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Abstract. We present a new secure multiparty computation protocol
in the preprocessing model that allows for the evaluation of a number of
instances of a boolean circuit in parallel, with a small online communica-
tion complexity per instance of 10 bits per party and multiplication gate.
Our protocol is secure against an active dishonest majority, and can also
be transformed, via existing techniques, into a protocol for the evalua-
tion of a single “well-formed” boolean circuit with the same complexity
per multiplication gate at the cost of some overhead that depends on the
topology of the circuit.

Our protocol uses an approach introduced recently in the setting of
honest majority and information-theoretical security which, using an
algebraic notion called reverse multiplication friendly embeddings, essen-
tially transforms a batch of evaluations of an arithmetic circuit over a
small field into one evaluation of another arithmetic circuit over a larger
field. To obtain security against a dishonest majority we combine this
approach with the well-known SPDZ protocol that operates over a large
field. Structurally our protocol is most similar to MiniMAC, a protocol
which bases its security on the use of error-correcting codes, but our
protocol has a communication complexity which is half of that of Min-
iMAC when the best available binary codes are used. With respect to
certain variant of MiniMAC that utilizes codes over larger fields, our
communication complexity is slightly worse; however, that variant of
MiniMAC needs a much larger preprocessing than ours. We also show
that our protocol also has smaller amortized communication complexity
than Committed MPC, a protocol for general fields based on homomor-
phic commitments, if we use the best available constructions for those
commitments. Finally, we construct a preprocessing phase from oblivious
transfer based on ideas from MASCOT and Committed MPC.
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1 Introduction

The area of secure multiparty computation (MPC) studies how to design proto-
cols that allow for a number of parties to jointly perform computations on private
inputs in such a way that each party learns a private output, but nothing else
than that. In the last decade efficient MPC protocols have been developed that
can be used in practical applications.

In this work we focus on secret-sharing based MPC protocols, which are
among the most used in practice. In secret-sharing based MPC, the target com-
putation is represented as an arithmetic circuit consisting of sum and multiplica-
tion gates over some algebraic ring; each party initially shares her input among
the set of parties, and the protocol proceeds gate by gate, where at every gate
a sharing of the output of the gate is created; in this manner eventually parties
obtain shares of the output of the computation, which can then be reconstructed.

A common practice is to use the preprocessing model, where the computation
is divided in two stages: a preprocessing phase, that is completely independent
from the inputs and whose purpose is to distribute some correlated randomness
among the parties; and an online phase, where the actual computation is per-
formed with the help of the preprocessing data. This approach allows for pushing
much of the complexity of the protocol into the preprocessing phase and having
very efficient online computations in return.

Some secret sharing based MPC protocols obtain security against any static
adversary which actively corrupts all but one of the parties in the computation,
assuming that the adversary is computationally bounded. Since in the active
setting corrupted parties can arbitrarily deviate from the protocol, some kind of
mechanism is needed to detect such malicious behaviour, and one possibility is
the use of information-theoretic MACs to authenticate the secret shared data,
which is used in protocols such as BeDOZa [3] and SPDZ [14].

In SPDZ this works as follows: the computation to be performed is given
by an arithmetic circuit over a large finite field F. There is a global key α ∈ F

which is secret shared among the parties. Then for every value x ∈ F in the
computation, parties obtain not only additive shares for that value, but also for
the product α · x which acts as a MAC for x. The idea is that if a set of corrupt
parties change their shares and pretend that this value is x+e, for some nonzero
error e, then they would also need to guess the correction value α · e for the
MAC, which amounts to guessing α since F is a field. In turn this happens with
probability 1/|F| which is small when the field is large.

The problem is that over small fields the cheating success probability 1/|F|
is large. While one can take a large enough extension field L of F (e.g. if F = F2,
then L could be the field of 2s elements) and embed the whole computation into
L, this looks wasteful as communication is blown up by a factor of s.

An alternative was proposed in MiniMAC [15]. MiniMAC uses a batch
authentication idea: if we are willing to simultaneously compute k instances
of the same arithmetic circuit over a small field at once, we can bundle these
computations together and see them as a computation of an arithmetic circuit
over the ring F

k, where the sum and multiplication operations are considered
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coordinatewise. Note the same authentication technique as in SPDZ does not
directly work over this ring (if |F| is small): if we define the MAC of a data
vector x in F

k to be α ∗ x where the key α is now also a vector in F
k and ∗

is the coordinatewise product, the adversary can introduce an error in a single
coordinate with probability 1/|F|. Instead, MiniMAC first encodes every vector
x as a larger vector C(x) by means of a linear error-correcting code C with large
minimum distance d, and then defines the MAC as α ∗ C(x). Now introducing
an error requires to change at least d coordinates of C(x) and the MAC can
be fooled with probability only 1/|F|d. However, when processing multiplication
gates, the minimum distance d∗ of the so-called Schur square code C∗ also needs
to be large. These requirements on the minimum distance of these two codes have
an effect on the communication overhead of the protocol, because the larger d
and d∗ are, the worse the relation between the length of messages and the length
of the encoding.

This same article shows how to adapt this technique for computing a single
boolean “well-formed” circuit while retaining the efficiency advantages of the
batch simultaneous computation of k circuits. The idea is that if the target
boolean circuit is structured into layers of addition and multiplication gates,
where each layer has a large number of gates and its inputs are outputs of
previous layers, then we can organize them into blocks of k gates of the same type,
which can be computed using the above method. We then need an additional
step that directs each block of outputs of a layer into the right block of inputs of
next layers; this uses some additional preprocessed random sharings, and some
openings, which slightly increases the communication complexity of the protocol.

In this paper, we explore an alternative to the error-correcting codes app-
roach from MiniMAC, using an idea recently introduced in the honest majority,
information-theoretically secure setting [8]. The point is that we can embed the
ring F

k
q in some extension field of Fq in such a way that we can make the opera-

tions of both algebraic structures, and in particular the products (in one case the
coordinatewise product, in the other the product in the extension field), “some-
what compatible”: i.e., we map F

k
q into a slightly larger field Fqm with some

dedicated linear “embedding” map φ, that satisfies that for any two vectors x,y
in F

k
q the field product φ(x) · φ(y) contains all information about x ∗ y, in fact

there exists a “recovery” linear map ψ such that x ∗ y = ψ(φ(x) · φ(y)). The
pair (φ, ψ) is called a (k,m)-reverse multiplication friendly embedding (RMFE)
and was introduced in [5,8]. With such tool, [8] embeds k evaluations of a circuit
over Fq (i.e. an evaluation of an arithmetic circuit over F

k
q with coordinatewise

operations) into one evaluation of a related circuit over Fqm , which is securely
computed via an information-theoretically secure MPC protocol for arithmetic
circuits over that larger field (more precisely the Beerliova-Hirt protocol [2]).
The use of that MPC protocol over Fqm is not black-box, however, as there are a
number of modifications that need to be done at multiplication and input gates,
for which certain additional correlated information has to be created in the pre-
processing phase. Note that the reason for introducing this technique was that
Beerliova-Hirt uses Shamir secret sharing schemes and hyperinvertible matrices,
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two tools that are only available over large finite fields (larger than the number
of parties in the protocol).

1.1 Our Contributions

In this paper we construct a new secure computation protocol in the dishonest
majority setting that allows to compute several instances of a boolean circuit
at an amortized cost.1 We do this by combining the embedding techniques from
[8] with the SPDZ methodology. As opposed to [8], where one of the points of
the embedding was precisely to use Shamir secret sharing, in our construction
vectors x ∈ F

k
2 are still additively shared in F

k
2 , and it is only the MACs which

are constructed and shared in the field F2m : the MAC of x will be α ·φ(x) where
φ is the embedding map from the RMFE. Only when processing a multiplication
gate, authenticated sharings where the data are shared as elements in F2m are
temporarily used. MACs are checked in a batched fashion at the output gate, at
which point the protocol aborts if discrepancies are found.

By this method we obtain a very efficient online phase where processing mul-
tiplication gates need each party to communicate around 10 bits2 per evaluation
of the circuit, for statistical security parameters like s = 64, 128 (meaning the
adversary can successfully cheat with probability at most 2−s, for which in our
protocols we need to set m ≥ s).

Our protocol can also be adapted to evaluating a single instance of a boolean
circuit by quite directly adapting the ideas in MiniMAC that we mentioned
above, based on organizing the circuit in layers, partitioning the layers in blocks
of gates and adding some preprocessing that allows to map each block into the
appropriate one in the next layer. The reason is that the maps used between
layers of gates are F2-linear, and essentially all we need to use is the F2-linearity
of the map φ from the RMFE. The actual complexity added by this transfor-
mation is quite dependent on the topology of the circuit. Under some general
assumptions one can expect to add 2 bits of communication per gate.

Our online phase follows a similar pattern to MiniMAC in the sense that,
up to the output phase, every partial opening of a value in F

k
2 takes place when

a partial opening of a C-encoding occurs in MiniMAC. Respectively, we need
to open values in F2m whenever MiniMAC opens C∗-encodings. At every multi-
plication gate, both protocols need to apply “re-encoding functions” to convert
encodings back to the base authentication scheme, which requires a preprocessed
pair of authenticated sharings of random correlated elements.

However, the encoding via RMFE we are using is more compact than the one
in MiniMAC; the comparison boils down to comparing the “expansion factor”
m/k of RMFEs with the ratio k∗/k between the dimensions of C∗ and C for
the best binary codes with good distances of C∗ [7]. We cut the communication

1 Our ideas can be extended to arithmetic circuits over other small fields.
2 Here we assume that broadcasting messages of M bits requires to send M bits to

every other player, which one can achieve with small overhead that vanishes for large
messages [14, full version].
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cost of multiplication gates by about half with respect to MiniMAC where those
binary codes are used. We achieve even better savings in the case of the output
gates since in this case MiniMAC needs to communicate full vectors of the same
length as the code, while the input and addition gates have the same cost.

We also compare the results with a modified version of MiniMAC proposed
by Damg̊ard, Lauritsen and Toft [13], that allows to save communication cost
of multiplication gates, by essentially using MiniMAC over the field of 256 ele-
ments, at the cost of a much larger amount of preprocessing that essentially
provides authenticated sharings of bit decompositions of the F256-coordinates of
the elements in a triple, so that parties can compute bitwise operations. This
version achieves a communication complexity that is around 80% of that of our
protocol, due to the fact that this construction can make use of Reed-Solomon
codes. However, it requires to have created authenticated sharings of 19 ele-
ments, while ours need 5 and as far as we know there is no explicit preprocessing
protocol that has been proposed for this version of MiniMAC.

Finally we compare the results with Committed MPC [16], a secret-sharing
based protocol which uses (UC-secure) homomorphic commitments for authen-
tication, rather than information-theoretical MACs. In particular, this proto-
col can also be used for boolean circuits, given that efficient constructions of
homomorphic commitments [9,10,17] over F2 have been proposed. These con-
structions of homomorphic commitments also use error-correcting codes. We
find that, again, the smaller expansion m/k of RMFE compared to the relations
between the parameters for binary error-correcting codes provides an improve-
ment in the communication complexity of a factor ∼ 3 for security parameters
s = 64, 128.

We also provide a preprocessing phase producing all authenticated sharings
of random correlated data that we need. The preprocessing follows the steps of
MASCOT [19] (see also [18]) based on OT extension, with some modifications
due to the slightly different authentication mechanisms we have and the different
format of our preprocessing. All these modifications are easily to carry out based
on the fact that φ and ψ are linear maps over F2. Nevertheless, using the “triple
sacrificing steps” from MASCOT that assure that preprocessed triples are not
malformed presents problems in our case for technical reasons. Instead, we use
the techniques from Committed MPC [16] in that part of the triple generation.

1.2 Related Work

The use of information-theoretical MACs in secret-sharing based multiparty
computation dates back to BeDOZa (Bendlin et al. [3]), where such MACs where
established between every pair of players. Later SPDZ (Damg̊ard et al. [14])
introduced the strategy consisting of a global MAC for every element of which
every party has a share, and whose key is likewise shared among parties. Tiny OT
(Nielsen et al. [21]), a 2-party protocol for binary circuits, introduced the idea
of using OT extension in the preprocessing phase. Larraia et al. [20] extended
these ideas to a multi-party protocol by using the SPDZ global shared MAC
approach. MiniMAC (Damg̊ard and Zakarias, [15]), as explained above, used
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error-correcting codes in order to authenticate vectors of bits, allowing for effi-
cient parallel computation of several evaluations of the same binary circuits on
possibly different inputs. Damg̊ard et al. [13] proposed several improvements
for the implementation of MiniMAC, among them the use of an error correct-
ing code over an extension field, trading smaller communication complexity for a
larger amount of preprocessing. Frederiksen et al. [18] gave new protocols for the
construction of preprocessed multiplication triples in fields of characteristic two,
based on OT extension, and in particular provided the first preprocessing phase
for MiniMAC. MASCOT (Keller et al. [19]) built on some of these ideas to cre-
ate preprocessing protocols for SPDZ based on OT extension. Committed MPC
(Frederiksen et al. [16]) is a secret-sharing based secure computation protocol
that relies on UC-secure homomorphic commitments instead of homomorphic
MACs for authentication, but other than that, it follows a similar pattern to
the protocols above. Efficient constructions of UC-secure homomorphic commit-
ments from OT have been proposed by Frederiksen et al. [17] and Cascudo et
al. [10] based on error correcting codes. Later, in [9] a modified construction
from extractable commitments, still using error-correcting codes, was proposed
that presents an important advantage for its use in Committed MPC, namely
the commitment schemes are multi-verifier.

The notion of reverse multiplication friendly embedding was first explicitly
defined and studied in the context of secure computation by Cascudo et al. in
[8] and independently by Block et al. in [5]. The former work is in the context
of information-theoretically secure protocols, while the latter studied 2-party
protocols over small fields where the assumed resource is OLE over an extension
field. This is partially based on a previous work also by Block et al. [4] where
(asymptotically less efficient) constructions of RMFEs were implicitly used.

2 Preliminaries

Let Fq denote a finite fields with q elements. Vectors are denoted with bold letters
as x = (x1, x2, . . . , xn) and componentwise products of two vectors are denoted
by x∗y = (x1 ·y1, x2 ·y2, . . . , xn ·yn). Fixing an irreducible polynomial f of degree
m in Fq[X], elements in the field Fqm with qm elements can be represented as
polynomials in Fq[X] with degree m−1, i.e α = α0+α1 ·X+· · ·+αm−1 ·Xm−1 ∈
Fqm , where αi ∈ Fq. The sums and products of elements are defined modulo f .

In our protocols we will assume a network of n parties who communicate by
secure point-to-point channels, and an static adversary who can actively corrupt
up to n − 1 of these parties. Our proofs will be in the universal composable
security model [6].

We recall the notion of reverse multiplication friendly embeddings from [8].

Definition 1. Let k,m ∈ Z
+. A pair of Fq-linear maps (φ, ψ), where φ : Fk

q →
Fqm and ψ : Fqm → F

k
q is called a (k,m)q-reverse multiplication friendly embed-

ding (RMFE) if for all x,y ∈ F
k
q

x ∗ y = ψ(φ(x) · φ(y))
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In other words, this tool allows to multiply coordinatewise two vectors over Fq

by first embedding them in a larger field with φ, multiplying the resulting images
and mapping the result back to a vector over Fq with the other map ψ.

Several results about the existence of such pairs can be found in [8], both in
the asymptotic and concrete settings. For our results we will only need the fol-
lowing construction, which can be obtained via simple interpolation techniques:

Theorem 1 ([8]). For all r ≤ 33, there exists a (3r, 10r − 5)2 -RMFE.

However, we remark that for implementations, it might be more useful to con-
sider the following constructions of RMFEs which can also be deduced from the
general framework in [8] (also based on polynomial interpolation). They have
worse rate k/m than those in Theorem 1, but they have the advantage that
their image can be in a field of degree a power of two, e.g. Fqm = F264 or F2128 .

Theorem 2. For any r ≤ 16, there exists a (2r, 8r)2-RMFE.3

For our numerical comparisons we will mainly consider the constructions with
better rate in Theorem 1 and point out that, should one want to use Theorem 2
instead, then some small overhead in communication is introduced.

It is important to understand some properties and limitations of the RMFEs.
Because φ and ψ are Fq-linear then

φ(x + y) = φ(x) + φ(y), ψ(x + y) = ψ(x) + ψ(y)

holds for all x,y ∈ F
k
q and x, y ∈ Fqm . However, for example

φ(x ∗ y) �= φ(x) · φ(y)

in general. Likewise we will need to take into account that the composition
φ ◦ ψ : Fqm → Fqm is a linear map over Fq but not over Fqm . Therefore

(φ ◦ ψ)(x + y) = (φ ◦ ψ)(x) + (φ ◦ ψ)(y) for allx, y ∈ Fqm , but
(φ ◦ ψ)(α · x) �= α · (φ ◦ ψ)(x)

for α, x ∈ Fqm in general (it does hold when α ∈ Fq, but this is not too relevant).
These limitations on the algebra of φ and ψ posed certain obstacles in the

information-theoretical setting [8], since processing multiplication gates required
to compute gates given by the map φ◦ψ, and this cannot be treated as a simple
linear gate over Fqm . The additivity of φ ◦ ψ combined with certain involved
preprocessing techniques saved the day there. For completion (and comparison
to our paper) we sum up some of the main details of [8] in the full version of
this paper [11]. In our case, we will again encounter problems caused by these
limitations as we explain next, but can solve them in a different way.
3 Specifically the result is obtained by noticing that the proof of Lemma 4 in [8] can

also be used to show the existence of (k, 2k)q-RMFE for any q ≤ k + 1, and then
composing (2, 4)2 and (r, 2r)16-RMFEs in the manner of Lemma 5 in the same paper.
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3 The Online Phase

In this section we present our protocol for computing simultaneously k instances
of a boolean circuit in parallel, which we can see as computing one instance of
an arithmetic circuit over the ring F

k
2 of length k boolean vectors with coordi-

natewise sum and product.
Our strategy is to have mixed authenticated sharings: inputs and the rest of

values in the computation x are additively shared as vectors over Fk
2 (we refer to

this as data shares), but their MACs are elements α ·φ(x) in the larger field F2m ,
where α ∈ F2m is (as in SPDZ) a global key that is additively shared among
the parties from the beginning (with α(i) denoting the share for party Pi), and
parties hold additive shares of α · φ(x) also in the field F2m (the MAC shares).
We will denote the authentication of x by 〈x〉. That is

〈x〉 =
(
(x(1),x(2), . . . ,x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)

where each party Pi holds an additive share x(i) ∈ F
k
2 and a MAC share m(i)(x) ∈

F2m , such that
∑n

i=1 m(i)(x) = α · ∑n
i=1 φ(x(i)) = α · φ(x).

The additivity of φ guarantees that additions can still be computed locally,
and we can define 〈x〉 + 〈y〉 = 〈x + y〉 where every party just adds up their
shares for both values. Moreover, given a public vector a and 〈x〉, parties can
also locally compute an authenticated sharing of a + x as

a+〈x〉 =
(
(x(1)+a,x(2), . . . ,x(n)), (α(1)·φ(a)+m(1)(x), . . . , α(n)·φ(a)+m(n)(x))

)

This allows to easily process addition with constants. Moreover, this also allows
us to explain how inputs are shared in the first place. In the preprocessing phase
parties have created for each input gate an authenticated random values 〈r〉
where r is known to the party that will provide the input x at that gate. This
party can just broadcast the difference ε = x − r, and then parties simply add
ε + 〈r〉 = 〈x〉 by the rule above.

As in SPDZ, parties in our protocol do not need to open any MAC until
the output gate. At the output gate, the parties check MACs on random linear
combinations of all values partially opened during the protocol, ensuring that
parties have not cheated except with probability at most 2−m (we need that
m ≥ s if s is the statistical security parameter); then, they open the result of
the computation and also check that the MAC of the result is correct.

A harder question, as usual, is how to process multiplication gates; given 〈x〉,
〈y〉 parties need to compute 〈x∗y〉 which implies not only obtaining an additive
sharing of x ∗ y but also of its MAC α · φ(x ∗ y). If we try to apply directly the
well-known Beaver’s technique [1] we encounter the following problem. Suppose
we have obtained a random triple 〈a〉, 〈b〉, 〈a ∗ b〉 from the preprocessing phase
and, proceeding as usual, parties partially open the values ε = x−a, δ = y−b (a
partially opening is an opening of the shares but not the MAC shares). From here,



660 I. Cascudo and J. S. Gundersen

computing data shares for x ∗ y is easy; however, the obstacle lies in computing
shares of α · φ(x ∗ y). Indeed

α · φ(x ∗ y) = α · φ(a ∗ b) + α · φ(a ∗ δ) + α · φ(ε ∗ b) + α · φ(ε ∗ δ),

and the two terms in the middle present a problem: for example for α · φ(a ∗ δ)
we have by the properties of the RMFE

α · φ(a ∗ δ) = α · φ(ψ(φ(a) · φ(δ))) = α · (φ ◦ ψ)(φ(a) · φ(δ))

However, φ ◦ ψ is only F2-linear, and not F2m -linear, so we cannot just “take
α inside the argument” and use the additive sharing of α · φ(a) given in 〈a〉 to
compute a sharing of the expression above. Instead, we use a two-step process
to compute multiplication gates, for which we need to introduce regular SPDZ
sharings on elements x ∈ F2m . I.e. both x and its MAC α·x are additively shared
in F2m . We denote these by [x], that is

[x] =
(
(x(1), x(2), . . . , x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
,

where Pi will hold x(i) and m(i)(x) ∈ F2m with
∑n

i=1 m(i)(x) = α · ∑n
i=1 x(i).

To carry out the multiplication we need to preprocess a triple (〈a〉, 〈b〉, 〈c〉)
where c = a∗b, and a pair of the form (〈ψ(r)〉, [r]) where r is a random element
in F2m . In the first step of the multiplication we compute and partially open

[σ] = [φ(x) · φ(y) − φ(a) · φ(b) − r]. (1)

This can be computed from the ε and δ described above (details will be given
later). In the second step, we create 〈x ∗ y〉 from (1) by using the properties of
the RMFE; namely, x∗y = ψ(φ(x) ·φ(y)) and a∗b = ψ(φ(a) ·φ(b)), so applying
ψ on σ in (1) yields x ∗ y − a ∗ b − ψ(r) because of the additivity of ψ. Adding
〈a ∗ b〉 + 〈ψ(r)〉 (the yet unused preprocessed elements) gives 〈x ∗ y〉.

We still need to explain how to construct [σ]. For this we introduce some alge-
braic operations on the two types of authenticated sharings and public values.
First given a public vector a and a shared vector x we define:

a ∗ 〈x〉 =
(
(φ(a) · φ(x(1)), . . . , φ(a) · φ(x(n))), (φ(a) · m(1)(x), . . . , φ(a) · m(n)(x))

)

Note that the data shares are shares of φ(a) · φ(x), which is an element of F2m ,
and the MAC shares also correspond to additive shares of α·φ(a)·φ(x). However,
the data shares are not distributed uniformly in F2m because φ is not surjective,
so one cannot say this equals [φ(a) · φ(x)]. Nevertheless, given another [z], with
z ∈ F2m , it is true that a ∗ 〈x〉 + [z] = [φ(a) · φ(x) + z] where the sum on the left
is defined by just local addition of the data and MAC shares. We also define

〈x〉 + [y] =
(
(φ(x(1)) + y(1), . . . , φ(x(n)) + y(n)),

(m(1)(x) + m(1)(y), . . . , m(n)(x) + m(n)(y))
)

= [φ(x) + y]
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Now, given 〈x〉, 〈y〉 and a triple 〈a〉, 〈b〉, 〈a ∗ b〉, parties can open ε = x − a,
δ = y − b and construct

ε ∗ 〈y〉 + δ ∗ 〈x〉 − φ(ε) · φ(δ) − [r] = [φ(ε) · φ(y) + φ(δ) · φ(x) − φ(ε) · φ(δ) − r]
= [φ(x) · φ(y) − φ(a) · φ(b) − r],

where the latter equality can be seen by developing the expressions for ε and δ,
and using the additivity of φ. The obtained sharing is the [σ] we needed above.
Summing up, the whole multiplication gate costs 2 openings of sharings of vectors
in F

k
2 and one opening of a share of an element in F2m . Every multiplication gate

requires fresh preprocessed correlated authenticated sharings (〈a〉, 〈b〉, 〈a ∗ b〉)
and (〈ψ(r)〉, [r]) for random a,b, r.

We present formally the online protocol we just explained, the functionality
it implements, and the functionalities needed from preprocessing. The function-
ality constructing the required preprocessed randomness is given in Fig. 2, and
relies on the authentication functionality in Fig. 1. The latter augments the one
in MASCOT [19] allowing to also authenticate vectors and to compute linear
combinations involving the two different types of authenticated values and which
can be realized by means of the [·]- and 〈·〉-sharings.

The functionality for our MPC protocol is in Fig. 3 and the protocol imple-
menting the online phase is in Fig. 4.

Theorem 3. ΠOnline securely implements FMPC in the FPrep-hybrid model.

Proof. The correctness follows from the explanation above. For more details
we refer to the full version, but we also note that the online phase from this
protocol is similar to the online phases of protocols such as [14–16,19], except
that in every multiplication we additionally need to use the pair (〈ψ(r)〉, [r]) in
order to transform a [·]-sharing into 〈x∗y〉. However, since r is uniformly random
in the field F2m , the opened value σ masks any information on x, y.

3.1 Comparison with MiniMAC and Committed MPC

We compare the communication complexity of our online phase with that of
MiniMAC [15] and Committed MPC [16], two secret-sharing based MPC proto-
cols which are well-suited for simultaneously evaluating k instances of the same
boolean circuit. We will count broadcasting a message of M bits as communi-
cating M(n − 1) bits (M bits to each other party). This can be achieved using
point-to-point channels as described in the full version of [14].

Communication Complexity of Our Protocol. Partially opening a 〈·〉-au-
thenticated secret involves 2k(n − 1) bits of communication, since we have one
selected party receive the share of each other party and broadcast the recon-
structed value. Likewise, partially opening a [·]-authenticated value communi-
cates 2m(n − 1) bits. In our online phase, every input gate requires k(n − 1)
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Fig. 1. Functionality – authentication

Fig. 2. Functionality – preprocessing
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Fig. 3. Functionality – MPC

Fig. 4. Online phase

bits of communication. Multiplication gates require the partial opening of two
〈·〉-authenticated values and one [·]-authenticated value, hence (4k + 2m)(n − 1)
bits of communication. An output gate requires to do a MAC-check on (a linear
combination of) previously partially opened values, then partially opening the
output, and finally doing a MAC check on the output. A MAC check require
every party to communicate a MAC share in F2m , for a total of mn bits com-
municated. Hence output gates require 2k(n − 1) + 2mn bits of communication.
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MiniMAC. MiniMAC uses a linear error correcting code C with parameters
[�, k, d] (i.e., it allows for encoding of messages from F

k
2 into F

�
2 and has minimum

distance d). Parties have additive shares of encodings C(x), where the shares
are also codewords, and shares of the MAC α ∗ C(x), which can be arbitrary
vectors in F

�
2. In addition, at multiplication gates C∗-encodings of information

are needed, where C∗ is the code C∗ = span{x ∗ y | x,y ∈ C}, the smallest
linear code containing the coordinatewise product of every pair of codewords
in C∗, with parameters [�, k∗, d∗]. We always have d ≥ d∗, and the cheating
success probability of the adversary in the protocol is 2−d∗

, so we need d∗ ≥
s for the statistical parameter s. The online phase of MiniMAC has a very
similar communication pattern to ours: a multiplication requires to open two
elements encoded with C (coming from the use of Beaver’s technique) and one
encoded with C∗. Since shares of C-(resp C∗-)encodings are codewords in C
(resp C∗), and describing such codewords require k bits (resp. k∗ bits)4 the
total communication complexity is (4k + 2k∗)(n − 1), so the difference with our
protocol depends on the difference between the achievable parameters for their
k∗ and our m, compared below. Input gates require k(n− 1) bits, as in our case,
and for output gates, since MAC shares are arbitrary vectors in F

�
2, a total of

2k(n − 1) + 2�n bits are sent. See full version for more details on this.

Committed MPC. Committed MPC [16] is a secret-sharing based MPC pro-
tocol that relies on UC-secure additively homomorphic commitments for authen-
tication, rather than on MACs. Efficient commitments of this type have been
proposed in works such as [9,10,17] where the main ingredient5 is again a lin-
ear error correcting code C with parameters [�, k, d]. In committed MPC, for
every x ∈ F

k
2 , each party Pi holds an additive share xi ∈ F

k
2 to which she com-

mits towards every other party Pj (in the multi-receiver commitment from [9],
this can be accomplished by only one commitment). During most of the online
phase there are only partial openings of values and only at output gates the
commitments are checked. Multiplication is done through Beaver’s technique. In
this case only two values ε, δ are partially opened. In exchange, parties need
to communicate in order to compute commitments to δ ∗ a (resp. ε ∗ b) given
δ, and commitments to a (resp. ε and commitments to b) at least with cur-
rent constructions for UC-secure homomorphic commitments. [16, full version,
Fig. 16] provides a protocol where each of these products with known constant
vectors requires to communicate one full vector of length � and two vectors of k∗

components (again � is the length of C and k∗ is the dimension of C∗). In total
the communication complexity of a multiplication is (4k + 2k∗ + �)(n − 1) bits.
Output gates require to open all the commitments to the shares of the output.
Since opening commitments in [9,10,17] requires to send two vectors of length
� to every other party, which has a total complexity of 2�(n − 1)n. Input gates
have the same cost as the other two protocols.

4 We observe that this is more lenient than the description of MiniMAC in [13,15]
where it is implied that � bits need to be sent in order to do these openings.

5 The constructions rely also on OT (in the first two cases) and extractable commit-
ments (in the third) but these primitives are only used in a preprocessing phase.
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Concrete Parameters. Summing up we compare the communication costs of
multiplication and output gates in Table 1 since these are the gates where the
communication differs.

Table 1. Total number of bits communicated in the different gates in the online phases,
when computing k instances of a boolean circuit in parallel. Communication per party
is obtained dividing by n.

MiniMAC Committed MPC Our protocol

Multiply (4k + 2k∗)(n − 1) (4k + 2k∗ + �)(n − 1) (4k + 2m)(n − 1)
Output 2 · � · n + 2k(n − 1) 2 · � · (n − 1)n 2 · m · n + 2k(n − 1)

The key quantities are the relation between m/k (in our case) and k∗/k and
�/k in the other two protocols. While the possible parameters �, k, d of linear
codes have been studied exhaustively in the theory of error-correcting codes,
relations between those parameters and k∗, d∗ are much less studied, at least in
the case of binary codes. As far as we know, the only concrete non-asymptotic
results are given in [7,12]. In particular, the parameters in Table 2 are achievable.

Table 2. Parameters for C and C∗2 from [7].

� k d ≥ k∗ d∗ ≥ k∗/k �/k

2047 210 463 1695 67 8.07 9.75
4095 338 927 3293 135 9.74 12.11

Table 3. Parameters for RMFE
from [8].

k m m/k

21 65 3.10
42 135 3.21

On the other hand, the parameters for our protocol depend on parameters
achievable by RMFEs. By Theorem 1 for all 1 ≤ r ≤ 33, there exists a RMFE
with k = 3r and m = 10r − 5. Some specific values are shown in Table 3.

This leads to the communication complexities per computed instance of the
boolean circuit for security parameters s = 64 and s = 128 given in Table 4.
For larger security parameter, the comparison becomes more favourable to our
technique, since the “expansion factor” m/k degrades less than the one for known
constructions of squares of error correcting codes.

If instead we want to use Theorem 2, so that we can define the MACs over
a field of degree a power of two, then the last column would have complexities
12 · (n − 1) and 8 · n + 2(n − 1) in both the cases s = 64 and s = 128.

Comparison with an Online Communication-Efficient Version of Min-
iMAC. In [13], a version of MiniMAC is proposed which uses linear codes over
the extension field F256. The larger field enables to use a Reed-Solomon code, for
which k∗ = 2k − 1. However, because this only gives coordinatewise operations
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Table 4. Total number of bits sent per instance at multiplication and output gates

Sec. par. Phase MiniMAC Committed MPC Our protocol

s = 64 Multiply 20.14 · (n − 1) 29.89 · (n − 1) 10.2 · (n − 1)
Output 19.5 · n + 2(n − 1) 19.5 · (n − 1)n 6.2 · n + 2(n − 1)

s = 128 Multiply 23.48 · (n − 1) 35.58 · (n − 1) 10.42 · (n − 1)
Output 24.22 · n + 2(n − 1) 24.22 · (n − 1)n 6.42 · n + 2(n − 1)

in F
k
256, the protocol needs to be modified in order to allow for bitwise oper-

ations instead. The modified version requires the opening of two C∗-encodings
at every multiplication gate and a more complicated and much larger prepro-
cessing, where in addition to creating certain type of multiplication triple, the
preprocessing phase needs to provide authenticated sharings of 16 other vectors
created from the bit decompositions of the coordinates of the two “factor” vec-
tors in the triple. As far as we know, no preprocessing phase that creates these
authenticated elements has been proposed.

The amortized communication complexity of that protocol is of 8(n− 1) bits
per multiplication gate, per instance of the circuit, which is slightly less than 80%
of ours. On the other hand, we estimate that the complexity of the preprocessing
would be at least 4 times as that of our protocol and possibly larger, based on
the number of preprocessed elements and their correlation.

Computation and Storage. In terms of storage, each authenticated share of
a k-bit vector is m + k bits, which is slightly over 4 bits per data bit. MiniMAC
and Committed MPC require a larger storage of � + k bits because the MAC
shares/commitments are in F

�
2. In [13] shares are also 4 bits per data bit because

of using RS codes, but the amount of preprocessed data is much larger. In
terms of computation, while our protocol does slightly better for additions (again
because of the shorter shares, and since the addition in F2m is as in F

m
2 ), and

the same happens with additions required by multiplication gates, computing
the terms ε ∗ 〈y〉, δ ∗ 〈x〉, φ(ε) · φ(δ) requires in total 5 multiplications in F2m

which, being field multiplications, are more expensive than the coordinatewise
ones required by MiniMAC, even if some of them are in a larger space F

�
2.

4 From Batch Computations to Single Circuit
Computations

We explain now how to adapt our protocol, which was presented as a protocol
for the simultaneous secure evaluation of k instances of the same boolean circuit,
into a protocol that computes a single evaluation of a boolean circuit with little
overhead, as long as the circuit is sufficiently “well-formed”. This is a quite
straightforward adaptation of the ideas presented in [15]. The technique can
be used in general for any boolean circuit but it works better when the circuit
satisfies a number of features, which we can loosely sum up as follows:
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– The circuit is organized in layers, each layer consisting of the same type of
gate (either additive or multiplicative). We number the layers in increasing
order from the input layer (layer 0) to the output layer.

– For most layers, the number of gates u is either a multiple of k or large enough
so that the overhead caused by the need to add u′ dummy gates to obtain a
multiple of k and compute the gates in batches of k is negligible.

– For most pairs of layers i and j, where i < j, the number of output bits from
layer i that are used as inputs in layer j is either 0 or sufficiently large so
that we do not incur in much overhead by adding dummy outputs or inputs
(again to achive blocks of size exactly k).

The idea from [15] is that given a layer of u gates, where we can assume u = t ·k
we organize the inputs of the layers in t blocks of k gates, and we will compute
each block by using the corresponding subroutine in our protocol.

For that we need to have authenticated shared blocks of inputs 〈x〉, 〈y〉
where the i-th coordinates xi, yi are the inputs of the i-th gate in the block.
This assumes gates are of fan-in 2. For the case of addition gates, we can also
support of course arbitrary fan-in gates, but then we want to have the same
fan-in in every gate in the same block, again to avoid overheads where we need
to introduce dummy 0 inputs. In any case at the end of the computation of this
layer we obtain t authenticated sharings 〈z〉.

The question is how to now transition to another layer j. Let us assume that
layer j takes inputs from l blocks 〈x1〉, . . . , 〈xl〉 of k bits each coming from some
previous layer. Of course the issue is that we are not guaranteed that we can
use these as input blocks for the layer j. We will likely need to reorganize the
bits in blocks, we may need to use some of the bits more than once, and we
may not need to use some of the bits of some output blocks. At first sight this
reorganization may look challenging, because note that the bits of each xi can
be “quite intertwined” in the MAC α · φ(xi).

However in all generality, we can define l′ functions F1, . . . , Fl′ : Fkl
2 → F

k
2

such that if we write X = (x1,x2, . . . ,xl) the concatenation of the output blocks,
then F1(X), . . . , Fl′(X) are the input blocks we need. These maps are F2-linear;
in fact, each of the coordinates of each Fi are either a projection to one coordinate
of the input or the 0-map. We assume that all these reorganizing functions can
be obtained from the description of the function and therefore they are known
and agreed upon by all parties.

Calling F = (F1, F2, . . . , Fl′), suppose we can obtain by preprocessing

((〈r1〉, 〈r2〉, . . . , 〈rl〉), (〈F1(R)〉, 〈F2(R)〉, . . . , 〈Fl′(R)〉),

where R = (r1, r2, . . . , rl) is again the concatenation in F
kl
2 . To ease the notation

we will write (〈R〉, 〈F (R)〉) and call this a reorganizing pair.
Then, reorganizing is done in the following way. The parties compute 〈xj〉 −

〈rj〉 and open these values for j = 1, 2, . . . , l. Afterwards, they compute

Fj(x1 − r1, . . . ,xl − rl) + 〈Fj(r1, . . . , rl)〉 = 〈Fj(x1, . . . ,xl)〉
which holds by the linearity of Fj .
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We can add this property to our setup above by including the supplements
in Fig. 5 to FPrep, FMPC, and ΠOnline. Apart from this we also need to point
out that at the input layer, a party may need to add dummy inputs so that her
input consists of a number of blocks of k bits.

Fig. 5. Reorganizing supplement

Of course, it looks as though we have moved the problem to the preprocessing
phase, as we still need to construct the reorganizing random pairs (〈R〉, 〈F (R)〉).
But this will be easy because of the F2-linearity of the maps φ and F .

The communication complexity of each reorganizing round is that of opening
l vectors in F

k
2 , therefore 2lk(n − 1) bits of communication. Therefore, the effi-

ciency of this technique clearly depends much on the topology of the circuit. For
example if all the output bits of a given layer are used in the next layer and only
there, then we can say that this technique adds roughly 2 bits of communication
per party per gate.

5 Preprocessing

In this section, we present how to obtain the preprocessed correlated informa-
tion we need in our online protocols. The implementation of authentication and
construction of multiplication triples is adapted in a relatively straightforward
way from MASCOT. This is because MASCOT is based on bit-OT extension,
and working bit-by-bit is well suited for our situation because of the maps φ, ψ
being F2-linear. For the preprocessing of multiplication triples we do need to
introduce some auxiliary protocols with respect to MASCOT: one is the pre-
processing of reencoding pairs (〈ψ(r)〉, [r]) that we anyway need for the online



A Secret-Sharing Based MPC Protocol for Boolean Circuits 669

protocol; another one creates [r] for a random r in the kernel of ψ, which we need
in order to avoid some information leakage in the sacrifice step. Both types of
preprocessing can be easily constructed based on the F2-linearity of ψ. Finally,
we use the sacrifice step in Committed MPC, rather than the one in MASCOT,
because of some technical issues regarding the fact that the image of φ is not
the entire F2m which creates problems when opening certain sharings.

Fig. 6. Overview of dependency of the protocols needed for the preprocessing.

Aside from the aforementioned multiplication triples (〈a〉, 〈b〉, 〈c〉) where c =
a∗b, for the online phase we also need to generate input pairs (r, 〈r〉), reencoding
pairs of the form (〈ψ(r)〉, [r]), and (in case we want to use the techniques in
Sect. 4) layer reorganizing pairs (〈R〉, 〈F (R)〉).

To obtain an overview of the way the functionalities presented in this section
are dependent on each consider Fig. 6. We use the following basic ideal func-
tionalities: parties can generate uniform random elements in a finite set using
the functionality FRand (for the sake of notational simplicity we omit referring
to FRand in protocols). Moreover, parties have access to a commitment func-
tionality FComm, see Fig. 7. We will also make use of a functionality Fn,k

ROT that
implements n 1-out-of-2 oblivious transfers of k-bit strings (Fig. 8).

We adapt the correlated oblivious product evaluation functionality FCOPEe

defined in MASCOT [19]. We recall how this functionality works: we again see
the field F2m as F2[X]/(f) for some irreducible polynomial f ∈ F2[X]. Then
{1,X,X2, . . . , Xm−1} is a basis for F2m as a F2-vector space. The functionality
as described in [19] takes an input α ∈ F2m from one of the parties PB in
the initialization phase; then there is an arbitrary number of extend phases
where on input x ∈ F2m from PA, the functionality creates additive sharings
of α · x for the two parties. However, if PA is corrupted it may instead decide
to input a vector of elements (x0, x1, . . . , xm−1) ∈ (F2m)m, and in that case the
functionality outputs a sharing of

∑m−1
i=0 xi ·αi ·Xi (where αi are the coordinates
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Fig. 7. Functionalities – randomness generation and commitment

Fig. 8. Functionality – random OT

of α in the above basis). The honest case would correspond to all xi being
equal to x. This functionality from MASCOT corresponds to the steps Initialize
and ExtendField in our version Fig. 10. We augment this by adding the step
ExtendVector, where party PA can input a vector x ∈ F

k
2 and the functionality

outputs an additive sharing of α · φ(x) ∈ F2m . If party PA is corrupted it may
instead input (x0,x1, . . . ,xm−1) ∈ (Fk

2)
m. In that case the functionality outputs

an additive sharing of
∑m−1

i=0 φ(xi) ·αi ·Xi, and note that this is more restrictive
for the corrupted adversary than ExtendField since the values φ(xi) are not free
in F2m but confined to the image of φ. We define the functionality FCOPEe in
Fig. 9 and present a protocol implementing the functionality in Fig. 10.

Proposition 1. ΠCOPEe securely implements FCOPEe in the Fm,λ
OT -hybrid

model.

Proof. The commands Initialize and ExtendField are as in [19] (the latter being
called Extend there). The proof for our ExtendVector command is analogous to
the one for the ExtendField except, as explained, because the ideal functionality
restricts the choice by a corrupt PA of the element that is secret shared. We
briefly show the simulation of ExtendVector together with Initialize.

If PB is corrupted, the simulator receives (α0, . . . , αm−1) from the adversary,
and simulates the initialization phase by sampling the seeds at random, and send-
ing the corresponding one to the adversary. It simulates the ExtendVector phase
by choosing ui uniformly at random in the corresponding domain, computes q as
an honest PB would do and inputs this to the functionality. Indistinguishability
holds by the pseudorandomness of F , as shown in [19].

If PA is corrupted then the simulator receives the seeds from the adversary
in the Initialize phase, and from there it computes all the ti

b in the ExtendVector
phase. Then when the adversary sends ui, the simulators extract xi = ui−ti

0+ti
1



A Secret-Sharing Based MPC Protocol for Boolean Circuits 671

Fig. 9. Functionality – correlated oblivious product evaluation with errors.

and inputs t = −∑m−1
i=0 φ(ti

0) · Xi and (x1,x2, . . . ,xm) to FCOPEe. In this case
all outputs are computed as in the real world and indistinguishability follows.

5.1 Authentication

In protocol ΠAuth (Figs. 11, 12, and 13), we use FCOPEe to implement FAuth.
In the initialize phase each pair of parties (Pi, Pj) call the initialize phase from

FCOPEe where Pi inputs a MAC key. Afterwards Pj can create authenticated
sharings to the desired values, both of boolean vectors and of elements in the
larger field: namely Pj constructs additive random sharings of the individual
values and uses the appropriate extend phase of FCOPEe to obtain additive
sharings of the MACs. At last, a random linear combination of the values chosen
by Pj is checked. Here privacy is achieved by letting Pj include a dummy input
xt+1 to mask the other inputs.

Proposition 2. ΠAuth securely implements FAuth in the
(FCOPEe,FRand,FComm)-hybrid model

Proof. Since the proof is similar to the proof of security for Π[[·]] in [19], we point
out the differences and argue why it does not have an impact on the security.

First of all note that our functionality, in contrary to Π[[·]], has an Add
command and a LinComb command. This is because we reserve the LinComb
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Fig. 10. Correlated oblivious product evaluation with errors.

command for linear combinations which output [·]-sharings, while Add outputs
a 〈·〉-sharing. In any case, the Add and LinComb command consist of local
computations so it is trivial to argue their security. The Initialize command only
invokes the Initialize command from the ideal functionality FCOPEe, which is
exactly the same as in [19]. Since the Open command lets the adversary choose
what to open to there is not much to discuss here either.

Therefore, what we need to discuss is the Input and Check commands. The
idea is that if the check in the input phase is passed and the adversary opens
to incorrect values later on, then the probability to pass a check later on will
be negligible. In comparison to [19], we have both values in F2m and vectors
in F

k
2 , but we can still use the same arguments there, because the check in the

Input phase and all further checks are in F2m and therefore the simulation and
indistinguishability is following by the exact same arguments as in [19].

5.2 Input, Reencoding, and Reorganizing Pairs

The two functionalities FCOPEe and FAuth are the building blocks for the pre-
processing. They are very similar in shape to the MASCOT functionalities but
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Fig. 11. Authenticated shares – part 1.

with some few corrections to include that sharings can be of vectors instead of
field elements in F2m . With these building blocks we can produce the randomness
needed for the online phase. First of all, we produce input pairs with protocol
ΠInputPair in Fig. 14. Proposition 3 is straightforward.

Proposition 3. ΠInputPair securely implements FPrep.InputPair in the FAuth-
hybrid model.

We also need to construct pairs to re-encode [·]-sharings to 〈·〉-sharings after
a multiplication. A protocol ΠReEncodePair for producing the pairs (〈ψ(r)〉, [r])
for random r ∈ F2m is shown in Fig. 15.
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Fig. 12. Authenticated shares – part 2.

Proposition 4. ΠReEncodePair securely implements FPrep.ReEncodePair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

Proof. First notice that at least one of the parties is honest and hence rj =∑n
i=1 r

(i)
j is random because one of the terms is. Suppose that at the end of the

Combine phase parties have created (〈sj〉, [rj ]), where possibly sj �= ψ(rj).
Let εj = sj − ψ(rj) for all j. By F2-linearity of ψ, bi − ψ(bi) =

∑t+s
j=1 aijεj .

Hence if all εj = 0, the check passes for all i. While if there is some εj �= 0,
j = 1, . . . , t, then for every i the probability that

∑t+s
j=1 aijεj = 0 is at most 1/2.

Since the checks are independent we obtain that if some εj �= 0, j = 1, . . . , t
then the protocol will abort except with probability at most 2−s. Note also that
bi = rt+i+

∑t
j=1 aijrj , so opening the bi reveals no information about the output

values r1, . . . , rt.

Finally, a protocol for producing reorganizing pairs is given in Fig. 16.
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Fig. 13. Authenticated shares – part 3.

Fig. 14. Creating input pairs.

Proposition 5. ΠReOrgPair securely implements FPrep.ReOrgPair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 4.

5.3 Multiplication Triples

Our protocol ΠTriple for constructing triples is given in Figs. 17 and 18. We note
that c = a∗b =

∑
i,j a(i)∗b(j) and hence sharings of c can be obtained by adding

sharings of summands, where each of the summands only require two parties Pi
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Fig. 15. Re-encode pairs.

Fig. 16. Re-organize pairs.

and Pj to interact. Again, the construction step is much like the construction
step from the protocol ΠTriple in [19]. where we have modified the protocol such
that it produces triples (〈a〉, 〈b〉, 〈c〉) instead of ([a], [b], [c]).
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Fig. 17. Construction of multiplication triples.

However, after authentication, we use techniques from Committed MPC [16]
to check correctness and avoid leakage on the produced triples. Indeed using
the combine and sacrifice steps in MASCOT presents some problems in our
case: in the sacrificing step in MASCOT parties take two triples ([a], [b], [c]) and
([â], [b], [ĉ]) and start by opening a random combination s · [a]− [â] to some value
ρ, so that they can later verify that s · [c]− [ĉ]−ρ · [b] opens to 0. Since the second
triple will be disregarded, and s · a − â completely masks a since â is uniformly
random, no information is revealed about a. In our case we would have triples
(〈a〉, 〈b〉, 〈c〉) and (〈â〉, 〈b〉, 〈ĉ〉) and sample a random s ∈ F2m , it would not be
the case that φ(â) would act as a proper one-time pad for s · φ(a)6. A similar
problem would arise for adapting the combine step in [19].

Therefore, we proceed as in [16]: in the protocol ΠTriple we start by construct-
ing additive sharings of N = τ1 +τ1 ·τ2

2 ·T triples. Then some of these triples are
opened and it is checked that they are correct. This guarantees that most of the
remaining triples are correct. The remaining triples are then organized in buckets
and for each bucket all but one of the triples are sacrified in order to guarantee
that the remaining triple is correct with very high probability. In order to be

6 Sampling s ∈ F
k
2 instead would not solve the problem since s ∗ 〈a〉 − 〈â〉 is not a

proper [·]-sharing as described in Sect. 3.
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Fig. 18. Multiplication triples.
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Fig. 19. Functionality – authenticated random element in ker(ψ).

Fig. 20. Authenticated random element in ker(ψ).

able to open proper sharings in the sacrifice step we need to add authenticated
sharings of an element in the kernel of ψ. We present a functionality serving that
purpose in Fig. 19 and a protocol implementing it in Fig. 20.

Proposition 6. ΠRanKer securely implements FRanKer in the (FAuth,FRand)-
hybrid model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 4. The correctness
follows from the additivity of ψ.

The sacrifice step opens the door for a selective failure attack, where the
adversary can guess some information about the remaining triples from the fact
that it has not aborted, so a final combining step is used to remove this leakage.

Proposition 7. ΠTriple securely implements FPrep.Triple in the
(FAuth,Fm,k

ROT,FRand,FRanKer)-hybrid model.

The proof uses similar arguments as in [16] and can be found in the full version.

Proposition 8. ΠInputPair, ΠReEncodePair, and ΠTriple securely implements
FPrep in the (FAuth,Fm,k

ROT,FRand)-hybrid model.

Proof. This follows directly from Propositions 3, 4, and 7.
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Complexity of Preprocessing

We briefly describe the communication complexity for producing the random-
ness needed for the online phase. Starting by considering the construction of an
input pair the only communication we have to consider here is a single call to
FAuth.Input. The main cost of authentication is the call to ΠCOPEe where the
parties needs to send mk(n − 1) bits for each vector authenticated. In the case
where a field element is authenticated instead they need to send m2(n − 1) bits.
Furthermore, the party who is authenticating needs to send the shares of the
vector authenticating but this has only a cost of k(n− 1) bits. At last, the check
is carried out but we assume that the parties authenticate several vectors/values
in a batch and hence this cost is amortized away.

For the re-encoding pairs we assume that t is much larger than s. This means
that in order to obtain a single pair the parties need to authenticate n field
elements and n vectors. Once again we assume that the check is amortized away,
so this gives a total cost of sending (m2 + mk)n(n − 1) bits.

The same assumption, that t is much larger than s, is made for the reorga-
nizing pairs and the random elements in the kernel of ψ. This means that the
amortized cost of producing a reorganizing pair is (l+l′)n vector-authentications
and to obtain [r] for r ∈ ker(ψ) costs n authentication amortized.

Regarding the communication for obtaining a single multiplication triple we
ignore the vectors sent in the construction since the authentication is much
more expensive. Besides authentication we make τ1τ

2
2n(n−1) calls to Fk,1

ROT. We
authenticate 3τ1τ2

2n vectors in the construction. Furthermore, we need (τ2−1)τ2
2

elements from FRanKer and 2 reencoding pairs for the construction of the triple.
The cost of the remaining steps is not close to be as costly, so we ignore these.

In [16] it is suggested to use τ1 = τ2 = 3. The cost of preparing a multiplica-
tion gate using these parameters is that of producing 3 reencoding pairs (2 for
the preprocessing and 1 for the online phase), 18 authenticated elements in the
kernel of ψ and the multiplication triple which yields 27 calls to Fk,1

ROT and 3 · 27
authentication of vectors. Thus using m = 3.1k from Table 3 in order to obtain
security s ≥ 64 and ignoring the calls to Fk,1

ROT the communication becomes

3 · (3.12 + 3.1)k2n(n − 1) + 18 · 3.12k2n(n − 1) + 3 · 27 · 3.1 · k2n(n − 1) bits

= 462.21 · k2n(n − 1) bits.

Similarly, in order to obtain s ≥ 128 we use m = 3.21k from Table 3 and the
communication becomes 486.03 · k2n(n − 1) bits.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

https://doi.org/10.1007/3-540-46766-1_34


A Secret-Sharing Based MPC Protocol for Boolean Circuits 681
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