0, 1}∗ s.t. |advice| ≤ n · λ − ω(log λ),

{(xi, yi)}n
i=1 ← BT(·),T−1(·)(advice) where

∀i 
= j ∈ [n], xi 
= xj , T(xi) = yi, xi /∈ sTB and yi /∈ sT
−1

B

⎤

⎦ ≤ negl(λ),

the probability is over the choice of the permutation T.

Definition 2. Let π be a permutation or permutation oracle with domain D,
and let x1, x2 ∈ D. We define the notation π′ = π[swap(x1, x2)]] to imply π′ to
be same as π but swapped on points x1, π

−1(x2). Concretely,

π′(x) =

⎧
⎪⎨

⎪⎩

x2 x = x1

π(x1) x = π−1(x2)
π(x) otherwise.

Lemma 2. Let SD denote the symmetric group on D. Let x, r
R←− D, and π

R←−
SD. Then (x, π[swap(x, r)]) is uniform on D × SD - i.e. x is independent of
π[swap(x, r)].

Definition 3. Multiple invocations of the swap notation are defined as following
π[swap(x1, y1), . . . , swap(xk, yk)]:

– Let π0 = π.
– Iterate from i = 1 to k,

• Perform ith swap, πi = πi−1[swap(xi, yi)].
– Output πk.
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Lemma 3. Let {r0, r1, . . . rk} R←− D and π be a random permutation. Let SD be
the set of all permutations. Let τ be a fixed permutation on D. Then

(rk, π[swap(r0, τ(r1)), . . . , swap(rk−1, τ(rk))])

is uniform on D × SD.

We introduce another useful result on the probability of finding collisions on
a deterministic function h.

Lemma 4. Let D(κ),R(κ) represent domain,range respectively dependent on
the security parameter. Let h be any deterministic function that maps values in
domain D(κ) to range R(κ) . Then,

Pr
a

[∃b 
= a ∈ D(κ), h(a) = h(b)] ≥ |D(κ)| − |R(κ)| + 1
|D(κ)| .

5 Replica Encoding in the Ideal Permutation Model

We now give the construction and proof of our replica encoding scheme from
trapdoor permutations in the ideal permutation model and the random oracle
model. As stated in the introduction, the construction itself is a close variant of
[11]. However, our proof will introduce new analysis techniques that account for
an attacker that stores state in an arbitrary manner.

Let κ denote the security parameter. Let λ(κ) (denoted by λ) be a function
polynomial in κ and represents block length in our construction. We use a trap-
door permutation (KeyGen, f(., , )f−1(., .)) where the domain for the family of
trapdoor functions is Dpk = {0, 1}λ where KeyGen is setup with security param-
eter κ. Let T,T−1 be random permutation oracles on the same domain {0, 1}λ

and H be a random oracle on the range {0, 1}λ.

5.1 Construction

Let r(κ, n, |m|) (denoted by r) be the number of rounds in our scheme. For our
construction, it depends on the security parameter, maximum number of replicas
chosen during setup and the message length.

rSetup(1κ, 1n):
Run KeyGen(1κ) → (pk, sk). Output (pk′ = (pk, n), sk′ = (sk, n)).

rEnc(sk′,m):

– Parse sk′ = (sk, n).
– Choose a string ρ

R←− {0, 1}κ.
– Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = |m|/λ�.
– Set r = n · b · λ.
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– Compute ∀t ∈ [b],
Yt,0 = mt ⊕ H(ρ||t).

• For rounds j from 1 to r, compute:

Yt,j = f−1(sk,T(Yt,j−1)).

– Let yr = Y1,r|| . . . ||Yb,r and output (yr, ρ).

rDec(pk′, y):

– Parse pk′ = (pk, n).
– Parse y as (yr, ρ). Parse yr as Y1,r|| . . . ||Yb,r, where b = |yr|/λ� and r = n·b·λ.
– For rounds j from r − 1 to 0:

• Compute ∀t ∈ [b],

Yt,j = T−1(f(pk, Yt,j+1)).

– ∀t ∈ [b] compute,
mt = Yt,0 ⊕ H(ρ||t)

Output m = m1|| . . . ||mb.

The encoding length for our scheme is len(κ, |m|) = |m| + O(κ).2

5.2 Security of Replica Encoding Scheme

Theorem 1. Assuming (KeyGen(1κ), f(·, ·), f−1(·, ·)) is a secure trapdoor per-
mutation and T,T−1 are oracles to a random permutation on domain and range
{0, 1}λ and H is a random oracle on the same range. Then our construction
for ReplicaEncoding described above is s-sound according to Definition 1 for all
κ, n ∈ N and s ∈ 1 − ω(log κ)

λ .

Sequence of Games. Our proof proceeds via a sequence of games as described
below. We assume that adversaries have their randomness non-uniformly fixed
in each game to maximize their success. The changes in each game in compari-
son to the previous one are indicated with red. Details of the previous game are
copied without explicit rewriting. We defer the formal proof of indistinguisha-
bility between successive games to the full version [18].

Game 0: This is the original SoundA1,A2(κ, n) security game where we record
the queries made by the adversaries in lists. We also assume that any list is
ordered and stores distinct elements. More concretely, when in Phase 1 a query
x is made on O, C checks if x 
∈ uO and updates the list uO if the condition
is true. It performs this operation of maintaining the list for each Phase and
2 Upto additional rounding factors.
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oracle separately. Denote q1
O, q2

O, q3
O as the functions that take in the security

parameter and output the total distinct queries made by the adversaries to oracle
O during the three phases respectively. Note that the functionality of the oracles
is still the same, we just record queries.

– Setup: The challenger(denoted by C) runs (pk′, sk′) ← rSetup(1κ, 1n) and
sends public key pk’ to A1. It keeps the secret key sk’ for itself.

– Phase 1: The adversary A1 issues queries on T,T−1,H, C responds the query
back to A1. Let the queries on oracle O be denoted by an ordered and distinct
list uO = (uO

1 , . . . , uO
q1O ) and their outputs be denoted by an ordered and

distinct list UO = (UO
1 , . . . ,UO

q1O ).

– File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who

parses pk′ as (pk, n); sk′ as (sk, n) and does the following:

• Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = |m|/λ�.
• For i ∈ [n],

* Choose a string ρi
R←− {0, 1}κ.

* Compute ∀t ∈ [b],
Y

(i)
t,0 = mt ⊕ H(ρi||t).

* For rounds j from 1 to r and ∀t ∈ [b],

· Compute Y
(i)
t,j from Y

(i)
t,j−1 as

Y
(i)
t,j = f−1(sk,T(Y (i)

t,j−1)).

– * Let y
(i)
r = Y

(i)
1,r || . . . ||Y (i)

b,r and set y(i) = (y(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

– Phase 2: A1 issues additional queries on T,T−1,H, C responds the query back
to A1. Let the queries on oracle O be denoted by an ordered and distinct list
vO = (vO

1 , . . . , vO
q2O ) and their outputs be denoted by an ordered and distinct

list VO = (VO
1 , . . . ,VO

q2O ).

– State Sharing: A1 outputs state state ← AH(·),T(·),T−1(·)
1 (1κ, pk′, y) and

sends state to A2.
– Phase 3: The adversary A2 queries on T,T−1,H, C responds the query back

to A2. Let the queries on oracle O be denoted by an ordered and distinct
list wO = (wO

1 , . . . ,wO
q3O ) and their outputs be denoted by an ordered and

distinct list WO = (WO
1 , . . . ,WO

q3O ).
– Guess: A2 outputs the replica guesses to C.

{ỹ(i)} ← A2(1κ, pk′,m, state).

– Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if |state| <∑
vi · s(κ, |m|) · len(κ, |m|).
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Game 1: In this game we remove the sk and rely on the public key with an
additional reprogramming step at oracle H. This helps us further down the road
in showing a reduction to the security of the trapdoor permutation.

– Setup: The challenger(denoted by C) runs (pk′, sk′) ← rSetup(1κ, 1n) and
sends public key pk’ to A1. It keeps the secret key sk’ for itself. Set flag = 0.

– Phase 1: . . .
– File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)

1 (1κ, pk′). It sends m to C who
parses pk′ as (pk, n); sk′ as (sk, n) and does the following:

• Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = |m|/λ�.
• For i ∈ [n],

* Choose a string ρi
R←− {0, 1}κ.

Prequery Check H If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.
* Sample {Y

(i)
t,r }t∈[b]

R←− {0, 1}λ

* For rounds j from r to 1 and ∀t ∈ [b],

· Compute Y
(i)
t,j−1 from Y

(i)
t,j as

Y
(i)
t,j−1 = T−1(f(pk, Y (i)

t,j−1)).

* For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y
(i)
t,0

* Let y
(i)
r = Y

(i)
1,r || . . . ||Y (i)

b,r and set y(i) = (y(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

– Phase 2, State Sharing, Phase 3, Guess: . . .
– Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if flag = 0

and |state| <
∑

vi · s(κ, |m|) · len(κ, |m|).
Game 2: In this game an adversary wins if they query on the oracle rather
than outputting the replica. This helps us ease the notation by only focussing
at the oracle query lists.

– Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3:
. . . .

– Guess:. . . .
C adds the guess to A2’s lists of queries to T in Phase 3, i.e. ∀i ∈ [n], let
ỹ(i) = (Ỹ (i)

0,r || . . . ||Ỹ (i)
b,r , ρ̃i). ∀t ∈ [b] add Ỹ

(i)
t,r to list of queries to T by A2 in

Phase 3.
– Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y

(i)
t,r and 0 otherwise. Adversary

wins if flag = 0 and |state| <
∑

vi · s(κ, |m|) · len(κ, |m|).
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Game 3: In this game, we look at the queries made by the adversary and require
that it traverses atleast one block in some replica sequentially.

– Setup, Phase 1, File Challenge, Phase 2, State Sharing, Phase 3,
Guess: . . . .
– Sequentiality: We consider going through A′

2s ordered list of queries to
T and T−1. If ∀i ∈ [n] ∀t ∈ [b], there is a point in time such that some Y

(i)
t,j+1

was queried on T or f(pk, Y (i)
t,j+1) was queried on T−1 when A2 has not made

a query to T for Y
(i)
t,j ), then set flag = 1.

– Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y
(i)
t,r and 0 otherwise.

Adversary wins if flag = 0 and |state| <
∑

vi · s(κ, |m|) · len(κ, |m|).
Game 4: In this game, we guess the block which the adversary traversed sequen-
tially. We concentrate on one randomly chosen block and replica and the adver-
sary wins if it outputs the correct encoding for this block. We lose a multiplicative
factor of b · n in the reduction due to this change.

– Setup: The challenger(denoted by C) runs (pk′, sk′) ← rSetup(1κ, 1n) and
sends public key pk’ to A1. It keeps the secret key sk’ for itself. Set flag = 0.
Choose a random β ∈ [b] and γ ∈ [n].

– Phase 1, File Challenge, Phase 2, State Sharing, Phase 3, Guess:
. . . .

– Sequentiality:
We consider going through A′

2s list of queries to T and T−1. If there is a point
in time such that some Y

(γ)
β,j+1 was queried on T or f(pk, Y (γ)

β,j+1) was queried

on T−1 when A2 has not made a query to T for Y
(γ)
β,j , then set flag = 1.

– Verify: Let vi = 1 if ∀t ∈ [b], T is queried on Y
(i)
t,r and 0 otherwise. Adversary

wins if T is queried on Y
(γ)
β,r , flag = 0, and |state| < n · s(κ, |m|) · len(κ, |m|).

Game 5: In this game, we reprogram the oracles H,T to have a permutation
which we can analyze cleanly. The primary idea behind this game is that there
will exist two sequences of values on the chosen block and replica for which
any adversary A1 produces the same state. These possibilities for a “switch”
are set up in this game. H is programmed to output Y

(γ)
β,0 and for i ∈ [r], the

values Ai,0, Ai,1 have a choice to be mapped to either of the two Ai+1,0, Ai+1,1

depending on the sampled index x. The collision check makes sure that the
reprogramming preserves the permutation property of T and the prequery check
is done to make sure that none of the values were queried in the oracle lists in
the previous phase. The oracle Tx is then reprogrammed according to the swap
operation defined in Definition 3 where for i ∈ [r], xi is now mapped to f(pk, xi+1)
where xi is used to indicate the notation for Ai,x[i].
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– Setup, Phase 1: . . . .
– Sampling a new permutation:

• Sample, Y
(γ)
β,0 , A1,0, . . . , Ar,0, A1,1, . . . , Ar,1

R←− {0, 1}λ.

Let Z1 = {Y
(γ)
β,0 , A1,0 . . . , Ar,0, A1,1, . . . , Ar,1}.

Let Z2 = {f(pk, A1,0) . . . , f(pk, Ar,0), f(pk, A1,1), . . . , f(pk, Ar,1)}.
Collision Check: If |Z1| 
= 2r + 1, set flag = 1.
Prequery Check T: If (Z1 ∪ Z2) ∩

(
uT ∪ uT−1 ∪ UT ∪ UT−1

)

= ∅, set

flag = 1.
• Sample a random setting x

R←− {0, 1}r. Let x[k] denote the kth bit of x.
We will write xj to refer to Aj,x[j−1] and denote Aj,x̄[j−1] with x̄j . Set x0 to
denote Y

(γ)
β,0 .

• Define Tx using swap (Definition 3):

Tx = T[swap(x0, f(pk, x1)), . . . , swap(xr−1, f(pk, xr))].

• Let T−1
x be the inverse of Tx.

– File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)
1 (1κ, pk′). It sends m to C who

parses pk′ as (pk, n); sk′ as (sk, n) and does the following:

• Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = |m|/λ�.
• For i ∈ [n],

* Choose a string ρi
R←− {0, 1}κ.

Prequery Check H If ∃t ∈ [b] : ρi||t ∈ uH, set flag = 1.
* Sample {Y

(i)
t,r }t∈[b]

R←− {0, 1}λ

* For rounds j from r to 1 and ∀t ∈ [b], continue if t 
= β or i 
= γ,

· Compute Y
(i)
t,j−1 from Y

(i)
t,j as

Y
(i)
t,j−1 = T−1(f(pk, Y (i)

t,j−1)).

* For each block ∀t ∈ [b], reprogram H

H(ρi||t) = mt ⊕ Y
(i)
t,0 .

* Let y
(i)
r = Y

(i)
1,r || . . . ||Y (i)

b,r and set y(i) = (y(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

– Phase 2: Use Tx,T
−1
x to answer queries for T,T−1 respectively.

– State Sharing: . . . .
– Phase 3: Use Tx,T

−1
x to answer queries for T,T−1 respectively.
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– Guess, Sequentiality: . . . .
– Verify: Adversary wins if T is queried on Y

(γ)
β,r , flag = 0, and |state| <

n · s(κ, |m|) · len(κ, |m|).
Game 6: In this game, C has unbounded computation time and calls A1,A2

exponentially many times to find a collision to state through the procedure
search. The setting y′ for which the procedure search outputs a collision in
state is stored in a set which is outputted at the end of the procedure.
search(1κ, y, state; ζ) takes input y ∈ {0, 1}r, state and runs algorithms A1,A2

on Game 5. Let ζ be the randomness used by the procedure and denotes all
the random coins (except those used to sample x) used by C. The procedure is
described in Fig. 2.

search(1κ, y, state; ζ)

Inputs: Security parameter - 1κ

Oracle Settings on T - y ∈ {0, 1}r

State - state

Randomness used in the game - ζ

Output: Set containing all oracle settings with collision in state - S

– Set S = ∅.
– ∀y′ �= y ∈ {0, 1}r,

• Run A1, A2 on Game 5 with randomness defined by ζ and using y′ instead
of x in the game.

• Let state′ be the state shared between A1, A2.
• If state′ = state and A2 wins Game 5, then S = S ∪ {y′}.

– Output S.

Fig. 2. Routine search

– Setup, Phase 1, Sampling a New Permutation, File Challenge,
Phase 2, State Sharing: . . . .
– Running search: Let ζ be all the random coins (except those used to sample
x) used by C. Let S ← search(1κ, x, state; ζ).
If S = ∅ set flag = 1 and x′ = x, otherwise sample x′ R←− S.
– Setting switched oracle:

• Let x′[k] denote the kth bit of x′. We will write x′
j to refer to Aj,x′[j−1] and

denote Aj,x̄′[j−1] with x̄′
j . Set x′

0 to denote Y
(γ)
β,0 .

• Define Tx′ to be:

Tx′ = T[swap(x′
0, f(pk, x

′
1)), . . . , swap(x

′
r−1, f(pk, x

′
r))].

• Let T−1
x′ be the inverse of Tx′ .
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– Phase 3: Use Tx′ ,T−1
x′ to answer queries for T,T−1 respectively.

– Guess: . . . .
– Sequentiality:

If ∃j ∈ [0, r] :(x′
j+1 was queried on T or f(pk, x′

j+1) was queried on T−1 while
T had not been queried on x′

j), set flag = 1.
– Verify: Adversary wins if T is queried on x′

r, flag = 0, and |state| < n ·
s(κ, |m|) · len(κ, |m|).

Game 7: In this game we modify the verification step for which an adversary
can win this game. We increase it’s winning probability so that the adversary
can win if it doesn’t query the full sequence, but queries at the point where the
sequences x, x′ diverge. Notice that we define another oracle Tδ

x′ here that doesn’t
reprogram the complete sequence. This change is statistically indistinguishable
to the adversary.

– Setup, Phase 1, Sampling a New Permutation, File Challenge,
Phase 2, State Sharing, Running search: . . . .

– Setting switched oracle:

• Let x′[k] denote the kth bit of x′. We will write x′
j to refer to Aj,x′[j−1] and

denote Aj,x̄′[j−1] with x̄′
j . Set x′

0 to denote Y
(γ)
β,0 .

• Let δ be the first index for which xδ 
= x′
δ.

• Define Tδ
x′ to be:

Tδ
x′ = T[swap(x′

0, f(pk, x
′
1)), . . . , swap(x

′
δ−1, f(pk, x

′
δ))]

= T[swap(x0, f(pk, x1)), . . . , swap(xδ−1, f(pk, x̄δ))].

• Let T−1
x′ be the inverse of Tx′ .

– Phase 3, Guess: . . . .
– Sequentiality:
– Verify: Adversary wins of T is queried on x̄δ, flag = 0 and
|state| < n · s(κ, |m|) · len(κ, |m|).

Game 8: In this game we observe that C need not be unbounded computation
time and only needs to the guess the first prefix at which x, x′ differ to successfully
output one sequential query.

– Setup, Phase 1, Sampling a New Permutation, File Challenge,
Phase 2, State Sharing: . . . .
– Running search: . . . .
– Setting switched oracle:

• Let x′[k] denote the kth bit of x′. We will write x′
j to refer to Aj,x′[j−1] and

denote Aj,x̄′[j−1] with x̄′
j . Set x′

0 to denote Y
(γ)
β,0 .

• Let δ
R←− [r]
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• Define Tδ
x′ to be:

Tδ
x′ = T[swap(x0, f(pk, x1)), . . . , swap(xδ−1, f(pk, x̄δ))].

• Let T−1
x′ be the inverse of Tx′ .

– Phase 3, Guess: . . . .
– Verify: Adversary wins of T is queried on x̄δ and flag = 0.

6 Replica Encodings in the Random Function Model

We now turn toward building Replica Encodings from trapdoor permutations
in the ideal function model. Our construction will embed a Feistel like structure
into the replica encoding construction. We will directly prove security of this
construction. Our construction makes use of the KeyGen, f, and f−1 defined for a
trapdoor permutation on domain {0, 1}λ and a random function T′ on the same
domain. Let H be a random oracle on the range {0, 1}λ.

Define functions L,R : {0, 1}∗ → {0, 1}∗ on even length inputs as follows. If
x = y||z, where x, y, z ∈ {0, 1}∗, |y| = |z|, then the function L(.) denotes the
left half of x i.e. L(x) = y and the function R(.) denotes the right half of x i.e.
R(x) = z.

6.1 Construction

rSetup(1κ, 1n):
Run KeyGen(1κ) → (pk, sk). Output (pk′ = (pk, n), sk′ = (sk, n)).

rEnc(sk′,m):

– Parse sk′ = (sk, n).
– Choose a string ρ

R←− {0, 1}κ.
– Divide m into b blocks of length 2λ i.e. m = m1||m2|| . . . ||mb, b = |m|/2λ�.
– Set r = n · b · λ.
– Compute ∀t ∈ [b],

Yt,0 = L(mt ⊕ H(ρ||t)).
Yt,1 = R(mt ⊕ H(ρ||t)).

– For rounds j from 2 to r compute:
– Compute Yt,j from Yt,j−1 and Yt,j−2 as

Yt,j = f−1(sk, Yt,j−2 ⊕ T′(Yt,j−1))

– Let Zt = Yt,r−1||Yt,r

– Let yr = Z1|| . . . ||Zb and output (yr, ρ).
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rDec(pk′, y):

– Parse pk′ = (pk, n).
– Parse y as (yr, ρ). Parse yr as Z1||Z2|| . . . ||Zb,where b = |yr|/2λ� and r =

n · b · λ.
– For each Zt = Yt,r−1||Yt,r and for rounds j from r − 2 to 0 compute:
– Compute Yt,j from Yt,j+1 and Yt,j+2 as

Yt,j = f(pk, Yt,j+2) ⊕ T′(Yt,j+1)

– ∀t ∈ [b] compute,
mt = Yt,0||Yt,1 ⊕ H(ρ||t)

Output m = m1|| . . . ||mb.

The encoding length for our scheme is len(κ, |m|) = |m| + O(κ).3

6.2 Proof of Security

Theorem 2. Assuming (KeyGen(1κ), f(·, ·), f−1(·, ·)) is a secure trapdoor permu-
tation on domain and range {0, 1}λ and T′ is an oracle to a random function
on the same domain and range, and H is a random oracle with range {0, 1}2λ.
Then our construction for ReplicaEncoding described above is s-sound according
to Definition 1 for all κ, n ∈ N and s ∈ 1 − ω(log κ)

2λ .

Due to space constraints, we defer the sequence of games and the proof of
this theorem to the full version of our paper, [18].

7 Counterexample for Round Function Independent of
Blocks

We gave intuition in Sect. 1.2 using VBB obfuscation that our construction is
round optimal up to constant factors i.e. is insecure for any number of rounds
∈ o(b · n). Below we formalize the notion by giving a construction from iO that
captures this intuition formally and constructs a scheme in the end that breaks
soundness security.

We assume the existence of a trapdoor permutation (KeyGen, f(·, ·), f−1(·, ·))
with domain {0, 1}λ for λ ∈ ω(κ)4 , a puncturable PRF family (PPRF.KeyGen,
PPRF.Eval,PPRF.Puncture), indistinguishability obfuscation iO for all polyno-
mial sized circuits.

3 Upto additional rounding factors.
4 Note it suffices to have some trapdoor permutation with domain λ ∈ ω(κε) for ε > 0,

and we can generically transform this by taking said TDP on security parameter
κ′ = κ1/ε.
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7.1 Construction

Let (KeyGen, f(·, ·), f−1(·, ·)) be a trapdoor permutation on {0, 1}κ, where
KeyGen uses some r(κ) bits of randomness. Let (PPRF.KeyGen,PPRF.Eval,
PPRF.Puncture) be a puncturable PRF on domain {0, 1}κ and range {0, 1}r(κ).
We will construct a trapdoor permutation (keygen′

n, f
′
n(·, ·), f′n−1(·, ·)) on domain

{0, 1}2κ parameterized by a quantity n ∈ poly(κ) (Figs. 3 and 4).

Program f(z, x)

Inputs: Index z ∈ {0, 1}κ

Input x ∈ {0, 1}κ

Constants: Punctured PRF key K

Output: y ∈ {0, 1}n

1. Let r ← PPRF.Eval(K, z)
2. Let (pk′, sk′) ← KeyGen(1κ; r)
3. Output f(pk′, x)

Fig. 3. Routine Program f

Program f−1((z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ, x ∈ {0, 1}κ)

Inputs: Images (z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ

Advice x ∈ {0, 1}κ

Constants: Punctured PRF key K

Output: Preimages {xi ∈ {0, 1}κ}i∈[n]

1. If ∃i, j ∈ [n] : i �= j ∧ zi = zj output ⊥.
2. For i ∈ [n]

(a) Let ri ← PPRF.Eval(K, zi)
(b) Let (pki, ski) ← KeyGen(1κ; ri)
(c) Let xi = f−1(ski, yi)

3. If
⊕

i∈[n] xi �= x output ⊥.
4. If the above checks pass, output {xi}i∈[n].

Fig. 4. Routine Program f−1

keygen′
n(1

κ)
1. Sample K ← PPRF.KeyGen(1κ)
2. Let OProgram f = iO(κ,Program f) and OProgram f−1 = iO(κ,

Program f−1).
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3. Output (pk = (OProgram f,OProgram f−1), sk = K)
f′n(pk = (OProgram f,OProgram f−1), (z, x))
1. Let y ← OProgram f(z, x) and output (z, y).
f′n

−1(sk = K, (z, y))
1. Let r ← PPRF.Eval(K, z).
2. Let (pk0, sk0) ← KeyGen(1κ; r).
3. Output (z, f−1(sk0, y)).

7.2 Proofs

Efficiency

Claim. (keygen′
n, f

′
n(·, ·), f′n−1(·, ·)) are polynomial time algorithms

Proof. keygen′
n simply calls iO twice. The programs Program f and Program f−1

simply call the underlying PRF and trapdoor primitives at most n ∈ poly(κ)
times. By the efficiency of the underlying PRF and trapdoor permutation,
Program f and Program f−1 are poly-sized circuits and iO runs in poly time,
thus keygen′

n runs in polynomial time.
f′n simply evaluates a polynomial sized circuit, which is polynomial time.
f′n

−1 does a single call to PPRF.Eval,KeyGen, f−1(·, ·), which are all polynomial
time algorithms by definition.

Correctness

Claim. The correctness of iO and correctness of f−1(sk′, ·) computing inverse of
f(pk′, ·) implies f′n

−1(sk, ·) computes the inverse of f′n(pk, ·), i.e.

∀κ, (pk, sk) ← keygen′
n(1

κ),∀x′ ∈ {0, 1}2κ, f′n
−1(sk, f′n(pk, x

′)) = x′.

Proof. Let x′ = (z, x) ∈ {0, 1}2κ be an arbitrary input to function f′n. Recall
that f′n simply runs OProgram f on (z, x) and is same as the result of outputting
Program f on (z, x) from correctness of iO. The output produced is (z, f(pk′, x))
where (pk′, sk′) = KeyGen(1κ, F (K, z)). f′n

−1 when run on (z, f(pk′, x)) produces
the same (pk′, sk′) pair as OProgram f. Since,

∀κ, (pk′, sk′) ← KeyGen(1κ),∀x ∈ {0, 1}κ, f−1(sk′, f(pk′, x)) = x.

f′n
−1 returns (z, f−1(sk′, f(pk′, x))) = (z, x).

Security

Theorem 3. Assuming (KeyGen, f(·, ·), f−1(·, ·)) is a secure one way permuta-
tion, indistinguishability of iO and a puncturable PRF family (PPRF.KeyGen,
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PPRF.Eval,PPRF.Puncture) secure, (keygen′
n, f

′
n, f

′
n
−1) is a secure one way per-

mutation - i.e., that for all PPT algorithms A

Pr

⎡

⎣
f′n(pk, (z0, x0)) = (z, y) s.t.

(pk, sk) ← keygen′
n(1

κ), (z0, x0)
R←− {0, 1}2κ,

(z, y) = f′n(pk, (z0, x0)), (z′, x′) ← A(pk, (z, y))

⎤

⎦ ≤ negl(κ),

over the random coins of keygen′
n and sampling of (z0, x0).

We will show this via a sequence of games, where the view of the adversary
between successive games is indistinguishable. Due to space constraints, the
formal proof is deferred to the full version [18]. The proof follows the punctured
programming technique of [28].
Game 0 This is the original security game.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)
(b) Let OProgram f = iO(κ,Program f) and OProgram f−1 = iO(κ,

Program f−1).5

(c) Output (pk = (OProgram f,OProgram f−1), sk = K)
2. Challenger runs f′n(pk, (z0, x0))

(a) Let y0 ← OProgram f(z0, x0).
3. Adversary is given (pk, (z0, y0)).
4. Adversary outputs (z′, x′)
5. If f′n(pk, (z

′, x′)) = (z0, y0) then output 1 else output 0

Game 1
In this game, we change the way Program f is programmed (Fig. 5).

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)
(b) Compute (pk0, sk0) ← KeyGen(1κ, F (K, z0))
(c) Compute punctured key K({z0})
(d) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1 = iO(κ,

Program f−1).
(e) Output (pk = (OProgram f∗,OProgram f−1), sk = K)

2. Challenger runs f′n(pk, (z0, x0))
(a) Let y0 ← OProgram f∗(z0, x0).

3. Adversary is given (pk, (z0, y0)).
4. Adversary outputs (z′, x′)
5. If f′n(pk, (z

′, x′)) = (z0, y0) then output 1 else output 0

Game 2
In this game, we change the way Program f−1 is programmed (Fig. 6).
5 The security parameter in the input to iO algorithm is the smallest λ for which
Program f,Program f∗ are in Cλ which will be polynomial in κ as the circuits are
polynomial. We denote this by κ here for notation clarity.
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Program f∗(z, x)

Inputs: Index z ∈ {0, 1}κ

Input x ∈ {0, 1}κ

Constants: Punctured PRF key K({z0})
Public Key pk0

Output: y ∈ {0, 1}n

1. If z = z0, output f(pk0, x).
2. Let r ← PPRF.Eval(K({z0}), z)
3. Let (pk′, sk′) ← KeyGen(1κ; r)
4. Output f(pk′, x)

Fig. 5. Routine Program f∗

Program f−1∗((z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ, x ∈ {0, 1}κ)

Inputs: Images (z1, y1), . . . , (zn, yn) ∈ {0, 1}2κ

Advice x ∈ {0, 1}κ

Constants: Punctured PRF key K({z0})
Public Key pk0

Output: Preimages {xi ∈ {0, 1}κ}i∈[n]

1. If ∃i, j ∈ [n] : i �= j ∧ zi = zj output ⊥.
2. For i ∈ [n] when zi �= z0

(a) Let ri ← PPRF.Eval(K({z0}), zi)
(b) Let (pki, ski) ← KeyGen(1κ; ri)
(c) Let xi = f−1(ski, yi)

3. If ∃i′ : zi′ = z0
(a) Let xi′ = x ⊕ (

⊕
i∈[n]\{i′} xi).

(b) If f(pk0, xi′) �= yi, output ⊥.
4. If

⊕
i∈[n] xi �= x output ⊥.

5. If the above checks pass, output {xi}i∈[n].

Fig. 6. Routine Program f−1∗

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)
(b) Compute (pk0, sk0) ← KeyGen(1κ, F (K, z0))
(c) Compute punctured key K({z0})
(d) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1∗ =

iO(κ,Program f−1∗).
(e) Output (pk = (OProgram f∗,OProgram f−1∗), sk = K)

2. Challenger runs f′n(pk, (z0, x0))
(a) Let y0 ← OProgram f∗(z0, x0).
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3. Adversary is given (pk, (z0, y0)).
4. Adversary outputs (z′, x′)
5. If f′n(pk, (z

′, x′)) = (z0, y0) then output 1 else output 0

Game 3
In this game, we compute (pk0, sk0) ← KeyGen(1κ, r0) using true randomness r0.

1. Challenger samples a random (z0, x0)
R←− {0, 1}2κ

(a) Sample K ← PPRF.KeyGen(1κ)
(b) Sample r0

R←− {0, 1}r(κ)

(c) Compute (pk0, sk0) ← KeyGen(1κ, r0)
(d) Compute punctured key K({z0})
(e) Let OProgram f∗ = iO(κ,Program f∗) and OProgram f−1∗ = iO(κ,

Program f−1∗).
(f) Output (pk = (OProgram f∗,OProgram f−1∗), sk = K)

2. Challenger runs f′n(pk, (z0, x0))
(a) Let y0 ← OProgram f∗(z0, x0).

3. Adversary is given (pk, (z0, y0)).
4. Adversary outputs (z′, x′)
5. If f′n(pk, (z

′, x′)) = (z0, y0) then output 1 else output 0

7.3 Attack on Replica Encoding Scheme

First, we restate the security game in the context of the above TDP. We consider
a variation of our construction in Sect. 5 with r ∈ o(b · n) instantiated with
the above trapdoor permutation and present a concrete attack adversary which
breaks the s-soundness of our replica encoding scheme for any constant s ∈ (0, 1).
We remark that this attack also applies to the construction in Sect. 6.
Game 0: SoundA1,A2(κ, n)

– Setup: The challenger(denoted by C) runs (pk′, sk′) ← rSetup(1κ, 1n) and
sends public key pk’ = (C ′

0, C
′
1, n) to A1. It keeps the secret key sk’ = (K,n)

for itself.
– Phase 1: The adversary A1 issues queries on T,T−1,H, C responds the query

back to A1.
– File Challenge: m ∈ {0, 1}∗ ← AH(·),T(·),T−1(·)

1 (1κ, pk′). It sends m to C who
parses pk′ as (C ′

0, C
′
1, n); sk′ as (K,n) and does the following:

• Divide m into b blocks of length λ i.e. m = m1||m2|| . . . ||mb, b = |m|/λ�.
• For i ∈ [n],

* Choose a string ρi
R←− {0, 1}κ.

* Compute ∀t ∈ [b],
Y

(i)
t,0 = mt ⊕ H(ρi||t).

* For rounds j from 1 to r and ∀t ∈ [b],
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· Let z
(i)
t,j , x

(i)
t,j ∈ {0, 1}λ/2

· Let z
(i)
t,j ||x(i)

t,j = T(Y (i)
t,j )

· Compute Y
(i)
t,j from Y

(i)
t,j as

(pk(i)t,j , sk
(i)
t,j) = KeyGen(1κ;PPRF.Eval(K, z

(i)
t,j ).

Y
(i)
t,j = z

(i)
t,j ||f−1(sk(i)t,j , x

(i)
t,j)

* Let y
(i)
r = Y

(i)
1,r || . . . ||Y (i)

b,r and set y(i) = (y(i)
r , ρi).

C returns y(1), y(2), . . . y(n) to A1.

– Phase 2: A1 issues additional queries on T,T−1,H, C responds the query
back to A1.

– State Sharing: A1 outputs state state ← AH(·),T(·),T−1(·)
1 (1κ, pk′, y) and

sends state to A2.
– Phase 3: The adversary A2 queries on T,T−1,H, C responds the query back

to A2.
– Guess: A2 outputs the replica guesses to C.

{ỹ(i)} ← A2(1κ, pk′,m, state).

– Verify: Let vi = 1 if ỹ(i) = y(i) and 0 otherwise. Adversary wins if |state| <∑
vi · s(κ, |m|) · len(κ, |m|).

Now below, we present out construction of adversaries A1,A2.

A1(1κ, pk′ = (pk, n))

– Choose any message m ∈ {0, 1}b·λ where b ≥ 1.
– Send m to challenger.
– Receive {y(i) = {Y

(i)
t,r }t∈[b], ρi}i∈[n].

– For each j ∈ [r], set xj =
⊕

t∈[b],i∈[n] Y
(i)
t,j .

– Send {xj}, {ρi} as state.

A2(1κ, pk′ = (C ′
0, C

′
1, n),m, ({xj}, ρi))

– Divide m into b blocks of length λ, m = m1|| . . . ||mb

– For i ∈ [r], t ∈ [b]

• Compute Y
(i)
t,0 = H(ρi||t) ⊕ mt

– For j ∈ [r]

• Set {Y
(i)
t,j }i∈[r],t∈[b] = C ′

1({T(Y (i)
t,j−1)}, xj)
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– For i ∈ [r]

• Let y
(i)
r = Y

(i)
1,r || . . . ||Y (i)

b,r and output (y(i)
r , ρi)

Lemma 5. (A1,A2) use λ · o(b · n) + n · o(λ) space.

Proof. We observe that the state output is {xj}, {ρi}, which use r · λ, and κ · n
space respectively. We use the fact that r ∈ o(b · n) and λ ∈ ω(κ) to give us our
result. ��
Lemma 6. ∀n ≥ 1, there exists a negligible function negl such that the probabil-
ity that

∑
i vi = n in the verification stage of SoundA1,A2(κ, n) for adversaries

(A1,A2) is 1 − negl(κ).

Proof. We recall that C ′
1 is simply an obfuscation of program Program f−1. Thus,

as long as the collection {z
(i)
t,j}t∈[b],i∈[n] is unique for every j ∈ [r] and xj is the

⊕ of {x
(i)
t,j}t∈[b],i∈[n], then C ′

1 will successfully invert. By the fact that H is
a random oracle, and that T and f are permutations, we use the fact that a
uniform random variable under a permutation is uniformly random to get that
{z

(i)
t,j}t∈[b],i∈[n] is a uniform and independently random set. Thus, we can union

bound the probability that any of them collide with
(
b·n
2

) · 2−λ/2 ∈ negl(κ). In
addition, we know that xj is the aforementioned value by construction. Thus,
we can inductively reason that our adversary computes {Y

(i)
t,j }i∈[r],t∈[b] correctly,

and thus can recover the original encodings. ��
Lemma 7. When instantiated with a round function r ∈ o(b · n), the construc-
tion in Sect. 5 is not s-sound for any constant functions s(κ, |m|) = c ∈ (0, 1).

Proof. Recall the definition of s-soundness as

Pr
[

(v, state,m) ← SoundA1,A2(κ, n), s.t.
|state| < v · s(κ, |m|) · len(κ, |m|)

]

≤ negl(κ).

We know by Lemma 6 that v = n with all but negligible probability, and from
Lemma 5 that |state| ∈ λ · o(b · n) + n · o(λ). We recall that len(κ, |m|) = |m| +
O(κ) > λ · b. From this, we can conclude that for sufficiently large κ, |m|, we
know

λ · o(b · n) + n · o(λ) < n · c · λ · b < v · s(κ, |m|) · len(κ, |m|)
with all but negligible probability, and so this scheme is not s-sound. ��
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Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak, and Wichs (JACM 2018) as a generalization of standard error
correcting codes to handle severe forms of tampering on codewords. This
notion has attracted a lot of recent research, resulting in various explicit
constructions, which have found applications in tamper-resilient cryp-
tography and connections to other pseudorandom objects in theoretical
computer science. We continue the line of investigation on explicit con-
structions of non-malleable codes in the information theoretic setting,
and give explicit constructions for several new classes of tampering func-
tions. These classes strictly generalize several previously studied classes
of tampering functions, and in particular extend the well studied split-
state model which is a “compartmentalized” model in the sense that
the codeword is partitioned a prior into disjoint intervals for tampering.
Specifically, we give explicit non-malleable codes for the following classes
of tampering functions.

– Interleaved split-state tampering: Here the codeword is partitioned
in an unknown way by an adversary, and then tampered with by a
split-state tampering function.

– Affine tampering composed with split-state tampering: In this
model, the codeword is first tampered with by a split-state adver-
sary, and then the whole tampered codeword is further tampered
with by an affine function. In fact our results are stronger, and we
can handle affine tampering composed with interleaved split-state
tampering.

Our results are the first explicit constructions of non-malleable codes in
any of these tampering models. As applications, they also directly give
non-malleable secret-sharing schemes with binary shares in the split-
state joint tampering model and the stronger model of affine tampering
composed with split-state joint tampering. We derive all these results
from explicit constructions of seedless non-malleable extractors, which
we believe are of independent interest.

Using our techniques, we also give an improved seedless extractor for
an unknown interleaving of two independent sources.
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Keywords: Non-malleable code · Tamper-resilient cryptography ·
Extractor

1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [36]
as an elegant relaxation and generalization of standard error correcting codes,
where the motivation is to handle much larger classes of tampering functions
on the codeword. Traditionally, error correcting codes only provide meaningful
guarantees (e.g., unique decoding or list-decoding) when part of the codeword
is modified (i.e., the modified codeword is close in Hamming distance to an
actual codeword), whereas in practice an adversary can possibly use much more
complicated functions to modify the entire codeword. In the latter case, it is easy
to see that error correction or even error detection becomes generally impossible,
for example an adversary can simply change all codewords into a fixed string.
On the other hand, non-malleable codes can still provide useful guarantees here,
and thus partially bridge this gap. Informally, a non-malleable code guarantees
that after tampering, the decoding either correctly gives the original message
or gives a message that is completely unrelated and independent of the original
message. This captures the notion of non-malleability: that an adversary cannot
modify the codeword in a way such that the tampered codeword decodes back
to a related but different message.

The original intended application of non-malleable codes is in tamper-
resilient cryptography [36], where they can be used generally to prevent an adver-
sary from learning secret information by observing the input/output behavior of
modified ciphertexts. Subsequently, non-malleable codes have found applications
in non-malleable commitments [40], non-malleable encryption [30], public-key
encryptions [31], non-malleable secret-sharing schemes [38], and privacy ampli-
fication protocols [19]. Furthermore, interesting connections were found to non-
malleable extractors [27], and very recently to spectral expanders [54]. Along
the way, the constructions of non-malleable codes used various components and
sophisticated ideas from additive combinatorics [5,22] and randomness extrac-
tion [18], and some of these techniques have also found applications in construct-
ing extractors for independent sources [46]. As such, non-malleable codes have
become fundamental objects at the intersection of coding theory and cryptog-
raphy. They are well deserved to be studied in more depth in their own right,
as well as to find more connections to other well studied objects in theoretical
computer science.

We first introduce some notation before formally defining non-malleable
codes. For a function f : S → S, we say s ∈ S is a fixed point (of f) if f(s) = s.

Definition 1 (Tampering functions). For any n > 0, let Fn denote the set
of all functions f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering
functions.
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We use the statistical distance to measure the distance between distributions.

Definition 2. The statistical distance between two distributions D1 and D2 over
some universal set Ω is defined as |D1 − D2| = 1

2

∑
d∈Ω |Pr[D1 = d] − Pr[D2 =

d]|. We say D1 is ε-close to D2 if |D1 − D2| ≤ ε and denote it by D1 ≈ε D2.

To introduce non-malleable codes, we need to define a function called copy
that takes in two inputs. If the first input is the special symbol “same�”, the
copy function just outputs its second input. Else it outputs its first input. This
is useful in defining non-malleable codes where one wants to model the situation
that the decoding of the tampered codeword is either the original message or
a distribution independent of the message. Thus, we define a distribution on
the message space and the special symbol same�, where the probability that the
distribution takes on the value same� corresponds to the probability that the
tampered codeword is decoded back to the original message. More formally, we
have

copy(x, y) =

{
x if x �= same�

y if x = same�

Following the treatment in [36], we first define coding schemes.

Definition 3 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec :
{0, 1}n → {0, 1}k ∪ {⊥} be functions such that Enc is a randomized function
(i.e., it has access to private randomness) and Dec is a deterministic function.
We say that (Enc,Dec) is a coding scheme with block length n and message
length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is
taken over the randomness in Enc.

We can now define non-malleable codes.

Definition 4 (Non-malleable codes). A coding scheme C = (Enc,Dec) with
block length n and message length k is a non-malleable code with respect to a
family of tampering functions F ⊂ Fn and error ε if for every f ∈ F there
exists a random variable Df on {0, 1}k ∪ {same�} which is independent of the
randomness in Enc and is efficiently samplable given oracle access to f(.), such
that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s))) − copy(Df , s)| ≤ ε.

We say the code is explicit if both the encoding and decoding can be done in
polynomial time. The rate of C is given by k/n.

Relevant Prior Work on Non-malleable Codes in the Information Theoretic Set-
ting. There has been a lot of exciting research on non-malleable codes, and it
is beyond the scope of this paper to provide a comprehensive survey of them.
Instead we focus on relevant explicit (unconditional) constructions in the infor-
mation theoretic setting, which is also the focus of this paper. One of the most
studied classes of tampering functions is the so called split-state tampering,
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where the codeword is divided into (at least two) disjoint intervals and the
adversary can tamper with each interval arbitrarily but independently. This
model arises naturally in situations where the codeword may be stored in differ-
ent parts of memory or different devices. Following a very successful line of work
[1,2,4,5,7,18,22,27,34,41,43,44,46,47], we now have explicit constructions of
non-malleable codes in the 2-split state model with constant rate and negligible
error.

The split state model is a “compartmentalized” model, where the codeword is
partitioned a priori into disjoint intervals for tampering. Recently, there has been
progress towards handling non-compartmentalized tampering functions. A work
of Agrawal, Gupta, Maji, Pandey and Prabhakaran [8] gave explicit constructions
of non-malleable codes with respect to tampering functions that permute or
flip the bits of the codeword. Ball, Dachman-Soled, Kulkarni and Malkin [12]
gave explicit constructions of non-malleable codes against t-local functions for
t ≤ n1−ε. However in all these models, each bit of the tampering function only
depends on part of the codeword. A recent work of Chattopadhyay and Li [21]
gave the first explicit constructions of non-malleable codes where each bit of the
tampering function may depend on all bits of the codeword. Specifically, they
gave constructions for the classes of affine functions and small-depth (unbounded
fain-in) circuits. The rate of the non-malleable code with respect to small-depth
circuits was exponentially improved by a subsequent work of Ball, Dachman-
Soled, Guo, Malkin, and Tan [11]. In a recent work, Ball, Guo and Wichs [13]
constructed non-malleable codes with respect to bounded depth decision trees.

Given all these exciting results, a major goal of the research on non-malleable
codes remains to give explicit constructions for broader classes of tampering
functions, as one can use the probabilistic method to show the existence of non-
malleable codes with rate close to 1 − δ for any class F of tampering functions
with |F| ≤ 22

δn

[26].

Our Results. We continue the line of investigation on explicit constructions of
non-malleable codes, and give explicit constructions for several new classes of
non-compartmentalized tampering functions, where in some classes each bit of
the tampering function can depend on all the bits of the codeword. In Sect. 1.2,
we discuss motivations and applications of our new non-malleable codes in cryp-
tography. The new classes strictly generalize several previous studied classes of
tampering functions. In particular, we consider the following classes.
1. Interleaved 2-split-state tampering, where the adversary can divide the code-

word into two arbitrary disjoint intervals and tamper with each interval arbi-
trarily but independently. This model generalizes the split-state model and
captures the situation where the codeword is partitioned into two blocks
(not necessarily of the same length) in an unknown way by the adver-
sary before applying a 2-split-state tampering function. Constructing non-
malleable codes for this class of tampering functions was left as an open
problem by Cheraghchi and Guruswami [27].

2. Composition of tampering, where the adversary takes two tampering func-
tions and composes them together to get a new tampering function. We note



588 E. Chattopadhyay and X. Li

that function composition is a natural strategy for an adversary to achieve
more powerful tampering, and it has been studied widely in other fields (e.g.,
computational complexity and communication complexity). We believe that
studying non-malleable codes for the composition of different classes of tam-
pering functions is also a natural and important direction.

We now formally define these classes and some related classes below. For nota-
tion, given any permutation π : [n] → [n] and any string x of length n, we let
y = xπ denote the length n string such that yπ(i) = xi.

– The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of
two functions f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n, and for any
x, y ∈ {0, 1}n, f(x, y) = (f1(x), f2(y)). This family of tampering functions
has been extensively studied, with a long line of work achieving near optimal
explicit constructions of non-malleable codes.

– The family of affine functions Lin ⊂ Fn: Any f ∈ Lin is an affine function
from {0, 1}n to {0, 1}n (viewing {0, 1}n as Fn

2 ), i.e., f(x) = Mx+ v, for some
n × n matrix M on F2 and v ∈ F

n
2 .

– The family of interleaved 2-split-state functions (2, t)-ISS ⊂ Fn: Any f ∈
(2, t)-ISS comprises of two functions f1 : {0, 1}n1 → {0, 1}n1 , f2 : {0, 1}n2 →
{0, 1}n2 such that n1 + n2 = n and min{n1, n2} ≥ t (i.e both partitions are
of length at least t), and a permutation π : [n] → [n]. For any z = (x, y)π ∈
{0, 1}n, where x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , let f(z) = (f1(x), f2(y))π. In this
paper we require that t ≥ nβ for some fixed constant 0 < β < 1. Note this
includes as a special case the situation where the two states have the same
size, which we denote by 2ISS, and in particular 2SS.

– For any tampering function families F ,G ⊂ Fn, define the family F ◦G ⊂ Fn

to be the set of all functions of the form f ◦ g, where f ∈ F , g ∈ G and ◦
denotes function composition.

We now formally state our results. Our most general result is an explicit non-
malleable code with respect to the tampering class of Lin ◦ (2, nβ)-ISS, i.e, an
affine function composed with an interleaved 2-split-state tampering function.
Specifically, we have the following theorem.

Theorem 5. There exist constants β, δ > 0 such that for all integers n > 0
there exists an explicit non-malleable code with respect to Lin ◦ (2, nβ)-ISS with
rate 1/nδ and error 2−nδ

.

We immediately have the following corollary, which records the classes of
functions for which no explicit non-malleable codes were known (for any rate)
prior to this work.

Corollary 1. There exist constants β, δ > 0 such that for all integers n > 0
there exists an explicit non-malleable code with respect to the following classes
of functions with rate 1/nδ and error 2−nδ

:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS and Lin ◦ 2SS.
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1.2 Motivations and Applications in Cryptography

Just as standard non-malleable codes for split-state tampering arise from natural
cryptographic applications, our non-malleable codes for interleaved 2-split-state
tampering and affine tampering composed with interleaved split-state tampering
also have natural cryptographic motivations and applications.

It is known that any non-malleable code in the 2-split-state model gives a 2
out of 2 secret-sharing scheme, if one views the two split states as two shares
[6]. We show that any non-malleable code in the interleaved 2-split state model
gives a non-malleable secret-sharing scheme with binary shares. Secret-sharing
schemes [14,58] are fundamental objects in cryptography, and building blocks for
many other more advanced applications such as secure multiparty computation.
In short, a secret-sharing scheme shares a message secretly among n parties,
such that any qualified subset can reconstruct the message, while any unqualified
subset reveals nothing (or almost nothing) about the message. Equivalently, one
can view this as saying that any leakage function which leaks the shares in an
unqualified subset reveals nothing. In the standard threshold or t out of n secret-
sharing, any subset of size at most t is an unqualified subset while any subset of
size larger than t is a qualified subset. However, it is known that in such a scheme,
the share size has to be at least as large as the message size. Thus, a natural and
interesting question is whether the share size can be smaller under some relaxed
notion of secret-sharing. This is indeed possible when one considers the notion
of (r, t)-ramp secret-sharing, where r > t + 1. In this setting, any subset of size
at most t reveals nothing about the message, while any subset of size at least r
can reconstruct message. Thus t is called the privacy threshold and r is called
the reconstruction threshold. Subsets of size between t + 1 and r − 1 may reveal
some partial information about the message. Again, it is not hard to see that
the share size in this case has to be at least as large as m/(r − t), where m is
the message length. Thus, if one allows a sufficiently large gap between r and t,
then it is possible to achieve a secret-sharing scheme even with binary shares.

Secret-sharing schemes are also closely related to error correcting codes. For
example, the celebrated Shamir’s scheme [58] is based on Reed-Solomon codes.
Similarly, binary secret-sharing schemes are largely based on binary error cor-
recting codes, and they are studied in a series of recent works [15,16,25,48] in
terms of the tradeoff between the message length, the privacy threshold t, the
reconstruction threshold r, and the complexity of the sharing and reconstruction
functions.

However, standard secret-sharing schemes only allow an adversary to pas-
sively observe some shares, thus one can ask the natural question of whether
it is possible to protect against even active adversaries who can tamper with
the shares. In this context, the notion of robust secret-sharing schemes (e.g.,
[17,51]) allows qualified subsets to recover the message even if the adversary can
modify part of the shares. More recently, by generalizing non-malleable codes,
Goyal and Kumar [38] introduced non-malleable secret-sharing schemes, where
the adversary can tamper with all shares in some restricted manner. Naturally,
the guarantee is that if tampering happens, then the reconstructed message is
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either the original message or something completely unrelated. In particular,
they constructed t out of n non-malleable secret-sharing schemes in the follow-
ing two tampering models. In the independent tampering model, the adversary
can tamper with each share independently. In the joint tampering model, the
adversary can divide any subset of t+1 shares arbitrarily into two sets of differ-
ent size, and tamper with the shares in each set jointly, but independently across
the two sets. Note that the adversary in the second model is strictly stronger
than the adversary in the first one, since for reconstruction one only considers
subsets of size t + 1. Several follow up works [3,9,39] studied different models
such as non-malleable secret-sharing schemes for general access structures, and
achieved improvements in various parameters.

However, in all known constructions of non-malleable secret-sharing schemes
the share size is always larger than 1 bit. In other words, no known non-malleable
secret-sharing scheme can achieve binary shares. This is an obstacle that results
from the techniques in all known constructions. Indeed, even if one allows (r, t)-
ramp non-malleable secret-sharing with an arbitrarily large gap between r and t,
no known constructions can achieve binary shares, because they all need to put
at least two shares of some standard secret-sharing schemes together to form a
single share in the non-malleable scheme. Thus it is a natural question to see if
one can construct non-malleable secret-sharing schemes with binary shares using
different techniques.

Our non-malleable codes for interleaved 2-split-state tampering directly give
non-malleable secret-sharing schemes with binary shares that protect against
joint tampering. We have the following theorem.

Theorem 6. There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme
has statistical privacy with error 2−nΩ(1)

, and is resilient with error 2−nΩ(1)
to

joint tampering where the adversary arbitrarily partitions the r shares into two
blocks, each with at most t shares, and tampers with each block independently
using an arbitrary function.

Intuitively, any n-bit non-malleable code for interleaved 2-split-state tam-
pering gives a ramp non-malleable secret-sharing scheme with reconstruction
threshold r = n, as follows. If the code protects against an adversary who can
partition the codeword into two disjoint sets and tamper with each set arbi-
trarily but independently, then each set must reveal (almost) nothing about the
secret message. Otherwise, the adversary can simply look at one set and use the
leaked information to modify the shares in this set, and make the reconstructed
message become a different but related message. In particular, the same proof in
[6] for the standard 2-split state model also works for the interleaved 2-split state
model. Since our code works for interleaved 2-split-state tampering and the size
of one set can be as large as n−nβ , this implies privacy threshold at least n−nβ ,
with the small error in privacy coming from the error of the non-malleable code.
We refer the reader to the full version of our paper for more details.
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It is an interesting open question to construct explicit non-malleable secret-
sharing schemes with binary shares where the reconstruction threshold r < n. We
note that this question is closely related to constructing non-malleable codes for
the tampering class 2SS◦Lin or 2ISS◦Lin (i.e., reverse the order of composition).
This is because to get such a scheme, one natural idea is to apply another secret-
sharing scheme on top of our non-malleable code. If one uses a linear secret-
sharing scheme as in many standard schemes, then the tampering function on
the codeword becomes 2SS ◦ Lin or 2ISS ◦ Lin.

We also note that in an (r, t)-ramp secret-sharing scheme with binary shares,
unless the message has only one bit, we must have r > t + 1. Thus in the joint
tampering model, instead of allowing the adversary to divide r shares arbitrarily
into two sets, one must put an upper bound t on the size of each set as in our
theorem. For example, one cannot allow an adversary to look at a set of shares
with size r − 1, because r − 1 > t and this set of shares may already leak some
information about the secret message.

In both standard secret-sharing and non-malleable secret-sharing, in addition
to looking at sets of shares, researchers have also studied other classes of leakage
function or tampering function. For example, the work of Goyal et al. [37] studied
secret-sharing schemes that are resilient to affine leakage functions on all shares,
and used them to construct parity resilient circuits and bounded communication
leakage resilient protocols. A recent work of Lin et al. [49] also studied non-
malleable secret-sharing schemes where the adversary can tamper with all shares
jointly using some restricted classes of functions. Specifically, [49] considered
the model of “adaptive” affine tampering, where the adversary is allowed to
first observe the shares in some unqualified subset, and then choose an affine
function based on this to tamper with all shares. In this sense, our non-malleable
codes for affine tampering composed with interleaved 2-split-state tampering
also directly give non-malleable secret-sharing schemes with binary shares that
protect against affine tampering composed with joint tampering, which is strictly
stronger than both the joint tampering model and the affine tampering model
(although our affine tampering is non-adaptive compared to [49]). Specifically,
we have the following theorem (which strictly generalizes Theorem 6).

Theorem 7. There exist constants 0 < α < β < 1 such that for all integers n >
0 there exists an explicit (r, t)-ramp non-malleable secret-sharing scheme with
binary shares, where r = n, t = n−nβ and the message length is nα. The scheme
has statistical privacy with error 2−nΩ(1)

, and is resilient with error 2−nΩ(1)
to an

adversary that tampers in two stages: In the first stage, the adversary partitions
the r shares arbitrarily into two blocks, each with at most t shares, and tampers
with each block independently using an arbitrary function. In the second stage,
the adversary applies an arbitrary affine tampering function jointly on all the
already tampered (from the first stage) r shares.

We provide a formal proof of the above theorem in the full version of our
paper.

Again, it is an interesting open question to construct explicit non-malleable
secret-sharing schemes where the order of tampering is reversed.



592 E. Chattopadhyay and X. Li

1.3 Seedless Non-malleable Extractors

Our results on non-malleable codes are based on new constructions of seedless
non-malleable extractors, which we believe are of independent interest. Before
defining seedless non-malleable extractors formally, we first recall some basic
notation from the area of randomness extraction.

Randomness extraction is motivated by the problem of purifying imperfect
(or defective) sources of randomness. The concern stems from the fact that
natural random sources often have poor quality, while most applications require
high quality (e.g., uniform) random bits. We use the standard notion of min-
entropy to measure the amount of randomness in a distribution.

Definition 8. The min-entropy H∞(X) of a probability distribution X on
{0, 1}n is defined to be minx(− log(Pr[X = x])). We say X is an (n,H∞(X))-
source and the min-entropy rate is H∞(X)/n.

It turns out that it is impossible to extract from a single general weak random
source even for min-entropy n − 1. There are two possible ways to bypass this
barrier. The first one is to relax the extractor to be a seeded extractor, which takes
an additional independent short random seed to extract from a weak random
source. The second one is to construct deterministic extractors for special classes
of weak random sources.

Both kinds of extractors have been studied extensively. Recently, they have
also been generalized to stronger notions where the inputs to the extractor can
be tampered with by an adversary. Specifically, Dodis and Wichs [33] introduced
the notion of seeded non-malleable extractor in the context of privacy amplifi-
cation against an active adversary. Informally, such an extractor satisfies the
stronger property that the output of the extractor is independent of the out-
put of the extractor on a tampered seed. Similarly, and more relevant to this
paper, a seedless variant of non-malleable extractors was introduced by Cher-
aghchi and Guruswami [27] as a way to construct non-malleable codes. Apart
from their original applications, both kinds of non-malleable extractors are of
independent interest. They are also related to each other and have applications
in constructions of extractors for independent sources [46].

We now define seedless non-malleable extractors.

Definition 9 (Seedless non-malleable extractors). Let F ⊂ Fn be a family
of tampering functions such that no function in F has any fixed points. A func-
tion nmExt : {0, 1}n → {0, 1}m is a seedless (n,m, ε)-non-malleable extractor
with respect to F and a class of sources X if for every distribution X ∈ X and
every tampering function f ∈ F , there exists a random variable that is Df,X on
{0, 1}m ∪ {same�} that is independent of X, such that

|nmExt(X),nmExt(f(X)) − Um, copy(Df,X ,Um)| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists a polynomial time
sampling algorithm A that takes as input y ∈ {0, 1}m, and outputs a sample from
a distribution that is ε′-close to the uniform distribution on the set nmExt−1(y).
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In the above definition, when the class of sources X is the distribution Un,
we simply say that nmExt is a seedless (n,m, ε)-non-malleable extractor with
respect to F .

Relevant Prior Work on Seedless Non-malleable Extractors. The first construc-
tion of seedless non-malleable extractors was given by Chattopadhyay and Zuck-
erman [22] with respect to the class of 10-split-state tampering. Subsequently,
a series of works starting with the work of Chattopadhyay, Goyal and Li [18]
gave explicit seedless non-malleable extractors for 2-split-state tampering. The
only known constructions with respect to a class of tampering functions differ-
ent from split state tampering is from the work of Chattopadhyay and Li [21],
which gave explicit seedless non-malleable extractors with respect to the tam-
pering class Lin and small depth circuits, and a subsequent follow-up work of
Ball et al. [10] where they constructed non-malleable extractors against tam-
pering functions that are low-degree polynomials over large fields. We note that
constructing explicit seedless non-malleable extractors with respect to 2ISS was
also posed as an open problem in [27].

Our Results. As our most general result, we give the first explicit constructions
of seedless non-malleable extractors with respect to the tampering class Lin ◦
(2, nβ)-ISS.

Theorem 10. There exists a constant β > 0 such that for all n > 0 there exists
an efficiently computable seedless (n, nΩ(1), 2−nΩ(1)

)-non-malleable extractor with
respect to Lin ◦ (2, nβ)-ISS, that is 2−nΩ(1)

-invertible.

This immediately yields the first explicit non-malleable extractors against
the following classes of tampering functions.

Corollary 2. For all n > 0 there exists an efficiently computable seedless
(n, nΩ(1), 2−nΩ(1)

)-non-malleable extractor with respect to the following classes
of tampering functions:

– 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS, and Lin ◦ 2SS.

We derive our results on non-malleable codes using the above explicit con-
structions of non-malleable extractors based on a beautiful connection discovered
by Cheraghchi and Gurswami [27] (see Theorem 25 for more details).

1.4 Extractors for Interleaved Sources

Our techniques also yield improved explicit constructions of extractors for inter-
leaved sources, which generalize extractors for independent sources in the fol-
lowing way: the inputs to the extractor are samples from a few independent
sources mixed (interleaved) in an unknown (but fixed) way. Raz and Yehudayoff
[57] showed that such extractors have applications in communication complexity
and proving lower bounds for arithmetic circuits. In a subsequent work, Chat-
topadhyay and Zuckerman [24] showed that such extractors can also be used to
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construct extractors for certain samplable sources, extending a line of work ini-
tiated by Trevisan and Vadhan [60]. We now define interleaved sources formally.

Definition 11 (Interleaved Sources). Let X1, . . . ,Xr be arbitrary indepen-
dent sources on {0, 1}n and let π : [rn] → [rn] be any permutation. Then
Z = (X1, . . . ,Xr)π is an r-interleaved source.

Relevant Prior Work on Interleaved Extractors. Raz and Yehudayoff [57] gave
explicit extractors for 2-interleaved sources when both the sources have min-
entropy at least (1−δ)n for a tiny constant δ > 0. Their construction is based on
techniques from additive combinatorics and can output Ω(n) bits with exponen-
tially small error. Subsequently, Chattopadhyay and Zuckerman [24] constructed
extractors for 2-interleaved sources where one source has entropy (1 − γ)n for a
small constant γ > 0 and the other source has entropy Ω(log n). They achieve
output length O(log n) bits with error n−Ω(1).

A much better result (in terms of the min-entropy) is known if the extractor
has access to an interleaving of more sources. For a large enough constant C,
Chattopadhyay and Li [20] gave an explicit extractor for C-interleaved sources
where each source has entropy k ≥ poly(log n). They achieve output length kΩ(1)

and error n−Ω(1).

Our Results. Our main result is an explicit extractor for 2-interleaved sources
where each source has min-entropy at least 2n/3. The extractor outputs Ω(n)
bits with error 2−nΩ(1)

.

Theorem 12. For any constant δ > 0 and all integers n > 0, there exists an
efficiently computable function i	Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that
for any two independent sources X and Y, each on n bits with min-entropy at
least (2/3 + δ)n, and any permutation π : [2n] → [2n],

|i	Ext((X,Y)π) − Um| ≤ 2−nΩ(1)
.

2 Overview of Constructions and Techniques

Our results on non-malleable codes are derived from explicit constructions of
invertible seedless non-malleable extractors (see Theorem 25). In this section,
we illustrate our main ideas used to give explicit constructions of seedless non-
malleable extractors with respect to the relevant classes of tampering functions,
and explicit extractors for interleaved sources.

We first focus on the main ideas involved in constructing non-malleable
extractors against 2-split-state adversaries when the partition are of equal length
(we denote this by 2ISS). This serves to illustrate the important ideas that go
into all our explicit non-malleable extractor constructions. We refer the reader to
the full version of our paper for complete details of our non-malleable extractor
and code constructions.
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2.1 Seedless Non-malleable Extractors with Respect to Interleaved
2-split-state Tampering

We discuss the construction of a non-malleable extractor with respect to 2ISS. In
such settings, it was shown in [27] that it is enough to construct non-malleable
extractors assuming that at least one of f and g does not have any fixed points,
assuming that the sources X and Y have entropy at least n − nδ. Thus, we
construct a seedless non-malleable extractor nmExt : {0, 1}n×{0, 1}n → {0, 1}m,
m = nΩ(1) such that the following hold: let X and Y be independent (n, n−nδ)-
sources, for some small δ > 0. Let f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n

be arbitrary functions such that at least one of them has not fixed points, and
π : [2n] → [2n] be an arbitrary permutation. Then,

nmExt((X,Y)π),nmExt((f(X), g(Y))π)) ≈ε Um,nmExt((f(X), g(Y))π) (1)

where ε = 2−nΩ(1)
.

Our construction is based on the framework of advice generators and correla-
tion breakers set up in the work [18], and used in various follow-up works on non-
malleable extractors and codes. Before explaining this framework, we introduce
some notation for ease of presentation. Let Z = (X,Y)π. We use the notation
that if W = h((X,Y)π) (for some function h), then W′ or (W)′ stands for the
corresponding random variable h((f(X), g(Y))π). Thus, Z′ = (f(X), g(Y))π.

On a very high level, the task of constructing a non-malleable extractor can
be broken down into the following two steps:

1. Generating advice: the task here is to construct a function advGen :
{0, 1}2n → {0, 1}a, a ≤ nδ, such that advGen(Z) �= advGen(Z′) with high
probability.

2. Breaking correlation: here we construct an object that can be seen as a relax-
ation of a non-malleable extractor, in the sense that we supply the non-
malleable extractor with a short advice string. This object is called an advice
correlation breaker. We require that for all distinct strings s, s′ ∈ {0, 1}a,

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′).

Given the above components, the non-malleable extractor is defined as:

nmExt(Z) = ACB(Z, advGen(Z)).

The fact that the above satisfies (1) is not direct, but relies on further proper-
ties of the function advGen. In particular, we require that with high probability
over the fixings of the random variables advGen(Z) and advGen(Z′), X and Y
remain independent high min-entropy sources.

An Explicit Advice Generator. A natural first idea to construct an advice
generator can be as follows: Take a slice (prefix) of Z, say Z1, and use this to
sample some coordinates from an encoding (using a good error correcting code)
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of Z. A similar high level strategy has for example been used in [18], and other
follow-up works. The intuition behind such a strategy is that since we assume
Z �= Z′, encoding it will ensure that they differ on a lot of coordinates. Thus,
sampling a random set of coordinates will include one such coordinate with high
probability. However, in the present case, it is not clear why this should work
since it could be that Z1 contains all bits from say X, and the set of coordinates
where the encoding of Z and Z′ differ may be a function of X, which leads to
unwanted correlations.

The next natural idea could be the following: First use the slice Z1 to sample
a few coordinates from Z. Let Z2 indicate Z projected onto the sampled coor-
dinates. Now, it is not hard to prove that Z2 contains roughly equal number
of bits from both the sources X and Y. A strategy could be to now use Z2 to
sample coordinates from an encoding of Z. However, in this case, we run into
similar problems as before: there may be unwanted correlations between the ran-
domness used for sampling, and the random variable corresponding to the set of
coordinates where the encoding of Z and Z′ differ.

It turns out that the following subtler construction works:
Let n0 = nδ′

for some small constant δ′ > 0. We take two slices from Z, say
Z1 and Z2 of lengths n1 = nc0

0 and n2 = 10n0, for some constant c0 > 1. Next,
we use a good linear error correcting code (let the encoder of this code be E) to
encode Z and sample nγ coordinates (let S denote this set) from this encoding
using Z1 (the sampler is based on seeded extractors [61]). Let W1 = E(Z)S.
Next, using Z2, we sample a random set of indices T ⊂ [2n], and let Z3 = ZT.
We now use an extractor for interleaved sources, i.e., an extractor that takes as
input an unknown interleaving of two independent sources and outputs uniform
bits (see Sect. 1.4). Let i	Ext be this extractor (say from Theorem 12), and we
apply it to Z3 to get R = i	Ext(Z3). Finally, let W2 be the output of a linear
seeded extractor1 LExt on Z with R as the seed. The output of the advice
generator is Z1,Z2,Z3,W1,W2.

Notation: Define x = (x, 0n)π and y = (0n, y)π. Similarly, define f(x) =
(f(x), 0n)π and g(y) = (0n, g(y))π. Thus, (x, y)π = x + y and (f(x), g(y))π =
f(x)+g(y). Let Xi be the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining
bits of X. Similarly define Yi’s, i = 1, 2, 3, 4.

We now proceed to argue the correctness of the above construction. Note
that the correctness of advGen is direct if Zi �= Z′

i for some i ∈ {1, 2, 3}. Thus,
assume Zi = Z′

i for i = 1, 2, 3. It follows that S = S′,T = T′ and R = R′.
Recall that (X,Y)π = X + Y and (f(X), g(Y)π) = f(X) + g(Y). Since E is a
linear code and LExt is a linear seeded extractor, the following hold:

W1 − W′
1 = (E(X + Y − f(X) − g(Y)))S,

W2 − W′
2 = LExt(X + Y − f(X) − g(Y),R).

1 A linear seeded extractor is a seeded extractor where for any fixing of the seed, the
output is a linear function of the source.
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Suppose that Z1 contains more bits from X than Y, i.e., |X1| ≥ |Y1| (where
|α| denotes the length of the string α).

Now the idea is the following: Either (i) we can fix X − f(X) and claim
that X1 still has enough min-entropy, or (ii) we can claim that X − f(X) has
enough min-entropy conditioned on the fixing of (X2,X3). Let us first discuss
why this is enough. Suppose we are in the first case. Then, we can fix X− f(X)
and Y and argue that Z1 is a deterministic function of X and contains enough
entropy. Note that X + Y − f(X) − g(Y) is now fixed, and in fact it is fixed
to a non-zero string (using the assumption that at least one of f or g has no
fixed points). Thus, E(X+Y−f(X)−g(Y)) is a string with a constant fraction
of the coordinates set to 1 (since E is an encoder of a linear error correcting
code with constant relative distance), and it follows that with high probability
(E(X + Y − f(X) − g(Y)))S contains a non-zero entry (using the fact that S
is sampled using Z1, which has enough entropy). This finishes the proof in this
case since it implies W1 �= W′

1 with high probability.
Now suppose we are in case (ii). We use the fact that Z2 contains entropy to

conclude that the sampled bits Z3 contain almost equal number of bits from X
and Y (with high probability over Z2). Now we can fix Z2 without loosing too
much entropy from Z3 (by making the size of Z3 to be significantly larger than
Z2). Next, we observe that Z3 is an interleaved source, and hence R is close
to uniform. We now fix X3, and argue that R continues to be uniform. This
follows roughly from the fact that any extractor for an interleaving of 2-sources
is strong. Thus, R now becomes a deterministic function of Y while at the same
time, X−f(X) still has enough min-entropy. Hence, LExt(X−f(X),R) is close
to uniform even conditioned on R. We can now fix R and LExt(Y − g(Y),R)
without affecting the distribution LExt(X−f(X),R), since LExt(Y− g(Y),R)
is a deterministic function of Y while LExt(X − f(X),R) is a deterministic
function of X conditioned on the previous fixing of R. It follows that after these
fixings, W2 − W′

2 is close to a uniform string and hence W2 − W′
2 �= 0 with

probability 1 − 2−nΩ(1)
, which completes the proof.

The fact that it is enough to consider case (i) and case (ii) relies on a careful
convex combination analysis based on the pre-image size of the function f(x)−x.
In addition, for the above argument to work we need to carefully adjust the sizes
of Z1, Z2 and Z3. We skip the details here, and refer the interested reader to
later parts of the paper for more details.

An Explicit Advice Correlation Breaker. We now discuss the other crucial
component in the construction, the advice correlation breaker ACB : {0, 1}2n ×
{0, 1}a → {0, 1}m. Informally, the advice correlation breaker we construct takes 2
inputs, the interleaved source Z (that contains some min-entropy) and an advice
string s ∈ {0, 1}a, and outputs a distribution on {0, 1}m with the following
guarantee. If s′ ∈ {0, 1}a is another advice such that s �= s′, then

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′) (2)
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Our construction crucially relies on an explict advice correlation breaker
constructed in [21] that satisfies the following property: Let A be an (n, k)-
source, and A′ = f(A) be a tampered version of A. Further let B be a uniform
random variable, and B′ = g(B). Finally, let C,C′ be arbitrary random variables
such that {A,A′} is independent of {B,B′,C,C′}. Then [21] constructed an
advice correlation breaker ACB1 such that for advice strings s �= s′,

ACB1(B,A + C, s),ACB1(B′,A′ + C′, s′) ≈ Um,ACB1(B′,A′ + C′, s′). (3)

The construction of ACB1 is based on the powerful technique of alternating
extraction introduced by Dziembowski and Pietrzak [35], and later used in almost
all recent works on non-malleable extractors. In particular, the construction in
[21] relies on linear seeded extractors and an elegant primitive known as the
flip-flop alternating extraction, which was introduced by Cohen [29].

Recall that since Z = X + Y and Z′ = f(X) + g(Y), (2) can be stated as

ACB(X + Y, s),ACB(f(X) + g(Y), s′) ≈ε Um,ACB(f(X) + g(Y), s′)

Our main idea of reducing (2) to (3) is as follows: we again take a short slice
from Z, say Z4 (larger than the size of {Z1,Z2,Z3}), and use a linear seeded
extractor LExt to convert Z4 into a somewhere random source (i.e, a matrix,
where some rows are uniform). This can be done by defining row i of the matrix
to be Wi = LExt(Z4, i). The idea now is to simply apply ACB1 on each row Wi,
using the source Z, and the concatenation of s and the index of the row as the
new advice string, i.e., compute ACB1(Wi,Z, s, i). By appealing to a slightly
more general version of (3), where we allow multiple tampering, it follows that
the output of ACB1 corresponding to some uniform row is now independent of
the output of ACB1 on all other rows (including tampered rows). Thus, we can
simply output ⊕i(ACB1(Wi,Z, s, i)).

This almost works, modulo a technical caveat–the somewhere random source
constructed out of Z4 is a tall matrix, with more rows than columns, but the
parameters of ACB1 require us to work with a fat matrix, with more columns
that rows. This is roughly because, we want the uniform row to have more
entropy than the total size of all tampered random variables. To fix this, we use
another linear seeded extractor on the source Z with each row Wi as the seed
to obtain another somewhere random source of the right shape.

2.2 From Non-malleable Extractors to Non-malleable Codes

To obtain our non-malleable codes, the decoding function corresponds to com-
puting the extractor, which is already efficient. On the other hand, the encoding
function corresponds to sampling from the pre-image of any given output of the
non-malleable extractor. Thus we need to find an efficient way to do this, which
is quite non-trivial. We suitably modify our extractor to support efficient sam-
pling. Here we briefly sketch some high level ideas involved and refer the reader
to the full version of our paper for more details.
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Recall Z = (X,Y)π. The first modification is that in all applications of
seeded extractors in our construction, we specifically use linear seeded extractors.
This allows us to argue that the pre-image we are trying to sample from is in
fact a convex combination of distributions supported on subspaces. The next
crucial observation is the fact that we can use smaller disjoint slices of Z to
carry out various steps outlined in the construction. This is to ensure that the
dimensions of the subspaces that we need to sample from, do not depend on the
values of the random variables that we fix. For the steps where we use the entire
source Z (in the construction of the advice correlation breaker), we replace Z
by a large enough slice of Z. However this is problematic if we choose the slice
deterministically, since in an arbitrary interleaving of two sources, a slice of
length less than n might have bits only from one source. We get around this by
pseudorandomly sampling enough coordinates from Z (by first taking a small
slice of Z and using a sampler that works for weak sources [61]).

We now use an elegant trick introduced by Li [46] where the output of the
non-malleable extractor described above (with the modifications that we have
specified) is now used as a seed in a linear seeded extractor applied to an even
larger pseudorandom slice of Z. The linear seeded extractor that we use has the
property that for any fixing of the seed, the rank of the linear map corresponding
to the extractor is the same, and furthermore one can efficiently sample from
the pre-image of any output of the extractor. The final modification needed is a
careful choice of the error correcting code used in the advice generator. For this
we use a dual BCH code, which allows us to argue that we can discard some
output bits of the advice generator without affecting its correctness (based on
the dual distance of the code). This is crucial in order to argue that the rank
of the linear restriction imposed on the free variables of Z does not depend on
the values of the bits fixed so far. We refer the reader to the full version of
our paper where we provide more intuition and complete details of the modified
non-malleable extractor and sampling procedure.

2.3 Extractors for Interleaved Sources

Here we give a sketch of our improved extractor for interleaved sources Z =
(X,Y)π. We refer the reader to the full version of our paper for more details.
We present our construction and also explain the proof along the way, as this
gives more intuition to the different steps of the construction. The high level
idea is the following: transform Z into a matrix of random variables (called
a somewhere random source) such that at least one of the random variables is
uniform, and the matrix is of the right shape, i.e, a fat matrix with more columns
than rows. Once we have such a matrix, the idea is to use the advice correlation
breaker from [21] mentioned above to break the correlation among the rows of
the matrix. The final output will just be a bit-wise XOR of the output of the
advice correlation breaker on each row of the matrix. We now give some more
details on how to make this approach work.

Let Z = (X,Y)π. We start by taking a large enough slice Z1 from Z (say,
of length (2/3 + δ/2)n). Let X have more bits in this slice than Y. Let X1 be
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the bits of X in Z1 and X2 be the remaining bits of X. Similarly define Y1

and Y2. Notice that X1 has linear entropy and also that X2 has linear entropy
conditioned on X1. We fix Y1 and use a condenser (from work of Raz [55]) to
condense Z1 into a matrix with a constant number of rows such that at least
one row is close to a distribution with entropy rate at least 0.9. Notice that this
matrix is a deterministic function of X. The next step is to use Z and each row
of the matrix as a seed to a linear seeded extractor to get longer rows. This
requires some care for the choice of the linear seeded extractor since the seed
has some deficiency in entropy. After this step, we use the advice correlation
breaker from [21] on Z and each row of the somewhere random source, with the
row index as the advice (similar to what is done in the construction of non-
malleable extractors sketched above). Finally we compute the bit-wise XOR of
the different outputs that we obtain. Let V denote this random variable. To
output Ω(n) bits, we use a linear seeded extractor on Z with V as the seed. The
correctness of various steps in the proof exploits the fact that Z can be written
as the bit-wise sum of two independent sources, and the fact that we use linear
seeded extractors.

2.4 Organization

We use Sect. 3 to introduce some background and notation. We present our seed-
less non-malleable extractors with respect to interleaved split-state tampering
in Sect. 4. We conclude with some open problems in Sect. 5.

3 Background and Notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the
projection of y to the coordinates indexed by S.
We use bold capital letters for random variables and samples as the correspond-
ing small letter, e.g., X is a random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x + y (or equivalently x − y) to denote the
bit-wise xor of the two strings.

3.1 Probability Lemmas

The following result on min-entropy was proved by Maurer and Wolf [50].

Lemma 1. Let X,Y be random variables such that the random variable Y takes
at most 	 values. Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X) − log 	 − log(1/ε)] > 1 − ε.

The following lemma is useful in bounding statistical distance of distributions
after conditionings.
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Lemma 2. Let D1 and D2 be distributions on some universe Ω such that |X −
Y | ≤ ε. Let E be some event some that Pr[D1 ∈ E ] ≥ δ. Then, |(D1|E)−(D2|E)| ≤
ε/δ.

3.2 Conditional Min-Entropy

Definition 13. The average conditional min-entropy of a source X given a ran-
dom variable W is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max

x
Pr[X = x|W = w]

])
= − log

(
E

[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al.
[32].

Lemma 3. ([32]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W) − log(1/ε)

]
≥ 1 − ε.

Lemma 4 ([32]). If a random variable Y has support of size 2
, then
H̃∞(X|Y) ≥ H∞(X) − 	.

3.3 Seeded Extractors

Definition 14. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded
extractor if for any source X of min-entropy k, |Ext(X,Ud) − Um| ≤ ε. Ext is
called a strong seeded extractor if |(Ext(X,Ud),Ud)−(Um,Ud)| ≤ ε, where Um

and Ud are independent.
Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function,

then Ext is called a linear seeded extractor.

We require extractors that can extract uniform bits when the source only has
sufficient conditional min-entropy.

Definition 15. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m for min-entropy k and error ε satisfies the following property:
For any source X and any arbitrary random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [32] that any seeded extractor is also an average case extractor.

Lemma 5. ([32]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is
also a (k + log(1/δ), ε + δ)-seeded average case extractor.

We record a folklore lemma, and include a proof for completeness.
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Lemma 6. Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a (k, ε) strong seeded. Then,
for any source (n, k)-source X and any independent (d, d − λ)-source Y,

|Ext(X,Y),Y − Um,Y| ≤ 2λε.

Proof. Suppose Y is uniform over a set A ⊂ {0, 1}d of size 2d−λ. We have,

|Ext(X,Y),Y − Um,Y| =
1

2d−λ
·
∑

y∈A

|Ext(X, y) − Um|

≤ 1
2d−λ

·
∑

y∈{0,1}d

|Ext(X, y) − Um|

=
1

2d−λ
· 2d · |Ext(X,Ud),Ud − Um,Ud|

= 2λ · ε,

where the last inequality follows from the fact that Ext is a (k, ε) strong seeded
extractor.

3.4 Samplers and Extractors

Zuckerman [61] showed that seeded extractors can be used as samplers given
access to weak sources. This connection is best presented by a graph theoretic
representation of seeded extractors. A seeded extractor Ext : {0, 1}n ×{0, 1}d →
{0, 1}m can be viewed as an unbalanced bipartite graph GExt with 2n left vertices
(each of degree 2d) and 2m right vertices. Let N (x) denote the set of neighbors
of x in GExt.

Theorem 16 ([61]). Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩ R| − μRD| > εD}| < 2k,

where μR = |R|/2m.

Theorem 17 ([61]). Let Ext : {0, 1}n ×{0, 1}d → {0, 1}m be a seeded extractor
for min-entropy k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define
Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}. Let X be an (n, 2k)-source. Then for
any set R ⊆ {0, 1}m,

Prx∼X[||Samp()
¯

∩ R| − μRD| > εD] < 2−k,

where μR = |R|/2m.

3.5 Explicit Extractors from Prior Work

We recall an optimal construction of strong-seeded extractors.



Non-malleable Codes, Extractors and Secret Sharing 603

Theorem 18 ([42]). For any constant α > 0, and all integers n, k > 0 there
exists a polynomial time computable strong-seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and m = (1 − α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 19 ([56,59]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there
exists an explicit strong linear seeded extractor LExt : {0, 1}n×{0, 1}d → {0, 1}m

for min-entropy k and error ε, where d = O
(
log2(n/ε)/ log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for
sub-linear min-entropy. A construction of Li [45] achieves O(log n) seed length
for even polylogarithmic min-entropy.

Theorem 20 ([45]). There exists a constant c > 1 such that for every n, k ∈
N with c log8 n ≤ k ≤ n and any ε ≥ 1/n2, there exists a polynomial time
computable linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-
entropy k and error ε, where d = O(log n) and m ≤ √

k.

A different construction achieves seed length O(log(n/ε)) for high entropy
sources.

Theorem 21 ([18,46]). For all δ > 0 there exist α, γ > 0 such that for all
integers n > 0, ε ≥ 2−γn, there exists an efficiently computable linear strong
seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}αd, d = O(log(n/ε)) for min-
entropy δn. Further, for any y ∈ {0, 1}d, the linear map LExt(·, y) has rank
αd.

The above theorem is stated in [46] for δ = 0.9, but it is straightforward to see
that the proof extends for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [53].

Lemma 7 ([53]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear seeded extrac-
tor for min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u) − Um| > 0] ≤ 2ε.

We recall a two-source extractor construction for high entropy sources based
on the inner product function.

Theorem 22 ([28]). For all m, r > 0, with q = 2m, n = rm, let X,Y be inde-
pendent sources on F

r
q with min-entropy k1, k2 respectively. Let IP be the inner

product function over the field Fq. Then, we have:

|IP(X,Y),X − Um,X| ≤ ε, |IP(X,Y),Y − Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.

Rao [52] (based on an argument by Boaz Barak) proved that every two-source
extractor is strong. It is easy to observe that the proof generalizes to the case
of interleaved two-source extractors. We record this below in a slightly more
general setting of unequal length sources.
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Theorem 23 ([52]). Suppose i	Ext : {0, 1}n1+n2 → {0, 1}m be an interleaved
source extractor that satisfies the following: if X is a (n1, k1)-source, Y is an
independent (n2, k2)-source, and π : [n1 + n2] → [n1 + n2] is an arbitrary per-
mutation, then

|i	Ext((X,Y)π) − Um| ≤ ε.

Then, in fact i	Ext satisfies the following stronger properties:

– Let X be a (n1, k)-source, Y be an independent (n2, k2)-source, and π : [n1 +
n2] → [n1 + n2] be an arbitrary permutation. Then,

|i	Ext((X,Y)π),X − Um,X| ≤ 2m · (2k−k1 + ε).

– Let X be a (n1, k1)-source, Y be an independent (n2, k)-source, and π : [n1 +
n2] → [n1 + n2] be an arbitrary permutation. Then,

|2i	Ext(X,Y),Y − Um,Y| ≤ 2m · (2k−k2 + ε).

3.6 Advice Correlation Breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider
a situation where we have arbitrarily correlated random variables Y1, . . . ,Yr,
where each Yi is on 	 bits. Further suppose Y1 is a ‘good’ random variable
(typically, we assume Y1 is uniform or has almost full min-entropy). A corre-
lation breaker CB is an explicit function that takes some additional resource
X, where X is typically additional randomness (an (n, k)-source) that is inde-
pendent of {Y1, . . . ,Yr}. Thus using X, the task is to break the correlation
between Y1 and the random variables Y2, . . . ,Yr, i.e., CB(Y1,X) is indepen-
dent of {CB(Y2,X), . . . ,CB(Yr,X)}. A weaker notion is that of an advice cor-
relation breaker that takes in some advice for each of the Yi’s as an additional
resource in breaking the correlations. This primitive was implicitly constructed
in [18] and used in explicit constructions of non-malleable extractors, and has
subsequently found many applications in explicit constructions of extractors for
independent sources and non-malleable extractors.

We recall an explicit advice correlation breaker constructed in [20]. This
correlation breaker works even with the weaker guarantee that the ‘helper source’
X is now allowed to be correlated to the sources random variables Y1, . . . ,Yr in
a structured way. Concretely, we assume the source to be of the form X+Z, where
X is assumed to be an (n, k)-source that is uncorrelated with Y1, . . . ,Yr,Z. We
now state the result more precisely.

Theorem 24 ([20]). For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0,
such that d = O(log2(n/ε)), k1 ≥ 2d+8tdh+log(1/ε), n1 ≥ 2d+10tdh+(4ht+
1)n2

2 + log(1/ε), and n2 ≥ 2d + 3td + log(1/ε), let

– X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 −λ)-source, Z,Z′

are r.v’s on n bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′}
is independent of {Z,Z′,Y1, . . . ,Yt},
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– id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 �= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1 × {0, 1}n × {0, 1}h →
{0, 1}n2 which satisfies the following: let

– Y1
h = ACB(Y1,X + Z, id1),

– Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,

Y1
h,Y2

h, . . . ,Yt
h,X,X′ ≈O((h+2λ)ε) Un2 ,Y

2
h, . . . ,Yt

h,X,X′.

3.7 A Connection Between Non-malleable Codes and Extractors

The following theorem proved by Cheraghchi and Guruswami [27] that connects
non-malleable extractors and codes.

Theorem 25 ([27]). Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless
(n,m, ε)-non-malleable extractor with respect to a class of tampering functions
F acting on {0, 1}n. Further suppose nmExt is ε′-invertible. Then there exists
an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε + ε′.

4 NM Extractors for Interleaved Split-State Adversaries

The main result of this section is an explicit non-malleable extractor for inter-
leaved 2-split-state tampering families with equal length partitions, which we
denote by 2ISS ⊂ F2n.

Theorem 26. For all integers n > 0 there exists an explicit function nmExt :
{0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: for arbitrary
tampering functions f, g ∈ Fn, any permutation π : [2n] → [2n] and independent
uniform sources X and Y each on n bits, there exists a distribution Df,g,π on
{0, 1}m ∪ {same�}, such that

|nmExt((X,Y)π),nmExt((f(X), g(Y))π)) − Um, copy(Df,g,π,Um)| ≤ 2−nΩ(1)
.

In such settings, it was shown in [27] that it is enough to construct non-
malleable extractors assuming that at least one of f and g does not have any
fixed points, assuming that the sources X and Y have entropy at least n − nδ.
We thus prove the following theorem, from which Theorem26 is direct.

Theorem 27. There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: for arbitrary tampering functions f, g ∈
Fn, any permutation π : [2n] → [2n] and independent (n, k)-sources X and Y,
the following holds:

|nmExt((X,Y)π),nmExt((f(X), g(Y))π)) − Um,nmExt((f(X), g(Y))π)| ≤ 2−nΩ(1)
.



606 E. Chattopadhyay and X. Li

We will prove a slightly more general result which is a direct by-product of
our proof technique for proving the above theorem, and lets us re-use this non-
malleable extractor for the class of linear adversaries composed with split-state
adversaries. We prove the following theorem.

Theorem 28. There exists a δ > 0 such that for all integers n, k > 0 with
n ≥ k ≥ n − nδ, there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: Let X and Y be independent (n, n−nδ)-
sources, π : [2n] → [2n] any arbitrary permutation and arbitrary tampering
functions f1, f2, g1, g2 ∈ Fn that satisfy the following condition:

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) �= x or
– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) �= y.

Then,

|nmExt((X,Y)π),nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)−
Um,nmExt(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)| ≤ 2−nΩ(1)

.

Clearly, Theorem 27 follows directly from the above theorem by setting g1(y) =
0 for all y and f2(x) = 0 for all x. We use the rest of the section to prove
Theorem 28.

Our high level ideas in constructing the non-malleable extractor is via the
framework set up in [18] of using advice generators and correlation breakers. We
give intuition behind our construction in Sect. 2. We use Sect. 4.1 to construct an
advice generator and Sect. 4.2 to construct an advice correlation breaker. Finally,
we present the non-malleable extractor construction in Sect. 4.3.

Notation:

– If W = h((X,Y)π) (for some function h), then we use W′ or (W)′ to denote
the random variable h(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π).

– Define X = (X, 0n)π, Y = (0n,Y)π, f1(X) = (f1(X), 0n)π, f2(X) =
(0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) = (0n, g2(Y))π.

– Finally, define Z = X + Y and Z′ = f1(X) + g1(Y) + f2(X) + g2(Y).

4.1 An Advice Generator

Lemma 8. There exists an efficiently computable function advGen : {0, 1}n ×
{0, 1}n → {0, 1}n4 , n4 = nδ, such that with probability at least 1 − 2−nΩ(1)

over the fixing of the random variables advGen((X,Y)π), advGen(((f1(X) +
g1(Y)), (f2(X) + g2(Y)))π), the following hold:

– {advGen((X,Y)π) �= advGen(((f1(X) + g1(Y)), (f2(X) + g2(Y)))π)},
– X and Y are independent,
– H∞(X) ≥ k − 2nδ, H∞(Y) ≥ k − 2nδ.
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We present the construction of our advice generator and refer the reader to the
full version of our paper for the proof. We claim that the function advGen com-
puted by Algorithm1 satisfies the above lemma. We first set up some parameters
and ingredients.

– Let C be a large enough constant and δ′ = δ/C.
– Let n0 = nδ′

, n1 = nc0
0 , n2 = 10n0, for some constant c0 that we set below.

– Let E : {0, 1}2n → {0, 1}n3 be the encoding function of a linear error correct-
ing code C with constant rate α and constant distance β.

– Let Ext1 : {0, 1}n1 ×{0, 1}d1 → {0, 1}log(n3) be a (n1/20, β/10)-seeded extrac-
tor instantiated using Theorem 18. Thus d1 = c1 log n1, for some constant c1.
Let D1 = 2d1 = nc1

1 .
– Let Samp1 : {0, 1}n1 → [n3]D1 be the sampler obtained from Theorem 17

using Ext1.
– Let Ext2 : {0, 1}n2 ×{0, 1}d2 → {0, 1}log(2n) be a (n2/20, 1/n0)-seeded extrac-

tor instantiated using Theorem 18. Thus d2 = c2 log n2, for some constant c2.
Let D2 = 2d2 . Thus D2 = 2d2 = nc2

2 .
– Let Samp2 : {0, 1}n2 → [2n]D2 be the sampler obtained from Theorem 17

using Ext2.
– Set c0 = 2c2.
– Let i	Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 12.
– Let LExt : {0, 1}2n × {0, 1}n0 → {0, 1}n0 be a linear seeded extractor instan-

tiated from Theorem22 set to extract from min-entropy n1/100 and error
2−Ω(

√
n0) .

Algorithm 1: advGen(z)
Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings and π : [2n] → [2n] is a permutation.
Output: Bit string v of length n4.
1 Let z1 = Slice(z, n1), z2 = Slice(z, n2).
2 Let S = Samp1(z1).
3 Let T = Samp2(z2) and z3 = zT .
4 Let r = i�Ext(z3).
5 Let w1 = (E(z))S .
6 Let w2 = LExt(z, r).
7 Output v = z1, z2, z3, w1, w2.

4.2 An Advice Correlation Breaker

We recall the setup of Theorem 28. X and Y are independent (n, k)-sources,
k ≥ n − nδ, π : [2n] → [2n] is an arbitrary permutation and f1, f2, g1, g2 ∈ Fn

satisfy the following conditions:



608 E. Chattopadhyay and X. Li

– ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) �= x or
– ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) �= y.

Further, we defined the following: X = (X, 0n)π, Y = (0n ◦ Y)π, f1(X) =
(f1(X), 0n)π, f2(X) = (0n, f2(X))π, g1(Y) = (g1(Y), 0n)π and g2(Y) =
(0n, g2(Y))π. It follows that Z = X+Y and Z′ = f1(X)+g1(Y)+f2(X)+g2(Y).
Thus, for some functions f, g ∈ F2n, Z′ = f(X) + g(Y). Let X′ = f(X) and
Y′ = g(Y).

The following is the main result of this section. Assume that we have
some random variables such that X and Y continue to be independent, and
H∞(X),H∞(Y) ≥ k − 2nδ.

Lemma 9. There exists an efficiently computable function ACB : {0, 1}2n ×
{0, 1}n1 → {0, 1}m, n1 = nδ and m = nΩ(1), such that

ACB(X + Y, w),ACB(f(X) + g(Y), w′) ≈ε Um,ACB(f(X) + g(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}n1 with w �= w′.

We present the construction of our advice correlation breaker, and refer the
reader to the full version of our paper for the proof. We prove that the function
ACB computed by Algorithm 2 satisfies the conclusion of Lemma 9.

We start by setting up some ingredients and parameters.

– Let δ > 0 be a small enough constant.
– Let n2 = nδ1 , where δ1 = 2δ.
– Let LExt1 : {0, 1}n2 × {0, 1}d → {0, 1}d1 , d1 =

√
n2, be a linear-seeded

extractor instantiated from Theorem 19 set to extract from entropy k1 =
n2/10 with error ε1 = 1/10. Thus d = C1 log n2, for some constant C1. Let
D = 2d = nδ2 , δ2 = 2C1δ.

– Set δ′ = 20C1δ.
– Let LExt2 : {0, 1}2n × {0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded

extractor instantiated from Theorem 19 set to extract from entropy k2 = 0.9k

with error ε2 = 2−Ω(
√

d1) = 2−nΩ(1)
, such that the seed length of the extractor

LExt2 (by Theorem 19) is d1.
– Let ACB′ : {0, 1}n1,acb′ × {0, 1}nacb′ × {0, 1}hacb′ → {0, 1}n2,acb′ , be the

advice correlation breaker from Theorem 24 set with the following param-
eters: nacb′ = 2n, n1,acb′ = n4, n2,acb′ = m = O(n2δ2), tacb′ = 2D,hacb′ =
n1 + d, εacb′ = 2−nδ

, dacb′ = O(log2(n/εacb′)), λacb′ = 0. It can be checked
that by our choice of parameters, the conditions required for Theorem 24
indeed hold for k1,acb′ ≥ n2δ2 .

4.3 The Non-malleable Extractor

We are now ready to present the construction of i	NM that satisfies the require-
ments of Theorem 28.

– Let δ > 0 be a small enough constant, n1 = nδ and m = nΩ(1).
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Algorithm 2: ACB(z, w)
Input: Bit-strings z = (x, y)π of length 2n and bit string w of length n1,
where x and y are each n bit-strings and π : [2n] → [2n] is a permutation.
Output: Bit string of length m.
1 Let z1 = Slice(z, n2).
2 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
3 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
4 Let s be a D × m matrix, with its i’th row si = ACB′(ri, z, w, i).

5 Output ⊕D
i=1si.

– Let advGen : {0, 1}2n → {0, 1}n1 , n1 = nδ, be the advice generator from
Lemma 8.

– Let ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m be the advice correlation breaker
from Lemma 9.

Algorithm 3: i	NM(z)
Input: Bit-string z = (x, y)π of length 2n, where x and y are each n
bit-strings, and π : [2n] → [2n] is a permutation.
Output: Bit string of length m.
1 Let w = advGen(z).
2 Output ACB(z, w)

The function i	NM computed by Algorithm 3 satisfies the conclusion of Theorem
28 as follows: Fix the random variables W,W′. By Lemma 8, it follows that X
remains independent of Y, and with probability at least 1 − 2−nΩ(1)

, H∞(X) ≥
k − 2n1 and H∞(Y) ≥ k − 2n1 (recall k ≥ n − nδ). Theorem 28 is now direct
using Lemma 9.

5 Open Questions

Non-malleable Codes for Composition of Functions. Here we give efficient con-
structions of non-malleable codes for the tampering class Lin ◦ 2ISS. Many nat-
ural questions remain to be answered. For instance, one open problem is to
efficiently construct non-malleable codes for the tampering class 2SS ◦ Lin or
2ISS ◦ Lin, which as explained before is closely related to the question of con-
structing explicit (r, t)-ramp non-malleable secret-sharing schemes with binary
shares, where t < r. It looks like one needs substantially new ideas to give such
constructions. More generally, for what other interesting classes of functions F
and G can we construct non-malleable codes for the composed class F ◦ G? Is
it possible to efficiently construct non-malleable codes for any tampering class
F ◦ G as long as we have efficient non-malleable codes for the classes F and G?
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Other Applications of Seedless Non-malleable Extractors. The explicit seedless
non-malleable extractors that we construct satisfy strong pseudorandom prop-
erties. A natural question is to find more applications of these non-malleable
extractors in explicit constructions of other interesting objects.

Improved Seedless Extractors. We construct an extractor for 2-interleaved
sources that works for min-entropy rate 2/3. It is easy to verify that there exists
extractors for sources with min-entropy as low as C log n, and a natural ques-
tion here is to come up with such explicit constructions. Given the success in
constructing 2-source extractors for low min-entropy [23,47], we are optimistic
that more progress can be made on this problem.

Acknowledgments. We are grateful for useful comments from anonymous referees.
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Abstract. The complexity class TFNP consists of all NP search prob-
lems that are total in the sense that a solution is guaranteed to exist
for all instances. Over the years, this class has proved to illuminate sur-
prising connections among several diverse subfields of mathematics like
combinatorics, computational topology, and algorithmic game theory.
More recently, we are starting to better understand its interplay with
cryptography.

We know that certain cryptographic primitives (e.g. one-way permu-
tations, collision-resistant hash functions, or indistinguishability obfusca-
tion) imply average-case hardness in TFNP and its important subclasses.
However, its relationship with the most basic cryptographic primitive –
i.e., one-way functions (OWFs) – still remains unresolved. Under an addi-
tional complexity theoretic assumption, OWFs imply hardness in TFNP
(Hubáček, Naor, and Yogev, ITCS 2017). It is also known that average-
case hardness in most structured subclasses of TFNP does not imply
any form of cryptographic hardness in a black-box way (Rosen, Segev,
and Shahaf, TCC 2017) and, thus, one-way functions might be sufficient.
Specifically, no negative result which would rule out basing average-case
hardness in TFNP solely on OWFs is currently known. In this work, we
further explore the interplay between TFNP and OWFs and give the first
negative results.

As our main result, we show that there cannot exist constructions of
average-case (and, in fact, even worst-case) hard TFNP problem from
OWFs with a certain type of simple black-box security reductions. The
class of reductions we rule out is, however, rich enough to capture many
of the currently known cryptographic hardness results for TFNP. Our
results are established using the framework of black-box separations
(Impagliazzo and Rudich, STOC 1989) and involve a novel application
of the reconstruction paradigm (Gennaro and Trevisan, FOCS 2000).
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1 Introduction

The complexity class TFNP of̂ı total search problems [41], i.e., with syntactically
guaranteed existence of a solution for all instances, holds a perplexing place in the
hierarchy of computational complexity classes. The standard method for arguing
computational hardness in TFNP is via clustering these problems into subclasses
characterised by the existential argument guaranteeing their totality [42]. This
approach was particularly successful in illuminating the connections between
search problems in seemingly distant domains such as combinatorics, computa-
tional topology, and algorithmic game theory (see, for example, [14,17,18,23,37]
and the references therein). However, all results of this type ultimately leave
open the possibility of the existence of polynomial time algorithms for all of
TFNP.

An orthogonal line of work, which can be traced to Papadimitriou [42],
shows the existence of hard problems in subclasses of TFNP under cryptographic
assumptions. Such conditional lower bounds for structured subclasses of TFNP
were recently given under increasingly more plausible cryptographic assump-
tions [6,7,11,12,16,20,28,33,38]. The end of the line in this sequence of results
would correspond to a “dream theorem” establishing average-case hardness in
one of the lower classes in the TFNP hierarchy (e.g. CLS [15]) under some weak
general cryptographic assumptions (e.g. the existence of one-way functions).

An informative parallel for the limits of this methodology can be drawn by
considering average-case hardness of decision problems (i.e., languages) in NP∩
coNP. The existence of a hard-on-average decision problem in NP∩coNP follows
from the existence of hard-core predicates for any one-way permutation [24].
However, the existence of injective one-way functions is insufficient for black-box
constructions of hard-on-average distributions for languages in NP ∩ coNP even
assuming indistinguishability obfuscation [5] (in fact, [5] ruled out even black-
box constructions of worst-case hardness in NP∩coNP using these cryptographic
primitives).

For total search problems, the existence of hard-on-average TFNP distribu-
tions is straightforward either from one-way permutations or collision-resistant
hash functions. Moreover, there exist constructions of hard-on-average TFNP
distributions either assuming indistinguishability obfuscation and one-way func-
tions [7,20] or under derandomization-style assumptions and one-way func-
tions [27]. On the other hand, no analogue of the impossibility result for basing
average-case hardness in NP ∩ coNP on (injective) one-way functions [5] is cur-
rently known for TFNP. Rosen, Segev, and Shahaf [47] showed that most of
the known structured subclasses of TFNP do not imply (in a black-box way)
any form of cryptographic hardness; thus, it is plausible that hard-on-average
distributions in TFNP can be based solely on the existence of one-way functions.

Rosen et al. [47] also provided some insight into the structure of hard-
on-average distributions in TFNP. They showed that any hard-on-average
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distribution of a TFNP problem from any primitive which exists relative to a
random injective trapdoor function oracle (e.g. one-way functions, injective trap-
door functions, or collision-resistant hash functions) must result in instances with
a nearly exponential number of solutions. Even though the [47] result restricts
the structure of hard-on-average distributions in TFNP constructed from these
cryptographic primitives, it certainly does not rule out their existence. Indeed,
a collision-resistant hash function constitutes a hard-on-average TFNP distribu-
tion, albeit with an exponential number of solutions.

Motivated by the significant gap between negative and positive results, we
revisit the problem of existence of average-case hardness in TFNP under weak
general cryptographic assumptions and address the following question:

Are (injective) one-way functions sufficiently structured to imply
hard-on-average total search problems?

Towards answering this question, we provide negative results and show that
simple fully black-box constructions of hard-on-average TFNP distributions from
injective one-way functions do not exist.

1.1 Our Results

We recall the details of the construction of a hard-on-average distribution in
TFNP from one-way permutations to highlight the restrictions on the type of
reductions considered in our results.

Consider the total search problem Pigeon, in which you are given a length-
preserving n-bit function represented by a Boolean circuit C and are asked to find
either a preimage of the all-zero string (i.e., x ∈ {0, 1}n : C(x) = 0n) or a non-
trivial collision (i.e., x �= x′ ∈ {0, 1}n : C(x) = C(x′)). Pigeon is complete for
a subclass of TFNP known as PPP, and Papadimitriou [42] gave the following
construction of a hard Pigeon problem from one-way permutations. Given a
(one-way) permutation f : {0, 1}n → {0, 1}n and a challenge y ∈ {0, 1}n for
inversion under f , the reduction algorithm defines an instance of Pigeon by the
oracle-aided circuit Cf

y computing the function Cf
y(x) = f(x) ⊕ y. It is not hard

to see that the instance of Pigeon Cf
y has a unique solution corresponding to

the preimage of y under f and, therefore, any algorithm solving it breaks the
one-wayness of f .

Note that the above construction of a hard (on average) TFNP problem is
extremely simple in various aspects:

– The construction is fully black-box, i.e., the Pigeon instance can be imple-
mented via an oracle-aided circuit treating the one-way permutation as a
black-box and the reduction inverts when given oracle access to an arbitrary
solver for Pigeon.

– The reduction is many-one, i.e., a single call to a Pigeon-solving oracle suf-
fices for finding the preimage of y.
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– The reduction is f-oblivious, i.e., the oracle-aided circuit Cf
y defining the

Pigeon instance depends only on the challenge y and does not depend on
the one-way permutation f in the sense that Cf

y itself can be fully specified
without querying f . In other words, given the challenge y, the instance Cf

y

submitted to the Pigeon oracle by the reduction is, as an oracle-aided circuit,
identical for all permutations f .

– The reduction is deterministic, i.e., it simply passes y to specify the Pigeon

instance.

Such a fully black-box construction of Pigeon with a deterministic f -
oblivious many-one reduction exists also assuming collision-resistant hash func-
tions exist (folklore). Specifically, for any hash function h : {0, 1}n → {0, 1}n−1

from the collision-resistant family, the Pigeon instance is defined as Ch(x) =
h(x) ‖ 1, where ‖ represents the operation of string concatenation. Since Ch

concatenates the value h(x) with 1 for any input x, it never maps to the all-
zero string and, therefore, has the same collisions as h. Note that, unlike in
the above construction from one-way permutations, the instances resulting from
collision-resistant hash functions do not have a unique solution. In fact, there
are always at least 2n−1 nontrivial collisions (even in two-to-one functions where
each y ∈ {0, 1}n−1 has exactly two preimages) and this structural property is
inherent as shown by Rosen et al. [47]. Importantly, the property of having
nearly exponentially many solutions is not in contradiction with the resulting
distribution being hard-on-average. Currently, there is no actual evidence sug-
gesting that average-case hardness in TFNP cannot be based on the existence of
injective one-way functions.

The above constructions motivate us to study whether there exist such “sim-
ple” constructions of an average-case hard TFNP problem under weaker crypto-
graphic assumptions such as the existence of injective one-way functions, and we
answer this question in negative (see Sect. 3.2 for the formal statement of The-
orem 1).

Theorem 1. (Main Theorem - Informal). There is no efficient fully black-
box construction of a worst-case hard TFNP problem from injective one-way
functions with a randomized f-oblivious non-adaptive reduction.

Thus, we actually rule out a larger class of fully black-box constructions
with reductions to injective one-way functions than the deterministic f -oblivious
many-one reductions from the motivating examples of average-case hardness
of Pigeon from one-way permutations, respectively collision-resistant hash
functions. We rule out even constructions of worst-case hard TFNP problems
using randomized f -oblivious non-adaptive1 reductions. The formal definitions
of fully black-box constructions with f -oblivious non-adaptive reductions are
given in Sect. 3.1 (see Definition 2 and Definition 3).

Even though restricted, our results are the first step towards the full-fledged
black-box separation of TFNP and (injective) one-way functions. We note that

1 Reductions which can ask multiple queries in parallel to the TFNP oracle.
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the full-fledged separation would necessarily subsume the known separation of
collision-resistant hash functions and injective one-way functions [49], for which,
despite the recent progress, there are only non-trivial proofs [4,25,40].

1.2 Our Techniques

Our results employ the framework of black-box separations [19,30,45]. The app-
roach suggested in [30] for demonstrating that there is no fully black-box con-
struction of a primitive P from another primitive Q is to come up with an
oracle O relative to which Q exists, but every black-box implementation CQ of
P is broken. However, as explained in [40,45], this approach actually rules out a
larger class of constructions (so-called “relativized” constructions), and to rule
out just fully black-box constructions it suffices to use the so-called two-oracle
technique [26]. Here, the oracle O usually consists of two parts: an idealised
implementation of the primitive Q and a “breaker” oracle for primitive P . In
our context, P corresponds to a TFNP problem and the oracle O comprises of
a random injective function (which yields an injective one-way function) and a
procedure Solve which provides a solution for any instance of a TFNP problem.
To rule out the existence of fully black-box constructions of hard-on-average
TFNP problems from injective one-way functions, one then has to argue that
access to such a “breaker” oracle Solve for TFNP does not help any reduction
R in inverting injective one-way functions. Designing such a Solve oracle and
then arguing that it does not help inverting injective one-way function, which
we carry out using the reconstruction paradigm of Gennaro ond Trevisan [21],
constitute the main technical challenges. Before giving an overview of these two
steps, we explain the structural insight that is key to our separation, and guided
us in the design of the two steps.

The Existence of a “Useless” Solution. At the core of our negative result is a new
structural insight about TFNP instances constructed from (injective) one-way
functions. Observe that any one-way function gives rise to a search problem with
a hard-on-average distribution which is total over its support (but all instances
outside its support have no solution). Specifically, for any one-way function f :
{0, 1}n → {0, 1}n+1, an instance is any y ∈ {0, 1}n+1 and the solution for y
is any x ∈ {0, 1}n such that f(x) = y. The hard-on-average distribution then
corresponds to sampling x uniformly from {0, 1}n and outputting the instance
y = f(x) (as in the standard security experiment for one-way functions). When
attempting to construct a hard search problem which is truly total and has a
solution for all instances (not only for the support of the hard distribution), one
has to face the frustrating obstacle in the form of “useless” solutions which do not
help the reduction in inverting its challenge y. Note that, as the resulting TFNP
problem must be total for all oracles f , there must exist a solution even for oracles
with no preimage for the challenge y. By a simple probabilistic argument, it
follows that for a random oracle f and a random challenge y, with overwhelming
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probability, there exists a solution to any TFNP instance which does not query
a preimage of y, i.e., a “useless” solution from the perspective of the reduction.2

Thus, demonstrating a black-box separation would be straightforward if the
TFNP solver knew which challenge y is the reduction attempting to invert. Our
solver would simply output such a “useless” solution and we could argue via
the reconstruction paradigm that no reduction can succeed in inverting y given
access to our solver. In this work, we show that it is possible to construct a TFNP
solver which returns such a “useless” solution with overwhelming probability
even though the solver does not know the input challenge of the reduction.

Reduction-Specific Solve. Note that a reduction in a fully black-box construction
must succeed in breaking the primitive P when given access to any oracle Solve

(see Definition 2). In other words, to rule out the existence of constructions with
a fully black-box reduction, it is sufficient to show that for every reduction
there exists a Solve which is not helpful in inverting; in particular, Solve

may depend on the reduction. To enable Solve to answer the reduction’s query
with a “useless” solution with overwhelming probability, we take exactly this
approach and construct a reduction-specific Solve for any construction of a
TFNP problem from injective one-way functions. We significantly differ in this
respect from the previous works which relied on the reconstruction paradigm of
Gennaro and Trevisan [21], e.g., the works which employed the collision-finding
oracle of Simon [8,25,43,46,49]. We note that the possibility of designing a
breaker oracle which depends on the fully black-box construction was exploited
already by Gertner, Malkin, and Reingold [22], who considered Solve which
depends on the implementation rather than the reduction algorithm (as in our
case). That is, to rule out the construction of a primitive P from a primitive
Q, they considered an oracle Solve that depends on the implementation CQ of
the primitive P , whereas in our case Solve depends on the reduction algorithm
R that is supposed to break Q given access to an algorithm that breaks CQ.
The possibility of proving black-box separations via reduction-specific oracles
was also observed in the work of Hsiao and Reyzin [26] who, nevertheless, did
not have to leverage this observation in their proofs.

On a high level, given that Solve can use the code of the reduction R, Solve
can simulate R on all possible challenges y to identify the set of challenges on
which R outputs the present instance that Solve needs to solve. As we show,
the solution then can be chosen adversarially so that it avoids such solutions of
interest to the reduction. To turn this intuition into a formal proof, one needs
to show that our Solve indeed does not help in inverting injective one-way
functions and we do so along the lines of the reconstruction paradigm of [21].

2 Note that the above argument fails in the case of one-way permutations, where the
challenge y ∈ {0, 1}n is in the image for any permutation f : {0, 1}n → {0, 1}n. The
construction of a TFNP problem then simply does not have to deal with the case
when the challenge y is not in the image of f , and it can ensure that every solution
is useful for inverting the challenge y. Indeed, the hard instances Cf

y of Pigeon from
one-way permutations described in Sect. 1.1 have a unique solution on which Cf

y

always queries a preimage of y under any f .
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Applying the Compression Argument. Two important subtleties arise in the
proof when we try to turn the reduction into a pair of compression and decom-
pression algorithms, which we explain next. First, the reconstruction paradigm
is conventionally applied to random permutations [21,25], whereas the reduc-
tion R and the algorithm Solve are designed for random injective functions.
The natural approach is to simply proceed with the same style of proof even
in our setting. Specifically, one would presume that a similar incompressibil-
ity argument can be leveraged if we manage to somehow encode the image of
the random injective function. While this intuition is correct in the sense that
it allows correct compression and reconstruction, it turns out that the space
required to encode the image is too prohibitive for reaching the desired contra-
diction with known information-theoretic lower bounds on the expected length
of encoding for a random injective function. To resolve this issue, we construct
compressor and decompressor algorithms for a random permutation, but we
equip the algorithms with shared randomness in the form of a random injec-
tive function h : {0, 1}n → {0, 1}n+1 independent of the random permutation
π : {0, 1}n → {0, 1}n to be compressed. Whenever the compressor and decom-
pressor need to provide the reduction or Solve with access to the injective func-
tion f : {0, 1}n → {0, 1}n+1, they compose the permutation π with the shared
injective function h and then pass off the composed injective function f = h ◦ π
to the reduction. With this modification, we are able to show that any reduc-
tion which succeeds in inverting injective one-way functions given access to our
Solve can be used to compress a random permutation on {0, 1}n below a stan-
dard information-theoretic lower bound on the size of a prefix-free encoding of
such random variable. We note that this is reminiscent of the approach used in
[40] for separating injective one-way functions from one-way permutations.

Second, we cannot employ the actual oracle Solve in our compression and
decompression algorithms: even though we can use the reduction when compress-
ing and decompressing the random permutation, we must be able to consistently
simulate Solve without accessing the whole permutation. In general, the choice
of the “breaker” oracle that can be simulated efficiently without too many queries
to the permutation (e.g., the collision finding oracle of Simon [2,49]) is a cru-
cial part of the whole proof, and, a priori, it is unclear how to design a TFNP
solver which also has such a property. Nevertheless, we show that there exists a
Solve which can be efficiently simulated given only (sufficiently small) partial
information about the permutation.

f-Oblivious Reductions. As our Solve simulates the reduction on possible chal-
lenges y, we need for technical reasons that the reduction is f -oblivious (namely,
for correctness of our encoding and decoding algorithms). However, we believe
that f -obliviousness is not overly restrictive as it is a natural property of secu-
rity reductions. Besides the two fully black-box constructions of Pigeon with f -
oblivious reductions described in Sect. 1.1, f -oblivious security reductions appear
also in the cryptographic literature – see for example the standard security reduc-
tion in the Goldreich-Levin theorem establishing the existence of hard-core pred-
icate for any one-way function (note that this particular security reduction is also
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non-adaptive). An orthogonal notion of a π-oblivious construction appears in the
work of Wee [50]. However, it is the implementation of the constructed primitive
which is “oblivious” to the one-way permutation π in his work.

1.3 Related Work

TFNP and its Subclasses. The systematic study of total search problems was
initiated by Megiddo and Papadimitriou [41] with the definition of complexity
class TFNP. They observed that a “semantic” class such as TFNP is unlikely to
have complete problems, unless NP = coNP. As a resolution, Papadimitriou [42]
defined “syntactic” subclasses of TFNP with the goal of clustering search prob-
lems based on the various existence theorems used to argue their totality. Perhaps
the best known such class is PPAD [42], which captures the computational com-
plexity of finding Nash equilibria in bimatrix games [10,14]. Other subclasses of
TFNP include:

– PPA [42], which captures computational problems related to the parity argu-
ment like Borsuk-Ulam theorem or fair division [18];

– PLS [34], defined to capture the computational complexity of problems
amenable to local search and its “continuous” counterpart CLS ⊆ PLS [15] (in
fact CLS ⊆ PLS∩PPAD), which captures finding the computational complex-
ity of finding (approximate) local optima of continuous functions and contains
interesting problems from game theory (e.g., solving the simple stochastic
games of Condon or Shapley); and

– PPP [42] and PWPP ⊆ PPP [33], motivated by the pigeonhole principle and
contain important problems related to finding collisions in functions.

The relative complexity of some of these classes was studied in [3] as it was shown
using (worst-case) oracle separations that many of these classes are distinct.

Cryptographic hardness in TFNP. Hardness from standard cryptographic prim-
itives was long known for the “higher” classes in TFNP like PPP and PPA. We
have already mentioned that one-way permutations imply average-case hardness
in PPP [42] and existence of collision-resistant hashing (e.g. hardness of integer
factoring or discrete-logarithm problem in prime-order groups) implies average-
case hardness in PPP (as well as in PWPP). In addition, Jeřábek [33], building
on the work of Buresh-Oppenheim [9], showed that PPA is no easier than integer
factoring.

However, it is only recently that we are better understanding the crypto-
graphic hardness of the lower classes in TFNP. This was catalysed by the result
of Bitansky et al. [7] who reduced hardness in PPAD to indistinguishability
obfuscation (and injective OWFs) expanding on Abbot, Kane, and Valiant [1];
Hubáček and Yogev [28] extended this result to CLS ⊆ PLS∩PPAD. The underly-
ing assumption was relaxed further to cryptographic assumptions that are more
plausible than indistinguishability obfuscation in [11,12,16]. Using similar ideas,
Bitansky and Gerichter [6] presented a construction for hard-on-average distribu-
tions in the complexity class PLS in the random oracle model. Building on these
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results, a flurry of recent works [31,32,35,36,39] further weakened the assump-
tions required for proving average-case hardness in CLS to sub-exponential hard-
ness of learning with errors, bringing us closer to proving average-case hardness
in CLS under a standard concrete cryptographic assumption.

One-Way Functions and TFNP. Hubáček et al. [27] showed that average-case
hardness in NP (which is implied by OWFs) implies average-case hardness in
TFNP under complexity theoretical assumptions related to derandomization.
Pass and Venkitasubramaniam [44] recently complemented the [27] result by
showing that when OWFs do not exist, average-case hardness in NP implies
average-case hardness in TFNP. However, a definitive relationship between
OWFs and TFNP has remained elusive. This prompted Rosen et al. [47] to
explore impossibility of reducing TFNP hardness to OWFs. They gave a par-
tial answer by showing that there do not exist hard-on-average distributions
of TFNP instances over {0, 1}n with 2no(1)

solutions from any primitive which
exists relative to a random injective trapdoor function oracle (e.g. one-way func-
tions). Their main observation was that the argument in [48], which separates
one-way functions from one-way permutations, can be strengthened to separate
other unstructured primitives from structured primitives (such as problems in
TFNP). However, it seems that the [48] argument has been exploited to its limits
in [47], and, therefore, it is not clear whether their approach can be extended to
fully separate one-way functions and TFNP. Thus, the situation is contrasting to
NP∩coNP, the decision counterpart of TFNP, whose relationship with (injective)
OWFs is much better studied. In particular, we know that hardness is implied
by one way permutations but injective OWFs, even with indistinguishability
obfuscation, (and, therefore, public-key encryption) cannot imply hardness in
NP ∩ coNP in a black-box way [5].

2 Preliminaries

Unless stated otherwise, all logarithms are base two. For X ⊆ {0, 1}∗, we use
X to denote the set {0, 1}∗ \ X. For strings x, y ∈ {0, 1}∗, we use x <lex y or
y >lex x to denote that x is lexicographically strictly smaller than y.

Notation 2. (Functions) Let X,Y ⊆ {0, 1}∗, f : X → Y be a function and
X ′ ⊆ X be a set.

1. f � X ′ denotes the restriction of f on X ′, i.e., the function f ′ : X ′ → Y such
that ∀x ∈ X ′ : f ′(x) = f(x).

2. Dom(f) denotes the domain of f , i.e., the set X.
3. Im(f) denotes the image of f , i.e., the set {f(x) | x ∈ X} ⊆ Y .
4. f [X ′] denotes the image of the restriction of f on X ′, i.e., the set Im(f � X ′).

Notation 3. (Injective functions) We denote by Injmn the set of all injective
functions from {0, 1}n to {0, 1}m. For the special case when n = m we get the
set of all permutations on {0, 1}n.
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The set Inj is the set of all functions f : {0, 1}∗ → {0, 1}∗, such that f can
be interpreted as a sequence f =

{
fn | fn ∈ Injm(n)

n

}
n∈N

of injective functions,

where m : N → N is an injective function such that for all n ∈ N : m(n) > n and
m(n) ≤ 100nlog n.

We say that the function m is the type of f and we define the corresponding
type operator τ : Inj → (N → N) such that τ(f) = m.

We denote the set of all possible types by T, i.e.,

T = {μ : N → N | ∃f ∈ Inj such that τ(f) = μ}.

Through the paper fn denotes the function f � {0, 1}n (i.e., restriction of f
to the domain {0, 1}n.), where f ∈ Inj.

In our proofs, we often compose a function defined on all binary strings with a
function defined only for binary strings of certain length; namely, we often want
to compose a function from Inj with a permutation of n-bit strings. The desired
resulting function should always be a function from all binary strings. For the
ease of exposition, we extend the standard notation for function composition as
follows.

Notation 4. (Function composition). Let X,Y,Z be any sets such that X ⊆
Y and let f : X → Y and g : Y → Z. We define the function g ◦ f : Y → Z as:

(g ◦ f)(x) =

{
g(f(x)) if x ∈ X,

g(x) if x ∈ Y \ X.

Finally, we recall some basic information-theoretic results about prefix-free
codes.

Definition 1. (Prefix-free code). A set of code-words C ⊆ {0, 1}∗ is a
prefix-free code if there are no two distinct c1, c2 ∈ C such that c1 is a pre-
fix (initial segment) of c2, i.e., for any two distinct c1, c2 ∈ C there exists
0 ≤ j < min(|c1|, |c2|) such that (c1)j �= (c2)j.

Proposition 1. (Theorem 5.3.1 in [13]). The expected length L of any prefix-
free binary code for a random variable X is greater than or equal to the entropy
H(X).

Corollary 1. To encode a uniformly random permutation π ∈ Injnn using prefix-
free encoding it takes at least log(2n!) bits in expectation.

Proof. The entropy of a uniformly randomly chosen permutation from Injnn is
log (2n!) as we choose uniformly at random from 2n! distinct permutations. By
Theorem 1, we get that the expected size of the encoding is at least log (2n!). �
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3 Separating TFNP and Injective One-Way Functions

3.1 Fully Black-Box Construction of Hard TFNP Problem from
iOWF

Below, we give a definition of fully black-box construction of a (worst-case) hard
TFNP problem from an injective one-way function.

Definition 2. (Fully black-box construction of a worst-case hard
TFNPproblem from iOWF). A fully black-box construction of a worst-case
hard TFNP problem from injective one-way function is a tuple (R, TR, C, TC , p)
of oracle-aided algorithms R,C, functions TR, TC , and a polynomial p satisfying
the following properties:

1. R and C halt on all inputs: For all f ∈ Inj, n ∈ N, and y, i, s ∈ {0, 1}∗,
the algorithm Rf (1n, y) halts in time TR(|y|), and the algorithm Cf (i, s) halts
in time TC(|i| + |s|).

2. Correctness: For all f ∈ Inj and for all i ∈ {0, 1}∗, there exists s ∈ {0, 1}∗

such that |s| ≤ p(|i|) and Cf (i, s) = 1, i.e., for any instance of the TFNP
problem there exists a solution of polynomial length.

3. Fully black-box proof of security: There exists a polynomial p′ such that
for all f ∈ Inj and any oracle-aided algorithm Solve, if

∀i ∈ {0, 1}∗ : Solvef (i) returns s such that Cf (i, s) = 1

then for infinitely many n ∈ N,

Pr
x←{0,1}n,R

[
Rf,Solve(1n, f(x)) = x

] ≥ 1
p′(n)

.

Definition 2 has the following semantics. The deterministic algorithm C spec-
ifies the TFNP problem and the algorithm R is the (security) reduction which,
given access to any TFNP solver, breaks the security of any injective one-way
function. For example in the case of the hard Pigeon problem from one-way
permutations discussed in Sect. 1.1, C would be an algorithm which on input
(Cf

y , x), respectively (Cf
y , x, x′), outputs 1 if and only if Cf

y(x) = 0n, respectively
Cf

y(x) = Cf
y(x′). The reduction algorithm R(1n, y) simply queries the TFNP

solver Solve with the instance i = Cf
y , i.e., a circuit computing the function

Cf
y(x) = f(x) ⊕ y, and outputs the solution s returned by Solve for which, by

construction, f(s) = y.
Below, we provide some additional remarks on important points in the above

definition.

Reduction-Specific Solve. Let us emphasize the order of quantifiers restricting
the security reduction in Definition 2:

∃(R, TR, C, TC , p) ∀f ∀Solve :
Solve

f solves the TFNP problem C =⇒ Rf,Solve inverts f .



On Average-Case Hardness in TFNP from One-Way Functions 625

Importantly, the reduction must invert when given access to any oracle
Solve. As a consequence, in order to establish a separation, the above state-
ment is negated and it suffices to show that for every reduction there exists a
solver (see proof of [26, Proposition 1] for more details). Thus, in the proof an
oracle separation, the oracle Solve may even depend on the behaviour of the
reduction R, and, in particular, Solve can simulate the security reduction R on
an arbitrary input. We exploit these properties in establishing our results.

Constructions of Worst-Case vs. Average-Case Hardness in TFNP. Our Defini-
tion 2 considers constructions of a worst-case hard TFNP problem – the reduction
has access to Solve which is promised to return a solution to any instance of the
TFNP problem. To capture constructions of average-case hardness in TFNP, we
would need to extend the construction with an efficiently sampleable distribution
D of instances of the TFNP problem and require the reduction to invert when
given access to any Solve that returns solutions for instances coming from the
specific distribution D (see Definition 5.1 in [47]). However, given that we are
proving a black-box separation, showing impossibility for worst-case hardness is
a stronger result.

The Quality of Solve. Note that we consider security reductions which invert
given access to Solve which outputs a solution with probability 1, whereas
some definitions in the literature allow the reduction to work only with some
non-negligible probability. This also makes our negative result stronger – it is
potentially easier to give a reduction when given access to Solve which is guar-
anteed to always return a solution.

Direct and Indirect Queries to f . The security reduction R can learn something
about f in various ways. It may query f directly or the information might
be deduced from the solution of some queried instance of the TFNP problem
returned by Solve. We introduce the following notation in order to distinguish
where queries originate, which allows us to reason about the view the security
reduction has over the function f in our proof of Theorem 1.

Notation 5. (Query sets Q) We distinguish the following sets of queries to
oracles depending on where these queries originated and which oracle is queried.

– Let Q(Cf (i, s)) denote the set of all preimages x ∈ {0, 1}∗ on which the oracle
f has been queried by C running on an input (i, s).

– Let QSolve(Rf,Solve(1n, y)) denote the set of all instances i ∈ {0, 1}∗ on which
the oracle Solve has been queried by R running on a security parameter n
and challenge y.

– Let Qdir
f (Rf,Solve(1n, y)) denote the set of preimages x ∈ {0, 1}∗ on which the

oracle f has been queried by R running on an input y and security parameter
n.

– Let Qindir
f (Rf,Solve(1n, y)) denote the set of all preimages x ∈ {0, 1}∗ on which

the oracle f has been queried indirectly, i.e., it has been queried by C running
on an input (i, s) where i ∈ QSolve(Rf,Solve(1n, y)) and s = Solve

f (i).
– Let Qf (Rf,Solve(1n, y)) = Qdir

f (Rf,Solve(1n, y)) ∪ Qindir
f (Rf,Solve(1n, y)).
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Note that these sets may not be disjoint. When f is a partial function (i.e., when
f is not defined on all inputs) the query set contains all queries queried up to
the point of the first undefined answer and the query with the undefined answer
is included as well.

Restrictions on the power of the reduction. We consider various restricted classes
of security reductions as defined below.

Definition 3. (Deterministic/randomized, many-one/non-adaptive, f-
oblivious reductions) Let (R, TR, C, TC , p) be a fully black-box construction of
a hard TFNP problem from injective one-way functions.

We distinguish deterministic / randomized reductions. For a randomized
security reduction, we extend the input of R to a triple (1n, y; r), where the
meaning of n, resp. y, remains unchanged (i.e., n is the security parameter, y is
the challenge), and r ∈ {0, 1}∗ is the randomness of the security reduction.

The security reduction R is many-one if for all f ∈ Inj, for any oracle Solve

and for all y ∈ {0, 1}∗, Rf,Solve(1n, y) makes a single query to the oracle Solve.
The security reduction R is non-adaptive if for all f ∈ Inj, for any oracle

Solve and for all y ∈ {0, 1}∗, all the queries of Rf,Solve(1n, y) to the oracle
Solve are submitted in parallel (i.e., the queries to Solve do not depend on the
answers received from Solve).

The security reduction R is f -oblivious if for all y ∈ {0, 1}∗, for any
oracle Solve, and any pair of functions f, f ′ ∈ Inj, the distributions of
queries QSolve(Rf,Solve(1n, y)) and QSolve(Rf ′,Solve(1n, y)) are identical (i.e.,
the queries to Solve depend only on the input y and are independent of the
oracle f).

3.2 Impossibility for a Deterministic f-Oblivious Many-One
Reduction

In this section, we show that there is no fully black-box construction of a hard
TFNP problem from injective one-way functions with a deterministic f -oblivious
many-one reduction. The proof of this result is already non-trivial and high-
lights our main technical contributions. In Sect. 3.3, we explain how to extend
this result to rule out fully black-box constructions even with a randomized f -
oblivious non-adaptive reduction. For lack of space, we omit the proofs of the
technical lemmata and instead, for interested readers, provide pointers to the
appropriate part of full version [29].

Theorem 1. There is no fully black-box construction (R, TR, C, TC , p) of a
worst-case hard TFNP problem from injective one-way functions with determin-
istic f-oblivious many-one reduction with success probability at least 2−0.1n such
that both running times TR, TC ∈ O(npolylog(n)).

In the above theorem, the running time of both R and C is restricted to
quasi-polynomial. Note that the standard notion of cryptographic constructions
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Algorithm 1: The oracle Solve.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP

problem from iOWF
Oracle access: an injective function f = {fn}n∈N ∈ Inj
Input : an instance i ∈ {0, 1}∗

Output : a solution s ∈ {0, 1}∗ such that Cf (i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(fn) | i ∈ QSolve(R

f,Solve(1n, y))
}

2 Compute Ni = {n ∈ N | Yi ∩ Im(fn) �= ∅}
3 for n ∈ Ni do
4 Compute Yi,n = Yi ∩ Im(fn)
5 end

6 Compute Si,f =
{
s ∈ {0, 1}∗ | |s| ≤ p(|i|) and Cf (i, s) = 1

}

7 while True do

8 Bi,f = {s ∈ Si,f | f [Q(Cf (i, s))] ∩ Yi = ∅}
9 if Bi,f �= ∅ then

10 return lexicographically smallest s ∈ Bi,f

11 end

12 Choose n ∈ Ni such that
|Yi,n|
2n

is maximized.
13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

requires R,C to run in polynomial time in order to be considered efficient. We
are ruling out a broader class of potentially less efficient reductions.

The proof of Theorem 1 uses, on a high level, a similar template as other
black-box separations in the literature. That is, we design an oracle O relative
to which (injective) one-way functions exist but TFNP is broken (even in the
worst case). We follow the two-oracle approach [26], and, therefore, our oracle
O = (f,Solve) consist of:

1. f ∈ Inj: a sequence of random injective functions which implements injective
one-way functions; and

2. Solve: a reduction-specific oracle that solves TFNP instances.

That a random injective function is one-way is a well-established result (see,
e.g., Claim 5.3 in [47] for the more general case of random functions). The bulk
of technical work revolves around showing that f remains one-way even in the
presence of Solve. For any fully black-box construction with a deterministic f -
oblivious many-one reduction, we provide an oracle Solve which finds a solution
for any TFNP instance (i.e., TFNP is easy in the presence of Solve) and argue
that it does not help the reduction in inverting injective one-way functions. The
description of our oracle Solve is given in Algorithm 1 and it is explained below.

Oracle Solve: Let (R, TR, C, TC , p) be the construction of a hard TFNP problem
from injective one-way function with a deterministic f -oblivious many-one secu-
rity reduction which is hardwired in the oracle Solve. Ideally, Solve should out-
put a solution i which gives the reduction R no information about the inversion
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of its challenge y. Unfortunately, Solve is unaware of the particular challenge y
on which Rf (1n, y) queried Solve with the instance i. Nevertheless, Solve can
compute the set Yi of all challenges y on which the reduction would query the
instance i.3 The challenges in Yi become “protected” and Solve will attempt to
provide a solution which does not reveal a preimage of any y ∈ Yi, i.e., s such
that Cf (i, s) does not make an f -query on a preimage of any y ∈ Yi.

Note that we could run into a potential technical issue when defining Yi, as
the set of all challenges y on which R queries the instance i might be infinite.
However when the instance i is queried by the security reduction R on some
very long challenge y then C contributes no indirect query to f−1(y) as the
running time of C depends only on the length of the instance i. More formally:
the running time of C is bounded by TC(|i| + p(|i|)) thus C cannot query f on
longer inputs. Therefore, we can consider only possible challenges y from Im(fn)
for n ≤ TC(|i| + p(|i|)).

On lines 2–6, Solve computes the following auxiliary sets Ni, Yi,n, and Si,f .
The set Ni contains all the input lengths for the preimages x such that the
reduction Rf,Solve(1n, f(x)) queries the instance i. Solve then splits Yi into
subsets Yi,n using the input lengths of interest in Ni. Finally, Solve computes
the set Si,f which is the set of all possible solutions for the instance i.

The strategy of Solve is to return a solution from the set of “benign” solu-
tions Bi,f , which do not induce any query to preimages of the protected chal-
lenges in Yi. If there is any such benign solution then Solve simply halts and
returns the lexicographically smallest one. Unfortunately, it might be the case
that every solution queries a preimage of some y ∈ Yi, e.g., if the instance i is
queried for all challenges y of a given preimage length n and on each solution s
at least one x of length n is queried (i.e., Bi,f = ∅ unless we remove Yi,n from
Yi). Since Solve in general cannot output a solution while protecting the whole
set Yi, it will proceed to gradually relax the condition on the set of protected
challenges.

Note that we might allow Solve to return a solution even though it induces
queries to preimages of protected challenges, as long as the reduction queries the
instance i on the corresponding image length often enough, as any fixed solution
induces only a bounded number of queries to f (bounded by TC). Therefore, if
the set of challenges on which R queries i is dense enough w.r.t. some image
length then, with overwhelming probability, an arbitrary solution will be benign
for the random challenge y given to the reduction. Thus, we allow Solve to
return a solution revealing preimages of challenges from the auxiliary set Yi,n

maximizing |Yi,n|
2n . If the fraction |Yi,n|

2n is small then Solve is able to find a
benign solution which protects the preimages of length n (see [29, Claim 13]).
Whereas, if the fraction |Yi,n|

2n is large enough then any fixed solution will be
benign w.r.t. the actual challenge of R with overwhelming probability as each

3 Here we crucially rely on f -obliviousness of the reduction algorithm R which ensures
that Yi depends only on the image of f , which allows SolveSim to simulate Solve

without querying f on too many inputs.
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Algorithm 2: The algorithm Encoden.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard

TFNP problem from iOWF
Common Input: an injective function h ∈ Inj shared with Decoden

Input : a permutation π ∈ Injnn on {0, 1}n

Output : an encoding M of π

1 f = h ◦ π, i.e., f(x) =

{
h(π(x)) for all x of length n

h(x) otherwise

2 INVf =
{
y ∈ Im(hn) | RSolve,f (1n, y) = f−1(y)

}

3 Gf =
{
y ∈ INVf | f−1(y) /∈ Qindir

f (Rf,Solve(1n, y))
}

4 Yf = ∅ and Xf = ∅
5 while Gf �= ∅ do
6 Pick lexicographically smallest y ∈ Gf

7 Gf = Gf \ (
f [Qf (Rf,Solve(1n, y))] ∪ {y})

8 Yf = Yf ∪ {y} and Xf = Xf ∪ {f−1(y)}
9 end

10 if |Xf | < 20.6n then
11 return M = (0, π)
12 end
13 else
14 return M = (1, |Xf |, Yf , Xf , σ = f � ({0, 1}n \ Xf )) ∈

{0, 1}1+n+

⌈
log ( 2n

|Yf |)
⌉
+

⌈
log ( 2n

|Xf |)
⌉
+
log(|{0,1}n\Xf |!)�

15 end

solution can induce queries to only a small number of preimages of challenges
from the set Yi,n (see [29, Claim 12]).

In order to show formally that Solve does not help in inverting the
injective one-way function, we employ an incompressibility argument similar
to [21]. Specifically, we present algorithms Encoden (given in Algorithm 2)
and Decoden (given in Algorithm 3) which utilize the reduction R to allow
compression of a random permutation more succinctly than what is information-
theoretically possible. When compressing the random permutation by Encoden,
we have access to the whole permutation and we can effectively provide the
reduction with access to Solve. However, to be able to use the reduction also in
the Decoden, we have to be able to simulate access to our Solve oracle given
access only to a partially defined oracle f (as we are reconstructing f). For the
description of the algorithm SolveSim, which simulates the Solve oracle for
the purpose of decoding in Decoden, see Algorithm 4.

Encoden Algorithm: The algorithm Encoden (Algorithm 2) uses the reduction
R to compress a random permutation π on bit strings of length n. Note that
even though R succeeds in inverting an injective function, for technical reasons,
we leverage its power in order to compress a permutation. One particular issue
we would run into when trying to compress an injective function f which is not
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surjective is that the encoding would have to comprise also of the encoding of
the image of f which might render the encoding inefficient.

Nevertheless, in order to use the reduction for compressing, we must provide
it with oracle access to an injective function which is not a bijection. Thus, we
equip Encoden (as well as Decoden) with an injective function h. Encoden

then computes the function f as a composition of the functions h ◦ π and uses
the reduction with respect to the composed oracle f . We emphasize that h is
independent of π, therefore it cannot be used in order to compress π on its own.

First, Encoden computes the set INVf which is the set of all challenges y on
which the reduction successfully inverts (i.e., the reduction returns f−1(y)). Then
Encoden computes the set Gf , which is the set of “good” challenges y, on which
the reduction successfully inverts even though Solve returns a solution which
does not induce a query to any preimage of y. This set is used to reduce the size
of the trivial encoding of f – the part of f corresponding to the challenges in Gf

will be algorithmically reconstructed by Decoden using the security reduction
R.

Specifically, Encoden computes Yf , the subset of Gf for which the preim-
ages will be algorithmically reconstructed, as follows: Encoden processes the
challenges y in Gf one by one in lexicographically increasing order and stores
all f -queries needed for reconstruction by R (i.e, for any x such that there was
an f -query x, the element f(x) is removed from the “good” set Gf as we cannot
reconstruct the preimage of y using R without knowing the image of x under f).

Encoden outputs an encoding M which describes the size of Xf , the sets
Yf and Xf (where Xf is the set of preimages corresponding to Yf ), and the
partial function representing the function f on inputs of length n outside of Xf .
Thus, the encoding saves bits by not revealing the bijection between Xf and
Yf which is algorithmically reconstructed instead (Lemma 4). Specifically, the
size of Xf (equal to the size of Yf ) can be encoded using log 2n = n bits. Yf

is a subset of Im(fn) = Im(hn) and it is encoded using �log
(

2n

|Yf |
)� bits as the

index of the corresponding subset of size |Yf | (the set Xf is encoded in a similar
manner). Finally, the bijection between {0, 1}n \Xf and Im(f)\Yf is encoded as
the index of the corresponding permutation on a set of size | {0, 1}n \ Xf | using
�log (| {0, 1}n \ Xf |!)� bits.

A small technicality arises when the set Xf , respectively the set Yf , is not
large enough, the above mentioned encoding would be inefficient as the trivial
encoding outputting the whole description of the permutation π would use fewer
bits. Thus, Encoden simply outputs the trivial encoding when Xf is too small.
The first bit of the encoding distinguishes between the two cases.

Decoden Algorithm: The encoding returned by Encoden is uniquely decodable
by Decoden given in Algorithm 3 (see [29, Section 4.2]). When the output of
Encoden starts with 0, the rest of the encoding is an explicit encoding of π and
we are immediately done with its reconstruction. If the output starts with bit
1, the following n bits represent |Xf | = |Yf |. Decoden then reads the following⌈
log

(
2n

|Xf |
)⌉

bits of the encoding to reconstruct the set Yf (as the j-th subset of
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Algorithm 3: The algorithm Decoden.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard

TFNP problem from iOWF
Common Input: an injective function h ∈ Inj shared with Encoden

Input : an encoding M
Output : a permutation π ∈ Injnn

1 Parse M = (b, M′), where b ∈ {0, 1}
2 if b = 0 then
3 Decode π from M′

4 return π

5 end
6 Parse M′ = (|Xf |, Yf , Xf , σ)

7 Set partial function f ′ =

{
σ for inputs of length n

h otherwise
// f ′ is defined only

outside Xf

8 while Yf �= ∅ do
9 Pick lexicographically smallest y ∈ Yf

10 Let f ′′(x) =

{
y for all x ∈ Dom(h) \ Dom(f ′)

f ′(x) otherwise

11 x = Rf ′′,SolveSim(h,f ′,·)(1n, y)
12 Let f ′(x) = y
13 Set Yf = Yf \ {y}
14 end
15 return π = (h−1 ◦ f ′) � {0, 1}n

2n of size |Xf |). Similarly, Decoden reconstructs the set Xf using the following⌈
log

(
2n

|Xf |
)⌉

bits. The remaining bits represent σ, a restriction of f on all the
n-bit inputs outside of Xf , given by the index of the corresponding bijection
between {0, 1}n \Xf and Im(f)\Yf . Note that such encoding of σ does preserve
the structure of the restriction but it looses the information about the domain
and image of σ. However, both are easy to reconstruct. The domain is simply
{0, 1}n \Xf and the image of σ can be computed from Yf and the common input
h as Im(σ) = Im(f) \ Yf = Im(h ◦ π) \ Yf = Im(h) \ Yf .

Decoden then computes the remaining preimages one by one in lexico-
graphic order using the security reduction R, adding the reconstructed mapping
into a partial function f ′. Note that during the computation of the preimage of
y, the reduction might make an f -query on x which has no defined output. But
as Decoden takes y ∈ Yf in the same order as Encoden added them to the
set Yf , this happens if and only if the preimage of y is being queried. Thus, we
answer any such query by y (it is crucial that this happens only for f -queries
made directly by R) which is captured in the definition of the auxiliary function
f ′′ defined by Decoden and used as the oracle for the security reduction R.
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Once Encoden finds the preimages of all challenges y from Yf , the function
f ′ is defined everywhere. To reconstruct the permutation π on {0, 1}n, Decoden

can simply compose the inverse of h with the reconstructed function f ′.

SolveSim Algorithm: For the ease of presentation we usually do not explicitly
mention the oracle h as it is given by context (we run Decoden and SolveSim)
with respect to only one h at a time.

The computation of the algorithm SolveSim (Algorithm 4) is similar to the
computation of Solve (Algorithm 1). First, SolveSim computes the sets Yi.
There is one big difference between Solve and SolveSim. As SolveSim does
not have access to the whole f it uses h or the partial knowledge of f , namely
the partial function f ′ everywhere f is used in the Solve algorithm.

– We use h whenever we need to determine the image of fn for some n. As
∀n ∈ N : Im(hn) = Im(fn) using Im(hn) instead of Im(fn) makes no difference
to the computation.

– The second place where h is used instead of f is when SolveSim computes
the set Yi. Specifically, when determining images y for which the security
reduction R queries the given instance i, the algorithm SolveSim computes
the same Yi as if it used f by the f -obliviousness of the security reduction.

– In all other places, SolveSim uses the partial knowledge of f (i.e., the partial
function f ′). This causes a real difference in the computation. In particular,
the set Si,f ′ (as computed by SolveSim) may differ a lot from Si,f (as com-
puted by Solve) as some solutions from Si,f potentially query some unknown
parts of f . Thus, the set Si,f ′ computed by SolveSim is just a subset of the
whole Si,f . The set Si,f ′ contains only the solutions SolveSim is “aware of”
(f ′ is defined for all queries and thus SolveSim may verify the solution).
The rest of the computation is practically the same, except that SolveSim

is restricted just to the set of solutions Si,f ′ . The main trick is that we make
sure that SolveSim is aware of the solution which should be returned and it
does not matter that it ignores other solutions of the instance.

Structure of the Proof of Theorem 1. For ease of presentation and understanding,
we divide the proof into four lemmata, Lemma 1 through 4. Lemma 1 shows that
given an instance i of the TFNP problem represented by the algorithm Cf , our
Solve always returns a solution, i.e., an s such that Cf (i, s) = 1 (formal proof
is given in [29, Section 4.1]). Thus, any distribution of instances of the TFNP
problem is easy in the presence of Solve.

Lemma 1. For any instance i ∈ {0, 1}∗ and any f ∈ Inj, the algorithm
Solve

f (i) halts and returns a solution, i.e., it returns a string s ∈ {0, 1}∗ such
that |s| ≤ p(|i|) and Cf (i, s) = 1.

To argue that Solve does not help in inverting injective functions, we analyze
the joint properties of the algorithms Encoden and Decoden. First, we show
that Decoden always returns the correct permutation encoded by Encoden

(see [29, Section 4.2] for the formal proof).
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Algorithm 4: The algorithm SolveSim.
Hardwired : a fully black-box construction (R, TR, C, TC , p) of a hard TFNP

problem from iOWF
Input : A function h ∈ Inj, partial injective function f ′ ∈ Inj, and an

instance i ∈ {0, 1}∗

Output : Solution, i.e., s ∈ {0, 1}∗ such that Cf ′
(i, s) = 1

1 Compute Yi =
⋃TC(|i|+p(|i|))

n=1

{
y ∈ Im(hn)

∣
∣ i ∈ QSolve(R

h,Solve(1n, y))
}

2 Compute Ni = {n ∈ N | Yi ∩ Im(hn) �= ∅}
3 for n ∈ Ni do
4 Compute Yi,n = Yi ∩ Im(hn)
5 end
6 Compute

Si,f ′ =
{

s ∈ {0, 1}∗
∣
∣
∣ |s| ≤ p(|i|) and Q(Cf ′

(i, s)) ⊆ Dom(f ′) and Cf ′
(i, s) = 1

}

7 while True do

8 Bi,f ′ = {s ∈ Si,f ′ | f [Q(Cf ′
(i, s))] ∩ Yi = ∅} // "benign" solutions

9 if Bi,f ′ �= ∅ then
10 return lexicographically smallest s ∈ Bi,f ′

11 end

12 Choose n ∈ Ni such that
|Yi,n|
2n

is maximized.
13 Set Ni = Ni \ {n}
14 Set Yi = Yi \ Yi,n

15 end

Lemma 2. For all n ∈ N, π ∈ Injnn, and h ∈ Inj,

Decode
h
n(Encodeh

n(π)) = π,

where Encoden, respectively Decoden, is given in Algorithm 2, respectively
Algorithm 3.

We crutialy rely on f -obliviousness of the reduction for the proof of Lemma 2.
It is the property which allows us to simulate the algorithm Solve during the
decoding phase, as SolveSim needs to be able to compute the same set Yi as
Solve does. Moreover, SolveSim cannot query f on all preimages as Solve does
when computing Yi. Due to f -obliviousness of the reduction, we may substitute
f by h in the computation of Yi in SolveSim as the resulting set depends only
on the image of the function given to R as an oracle (and Im(f) = Im(h)).

Second, we show that the encoding output by Encoden is prefix-free (see
[29, Section 4.3]).

Lemma 3. Let h ∈ Inj be any injective function and n ∈ N, then the encoding
given by the algorithm Encoden (Algorithm 2) is prefix-free, i.e.,

∀π, π′ ∈ Injnn such that π �= π′ : Encodeh
n(π) is not a prefix of Encodeh

n(π′).
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Finally, we bound the expected size of the encoding given by Encoden

(see [29, Section 4.4]) which contradicts the information-theoretic bound implied
by Corollary 1.
Lemma 4. Let (R, TR, C, TC , p) be a fully black-box construction of a hard
TFNP problem from an injective one-way function. Assume n ∈ N is large enough
so that n ≥ 50 and 2q(n) + 1 ≤ 20.2n, where q(n) is the maximal number of f-
queries made by C on the queried instance Let the success probability of R be
β ≥ 2−0.1n, i.e., for any f we have

Pr
x←{0,1}n

[Rf,Solve(1n, f(x)) = x] = β ≥ 2−0.1n.

Then

∃h ∈ Inj : Eπ←Injnn,h←Inj [|Encodeh
n(π)|] ≤ log 2n! − 8

10
n20.1n.

We claim (see [29, Claim 10]) that the upper bound 2q(n) + 1 ≤ 20.2n used
in the statement of the lemma is without loss of generality for large enough n
and for all quasi-polynomial (and, hence, also for efficient) algorithms R,C. We
use this fact again in the proof of the main theorem (Theorem 1), and refer the
readers to [29, Section 4.4] for the precise statement and its proof.

Equipped with the above lemmata, we next prove Theorem 1.

Proof. (of Theorem 1). Suppose to the contrary that there is such a reduction
(R, TR, C, TC , p). By Lemma 1, the algorithm Solve (Algorithm 1) returns a
valid solution with probability one. Thus, the reduction R must invert f with
high probability when given access to any oracle f ∈ Inj and our oracle Solve,
i.e.,

Pr
x←{0,1}n

[
Rf,Solve(1n, f(x)) = x

] ≥ 1
p′(n)

for some polynomial p′ and infinitely many n ∈ N.
Let n ∈ N be large enough such that

1. 2q(n) + 1 ≤ 20.2n,
2. Prx←{0,1}n

[
Rf,Solve(1n, f(x)) ∈ f−1(f(x))

] ≥ 1
p′(n) ,

where q(n) is the maximal number of f -queries made by C on the queried
instance As already pointed out, the quasi-polynomial bounds on running times
TC , TR ∈ O(npolylog(n)) imply that q(n) ∈ o(20.2n) (see [29, Claim 10]). Thus,
for large enough n, the upper bound 2q(n) + 1 ≤ 20.2n holds without loss of
generality.

For any h ∈ Inj, we can use the algorithm Encode
h
n (Algorithm 2) to

encode a given permutation π ∈ Injnn. Decodability of the encoding follows
from Lemma 2. Moreover, by Lemma 3, the encoding is a prefix-free code. By
Lemma 4, there is a function h ∈ Inj such that the pair of algorithms Encodeh

n

and Decode
h
n defines an encoding of π ← Injnn with expected length at most

log(2n!) − 8
10n20.1n. This contradicts the information-theoretic bound on the

expected length of any prefix-free encoding of a random permutation on {0, 1}n

given by Corollary 1. �
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3.3 Extensions

In this section, we state some extensions to the result in the previous section.
We refrain from providing the details and refer the readers to [29, Section 5].

First, it is possible to extend our proof from Sect. 3.2 to rule out even non-
adaptive security reductions which submit multiple queries to the oracle Solve in
parallel, though still f -obliviously, as defined in Definition 3. The description of
the algorithms Solve, Encoden, Decoden, and SolveSim remain unchanged,
but we require a slightly different analysis tailored for non-adaptive reductions.
We refer the readers to [29, Section 5.2] for the details.

Second, we can extend our results to randomised reductions with additional
changes to our algorithm Solve. One could imagine that the construction has
some instance i created for a concrete challenge y, on which R queries i with high
probability. But R might also query the instance i for many other challenges y′

(on each of them with small probability) to hide the real challenge y. Thus we
need to take the probability of querying the instance i into account. Roughly
speaking, the Solve for randomised reductions is an extension of the Solve

given in Algorithm 1 taking this probability into account. SolveSim is designed
accordingly and thanks to f -obliviousness we are still able to show that the
simulation is faithful. The rest of the changes involve modifying the existing
argument taking into account the changes to Solve and SolveSim. We refer
the readers to [29, Section 5.3] for the details.

4 Conclusions

In this work, we have shown that there are intrinsic barriers preventing sim-
ple fully black-box constructions of hard TFNP problems from injective one-way
functions. The main technical contribution of our work is the technique of design-
ing a “TFNP-breaker” oracle Solve which depends on the reduction.

The natural direction towards extending our results would be attempting
to lift the restriction to f -oblivious and non-adaptive reductions. One reason
for why this might be challenging is that a black-box separation of TFNP and
injective one-way functions would subsume the separation of collision-resistant
hash functions and one-way functions [49], for which, despite the recent progress,
there are only non-trivial proofs [4,25,40].

Acknowledgments. We wish to thank the anonymous reviewers for their comments
which helped us to clarify the presentations of our results.
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Abstract. We initiate a study of pseudorandom encodings: efficiently
computable and decodable encoding functions that map messages from
a given distribution to a random-looking distribution. For instance, every
distribution that can be perfectly and efficiently compressed admits such
a pseudorandom encoding. Pseudorandom encodings are motivated by a
variety of cryptographic applications, including password-authenticated
key exchange, “honey encryption” and steganography.

The main question we ask is whether every efficiently samplable distri-
bution admits a pseudorandom encoding. Under different cryptographic
assumptions, we obtain positive and negative answers for different fla-
vors of pseudorandom encodings, and relate this question to problems
in other areas of cryptography. In particular, by establishing a two-way
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relation between pseudorandom encoding schemes and efficient invertible
sampling algorithms, we reveal a connection between adaptively secure
multiparty computation for randomized functionalities and questions in
the domain of steganography.

1 Introduction

The problem of compression has been extensively studied in the field of infor-
mation theory and, more recently, in computational complexity and cryptog-
raphy [23,27,40,42]. Informally, given a distribution X, compression aims to
efficiently encode samples from X as short strings while at the same time being
able to efficiently recover these samples. While the typical information-theoretic
study of compression considers the case of compressing multiple independent
samples from the same source X, its study in computer science, and in partic-
ular in this work, considers the “single-shot” case. Compression in this setting
is closely related to randomness condensers [18,34,38,39] and resource-bounded
Kolmogorov complexity [32,33] – two well-studied problems in computational
complexity. Randomness condensers, which relax randomness extractors, are
functions that efficiently map an input distribution into an output distribu-
tion with a higher entropy rate. A randomness condenser can be viewed as an
efficient compression algorithm, without a corresponding efficient decompres-
sion algorithm. The resource-bounded Kolmogorov complexity of a string is the
smallest description length of an efficient program that outputs this string. This
program description can be viewed as a compressed string, such that decoding
is efficiently possible, while finding the compressed string may be inefficient.

An important property of efficient compression algorithms, which combines
the efficiency features of randomness condensers and resource-bounded Kol-
mogorov complexity, is their ability to efficiently produce “random-looking”
outputs while allowing the original input to be efficiently recovered. Despite
the large body of work on compression and its computational variants, this fun-
damental property has, to our knowledge, never been the subject of a dedicated
study. In this work, we fill this gap by initiating such a study. Before formalizing
the problem, we give a simple motivating example.

Consider the goal of encrypting a sample x from a distribution X (say, a ran-
dom 5-letter English word from the Merriam-Webster Dictionary) using a low-
entropy secret key k. Applying a standard symmetric-key encryption scheme
with a key derived from k gives rise to the following brute-force attack: Try
to decrypt with different keys until obtaining x′ in the support of X. In the
typical case that wrong keys always lead to x′ outside the support of X, this
attack successfully recovers x. Variants of this attack arise in different scenarios,
including password-authenticated key exchange [4], honey encryption [30], sub-
liminal communication and steganography [26], and more. A natural solution is
to use perfect compression: if x can be compressed to a uniformly random string
x̂ ∈ {0, 1}n before being encrypted, it cannot be distinguished from another
random string x̂′ ∈ {0, 1}n obtained by trying the wrong key. Note, however,
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that compression may be an overkill for this application. Instead, it suffices to
efficiently encode x into a (possibly longer) pseudorandom string from which x
can be efficiently decoded. This more general solution motivates the question we
consider in this work.

Encoding into the Uniform Distribution. We initiate the study of encoding distri-
butions into a random-looking distribution. Informally, we say that a distribution
ensemble Xλ admits a pseudorandom encoding if there exist efficient encoding
and decoding algorithms (EX ,DX), where DX is deterministic, such that

Pr
[
y ← Xλ : DX(EX(y)) = y

]
is overwhelming and (1)

{
y ← Xλ : EX(y)

} ≈ Un(λ). (2)

Here, “≈” denotes some notion of indistinguishability (we will consider both
computational and statistical indistinguishability), and the probability is over
the randomness of both EX and Xλ. The polynomial n(λ) denotes the output
length of the encoding algorithm EX . We refer to Eq. (1) as correctness and
to Eq. (2) as pseudorandomness. It will also be useful to consider distribution
ensembles parameterized by an input m from a language L. We say that such a
distribution ensemble (Xm)m∈L admits a pseudorandom encoding if there exist
efficient algorithms (EX ,DX) as above satisfying correctness and pseudorandom-
ness for all m ∈ L, where EX and DX both additionally receive m as input. Note
that we insist on the decoding algorithm being efficient. This is required for
our motivating applications.1 Note also that encoding and decoding above are
keyless; that is, we want encoded samples to be close to uniform even though
anyone can decode them. This is a crucial distinction from, for instance, encryp-
tion schemes with pseudorandom ciphertexts, which look uniformly distributed
to everyone except the owner of the decryption key, and cannot be efficiently
decrypted except by the owner of the decryption key. Here, we seek to simulta-
neously achieve pseudorandomness and correctness for all parties.

Our motivation for studying pseudorandom encodings stems from the fact
that this very natural problem appears in a wide variety of – sometimes seemingly
unrelated – problems in cryptography. We already mentioned steganography,
honey encryption, and password-authenticated key exchange; we will cover more
such connections in this work. Yet, this notion of encoding has to our knowledge
never been studied systematically. In this work we study several natural flavors
of this notion, obtain positive and negative results about realizing them, and
map their connections with other problems in cryptography.

The main focus of this work is on the hypothesis that all efficiently sam-
plable distributions admit a pseudorandom encoding. Henceforth, we refer to
this hypothesis the pseudorandom encoding hypothesis (PREH).

For describing our results, it will be convenient to use the following gen-
eral notion of efficiently samplable distributions. A distribution family ensemble
1 Without this requirement, the problem can be solved using non-interactive commit-

ment schemes with the additional property that commitments are pseudorandom
(which exist under standard cryptographic assumptions).
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(Xm)m∈L (for some language L ⊆ {0, 1}∗) is efficiently samplable if there exists
a probabilistic polynomial time (PPT) algorithm S such that S(m) is distributed
according to Xm for every m ∈ L. In case the distribution does not depend on
additional inputs, L can be considered equal to N.

Overview of Contributions. Following is a brief summary of our main contribu-
tions. We will give an expanded overview of the contributions and the underlying
techniques in the rest of this section.

– We provide a unified study of different flavors of pseudorandom encodings
(PRE) and identify computational, randomized PRE in the CRS model as a
useful and achievable notion.

– We establish a two-way relation between PRE and the previously studied
notion of invertible sampling This reveals unexpected connections between
seemingly unrelated problems in cryptography (e.g., between adaptively
secure computation for general functionalities and “honey encryption”).

– We bootstrap “adaptive PRE” from “static PRE” As a consequence, one can
base succinct adaptively secure computation on standard iO as opposed to
subexponential iO [15].

– We use PRE to obtain a compiler from standard secure multiparty computa-
tion (MPC) protocols to covert MPC protocols.

1.1 Flavors of Pseudorandom Encoding

The notion of pseudorandom encoding has several natural flavors, depend-
ing on whether the encoding algorithm is allowed to use randomness or
not, and whether the pseudorandomness property satisfies a computational or
information-theoretic notion of indistinguishability. We denote the corresponding
hypotheses that every efficiently samplable distribution can be pseudorandomly
encoded according to the above variants as PREHrand

≈c
, PREHrand

≡s
, PREHdet

≈c
and

PREHdet
≡s

.2

Further, we explore relaxations which rely on a trusted setup assumption: we
consider the pseudorandom encoding hypothesis in the common reference string
model, in which a common string sampled in a trusted way from some distribu-
tion is made available to the parties. This is the most common setup assumption
in cryptography and it is standard to consider the feasibility of cryptographic
primitives in this model to overcome limitations in the plain model. That is,
we ask whether for every efficiently samplable distribution X, there exists an

2 We note that not all efficiently samplable distributions can be pseudorandomly
encoded with a deterministic encoding algorithm. For instance, a distribution which
has one very likely event and many less likely ones requires one specific encoding to
appear with high probability. Thus, we formally restrict the deterministic variants
of the pseudorandom encoding hypothesis to only hold for “compatible” samplers,
which still results in interesting connections. In this overview, however, we ignore
this restriction.
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efficiently samplable CRS distribution and efficient encoding and decoding algo-
rithms (EX ,DX) as above, such that correctness and pseudorandomness hold,
where the encoding and decoding algorithm as well as the distinguisher receive
the CRS as input, and the distributions in Eqs. (1) and (2) are additionally over
the choice of the CRS.

Considering distributions which may depend on an input m ∈ L further
entails two different flavors. On the one hand, we consider the notion where
inputs m are chosen adversarially but statically (that is, independent of the
CRS) and, on the other hand, we consider the stronger notion where inputs m
are chosen adversarially and adaptively depending on the CRS. We henceforth
denote these variants by the prefix “c” and “ac”, respectively.

Static-to-Adaptive Transformation. The adaptive notion, where inputs may be
chosen depending on the CRS, is clearly stronger than the static notion. However,
surprisingly, the very nature of pseudorandom encodings allows one to apply an
indirection argument similar to the one used in [11,12,25], which yields a static-
to-adaptive transformation.

Theorem (informal). If all efficiently samplable distributions can be pseudo-
randomly encoded in the CRS model with a static choice of inputs, then all
efficiently samplable distributions can be pseudorandomly encoded in the CRS
model with an adaptive choice of inputs.

Static-to-adaptive transformations in cryptography are generally non-trivial,
and often come at a big cost in security when they rely on a “complexity lever-
aging” technique. This connection and its application we will discuss below are a
good demonstration of the usefulness of the notion of pseudorandom encodings.

Relaxing Compression. The notion of statistical deterministic pseudorandom
encodings recovers the notion of optimal compression. Hence, this conflicts with
the existence of one-way functions.3 In our systematic study of pseudorandom
encodings, we gradually relax perfect compression in several dimensions, while
maintaining one crucial property – the indistinguishability of the encoded dis-
tribution from true randomness.

Example. To illustrate the importance of this property, we elaborate on the
example we outline at the beginning of the introduction, focusing more specifi-
cally on password-authenticated key exchange (PAKE). A PAKE protocol allows
two parties holding a (low entropy) common password to jointly and confiden-
tially generate a (high entropy) secret key, such that the protocol is resilient
against offline dictionary attacks, and no adversary can establish a shared key
with a party if he does not know the matching password. A widely used PAKE
protocol due to Bellovin and Merritt [4] has a very simple structure: the parties
use their low-entropy password to encrypt the flows of a key-exchange protocol
3 If perfect compression exists, pseudorandom generators cannot exist (observation

attributed to Levin in [23]).
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using a block cipher. When the block cipher is modeled as a random cipher, it has
the property that decrypting a ciphertext (of an arbitrary plaintext) under an
incorrect secret key yields a fresh random plaintext. Thus, Bellovin and Merritt
point out that the security of their PAKE protocol requires that “the message to
be encrypted by the password must be indistinguishable from a random number.”
This is easy to achieve for Diffie-Hellman key exchange over the multiplicative
group of integers modulo a prime p. However, for elliptic curve groups this is
no longer the case, and one needs to resort to alternative techniques including
nontrivial point compression algorithms that compress the representation of a
random group element into a nearly uniform bitstring [6].

Clearly, our relaxation of compression does not preserve the useful property
of obtaining outputs that are shorter than the inputs. However, the remaining
pseudorandomness property is good enough for many applications.

In the following, we elaborate on our weakest notion of pseudorandom encod-
ings, that is, pseudorandom encodings allowing the encoding algorithm to be ran-
domized and providing a computational pseudorandomness guarantee. We defer
the discussion on the stronger statistical or deterministic variants to Sect. 1.3,
where we derive negative results for most of these stronger notions, which
leaves computational randomized pseudorandom encodings as the “best pos-
sible” notion that can be realized for general distributions.

Randomized, Computational Pseudorandom Encodings. Computational
randomized pseudorandom encodings allow the encoding algorithm to be ran-
domized and require only computational pseudorandomness.

Relation to Invertible Sampling. We show a simple but unexpected connection
with the notion of invertible sampling [9,17,22]. Informally, invertible sampling
refers to the task of finding, given samples from a distribution, random coins that
explain the sample. Invertible sampling allows to obliviously sample from distri-
butions, that is, sampling from distributions without knowing the corresponding
secrets. This can be useful for, e.g., sampling common reference strings without
knowing the random coins or public keys without knowing the corresponding
secret keys. A natural relaxation of this notion was systematically studied by
Ishai, Kumarasubramanian, Orlandi and Sahai [29]. Concretely, a PPT sampler
S is inverse samplable if there exists an alternative PPT sampler S and a PPT
inverse sampler S

−1
such that

{
y ← S(1λ) : y

} ≈c

{
y ← S(1λ) : y

}
,

{
y ← S(1λ; r) : (r, y)

} ≈c

{
y ← S(1λ) : (S

−1
(1λ, y), y)

}
.

Note that the inverse sampling algorithm is only required to efficiently inverse-
sample from another distribution S, but this distribution must be computation-
ally close to the distribution induced by S. The main question studied in [29]
is whether every efficient sampler admits such an invertible sampler. They refer
to this hypothesis as the invertible sampling hypothesis (ISH), and show that
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ISH is equivalent to adaptive MPC for general randomized functionalities that
may hide their internal randomness. In this work, we show the following two-way
relation with pseudorandom encoding.

Theorem (informal). A distribution admits a pseudorandom encoding if and
only if it admits invertible sampling.

Intuitively, the efficient encoding algorithm corresponds to the inverse sam-
pling algorithm, and decoding an encoded string corresponds to sampling with
the de-randomized alternative sampler S. This equivalence immediately extends
to all variants of pseudorandom encodings and corresponding variants of invert-
ible sampling we introduce in this work. Invertible sampling is itself connected to
other useful cryptographic notions, such as oblivious sampling, trusted common
reference string generations, and adaptively secure computation (which we will
elaborate upon below).

Building on this connection, the impossibility result of [29] translates to our
setting. On a high level, extractable one-way functions (EOWFs) conflict with
invertible sampling because they allow to extract a “secret” (in this case a pre-
image) from an image, independently of how it was computed. This conflicts
with invertible sampling because invertible sampling is about sampling without
knowing the secrets.

Theorem (informal, [29]). Assuming the existence of extractable one-way
functions (EOWF) and a non-interactive zero-knowledge proof system, PREHrand

≈c

does not hold.

This suggests that towards a realizable notion of pseudorandom encodings,
a further relaxation is due. Thus, we ask whether the above impossibility result
extends to the CRS model. In the CRS model, the above intuition why ISH
conflicts with EOWFs fails, because the CRS can contain an obfuscated program
that samples an image using some secret, but does not output this secret.

Dachman-Soled, Katz, and Rao [16] (building on the universal deniable
encryption construction of Sahai and Waters [35]) construct a so-called “explain-
ability compiler” that implies cISHrand

≈c
based on indistinguishability obfuscation4

(iO). By our equivalence theorem above, this implies pseudorandom encodings
for all efficiently samplable distributions in the CRS model, with static choice of
inputs, from iO. Invoking the static-to-adaptive transformation detailed above,
this also applies to the adaptive variant.

Theorem (informal). Assuming the existence of (polynomially secure) indis-
tinguishability obfuscation and one-way functions, acPREHrand

≈c
holds.

4 Informally, an iO scheme is a PPT algorithm that takes as input a circuit C and
produces another circuit iO(C) such that C and iO(C) compute the same function,
but iO(C) is unintelligible in the following sense. If two circuits C1 and C2 compute
the same function, then iO(C1) and iO(C2) are computationally indistinguishable.
The notion of iO was introduced in [2] and first instantiated in [21].
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Note that [29] claim that their impossibility result extends to the CRS model,
whereas the above theorem seems to suggest the opposite. We show that tech-
nically the result of [29] does extend to the CRS model at the cost of assum-
ing unbounded auxiliary-input extractable one-way functions, a strong flavor of
EOWFs that seems very unlikely to exist but cannot be unconditionally ruled
out.

Theorem (informal). Assuming the existence of extractable one-way functions
with unbounded common auxiliary input and a non-interactive zero-knowledge
proof system, cPREHrand

≈c
does not hold.

In fact, this apparent contradiction has been the source of some confusion in
previous works: the work of [29] makes an informal claim that their impossibil-
ity result for ISH extends to the CRS model. However, due to the connection
between ISH and adaptively secure MPC (which we will discuss in more details
later on), this claim was challenged in [16]: the authors achieve a construction
of adaptively secure MPC for all functionalities assuming iO, which seemingly
contradicts the claim of [29]. The authors of [16] therefore stated that the “impos-
sibility result of Ishai et al. [...] does not hold in the CRS model.” Our extension
clarifies that the distinction is in fact more subtle: the result of [29] does extend
to the CRS model, but at the cost of assuming EOWF with unbounded auxiliary
inputs. This does not contradict the constructions based on iO, because iO and
EOWF with unbounded auxiliary inputs are known to be contradictory [5].

Overview. In Fig. 1, we provide a general summary of the many flavors of the
pseudorandom encoding hypothesis, and how they relate to a wide variety of
other primitives.

Further Relaxation. We further study an additional relaxation of pseudorandom
encodings, where we allow the encoding algorithm to run in super-polynomial
time. We show that this relaxed variant can be achieved from cryptographic
primitives similar to extremely lossy functions [45], which can be based on the
exponential hardness of the decisional Diffie-Hellman problem – a strong assump-
tion, but (still) more standard than indistinguishability obfuscation. However,
the applicability of the resulting notion turns out to be rather restricted.

1.2 Implications and Applications of Our Results

In this section, we elaborate on the implications of the techniques we develop
and the results we obtain for a variety of other cryptographic primitives.

New Results for Adaptively Secure Computation. As mentioned above,
a sampler admits invertible sampling if and only if it can be pseudorandomly
encoded. A two-way connection between invertible sampling and adaptively
secure MPC for general randomized functionalities was established in [29]. An
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Fig. 1. An overview of the relations between the pseudorandom encoding hypothesis
and other fields of cryptography and computational complexity theory. For simplicity,
our static-to-adaptive transformation only appears in the computational, randomized
setting in this overview, but also applies to the other settings. (Since the deterministic
variants of the pseudorandom encoding hypothesis are impossible for some pathologic
samplers, the arrows between deterministic and randomized variants of the pseudoran-
dom encoding hypothesis are to be read as if the deterministic variant is true for some
sampler, then the corresponding randomized variant is true for that sampler.)

MPC protocol allows two or more parties to jointly evaluate a (possibly random-
ized) functionality F on their inputs without revealing anything to each other
except what follows from their inputs and outputs. This should hold even in the
presence of an adversary who can corrupt any number of parties in an adaptive
(sequential) fashion. When we write “adaptive MPC”, we mean adaptive MPC
for all randomized functionalities. This should be contrasted with weaker notions
of adaptive MPC for strict subsets of corrupted parties [3,9,20] or for adaptively
well-formed functionalities5 [10] which can both be done from mild assumptions.
The connection from [29] shows that adaptive MPC for all randomized functions
is possible if and only if every PPT sampler admits invertible sampling, i.e., the
invertible sampling hypothesis is true.

5 Adaptively well-formed functionalities do not hide internal randomness.
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We show that this result generalizes to the global CRS model. More precisely,
we prove the adaptive variant of the pseudorandom encoding hypothesis in the
CRS model acPREHrand

≈c
is equivalent to adaptive MPC in the global CRS model.6

As detailed above, the static pseudorandom encoding hypothesis cPREHrand
≈c

in the CRS model follows from iO (and one-way functions). Applying our static-
to-adaptive transformation, the same holds for the adaptive variant. Thus, we
obtain the first instantiation of an adaptive explainability compiler [16] without
complexity leveraging and, hence, based only on polynomial hardness assump-
tions. The recent work of Cohen, shelat, and Wichs [15] uses such an adap-
tive explainability compiler to obtain succinct adaptive MPC, where “succinct”
means that the communication complexity is sublinear in the complexity of the
evaluated function. Due to our instantiation of acPREHrand

≈c
from polynomial iO,

we improve the results of [15] by relaxing the requirement for subexponentially
secure iO to polynomially secure iO in a black-box way.

Corollary (informal). Assuming the existence of polynomially secure indis-
tinguishability obfuscation and the adaptive hardness of the learning with errors
problem, then malicious, two-round, UC-secure adaptive MPC and sublinear
communication complexity is possible (in the local CRS model, for all deter-
ministic functionalities).

Steganography and Covert Multi-party Computation. We explore the
connection of the pseudorandom encoding hypothesis to various flavors of
steganography. The goal of steganography, informally, is to embed secret mes-
sages in distributions of natural-looking messages, in order to hide them from
external observers. While the standard setting for steganography relies on shared
secret keys to encode the messages, we show that pseudorandom encodings natu-
rally give rise to a strong form of keyless steganography. Namely, one can rely on
pseudorandom encodings to encode any message into an innocent-looking distri-
bution, without truly hiding the message (since anyone can decode the stream),
but providing plausible deniability, in the sense that, even with the decoded mes-
sage, it is impossible to tell apart whether this message was indeed encoded by
the sender, or whether it is simply the result of decoding the innocent distribu-
tion.

Corollary (informal). Assuming pseudorandom encodings, then there exists a
keyless steganographic protocol which provides plausible deniability.

Plausible deniability is an important security notion; in particular, an impor-
tant cryptographic primitive in this area is the notion of (sender-)deniable
encryption [8], which is known to exist assuming indistinguishability obfusca-
tion [35]. Deniable encryption enables to “explain” ciphertexts produced for

6 Together with the conflict between cPREHrand
≈c

and EOWFs with unbounded auxiliary
input, this corrects a claim made in [16] that the impossibility result of adaptive MPC
from [29] would not extend to the CRS model.
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some message to any arbitrary other message by providing corresponding ran-
dom coins for a faked encryption process. We view it as an interesting open prob-
lem to build deniable encryption under the pseudorandom encoding hypothesis
together with more standard cryptographic primitives; we make a first step in
this direction and show the following: the statistical variant of pseudorandom
encodings, together with the existence of public-key encryption, implies deni-
able encryption. Interestingly, we also show that the computational randomized
pseudorandom encoding hypothesis suffices to imply non-committing encryp-
tion, a weaker form of deniable encryption allowing to explain only simulated
ciphertexts to arbitrary messages [9].

Covert Secure Computation. Covert MPC [13,41] is an intriguing flavor of MPC
that aims at achieving the following strong security guarantee: if the output of
the protocol is not “favorable,” the transcript of the interaction should not leak
any information to the parties parties, including whether any given party was
actually taking part in the protocol. This strong form of MPC aims at providing
security guarantees when the very act of starting a computation with other par-
ties should remain hidden. As an example [41], suppose that a CIA agent who
infiltrated a terrorist group wants to make a handshake with another individual
to find out whether she is also a CIA agent. Here, we show that pseudorandom
encodings give rise to a general compiler transforming a standard MPC protocol
into a covert one, in a round-preserving way. The idea is to encode each round of
the protocol such that encoded messages look random. Together with the equiv-
alence between adaptively secure MPC and pseudorandom encodings, this gives
a connection between two seemingly unrelated notions of secure computation.

Corollary (informal). Assuming adaptively secure MPC for all functionali-
ties, there exists a round-preserving compiler that transforms a large class of
“natural” MPC protocols into covert MPC protocols (in the static, semi-honest
setting).

Other Results. Due to our infeasibility results of PREHrand
≡s

, distribution trans-
forming encoders (DTEs) for all efficiently samplable distributions are infeasible.
Even the computational relaxation of DTEs is infeasible assuming extractable
one-way functions. Since all currently known constructions of honey encryption
rely on DTEs, we conditionally refute the existence of honey encryption based
on the DTE-then-encrypt framework from [30]. On the positive side, due to our
feasibility result of acPREHrand

≈c
, computational honey encryption is feasible in

the CRS model.

Theorem (informal). Assuming acPREHrand
≈c

and a suitable symmetric-key
encryption scheme (modeled as a random cipher), computational honey encryp-
tion for all efficiently samplable distributions exists in the CRS model.
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1.3 Negative Results for Stronger Notions of Pseudorandom
Encodings

Below we describe how we gradually relax optimal compression via different
notions of pseudorandom encodings and derive infeasibility results for all vari-
ants of pseudorandom encodings which restrict the encoding algorithm to be
deterministic or require an information-theoretic pseudorandomness guarantee.
This leaves computational randomized pseudorandom encodings as the best pos-
sible achievable notion.

Deterministic, Statistical Pseudorandom Encodings. The notion of pseu-
dorandom encodings with a deterministic encoding algorithm and information-
theoretic indistinguishability is perhaps the simplest notion one can consider.
As we will prove in this paper, this notion recovers the notion of optimal com-
pression: since the encoding algorithm for some source X is deterministic, it
can be seen with an entropy argument that the output size of EX must be at
most H∞(X), the min-entropy of X; otherwise, the distribution {EX(X)} can
necessarily be distinguished from random with some statistically non-negligible
advantage. Therefore, EX is an optimal and efficient compression algorithm for
X, with decompression algorithm DX ; this is true even for the relaxation in the
CRS model. The existence of efficient compression algorithms for various cat-
egories of samplers was thoroughly studied [40]. In particular, the existence of
compression algorithms for all efficiently samplable sources implies the inexis-
tence of one-way functions (this is an observation attributed to Levin in [23])
since compressing the output of a pseudorandom generator to its entropy would
distinguish it from a random string, and the existence of one-way functions
implies the existence of pseudorandom generators [24]).

Theorem (informal). Assuming the existence of one-way functions, neither
PREHdet

≡s
nor cPREHdet

≡s
hold.

This is a strong impossibility result, as one-way functions dwell among the
weakest assumptions in cryptography, [28]. One can circumvent this impossibil-
ity by studying whether compression can be achieved for more restricted classes
of distributions, as was done e.g. in [40]. Our work can be seen as pursuing an
orthogonal direction. We seek to determine whether a relaxed notion of com-
pression can be achieved for all efficiently samplable distributions. The relax-
ations we consider comprise the possibility to use randomness in the encoding
algorithm, and weakening the requirement on the encoded distribution to being
only computationally indistinguishable from random. Clearly, these relaxations
remove one of the most important features of compression algorithms, which
is that their outputs are smaller than their inputs (i.e., they compress). Nev-
ertheless, the indistinguishability of the encoded distribution from the uniform
distribution is another crucial feature of optimal compression algorithms, which
has independent applications.
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Deterministic, Computational Pseudorandom Encodings. We now turn
towards a relaxation where the encoded distribution is only required to be com-
putationally indistinguishable from random, but the encoding algorithm is still
required to be deterministic. This flavor is strongly connected to an important
problem in cryptography: the problem of separating HILL entropy [24] from Yao
entropy [44]. HILL and Yao entropy are different approaches of formalizing com-
putational entropy, i.e., the amount of entropy a distribution appears to have
from the viewpoint of a computationally bounded entity. Informally, a distribu-
tion has high HILL entropy if it is computationally close to a distribution with
high min-entropy; a distribution has high Yao entropy if it cannot be compressed
efficiently. Finding a distribution which, under standard cryptographic assump-
tions, has high Yao entropy, but low HILL entropy constitutes a long standing
open problem in cryptography. Currently, only an oracle separation [42] and a
separation for conditional distributions [27] are known. To establish the con-
nection between PREHdet

≈c
and this problem, we proceed as follows: informally,

a deterministic pseudorandom encoding must necessarily compress its input to
the HILL entropy of the distribution. That is, the output size of the encoding
cannot be much larger than the HILL entropy of the distribution. This, in turn,
implies that a distribution which admits such a pseudorandom encoding cannot
have high Yao entropy.

In this work, we formalize the above argument, and show that the condi-
tional separation of HILL and Yao entropy from [27] suffices to refute PREHdet

≈c
.

This separation holds under the assumption that non-interactive zero-knowledge
proofs with some appropriate structural properties exist (which in turn can be
based on standard assumptions such as the quadratic residuosity assumption).
Thus, we obtain the following infeasibility result:

Theorem (informal). If the quadratic residuosity assumption holds, then
PREHdet

≈c
does not hold.

Hence, we may conclude that towards a feasible variant of pseudorandom
encodings for all efficiently samplable distributions, requiring the encoding algo-
rithm to be deterministic poses a strong restriction.

Randomized, Statistical Pseudorandom Encodings. We now consider
the relaxation of perfect compression by allowing the encoding algorithm to be
randomized while still requiring information-theoretic indistinguishability from
randomness. This flavor of pseudorandom encoding was used in the context of
honey encryption [30]. Honey encryption is a cryptographic primitive which has
been introduced to mitigate attacks on encryption schemes resulting from the
use of low-entropy passwords. Honey encryption has the property that decrypt-
ing a ciphertext with an incorrect key always yields a valid-looking plaintext
which seems to come from the expected distribution, thereby mitigating brute-
force attacks. This is the same property that was useful in the previous PAKE
example.
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The study of honey encryption was initiated in [30], where it was shown that
honey encryption can naturally be constructed by composing a block cipher
(modeled as a random cipher) with a distribution transforming encoder (DTE),
a notion which is equivalent to our notion of pseudorandom encoding with ran-
domized encoding and statistical pseudorandomness. The focus of [30] was on
obtaining such DTEs for simple and useful distributions. In contrast, we seek to
understand the feasibility of this notion for arbitrary distributions. Intuitively, it
is not straightforward to encode any efficient distribution into the uniform dis-
tribution; consider for example the distribution over RSA moduli, i.e., products
of two random n-bit primes. Since no efficient algorithm is known to test mem-
bership in the support of this distribution, natural approaches seem to break
down. In fact, we show in this work that this difficulty is inherent: building on
techniques from [5,29], we demonstrate the impossibility of (randomized, statis-
tical) pseudorandom encodings for all efficiently samplable distributions, under
a relatively standard cryptographic assumption.

Theorem (informal). Assuming the sub-exponential hardness of the learning
with errors (LWE) problem, PREHrand

≡s
does not hold.

This result directly implies that under the same assumption, there exist effi-
ciently samplable distributions (with input) for which no distribution transform-
ing encoder exists. We view it as an interesting open problem whether this result
can be extended to rule out the existence of honey encryption for arbitrary dis-
tributions under the same assumption.

1.4 Open Questions and Subsequent Work

The most intriguing question left open by our work is whether the weakest vari-
ant of the pseudorandom encoding hypothesis cPREHrand

≈c
, which is implied by

iO, also implies iO. Very recently, this question was settled in the affirmative by
Wee and Wichs [43] under the LWE assumption. More concretely, by modifying
a heuristic iO construction of Brakerski et al. [7], they show that iO is implied by
LWE if one is additionally given an oblivious LWE-sampler in the CRS model.
Such a sampler, given a matrix A ∈ Z

m×n
q , generates outputs that are indistin-

guishable from LWE samples A ·s+e without knowing the secrets s or the noise
e. The existence of an oblivious LWE sampler is nontrivial even under the LWE
assumption, because A can be such that A ·s+e is not pseudorandom; however,
such a sampler still follows from the invertible sampling hypothesis [29], which
we show to be equivalent to the pseudorandom encoding hypothesis. By propos-
ing an explicit heuristic construction of (a relaxed flavor of) an oblivious LWE
sampler, the end result of [43] is a construction of iO from a new “falsifiable”
assumption.

Whether cPREHrand
≈c

implies iO under weaker or different assumptions than
LWE remains open. A potentially easier goal is using cPREHrand

≈c
to construct

public-key encryption from one-way functions. This is related to the possibil-
ity of constructing oblivious transfer from any public-key encryption in which
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public keys and ciphertexts are obliviously samplable [19,22], which is implied
by public-key encryption and cPREHrand

≈c
. Here cPREHrand

≈c
is used to bypass the

black-box separation between public-key encryption and oblivious transfer [22].
Finally, there is a lot of room for relaxing the intractability assumptions we

use to rule out the statistical (cPREHrand
≡s

) and deterministic (cPREHdet
≈c

) flavors
of pseudorandom encodings.

Organization. In Sect. 2, we provide a technical overview of a selection of our
results. In Sect. 3, we provide condensed definitions of pseudorandom encodings
and invertible sampling and a formal proof of their equivalence and in Sect. 4 we
describe the static-to-adaptive transformation. We refer the reader to the full
version [1] for more details and for the other results we described.

2 Overview of Techniques

In this section, we elaborate on some of our technical results in more detail.
In the following, we identify a PPT sampler S with the distribution (family)
ensemble it induces.

The Relation to Invertible Sampling. A PPT sampler S is inverse samplable
[17,29], if there exists an alternative sampler S inducing a distribution which
is computationally indistinguishable to the distribution induced by S such that
the computations of S can be efficiently inverted. Efficiently inverting the com-
putation of S means that there exists an efficient inverse sampler S

−1
which,

given an output of S, recovers a well-distributed random tape for S to compute
the given output in the following sense. The inverse sampled random tape is
required to be computationally indistinguishable from the actually used random
tape. More formally, a PPT sampler S is inverse samplable if there exists an
efficient alternative sampler S and an efficient inverse sampler S

−1
such that

{
y ← S(1λ) : y

} ≈c

{
y ← S(1λ) : y

}
, (3)

{
y ← S(1λ; r) : (r, y)

} ≈c

{
y ← S(1λ) : (S

−1
(1λ, y), y)

}
. (4)

We refer to Eq. (3) as closeness and to Eq. (4) as invertibility. If the sampler S
admits an input m, the above is required to hold for all inputs m in the input
space L, where S and S

−1
both additionally receive m as input. In accordance

with [29], we refer to the hypothesis that all PPT algorithms with input are
inverse samplable as the invertible sampling hypothesis. Restricting the invertible
sampling hypothesis to algorithms which do not admit inputs is denoted the weak
invertible sampling hypothesis.

The concepts of inverse samplability and pseudorandom encodings are tightly
connected. Suppose a PPT algorithm S is inverse samplable. Then, there exists
an alternative and an inverse sampler (S, S

−1
) satisfying closeness and invert-

ibility. Invertibility guarantees that the inverse sampler S
−1

on input of a sample
y from S(1λ), outputs a computationally well-distributed random tape r. Hence,
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with overwhelming probability over the choice of y ← S(1λ) and r ← S
−1

(y),
the alternative sampler on input of r, recovers y. In other words, the inverse sam-
pler S

−1
can be seen as encoding a given sample y, whereas the de-randomized

alternative sampler S given this encoding as random tape, is able to recover y.
Looking through the lens of pseudorandom encoding, this almost proves cor-
rectness except that y is sampled according to S(1λ) instead of S(1λ). This
difference can be bridged due to closeness. We now turn towards showing pseu-
dorandomness of the encoded distribution. Due to closeness, the distributions
{y ← S(1λ) : (S

−1
(1λ, y), y)} and {y ← S(1λ) : (S

−1
(1λ, y), y)} are computa-

tionally indistinguishable. Invertibility guarantees that, given a sample y from
S(1λ), an encoding of y is indistinguishable to uniformly chosen randomness con-
ditioned on the fact that decoding yields y. Removing y from this distribution,
almost corresponds to pseudorandomness, except that y is sampled according to
S(1λ) instead of S(1λ). Again, we are able to bridge this gap due to closeness.
Note that we crucially use the fact that the initial randomness used by S resides
outside of the view of an adversary. Summing up, if a PPT sampler S is inverse
samplable, then it can be pseudorandomly encoded.

Interestingly, this connection turns out to be bidirectional. Suppose a PPT
algorithm S can be pseudorandomly encoded. Then, there exists an efficient
encoding algorithm ES and an efficient deterministic decoding algorithm DS sat-
isfying correctness and pseudorandomness. Looking through the lens of invertible
sampling, we identify the decoding algorithm to correspond to the alternative
sampler (viewing the random tape of the alternative sampler as explicit input
to DS) and the encoding algorithm to correspond to the inverse sampler. Pseu-
dorandomness guarantees that ES(S(1λ)) is indistinguishable from uniform ran-
domness. Hence, applying the decode algorithm DS on uniform randomness is
indistinguishable from applying DS to outputs of ES(S(1λ)). Correctness guar-
antees that DS(ES(y)) for y sampled according to S(1λ) recovers y with over-
whelming probability. Thus, the distribution induced by applying DS on uni-
form randomness is computationally close to the distribution induced by S(1λ).
This shows closeness. For the purpose of arguing about invertibility, consider
the distribution A := {y ← DS(r) : (r, y)}. Due to pseudorandomness r can be
considered an encoded sample from S(1λ). Hence, A is indistinguishable to the
distribution, where r is produced by ES(y′) for some independent y′ ← S(1λ),
i.e.

{
y ← DS(r) : (r, y)

} ≈c

{
y′ ← S(1λ), r ← ES(y′), y ← DS(r) : (r, y)

}
.

Note that by correctness, y and y′ are identical with overwhelming probability.
Therefore, A is indistinguishable to

{
y′ ← S(1λ), r ← ES(y′) : (r, y′)

}
. Since

sampling y′ via DS applied on uniform randomness is computationally close
to the above distribution due to closeness, invertibility follows. Summing up, a
sampler S can be pseudorandomly encoded if and only if it is inverse samplable.

Likewise to the variations and relaxations described for pseudorandom encod-
ings, we vary and relax the notion of invertible sampling. The inverse sampler
can be required to be deterministic or allowed to be randomized. Further, close-
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ness and invertibility can be required to hold information theoretically or com-
putationally. We denote these variants as ISHrand

≈c
, ISHrand

≡s
, ISHdet

≈c
and ISHdet

≡s
. To

circumvent impossibilities in the plain model, we also define the relaxations in
the common reference string model in static and adaptive flavors, denoted the
prefix “c” and “ac”, respectively. The above equivalence extends to all introduced
variations of the pseudorandom encoding and invertible sampling hypotheses.

The Static-to-Adaptive Transformation. The static variant of pseudorandom
encodings in the CRS model only guarantees correctness and pseudorandom-
ness as long as the input m for the sampler S is chosen independently of the
CRS. The adaptive variant, on the other hand, provides correctness and pseudo-
randomness even for adaptive choices of inputs. Adaptive notions always imply
their static analogues. Interestingly, for pseudorandom encodings, the opposite
direction is true as well. The core idea is to use an indirection argument (similar
to [11,12,25]) to delay CRS generation until during the actual encoding process.
Thus, the advantage stemming from adaptively choosing the input is eliminated.

Suppose that the static variant of the pseudorandom encoding hypothesis
in the CRS model is true and let S be some PPT sampler. Since S can be
pseudorandomly encoded in the CRS model with static choice of inputs, there
exist algorithms (Setup′,E′,D′) such that static correctness and pseudorandom-
ness hold. Further, the algorithm Setup′ can also be pseudorandomly encoded
as above. Let (Setup′′,E′′,D′′) be the corresponding algorithms such that static
correctness and pseudorandomness hold. Note that since the sampler Setup′ does
not expect an input, static and adaptive guarantees are equivalent.

Then, the sampler S can be pseudorandomly encoded in the CRS model with
adaptive choice of inputs as follows. Initially, we sample a common reference
string crs ′′ via Setup′′(1λ) and make it available to the parties. Given crs ′′ and
a sample y from S(m), adaptive encoding works in two phases. First, a fresh
CRS crs ′ is sampled via Setup′(1λ) and pseudorandomly encoded via r1 ←
E′′(crs ′′, crs ′). Second, the given sample y is pseudorandomly encoded via r2 ←
E′(crs ′,m, y). The encoding of y then consists of (r1, r2). To decode, the CRS crs ′

is restored via D′′(crs ′′, r1). Then, using crs ′, the original sample y is recovered
via D′(crs ′,m, r2).

Since crs ′ is chosen freshly during the encoding process, the input m which
may depend on crs ′′, cannot depend on crs ′. Further, the distribution Setup′′

does not expect an input. Hence, static guarantees suffice.
To realize that adaptive pseudorandomness holds, consider the encoding of

S(m) for some adaptively chosen message m. Since the view of A when choosing
the message m is independent of crs ′, static pseudorandomness can be applied
to replace the distribution E′(crs ′,m, S(m)) with uniform randomness. Further,
since the sampler Setup′ does not expect any input, static pseudorandomness suf-
fices to replace the distribution E′′(crs ′′,Setup′(1λ)) with uniform randomness.
This proves adaptive pseudorandomness.

The adaptive variant of correctness follows similarly from the static variant
of correctness. Consider the distribution of decoding an encoded sample of S(m),
where m is adaptively chosen. Since the sampler Setup′ does not expect an input,



656 T. Agrikola et al.

static correctness can be applied to replace decoding D′′(crs ′′, r1) with the crs ′

sampled during encoding. Again, since crs ′ does not lie in the view of the adver-
sary when choosing the message m, static correctness guarantees that decoding
succeeds with overwhelming probability. This proves adaptive correctness.

On Deterministic Pseudorandom Encoding and Compression. The notion of
pseudorandom encoding is inspired by the notion of compression. A tuple of
deterministic functions (EX ,DX) is said to compress a source Xλ to length
m(λ) with decoding error ε(λ), if (i) Pr[DX(EX(Xλ)) �= Xλ] ≤ ε(λ) and (ii)
E[|EX(Xλ)|] ≤ m(λ), see [40,42]. Pseudorandom encoding partially recovers the
notion of compression if we require the encoding algorithm to be deterministic.
If a source Xλ can be pseudorandomly encoded with a deterministic encoding
algorithm having output length n(λ), then Xλ is compressible to length n(λ).
Note, however, that the converse direction is not true. Compression and decom-
pression algorithms for a compressible source do not necessarily encode that
source pseudorandomly. The output of a compression algorithm is not required
to look pseudorandom and, in some cases, admits a specific structure which
makes it easily distinguishable from uniform randomness, e.g. instances using
Levin search, [40].

Clearly, the requirement for correctness, poses a lower bound on the encod-
ing length n(λ), [36]. Conversely, requiring the encoding algorithm EX to be
deterministic means that the only source of entropy in the distribution EX(Xλ)
originates from the source Xλ itself. Hence, for the distributions EX(Xλ) and the
uniform distribution over {0, 1}n(λ) to be indistinguishable, the encoding length
n(λ) must be “sufficiently small”. We observe that correctness together with the
fact that EX is deterministic implies that the event EX(DX(EX(Xλ))) = EX(Xλ)
occurs with overwhelming probability. Applying pseudorandomness yields that
EX(DX(Un(λ))) = Un(λ) holds with overwhelming probability, wherefore we can
conclude that DX operates almost injectively on the set {0, 1}n(λ). Hence, the
(smooth) min-entropy of DX(Un(λ)) is at least n(λ).

Considering information theoretical pseudorandomness, the distributions
DX(Un(λ)) and Xλ are statistically close. Hence, by the reasoning above, the
encoding length n(λ) is upper bounded by the (smooth) min-entropy of the
source Xλ. In conclusion, if a distribution can be pseudorandomly encoded such
that the encoding algorithm is deterministic satisfying statistical pseudorandom-
ness, then this distribution is compressible to its (smooth) min-entropy. Using a
technical “Splitting Lemma”, this extends to the relaxed variant of the pseudo-
random encoding hypothesis in the CRS model.

Considering computational pseudorandomness, by a similar argument as
above, we obtain that Xλ is computationally close to a distribution with min-
entropy n(λ). This does not yield a relation between the encoding length and
the min-entropy of the source. However, we do obtain relations to computa-
tional analogues of entropy. Computational entropy is the amount of entropy a
distribution appears to have from the perspective of a computationally bounded
entity. The notion of HILL entropy [24] is defined via the computational indis-
tinguishability from a truly random distribution. More formally, a distribution
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Xλ has HILL entropy at least k, if there exists a distribution with min-entropy k
which is computationally indistinguishable from Xλ. Hence, the encoding length
n(λ) is upper bounded by the HILL entropy of the source Xλ. Another important
notion of computational entropy is the notion of Yao entropy [44]. Yao entropy is
defined via the incompressibility of a distribution. More precisely, a distribution
Xλ has Yao entropy at least k if Xλ cannot be efficiently compressed to length
less than k (and successfully decompressed). If a distribution can be pseudoran-
domly encoded with deterministic encoding, then it can be compressed to the
encoding length n(λ). This poses an upper bound on the Yao entropy of the
source. In summary, this yields

n(λ) ≤ HHILL(Xλ) and HYao(Xλ) ≤ n(λ). (5)

However, due to [27,31], if the Quadratic Residuosity Assumption (QRA) is
true, then there exist distributions which have low conditional HILL entropy
while being conditionally incompressible, i.e. have high conditional Yao entropy.7

The above observations, particularly Eq. (5), can be extended to conditional
HILL and conditional Yao entropy, by considering PREHdet

≈c
for PPT algorithms

with input. Therefore, if the Quadratic Residuosity Assumption is true, PREHdet
≈c

cannot be true for those distributions.
Unfortunately, we do not know whether this extends to the relaxed variants

of the pseudorandom encoding hypothesis admitting access to a CRS. On a high
level, the problem is that the HILL entropy, in contrast to the min-entropy,
does not remain untouched when additionally conditioning on some common
reference string distribution, even though the initial distribution is independent
of the CRS. Hence, the splitting technique can not be applied here.

3 Pseudorandom Encodings and Invertible Sampling

In this section, we formally define pseudorandom encodings and invertible sam-
pling. We will work with the hypothesis that every efficiently samplable distri-
bution can be pseudorandomly encoded and invertible sampled and we refer to
these hypotheses as the pseudorandom encoding hypothesis and the invertible
sampling hypothesis, respectively. This section is a condensed and much less
detailed version of [1].

Definition 1 (Pseudorandom encoding hypothesis, PREHrand
≈c

). For every
PPT algorithm S, there exist efficient algorithms ES (the encoding algorithm)
with output length n(λ) and DS (the decoding algorithm), where DS is determin-
istic and ES is randomized satisfying the following two properties.

Correctness. For all inputs m ∈ L, εdec−error(λ) := Pr
[
y ← S(m) : DS(m,ES(m,

y)) �= y
]

is negligible.

7 Let (X,Z) be a joint distribution. The conditional computational entropy is the
entropy X appears to have to a bounded adversary when additionally given Z.
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Pseudorandomness. For all PPT adversaries A and all inputs m ∈ L,

Advpre
A,m(λ) :=

∣
∣
∣Pr[Exppre

A,m,0(λ) = 1] − Pr[Exppre
A,m,1(λ) = 1]

∣
∣
∣ ≤ negl(λ),

where Exppre
A,m,0 and Exppre

A,m,1 are defined below.

Definition 2 (Invertible sampling hypothesis, ISHrand
≈c

, [29]). For every
PPT algorithm S, there exists a PPT algorithm S (the alternate sampler) with
randomness space {0, 1}n(λ) and an efficient randomized algorithm S

−1
(the

inverse sampler), satisfying the following two properties.

Closeness. For all PPT adversaries A and all inputs m ∈ L,

Adv close
A,m(λ) :=

∣
∣
∣Pr[Expclose

A,m,0(λ) = 1] − Pr[Expclose
A,m,1(λ) = 1]

∣
∣
∣ ≤ negl(λ),

where Expclose
A,m,0 and Expclose

A,m,1 are defined below.

Invertibility. For all PPT adversaries A and all inputs m ∈ L,

Adv inv
A,m(λ) :=

∣
∣Pr[Exp inv

A,m,0(λ) = 1] − Pr[Exp inv
A,m,1(λ) = 1]

∣
∣ ≤ negl(λ),

where Exp inv
A,m,0 and Exp inv

A,m,1 are defined below.

Theorem 1. PREHrand
≈c

is true if and only if ISHrand
≈c

is true.

Lemma 1. If ISHrand
≈c

holds, then PREHrand
≈c

holds.

Proof. Assume ISHrand
≈c

holds. Let S be a PPT algorithm. ISHrand
≈c

implies that
there exists an alternative sampler S (with randomness space {0, 1}n(λ)) and a
corresponding inverse sampler S

−1
satisfying closeness and invertibility.

For m ∈ L, y ∈ {0, 1}∗, r ∈ {0, 1}n(λ), we define the algorithms ES(m, y) :=
S

−1
(m, y) (potentially randomized) and DS(m, r) := S(m; r) (deterministic).
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Fig. 2. Hybrids used in the proof of correctness.

Correctness. We consider a series of hybrids, see Fig. 2.
Game G0 is identical to Exp inv

A,m,0 and game G1 is identical to Exp inv
A,m,1.

Hence, |Pr[out1 = 1] − Pr[out0 = 1]| ≤ Adv inv
A,m(λ).

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out2 = 1] − Pr[out1 = 1]| ≤ Adv close

A,m
(λ).

Proof. Construct an adversary A on closeness. On input of (m, y), A computes
r ← S

−1
(m, y), calls A on input of (m, r, y) and outputs the resulting output. If

y is sampled using S(m; r) (for r ← {0, 1}n(λ)), A perfectly simulates game G1

for A. If y is sampled using S(m; r) (for f ← {0, 1}p(λ)), A perfectly simulates
game G2 for A. Therefore, Pr[out1 = 1] = Pr[Expclose

A,m,1
(λ) = 1] and Pr[out2 =

1] = Pr[Expclose
A,m,0

(λ) = 1]. �	

Thus, we have that |Pr[out2 = 1]−Pr[out0 = 1]| ≤ Adv close
A,m

(λ)+Adv inv
A′

,m
(λ)

for some PPT adversaries A,A′
.

Consider the adversary A distinguishing between game G0 and game G2

that on input of (m, r, y), outputs 0 if S(m; r) = y and outputs 1 other-
wise. By definition, A always outputs 0 in G0. Hence, εdec−error(λ) = Pr[y ←
S(m) : S(m,S

−1
(m, y)) �= y] = Pr[out2,A = 1] = |Pr[out2,A = 1] − Pr[out0,A =

1]|.
Pseudorandomness. We consider a sequence of hybrids starting from Exppre

A,m,0

and concluding in Exppre
A,m,1, see Fig. 3.

Fig. 3. Hybrids used in the proof of pseudorandomness.
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Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out1 = 1] − Pr[out0 = 1]| ≤ Adv close

A,m
(λ).

Proof. Construct a PPT adversary A on the closeness property as follows. On
input of (m, y), A calls A on input of (m,S

−1
(m, y)) and outputs the resulting

output.
If y ← S(m), A simulates game G0 for A, and if y ← S(m), A simulates

game G1 for A. Hence, Pr[out0 = 1] = Pr[Expclose
A,m,0

(λ) = 1] and Pr[out1 = 1] =

Pr[Expclose
A,m,1

(λ) = 1]. �	
Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out2 = 1] − Pr[out1 = 1]| ≤ Adv inv

A,m
(λ).

Proof. We construct a PPT adversary A on the invertibility property. On input
of (m, r, y), A calls A on input of (m, r) and outputs its output.

If r ← S
−1

(m, y) for y ← S(m), A simulates game G1 for A. If r ← {0, 1}n(λ),
A simulates game G2 for A. Therefore, Pr[out1 = 1] = Pr[Exp inv

A,m,0
(λ) = 1] and

Pr[out2 = 1] = Pr[Exp inv
A,m,1

(λ) = 1]. �	

Hence, Advpre
A,m(λ) = |Pr[out2 = 1] − Pr[out0 = 1]| ≤ Adv close

A,m
(λ) + Adv inv

A′
,m

(λ)

for some PPT adversaries A and A′
. �	

Lemma 2. If PREHrand
≈c

holds, then ISHrand
≈c

holds.

Proof. We prove the statement for the computational randomized case. The
remaining cases are similar.

Assume PREHrand
≈c

holds. Let S be a PPT algorithm. PREHrand
≈c

implies that for
S there exist efficient algorithms ES (potentially randomized) with output length
n(λ) and DS (deterministic) satisfying correctness and pseudorandomness.

For m ∈ L, r ∈ {0, 1}n(λ), y ∈ {0, 1}∗, we define the alternative sampler
as S(m; r) := DS(m, r) (randomized) and the corresponding inverse sampler
S

−1
(m, y) := ES(m, y) (potentially randomized).

Closeness. Let A be an adversary on closeness. We consider a sequence of games
starting from Expclose

A,m,0 and concluding in Expclose
A,m,1, see Fig. 4.

Fig. 4. Hybrids used in the proof of closeness.
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The difference between game G0 and game G1 is only conceptional, hence,
Pr[out0 = 1] = Pr[out1 = 1].

G1 and G2 proceed exactly identical if yS = yD. More formally, let F be
the event that yS �= yD. We have that out1 = 1 ∧ ¬F ⇔ out2 ∧ ¬F . Hence,
the Difference Lemma (due to Shoup, [37]) bounds |Pr[out2 = 1] − Pr[out1 =
1]| ≤ Pr[F ]. Correctness guarantees that for all m ∈ L, Pr[F ] = Pr[yS ←
S(m) : DS(m,ES(m, yS)) �= yS ] = εdec−error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out3 = 1] − Pr[out2 = 1]| ≤ Advpre

A,m
(λ).

Proof. Construct an adversary A on pseudorandomness as follows. On input
of (m,u =: rD), A calls A on input (m,DS(m, rD)) and outputs the resulting
output. If u ← ES(m, y) for y ← S(m), A perfectly simulates game G2 for A.
Otherwise, if u is uniformly random over {0, 1}n(λ), A perfectly simulates game
G3 for A. Hence, Pr[out3 = 1] = Pr[Exppre

A,m,1
(λ) = 1] and Pr[out2 = 1] =

Pr[Exppre

A,m,0
(λ) = 1]. �	

Hence, Adv close
A,m(λ) = |Pr[out3 = 1]−Pr[out0 = 1]| ≤ Advpre

A,m
(λ)+εdec−error(λ)

for some PPT adversary A.

Invertibility. We consider a sequence of hybrids, see Fig. 5.

Fig. 5. Hybrids used in the proof of invertibility.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out1 = 1] − Pr[out0 = 1]| ≤ Advpre

A,m
(λ) + εdec−error(λ).
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Proof. Let A be an adversary distinguishing G0 and G1. Construct an adversary
A on the closeness property. On input of (m, y), A computes r ← ES(m, y) and
calls A on input (m, r, y). If y ← S(m), A simulates game G0 for A. Else, if
y ← S(m), A simulates game G1 for A. Hence, |Pr[out1 = 1] − Pr[out0 = 1]| =
Adv close

A,m
(λ). �	

The difference between G1 and G2 is purely conceptional. Hence, Pr[out1 =
1] = Pr[out2 = 1]. G2 and G3 behave identical if yD = yS . Let F denote the
failure event yD �= yS . We have that out2 = 1 ∧ ¬ ⇔ out3 ∧ ¬F . The Difference
Lemma (due to Shoup, [37]) bounds |Pr[out3 = 1] − Pr[out2 = 1]| ≤ Pr[F ].
Due to correctness, for all m ∈ L, Pr[F ] = Pr[yS ← S(m) : DS(m,ES(m, yS)) �=
yS ] = εdec−error(λ) is negligible.

Claim. For all PPT adversaries A, for all m ∈ L, there exists a PPT adversary
A, such that |Pr[out4 = 1] − Pr[out3 = 1]| ≤ Advpre

A,m
(λ).

Proof. Construct a PPT adversary A on the pseudorandomness property. On
input of (m,u), A calls A on input (m,u =: rD,DS(m,u) =: yD) and outputs
the resulting output. If u ← ES(m, y) for y ← S(m), A perfectly simulates
game G3 for A. Otherwise, if u is uniformly random over {0, 1}n(λ), A perfectly
simulates game G4 for A. Hence, Pr[out3 = 1] = Pr[Exppre

A,m,0
(λ) = 1] and

Pr[out4 = 1] = Pr[Exppre

A,m,1
(λ) = 1]. �	

The difference between G4 and G5 is again only conceptional and Pr[out4 = 1] =
Pr[out5 = 1]. Hence, |Pr[out5 = 1]−Pr[out0 = 1]| ≤ 2·Advpre

A,m
(λ)+2·εdec−error(λ)

for some PPT adversary A. �	

4 Static-to-Adaptive Transformation

We obtain a natural relaxation of the pseudorandom encoding hypothesis by
introducing public parameters. That is, a distribution defined via S can be pseu-
dorandomly encoded in this relaxed sense, if there exists a probabilistic setup
algorithm SetupS and encode and decode algorithms as before such that for all
m ∈ L, the event DS(crs,ES(crs, S(m))) = S(m) occurs with overwhelming
probability, where the probability is also over the choice of crs, and the distri-
bution (SetupS(1λ),ES(SetupS(1λ), S(m))) is indistinguishable from the distri-
bution (SetupS(1λ), Un(λ)). See the full version [1] for more details.

There are two variants of this definition. The input m can be required to be
chosen independently of crs or allowed to be chosen depending on crs. Clearly,
the adaptive variant implies the non-adaptive (or static) variant. Interestingly,
the opposite direction is true as well by an “indirection” argument similar to the
one from the work on universal samplers [25]. A similar technique was used in
the context of non-committing encryption [11] and adaptively secure MPC [12].

Theorem 2. Let α ∈ {≈c,≡s} and β ∈ {rand, det}. If cPREHβ
α is true, then

acPREHβ
α is true.
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Proof. We prove the statement for the computational randomized case. A very
similar proof applies to the remaining cases.

Let S be a PPT sampler with input space L. Since cPREHrand
≈c

is true, for the
PPT sampler S, there exist (Setup′

S ,E′
S ,D′

S) with output length n′(λ) such that
correctness and pseudorandomness hold (statically). Again, since cPREHrand

≈c
is

true, for the PPT sampler Setup′
S , there exist (Setup′′,E′′,D′′) with output length

n′′(λ) such that correctness and pseudorandomness hold (statically). 8 Note that
Setup′

S does not expect an input.
In Fig. 6, we define algorithms (SetupS ,ES ,DS) satisfying adaptive correct-

ness and pseudorandomness.

Fig. 6. Adaptive pseudorandom encodings.

On a high level, since crs ′ is chosen freshly and independently after the
adversary fixes the message m, selective security suffices. Furthermore, since the
distribution of crs ′ has no input, selective security is sufficient.

Adaptive correctness. We define a series of hybrid games to prove correct-
ness, see Fig. 7. Game G0 corresponds to encoding and subsequently decoding a
sample y (for adaptively chosen input m) and game G1 is simply a reordering

Fig. 7. Hybrid games for the proof of adaptive correctness.

8 For notational convenience, we do not write the sampler Setup′
S as index.
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of the commands of G0. The game hop from G0 to G1 only conceptional and
Pr[out0 = 1] = Pr[out1 = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out2 = 1] − Pr[out1 = 1]| ≤ εc−dec−error

(Setup′′,E′′,D′′),A(λ).

Proof. The games G1 and G2 proceed exactly identically if crs ′
D = crs ′. Let E

be the event that crs ′ �= crs ′
D. We have that out1 = 1 ∧ ¬E ⇔ out2 ∧ ¬E. Due

to correctness of (Setup′′,E′′,D′′),

Pr

⎡

⎢
⎢
⎣

crs ′′ ← Setup(1λ)
crs ′ ← Setup′

S(1λ)
r1 ← E′′(crs ′′, crs ′)

crs ′
D := D′′(crs ′′, r1)

: crs ′
D �= crs ′

⎤

⎥
⎥
⎦

is negligible. Hence, the Difference Lemma (due to Shoup, [37]) upper bounds

|Pr[out2 = 1] − Pr[out1 = 1]| ≤ Pr[E]. �	

The game hop from G2 to G3 only conceptional and Pr[out2 = 1] =
Pr[out3 = 1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
Pr[out3 = 1] ≥ 1 − εc−dec−error

(Setup′
S ,E′

S ,D′
S),A(λ).

Proof. Due to correctness of (Setup′
S ,E′

S ,D′
S), we have that for all PPT adver-

saries A,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

m ← A(1λ)
crs ′ ← Setup′

S(1λ)
y ← S(m)
r ← E′

S(crs ′,m, y)
yD := D′

S(crs ′,m, r)

: y = yD

⎤

⎥
⎥
⎥
⎥
⎦

is overwhelming. Therefore, for all PPT adversaries A, Pr[out3 = 1] is over-
whelming. �	
Adaptive Pseudorandomness. We define a series of hybrid games to prove
pseudorandomness, see Fig. 8.

Game G0 corresponds to the adaptive pseudorandomness game. That is, G0

first samples crs ′′, the adversary A chooses the message m adaptively depending
on crs ′′, and G0 then samples y using S(m), encodes that sample and gives the
encoding to A.

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out1 = 1] − Pr[out0 = 1]| ≤ Adv crs−pre

(Setup′
S ,E′

S ,D′
S),A(λ).



On Pseudorandom Encodings 665

Fig. 8. Hybrid games for the proof of adaptive pseudorandomness.

Proof. Construct an adversary A on static pseudorandomness relative to
(Setup′

S ,E′
S ,D′

S) as follows. On input of 1λ, A samples crs ′′ ← Setup′′(1λ) calls A
on input of crs ′′, and outputs the message m produced by A. In return, A receives
crs ′ ← Setup′

S(1λ) and either u := E′
S(crs ′,m, S(m)) or a uniform random string

u ← {0, 1}n′(λ) from Expcrs−pre
(Setup′

S ,E′
S ,D′

S),A,b(λ). A computes r1 ← E′′(crs ′′, crs ′),
calls A on input of (crs ′′,m, r1 ‖ u) and returns A’s output.

If A plays Expcrs−pre

(Setup′
S ,E′

S ,D′
S),A,0

(λ), then it perfectly simulates G0. On the

other hand, if A plays Expcrs−pre

(Setup′
S ,E′

S ,D′
S),A,1

(λ), then it perfectly simulates G1.�	

The game hop from G1 to G2 is only conceptional and Pr[out2 = 1] = Pr[out1 =
1].

Claim. For all PPT adversaries A, there exists a PPT adversary A, such that
|Pr[out3 = 1] − Pr[out2 = 1]| ≤ Adv crs−pre

(Setup′′,E′′,D′′),A(λ).

Proof. Construct an adversary A on static pseudorandomness relative to
(Setup′′,E′′,D′′) as follows. On input of 1λ, A returns ⊥ since the input space
L of the sampler Setup′

S(1λ) is empty. In return, A receives crs ′′ sampled via
Setup′′(1λ) and u which is either produced via E′′(crs ′′,Setup′(1λ)) or via uniform
sampling from {0, 1}n′′(λ). A calls A on input of crs ′′ and receives a message m
from A. Finally, A samples r2 ← {0, 1}n′(λ), calls A on input of (crs ′′,m, u ‖ r2)
and outputs his output.

If A plays Expcrs−pre

(Setup′′,E′′,D′′),A,0
(λ), then it perfectly simulates G2. On the

other hand, if A plays Expcrs−pre

(Setup′′,E′′,D′′),A,1
(λ), then it perfectly simulates G3. �	

�	
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32. Li, M., Vitányi, P.M.B.: Handbook of theoretical computer science, vol. a, chapter
Kolmogorov Complexity and Its Applications, pp. 187–254. MIT Press, Cambridge,
MA, USA (1990). ISBN 0-444-88071-2. http://dl.acm.org/citation.cfm?id=114872.
114876
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