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Abstract. We investigate fairness in secure multiparty computation
when the number of parties n = poly(λ) grows polynomially in the secu-
rity parameter, λ. Prior to this work, efficient protocols achieving fairness
with no honest majority and polynomial number of parties were known
only for the AND and OR functionalities (Gordon and Katz, TCC’09).
We show the following:

– We first consider symmetric Boolean functions F : {0, 1}n →
{0, 1}, where the underlying function fn/2,n/2 : {0, . . . , n/2} ×
{0, . . . , n/2} → {0, 1} can be computed fairly and efficiently in the
2-party setting. We present an efficient protocol for any such F tol-
erating n/2 or fewer corruptions, for n = poly(λ) number of parties.

– We present an efficient protocol for n-party majority tolerating
n/2 + 1 or fewer corruptions, for n = poly(λ) number of parties.
The construction extends to n/2 + c or fewer corruptions, for con-
stant c.

– We extend both of the above results to more general types of adver-
sarial structures and present instantiations of non-threshold adver-
sarial structures of these types. These instantiations are obtained via
constructions of projective planes and combinatorial designs.

1 Introduction

In secure multiparty computation (MPC), parties compute the joint function
of their inputs in a distributed fashion, while keeping their inputs private. For-
mally defining the security model for MPC is quite complex and there are vari-
ous different flavors of security such as computational vs. information-theoretic,
security-with-abort vs. fairness vs. guaranteed output delivery, broadcast-channel
vs. no broadcast channel, rushing vs. non-rushing.

In this work, we focus on the setting of computationally-secure, n-party MPC
in the presence of a broadcast channel with a rushing adversary. Further, we
will require the fairness guarantee, which, informally, states that if one party
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obtains the output of the function being computed, then all parties must obtain
the output.

It is known how to securely compute every functionality in the above setting,
assuming honest majority (i.e. more than half the parties are uncorrupted) [10,
12,17,18,37]. On the other hand, impossibility results, showing that there are n-
party functionalities that cannot be computed fairly (even computationally and
even with a broadcast channel), are known in the case of no honest majority.
Negative results on fairness include the early work of Cleve [13], who showed that
fair coin-tossing is impossible when n/2 out of n parties are fail-stop (i.e. behave
in an honest-but-curious manner with the exception that they may abort early).
In the 2-party case, non-trivial functions that can be computed fairly without
honest majority, were first discovered in the seminal work of Gordon et al. [19].
By now, the 2-party setting is well-understood, with a full characterization of
the necessary and sufficient conditions for fair computation of large classes of
functionalities [2,3].

In this paper we focus on the n-party case, where n = poly(λ) is any poly-
nomial in λ, the security parameter. We will begin by considering threshold
adversaries, these are adversaries who may corrupt up to some threshold th
number of parties. In this case, Cleve’s result [13] tells us that it is impossible
to achieve fairness for all functionalities when th ≥ n/2.

Threshold Adversaries. The relevant prior works that we are aware of are those
of Gordon and Katz [21] and Asharov et al. [3]. Gordon and Katz [21] present
fair protocols for 3-party majority and for the OR function (and by symmetry
for the AND function) for any polynomial n number of parties and n − 1 or
fewer corruptions. Asharov et al. [3] present n-party protocols with up to n/2
corruptions for functions F for which every n/2-size partition can be computed
fairly in the 2-party setting. We emphasize, however, that the protocol of Asharov
et al. [3] only scales to O(log λ) number of parties, regardless of the efficiency of
the underlying fair 2-party protocol employed. Moreover, extending their results
to more than n/2 out of n corruptions was considered an open problem in their
work. Thus, prior to our work, AND and OR were the only functionalities for
which efficient protocols achieving fairness with no honest majority for any n =
poly(λ) parties were known.

We also consider non-threshold adversaries. Specifically, we consider adver-
sarial structures Aadv for which it is known to be impossible to achieve fairness
for all functionalities. We ask whether for such adversarial structures there exist
non-trivial functions that can be computed fairly.

Background on MPC with General Adversarial Structures. An adversarial struc-
ture Aadv on a set [n]—corresponding to n parties P1, . . . , Pn—is a monotone
collection of non-empty sets S. We say that an MPC protocol is secure with
fairness for adversarial structure Aadv if it is secure with fairness under any
set of corruptions S ∈ Aadv. In the seminal works of Hirt and Maurer [26,27],
they defined a set of adversarial structures Q(2), which consists of adversarial
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structures Aadv for which no two sets in Aadv cover [n]. They presented an (inef-
ficient) information-theoretic secure protocol for fail-stop adversaries for adver-
sarial structures Q(2). They also gave a simple argument that it is impossible
to achieve (even computational) fairness for adversarial structures not in Q(2)

using the classical result of Cleve [13].

Fairness for (Aadv, F )-pairs. In this work, we initiate the research direction
of achieving MPC protocols with fairness against—possibly non-threshold—
adversarial structures Aadv that are not in Q(2). While for any adversarial struc-
ture Aadv /∈ Q(2), it is impossible (even computationally) to achieve MPC with
fairness for all functionalities F , there can be some functionalities F for which
it is possible to achieve MPC with fairness. We will investigate pairs of func-
tionalities and adversarial structures (Aadv, F ) for which is it possible to achieve
fairness in the multiparty setting. To the best of our knowledge, prior work on
complete fairness in multiparty computation for adversarial structures outside
Q(2) has considered only threshold adversarial structures.

1.1 Our Results

Consider a symmetric Boolean function1 F (w) = F (x,y), where w = x||y and
x,y ∈ {0, 1}n/2. We consider n-party MPC protocols for computing the func-
tion F . Note that since F is symmetric, there exists a two-input function f such
that F (x,y) = fn/2,n/2(

∑n/2
i=1 xi,

∑n/2
i=1 yi). In our first result, we present a fair

MPC protocol for functionalities F that are symmetric and for which the cor-
responding fn/2,n/2 can be computed fairly in the 2-party setting. Importantly,
our protocol handles any polynomial n = poly(λ) number of parties (polynomial
in security parameter λ) and is secure against n/2 or fewer corruptions. Recall
that Asharov et al. [3] gave a transformation from fair 2-party protocols to fair
n-party protocols, secure against n/2 or fewer corruptions. Their transforma-
tion, however, requires running the underlying protocol with all possible subsets
S ⊆ [n] of size |S| = n/2 playing the part of the two parties in the underlying
2-party protocol. This means that their protocol can only handle a number of
parties n that is at most logarithmic in the security parameter n = O(log(λ)).
In this work, we show how to extend their construction to any number of par-
ties n that is polynomial in the security parameter n = poly(λ). However, the
extension applies only to symmetric Boolean functions.

Theorem 1 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric function,
such that there is an efficient protocol for computing fn/2,n/2 fairly in the two-
party setting. Then for any n = poly(λ), there is an efficient protocol for com-
puting F fairly in the n-party setting with up to n/2 corruptions.

We extend the above result to more general, non-threshold, adversarial
structures outside of Q(2), which may include corrupted sets of parties of
1 In this context, we mean a Boolean function whose output depends only on the

number of ones in the input. See [36], Def. 2.8.
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size greater than n/2. For symmetric F and any n′ ∈ [n − 1], we consider
F (x,y) = fn′,n−n′(

∑n′

i=1 xi,
∑n−n′

i=1 yi), and require that for all n′ ∈ [n − 1]
there is an efficient protocol computing fn′,n−n′ fairly in the two-party setting.
For any such F , we define a corresponding set of adversarial structures Q(F ).
Informally, Q(F ) contains adversarial structures Aadv such that Aadv can be par-
titioned into Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2) such that for any pair of distinct
sets (T, T ′) ∈ Aadv,2, T ′ �⊆ T . Additionally, we require certain efficient secret
sharing schemes corresponding to Aadv,1 and Aadv,2. See the full version for a
formal definition of Q(F ).

Theorem 2 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric function,
such that there is an efficient protocol for computing fn′,n−n′ fairly in the two-
party setting for all n′ ∈ [n − 1]. Let Q(F ) be defined as above. Then for any
n = poly(λ), there is an efficient protocol for computing F fairly in the n-party
setting under any adversarial structure Aadv ∈ Q(F ).

As an additional result of interest, we show that (ignoring efficiency require-
ments for the underlying secret-sharing schemes) any projective plane can be
used to construct a non-threshold adversarial structure in Q(F ). See the full
version for additional details.

In our second main result, we present a fair MPC protocol for the majority
function, for any polynomial n = poly(λ) number of parties, and n/2+1 or fewer
corruptions.

Theorem 3 (Informal). There is an efficient protocol for computing n-party
Majority fairly for any n = poly(λ) (s.t. n ≥ 8) with n/2+1 or fewer corruptions.

The construction can be straightforwardly extended to work for n/2 + c or
fewer corruptions, where c is a constant.

As before, we extend the result to more general, non-threshold, adversarial
structures outside of Q(2), by defining a set of adversarial structures Q(Maj).
Informally, Q(Maj) contains adversarial structures Aadv such that Aadv can be
partitioned into Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2) such that for any pair of distinct
sets (T, T ′) ∈ Aadv,2 such that T ′ ⊆ T , it is the case that |T\T ′| ≤ c. Additionally,
we require certain efficient secret sharing schemes corresponding to Aadv,1 ∈ Q(2)

and Aadv,2 /∈ Q(2). See the full version for a formal definition of Q(Maj).

Theorem 4 (Informal). There is an efficient protocol for computing n-party
Majority fairly for any n = poly(λ) under every adversarial structure Aadv ∈
QMaj.

As an additional result of interest, we show that (ignoring efficiency require-
ments for the underlying secret-sharing schemes) starting from an appropriate
type of combinatorial design and adding certain sets to it, we obtain a non-
threshold adversarial structure in Q(Maj). See the full version for additional
details.
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1.2 Technical Overview

Half ( n/2 ) or Fewer Corruptions. Recall that [3] showed that, for n = O(log(λ))
number of parties, a function F (x1, . . . , xn) is computable with fairness under
n/2 corruptions if and only if for every partition (SL, SR) of [n] of size n/2,
F ([xi]i∈SL

, [xi]i∈SR
) is computable with complete fairness in the two party set-

ting, where one party holds input [xi]i∈SL
and the other holds input [xi]i∈SR

.
We begin by re-casting the protocol of [3] in a player-simulation model (sim-
ilar to Hirt and Maurer [26,27]). The protocol of [3] considers all possible 2-
partition (SL, SR) of [n] of size n/2 (where SL always contains 1) and for each
partition, parties Pi, i ∈ SL simulate virtual party PL and parties Pi, i ∈ SR

simulate virtual party PR in the fair two party protocol ΠF for functionality
F ([xi]i∈SL

, [xi]i∈SR
) that exists by assumption. WLOG, we can take the states

of PL and PR in round r of ΠF to simply consist of “backup values” ar, br,
respectively. For simplicity, we first construct an n-party protocol in a “trusted
dealer” model (later we will show how to get rid of the assumption). In each
round r, the dealer secret shares the backup values of each virtual party PL

(resp. PR) across the corresponding parties in SL (resp. SR). This is referred
to as the inner secret sharing scheme in [3]. If at any time, all the real parties
simulating a certain virtual party (say PL) abort, the dealer stops handing out
shares and the remaining real parties reconstruct virtual PR’s state to obtain
the corresponding backup value. The above description relies on the fact that
there are at most n/2 corruptions, since if exactly n/2 parties corresponding to
some virtual party PL abort there is a uniquely identifiable corresponding virtual
party PR, simulated by exactly the remaining set of n/2 parties (all of whom
are honest). The remaining parties can therefore identify PR and compute the
correct backup value. On the other hand, if the protocol completes, any set of
parties of size n/2 or more can reconstruct the correct value, since all subsets of
size n/2 receive the output of the functionality in the final round. To implement
the dealer and ensure that the protocol continues if less than n/2 parties abort,
[3] additionally perform an (n/2 + 1)-out-of-n secret sharing of each real party’s
state during the preprocessing, called the outer secret sharing. In each round,
the parties send their share of the outer-secret sharing to each party. In case
at most n/2 − 1 parties abort, the remaining parties can continue the protocol
by simulating the aborting parties using the (n/2 + 1)-out-of-n secret sharing.
The number of simulated sub-protocols is essentially

(
n

n/2

) ≈ 2n/
√

n. Thus, they
can only handle at most n = O(log(λ)) number of parties, where λ is security
parameter.

In our first result we show that the above paradigm can be modified to
work for symmetric functions F : {0, 1}n → {0, 1} without requiring the blowup
of running the protocol across each possible subset. Since F is symmetric, its
value at all inputs is equivalent to the output of some fn/2,n/2 : {0, . . . , n/2} ×
{0, . . . , n/2} → {0, 1}. Let us assume that there is a fair protocol Πfn/2,n/2

for computing fn/2,n/2. We describe the constructed fair protocol for n-party
functionality F in the “trusted dealer” setting: The dealer receives all the parties’
inputs x = x1, . . . , xn and computes N =

∑n
i=1 xi. For every z ∈ {0, . . . , n/2},
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the dealer runs protocol Πfn/2,n/2(z,N −z) and Πfn/2,n/2(N −z, z) “in the head”
to obtain backup values for each party and each round.2 Specifically, for virtual
party PL (resp. PR), its share when running with input z (resp. N − z) in the
r-th round is denoted ar,z,N−z (resp. br,z,N−z). We now use an appropriate type
of secret sharing scheme to share ar,z,N−z (resp. br,z,N−z), which ensures that a
set of corrupted parties can open only the backup values corresponding to one of
the virtual parties’ views in a single execution of the (at most) n/2+1 executions
of the underlying 2PC protocol (i.e. corresponding to the view of PL or PR in a
single (z,N −z) pair). This is done by defining an augmented set [n]×{0, 1} and
defining access structures over this set. Specifically, a party Pi holding input bit
b, will correspond to the element (i, b) ∈ [n] × {0, 1}. Thus, parties along with
their inputs correspond to subsets S+ of [n] × {0, 1}, and a share that a party
receives from the dealer depends both on its index i as well as its input b. Let
S0 := {(i, 0) : i ∈ [n]} and S1 := {(i, 1) : i ∈ [n]}. We will use a secret sharing
scheme to share ar,z,N−z (resp. br,z,N−z) so that its value can be reconstructed
by any set S+ that consists of party P1 holding either input 0 or 1 (resp. does
not include party P1), z (resp. N −z) parties holding input 1 (i.e. |S+ ∩S1| ≥ z,
resp. |S+∩S1| ≥ N −z) and n/2−z (resp. n/2−(N −z)) parties holding input 0
(i.e. |S+ ∩S0| ≥ n/2− z, resp. |S+ ∩S0| ≥ n/2− (N − z)). If exactly n/2 parties
abort, the remaining honest parties output the “backup” value corresponding to
the remaining party in the same underlying protocol execution. E.g., if a set of
n/2 parties, including P1, holding z number of 1’s, abort, the remaining parties
can open br,z,N−z, since if the corrupt parties hold z number of 1’s, the honest
parties must hold N − z number of 1’s and n/2 − (N − z) number of 0’s. On
the other hand, if less than n/2 parties abort, the outer secret sharing scheme
is used to ensure that all the honest parties continue to receive their shares in
each round.

Difficulty of a Generic Transformation for more than n/2 Corruptions. In the
following, we provide some intuition on the difficulty of extending the above
protocol to more than n/2 corruptions. We do not make any formal claims here.
For concreteness, let us assume we want to handle n/2 + 1 corruptions. First,
we must ensure that if n/2 + 1 parties abort, the remaining parties can output
some backup value from the underlying protocol, as otherwise there is no hope
of obtaining a fair protocol. But this means that any set of n/2− 1 parties must
be able to reconstruct a view from the underlying execution, which means that
the set of n/2 + 1 corrupted parties will be able to reconstruct multiple views
(since there are multiple subsets of size n/2 − 1—with distinct values of z—
among the set of n/2 + 1 corrupted parties, and each must be able to open an
underlying view). When using a generic protocol, it is not clear how to argue
that if the underlying protocol is fair when a party sees a single view, it is still
fair when a party sees multiple views of the protocol running in parallel with
correlated inputs. Another difficulty is that if less than n/2+1 parties abort—say

2 If N − z is an invalid input (i.e. N − z /∈ {0, . . . , n/2}), then the dealer simply uses
dummy values.
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n/2−1 parties abort—then the remaining parties do not necessarily know which
backup value to output. As before, there are multiple subsets of size n/2 − 1—
with distinct values of z—among the set of n/2 + 1 remaining parties, and each
may correspond to a different backup value. Further, note that the outer secret
sharing can no longer be used when n/2 − 1 (or more) parties abort, since if the
outer secret sharing scheme can be reconstructed by n/2+1 or fewer parties, then
the set of corrupt parties can recover backup values for round r before round r is
executed, thus negating the fairness guarantees of the underlying protocol. Our
solution for n/2+1 or fewer corruptions will resolve each of these problems, but
will use special properties of a specific protocol, and will not work generically
for any underlying fair-2-PC protocol.

Direct Construction for Majority with n/2 + 1 or Fewer Corruptions. We next
present our protocol for n-party computation of Maj assuming at most n/2 + 1
corruptions. As discussed above, the generic transformation techniques no longer
work. Therefore, we extend the two-party protocol of Gordon et al. [19] and the
analysis of Asharov et al. [2] to our setting. Specifically, recall that in the 2-party
protocol of Gordon et al. [19], the dealer chooses a designated round r∗, drawn
from a geometric distribution with parameter α (and with all but negligible
probability is assured that r∗ ≤ rounds, where rounds = ω(log(λ)) · 1/α is the
number of rounds in the protocol) in which to begin releasing the correct output
of the functionality. In the rounds previous to this, each party receives the output
of the functionality evaluated with its own input and a randomly chosen input
for the other party. Now, in the n party case, we set R := {1, 2, 3}. In each
round r, the dealer computes backup values ar,R′,n′,z for each R′ ⊆ R, n′ ∈
{n/2−1, n/2, n/2+1} and each z ∈ {0, . . . , n′}. For r < r∗, each value ar,R′,n′,z

is chosen as fn′,n−n′(z, x̂), where x̂ is chosen uniformly from {0, . . . , n−n′}, and
fn′,n−n′ outputs 1 when the sum of its inputs is at least n/2+1. For r ≥ r∗, each
value ar,R′,n′,z is set to fn′,n−n′(x, y), where x, y are the inputs of the corrupted
and uncorrupted parties, respectively. Each ar,R′,n′,z is shared so that it can be
opened by any set S that has a subset W of size n′ such that W ∩ R = R′ and
has a subset W ′ of size n′ consisting of z parties holding a 1 input and n′ − z
parties holding a 0 input. We observe than any set of corrupt parties of size
at most n/2 + 1 can open at most a constant number, deg, of backup values.
Furthermore, if n/2 − 1 or more parties abort in round r, the remaining set of
parties, S′, which has size n′ ∈ {n/2−1, n/2, n/2+1} and for which S′ ∩R = R′,
run a secure computation protocol (with fairness and guaranteed output delivery,
since when n ≥ 8 we have an honest majority among the remaining parties) to
recover ar−1,R′,n′,z for the appropriate values of R′, n′, and z. The set R′ is
needed since in the security proof, we will argue that the backup value opened
by the remaining parties cannot be opened by the set of corrupt parties before
aborting. If less than n/2 − 1 parties abort, then each remaining party can still
recover its share in each round using the outer secret sharing scheme and so the
protocol continues. By setting α correctly, the ideal adversary is able to skew the
output appropriately (as in [19]), even though the corrupt parties see multiple
random values in rounds r < r∗. Intuitively, this comes from the fact that the
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real adversary will with some 1/poly(n) probability obtain the same view in
round r when r = r∗ or when r < r∗. In the case r = r∗, the honest parties
output their backup value (which is distributed as described above) in the real
world, but always output the correct output value in the ideal world. In the
case that r < r∗, the honest parties still output their backup value in the real
world. However, the simulator in the ideal world can lie about the corrupted
parties’ inputs and submit values from a carefully constructed distribution to
the ideal functionality, since the ideal functionality has not yet been called in
the simulation (it is only called in round r∗). Thus, it is possible that for a fixed
adversarial view, the distribution of outputs of the honest parties is the same in
the real and ideal worlds. To analyze the resulting distributions in the real and
ideal world, we follow the techniques of Asharov [2], who explicitly computes the
required probabilities as a vector and finds the sufficient conditions so that this
vector falls within the convex hull of a set of vectors corresponding to the rows of
the truthtable. Unfortunately, the proof of Asharov [2] works only for constant-
size domain. Since we want to extend our case to any polynomial number of
parties n, we necessarily require a polynomial domain (since the domain will be
exactly {0, . . . , n}). Specifically, Asharov’s technique [2] fixed the domain size to
be constant and used existence theorems to prove that α can be set sufficiently
small so that the vector is contained in the convex hull. Instead, we consider the
spectral norm of the matrix corresponding to the inverse of M+

˜f
, where M

˜f is

the truthtable corresponding to a function f̃ that is closely related to fn′,n−n′ ,
and M+

˜f
is equal to M

˜f concatenated with a column of 1’s, and show that it is
upper bounded by a constant. This allows us to achieve the desired result. We
note that the techniques outlined above can be straightforwardly extended to
the case of n/2 + c corruptions, where c is a fixed constant.

Extending to more General Adversarial Structures. Secret sharing schemes are
used in two ways in the results for threshold adversarial structures described
above: (1) The outer secret sharing scheme, which ensures that when certain
sets of parties abort, the protocol can continue. We require that no set from the
adversarial structure is an authorized set for the access structure corresponding
to this scheme. (2) The inner secret sharing scheme, which ensures that if the
surviving parties cannot continue the protocol using the outer secret sharing
scheme, they can reconstruct a backup value using this scheme. We can no
longer require that no set from the adversarial structure is an authorized set for
the access structure corresponding to this scheme. Instead, we merely limit the
number of instances of the inner secret sharing scheme that can be opened by
the corrupt parties.

To achieve this, we view an arbitrary adversarial structure as the union of a
Q(2) adversarial structure, Aadv,1 and a non-Q(2) adversarial structure, Aadv,2.
The outer secret sharing scheme will correspond to access structure, Ahon,1, which
is equal to the complement of Aadv,1. For the inner secret sharing scheme, we
consider Ahon,2 = Aadv,2 and we partition Ahon,2 according to the size n′ of the
authorized sets, yielding sets An′

hon,2. We then obtain monotone access structures
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An′,+
hon,2 for all n′ ∈ [n], consisting of An′

hon,2 and all supersets of sets in An′
hon,2.

We then construct a secret sharing scheme for each n′ and each z ∈ {0, . . . , n′},
which allows a set of parties to reconstruct the secret if the set of parties is
contained in An′,+

hon,2 and the set of parties includes z number of parties holding a
1 and n′ − z number of parties holding a 0. For the first result (corresponding to
fair computation of symmetric functions) we require that Aadv,2 does not contain
any two sets T, T ′ such that T ′ � T . For the second result (corresponding to
fair computation of Maj) we require that for any two sets T, T ′ ∈ Aadv,2 if T is a
superset of T ′, it can only contain c additional elements, where c is a constant.

1.3 Related Work

The 2-party Setting. Subsequent to the seminal paper of Gordon et al. [19], a
large body of work has been dedicated to understanding which functionalities
can be computed fairly in the two-party setting. Various works, culminating
in a full characterization for symmetric, constant-size-domain functionalities,
include [2,3].

The n-party Setting. Hirt and Maurer [26,27] characterized the set of access
structures that are necessary and sufficient for fair n-party computation of all
functionalities, and dubbed this set Q(2). The question remained of whether
there are non-trivial functionalities that can be computed fairly for adversarial
structures outside of Q(2). In particular, the works of [21] and [3], which have
already been discussed above, considered threshold access structures outside of
Q(2).

Partial Fairness and Other Notions. Another line of works has considered achiev-
ing partial fairness (also called 1/p-fairness) guarantees for large classes of func-
tionalities, even when there is no honest majority. Specifically, the goal is to
obtain protocols for which the real and ideal world are distinguishable by at
most 1/p, for some polynomial p = p(λ). Partial fairness has been studied in
both the 2-party and multiparty setting [7,9,22]. Note that our focus in the
current work is to achieve “complete” fairness, where the real and ideal world
are computationally indistinguishable. “Best of both worlds” security has also
been studied–where protocols are required to achieve fairness in the case of hon-
est majority and security-with-abort in the case of honest minority [7,28,29].
We also mention other desirable security properties related to fairness that have
been considered in the literature such as guaranteed output delivery [14,23] and
security with identifiable abort [30,31].

Partial Fairness for Coin-Tossing. For the special case of coin-tossing, it is known
by the classical result of Cleve [13] that complete fairness is impossible. However,
there are several results in the two-party and multi-party settings that deal with
achieving partial fairness—i.e. bias of 1/p—for the best possible p [1,6,8,11,34,35].

Lower Bounds. Lower bounds on number of rounds or computational assump-
tions necessary to achieve (partially) fair protocols have also been stud-
ied [15,16,24,25]. Complete primitives for fairness and primitives that imply



604 D. Dachman-Soled

secure coin-tossing were studied in [4,20]. Further works have elucidated prop-
erties of protocols necessary to achieve fairness [33].

2 Notation, Definitions and Preliminaries

Definitions of MPC with full security (i.e. fairness) and security-with-abort are
deferred to the full version. We follow [5] for the definitions of access structures
and secret sharing schemes. Given a set S ⊆ [n], denote by S := [n] \ S and by
P(S) the power set of S.

Useful Access Structures. We consider access structures over the set [n], as
well as the set [n]×{0, 1}. Let S0 := [n]×{0} and S1 := [n]×{1}. Access structure
Aa,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists of sets S+ ⊆ [n] × {0, 1}
with corresponding S := {i : (i, 0) or (i, 1) ∈ S+} that satisfy all of the following:
(1) 1 ∈ S; (2) |S+ ∩ S1| ≥ z; (3) |S+ ∩ S0| ≥ n′ − z.

Access structure Ab,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists of sets
S+ ⊆ [n] × {0, 1} with corresponding S := {i : (i, 0) or (i, 1) ∈ S+} that satisfy
all of the following: (1) 1 /∈ S; (2) |S+ ∩ S1| ≥ z; (3) |S+ ∩ S0| ≥ n′ − z.

More generally, let R be a set of distinguished elements of [n]. Let R′ ⊆ R
and let R′′ = R \ R′. Access structure AR,R′,z,n′,2n, for R′ ⊆ R, n′ ∈ [n] and
z ∈ {0, . . . , n′}, consists of sets S+ ⊆ [n] × {0, 1} with corresponding S := {i :
(i, 0) or (i, 1) ∈ S+} that satisfy all of the following: (1) R′ ⊆ S; (2) R′′ ∩S = ∅;
(3) |S+ ∩ S1| ≥ z; (4) |S+ ∩ S0| ≥ n′ − z.

See full version for constructions.

3 Symmetric Functions and n/2 Corruptions

Let F : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be a symmetric Boolean func-
tion. Then we have that for all x ∈ {0, 1}n/2 and y ∈ {0, 1}n/2,
F (x,y) = fn/2,n/2(

∑n/2
i=1 xi,

∑n/2
i=1 yi), for some fn/2,n/2. Assume that fn/2,n/2 :

{0, . . . , n/2} × {0, . . . , n/2} can be fairly computed in the two-party setting and
let Πfn/2,n/2 denote the two-party protocol (with parties PL, PR) that fairly
computes fn/2,n/2(x, y). For x, y ∈ {0, . . . , n/2}, let Πfn/2,n/2(x, y) denote an
execution of Πfn/2,n/2 , where PL has input x and PR has input y. Let ax,y,r

fn/2,n/2

denote the backup value of PL in the r-th round of an execution of Πfn/2,n/2(x, y)
and let bx,y,r

fn/2,n/2
denote the backup value of PR in the r-th round of the same

execution of Πfn/2,n/2(x, y). In the following, p is set to p = 2 · (n/2 + 1).

Theorem 5. Let F , fn/2,n/2 be as above. Assume there is an efficient protocol
for computing fn/2,n/2 fairly in the two-party setting. Then for any n = poly(λ),
the protocol presented in Fig. 1 (and Fig. 2) is an efficient protocol for computing
F fairly in the n-party setting with n/2 or fewer corruptions.

The protocol in Fig. 1 uses a secret sharing scheme for access structure
Aa,z,n/2−z,2n and Ab,z,n/2−z,2n, defined in Sect. 2.
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Fig. 1. Fair, efficient, multiparty computation of F with n parties and n/2 or fewer
corruptions.
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Fig. 2. Reconstruction functionality with respect to p sets of secret shares.

Proof. Let T ⊆ [n], |T | = n/2 denote the set of corrupt parties. Assume WLOG
that 1 ∈ T . Sim applies the simulator Simfn/2,n/2 of the two-party protocol
Πfn/2,n/2 .

– Sim constructs the following adversary Afn/2,n/2 for Πfn/2,n/2 , playing the
same role as A.

• Afn/2,n/2 invokes A expecting its inputs x.
• Afn/2,n/2 sends inputs x =

∑
i∈T xi to the dealer of Πf .

• For r = 1, . . . , rounds, upon receiving backup value ar, set ax,r =
ar||0λ and az,r = 0 for z ∈ {0, . . . , n/2} \ {x}. For z ∈ {0, . . . , n/2},
secret share az,r using access structure Aa,z,n/2−z,2n, producing shares
[s̃b,z,r

i ]b∈{0,1},i∈[n]. Each party Pi holding input b receives shares
[s̃b,z,r

i ]z∈{0,...,n/2}.
• If all the parties in T abort, then Afn/2,n/2 aborts, otherwise it continues.
• If the final round rounds completes, Afn/2,n/2 submits shares for all

remaining parties in T to the ideal functionality and simulates an output
of out in return.

– Let Simfn/2,n/2 be the simulator for Afn/2,n/2 in the hybrid model.
– The simulator Sim interacts with the two-party protocol simulator Simfn/2,n/2

by invoking it on adversary Af with input x. It then receives a simulated
view for Afn/2,n/2 , containing its random coins and backup outputs. Having
received this view of Afn/2,n/2 , the simulator Sf can extract from it the view
of A in this execution, as it is implied by the view of Afn/2,n/2 . Specifically,
the randomness Afn/2,n/2 uses to share different secrets determines the shares
that the corrupted parties see. If Afn/2,n/2 does not abort before the final
reconstruction, Simfn/2,n/2 obtains from Afn/2,n/2 ’s view any inputs to the

functionality F
th,n/2
Recon,S,p. It uses the output out contained in the view (since

the last round was reached) to simulate the output of the ideal functionality
F

th,n/2
Recon,S,p. If some parties abort and the remaining parties re-submit their
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inputs to the ideal functionality, Simfn/2,n/2 can still use out to simulate the
output each time.

3.1 Implementing the Dealer and F
th,n/2
Recon,S,p

This is done similarly to Asharov et al. [3] and our exposition follows theirs. Fol-
lowing [3,7,8], we eliminate the trusted on-line dealer of our multiparty protocols
in a few steps using a few layers of secret-sharing schemes. In the first step, we
convert the on-line dealer to an off-line dealer. That is, we construct a proto-
col in which the dealer sends only one message to each party in an initialization
stage; the parties then interact in rounds using a broadcast channel (without the
dealer) and in each sub-round of round i each party learns its shares of the r-th
round. Specifically, in round r, party Pj learns a share in a secret sharing scheme
for access structure Aa,z,n/2−z,2n, Ab,z,n/2−z,2n, for every z ∈ {0, . . . , n/2} (we
call these shares Pj ’s shares of the inner secret-sharing scheme).

For this purpose, the dealer computes, in a preprocessing phase, the appro-
priate shares for the inner secret-sharing scheme. For each round, the shares of
each party Pj are shared in a special 2-out-of-2 secret-sharing scheme, where Pj

gets one of the two shares (called the mask). In addition, all parties (including
Pj) receive shares in a n/2 + 1-out-of-n secret-sharing scheme of the other share
of the 2-out-of-2 secret sharing. We call the resulting secret-sharing scheme the
outer (n/2 + 1)-out-of-n scheme (n/2 parties and the holder of the mask are
needed to reconstruct the secret).

The use of the outer secret-sharing scheme with threshold n/2 + 1 plays a
crucial role in eliminating the on-line dealer. On one hand, it guarantees that
an adversary, corrupting at most n/2 parties cannot reconstruct the shares of
round r before round r. On the other hand, at least n/2 parties must abort to
prevent the reconstruction of the outer secret-sharing scheme. Note that n/2
aborting parties can prevent the remaining parties from receiving their shares
and, indeed, in the description of the protocol, if n/2 parties abort, the remaining
parties no longer receive shares from the dealer. Finally, we replace the off-line
dealer by using a secure-with-abort and cheat-detection protocol computing the
functionality computed by the dealer.

To prevent corrupted parties from cheating, by e.g., sending false shares
and causing reconstruction of wrong secrets, every message that a party should
send during (any possible flow of) the execution of the protocol is signed in
the preprocessing phase (together with the appropriate round number and the
party’s index). In addition, the dealer sends a verification key to each of the
parties. To conclude, the off-line dealer gives each party the signed shares for
the outer secret-sharing scheme together with the verification key.

Whenever F
th,n/2
Recon,S,p is run in Steps 5a and 5b, all parties are honest, so it

can be trivially implemented. When F
th,n/2
Recon,S,p is run in Step 6, there may not be

an honest majority. In this case, however, it is the final round so the reconstruc-
tion protocol will output the same value, regardless of which subset of parties
participate (as long as the subset includes all the n/2 honest parties). Thus,
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the adversary may get its output early and abort to prevent the honest parties
to obtain output. The view of the adversary can be simulated since the ideal
functionality has already been called at this time. Moreover, the protocol simply
gets restarted until either no party aborts during the protocol (which happens
in the worst case when only honest parties are remaining).3 Therefore, the hon-
est parties are guaranteed to obtain their output. We emphasize that the ideal
functionality checks that the shares inputted by the parties are correctly authen-
ticated (and are those same shares that were distributed by the “dealer”). Note
also that corrupt parties may input an incorrect verification key for verifying
the authenticated inputs and shares. In this case, the MPC functionality will
partition the inputs according to the submitted verification key. Each party will
receive as output the evaluation of the functionality with respect to the inputs
of the set of parties who inputted the same verification key as it did.

4 Majority and n/2 + 1 Corruptions

We begin by presenting the protocol for computing n-party majority (Maj) in
Figs. 3 and 4. The protocol in Fig. 3 uses a secret sharing scheme for access
structure AR,R′,z,n′−z,2n, defined in Sect. 2. In the following, p is set to p = 8 ·
(3n/2 + 3).

Notation. Let T be the set of corrupted parties with corresponding input x,
where x is indexed by the elements of T . Let T = [n]\T be the set of uncorrupted
parties with corresponding input y, where y is indexed by the elements of T .
Let x :=

∑
i∈T xi and y :=

∑
i∈T yi. Let T ′ ⊆ T , |T ′| ≥ n/2 − 1 be the subset

of parties who do not submit valid inputs in Step 4. Let x+ =
∑

i∈T ′ xi, x− =∑
i∈T\T ′ xi.
Define f val

n1,n2
(x, y) where n1 + n2 = n, x ∈ {0, . . . , n1}, y ∈ {0, . . . , n2} and

val ∈ {0, . . . , 2} to be the function that outputs 1 if x + y + val ≥ n/2 + 1
and outputs 0 otherwise. If val = 0, we sometimes abbreviate by fn1,n2(x, y) =
f val

n1,n2
(x, y). Let Mf val

n1,n2
be the truth table corresponding to f val

n1,n2
. Define the

distribution XReal,m to be the uniform distribution over {0, . . . , m}.
Let a be a vector of length 4n + 12, indexed by tuples (R′, n′, z), where

R′ ⊆ R = {1, 2, 3}, n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}. On input x,
We define a function φ(x) that outputs a set of triples (R′, n′, z), such that
(R′, n′, z) ∈ φ(x) if there exists a subset W ⊆ T of size |W | = n′ such that
W ∩ R = R′ and a subset W ′ ⊆ T of size |W ′| = n′ such that z =

∑
i∈W ′ xi.

For any set T of size |T | ≤ n/2 + 1 and input x ∈ {0, 1}|T |, |φ(x)| is at most

3 We require an identifiable abort property to allow elimination of abort-
ing/misbehaving parties and restarting of the protocol. Similar properties were
needed in the work of [21]. They required secure computation with designated abort:
If the output of the protocol is ⊥, the parties restart without the lowest indexed
party. Also, if the protocol outputs a set S (indicating those parties whose inputs
were inconsistent), the set S is eliminated.
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Fig. 3. Fair, efficient, multiparty computation of Maj with n parties and n/2 + 1 or
fewer corruptions.

Fig. 4. Reconstruction functionality with respect to p sets of secret shares.
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a constant, deg, where deg ≤ 3 · 8 · 3 = 48. Define a0 (resp. a1) such that all
indeces in φ(x) are set to 0 (resp. 1) and all other indeces are set to ⊥.

For (R′, n′, z) ∈ φ(x), define pR′,n′,z(x) := Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1]
and pR′,n′,z(x) := 1 − pR′,n′,z(x). pR′,n′,z(x) denotes the probability that the
corrupt parties, using sets W,W ′ ⊆ T , where W ∩ R = R′, |W ′| = n′, and
z =

∑
i∈W ′ xi, reconstruct a 1. For (R′, n′, z) /∈ φ(x), define pR′,n′,z(x) := 1 and

pR′,n′,z(x) := 1.

Definition 1. We say that a setting of parameters (T, t,x, T ′, t′, x+, x−,a) is
valid if:

1. T ⊆ [n], n/2 − 1 ≤ |T | = t ≤ n/2 + 1.
2. T ′ ⊆ T , |T ′| = t′ ≥ n/2 − 1.
3. x ∈ {0, 1}|T |

4. x+ =
∑

i∈T ′ xi. x− =
∑

i∈T\T ′ xi,
5. Indeces of a in φ(x) are set to 0\1 and all other indeces are set to ⊥.

We say that a setting of parameters (T, t,x, T ′, t′, x+, x−) is valid if all the
above except (5) hold.

For every valid (T, t,x, T ′, t′, x+, x−), for k ∈ {0, . . . , n − t}, define the prob-
abilities px−,t,t′

y=k := Prx̂∼XReal,t′}[fx−
t′,n−t(x̂, y = k) = 1]. px−,t,t′

y=k corresponds to
the probability the honest parties output a 1 in the Real execution in rounds
prior to the designated round r∗, when the combined input of the honest parties
is y = k, the input of the t′ aborting parties is chosen from XReal,t′ , and the
input of the (t − t′) corrupt but non-aborting parties is x−.

For every valid (T, t,x, T ′, t′, x+, x−), define the row vectors Qx+,x−,a0 =
(qx+,x−,a0

y=n−t , . . . , qx+,x−,a0
y=0 ) and Qx+,x−,a1 = (qx+,x−,a1

y=n−t , . . . , qx+,x−,a1
y=0 ) indexed by

k ∈ {0, . . . , n − t} as follows:

qx+,x−,a0
y=k =

⎧
⎨

⎩

px−,t,t′
y=k if fx−

t′,n−t(x
+, y = k) = 1

px−,t,t′
y=k +

α·px−,t,t′
y=k

(1−α)·∏(R′,n′,z)(p
R′,n′,z(x))

) if fx−
t′,n−t(x

+, y = k) = 0

qx+,x−,a1
y=k =

⎧
⎨

⎩

px−,t,t′
y=k if fx−

t′,n−t(x
+, y = k) = 0

px−,t,t′
y=k +

α·(px−,t,t′
y=k −1)

(1−α)·∏(R′,n′,z) pR′,n′,z(x)
) if fx−

t′,n−t(x
+, y = k) = 1

For every valid (T, t,x, T ′, t′,a, x+, x−), such that a /∈ {a0,a1}, define the
row vectors Qx+,x−,a = (qx+,x−,a

y=n−t , . . . , qx+,x−,a
y=0 ), indexed by k ∈ {0, . . . , n − t}

as follows: Qx+,x−,a = (px−,t,t′
y=n−t, . . . , p

x−,t,t′
y=0 ).

Intuition. qx+,x−,a
y=k corresponds to the probability that the Ideal honest par-

ties receive an output of 1, when the simulator chooses its input to the Ideal
functionality from distribution Xx+,x−,a

ideal,t′ ,in the case that the adversary aborts
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in a round prior to the designated round r∗, the honest parties collectively hold
input y = k, the aborting parties hold input x+, the corrupted but non-aborting
parties hold input x−, and the view of the adversary consists of a. Our goal
is to set the values of qx+,x−,a0

y=k so that the distributions in the Ideal and Real
world are identical. Note, however, that the simulator does not know the value
of y. Therefore, the simulator can only sample from a single probability distri-
bution for all possible values of y, denoted Xx+,x−,a

ideal,t′ , and we must ensure that

the resulting distribution over outputs, corresponding to Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

,

produces the desired values of Qx+,x−,a = (qx+,x−,a
y=n−t , . . . , qx+,x−,a

y=0 ).

In the upcoming theorem, we show that setting Qx+,x−,a = (qx+,x−,a
y=n−t , . . . ,

qx+,x−,a
y=0 ) as described above, yields identical distributions in the Ideal/Real

worlds. Then, we must show that there exists a probability vector Xx+,x−,a
ideal,t′

such that Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

We observe that in some cases finding Xx+,x−,a
ideal,t′ as above is easy. Specifi-

cally, for every valid (T, t,x, T ′, t′,a, x+, x−), and for a /∈ {a0,a1}, Xx+,x−,a
ideal,t′ =

Xreal,t′ satisfies Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Theorem 6. Assume that for every valid setting of parameters (T, t,x, T ′,
t′, x+, x−,a), there exists a probability vector Xx+,x−,a

ideal,t′ such that

Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Then the protocol in Fig. 3 securely computes Maj for any n = poly(λ) (s.t. n ≥ 8)
and |T | ≤ n/2 + 1 corruptions.

Proof. We begin with a description of the simulator Sim:

– Sim invokes A expecting its inputs x, as sent to the dealer.
– Sim samples r∗ from a geometric distribution with parameter α.
– For every r = 1 to r∗ − 1

• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and R′ ⊆ R, sam-
ple x̂ ∼ Xreal,n−n′ and set ar,R′,n′,z := fn′,n−n′(z, x̂). Secret share
each ar,R′,n′,z||0n using access structure AR,R′,z,n′−z,2n, producing shares
[s̃b,R′,n′,z,2n

i ]b∈{0,1},i∈[n]. Each party Pi ∈ T holding input b receives shares
[s̃b,R′,n′,z,2n

i ].
• Fix the resulting view a, consisting of the ar,R′,n′,z values that can be

reconstructed by the adversary holding input x.
• If n/2 − 1 parties abort, Sim simulates the ideal functionality F

th,n/2+1
Recon,S,p .

Recall that S′ ⊆ S submit valid inputs for F
th,n/2+1
Recon,S,p to Sim. Let T ′ =

[n] \ S′, where |T ′| = t′. Let x+ =
∑

i∈T ′ xi and x− =
∑

i∈T\T ′ xi. Sim

chooses x̂ ∼ Xx+,x−,a
Ideal,t′ and submits x̂ + x− to the ideal functionality,
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receiving out in return. Note that the set S enjoys an honest majority,
and so we can compute F

th,n/2+1
Recon,S,p with fairness and guaranteed output

delivery. Sim returns out as the output of F
th,n/2+1
Recon,S,p .

– For r = r∗
• Sim sends input x to the ideal functionality computing ft,n−t and receives

out = ft,n−t(x, y). For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and
R′ ⊆ R, set ar,R′,n′,z := out. Secret share each ar,R′,n′,z||0n using access
structure AR,R′,z,n′−z,2n, producing shares [s̃b,R′,n′,z,2n

i ]b∈{0,1},i∈[n]. Each
corrupt party Pi ∈ T holding input b receives shares [s̃b,R′,n′,z,2n

i ].
– For r > r∗

• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′} and R′ ⊆ R, set
ar,R′,n′,z := out. Secret share each ar,R′,n′,z||0n using access structure
AR,R′,z,n′−z,2n, producing shares [s̃b,R′,n′,z,2n

i ]b∈{0,1},v∈[n]. Each party Pi

holding input b receives shares [s̃b,R′,n′,z,2n
i ].

– Final share reconstruction. At this point, Sim holds the output out from the
ideal functionality. Furthermore, the same out will be reconstructed by any
set of parties of size n/2−1 or more that remain. Sim also obtains from A any
inputs to the functionality F

th,n/2+1
Recon,S,p in the last stage. It uses out to simulate

the output of the ideal functionality F
th,n/2+1
Recon,S,p . If some parties abort and the

remaining parties re-submit their inputs to the ideal functionality, Simf can
still use out to simulate the output each time.

In case the adversary aborts exactly at r∗, the simulator Sim sends the input
x to the trusted party, and so both parties receive ft,n−t(x, y), unlike the real
execution. Moreover, in case the adversary has aborted at round r < r∗, upon
viewing a at round i, the simulator Sim chooses input x̂ according to distribution
Xx+,x−,a

ideal,t′ and submits x̂ + x− to the ideal functionality.
We show that the joint distribution of the view of the adversary and the

output of the honest party is distributed identically in the hybrid and the
ideal executions. This is done easily in the case where n/2 − 1 or more par-
ties abort at some round r > r∗ (and thus, both parties receive the correct
output ft,n−t(x, y)). Now, we consider the case where r ≤ r∗. The view of the
adversary holding input x in the r-th round consists of: ar,R′,n′,z for all (R′, n′, z)
such that a(R′,n′,z) �= ⊥.

The view of the adversary until round i is distributed identically in both
executions. Thus, all that is left to show is that the view of the adversary in the
last round and the output of the honest party are distributed identically in both
executions. That is, we show that for every (a, b), where b ∈ {0, 1} and a is such
that all indeces in φ(x) are set to 0/1 and all other indeces are set to ⊥, it is
the case that:

Pr[(Viewr
hyb,Outhyb) = (a, b) | r ≤ r∗] = Pr[(Viewr

ideal,Outideal) = (a, b) | r ≤ r∗].
(4.1)

Formally, (Viewr
hyb,Outhyb) and (Viewr

ideal,Outideal) denote the entire view and
output in the hybrid and ideal execution. Note that Viewr

hyb,View
r
ideal actually
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consist of secret shares, whereas a denotes the reconstructed values for the
instances that can be opened by the adversary. We simplify our computations by
assuming that the views Viewr

hyb,View
r
ideal consist only of the values the adver-

sary can reconstruct given its set of shares, and not the shares themselves. Given
the “perfect privacy” property of sharing schemes (see [5]), if the probabilities
are the same with respect to the reconstructed values, then they will also be the
same with respect to the original view.

Implicit in our argument, is that—in the hybrid execution—the output b
of the honest parties in round r < rounds is independent of the view of the
adversary, represented by a. While this is trivially true in the two-party case, It
is not as obvious in our protocol, since when n/2 or n/2+1 parties are corrupted,
the adversary can open many instances of the secret sharing scheme. Specifically,
we must show that for the instance used in Step 4 to reconstruct—identified by
(R

′
, n − t′, ∗)—it is always the case that a(R

′
,n−t′,∗) = ⊥.

This will follow from the following property that is straightforward to check:

Property 1. Let t be the number of corruptions. If for some
(R1, n1, z1), (R2, n2, z2), a(R1,n1,z1) �= ⊥ and a(R2,n2,z2) �= ⊥ then

|R1 ∪ R2| + max(n1 − |R1|, n2 − |R2|) ≤ t.

Recall that the set of corrupted parties is denoted by T , and the set of
parties who abort and/or do not submit valid input in Step 4 is denoted T ′. Let
R′ = T ′ ∩ R. Let |T ′| = t′. Then parties reconstruct with S′ := T

′
, n′ = n − t′,

and R
′
= T

′ ∩ R. Note that {R′, R
′} form a partition of R. Note that corrupted

parties can open (R′, t′, ∗), while the parties in S′ can open (R
′
, n−t′, ∗). Assume

towards contradiction that the adversary can also open (R
′
, n − t′, ∗). Note that

(t′−|R′|)+(n−t′−|R′|) = n−|R| = n−3. Therefore, max(t′−|R′|, n−t′−|R′|) ≥
n/2 − 1. Thus,

|R′ ∪ R
′| + max(t′ − |R′|, n − t′ − |R′|) ≥ 3 + n/2 − 1 > n/2 + 1 ≥ t,

which contradicts Property 1.
We now show that Eq. (4.1) holds by considering all possible values for (a, b).

First, observe that

Pr[r = r∗ | r ≤ r∗] = α and Pr[r < i∗ | r ≤ i∗] = 1 − α.

In the following we will consider only valid parameter settings
(T, t,x, T ′, t′, x+, x−,a).

In case fx−
t′,n−t(x

+, y) = 0. Let a′ /∈ {a0,a1}. Let Sa′ be the set of positions in
a′ that are set to 0 and S′

a′ be the set of positions in a′ that are set to 1. a0,a1

are defined as before. For condensed notation, we let a0,a1,a
′ be indexed by

t = (R′, n′, z).
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View Real Ideal

(a0, 0) α · (1 − p
x−,t,t′
y ) + (1 − α)

∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) α + (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 0
y )

(a0, 1) α · p
x−,t,t′
y + (1 − α)

∏

t

(p
t
x) · p

x−,t,t′
y (1 − α)

∏

t

(p
t
x) · (qx+,x−,a 0

y )

(a ′, 0) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − q

x+,x−,a ′
y )

(a ′, 1) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (qx+,x−,a ′

y )

(a1, 0) (1 − α)
∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 1
y )

(a1, 1) (1 − α)
∏

t

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t

(p
t
x) · (qx+,x−,a 1

y )

In the table, we compute the probabilities of representative choices of (a, b)
in the Real and Ideal worlds:

It can be seen that for a′ /∈ {a0,a1} we get the following constraint:
qx+,x−,a′
y = px−,t,t′

y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx+,x−,a0
y = px−,t,t′

y +
α · px−,t,t′

y

(1 − α) · ∏
(R′,n′,z)(p

(R′,n′,z)
x )

)

and
qx+,x−,a1
y = px−,t,t′

y ,

which are satisfied according to our assumptions in the theorem.

In case fx−
t′,n−t(x

+, y) = 1. Let a′ /∈ {a0,a1}. Let Sa′ be the set of positions in
a′ that are set to 0 and S′

a′ be the set of positions in a′ that are set to 1. a0,a1

are defined as before. For condensed notation, we let a0,a1,a
′ be indexed by

t = (R′, n′, z).
In the table, we compute the probabilities of representative choices of (a, b)

in the Real and Ideal worlds:

View Real Ideal

(a0, 0) (1 − α)
∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 0
y )

(a0, 1) (1 − α)
∏

t

(p
t
x) · p

x−,t,t′
y (1 − α)

∏

t

(p
t
x)(q

x+,x−,a 0
y )

(a ′, 0) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − q

x+,x−,a ′
y )

(a ′, 1) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (qx+,x−,a ′

y )

(a1, 0) α · (1 − p
x−,t,t′
y ) + (1 − α)

∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 1
y )

(a1, 1) α · p
x−,t,t′
y + (1 − α)

∏

t

(p
t
x) · (px−,t,t′

y ) α + (1 − α)
∏

t

(p
t
x) · (qx+,x−,a 1

y )
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It can be seen that for a′ /∈ {a0,a1} we get the following constraint:
qx+,x−,a′
y = px−,t,t′

y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx+,x−,a1
y = px−,t,t′

y +
α · (px−,t,t′

y − 1)

(1 − α) · ∏
(R′,n′,z) p

(R′,n′,z)
x

)

and
qx+,x−,a0
y = px−,t,t′

y .

Since Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a , the above constraints are satisfied.

This concludes the proof of Theorem 6.
The following lemma concludes the analysis of the protocol in Fig. 3:

Lemma 1. There exists α = 1/poly(n) such that for every valid setting of
parameters (T, t,x, T ′, t′, x+, x−,a), there exists a probability vector Xx+,x−,a

ideal,t′

such that Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Proof. We begin by proving the lemma for the special case where t = n/2 + 1,
t′ = n/2 − 1 and x− = 1.

Define P
1,n/2+1,n/2−1
y = (p1,n/2+1,n/2−1

y=n/2−1 , . . . , p
1,n/2+1,n/2−1
y=0 ).

Note that the output of the function f1
n/2−1,n/2−1 is 1 in position [x, y] if the

sum of x+y ≥ n/2. In the following example we set n/2−1 = 3. The truthtable
of f1

n/2−1,n/2−1 is as follows:

y = 3 y = 2 y = 1 y = 0
x = 0 0 0 0 0
x = 1 1 0 0 0
x = 2 1 1 0 0
x = 3 1 1 1 0

And becomes the following in matrix form:

Mf1
n/2−1,n/2−1

=

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥
⎥
⎦

Since the final column of the matrix is all 0, we can simply remove it, since
p
1,n/2+1,n/2−1
y=0 = 0, qx+,1,a0

y=0 = 0, and qx+,1,a1
y=0 = 0. Thus, Mf1

n/2−1,n/2−1
denotes

the above matrix with the final column deleted.
For every valid (T, t = n/2 + 1,x, T ′, t′ = n/2 − 1, x+, x− = 1,a) we need

to find a vector s ∈ Rn/2−1 such that sMf1
n/2−1,n/2−1

= Qx+,1,a and the vector
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s = s0, . . . , sn/2−1 further needs to correspond to a probability distribution–
i.e. we require that

∑n/2−1
k=0 sk = 1. In addition, we require that each sk is

non-negative.
Let M+

f1
n/2−1,n/2−1

denote the matrix obtained when a column vector of 1’s is

concatenated with the matrix Mf1
n/2−1,n/2−1

. For the case n/2−1 = 3, we obtain
the following:

M+
f1
n/2−1,n/2−1

=

⎡

⎢
⎢
⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦

We need to find a setting of α, such that α = 1/poly(n) and such that the
unique solution for s, where sM+

f1
n/2−1,n/2−1

= (1||Qx,1,0,a) is non-negative. In

the following, we argue that by setting α sufficiently small, but still 1/poly(n)
(yielding a protocol with 1/α · ω(log(λ)) = poly(n, λ) rounds), we can find such
a solution.

We know there is a non-negative solution s to sM+
f1
n/2−1,n/2−1

=

(1||P 1,n/2+1,n/2−1
y ). In fact, the solution is simply s = ( 1

n/2 , . . . , 1
n/2 ), as this

is the distribution Xreal,t′=n/2−1 over inputs x̂ ∈ {0, . . . , n/2− 1} that produces
the real output distribution P

1,n/2+1,n/2−1
y . Note that s has distance at least

2/n from any vector with negative entries (since each coordinate of s has magni-
tude 2/n). If (1||Qx−1,1,a) = (1||P 1,n/2+1,n/2−1

y ) + w, where w is a vector with
magnitude at most d, we have that

(s+s′)M+

f1
n/2−1,n/2−1

= sM+

f1
n/2−1,n/2−1

+s′M+

f1
n/2−1,n/2−1

= (1||P 1,n/2+1,n/2−1
y )+w,

where
s′ = w(M+

f1
n/2−1,n/2−1

)−1.

Now, the matrix (M+
f1
n/2−1,n/2−1

)−1 has the following form:

(M+
f1
n/2−1,n/2−1

)−1 =

⎡

⎢
⎢
⎣

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤

⎥
⎥
⎦

In other words, the diagonal entries are set to 1, the second diagonal entries
are set to −1 and all other entries are set to 0. We upper bound the spectral
norm of (M+

f1
n/2−1,n/2−1

)−1 by
√

5 (see full version). Bounding the spectral norm

of (M+
f1
n/2−1,n/2−1

)−1 by
√

5 guarantees that since w has magnitude d, s′ has

magnitude at most d′ =
√

5 · d. By choosing d = 2√
5·n , we have that (s + s′)

has all non-negative entries. To ensure that w has magnitude at most d, it is
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sufficient to ensure that each coordinate of w = (1||Qx−1,1,a) − (1||P 1
y ) has

magnitude at most d/
√

n. This can be achieved by setting α ≤ 1/2 such that

2α
∏

(R′,n′,z) p
(R′,n′,z)
x

≤ d/
√

n and
2α

∏
(R′,n′,z)(p

(R′,n′,z)
x )

≤ d/
√

n. (4.2)

Now, both p
(R′,n′,z)
x and p

(R′,n′,z)
x must be at least 1/(n/2 + 2), since if they

are not identically 0 (resp. identically 1), then there is at least one value of
ŷ ∈ {0, . . . , n − n′} for which fn′,n−n′(z, ŷ) = 1 (resp. fn′,n−n′(z, ŷ) = 0) and
since n′ ≥ n/2 − 1, Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1] ≥ 1/(n/2 + 2) > 1/n
(resp. Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 0] ≥ 1/(n/2 + 2) > 1/n). Since, further-

more, |φ(x)| ≤ deg,
∏

(R′,n′,z) p
(R′,n′,z)
x ≥ 1/ndeg and

∏
(R′,n′,z)(p

(R′,n′,z)
x ) ≥

1/ndeg. Thus, (4.2) is achieved by setting α ≤ d
2ndeg+0.5 . Finally, plugging in

d = 2√
5·n , we have that α ≤ 1√

5ndeg+1.5 . This results in a number of rounds
ω(log(λ)) · 1/α, which is polynomial in the security parameter λ and in the
number of parties n.

We now formalize the argument for any setting of t = n/2 + 1, t′ = n/2 − 1
and x− = 1. In fact, we see that the only thing that changes in the argument is
M+

f1
n/2−1,n/2−1

. We must prove that M+

fx−
t′,n−t

is invertible and that the spectral

norm of (M+

fx−
t′,n−t

)−1 is bounded by
√

5.

In fact, we will show something slightly more general: For any m,n and any
threshold th, consider the function f th

m,n : {0, . . . ,m} × {0, . . . , n} defined as:
f th

m,n(x, y) = 1 iff x + y ≥ th. For non-triviality, we assume that th > 0 and that
m + n ≥ th. Consider the matrix Mfth

m,n
.

We begin by removing from Mfth
m,n

columns that are all 0. I.e. columns
y = k such that m + k < th. The number of columns removed is �0 := th − m,
if th − m ≥ 1 and 0 otherwise.

We next remove from Mfth
m,n

any columns (y = k) that are all 1 (this is ok

since in this case px+,x−
y=k = 1, qx+,x−,a0

y=k = 1, and qx+,x−,a1
y=k = 1, and since the

column will be added back at the end). Column y = k will be all 1 if k ≥ th.
The number of columns removed is �1 := n − th + 1, if n − th + 1 ≥ 1 and 0
otherwise.

Now, we will show that the number of columns remaining ((n + 1) − �1 − �0)
is at least one fewer than the number of rows (m + 1). The number of columns
remaining is

(n + 1) − �1 − �0 ≤ (n + 1) − (th − m) − (n − th + 1)
= n + 1 − th + m − n + th − 1 = m.

Furthermore, if m + 1 > (n + 1) − �1 − �0 + 1, then there must be two identical
rows, one of which can be removed. Therefore, after removing the columns,
removing duplicate rows and adding a column of 1’s, M+

fth
m,n

has the form of a
(non-singular) lower triangular matrix with 1’s in each lower triangular entry
and dimension (n + 2 − �1 − �0) × (n + 2 − �1 − �0).
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4.1 Implementing the Dealer and F
th,n/2+1
Recon,S,p

Implementing the Dealer proceeds almost the same as the case of n/2 or fewer
corruptions described in Sect. 3.1. The only differences are that we use a differ-
ent access structure for the inner/outer secret-sharing schemes. Specifically, in
round r, party Pj learns a share in a secret sharing scheme for access structure
AR,R′,n′−z,2n, for every R′ ⊆ R, n′ ∈ [n], z ∈ {0, . . . , n′} (we call these Pj ’s
shares of the inner secret-sharing scheme).

For each round, the shares of each party Pj are then shared in a special
2-out-of-2 secret-sharing scheme, where Pj gets one of the two shares (called the
mask). In addition, all parties (including Pj) receive shares in a n/2+2-out-of-n
Shamir secret-sharing scheme of the other share of the 2-out-of-2 secret sharing.
We call the resulting secret-sharing scheme the outer (n/2 + 2)-out-of-n scheme
(since n/2 + 1 parties and the holder of the mask are needed to reconstruct the
secret).

To implement ideal functionality F
th,n/2+1
Recon,S,p , when F

th,n/2+1
Recon,S,p is run in Step 4,

not all parties remaining in the sets S and S′ are necessarily honest. However,
our restriction on n ≥ 8 ensures that S and S′ contains an honest majority.
Therefore, F

th,n/2+1
Recon,S,p can be implemented with a fully secure protocol (with fair-

ness and guaranteed output delivery). When F
th,n/2+1
Recon,S,p is run in Step 5, there

may not be an honest majority, and the same approach from the previous section
(Sect. 3.1) works.
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