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Preface

The 18th Theory of Cryptography Conference (TCC 2020) was held virtually during
November 16–19, 2020. It was sponsored by the International Association for Cryp-
tologic Research (IACR). The general chair of the conference was Alessandra Scafuro.

TCC 2020 was originally planned to be co-located with FOCS 2020 in Durham,
North Carolina, USA. Due to the COVID-19 pandemic both events were converted into
virtual events, and were held on the same day at the same time. The authors uploaded
videos of roughly 20 minutes prior to the conference, and at the conference had a
10-minute window to present a summary of their work and answer questions. The
virtual event would not have been possible without the generous help of Kevin and Kay
McCurley, and we would like to thank them wholeheartedly.

The conference received 167 submissions, of which the Program Committee
(PC) selected 71 for presentation. Each submission was reviewed by at least four PC
members. The 39 PC members (including PC chairs), all top researchers in the field,
were helped by 226 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 71 accepted papers. The revisions
were not reviewed, and the authors bear full responsibility for the content of their
papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions.

This was the 7th year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Perfectly-Secure MPC with
Linear Communication Complexity” by Zuzana Trubini and Martin Hirt. The Award
Committee recognized this paper “for introducing hyper-invertible matrices to perfectly
secure multiparty computation, thus enabling significant efficiency improvements and,
eventually, constructions with minimal communication complexity.”

We are greatly indebted to many people who were involved in making TCC 2020 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro and the TCC Steering Committee.

October 2020 Rafael Pass
Krzysztof Pietrzak
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Recursive Proof Composition
from Accumulation Schemes

Benedikt Bünz1, Alessandro Chiesa2, Pratyush Mishra2(B), and Nicholas Spooner2

1 Stanford University, Stanford, USA
benedikt@cs.stanford.edu

2 UC Berkeley, Berkeley, USA
{alexch,pratyush,nick.spooner}@berkeley.edu

Abstract. Recursive proof composition has been shown to lead to powerful prim-
itives such as incrementally-verifiable computation (IVC) and proof-carrying data
(PCD). All existing approaches to recursive composition take a succinct non-
interactive argument of knowledge (SNARK) and use it to prove a statement
about its own verifier. This technique requires that the verifier run in time sublin-
ear in the size of the statement it is checking, a strong requirement that restricts
the class of SNARKs from which PCD can be built. This in turn restricts the effi-
ciency and security properties of the resulting scheme.

Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to
recursive composition, and applied it to a particular SNARK construction which
does not have a sublinear-time verifier. However, they omit details about this
approach and do not prove that it satisfies any security property. Nonetheless,
schemes based on their ideas have already been implemented in software.

In this work we present a collection of results that establish the theoretical
foundations for a generalization of the above approach. We define an accumula-
tion scheme for a non-interactive argument, and show that this suffices to con-
struct PCD, even if the argument itself does not have a sublinear-time verifier.
Moreover we give constructions of accumulation schemes for SNARKs, which
yield PCD schemes with novel efficiency and security features.

Keywords: Succinct arguments · Proof-carrying data · Recursive proof
composition

1 Introduction

Proof-carrying data (PCD) [CT10] is a cryptographic primitive that enables mutually
distrustful parties to perform distributed computations that run indefinitely, while ensur-
ing that every intermediate state of the computation can be succinctly verified. PCD sup-
ports computations defined on (possibly infinite) directed acyclic graphs, with messages
passed along directed edges. Verification is facilitated by attaching to each message a
succinct proof of correctness. This is a generalization of the notion of incrementally-
verifiable computation (IVC) due to [Val08], which can be viewed as PCD for the path
graph (i.e., for automata). PCD has found applications in enforcing language semantics
[CTV13], verifiable MapReduce computations [CTV15], image authentication [NT16],
succinct blockchains [Co17,KB20,BMRS20], and others.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 1–18, 2020.
https://doi.org/10.1007/978-3-030-64378-2_1
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2 B. Bünz et al.

Recursive Composition. Prior to this work, the only known method for constructing
PCD was from recursive composition of succinct non-interactive arguments (SNARGs)
[BCCT13,BCTV14,COS20]. This method informally works as follows. A proof that
the computation was executed correctly for t steps consists of a proof of the claim “the
t-th step of the computation was executed correctly, and there exists a proof that the
computation was executed correctly for t − 1 steps”. The latter part of the claim is
expressed using the SNARG verifier itself. This construction yields secure PCD (with
IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness
property (i.e., is a SNARK). The efficiency and security properties of the resulting PCD
scheme correspond to those of a single invocation of the SNARK.

Limitations of Recursion. Recursion as realized in prior work requires proving a
statement that contains a description of the SNARK verifier. In particular, for effi-
ciency, we must ensure that the statement we are proving (essentially) does not grow
with the number of recursion steps t. For example, if the representation of the veri-
fier were to grow even linearly with the statement it is verifying, then the size of the
statement to be checked would grow exponentially in t. Therefore, prior works have
achieved efficiency by focusing on SNARKs which admit sublinear-time verification:
either SNARKs for machine computations [BCCT13] or preprocessing SNARKs for
circuit computations [BCTV14,COS20]. Requiring sublinear-time verification signifi-
cantly restricts our choice of SNARK, which limits what we can achieve for PCD.

In addition to the above asymptotic considerations, recursion raises additional con-
siderations concerning concrete efficiency. All SNARK constructions require that state-
ments be encoded as instances of some particular (algebraic) NP-complete problem, and
difficulties often arise when encoding the SNARK verifier itself as such an instance. The
most well-known example of this is in recursive composition of pairing-based SNARKs,
since the verifier performs operations over a finite field that is necessarily different
from the field supported “natively” by the NP-complete problem [BCTV14]. This type
of problem also appears when recursing SNARKs whose verifiers make heavy use of
cryptographic hash functions [COS20].

A New Technique. Bowe, Grigg, and Hopwood [BGH19] suggest an exciting novel
approach to recursive composition that replaces the SNARK verifier in the circuit with a
simpler algorithm. This algorithm does not itself verify the previous proof πt−1. Instead,
it adds the proof to an accumulator for verification at the end. The accumulator must
not grow in size. A key contribution of [BGH19] is to sketch a mechanism by which
this might be achieved for a particular SNARK construction. While they prove this
SNARK construction secure, they do not include definitions or proofs of security for
their recursive technique. Nonetheless, practitioners have already built software based
on these ideas [Halo19,Pickles20].

1.1 Our Contributions

In this work we provide a collection of results that establish the theoretical founda-
tions for the above approach. We introduce the cryptographic object, an accumulation
scheme, that enables this technique, and prove that it suffices for constructing PCD. We
then provide generic tools for building accumulation schemes, as well as several con-
crete instantiations. Our framework establishes the security of schemes that are already
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being used by practitioners, and we believe that it will simplify and facilitate further
research in this area.

Accumulation Schemes. We introduce the notion of an accumulation scheme for
a predicate Φ : X → {0, 1}. This formalizes, and generalizes, an idea outlined in
[BGH19]. An accumulation scheme is best understood in the context of the follow-
ing process. Consider an infinite stream q1, q2, . . . with each qi ∈ X . We augment this
stream with accumulators acci as follows: at time i, the accumulation prover receives
(qi, acci−1) and computes acci; the accumulation verifier receives (qi, acci−1, acci)
and checks that acci−1 and qi were correctly accumulated into acci (if not, the process
ends). Then at any time t, the decider can validate acct, which establishes that, for all
i ∈ [t], Φ(qi) = 1. All three algorithms are stateless. To avoid trivial constructions, we
want (i) the accumulation verifier to be more efficient than Φ, and (ii) the size of an
accumulator (and hence the running time of the three algorithms) does not grow over
time. Accumulation schemes are powerful, as we demonstrate next.

Recursion from Accumulation. We say that a SNARK has an accumulation scheme
if the predicate corresponding to its verifier has an accumulation scheme (so X is a set
of instance-proof pairs). We show that any SNARK having an accumulation scheme
where the accumulation verifier is sublinear can be used to build a proof-carrying
data (PCD) scheme, even if the SNARK verifier is not itself sublinear. This broadens
the class of SNARKs from which PCD can be built. Similarly to [COS20], we show
that if the SNARK and accumulation scheme are post-quantum secure, so is the PCD
scheme. (Though it remains an open question whether there are non-trivial accumula-
tion schemes for post-quantum SNARKs.)

Theorem 1 (informal). There is an efficient transformation that compiles any SNARK
with an efficient accumulation scheme into a PCD scheme. If the SNARK and its accu-
mulation scheme are zero knowledge, then the PCD scheme is also zero knowledge.
Additionally, if the SNARK and its accumulation scheme are post-quantum secure then
the PCD scheme is also post-quantum secure.

The above theorem holds in the standard model (where all parties have access to a
common reference string, but no oracles). Since our construction makes non-black-box
use of the accumulation scheme verifier, the theorem does not carry over to the random
oracle model (ROM). It remains an intriguing open problem to determine whether or
not SNARKs in the ROM imply PCD in the ROM (and if the latter is even possible).

Note that we require a suitable definition of zero knowledge for an accumulation
scheme. This is not trivial, and our definition is informed by what is required for
Theorem 1 and what our constructions achieve.

Proof-carrying data is a powerful primitive: it implies IVC and, further assuming
collision-resistant hash functions, also efficient SNARKs for machine computations.
Hence, Theorem 1 may be viewed as an extension of the “bootstrapping” theorem of
[BCCT13] to certain non-succinct-verifier SNARKs.

See Sect. 2.1 for a summary of the ideas behind Theorem 1, and the full version for
technical details.
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Accumulation from Accumulation. Given the above, a natural question is: where
do accumulation schemes for SNARKs come from? In [BGH19] it was informally
observed that a specific SNARK construction, based on the hardness of the discrete
logarithm problem, has an accumulation scheme. To show this, [BGH19] first observe
that the verifier in the SNARK construction is sublinear except for the evaluation of a
certain predicate (checking an opening of a polynomial commitment [KZG10]), then
outline a construction which is essentially an accumulation scheme for that predicate.

We prove that this idea is a special case of a general paradigm for building accumu-
lation schemes for SNARKs.

Theorem 2 (informal). There is an efficient transformation that, given a SNARK whose
verifier is succinct when given oracle access to a “simpler” predicate, and an accumu-
lation scheme for that predicate, constructs an accumulation scheme for the SNARK.
Moreover, this transformation preserves zero knowledge and post-quantum security of
the accumulation scheme.

The construction underlying Theorem 2 is black-box. In particular, if both the
SNARK and the accumulation scheme for the predicate are secure with respect to an
oracle, then the resulting accumulation scheme for the SNARK is secure with respect
to that oracle.

See Sect. 2.3 for a summary of the ideas behind Theorem 2, and the full version for
technical details.

Accumulating Polynomial Commitments. Several works [MBKM19,GWC19,
CHM+20] have constructed SNARKs whose verifiers are succinct relative to a spe-
cific predicate: checking the opening of a polynomial commitment [KZG10]. We prove
that two natural polynomial commitment schemes possess accumulation schemes in
the random oracle model: PCDL, a scheme based on the security of discrete logarithms
[BCC+16,BBB+18,WTS+18]; and PCAGM, a scheme based on knowledge assumptions
in bilinear groups [KZG10,CHM+20].

Theorem 3 (informal). In the random oracle model, there exist (zero knowledge) accu-
mulation schemes for PCDL and PCAGM that achieve the efficiency outlined in the table
below (n denotes the number of evaluation proofs, and d denotes the degree of commit-
ted polynomials).

Polynomial
commitment

Assumption Cost to check
evaluation proofs

Cost to check an
accumulation step

Cost to check final
accumulator

Accumulator
size

PCDL DLOG + RO Θ(nd) G mults. Θ(n log d) G mults. Θ(d) G mults. Θ(log d) G

PCAGM AGM + RO Θ(n) pairings Θ(n) G1 mults. 1 pairing 2 G1

For both schemes the cost of checking that an accumulation step was performed cor-
rectly ismuch less than the cost of checking an evaluation proof. We can apply Theorem 2
to combine either of these accumulation schemes for polynomial commitments with any
of the aforementioned predicate-efficient SNARKs, which yields concrete accumulation
schemes for these SNARKs with the same efficiency benefits.
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We remark that our accumulation scheme for PCDL is a variation of a construction
presented in [BGH19], and so our result establishes the security of a type of construction
used by practitioners.

We sketch the constructions underlying Theorem 3 in Sect. 2.4, and provide details
in the full version of our paper.

New Constructions of PCD. By combining our results, we (heuristically) obtain con-
structions of PCD that achieve new properties. Namely, starting from either PCDL or
PCAGM, we can apply Theorem 2 to a suitable SNARK to obtain a SNARK with an
accumulation scheme in the random oracle model. Then we can instantiate the random
oracle, obtaining a SNARK and accumulation scheme with heuristic security in the
standard (CRS) model, to which we apply Theorem 1 to obtain a corresponding PCD
scheme. Depending on whether we started with PCDL or PCAGM, we get a PCD scheme
with different features, as summarized below.

– From PCDL: PCD based on discrete logarithms. We obtain a PCD scheme in the
uniform reference string model (i.e., without secret parameters) and small argument
sizes. In contrast, prior PCD schemes require structured reference strings [BCTV14]
or have larger argument sizes [COS20]. Moreover, our PCD scheme can be effi-
ciently instantiated from any cycle of elliptic curves [SS11]. In contrast, prior PCD
schemes with small argument size use cycles of pairing-friendly elliptic curves
[BCTV14,CCW19], which are more expensive.

– From PCAGM: lightweight PCD based on bilinear groups. The recursive statement
inside this PCD scheme does not involve checking any pairing computations,
because pairings are deferred to a verification that occurs outside the recursive state-
ment. In contrast, the recursive statements in prior PCD schemes based on pairing-
based SNARKs were more expensive because they checked pairing computations
[BCTV14].

Note again that our constructions of PCD are heuristic as they involve instantiat-
ing the random oracle of certain SNARK constructions with an appropriate hash
function. This is because Theorem 3 is proven in the random oracle model, but
Theorem 1 is explicitly not (as is the case for all prior IVC/PCD constructions
[Val08,BCCT13,BCTV14,COS20]). There is evidence that this limitation might be
inherent [CL20].

Open Problem: Accumulation in the Standard Model. All known constructions of
accumulation schemes for non-interactive arguments make use of either random ora-
cles (as in our constructions) or knowledge assumptions (e.g., the “trivial” construction
from succinct-verifier SNARKs). A natural question, then, is whether there exist con-
structions of accumulation schemes for non-interactive arguments, or any other inter-
esting predicate, from standard assumptions, or any assumptions which are not known
to imply SNARKs. A related question is whether there is a black-box impossibility for
accumulation schemes similar to the result for SNARGs of [GW11].

1.2 Related Work

Below we survey prior constructions of IVC/PCD.
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PCD from SNARKs. Bitansky, Canetti, Chiesa, and Tromer [BCCT13] proved that
recursive composition of SNARKs for machine computations implies PCD for constant-
depth graphs, and that this in turn implies IVC for polynomial-time machine computa-
tions. From the perspective of concrete efficiency, however, one can achieve more effi-
cient recursive composition by using preprocessing SNARKs for circuits rather than
SNARKs for machines [BCTV14,COS20]; this observation has led to real-world appli-
cations [Co17,BMRS20]. The features of the PCD scheme obtained from recursion
depend on the features of the underlying preprocessing SNARK. Below we summarize
the features of the two known constructions.

– PCD from Pairing-based SNARKs. Ben-Sasson, Chiesa, Tromer, and Virza
[BCTV14] used pairing-based SNARKs with a special algebraic property to achieve
efficient recursive composition with very small argument sizes (linear in the secu-
rity parameter λ). The use of pairing-based SNARKs has two main downsides. First,
they require sampling a structured reference string involving secret values (“toxic
waste”) that, if revealed, compromise security. Second, the verifier performs opera-
tions over a finite field that is necessarily different from the field supported “natively”
by the statement it is checking. To avoid expensive simulation of field arithmetic, the
construction uses pairing-friendly cycles of elliptic curves, which severely restricts
the choice of field in applications and requires a large base field for security.

– PCD from IOP-based SNARKs. Chiesa, Ojha, and Spooner [COS20] used a holo-
graphic IOP to construct a preprocessing SNARK that is unconditionally secure in
the (quantum) random oracle model, which heuristically implies a post-quantum pre-
processing SNARK in the uniform reference string model (i.e., without toxic waste).
They then proved that any post-quantum SNARK leads to a post-quantum PCD
scheme via recursive composition. The downside of this construction is that, given
known holographic IOPs, the argument size is larger, currently at O(λ2 log2 N) bits
for circuits of size N .

IVC from Homomorphic Encryption. Naor, Paneth, and Rothblum [NPR19] obtain
a notion of IVC by using somewhat homomorphic encryption and an information-
theoretic object called an “incremental PCP”. The key feature of their scheme is that
security holds under falsifiable assumptions.

There are two drawbacks, however, that restrict the use of the notion of IVC that
their scheme achieves.

First, the computation to be verified must be deterministic (this appears neces-
sary for schemes based on falsifiable assumptions given known impossibility results
[GW11]). Second, and more subtly, completeness holds only in the case where inter-
mediate proofs were honestly generated. This means that the following attack may be
possible: an adversary provides an intermediate proof that verifies, but it is impossible
for honest parties to generate new proofs for subsequent computations. Our construction
of PCD achieves the stronger condition that completeness holds so long as intermediate
proofs verify, ruling out this attack.

Both nondeterministic computation and the stronger completeness notion (achieved
by all SNARK-based PCD schemes) are necessary for many of the applications of
IVC/PCD.
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2 Techniques

2.1 PCD from Arguments with Accumulation Schemes

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data
(PCD) from any succinct non-interactive argument of knowledge (SNARK) that has an
accumulation scheme. For the sake of exposition, in this section we focus on the special
case of IVC, which can be viewed as repeated application of a circuit F . Specifically,
we wish to check a claim of the form “FT (z0) = zT ” where FT denotes F composed
with itself T times.

Prior Work: Recursion from Succinct Verification. Recall that in previous
approaches to efficient recursive composition [BCTV14,COS20], at each step i we
prove a claim of the form “zi = F (zi−1), and there exists a proof πi−1 that attests
to the correctness of zi−1”. This claim is expressed using a circuit R which is the con-
junction of F with a circuit representing the SNARK verifier; in particular, the size of
the claim is at least the size of the verifier circuit. If the size of the verifier circuit grows
linearly (or more) with the size of the claim being checked, then verifying the final
proof becomes more costly than the original computation.

For this reason, these works focus on SNARKs with succinct verification, where the
verifier runs in time sublinear in the size of the claim. In this case, the size of the claim
essentially does not grow with the number of recursive steps, and so checking the final
proof costs roughly the same as checking a single step.

Succinct verification is a seemingly paradoxical requirement: the verifier does not
even have time to read the circuit R. One way to sidestep this issue is preprocessing:
one designs an algorithm that, at the beginning of the recursion, computes a small cryp-
tographic digest of R, which the recursive verifier can use instead of reading R directly.
Because this preprocessing need only be performed once for the given R in an offline
phase, it has almost no effect on the performance of each recursive step (in the later
online phase).

A New Paradigm: IVC from Accumulation. Even allowing for preprocessing, suc-
cinct verification remains a strong requirement, and there are many SNARKs that are
not known to satisfy it (e.g., [BCC+16,BBB+18,AHIV17,BCG+17,BCR+19]). Bowe,
Grigg, and Hopwood [BGH19] suggested a further relaxation of succinctness that
appears to still suffice for recursive composition: a type of “post-processing”. Their
observation is as follows: if a SNARK is such that we can efficiently “defer” the verifi-
cation of a claim in a way that does not grow in cost with the number of claims to be
checked, then we can hope to achieve recursive composition by deferring the verifica-
tion of all claims to the end.

In the remainder of this section, we will give an overview of the proof of Theorem 1,
our construction of PCD from SNARKs that have this “post-processing” property. We
note that this relaxation of requirements is useful because, as suggested in [BGH19], it
leads to new constructions of PCD with desirable properties (see discussion at the end
of Sect. 1.1). In fact, some of these efficiency features are already being exploited by
practitioners working on recursing SNARKs [Halo19,Pickles20].

The specific property we require, which we discuss more formally in the next
section, is that the SNARK has an accumulation scheme. This is a generalization of
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the idea described in [BGH19]. Informally, an accumulation scheme consists of three
algorithms: an accumulation prover, an accumulation verifier, and a decider. The accu-
mulation prover is tasked with taking an instance-proof pair (z, π) and a previous accu-
mulator acc, and producing a new accumulator acc� that “includes” the new instance.
The accumulation verifier, given ((z, π), acc, acc�), checks that acc� was computed
correctly (i.e., that it accumulates (z, π)) into acc). Finally the decider, given a sin-
gle accumulator acc, performs a single check that simultaneously ensures that every
instance-proof pair accumulated in acc verifies.1

Given such an accumulation scheme, we can construct IVC as follows. Given a
previous instance zi, proof πi, and accumulator acci, the IVC prover first accumulates
(zi, πi) with acci to obtain a new accumulator acci+1. The IVC prover also generates
a SNARK proof πi+1 of the claim: “zi+1 = F (zi), and there exist a proof πi and an
accumulator acci such that the accumulation verifier accepts ((zi, πi), acci, acci+1)”,
expressed as a circuit R. The final IVC proof then consists of (πT , accT ). The IVC
verifier checks such a proof by running the SNARK verifier on πT and the accumulation
scheme decider on accT .

Why does this achieve IVC? Throughout the computation we maintain the invariant
that if acci is a valid accumulator (according to the decider) and πi is a valid proof,
then the computation is correct up to the i-th step. Clearly if this holds at time T then
the IVC verifier successfully checks the entire computation. Observe that if we were
able to prove that “zi+1 = F (zi), πi is a valid proof, and acci is a valid accumulator”,
by applying the invariant we would be able to conclude that the computation is correct
up to step i+1. Unfortunately we are not able to prove this directly, for two reasons: (i)
proving that πi is a valid proof requires proving a statement about the argument verifier,
which may not be sublinear, and (ii) proving that acci is a valid accumulator requires
proving a statement about the decider, which may not be sublinear.

Instead of proving this claim directly, we “defer” it by having the prover accumu-
late (zi, πi) into acci to obtain a new accumulator acci+1. The soundness property of
the accumulation scheme ensures that if acci+1 is valid and the accumulation verifier
accepts ((zi, πi), acci, acci+1), then πi is a valid proof and acci is a valid accumula-
tor. Thus all that remains to maintain the invariant is for the prover to prove that the
accumulation verifier accepts; this is possible provided that the accumulation verifier is
sublinear.

From Sketch to Proof. In the full version of our paper, we give the formal details of our
construction and a proof of correctness. In particular, we show how to construct PCD, a
more general primitive than IVC. In the PCD setting, rather than each computation step
having a single input zi, it receives m inputs from different nodes. Proving correctness
hence requires proving that all of these inputs were computed correctly. For our con-
struction, this entails checking m proofs and m accumulators. To do this, we extend the
definition of an accumulation scheme to allow accumulating multiple instance-proof
pairs and multiple “old” accumulators.

We now informally discuss the properties of our PCD construction.

1 We remark that the notion of an accumulation scheme is distinct from the notion of a crypto-
graphic accumulator for a set (e.g., an RSA accumulator), which provides a succinct represen-
tation of a large set while supporting membership queries.
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– Efficiency requirements. Observe that the statement to be proved includes only the
accumulation verifier, and so the only efficiency requirement for obtaining PCD is
that this algorithm run in time sublinear in the size of the circuit R. This implies, in
particular, that an accumulator must be of size sublinear in the size of R, and hence
must not grow with each accumulation step. The SNARK verifier and the decider
algorithm need only be efficient in the usual sense (i.e., polynomial-time).

– Soundness. We prove that the PCD scheme is sound provided that the SNARK is
knowledge sound (i.e., is an adaptively-secure argument of knowledge) and the accu-
mulation scheme is sound (see Sect. 2.2 for more on what this means). We stress that
in both cases security should be in the standard (CRS) model, without any random
oracles (as in prior PCD constructions).

– Zero knowledge. We prove that the PCD scheme is zero knowledge, if the underly-
ing SNARK and accumulation scheme are both zero knowledge (for this part we
also formulate a suitable notion of zero knowledge for accumulation schemes as
discussed shortly in Sect. 2.2).

– Post-quantum security. We also prove that if both the SNARK and accumulation
scheme are post-quantum secure, then so is the resulting PCD scheme. Here by
post-quantum secure we mean that the relevant security properties continue to hold
even against polynomial-size quantum circuits, as opposed to just polynomial-size
classical circuits.

2.2 Accumulation Schemes

A significant contribution of this work is formulating a general notion of an accumu-
lation scheme. An accumulation scheme for a non-interactive argument as described
above is a particular instance of this definition; in subsequent sections we will apply the
definition in other settings.

We first give an informal definition that captures the key features of an accumulation
scheme. For clarity this is stated for the (minimal) case of a single predicate input q and
a single “old” accumulator acc; we later extend this in the natural way to n predicate
inputs and m “old” accumulators.

Definition 1 (informal). An accumulation scheme for a predicate Φ : X → {0, 1}
consists of a triple of algorithms (P,V,D), known as the prover, verifier, and decider,
that satisfies the following properties.

– Completeness: For all accumulators acc and predicate inputs q ∈ X , if D(acc) = 1
and Φ(q) = 1, then for acc� ← P(acc, q) it holds that V(acc, q, acc�) = 1 and
D(acc�) = 1.

– Soundness: For all efficiently-generated accumulators acc, acc� and predicate
inputs q ∈ X , if D(acc�) = 1 and V(acc, q, acc�) = 1 then, with all but negli-
gible probability, Φ(q) = 1 and D(acc) = 1.

An accumulation scheme for a SNARK is an accumulation scheme for the predicate
induced by the argument verifier; in this case the predicate input q consists of an
instance-proof pair (x, π). Note that the completeness requirement does not place any
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restriction on how the previous accumulator acc is generated; we require that complete-
ness holds for any acc the decider D determines to be valid, and any q for which the
predicate Φ holds. This is needed to obtain a similarly strong notion of completeness
for PCD, required for applications where accumulation is done by multiple parties that
do not trust one another.

Zero Knowledge. For our PCD application, the notion of zero knowledge for an accu-
mulation scheme that we use is the following: one can sample a “fake” accumulator
that is indistinguishable from a real accumulator acc�, without knowing anything about
the old accumulator acc and predicate input q that were accumulated in acc�. The exis-
tence of the accumulation verifier V complicates matters here: if the adversary knows
acc and q, then it is easy to distinguish a real accumulator from a fake one using V. We
resolve this issue by modifying Definition 1 to have the accumulation prover P produce
a verification proof πV in addition to the new accumulator acc�. Then V uses πV in
verifying the accumulator, but πV is not required for subsequent accumulation. In our
application, the simulator then does not have to simulate πV. This avoids the problem
described: even if the adversary knows acc and q, unless πV is correct, V can simply
reject, as it would for a “fake” accumulator. Our informal definition is as follows.

Definition 2. An accumulation scheme for Φ is zero knowledge if there exists an effi-
cient simulator S such that for all accumulators acc and inputs q ∈ X such that
D(acc) = 1 and Φ(q) = 1, the distribution of acc� when (acc�, πV) ← P(acc, q)
is computationally indistinguishable from acc� ← S(1λ).

Predicate Specification. The above informal definitions omit many important details;
we now highlight some of these. Suppose that, as required for IVC/PCD, we have some
fixed circuit R for which we want to accumulate pairs (xi, πi), where πi is a SNARK
proof that there exists wi such that R(xi,wi) = 1. In this case the predicate corre-
sponding to the verifier depends not only on the pair (xi, πi), but also on the circuit
R, as well as the public parameters of the argument scheme pp and (often) a random
oracle ρ.

Moreover, each of these inputs has different security and efficiency considerations.
The security of the SNARK (and the accumulation scheme) can only be guaranteed
with high probability over public parameters drawn by the generator algorithm of the
SNARK, and over the random oracle. The circuit R may be chosen adversarially, but
cannot be part of the input q because it is too large; it must be fixed at the beginning.

These considerations lead us to define an accumulation scheme with respect to both
a predicate Φ : U(∗) × ({0, 1}∗)3 → {0, 1} and a predicate-specification algorithm H.
We then adapt Definition 1 to hold for the predicate Φ(ρ, ppΦ, iΦ, ·) where ρ is a random
oracle, ppΦ is output by H, and iΦ is chosen adversarially. In our SNARK example,
H is equal to the SNARK generator, iΦ is the circuit R, and Φ(ρ, pp, R, (x, π)) =
Vρ(pp, R,x, π).

Remark 1 (helped verification). We compare accumulation schemes for SNARKs with
the notion of “helped verification” [MBKM19]. In a SNARK with helped verification,
an untrusted party known as the helper can, given n proofs, produce an auxiliary proof
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that enables checking the n proofs at lower cost than that of checking each proof indi-
vidually. This batching capability can be viewed as a special case of accumulation, as
it applies to n “fresh” proofs only; there is no notion of batching “old” accumulators. It
is unclear whether the weaker notion of helped verification alone suffices to construct
IVC/PCD schemes.

2.3 Constructing Arguments with Accumulation Schemes

A key ingredient in our construction of PCD is a SNARK that has an accumulation
scheme (see Sect. 2.1). Below we summarize the ideas behind Theorem 2, by explaining
how to construct accumulation schemes for SNARKs whose verifier is succinct relative
to an oracle predicate Φ◦ that itself has an accumulation scheme.

Predicate-Efficient SNARKs. We call a SNARK ARG predicate-efficient with respect
to a predicate Φ◦ if its verifier V operates as follows: (i) run a fast “inner” verifier Vpe

to produce a bit b and query set Q; (ii) accept iff b = 1 and for all q ∈ Q, Φ◦(q) = 1. In
essence, V can be viewed as a circuit with “oracle gates” for Φ◦.2 The aim is for Vpe to
be significantly more efficient than V; that is, the queries to Φ◦ capture the “expensive”
part of the computation of V .

As noted in Sect. 1.1, one can view recent SNARK constructions [MBKM19,
GWC19,CHM+20] as being predicate-efficient with respect to a “polynomial commit-
ment” predicate. We discuss how to construct accumulation schemes for these predi-
cates below in Sect. 2.4.

Accumulation Scheme For Predicate-Efficient SNARKs. Let ARG be a SNARK that
is predicate-efficient with respect to a predicate Φ◦, and let AS◦ be an accumulation
scheme for Φ◦. To check n proofs, instead of directly invoking the SNARK verifier
V , we can first run Vpe n times to generate n query sets for Φ◦, and then, instead of
invoking Φ◦ on each of these sets, we can accumulate these queries using AS◦. Below
we sketch the construction of an accumulation scheme ASARG for ARG based on this
idea.

To accumulate n instance-proof pairs [(xi, πi)]ni=1 starting from an old accumulator
acc, the accumulation prover ASARG.P first invokes the inner verifier Vpe on each (xi, πi)
to generate a query set Qi for Φ◦, accumulates their union Q = ∪n

i=1Qi into acc using
AS◦.P, and finally outputs the resulting accumulator acc�. To check that acc� indeed
accumulates [(xi, πi)]ni=1 into acc, the accumulation verifier ASARG.V first checks, for
each i, whether the inner verifier Vpe accepts (xi, πi), and then invokes AS◦.V to check
whether acc� correctly accumulates the query set Q = ∪n

i=1Qi. Finally, to decide
whether acc� is a valid accumulator, the accumulation scheme decider ASARG.D sim-
ply invokes AS◦.D.

From Sketch to Proof. The foregoing sketch omits details required to construct a
scheme that satisfies the “full” definition of accumulation schemes as stated in the full
version of our paper. For instance, as noted in Sect. 2.3, the predicate Φ◦ may be an
oracle predicate, and could depend on the public parameters of the SNARK ARG. We

2 This is not precisely the case, because the verifier is required to reject immediately if it ever
makes a query q with Φ◦(q) = 0.
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handle this by requiring that the accumulation scheme for Φ◦ uses the SNARK gen-
erator G as its predicate specification algorithm. We also show that zero knowledge
and post-quantum security are preserved. See the full version of our paper for a formal
treatment of these issues, along with security proofs.

From Predicate-Efficient SNARKs to PCD. In order to build an accumulation scheme
ASARG that suffices for PCD, ARG and AS◦ must satisfy certain efficiency properties.
In particular, when verifying satisfiability for a circuit of size N , the running time of
ASARG.V must be sublinear in N , which means in turn that the running times of Vpe

and AS◦.V, as well as the size of the query set Q, must be sublinear in N . Crucially,
however, AS◦.D need only run in time polynomial in N .

2.4 Accumulation Schemes for Polynomial Commitments

As noted in Sect. 2.3, several SNARK constructions (e.g., [MBKM19,GWC19,
CHM+20]) are predicate-efficient with respect to an underlying polynomial commit-
ment, which means that constructing an accumulation scheme for the latter leads (via
Theorem 2) to an accumulation scheme for the whole SNARK.

Informally, a polynomial commitment scheme (PC scheme) is a cryptographic prim-
itive that enables one to produce a commitment C to a polynomial p, and then to prove
that this committed polynomial evaluates to a claimed value v at a desired point z. An
accumulation scheme for a PC scheme thus accumulates claims of the form “C commits
to p such that p(z) = v” for arbitrary polynomials p and evaluation points z.

In this section, we explain the ideas behind Theorem 3, by sketching how to con-
struct (zero knowledge) accumulation schemes for two popular (hiding) polynomial
commitment schemes.

– In Sect. 2.4.1, we sketch our accumulation scheme for PCDL, a polynomial com-
mitment scheme derived from [BCC+16,BBB+18,WTS+18] that is based on the
hardness of discrete logarithms.

– In Sect. 2.4.2, we sketch our accumulation scheme for PCAGM, a polynomial com-
mitment scheme based on knowledge assumptions over bilinear groups [KZG10,
CHM+20].

In each case, the running time of the accumulation verifier will be sublinear in the
degree of the polynomial, and the accumulator itself will not grow with the number of
accumulation steps. This allows the schemes to be used, in conjunction with a suitable
predicate-efficient SNARK, to construct PCD.

We remark that each of our accumulation schemes is proved secure in the random
oracle model by invoking a useful lemma about “zero-finding games” for committed
polynomials. Security also requires that the random oracle used for an accumulation
scheme for a PC scheme is domain-separated from the random oracle used by the PC
scheme itself. See the full version for details.

2.4.1 Accumulation scheme for PCDL

We sketch our accumulation scheme for PCDL. For univariate polynomials of degree
less than d, PCDL achieves evaluation proofs of size O(λ log d) in the random oracle
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model, and assuming the hardness of the discrete logarithm problem in a prime order
group G. In particular, there are no secret parameters (so-called “toxic waste”). How-
ever, PCDL has poor verification complexity: checking an evaluation proof requires Ω(d)
scalar multiplications in G. Bowe, Grigg, and Hopwood [BGH19] suggested a way to
amortize this cost across a batch of n proofs. Below we show that their idea leads to an
accumulation scheme for PCDL with an accumulation verifier that uses only O(n log d)
scalar multiplications instead of the naive Θ(n · d), and with an accumulator of size
O(log d) elements in G.

Summary of PCDL. The committer and receiver both sample (consistently via the ran-
dom oracle) a list of group elements {G0, G1, . . . , Gd} ∈ G

d+1 in a group G of prime
order q (written additively). A commitment to a polynomial p(X) =

∑d
i=0 aiX

i ∈
F

≤d
q [X] is then given by C :=

∑d
i=0 aiGi. To prove that the committed polynomial

p evaluates to v at a given point z ∈ Fq, it suffices to prove that the triple (C, z, v)
satisfies the following NP statement:

∃ a0, . . . , ad ∈ F s.t. v =
∑d

i=0 aiz
i and C =

∑d
i=0 aiGi .

This is a special case of an inner product argument (IPA), as defined in [BCC+16],
which proves the inner product of two committed vectors. The receiver simply ver-
ifies this inner product argument to check the evaluation. The fact that the vector
(1, z, . . . , zd) is known to the verifier and has a certain structure is exploited in the
accumulation scheme that we describe below.

Accumulation Scheme for the IPA. Our accumulation scheme relies on a special
structure of the IPA verifier: it generates O(log d) challenges using the random ora-
cle, then performs cheap checks requiring O(log d) field and group operations, and
finally performs an expensive check requiring Ω(d) scalar multiplications. This latter
check asserts consistency between the challenges and a group element U contained in
the proof. Hence, the IPA verifier is succinct barring the expensive check, and so con-
structing an accumulation scheme for the IPA reduces to the task of constructing an
accumulation scheme for the expensive check involving U .

To do this, we rely on an idea of Bowe, Grigg, and Hopwood [BGH19], which
itself builds on an observation in [BBB+18]. Namely, letting (ξ1, . . . , ξlog2 d) be the
protocol’s challenges, U can be viewed as a commitment to the polynomial h(X) :=
∏log2(d)−1

i=0 (1+ξlog2(d)−iX
2i) ∈ F

≤d
q [X]. This polynomial has the special property that

it can be evaluated at any point in just O(log d) field operations (exponentially smaller
than its degree d). This allows transforming the expensive check on U into a check that
is amenable to batching: instead of directly checking that U is a commitment to h, one
can instead check that the polynomial committed inside U agrees with h at a challenge
point z sampled via the random oracle.

We leverage this idea as follows. When accumulating evaluation claims about mul-
tiple polynomials p1, . . . , pn, applying the foregoing transformation results in n checks
of the form “check that the polynomial contained in Ui evaluates to hi(z) at the point z”.
Because these are all claims for the correct evaluation of the polynomials hi at the same
point z, we can accumulate them via standard homomorphic techniques. We now sum-
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marize how we apply this idea to construct our accumulation scheme AS = (P,V,D)
for PCDL.

Accumulators in our accumulation scheme have the same form as the instances to
be accumulated: they are tuples of the form (C, z, v, π) where π is an evaluation proof
for the claim “p(z) = v” and p is the polynomial committed in C. For simplicity, below
we consider the case of accumulating one old accumulator acc = (C1, z1, v1, π1) and
one instance (C2, z2, v2, π2) into a new accumulator acc� = (C, z, v, π).

Accumulation prover P: compute the new accumulator acc� = (C, z, v, π) from the
old accumulator acc = (C1, z1, v1, π1) and the instance (C2, z2, v2, π2) as follows.

– Compute U1, U2 from π1, π2 respectively. As described above, these elements can
be viewed as commitments to polynomials h1, h2 defined by the challenges derived
from π1, π2.

– Use the random oracle ρ to compute the random challenge
α := ρ([(h1, U1), (h2, U2)]).

– Compute C := U1 +αU2, which is a polynomial commitment to p(X) := h1(X) +
αh2(X).

– Compute the challenge point z := ρ(C, p), where p is uniquely represented via the
tuple ([h1, h2], α).

– Construct an evaluation proof π for the claim “p(z) = v”. (This step is the only
expensive one.)

– Output the new accumulator acc� := (C, z, v, π).

Accumulation verifier V: to check that the new accumulator acc� = (C, z, v, π) was
correctly generated from the old accumulator acc = (C1, z1, v1, π1) and the instance
(C2, z2, v2, π2), first compute the challenges α and z from the random oracle as above,
and then check that (a) (C1, z1, v1, π1) and (C2, z2, v2, π2) pass the cheap checks of the
IPA verifier, (b) C = U1 + αU2, and (c) h1(z) + αh2(z) = v.

Decider D: on input the (final) accumulator acc� = (C, z, v, π), check that π is a
valid evaluation proof for the claim that the polynomial committed inside C evaluates
to v at the point z.

This construction achieves the efficiency summarized in Theorem 3.
We additionally achieve zero knowledge accumulation for the hiding variant of

PCDL. Informally, the accumulation prover randomizes acc� by including a new ran-
dom polynomial h0 in the accumulation step. This ensures that the evaluation claim in
acc� is for a random polynomial, thus hiding all information about the original evalu-
ation claims. To allow the accumulation verifier to check that this randomization was
performed correctly, the prover includes h0 in an auxiliary proof πV.

In the full version, we show how to extend the above accumulation scheme to accu-
mulate any number of old accumulators and instances. Our security proof for the result-
ing accumulation scheme relies on the hardness of zero-finding games, and the security
of PCDL.

2.4.2 Accumulation scheme for PCAGM

We sketch our accumulation scheme AS = (P,V,D) for PCAGM. Checking an evalua-
tion proof in PCAGM requires 1 pairing, and so checking n evaluation proofs requires n
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pairings. AS improves upon this as follows: the accumulation verifier V only performs
O(n) scalar multiplications in G1 in order to check the accumulation of n evaluation
proofs, while the decider D performs only a single pairing in order to check the result-
ing accumulator. This is much cheaper: it reduces the number of pairings from n to 1,
and also defers this single pairing to the end of the accumulation (the decider). In partic-
ular, when instantiating the PCD construction outlined in Sect. 2.1 with a PCAGM-based
SNARK and our accumulation scheme for PCAGM, we can eliminate all pairings from
the circuit being verified in the PCD construction.

Below we explain how standard techniques for batching pairings using random lin-
ear combinations [CHM+20] allow us to realize an accumulation scheme for PCAGM

with these desirable properties.

Summary of PCAGM. The committer key ck and receiver key rk for a given maximum
degree bound D are group elements from a bilinear group (G1,G2,GT , q,G,H, e):
ck := {G, βG, . . . , βDG} ∈ G

D+1
1 consists of group elements encoding powers of a

random field element β, while rk := (G,H, βH) ∈ G1 × G
2
2.

A commitment to a polynomial p ∈ F
≤D
q [X] is the group element C := p(β)G ∈

G1. To prove that p evaluates to v at a given point z ∈ Fq, the sender computes a
“witness polynomial” w(X) := (p(X)− v)/(X − z), and outputs the evaluation proof
π := w(β)G ∈ G1. The receiver can check this proof by checking the pairing equation
e(C − vG,H) = e(π, βH − zH). This pairing equation is the focus of our accumula-
tion scheme below. (This summary omits details about degree enforcement and about
hiding.)

Accumulation Scheme. We construct an accumulation scheme AS = (P,V,D) for
PCAGM by relying on standard techniques for batching pairing equations. Suppose that
we wish to simultaneously check the validity of n instances [(Ci, zi, vi, πi)]

n
i=1. First,

rewrite the pairing check for the i-th instance as follows:

e(Ci−viG,H) = e(πi, βH−ziH) ⇐⇒ e(Ci−viG+ziπi,H) = e(πi, βH) . (1)

After the rewrite, the G2 inputs to both pairings do not depend on the claim being
checked. This allows batching the pairing checks by taking a random linear combina-
tion with respect to a random challenge r := ρ([Ci, zi, vi, πi]

n
i=1) computed from the

random oracle, resulting in the following combined equation:

e(
∑n

i=1 ri(Ci − viG + ziπi),H) = e(
∑n

i=1 riπi, βH) . (2)

We now have a pairing equation involving an “accumulated commitment” C� :=∑n
i=1 ri(Ci − viG + ziπi) and an “accumulated proof” π� :=

∑n
i=1 riπi. This obser-

vation leads to the accumulation scheme below.
An accumulator in AS consists of a commitment-proof pair (C�, π�), which the

decider D validates by checking that e(C�,H) = e(π�, βH). Moreover, observe that
by Eq. (1), checking the validity of a claimed evaluation (C, z, v, π) within PCAGM corre-
sponds to checking that the “accumulator” (C −vG+ zπ, π) is accepted by the decider
D. Thus we can restrict our discussion to accumulating accumulators.

The accumulation prover P, on input a list of old accumulators [acci]ni=1 =
[(C�

i , π�
i )]

n
i=1, computes a random challenge r := ρ([acci]ni=1), constructs C� :=



16 B. Bünz et al.

∑n
i=1 riC�

i and π� :=
∑n

i=1 riπ�
i , and outputs the new accumulator acc� :=

(C�, π�) ∈ G
2
1. To check that acc� accumulates [acci]ni=1, the accumulation verifier

V simply invokes P and checks that its output matches the claimed new accumulator
acc�.

To achieve zero knowledge accumulation, the accumulation prover randomizes acc�

by including in it an extra “old” accumulator corresponding to a random polynomial,
which statistically hides the accumulated claims. To allow the accumulation verifier
to check that this randomization was performed correctly, the prover includes this old
accumulator in an auxiliary proof πV.

This construction achieves the efficiency summarized in Theorem 3.
In the full version of our paper, we show how to extend the above accumulation

scheme to account for additional features of PCAGM (degree enforcement and hiding).
Our security proof for the resulting accumulation scheme relies on the hardness of zero-
finding games (see full version).
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Abstract. Minimizing the computational cost of the prover is a central goal in
the area of succinct arguments. In particular, it remains a challenging open prob-
lem to construct a succinct argument where the prover runs in linear time and the
verifier runs in polylogarithmic time.

We make progress towards this goal by presenting a new linear-time proba-
bilistic proof. For any fixed ε > 0, we construct an interactive oracle proof (IOP)
that, when used for the satisfiability of an N -gate arithmetic circuit, has a prover
that uses O(N) field operations and a verifier that uses O(N ε) field operations.
The sublinear verifier time is achieved in the holographic setting for every circuit
(the verifier has oracle access to a linear-size encoding of the circuit that is com-
putable in linear time).

When combined with a linear-time collision-resistant hash function, our IOP
immediately leads to an argument system where the prover performs O(N) field
operations and hash computations, and the verifier performs O(N ε) field opera-
tions and hash computations (given a short digest of the N -gate circuit).

Keywords: Interactive oracle proofs · Tensor codes · Succinct arguments

1 Introduction

Succinct arguments are cryptographic proofs for NP in which the number of bits
exchanged between the argument prover and the argument verifier is much less than the
size of the NP witness (e.g., polylogarithmic in the size of the NP witness). Succinct
arguments originate in the seminal works of Kilian [Kil92] and Micali [Mic00], and
have now become the subject of intense study from theoreticians and practitioners, with
a great deal of effort invested in improving their asymptotic and concrete efficiency.

The main efficiency measures in a succinct argument are communication complex-
ity (the number of bits exchanged between the prover and the verifier), as well as the
running time of the prover and the running time of the verifier. Over the last decade
there has been much progress in improving the communication complexity and veri-
fier time for succinct arguments whose prover runs in quasilinear time. These advances
have, in particular, enabled real-world deployments of succinct arguments as part of
security systems where the succinct argument is used to certify correctness of certain
medium-size computations (e.g., [Ben+14]).

There are, however, exciting envisioned applications where the succinct argument
is used to prove the correctness of large-scale computations (see [OWWB20] and
c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 19–46, 2020.
https://doi.org/10.1007/978-3-030-64378-2_2
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references therein). While a proving time that is quasilinear is arguably asymptotically
efficient, the polylogarithmic overheads severely limit the sizes of computations that
can be supported in applications, because proving time quickly becomes a bottleneck.

This state of affairs motivates the fundamental problem of constructing linear-time
succinct arguments: succinct arguments where the prover runs in linear time and, ide-
ally, also where the verifier runs in sublinear (e.g., polylogarithmic) time. In this paper
we present new constructions that make progress on this problem.

Challenges. There are different approaches for constructing succinct arguments, yet
essentially all of them follow the same high-level pattern: first, arithmetize the com-
putation whose correctness is being proved; second, probabilistically check the arith-
metized problem via the help of cryptography. Typically, the first step alone already
costs more than linear time because it involves, in particular, encoding the computa-
tion as a polynomial, an operation that can be performed in quasilinear time thanks to
the Fast Fourier Transform (FFT) but is not believed to have a linear-time algorithm.
This means that many of the algebraic techniques that have proven useful to construct
succinct arguments seem inapplicable in the linear-time regime.

Prior Work. Few works achieve some form of succinct argument without using FFTs,
and none of them resolve the problem of constructing linear-time succinct arguments.
We briefly review these works below, and also compare their main features in Fig. 1
(alongside the arguments that we construct in this paper).

Several works [BCCGP16,BBBPWM18,WTSTW18,XZZPS19,Set20] forego the
use of FFTs by using homomorphic commitments to realize a “cryptographic arithme-
tization”, but in doing so also introduce quasilinear work in the cryptography. In some
works the quasilinear costs, due to the cryptography [XZZPS19] or an FFT [ZXZS20],
can be isolated to the witness of the non-deterministic computation and thereby achieve
linear work if the witness is sufficiently small; but, in general, the witness may be as
large as the computation.

While the above works achieve polylogarithmic communication complexity but
not linear-time proving, Bootle et al. [BCGGHJ17] achieve linear-time proving with
square-root communication complexity (and verification): an argument system for arith-
metic circuit satisfiability where, for an N -gate circuit, the prover performs O(N) field
operations and hash computations while the verifier performs O(

√
N) field operations

and hash computations, with a communication complexity of O(
√

N). Crucially, the
hash function is only required to be collision resistant, for which there are linear-
time candidates (e.g., assuming the intractability of certain shortest vector problems
[AHIKV17]), which leads to a linear-time prover.

Overall, the construction in [BCGGHJ17] remains the only argument system for NP
known to date where the prover runs in linear time and where communication complex-
ity is sublinear. Improving on the square-root communication complexity, and ideally
also the square-root verifier time, is an open problem.

Linear-time IOPs Suffice. The approach used by Bootle et al. [BCGGHJ17] to obtain
their linear-time argument system highlights a natural target for improvement, as we
now explain. First, they construct an interactive oracle proof (IOP) with prover time
tp = O(N), query complexity q = O(

√
N), and verifier time tv = O(

√
N). (An IOP

is a “multi-round PCP” [BCS16,RRR16], as wewill review later on.) Second, they apply



Linear-Time Arguments with Sublinear Verification from Tensor Codes 21

the “commit-then-open” paradigm of Kilian [Kil92], by using a collision-resistant hash
function to transform the IOP into an argument systemwhere communication complexity
isO(q · log N). In this latter step, if one can evaluate the hash function in linear time, the
resulting argument prover runs in time O(tp) and O(tv). We see here that, given linear-
time hash functions, the problem of constructing linear-time succinct arguments reduces
to constructing linear-time IOPs with small query complexity (and verifier time).

In other words, the target for improvement is the IOP. Our goal in this paper is
to construct an IOP with linear-time prover whose query complexity and verifier time
improve on the prior art, which would yield an argument system with corresponding
improvements. For example, improving query complexity to be polylogarithmic would
yield the first linear-time argument with polylogarithmic communication complexity.

We conclude here by noting that the above approach has the additional benefit of
being plausibly post-quantum, as the underlying linear-time hash function candidate is
based on a lattice problem [AHIKV17].

1.1 Our Results

We construct, for any fixed ε > 0, an argument system where the prover performs
O(N) field operations and hash computations, communication complexity is O(N ε),
and the verifier performs O(N ε) field operations and hash computations. We achieve
this by improving the state of the art in linear-time IOPs (see Fig. 2): our main result is a
public-coin IOP where, for any fixed ε > 0, the prover performs O(N) field operations,
query complexity is O(N ε), and the verifier performs O(N ε) field operations. These
costs are when proving the satisfiability of an N -gate arithmetic circuit defined over
any field of size Ω(N).1

In more detail, we focus on constructing protocols for rank-1 constraint satisfiability
(R1CS), a standard generalization of arithmetic circuits where the “circuit description”
is given by coefficient matrices.2

Definition 1 (informal). The R1CS problem asks: given a finite field F, coefficient
matrices A,B,C ∈ F

N×N each containing at most M = Ω(N) non-zero entries,
and an instance vector x over F, is there a witness vector w over F such that z :=
(x,w) ∈ F

N and Az ◦ Bz = Cz? (Here “◦” denotes the entry-wise product.)

Theorem 1 (informal). For every positive constant ε > 0, there is a public-coin holo-
graphic IOP for R1CS, over any field of size Ω(M), with the following parameters:

– round complexity is O(1/ε + log M);
1 The sublinear time of the argument verifier is achieved in the preprocessing setting, which
means that the verifier receives as input a short digest of the circuit that can be derived by
anyone (in linear time). Some form of preprocessing is necessary for sublinear verification
because the argument verifier just reading the circuit takes linear time. In turn, preprocessing
is enabled by the fact that our IOP is holographic, which means that the IOP verifier has
oracle access to a linear-size encoding of the circuit that is computable in linear time. See
[CHMMVW20,COS20] for more on how holography leads to preprocessing.

2 Recall that satisfiability of an N -gate arithmetic circuit is reducible, in linear time, to an R1CS
instance where the coefficient matrices are N × N and have O(N) non-zero entries.
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– proof length is O(M) elements in F;
– query complexity is O(M ε);
– the prover uses O(M) field operations; and
– the verifier uses O(M ε) field operations, given access to a linear-time encoding of
the coefficient matrices.

Our theorem directly follows from two results of independent interest. First, we
construct a proof protocol for R1CS with a linear-time prover, but in an intermediate
model that extends the type of queries that the verifier can make in an IOP. Second,
we efficiently “implement” this intermediate model via a standard IOP. We summarize
each of these two results below. The formal statement of Theorem 1 is given in the full
version of this paper .

We remark that our result, unlike many other results about efficient probabilistic
proofs, holds over any field F that is large enough (linear in M ) without requiring any
special structure (e.g., smooth subgroups).

(1) IOP with Tensor Queries for R1CS. We use the notion of a tensor IOP, which
is an IOP where the verifier can make tensor queries to the proof strings sent by the
prover, as opposed to just point queries as in a standard IOP. To make a tensor query to
one of the received proof strings, the verifier specifies a vector with prescribed tensor
structure and receives as answer the inner product of the tensor vector and proof string.

Definition 2 (informal). A (F, k, t)-tensor IOP modifies the notion of an IOP as fol-
lows: (a) the prover message in each round i is a string Πi in F

�i·kt

for some positive
integer �i; (b) a verifier query may request the value 〈a0 ⊗ a1 ⊗ · · · ⊗ at,Πi〉 for a
chosen round i and chosen vectors a0 ∈ F

�i and a1, . . . , at ∈ F
k.

The first part to our proof of Theorem 1 is a (F, k, t)-tensor IOP for R1CS with a
O(M)-time prover, constant query complexity, and a O(M1/t)-time verifier (who has
tensor-query access to the coefficient matrices).

Theorem 2 (informal). For every finite field F and positive integers k, t, there is a
(F, k, t)-tensor IOP for R1CS that supports coefficient matrices in FN×N with N = kt

and up to M = O(N) non-zero entries and has the following parameters:

– soundness error is O(M/|F|);
– round complexity is O(log N);
– proof length is O(N) elements in F;
– query complexity is O(1);
– the prover uses O(M) field operations; and
– the verifier uses O(M1/t) field operations, given tensor-query access to the coeffi-
cient matrices.

We sketch the ideas behind this result in two steps: in Sect. 2.4 we describe a ten-
sor IOP for R1CS achieving all efficiency parameters except that the verifier explic-
itly reads the coefficient matrices and uses O(M) field operations; then in Sect. 2.5
we describe how to extend this tensor IOP to the holographic setting, achieving a
sublinear verifier time when the verifier is granted tensor-query access to the coeffi-
cient matrices. The corresponding technical details are provided in the full version of
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this paper. From a technical perspective, our construction builds on tools from several
papers, such as linear-time scalar products in [BCGGHJ17], linear-time sumchecks in
[Tha13,XZZPS19], and linear-time look-ups in [Set20,GW20].

(2) From Tensor Queries to Point Queries. We prove that any tensor IOP can be
efficiently implemented as a standard IOP, by way of a subprotocol that “simulates”
tensor queries via a collection of point queries.

In more detail, we provide a transformation that receives as input a tensor IOP and
any linear code represented via a circuit for its encoding function, and produces as
output a point-query IOP that decides the same language as the tensor IOP up to an
additional soundness error.

The key efficiency feature of the transformation is that prover complexity is pre-
served up to the number of tensor queries, the code’s rate, and the code’s encoding time.
In particular, if the prover in the tensor IOP uses a linear number of field operations
and the verifier makes a constant number of tensor queries, and the code is linear-time
encodable, then the new prover in the standard IOP uses a linear number of field oper-
ations. In the following theorem, and throughout the paper, we use “Big O” notation
such as Oa(·), which means that the parameter a is treated as a constant.

Theorem 3 (informal). There is an efficient transformation that takes as input a
tensor-query IOP and a linear code, and outputs a point-query IOP that has related
complexity parameters, as summarized below.

– Input IOP: an (F, k, t)-tensor IOP with soundness error ε, round complexity rc, proof
length l, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv.

– Input code: a linear code C over F with rate ρ = k
n , relative distance δ = d

n , and
encoding time θ(k) · k.

– Output IOP: a point-query IOP with soundness error Oδ,t(ε) + O(dt/|F|), round
complexity Ot(rc), proof length Oρ,t(q · l), query complexity Ot(k · q), prover
arithmetic complexity tp + Oρ,t(q · l) · θ(k), and verifier arithmetic complexity
tv + Ot(k · q) · θ(k).

Moreover, the transformation preserves holography up to the multiplicative overhead θ
induced by the encoding function of C and factors that depend on ρ and t.

We stress that the only property of the code C used in the above transformation is that
it is linear over F, and in particular the code C need not be efficiently decodable, satisfy
the multiplication property (entry-wise multiplication of codewords is a codeword in a
related code), or even be systematic. We believe that developing techniques that work
with a wide range of codes will facilitate further IOP research. For example, known
linear-time encodable codes meeting the Gilbert–Varshamov bound are not systematic
[DI14]; also, efficient zero knowledge (not a goal in this paper) is typically achieved by
using non-systematic codes.

We sketch the ideas behind this result in Sect. 2.2 and 2.3. The technical details are
in the full version of this paper. From a technical perspective, our transformation builds
on ideas from several papers: the sumcheck protocol for tensor codes in [Mei13]; the
ILC-to-IOP compiler in [BCGGHJ17] that works with any linear code; the proximity
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Fig. 1. Comparison of several sublinear argument systems that do not use FFTs. The stated costs
are for the satisfiability of an N -gate arithmetic circuit over a cryptographically-large field F;
for argument systems that achieve sublinear verification we also report the cost to preprocess the
circuit. We report separate costs for field operations, group operations, and (collision-resistant)
hash invocations; ε is any positive constant and λ is the security parameter. Provers for argu-
ments in the top part of the table run in superlinear time. Indeed, O(N) exponentiations in G

result in ω(N) group operations: O(log |F| · N) group operations if performed naively, or else
O( log |F|

log log |F|+log N
· N) if using Pippenger’s algorithm [Pip80]. On the other hand, provers in the

bottom part of the table run in linear time. Indeed, as observed in [BCGGHJ17], by using the hash
functions of [AHIKV17] one can ensure that O(N) hash invocations are equivalent, up to con-
stants, to O(N) operations in F. The argument systems in [WTSTW18,XZZPS19] specifically
require the circuit to be arranged in layers; the reported costs are for a circuit with D layers of
width W , in which case N = D · W ; furthermore the term “O(D logW ) F-ops” in the verifier
cost assumes that the circuit is sufficiently uniform and, if not, increases to “O(N) F-ops” (i.e.,
linear in computation size).

Fig. 2. Comparison of known IOPs with a linear-time prover. The parameters are for an N -gate
arithmetic circuit defined over a field F of sizeΩ(N); and ε is any positive constant. The sublinear
verification in both cases is achieved in the holographic setting (the verifier has oracle access to
an encoding of the circuit).

test for the Reed–Solomon code in [BBHR18]; and the code-switching technique in
[RR20] for systematic linear codes.

2 Techniques

We summarize the main ideas behind our results. We begin by elaborating on our main
result, Theorem 1, which is a new protocol within a proof model called Interactive
Oracle Proof (IOP) [BCS16,RRR16].
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Recall that an IOP is a proof model in which a prover and a verifier interact over
multiple rounds, and in each round the prover sends a proof message and the verifier
replies with a challenge message. The verifier has query access to all received proof
messages, in the sense that it can query any of the proof messages at any desired loca-
tion. The verifier decides to accept or reject depending on its input, its randomness, and
answers to its queries. The main information-theoretic efficiency measures in an IOP
are proof length (total size of all proof messages) and query complexity (number of read
locations across all proof messages), while the main computational efficiency measures
are prover running time and verifier running time.

In this paper we study IOPs because they directly lead to corresponding succinct
arguments, via cryptography that introduces only constant computational overheads
(and in particular preserves linear complexity).3 Namely, following the paradigm of
Kilian [Kil92], any IOP can be “compiled” into a corresponding interactive argument
by using a collision-resistant hash function. The argument’s communication complex-
ity is O(q log l), where q and l are the query complexity and the proof length of the
IOP.4 Moreover, with a suitable choice of hash function (e.g., [AHIKV17]), the running
times of the argument prover and argument verifier are the same, up to multiplicative
constants, as those of the IOP prover and IOP verifier.5

The rest of this section summarizes the proof of Theorem 1. We proceed in three
steps. First, we describe an intermediate proof model called tensor IOPs; we elaborate
on this model in Sect. 2.1. Second, we devise a transformation that, using an arbi-
trary linear code, efficiently “implements” any tensor IOP as a point-query (standard)
IOP; this is our Theorem 3, and we discuss the transformation in Sect. 2.2 and 2.3.
Third, we construct a tensor IOP with linear-time prover, constant query complexity,
and sublinear-time verifier; this is our Theorem 2, and we discuss this construction in
Sect. 2.4 and 2.5.

2.1 IOPs with Tensor Queries

In this work we rely on an intermediate model, informally introduced in Definition 2,
called tensor IOPs. Below we briefly elaborate on why we introduce this model, and
also compare it with other existing models.

Point Queries are for Efficiency. The verifier in an IOP makes point queries to proof
messages received from the prover: the verifier may specify a round i and a location j

3 We stress that this is a non-trivial property, in the sense that other approaches to construct
succinct arguments introduce super-constant multiplicative overheads. For example, the trans-
formation from algebraic proofs to succinct arguments in [CHMMVW20] introduces a linear
number of exponentiations (which translates to a super-linear number of group operations).
These approaches seem unlikely to lead to linear-time succinct arguments, and hence we focus
on IOP-based succinct arguments.

4 The “big O” notation here hides a dependence on the output size of the collision-resistant hash
function.

5 We remark that the more restricted proof model of Probabilistically Checkable Proofs (PCPs)
also directly leads to a succinct argument with only constant computational overheads, how-
ever the problem of designing linear-time PCPs, with any non-trivial query complexity, seems
far beyond current techniques.
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and then receives as answer Πi[j] (the j-th value of the proof message Πi sent in round
i). Our main result (Theorem 1) is about point-query (standard) IOPs because, as we
explained, they lead to succinct arguments via constant computational overheads.

Beyond Point Queries. Researchers have studied variants of the IOP model where
the verifier makes other types of queries. For example, Boneh et al. [BBCGI19]
study linear IOPs, where the verifier may specify a round i and a vector q and then
receives as answer the linear combination 〈q,Πi〉, over a field F. These F-linear queries
are a “richer” class because linear combinations can, in particular, select out chosen
locations.

From the perspective of this paper, variants such as linear IOPs offer an opportunity
to reduce our goal (a certain point-query IOP) into two sub-problems. First, design an
efficient IOP with a richer class of queries. Second, devise a way to efficiently “imple-
ment” the rich class of queries via only point queries. The former becomes easier as
the class of queries becomes richer, while the latter becomes harder. Thus, the class of
queries should be chosen to balance the difficulty between the sub-problems, so that
both can be solved.

Tensor Queries. In this paper we do not use linear queries because we do not know how
to implement linear queries via point queries in the linear-time regime.6 Nevertheless,
we identify a rich-enough sub-class of linear queries for which we are able to solve both
of the aforementioned sub-problems: tensor queries. These types of linear combinations
were used in the sumcheck protocol for tensor codes [Mei13] and also to construct
IOPs with proof length approaching witness length [RR20] (the latter work defines an
intermediate model that, informally, is an IOP where the verifier is allowed a single
tensor query to the witness).

Informally, in a (F, k, t)-tensor IOP, the verifier may specify a round i and a list
(q0, q1, . . . , qt) and then receives as answer the linear combination 〈q0 ⊗ q1 ⊗ · · · ⊗
qt,Πi〉, where q1, . . . , qt ∈ F

k and the 0-th component q0 of the tensor vector may
be a vector of any length defined over F. The other t components must have fixed
lengths k. The fixed lengths impose a recursive structure that we will exploit, while the
free length accommodates proof messages of varying sizes. For simplicity, in the rest
of the technical overview, we will ignore the 0-th component, assuming that all proof
messages have the same length (kt elements in F).

We formalize the notion of a tensor IOP in the full version of this paper. In fact, we
formulate a more general notion of IOP where queries belong to a given query class
Q, which specifies which (possibly non-linear) functions of the proof messages are
“allowed”. Via suitable choices of Q, one can recover the notions of point-query IOPs,
linear IOPs, tensor IOPs, and more. Our definitions also account for features such as
holography and proximity (both used in this paper). We consider the formulation of
IOPs with special queries to be a definitional contribution of independent interest that
will help the systematic exploration of other query classes.
6 Bootle et al. [BCGGHJ17] show how to implement the Ideal Linear Commitment (ILC) model
in linear time, which is reminiscent of, but distinct from, the linear IOP model. As noted
in [BBCGI19], these are reducible to one another, but with losses in parameters. (Applying
the transformation of [BCGGHJ17] to an ILC protocol obtained from a linear IOP does not
preserve linear time.).
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2.2 From Tensor Queries to Point Queries

We discuss the main ideas behind Theorem 3, which provides a transformation that
takes as input an IOP with tensor queries and a linear code and outputs an IOP with
point queries that has related complexity parameters. (Details of the transformation can
be found in given in the full version.) The main challenge in designing this transfor-
mation is that we need to construct an IOP that efficiently simulates a strong class
of queries (tensor queries) by using only a weak class of queries (point queries) and
the linearity of the given code. Our transformation combines ideas from several works
[Mei13,BCGGHJ17,BBHR18,RR20], as we later explain in Remark 1.

Now we discuss our transformation. Below we denote by (P,V) the (F, k, t)-tensor
IOP that is given as input to the transformation. The other input to the transformation
is a linear code C over the field F with rate ρ = k/n and relative distance δ = d/n (the
code’s message length k and alphabet Fmatch parameters in the tensor IOP). We denote
by (P̂, V̂) the point-query IOP that we construct as output. This latter has three parts:
(1) a simulation phase; (2) a consistency test; and (3) a proximity test. We summarize
each in turn below.

Part 1: Simulation Phase. The new prover P̂ and new verifier V̂ simulate P and V,
mediating their interaction with two modifications. First, whenever P outputs a proof
string Π ∈ F

kt

that should be sent to V, P̂ sends to V̂ an encoded proof string Π̂ :=
Enc(Π) ∈ F

nt

, for an encoding function Enc: Fkt → F
nt

that we discuss shortly.
Second, wheneverV outputs a tensor query q1 ⊗· · ·⊗qt for one of the proof stringsΠi,
V̂ forwards this query (as a message) to P̂, who replies with a “short” proof message
that contains the answer 〈q1 ⊗ · · · ⊗ qt,Πi〉 ∈ F; then V̂ simply reads this value and
returns it to V as the query answer (so V̂ can continue simulating the execution of V).

Observe that if P̂ really answers each tensor query truthfully in the simulation then
V̂ inherits the soundness of V, because in this case the tensor IOP (P,V) is perfectly
simulated. However, a malicious P̂ need not answer each tensor query truthfully. The
goal of the consistency test and the proximity test (both described below) is to prevent
the prover P̂ from misbehaving. Namely, these additional parts of the point-query IOP
(P̂, V̂) will enable V̂ to check that the values received from P̂ as answers toV’s tensor
queries are consistent with the received (encoded) proof strings.

On the Encoding Function. The encoding function Enc used in the simulation phase
must be chosen to facilitate the design of the consistency proximity tests. We choose
Enc: Fkt → F

nt

to be the encoding function of the t-wise tensor product C⊗t of the
“base” linear code C, where t matches the parameter in the tensor IOP. The function
Enc is derived from the encoding function enc: Fk → F

n of C. Completeness and
soundness of (P̂, V̂) will ultimately work for any linear code C. Crucially to our results
on linear-time protocols, prior work [DI14] provides linear-time encodable codes with
constant rate over any field F, ensuring that Enc is computable in linear time when t is
a constant. Such codes achieving the best known parameters are non-systematic.

Checking the Simulation Phase. In the simulation phase, P̂ has sent several words
Π̂1, . . . , Π̂� ∈ F

nt

that allegedly are codewords in the tensor code C⊗t ⊆ F
nt

, in which
case they encode some proof strings Π1, . . . , Π� ∈ F

kt

. Moreover, P̂ has also claimed
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that a list of values (vq)q∈Q are the answers to a corresponding list of tensor queries Q;
namely, if q = (i, q1, . . . , qt) then vq = 〈q1 ⊗ · · · ⊗ qt,Πi〉.

Informally, we seek a sub-protocol for V̂ with the following guarantee: (1) if there
is a word Π̂i that is far from C⊗t then V̂ rejects with high probability; (2) if all words
Π̂1, . . . , Π̂� are close to C⊗t but one of the answers is inconsistent with the underly-
ing (unique) encoded messages then V̂ also rejects with high probability. A technical
contribution of this paper is the design and analysis of such a sub-protocol.

Our sub-protocol is a black-box combination of a consistency test and a proximity
test. In the consistency test, the prover P̂ sends, in one round, proof strings that are
partial computations of all the tensor queries, and the verifier V̂ leverages these to
check that the answers to tensor queries are correct. The consistency test assumes that
all proof strings are close to certain tensor codes and so, in the proximity test, the prover
P̂ and the verifier V̂ interact, over t rounds, in a protocol whose goal is to ensure that all
received proof strings are close to the appropriate codes. We now provide more details
for each of the two tests.

Part 2: Consistency Test. For simplicity of exposition, we describe the consistency
test for the simple case where there is a single tensor query or, more generally, a single
“extended” tensor query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F

�·kt

to the “stacking” of all proof
strings. Namely, P̂ claims that the stacked word Π̂ := Stack(Π̂1, . . . , Π̂�) ∈ F

�·nt

can
be decoded to some stacked proof string Π := Stack(Π1, . . . , Π�) ∈ F

�·kt

such that
v = 〈q0 ⊗ q1 ⊗ · · · ⊗ qt,Π〉.7 Below we view Π as a function Π : [�] × [k]t → F, and
Π̂ as a function Π̂ : [�] × [n]t → F.

In the special case where the code C is systematic, the sumcheck protocol for tensor
codes [Mei13,RR20] would yield a consistency test that “evaluates” one component
of the tensor query at a time. For the general case, where C can be any linear code,
we provide a consistency test that consists of a sumcheck-like protocol applied to the
“interleaving” of tensor codes. While it is convenient to present the main ideas behind
the prover algorithm by speaking of decoding (whose cost may exceed our linear-time
goal), we stress that the prover need only perform efficient encoding operations. We
will denote by (C⊗t)� the �-wise interleaving of the code C⊗t, where a single symbol
of (C⊗t)� is the concatenation of � symbols of C⊗t-codewords.

Proof messages. For each r ∈ [t], the prover P̂ computes and sends words {cr : [k] ×
[n]t−r → F}r∈[t] where cr is allegedly an interleaved codeword in (C⊗t−r)k. Intu-

itively, c1, . . . , ct will help V̂ perform the consistency check that the value v ∈ F is the
answer to the tensor query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F

�·kt

.

– For r = 1, the word c1 ∈ (C⊗t−1)k is derived from Π̂ ∈ C⊗t via a “fold-then-
decode” procedure, which uses the component q0 ∈ F

� of the tensor query. For
γ ∈ F

�, we denote by Fold(Π̂; γ) : [n]t → F the function
∑�

i=1 γi · Π̂i (sum the
values of Π̂ : [�] × [n]t → F over the domain [�] with coefficients determined by
γ). Then, c1 ∈ (C⊗t−1)k is obtained by partially decoding Fold(Π̂; q0) (by viewing

7 Extended tensor queries capture tensor queries to specific proof strings: for any desired i ∈ [�],
one can choose q0 ∈ F

� to be all zeros except for a 1 in the i-th entry so that 〈q0 ⊗ q1 ⊗ · · · ⊗
qt, Π〉 = 〈q1 ⊗ · · · ⊗ qt, Πi〉.
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the values of Fold(Π̂; q0) : [n]t → F over the first component [n] of its domain as
C-codewords, and decoding them).

– For each subsequent r ∈ {2, . . . , t}, the word cr is derived via a similar procedure
from cr−1 and the component qr−1 ∈ F

k of the tensor query. Namely, cr is the code-
word in (C⊗t−r)k obtained by partially decoding Fold(cr−1; qr−1) ∈ C⊗t−(r−1)

over the first component of its domain as above.

Each round reduces the rank by 1 and, in the last round, the word ct is a fully decoded
message vector in Fk. The tensor query answer 〈q0 ⊗ q1 ⊗· · ·⊗ qt,Π〉 is the successive
folding of Π by components q0, . . . , qt. The r-th message cr is an encoding in C⊗t−r

of Π after it has been folded up to the r-th component by q0, . . . , qr.

Query phase. The verifier V̂ tests the expected relation between messages across rounds
at a random point, and that the execution is consistent with the claimed answer value v.
Namely, since each round’s messages are expected to be partial decodings of foldings
of the prior round’s messages, for an honest prover P̂ the following equations relate
words across rounds:

– for r = 1, enc(c1) = Fold(Π̂; q0);
– for each r ∈ {2, . . . , t}, enc(cr) = Fold(cr−1; qr−1).

Above, enc is the encoding function for the base linear code C applied to the first coor-
dinate of a function with domain [k] × [n]t−r (for some r), and the identity on all other
coordinates.

The above equations motivate a natural consistency test for the verifier. Namely, V̂
samples a random tuple (j1, . . . , jt) ∈ [n]t and checks all of the relevant equations at
this tuple:

– for r = 1, enc(c1)(j1, . . . , jt) = Fold(Π̂; q0)(j1, . . . , jt);
– for each r ∈ {2, . . . , t}, enc(cr)(jr, . . . , jt) = Fold(cr−1; qr−1)(jr, . . . , jt).

To compute, e.g., Fold(cr−1, ; qr−1)(jr, . . . , jt) and enc(cr)(jr, . . . , jt), V̂ makes k
queries to cr−1 and cr.

Finally, V̂ checks consistency with the answer value v via the equation v =
Fold(ct; qt).

These consistency checks guarantee that when Π̂ , c1, . . . , ct−1 are all codewords
in their respective codes, then they encode consistent partial computations of the tensor
query q0 ⊗ q1 ⊗ · · · ⊗ qt ∈ F

�·kt

on the message Π ∈ F
�·kt

encoded in Π̂ ∈ F
�·kt

.
However, we must ensure that V̂ will reject in the case that any of Π̂ , c1, . . . , ct−1 are
far from being codewords. This will be guaranteed by our proximity test.

Part 3: Proximity Test. We discuss the proximity test, again for the simple case of a
single tensor query. In the simulation phase the prover P̂ has sent words Π̂1, . . . , Π̂�

allegedly in C⊗t; this means that Π̂ := Stack(Π̂1, . . . , Π̂�) is allegedly in (C⊗t)�. In the
consistency test the prover P̂ has sent words c1, . . . , ct where cr allegedly is in (C⊗t−r)k.
The proximity test will ensure that all these words are close to the respective codes.

A reasonable starting point to design such a test is to remember that tensor codes
are locally testable [BS06,Vid15,CMS17]: if a word c is Δ-far from C⊗t then a random
axis-parallel line of c fails to be a codeword in C with probability proportional to Δ.
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Since we wish to test interleaved tensor codewords, a natural strategy is to apply the
axis-parallel test to a random linear combination of the tested words. This strategy
does produce a proximity test, but has two drawbacks. First, a calculation shows that
the query complexity is non-trivial only for t > 2, while we will design a test that
is non-trivial for t > 1.8 Second, the axis-parallel test has poor tradeoffs between
query complexity and soundness error.9 Hence we take a different approach inspired
by the proximity test for the Reed–Solomon code in [BBHR18]; at a modest increase
in proof length, our test will work for any t > 1 (and thereby subsume the prior work
in [BCGGHJ17]) and will have better query-soundness tradeoffs.

We now describe our proximity test, which has t rounds of interaction, followed by
a query phase.

Interactive Phase. In round r ∈ [t], V̂ sends to P̂ random challenges αr, βr ∈ F
k,

and P̂ replies with a word dr : [k] × [n]t−r → F (computed as described below) that
is allegedly a codeword in (C⊗t−r)k. Intuitively, for r ∈ [t − 1], the word dr will be
close to a codeword in C⊗t−r if and only if cr−1 and dr−1 are both close to codewords
in C⊗t−(r−1), up to a small error probability.

– In the first round, the word d1 is derived from Π̂ via the same “fold-then-decode”
procedure that we have already seen. This time, the folding procedure uses the ran-
dom challenge α1 ∈ F

�. Then, d1 is the codeword in (C⊗t−1)k obtained by partially
decoding Fold(Π̂;α1) ∈ C⊗t.

– In each subsequent round r = 2, . . . , t, the word dr is derived via a similar procedure
from cr−1 and dr−1, and the random challenges αr, βr ∈ F

k. Namely, dr is the
codeword in (C⊗t−r)k obtained by partially decoding Fold(cr−1, dr−1;αr, βr) ∈
C⊗t−(r−1).

Each round reduces the rank of the tensor code and, in the last round (when r = t), the
words ct and dt are fully decoded message vectors in F

k.

Query Phase. The verifier V̂ tests the expected relation between messages across rounds
at a random point. Since each round’s messages are expected to be partial decodings of
foldings of the prior round’s messages, for an honest prover P̂ the following equations
relate words across rounds:

– for r = 1, enc(d1) = Fold(Π̂;α1);
– for each r ∈ {2, . . . , t}, enc(dr) = Fold(cr−1, dr−1;αr, βr).

As in the consistency test, the above equations motivate natural checks for the veri-
fier. Namely, V̂ samples a random tuple (j1, . . . , jt) ∈ [n]t and checks all of the relevant
equations at this tuple:

8 Query complexity for the strategy using local testing would be O((� + kt) · n), while that for
our test will be O(� + kt).

9 Let δ = d/n be the relative distance of C. By incurring a multiplicative increase of λ in query
complexity, the strategy using local testing gives a soundness error of, e.g., O(dt/|F|) + (1 −
δO(t) · Δ)λ when applied to an input of distance Δ from C⊗t. In contrast, the test in this work
will give a soundness error that is (approximately) O(dt/|F|) + (1 − Δ)λ.
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– for r = 1, enc(d1)(j1, . . . , jt) = Fold(Π̂;α1)(j1, . . . , jt);
– for each r ∈ {2, . . . , t}, enc(dr)(jr, . . . , jt) = Fold(cr−1, dr−1;αr, βr)

(jr, . . . , jt).

Similarly to before, to obtain the values needed to perform these checks, V̂ makes �
point queries to Π̂ and k point queries to cr and dr for each r ∈ [t − 1].

Efficiency. The tensor IOP (P,V) given as input to the transformation has proof
length l, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv. Now we discuss the main information-theoretic efficiency measures of
the constructed point-query IOP (P̂, V̂).

– Proof length is Oρ,t(q · l). Indeed, in the simulation phase P̂ encodes and sends
all the proof strings produced by P, increasing the number of field elements from
l = � · kt to � · nt = nt

kt · � · kt = ρ−t · l. (Plus the q answers to the q tensor

queries.) Moreover, in the consistency and proximity tests, P̂ sends, for each of the
q queries, O(nt) field elements in total across t rounds. The sum of these is bounded
by O(ρ−t · q · l).

– Query complexity is O(� + t · k · q). In the simulation phase, V̂ reads the q answers
to the q tensor queries ofV as claimed by P̂. In the consistency and proximity tests,
V̂ makes a consistency check that requires point queries on each of the � words
Π̂1, . . . , Π̂�, plus O(t · k) point queries for each of the q tensor queries. The sum of
these is bounded by O(� + t · k · q).

Note that the tensor IOP that we construct has query complexity q = O(1) (see
Sect. 2.4), which means that the multiplicative overheads that arise from the number
of queries are constant.

Next we discuss computational efficiency measures. These will depend, in particu-
lar, on the cost of encoding a message using the base code C. So let θ(k) be such that
θ(k) · k is the size of an arithmetic circuit that maps a message in Fk to its codeword in
C. In this paper we focus on the case where θ(k) is a constant.

– Verifier arithmetic complexity is tv + Ot((� + θ(k) · k) · q). The first term is due
to V̂ simulating V in the simulation phase. In addition, in executing the proximity
and consistency tests, V̂ makes, for each of q queries and for each of t rounds, an
encoding operation that costs θ(k) · k plus other linear combinations that cost O(k)
field operations, andO(�) field operations in the first round. Thus in total, V̂ performs
O((� + t · θ(k) · k) · q) field operations in the proximity and consistency tests.

– Prover arithmetic complexity is tp + Oρ,t(q · l) · θ(k). The first term is due to P̂
simulating P in the simulation phase. In the simulation phase, P̂ also has to encode
every proof string output by P. This costs O(ρ−t · θ(k) · l) field operations, as can
be seen by observing that the cost of encoding a single proof string Πi ∈ F

kt

to its
corresponding codeword Π̂i ∈ F

nt

in C⊗t is O(ρ−t · θ(k) · kt). Establishing a good
bound on the cost of P̂ in the consistency and proximity tests requires more care, as
we now explain.
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In the consistency and proximity tests, P̂ must compute each of the functions
c1, . . . , ct and d1, . . . , dt. Each cr and dr is defined in terms of the previous cr−1 and
dr−1 via a “fold-then-decode” procedure. However, we do not wish for P̂ to depend
on the cost of decoding the base code C, because for the codes that we eventu-
ally use ([DI14]), where θ is constant, no linear-time error-free decoding algorithm
is known. (Only the error-free case need be considered when designing an honest
prover algorithm. Indeed, we never use a decoding algorithm of any sort for C at any
point in this work.) Thankfully, since P̂ knows the message Π encoded in Π̂ , P̂ can
compute cr and dr for each r ∈ [t] from scratch from Π by partially re-encoding,
which contributes an additional term of O(ρ−t · θ(k) · kt) per query.

Remark 1. Our construction of a point-query IOP from a tensor IOP and a linear code
builds on several prior works. Below, we highlight similarities and differences with each
of these works in chronological order.

– The ILC-to-IOP transformation in [BCGGHJ17] shows how any protocol in the
Ideal Linear Commitment (ILC) model can be implemented via a point-query IOP,
using any given linear code C as an ingredient. Crucially, if C has a linear-time
encoding procedure, then computational overheads in the transformation are con-
stant. This is what enables [BCGGHJ17] to obtain a linear-time IOP with square-
root query complexity.
Our construction also relies on an arbitrary linear code C as an ingredient but con-
siders a different implementation problem (tensor queries via point queries), which
ultimately enables much smaller query complexity in the resulting point-query IOP.
The interactive phase of our construction could be viewed as a recursive variant of
the transformation in [BCGGHJ17].

– The “FRI protocol” in [BBHR18] is an IOP for testing proximity of a function to
the Reed–Solomon code. The interactive phase consists of a logarithmic number
of rounds in which the proximity problem is reduced in size; the reduction relies
on a folding operation defined over subgroups that has small locality, and a low
probability of distortion. The query phase consists of a correlated consistency check
across all rounds.
Our proximity test could be viewed as an analogue of the FRI protocol for (the inter-
leaving of) tensor codes. Our consistency test could then be viewed as an analogue
of using “rational constraints” and the FRI protocol to check the claimed evaluations
of the polynomial committed in a Reed–Solomon codeword.

– The sumcheck protocol for the tensor product of systematic codes [Mei13] can sim-
ulate a tensor query to a proof string via point queries, via the code-switching tech-
nique in [RR20]. This preserves the linear time of the prover, and so could be used
to prove Theorem 3 for the special case of a systematic code. Our protocol can be
viewed as a non-interactive variant that also works for the interleaving of code-
words from the tensor product of non-systematic codes (as required by Theorem 3).
As discussed in Sect. 1.1, the ability to freely choose any linear code allows bet-
ter rate-distance tradeoffs and enables the zero-knowledge property to be achieved
more efficiently. Further, at the cost of a moderate increase in proof length, our
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query complexity and verifier complexity scale better with soundness error when
doing soundness amplification.10

2.3 On Soundness of the Transformation

The theorem below informally states the security guarantees of the transformation given
in the previous section. Details can be found in the full version of this paper. In the rest
of this section, we provide some intuition behind the structure of the soundness analysis
and the origin of each term in the soundness error.

Theorem 4 (informal). If (P,V) is an (F, k, t)-tensor IOP with soundness error ε
and C is a linear code with rate ρ = k/n and relative distance δ = d/n, then the
point-query IOP (P̂, V̂) has soundness error

ε + O

(
dt

|F|
)

+ O

((

1 − δt

2

)λ
)

when the query phases of the consistency and proximity tests are repeated λ times.

The first term ε is inherited from soundness of the original protocol; P̂ may attempt
to cheat by accurately simulating a cheating P in a tensor IOP protocol. The remaining
terms are upper bounds on the probability that V̂ will accept when the messages of P̂
fail to accurately simulate tensor queries to P’s messages.

The second term is related to a phenomenon of linear codes known as distortion. It
is important to consider distortion in the soundness analysis of the proximity test. Given
interleaved words W = (w1, . . . , w�) ∈ F

�×n with blockwise distance e := d(W, C�),
we use a result from [AHIV17] that shows that the probability that a random linear
combination w of w1, . . . , w� satisfies d(w, C) < e (distortion happens) is O(d/|F|).
In other words, for a random linear combination α, Fold( · ;α) preserves distance with
high probability. The term O(dt/|F|) in the soundness error comes from bounding the
probability of distortion for each code C⊗t−r for r ∈ [0, . . . , t−1], which has minimum
distance dt−r, as P̂ sends and folds words that are allegedly from each of these codes in
the proximity test. Combining the distortion result with a union bound gives probability
O((dt + dt−1 + · · · + d)/|F|) of distortion occurring anywhere in the protocol. The
geometric series is asymptotically dominated by its largest term, hence the bound.

The third term comes from the probability that V̂ rejects in the proximity test, given
that P̂ sends cr or dr which are far from C⊗t−r or that V̂ rejects in the consistency test,
given that cr or dr contain messages which are inconsistent with earlier c and d words.
In either case, the fraction of indices on which the verification equations do not hold is
then related to the relative distance of C⊗t, which is δt. Here, λ is the number of entries
at which V̂ makes the verification checks in the consistency and proximity tests.

10 Consider the setting in [RR20], which is a single tensor query (q = 1) to a single tensor
codeword (� = 1). The sumcheck protocol in [RR20] branches at each recursion, and has
query complexity λt and verifier time poly(λt, t, k) to achieve soundness error 2−Ω(λ). By
contrast, we achieve query complexity O(λ · kt) and verifier time O(λ · θkt), where θ is a
constant.
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The above is an intuitive summary, and in the paragraphs below we elaborate further
on our analysis.

Soundness Analysis. The proof that our transformation is sound is rather involved, and
is a key technical contribution of this paper. The proof is split into two main parts; the
analysis of the consistency test and the analysis of the proximity test. The proximity
test comprises the most complex part of the analysis.

Our proximity test is recursive, which initially suggests an analysis that recursively
applies ideas from [BCGGHJ17]. However, a notable feature of our proximity test is
that the verification checks for each r ∈ [t] are correlated. Namely, the verifier V̂ does
not check e.g.Fold (cr−1, dr−1;αr, βr) = enc(dr) for a random point independently of
the other verification equations for other values of r. Rather, V̂ samples (j1, . . . , jt) ∈
[n]t and checks whether Fold(Π̂;α1)(j1, . . . , jt) = enc(d1)(j1, . . . , jt). Then, for the
verification check that e.g. Fold(cr−1, dr−1;αr−1, βr−1) = enc(dr), V̂ will truncate
(j1, . . . , jt) to (jr, . . . , jt) and check that Fold(cr−1, dr−1;αr−1, βr−1)(jr, . . . , jt) =
enc(dr)(jr, . . . , jt).

We take inspiration from the soundness analysis for the Reed–Solomon proxim-
ity test in [BBHR18]. The analysis in [BBHR18] handles their entire protocol with all
correlated consistency checks in one single analysis, and avoids a multiplicative depen-
dence on the number of rounds, which was important in [BBHR18] whose protocol had
non-constant round-complexity. The same approach informs our analysis, which has
the same structure as that of [BBHR18], but is adapted to the combinatorial setting of
tensor codes rather than the algebraic setting of Reed–Solomon codes, and modified to
reflect the fact that we wish to perform a proximity test for alleged tensor codewords
Π̂ , c1, . . . , ct−1 of different ranks in the same protocol (rather that one codeword).

Our analysis is divided into cases, depending on the behavior of a malicious
prover P̂.

Proximity Test Soundness. First, suppose that, for some r ∈ [t], P̂ has sent
words cr−1 and dr−1 that are far from being interleaved C⊗t−(r−1)-codewords. Yet,
through unlucky random choice of αr or βr ∈ F

k, one of the intermediate val-
ues Fold(cr−1, dr−1;αr, βr) is close to C⊗t−(r−1). Then, there exists a valid partial
decoding dr that satisfies consistency checks at a large fraction of entries, potentially
causing V̂ to accept even though P̂ has not simulated any inner prover P. Since
Fold(cr−1, dr−1;αr, βr) is a random linear combination of words far from C⊗t−(r−1),
this implies that distortion has occurred. We apply upper bounds on the probability of
distortion.

Second, assume that distortion does not occur in any round. Suppose that the prover
P̂ has sent cr−1 which is far from being an interleaved C⊗t−(r−1)-codeword. Consider
the latest round r for which P̂ behaves in this way. Then enc(dr) is close to C⊗t−(r−1),
but Fold(cr−1, dr−1;αr, βr) is far from C⊗t−r. Using this fact, the analysis of this case
follows from a simpler sub-case. In this sub-case, suppose that P̂ has behaved honestly
from the (r + 1)-th round of the consistency phase onwards, but V̂ makes checks at
entries correlated with positions where Fold(cr−1, dr−1;αr, βr) is not a C⊗t−(r−1)-
codeword. We show that V̂ will reject.
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Consistency Test Soundness. Suppose that the prover P̂ has sent cr−1 that is close to an
interleaved codeword, but encodes a message that is not consistent with Π . Consider
the latest round r for which P̂ behaves in this way. Then, enc(cr) and Fold(cr−1; qr−1)
are close to different codewords of C⊗t−(r−1). This means that for a large fraction
of entries (jr, . . . , jt) ∈ [n]t−r which is related to the relative distance of the code,
Fold(cr−1; qr−1)(jr, . . . , jt) 
= enc(cr)(jr, . . . , jt), causing V̂ to reject.

Finally, suppose that, for each r ∈ [t], P̂ has sent cr that is an interleaved C⊗t−r-
codeword except for noise at a small number of positions, and all encode messages
consistent with queries on Π . In this case, P̂ has essentially simulated an inner prover
P correctly, in the sense that an “error-correction” of the words sent by P̂ are a correct
simulation. The soundness error is then inherited from the original protocol (P,V).

2.4 Checking Constraint Systems with Tensor Queries

Our transformation from tensor queries to point queries (Theorem 3) introduces amulti-
plicative blow-up in prover arithmetic complexity (and proof length) that is proportional
to the number q of tensor queries. So, for us to ultimately obtain a point-query IOP with
linear arithmetic complexity, it is important that the tensor IOP given to the transforma-
tion has constant query complexity and a prover with linear arithmetic complexity.

Towards this end, we now turn to Theorem 2, which requires a suitably-efficient
tensor IOP for the problem of rank-1 constraint satisfiability (R1CS), a generalization
of arithmetic circuits given in Definition 1; recall that N is the number of variables and
M is the number of coefficients in each coefficient matrix.

A natural starting point would be to build on interactive proofs for evaluating
layered arithmetic circuits [GKR08], whose prover can be realized in linear time
[Tha13,XZZPS19]. Indeed, the verifier in these protocols only needs to query the low-
degree extension of the circuit input, which can be realized via a tensor query to a proof
string containing the input sent by the prover. Moreover, the verifier in these protocols
is sublinear given oracle access to the low-degree extension of the circuit description.
These oracles can be implemented via a sub-protocol if the circuit is sufficiently uni-
form [GKR08] but, in general, this would require a holographic subprotocol that sup-
ports arbitrary circuits (not a goal in those works).

We take a different starting point that is more convenient to describe our holographic
tensor IOP for R1CS (and recall that R1CS is a generalization of arithmetic circuits).
First, as a warm-up in this section, we discuss a simple construction that fulfills a relax-
ation of the theorem: a tensor IOP for R1CSwith linear proof length l = O(N), constant
query complexity q = O(1), a prover with linear arithmetic complexity tp = O(M),
and a verifier with linear arithmetic complexity tv = O(M). After that, in Sect. 2.5,
we describe how to modify this simple protocol to additionally achieve sublinear ver-
ification time (incurring only minor losses in the other efficiency parameters). Along
the way, we uncover new, and perhaps surprising, connections between prior work on
linear-time IOPs [BCGGHJ17] and linear-time sumcheck protocols [Tha13].

In the paragraphs below we denote by (P,V) the (F, k, t)-tensor IOP that we design
for R1CS. We outline its high-level structure, and then describe in more detail the main
sub-protocol that enables linear arithmetic complexity, which is for a problem that we
call twisted scalar product (TSP).
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High-level Structure. The R1CS problem asks whether, given coefficient matrices
A,B,C ∈ F

N×N and an instance vector x over F, there exists a witness vector w
over F such that z := (x,w) ∈ F

N satisfies Az ◦ Bz = Cz. Using a similar approach
to other proof protocols for R1CS, it suffices for the prover P to send the full assign-
ment z and its linear combinations zA, zB , zC ∈ F

N , and convince the verifier V that
zA = Az, zB = Bz, zC = Cz, and zA ◦ zB = zC in linear time and using O(1) tensor
queries.

To check the first three conditions, the verifier sends a random challenge vector
r ∈ F

nrow with tensor structure. Multiplying on the left by rᵀ reduces the first three
conditions to γA = 〈rA, z〉, γB = 〈rB , z〉, and γC = 〈rC , z〉; here γA := 〈r, zA〉
and rA := rᵀA, and similarly for B and C. The verifier can directly obtain the inner
products γA, γB , γC through tensor queries to zA, zB , zC . Moreover, both the prover
and verifier can locally compute the three vectors rA, rB , rC by right-multiplication by
A,B,C respectively, which entails performing a number of arithmetic operations that
is linear in the number M of non-zero entries of the matrices.11 Note that this is the
only place where the verifier has to read the entries of A,B,C. The verifier must now
check the scalar products γA = 〈rA, z〉, γB = 〈rB , z〉, γC = 〈rC , z〉.

Thus, to check R1CS satisfiability, it suffices to check three scalar products and
one Hadamard product. (We must also check that z = (x,w), but this is not the main
technical challenge.) We solve both scalar and Hadamard products with a common sub-
routine for twisted scalar products that has a linear-time prover and a constant number
of tensor queries, as we discuss below. We refer the reader to the full version of this
paper for the details.

Twisted Scalar Products. The main technical contribution in our tensor IOP construc-
tion is the design of a protocol for verifying twisted scalar products (TSP).

Definition 3. The twisted scalar product of two vectors u = (u1, . . . , uN ) and v =
(v1, . . . , vN ) in F

N with respect to a third vector y = (y1, . . . , yN ) in F
N is defined

to be 〈u ◦ y, v〉 =
∑N

i=1 uiyivi. In other words, the i-th term uivi contributing to the
scalar product 〈u, v〉 has been multiplied, or “twisted”, by yi.

Standard scalar products (which we need for γA = 〈rA, z〉, γB = 〈rB , z〉, and
γC = 〈rC , z〉) follow by setting y := 1N . To handle the Hadamard product zA ◦ zB =
zC , we pick a random vector y, and up to a small error over the random choice of y,
checking the Hadamard product is equivalent to checking the twisted scalar product
〈u ◦ y, v〉 = τ with u = zA, v = zB and τ = 〈zC , y〉. In sum, to check the R1CS
relation we will check four appropriate instances of the twisted scalar product.

Our result for twisted scalar products is as follows.

Lemma 1 (informal). For every finite field F and positive integers k, t, there is a
(F, k, t)-tensor IOP for twisted scalar products that supports vectors of length N = kt

and twists of the form y = y1 ⊗ · · · ⊗ yt, and has the following parameters:
11 We remark that one can improve this cost from linear in the number M of non-zero entries in

A, B, C to linear in the cost of right multiplication by A, B, C. By the transposition principle
(see e.g., [KKB88]), this latter is closely related to the cost E of leftmultiplication by A, B, C,
which could be much less than M . For example, if A is the matrix corresponding to a discrete
Fourier transform, then E = O(N logN) is much less than M = Θ(N2).
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– soundness error is O( log N
|F| );

– round complexity is O(log N);
– proof length is O(N) elements in F;
– query complexity is O(1);
– the prover and verifier both use O(N) field operations.

Lemma 1 follows from prior work: the linear-time sumcheck of [Tha13,XZZPS19]
can be applied to the multi-linear extension of the two vectors in the scalar product, and
the verifier’s queries to those extensions can be implemented as a tensor query. (The
twist can also be handled by “folding it” into a tensor query.)

Below we give an alternative proof inspired by the linear-time protocols of
[BCGGHJ17], themselves based on [Gro09]. This is interesting because this latter pre-
dates [Tha13] and formerly appeared to be a totally distinct design strategy for interac-
tive protocols. In contrast we show a sumcheck-based protocol inspired by these works,
and show that they are a different application of the same linear-time sumcheck. From
a technical point of view, our scalar-product protocol invokes the linear-time sumcheck
on polynomials that encode information in their coefficients rather than in their evalu-
ations (as is usually the case). This leads to modest opportunities for optimization and
may have applications when used in combination with polynomial commitments not
known to support the Lagrange basis (such as [BFS20]). Below we sketch our construc-
tion; details are in the full version of this paper. For simplicity, below we explain the
case of scalar products without a twist. Readers who are comfortable with Lemma 1
may skip the rest of this section.

Strawman Construction. Before our construction, we first present a simple linear IOP
(an IOP with linear queries as defined in Sect. 2.1) for scalar products, and then high-
light the challenges that we need to overcome to obtain our protocol.

The verifier V has linear query access to two vectors u = (u0, . . . , uN−1) and
v = (v0, . . . , vN−1) in F

N . The prover P wishes to convince the verifier V that
〈u, v〉 = τ for a given τ ∈ F. Define the two polynomials U(X) :=

∑N−1
i=0 uiX

i

and V (X) :=
∑N−1

i=0 viX
N−i (the entries of v appear in reverse order in V (X)). The

product polynomial W (X) := U(X)V (X) has 〈u, v〉 as the coefficient of XN−1,
because for any i, j ∈ [N ], the powers of X associated with ui and vj multiply together
to give XN−1 if and only if i = j. With this in mind, P sends to V the vector
w := (w0, . . . , w2N−2) of coefficients of W (X).

Next, V checks the equality W (X) = U(X) · V (X) at a random point: it sam-
ples a random ρ ∈ F; constructs the queries ν1 := (1, ρ, ρ2, . . . , ρN−1), ν2 :=
(ρN−1, ρN−2, . . . , 1), and ν3 := (1, ρ, ρ2, . . . , ρ2N−2); queries u, v, w respectively at
ν1, ν2, ν3 to obtain γu = 〈u, ν1〉 = U(ρ) , γv = 〈v, ν2〉 = V (ρ) , γw = 〈w, ν3〉 =
W (ρ); and checks that γu · γv = γw. By the Schwarz–Zippel lemma, this is test is
unlikely to pass unless U(X) · V (X) = W (X) as polynomials, and in particular, if the
coefficient of XN−1 in W (X) is not equal to 〈u, v〉. Finally, V constructs the query
ν4 := (0, . . . , 1, 0, . . . , 0), which has a 1 in the N -th position of the vector; then queries
w at ν4 to get wN−1 = 〈w, ν4〉, and checks that it is equal to τ .

This approach gives a linear IOP for verifying scalar products, with O(1) queries
and proof length O(N). One can easily convert it into a linear IOP for verifying twisted
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scalar products by using ν1 ◦ y instead of ν1. With additional care, these queries can
even be expressed as tensor queries. However, the main problem with this approach is
that P requires O(N log N) operations to compute W (X) by multiplying U(X) and
V (X).

Scalar Products via Sumcheck.We explain how to obtain a tensor IOP for scalar prod-
ucts whereP uses O(N) operations. First, we explain how to redesign the polynomials
U(X) and V (X). Then, we explain how to verify that the scalar product is correct via
a sumcheck protocol on the product of these polynomials.

We embed the entries of u and v ∈ F
n into multilinear polynomials U(X1, . . . , Xl)

and V (X1, . . . , Xl) over F. Namely, in U(X), we replace the monomial Xi, which
has coefficient ui, with a monomial in formal variables X1,X2, . . . , Xlog N , choosing
to include Xj if the j-th binary digit of i is a 1. For example, u0, u1, u2 and u3 are
associated with monomials 1, X1, X2, and X1X2. Thus, each coefficient ui is asso-
ciated with a unique monomial in X1, . . . , Xlog N . As with the strawman solution, the
coefficients of V (X) are associated with the same monomials, but in reverse order. For
example, v0 and v1 are associated with monomials X1X2 · · · Xlog N and X2 · · · Xlog N .
This time, the product polynomial W (X1, . . . , Xlog N ) := U(X1, . . . , Xlog N ) ·
V (X1, . . . , Xlog N ) has 〈u, v〉 as the coefficient ofX1X2 · · · Xlog N , since for any i, j ∈
[N ] the monomials associated with ui and vj multiply together to give X1X2 · · · Xlog N

if and only if i = j.
NowV has tensor-query access to u and v, andPmust convinceV that 〈u, v〉 = τ ,

which now means checking that CoeffX1···Xl
(W ) = τ . We turn this latter condition

into a sumcheck instance, via a new lemma that relates sums of polynomials over mul-
tiplicative subgroups to their coefficients; the lemma extends a result in [BCRSVW19]
to the multivariate setting.

Lemma 2 (informal). Let H be a multiplicative subgroup of F and p(X1, . . . , Xl) a
polynomial over F. Then for every integer vector �j = (j1, . . . , jl) ∈ N

l,

∑

�ω=(ω1,...,ωl)∈Hl

p(�ω) · �ω
�j =

⎛

⎝
∑

�i+�j≡�0 mod |H|
p�i

⎞

⎠ · |H|l .

Above we denote by p�i the coefficient of X
i1
1 · · · Xil

l in p and denote by �ω
�j the product

ωj1
1 · · · ωjl

l .

Set H := {−1, 1}, p := W , and �j := (1, . . . , 1). Since W has degree at most 2 in
each variable, the only coefficient contributing to the sum on the right-hand side is the
coefficient of X1 · · · Xl, which is 〈u, v〉.

In light of the above, the proverP and the verifierV engage in a sumcheck protocol
for the following claim:

∑

�ω∈{−1,1}l

U(�ω)V (�ω) · �ω
�1 = τ · 2l .

During the sumcheck protocol, over l rounds of interaction, V will send ran-
dom challenges ρ1, . . . , ρl. After the interaction, V needs to obtain the value
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U(ρ1, . . . , ρl)V (ρ1, . . . , ρl). We show that, in our setting, V can obtain the two val-
ues in this product by making tensor queries to u and v, respectively.

We are left to discuss how P can be implemented in O(2l) = O(N) operations.
Recall that the problem in the strawman protocol was that P had to multi-

ply two polynomials of degree N . Now the problem seems even worse: P cannot
compute W directly as it has a super-linear number of coefficients (W is multi-
quadratic in l = log N variables). However, in the sumcheck protocol, P need not
compute and send every coefficient of W and can compute the messages for the
sumcheck protocol by using partial evaluations U(ρ1, . . . , ρj ,Xj+1, . . . , Xlog N ) and
V (ρ1, . . . , ρj ,Xj+1, . . . , Xlog N ) without ever performing any high-degree polynomial
multiplications. This is indeed the logic behind techniques for implementing sumcheck
provers in linear time, as discussed in [Tha13,XZZPS19], which, e.g., suffice for sum-
checks where the addend is the product of constantly-many multilinear polynomials, as
is the case for us.

The full details, which give explicit tensor queries for evaluating U and V , and how
to incorporate the “twist” with y ∈ F

N into the sumcheck to get our TSP protocol, are
given in the full version of this paper.

Remark 2 (binary fields). The astute reader may notice that setting H = {−1, 1} in
Lemma 2 is only possible when the characteristic of F is not equal to 2. Nevertheless, a
statement similar to Lemma 2 holds for additive subgroups, which in particular we can
use in the case of binary fields. Our results then carry over with minor modifications to
binary fields as well (and thus all large-enough fields).

2.5 Achieving Holography

Thus far, we have discussed ingredients behind a relaxation of Theorem 1 with no sub-
linear verification. Namely, (1) an IOP with tensor queries where the verifier receives
as explicit input the R1CS coefficient matrices A,B,C; and (2) a transformation from
this tensor-query IOP to a corresponding point-query IOP.

We now describe how to additionally achieve the sublinear verification in Theorem 1
via holography.

In a holographic IOP for R1CS, the verifier V no longer receives as explicit input
A,B,C. Instead, in addition to the prover P and the verifier V, a holographic IOP for
R1CS includes an additional algorithm, known as the indexer and denoted by I, that
receives as explicit input A,B,C and outputs an “encoding” of these. The verifier V
then has query access to the output of the indexer I. This potentially enables the verifier
V to run in time that is sublinear in the time to read A,B,C.

Achieving such a verifier speed-up and thereby obtaining Theorem 1, however,
requires modifications in both of the aforementioned ingredients. Below we first discuss
the modifications to the transformation, as they are relatively straightforward. After that
we dedicate the rest of the section to discuss the modifications to the tensor-query IOP,
because making it holographic requires several additional ideas.

Preserving Holography in the Transformation. Informally, we want the modified
transformation to “preserve holography”: if the tensor-query IOP given to the transfor-
mation is holographic (the verifier has tensor-query access to the output of an indexer),
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then the new point-query IOP produced by the transformation is also holographic (the
new verifier has point-query access to the output of the new indexer). Moreover, the
transformation should introduce only constant multiplicative overheads in the cost of
indexing and proving.

So let I be the indexer of the tensor-query IOP. The new indexer Î for the point-query
IOP simulates I and encodes its output using Enc, just as the new prover P̂ encodes the
messages fromP. (Recall from Sect. 2.2 thatEnc is the encoding function for the tensor
code C⊗t.) Subsequently, in the simulation phase of the transformation, whenever the
verifierV wishes to make a tensor query to the output of I, the new verifier V̂ forwards
this query to the new prover P̂, who responds with the answer. After that, we extend
the consistency and proximity tests in the transformation to also ensure that P̂ answers
these additional tensor queries correctly. These tests will require the new verifier V̂ to
make point queries to the encoding of the output of I, which is precisely what V̂ has
query access to because that is the output of Î. The constant multiplicative overheads
incurred by the transformation still hold after these (relatively minor) modifications.

A Holographic Tensor IOP. In the non-holographic tensor-query IOP outlined in
Sect. 2.4, the verifier V, receives as input coefficient matrices A,B,C explicitly, and
must perform two types of expensive operations based on these. First,V expands some
random challenges r1, . . . , rt ∈ F

k into a vector r = r1 ⊗ · · · ⊗ rt ∈ F
kt

, which
requires O(kt) arithmetic operations. Second, V computes the matrix-vector product
rA := rᵀA, which in the worst case costs proportionally to the number of non-zero
entries of A. Similarly for B and C.

Viewed at a high level, these expensive operations are performed as part of a check
that zA = Az (and similarly for B and C), which has been referred to as a “lincheck”
(see e.g. [BCRSVW19]). Thus, it is sufficient to provide a “holographic lincheck” sub-
protocol where V has tensor query access to a matrix U (which is one of A, B, or C),
an input vector v, and an output vector vU, and wishes to check that vU = Uv.

Challenges to Holography. To illustrate the challenges of obtaining a linear-time holo-
graphic lincheck, we first present a simple strawman: a sound protocol that falls (far)
short of linear arithmetic complexity. First we describe the indexer, and after that the
interaction between the prover and verifier.

– Indexer. The indexer receives as input a matrix U over F, which for simplicity we
assume has dimension kt × kt; we can then identify the rows and columns of U via
tuples (i1, . . . , it) ∈ [k]t and (j1, . . . , jt) ∈ [k]t respectively. The indexer outputs
the vector u ∈ F

k2t
such that ui1,...,it,j1,...,jt is the entry of U at row (i1, . . . , it) and

column (j1, . . . , jt). The verifier will have (F, k, 2t)-tensor-query access to u.
– Prover and Verifier. To check that vU = Uv, for the verifier it suffices to check
that 〈r, vU〉 = 〈rᵀU, v〉 for a random r = r1 ⊗ · · · ⊗ rt in F

kt

(up to a small
error over the choice of r). Since rᵀUv = 〈r ⊗ v, u〉, the verifier wishes to check
whether 〈r, vU〉 = 〈r ⊗ v, u〉. The verifier makes the (F, k, t)-tensor query r to vU to
obtain the left hand side. To help the verifier obtain the right hand side, the prover
computes e := r ⊗ v ∈ F

2t and sends it to the verifier. Since u need not have
a tensor structure, the verifier cannot directly obtain 〈e, u〉 via a (F, k, 2t)-tensor
query to e; instead, the verifier can receive this value from the prover and rely on a
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scalar-product protocol to check its correctness. The verifier is thus left to check that
indeed e = r ⊗ v. Note that for any s = s1 ⊗· · ·⊗ st and s′ = s′

1 ⊗· · ·⊗ s′
t it holds

that 〈s ⊗ s′, e〉 = 〈s, r〉〈s′, v〉 = 〈s1, r1〉 · · · 〈st, rt〉〈s′, v〉. The verifier checks this
equality for random s and s′: it directly computes 〈si, ri〉 for each i ∈ [t]; obtains
〈s′, v〉 via a (F, k, t)-tensor query to v; obtains 〈s ⊗ s′, e〉 via a (F, k, 2t)-tensor
query to e; and checks the expression.

Crucially, in the protocol described above, the verifier performs only O(kt) field oper-
ations. In particular, the verifier did not have to incur the cost of reading the matrix U ,
which is much greater in general.

However, the foregoing protocol falls (far) short of achieving linear proving time:
the indexer outputs a vector u that specifies the matrix U via a dense representation of
k2t elements, and this leads to the prover having to compute vectors such as e ∈ F

2t,
which costs O(k2t) operations. On the other hand, in order to represent U , it suffices to
specify its non-zero entries. Hence, unless U is a dense matrix (with Ω(k2t) non-zero
entries), the foregoing protocol does not have a linear-time prover (and also does not
have a linear-time indexer).

Our goal here is thus a holographic protocol that is efficient relative to a sparse
representation of the matrix U , for example the triple of vectors (valU , rowU , colU) ∈
F

M × [kt]M × [kt]M such that valU is a list of the values of the M non-zero entries of
U , and rowU , colU are the indices of these entries in U (i.e., for all κ ∈ [M ] it holds
that U(rowU(κ), colU(κ)) = valU(κ)). This is (essentially) the best that we can hope
for, as the indexer and the prover must read a description of U .

Efficiency relative to the sparse representation was achieved in [CHMMVW20,
COS20], which contributed efficient holographic IOPs for R1CS. However, the prover
algorithm in those constructions runs in quasilinear time, and we do not know how to
adapt the techniques in these prior works, which are based on univariate polynomials,
to our setting (linear-time tensor IOPs). It remains an interesting open problem to build
on those techniques to achieve a linear-time holographic lincheck with tensor queries.

Subsequently, Setty [Set20] constructed a preprocessing SNARG for R1CS without
FFTs by porting the univariate protocols for R1CS to the multivariate setting (where we
have a linear-time sumcheck [Tha13]) and solving the matrix sparsity problem by con-
structing a polynomial commitment scheme for “sparse multivariate polynomials”. His
approach to sparsity is combinatorial rather than algebraic: he constructs a linear-size
circuit using memory-checking ideas to “load” each non-zero term of the polynomial
and add it to a total sum, and then invokes an argument system for uniform circuits
that does not use FFTs [WTSTW18]. Since a key component of the construction is a
polynomial commitment scheme for (dense) multilinear extensions, and the multilinear
extension of a vector is a special case of a tensor query, it is plausible that one could
distill a tensor IOP from [Set20] that suits our purposes. However, taking this path is
not straightforward given the protocol’s complexity, and the informal discussions and
proof sketches in [Set20].

Our Approach. To prove our theorem, we build on an earlier protocol of Bootle
et al. [BCGJM18] and a recent simplification by Gabizon and Williamson [GW20].
As described below, this leads to a direct and natural construction for a holographic
lincheck, which is what we need. The key component in our construction, like the
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earlier works, is a look-up protocol, wherein the prover can convince the verifier that
previously-stored values are correctly retrieved. Below we describe how to obtain the
lincheck protocol given the look-up protocol as a subroutine, and after that describe the
look-up protocol.

As in the strawman protocol, to check that vU = Uv, for the verifier it suffices to
check that 〈r, vU〉 = 〈rᵀU, v〉 for a random r = r1 ⊗ · · · ⊗ rt in F

kt

(up to a small
error over r). Again, the verifier can directly obtain the value 〈r, vU〉 by querying vU at
the tensor r. The verifier is left to obtain the value of 〈rᵀU, v〉 = rᵀUv, and enlists the
prover’s help to do so. Therefore, the verifier sends r1, . . . , rt to the prover, who replies
with γ := rᵀUv ∈ F. The prover must now convince the verifier that γ is correct.

Towards this, the prover will send partial results in the computation of γ, and the
verifier will run sub-protocols to check the correctness of each partial result. To see how
to do this, we first re-write the expression rᵀUv in terms of the sparse representation
of U :

rᵀUv =
∑

κ∈[M ]

valU(κ) · r(rowU(κ)) · v(colU(κ)) . (1)

This expression suggests the prover’s first message to the verifier, which consists of the
following two vectors:

r∗ :=
(
r(rowU(κ))

)

κ∈[M ]
and v∗ :=

(
v(colU(κ))

)

κ∈[M ]
.

Observe that, if the prover was honest, then the right-hand side of Eq. (1) is equal to
〈valU , r∗ ◦ v∗〉.

Therefore, the verifier is left to check that: (1) γ = 〈valU , r∗ ◦ v∗〉, and (2) r∗, v∗

were correctly assembled from the entries of r, v as determined by the indices in
rowU , colU , respectively.

The verifier can check the first condition via a scalar product subprotocol and a
Hadamard product subprotocol (which we have discussed in Sect. 2.4). To check the
second condition, the verifier will use a tensor consistency test and two look-up subpro-
tocols, as we now explain.

Even though the verifier sampled the components r1, . . . , rt ∈ F
k that determine

the tensor vector r = r1 ⊗· · ·⊗ rt ∈ F
kt

, the verifier cannot afford to directly compute
r, as this would cost O(kt) operations. Instead, the prover sends r, and the verifier
checks that r was computed correctly from r1, . . . , rt via a simple subprotocol, which
we describe in the full version of this paper, that only requires making one tensor query
to r and performing O(tk) operations. Now the verifier is in a position to make tensor
queries to (the correct) r.

Next, observe that r∗ is correct if and only if, for each κ ∈ [M ], there is i ∈ [kt] such
that (r∗

κ, rowU(κ)) = (ri, i). We represent this “look-up” condition via the shorthand
(r∗, rowU) ⊆ (r, [kt]). Similarly, v∗ is correct if and only if (v∗, colU) ⊆ (v, [kt]). We
now discuss a protocol to check such conditions.

Look-ups via tensor queries. A look-up protocol is to check the condition (c, I) ⊆
(d, [kt]), given that the verifier has tensor-query access to the vectors c ∈ F

M and
d ∈ F

kt

, and also to the index vectors I ∈ F
M and [kt] ∈ F

kt

. (Here we are implicitly
associating the integers in [kt] with an arbitrary kt-size subset in F.)
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Look-up protocols for use in proof systems originate in a work of Bootle et al.
[BCGJM18] that aims at low computational overhead for the prover. Their protocol
reduces the look-up condition to a univariate polynomial identity, and then the prover
helps the verifier to check that the polynomial identity holds when evaluated at a random
challenge point. However, the prover in their protocol incurs a logarithmic overhead in
the size of the list c, which in our usage would result in a superlinear-time prover.

Gabizon and Williams [GW20] provide a more efficient look-up protocol, which
removes the logarithmic overhead by relying on a more expressive bivariate polynomial
identity. However, they use a different proof model that we do not know how to compile
into ours while preserving linear complexity. Our contribution is to give a linear-time
tensor IOP for look-ups using their polynomial identity as a starting point.

Below we recall the identity and then summarize our look-up protocol; details can
be found in the full version.

First recall that, via a standard use of randomized hashing, we can replace the lookup
condition (c, I) ⊆ (d, [kt]) with a simpler inclusion condition a ⊆ b for suitable vectors
a ∈ F

M and b ∈ F
kt

(each entry in the vector a equals some entry of the vector b). The
polynomial identity from [GW20] concerns this latter condition, as we now explain. (We
also note that we have modified the polynomial identity to incorporate “wrap-around” in
the entries of vectors, to simplify other aspects of our protocols.) Assuming for simplicity
that the entries of b are distinct, let sort() denote the function that sorts the entries of its
input in the order b1 ≺ b2 ≺ . . . ≺ bkt .12 Let shift() denote a cyclic shift.

Lemma 1 ([GW20]). Let a ∈ F
M and b ∈ F

kt

. Then a ⊆ b if and only if there is
w ∈ F

kt+M such that

M+kt∏

j=1

(
Y (1+Z)+wj +shift(w)j ·Z

)
= (1+Z)M

M∏

j=1

(Y +aj)
kt∏

j=1

(
Y (1+Z)+bj +shift(b)j ·Z

)
.

(2)
In the case that a ⊆ b, we may take w = sort(a, b) to satisfy the above equation.

In our look-up protocol, the prover recomputes this polynomial identity at random
evaluation points chosen by the verifier and sends intermediate computation steps to the
verifier.13 Both parties run subprotocols to check that the computation was performed
correctly and the evaluated polynomial identity holds.

Having sent w to the verifier, the prover also sends the vectors w� := shift(w) and
b� := shift(b). Then after receiving random evaluation points for Y and Z, the prover
sends vectors w∗, a∗, b∗ containing each evaluated term in the first, second, and third
products of Eq. (2) to the verifier, along with the values χw∗ := prod(w∗), χa∗ :=
prod(a∗), χb∗ := prod(b∗) of each product as non-oracle messages. Here, prod()
denotes the function which takes the product of the entries of its input.

12 When the entries of b are not distinct, one can consider a more complex merge operation; the
full version of this paper for details.

13 One can draw parallels between the combination of randomized hashing and the polynomial
identity used in this work, and the combination of randomized and multi-set hashing used
in the memory-checking circuit of [Set20]. Conceptually, the [GW20] polynomial identity
enforces stronger conditions on w, a and b than a multi-set hash and removes the need for the
time-stamping data used in [Set20].
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Apart from simple checks that the vectors w∗, a∗, b∗ were correctly computed, and
using χw∗ , χa∗ , χb∗ to check that Eq. (2) holds, we rely on two additional subprotocols.

– A cyclic-shift test to show that e.g. b� = shift(b). The polynomial identity
∑kt

i=1 b(i)Xi−1 − X · ∑kt

i=1 b�(i)Xi−1 = (1 − Xkt

) · b�(kt) holds if and only
if b� = shift(b). The verifier uses tensor queries to check that this identity holds at
a random point.

– An entry-product protocol to show that e.g. χw∗ = prod(w∗). This protocol com-
bines a cyclic-shift test with a Hadamard-product protocol in order to verify the
correct computation of all partial products leading to the entry product.

The details of both subprotocols can be found in the full version of this paper.
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Abstract. We establish barriers on the efficiency of succinct arguments
in the random oracle model. We give evidence that, under standard com-
plexity assumptions, there do not exist succinct arguments where the
argument verifier makes a small number of queries to the random ora-
cle. The new barriers follow from new insights into how probabilistic
proofs play a fundamental role in constructing succinct arguments in the
random oracle model.

– IOPs are necessary for succinctness. We prove that any succinct
argument in the random oracle model can be transformed into a
corresponding interactive oracle proof (IOP). The query complexity
of the IOP is related to the succinctness of the argument.

– Algorithms for IOPs. We prove that if a language has an IOP with
good soundness relative to query complexity, then it can be decided
via a fast algorithm with small space complexity.

By combining these results we obtain barriers for a large class of deter-
ministic and non-deterministic languages. For example, a succinct argu-
ment for 3SAT with few verifier queries implies an IOP with good param-
eters, which in turn implies a fast algorithm for 3SAT that contradicts
the Exponential-Time Hypothesis.

We additionally present results that shed light on the necessity of sev-
eral features of probabilistic proofs that are typically used to construct
succinct arguments, such as holography and state restoration soundness.
Our results collectively provide an explanation for “why” known con-
structions of succinct arguments have a certain structure.

Keywords: Succinct arguments · Interactive oracle proofs

1 Introduction

A succinct argument is a cryptographic proof system for deterministic and non-
deterministic languages, whose communication complexity is “succinct” in the
sense that it is sublinear in the time to decide the language (for deterministic
languages) or witness size (for non-deterministic languages). In the last decade,
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succinct arguments have drawn the attention of researchers from multiple com-
munities, being a fundamental cryptographic primitive that has found applica-
tions in the real world.

A central goal in the study of succinct arguments is improving their efficiency.
An important complexity measure is argument size, which is the number of bits
sent from the prover to the verifier. Achieving small argument size is crucial,
e.g., in applications where non-interactive succinct arguments are broadcast in
a peer-to-peer network and redundantly stored at every node (as in [Ben+14]).
Other important complexity measures include the running time of the prover
and the running time of the verifier—this latter is the complexity measure that
we study in this paper.

There are applications where the running time of the verifier is the main
bottleneck and call for verifiers that are extremely lightweight. These applications
include obfuscating the verifier [Bon+17], or recursive constructions where an
outer succinct argument proves that the verifier of an inner succinct argument
has accepted [Val08,Bit+13]. In these cases, the circuit (or code) representing the
verifier’s computation is used in a white-box manner and the verifier’s running
time dominates the complexity of the final scheme. For instance, in the second
example, the running time of the outer prover mainly depends on the running
time of the inner verifier.

Our goal is to establish lower bounds on the running time of a succinct
argument’s verifier.

We focus on the random oracle model. We deliberately restrict our atten-
tion to studying succinct arguments that are secure in the random oracle model
(ROM). This is because the ROM is an elegant information-theoretic model
within which we could hope to precisely understand the structure of arbitrary
succinct arguments, and prove lower bounds on specific efficiency measures.

Moreover, the ROM supports several well-known constructions of succinct
arguments that can be heuristically instantiated via lightweight cryptographic
hash functions, are plausibly post-quantum secure [CMS19], and have led to real-
izations that are useful in practice. These constructions include the Fiat–Shamir
transformation [FS86], which applies to public-coin interactive proofs (IPs); the
Micali transformation [Mic00], which applies to probabilistically checkable proofs
(PCPs); and the BCS transformation [BCS16], which applies to public-coin inter-
active oracle proofs (IOPs).

How small can verifier query complexity be? As mentioned earlier, the
running time of the verifier is a crucial efficiency measure in applications of
succinct arguments. While in the ROM each query is considered a constant-time
operation, each query actually becomes expensive when the random oracle is
heuristically instantiated via a cryptographic hash function. Each query becomes
a sub-computation involving very many gates for evaluating the cryptographic
hash function, which can dominate the verifier’s running time. This, for example,
is the case in the recursive construction in [COS20]. In this paper, we ask: how
small can the query complexity of a verifier be?
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We make our question precise via the notion of bits of security. The soundness
error ε of a succinct argument in the ROM is a function of several parameters: the
instance size, the output size of the random oracle, and the number of queries by
the cheating prover to the random oracle. Then we say that a succinct argument
provides s bits of security if the soundness error ε is at most 2−s for every
instance size up to 2s, every prover query complexity up to 2s, and when the
output size of the random oracle is Θ(s). (See Sect. 3.3 for relevant definitions.)

Known constructions of succinct arguments achieve verifier query complex-
ities that are Ω(s). This is true even if one were to rely on conjectured “holy
grail” probabilistic proofs within these constructions. In particular, no approach
is known that could achieve a verifier that makes o(s) queries to the oracle (which
would be very desirable).

We are interested in understanding whether small verifier query complexity
is possible:

Do there exist succinct arguments with s bits of security and verifier query
complexity � s?

1.1 Our Contributions

In this paper we contribute new insights into the structure of succinct arguments
in the ROM, which we then use to obtain evidence that the answer to the above
question is negative. First we prove that IOPs are an inherent ingredient of any
succinct argument in the ROM. Then we prove limitations of the obtained IOPs,
thereby obtaining lower bounds on the number of queries to the random oracle
by the verifier in the starting succinct argument. The limitations on IOPs that
we prove are rather broad (even when applied to the case of a PCP), and may
be of independent interest.

Here we remind the reader that an interactive oracle proof (IOP) [BCS16,
RRR16] is a proof system that combines the notions of interactive proofs (IP)
and probabilistically-checkable proofs (PCPs). Namely, it is an interactive proof
where the verifier is granted oracle access to the messages sent by the prover and
so can probabilistically query them. As opposed to PCPs, IOPs leverage the mul-
tiple rounds of communication, which gives them many efficiency improvements
in terms of proof size and the running time of the prover. As shown in [BCS16],
IOPs with suitable soundness properties can be compiled into non-interactive
succinct arguments in the ROM. This, along with the concrete efficiency of
IOPs, makes them a central component of many succinct arguments today.

1.1.1 IOPs are Necessary for Succinctness
We prove that IOPs are inherent to succinct arguments in the ROM in a precise
sense: any succinct argument in the ROM can be generically transformed into
an IOP whose query complexity depends on the “succinctness” of the argument.
Namely, if the argument prover sends as bits to the argument verifier, then the
IOP verifier makes as queries to proof strings sent by the IOP prover.
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Moreover, and less intuitively, the IOP verifier makes O(vq · a) extra queries,
where vq is the number of queries made by the argument verifier to the ran-
dom oracle and a is the number of adaptive rounds of queries by the (honest)
argument prover to the random oracle (see Sect. 3.1 for more on adaptivity).
The adaptivity parameter a plays a key role in our result, and it is small in
all known schemes. (E.g., a = O(log n) in succinct arguments obtained via the
Micali transformation [Mic00].)

Theorem 1 (informal). There is an efficient transformation T that satisfies
the following. Suppose that ARG is a size-as argument in the ROM for a language
L where the honest prover performs pq queries in a rounds and the verifier
performs vq queries. Then IOP := T(ARG) is an IOP for L with proof length
O(pq + as) and query complexity O(as + vq · a). Other aspects of IOP (such as
public coins, soundness, time and space complexities) are essentially the same
as in ARG.

Our result provides a way to construct an IOP by “reverse engineering” an
arbitrary succinct argument, leading to a standalone compelling message: suc-
cinct arguments in the ROM are “hard to construct” because they must contain
non-trivial information-theoretic objects. This holds regardless of the complexity
of the language proved by the succinct argument. For example, IOPs are inherent
even to succinct arguments for deterministic computations (where the primary
efficiency goal is an argument verifier that is faster than directly deciding the
language). Our necessity result is complementary to a result of Rothblum and
Vadhan [RV09], which showed the necessity of PCPs for succinct arguments
obtained via blackbox reductions to falsifiable assumptions (see Sect. 1.2). Their
result does not apply for succinct arguments in the random oracle model.

In this paper, the necessity of IOPs for succinct arguments in the ROM is
more than a compelling message. We demonstrate that the necessity of IOPs is a
useful step towards establishing barriers on succinct arguments, because thanks
to Theorem 1 we have reduced this problem to establishing barriers on IOPs.
Our second main contribution concerns this latter task (see below).

We sketch the ideas behind Theorem 1 in Sect. 2.1; the formal statement of
the theorem, which gives a precise accounting of many more parameters, is given
and proved in Sect. 4.

1.1.2 From IOPs to Algorithms
We show that IOPs with good parameters (small soundness error relative to
query complexity) can be translated to fast algorithms with small space com-
plexity. This translation should be viewed as a tool to establish barriers on IOPs:
if the language proved by the IOP is hard then the corresponding algorithm may
(conjecturally) not exist, contradicting the existence of the IOP to begin with.

Theorem 2 (informal). Suppose that a language L has a public-coin IOP with
soundness error ε, round complexity k, proof length l = poly(n) over an alphabet
Σ, query complexity q, and verifier space complexity vs. If ε = o(2−q·log l) then,
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the language L can be decided by a probabilistic algorithm that runs in time
exponential in ˜O

(

q ·(log |Σ|+k)
)

and that runs in space ˜O
(

vs ·q2 ·(log |Σ|+k)2
)

.

We sketch the ideas behind Theorem 2 in Sect. 2.2; the formal statement is
proved in Sect. 5.

Our result in fact provides a broad generalization of folklore results that
impose barriers on IPs and PCPs (both are special cases of IOPs) as we discuss
in Sect. 1.2. In particular, the folklore results restrict the verifier and alphabet
size, while we do not. For example, Theorem 2 rules out a broader class of PCPs
for the “small-query high-soundness” regime than what was previously known:
under the (randomized) Exponential-Time Hypothesis (rETH),1 if the number
of queries is constant then the best possible soundness error is 1/poly(n), as
long as log |Σ| � n (otherwise a trivial PCP exists). We deduce this from the
corollary obtained by setting k := 1 in Theorem 2.

Corollary 1 (informal). Suppose that NP has a PCP with perfect complete-
ness and soundness error ε, and where the verifier tosses r random coins, makes
q queries into a proof of length l = poly(n) over an alphabet Σ. Under the rETH
assumption, if ˜O(q log |Σ|) = o(n), then ε ≥ 2−q·log l.

This yields limitations for PCPs, e.g., in the “cryptographic regime”: constant-
query PCPs with negligible soundness cannot have polynomial size, even over
an exponentially-large alphabet.

1.1.3 Barriers for Succinct Arguments
We now discuss our barriers for succinct arguments, which state that under
standard complexity assumptions there are no succinct arguments where the
verifier makes a small number of queries to the random oracle, and the honest
prover has a small adaptivity parameter a.

Suppose that 3SAT has a succinct argument that provides s bits of security
and has argument size as � n, where n is the number of variables in the 3SAT
formula. Suppose that the argument prover makes a adaptive rounds of queries
to the random oracle, and the argument verifier makes vq queries to the random
oracle. If vq · a � s then by Theorem 1 we get an IOP with similar efficiency
parameters, and with query complexity roughly o(s). Then by Theorem 2 we
get an algorithm for 3SAT that runs in time 2o(n), contradicting the randomized
Exponential Time Hypothesis.

Theorem 3 (informal). Suppose that 3SAT has a public-coin succinct argu-
ment that provides s bits of security and has argument size as � n, where the
prover makes a adaptive rounds of queries to the random oracle and the verifier
makes vq queries to the random oracle. If vq · a � s then rETH is false.

1 The randomized Exponential Time Hypothesis states that there exist ε > 0 and c > 1
such that 3SAT on n variables and with c·n clauses cannot be solved by probabilistic
algorithms that run in time 2ε·n [Del+14].
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The theorem applies to all constructions, but does not completely answer our
motivating question because the theorem has a dependency on the adaptivity
parameter a. The question of whether this dependency can be removed remains
a challenging open problem. If it turns out that it cannot be removed, then
our result suggests a path to construct succinct arguments with more efficient
verifiers: the standard Merkle trees (which lead to very small adaptivity) must
be replaced with a deeper structure that exploits long adaptive paths of queries.
This would be a very exciting development, departing from all paradigms for
succinct arguments known to date!

Note that the requirement as � n is necessary as if as = n then a trivial
argument system, where the prover sends the full satisfying assignment, has no
soundness error with no random oracle calls.

We sketch how to derive our barriers in Sect. 2.3; formal statements can be
found in Sect. 6, in a more general form that separately considers the case of
arbitrary nondeterministic languages (of which 3SAT is an example) and the
case of arbitrary deterministic languages.

1.1.4 Additional Applications and Extensions
Our transformation from succinct arguments to IOPs (Sect. 1.1.1) leads to exten-
sions that provide valuable insights into succinct arguments, as we discuss below.

Extension 1: preprocessing implies holography. We now consider succinct
arguments in the ROM that have an additional useful feature, known as prepro-
cessing. This means that in an offline phase one can produce a short summary
for a given circuit and then, in an online phase, one may use this short sum-
mary to verify the satisfiability of the circuit with different partial assignments
to its inputs.2 The online phase now can be sublinear in the circuit size even for
arbitrary circuits.

The BCS transformation extends to obtain preprocessing SNARGs from holo-
graphic IOPs [COS20], following a connection between preprocessing and holog-
raphy introduced in [Chi+20]. Therefore, in light of Theorem 1, it is natural to
ask: do all preprocessing SNARGs in the random oracle model arise from holo-
graphic IOPs? Even if SNARGs “hide” IOPs inside them (due to our result),
there may be other approaches to preprocessing beyond holography, at least in
principle.

We show that preprocessing does arise from holography. We extend the ideas
underlying our Theorem 1 to obtain a transformation that given a preprocessing
SNARG in the random oracle model outputs a holographic IOP with related
complexity measures. This reverse direction strengthens the connection between
preprocessing and holography established in [COS20,Chi+20].

Lemma 1. There is an efficient transformation T that satisfies the following.
Suppose that ARG is a size-as preprocessing non-interactive argument in the
2 Here we focus on succinct arguments for circuit satisfiability for simplicity of exposi-

tion. The preprocessing property can be stated more generally, specifically for ternary
relations, and we do so in the rest of this paper.
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ROM for an indexed relation R where the honest prover performs pq queries
in a rounds, the verifier performs vq queries, and the indexer outputs a key of
size ivk. Then IOP := T(ARG) is a holographic IOP for R with proof length
O(pq+ as) and query complexity O(ivk+ as+ vq · a). Other aspects of IOP (such
as public coins, soundness, time and space complexities) are essentially the same
as in ARG.

Extension 2: on state restoration soundness. A careful reader may have
noticed that our discussion so far did not touch upon a technical, yet important,
aspect. Namely, observe that if we applied the transformation in Theorem 1 to
a SNARG in the ROM then we would obtain a corresponding public-coin IOP.
However, given what we said so far, we are not guaranteed that we can compile
this IOP back into a SNARG! Indeed, the known approach for constructing
SNARGs from IOPs requires the IOP to satisfy a stronger notion of soundness
called state restoration soundness [BCS16]. So we should ask: does the IOP
output by Theorem 1 satisfy this stronger notion?

We prove that the transformation in Theorem 1 yields an IOP with state-
restoration soundness as long as the SNARG had a stronger notion of soundness
that we introduce and call salted soundness. Informally, this notion allows a
cheating SNARG prover to request the random oracle to re-sample the answer
for a chosen query (in case the prover did not “like” the prior answer).

Lemma 2 (informal). The transformation T in Theorem 1 satisfies this addi-
tional property: if ARG is a SNARG with salted soundness error εs(t) for query
budget t and the prover runs in a adaptive rounds then IOP := T(ARG) is a
public-coin IOP with state restoration soundness error εs(t · m).

This lemma resolves the issue described above because the SNARGs con-
structed from (state-restoration sound) IOPs in [BCS16] do indeed satisfy the
stronger notion of salted soundness (Fig. 1).

1.2 Related Work

Known limitations on IPs and PCPs. Our Theorem 2 implies that IOPs
with good parameters can be translated into good algorithms. Below we sum-
marize known facts that impose limitations on restrictions of the IOP model:
interactive proofs (IPs) and probabilistically checkable proofs (PCPs).

– IPs. The following fact follows from proof techniques in [GH98] (see also
[RRR16, Remark 5.1]).

Folklore 1. If a language L has a public-coin IP where the communication and
verifier space complexity are bounded by c, then L can be decided by an algorithm
running in space O(c).

Since it is believed that DTIME[T ] �⊆ SPACE[o(T )], the above lemma tells
us that we should not expect every language in DTIME[T ] to have a non-trivial
public-coin interactive proof.
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Fig. 1. Summary of our results. The left part shows results related to “reverse engi-
neering” succinct arguments, which derive IOPs with certain properties from succinct
arguments with certain properties. The right part depicts the fact that IOPs with good
enough parameters lead to algorithms that, for hard enough languages, contradict plau-
sible complexity assumptions.

Both Folklore 1 and our Theorem 2 lead to an algorithm with small space,
and the main difference is that our theorem is a statement about IOPs rather
than IPs. We note, however, that within the proof of our theorem we prove a
lemma (Lemma 3) that can be viewed as a refinement of Folklore 1 as it applies
even when the verifier-to-prover communication is large.

– PCPs. The following fact lower bounds a PCP’s soundness error.

Folklore 2. Suppose that NP has a PCP with perfect completeness and sound-
ness error ε, and where the verifier tosses r random coins and makes q queries
into a proof of length l over an alphabet Σ. Then the following holds:

1. ε ≥ 2−r; and
2. Under the ETH assumption, if r = o(n) and q log |Σ| = o(n) then ε ≥

2−q·log |Σ|.

In order to understand the implications of the above limitation, we find it
helpful to recall a well-known conjecture about possible PCP constructions. The
Sliding Scale Conjecture states that, for every ε ∈ [1/poly(n), 1], every language
in NP has a PCP with perfect completeness and soundness error ε, and where
the verifier uses O(log n) random bits and makes O(1) queries into a proof over
an alphabet Σ of size poly(1/ε). The conjecture is tight in the sense that we
cannot ask for better soundness with the same parameters.

Yet if we allow the verifier to use ω(log n) random bits or if log |Σ| = ω(log n)
then Folklore 2 does not rule out PCPs with soundness error 1/nω(1). Our Corol-
lary 1 amends this by establishing that one cannot get soundness error better
than 1/poly(n) even if the verifier uses an arbitrary number of random bits and
the alphabet is arbitrarily large.

Probabilistic proofs in succinct arguments. Essentially all known construc-
tions of succinct arguments use some form of probabilistic proof as an ingredient
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(possibly among other ingredients). Prior to this work, the only known formal
statement seeking to explain this phenomenon is a result by Rothblum and
Vadhan [RV09] stating that succinct arguments proved secure via a black-box
reduction to a falsifiable assumption must “contain” a PCP. This is formalized
via a transformation that, given such a succinct argument, outputs a PCP with
size and query complexity related to the succinctness of the argument system
(and also certain aspects of the security reduction).

Our Theorem 1 is complementary to the result in [RV09], in that we con-
sider succinct arguments that are unconditionally secure in the random oracle
model (as opposed to computationally secure in the standard model). Our tech-
niques are also different, in that the technical challenge is to design an efficient
sub-protocol to simulate a random oracle (as opposed to detecting if the adver-
sary has “broken cryptography” by using the falsifiability of the cryptographic
assumption).

2 Techniques

2.1 IOPs are Necessary for Succinctness

We describe the main ideas behind Theorem 1, which states that any succinct
argument in the ROM implies an IOP with related parameters (which in par-
ticular demonstrates that IOPs are necessary for succinctness in the ROM). Let
P and V be the prover and verifier of an arbitrary succinct argument for a lan-
guage L (e.g., 3SAT). We seek to “remove” the random oracle from the succinct
argument by simulating it via an interactive sub-protocol and ending with an
IOP for the same language L. We assume, without loss of generality, that P and
V each never query the same element more than once.3

Below, we first describe a straightforward approach, then explain problems
and challenges on the approach, and finally explain how we overcome the chal-
lenges to obtain our result.

A straightforward approach. We can construct an IP with a new prover
P and a new verifier V that respectively simulate the argument prover P and
argument verifier V . In addition, we task the IP verifier V to simulate the random
oracle for both P and V , as we explain.

– Whenever the argument prover P wants to query the oracle at an element x,
the IP prover P forwards the query x to the IP verifier V, who replies with a
truly random string y that plays the role of the output of the random oracle
on x.

– Whenever the argument verifier V queries x, then the IP verifier V checks if
x had appeared in the transcript as one of the queries and returns the given
answer to V if so, or otherwise it feeds V with a truly random value.

3 We can always modify the prover to store previous query answers, so that no query
is performed twice. This might increase the space complexity of the prover, but it
does not affect the results in this paper.
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There is a delicate, yet crucial, issue that needs to be taken care of. A cheating
IP prover might query x twice (or more) to get two possible answers for the same
query, which might affect the soundness of the IP (and indeed there are succinct
arguments where this issue has devastating consequences on the soundness of
the IP). Thus, when simulating a verifier query x, the IP verifier V must assert
that x was not issued twice during the protocol (and otherwise reject).

The approach above perfectly removes the random oracle from the succinct
argument and yields an IP with similar completeness and soundness. Henceforth
we view the IP constructed above as an IOP whose verifier reads the entire
transcript (queries all locations of the exchanged messages).

The problem. The problem with the IOP described above is its parameters.
The argument prover P might perform many queries, and in particular more than
the witness size (as is the case in known constructions of succinct arguments).
This dominates many parameters of the IOP, including the number of rounds,
the number of bits read by the verifier, and its running time—and also yields a
trivial IOP for the language. Note that proof length (the number of bits sent by
P) is fine, as we do not expect all languages in NP to have an IOP with small
proof length, but rather only expect the IOP verifier to read a small number of
locations from the prover messages.

Achieving small round complexity. We crucially exploit a parameter of the
argument prover P not discussed thus far, namely, its adaptivity. We say that P
has adaptivity a if it performs a rounds of queries to the random oracle and in
each round submits a (possibly long) list of queries and receives corresponding
answers. In known constructions, a is very small (e.g., O(log n)). If P has adap-
tivity a, then the number of rounds in the constructed IOP can be easily reduced
to O(a), where the IOP prover P sends the verifier a list of queries x1, . . . , xm,
and the IOP verifier V replies with a list of answers y1, . . . , ym, while applying
the same logic as before. This reduces the number of rounds of the IOP, but
so far has no effect on the number of queries performed by the IOP verifier V,
which remains as large as the number of queries performed by the argument
prover P .

Perfect hash functions with locality. Our main goal now is to reduce the
number of bits read by the IOP verifier V. Consider a query x performed by the
argument verifier V . The IOP verifier V needs to read the transcript to see if the
query x was issued and, if so, check that it was issued only once. A simple way
to find x in the transcript is to have the IOP prover P assist with locating x.
That is, P points to the exact location in the transcript for where x was issued.
Then V reads this specific location in the transcript and is assured that x was
queried and at the same time reads the corresponding response y. However, how
can V check that x was not issued twice? And how can P give a proof that the
rest of the transcript does not contain x?

To deal with these challenges, we use perfect hash functions. These are a
family of functions H = {h : U → [O(m)]} such that for any S of size m there
exists a function h ∈ H that is one-to-one on S. Fixing such a family H, we let
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the IOP prover P provide with each set of queries (for each round), a perfect
hash function h for the set X of submitted queries and send an array of length
O(m) such that element x ∈ X resides in the cell at index h(x). This way, instead
of the IOP verifier V scanning (and reading) all prover messages, it suffices for
V to read the description of h and then query the cell h(x) to determine if x is
in the array.

Also, the IOP verifier V writes the response y at the same location h(x) in a
dedicated array of random values, Y [h(x)]. This way, V can be convinced that
x was not issued at a specific round by looking at a single cell h(x) for the array
given by P at that round. Thus, the query complexity of V for simulating a
single query of V is mainly determined by the number of rounds of the protocol,
which is the rather small value a (the adaptivity of the honest argument prover
P ). Note that while the entire array Y is sent to the prover, the verifier needs
to read only a single location from Y (we elaborate on this further below).

The locality property. Turning the above ideas into our transformation runs
into several delicate issues that need to be handled to achieve soundness and
good parameters. One issue is that the description of h is, in fact, too large for
the verifier to read in its entirety (it is larger than the set itself). However, we
observe that V need not read the entire function description, but only the parts
required for evaluating h at x.

Therefore, we additionally require the perfect hash family to have a locality
property where, in order to evaluate the hash function h on a single element x,
only a relatively small number of bits are required to be read from the description
of h. Luckily, several known constructions have this locality property and, specif-
ically, we use the construction of Fredman, Komlós, and Szemerédi [FKS84]. An
overview of the [FKS84] construction, its locality property, and a bound on the
number of bits required to read are given in Sect. 4.1.

There are additional challenges in realizing the above plan. For example,
in terms of soundness, note that a cheating prover might submit a set X and
choose a function h that is not perfect for X and contains collision—this could
potentially harm soundness. We deal with this and other issues on the way to
proving our transformation from succinct arguments to IOPs.

The resulting IOP. This results in an IOP with the following parameters. If
the prover had a rounds of adaptivity, then the IOP has a+1 rounds, where the
first a rounds are used to simulate the random oracle for the prover, and the last
round is dedicated to sending the final output of the prover. The proof length
of the IOP (i.e., the total communication of the protocol) is O(as+ pq) symbols
where each symbol contains an output of the random oracle. Indeed, for each of
the pq queries we an additional O(1) symbols, and for the last round we send
the final argument which is as bits (and can be read as a single symbol).

The query complexity is O(as + vq · a) as for each of the vq queries of the
prover, the verifier needs to scan all a rounds, and performs O(1) queries in each.
Then, it reads last prover message entirely which is as bits (which we can view
as 1 large symbol of as bits).



58 A. Chiesa and E. Yogev

The resulting IOP has large communication of randomness from the verifier
to the prover. However, the verifier, in order to decide whether to accepts, has
to read only a small number of locations, and these are included in the count
of the query complexity. Our definition for IOP allows the verifier to have only
oracle access to its own randomness and thus the query complexity includes
both locations read from the proof and from the randomness. We stress that the
compiler of [BCS16] works even for this more general definition of IOP. Therefore,
we do not expect to get an IOP with small verifier-to-prover communication as
it could be that the succinct argument was constructed from an IOP with large
communication (see Sect. 3.4 for the precise definition of IOP and a further
discussion on this topic).

See Sect. 4 for further details of the proof.

2.2 Algorithms for IOPs

We describe the main ideas behind Theorem 2, which states that IOPs with good
parameters can be translated to fast algorithms with small space complexity. We
proceed in two steps.

– Step 1. We prove that any IOP can be simulated by an IP (interactive proof)
with small prover-to-verifier communication, at the cost of a (large) complete-
ness error that depends on how well one can guess all of the IOP verifier’s
query locations (the “query entropy” of the IOP).

– Step 2. We prove a refinement of a result of Goldreich and Håstad [GH98]
that states that languages with public-coin IPs with small prover-to-verifier
communication can be decided via fast probabilistic algorithms with small
space complexity.

We elaborate on each of these steps in turn below.

Step 1: IOP to laconic IP (Lemma 2 in Lemma 5.1). We prove that any
IOP with good enough soundness relative to its query entropy can be trans-
lated to a laconic IP (an IP with small prover-to-verifier communication). Query
entropy is related to the probability of guessing in advance all locations that
the IOP verifier will read across the proof strings sent by the IOP prover (see
Definition 5 for how query entropy is formally defined). The translation ensures
that if the IOP is public coin (as indeed it is in our case) then the IP is also
public coin. Moreover, at the cost of an additional completeness error, the IP
verifier can be modified so that it makes a single pass on its (large) randomness
tape and runs in small space. (This small-space property will be useful later on
for establishing barriers on succinct arguments for deterministic languages; see
Sect. 2.3.)

We construct the IP as follows. First, the IP prover guesses the locations that
the IOP verifier will read. The probability of guessing all locations correctly is
2−h, where h is the query entropy. Assuming a correct guess, the IP prover sends
the description of these locations together with corresponding values. If the IOP
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verifier makes q queries across a proof of length l over an alphabet Σ, then the IP
prover sends q · log l+ q · log |Σ| bits. The soundness of the protocol remains the
same. What changes is the completeness error, which drastically increases since
guessing all locations has a small probability. However, if the soundness error is
small enough and as long as there is some difference between completeness and
soundness, we get a non-trivial IP. In particular, if the IOP has soundness error
ε < 2−h then the resulting IP has soundness error ε, completeness error 1− 2−h,
and prover communication q · log l+ q · log |Σ| as mentioned above.

Finally, we show that the IP can be modified (at the expense of the com-
pleteness error) to make the IP verifier perform a single pass over its randomness
tape. Note that the IOP verifier might read the randomness in an arbitrary man-
ner, which would make the IP verifier read it in a similar one. Here, we exploit
the fact that the IOP verifier had only oracle access to its own random tape,
and performed only a limited number of queries. We leverage this and let the IP
verifier guess these locations in advance. Then, the verifier reads the random-
ness tape and stores only the locations it guessed. From here on, the verifier will
use only the randomness stored explicitly. Assuming that it guessed correctly, it
uses these locations to simulate random access for the IOP verifier. This again
adds a large completeness error. However, if the soundness error is small enough,
then again the resulting IP is non-trivial and, as discussed above, suffices for our
purposes.

Step 2: IP to algorithm (see Lemma 3 in Lemma 5.2). Goldreich and
Håstad [GH98] showed that languages with public-coin IPs with small prover-
to-verifier communication can be decided via fast probabilistic algorithms. In
particular, if L has a public-coin IP where, for an instance of length n, the
prover-to-verifier communication is bounded by c(n) and the number of rounds
is bounded by k(n) then it holds that

L ∈ BPTIME
[

2O(c(n)+k(n)·log k(n)) · poly(n)
]

.

Their result is shown only for IPs with constant completeness and soundness
errors, which is not the case for the IP constructed in Step 1. We stress that
the IP constructed Step 1 can be amplified via standard repetition to reach the
setting of constant completeness and soundness errors, doing so would increase
communication and render the IP not laconic, and hence not useful for us in this
paper. Instead, we show a refinement of [GH98] that is suitable to work in the
“large-error” regime of IP parameters. Details follow.

We explicitly show the dependency in the completeness and soundness errors,
allowing the theorem to apply to IPs with large completeness errors (which we
need). This refinement is technical, where we follow the original proof blueprint of
[GH98]. We explicitly track the completeness and soundness errors rather than
hiding them as constants in the Big-O notation, and adjust other parameters
as a function of the completeness and soundness error values. The result is a
moderately more involved formula for the running time of the final algorithm,
which has these parameters in addition to the communication complexity and
the number of rounds.
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In particular, we get that if a language L has a public-coin IP with com-
pleteness error α, soundness error β, round complexity k, and prover-to-verifier
communication c, then it holds that

L ∈ BPTIME
[

2O(c(n)+k(n)·log k(n)
1−α(n)−β(n)) · poly(n)

]

.

For example, plugging in the IP obtained from Step 1, while assuming that ε =
o(2−q·log l) (and hiding some terms under the ˜O notation) we get the expression
from Theorem 2:

L ∈ BPTIME
[

2 ˜O(q·(log |Σ|+k))
]

.

Additionally, we show that if the verifier of the IP reads its randomness in
a single pass, then the same algorithm can be implemented in small space (the
original implementation of [GH98] used space proportional to its running time).
Looking ahead, this property is used to achieve the barrier for deterministic
languages. We sketch the main idea behind the new algorithm.

The algorithm’s main goal is to compute the value of a tree Ax corresponding
to (an approximation of) the interaction in the IP protocol. Each node in the tree
corresponds to a certain partial transcript of the IP, and computing the value
of the tree suffices to decide the language. The straightforward way to compute
the value is to compute the value of each node in the tree from the leaves up to
the root. This would require space proportional to the size of Ax. Yet, in order
to compute the value of the tree it would suffice to store only log |Ax| values at
a time, as for any subtree it suffices to store the value of its root.

There is, however, a major issue with this approach. Namely, the space
required to store even a single value of the tree is too large, as writing the
location of a node in the tree includes the description of the randomness of the
verifier in this partial transcript, which is too large to store explicitly. Here we
exploit the fact that the verifier uses a single pass to read its randomness, and
show how to compress the description of a node in the tree using the internal
memory and state of the verifier, given this partial transcript. This allows us to
implicitly store nodes values with small memory. Since it suffices to store only
log |Ax| values at a time we get an algorithm with small memory.

This results in the following conclusion: if the space complexity of the IP
verifier is vs when reading its randomness random tape in a single pass then

L ∈ SPACE
[

O (d · (vs+ d))
]

,

where d = c(n)+ k(n) · log k(n)
1−α(n)−β(n) . Once again, plugging in the IP obtained

from Step 1, we get the other expression from Theorem 2:

L ∈ SPACE
[

˜O
(

vs · q2 · (log |Σ| + k)2
)

]

.
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2.3 Barriers for Succinct Arguments

Our results provide a methodology for obtaining barriers on succinct arguments
for different languages, based on complexity assumptions for the language. We
describe this blueprint and give two examples, one for non-deterministic lan-
guages and one for deterministic languages, and suggest that additional barriers
could be achieved is a similar manner.

This methodology works as follows. Let L be the language for which a barrier
is desired, and suppose that one proves (or conjectures) some hardness property
about the language L. Now assume that there exists a succinct argument for L
with certain efficiency parameters such as soundness, query complexity, prover
adaptivity, and so on. First apply Theorem 1 to obtain an IOP with parameters
related to the succinct argument, and then apply Theorem 2 to obtain an efficient
algorithm for L. If the efficient algorithm violates the hardness of L, then one
must conclude that the assumed succinct argument for L does not exist.

Barriers for 3SAT. We apply the above methodology to obtain barriers for
succinct arguments for NP based on the Exponential-Time Hypothesis. Suppose
that 3SAT over n variables has a succinct argument that provides s bits of
security and has argument size as � n (of course, if as = n then the scheme
is trivial). Suppose also that the argument prover makes a adaptive rounds of
queries to the random oracle, and the argument verifier makes vq queries to the
random oracle.

We apply Theorem 1 to the argument scheme to get a related IOP. Since the
argument scheme provides s bits of security, then for any instance x ≤ 2s and
query bound t ≤ 2s and for oracle output size λ = O(s) we get that the resulting
IOP has soundness ε(x, t, λ) ≤ 2−s. Moreover, the verifier reads O(vq·a) symbols
from the transcript, the alphabet size is |Σ| = 2λ, the number of rounds is O(a),
and the proof length is O(as+pq), which is best to think as poly(n) for simplicity.

What is important to note here is that if vq · a � s then the query entropy
of the IOP is 2−h = l−vq·a = ω(2−s) and thus ε = o(2−h). This means that
we can apply Step 1 above to get an IP for 3SAT where the prover-to-verifier
communication is

c(n) = q · log l+ q · log |Σ| = q · log n + q · s = O(s2),

and the difference between the completeness and soundness error is 1 − α(n) −
β(n) = o(s). Then, using Step 2, we get a (randomized) algorithm for 3SAT that
runs in time 2 ˜O(q·(log |Σ|+k) = 2o(s) = 2o(n), as long as s2 � n. This contradicts
the (randomized) Exponential Time Hypothesis. Note that the condition that
s2 � n is relatively mild, as s is a lower bound for the size of the argument
scheme, and the main objective of a succinct argument is to have argument size
much smaller than the trivial n bits of communication (sending the satisfying
assignment).

The above reasoning can be generalized to any non-deterministic language
in NTIME[T ], as we work out in detail in Sect. 6.1.
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Barriers for DTIME[T ]. As a second example of our methodology, we show
barriers for deterministic languages. Here, we exploit the fact that the final
algorithm obtained in Step 2 has small space complexity. Suppose that there is a
succinct argument as above for languages in DTIME[T ], for some time bound T ,
with argument size as � T . Assume that DTIME[T ] �⊆ SPACE[o(T )], a rather
unlikely inclusion (which is currently outside of known techniques to either prove
or disprove).

As before, if vq · a � s then by Theorem 1 we get an IOP with similar
efficiency parameters, and with query complexity vq · a � s. Additionally, if the
argument’s verifier space complexity is sv � T (which is naturally the case with
a non-trivial argument scheme) then the verifier of the obtained IOP can be
implemented with O(sv) space.

Similar to the analysis we did in the non-deterministic case, here we apply
Theorem 2 and get an algorithm for L that runs in space

˜O(sv · q2 · (log |Σ| + k)2) = ˜O(s4) = o(T ),

as long as s4 � T (again, a relatively mild condition). This implies that

DTIME[T ] ⊆ SPACE[o(T )],

which contradicts the initial conjectured hardness.

Is the dependency on a inherent? Our methodology gives meaningful bar-
riers provided that the adaptivity of the honest prover, a, is somewhat small,
e.g., sublinear in the security parameter s. While this is indeed the case for all
known constructions, it is not clear if a succinct argument could benefit from
large adaptivity. We can thus draw the following conclusion. One possibility is
that our results could be improved to eliminate the dependency on a, for exam-
ple by improving the transformation to IOP to be more efficient and contain
queries from several adaptivity rounds to be in the same round of the IOP.
Another possibility is that there exist succinct arguments with small verifier
query complexity and large prover adaptivity. This latter possibility would be
a quite surprising and exciting development, which, in particular, would depart
from all paradigms for succinct arguments known to date.

2.4 Additional Results and Applications

Extension 1: preprocessing implies holography. Our Lemma 1 states that
we can transform any preprocessing succinct argument into a corresponding holo-
graphic IOP. We do so by extending the transformation that underlies our The-
orem 1, and below, we summarize the required changes.

Recall that in a holographic IOP there is an algorithm, known as the IOP
indexer and denoted I, that receives as input, e.g., the circuit whose satisfiability
is proved and outputs an encoding of it that will be given as an oracle to the
IOP verifier. Our goal here is to construct the IOP indexer by simulating the
argument indexer I, which instead relies on the random oracle to output a short
digest of the circuit for the argument verifier.
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Similarly to the transformation outlined in Sect. 2.1, we need to “remove”
the random oracle during the simulation. The IOP indexer uses its randomness
ρ0 to answer any oracle query performed by the argument indexer. Let X0 be
the set of queries performed by the argument indexer. Then, the IOP indexer
finds a perfect hash function h0 for X0 and creates the corresponding arrays T0

and Y0 containing the queried elements and responded positioned according to
h0. Finally, the IOP indexer outputs the string (ivk, h0, T0, Y0), where ivk is the
output of the argument indexer.

We are left to ensure that, during the transformation, any query simulated
by the IOP verifier is consistent with the queries performed in the preprocessing
step. The IOP prover, uses ρ0 to simulate, in its head, the above (deterministic)
process to get the same output (ivk, h0, T0, Y0), and thus can act in a consistent
way to the queries in X0.

The IOP verifier reads ivk and uses it to simulate the argument verifier. Recall
that for every query x the verifier ensures that x was not issued in any previous
round. Here, we modify the verify to search in the array T0 in addition to the
arrays in all the rounds. In this sense, the preprocessing phase acts as “round 0”
of the protocol. Completeness and soundness follow in a similar manner to the
original transformation.

Extension 2: on state restoration soundness. Our Lemma 2 states that
the transformation in Theorem 1 yields an IOP with state-restoration soundness
when applied to a SNARG that satisfies salted soundness, a stronger notion of
soundness that we introduce and may be of independent interest. The motivation
for this result is that in the “forward” direction we only know how to construct
SNARGs from IOPs that do satisfy state-restoration soundness [BCS16], which
informally means that the IOP prover cannot convince the IOP verifier with high
probability even when the IOP prover is allowed to choose from multiple contin-
uations of the interaction up to some budget. We now sketch salted soundness
and the ideas behind Lemma 2.

In a succinct argument with salted soundness, the cheating argument prover
is allowed to resample answers of the random oracle, in a specific way. Suppose
the prover queried some element x1 and got response y1. If the prover wishes,
it may resample x1 to get a fresh new uniform response y′

1. This process may
happen multiple times within the query budget of the algorithm. Then, the
prover selects one of these answers, and proceeds to query another element x2,
and so on. The prover is additionally allowed to go back, and change its decision
for the value of some xi. However, this produces a new branch where the values
for xj for j > i have to be resampled. In general, at any step the prover can
choose a brach from the set of all branches so far and choose to extend it. Finally,
the prover outputs the argument. When the argument verifier queries an element,
then it gets a response that is consistent with the branch the prover chose.

We need this security notion to get an IOP with state restoration sound-
ness since this is precisely what a cheating IOP prover can perform within our
transformation. In the state-restoration game, the cheating IOP prover can go
back to a previous round and ask for new randomness from the IOP verifier.
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In our case, the IOP prover will get new randomness for some set of queries.
Since these queries simulate a random oracle, it can get fresh randomness for a
query intended for a random oracle.

Thus, we show that any cheating prover playing the state-restoration game
can be transformed into a cheating prover to the salted soundness game, and
yields the desired proof.

3 Definitions

3.1 Random Oracles and Oracle Algorithms

We denote by U(λ) the uniform distribution over all functions ζ : {0, 1}∗ →
{0, 1}λ (implicitly defined by the probabilistic algorithm that assigns, uniformly
and independently at random, a λ-bit string to each new input). If ζ is sampled
from U(λ), then we say that ζ is a random oracle.

In this paper, we restrict our attention to oracle algorithms that are deter-
ministic. This is without loss of generality as we do not restrict the running of
the algorithm in the random oracle model only the number of queries.

Given an oracle algorithm A and an oracle ζ ∈ U(λ), queries(A, ζ) is the set
of oracle queries that Aζ makes. We say that A is t-query if |queries(A, ζ)| ≤ t
for every ζ ∈ U(λ).

Moreover, we consider complexity measures that quantify how the algorithm
A makes queries: some queries may depend on prior answers while other queries
do not. Letting ζm(x1, . . . , xm) := (ζ(x1), . . . , ζ(xm)), we say that A makes
queries in a rounds of width m if there exists an a-query oracle algorithm B
such that Bζm ≡ Aζ for every ζ ∈ U(λ). Note that t ≤ m · a.

Finally, we consider the size of oracle queries, i.e., the number of bits used to
specify the query: we say that A has queries of size n if for every ζ ∈ U(λ) and
x ∈ queries(A, ζ) it holds that |x| ≤ n.

We summarize the above via the following definition.

Definition 1. An oracle algorithm A is (a,m, n)-query if A makes queries in a
rounds of width m, and all queries of A have size at most n.

3.2 Relations

We consider proof systems for binary relations and for ternary relations, as we
now explain.

– A binary relation R is a set of tuples (x,w) where x is the instance and w
the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) ∈ R.

– A ternary relation R is a set of tuples (i,x,w) where i is the index, x the
instance, and w the witness. The corresponding language L = L(R) is the set
of tuples (i,x) for which there exists w such that (i,x,w) ∈ R. To distinguish
this case from the above case, we refer to R as an indexed relation and L as
an indexed language.
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A binary relation can be viewed as a special case of a ternary relation, where the
same index has been fixed for all instances. For example, the indexed relation
of satisfiable boolean circuits consists of triples where i is the description of a
boolean circuit, x is an assignment to some of the input wires, and w is an
assignment to the remaining input wires that makes the circuit output 0. If
we restrict this indexed relation by fixing the same circuit for all instances, we
obtain a binary relation.

The proof systems that we consider for binary relations are: (a) non-
interactive arguments in the random oracle model; and (b) interactive oracle
proofs. The proof systems that we consider for indexed (ternary) relations are
(a) preprocessing non-interactive arguments in the random oracle model; and
(b) holographic interactive oracle proofs. We will define only the latter two (in
Sect. 3.3 and Sect. 3.4 respectively) because the former two can be derived as
special cases.

3.3 Non-interactive Arguments in the Random Oracle Model

We consider non-interactive arguments in the random oracle model, where
security holds against query-bounded, yet possibly computationally-unbounded,
adversaries. Recall that a non-interactive argument typically consists of a prover
algorithm and a verifier algorithm that prove and validate statements for a binary
relation, which represents the valid instance-witness pairs. Here we define a more
general notion known as a preprocessing non-interactive argument, which works
for indexed relations (see Sect. 3.2). This notion additionally involves an indexer
algorithm, which receives as input an index and deterministically produces a key
pair specialized for producing and validating statements relative to the given
index. The usual notion of a non-interactive argument corresponds to a prepro-
cessing non-interactive argument where the indexer algorithm is degenerate (it
sets the proving key equal to the index, and similarly sets the verification key
equal to the index).

Let ARG = (I, P, V ) be a tuple of (oracle) algorithms, with I deterministic.
We say that ARG is a (preprocessing) non-interactive argument, in the random
oracle model, for an indexed relation R with (non-adaptive) soundness error ε if
the following holds.

– Completeness. For every (i,x,w) ∈ R and λ ∈ N,

Pr

⎡

⎣V ζ(ivk,x, π) = 1

∣

∣

∣

∣

∣

∣

ζ ← U(λ)
(ipk, ivk) ← Iζ(i)

π ← P ζ(ipk,x,w)

⎤

⎦ = 1.

– Soundness (non-adaptive). For every (i,x) /∈ L(R), t-query P̃ , and λ ∈ N,

Pr

⎡

⎣V ζ(ivk,x, π) = 1

∣

∣

∣

∣

∣

∣

ζ ← U(λ)
(ipk, ivk) ← Iζ(i)

π ← P̃ ζ

⎤

⎦ ≤ ε(i,x, λ, t).



66 A. Chiesa and E. Yogev

Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are, implicitly, functions of
(i,x) and the security parameter λ.

– sizes: proving key size ipks := |ipk|; verification key size ivks := |ivk|; argument
size as := |π|.

– times: the indexer I runs in time it; the prover P runs in time pt; the verifier
V runs in time vt.

– queries: the indexer I is a iq-query algorithm; the prover P is a (a,m, n)-query
algorithm (see Definition 1); the verifier V is a vq-query algorithm.

Bits of security. We are interested to discuss complexity measures, most
notably argument size, also as a function of bits of security. Note, though, that
we cannot directly equate “bits of security” with − log ε(i,x, λ, t) because this
value depends on multiple quantities that we cannot set a priori. Indeed, while
we could set the output size λ of the random oracle to be a value of our choice,
we may not know which index-instance pairs (i,x) we will consider nor a mali-
cious prover’s query bound t. Thus we consider all (i,x) and t up to a large size
that depends on the desired bits of security, and say that the scheme has s bits
of security if − log ε(i,x, λ, t) ≤ s for all such i,x, t and where λ is linear in s.
This is captured is the following definition.

Definition 2. We say that ARG provides s bits of security if its soundness
error ε satisfies the following condition with λ := c · s for some constant c >
0: for every index-instance pair (i,x) /∈ L(R) and query bound t ∈ N with
max{|i| + |x|, t} ≤ 2s it holds that ε(i,x, λ, t) ≤ 2−s.

The above definition enables us to discuss any complexity measure also, and
possibly exclusively, as a function of bits of security as we illustrate in the fol-
lowing definition.

Definition 3. We say that ARG has argument size as(s) if ARG provides s
bits of security and, moreover, as(s) bounds the size of an honestly-generated π
for any index-instance pair (i,x) ∈ L(R) with |i| + |x| ≤ 2s and while setting
λ := Θ(s).

3.4 Interactive Oracle Proofs

Interactive Oracle Proofs (IOPs) [BCS16,RRR16] are information-theoretic
proof systems that combine aspects of Interactive Proofs [Bab85,GMR89] and
Probabilistically Checkable Proofs [Bab+91,Fei+91,AS98,Aro+98], and also
generalize the notion of Interactive PCPs [KR08]. Below we describe a gen-
eralization of public-coin IOPs that is convenient in this paper.

Recall that a k-round public-coin IOP works as follows. For each round i ∈
[k], the prover sends a proof string Πi to the verifier; then the verifier sends a
uniformly random message ρi to the prover. After k rounds of interaction, the
verifier makes some queries to the proof strings Π1, . . . , Πk sent by the prover,
and then decides if to accept or to reject.
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The definition that we use here generalizes the above notion in two ways.

– Holography. The proof system works for indexed relations (see Sect. 3.2),
and involves an indexer algorithm that, given an index as input, samples an
encoding Π0 of the index; the randomness ρ0 used by the indexer to sample
the encoding Π0 is public (known to prover and verifier). The verifier receives
oracle access to the encoding Π0, rather than explicit access to the index.

– Randomness as oracle. The verifier has oracle access to its own randomness
ρ1, . . . , ρk and to the indexer’s randomness ρ0. This notion, which naturally
arises in our results, is compatible with known compilers, as we explain in
Remark 1. We will count verifier queries to the randomness ρ0, ρ1, . . . , ρk sep-
arately from verifier queries to the encoding Π0 and proof strings Π1, . . . , Πk.

In more detail, let IOP = (I,P,V) be a tuple where I is a deterministic
algorithm, P is an interactive algorithm, and V is an interactive oracle algorithm.
We say that IOP is a public-coin holographic IOP for an indexed relation R with
k rounds and soundness error ε if the following holds.

– Completeness. For every (i,x,w) ∈ R,

Pr
ρ0,ρ1,...,ρk

⎡
⎢⎢⎢⎢⎢⎢⎣

VΠ0,Π1,...,Πk,ρ0,ρ1,...,ρk (x) = 1

Π0 ← I(i, ρ0)
Π1 ← P(i,x,w, ρ0)

Π2 ← P(i,x,w, ρ0, ρ1)
...

Πk ← P(i,x,w, ρ0, ρ1, . . . , ρk−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1.

– Soundness. For every (i,x) /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ0,ρ1,...,ρk

⎡

⎢

⎢

⎢

⎢

⎢

⎣

VΠ0,Π̃1,...,Π̃k,ρ0,ρ1,...,ρk(x) = 1

Π0 ← I(i, ρ0)
Π̃1 ← P̃(ρ0)

Π̃2 ← P̃(ρ0, ρ1)
...

Π̃k ← P̃(ρ0, ρ1, . . . , ρk−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≤ ε(x).

Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are implicitly functions of
the instance x.

– proof length l: the total number of bits in Π0,Π1, . . . , Πk.
– proof queries q: the number of bits read by the verifier from Π0,Π1, . . . , Πk.
– randomness length r: the total number of bits in ρ0, ρ1, . . . , ρk.
– randomness queries qr: the total number of bits read by the verifier from

ρ0, ρ1, . . . , ρk.
– indexer time it: I runs in time it.
– prover time pt: P runs in time pt.
– verifier time vt: V runs in time vt.
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Query entropy. We additionally define a complexity measure called query
entropy that, informally, captures the entropy of the query locations read by
the IOP verifier in an honest execution. In particular, if the query entropy is at
most h then the probability of predicting in advance all the locations that the
verifier will read at the end of the protocol is at least 2−h, where the probability
is taken over the randomness of the IOP verifier and (any) randomness of the
honest IOP prover.

Definition 4. Let X be a random variable. The sample-entropy of x ∈ supp(X)
with respect to X is H(x) := − log Pr[X = x]. The min-entropy of X is
Hmin(X) := minx∈supp(X) H(x).

Definition 5. Let IOP = (I,P,V) be an IOP with proof length l for an indexed
relation R.

– The query distribution of IOP for (i,x,w) ∈ R is the distribution
D(i,x,w) over subsets I ⊆ [l] such that the probability of I is the proba-
bility that the honest IOP verifier V reads exactly the locations in I in an
honest execution with the IOP prover P for the triple (i,x,w).

– The query entropy of IOP for an index-instance pair (i,x) ∈ L(R) is

h(i,x) := max
w s.t. (i,x,w)∈R

Hmin(D(i,x,w)) .

For any IOP with proof length l and query complexity q it holds that for
any (i,x,w) ∈ R the query distribution has no more entropy than the uniform
distribution over subsets of size q. Therefore it always holds that h(i,x) ≤ q(i,x)·
log l(i,x).

Remark 1 (randomness in known compilers). The definition of public-coin
(holographic) IOP that we consider additionally grants the verifier oracle access
to its own randomness, which in particular, enables the prover to receive much
more randomness than allowed by the verifier’s running time. We briefly discuss
why this feature is motivated by known cryptographic compilers.

First, the size of arguments produced via known cryptographic compilers does
not depend on the verifier’s randomness complexity. E.g., the Micali compiler
[Mic00] maps a PCP into a corresponding non-interactive argument whose size
is independent of the PCP verifier’s randomness complexity; more generally,
the BCS compiler [BCS16] maps a public-coin IOP into a corresponding non-
interactive argument whose size is independent of the IOP verifier’s randomness
complexity.

Second, the running time of the argument verifier produced by these com-
pilers only depends on the number of queries to the randomness, but not on
randomness complexity. Indeed, both in the Micali compiler and in the BCS
compiler, the argument prover only needs to invoke the random oracle to answer
randomness queries of the underlying PCP/IOP verifier, and in particular, does
not have to materialize the unqueried randomness. This is because the random
oracle, which serves as a shared randomness resource, enables the argument
prover to suitably materialize all the relevant randomness without impacting
the argument verifier.
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4 From Succinct Arguments to Interactive Oracle Proofs

We formally re-state Theorem 1 and then prove it. The formal theorem statement
is somewhat technical, as it contains the precise relationship between parameters
of the succinct argument and the corresponding IOP. We advise the reader to
first read the informal overview of the proof in Sect. 2.1, as it gives intuition for
the relationships between the parameters.

The theorem is stated with respect to a non-interactive succinct argument,
for the sake of simple presentation. The compiler naturally generalizes to succinct
arguments with multiple rounds, and we describe this is Remark 2. We note that
we additionally provide the query entropy of the compiled IOP (see Definition 5)
as it is used later in Theorem 6.

In the theorem below, an (a,m, n)-query algorithm performs a rounds
each containing m queries to a random oracle over defined over {0, 1}n (see
Definition 1).

Theorem 3 (ARG → IOP). There exists a polynomial-time transformation
T that satisfies the following. If ARG is a non-interactive argument in the ROM
for a relation R then IOP := T(ARG) is a public-coin IOP for R, parametrized
by a security parameter λ ∈ N, with related complexity as specified below. (All
complexity measures take as input an instance x and the security parameter λ.)

ARG
soundness error ε
argument size as
prover
• time pt
• queries (a,m, n)

verifier
• time vt
• queries vq

−→

IOP
soundness error ε(t) for t := O(a · m)
round complexity a+ 1
prover

• time (expected) ˜O(pt)

• messages Π1, . . . , Πa ∈ Σ
O(m)
n

Πa+1 ∈ Σas

verifier

• time (worst case) vt+ Õ
(

vq · a · (n+ λ)
)

• messages ρ1, . . . , ρa ∈ Σ
O(m)
λ

ρa+1 ∈ Σvq
λ

• queries O(vq) to each of Π1, . . . , Πa

1 to Πa+1

O(vq) to ρ1, . . . , ρa+1

query entropy O(vq · a · logm)
[above Σn denotes the alphabet {0, 1}n]

Moreover, the IOP prover and IOP verifier make only black-box use of the argu-
ment prover and argument verifier respectively (up to intercepting and answering
their queries to the random oracle).

The rest of this section is organized as follows: in Sect. 4.1 we introduce the
main tool that we use in our transformation, and in Sect. 4.2 we describe the
transformation. Proofs are given in the full version of the paper.

Remark 2 (interactive arguments). While the focus of this paper is non-
interactive arguments in the random oracle model (as defined in Sect. 3.3), one
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could also study interactive arguments in the random oracle model. Our proof
of Theorem 3 directly extends to give a result also for this more general case,
with the main difference being that the round complexity of the IOP increases
by the round complexity of the given argument system.

The reason why the proof directly extends is that the main technique for
constructing the IOP is a sub-protocol for simulating queries to a random oracle,
and this sub-protocol does not “care” if in the meantime the argument prover and
argument verifier engage in a conversation. As a result, if the succinct argument
has k rounds, then the compiled IOP has k+ a rounds.

4.1 Tool: Perfect Hash Functions with Locality

A perfect hash function for a set S of size m in a universe U is a function
h : U → {1, . . . , O(m)} that is one-to-one on S. We use a seminal construction
of Fredman, Komlós, and Szemerédi [FKS84], observing that it has a certain
locality property that is crucial for us.

Theorem 4 (follows from [FKS84]). For any universe U there exist a
poly(m, log |U |)-time deterministic algorithm that, given as input a subset S ⊆ U
of size m, outputs a perfect hash function h : U → {1, . . . , O(m)} for S with
|h| = O(m · log |U |) bits. In fact, evaluating h on a single input requires read-
ing only O(log |U |) bits from the description of h, and performing Õ(log |U |)
bit operations. In alternative to the deterministic algorithm, h can be found in
expected time Õ(m · log |U |).
Proof. The FKS construction achieves a perfect hash function h via two levels of
hashing. The first level is a hash function h0 : U → [m] that divides the elements
of S among m bins where bin i has bi elements, with

∑m
i=1 b2i = O(m). The

second level is a hash function hi : [m] → [b2i ], one for each bin i ∈ [m], that
resolves collisions inside bin i by mapping the bi elements in bin i to a range of
size b2i . Hence the hash function h consists of a collection of 1+m hash functions:
one for the first level and m for the second level. Each of the 1+m hash functions
is sampled from a family of universal hash functions (see Definition 6), which
can be instantiated via the standard construction in Lemma 1 below.

Definition 6. A family H of hash functions mapping U to [M ] is universal if
for any distinct x, y ∈ U it holds that Prh←H[h(x) = h(y)] = 1/M .

Lemma 1 ([CW79]). Let p be a prime with |U | < p ≤ poly(|U |). The fam-
ily H = {ha,b : U → [M ]}a∈F∗

p,b∈Fp
where ha,b(x) := (a · x mod p) mod M is

universal. Each ha,b has bit size O(log |U |) and can be evaluated in ˜O(log |U |)
time.

The above gives us |h0| = O(log |U |) and |hi| = O(log |U |) for all i ∈ [m],
and in particular |h| = O(

∑m
i=0 |hi|) = O(m · log |U |).

We now discuss the locality property of the FKS construction. In order to
evaluate h on a single element, one needs to use only two hash functions among
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the 1+m: the first level hash function h0 and then the appropriate second level
hash function hi. Thus, to evaluate h on a single element requires reading only
the relevant bits of h0 and hi from the description of h, which together amount
to O(log |U |) bits. The time to evaluate both h0 and hi is ˜O(log |U |).

We conclude with a discussion of how to find h. Fredman, Komlós, and Sze-
merédi [FKS84] showed a poly(m, log |U |)-time deterministic algorithm; Alon
and Naor [AN96] showed a faster deterministic algorithm, but the running time
remains super-linear. Alternatively, in [FKS84], it was shown that h can be found
in expected time Õ(m · log |U |). This follows since for a random h0 it holds that
∑m

i=1 b2i = O(m) with high probability, and moreover, for a random hi, the
mapping to [b2i ] is one-to-one with high probability. Thus, in expectation, only
a constant number of trials are needed to find h0 and to find each hi. ��

4.2 The Transformation

Construction 5 (transformation T). Let ARG = (P, V ) be a non-interactive
argument in the ROM. We construct a public-coin interactive oracle proof IOP =
(P,V), parametrized by a choice of security parameter λ ∈ N. The IOP prover
P takes as input an instance x and a witness w, and will internally simulate the
argument prover P on input (x,w), answering P ’s queries to the random oracle
as described below. The IOP verifier V takes as input only the instance x, and
will simulate the argument verifier V on input x, answering V ’s queries to the
random oracle as described below.

The interactive phase of the IOP protocol proceeds as follows:

– For round j = 1, . . . , a:
1. P simulates P to get its j-th query set Xj = (x1, . . . , xm), and finds a

perfect hash function hj : {0, 1}n → [M ] for the set Xj where M = O(m).
Then, P creates an M -cell array Tj such that Tj [hj(xi)] = xi for all
i ∈ [m], and all other cells of Tj are ⊥. Finally, P sends Πj := (hj , Tj)
to V.

2. V samples y1, . . . , yM ∈ {0, 1}λ uniformly at random and sends ρj :=
(y1, . . . , yM ) to P.

3. P answers P ’s query xi with the value ρj [hj(xi)], for every i ∈ [m].
– P simulates P until it outputs the non-interactive argument π; P sends

Πa+1 := π to V.

The query phase of the IOP protocol proceeds as follows. The IOP verifier V
reads the non-interactive argument π sent in the last round (the only symbol in
Πa+1), and simulates the argument verifier V on input (x, π), answering each
oracle query x with an answer y that is derived as follows:

– V reads the necessary bits from hj (in Πj) to evaluate hj(x);
– V reads vj := Tj [hj(x)] (in Πj) for all j ∈ [a];
– if vj �= x for all j ∈ [a] then set y to be a random value in {0, 1}λ;
– if there exists j �= j′ such that vj = x and vj′ = x then halt and reject;
– let j be the unique value such that vj = x, and set y := ρj [hj(x)].
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If each query was answered successfully, V rules according to the output of V .
(Note that, formally, the randomness used by the IOP verifier V to answer
queries of the argument verifier V that were not also asked by the argument
prover P should be treated as a last verifier message ρa+1 consisting of vq random
λ-bit strings. The IOP verifier will then “consume” this randomness as needed.)

The proof appears in the full version of the paper.

5 From Interactive Oracle Proofs to Algorithms

We formally re-state and prove Theorem 2, which states that IOPs with good
parameters (small soundness error relative to soundness error or, more precisely,
query entropy) can be translated to good algorithms (fast algorithms with small
space complexity). We use this transformation in Sect. 6 to show that, for certain
languages, if the IOP parameters are “too good” then the resulting algorithms
contradict standard complexity assumptions (and therefore cannot exist).

Theorem 6 (IOP to algorithm). Suppose that a language L has a public-
coin IOP with completeness error c, soundness error ε, round complexity k,
proof length l over an alphabet Σ, query complexity q, and query entropy h. If
δ := (1 − c) · 2−h − ε > 0 then, for c := q · log l+ q · log |Σ| the language L is in

BPTIME
[

2O(c(n)+k(n)·log k(n)
δ(n) ) · poly(n)

]

.

Let the verifier space complexity be vs, randomness length r (over Σ) and ran-
domness query complexity qr. If δ′ := (1 − c) · 2−h · r−qr − ε > 0 then the same
algorithm can be implemented in space

O

(

vs ·
(

c(n) + k(n) · log k(n)
δ′(n)

)2
)

.

(Above it suffices to take c to be the number of bits to specify the set of queries by the
IOP verifier and their corresponding answers. This is useful when queries are correlated
or answers are from different alphabets.)

The proof appears in the full version of the paper.

5.1 IOP to Laconic IP

The lemma below states that any IOP with good enough soundness relative to
its query entropy can be translated to a laconic IP (an IP with small prover-to-
verifier communication). Query entropy is the probability of guessing in advance
the exact locations that the IOP verifier will read across the proof strings sent
by the IOP prover; see Definition 5 for how query entropy is formally defined.
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Lemma 2 (IOP to laconic IP). Suppose that a language L has an IOP with
completeness error c, soundness error ε, round complexity k, proof length l over
an alphabet Σ, query complexity q, and query entropy h. If ε < (1 − c) · 2−h

then L has an IP with completeness error 1 − (1 − c) · 2−h, soundness error ε,
round complexity k, and prover-to-verifier communication q · log l + q · log |Σ|.
(More generally, communication is bounded by the number of bits to specify the
set of queries by the IOP verifier and their corresponding answers.) If the IOP
is public-coin then the IP is public-coin.

Moreover, the IP can be modified so that the IP verifier performs a single
pass over the randomness tape, with completeness error 1 − (1 − c) · 2−h · r−qr ,
and space complexity O(vs+qr ·log r+qr log |Σ|)) where vs is the space complexity
of the IOP verifier.

The proof appears in the full version of the paper.

5.2 IP to Algorithm

Goldreich and Håstad [GH98] have shown that languages with public-coin IPs
with small prover-to-verifier communication can be decided via fast probabilistic
algorithms. Their result is shown for IPs with constant completeness and sound-
ness errors. Below we show a refinement of their theorem, where we explicitly
provide the dependency in the completeness and soundness errors, which allows
supporting IPs with large completeness errors (which we need). Moreover, we
note that if the IP verifier reads its randomness in a single pass, the probabilistic
algorithm for deciding the language can be implemented in small space (which
we also need).

Lemma 3 (IP to algorithm). Suppose that a language L has a public-coin IP
with completeness error α, soundness error β, round complexity k, and prover-
to-verifier communication c. Then, for d(n) := c(n) + k(n) · log k(n)

1−α(n)−β(n) the
language L is in

BPTIME
[

2O(d) · poly(n)
]

.

Moreover, if the space complexity of the IP verifier is vs when reading its ran-
domness random tape in a single pass then the language L is in

SPACE [O (d · (vs+ d))] .

The proof appears in the full version of the paper.

6 Barriers for Succinct Arguments

We prove that, under plausible complexity assumptions, there do not exist suc-
cinct arguments where the argument verifier makes a small number of queries
to the random oracle and the honest argument prover has a small adaptivity
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parameter. We separately consider that case of succinct arguments for nondeter-
ministic languages (NTIME) in Sect. 6.1, and the case of deterministic languages
(DTIME) in Sect. 6.2.

In both cases our approach consists of the following steps: (1) we use
Theorem 3 to transform the succinct argument into a corresponding IOP; then,
(2) we use Theorem 6 to transform the IOP into an algorithm with certain time
and space complexity; finally, (3) we argue that, under standard complexity
assumptions, such an algorithm does not exist.

6.1 The Case of Nondeterministic Languages

Theorem 7. Suppose that NTIME[T ] has a non-interactive argument ARG
that provides s bits of security and has argument size as = o(T ) (see Defini-
tions 2 and 3), where the prover makes a adaptive rounds of m queries to the
random oracle, and the verifier makes vq queries to the random oracle. If (1)
vq · a · log(m) = o(s); and (2) log n ≤ s ≤ o(T 1/2), then NTIME[T (n)] ⊆
BPTIME[2o(T (n))] (an unlikely inclusion).

Remark 3 (s vs. T). If as = Ω(T ) then the trivial scheme of sending the T bits
of a valid witness yields a non-interactive argument (indeed, proof), and so we
consider the case as = o(T ). For technical reasons, we also need that s = o(T 1/2),
a rather weak condition. Additionally, we restrict the instance size to be at most
exponential in s, and therefore assume that log n ≤ s.

Remark 4 (“a” in known compilers). In the Micali transformation [Mic00], the
argument prover performs a = Θ(log l) rounds of queries to the random oracle
(one round for each level of a Merkle tree over a PCP of size l), whereas the
argument verifier performs vq = Θ(q · log l + r) queries to the random oracle.
When using known or conjectured PCPs in the Micali transformation, we get
vq = Ω(s). In particular, the hypothesis vq · a · log(m) = o(s) does not apply,
and as expected does not lead to the inclusion stated in the theorem.

Remark 5 (interactive argument). Similar to the way Theorem 3 is presented,
to get a simple presentation, we state the above theorem for non-interactive
succinct arguments. We note, however, that the theorem naturally generalizes
to any public-coin succinct argument with k rounds (note that always k ≤ as),
as long as s2 · k = o(T ).

6.2 The Case of Deterministic Languages

Theorem 8. Suppose that DTIME[T ] has a non-interactive argument ARG
that provides s bits of security and has argument size as = o(T ) (see Defini-
tions 2 and 3), where the prover makes a adaptive rounds of m queries to the
random oracle, and the verifier makes vq queries to the random oracle and has
space complexity sv. If (1) vq · a · log(a ·m) = o(s); (2) sv · (s4 + as2) = o(T ); and
(3) log n ≤ s then DTIME[T (n)] ⊆ SPACE[o(T (n))] (an unlikely inclusion).
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The proof appears in the full version of the paper.
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Abstract. We prove a tight lower bound on the number of group oper-
ations required for batch verification by any generic-group accumula-
tor that stores a less-than-trivial amount of information. Specifically, we
show that Ω(t · (λ/ log λ)) group operations are required for the batch
verification of any subset of t ≥ 1 elements, where λ ∈ N is the security
parameter, thus ruling out non-trivial batch verification in the standard
non-interactive manner.

Our lower bound applies already to the most basic form of accu-
mulators (i.e., static accumulators that support membership proofs),
and holds both for known-order (and even multilinear) groups and for
unknown-order groups, where it matches the asymptotic performance
of the known bilinear and RSA accumulators, respectively. In addition,
it complements the techniques underlying the generic-group accumula-
tors of Boneh, Bünz and Fisch (CRYPTO ’19) and Thakur (ePrint ’19)
by justifying their application of the Fiat-Shamir heuristic for trans-
forming their interactive batch-verification protocols into non-interactive
procedures.

Moreover, motivated by a fundamental challenge introduced by
Aggarwal and Maurer (EUROCRYPT ’09), we propose an extension of
the generic-group model that enables us to capture a bounded amount
of arbitrary non-generic information (e.g., least-significant bits or Jacobi
symbols that are hard to compute generically but are easy to compute
non-generically). We prove our lower bound within this extended model,
which may be of independent interest for strengthening the implications
of impossibility results in idealized models.

1 Introduction

Cryptographic accumulators [BdM93], in their most basic form, generate a short
commitment to a given set of elements while supporting non-interactive and
publicly-verifiable membership proofs. Such accumulators, as well as ones that
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offer more advanced features (e.g., non-membership proofs, aggregation of proofs
and batch verification) have been studied extensively given their wide applica-
bility to authenticating remotely-stored data (see, for example, [BdM93,ST99,
BLL00,CL02,NN98,CJ10,ABC+12,Sla12,MGG+13,CF14,GGM14,PS14] and
the references therein).

Known constructions of accumulators can be roughly classified into two cat-
egories: hash-based constructions and group-based constructions. Hash-based
constructions generate a short commitment via a Merkle tree [Mer87,CHK+08],
where the length of the resulting commitment is independent of the number
of accumulated elements, and the length of membership proofs and the ver-
ification time are both logarithmic in the number of accumulated elements.
Group-based constructions, exploiting the structure provided by their underlying
groups, lead to accumulators in which the length of the commitment, the length
of membership proofs and the verification time are all independent of the num-
ber of accumulated elements. Such accumulators have been constructed in RSA
groups [BP97,CL02,LLX07,Lip12] and in bilinear groups [Ngu05,DT08,CKS09].
In both cases the constructions do not exploit any particular property of the rep-
resentation of the underlying groups, and are thus generic-group constructions
[Nec94,BL96,Sho97,MW98,DK02,Mau05,JS08,JR10,JS13,FKL18].1

Accumulators with Batch Verification. Motivated by recent applica-
tions of accumulators to stateless blockchains and interactive oracle proofs
[Tod16,BCS16,AHI+17,BSBH+18,BCR+19], Boneh, Bünz and Fisch [BBF19]
developed techniques for the aggregation of membership proofs (and even of
non-membership proofs) and for their batch verification. Given that hash-based
accumulators seem less suitable for offering such advanced features [OWW+20],
Boneh et al. exploited the structure provided by RSA groups, and more gener-
ally by unknown-order groups such as the class group of an imaginary quadratic
number field.

Specifically, Boneh et al. showed that membership proofs and non-
membership proofs for any subset of t elements can be aggregated into a single
proof whose length is independent of t. Then, by relying on the techniques of
Wesolowski [Wes19], they showed that such aggregated proofs can be verified
via an interactive protocol, where the number of group operations performed by
the verifier is nearly independent of t (instead of growing with t in a multiplica-
tive manner as in the verification of t separate proofs). By applying the Fiat-
Shamir transform with a hash function that produces random primes, Boneh
et al. showed that their interactive verification protocol yields a non-interactive
publicly-verifiable verification procedure. Analogous results were subsequently
obtained in bilinear groups by Thakur [Tha19], who extended the techniques

1 We note that the RSA-based accumulator hashes the elements into primes before
accumulating them. This is captured within the generic-group model since the accu-
mulated elements are provided explicitly as bit-strings (i.e., they are not group ele-
ments and therefore such hashing can be performed by generic algorithms). Equiv-
alently, the RSA-based accumulator can be viewed as a generic-group accumulator
that accumulates prime numbers.



Accumulators in (and Beyond) Generic Groups 79

of Boneh et al. and Wesolowski to such groups based on the constructions of
Nguyen [Ngu05] and of Damg̊ard and Triandopoulos [DT08].

Non-trivial Batch Verification vs. Interaction. Other than applying the
Fiat-Shamir transform for obtaining a non-interactive verification procedure, the
constructions of Boneh et al. and Thakur are generic-group constructions, relying
on the existing generic-group accumulators in RSA groups [BP97,CL02,LLX07]
and in bilinear groups [Ngu05,DT08]. This introduces a substantial gap between
generic-group accumulators that support non-trivial batch verification and
generic-group accumulators that support only trivial batch verification (i.e., via
the verification of individual proofs). Given the key importance of non-interactive
verification in most applications that involve accumulators, this leads to the fol-
lowing fundamental question:

Does non-trivial batch verification in generic-group
accumulators require interaction?

This question is of significant importance not only from the foundational
perspective of obtaining a better understanding of the feasibility and efficiency
of supporting advanced cryptographic features, but also from the practical per-
spective. Specifically, following Wesolowski [Wes19], Boneh et al. implement the
Fiat-Shamir transform using a hash function that produces random primes. As
discussed by Boneh et al. [BBF19] and by Ozdemir, Wahby, Whitehat and Boneh
[OWW+20], who proposed various potential realizations for such a hash func-
tion, this affects the efficiency, the correctness and the security of the result-
ing accumulator. More generally, and even when implementing the Fiat-Shamir
transform via any standard hash function, in many cases the transformation vio-
lates the elegant algebraic structure of the underlying interactive protocol, lead-
ing to potentially-substantial overheads when implemented within larger systems
(e.g., systems that rely on efficient algebraic proof systems).

1.1 Our Contributions

We prove a tight lower bound on the number of group operations performed
during batch verification by any generic-group accumulator that uses less-than-
trivial space. In particular, we show that no such accumulator can support
non-trivial batch verification in the standard non-interactive manner. Our lower
bound applies already to the most basic form of accumulators (i.e., static accu-
mulators that support membership proofs), and holds both for known-order
(and even multilinear) groups and for unknown-order groups, where it matches
the asymptotic performance of the known bilinear and RSA accumulators,
respectively.2

Moreover, motivated by a fundamental challenge introduced by Aggarwal
and Maurer [AM09]), we propose an extension of the generic-group model that
2 Our results hold also for the more restrictive notion of vector commitments

[CF13,BBF19,LM19], which provide the same functionality as accumulators, but
for ordered lists instead of sets.
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enables us to capture a bounded amount of arbitrary non-generic information
(e.g., least significant bits or Jacobi symbols that are hard to compute generically
but are easy to compute non-generically [AM09,JS13]). We prove our lower
bound within this extended model, where we measure efficiency in terms of
the number of group operations and in terms of the amount of non-generic
information. This extension of the generic-group model may be of independent
interest for strengthening the implications of impossibility results in idealized
models.

In what follows we state our results somewhat informally in order to avoid
introducing the entire list of parameters with which we capture the efficiency
of generic-group accumulators (we refer the reader to Sect. 2.2 for our formal
definitions). Here we will focus on the following three main parameters, nAcc,
�Acc and q, that are associated with an accumulator ACC, where we denote by
λ ∈ N the security parameter:

– nAcc(λ, k) and �Acc(λ, k) are the number of group elements and the bit-length
of the explicit string, respectively, stored by the accumulator when accumu-
lating k elements.

– q(λ, t, k) is the number of group-operation queries issued by the accumula-
tor’s verification procedure when verifying a membership proof for t out of k
elements.

Our Main Result. Our main result is a tight bound on the trade-off between
the amount of information that an accumulator stores when accumulating k ≥ 1
elements and its number of group operations when verifying a membership proof
for 1 ≤ t ≤ k elements. We prove that this number of group operations must
scale multiplicatively with t, thus ruling out non-trivial batch verification. This
is captured by the following theorem which applies both to known-order groups
and to unknown-order groups.3

Theorem 1.1 (Simplified). For any generic-group accumulator ACC over a
domain X = {Xλ}λ∈N it holds that

q(λ, t, k) = Ω

⎛
⎝t ·

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
· 1
log λ

⎞
⎠

for all sufficiently large λ ∈ N. In particular, if |Xλ| = 2Ω(λ) then for any
0 < ε < 1 either

nAcc · log2(nAcc + 1) + �Acc ≥ (1 − ε) · log2

(|Xλ|
k

)

or

q(λ, k, t) = Ω

(
t · ελ

log λ

)
.

3 We note that all logarithms in this paper are to the base of 2, which we omit whenever
used within asymptotic expressions in a multiplicative manner.
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For interpreting our main theorem, note that log2
(|Xλ|

k

)
is the expected num-

ber of bits required for an exact representation of k elements, and that
nAcc · log2(nAcc + 1) + �Acc is the amount of information that is actually stored
by a generic-group accumulator from its verification algorithm’s point of view:
nAcc · log2(nAcc+1) bits of information resulting from the equality pattern among
the nAcc stored group elements, and �Acc additional explicit bits of information.
Thus, the expression

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k

captures the average information loss per accumulated element. Our theorem
shows that as long as the amount of information stored by an accumulator is
bounded away from the information-theoretic amount that is required for an
exact representation, then non-trivial batch verification is impossible.

Our lower bound on the efficiency of batch verification matches the perfor-
mance of the RSA accumulator considered by Boneh et al. [BBF19] in which
nAcc = 1 and �Acc = 0 (i.e., the accumulator stores just a single group element),
and |Xλ| = 2Ω(λ). In this accumulator, batch verification of t elements can be
computed via a single exponentiation in the group Z

∗
N , where the exponent is

the product of t numbers, each of which is of length λ bits. Since the order of
the group is unknown, it seems that the exponent cannot be reduced modulo the
group order prior to the exponentiation, and therefore this computation requires
Ω(t · λ) group operations, or Ω

(
t · λ

log λ

)
group operations with preprocessing

[BGM+92] – thus matching our lower bound.4

Moreover, we show that our result holds even in the generic d-linear group
model for any d ≥ 2. We generalize Theorem 1.1 and similarly show that
Ω

(
t · λ

log λ · 1
d

)
group operations are required for batch verifying a membership

proof for t elements. This matches the performance of the bilinear accumulator
constructed by Nguyen [Ngu05] in which nAcc = 1 and �Acc = 0 (i.e., the accumu-
lator stores just a single group element), and |Xλ| = 2Ω(λ). In this accumulator,
trivial batch verification of t elements consists of computing t exponentiations,
translating to Ω(t ·λ) group operations, or to Ω

(
t · λ

log λ

)
group operations with

preprocessing as above. This once again matches our lower bound, showing that
trivial batch verification is indeed optimal for this accumulator.

Beyond Generic Groups. Lower bounds in idealized models shed substantial
insight on our understanding of a wide range of both hardness assumptions and
cryptographic constructions. For example, such lower bounds apply to a wide
range of algorithms and constructions, and thus help directing cryptanalytic
efforts and candidate constructions away from generic impossibility results.

4 The additional information resulting from such preprocessing can be included with
the information stored by the accumulator. This amount of information is indepen-
dent of the number of accumulated elements, and thus does not influence our result.
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However, despite their importance, a major drawback of such lower bounds
is clearly their restriction to idealized models. This drawback was discussed
by Aggarwal and Maurer [AM09], noting that there are certain computations
that are hard with respect to generic algorithms but are extremely simple with
respect to non-generic ones. Two important examples for such computations are
computing the least significant bit [AM09] or the Jacobi symbol of a random
group element [JS13]. Motivated by this major drawback, Aggarwal and Maurer
proposed the problem of considering more general and realistic models where
all algorithms are given access, for example, to least significant bits or Jacobi
symbols of elements.

Addressing the challenge introduced by Aggarwal and Maurer, we show that
our techniques are applicable even in an extended model that enables us to cap-
ture a bounded amount of non-generic information. Specifically, for any family
Φ of predicates φ(·, ·) that take as input the group order and a group element,
we equip all algorithms with access to an oracle that responds to Φ-queries: On
input a query of the form (φ, x̂), where φ ∈ Φ and x̂ is an implicit representation
of a group element x, the oracle returns φ(N,x) where N is the order of the
group. We refer to this extension as the Φ-augmented generic-group model, and
note that the family Φ may be tailored to the specific non-generic structure of
any underlying group. This model, allowing a bounded amount of non-generic
information, can be viewed as an intermediate model between the generic-group
model that does not allow any non-generic information, and the algebraic-group
model [FKL18,MTT19,AHK20,FPS20] that allows direct access to the repre-
sentation of the underlying group.

At a high-level, we prove that our result still holds for any family Φ of
polynomially-many predicates (in particular, it still holds for the case |Φ| = 2
that enables to compute least significant bits and Jacobi symbols). More specif-
ically, letting q(λ, t, k) denote the number of group-operation queries and Φ-
queries issued by an accumulator’s verification procedure when verifying a mem-
bership proof for t out of k elements, and considering also predicate families Φ
of super-polynomial size, we prove the following theorem (which again applies
both to known-order groups and to unknown-order groups).

Theorem 1.2 (Simplified). For any predicate family Φ and for any Φ-
augmented generic-group accumulator ACC over a domain X = {Xλ}λ∈N it
holds that

q(λ, t, k) = Ω

⎛
⎝t ·

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
· 1
log λ + log |Φ|

⎞
⎠

for all sufficiently large λ ∈ N. In particular, if |Xλ| = 2Ω(λ) then for any
0 < ε < 1 either
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nAcc · log2(nAcc + 1) + �Acc ≥ (1 − ε) · log2

(|Xλ|
k

)

or

q(λ, k, t) = Ω

(
t · ελ

log λ + log |Φ|
)

.

It should be noted that our result in this augmented model do not con-
tradict the highly-efficient non-interactive batch verification procedures of the
accumulators constructed by Boneh, Bünz and Fisch [BBF19] and by Thakur
[Tha19]. Their verification procedures are obtained by applying the (non-generic)
Fiat-Shamir transform to interactive verification protocols. Although our aug-
mented model does allow any predicate family Φ, the trade-off resulting from
Theorem 1.2 becomes meaningless when instantiated with the parameters that
are required for accommodating the Fiat-Shamir transform.

For example, it is possible to consider a predicate family Φ that consists
of predicates φi that output the i-th output bit of any given collection of hash
functions. However, within our model, the family Φ has to be fixed ahead of time,
whereas the soundness of the Fiat-Shamir transform relies on the hash function
being completely random. This means that realizing the Fiat-Shamir transform
within our augmented model requires including such a predicate φh,i for every
function h mapping group elements to, say, λ bits, as this would then enable
sampling a random function. However, in this case, the size |Φ| of the family
Φ becomes too large for our trade-off to be meaningful. An additional example
is a predicate family Φ that consists of predicates φi that directly output the
i-th bit of a group element. Applying these predicates to all group elements in
the view of the verification algorithm increases the number q of queries that are
issued by the verification algorithm at least by a multiplicative factor of λ (i.e.,
λ queries for each group element), and then once again our trade-off is no longer
meaningful – and thus does not contradict the known non-generic constructions.

1.2 Overview of Our Approach

The Framework. We prove our result within the generic-group model intro-
duced by Maurer [Mau05], which together with the incomparable model intro-
duced by Shoup [Sho97], seem to be the most commonly used approaches for
capturing generic-group computations. At a high level, in both models algo-
rithms have access to an oracle for performing the group operation and for
testing whether two group elements are equal. The difference between the two
models is in the way that algorithms specify their queries to the oracle. In Mau-
rer’s model algorithms specify their queries by pointing to two group elements
that have appeared in the computation so far (e.g., the 4th and the 7th group
elements), whereas in Shoup’s model group elements have an explicit represen-
tation (sampled uniformly at random from the set of all injective mappings from
the group to sufficiently long strings) and algorithms specify their queries by
providing two strings that have appeared in the computation so far as encodings
of group elements.
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Jager and Schwenk [JS08] proved that the complexity of any computational
problem that is defined in a manner that is independent of the representation of
the underlying group (e.g., computing discrete logarithms) in one model is essen-
tially equivalent to its complexity in the other model. However, not all generic
cryptographic constructions are independent of the underlying representation.

More generally, these two models are rather incomparable. On one hand, the
class of cryptographic schemes that are captured by Maurer’s model is a subclass
of that of Shoup’s model – although as demonstrated by Maurer his model still
captures all schemes that only use the abstract group operation and test whether
two group elements are equal. On the other hand, the same holds also for the
class of adversaries, and thus in Maurer’s model we have to break the security
of a given scheme using an adversary that is more restricted when compared
to adversaries in Shoup’s model. We refer the reader to Sect. 2.1 for a formal
description of Maurer’s generic-group model.5

Generic-Group Accumulators. A generic-group accumulator ACC consists of
three algorithms, denoted Setup, Prove and Vrfy. Informally (and very briefly),
the algorithm Setup receives as input a set X ⊆ X of elements to accumulate
and produces a representation Acc together with a secret state, where X is the
universe of all possible elements. The algorithm Prove receives as input the secret
state and a set S ⊆ X, and outputs a membership proof π, which can then be
verified by the algorithm Vrfy. Note that the case |S| = 1 captures standard
verification of individual elements, whereas the case |S| > 1 captures batch
verification (i.e., simultaneous verification of sets of elements). Each of these
algorithms may receive as input and return as output a combination of group
elements and explicit strings.

We consider the standard notion of security for accumulators when naturally
extended to consider batch verification. That is, we consider an adversary who
specifies a set X ⊆ X of elements, receives an accumulator Acc that is honestly
generated for X, and can then ask for honestly-generated membership proofs for
sets S ⊆ X (in fact, the adversary we present for proving our result does not require
such adaptive and post-challenge access to honestly-generated proofs). Then, the
adversary aims at outputting a pair (S∗, π∗) that is accepted by the verification
algorithm as a valid membership proof for the set S∗ with respect to the accumu-
lator Acc although S∗

� X. We refer the reader to Sect. 2.2 for formal definitions.

From Capturing Information Loss to Exploiting it. We prove our result
by presenting a generic-group adversary that attacks any generic-group accumu-
lator. Our attacker is successful against any accumulator that does not satisfy
the trade-off stated in Theorem 1.1 between the amount of information that the
accumulator stores and the number of group-operation queries issued by its ver-
ification algorithm. The main idea underlying our approach can be summarized
via the following two key steps:
5 In fact, we consider two different flavors of Maurer’s model, for capturing both

known-order and unknown-order groups. The reader is referred to Sect. 2.1 for an
in-depth discussion of these two flavors and of the extent to which each of them
captures group-based cryptographic constructions.
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– Step I: Capturing the information loss. We identify and account for
the total amount of information on a random set X of accumulated elements
from the point of view of a generic-group verification algorithm.

– Step II: Exploiting the information loss. We show that any gap between
this amount of information and the amount of information that is required for
an exact representation of such a set X can be exploited by a generic-group
attacker for generating a false batch-membership proof.

In what follows we elaborate on these two steps, first focusing on our main
result and then discussing its extensions. Let ACC = (Setup,Prove,Vrfy) be a
generic-group accumulator, and consider the view of its verification algorithm
Vrfy on input an accumulator Acc, a set S, and a membership proof π for the
fact that all elements of S have been accumulated within Acc. For simplicity, we
assume here that Acc and π consist only of group elements, and we note that
our proof in fact considers the more general case where they may consist of both
group elements and explicit strings. Then, the view of the verification algorithm
consists of the following ingredients:

– The accumulator Acc consists of group elements, and therefore the verification
algorithm essentially only observes the equality pattern among these elements,
and does not observe the elements themselves. This enables us to upper bound
the amount of information provided by Acc by upper bounding the number
of possible equality patterns among the group elements that are included
in Acc.

– Once the computation starts, the verification algorithm generates a sequence
of group-operation queries, where each such query is specified by pointing to
two group elements that have appeared in the computation so far (we allow
the verification algorithm to issue all possible equality queries). The following
two observations enable us to upper bound the amount of information pro-
vided by this computation by upper bounding the number of possible query
patterns that the verification algorithm observes, together with the number
of possible equality patterns among the group elements included in the proof
π and among the responses to the queries: (1) There are only polynomially-
many possibilities for the two pointers included in each query (since queries
are specified by pointing to two group elements that have appeared in the
computation so far), and (2) we can effectively upper bound the number of
possible query patterns induced by the proof and the responses using the
number of queries issued by the verification algorithm instead of using the
length of the proof π (which may be significantly larger).

This accounts for the total amount of information that is available to the veri-
fication algorithm from a single execution. However, different executions of the
verification algorithm may be highly correlated via Acc and via the membership
proofs (which are all generated from the secret state). Therefore, in order to
capture the total amount of information that is available on the entire accumu-
lated set X, our attacker A gathers this information as follows. First, it chooses
a random set X ⊆ X of k elements for which the setup algorithm Setup will
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honestly generate an accumulator Acc. Then, A partitions X into subsets of
size t, and asks for an honestly-generated batch-membership proof for each such
subset. Next, A executes the verification algorithm to verify each of these k/t
proofs, and records the above information for all of the subsets.

At this point we show that the information recorded from these k/t batch
verifications must be at least the amount of information that is required for
representing a random set X of size k. This is done by proving that, with high
probability over the choice of X, this information can be exploited for forging
a batch-membership proof for a set S∗

� X of size t. The most subtle part
of our proof is in tailoring the set S∗ and its false proof in a manner that is
indistinguishable to the verification algorithm from those of at least one of the
k/t subsets of X, and we refer the reader to Sect. 3 for the details of this part
of our attack.

Extensions. As discussed above, we extend our result to accumulators in generic
d-linear groups and to accumulators that rely on a bounded amount of non-
generic information. Both of these extensions essentially rely on the same basic
idea, which is the observation that each query issued by the verification algorithm
can be fully represented in a somewhat succinct manner. Specifically, each such
query is determined by: (1) Pointers to its inputs (where the number of inputs
may now range from 2 to d), (2) the type of query (e.g., addition or subtraction
queries in ZN , multilinear queries, or any other type of non-generic query φ ∈ Φ),
and (3) the contribution of its response to the equality pattern among all group
elements involved in the computation, or the contribution of its explicit response
to the overall amount of information in the case of non-generic queries. For each
of these two extensions, we first adapt our proof to identify and account for
the total amount of information on a random set X of accumulated elements
from the verification algorithm’s point of view. Then, we accordingly adapt our
tailored set S∗ and its false proof in a manner that remains indistinguishable to
the verification algorithm even when equipped with more expressive queries.

1.3 Related Work

In addition to the above-discussed motivation underlying our work, the problem
we consider can be viewed as inspired by a long line of research on proving effi-
ciency trade-offs for various primitives that are constructed in a black-box man-
ner in the standard model (see, for example, [KST99,GGK+05,BM07,Wee07,
BM09,HK10,HHR+15] and the many references therein). Despite the similarity
in terms of the goal of proving efficiency trade-offs, there are several fundamental
differences between this line of research and our work, as we now discuss.

Conceptually, results in this line of research provide lower bounds for construc-
tions that are based on specific and somewhat weak assumptions, such as the exis-
tence of one-way functions or permutations. Our work provides a lower bound for
any generic-group scheme, capturing assumptions that seem significantly stronger
than the existence of minimal cryptographic primitives. As a consequence, our
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lower bound applies to a wide variety of practical constructions, instead of some-
what theoretical constructions that are based on minimal assumptions.

Generally speaking, it is more challenging to prove lower bounds for schemes
in the generic-group model when compared to lower bounds for black-box con-
structions based on minimal assumptions. One-way functions or permutations
are typically modeled via random functions or permutations, which admit very
little structure that can be utilized by cryptographic constructions. This stands
in complete contrast to generic-group constructions that exploit the algebraic
structure of the underlying groups. The prime example for this substantial gap is
the fact that key-agreement protocols do not exist relative to a random function
or permutation, but do exist based on the decisional Diffie-Hellman assumption
and thus in the generic-group model [DH76,IR89,BM09].

Technically, out of this long line of research, the result that is closest to the
problem we consider is that of Horvitz and Katz [HK10]. They proved a lower
bound on the efficiency of statistically-binding commitment schemes based on
one-way permutations, in terms of the number of invocations of the one-way
permutation during the commit stage. In addition to the above-discussed differ-
ences between this line of research and our work, here we would like to point out
two more differences. First, Horvitz and Katz proved a lower bound for a prim-
itive with statistical soundness, whereas we consider a primitive with standard
computational soundness6. Second, and much more crucial, they proved a lower
bound on the efficiency of the commit stage, whereas we prove a lower bound on
the efficiency of verification. This is especially crucial given that accumulators
can be viewed as commitments with short local openings, and thus in general a
lower bound on the efficiency of the commit stage does not seem to imply any
meaningful lower bound on the efficiency of the decommit stage.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation used throughout the paper, and formally describe the frame-
work of generic-group accumulators. In Sect. 3 we prove our main result in the
generic-group model, and in Sect. 4 we briefly discuss several open problems that
arise from this work. Due to space limitations we refer the reader to the full ver-
sion of this work for the extension of our result to the generic multilinear-group
model and to its extension beyond the generic-group model.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools
that are used in this work. For a distribution X we denote by x ← X the process
6 When interpreted in our setting of the generic-group model (where algorithms are

unbounded in their internal computation), computational soundness considers adver-
saries that issue a polynomial bounded of group-operation queries, whereas statis-
tical soundness considers adversaries that may issue an unbounded number of such
queries.
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of sampling a value x from the distribution X. Similarly, for a set X we denote
by x ← X the process of sampling a value x from the uniform distribution
over X . For an integer n ∈ N we denote by [n] the set {1, . . . , n}. For a vector
v ∈ X k, where X is a set and k ∈ N, and for any j ∈ [k], we denote by (v)j the jth
coordinate of v. For a set J ⊆ Z and an integer i ∈ Z we let i+J = {i+j|j ∈ J }.
A function ν : N → R

+ is negligible if for any polynomial p(·) there exists an
integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Generic Groups and Algorithms

We prove our results within the generic-group model introduced by Maurer
[Mau05]. We consider computations in cyclic groups of order N (all of which
are isomorphic to ZN with respect to addition modulo N), for a λ-bit integer N
that is generated by an order-generation algorithm OrderGen(1λ), where λ ∈ N

is the security parameter (and N may or may not be prime).
When considering such groups, each computation in Maurer’s model is asso-

ciated with a table B. Each entry of this table stores an element of ZN , and
we denote by Vi the group element that is stored in the ith entry. Generic algo-
rithms access this table via an oracle O, providing black-box access to B as
follows. A generic algorithm A that takes d group elements as input (along with
an optional bit-string) does not receive an explicit representation of these group
elements, but instead, has oracle access to the table B, whose first d entries
store the ZN elements corresponding to the d group element in A’s input. That
is, if the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are
group elements and x is an arbitrary string, then from A’s point of view the
input is the tuple (ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group ele-
ments g1, . . . , gd (these group elements are stored in the table B), and x is given
explicitly. All generic algorithms in this paper will receive as their first input a
generator of the group; we capture this fact by always assuming that the first
entry of B is occupied by 1 ∈ ZN , and we will sometimes forgo noting this
explicitly. The oracle O allows for two types of queries:

– Group-operation queries: On input (i, j, ◦) for i, j ∈ N and ◦ ∈ {+,−},
the oracle checks that the ith and jth entries of the table B are not empty,
computes Vi ◦ Vj mod N and stores the result in the next available entry. If
either the ith or the jth entries are empty, the oracle ignores the query.

– Equality queries: On input (i, j,=) for i, j ∈ N, the oracle checks that
the ith and jth entries of the table B are not empty, and then returns 1 if
Vi = Vj and 0 otherwise. If either the ith or the jth entries are empty, the
oracle ignores the query.

In this paper we consider interactive computations in which multiple algo-
rithms pass group elements (as well as non-group elements) as inputs to one
another. This is naturally supported by the model as follows: When a generic
algorithm A outputs k group elements (along with a potential bit-string σ), it
outputs the indices of k (non-empty) entries in the table B (together with σ).
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When these outputs (or some of them) are passed on as inputs to a generic algo-
rithm C, the table B is re-initialized, and these values (and possibly additional
group elements that C receives as input) are placed in the first entries of the
table. Additionally, we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “implicit”
ones. Explicit values are all values whose representation (e.g., binary strings
of a certain length) is explicitly provided to the generic algorithms under
consideration. Implicit values are all values that correspond to group elements
and that are stored in the table B – thus generic algorithms can access them
only via oracle queries. We will sometimes interchange between providing
group elements as input to generic algorithms implicitly, and providing them
explicitly. Note that moving from the former to the latter is well defined,
since a generic algorithm A that receives some of its input group elements
explicitly can always simulate the computation as if they were received as
part of the table B.

2. For a group element g, we will differentiate between the case where g is
provided explicitly and the case where it is provided implicitly via the table
B, using the notation g in the former case, and the notation ĝ in the latter.
Additionally, we extend this notation to a vector v of group elements, which
may be provided either explicitly (denoted v) or implicitly via the table B
(denoted v̂).

Known-Order vs. Unknown-Order Generic Groups. We consider two fla-
vors of generic groups: groups of known orders and groups of unknown orders. In
the case of known-order groups, as discussed above we prove our results within
Maurer’s generic-group model [Mau05] that lets all algorithms receive the order
of the underlying group as an explicit input.

In the case of unknown-order groups, we prove our results in a natural variant
of Maurer’s model by following the approach of Damg̊ard and Koprowski [DK02].
They considered a variant of Shoup’s “random-encoding” model [Sho97] where
the order of the underlying group is not included as an explicit input to all algo-
rithms (still, however, the corresponding order-generation algorithm OrderGen
is publicly known). We consider the exact same variant of Maurer’s model (i.e.,
Maurer’s model where the order of the underlying group is not included as an
explicit input to all algorithms) for proving our results for unknown-order groups.

The known-order and unknown-order flavors of generic groups are incompa-
rable for analyzing the security of cryptographic constructions. In the known-
order variant, constructions can explicitly rely on the order of the underlying
group, but this holds for attackers as well. In the unknown-order variant, nei-
ther constructions or attackers can explicitly rely on the order of the underlying
group.

Finally, it should be noted that these two flavors of generic groups seem to
somewhat differ in the extents in which they capture group-based constructions
of cryptographic primitives. While the known-order flavor seems to capture quite
accurately generic computations in prime-order cyclic groups and multilinear
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groups, the unknown-order flavor seems somewhat less accurate in capturing
generic computations in RSA groups. Specifically, in the unknown-order flavor,
the order of the underlying group is hidden in an information-theoretic manner
and generic algorithm are unbounded in their internal computation. However,
in “natural” RSA-based constructions, the order of the underlying group is only
computationally hidden (i.e., the modulus N = P · Q is known but the order
of the multiplicative group Z

∗
N is unknown based on the factoring assumption),

and algorithms are polynomially-bounded in their computation.
Addressing these differences, Aggarwal and Maurer [AM09] proposed the

incomparable generic-ring model, where algorithms are provided with the mod-
ulus N but are restricted in their computation. A interesting open problem for
future research is whether or not our techniques extend to other idealized mod-
els such as the generic-ring model. Despite any potential differences between
the various models, impossibility results in any idealized model direct cryptana-
lytic efforts and candidate constructions away from generic impossibility results,
and serve as a necessary step towards proving such results within less-idealized
models.

2.2 Generic-Group Accumulators

For concreteness, we frame the following definition for known-order generic
groups, noting that the analogous definition for unknown-order generic groups
is obtained by not providing the order N of the underlying group as an input
to any of the algorithms. Our definition is parameterized by 5 functions corre-
sponding to the measures of efficiency that are considered in our work, and we
refer the reader to Table 1 for the list of all the parameters used in the following
definition.

Definition 2.1. A generic-group (nAcc, �Acc, nπ, �π, q)-accumulator over a
domain X = {Xλ}λ∈N is a triplet ACC = (Setup,Prove,Vrfy) of generic algo-
rithms defined as follows:

– The algorithm Setup is a probabilistic algorithm that receives as input the
security parameter λ ∈ N, the group order N and a set X ⊆ Xλ. It outputs
an accumulator Acc = (ÂccG,Accstr) and a state state ∈ {0, 1}∗, where AccG
is a sequence of nAcc(λ, |X|) group elements, and Accstr ∈ {0, 1}�Acc(λ,|X|).

– The algorithm Prove is a probabilistic algorithm that receives as input an
accumulator Acc, a state state ∈ {0, 1}∗ and a set S ⊆ Xλ, and outputs a
proof π = (π̂G, πstr), where πG is a sequence of nπ(λ, |S|, k) group elements,
πstr ∈ {0, 1}�π(λ,|S|,k) is an explicit string, and k is the number of elements
that have been accumulated by Acc.

– The algorithm Vrfy is a deterministic algorithm that receives as input an
accumulator Acc, a set S ⊆ Xλ and a proof π, issues an arbitrary number of
equality queries and at most q(λ, |S|, k) group-operation queries and outputs a
bit b ∈ {0, 1}, where k is the number of elements that have been accumulated
by Acc. Note that we do not restrict the number of equality queries that
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Table 1. The parameters considered in Definition 2.1.

λ The security parameter

k(λ) The number of accumulated elements (i.e., k = |X|)
t(λ) The number of elements for which a batch membership

proof is generated and then verified (i.e., t = |S| where
S ⊆ X)

nAcc(λ, k) The number of group elements produced by Setup when
accumulating a set of k elements

�Acc(λ, k) The bit-length of the explicit string produced by Setup
when accumulating a set of k elements

nπ(λ, t, k) The number of group elements produced by Prove when
proving membership of a set of t elements out of k
accumulated elements

�π(λ, t, k) The bit-length of the explicit string produced by Prove
when proving membership of a set of t elements out of k
accumulated elements

q(λ, t, k) The number of group-operation queries issued by Vrfy
when verifying a membership proof for a set of t
elements out of k accumulated elements (we prove our
lower bound even for verification algorithms that issue
an arbitrary number of equality queries)

are issued by the verification algorithm and this only makes our lower bound
stronger (i.e., our lower bound on the number of group-operation queries holds
even for accumulators in which the verification algorithm issues all possible
equality queries).

Correctness. The correctness requirement for this most basic form of accu-
mulators is quite natural: For any set X ⊆ Xλ of accumulated elements, any
membership proof that is generated by the algorithm Prove for any set S ⊆ X
should be accepted by the algorithm Vrfy. More formally:

Definition 2.2. A generic-group accumulator ACC = (Setup,Prove,Vrfy) over
a domain X = {Xλ}λ∈N is correct with respect to an order-generation algorithm
OrderGen if for any λ ∈ N and for any two sets S ⊆ X ⊆ Xλ, it holds that

Pr
[
VrfyO (Acc, S, π) = 1

]
= 1

where N ← OrderGen(1λ), (Acc, state) ← SetupO(λ,N,X) and π ← ProveO(Acc,
state, S), and the probability is taken over the internal randomness of all algo-
rithms.

Security. We extend the standard notion of security for accumulators to con-
sider batch verification (i.e., supporting the simultaneous verification of sets of
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elements instead of individual elements). Our notion of security considers an
adversary who specifies a set X ⊆ Xλ of elements, receives an accumulator Acc
that is honestly generated for X, and can then ask for honestly-generated mem-
bership proofs for sets S ⊆ X. Then, the adversary aims at outputting a pair
(S∗, π∗), where S∗ ⊆ Xλ, that is accepted by the verification algorithm as a valid
membership proof for the set S∗ with respect to the accumulator Acc although
S∗

� X.

Definition 2.3. A generic-group accumulator ACC = (Setup,Prove,Vrfy) over
a domain X = {Xλ}λ∈N is secure with respect to an order-generation algorithm
OrderGen if for any algorithm A = (A0,A1) that issues a polynomial number of
queries there exists a negligible function ν(λ) such that

Pr
[
ExptACC,A(λ) = 1

] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExptACC,A(λ) is defined as
follows:

1. N ← OrderGen(1λ).
2. X ← AO

0 (1λ, N) where X ⊆ Xλ.
3. (Acc, state) ← SetupO(1λ, N,X).
4. (S∗, π∗) ← AO,ProveO(Acc,state,·)

1 (1λ, N,Acc) where S∗ ⊆ Xλ.
5. If VrfyO(Acc, S∗, π∗) = 1 and S∗

� X then output 1, and otherwise output 0.

Note that the above definition provides the algorithm A1 with adaptive and
post-challenge access to the oracle ProveO(Acc, state, ·). In fact, the adversaries
we present for proving our results do not require such a strong form of access to
honestly-generated proofs. Specifically, already our algorithm A0 can specify a
list of queries to this oracle, in a completely non-adaptive manner and indepen-
dently of the challenge accumulator Acc. That is, our results apply already for
a seemingly much weaker notion of security.

In addition, note that the output of the setup algorithm consists of two
values: A public value Acc (the accumulator itself) that is used by both the Prove
algorithm and the Vrfy algorithm, and a private state state that is used only by
the Prove algorithm (the private state may include, for example, the randomness
that was used by the Setup algorithm, for generating the accumulator).

Finally, as standard in the generic-group model, the above definition restricts
only the number of queries issued by the adversary, and does not restrict the
adversary’s internal computation (i.e., the definition considers computationally-
unbounded adversaries). As a consequence, note that without loss of generality
such an adversary A = (A0,A1) is deterministic, and there is no need to transfer
any state information from A0 to A1 (this can at most double the number of
queries issued by A).

3 Our Lower Bound in the Generic-Group Model

In this section we prove our main technical result, providing a lower bound on
the number of group-operation queries required for batch verification. We prove
the following theorem.
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Theorem 3.1. Let ACC be an (nAcc, �Acc, nπ, �π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc =
nAcc(λ, k), �Acc = �Acc(λ, k), nπ = nπ(λ, k, t), �π = �π(λ, k, t) and q = q(λ, k, t),
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen, then for any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k and for
all sufficiently large λ ∈ N it holds that

q(λ, t, k) = Ω

⎛
⎝t ·

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
· 1
log λ

⎞
⎠ .

As discussed in Sect. 1.1, recall that log2
(|Xλ|

k

)
is the expected number of bits

required for an exact representation of k elements, and that nAcc · log2(nAcc +
1) + �Acc is the amount of information that is actually stored by a generic-
group accumulator from its verification algorithm’s point of view. The following
corollary of Theorem 3.1 shows that as long as the amount of information stored
by an accumulator is bounded away from the information-theoretic amount that
is required for an exact representation, then non-trivial batch verification is
impossible.

Corollary 3.2. Let ACC be an (nAcc, �Acc, nπ, �π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc =
nAcc(λ, k), �Acc = �Acc(λ, k), nπ = nπ(λ, k, t), �π = �π(λ, k, t) and q = q(λ, k, t),
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen and |Xλ| = 2Ω(λ), then for any polynomials k = k(λ) ≥ 1 and
t = t(λ) ≤ k, for any 0 < ε < 1 and for all sufficiently large λ ∈ N, either

nAcc · log2(nAcc + 1) + �Acc ≥ (1 − ε) · log2

(|Xλ|
k

)

or

q(λ, k, t) = Ω

(
t · ελ

log λ

)
.

We prove the following lemma from which we then derive Theorem 3.1 and
Corollary 3.2.

Lemma 3.3. Let ACC be an (nAcc, �Acc, nπ, �π, q)-accumulator in the generic-
group model over a domain X = {Xλ}λ∈N, for some polynomials nAcc =
nAcc(λ, k), �Acc = �Acc(λ, k), nπ = nπ(λ, k, t), �π = �π(λ, k, t) and q = q(λ, k, t),
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen then for any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k and for all
sufficiently large λ ∈ N it holds that

1
2

·
(|Xλ|

k

)
< (nAcc + 1)nAcc · 2�Acc · (nAcc + nπ + 3q + 1)6q·�k/t� (1)

In what follows, in Sect. 3.1 we prove Lemma 3.3, and then in Sect. 3.2 we
rely on Lemma 3.3 for deriving the proofs of Theorem 3.1 and Corollary 3.2.
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3.1 Proof of Lemma 3.3

For simplicity, we first prove the lemma for the case of known-order groups,
and then show that the proof extends to unknown-order groups. The proof of
Lemma 3.3 relies on the following notation given an (nAcc, �Acc, nπ, �π, q)-generic-
group accumulator ACC = (Setup,Prove,Vrfy) over a domain X = {Xλ}λ∈N

(recall Definition 2.1):

– In any execution of the verification algorithm VrfyO(Acc, S, π), note that the
table B which stores group elements (and to which the oracle O provide black-
box access – as described in Sect. 2.1) consists of at most nAcc + nπ + q + 1
entries: The table contains the generator 1 ∈ ZN in its first entry (as stan-
dard for all computations in this model), then it contains the nAcc group
elements that are part of the accumulator Acc, the nπ group elements that
are part of the proof π, and finally at most q additional group elements
that result from the group-operation queries issued by the verification algo-
rithm. In addition, recall that each such query can be specified by providing
a pair of indices to entries in the table together with the query type (i.e., the
group operation + or the group operation −). Therefore, each query has at
most 2 (nAcc + nπ + q + 1)2 possibilities. We let VrfyQueriesAcc,S,π denote the
concatenation of the encodings of all queries made during the computation
VrfyO(Acc, S, π) (in the order in which the queries were issued). Thus, the
total number of possibilities for VrfyQueriesAcc,S,π is at most

(
2 · (nAcc + nπ + q + 1)2

)q ≤ (nAcc + nπ + q + 1)3q,

since 2 ≤ nAcc + nπ + q + 1.
– In any execution of the verification algorithm VrfyO(Acc, S, π) we would also

like to encode the equality pattern of all group elements in the table B. Recall
that the table contains the generator 1 ∈ ZN , the nAcc group elements that
are part of the accumulator Acc, the nπ group elements that are part of the
proof π, and then at most q additional group elements that result from the
group-operation queries issued by the verification algorithm. We split this
encoding into the following three ingredients:

• The equality pattern for the generator 1 ∈ ZN and the nAcc group ele-
ments that are part of the accumulator Acc (i.e., for the nAcc + 1 first
entries of the table) can be encoded as follows: For each of the nAcc group
elements that are part of the accumulator Acc we encode the index of
the minimal entry among the first nAcc + 1 entries of the table that con-
tains the same group element (independently of whether a corresponding
equality query was explicitly issued by the verification algorithm). We
denote this encoding by AccEqualitiesAcc. There are at most (nAcc +1)nAcc

possibilities for AccEqualitiesAcc.
• The equality pattern for the nπ group elements that are part of the proof

π (i.e., for the next nπ entries of the table) can be similarly encoded
which results in at most (nAcc + nπ + 1)nπ possibilities. However, nπ can
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be significantly larger than q, and this may potentially lead to a too-long
encoding for the purpose of our proof.
Thus, instead of encoding the equality pattern among all nπ group ele-
ments that are part of the proof π, it is in fact sufficient for us to
encode the equality pattern only among those elements that are involved
in the group-operation queries that are issued during the computation
VrfyO(Acc, S, π). There are at most q such queries, and therefore we
need to encode the equality pattern only among at most 2q elements
out of the nπ group elements that are part of the proof π. For each
such element we encode the index of the minimal entry among the first
nAcc+2q+1 entries of the table that contains the same group element (not
including the entries that are not involved in any of the group-operation
queries). The number of possibilities for ProofEqualitiesAcc,S,π, is at most
(nAcc + 2q + 1)2q.

• The equality pattern for the (at most) q group elements that result from
the group-operation queries issued by the verification algorithm (i.e., for
the last q entries of the table) can be encoded the same way (while again
not including the entries of the proof π that are not involved in any of
the group-operation queries) resulting in at most (nAcc + 2q + q + 1)q

possibilities. We denote this encoding by QueriesEqualitiesAcc,S,π.

Equipped with the above notation, we now prove Lemma 3.3.

Proof of Lemma 3.3. Let ACC = (Setup,Prove,Vrfy) be an (nAcc, �Acc, nπ, �π,
q)-generic-group accumulator for some nAcc = nAcc(λ, k), �Acc = �Acc(λ, k), nπ =
nπ(λ, k, t), �π = �π(λ, k, t) and q = q(λ, k, t), and let OrderGen be an order-
generation algorithm. Fix any polynomials k = k(λ) ≥ 1 and t = t(λ) ≤ k. We
show that if Eq. (1) does not hold for infinitely many values of λ ∈ N, then there
exists a generic-group attacker A that issues a polynomial number of queries
for which Pr

[
ExptACC,A(λ) = 1

]
is non-negligible in the security parameter λ ∈

N (recall that the experiment ExptACC,A(λ) was defined in Definition 2.3 for
capturing the security of generic-group accumulators).

At a high level, for any security parameter λ ∈ N our attacker A, participating
in the experiment ExptACC,A(λ), will choose a random set X ⊆ Xλ of k elements
for which the setup algorithm Setup will honestly generate an accumulator. Then,
A will partition S into subsets of size t, and ask for an honestly-generated batch
membership proof for each such subset. Then, with high probability, this will
allow A to forge a batch membership proof for a set S∗

� X of size t.
In what follows we first describe the attacker A and then analyze its success

probability. For simplicity we assume throughout the proof that t divide k, and
we let v = k/t (this is not essential and can be trivially avoided at the cost of
somewhat degrading the readability of the proof). In addition, we let < denote
any ordering of the elements of the set X = {Xλ}n∈N (e.g., the lexicographic
order). As discussed in Sect. 2.1, recall that for a group element g and for a
vector of group elements v, we will differentiate between the case where g and v
are provided explicitly and the case where they are provided implicitly via the
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table B, using the notation g and v in the former case, and the notation ĝ and
v̂ in the latter.

The attacker A = (A0,A1)
The algorithm A0. On input (1λ, N) and oracle access to O(·), the algorithm A0

samples a uniformly distributed set X ⊆ Xλ that consists of k distinct elements
x1 < · · · < xk. It then outputs the set X, and also passes it as its internal state
to the algorithm A1.
The algorithm A1. On input (1λ, N,Acc, X) and oracle access to O(·) and to
ProveO(Acc, state, ·), where (Acc, state) ← SetupO(1λ, N, X) is honestly-generated
within the experiment ExptACC,A(λ), the algorithm A1 is defined as follows:

1. The algorithm A1 computes the equality pattern AccEqualitiesAcc by issuing

equality queries (recall that Acc = (ÂccG,Accstr), where AccG is a sequence of
nAcc(λ, k) group elements that can be accessed indirectly via oracle queries,
and Accstr ∈ {0, 1}�Acc(λ,k) is an explicit string that can be accessed directly).

2. For every i ∈ [v] the algorithm A1 queries the oracle ProveO(Acc, state, ·)
with the set Si = {x(i−1)·t+1, . . . , xi·t} to obtain a proof πi ←
ProveO(Acc, state, Si). We denote πi = (π̂i,G, πi,str), where πi,G is a sequence
of nπ(λ, t, k) group elements that can be accessed indirectly via oracle queries
and πi,str ∈ {0, 1}�π(λ,t,k) is an explicit string that can be accessed directly.
Then, the algorithm A1 executes VrfyO(Acc, Si, πi) for obtaining the query
pattern VrfyQueriesAcc,Si,πi

by forwarding the queries issued by Vrfy to the
oracle O, and issues additional equality queries for computing the equality
patterns ProofEqualitiesAcc,Si,πi

and QueriesEqualitiesAcc,Si,πi
.

3. The algorithm A1 finds a set X ′ ⊆ Xλ that consists of k distinct elements
x′
1 < · · · < x′

k, and strings r′, r′
1, . . . , r

′
v ∈ {0, 1}∗ satisfying the following

requirements:
– X ′ �= X.
– AccEqualitiesAcc′ = AccEqualitiesAcc and Acc′

str = Accstr, where
(Acc′, state′) = Setup(1λ, N, X ′; r′) and Acc′ = (Acc′

G,Accstr). Note that
all inputs to the computation Setup(1λ, N, X ′; r′) are explicitly known to
A1, and therefore this computation can be internally emulated without
any oracle queries.

– For every i ∈ [v] it holds that

VrfyQueriesAcc′,S′
i,π′

i
= VrfyQueriesAcc,Si,πi

ProofEqualitiesAcc′,S′
i,π′

i
= ProofEqualitiesAcc,Si,πi

QueriesEqualitiesAcc′,S′
i,π′

i
= QueriesEqualitiesAcc,Si,πi

where π′
i = Prove(Acc′, state′, S′

i; r
′
i) and S′

i = {x′
(i−1)·t+1, . . . , x

′
i·t}.

If such a set X ′ and strings r′, r′
1, . . . , r

′
v ∈ {0, 1}∗ do not exist, then the

algorithm A1 aborts the experiment.
4. Let i∗ ∈ [v] be any index such that S′

i∗ � X (e.g., the smallest one), then the

algorithm A1 outputs S∗ = S′
i∗ and π∗ =

(

̂π∗
G, π∗

str

)

, where π∗
G is a sequence

of nπ group elements that are defined below and π∗
str = π′

i∗,str is an explicit
string.
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(a) Let J ⊆ [nπ] be the positions of the group elements that are part of
the proof πi∗ which are accessed by the group-operation queries issued
during the computation VrfyO(Acc, Si∗ , πi∗).

(b) For every j ∈ J we define (π∗
G)j = (πi∗,G)j (i.e., we set π∗

G to agree with
πi∗,G on the group elements in the positions included in J ).

(c) Let T = 1 + nAcc + nπ + q, and for every j ∈ [T ] we denote by Vj and V ′
j

the group element at the jth entry of the table B in the computations
VrfyO(Acc, Si∗ , πi∗) and VrfyO(Acc′, S′

i∗ , π′
i∗), respectively. Note that T =

1 + nAcc + nπ + q is indeed an upper bound on the number of entries in
the table B in these computations: The first entry contains the element
1 ∈ ZN , the next nAcc entries contain the group elements of the given
accumulator, the next nπ entries contains the group elements of the given
proof, and then there are at most q entries that result from the group-
operation queries issued by the verification algorithm. Let I = {1, . . . , 1+
nAcc} ∪ (1 + nAcc + J ) ∪ {1 + nAcc + nπ + 1, . . . , 1 + nAcc + nπ + q} ⊆ [T ].

[Recall that 1 + nAcc + J = {1 + nAcc + j|j ∈ J }.]
(d) For every j ∈ [nπ] \ J in increasing order we define (π∗

G)j as follows:
i. If there exists a position w ∈ I such that (π′

i∗,G)j = V ′
w, then we

define (π∗
G)j = Vw.

ii. Otherwise, if for all positions w ∈ I it holds that (π′
i∗,G)j �= V ′

w then

A. If there exists some k ∈ [nπ] \ J such that k < j and (π′
i∗,G)j =

(π′
i∗,G)k, then define (π∗

G)j = (π∗
G)k (note that (π∗

G)k is already
defined in this stage since k < j).

B. Otherwise, we define (π∗
G)j arbitrarily such that (π∗

G)j �= Vw for
all w ∈ I and (π∗

G)j �= (π∗
G)k for all k ∈ [nπ]\J such that k < j.

At this point, after having described our attacker A, we are ready to analyze
its success probability: In Claim 3.4 we prove that A aborts with probability
at most 1/2, and in Claim 3.5 we prove that any execution in which A does
not abort results in a successful forgery. First, however, we observe that the
query complexity of our attacker is polynomial in k(λ), nAcc(λ, k), nπ(λ, k, t)
and q(λ, k, t), and thus polynomial in the security parameter λ ∈ N. Specifically,
the algorithm A0 does not issue any queries, and the algorithm A1 issues the
following queries:

– Step 1: This step requires at most (nAcc(λ, k))2 queries for computing the
equality pattern AccEqualitiesAcc among the group elements AccG of the given
accumulator Acc.

– Step 2: This step requires v queries for obtaining the proofs π1, . . . , πv, and at
most v · (nπ(λ, t, k)+nAcc(λ, k))2 queries for computing the equality patterns
ProofEqualitiesAcc,Si,πi

among the group elements πi,G of the proofs π1, . . . , πv.
In addition, this step requires at most v ·q(λ, t, k)+v ·(q(λ, t, k)+nπ(λ, t, k)+
nAcc(λ, k))2 queries for computing the query patterns VrfyQueriesAcc,S1,π1

, . . . ,
VrfyQueriesAcc,Sv,πv

and the query equality patterns QueriesEqualitiesAcc,S1,π1
,

. . . ,QueriesEqualitiesAcc,Sv,πv
.

– Step 3: No queries. All inputs to the relevant computations are explicitly
known to A1, and therefore these computations can be internally emulated
without any oracle queries.
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– Step 4: The sub-steps 4(a) – 4(c) do not require any queries, whereas sub-step
4(d) does require issuing both group-operation queries and equality queries.
Specifically, in sub-step 4(d).ii.B. the attacker defines (π∗

G)j arbitrarily such
that (π∗

G)j 	= Vw for all w ∈ I and (π∗
G)j 	= (π∗

G)k for all k ∈ [nπ] \ J such
that k < j. This can be done, for example, by adding 1 ∈ ZN to (π∗

G)j in
an iterative manner until (π∗

G)j 	= Vw for all w ∈ I and (π∗
G)j 	= (π∗

G)k for
all k ∈ [nπ] \ J such that k < j. The number of such iterations is upper
bounded by the number of distinct elements in the table B, which is at most
1 + nAcc(λ, k) + nπ(λ, t, k) + q(λ, t, k) (the number of entries in B).

Claim 3.4. For any λ ∈ N, if

1
2

·
(|Xλ|

k

)
≥ (nAcc + 1)nAcc · 2�Acc · (nAcc + nπ + 3q + 1)6q·�k/t� (2)

then Pr [Aaborts] < 1/2.

Proof of Claim 3.4. We show that if Eq. (2) holds then with probability at
least 1/2 the attacker is able to find a set X ′ ⊆ Xλ that consists of k distinct
elements x′

1 < · · · < x′
k, and strings �r′ = (r′, r′

1, . . . , r
′
v) ∈ {0, 1}∗, that satisfy

the requirements specified in Step 3. Denote by r ∈ {0, 1}∗ the randomness
used by the algorithm Setup in the experiment ExptACC,A(λ) (i.e., (Acc, state) =
SetupO(1λ, N,X; r)). In addition, for every i ∈ [v] denote by ri ∈ {0, 1}∗ the
randomness used by the oracle ProveO(Acc, state, ·) when computing a batch
membership proof for the set Si in the experiment ExptACC,A(λ) (i.e., πi =
ProveO(Acc, state, Si; ri)), and let �r = (r, r1, . . . , rv). We show that even when
restricting the attacker to choose �r′ = �r there is still a set X ′ that satisfies the
requirements specified in Step 3 with probability at least 1/2 over the choice
of X.

Consider the function F�r that takes as input a set X ⊆ Xλ of k distinct
elements x1 < · · · < xk, and returns as output the following values:

F�r(X) =
(
AccEqualitiesAcc,Accstr,

VrfyQueriesAcc,S1,π1
, . . . ,VrfyQueriesAcc,Sv,πv

,

ProofEqualitiesAcc,S1,π1
, . . . ,ProofEqualitiesAcc,Sv,πv

,

QueriesEqualitiesAcc,S1,π1
. . . ,QueriesEqualitiesAcc,Sv,πv

)

where Si = {x(i−1)·t+1, . . . , xi·t} for every i ∈ [v], (Acc, sk) ← SetupO(λ,N,X; r),
and πi ← Prove(Acc, sk, Si; ri) for every i ∈ [v]. Our goal is to prove that with
probability at least 1/2 over the choice of X there exists a set X ′ 	= X such that
F�r(X ′) = F�r(X). We prove this claim by showing that the size of the image of
the function F�r, denoted Image(F�r), is at most half the size of its domain (this
guarantees that with probability at least 1/2 over the choice of X there exists a
set X ′ 	= X as required).
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The domain of the function F�r is of size
(|Xλ|

k

)
. The number of possibil-

ities for an output of the function F�r is the product of the following quan-
tities (as discussed above when defining AccEqualitiesAcc, VrfyQueriesAcc,Si,πi

,
ProofEqualitiesAcc,Si,πi

and QueriesEqualitiesAcc,Si,πi
):

– AccEqualitiesAcc and Accstr have (nAcc + 1)nAcc and 2�Acc possibilities, respec-
tively.

– VrfyQueriesAcc,Si,πi
for every i ∈ [v] has (nAcc + nπ + q + 1)3q possibilities.

– ProofEqualitiesAcc,Si,πi
for every i ∈ [v] has (nAcc + 2q + 1)2q possibilities.

– QueriesEqualitiesAcc,Si,πi
for every i ∈ [v] has (nAcc + 3q + 1)q possibilities.

Thus, the size of the image of the function F�r can be upper bounded via

|Image(F�r)| ≤ (nAcc + 1)nAcc · 2�Acc · (nAcc + nπ + 3q + 1)6q·�k/t�
.

We assume that Eq. (2) holds, and therefore the size of the image of the function
F�r is at most half the size of its domain, and the claim follows.

Claim 3.5. For any λ ∈ N it holds that

Pr
[
ExptACC,A(λ) = 1

∣∣Adoes not abort
]

= 1.

Proof of Claim 3.5. Assuming that A does not abort we prove that VrfyO(Acc,
S′

i∗ , π∗) = 1. Together with the fact that S′
i∗ � X, this implies that ExptACC,A(λ)

= 1. Recall that the proof π∗ =
(
π̂∗

G, π∗
str

)
is constructed using the two proofs

πi∗ and π′
i∗ , where:

– A queried the oracle ProveO(Acc, state, ·) with the set Si∗ to obtain πi∗ =(
π̂i∗,G, πi∗,str

) ← ProveO(Acc, state, Si∗), where πi∗,G is a sequence of group
elements and πi∗,str is an explicit string.

– A generated π′
i∗ =

(
π̂′

i∗,G, π′
i∗,str

)
← Prove(Acc′, state′, S′

i; r
′
i) subject to

the requirements specified in the description of the attack, where π′
i∗,G is

a sequence of group elements and π′
i∗,str is an explicit string.

The correctness of the accumulator guarantees that VrfyO(Acc, Si∗ , πi∗) = 1 and
Vrfy(Acc′, S′

i∗ , π′
i∗) = 1, and we show that VrfyO(Acc, Si∗ , π∗) = 1. This will

follow from the fact that the computation of the verification algorithm, which
can access group elements only via the oracle O, cannot distinguish between the
two inputs (Acc′, S′

i∗ , π′
i∗) and (Acc, S′

i∗ , π∗).
Recall that each computation is associated with a table B, where each entry

of this table stores an element of ZN , and that the oracle O provides black-box
access to B via group operations and equality queries. Let T = 1+nAcc +nπ +q,
and for every j ∈ [T ] we denote by Vj , V ′

j and V ∗
j the ZN element that is

located at the jth entry of the table B in the computations VrfyO(Acc, Si∗ , πi∗),
Vrfy(Acc′, S′

i∗ , π′
i∗) and VrfyO(Acc, S′

i∗ , π∗), respectively.
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Recall that we denoted by J ⊆ [nπ] the positions of the group elements
that are part of the proof πi∗ which are accessed by the group-operation queries
issued during the computation VrfyO(Acc, Si∗ , πi∗). Recall also that we defined
I = {1, . . . , 1+nAcc}∪(1+nAcc+J )∪{1+nAcc+nπ +1, . . . , 1+nAcc+nπ +q} ⊆
[T ]. Observe that (V1, . . . , VT ) and (V ′

1 , . . . , V ′
T ), have the same equality pattern

when restricted to the position included in I (although they may correspond to
different ZN elements), since based on the description of our attacker it holds
that

AccEqualitiesAcc′ = AccEqualitiesAcc
ProofEqualitiesAcc′,S′

i∗ ,π′
i∗ = ProofEqualitiesAcc,Si∗ ,πi∗

QueriesEqualitiesAcc′,S′
i∗ ,π′

i∗ = QueriesEqualitiesAcc,Si∗ ,πi∗ .

In addition, the same queries are issued in the computations VrfyO(Acc, Si∗ , πi∗)
and Vrfy(Acc′, S′

i∗ , π′
i∗), as VrfyQueriesAcc′,S′

i∗ ,π′
i∗ = VrfyQueriesAcc,Si∗ ,πi∗ .

Recall that for every j ∈ J we defined (π∗
G)j = (πi∗,G)j . Note that the

first 1 + nAcc + nπ entries of the table B are the ZN elements corresponding
to the group elements that are provided as part of the inputs to the computa-
tion. In both the computations VrfyO(Acc, Si∗ , πi∗) and VrfyO(Acc, S′

i∗ , π∗) the
first 1 + nAcc + nπ entries of the table B are the elements (1,AccG, πi∗,G) and
(1,AccG, π∗

G) respectively. Therefore, for every w ∈ I∩[1+nAcc+nπ] it holds that
V ∗

w = Vw. Since (V1, . . . , VT ) and (V ′
1 , . . . , V ′

T ), have the same equality pattern
on the indices in I, we get that (V ′

1 , . . . , V ′
1+nAcc+nπ

) and (V ∗
1 , . . . , V ∗

1+nAcc+nπ
)

have the same equality pattern on the indices in I. Recall also that for every
j ∈ [nπ]\J we defined (π∗

G)j according to the equalities in (V ′
1 , ..., V ′

T ) using the
elements in (V1, ..., VT ) or new element when needed. So (V ∗

1 , . . . , V ∗
1+nAcc+nπ

)
and (V ′

1 , . . . , V
′
1+nAcc+nπ

) have the same equality pattern everywhere (i.e., not
only when restricted to the positions included in I).

In what follows we prove that (V ∗
1 , . . . , V ∗

T ) and (V ′
1 , . . . , V ′

T ) have the same
equality pattern everywhere (although they may correspond to different ZN ele-
ments). Together with the fact that the explicit inputs to their respective compu-
tations, VrfyO(Acc, S′

i∗ , π∗) and Vrfy(Acc′, S′
i∗ , π′

i∗), are the same (these are the
explicit bit-strings Accstr, S

′
i∗ and π′

i∗,str), we obtain that VrfyO(Acc, S′
i∗ , π∗) =

Vrfy(Acc′, S′
i∗ , π′

i∗) as required.
We prove, via induction on j ∈ {0, . . . , q}, that (1) for every w ∈ I ∩

[1 + nAcc + nπ + j] it holds that V ∗
w = Vw, and (2) (V ∗

1 , . . . , V ∗
1+nAcc+nπ+j) and

(V ′
1 , . . . , V ′

1+nAcc+nπ+j) have the same equality pattern. For the case j = 0 this
has already been established above.

Now assume that for some j ∈ {0, . . . , q − 1} we have that for every
w ∈ I∩[1+nAcc+nπ +j] it holds that V ∗

w = Vw, and that (V ∗
1 , . . . , V ∗

1+nAcc+nπ+j)
and (V ′

1 , . . . , V
′
1+nAcc+nπ+j) have the same equality pattern. We would like

to argue that the same holds for j + 1 as well. The entries V ∗
1+nAcc+nπ+j+1

and V1+nAcc+nπ+j+1 contain the result of the next group-operation query in
the computations VrfyO(Acc, S′

i∗ , π∗) and VrfyO(Acc, Si∗ , πi∗). The next group-
operation query in the computation VrfyO(Acc, S′

i∗ , π∗) is identical to that of
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the computation Vrfy(Acc′, S′
i∗ , π′

i∗) (since both computations have the same
explicit inputs and so far have the same equality patterns in their tables),
and the next group-operation query in the computation Vrfy(Acc′, S′

i∗ , π′
i∗) is

identical to that of the computation VrfyO(Acc, Si∗ , πi∗) (since we required
VrfyQueriesAcc′,S′

i∗ ,π′
i∗ = VrfyQueriesAcc,Si∗ ,πi∗ ). Therefore, the next group-

operation query in the computation VrfyO(Acc, S′
i∗ , π∗) is identical to that of the

computation VrfyO(Acc, Si∗ , πi∗). Since the two tables (V ∗
1 , . . . , V ∗

1+nAcc+nπ+j)
and (V1, . . . , V1+nAcc+nπ+j) are identical on the indices in I, which contain
the indices of the queries of Vrfy, this implies that (V ∗

1 , . . . , V ∗
1+nAcc+nπ+j+1)

and (V1, . . . , V1+nAcc+nπ+j+1) are identical on the indices in I (which proves
part (1)).

Note that (V1, . . . , V1+nAcc+nπ+j+1) and (V ′
1 , . . . , V ′

1+nAcc+nπ+j+1) have the
same equality pattern on the indices in I (by the description of our attacker), and
therefore (V ∗

1 , . . . , V ∗
1+nAcc+nπ+j+1) and (V ′

1 , . . . , V ′
1+nAcc+nπ+j+1) have the same

equality pattern on the indices in I. In addition, the elements (π∗
G)j of π∗

G for all
j ∈ [nπ] \ J are chosen to agree with the equality pattern of (V ′

1 , . . . , V ′
T ). Thus,

(V ∗
1 , . . . , V ∗

1+nAcc+nπ+j+1) and (V ′
1 , . . . , V

′
1+nAcc+nπ+j+1) have the same equality

pattern. �
This settles the proof of Lemma 3.3. �

Extension to Unknown-Order Groups. As discussed in Sect. 2.1, we con-
sider two different flavors of generic groups: groups of known orders and groups of
unknown orders. When modeling known-order generic groups then all algorithms
receive the order of the underlying group as an explicit input, and when model-
ing unknown-order generic groups then the order is not provided (still, however,
the corresponding order-generation algorithm OrderGen is publicly known). In
our case, this difference corresponds to whether or not the accumulator’s proce-
dures Setup, Prove and Vrfy, and our attacker A receive the order of the group
as input, and the above proof of Lemma 3.3 assumes that they do.

This proof easily extends to the case where the accumulator’s procedures
and our attacker do not receive the order of the group as input. Specifically,
note that our attacker uses the order N of the group only in Step 3 of the
algorithm A1, for finding a set X ′ ⊆ Xλ and randomness �r′ = (r′, r′

1, . . . , r
′
v) that

satisfy the prescribed requirements (finding these values requires A1 to internally
perform computations modulo N). However, if the accumulator’s procedures do
not receive the order of the group as input, then we can modify the algorithm
A1 to find in Step 3, together with X ′ and �r′, an integer N ′ in the support of
the computation OrderGen(1λ) such that the exact same conditions are satisfied
(while performing the required internal computations modulo N ′).

The proof of Claim 3.4 is essentially unchanged, now showing that even
when restricting the attacker to choose �r′ = �r and N ′ = N there is still a set X ′

that satisfies the prescribed requirements with probability at least 1/2 over the
choice of X (i.e., there exists at least one suitable choice of �r′ and N ′ exactly as
before). The proof of Claim 3.5 is completely unchanged, since the accumulator’s
procedures do not receive the order of the group as input, the exact same proof
shows that the verification algorithm, which can access group elements only
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via the oracle O, cannot distinguish between the two inputs (Acc′, S′
i∗ , π′

i∗) and
(Acc, S′

i∗ , π∗).

3.2 Proofs of Theorem 3.1 and Corollary 3.2

Equipped with Lemma 3.3 we now derive Theorem 3.1 and Corollary 3.2.

Proof of Theorem 3.1. Lemma 3.3 implies that for all sufficiently large λ ∈ N

it holds that

log2

(|Xλ|
k

)
< nAcc · log2(nAcc + 1) + �Acc

+
⌈

k

t

⌉
· 6q · log2(nAcc + nπ + 3q + 1) + 1

≤ nAcc · log2(nAcc + 1) + �Acc

+
2k

t
· 6q · log2(nAcc + nπ + 3q + 1) + 1.

Therefore, using the fact that t ≤ k and q ≥ 1 we obtain

t ·
log2

(|Xλ|
k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
≤ 12q log2(nAcc + nπ + 3q + 1) +

t

k
≤ 12q log2(nAcc + nπ + 3q + 1) + 1
≤ 13q log2(nAcc + nπ + 3q + 1).

Since the functions nAcc, nπ and q are all polynomials in the security parameter
λ ∈ N, then log2(nAcc + nπ + 3q + 1) = O(log2 λ), and therefore

q = Ω

⎛
⎝t ·

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
· 1
log λ

⎞
⎠ .

�
Proof of Corollary 3.2. If we assume that

nAcc · log2(nAcc + 1) + �Acc < (1 − ε) · log2

(|Xλ|
k

)

then

log2

(|Xλ|
k

)
−

[
nAcc · log2(nAcc + 1) + �Acc

]
> ε · log2

(|Xλ|
k

)

≥ εk · log2

( |Xλ|
k

)

= εk · Ω(λ), (3)
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where Eq. (3) follows from the assumption that |Xλ| ≥ 2Ω(λ) and the fact that
k = k(λ) is polynomial in the security parameter λ ∈ N. Therefore,

q = Ω

⎛
⎝t ·

log2
(|Xλ|

k

) −
[
nAcc · log2(nAcc + 1) + �Acc

]

k
· 1
log λ

⎞
⎠

= Ω

(
t · ελ

log λ

)
. �

4 Open Problems

In this section we briefly discuss several open problems that arise from this work.

Randomized Verification and Imperfect Correctness. Our work considers
accumulators with deterministic verification procedures and perfect correctness,
as noted in Sect. 2.2. Although this seems to be the case with the known accu-
mulators, the more general case of accumulators with randomized verification
procedures and imperfect correctness (i.e., valid proofs are accepted with all but
a negligible probability) is clearly fundamental, and thus an interesting direction
for future research.

Non-trivial Non-interactive Batch Verification in Shoup’s Model. As
discussed in Sect. 1.2, we prove our result within the generic-group model intro-
duced by Maurer [Mau05], which together with the incomparable model intro-
duced by Shoup [Sho97], seem to be the most commonly used approaches for
capturing generic-group computations. A natural open problem is whether our
result can be either proved or circumvented within Shoup’s model.

One should note that our result can be circumvented by applying the Fiat-
Shamir transform [BBF19,Tha19], and that the random injective mapping used
in Shoup’s model for explicitly representing group elements may potentially be
exploited towards this goal. Although, this can perhaps be viewed as somewhat
abusing Shoup’s model by relying on the randomness provided by the injective
mapping (which does not actually exist in concrete implementation of crypto-
graphic groups) instead of relying on the algebraic structure of the group.

The Efficiency of Batch Verification in Other Settings. Our work con-
siders the efficiency of batch verification in the specific setting of accumula-
tors. More generally, however, the efficiency of batch verification may be inter-
esting to study in other settings as well. One such setting is the general one
of non-interactive arguments, and specifically that of succinct non-interactive
arguments [Mic94] (which seem tightly related to accumulators as succinct non-
interactive arguments may be used to provide, for example, short membership
proofs for accumulated values).
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Abstract. Suppose Alice wants to convince Bob of the correctness of
k NP statements. Alice could send k witnesses to Bob, but as k grows
the communication becomes prohibitive. Is it possible to convince Bob
using smaller communication (without making cryptographic assump-
tions or bounding the computational power of a malicious Alice)? This
is the question of batch verification for NP statements. Our main result
is a new interactive proof protocol for verifying the correctness of k UP
statements (NP statements with a unique witness) using communication
that is poly-logarithmic in k (and a fixed polynomial in the length of a
single witness).

This result is obtained by making progress on a different question in
the study of interactive proofs. Suppose Alice wants to convince Bob that
a huge dataset has some property. Can this be done if Bob can’t even
read the entire input? In other words, what properties can be verified in
sublinear time? An Interactive Proof of Proximity guarantees that Bob
accepts if the input has the property, and rejects if the input is far (say
in Hamming distance) from having the property. Two central complexity
measures of such a protocol are the query and communication complexi-
ties (which should both be sublinear). For every query parameter q, and
for every language in logspace uniform NC, we construct an interactive
proof of proximity with query complexity q and communication com-
plexity (n/q) · polylog(n).

Both results are optimal up to poly-logarithmic factors, under rea-
sonable complexity-theoretic or cryptographic assumptions. The second
result, which is our main technical contribution, builds on a distance
amplification technique introduced in a beautiful recent work of Ben-
Sasson, Kopparty and Saraf [CCC 2018].

1 Introduction

The power of efficiently verifiable proof-systems is a central question in the
study of computation. It has been the focus of a rich literature spanning cryp-
tography and complexity theory. This literature has put forth and studied dif-
ferent notions of proof systems and different notions of efficient verification.
c© International Association for Cryptologic Research 2020
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Interactive proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMR89], are one of the most fundamental notions in this field. An
interactive proof is an interactive protocol between a randomized verifier and
an untrusted prover. The prover convinces the verifier of the validity of a com-
putational statement, usually framed as membership of an input x in a lan-
guage L. Soundness is unconditional. Namely, if the input is not in the lan-
guage, then no matter what (unbounded and adaptive) strategy a cheating
prover might employ, the verifier should reject with high probability over its
own coin tosses. Interactive proofs have had a dramatic impact on complexity
theory and on cryptography. Opening the door to randomized and interactive
verification led to revolutionary notions of proof verification, such as zero knowl-
edge interactive proofs [GMR89,GMW91] and probabilistically checkable proofs
(PCPs) [BGKW88,FRS94,BFL91,BFLS91,FGL+96,AS92,ALM+98]. Interac-
tive proof-systems also allow for more efficient verification of larger classes of
computations (compared with NP proof systems), as demonstrated in the cele-
brated IP = PSPACE Theorem [LFKN92,Sha92].

Still, foundational questions about the power of interactive proof systems
have remained open. Our work studies two such questions:

1.1 Batch Verification

Can interactive proofs allow for more efficient batch verification of a collection
of NP statements?

Question 1:
How efficiently can an untrusted prover convince a verifier of the correctness of

k NP statements?

A naive solution is sending the k witnesses in their entirety. An honest prover,
who knows the witnesses, runs in polynomial time, but the communication grows
linearly with k. For the case of UP statements—NP statements with a unique
witness—we show a protocol where the communication complexity grows poly-
logarithmically with k (and the honest prover remains efficient):

Theorem 1 (Informally Stated, see Theorems 4.2 and 4.1). Let L ∈ UP
with witnesses of length m = m(n). There exists an interactive proof for verifying
that k instances x1, . . . , xk, each of length n, all belong to L. The communication
complexity is poly(log(k),m), where poly refers to a fixed polynomial that depends
only on the language L. The number of rounds is polylog(k). The verifier runs in
time Õ(k ·n)+polylog(k) ·poly(m), where n is the length of each of the instances.
The honest prover runs in time poly(k, n,m) given the k unique witnesses.

This resolves the communication complexity of batch verification for UP up to
poly(log(k),m) factors: under complexity-theoretic assumptions, even for k =
1 there are UP languages (e.g. unique SAT) for which every interactive proof
system requires communication complexity Ω(m) [GH98,GVW02]. When the
number of instances k is large, this can be a significant improvement over the
naive solution in which the prover sends over all k witnesses.
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We note that for UP relations that are checkable in log-space uniform NC,
we can reduce the communication complexity to m · polylog(k,m). As discussed
above, this is tight up to polylog(k) factors (under complexity assumptions). We
also note that, assuming the existence of one-way functions, our batch verifica-
tion protocol (which is public coin) can be made zero-knowledge using standard
techniques [BGG+88].

Comparison to Prior Work. A different solution can be obtained via the
IP = PSPACE theorem, by observing that the membership of k inputs in an
NP language can be decided in space O(log k + m · poly(n)), where n is the
length of a single input and m is the length of a single NP witness. Thus, by the
IP = PSPACE Theorem, there is an interactive proof for batch verification with
communication complexity poly(log k, n,m). A major caveat, however, is that the
complexity of proving correctness (the running time of the honest prover) is expo-
nential in poly(n,m). We, on the other hand, focus on batch verification where
the honest prover runs in polynomial time given the k NP witnesses. We refer
to such an interactive proof as having an efficient prover.1 Another significant
drawback of this solution is that the number of rounds becomes poly(m, log k).

Two recent works have constructed protocols for efficient batch verification
of UP statements. Reingold, Rothblum and Rothblum [RRR16] gave a protocol
with communication complexity polylog(k) · poly(m) + k · polylog(m). In a sub-
sequent work [RRR18] they eliminated the additive k factor but increased the
multiplicative factor, by showing a (constant-round) protocol with communica-
tion complexity kε · poly(m), for any ε > 0. Our main result achieves the best
of both worlds: eliminating the additive linear factor while preserving the poly-
logarithmic multiplicative factor (although our protocol has a larger number of
rounds than that of [RRR18]).

1.2 Interactive Proofs of Proximity

A different question (which turns out to be related) asks which statements can be
verified in sublinear time, i.e. without even reading the entire input. This imme-
diately raises the question of what computational model is used to capture “sub-
linear time”. Drawing inspiration from the literature on sublinear algorithms, a
natural choice is to adopt the perspective of property testing, a study initiated
by Rubinfeld and Sudan [RS96] and Goldreich, Goldwasser and Ron [GGR98],
which considers highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such
algorithms, commonly referred to as property testers for a set S (say the set of
objects with some property), are given query access to an input, and are required
to determine whether the input is in S (has the property), or is far (say, in Ham-
ming distance) from every string in S (far from having the property). A rich
literature has put forward property testers for many natural properties.
1 Efficiency of the honest prover (given an NP witness) has been central in the study

of zero-knowledge interactive proofs [GMR89,GMW91]. It has also been central to
the study of efficient batch verification in recent works [RRR16,RRR18].
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Analogously, in the proof verification setting, Interactive Proofs of Proximity
(IPPs) aim to verify that a given input is close to a set (or a property). Given
a desired proximity parameter δ ∈ (0, 1], the soundness condition of standard
interactive proofs is relaxed: it should be impossible to convince the verifier to
accept statements that are δ-far (in fractional Hamming distance) from true
statements (except with small probability). Such proof-systems were first intro-
duced by Ergün, Kumar and Rubinfeld [EKR04] and were more recently further
studied by Rothblum, Vadhan and Wigderson [RVW13] and by Gur and Roth-
blum [GR13]. The verifier’s query complexity and running time, as well as the
communication, should all be sublinear in the input length. Other parameters of
interest include the (honest) prover’s running time and the number of rounds.

The hope is that IPPs can overcome inherent limitations of property testing:
for example, demonstrating specific properties where verifying proximity can be
significantly faster than the time needed to test (without a prover). Another goal
is showing that sublinear-time verification is possible for much richer families of
properties than those for which property testers exist. In particular, research on
property testing has focused on constructing testers for languages based on their
combinatorial or algebraic structure. This limitation seems inherent, because
there exist simple and natural languages for which (provably) no sublinear time
property testers exist. In contrast, it is known that highly non-trivial IPPs exist
for every language that can be decided in bounded-polynomial depth or space
[RVW13,RRR16]. However, the optimal tradeoffs between the query and com-
munication complexities needed for proof verification were not known, and this
is the second foundational question we study:

Question 2:
What are the possible tradeoffs between the query and communication

complexities in interactive proofs of proximity, and for which statements?

For the case of languages in (uniform) NC—languages that can be decided by
polynomial-sized circuits of polylogarithmic depth—we show that the product
of the query and communication complexities can be quasi-linear.

Theorem 2 (Informally Stated, see Theorem 4.1). Let t = t(n) ≤ n be a
parameter. For every δ ≤ t·polylog(n)

n and every language L in log-space uniform
NC, there exists an IPP for L with respect to proximity parameter δ, with com-
munication complexity t · polylog(n) and query complexity O(1/δ). The verifier
runs in time Õ(t + n/t) and the prover runs in time poly(n).

For example, by setting t(n) =
√

n we obtain an IPP for NC with query,
communication and verification complexity all Õ(

√
n). This result resolves the

question for such languages, up to polylogarithmic factors, as Kalai and Roth-
blum [KR15] showed that (under a reasonable cryptographic assumption) there
exists a language in NC1 for which the product of the query and communication
complexities cannot be sublinear.
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Comparison and Relationship to [RVW13]. Theorem 2 shows that the product of
the query complexity and the communication can be quasi-linear (for a distance
parameter that is the inverse of the query complexity). Rothblum, Vadhan and
Wigderson [RVW13] showed a similar statement, but the product of the query
and communication complexities was n1+o(1).

Our protocol builds on the framework developed in their work, introduc-
ing several new ideas and using a key distance amplification technique from
a beautiful recent work of Ben-Sasson, Kopparty and Saraf [BKS18]. We find
the improvement from n1+o(1) to Õ(n) to be significant: beyond the fact that
it provides a nearly-optimal (up to polylog(n) factors) trade-off for a founda-
tional problem, it allows for IPPs with polylog(n) communication and sublinear
query complexity. In prior work, achieving sublinear query complexity (for NC)
required no(1) communication. The importance of this distinction is exempli-
fied in the application of IPPs towards batch verification for UP [RRR18]. That
construction repeatedly uses IPPs with slightly-sublinear query complexity. The
communication of the resulting batch verification protocol is dominated by the
communication complexity of the IPPs. Indeed, the improved IPP of Theorem 2
is the key component behind the improved UP batch verification protocol of
Theorem 1.

1.3 Related Works

Batch Verification with Computational Soundness. If one is willing to settle
for computational soundness (i.e., soundness holds only against polynomial-
time cheating strategies) and to use cryptographic assumptions, then efficient
batch verification is possible for all of NP. In particular, Kilian [Kil92] gave
an interactive argument-system for all of NP based on collision-resistant hash
functions with only poly-logarithmic communication complexity. Since verifying
the membership of k instances in an NP language is itself an NP problem, we
immediately obtain a batch verification protocol with communication complexity
poly(log(n), log(k), κ), where κ is a cryptographic security parameter.

More recently, Brakerski, Holmgren and Kalai [BHK17] obtained an effi-
cient non-interactive batch-verification protocol assuming the existence of a
computational private information retrieval scheme. Non-interactive batch ver-
ification protocols also follow from the existence of succinct non-interactive
zero-knowledge arguments (zkSNARGs), which are known to exist under certain
strong, and non-falsifiable, assumptions (see, e.g. [Ish], for a recent survey).

We emphasize that the batch verification protocols of both [Kil92] and
[BHK17] only provide computational soundness and are based on unproven cryp-
tographic assumptions. In contrast, the result of Theorem 1 offers statistical
soundness and is unconditional.

Interactive Proofs of Proximity. Beyond the works [EKR04,RVW13,GR13] that
were mentioned above, interactive proofs of proximity have drawn considerable
attention [FGL14,GGR15,KR15,RRR16,GR17,BRV18,RRR18,CG18,GLR18,
RR19,GRSY20].
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In particular, we mention that a recent work of Ron-Zewi and Rothblum
[RR19, Theorem 3, see also Remark 1.3] shows that for every constant ε, every
language computable in polynomial-time and bounded polynomial space has an
IPP with communication complexity ε · n and constant query complexity. Note
that the product between the query and communication complexity in their
result is O(n), rather than n · polylog(n) as in Theorem 2. However, in constrast
to Theorem 2, their result is restricted to the regime of constant query complexity
and only yields communication complexity that is smaller by a constant factor
than that of the trivial solution (see Proposition 3.3).

1.4 Organization

Section 2 contains a technical overview of our techniques. In Sect. 3 we provide
preliminaries and our main results are stated in Sect. 4. In Sect. 5 we introduce
the PVAL problem and show how to amplify its distance. Our efficient PVAL IPP
is in Sect. 6. Lastly, in Sect. 7 we use the results established in the prior sections
to prove Theorem 1 and Theorem 2.

2 Technical Overview

To prove Theorem 1 we rely on a recent result of Reingold et al. [RRR18] who
showed how to reduce the construction of UP batch verification protocol to that
of constructing efficient IPPs. In particular, via the connection established in
[RRR18], in order to prove Theorem 1, it suffices to prove Theorem 2 with
respect to cc = polylog(n).

Thus, in this overview we focus on proving Theorem 2. Our starting point
for the proof of Theorem 2 is the IPP construction for NC from [RVW13] (which
achieves weaker parameters than those of Theorem 2).

The [RVW13] protocol is centered around a parameterized problem called
PVAL, which stands for “Polynomial eVALuation” and is defined next. A key
step in the [RVW13] proof is showing that PVAL is “complete” for constructing
IPPs for NC. In more detail, for every language L ∈ NC, [RVW13] show an
interactive reduction, in which the verifier makes no queries to its input. At the
end of the reduction, the verifier generates a “parameterization” of the PVAL
problem so that if the original input x belonged to L then x belongs to PVAL,
whereas if x was far from L then, with high probability, x is also far from PVAL.

Thus, an efficient IPP for PVAL immediately yields an efficient IPP for L as
follows: the prover and verifier first engage in the interactive reduction to obtain
a parameterization of the PVAL problem. Then, the two parties run the efficient
IPP protocol to check proximity to the newly generated PVAL instance.

In this work we follow the same strategy. We do not modify the interactive
reduction step from [RVW13]. Our improved efficiency stems from a more effi-
cient IPP for PVAL (than that of [RVW13]), which suffices to obtain our main
results.
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We start by defining a specific variant2 of the PVAL problem that suffices for
our purposes.

The PVAL Problem. Let F be a (sufficiently large) finite field. The PVAL problem
is parameterized by an integer t ∈ N, which we refer to as the arity, and a
dimension m ∈ N. In addition the problem is parameterized by t vectors j =
(j1, . . . , jt) ∈ (Fm)t and t scalars v = (v1, . . . , vt) ∈ F

t. The main input to
PVAL(t, j,v) is the truth table of a function f : {0, 1}m → F. We say that
f ∈ PVAL(t, j,v) if it holds that f̂(ji) = vi, for every i ∈ [t], where f̂ : F

m → F

is the multi-linear extension of f .3 Thus, the goal of the PVAL verifier is to
distinguish the case that (1) the multilinear extension f̂ of the input function f
is equal, at t given points, to t corresponding values, or (2) is far from any such
function. Note that the verifier is only allowed to make a sub-linear (i.e., � 2m)
number of queries to f , but is allowed to communicate with the (untrusted)
prover who has full access to f .

Our main technical contribution is an IPP for checking δ-proximity to
PVAL(t, j,v) with communication complexity roughly t ·poly(m) and query com-
plexity O(1/δ) (see Theorem 6.1 for the formal statement). (Note that setting
δ = 2m · poly(m)/t results in the product of the query and communication com-
plexities being Õ(2m), which is quasi-linear in the input length.) We proceed to
describe the new IPP for PVAL.

Attempt 1: Divide and Conquer. Fix a parameterization (t, j,v) for PVAL, where
j = (j1, . . . , jt) and v = (v1, . . . , vt), and consider a given input f : {0, 1}m → F.
Following [RVW13], we would like to first decompose the t claims that we are
given about f into claims about the underlying functions f0, f1 : {0, 1}m−1 → F,
where f0(·) ≡ f(0, ·) and f1(·) ≡ f(1, ·). To do so, the verifier asks the prover
to provide the contributions of f0 and f1 to the linear claims f̂(ji) = vi, for all
i ∈ [t]. In more detail, let us view each vector ji as ji = (χi, j′i) where χi ∈ F

and j′i ∈ F
m−1 (i.e., we isolate the first component of ji as χi and the remaining

components as an (m − 1)-dimensional vector j′i). The prover sends the vectors
v0,v1 ∈ F

m−1, where v0 = f̂0|j′ and v1 = f̂1|j′ . Note that the prover cannot send
arbitrary vectors since the verifier can check (and indeed does check) that v0 and
v1 are consistent with v. (I.e., that v = (1−χ̄)·v0+χ̄·v1, where χ̄ = (χ1, . . . , χt)
and the multiplication is pointwise.) See Fig. 1 for an illustration.

A natural idea at this point, is to try to combine f0 and f1 (and the corre-
sponding claims that we have about them) into a single m − 1 variate function
on which we can recurse. For example, we can take a random linear combi-
nation of the two functions as follows: the verifier chooses random coefficients

2 In particular, for simplicity and since it is sufficient for our results we consider
a variant of PVAL with respect to the multi-linear extension rather than a more
general low degree extension considered in [RVW13].

3 Recall that the multilinear extension f̂ : F
m → F of f : {0, 1}m → F is the unique

multilinear polynomial that agrees with f on {0, 1}m. See Sect. 3.1 for details.
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Fig. 1. Decomposing the claims f |j = v.

c(0), c(1) ∈ F, sends them to the prover. The two parties then recurse on the input
f ′ = c(0) · f0 + c(1) · f1 wrt the claims f̂ ′|j′ = v′, with v′ = c(0) · v0 + c(1) · v1.4

Note that the input has shrunk by a factor of 2 and it is not too diffi-
cult to argue that if f was δ-far from PVAL(t, j,v) then f ′ is about δ-far from
PVAL(t, j′,v′). Thus, with very little communication (i.e., O(t · log(|F|)) we have
reduced the input size by half and preserved the distance. We can continue
recursing as such until the input reaches a sufficiently small size so that the
verifier can solve the problem by itself (or, rather, verifier can employ a “trivial”
protocol, with 1/δ query complexity and linear communication in the size of the
final input).

The problem with this approach is that while the input size has shrunk by
half, as we recurse we will need to emulate each query to f ′ by using two queries
to f . Thus, while the input length has shrunk by half, the query complexity has
doubled and essentially no progress has been made. Indeed, if we unwind the
recursion, we see that the total query complexity in the proposed protocol is
linear in the input length.

Doubling the Distance: A Pipe Dream? For every b ∈ {0, 1}, let δb be the distance
of fb from PVAL(t, j′,vb) and let Pb ∈ PVAL(t, j′,vb) such that Δ(fb, Pb) = δb

(without getting into the details we remark that P0 and P1 will be unique in our
regime of parameters). Note that if f is δ-far from PVAL then δ0 + δ1 ≥ 2δ, since
otherwise f is δ-close to the function P ∈ PVAL(t, j,v) defined as P (σ,x) =
(1 − σ) · P0(x) + σ · P1(x).
4 Intuitively, the reason to use a random linear combination rather than some fixed

combination such as f0 + f1 is avoiding (w.h.p) the possibility that the differences
of f0 and f1 from their corresponding PVAL instances (i.e. the 0/1 vectors that can
be added to f0 and f1 to reach vectors in PVAL) cancel each other out.
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For every b ∈ {0, 1}, let Ib ⊆ {0, 1}m be the set of δb · 2m points on which Pb

and fb disagree (we refer to these as the “error pattern”). Suppose momentarily
that I0 and I1 have a small intersection (or are even disjoint). In such a case, f ′

is roughly δ0 + δ1 ≥ 2δ far from c0 ·P0 + c1 ·P1 ∈ PVAL(t, j′,v′). This leads us to
wonder whether f ′ could actually be 2δ far from PVAL(t, j′,v′) even when the
error patterns have a large intersection (rather than just δ far as in the analysis
above).

Note that if it is indeed the case that f ′ is 2δ far from the corresponding
PVAL instance then we have improved two parameters: both the distance and
the input size, while only paying in the query complexity. If we continue the
recursion now (stopping when the input size is of size roughly t) we obtain an
IPP for PVAL with poly-logarithmic overhead, as we desired.

Unfortunately, the above analysis was centered on the assumption that I0
and I1 have a small intersection, which we cannot justify. As a matter of fact,
for all we know, the two sets could very well be identical. In such a case, the
distance of f ′ from PVAL will indeed be (roughly) δ and we are back to square
one.

See Fig. 2 for an illustration for the possible “error patterns” of f0 and f1
and how they affect the “error patterns” of f ′.

Fig. 2. Possible alignments of the “Noise”

We pause here for a detour, recalling the approach of [RVW13] (this is not
essential for understanding our construction and can be skipped). They observe
that if δ0 and δ1 are roughly equal, then the verifier can simply recurse on
one of them. This roughly maintains the distance, while avoiding doubling the
query complexity. On the other hand, if say δ0 
 δ1, they show that the ran-
dom linear combination technique described above does increase the distance
(intuitively, the row with smaller distance cannot “cancel out” the error pattern
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of the row with larger distance). We remark that they lose a constant multi-
plicative factor in this argument, which leads them to consider a decomposition
into polylog(n) many rows, rather than 2. Of course, the verifier does not know
whether δ0 ≈ δ1 or δ0 
 δ1. However, they show that the verifier can “cover its
bases” by considering a small number of (approximations to the) decompositions
of the distance across rows. This results in the creation of O(log log n) smaller
recursive instances, where the product of the new distance and the new effective
query complexity of at least one of these instances is “good” (the definition of
“good” allows for losing super-constant multiplicative factors). Over the course
of Ω(log n/log log n) recursive steps, the losses and the ballooning number of
recursive instances add up, and result in a roughly 2log n/log log n = no(1) over-
head in the product between the final query and communication complexities.

Reducing the Intersection Size. A key new ingredient in our protocol is randomly
permuting the truth tables of the functions f0 and f1, in order to make the sets I0
and I1 (pseudo-)random, and therefore likely to have a small intersection. This
is inspired by the beautiful recent result of Ben Sasson, Kopparty and Saraf
[BKS18] on amplifying distances from the Reed-Solomon code. More precisely,
the verifier chooses random permutations π0, π1 : {0, 1}m → {0, 1}m (from a
suitable family of permutations, to be discussed below). We consider the new
functions f0 ◦ π0 and f1 ◦ π1. The hope is that the entropy induced by these
permutations will make the error patterns in f0 ◦ π0 and in f1 ◦ π1 have a small
intersection. Then, rather than recursing on c0 ·f0+c1 ·f1, we will aim to recurse
on f ′ = c0 · (f0 ◦ π0) + c1 · (f1 ◦ π1).

To make this approach work we have to overcome several difficulties. First,
we need to ensure that we can translate the claims that we have about f̂0 and
f̂1 into claims about f̂0 ◦ π0 and f̂1 ◦ π1. We do so by choosing π0 and π1 as
random affine maps over F

m, while ensuring that the restriction of these maps
to {0, 1}m forms a permutation. We argue that this ensures that:

f̂0 ◦ π0 ≡ f̂0 ◦ π0, (1)

and similarly for f1. To see that Eq. (1) holds, observe that if π0 is an affine
function, then both sides of the equation are multilinear polynomials that agree
on {0, 1}m. Therefore they must also agree on F

m.
Equation (1) implies that the claims that we have about the multi-linear

extensions of f0 ◦ π0 and f1 ◦ π1 are simply permutations of the claims about f0
and f1, respectively.

A second difficulty that arises at this point is that the claims that we have
about f0◦π0 and f1◦π1 are not “aligned”. The former claims are about positions
π−1
0 (j′) and the latter about π−1

1 (j′) (in the multi-linear extensions of f0 ◦π0 and
f1 ◦π1, respectively). Since the claims are not aligned, it unclear how to combine
them to get t claims about the input f ′.

As our first step toward resolving this difficulty, we have the prover “complete
the picture” by providing the verifier also with the (alleged) values of f̂0 ◦ π0 at
positions π−1

1 (j′) and those of f̂1 ◦ π1 at positions π−1
0 (j′).
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Note that the prover can cheat to its heart’s desire about these claims, but
the point is that we now have a single set I = π−1

0 (j′) ∪ π−1
1 (j′) so that each

function fb is still δb far from the claims that we have about fb|I . Since the
claims are now properly aligned, we can derive a new sequence of claims about
f ′. More importantly, we prove a technical lemma (building on the result of
Ben Sasson et al. [BKS18]), showing that if f is δ-far from PVAL(t, j,v) then,
with high probability, f ′ is roughly 2δ-far from the corresponding PVAL instance
(induced by the prover’s new claims).

To summarize, the approach so far lets us double the distance in each iteration
as we desired. Unfortunately, it also raises a new problem: the arity of the new
PVAL instance that we generated has doubled - rather than just having t claims
we now have roughly 2t claims (corresponding to the size of the set I). See Fig. 3
for an illustration.

Fig. 3. Permuting the inputs and resulting arity growth

Arity Reduction Step. We resolve this final difficulty by once more employing
interaction, and using the prover in order to reduce the 2t claims that we have
about f0 ◦ π0 and f1 ◦ π1 to just t (aligned) claims each, while preserving the
distance.

The idea here is to consider a degree O(t) curve C : F → F
m passing through

the set of points I. The prover sends to the verifier the values of f̂0 ◦ π0|C and
f̂1 ◦ π1|C . The verifier checks that that the provided values lie on a degree O(t)
univariate polynomial (since f̂b ◦ πb ◦ C has low degree, for both b ∈ {0, 1}). The
verifier also checks that the values that correspond to points in the set I, are
consistent with the claims that it has. The verifier now chooses a set of t random
points ρ = (ρ1, . . . , ρt) on the curve. The new claims about f̂0 and f̂1 are those
that correspond to the set of points in ρ. In particular, this lets us reduce the
number of claims from 2t to t.

We want to argue that this arity-reduction sub-protocol preserves the dis-
tance. This is accomplished by taking a union bound over all inputs that are
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(roughly) 2δ-close to f ′, and showing that for each of them, the probability that
it satisfies the new claim is tiny. We conclude that f ′ is indeed (roughly) 2δ-far
from the resulting PVAL instance (a similar idea was used in the proof that PVAL
is complete [RVW13]).

3 Preliminaries

For a string x ∈ Σn and an index i ∈ [n], we denote by xi ∈ Σ the ith entry
in x. If I ⊆ [n] is a set then we denote by x|I the sequence of entries in x
corresponding to coordinates in I.

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite) alpha-
bet Σ. We define the (relative Hamming) distance of x and y as Δ (x, y) def=
|{xi �= yi : i ∈ [n]}| /n. If Δ (x, y) ≤ ε, then we say that x is ε-close to y, and
otherwise we say that x is ε-far from y. We define the distance of x from a
(non-empty) set S ⊆ Σn as Δ (x, S) def= miny∈S Δ (x, y). If Δ (x, S) ≤ ε, then
we say that x is ε-close to S and otherwise we say that x is ε-far from S. We
extend these definitions from strings to functions by identifying a function with
its truth table. For a set S, take its minimum distance to be the minimum, over
all distinct vectors x, y ∈ S of Δ(x, y). We use Δ(S) to denote the minimum
distance of S. Fixing a vector space, for a set S and a vector x, we denote
(x + S) = {x + y : y ∈ S}. For a scalar c, we denote (c · S) = {c · y : y ∈ S}.

3.1 Multivariate Polynomials and Low Degree Extensions

We recall some important facts on multivariate polynomials (see [Sud95] for a
far more detailed introduction). A basic fact, captured by the Schwartz-Zippel
lemma is that low degree polynomials cannot have too many roots.

Lemma 3.1 (Schwartz-Zippel Lemma). Let P : F
m → F be a non-zero

polynomial of total degree d. Then,

Pr
x∈Fm

[
P (x) = 0

] ≤ d

|F| .

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct poly-
nomials P,Q : F

m → F of total degree d may agree on at most a d
|F| -fraction of

their domain F
m.

Throughout this work we consider fields in which operations can be imple-
mented efficiently (i.e., in poly-logarithmic time in the field size). Formally we
define such fields as follows.

Definition 3.1. We say that an ensemble of finite fields F = (Fn)n∈N is con-
structible if elements in Fn can be represented by O(log(|Fn|)) bits and field
operations (i.e., addition, subtraction, multiplication, inversion and sampling
random elements) can all be performed in polylog(|Fn|) time given this represen-
tation.
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A well known fact is that for every S = S(n), there exists a constructible
field ensemble of size O(S) and its representation can be found in polylog(S)
time (see, e.g., [Gol08, Appendix G.3] for details).

Let H be a finite field and F ⊇ H be an extension field of H. Fix an integer m ∈
N. A basic fact is that for every function φ : H

m → F, there exists a unique
extension of φ into a function φ̂ : F

m → F (which agrees with φ on H
m; i.e.,

φ̂|Hm ≡ φ), such that φ̂ is an m-variate polynomial of individual degree at most
|H|−1. Moreover, there exists a collection of |H|m functions {τ̂x}x∈Hm such that
each τ̂x : F

m → F is the m-variate polynomial of degree |H| − 1 in each variable
defined as:

τ̂x(z) def=
∏

i∈[m]

∏

h∈H\{xi}

zi − h

xi − h
.

and for every function φ : H
m → F it holds that

φ̂(z1, . . . , zm) =
∑

x∈Hm

τ̂x(z1, . . . , zm) · φ(x).

The function φ̂ is called the low degree extension of φ (with respect to F, H and
m). In the special case in which H = GF(2), the function φ̂ (which has individual
degree 1) is called the multilinear extension of φ (with respect to F| and m).

3.2 A Useful Permutation Family

Let m ∈ N. For every a ∈ GF(2m), let fa : (GF(2))m → (GF(2))m be defined as
fa(x) = a · x, where we identify elements in GF(2m) with vectors in (GF(2))m

in the natural way. Thus, for every a ∈ (GF(2))m, there exists a matrix Ma ∈
(GF(2))m×m such that f(x) = Ma · x. Note that if a �= 0 then the matrix Ma is
invertible, and its inverse is given by Ma−1 .

Let F be a finite field that is an extension field of GF(2). For every a, b ∈
(GF(2))m consider the function πa,b : F

m → F
m defined as: πa,b(x) = Ma ·x+ b.

Let πa,b|(GF(2))m denote the restriction of πa,b to the domain (GF(2))m and let
Πm = {πa,b : a, b ∈ (GF(2))m, a �= 0}.

Proposition 3.1. The following holds for every a, b ∈ (GF(2))m:

1. The function πa,b is an affine map over F.
2. If a �= 0 then the function πa,b forms a permutation over F

m and πa,b|(GF(2))m

forms a permutation over (GF(2))m.
3. The function family {πa,b|(GF(2))m}a,b∈(GF(2))m is pairwise independent.
4. If F and GF(2m) are constructible, then given a, b ∈ (GF(2))m and x ∈ F

m it
is possible to compute πa,b(x) in time poly(m, log(|F|)).

Proof. Item 1 is evident from the construction. For Item 2, let a �= 0 and take
any x, x′ ∈ F

m. Observe that if Ma · x + b = Ma · x′ + b then Ma · (x − x′) = 0.
Multiplying both sides on the left by Ma−1 (a matrix in GF(2)m×m ⊆ F

m×m)
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we get that x = x′ . Thus, πa,b is a permutation over F
m. Since the image of

πa,b|(GF(2))m lies in (GF(2))m this also means that πa,b|(GF(2))m is a permutation
over (GF(2))m.

For Item 3, let x1, x2, y1, y2 ∈ (GF(2))m with x1 �= x2. Then:

Pr
a,b

[Ma · x1 + b = y1 ∧ Ma · x2 + b = y2] = Pr
a,b

[a · x1 + b = y1 ∧ a · x2 + b = y2]

= Pr
a,b

[(
a
b

)
·
(

x1 1
x2 1

)
=

(
y1
y2

)]

= 2−2m,

where in the first expression the arithmetic is over the field GF(2) and in the
second and third expressions the arithmetic is over GF(2m), and the last equality

follows from the fact that det

(
x1 1
x2 1

)
= x1 − x2 �= 0.

Lastly, for Item 4, observe that Ma can be generated in poly(m) time by
taking the product of a with a basis of (GF(2))m. Given the full description of
Ma, the product Ma · x + b can be computed in poly(m, log(|F|)) time.

Proposition 3.2. Let φ : (GF(2))m → F and let φ̂ : F
m → F be its multilinear

extension. Let ψ = φ ◦ (πa,b|(GF(2))m) (a function over (GF(2))m), and let ψ̂ be
the multilinear extension of ψ. Then:

∀x ∈ F
m, (φ̂ ◦ πa,b)(x) = ψ̂(x).

Proof. By Proposition 3.1, the function πa,b is an affine map over F. Thus,
(φ̂ ◦ πa,b) is multilinear. By definition, ψ̂ is also multilinear (since it is a low
degree extension). We have that ψ̂ and φ̂ ◦ πa,b are both multilinear, and they
agree over (GF(2))m. By uniqueness of the multilinear extension, they must also
agree over F

m.

3.3 Succinct Descriptions

Throughout this work we use NC1 to refer to the class of logspace uniform
Boolean circuits of logarithmic depth and constant fan-in. Namely, L ∈ NC1

if there exists a logspace Turing machine M that on input 1n outputs a full
description of a logarithmic depth circuit C : {0, 1}n → {0, 1} such that for
every x ∈ {0, 1}n it holds that C(x) = 1 if and only if x ∈ L.

We next define a notion of succinct representation of circuits. Loosely speak-
ing, a function f : {0, 1}n → {0, 1} has a succinct representation if there is a
short string 〈f〉, of poly-logarithmic length, that describes f . That is, 〈f〉 can
be expanded to a full description of f . The actual technical definition is slightly
more involved and in particular requires that the full description of f be an NC1

(i.e., logarithmic depth) circuit:

Definition 3.2 (Succinct Description of Functions). We say that a func-
tion f : {0, 1}n → {0, 1} of size s has a succinct description if there exists a
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string 〈f〉 of length polylog(n) and a logspace Turing machine M (of constant
size, independent of n) such that on input 1n, the machine M outputs a full
description of an NC1 circuit C such that for every x ∈ {0, 1}n it holds that
C(〈f〉 , x) = f(x). We refer to 〈f〉 as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking
this means that the set can be described by a string of length polylog(k). The
formal definition is somewhat more involved:

Definition 3.3 (Succinct Description of Sets). We say that a set S ⊆ [k] of
size s has a succinct description if there exists a string 〈S〉 of length polylog(k)
and a logspace Turing machine M such that on input 1k, the machine M outputs
a full description of a depth polylog(k) and size poly(s, log k) circuit (of constant
fan-in) that on input 〈S〉 outputs all the elements of S as a list (of length s ·
log(k)).

We emphasize that the size of the circuit that M outputs is proportional to
the actual size of the set S, rather than the universe size k.

3.4 Interactive Proofs of Proximity

Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-
linear time in the input length, where the soundness requirement is relaxed to
rejecting inputs that are far from the language w.h.p. (for inputs that are not
in the language, but are close to it, no requirement is made). Actually, we will
think of the input of the verifier as being composed of two parts: an explicit input
x ∈ {0, 1}n to which the verifier has direct access, and an implicit (longer) input
y ∈ {0, 1}m to which the verifier has oracle access. The goal is for the verifier to
run in time that is sub-linear in m and to verify that y is far from any y′ such
that the pair (x, y′) are in the language. Since such languages are composed of
input pairs, we refer to them as pair languages.

Definition 3.4 (Interactive Proof of Proximity (IPP) [EKR04,RVW13]).
An interactive proof of proximity (IPP) for the pair language L is an interac-
tive protocol with two parties: a (computationally unbounded) prover P and a
computationally bounded verifier V. Both parties get as input x ∈ {0, 1}n and a
proximity parameter ε > 0. The verifier also gets oracle access to y ∈ {0, 1}m

whereas the prover has full access to y. At the end of the interaction, the following
two conditions are satisfied:

1. Completeness: For every pair (x, y) ∈ L, and proximity parameter ε > 0 it
holds that

Pr
[(P(y),Vy

)
(x, |y|, ε) = 1

]
= 1.

2. Soundness: For every ε > 0, x ∈ {0, 1}n and y that is ε-far from the set
{y′ : (x, y′) ∈ L}, and for every computationally unbounded (cheating) prover
P∗ it holds that

Pr
[(P∗(y),Vy

)
(x, |y|, ε) = 1

]
≤ 1/2.
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An IPP for L is said to have query complexity q = q(n,m, ε) if, for every
ε > 0 and (x, y) ∈ L, the verifier V makes at most q(|x|, |y|, ε) queries to y
when interacting with P. The IPP is said to have communication complexity
cc = cc(n,m, ε) if, for every ε > 0 and pair (x, y) ∈ L, the communication
between V and P consists of at most cc(|x|, |y|, ε) bits. If the honest prover’s
running time is polynomial in n and m, then we way that the IPP is doubly-
efficient.

The special case of IPPs in which the entire interaction consists of a sin-
gle message sent from the prover to the verifier is called MAPs (in analogy to
the complexity class MA) and was studied in [GR17,GGR15]. We will use the
following simple observation:

Proposition 3.3 (See, e.g., [GR17]). Every L ∈ DTIME(t) has an MAP with
respect to proximity parameter δ ∈ (0, 1) with communication complexity n and
query complexity O(1/δ). The verifier runs in time t + n + O(log(n)/ε). The
prover runs in time O(n)

Proof (Proof Sketch). The prover sends to the verifier a full description of the
input x (i.e., an n bit string). Given the message x′ received from the prover
(allegedly equal to the input x), the verifier first checks that x′ ∈ L (this step
requires no queries to x). The verifier further checks that x and x′ agree on a
random set of O(1/δ) coordinates.

Completeness is immediate, whereas to see that soundness holds, observe
that the prover must send x′ ∈ L, since otherwise the verifier rejects. If x is δ-far
from L then x and x′ disagree on a at least δ fraction of their coordinates and
so the verifier accepts with probability at most (1 − δ)O(1/δ) = 1/2.

4 Our Results

Our first main result is an IPP for any language in NC with optimal
query/communication tradeoff (up to poly-logarithmic factors).

Theorem 4.1. Let δ = δ(n) ∈ (0, 1) be a proximity parameter and let L be a
pair language that is computable by logspace-uniform Boolean circuits of depth
D = D(n) ≥ log n and size S = S(n) ≥ n with fan-in 2 (where n denotes the
implicit input and nexp denotes the explicit input). Then, L has a public-coin
IPP for δ-proximity with perfect completeness and the following parameters:

– Soundness Error: 1/2.
– Query complexity: q = O(1/δ).
– Communication Complexity: cc = δ · n · D · poly log(S).
– Round Complexity: D · polylog(S).
– Verifier Running Time: δ · n · nexppoly(D, log(S)) + (1/δ) · polylog(n).
– Prover Running Time: poly(S).



124 G. N. Rothblum and R. D. Rothblum

Furthermore, the verification procedure can be described succinctly as fol-
lows. At the end of the interaction either the verifier rejects or in time δ · n ·
poly(D, log(S)) it outputs a succinct description 〈Q〉 of a set Q ⊆ [n] of size
q and a succinct description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} so that its
decision predicate given an input function f is equal to φ(f |Q).

Our second main result (which relies on Theorem 4.1) is an interactive proof
for batch verification of any UP language, with communication complexity that
is optimal up to poly-logarithmic factors.

Theorem 4.2. For every UP language L with witness length m = m(n), whose
witness relation can be computed in logspace-uniform NC, there exists a public-
coin interactive proof (with perfect completeness) for verifying that k instances
x1, . . . , xk, each of length n ≤ poly(m), are all in L. The complexity of the
protocol is as follows:

– Communication complexity: m · polylog(k,m).
– Number of rounds: polylog(k,m).
– Verifier runtime: (n · k + m) · polylog(k,m).
– The honest prover, given the k unique witnesses, runs in time poly(m, k).

Using the Cook-Levin reduction, any UP language can be reduced to
Unique-SAT which is a UP language whose witness relation can be computed in
logspace-uniform NC, with only a poly(n,m) blowup to the witness size. Hence,
Theorem 4.2 yields the following corollary.

Corollary 4.1. For every UP language L with witness length m = m(n), there
exists a public-coin interactive proof (with perfect completeness) for verifying that
k instances x1, . . . , xk, each of length n ≤ poly(m), are all in L. The complexity
of the protocol is as follows:

– Communication complexity: poly(m, log(k)).
– Number of rounds: polylog(m, k).
– Verifier runtime: (n · k) · polylog(m, k) + poly(m, log k).
– The honest prover, given the k unique witnesses, runs in time poly(m, k).

5 The PVAL Problem

In this section we define the PVAL problem and state properties related to it
that we will need in our proof. Due to lack of space, all proofs in this section are
deferred to the full version.

Let F be a finite field, H ⊆ F and m ∈ N be an integer.

Definition 5.1. The PVAL problem is parameterized by an ensemble (F, H,m)n.
The explicit input to the problem is (n, t, j,v), where t ∈ N, j = (j1, . . . , jt) ∈
(Fm)t and v = v1, . . . , vt ∈ F

t. The implicit input is a function f : H
m → F.

YES instances of the problems are all functions f : H
m → F such that for every

i ∈ [t] it holds that f̂(ji) = vi, where f̂ is the low degree extension of f .
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Since the low-degree extension is an error correcting code with high distance,
for sufficiently large randomly chosen location sets j, the induced PVAL problem
has large minimum distance:

Proposition 5.1 (PVAL on random locations has large distance). Let
H ⊆ F be finite fields, and let m, d be integers s.t. |F| ≥ 2m|H|. For t ≥ (d ·
log(|H|m · |F|) + κ) it is the case that:

Pr
j∈(Fm)t

[
Δ(PVAL(t, j,0)) ≤ d

|H|m
]

< 2−κ.

The following key lemma builds on the distance amplification theorem for
Reed Solomon codes of Ben-Sasson, Kopparty and Saraf [BKS18].

Lemma 5.1. Fix a finite field F of characteristic 2 and integers m, t > 0. For
j ∈ (Fm)t, suppose that PVAL(t, j,0) has size strictly larger than 1 and minimal
distance λ. Let v′,v′′ ∈ F

t be vectors s.t. both PVAL(t, j,v′) and PVAL(t, j,v′′)
are non-empty. Let f ′ : {0, 1}m → F be at distance δ′ from PVAL(t, j,v′), and let
f ′′ : {0, 1}m → F be at distance δ′′ from PVAL(t, j,v′′). Consider permutations
σ, π ∈ Π, where Π is the useful collection of permutations over F

m defined in
Sect. 3.2. For scalars c′, c′′ ∈ F, define:

f � c′ · (f ′ ◦ σ) + c′′ · (f ′′ ◦ π),

and let Sσ,π ⊆ F
2t be the set of pairs of vectors (u,w) s.t. the sets

PVAL
(
2t, (σ−1(j), π−1(j)), (v′,u)

)
and PVAL

(
2t, (σ−1(j), π−1(j)), (w,v′′)

)
are

non-empty. For (u,w) ∈ Sσ,π, define:

δσ,π,c′,c′′,u,w = Δ
(
f,PVAL

(
2t, (σ−1(j), π−1(j)), (c′ · (v′,u) + c′′ · (w,v′′))

))
.

Then for every ε ∈ [0, 1/2], taking

δ = max
(

δ′ + δ′′

2
,min(δ′ + δ′′ − δ′δ′′ − 2ε, λ/3 − 3ε)

)
,

it is the case that:

Pr
σ,π←Π

[
∃(u,w) ∈ Sσ,π s.t. Pr

c′,c′′←F

[
δσ,π,c′,c′′,u,w < δ

]
>

1

ε|F| +
1

|F|
]

<
min(δ′, δ′′)

ε2 · 2m
+

2

2m

(2)

5.1 Interactive Proof for PVAL Emptiness

Our PVAL IPP will also utilize the following (standard) interactive proof for
checking whether a given PVAL instance (specified by the vector sequence j) is
empty.

Lemma 5.2. Let t,m ∈ N and F a finite field. There is a public-coin interac-
tive proof for the language L =

{
j ∈ (Fm)t : PVAL(t, j,0) �= ∅} with perfect

completeness and the following parameters:
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– Communication complexity: poly(m, log(t)).
– Round Complexity: poly(m, log(t)).
– Verifier running time: t · poly(m, log(|F|)).
– Prover running time: poly(2m, t).

6 Efficient IPP for PVAL

In this section we show our efficient IPP protocol for the PVAL problem.

Theorem 6.1 (IPP for PVAL). Let t,m ∈ N such that m ∈ [log(t), t1/5

14 ]. Let
F be a constructible finite field ensemble of characteristic 2 such that |F| =
Θ

(
2m · t2 · m2

)
. Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ F

t such that
Δ(PVAL(t, j,0)) ≥ (t/2m) · 1

14m2 .
Then, for every proximity parameter δ ≥ 200m3

2m the set PVAL(t, j,v) has a
public-coin IPP with respect to proximity parameter δ, with perfect completeness
and the following parameters:

– Soundness Error: 1/2.
– Query complexity: q = O

(
max

(
1/δ, 2m

t · poly(m)
))

.
– Round complexity: poly(m).
– Communication Complexity: cc = t · poly(m).
– Verifier Running Time: (t + q) · poly(m).
– Prover Running Time: poly(2m).

Furthermore, if δ > (t/2m) · 1
poly(m) then, the entire verification procedure can

be described succinctly as follows. At the end of the interaction either the verifier
rejects or in time poly(m) it outputs a succinct description 〈Q〉 of a set Q ⊆ [|2m|]
of size q and a succinct description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} so that
its decision predicate given an input function f is equal to φ(f |Q).

The rest of this section is devoted to the proof of Theorem 6.1.
The IPP protocol for PVAL is recursive. In each step we reduce the dimension

m by 1 (which shrinks the input size by half), while simultaneously (roughly)
doubling the distance of the problem from the relevant PVAL instance but also
doubling the query complexity.

We denote the starting dimension by m0 whereas the current dimension
(within the recursion) is denoted by m (initially we set m = m0. With that
notation, the efficient IPP protocol for PVAL is presented in Fig. 4. Its complete-
ness, soundness and complexity are analyzed in the subsequent subsections.

6.1 Completeness

We prove that completeness holds by induction on m. The base case (i.e., m ≤
log(t)) follows from Step 1 in the protocol (while relying on Proposition 3.3).
We proceed to analyze the case m > log(t) (under the inductive hypothesis that
the protocol is complete for dimension m − 1).
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Fig. 4. Efficient IPP for PVAL
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Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ F
t. Suppose that f ∈

PVAL(t, j,v). As in the protocol, for every i ∈ [t], decompose ji into ji = (χi, j′i) ∈
F × F

m−1. Let j′ def= (j′1, . . . , j
′
t) ∈ (Fm−1)t.

We show that all the checks made by the verifier in the protocol pass (when
interacting with the honest prover):

1. In Step 5, for every i ∈ [t]:

(1 − χi) · ζ
(b)
i + χi · ζ

(1)
i = (1 − χi) · f̂(0, j′i) + χi · f̂(1, j′i) = f̂(ji) = vi,

as required.
2. In Step 9, for every i ∈ [t] and b ∈ {0, 1}:

g(b)
(
λ
(b)
i

)
= f̂

(
b, π(b)

(
C

(
λ
(b)
i

)))
= f̂

(
b, π(b)

(
(π(b))−1

(
j′i

)))
= f̂(b, j′i) = ζ

(b)
i ,

as required.
3. For Step 11, for every i ∈ [t], it holds that:

f̂ ′(C(ξi)) = c(0) · f̂
(
0, π(0) · C(ξi)

)
+ c(1) · f̂

(
1, π(1)(C(ξi))

)
= c(0) · g(0)(ξi) + c(1) · g(1)(ξi),

where the first equality follows from Proposition 3.2.

Since all the verifier’s checks pass, it accepts, and completeness follows.

6.2 Soundness

We prove, by induction on m, that the soundness error of the protocol is at most
m

10m0
+ 1

100 . The base case (i.e., m ≤ log(t)) is immediate from Step 1 (while
relying on Proposition 3.3). We proceed to analyze the case that m > log(t)
(under the inductive hypothesis that the protocol has soundness error at most
m−1
10m0

for dimension m − 1).
Let j = (j1, . . . , jt) ∈ (Fm)t and v = (v1, . . . , vt) ∈ F

t. Let δ =
Δ

(
f,PVAL(t, j,v)

)
. Fix a cheating prover strategy P̃ . Assume without loss of

generality that P̃ is deterministic (otherwise fix its best choice of randomness).
We start by defining several important values that will be used in the analysis.

Let
(
ζ̃
(b)
i

)

b∈{0,1},i∈[t]
be the (fixed) values sent by P̃ as its first message (i.e., in

Step 4). We may assume that

(1 − χi) · ζ̃
(0)
i + χi · ζ̃

(1)
i = vi, (3)

for every i ∈ [t], since otherwise the verifier rejects in Step 5.
Define v(b) def=

(
ζ̃
(b)
1 , . . . , ζ̃

(b)
t

)
∈ F

t. Also, for every i ∈ [t], decompose ji

into ji = (χi, j′i) ∈ F × F
m−1. Let j′ def= (j′1, . . . , j

′
t) ∈ (Fm−1)t. Lastly, for every

b ∈ {0, 1}, let f (b)(·) def= f(b, ·) and let δ(b)
def= Δ

(
f (b),PVAL

(
t, j′,v(b)

))
.
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Our goal will be to show that the input f ′ for the recursive step (i.e., Step 11)
has distance roughly 2δ from the corresponding PVAL instance (i.e., the distance
doubles). This is done in two steps: showing that f ′ has distance roughly δ(0) +
δ(1), and that this quantity is lower bounded by 2δ. Since it is simpler, we start
with the latter step.

Claim 6.2
δ(0) + δ(1) ≥ 2δ.

Proof. For every b ∈ {0, 1}, let P (b) : {0, 1}m−1 → F such that P (b) ∈
PVAL

(
t, j′,v(b)

)
and Δ

(
P (b), f (b)

)
= δ(b). Such a P (b) exists as long as

PVAL
(
t, j′,v(b)

) �= ∅ and note that otherwise δ(b) is infinite and the claim clearly
holds).

Consider the function P : {0, 1}m → F defined as P (b,x) = P (b)(x). Observe
that Δ(P, f) = δ(0)+δ(1)

2 . On the other hand, for every i ∈ [t], b ∈ {0, 1} and
(j1, . . . , jm) ∈ F

m:

P̂ (j1, . . . , jm) = (1 − j1) · P̂ (0, j2, . . . , jm) + j1 · P̂ (1, j2, . . . , jm)

= (1 − j1) · P̂ (0)(j2, . . . , jm) + j1 · P̂ (1)(j2, . . . , jm), (4)

where both equalities can be verified by observing that they hold for all
(j1, . . . , jm) ∈ {0, 1}m, and therefore hold also for all (j1, . . . , jm) ∈ F

m (since
two multilinear polynomials that agree on the Boolean hypercube agree every-
where).

Thus, for every i ∈ [t], it holds that

P̂ (ji) = (1 − χi) · P̂ (0)(j′i) + χi · P̂ (1)(j′i)

= (1 − χi) · ζ̃
(0)
i + χ · ζ̃

(1)
i

= vi,

where the first equality is by Eq. (4), the second equality follows from the fact
that P (b) ∈ PVAL

(
t, j′,v(b)

)
and the third equality from Eq. (3).

We conclude that f is
(

δ(0)+δ(1)

2

)
-close to PVAL(t, j,v) and so δ(0)+δ(1)

2 ≥ δ.

Now, let π(0), π(1) ← Π be the permutations sampled randomly by the verifier
in Step 6 and let ρ1, . . . , ρt ∈ F be the random values sampled in Step 7. As in
the protocol, let C : F → F

m−1 be the unique degree 3t − 1 curve such that
C(λ(b)

i ) = (π(b))−1(j′i), for every i ∈ [t] and b ∈ {0, 1}, and C(λ(⊥)
i ) = ρi, for

every i ∈ [t]. Let g̃(0) and g̃(1) be the degree O(m · t) univariate polynomials sent
by P̃ in Step 8. Note that C, g̃(0) and g̃(1) are all random variables that depend
on π(0), π(1) and ρ1, . . . , ρt.

We may assume without loss of generality that for every choice of
π(0), π(1), ρ1, . . . , ρt made by the verifier it holds that

∀i ∈ [t], b ∈ {0, 1} : g̃
(b)
i (λ(b)

i ) = ζ̃
(b)
i , (5)
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since otherwise the verifier immediately rejects in Step 9. Thus, we can modify
the prover P̃ to always send polynomials satisfying Eq. (5) without decreasing
P̃ ’s success probability.

For every c(0), c(1) ∈ F, define the function f ′
π(0),π(1),c(0),c(1)

: {0, 1}m−1 → F

as f ′
π(0),π(1),c(0),c(1)

(x) = c(0) · f(0, π(0)(x)) + c(1) · f(1, π(1)(x)).
Recall that δ(b) = Δ

(
f (b),PVAL

(
t, j′,v(b)

))
. We now invoke Lemma 5.1 on

f (0) and f (1) with ε
def= δavg/m0, where δavg = (δ(0) + δ(1))/2. We obtain that:

Pr
π(0),π(1)←Π

[
∃u,w ∈ Sπ(0),π(1) s.t. Pr

c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗

]
>

1

ε|F| +
1

|F|

]

(6)

is less than min(δ(0),δ(1))
ε2·2m + 2

2m , where δπ(0),π(1),c(0),c(1),u,w is defined as the distance
of f ′

π(0),π(1),c(0),c(1)
from

PVAL

(
2t,

(
(π(0))−1(j′), (π(1))−1(j′)

)
,
(
c(0) · (

v(0),u
)

+ c(1) · (
w,v(1)

))
)

,

and

δ∗ def= max
(
δavg,min

(
δ(0) + δ(1) − δ(0) · δ(1) − 2ε, λ/3 − 3ε

))
, (7)

and Sπ(0),π(1) ⊆ F
2t is the set of pairs of vectors (u,w) such that the sets PVAL(2t,

((π(0))−1(j′), (π(1))−1(j′)), (v(0),u)) and PVAL(2t, ((π(0))−1(j′), (π(1))−1(j′)),
(w,v(1))) are non-empty.

We have that min(δ(0),δ(1))
ε2·2m + 2

2m ≤ δavg
ε2·2m + 2

2m = m2
0

δavg·2m + 2
2m ≤ 1

50m0
and

that 1
ε|F| + 1

|F| ≤ m0
δavg·2m0 + 1

2m0 ≤ m0
δavg·2m + 1

2m ≤ 1
100m0

, where for both we used

the fact that δavg ≥ δ ≥ 100m3
0

2m (by Claim 6.2 and our invariant on δ) and our
setting of |F| and m. Thus, Eq. (6) implies that:

Pr
π(0),π(1)←Π

[
∃u,w ∈ Sπ(0),π(1) s.t. Pr

c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗

]
>

1

100m0

]
(8)

is less than 1
50m0

. We proceed to show that δ∗ is lower bounded by (roughly) 2δ.

Proposition 6.1. δ∗ ≥ min
(
2δ · (1 − 2

m0
), λ/100

)
.

Proof. Recall that δ∗ ≥ δavg and that δ∗ ≥ min(λ/3−3ε, δ(0)+δ(1)−δ(0)·δ(1)−2ε)
(see Eq. (7)). The proof of the proposition is based on a (somewhat tedious) case
analysis.

Suppose first that δ∗ ≥ δ(0)+δ(1)−δ(0) ·δ(1)−2ε. In this case the proposition
follows from the following claim:

Claim 6.3. δ(0) + δ(1) − δ(0) · δ(1) − 2ε ≥ 2δ · (1 − 2
m0

).
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Proof. By the AM-GM inequality it holds that:

δ(0) + δ(1) − δ(0) · δ(1) ≥ 2δavg − δ2avg.

We consider two cases. Suppose first that δavg ≤ 2/m0. Then,

2δavg − δ2avg − 2ε = 2δavg − δ2avg − 2δavg/m0 ≥ 2δ · (1 − 2/m0),

where the inequality is based on Claim 6.2 and our presumed upper bound on
δavg. Thus, we may assume that δavg ≥ 2/m0. Then,

2δavg − δ2avg − 2ε ≥ δavg/2 ≥ 1/m0 ≥ 2δ · (1 − 2/m0),

where the first inequality holds for sufficiently large m0 and using the fact that
δavg ≤ 1 and the last inequality from the fact that δ < 1

100m0
.

Thus, we may assume that δ∗ ≥ λ/3 − 3ε.
Suppose now that ε < λ/300. Then, we have that δ ≥ λ/3 − 3ε ≥ λ/100 and

we are done. Thus, we may assume that λ/300 ≤ ε = δavg/m0. On the other
hand, we have that δ∗ ≥ δavg ≥ m0

300 · λ ≥ λ/100, for sufficiently large m0.
This concludes the proof of Proposition 6.1.
Fix π(0) and π(1) such that the event specified in Eq. (8) does not hold. That

is, for every u,w ∈ Sπ(0),π(1) it holds that

Pr
c(0),c(1)∈F

[
δπ(0),π(1),c(0),c(1),u,w < δ∗] ≤ 1

100m0
.

Let u =
(
g̃(0)(λ(1)

1 ), . . . , g̃(0)(λ(1)
t )

)
and w =

(
g̃(1)(λ(0)

1 ), . . . , g̃(1)(λ(0)
t )

)
.

Suppose that u,w �∈ Sπ(0),π(1) then PVAL
(
2t,

{
λ(b)

}
b∈{0,1},i∈[t]

,
{
g̃(b

′)

(λ(b)
i )

}
b∈{0,1},i∈[t]

)
= ∅, for either b′ = 0 or b′ = 1. In Step 9 the verifier and

prover run an interactive proof to check that this is not the case and so the
verifier rejects in this case with probability at least 1 − 1

100m0
. Thus, we may

assume that u,w ∈ Sπ(0),π(1) .
In particular, this means that for all but 1

100m0
fraction of c(0), c(1) ∈ F, it

holds that f ′
π(0),π(1),c(0),c(1)

is at distance at least δ∗ from

PVAL

(
2t,

(
(π(0))−1(j′), (π(1))−1(j′)

)
, (ωk)k∈[2t]

)
,

where ωb·t+i = c(0) · g̃
(0)
i (λ(b)

i ) + c(1) · g̃
(1)
i (λ(b)

i ).
Let us fix c(0) and c(1) such that the foregoing statement holds. Let

δ′ def= min
(
2δ · (1 − 2

m0
), (t/2m) · 1

1400m2
0

)
(9)

and observe that by Proposition 6.1 (and the invariant lower bound on λ), it
holds that δ′ ≤ δ∗.
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Claim 6.4. With all but 1
100m0

probability over the choice of ξ1, . . . , ξt ∈ F it
holds that the function f ′

π(0),π(1),c(0),c(1)
is at distance at least δ′ from the set

PVAL

(
t, (C(ξi))i∈[t] ,

(
c(0) · g̃

(0)
i (ξi) + c(1) · g̃(1)(ξi)

)

i∈[t]

)
.

Proof. Fix some h : {0, 1}m−1 → F at relative distance ≤ δ′ ≤ δ∗

from f ′
π(0),π(1),c(0),c(1)

. By our assumption on c(0) and c(1) we have h �∈
PVAL

(
2t, ((π(0))−1(j′), (π(1))−1(j′)), (ωk)k∈[2t]

)
, where ωb·t+i = c(0) · g̃(0)i (λ(b)

i )+

c(1) · g̃
(1)
i (λ(b)

i ). In particular, this means that there exists some b ∈ {0, 1} and
i ∈ [t] such that:

ĥ
(
C(λ(b)

i )
)

�= c(0) · g̃
(0)
i (λ(b)

i ) + c(1) · g̃
(1)
i (λ(b)

i ).

The functions ĥ ◦ C and c(0) · g̃(0)(·) + c(1) · g̃(1)(·) are therefore different
polynomials of degree O(m · t). Thus, the probability over a random ξ ∈ F

m−1

that ĥ(C(ξ)) = g̃(0)(ξ) + c · g̃(1)(ξ) is at most O(m · t/|F|) ≤ 1/2. Therefore,

the probability that h ∈ PVAL

(
t, (C(ξi))i∈[t] ,

(
g̃
(0)
i (ξi) + c · g̃(1)(ξi)

)

i∈[t]

)
is at

most 2−t.
The number of functions h : {0, 1}m−1 → |F| that are δ′-close to f ′

π,c is
upper bounded by (2m−1 · |F|)δ′·2m−1 ≤ 2δ′·2m·m·log(|F|). Therefore, by a union
bound, we have that f ′

π,c is δ′-far from PVAL
(
t, (C(ξi))i∈[t] , c

(0) · (
g̃
(0)
i (ξi) +

c(1) · g̃(1)(ξi)
)
i∈[t]

)
, with all but 2δ′·2m·m·log(|F|)−t probability. Since δ′ ≤ (t/2m) ·

1
1400m2

0
, we have that this probability is upper bounded by 1

100m0
.

Assuming that the event stated in Claim 6.4 holds, the protocol is run recur-
sively on input f ′

π(0),π(1),c(0),c(1)
that is at least δ′-far from the relevant PVAL

instance. At this point we would like to argue that by the inductive hypothesis,
the verifier rejects with high probability. However, to do so, we still need to argue
that the recursive invocation satisfies all the prescribed invariants.

Claim 6.5. δ′ ≥ 200m3
0

2m−1 · (1 − 2
m0

)m0−(m−1).

Proof. We consider two cases. If δ′ = 2δ · (1 − 2
m0

) then:

δ′ ≥ 2
(

200m3
0

2m
· (1 − 2

m0
)m0−m

)
· (1 − 2

m0
) =

200m3
0

2m−1
· (1 − 2

m0
)m0−(m−1),

as required. Otherwise,

δ′ = (t/2m) · 1
1400m2

0

≥ 200m3
0

2m−1
≥ 200m3

0

2m−1
· (1 − 2

m0
)m0−(m−1),

where the first inequality follows from the fact that m0 ≤ t1/5/14.
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Claim 6.6. With all but 1
100m0

probability over the choice of ρ1, . . . , ρt and
ξ1, . . . , ξt, it holds that λ′ ≥ (t/2m−1) · 1

14m2
0
, where λ′ = Δ(PVAL(t, j′,0)).

Proof. Observe that ξ1, . . . , ξt �∈ {λ(b)
i }b∈{0,1},i∈[t] with probability 1 − 2t2

|F| ≥
1 − 1

200m0
.

Since the curve C passes through t random points (i.e., ρ1, . . . , ρt), the
distribution over points through which the curve C passes is t-wise indepen-
dent, other than at the fixed points {λ

(b)
i }b∈{0,1},i∈[t]. Putting the above two

facts together, we obtain that with all but 1
200m0

probability, the set of points
j′ =

(C(ξ1), . . . , C(ξt)
)

is uniformly distributed in (Fm−1)t.
Recall that λ′ = Δ(PVAL(t, j′,0)). By Proposition 5.1, since t ≥ t

14m2
0
·log(2m·

|F|) + log(200m0),

Pr
[
λ′ ≤ (t/2m−1) · 1

14m2
0

]
<

1
200m0

,

and the claim follows.

Thus, the invariants for the recursive step are satisfied and so the verifier
accepts in the recursion with probability at most m−1

10m0
+ 1/100. Overall, by

accounting for all of the bad events in the analysis above, we get that the verifier
accepts with probability at most:

m − 1
10m0

+ 1/100 + 5 · 1
100m0

≤ m

10m0
+ 1/100

as required.

6.3 Complexity

Communication Complexity. We first analyze the complexity of a single iteration
(i.e., excluding the recursion). The verifier only sends to the prover a specification
of the permutations π(0) and π(1) (which take 2m bits each), the values ρ1, . . . , ρt,
ξ1, . . . , ξt ∈ F and c(0), c(1) ∈ F. Overall the verifier-to-prover communication is
2m + (2t + 1) · log2(|F|). The prover in turn sends (ζ(b)i )i∈[t],b∈{0,1} and the
polynomials g̃(0) and g̃(1) (of degree O(t · m)). Thus, the total prover to verifier
communication is O(t · m · log(|F|)).

Thus, the overall communication complexity is given by cc(m) where cc(m) =
O(t · m · log(|F|)) + cc(m − 1) if m > log(t) and cc(m) = 2m · log(|F|) otherwise.
Overall we have cc(m) ≤ O(m2 · t · log(|F|)).

Query Complexity. Denote the query complexity by q(m, δ). Note that if m ≤
log(t) then q(m, δ) = O(1/δ) and otherwise q(m, δ) = 2 · q(m − 1, δ′) = 2q

(
m −

1,min
(
2δ ·(1− 2

m0
), (t/2m) · 1

1400m2
0

))
. The stated query complexity follows from

the following claim.
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Claim 6.7. There exists a fixed constant c such that for every m and δ it holds
that q(m, δ) ≤ c · (1 − 2

m0
)−m · max

(
1
δ ,

2800·2m·m2
0

t

)
.

Proof. We prove by induction on m. The base case m = log(t) is immediate.
Suppose that the claim holds for m − 1. Then:

q(m, δ) = 2q
(
m − 1,min

(
2δ · (1 − 2

m0
), (t/2m) · 1

1400m2
0

))

Suppose first that 2δ · (1 − 2
m0

) < (t/2m) · 1
1400m2

0
. Then,

q(m, δ) = 2q
(
m − 1, 2δ · (1 − 2

m0
)
)

≤ 2c · (1 − 2
m0

)−(m−1) · max
( 1

2δ · (1 − 2
m0

)
,
2m−1 · m2

0

t

)

= c · (1 − 2
m0

)−m · max
(1

δ
,
2m · m2

0

t

)

as required. Otherwise, 2δ · (1 − 2
m0

) ≥ (t/2m) · 1
1400m2

0
and we have that:

q(m, δ) = 2q
(
m − 1, (t/2m) · 1

1400m2
0

)

≤ 2c · (1 − 2
m0

)−(m−1) · max
(1400 · 2m · m2

0

t
,
2800 · 2m−1 · m2

0

t

)

≤ c · (1 − 2
m0

)−m · 2800 · 2m · m2
0

t

≤ c · (1 − 2
m0

)−m · max
(1

δ
,
2800 · 2m · m2

0

t

)
.

Prover Runtime. In every iteration, the prover only does elementary manipu-
lations of the truth table of f (and never needs to fully materialize the truth
table of f̂). It also runs the prover of Lemma 5.2. Overall its running time is
poly(2m,m0, log(|F|), t) = poly(2m0).

Verifier Runtime and Succinct Description. The queries made by the verifier
can be succinctly specified by the permutations π(0) and π(1) used through the
recursion as well as the random locations that it queries in the base case. The
total number of bits needed to describe the permutations is at most 2(m0)2. The
number of bits needed in the base case is equal to the total number of queries
divided by 2m0/t (since in each of the m0−log(t) iterations the number of queries
doubled) and multiplied by log(2m) = m (to specify the location). By the above
analysis this quantity is therefore upper bounded by O

(
t·m0
2m0 · max

(
1/δ, 2m0

t ·
poly(m)

))
= O(poly(m) + t·m0

2m0 ) · (1/δ)). If δ > (t/2m0) · 1
poly(m) this string has

poly(m) length as required.
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Given the set of base points we can generate the list of q queries by repeatedly
applying the two permutations that we have for each level of the recursion. Since
the permutations can be computed in poly(m) time (see Proposition 3.1), we
obtain that a logspace Turing machine can generate a poly(m) depth circuit
that outputs the entire set of q query locations.

As for the succinct description of the verification predicate, observe that all
of the verifier’s checks that do not involve the input can be implemented in time
poly(t,m0, log(|F|)) = poly(t). The testing of the actual input only happens in
the case in which the prover sends over the alleged actual input f̃⊥ (which at
the end of the recursion has length t · log(|F|)). This string f̃⊥ is part of the
description of the verification predicate, together also with all of the c(0), c(1)

values generated in the recursion. Using these values it is possible to construct
a q · poly(m0, log(|F|)) size depth poly(m0) circuit that given the query answers
checks their consistency with f̃⊥.

7 Proving Theorem 4.1 and Theorem 4.2

Theorem 4.1 follows immediately by combining [RVW13, Theorem 1.3] with
Theorem 6.1, while setting t = δ · n · polylog(n).

In order to prove Theorem 4.2 we utilize an idea from the work of Reingold
et al. [RRR18] who used known IPP protocols to achieve batch verification for
UP languages. We restate a more general form of their reduction below. In the
interest of directness, we avoid defining or using Interactive Witness Verification
protocols, as they did. Instead, we use IPPs for pair languages:

Theorem 7.1 (From IPPs to UP batch verification (generalization of
[RRR18, Theorem 3.3])). Suppose that for every query parameter q = q(n) ∈
{1, . . . , m}, and for every pair languages L that can be computed by log-space
uniform polynomial-size circuits with fan-in 2 and depth D = D(n), there exists
an interactive proof of proximity where the verifier is public-coin and, on input
(x, y), at the end of the interaction either the verifier rejects, or it outputs a
succinct description 〈Q〉 of a set Q ⊆ [|y|] of size q and succinct description 〈φ〉
of a predicate φ : {0, 1}q → {0, 1}, and for every input pair (x, y):

– Completeness: If (x, y) ∈ L then

Pr
[V does not reject and φ(yQ) = 1

]
= 1.

– Soundness: If L(x) = ∅ (there is no y′ s.t. (x, y′) ∈ L), then for every prover
P∗:

Pr
[V does not reject and φ(yQ) = 1

] ≤ 1/2.

Let cc = cc(q,D, n,m) be the communication complexity, r = r(q,D, n,m) the
number of rounds, Vtime(q,D, n,m) the verifier’s runtime, and assume that the
honest prover runs in polynomial time.

Then, for every UP language L with witness length m = m(n), whose witness
relation can be computed in NC, there exists a public-coin interactive proof (with



136 G. N. Rothblum and R. D. Rothblum

perfect completeness) for verifying that k instances x1, . . . , xk, each of length n,
are all in L. Taking D′ = polylog(n, k) and m′ = k · m, the complexity of the
protocol is as follows:

– Communication complexity: O
(
m +

∑log k
i=1 cc( k

2i ,D
′, n′

2i ,
m′
2i )

)
.

– Number of rounds: O
(∑log k

i=1 r( k
2i ,D

′, n′
2i ,

m′
2i )

)
.

– Verifier runtime: O
(
m log n +

∑log k
i=1 Vtime( k

2i ,D
′, n′

2i ,
m′
2i )

)
.

– The honest prover, given the k unique witnesses, runs in polynomial time.

Theorem 4.2 now follows from Theorem 7.1 by utilizing the efficient IPPs for
NC given in Theorem 4.1.
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Abstract. A statistical zero-knowledge proof (SZK) for a problem Π
enables a computationally unbounded prover to convince a polynomial-
time verifier that x ∈ Π without revealing any additional information
about x to the verifier, in a strong information-theoretic sense.

Suppose, however, that the prover wishes to convince the verifier that
k separate inputs x1, . . . , xk all belong to Π (without revealing anything
else). A naive way of doing so is to simply run the SZK protocol sepa-
rately for each input. In this work we ask whether one can do better –
that is, is efficient batch verification possible for SZK?

We give a partial positive answer to this question by constructing
a batch verification protocol for a natural and important subclass of
SZK – all problems Π that have a non-interactive SZK protocol (in
the common random string model). More specifically, we show that,
for every such problem Π, there exists an honest-verifier SZK proto-
col for batch verification of k instances, with communication complexity
poly(n)+k ·poly(log n, log k), where poly refers to a fixed polynomial that
depends only on Π (and not on k). This result should be contrasted with
the naive solution, which has communication complexity k · poly(n).

Our proof leverages a new NISZK-complete problem, called Approx-
imate Injectivity, that we find to be of independent interest. The goal
in this problem is to distinguish circuits that are nearly injective, from
those that are non-injective on almost all inputs.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMR89], are a remarkable and incredibly influential notion. Loosely
speaking, a zero-knowledge proof lets a prover P convince a verifier V of the
validity of some statement without revealing any additional information.

In this work we focus on statistical zero-knowledge proofs. These proof-
systems simultaneously provide unconditional soundness and zero-knowledge:

The full version is available on ECCC [KRR+20].
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– Even a computationally unbounded prover P∗ cannot convince V to accept a
false statement (except with some negligible probability).

– Any efficient, but potentially malicious, verifier V∗ learns nothing in the inter-
action (beyond the validity of the statement) in the following strong, statisti-
cal, sense: there exists an algorithm, called the simulator, which can efficiently
simulate the entire interaction between V∗ and P based only on the input x,
so that the simulation is indistinguishable from the real interaction even to a
computationally unbounded distinguisher.

The class of promise problems1 having a statistical zero-knowledge proof is
denoted by SZK. This class contains many natural problems, including many of
the problems on which modern cryptography is based, such as (relaxations of)
integer factoring [GMR89], discrete logarithm [GK93,CP92] and lattice problems
[GG00,MV03,PV08,APS18].

Since the study of SZK was initiated in the early 80’s many surpris-
ing and useful structural properties of this class have been discovered (see,
e.g., [For89,AH91,Oka00,SV03,GSV98,GV99,NV06,OV08]), and several appli-
cations have been found for hard problems in this (and related) classes (for exam-
ple, see [Ost91,OW93,BDRV18a,BDRV18b,KY18,BBD+20]). It is known to be
connected to various cryptographic primitives [BL13,KMN+14,LV16,PPS15]
and algorithmic and complexity-theoretic concepts [Dru15], and has conse-
quently been used to show conditional impossiblility results. In particular, a
notable and highly influential development was the discovery of natural com-
plete problems for SZK [SV03,GV99].

In this work we are interested in the following natural question. Suppose that
a particular problem Π has an SZK protocol. This means that there is a way to
efficiently prove that x ∈ Π in zero-knowledge. However, in many scenarios, one
wants to be convinced not only that a single instance belongs to Π but rather
that k different inputs x1, . . . , xk all belong to Π. One way to do so is to simply
run the underlying protocol for Π k times, in sequence, once for each input xi.2

However, it is natural to ask whether one can do better. In particular, assuming
that the SZK protocol for Π has communication complexity m, can one prove (in
statistical zero-knowledge) that x1, . . . , xk ∈ Π with communication complexity
� k · m? We refer to this problem as batch verification for SZK.

We view batch verification of SZK as being of intrinsic interest, and poten-
tially of use in the study of the structure of SZK. Beyond that, batch verification
of SZK may be useful to perform various cryptographic tasks, such as batch ver-
ification of digital signature schemes [NMVR94,BGR98,CHP12] or batch verifi-
cation of well-formedness of public keys (see, e.g., [GMR98]).

1 Recall that a promise problem Π consists of two ensembles of sets YES = (YESn)n∈N

and (NOn)n∈N, such that the YESn’s and NOn’s are disjoint. Instances in YES are
called YES instances and those in NO are called NO instances.

2 The resulting protocol can be shown to be zero-knowledge (analogously to the fact
that sequential repetition preserves statistical zero-knowledge).
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1.1 Our Results

We show that non-trivial batch verification is possible for a large and natural
subset of languages in SZK. Specifically, we consider the class of promise prob-
lems having non-interactive statistical zero-knowledge proofs. A non-interactive
statistical zero-knowledge proof [BFM88] is a variant of SZK in which the verifier
and the prover are given access to a uniformly random common random string
(CRS). Given this CRS and an input x, the prover generates a proof string π
which it sends to the verifier. The verifier, given x, the CRS, and the proof string
π, then decides whether to accept or reject. In particular, no additional interac-
tion is allowed other than the proof π. Zero-knowledge means that it is possible
to simulate the verifier’s view (which consists of the CRS and proof π) so that
the simulation is statistically indistinguishable from the real interaction. The
corresponding class of promise problems is abbreviated as NISZK.

Remark 1.1. An NISZK for a problem Π is equivalent to a two-round public-
coin honest-verifier SZK protocol. Recall that honest-verifier zero-knowledge,
means that the honest verifier learns essentially nothing in the interaction, but
a malicious verifier may be able to learn non-trivial information.

The class NISZK contains many natural and basic problems such as: vari-
ants of the quadratic residuosity problem [BSMP91,DSCP94], lattice prob-
lems [PV08,APS18], etc. It is also known to contain complete problems
[SCPY98,GSV99], related to the known complete problems for SZK.

Our main result is an honest-verifier statistical zero-knowledge protocol for
batch verification of any problem in NISZK. In order to state the result more
precisely, we introduce the following definition.

Definition 1.2. Let Π = (YES,NO) be a promise problem, where YES =
(YESn)n∈N and NO = (NOn)n∈N, and let k = k(n) ∈ N. We define the promise
problem Π⊗k =

(
YES⊗k,NO⊗k

)
, where YES⊗k = (YES⊗k

n )n∈N, NO⊗k =
(NO⊗k

n )n∈N and

YES⊗k
n = (YESn)k

and
NO⊗k

n = (YESn ∪ NOn)k \ (YESn)k
.

That is, instances of Π⊗k are k instances of Π, where the YES instances are all
in YES and the NO instances consist of at least one NO instances for Π.3

With the definition of Π⊗k in hand, we are now ready to formally state our
main result:

3 This notion of composition is to be contrasted with that employed in the closure the-
orems for SZK under composition with formulas [SV03]. There, a composite problem
similar to Π⊗k is considered that does not require in its NO sets that all k instances
satisfy the promise, but instead just that at least one of the instances is a NO
instance of Π.
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Theorem 1.3 (Informally Stated, see Theorem 3.1). Suppose that Π ∈
NISZK. Then, for every k = k(n) ∈ N, there exists an (interactive) honest-
verifier SZK protocol for Π⊗k with communication complexity poly(n) + k ·
poly(log n, log k), where n refers to the length of a single instance and poly refers
to a fixed polynomial independent of k.

The verifier’s running time is k · poly(n) and the number of rounds is O(k).

We emphasize that our protocol for Π⊗k is interactive and honest-verifier sta-
tistical zero-knowledge (HVSZK). Since we start with an NISZK protocol (which
as mentioned above is a special case of HVSZK), it is somewhat expected that
the resulting batch verification protocol is only HVSZK. Still, obtaining a similar
result to Theorem 1.3 that achieves malicious-verifier statistical zero-knowledge
is a fascinating open problem (see Sect. 1.4 for additional open problems). We
mention that while it is known [GSV98] how to transform any HVSZK protocol
into a full-fledged SZK protocol (i.e., one that is zero-knowledge even wrt a mali-
cious verifier), this transformation incurs a polynomial overhead that we cannot
afford.

1.2 Related Works

Batch Verification via IP = PSPACE. A domain in which batch computing is
particularly easy is bounded space computation - if a language L can be decided
in space s then k instances of L can be solved in space s + log(k) (by reusing
space). Using this observation, the IP = PSPACE theorem [LFKN92,Sha92]
yields an efficient interactive proof for batch verification of any problem in
PSPACE. However, the resulting protocol has several major drawbacks. In par-
ticular, it does not seem to preserve zero-knowledge, which makes it unsuitable
for the purposes of our work.

Batch Verification with Efficient Prover. Another caveat of the IP = PSPACE
approach is that it does not preserve the efficiency of the prover. That is, even if
we started with a problem that has an interactive proof with an efficient prover,
the batch verification protocol stemming from the IP = PSPACE theorem has
an inefficient prover.

Reingold et al. [RRR16,RRR18] considered the question of whether batch
verification of NP proofs with an efficiency prover is possible, assuming that the
prover is given the NP witnesses as an auxiliary input. These works construct
such an interactive batch verification protocol for all problems in UP ⊆ NP (i.e.,
languages in NP in which YES instances have a unique proof). In particular, the
work of [RRR18] yields a batch verification protocol for UP with communication
complexity kδ · poly(m), where m is the original UP witness length and δ > 0 is
any constant.

Note that it seems unlikely that the [RRR16,RRR18] protocols preserve zero-
knowledge. Indeed, these protocols fundamentally rely on the so-called unambi-
guity (see [RRR16]) of the underlying UP protocol, which, at least intuitively,
seems at odds with zero-knowledge.
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Batch Verification with Computational Soundness. Focusing on protocols achiev-
ing only computational soundness, we remark that interactive batch verification
can be obtained directly from Kilian’s [Kil92] highly efficient protocol for all of
NP (assuming collision resistant hash functions). A non-interactive batch verifi-
cation protocol was given by Brakerski et al. [BHK17] assuming the hardness of
learning with errors. Non-interactive batch verification protocols also follow from
the existence of succinct non-interactive zero-knowledge arguments (zkSNARGs),
which are known to exist under certain strong, and non-falsifiable, assumptions
(see, e.g. [Ish], for a recent survey).

Randomized Iterates. The randomized iterate is a concept introduced by Goldre-
ich, Krawczyk, and Luby [GKL93], and further developed by later work [HHR11,
YGLW15], who used it to construct pseudorandom generators from regular one-
way functions. Given a function f , its randomized iterate is computed on an
input x and descriptions of hash functions h1, . . . , hm by starting with x0 = f(x)
and iteratively computing xi = f(hi(xi−1)). The hardcore bits of these iterates
were then used to obtain pseudorandomness. While the randomized iterate was
used for a very different purpose, this process of alternating the evaluation of a
given function with injection of randomness (which is what the hash functions
were for) is strongly reminiscent of our techniques. It would be very interesting
if there is a deeper connection between our techniques and the usage of these
iterates in relation to pseudorandom generators.

1.3 Technical Overview

Batch Verification for Permutations. As an initial toy example, we first consider
batch verification for a specific problem in NISZK. Let PERM be the promise
problem defined as follows. The input to PERM is a description of a Boolean
circuit C : {0, 1}n → {0, 1}n. The YES inputs consist of circuits that define
permutations over {0, 1}n whereas the NO inputs are circuits so that every
element in the image has at least two preimages.4 It is straightforward to see
that PERM ∈ NISZK.5

Our goal is, given as input k circuits C1, . . . , Ck, to distinguish (via a zero-
knowledge proof) the case that all of the circuits are permutations from the case

4 PERM can be thought of as a variant of the collision problem (see [Aar04, Chapter
6]) in which the goal is to distinguish a permutation from a 2-to-1 function.

5 A two round public-coin honest-verifier perfect zero-knowledge protocol for PERM
can be constructed as follows. The verifier sends a random string y ∈ {0, 1}n and
the prover sends x = C−1(y). The verifier needs to check that indeed y = C(x). It is
straightforward to check that this protocol is honest-verifier perfect zero-knowledge
and has soundness 1/2, which can be amplified by parallel repetition (while noting
that honest-verifier zero-knowledge is preserved under parallel repetition).

This protocol can be viewed as a NIPZK by viewing the verifier’s coins as the
common random string. On the other hand, assuming that NISZK �= NIPZK, PERM
is not NISZK-complete.
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that one or more is 2-to-1. Such a protocol can be constructed as follows: the ver-
ifier chooses at random x1 ∈ {0, 1}n, computes xk+1 = Ck(Ck−1(. . . C1(x1) . . . ))
and sends xk+1 to the prover. The prover now responds with the preimage
x′
1 = C−1

1 (C−1
2 (. . . C−1

k (xk+1) . . . )). The verifier checks that x1 = x′
1 and if

so it accepts, otherwise it rejects.6

Completeness follows from the fact that the circuits define permutations and
so x1 = x′

1. For soundness, observe that for a NO instance, xk+1 has at least
two preimages under the composed circuit Ck ◦ · · · ◦ C1. Therefore, a cheating
prover can guess the correct preimage x0 with probability at most 1/2 (and the
soundness error can be reduced by repetition). Lastly observe that the protocol
is (perfect) honest-verifier zero-knowledge: the simulator simply emulates the
verifier while setting x′

1 = x1.

The Approximate Injectivity Problem. Unfortunately, as mentioned above,
PERM is presumably not NISZK-complete and so we cannot directly use the
above protocol to perform batch verification for arbitrary problems in NISZK.
Instead, our approach is to identify a relaxation of PERM that is both NISZK-
complete and amenable to batch verification, albeit via a significantly more com-
plicated protocol.

More specifically, we consider the Approximate Injectivity (promise) problem.
The goal here is to distinguish circuits that are almost injective, from ones that
are highly non-injective. In more detail, let δ ∈ [0, 1] be a parameter. We define
AIδ to be a promise problem in which the input is again a description of a
Boolean circuit C mapping n input bits to m ≥ n output bits. YES instances are
those circuits for which all but δ fraction of the inputs x have no collisions (i.e.,
Prx[|C−1(C(x))| > 1] < δ). NO instances are circuits for which all but δ fraction
of the inputs have at least one colliding input (i.e., Prx[|C−1(C(x))| = 1] < δ).

Our protocol for batch verification of any problem Π ∈ NISZK consists of
two main steps:

– First, we show that AIδ is NISZK-hard: i.e., there exists an efficient Karp
reduction from Π to AIδ.

– Our second main step is showing an efficient HVSZK batch verification pro-
tocol for AIδ. In particular, the communication complexity of the protocol
scales (roughly) additively with the number of instances k.

Equipped with the above, an HVSZK protocol follows by having the prover and
verifier reduce the instances x1, . . . , xk for Π to instances C1, . . . , Ck for AIδ,
and then engage in the batch verification protocol for AIδ on common input
(C1, . . . , Ck).

6 A related but slightly different protocol, which will be less useful in our eventual
construction, can be obtained by observing that (1) the mapping (C1, . . . , Ck) �→
Ck ◦ · · · ◦ C1 is a Karp-reduction from an instance of PERM⊗k to an instance of
PERM with n input/output bits, and (2) that PERM has an NISZK protocol with
communication complexity that depends only on n.
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Before describing these two steps in detail, we remark that we find the identi-
fication of AIδ as being NISZK-hard (in fact, NISZK-complete) to be of indepen-
dent interest. In particular, while AIδ bears some resemblance to problems that
were already known to be NISZK-complete, the special almost-injective nature
of the YES instances of AIδ seems very useful. Indeed, this additional structure
is crucial for our batch verification protocol.

AIδ is NISZK-hard. We show that AIδ is NISZK-hard by reducing to it from
the Entropy Approximation problem (EA), which is known to be complete for
NISZK [GSV99].7 An instance of EA is a circuit C along with a threshold k ∈
R

+, and the problem is to decide whether the Shannon entropy of the output
distribution of C when given uniformly random inputs (denoted H(C)) is more
than k + 10 or less than k − 10.8

For simplicity, suppose we had a stronger promise on the output distribution
of C — that it is a flat distribution (in other words, it is uniform over some
subset of its range). In this case, for any output y of C, the promise of EA tells
us something about the number of pre-images of y. To illustrate, suppose C
takes n bits of input. Then, in a YES instance of EA, the size of the set

∣
∣C−1(y)

∣
∣

is at most 2n−(k+10), and in the NO case it is at least 2n−(k−10). Recall that
for a reduction to AIδ, we need to make the sizes of most inverse sets 1 for YES
instances and more than 1 for NO instances. This can now be done by using a
hash function to shatter the inverse sets of C.

That is, consider the circuit Ĉ that takes as input an x and also the descrip-
tion of a hash function h from, say, a pairwise-independent hash family H, and
outputs (C(x), h, h(x)). If we pick H so that its hash functions have output
length (n − k), then out of any set of inputs of size 2n−(k+10), all but a small
constant fraction will be mapped injectively by a random h from H. On the
other hand, out of any set of inputs of size 2n−(k−10), only a small constant
fraction will be mapped injectively by a random h. Thus, in the YES case, it
may be argued that all but a small constant fraction of inputs (x, h) are mapped
injectively by Ĉ, and in the NO case only a small constant fraction of inputs
are. So for some constant δ, this is indeed a valid reduction from EA to AIδ. For
smaller functions δ, the reduction is performed by first amplifying the gap in the
promise of EA and then proceeding as above.

Finally, we can relax the simplifying assumption of flatness using the asymp-
totic equipartition property of distributions. In this case, this property states
that, however unstructured C may be, its t-fold repetition C⊗t (that takes an
input tuple (x1, . . . , xt) and outputs (C(x1), . . . , C(xt))) is “approximately flat”
for large enough t. That is, with increasingly high probability over the output
distribution of C⊗t, a sample from it will have a pre-image set of size close to
its expectation, which is 2t·(n−H(C)). Such techniques have been previously used
for similar purposes in the SZK literature and elsewhere, for example as the
7 In fact, we also show that AIδ is in NISZK, and thus is NISZK-complete, by reducing

back from it to EA.
8 In the standard definition of EA [GSV99], the promise is that H(C) is either more

than k +1 or less than k −1, but this gap can be amplified easily by repetition of C.
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flattening lemma of Goldreich et al. [GSV99] (see the full version for details and
the proof).

Batch Verification for Exact Injectivity. For sake of simplicity, for this overview
we focus on batch verification of the exact variant of AIδ, that is, when δ = 0. In
other words, distinguishing circuits that are truly injective from those in which
every image y has at least two preimages (with no exceptions allowed). We
refer to this promise problem as INJ. Modulo some technical details, the batch
verification protocol for INJ, presented next, captures most of the difficulty in
our batch verification protocol for AIδ.

Before proceeding we mention that the key difference between INJ and PERM
is that YES instances of the former are merely injective whereas for the latter
they are permutations. Interestingly, this seemingly minor difference causes sig-
nificant complications.

Our new goal is, given as input circuits C1, . . . , Ck : {0, 1}n → {0, 1}m, with
m ≥ n, to distinguish the case that all of the circuits are injective from the case
that at least one is entirely non-injective.

Inspired by the batch verification protocol for PERM, a reasonable approach
is to choose x1 at random but then try to hash the output yi = Ci(xi) ∈ {0, 1}m,
of each circuit Ci, into an input xi+1 ∈ {0, 1}n for Ci+1. If a hash function could
be found that was injective on the image of Ci then we would be done. However,
it seems that finding such a hash function is, in general, extremely difficult.

Rather, we will hash each yi by choosing a random hash function from a small
hash function family. More specifically, for every iteration i ∈ [k] we choose a
random seed zi for a (seeded) randomness extractor Ext : {0, 1}m × {0, 1}d →
{0, 1}n and compute xi+1 = Ext(yi, zi). See Fig. 1 for a diagram describing this
sampling process.

In case all the circuits are injective (i.e., a YES instance), a simple inductive
argument can be used to show that each yi is (close to) a distribution having
min-entropy n, and therefore the output xi+1 = Ext(yi, zi) of the extractor is
close to uniform in {0, 1}n. Note that for this to be true, we need a very good
extractor that essentially extracts all of the entropy. Luckily, constructions of
such extractors with a merely poly-logarithmic seed length are known [GUV07].

This idea leads us to consider the following strawman protocol. The verifier
chooses at random x1 ∈ {0, 1}n and k seeds z1, . . . , zk. The verifier then computes
inductively: yi = Ci(xi) and xi+1 = Ext(yi, zi), for every i ∈ [k]. The verifier sends
(xk+1, z1, . . . , zk) to the prover, who in turn needs to guess the value of x1.

The major difficulty that arises in this protocol is in completeness: the honest
prover’s probability of predicting x1 is very small. To see this, suppose that all
of the circuits C1, . . . , Ck are injective. Consider the job of the honest prover:
given (xk+1, z1, . . . , zk) the prover needs to find x1. The difficulty is that xk+1

is likely to have many preimages under Ext(·, zk). While this statement depends
on the specific structure of the extractor, note that even in a “dream scenario”
in which Ext(·, zk) were a random function, a constant fraction of xk+1’s would
have more than one preimage (in the image of Ck).
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Fig. 1. The sampling process

A similar type of collision in the extractor is likely to occur in most of the
steps i ∈ [k]. Therefore, the overall number of preimages x′

1 that are consistent
with (xk+1, z1, . . . , zk) is likely to be 2Ω(k) and the prover has no way to guess the
correct one among them. The natural remedy for this is to give the prover some
additional information, such as a hash of x1, in order to help pick it correctly
among the various possible options. However, doing so also helps a cheating
prover find x1 in the case where one of the circuits is non-injective. And it turns
out that the distribution of the number of x1’s in the two cases – where all the
Ci’s are injective and where one is non-injective – are similar enough that it is
not clear how to make this approach work as is.

Isolating Preimages via Interaction. We circumvent the issue discussed above
by employing interaction. The key observation is that, even though the number
of pre-images x1 of the composition of all k circuits is somewhat similar in the
case of all YES instance and the case of one NO instance among them, if we look
at this composition circuit-by-circuit, the number of pre-images in an injective
circuit is clearly different from that in a non-injective circuit. In order to exploit
this, we have the verifier gradually reveal the yi’s rather than revealing them all
at once.

Taking a step back, let us consider the following naive protocol:

1. For i = k, . . . , 1:
(a) The verifier chooses at random xi ∈ {0, 1}n and sends yi = Ci(xi) to the

prover.
(b) The (honest) prover responds with x′

i = C−1
i (yi).

(c) The verifier immediately rejects if the prover answered incorrectly (i.e.,
x′

i 	= xi).

It is not difficult to argue that this protocol is indeed an HVSZK protocol (with
soundness error 1/2, which can be reduced by repetition). Alas, the communi-
cation complexity is at least k · n, which is too large.

However, a key observation is that this protocol still works even if we generate
the yi’s as in the strawman protocol. Namely, xi+1 = Ext(yi, zi) and yi = Ci(xi),
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for every i ∈ [k], where the zi’s are fresh uniformly distributed (short) seeds.
This lets us significantly reduce the randomness complexity of the above naive
protocol. Later we shall use this to also reduce the communication complexity,
which is our main goal.

To see that the “derandomized” variant of the naive protocol works, we first
observe that completeness and zero-knowledge indeed still hold. Indeed, since
in a YES case all the circuits are injective, the honest prover always provides
the correct answer - i.e., x′

i = xi. Thus, not only does the verifier always accept
(which implies completeness), but it can also easily simulate the messages sent
by the prover (which guarantees honest-verifier statistical zero-knowledge).9

Arguing soundness is slightly more tricky. Let i∗ ∈ [k] be the smallest integer
so that Ci∗ is a NO instance. Recall that in the i∗-th iteration of the protocol,
the prover is given yi∗ and needs to predict xi∗ . If we can argue that xi∗ is (close
to) uniformly distributed then (constant) soundness follows, since Ci∗ is a NO
instance and therefore non-injective on every input.

We argue that xi∗ is close to uniform by induction. For the base case i = 1
this is obviously true since x1 is sampled uniformly at random. For the inductive
step, assume that xi−1 is close to uniform, with i ≤ i∗. Since Ci−1 is injective
(since i − 1 < i∗), this means that yi−1 = Ci−1(xi−1) is close to uniform in the
image of C1, a set of size 2n. Thus, Ext(yi−1, zi−1) is applied to a source (that is
close to a distribution) with min-entropy n. Since Ext is an extractor, this means
that xi is close to uniform, concluding the induction.

Reducing Communication Complexity via Hashing. Although we have reduced
the randomness complexity of the protocol, we have not reduced the communi-
cation complexity (which is still k · n). We shall do so by, once more, appealing
to hashing.

Let us first consider the verifier to prover communication. Using hashing, we
show how the verifier can specify each yi to the prover by transmitting only a
poly-logarithmic number of bits. Consider, for example, the second iteration of
the protocol. In this iteration the verifier is supposed to send yk−1 to the prover
but can no longer afford to do so. Notice however that at this point the prover
already knows xk. We show that with all but negligible probability, the number
of candidate pairs (yk−1, zk−1) that are consistent with xk (and so that yk−1

is in the image of Ci−1) is very small. This fact (shown in Proposition 4.4 in
Sect. 4), follows from the fact that Ext is an extractor with small seed length.10

In more detail, we show that with all but negligible probability, the number
of candidates is roughly (quasi-)polynomial. Thus, it suffices for the verifier to
send a hash of poly-logarithmic length (e.g., using a pairwise independent hash
9 Actually the protocol as described achieves perfect completeness and perfect honest-

verifier zero-knowledge. However, the more general AIδ problem will introduce some
(negligible) statistical errors.

10 This observation is simple in hindsight but we nevertheless find it somewhat surpris-
ing. In particular, it cannot be shown by bounding the expected number of collisions
and applying Markov’s inequality since the expected number of collisions in Ext is
very large (see [Vad12, Problem 6.4]).
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function) to specify the correct pair (yk−1, zk−1). This idea extends readily to
all subsequent iterations.

Thus, we are only left with the task of reducing the communication from the
prover to the verifier (which is currently n · k). We yet again employ hashing.
The observation is that rather than sending xi in its entirety in each iteration, it
suffices for the prover to send a short hash of xi. The reason is that, in the case of
soundness, when we reach iteration i∗, we know that yi has two preimages: x

(0)
i

and x
(1)
i . The prover at this point has no idea which of the two is the correct

one and so as long as the hashes of x
(0)
i and x

(1)
i differ, the prover will only

succeed with probability 1/2. Thus, it suffices to use a pairwise independent
hash function.

To summarize, after an initial setup phase in which the verifier specifies yk

and the different hash functions, the protocol simply consists of a “ping pong” of
hash values between the verifier and the prover. In each iteration the verifier first
reveals a hash of the pair (yi, zi), which suffices for the prover to fully recover
yi. In response, the prover sends a hash of xi, which suffices to prove that the
prover knows the correct preimage of yi. For further details, a formal description
of the protocol, and the proof, see Sect. 4.

1.4 Discussion and Open Problems

Theorem 1.3 gives a non-trivial batch verification protocol for any problem in
NISZK. However, we believe that it is only the first step in the study of batch
verification of SZK. In particular, and in addition to the question of obtaining
malicious verifier zero-knowledge that was already mentioned, we point out
several natural research directions:

1. As already pointed out, Theorem 1.3 only gives a batch verification protocol
for problems in NISZK. Can one obtain a similar result for all of SZK?
As a special interesting case, consider the problem of batch verification for
the graph non-isomorphism problem: deciding whether or not there exists a
pair of isomorphic graphs among k such pairs. Theorem 1.3 yields an efficient
batch verification protocol for this problem under the assumption that the
graphs have no non-trivial automorphisms. Handling the general case remains
open and seems like a good starting point for a potential generalization of
Theorem 1.3 to all of SZK.

2. Even though we started off with an NISZK protocol for Π, the protocol for
Π⊗k is highly interactive. As a matter of fact, the number of rounds is O(k).
Is there an NISZK batch verification protocol for any Π ∈ NISZK?

3. While the communication complexity in the protocol for Π⊗k only depends
(roughly) additively on k, this additive dependence is still linear. Is a simi-
lar result possible with a sub-linear dependence on k?11 For example, with
poly(n, log k) communication?

11 While a linear dependence on k seems potentially avoidable, we note that a poly-
nomial dependence on n seems inherent (even for just a single instance, i.e., when
k = 1).
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4. A different line of questioning follows from looking at prover efficiency. While
in general one cannot expect provers in interactive proofs to be efficient, it is
known that any problem in SZK ∩ NP has an SZK protocol where the hon-
est prover runs in polynomial-time given the NP witness for the statement
being proven [NV06]. Our transformations, however, make the prover quite
inefficient. This raises the interesting question of whether there are batch ver-
ification protocols for languages in SZK ∩ NP (or even NISZK ∩ NP) that are
zero-knowledge and also preserve the prover efficiency. This could have inter-
esting applications in, say, cryptographic protocols where the honest prover
is the party that generated the instance in the first place and so has a witness
for it (e.g., in a signature scheme where the signer wishes to prove the validity
of several signatures jointly).

While the above list already raises many concrete directions for future work,
one fascinating high-level research agenda that our work motivates is a fine-
grained study of SZK. In particular, optimizing and improving our understanding
of the concrete polynomial overheads in structural study of SZK.

Remark 1.4 (Using circuits beyond random sampling). To the best of
our knowledge, all prior works studying complete problems for SZK and NISZK
only make a very restricted usage of the given input circuits. Specifically, all that
is needed is the ability to generate random samples of the form (r, C(r)), where
r is uniformly distributed random string and C is the given circuit (describing a
probability distribution).

In contrast, our protocol leverages the ability to feed a (hash of an) output of
one circuit as an input to the next circuit. This type of adaptive usage escapes
the “random sampling paradigm” described above. In particular, our technique
goes beyond the (restrictive) black box model of Holenstein and Renner [HR05],
who showed limitations for statistical distance polarization within this model (see
also [BDRV19]).

1.5 Organization

We start with preliminaries in Sect. 2. The batch verification result for NISZK is
formally stated in Sect. 3 and proved therein, based on results that are proved
in the subsequent sections. In Sect. 4 we show a batch verification protocol for
AIδ. Due to lack of space, we defer the proof that AIδ is NISZK-complete to the
full version.

2 Preliminaries

2.1 Probability Theory Notation and Background

Given a random variable X, we write x ← X to indicate that x is sampled
according to X. Similarly, given a finite set S, we let s ← S denote that s is
selected according to the uniform distribution on S. We adopt the convention
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that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when x ← X, we have f(x) = x. We write Un to denote the
random variable distributed uniformly over {0, 1}n. The support of a distribution
D over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}.

The statistical distance of two distributions P and Q over a finite
set U , denoted as Δ(P,Q), is defined as maxS⊆U (P (S) − Q(S)) =
1
2

∑
u∈U |P (u) − Q(u)|.

We recall some standard basic facts about statistical distance.

Fact 2.1 (Data processing inequality for statistical distance). For any
two distributions X and Y , and every (possibly randomized) process f :

Δ(f(X), f(Y )) ≤ Δ(X,Y )

Fact 2.2. For any two distributions X and Y , and event E:

Δ(X,Y ) ≤ Δ(X|E , Y ) + Pr
X

[¬E],

where X|E denotes the distribution of X conditioned on E.

Proof. Let pu = Pr[X = u] and qu = Pr[Y = u]. Also, let pu|E = PrX [X = u|E]
and pu|¬E = PrX [X = u|¬E].

Δ (X,Y ) =
1
2

∑

u

∣
∣pu − qu

∣
∣

=
1
2

∑

u

∣
∣
∣ Pr

X
[E] · pu|E + Pr

X
[¬E] · pu|¬E − Pr

X
[E] · qu − Pr

X
[¬E] · qu

∣
∣
∣

≤1
2

∑

u

(∣
∣
∣ Pr

X
[E] · pu|E − Pr

X
[E] · qu

∣
∣
∣ +

∣
∣
∣ Pr

X
[¬E] · pu|¬E − Pr

X
[¬E] · qu

∣
∣
∣
)

= Pr
X

[E] · Δ(X|E , Y ) + Pr
X

[¬E] · Δ(X|¬E , Y )

≤Δ(X|E , Y ) + Pr
X

[¬E].

We also recall Chebyshev’s inequality.

Lemma 2.3 (Chebyshev’s inequality). Let X be a random variable. Then,
for every α > 0:

Pr
[|X − E [X] | ≥ α

] ≤ V ar [X]
α2

.

2.2 Zero-Knowledge Proofs

We use (P,V)(x) to refer to the transcript of an execution of an interactive
protocol with prover P and verifier V on common input x. The transcript includes
the input x, all messages sent by P to V in the protocol and the verifier’s random
coin tosses. We say that the transcript τ = (P,V)(x) is accepting if at the end of
the corresponding interaction, the verifier accepts.
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Definition 2.4 (HVSZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and z = z(n) ∈
[0, 1]. An Honest Verifier SZK Proof-System (HVSZK) with completeness error
c, soundness error s and zero-knowledge error z for a promise problem Π =
(ΠYES,ΠNO), consists of a probabilistic polynomial-time verifier V and a com-
putationally unbounded prover P such that following properties hold:

– Completeness: For any x ∈ ΠYES:

Pr [(P,V)(x) is accepting] ≥ 1 − c(|x|).
– Soundness: For any (computationally unbounded) cheating prover P∗ and

any x ∈ ΠNO:

Pr [(P∗,V)(x) is accepting] ≤ s(|x|).
– Honest Verifier Statistical Zero Knowledge: There is a probabilistic

polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

Δ((P,V)(x),Sim(x)) ≤ z(|x|).
If the completeness, soundness and zero-knowledge errors are all negligible, we
simply say that Π has an HVSZK protocol. We also use HVSZK to denote the
class of promise problems having such an HVSZK protocol.

We also define non-interactive zero knowledge proofs as follows.

Definition 2.5 (NISZK). Let c = c(n) ∈ [0, 1], s = s(n) ∈ [0, 1] and
z = z(n) ∈ [0, 1]. An non-interactive statistical zero-knowledge proof (NISZK)
with completeness error c, soundness error s andzero-knowledge error z for a
promise problem Π = (ΠYES,ΠNO), consists of a probabilistic polynomial-time
verifier V, a computationally unbounded prover P and a polynomial � = �(n)
such that following properties hold:

– Completeness: For any x ∈ ΠYES:

Pr
r∈{0,1}�(|x|)

[V(x, r, π) accepts] ≥ 1 − c(|x|),

where π = P(x, r).
– Soundness: For any x ∈ ΠNO:

Pr
r∈{0,1}�(|x|)

[∃π∗ s.t. V(x, r, π∗) accepts] ≤ s(|x|).

– Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x ∈
ΠYES:

Δ((U�,P(x,U�)),Sim(x)) ≤ z(|x|).
As above, if the errors are negligible, we say that Π has a NISZK protocol and
use NISZK to denote the class of all such promise problems.
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2.3 Many-Wise Independent Hashing

Hash functions offering bounded independence are used extensively in the lit-
erature. We use a popular variant in which the output of the hash function is
almost uniformly distributed on the different points. This relaxation allows us
to save on the representation length of functions in the family.

Definition 2.6 (δ-almost �-wise Independent Hash Functions). For � =
�(n) ∈ N, m = m(n) ∈ N and δ = δ(n) > 0, a family of functions F = (Fn)n,
where Fn =

{
f : {0, 1}m → {0, 1}n }

is δ-almost �-wise independent if for every
n ∈ N and distinct x1, x2, . . . , x� ∈ {0, 1}m the distributions:

– (f(x1), . . . , f(x�)), where f ← Fn; and
– The uniform distribution over ({0, 1}n)�,

are δ-close in statistical distance.

When δ = 0 we simply say that the hash function family is �-wise independent.
Constructions of (efficiently computable) many-wise hash function families with
a very succinct representation are well known. In particular, when δ = 0 we have
the following well-known construction:

Lemma 2.7 (See, e.g., [Vad12, Section 3.5.5]). For every � = �(n) ∈ N and
m = m(n) ∈ N there exists a family of �-wise independent hash functions F (�)

n,m =
{f : {0, 1}m → {0, 1}n} where a random function from F (�)

n,m can be selected using
O

(
� · max(n,m)

)
bits, and given a description of f ∈ F (�)

n.m and x ∈ {0, 1}m, the
value f(x) can be computed in time poly(n,m, �).

For δ > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct
construction.

Lemma 2.8 ([NN93, Lemma 4.2]). For every � = �(n) ∈ N, m = m(n) ∈ N

and δ = δ(n) > 0, there exists a family of δ-almost �-wise independent hash
functions F (�)

n,m = {f : {0, 1}m → {0, 1}n} where a random function from F (�)
n,m

can be selected using O
(
� · n + log(m) + log(1/δ)

)
bits, and given a descrip-

tion of f ∈ F (�)
n.m and x ∈ {0, 1}m, the value f(x) can be computed in time

poly(n,m, �, log(1/δ)).

2.4 Seeded Extractors

The min-entropy of a distribution X over a set X is defined as H∞(X) =
minx∈X log(1/Pr[X = x]). In particular, if H∞(X) = k then, Pr[X = x] ≤ 2−k,
for every x ∈ X .

Definition 2.9 ([NZ96]). Let k = k(n) ∈ N, m = m(n) ∈ N, d = d(n)
and ε = ε(n) ∈ [0, 1]. We say that the family of functions Ext = (Extn)n∈N,
where Extn : {0, 1}n × {0, 1}d → {0, 1}m, is a (k, ε)-extractor if for every
n ∈ N and distribution X supported on {0, 1}n with H∞(X) ≥ k, it holds that
Δ

(
Ext(X,Ud), Um

) ≤ ε, where Ud (resp., Um) denotes the uniform distribution
on d (resp., m) bit strings.
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Lemma 2.10 ([GUV07, Theorem 4.21]). Let k = k(n) ∈ N, m = m(n) ∈ N

and ε = ε(n) ∈ [0, 1] such that k ≤ n, m ≤ k + d − 2 log(1/ε) − O(1), d =
log(n) + O(log(k) · log(k/ε)) and the functions k, m and ε are computable in
poly(n) time. Then, there exists a polynomial-time computable (k, ε)-extractor
Ext = (Extn)n∈N such that Extn : {0, 1}n × {0, 1}d → {0, 1}m.

3 Batch Verification for NISZK

In this section we formally state and prove our main result.

Theorem 3.1. Let Π ∈ NISZK and k = k(n) ∈ N such that k(n) = 2no(1)
.

Then, Π⊗k has an O(k)-round HVSZK protocol with communication complexity
k · poly(log n, log k) + poly(n) and verifier running time k · poly(n).

The proof of Theorem 3.1 is divided into two main steps:

1. As our first main step, we introduce a new NISZK-hard problem, called
approximate injectivity. The problem is defined formally in Definition 3.2
below and its NISZK hardness is established by Lemma 3.3. Due to space
restrictions, the proof of Lemma 3.3 is deferred to the full version.

2. The second step is constructing a batch verification protocol for approximate
injectivity, as given in Theorem 3.4. The proof of Theorem 3.4 appears in
Sect. 4.

We proceed to define the approximate injectivity problem and state its
NISZK-hardness.

Definition 3.2. Let δ = δ(n) → [0, 1] be a function computable in poly(n) time.
The Approximate Injectivity problem with approximation δ, denoted by AIδ, is
a promise problem (YES,NO), where YES = (YESn)n∈N and NO = (NOn)n∈N

are sets defined as follows:

YESn =
{

(1n, C) : Pr
x←{0,1}n

[∣∣C−1(C(x))
∣
∣ > 1

]
< δ(n)

}

NOn =
{

(1n, C) : Pr
x←{0,1}n

[∣∣C−1(C(x))
∣
∣ > 1

]
> 1 − δ(n)

}

where, in both cases, C is a circuit that takes n bits as input. The size of an
instance (1n, C) is n.

Lemma 3.3. Let δ = δ(n) ∈ [0, 1] be a non-increasing function such that δ(n) >

2−o(n1/4). Then, AIδ is NISZK-hard.

As mentioned above, the proof of Lemma 3.3 appears in the full version. Our
main technical result is a batch verification protocol for AIδ.
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Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2 ] and security param-

eter λ = λ(n), the problem AI⊗k
δ has an HVSZK protocol with communication

complexity O(n)+k·poly(λ, log N, log k), where N is an upper bound on the size of
each of the given circuits (on n input bits). The completeness and zero-knowledge
errors are O(k2 · δ + 2−λ) and the soundness error is a constant bounded away
from 1.

The verifier running time is k · poly(N, log k, λ) and the number of rounds is
O(k).

The proof of Theorem 3.4 appears in Sect. 4. With Lemma 3.3 and Theorem 3.4
in hand, the proof of Theorem 3.1 is now routine.

Proof (Proof of Theorem 3.1). Let Π ∈ NISZK. We construct an HVSZK protocol
for Π⊗k as follows. Given as common input (x1, . . . , xk), the prover and verifier
each first employ the Karp reduction of Lemma 3.3 to each instance to obtain
circuits (C1, . . . , Ck) wrt δ = 1

2poly(log n,log k) . The size of each circuit, as well as the
number of inputs bits, is poly(n).

The parties then emulate a poly(log n, log k) parallel repetition of the SZK
protocol of Theorem 3.4 on input (C1, . . . , Ck) and security parameter λ =
poly(log n, log k). Completeness, soundness and honest-verifier zero-knowledge
follow directly from Lemma 3.3 and Theorem 3.4, with error O(k · δ + 2−λ) =
negl(n, k), where we also use the fact that parallel repetition of interactive proofs
reduces the soundness error at an exponential rate, and that parallel repetition
preserves honest verifier zero-knowledge.

To analyze the communication complexity and verifier running time, observe
that the instances Ci that the reduction of Lemma 3.3 generates have size
poly(n). The batch verification protocol of Theorem 3.4 therefore has com-
munication complexity poly(n) + k · poly(log n, log k) and verifier running time
k · poly(n).

4 Batch Verification for AI

In this section we prove Theorem 3.4 by constructing an HVSZK protocol for
batch verification of the approximate injectivity problem AIδ (see Definition 3.2
for the definition of AIδ). For convenience, we restate Theorem 3.4 next.

Theorem 3.4. For any k = k(n) ∈ N, δ = δ(n) ∈ [0, 1
100k2 ] and security param-

eter λ = λ(n), the problem AI⊗k
δ has an HVSZK protocol with communication

complexity O(n)+k poly (λ, logN, logk), where N is an upper bound on the size of
each of the given circuits (on n input bits). The completeness and zero-knowledge
errors are O(k2 · δ + 2−λ) and the soundness error is a constant bounded away
from 1.

The verifier running time is k · poly(N, logk, λ) and the number of rounds is
O(k).
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Fig. 2. A batch SZK protocol for AI
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Let k, δ and λ be as in the statement of Theorem 3.4. In order to prove
the theorem we need to present an HVSZK protocol for AI⊗k

δ with the specified
parameters. The protocol is presented in Fig. 2. The rest of this section is devoted
to proving that the protocol indeed satisfies the requirements of Theorem 3.4.

Section Organization. First, in Sect. 4.1 we prove several lemmas that will be
useful throughout the analysis of the protocol. Using these lemmas, in Sects. 4.2
and 4.4, we, respectively, establish the completeness, honest-verifier statistical
zero-knowledge and soundness properties of the protocol. Lastly, in Sect. 4.5 we
analyze the communication complexity and verifier runtime.

4.1 Useful Lemmas

Let C1, . . . , Ck : {0, 1}n → {0, 1}m be the given input circuits (these can cor-
respond to either a YES or NO instance of AIδ). Throughout the proof we use
i∗ ∈ [k + 1] to denote the index of the first NO instance circuit, if such a cir-
cuit exists, and i∗ = k + 1 otherwise. That is, i∗ = min

({k + 1} ∪ {i ∈ [k] :
Ci is a NO instance}).

For every i ∈ [k] we introduce the following notations:

– We denote by Xi the distribution over the string xi ∈ {0, 1}n as sampled in
the verifier’s setup phase. That is, X1 = Un and for every i ∈ [k], it holds
that Yi = Ci(Xi) and Xi+1 = Ext(Yi, Zi), where each Zi is an iid copy of Ud.

– We denote the subset of strings in {0, 1}m having a unique preimage under
Ci by Si (i.e., Si =

{
yi :

∣
∣C−1

i (yi)
∣
∣ = 1

}
). Abusing notation, we also use Si

to refer to the uniform distribution over the corresponding set.

For a function f , we define νf as νf (x) = |{x′ : f(x′) = f(x)}|. We say that
x ∈ {0, 1}n has siblings under f , if νf (x) > 1. When f is clear from the context,
we omit it from the notation.

Lemma 4.1. For every i ≤ i∗ it holds that Δ(Xi, Un) ≤ 1
k·2λ + k · δ.

Proof. We show by induction on i that Δ (Xi, Un) ≤ (i − 1) · (
1

k2·2λ + δ
)
. The

lemma follows by the fact that i ≤ k.

For the base case (i.e., i = 1), since X1 is uniform in {0, 1}n we have that
Δ (X1, Un) = 0. Let 1 < i ≤ i∗ and suppose that the claim holds for i − 1. Note
that i − 1 < i∗ and so Ci−1 is a YES instance circuit.

Claim 4.1.1. Δ
(
Ext(Si−1, Ud), Un

) ≤ 1
k2·2λ .

Proof. By definition of AIδ, the set Si−1 has cardinality at least (1 − δ) · 2n.
Since δ < 1/2, this means that the min-entropy of (the uniform distribution
over) Si is at least n − 1. The claim follows by the fact that Ext is an extractor
for min-entropy n − 1 with error ε = 1

k2·2λ .

We denote by Wi the distribution obtained by selecting (xi−1, zi−1) uniformly
in {0, 1}n × {0, 1}d and outputting Ext

(
Ci−1(xi−1), zi−1

)
.
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Claim 4.1.2. Δ(Wi, Un) ≤ 1
k2·2λ + δ.

Proof. Consider the event that Xi−1 has a sibling (under Ci−1). Since Ci−1 is
a YES instance, this event happens with probability at most δ. On the other
hand, the distribution of Ci(Xi−1), conditioned on Xi−1 not having a sibling, is
simply uniform in Si. The claim now follows by Claim 4.1.1 and Fact 2.2.

We are now ready to bound Δ (Xi, Un), as follows:

Δ (Xi, Un) ≤ Δ(Xi,Wi) + Δ (Wi, Un)

= Δ
(
Ext(Ci−1(Xi−1), Ud),Ext(Ci−1(Un), Ud)

)
+ Δ(Wi, Un)

≤ Δ(Xi−1, Un) +
1

k2 · 2λ
+ δ

≤ (i − 1) ·
(

1
k2 · 2λ

+ δ

)
,

where the first inequality is by the triangle inequality, the second inequality is by
Fact 2.1 and Claim 4.1.2 and the third inequality is by the inductive hypothesis.

Definition 4.2. We say that the tuple (x1, h, z1, ...zk) is good if the following
holds, where we recursively define yi = Ci(xi) and xi+1 = Ext(yi, zi), for every
i < i∗:

1. For every i < i∗, there does not exist x′
i 	= xi s.t. Ci(xi) = Ci(x′

i) (i.e., xi

has no siblings).
2. For every i < i∗, there does not exist (y′

i, z
′
i) 	= (yi, zi) such that y′

i ∈ Si,
Ext(y′

i, z
′
i) = Ext(yi, zi) and h(y′

i, z
′
i) = h(yi, zi).

Lemma 4.3. The tuple (x1, h, z1, ...zk) sampled by the verifier V is good with
probability at least 1 − O(k2 · δ + 2−λ).

In order to prove Lemma 4.3, we first establish the following proposition, which
bounds the number of preimages of a random output of the extractor.

Proposition 4.4. For any S ⊆ {0, 1}m with 2n−1 ≤ |S| ≤ 2n and any security
parameter λ > 1, it holds that:

Pr
y←S,z←Ud

[
νExt(y, z) > 2d+λ

] ≤ ε +
1
2λ

.

Proof. Throughout the current proof we use ν as a shorthand for νExt. Abusing
notation, we also use S to refer to the uniform distribution over the set S.

For a given security parameter λ > 1, denote by H (for “heavy”) the set
of all (y, z) ∈ S × {0, 1}d that have ν(y, z) > |S| · 2d−n+λ, and by Ext(H) the
set {Ext(y, z) : (y, z) ∈ H}. By definition, for any z ∈ Ext(H), we have that
Pr [Ext(S,Ud) = z] > 2−n+λ. This implies that:

|Ext(H)| < 2n−λ.



Batch Verification for Statistical Zero Knowledge Proofs 159

Note again that for any z ∈ Ext(H), the above probability is more than 2−n,
which is the probability assigned to z by the uniform distribution Un. It then
follows from the definition of statistical distance that:

Δ (Ext(S,Ud), Un) ≥
∑

z∈Ext(H)

(
Pr [Ext(S,Ud) = z] − 2−n

)

= Pr [Ext(S,Ud) ∈ Ext(H)] − |Ext(H)| · 2−n

> Pr [Ext(S,Ud) ∈ Ext(H)] − 2−λ.

Since |S| ≥ 2n−1, the min entropy of S is at least n−1, and therefore, it holds that
Δ (Ext(S,Ud), Un) ≤ ε. Together with the fact that Pr [Ext(S,Ud) ∈ Ext(H)] =
Pr [(S,Ud) ∈ H], we have:

Pr
y←S,z←Ud

[
ν(y, z) > |S| · 2d−n+λ

] ≤ ε +
1
2λ

.

And since |S| ≤ 2n we have

Pr
y←S,z←Ud

[
ν(y, z) > 2d+λ

] ≤ ε +
1
2λ

.

Using Proposition 4.4 we are now ready to prove Lemma 4.3.

Proof (Proof of Lemma 4.3). For any i < i∗, let Ei denote the event that either
(1) there exists x′

i 	= xi such that Ci(xi) = Ci(x′
i), or (2) there exists (y′

i, z
′
i) 	=

(yi, zi) such that y′
i ∈ Si, Ext(y′

i, z
′
i) = Ext(yi, zi) and h(y′

i, z
′
i) = h(yi, zi), where

(x1, . . . , xk+1, y1, . . . , yk, z1, . . . , zk) are as sampled by the verifier.

Lemma 4.3 follows from the following claim, and a union bound over all
i ∈ [k].

Claim 4.4.1. Pr[Ei] ≤ (k + 1) · δ + 4
k·2λ , for every i ∈ [k].

Proof. We first analyze the probability for the event Ei when xi is sampled
uniformly at random. By definition of AIδ:

Pr
xi←Un

[xi has siblings ] ≤ δ.

Let us condition on xi with no siblings being chosen. Under this conditioning,
Ci(xi) is uniform in Si. We note that |Si| ≥ (1 − δ) · 2n ≥ 2n−1 and |Si| ≤ 2n.
Thus, by Proposition 4.4 (using security parameter λ + log k) it holds that:

Pr
yi←Si,z←Ud

[
νExt(y, z) > k · 2λ+d

] ≤ ε +
1

k · 2λ
≤ 2

k · 2λ
,

where the last inequality follows from the fact that ε = 1
k2·2λ .

Let us therefore assume that the pair (yi, zi) has at most k·2λ+d siblings under
Ext. We wish to bound the probability that there exists a preimage that collides
with (yi, zi) under h. Since h is 2−(2λ+d+2 log k)-almost pairwise-independent (into
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a range of size 22λ+d+2 log k), for any pair (y′, z′), the probability that it collides
with (yi, zi) under h is at most 2

22λ+d+2 log k . Since yi has at most k · 2λ+d siblings
(under Ext), by a union bound, the probability that any of them collide with
(yi, zi) (under h) is at most k · 2λ+d · 2−(2λ+d+2 log k) = 1

k·2λ .
Thus, when xi is sampled uniformly at random, the probability that it has

a sibling (under Ci) or that there exist (y′, z′) such that Ext(y′, z′) = Ext(yi, zi),
where y′

i ∈ Si and h(y′, z′) = h(yi, zi), is at most:

δ +
2

k · 2λ
+

1
k · 2λ

= δ +
3

k · 2λ
.

The claim follows by the fact that, by Lemma 4.1, the actual distribution of xi

is
(

1
k·2λ + k · δ

)
-close to uniform.

This concludes the proof of Lemma 4.3.

4.2 Completeness

Let C1, . . . , Ck ∈ AIδ. Assume first that V generates a good tuple
(x1, h, z1, . . . , zk) (as per Definition 4.2). Observe that in such a case, by con-
struction of the protocol, it holds that x′

i = xi and y′
i = yi, for every i ∈ [k].

Therefore, the verifier accepts in such a case (with probability 1).
By Lemma 4.3, the tuple (x1, h, g, z1, . . . , zk) is good with all but

O
(
k2 · δ + 2−λ

)
probability. Thus, the completeness error is upper bounded by

O
(
k2 · δ + 2−λ

)
.

4.3 Honest-Verifier Statistical Zero-Knowledge

The simulator is presented in Fig. 3.
The generation of (x1, h, g, z1, ..., zk) is identical for the verifier and for the

simulator. Assuming that the tuple (x1, h, z1, ..., zk) is good, by construction the
prover does not abort in the honest execution (as in the case of completeness).
Moreover, in this case, each x′

i (resp., (y′
i, z

′
i)) found by the prover is equal to

xi (resp., (yi, zi)) chosen by the verifier. Therefore, conditioned on the tuple
(x1, h, z1, ..., zk) being good, the distributions of (1) the transcript generated
in the honest execution, and (2) the simulated transcript are identically dis-
tributed. The fact that the protocol is honest-verifier statistical zero-knowledge
now follows from Lemma 4.3, and by applying Fact 2.2 twice.

4.4 Soundness

Let C1, ..., Ck : {0, 1}n → {0, 1}m be such that one of them is a NO instance of
AIδ. Recall that i∗ ∈ [k] denotes the index of the first such NO instance circuit
(i.e., Ci∗ is a NO instance of AIδ but for every i < i∗, it holds that Ci is a YES
instance).

We first make two simplifying assumptions. First, recall that value of yi∗ is
specified by the verifier by having it send xk+1, βk, . . . , βi∗ to the prover. Instead,
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Fig. 3. Simulator for AIδ batch verification

we will simply assume that the verifier sends yi∗ directly to the prover. Since yi∗

can be used to generate the verifier’s distribution consistently, revealing yi∗ only
makes the prover’s job harder and therefore can only increase the soundness
error. Second, we modify the protocol so that the verifier merely checks that
αi∗ = g(xi∗) – if so it accepts and otherwise it rejects. Once again having removed
the verifier’s other tests can only increase the soundness error.

Thus, it suffices to bound the soundness error of the following protocol. The
verifier samples xi∗ as in the real protocol, sends yi∗ = Ci∗(xi∗) and the hash
function g to the prover and expects to get in response g(xi∗). We show that the
prover’s probability of making the verifier accept is bounded by a constant.

In order to bound the prover’s success probability in the foregoing exper-
iment, we first give an upper bound assuming that xi∗ is uniform in {0, 1}n,
rather than as specified by the protocol (and, as usual, yi∗ = Ci∗(xi∗)). Later
we shall remove this assumption using Lemma 4.1, which guarantees that xi∗ is
actually close to uniform.

Let P∗ be the optimal prover strategy. Namely, given g and yi∗ , the prover
P∗ outputs the hash value αi∗ ∈ {0, 1}� with the largest probability mass (i.e.,
that maximizes |C−1

i∗ (yi∗) ∩ g−1(α)|).
Let Ŷi∗ denote the distribution obtained by sampling x ∈ {0, 1}n uniformly

at random, conditioned on x have a sibling under Ci∗ and outputting Ci∗(x).
Using elementary probability theory we have that:
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Pr
g←Gn

xi∗ ←{0,1}n

[
P∗(g, yi∗) = g(xi∗)

] ≤ Pr
g←Gn

xi∗ ←{0,1}n

[
P∗(g, yi∗) = g(xi∗) | xi∗ has siblings

]

+ Pr[xi∗ has no siblings]

≤ Pr
g←Gn

yi∗ ← ̂Yi∗
xi∗ ←C−1

i∗ (yi∗ )

[
P∗(g, yi∗) = g(xi∗)

]
+ δ

= Eyi∗ ← ̂Yi∗

⎡

⎢
⎣ Pr

g←Gn

xi∗ ←C−1
i∗ (yi∗ )

[
P∗(g, yi∗) = g(xi∗)

]

⎤

⎥
⎦ + δ,

(1)

where the second inequality follows from the fact that Ci∗ is a NO instance.
Fix yi∗ in the support of Ŷi∗ (i.e., |C−1

i∗ (yi∗)| ≥ 2) and let u = |C−1
i∗ (yi∗)|.

We show that Prg∈Gn,xi∗ ←C−1
i∗ (yi∗ ) [P∗(g, yi∗) = g(xi∗)] is upper bounded by a

constant.
Let E be the event (defined only over the choice of g) that for every hash

value α ∈ {0, 1}�, it holds that |C−1
i∗ (yi∗) ∩ g−1(α)| ≤ 7

8u. That is, the event E
means that no hash value has more than 7/8 fraction of the probability mass
(when sampling xi∗ uniformly in C−1

i∗ (yi∗) and outputting g(xi∗)).12

Claim 4.4.2. The event E occurs with probability a least 1/10.

Proof. Fix a hash value α ∈ {0, 1}�, and let X = |C−1
i∗ (yi∗)∩g−1(α)| be a random

variable (over the randomness of g). Observe that X can be expressed as a sum
of u pairwise independent Bernoulli random variables, each of which is 1 with
probability 2−� and 0 otherwise. Thus, the expectation of X is u/2� and the
variance is u · 2−� · (1 − 2−�) ≤ u · 2−�. By Chebyshev’s inequality (Lemma 2.3),
it holds that

Pr
[
X >

7
8
u

]
≤ Pr

[∣
∣
∣X − u

2�

∣
∣
∣ >

3
4
u

]

≤ V ar [X]
(3/4)2 · u2

≤ 16
9u

· 1
2�

,

where the first inequality follows from the fact that � is a sufficiently large con-
stant. Taking a union bound over all α’s we have that the probability that there
exists some α with more than 7/8 fraction of the preimages in U (under g) is
less than 16

9u < 0.9, where we use the fact that u ≥ 2.

12 We remark that the choice of 7/8 is somewhat but not entirely arbitrary. In partic-
ular, in case u is very small (e.g., u = 2) there may very well be a hash value that
has 50% of the probability mass.
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Observe that conditioned on the event E, the probability (over xi∗ ←
C−1

i∗ (yi∗)) that P∗(g, yi∗) = g(xi∗) is at most 7/8. Thus, by Claim 4.4.2 we
obtain that:

Pr
g,xi∗ ←C

−1
i∗ (yi∗ )

[

P∗
(g, yi∗ ) 
= g(xi∗ )

] ≥ Pr[E] · Pr
g,xi∗ ←C

−1
i∗ (yi∗ )

[

P∗
(g, yi∗ ) 
= g(xi∗ )|E] ≥ 1/80.

Plugging this into Eq. (1), we have that the prover convinces the verifier to
accept with probability at most 1 − 1

80 + δ, when xi∗ is sampled uniformly at
random in {0, 1}n.

By Lemma 4.1 it holds that Δ (Xi∗ , Un) ≤ 1
k·2λ + k · δ. Therefore (using

Fact 2.2), the probability that the verifier accepts when xi∗ is sampled as in the
protocol is at most 1 − 1

80 + 1
k·2λ + (k + 1) · δ, which is bounded away from 1

since δ < 1
100k2 and λ is sufficiently large.

4.5 Communication Complexity and Verifier Run Time

We first bound the amount of bits sent during the interaction:

– Sending xk+1 costs n bits.
– By Lemma 2.10, the seed length of the extractor is d = log(m) + O(log n ·

log(n
ε )) = log(N)+λ ·polylog(n, k) and therefore, the cost of sending z1, ..., zk

is k · (log(N) + λ · polylog(n, k)).
– By Lemma 2.8, the description length of h : {0, 1}m × {0, 1}d →

{0, 1}2λ+d+2 log k, a 1
22λ+d+2 log k -almost pairwise-independent hash function,

is O(log(N) + λ + polylog(k)). The cost of sending the hashes β1, ..., βk is
k · O(λ + d + log k) = k · (log(N) + λ · polylog(n, k)).

– By Lemma 2.7, the description length of g ∈ {0, 1}n → {0, 1}�, a pairwise
independent hash function, is O(n). The cost of sending the hashes α1, ..., αk

is O(k).

In total, the communication complexity is O(n)+k·(log(N)+λ·polylog(n, k)).
As for the verifier run time, For each iteration i the verifier running time is as
follows:

– Evaluating the circuit Ci takes time poly(N).
– By Lemma 2.10, evaluating Ext takes time poly(m, d) = poly(N, log k, λ).
– By Lemma 2.8, evaluating h on an input of size m + d takes time
poly(N, log k, λ).

– By Lemma 2.7, evaluating g on an input of size n takes time poly(n).

In total, the verifier running time is k · poly(N, log k, λ).
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Abstract. Zero-knowledge protocols enable the truth of a mathemat-
ical statement to be certified by a verifier without revealing any other
information. Such protocols are a cornerstone of modern cryptography
and recently are becoming more and more practical. However, a major
bottleneck in deployment is the efficiency of the prover and, in particu-
lar, the space-efficiency of the protocol.

For every NP relation that can be verified in time T and space S,
we construct a public-coin zero-knowledge argument in which the prover
runs in time T · polylog(T ) and space S · polylog(T ). Our proofs have
length polylog(T ) and the verifier runs in time T ·polylog(T ) (and space
polylog(T )). Our scheme is in the random oracle model and relies on the
hardness of discrete log in prime-order groups.

Our main technical contribution is a new space efficient polynomial
commitment scheme for multi-linear polynomials. Recall that in such a
scheme, a sender commits to a given multi-linear polynomial P : Fn → F

so that later on it can prove to a receiver statements of the form
“P (x) = y”. In our scheme, which builds on commitments schemes of
Bootle et al. (Eurocrypt 2016) and Bünz et al. (S&P 2018), we assume
that the sender is given multi-pass streaming access to the evaluations
of P on the Boolean hypercube and we show how to implement both the
sender and receiver in roughly time 2n and space n and with communi-
cation complexity roughly n.

1 Introduction

Zero-knowledge protocols are a cornerstone of modern cryptography, enabling
the truth of a mathematical statement to be certified by a prover to a verifier
c© International Association for Cryptologic Research 2020
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without revealing any other information. First conceived by Goldwasser, Micali,
and Rackoff [27], zero knowledge has myriad applications in both theory and
practice and is a thriving research area today. Theoretical work primarily inves-
tigates the complexity tradeoffs inherent in zero-knowledge protocols:

– the number of rounds of interaction,
– the number of bits exchanged between the prover and verifier
– the computational complexity of the prover and verifier (e.g. running time,

space usage)
– the degree of soundness—in particular, soundness can be statistical or com-

putational, and the protocol may or may not be a proof of knowledge.

ZK-SNARKs (Zero-Knowledge Succinct Non-interactive ARguments of
Knowledge) are protocols that achieve particularly appealing parameters: they
are non-interactive protocols in which to certify an NP statement x with wit-
ness w, the prover sends a proof string π of length |π| � |w|. Such proof
systems require setup (namely, a common reference string) and (under widely
believed complexity-theoretic assumptions [24,25]) are limited to achieving com-
putational soundness.

One of the main bottlenecks limiting the scalability of ZK-SNARKs is the
high computational complexity of generating proof strings. In particular, a major
problem is that even for the lowest-overhead ZK-SNARKs (see e.g. [4,22,39] and
follow-up works), the prover requires Ω(T ) space to certify correctness of a time-
T computation, even if that computation uses space S � T .

As typical computations require much less space than time, such space usage
can easily become a hard bottleneck. While it is straight-forward to run a pro-
gram for as long as one’s patience allows, a computer’s memory cannot be
expanded without purchasing additional hardware. Moreover, the memory archi-
tecture of modern computer systems is hierarchical, consisting of different tiers
(various cache levels, RAM, and nonvolatile storage), with latencies and capaci-
ties that increase by orders of magnitude at each successive level. In other words,
high space usage can also incur a heavy penalty in running time.

In this work, we focus on uniform non-deterministic computations—that is,
proving that a nondeterministic time-T space-S Turing machine accepts an input
x. Our objective is to obtain “complexity-preserving” (ZK-)SNARKs [10] for
such computations, i.e., SNARKs in which the prover runs in time roughly
T and space roughly S. Relatively efficient privately verifiable solutions are
known [11,29]. In such schemes the verifier holds some secret state that, if leaked,
compromises soundness. However, many applications (such as cryptocurrencies
or other massively decentralized protocols) require public verifiability, which is
the emphasis of our work.

To date, publicly verifiable complexity-preserving SNARKs are known only
via recursive composition [9,47]. This approach indeed yields SNARKs with
prover running time Õ(T ) and space usage S · polylog(T ), but with significant
concrete overheads. Recursively composed SNARKs require both the prover and
verifier to make non-black-box usage of an “inner” verifier for a different SNARK,
leading to enormous computational overhead in practice.
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Several recent works [14,16,18] attempt to solve the inefficiency problems
with recursive composition, but the protocols in these works rely on heuristic and
poorly understood assumptions to justify their soundness. While any SNARK
(with a black-box security reduction) inherently relies on non-falsifiable assump-
tions [23], these SNARKs possess additional troubling features. They rely on
hash functions that are modeled as random oracles in the security proof, despite
being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random
oracle model. Moreover, the practicality of the schemes crucially requires usage
of a novel hash function (e.g., Rescue [1]) with algebraic structure designed to
maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

In this work, we ask:

Can we devise a complexity-preserving ZK-SNARK in the random oracle
model based on standard cryptographic assumptions?

1.1 Our Results

Our main result is an affirmative answer to this question.

Theorem 1. Assume that the discrete-log problem is hard in obliviously sam-
pleable1 prime-order groups. Then, for every NP relation that can be verified by
a random access machine in time T and space S, there exists a publicly verifiable
ZK-SNARK, in the random oracle model, in which both the prover and verifier
run in time T · polylog(T ), the prover uses space S · polylog(T ), and the verifier
uses space polylog(T ). The proof length is poly-logarithmic in T .

We emphasize that the verifier in our protocol has similar running time to
that of the prover, in contrast to other schemes in the literature that offer poly-
logarithmic time verification. While this limits the usefulness of our scheme in
delegating (deterministic) computations, our scheme is well-geared towards zero-
knowledge applications in which the prover and verifier are likely to have similar
computational resources.

At the heart of our ZK-SNARK for NP relations verifiable by time-T space-
S random access machine (RAM) is a new public-coin interactive argument of
knowledge, in the random oracle model, for the same relation where the prover
runs in time T · polylog(T ) and requires space S · polylog(T ). We make this
argument zero-knowledge by using standard techniques which incurs minimal

1 By obliviously sampleable we mean that there exist algorithms S and S−1 such
that on input random coins r, the algorithm S samples a uniformly random group
element g, whereas on input g, the algorithm S−1 samples random coins r that are
consistent with the choice of g. In other words, if S uses � random bits then the joint
distributions (U�, S(U�)) and (S−1(S(U�)), S(U�)) are identically distributed, where
U� denotes the uniform distribution on � bit strings..



Public-Coin Zero-Knowledge Arguments 171

asymptotic blow-up in the efficiency of the argument [2,20,48]. Finally, applying
the Fiat-Shamir transformation [21] to our public-coin zero-knowledge argument
yields Theorem 1.

Space-Efficient Polynomial Commitment for Multi-linear Polynomi-
als. The key ingredient in our public-coin interactive argument of knowledge is
a new space efficient polynomial commitment scheme, which we describe next.

Polynomial commitment schemes were introduced by Kate et al. [32] and have
since received much attention [3,7,17,33,49,50], in particular due to their usage
in the construction of efficient zero-knowledge arguments. Informally, a polyno-
mial commitment scheme is a cryptographic primitive that allows a committer
to send to a receiver a commitment to an n-variate polynomial Q : Fn → F, over
some finite field F, and later reveal evaluations y of Q on a point x ∈ F

n of the
receiver’s choice along with a proof that indeed y = Q(x).

In this work we construct polynomial commitment schemes where the space
complexity is (roughly) logarithmic in the description size of the polynomial.
In order to state this result more precisely, we must first determine the type of
access that the committer has to the polynomial.

We first note that in this work we restrict our attention to multi-linear poly-
nomials (i.e., polynomials which have individual degree 1). Note that such a
polynomial Q : Fn → F is uniquely determined by its evaluations on the Boolean
hybercube, that is,

(
Q(0), . . . , Q(2n − 1)

)
, where the integers in Z2n are associ-

ated with vectors in {0, 1}n in the natural way.
Towards achieving our space efficient implementation, and motivated by our

application to the construction of an efficient argument-scheme, we assume that
the committer has multi-pass streaming access to the evaluations of the poly-
nomial on the Boolean hypercube. Such an access pattern can be modeled by
giving the committer access to a read-only tape that is pre-initialized with the
values

(
Q(0), . . . , Q(2n − 1)

)
. At every time-step the committer is allowed to

either move the machine head to the right or to restart its position to 0.

Theorem 2 (Informal, see Theorem 5). Let G be an obliviously sampleable
group of prime-order p and let Q : Fn → F be some n-variate multi-linear poly-
nomial. Assuming the hardness of discrete-log over G and multi-pass streaming
access to the sequence (Q(0), . . . , Q(2n − 1)), there exists a polynomial commit-
ment scheme for Q in the random oracle model such that

1. The commitment consists of one group element, evaluation proofs consist of
O(n) group and field elements,

2. The committer and receiver perform Õ(2n) group and field operations, make
Õ(2n) queries to the random oracle, and store only O(n) group and field
elements, and

3. The committer makes O(n) passes over (Q(0), . . . , Q(2n − 1)).

Following [32], a number of works have focussed on achieving asymptotically
optimal proof sizes (more generally, communication), and time complexity for
both committer and receiver. However, the space complexity of the committer
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has been largely ignored; naively it is lower-bounded by the size of the commit-
ter’s input (which is a description of the polynomial). As mentioned above, we
believe that obtaining a space-efficient polynomial commitment scheme in the
streaming model to be of independent interest and may even eventually lead to
significantly improved performance of interactive oracle proofs, SNARKS, and
related primitives in practice.

We also mention that the streaming model is especially well-suited to our
application of building space-efficient SNARKs. The reason is that in such
schemes, the prover typically uses a polynomial commitment scheme to commit
to a low-degree extension of the transcript of a RAM program, which, natu-
rally, can be generated as a stream in space that is proportional to the space
complexity of the underlying RAM program.

At a high level, we use an algebraic homomorphic commitment (e.g., Peder-
sen commitment [40]) to succinctly commit to the polynomial Q (by committing
to the sequence (Q(0), . . . , Q(2n − 1)). Next, to provide evaluation proofs, our
scheme leverages the fact that evaluating Q on point x reduces to computing
an inner-product between (Q(0), . . . , Q(2n − 1)) and the sequence of Lagrange
coefficients defined by the evaluation point x. Relying on the homomorphic prop-
erties of our commitment, the basic step of our evaluation protocol is a 2-move
(randomized) reduction step which allows the committer to “fold” a statement
of size 2n into a statement of size 2n/2. Our scheme is inspired from the “inner-
product argument” of Bootle et al. [13] (and its variants [15,48]) but differs in
the 2-move reduction step. More specifically, their reduction step folds the left
half of (Q(0), . . . , Q(2n −1)) with its right half (referred to as msb-based folding
as the index of the elements that are folded differ in the most significant bit).
This, unfortunately, is not compatible with our streaming model (we explain this
shortly). We instead perform the more natural lsb-based folding which, indeed, is
compatible with the streaming model. We additionally exploit random access to
the inner-product argument’s setup parameters (defined by the random oracle)
and the fact that any component of the coefficient sequence can be computed
in polylogarithmic time, i.e. poly(n) time. We give a high level overview of our
scheme in Sect. 2.1.

1.2 Prior Work

Complexity Preserving ZK-SNARKs. Bitansky and Chiesa [11] proposed to con-
struct complexity preserving ZK-SNARKS by first constructing complexity pre-
serving multi-prover interactive proof (MIPs) and then compile them using cryp-
tographic techniques. While our techniques share the same high-level approach,
our compilation with a polynomial-commitment scheme yields a publicly verifi-
able scheme whereas [11] only obtain a designated verifier scheme.

Blumberg et al. [12] give a 2-prover complexity preserving MIP of knowledge,
improving (concretely) on the complexity preserving MIP of [11] (who obtain a
2-prover MIP via a reduction from their many-prover MIP). Both Bitansky and
Chiesa and Blumberg et al. obtain their MIPs from reducing RAMs to circuits via
the reduction of Ben-Sasson et al. [5], then appropriately arithmetize the circuit
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into an algebraic constraint satisfaction problem. Holmgren and Rothblum [29]
obtain a non-interactive protocol based on standard (falsifiable assumptions) by
also constructing a complexity preserving MIP for RAMs (achieving no-signaling
soundness) and compiling it into an argument using fully-homomorphic encryp-
tion (á la [8,30,31]). We remark that [29] reduce a RAM directly to algebraic
constraints via a different encoding of the RAM transcript, thereby avoiding the
reduction to circuits entirely.

Another direction for obtaining complexity preserving ZK-SNARKS is via
recursive composition [9,47], or “bootstrapping”. Here, one begins with an
“inefficient” SNARK and bootstraps it recursively to produce publicly veri-
fiable complexity preserving SNARKs. While these constructions yield good
asymptotics, these approaches require running the inefficient SNARK on many
sub-computations. Recent works [14,16,18] describe a novel approach to recur-
sive composition which attempt to solve the inefficiencies of the aforementioned
recursive compositions, though at a cost to the theoretical basis for the soundness
of their scheme (as discussed above).

Interactive Oracle Proofs. Interactive oracle proofs (IOPs), introduced by Ben-
Sasson et al. [6] and independently by Reingold et al. [41], are interactive proto-
cols where a verifier has oracle access to all prover messages. IOPs capture (and
generalize), both interactive proofs and PCPs.

A recent line of work [5,12,19,26,42,44,46,48] follows the framework of Kilian
[34] and Micali [37] to obtain efficient arguments by constructing efficient IOPs
and compiling them into interactive arguments using collision resistant hashing
[6,34] or the random oracle model [6,37].

Polynomial Commitments. Polynomial commitment schemes were introduced
by Kate et al. [32] and have since been an active area of research. Lines of
research for construction polynomial commitment schemes include privately ver-
ifiable schemes [32,38], publicly-verifiable schemes with trusted setup [17], and
zero-knowledge schemes [49]. More recently, much focus has been on obtaining
publicly-verifiable schemes without a trusted setup [3,7,17,33,49,50]. We note
that in all prior works on polynomial commitments, the space complexity of
the sender is proportional to the description size of the polynomial, whereas we
achieve poly-logarithmic space complexity.

2 Technical Overview

As mentioned above, the key component in our construction is that of a public-
coin interactive argument for RAM computations. The latter construction itself
consists of two key technical ingredients. First, we construct a polynomial inter-
active oracle proof (polynomial IOP) for time-T space-S RAM computations
in which the prover runs in time T · polylog(T ) and space S · polylog(T ). We
note that this ingredient is a conceptual contribution which formalizes prior
work in the language of polynomial IOPs. Second, we compile this IOP with
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a space-efficient extractable polynomial commitment scheme where the prover
has multi-pass streaming access to the polynomial to which it is committing—a
property that plays nicely with the streaming nature of RAM computations. We
emphasize that the construction of the space-efficient polynomial commitment
scheme is our main technical contribution, and describe our scheme in more
detail next.

2.1 Polynomial Commitment to Multi-linear Polynomials
in the Streaming Model

Fix a finite field F of prime order p. Also fix an obliviously sampleable (see
Footnote 1) group G of order p in which the discrete logarithm is hard. Let
H : {0, 1}∗ → G be the random oracle.

In order to describe our polynomial commitment scheme, we start with some
notation. Let n be a positive integer and set N = 2n. We will be considering
N -dimensional vectors over F and will index such vectors using n dimensional
binary vectors. For example, if b ∈ F

26 then b000101 = b5. For convenience, we
will denote b ∈ F

N by (bc : c ∈ {0, 1}n) where bc is the c-th element of b. For
b = (bn, . . . , b1) ∈ {0, 1}n we refer to b1 as the least-significant bit (lsb) of b.
Finally, for b ∈ F

N , we denote by be the restriction of b to the even indices, that
is, be = (bc0 : c ∈ {0, 1}n−1). Similarly, we denote by bo = (bc1 : c ∈ {0, 1}n−1)
the restriction of b to odd indices.

Let Q : F
n → F be a multi-linear polynomial. Recall that such a polyno-

mial can be fully described by the sequence of its evaluations over the Boolean
hypercube. More specifically, for any x ∈ F

n, the evaluation of Q on x can be
expressed as

Q(x) =
∑

b∈{0,1}n

Q(b) · z(x,b), (1)

where z(x,b) =
∏

i∈[n]

(
bi · xi + (1 − bi) · (1 − xi)

)
. We use Q ∈ F

N to denote
the restriction of Q to the Boolean hybercube (i.e., Q = (Q(b) : b ∈ {0, 1}n)).

Next, we describe the our commitment scheme which has three phases: (a)
Setup, (b) Commit and (c) Evaluation.

Setup and Commit Phase. During setup, the committer and receiver both
consistently define a sequence of N generators for G using the random oracle,
that is, g = (gb = H(b) : b ∈ {0, 1}n). Then, given streaming access to Q, the
committer computes the Pedersen multi-commitment [40] C defined as

C =
∏

b∈{0,1}n

(gb)Qb . (2)

For g ∈ G
2n and Q ∈ F

2n , we use gQ as a shorthand to denote the value∏
b∈{0,1}n(gb)Qb . Assuming the hardness of discrete-log for G, we note that C

in Eq. (2) is a binding commitment to Q under generators g. Note that the



Public-Coin Zero-Knowledge Arguments 175

committer only needs to perform a single-pass over Q and performs N expo-
nentiations to compute C while storing only O(1) number of group and field
elements.2

Evaluation Phase. On input an evaluation point x ∈ F
n, the committer com-

putes and sends y = Q(x) and defines the auxiliary commitment Cy ← C ·gy for
some receiver chosen generator g. Then, both engage in an argument (of knowl-
edge) for the following NP statement which we refer to as the “inner-product”
statement:

∃Q ∈ Z
N
p : y = 〈Q, z〉 and Cy = gy · gQ , (3)

where z = (z(x,b) : b ∈ {0, 1}n) as defined in Eq. (1). This step can be viewed
as proving knowledge of the decommitment Q of the commitment Cy, which
furthermore is consistent with the inner-product claim that y = 〈Q, z〉.

Inner-product Argument. A basic step in the argument for the above inner-
product statement is a 2-move randomized reduction step which allows the prover
to decompose the N -sized statement (Cy, z, y) into two N/2-sized statements
and then “fold” them into a single N/2-sized statement (C̄ȳ, z̄ = (z̄c : c ∈
{0, 1}n−1), ȳ) using the verifier’s random challenge. We explain the two steps
below (as well as in Fig. 1).

1. Committer computes the cross-product ye = 〈Qe, zo〉 between the even-
indexed elements Qe with the odd-indexed vectors zo. Furthermore, it com-
putes a binding commitment Ce that binds ye (with g) and Qe (with go).
That is,

Ce = gye · gQe
o , (4)

where recall that for g = (g1, . . . , gt) and x = (x1, . . . , xt) the expression gx =∏
i∈[t] g

xi
i . This results in an N/2-sized statement (Ce, zo, ye) with witness Qe.

Similarly, as in Fig. 1 it computes the second N/2-sized statement (Co, ze, yo)
with witness Qo. The committer sends (ye, yo, Ce, Co) to the receiver.

2. After receiving a random challenge α ∈ F
∗, committer folds its witness Q

into an N/2-sized vector Q̄ = α · Qe + α−1 · Qo. More specifically, for every
c ∈ {0, 1}n−1,

Q̄c = α · Qc0 + α−1 · Qc1 . (5)

Similarly, the committer and receiver both compute the rest of the folded
statement (C̄ȳ, z̄, ȳ) as shown in Fig. 1.

Relying on the homomorphic properties of Pedersen commitments, it can be
shown that if Q were a witness to (Cy, z, y) then Q̄ is a witness for (C̄ȳ, z̄, ȳ).3

In the actual protocol, the parties then recurse on smaller statements (C̄ȳ, z̄, ȳ)

2 Here, we treat exponentiation as an atomic operation but note that computing gα for
α ∈ Zp can be emulated, via repeated squarings, by O(log p) group multiplications
while storing only O(1) number of group and field elements.

3 Albeit under different set of generators but we ignore this for now.
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Fig. 1. Our 2-move randomized reduction step for the inner-product protocol where
recall that for any Q ∈ F

N , we denote by Qe the elements of Q indexed by even
numbers where Qo denotes the elements with odd indices. On input a statement of
size N > 1, Reduce results in a statement of size N/2.

forming a recursion tree. After log N steps, the statement is of size 1 in which
case the committer sends its witness which is a single field element. This gives
an overall communication of O(log N) field and group elements. Next we briefly
discuss the efficiency of the scheme.

Efficiency. For the purpose of this overview, we focus only on the time and space
efficiency of the committer in the inner-product argument (the analysis for the
receiver is analogous). Recall that in a particular step of the recursion, suppose
we are recursing on the N/2-sized statement (C̄ȳ, z̄, ȳ) with witness Q̄, the com-
mitter’s computation includes computing (a) the cross-product 〈Q̄e, z̄o〉 between
the even half of Q̄ and the odd half of z̄, and (b) the “cross-exponentiation” ḡQ̄e

o

of the even half of Q̄ with the odd half of the generators ḡ.4

A straightforward approach to compute (a) is to have Q̄ (and z̄) in mem-
ory, but this requires the committer to have Ω(N) space which we want to
avoid. Towards a space efficient implementation, first note every element of Q̄
depends on only two, more importantly, consecutive elements of Q. This cou-
pled with streaming access to Q is sufficient to simulate streaming access to
Q̄ while making only one pass over Q. Secondly, by definition, computing any
element of z requires only O(log N) field operations while storing only O(n)
field elements This then allows to compute any element of z̄ on the fly with
polylog(N) operations. Given the simulated streaming access to Q̄ along with

4 Efficiency for 〈Q̄o, z̄e〉 and ḡQ̄o
e can be argued similarly.
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Fig. 2. Table highlights the differences between the 2-move randomized reduction steps
of the inner-product argument of [13,15] (second column) and our scheme (third col-
umn). Specifically, given Q, z,g of size 2n, the rows describe the definition of the 2n/2
sized vectors Q̄, z̄, ḡ respectively where b ∈ {0, 1}n−1.

the ability to compute any element of z̄ on the fly is sufficient to compute the
〈Q̄e, z̄o〉. Note this step, overall, requires performing only a single pass over Q
and N ·polylogN operations, and storing only the evaluation point x and verifier
challenge α (along with some book-keeping). The computation of (b) is handled
similarly, except that here we crucially leverage the fact that g is defined using
the random oracle, and hence the committer has random access to all of the
generators in g. Relying on similar ideas as in (a), the committer can compute
ḡQ̄e

o while additionally making O(N) queries to the random oracle. Overall, this
gives the required prover efficiency. Please see Sect. 4.3 for a full discussion on
the efficiency.

Comparison with the 2-move Reduction Step of [13,48]. In their protocol,
a major difference is in how the folding is performed (Step 2, Fig. 1). We list
concrete differences in Fig. 2. But at a high level, since they fold the first element
Q00n−1 with the N/2-nd element Q10n−1 , it takes at least a one pass over Q to
even compute the first element of Q̄, thereby requiring Ω(N) passes over Q
which is undesirable.5 Although we differ in the 2-move reduction steps, the
security of our scheme follows from ideas similar to [13,48].

2.2 Polynomial IOPs for RAM Programs

The second ingredient we use to obtain space-efficient interactive arguments for
NP relations verifiable by time-T space-S RAMs is a space-efficient polynomial
interactive oracle proof system [6,17,41]. Informally, an interactive oracle proof
(IOP) is an interactive protocol such that in each round the verifier sends a
message to the prover, and the prover responds with proof string that the verifier
can query in only a few locations. A polynomial IOP is an IOP where the proof
string sent by the prover is a polynomial (i.e, all evaluations of a polynomial
on a domain), and if a cheating prover successfully convinces a verifier then the
proof string is consistent with some polynomial.

5 When a polynomial commitment is used in building arguments, it takes O(N) time
to stream Q, and requiring Ω(N) passes results in a prover that runs in quadratic
time.
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We consider a variant of the polynomial IOP model in which the prover
sends messages which are encoded by the channel; in particular, the time and
space complexity of the encoding computed by the channel do not factor into
the complexity of the prover. For our purposes, we use the polynomial IOP that
is implicit in [12] and consider it with a channel which computes multi-linear
extensions of the prover messages. We briefly describe the IOP construction for
completeness (see Sect. 5 for more details). The polynomial IOP at its core first
leverages the space-efficient RAM to arithmetic circuit satisfiability reduction
of [12] (adapting techniques of [5]). This reduction transforms a time-T space-S
RAM into a circuit of size T ·polylog(T ) and has the desirable property (for our
purposes) that the circuit can be accessed by the prover in a streaming manner:
the assignment of gate values in the circuit can be streamed “gate-by-gate” in
time T ·polylog(T ) and space S ·polylog(T ), which, in particular, allows a prover
to compute a correct transcript of the circuit in time T · polylog(T ) and space
S · polylog(T ).

The prover sends the verifier an oracle that is the multi-linear extension of
the gate values (i.e., the transcript), where we remark that this extension is
computed by the channel. The correctness of the computation is reduced to
an algebraic claim about a low degree polynomial which is identically 0 on the
Boolean hypercube if and only if the circuit is satisfied by the given witness.
Finally, the prover and verifier engage in the classical sum-check protocol [36,
45] to verify that the constructed polynomial indeed vanishes on the Boolean
hypercube.

Theorem 3. There exists a public-coin polynomial IOP over a channel which
encodes prover messages as multi-linear extensions for NP relations verifiable by
a time-T space-S random access machine M such that if y = M(x;w) then

1. The IOP has perfect completeness and statistical soundness, and has
O(log(T )) rounds;

2. The prover runs in time T ·polylog(T ) and space S ·polylog(T ) (not including
the space required for the oracle) when given input-witness pair (x;w) for
M , sends a single polynomial oracle in the first round, and has polylog(T )
communication in all subsequent rounds; and

3. The verifier runs in time (|x| + |y|) · polylog(T ), space polylog(T ), and has
query complexity 3.

2.3 Obtaining Space-Efficient Interactive Arguments

We compile Theorem 3 and Theorem 2 into a space-efficient interactive argument
scheme for NP relations verifiable by RAM computations.

Theorem 4 (Informal, see Theorem 6). There exists a public-coin inter-
active argument for NP relations verifiable by a time-T space-S random access
machine M , in the random oracle model, under the hardness of discrete-log in
obliviously sampleable prime-order groups such that:

1. The prover runs in time T · polylog(T ) and space S · polylog(T );
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2. The verifier runs in time T · polylog(T ) and space polylog(T ); and
3. The round complexity is O(log T ) and the communication complexity is

polylog(T ).

The interactive argument of Theorem 4 is obtained by modifying the polynomial
IOP of Theorem 3 with the commitment scheme of Theorem 2 in the following
manner. First, the prover uses the polynomial commitment scheme to send a
commitment to the multi-linear extension of the gate values rather than an ora-
cle. This is possible to do in a space-efficient manner because of the streaming
nature of RAM computations and the streaming nature of the IOP. Second,
the verifier oracle querie are replaced with the prover and verifier engaging in
the evaluation protocol of the polynomial commitment scheme. The remain-
der of the IOP protocol remains unchanged. Thus we obtain Theorem 4. We
obtain Theorem 1 by transforming the interactive argument to a zero-knowledge
interactive argument using standard techniques, then apply the Fiat-Shamir
transformation [21].

3 Preliminaries

We let λ denote the security parameter, let n ∈ N and N = 2n. For a finite,
non-empty set S, we let x

$←S denote sampling element x from S uniformly at
random. We let Primes(1λ) denote the set of all λ-bit primes. We let Fp denote
a finite field of prime cardinality p, often use lower-case Greek letters to denote
elements of F, e.g., α ∈ F. For a group G, we denote elements of G with sans-serif
font; e.g., g ∈ G. We use boldface lowercase letters to denote binary vectors, e.g.
b ∈ {0, 1}n. We assume for a bit string (bn, . . . , b1) = b ∈ {0, 1}n that bn is the
most significant bit and b1 is the least significant bit. For bit string b ∈ {0, 1}n

and b ∈ {0, 1} we let bb (resp., bb) denote the string (b◦b) ∈ {0, 1}n+1 (resp.,(b◦
b) ∈ {0, 1}n+1), where “◦” is the string concatenation operator. We use boldface
lowercase Greek denotes F vectors, e.g., α ∈ F

n, and let α = (αn, . . . , α1)
for αi ∈ F. We let uppercase letters denote sequences and let corresponding
lowercase letters to denote its elements, e.g., Y = (yb ∈ F : b ∈ {0, 1}n) is a
sequence of 2n elements in F. We denote by F

N the set of all sequences over F

of size N .

Random Oracle. We let U(λ) denote the set of all functions that map {0, 1}∗

to {0, 1}λ. A random oracle with security parameter λ is a function H : {0, 1}∗ →
{0, 1}λ sampled uniformly at random from U(λ).

3.1 The Discrete-Log Relation Assumption

Let GGen be an algorithm that on input 1λ ∈ N returns (G, p, g) such that G is
the description of a finite cyclic group of prime order p, where p has length λ,
and g is a generator of G.
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Assumption 1 (Discrete-log Assumption). The Discrete-log Assumption
holds for GGen if for all PPT adversaries A there exists a negligible function
μ(λ) such that

Pr
[
α′ = α : (G, g, p) $← GGen(1λ), α

$← Zp, α
′ $← A(G, g, gα)

]
≤ μ(λ) .

For our purposes, we use the following variant of the discrete-log assumption
which is equivalent to Assumption 1.

Assumption 2 (Discrete-log Relation Assumption [13]). The Discrete-log
Relation Assumption holds for GGen if for all PPT adversaries A and for all
n ≥ 2 there exists a negligible function μ(λ) such that

Pr

[

∃αi �= 0 ∧
n∏

i=1

gαi
i = 1 :

(G, g, p) $← GGen(1λ), g1, . . . , gn
$← G ,

(α1, . . . , αn) ∈ Z
n
p

$← A(G, g1, . . . , gn) .

]

≤ μ(λ) .

We say
∏n

i=1 gαi
i = 1 is a non-trivial discrete log relation between g1, . . . , gn.

The Discrete Log Relation assumption states that an adversary can’t find a
non-trivial relation between randomly chosen group elements.

3.2 Interactive Arguments of Knowledge in ROM

Definition 1 (Witness Relation Ensemble). A witness relation ensemble or
relation ensemble is a ternary relation RL that is polynomially bounded, polyno-
mial time recognizable and defines a language L = {(pp, x) : ∃w s.t. (pp, x, w) ∈
RL}. We omit pp when considering languages recognized by binary relations.

Definition 2 (Interactive Arguments [27]). Let R be some relation ensem-
ble. Let (P, V ) denote a pair of PPT interactive algorithms and Setup denote a
non-interactive setup algorithm that outputs public parameters pp given security
parameter 1λ. Let 〈P (pp, x, w), V (pp, x)〉 denote the output of V ’s interaction
with P on common inputs public parameter pp and statement x where addition-
ally P has the witness w. The triple (Setup, P, V ) is an argument for R in the
random oracle model (ROM) if

1. Perfect Completeness. For any adversary A

Pr
[
(x,w) /∈ R or 〈PH(pp, x, w), V H(pp, x)〉 = 1

]
= 1 ,

where probability is taken over H
$←U(λ), pp

$←SetupH(1λ), (x,w) $←AH(pp).
2. Computational Soundness. For any non-uniform PPT adversary A

Pr
[∀w (x,w) /∈ R and 〈AH(pp, x, st), V H(pp, x)〉 = 1

] ≤ negl(λ) ,

where probability is taken over H
$←U(λ), pp

$←SetupH(1λ), (x, st) $←AH(pp).

Remark 1. Usually completeness is required to hold for all (x,w) ∈ R. However,
for the argument systems used in this work, statements x depends on pp output
by Setup and the random oracle H. We model this by asking for completeness
to hold for statements sampled by an adversary A, that is, for (x,w) $← A(pp).
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For our applications, we will need (Setup, P, V ) to be an argument of knowl-
edge. Informally, in an argument of knowledge for R, the prover convinces the
verifier that it “knows” a witness w for x such that (x,w) ∈ R. In this paper,
knowledge means that the argument has witness-extended emulation [28,35].

Definition 3 (Witness-Extended Emulation). Given a public-coin interac-
tive argument tuple (Setup, P, V ) and some arbitrary prover algorithm P ∗, let
Record(P ∗, pp, x, st) denote the message transcript between P ∗ and V on shared
input x, initial prover state st, and pp generated by Setup. Furthermore, let
ERecord(P ∗,pp,x,st) denote a machine E with a transcript oracle for this interaction
that can be rewound to any round and run again on fresh verifier randomness.
The tuple (Setup, P, V ) has witness-extended emulation if for every determinis-
tic polynomial-time P ∗ there exists an expected polynomial-time emulator E such
that for all non-uniform polynomial-time adversaries A the following holds:

Pr

[

AH(tr) = 1 :
H

$← U(λ), pp
$← SetupH(1λ),

(x, st) $← AH(pp), tr
$← RecordH(P ∗, pp, x, st)

]

≈ Pr

⎡

⎢
⎣

AH(tr) = 1 and
tr accepting =⇒ (x,w) ∈ R :

H
$← U(λ), pp

$← SetupH(1λ),
(x, st) $← AH(pp),

(tr, w) $← EH,RecordH(P ∗,pp,x,st)(pp, x)

⎤

⎥
⎦

It was shown in [13,17] that witness-extended emulation is implied by an
extractor that can extract the witness given a tree of accepting transcripts.
For completeness we state this—dubbed Generalized Forking Lemma—more for-
mally below but refer to [17] for the proof.

Definition 4 (Tree of Accepting Transcripts). An (n1, . . . , nr)-tree of
accepting transcripts for an interactive argument on input x is defined as fol-
lows: The root of the tree is labelled with the statement x. The tree has r depth.
Each node at depth i < r has ni children, and each child is labeled with a distinct
value for the i-th challenge. An edge from a parent node to a child node is labeled
with a message from P to V . Every path from the root to a leaf corresponds to
an accepting transcript, hence there are

∏r
i=1 ni distinct accepting transcripts

overall.

Lemma 1 (Generalized Forking Lemma [13,17]). Let (Setup, P, V ) be an
r-round public-coin interactive argument system for a relation R. Let T be a
tree-finder algorithm that, given access to a Record(·) oracle with rewinding capa-
bility, runs in polynomial time and outputs an (n1, . . . , nr)-tree of accepting tran-
scripts with overwhelming probability. Let Ext be a deterministic polynomial-time
extractor algorithm that, given access to T ’s output, outputs a witness w for the
statement x with overwhelming probability over the coins of T . Then, (P, V ) has
witness-extended emulation.

Definition 5 (Public-coin). An argument of knowledge is called public-coin if
all messages sent from the verifier to the prover are chosen uniformly at random
and independently of the prover’s messages, i.e., the challenges correspond to
the verifier’s randomness H.
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Zero-Knowledge. We also need our argument of knowledge to be zero-
knowledge, that is, to not leak partial information about w apart from what
can be deduced from (x,w) ∈ R.

Definition 6 (Zero-knowledge Arguments). Let (Setup, P, V ) be an public-
coin interactive argument system for witness relation ensemble R. Then,
(Setup, P, V ) has computational zero-knowledge with respect to an auxiliary input
if for every PPT interactive machine V ∗, there exists a PPT algorithm S, called
the simulator, running in time polynomial in the length of its first input, such
that for every (x,w) ∈ R and any z ∈ {0, 1}∗:

V iew(〈P (w), V ∗(z)〉(x)) ≈c S(x, z),

where V iew(〈P (w), V ∗(z)〉(x)) denotes the distribution of the transcript of inter-
action between P and V ∗, and ≈c denotes that the two quantities are computa-
tionally indistinguishable. If the statistical distance between the two distributions
is negligible then the interactive argument is said to be statistical zero-knowledge.
If the simulatro is allowed to abort with probability at most 1/2, but the dis-
tribution of its output conditioned on not aborting is identically distributed to
V iew(〈P (w), V ∗(z)〉(x)), then the interactive argument is called perfect zero-
knowledge.

3.3 Multi-linear Extensions

Definition 7 (Multi-linear Extensions). Let n ∈ N, F be some finite field
and let W : {0, 1}n → F. Then, the multi-linear extension of W (denoted as
MLE(W, ·) : Fn → F) is the (unique) multi-linear polynomial that agrees with W
on {0, 1}n. Equivalently,

MLE(W, ζ ∈ F
n) =

∑

b∈{0,1}n

W (b) ·
n∏

i=1

β(bi, ζi) ,

where β(b, ζ) = b · ζ + (1 − b) · (1 − ζ).

For notational convenience, we denote
k∏

i=1

β(bi, ζi) by β(b, ζ).

Remark 2. There is a bijective mapping between the set of all functions from
{0, 1}n → F to the set of all n-variate multi-linear polynomials over F. More
specifically, as seen above every function W : {0, 1}n → F defines a (unique)
multi-linear polynomial. Furthermore, every multi-linear polynomial Q : Fn → F

is, in fact, the multi-linear extension of the function that maps b ∈ {0, 1}n →
Q(b).
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Streaming Access to Multi-linear Polynomials. For our commitment
scheme, we assume that the committer will have multi-pass streaming access to
the function table of W (which defines the multi-linear polynomial) in the lexico-
graphic ordering. Specifically, the committer will be given access to a read-only
tape that is pre-initialized with the sequence W =

(
wb = W (b) : b ∈ {0, 1}n)

.
At every time-step the committer is allowed to either move the machine head to
the right or to restart its position to 0.

With the above notation, we can now view MLE(W, ζ ∈ F
n) as an inner-

product between W and Z = (zb = β(b, ζ) : b ∈ {0, 1}n) where computing zb
requires O(n = log N) field multiplications for fixed ζ any b ∈ {0, 1}n.

3.4 Polynomial Commitment Scheme to Multi-linear Extensions

Polynomial commitment schemes, introduced by Kate et al. [32] and generalized
in [17,44,48], are a cryptographic primitive that allows one to commit to a
multivariate polynomial of bounded degree and later provably reveal evaluations
of the committed polynomial. Since we consider only multi-linear polynomials,
we tailor our definition to them.

Convention. In defining the syntax of various protocols, we use the following
convention for any list of arguments or returned tuple (a, b, c; d, e) – variables
listed before semicolon are known both to the prover and verifier whereas the
ones after are only known to the prover. In this case, a, b, c are public whereas
d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 8 (Commitment to Multi-linear Extensions). A poly-
nomial commitment to multi-linear extensions is a tuple of protocols
(Setup,Com,Open,Eval):

1. pp
$← SetupH(1λ, 1N ) takes as input the unary representations of security

parameter λ ∈ N and size parameter N = 2n corresponding to n ∈ N, and
produces public parameter pp. We allow pp to contain the description of the
field F over which the multi-linear polynomials will be defined.

2. (C; d) $← ComH(pp, Y ) takes as input public parameter pp and sequence Y =
(yb : b ∈ {0, 1}n) ∈ F

N that defines the multi-linear polynomial to be com-
mitted, and outputs public commitment C and secret decommitment d.

3. b ← OpenH(pp,C, Y, d) takes as input pp, a commitment C, sequence commit-
ted Y and a decommitment d and returns a decision bit b ∈ {0, 1}.

4. EvalH(pp,C, ζ, γ;Y, d) is a public-coin interactive protocol between a prover P
and a verifer V with common inputs—public parameter pp, commitment C,
evaluation point ζ ∈ F

n and claimed evaluation γ ∈ F, and prover has secret
inputs Y and d. The prover then engages with the verifier in an interactive
argument system for the relation

Rmle(pp) =
{

(C, ζ, γ;Y, d) : OpenH(pp,C, Y, d) = 1 ∧ γ = MLE(Y, ζ)
}

. (6)

The output of V is the output of Eval protocol.
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Furthermore, we require the following three properties.

1. Computational Binding. For all PPT adversaries A and n ∈ N

Pr

⎡

⎢
⎢
⎢
⎣

b0 = b1 �= 0 ∧ Y0 �= Y1 :

H
$← U(λ), pp

$← SetupH(1λ, 1N )
(C, Y0, Y1, d0, d1)

$← AH(pp)
b0 ← OpenH(pp,C, Y0, d0)
b1 ← OpenH(pp,C, Y1, d1)

⎤

⎥
⎥
⎥
⎦

≤ negl(λ) .

2. Perfect Correctness. For all n, λ ∈ N and all Y ∈ F
N and ζ ∈ F

n,

Pr

[

1 = EvalH(pp, C, Z, γ; Y, d) :
H

$← U(λ), pp
$← SetupH(1λ, 1N ),

(C; d)
$← ComH(pp, Y ), γ = MLE(Y, ζ)

]

= 1 .

3. Witness-extended Emulation. We say that the polynomial commitment
scheme has witness-extended emulation if Eval has a witness-extended emu-
lation as an interactive argument for the relation ensemble {Rmle(pp)}pp

(Eq. (6)) except with negligible probability over the choice of H and coins
of pp

$← SetupH(1λ, 1N ).

4 Space-Efficient Commitment for Multi-linear
Extensions

In this section we describe our polynomial commitment scheme for multilinear
extensions, a high level overview of which was provided in Sect. 2.1. We dedicate
the remainder of the section to proving our main theorem:

Theorem 5. Let GGen be a generator of obliviously sampleable, prime-order
groups. Assuming the hardness of discrete logarithm problem for GGen, the
scheme (Setup,Com,Open,Eval) defined in Sect. 4.1 is a polynomial commit-
ment scheme to multi-linear extensions with witness-extended emulation in the
random oracle model. Furthermore, for every N ∈ N and sequence Y ∈ F

N , the
committer/prover has multi-pass streaming access to Y and

1. Com performs O(N log p) group operations, stores O(1) field and group ele-
ments, requires one pass over Y , makes N queries to the random oracle,
and outputs a single group element. Evaluating MLE(Y, ·) requires O(N) field
operations, storing O(1) field elements and requires one pass over Y .

2. Eval is public-coin and has O(log N) rounds with O(1) group elements sent
in every round. Furthermore,
– Prover performs O(N · (log2 N) · log p) field and group operations,

O(N log N) queries to the random oracle, requires O(log N) passes over
Y and stores O(log N) field and group elements.

– Verifier performs O(N · (log N) · log p) field and group operations, O(N)
queries to the random oracle, and stores O(log N) field and group ele-
ments.

Section 4.1 describes our scheme, Sect. 4.2 and Sect. 4.3 establish its security
and efficiency.
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Fig. 3. Eval protocol for the commitment scheme from Sect. 4.1.

4.1 Commitment Scheme

We describe a commitment scheme (Setup,Com,Open,Eval) to multi-linear
extensions below.

1. SetupH(1λ, 1N ): On inputs security parameter 1λ and size parameter N = 2n

and access to H, Setup samples (G, p, g) $←GGen(1λ), sets F = Fp and returns
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pp = (G,F, N, p). Furthermore, it implicitly defines a sequence of generators
g = (gb = H(b) : b ∈ {0, 1}n).

2. ComH(pp, Y ) returns C ∈ G as the commitment and Y as the decommitment
where

C ←
∏

b∈{0,1}n

(gb)yb .

3. OpenH(pp,C, Y ) returns 1 iff C = ComH(pp, Y ).
4. EvalH(pp,C, ζ, γ;Y ) is an interactive protocol 〈P, V 〉 that begins with V

sending a random g
$← G. Then, both P and V compute the commitment

Cγ ← C · gγ to additionally bind the claimed evaluation γ. Then, P and V
engage in an interactive protocol EvalReduce on input (Cγ , Z,g, g, γ;Y ) where
the prover proves knowledge of Y such that

Cγ = Com(g, Y ) · gγ ∧ 〈Y,Z〉 = γ,

where Z = (zb = β̄(b, ζ) : b ∈ {0, 1}n). We define the protocol in Fig. 3.

Remark 3. In fact, our scheme readily extends to proving any linear relation α
about a committed sequence Y (i.e., the value 〈α, Y 〉), as long as each element
of α can be generated in poly-logarithmic time.

4.2 Correctness and Security

Lemma 2. The scheme from Sect. 4.1 is perfectly correct, computationally bind-
ing and Eval has witness-extended emulation under the hardness of the discrete
logarithm problem for groups sampled by GGen in the random oracle model.

The perfect correctness of the scheme follows from the correctness of EvalReduce
protocol, which we prove in Lemma 3, computationally binding follows from that
of Pedersen multi-commitments which follows from the hardness of discrete-log
(in the random oracle model). The witness-extended emulation of Eval follows
from the witness-extended emulation of the inner-product protocol in [15]. At
a high level, we make two changes to their inner-product protocol: (1) sample
the generators using the random oracle H, (2) perform the 2-move reduction
step using the lsb-based folding approach (see Sect. 2.1 for a discussion). At a
high level, given a witness Y for the inner-product statement (Cγ ,g, Z, γ), one
can compute a witness for the permuted statement (Cγ , π(g), π(Z), γ) for any
efficiently computable/invertible public permutation π. Choosing π as the per-
mutation that reverses its input allows us, in principle, to base the extractability
of our scheme (lsb-based folding) to the original scheme of [15]. We provide a
formal proof in the full version. Due to (1) our scheme enjoys security only in
the random-oracle model.

Lemma 3. Let (Cγ , Z, γ,g, g;Y ) be inputs to EvalReduce and let (C′
γ′ , Z ′, γ′,

g′, g;Y ′) be generated as in Fig. 3. Then,

Cγ = Com(g, Y ) · gγ

∧
〈Y,Z〉 = γ

=⇒
C′

γ′ = Com(g′, Y ′) · gγ′

∧
〈Y ′, Z ′〉 = γ′

.
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Proof. Let N = |Z| and let n = log N . Then,

1. To show γ′ = 〈Y ′, Z ′〉:

〈Y ′, Z ′〉 =
∑

b∈{0,1}n−1

y′
b · z′

b,

=
∑

b∈{0,1}n−1

(α · yb0 + α−1 · yb1) · (α−1 · zb0 + α · zb1),

=
∑

b∈{0,1}n−1

yb0 · zb0 + α2 · yb0 · zb1 + yb1 · zb1 + α−2 · yb1 · zb1,

= γ + α2 · γL + α−2 · γR = γ′.

2. C′
γ′ = Com(g′, Y ′) · gγ′

:

Com(g′, Y ′) =
∏

b∈{0,1}n−1

(g′
b)y′

b ,=
∏

b∈{0,1}n−1

(
gα−1

b0 · gα
b1

)α·yb0+α−1·yb1

,

=
∏

b∈{0,1}n−1

(
gyb0
b0 · gα−2·yb1

b0 · gα2·yb0
b1 · gyb1

b1

)
,

=
∏

b∈{0,1}n−1

(gyb1
b0 )α−2 · gyb0

b0 · gyb1
b1 · (gyb0

b1 )α2

.

Then, above with the definition of γ′ implies that C′
γ′ = Com(g′, Y ′) · gγ′

.

4.3 Efficiency

In this section we discuss the efficiency aspects of each of the protocols defined
in Sect. 4.1 with respect to four complexity measures: (1) queries to the random
oracle H, (2) field/group operations performed, (3) field/group elements stored
and (4) number of passes over the stream Y .

For the rest of this section, we fix n,N = 2n,H,G,F, ζ ∈ F
n and furthermore

fix Y = (yb : b ∈ {0, 1}n), g = (gb = H(b) : b ∈ {0, 1}n) and Z = (zb =
β̄(b, ζ) : b ∈ {0, 1}n). Note given ζ, any zb can be computed by performing
O(n) field operations.

First, consider the prover P of Eval protocol (Fig. 3). Given the inputs
(C, Z, γ,g, g;Y ), P and V call the recursive protocol EvalReduce on the N sized
statement (Cγ , Z, γ,g, g;Y ) where Cγ = C · gγ . The prover’s computation in
this call to EvalReduce is dictated by computing (a) γL, γR (line 6), (2) CL,CR

(line 7) and (c) inputs for the next recursive call on EvalReduce with N/2 sized
statement (C′

γ′ , Z ′, γ′,g′, g;Y ′) (line 9,11). The rest of its computation requires
O(1) number of operations. The recursion ends on the n-th call with statement
of size 1. For k ∈ {0, . . . , n}, the inputs at the k-th depth of the recursion
be denoted with superscript k, that is, C(k), γ(k), Z(k), g(k), Y (k). For example,
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Fig. 4. Algorithms for computing z
(k)
b and g

(k)
b . In both algorithms c ∈ {0, 1}n−k and

α = (α(0), . . . , α(k−1)), where β(b, ζ) =
∏n

i=1 β(bi, ζi) for b = c ◦ a and coeff(α, c) =
α · c + α−1 · (1 − c).

Z(0) = Z, Y (0) = Y denote the initial inputs (at depth 0) where prover com-
putes γ

(0)
L , γ

(0)
R ,C

(0)
L ,C

(0)
R with verifier challenge α(0). The sequences Z(k), Y (k)

and g(k) are of size 2n−k.
At a high level, we ask prover to never explicitly compute the sequences

g(k), Z(k), Y (k) (item (c) above) but instead compute elements g
(k)
b , z

(k)
b , y

(k)
b ,

of the respective sequences, on demand, which then can be used to compute
γ
(k)
L , γ

(k)
R ,C

(k)
L ,C

(k)
R in required time and space. For this, first it will be useful

to see how the elements of sequences Z(k), Y (k),g(k) depend on the initial (i.e.,
depth-0) sequence Z(0), Y (0),g(0).

Relating Y (k) with Y (0). First, lets consider Y (k) = (y(k)
b : b ∈ {0, 1}n−k) at

depth k ∈ {0, . . . , n}. Let (α(0), . . . , α(k−1)) be the verifier’s challenges sent in
all prior rounds.

Lemma 4 (Streaming of Y (k)). For every b ∈ {0, 1}n−k,

y
(k)
b =

∑

c∈{0,1}k

⎛

⎝
k∏

j=1

coeff(α(j−1), cj)

⎞

⎠ · yb◦c, (7)

where coeff(α, c) = α · (1 − c) + α−1 · c.

The proof follows by induction on depth k. Lemma 4 allows us to simulate the
stream Y (k) with one pass over the initial sequence Y , additionally performing
O(N · k) multiplications to compute appropriate coeff functions.

Relating Z(k) with Z(0). Next, consider Z(k) = (z(k)b : b ∈ {0, 1}n−k) at depth
k ∈ {0, . . . , n}.
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Lemma 5 (Computing z
(k)
b ). For every b ∈ {0, 1}n−k,

z
(k)
b =

∑

c∈{0,1}k

⎛

⎝
k∏

j=1

coeff(α(j−1), cj)

⎞

⎠ · zb◦c, (8)

where coeff(α, c) = α · c + α−1 · (1 − c). Furthermore, computing z
(k)
b requires

O(2k ·n) field multiplications and storing O(n) elements (see algorithm Computez
in Fig. 4).

Relating g(k) with g(0). Finally, consider g(k) = (g(k)b : b ∈ {0, 1}n−k) at depth
k ∈ {0, . . . , n}.

Lemma 6 (Computing g
(k)
b ). For every b ∈ {0, 1}n−k,

g
(k)
b =

∏

c∈{0,1}k

g
coeff(α ,c)
b◦c ; coeff(α, c) =

k∏

i=1

α(j−1) ·cj +(α(j−1))−1 · (1−cj). (9)

Furthermore, computing g
(k)
b requires 2k · k field multiplications, 2k queries to

H, 2k group multiplications and exponentiations, and storing O(k) elements (see
algorithm Computeg in Fig. 4).

We now discuss the efficiency of the commitment scheme.

Commitment Phase. We first note that ComH on input pp and given stream-
ing access to Y can compute the commitment C =

∏
b(H(b))yb for b ∈ {0, 1}n

making N queries to H, performing N group exponentiations and a single pass
over Y . Furthermore, requires storing only a single group element.

Note that a single group exponentiation gα can be emulated while performing
O(log p) group multiplications while storing O(1) group and field elements. Since,
G,F are of order p, field and group operations can, furthermore, be performed
in polylog(p(λ)) time.

Evaluating MLE(Y , ζ). The honest prover (when used in higher level proto-
cols) needs to evaluate MLE(Y, ζ) which requires performing O(N log N) field
operations overall and a single pass over stream Y .

Prover Efficiency. For every depth-k of the recursion, it is sufficient to dis-
cuss the efficiency of computing γ

(k)
L , γ

(k)
R ,C

(k)
L ,C

(k)
R . We argue the complexity of

computing γ
(k)
L and C

(k)
L and the analysis for the remaining is similar. We give

a formal algorithm Prover in Fig. 5.

Computing γ
(k)
L . Recall that γ

(k)
L =

∑
b y

(k)
b0 · z

(k)
b1 for b ∈ {0, 1}n−k−1. To com-

pute γ
(k)
L we stream the initial N -sized sequence Y and generate elements of
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Fig. 5. Space-efficient prover

the sequence (y(k)
b0 : b ∈ {0, 1}n−k−1) in a streaming manner. Since each y

(k)
b0

depends on a contiguous block of 2k elements in the initial stream Y , we can
compute y

(k)
b0 by performing 2k ·k field operations (lines 2–7 in Fig. 5). For every

b ∈ {0, 1}n−k−1, after computing y
(k)
b0 , we leverage “random access” to Z and

compute z
(k)
b1 (Lemma 5) which requires O(2k · k) field operations. Overall, γ

(k)
L

can be computed in O(N · k) field operations and a single pass over Y .

Computing C
(k)
L . The two differences in computing C

(k)
L (see Fig. 3 for the def-

inition) is that (a) we need to compute g
(k)
b1 instead of computing z

(k)
b1 and (b)

perform group exponentiations, that is, g
(k)
b1

y
(k)
b0 as opposed to group multiplica-

tions as in the computation of γ
(k)
L . Both steps overall can be implemented in

O(N ·k·log p) field and group operations and N queries to H (Lemma 6). Overall,
at depth k the prover (1) makes O(N) queries to H, (2) performs O(N ·k · log(p))
field and group operations and (3) requires a single pass over Y .

Therefore, the entire prover computation (over all calls to EvalReduce)
requires O(log N) passes over Y , makes O(N log N) queries to H and performs
O(N · log2 N · log p) field/group operations. Furthermore, this requires storing
only O(log N) field and group elements.
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Verifier Efficiency. V only needs to compute folded sequence Z(n) and folded
generators g(n) at depth-n of the recursion. These can computed by invoking
Computez and Computeg (Fig. 4) with k = n and require O(N · log(N, p)) field
and group operations, O(N) queries to H and storing O(log N) field and group
elements.

Lemma 7. The time and space efficiency of each of the phases of the protocols
are listed below6:

Computation H queries Y passes F/G ops G/F elements

Com N 1 O(N) O(1)

MLE(Y, ζ) 0 1 O(N log N) O(1)

P (in Eval) O(N log N) O(log N) O(N log2 N) O(log N)

V (in Eval) O(N) 0 O(N log N) O(log N)

Finally, Theorem 5 follows directly from Lemma 2 and Lemma 7.

5 A Polynomial IOP for Random Access Machines

We obtain space efficient arguments for any NP relation verifiable by time-T
space-S RAM computations by compiling our polynomial commitment scheme
with a suitable space-efficient polynomial interactive oracle proof (IOP) [6,17,41].
Informally, a polynomial IOP is a multi-round interactive PCP such that in each
round the verifier sends a message to the prover and the prover responds with a
proof oracle that the verifier can query via random access, with the additional
property that the proof oracle is a polynomial.

We dedicate the remainder of this section to giving a high-level overview
our polynomial IOP (PIOP), presented in Fig. 6, which realizes Theorem 3. Full
details are deferred to the full-version. We first recall that we consider a variant
of the polynomial IOP model in which all prover messages are encoded by a
channel and that the prover does not incur the cost of this encoding in its time
and space complexity. In particular, we consider a channel which computes the
multi-linear extension of the prover messages. Our space-efficient PIOP leverages
the RAM to circuit satisfiability reduction of [12]: this RAM to circuit reduction
outputs an arithmetic circuit of size T · polylog(T ), which we denote as CM ,
over finite field F of size polylog(T ). The circuit is defined such that such that
CM (x) = y if and only if M(x;w) = y for auxiliary input w. Further, the circuit
has a “streaming” property: the string of gate assignments W of CM on input x
can be computed “gate-by-gate” in time T ·polylog(T ) and space S ·polylog(T ).
In our model, this allows our prover to stream its message through the encoding
channel in time T · polylog(T ) and space S · polylog(T ) and send the verifier

6 log(p) factors are omitted.
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Fig. 6. Our Polynomial IOP for time-T space-S RAM computations.

with an oracle to the multi-linear extension of W , denoted as W . We emphasize
that W is the only oracle sent by the prover to the verifier, and that this and
the streaming property of W are key to the composition of our PIOP with the
polynomial commitment scheme of Theorem 5.

The circuit satisfiability instance (CM , x, y) is next reduced to an algebraic
claim about a constant-degree polynomial Fx,y whose structure depends on the
wiring pattern of CM , x and y, and the oracle W . The polynomial Fx,y has the
property that it is the 0-polynomial if and only if W is a multi-linear extension
of a correct transcript; i.e., that W is a witness for CM (x) = y. A verifier is
convinced that Fx,y is the 0-polynomial if Fx,y(τ ) = 0 for uniformly random
F-vector τ . Fx,y is suitably structured such that a prover can convince a verifier
that Fx,y(τ ) = 0 via the classical sum-check protocol [36,45]. In particular, the
value Fx,y(τ ) is expressed as a summation of some constant-degree polynomial
hτ over the Boolean hypercube:

Fx,y(τ ) =
∑

c∈{0,1}n

hτ (c) .

The polynomial hτ has the following two key efficiency properties: (1) the
prover’s messages in the sum-check that depend on hτ are computable in
T · polylog(T ) time and space S · polylog(T ) (see [12, Lemma 4.2], full details
deferred to the full-version); and (2) given oracle W the verifier in time
polylog(T ) can evaluate hτ at any point without explicit access to the circuit CM

(see [12, Theorem 4.1 and Lemma 4.2], full details deferred to the full-version).
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6 Time- and Space-Efficient Arguments for RAM

We obtain space-efficient arguments 〈Parg, Varg〉 for NP relations that can be
verified by time-T space-S RAMs by composing the polynomial commitment
scheme of Theorem 5 and the polynomial IOP of Fig. 6. Specifically, the prover
Parg and Varg runs the prover and the verifier of the underlying PIOP except two
changes: (1) Parg (line 2, Fig. 6) instead provides Varg with a commitment to the
multilinear extension of the circuit transcript W . Here Parg crucially relies on
streaming access to W to compute the commitment in small-space using Com.
(2) Parg and Varg run the protocol Eval in place of all verifier queries to the oracle
W (line 11, Fig. 6). We state the formal theorem and defer its proof to the
full-version.

Theorem 6 (Small-Space Arguments for RAMs). There exists a public-
coin interactive argument for NP relations verifiable by time-T space-S random
access machines M , in the random oracle model, under the hardness of discrete-
log in obliviously sampleable prime-order groups with the following complexity.

1. The protocol has perfect completeness, has O(log(T )) rounds and polylog(T )
communication, and has witness-extended emulation.

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) given input-
witness pair (x;w) for M ; and

3. The verifier runs in time T · polylog(T ) and space polylog(T ).

We discuss how we modify our interactive argument of knowledge from The-
orem 6 to satisfy zero-knowledge and then make the resulting argument non-
interactive, thus obtaining Theorem 1.

Zero-Knowledge. We use commit-and-prove techniques introduced in [2,20]
and later implemented in [48]. At a high level, this requires making two changes
in our base protocols: (1) modify polynomial commitment from Sect. 4 to satisfy
zero-knowledge—we modify all commitments sent in both Com and Eval proto-
cols (Fig. 3) to additionally include blinding factors. For example, commitment
to x ∈ F under generator g ∈ G is changed from gx to gx · hr for some ran-
domly sampled h

$←G and r
$←F. Further, at the end of the EvalReduce protocol

when N = 1, prover instead of sending the witness in the clear instead engages
with the verifier in Schnorr’s zero-knowledge proof of dot-product protocol [43].
This along with hiding of the commitments now ensure that the resulting poly-
nomial commitment is zero-knowledge. (2) We replace all messages sent in the
argument Theorem 6 in the clear with Pedersen hiding commitments and use
techniques developed in [48] to ensure verifier checks go through. We empha-
size that these changes do not asymptotically blow up the complexity of the
protocol and, in particular, keep the space-complexity low. Furthermore, this
transformation preserves the knowledge-soundness and public-coin features of
the underlying argument [48].
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Non-interactivity. We apply the Fiat-Shamir (FS) transform [21] to our zero-
knowledge argument of knowledge, thereby obtaining a non-interactive, zero-
knowledge argument of knowledge. However, note that it is folklore that apply-
ing FS to a t-round public-coin argument of knowledge yields a non-interactive
argument of knowledge where the extractor runs in time exponential in t. Since
our protocol has O(log T ) rounds our extractor runs in poly(T )-time.
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Abstract. Post-Compromise Security, or PCS, refers to the ability of
a given protocol to recover—by means of normal protocol operations—
from the exposure of local states of its (otherwise honest) participants.
While PCS in the two-party setting has attracted a lot of attention
recently, the problem of achieving PCS in the group setting—called group
ratcheting here—is much less understood. On the one hand, one can
achieve excellent security by simply executing, in parallel, a two-party
ratcheting protocol (e.g., Signal) for each pair of members in a group.
However, this incurs O(n) communication overhead for every message
sent, where n is the group size. On the other hand, several related proto-
cols were recently developed in the context of the IETF Messaging Layer
Security (MLS) effort that improve the communication overhead per mes-
sage to O(log n). However, this reduction of communication overhead
involves a great restriction: group members are not allowed to send and
recover from exposures concurrently such that reaching PCS is delayed
up to n communication time slots (potentially even more).

In this work we formally study the trade-off between PCS, concur-
rency, and communication overhead in the context of group ratchet-
ing. Since our main result is a lower bound, we define the cleanest and
most restrictive setting where the tension already occurs: static groups
equipped with a synchronous (and authenticated) broadcast channel,
where up to t arbitrary parties can concurrently send messages in any
given round. Already in this setting, we show in a symbolic execution
model that PCS requires Ω(t) communication overhead per message.
Our symbolic model permits as building blocks black-box use of (even
“dual”) PRFs, (even key-updatable) PKE (which in our symbolic defi-
nition is at least as strong as HIBE), and broadcast encryption, covering
all tools used in previous constructions, but prohibiting the use of exotic
primitives.

To complement our result, we also prove an almost matching upper
bound of O(t · (1 + log(n/t))), which smoothly increases from O(log n)
with no concurrency, to O(n) with unbounded concurrency, matching
the previously known protocols.

The full version [11] of this extended abstract is available as entry 2020/1171 in the
IACR eprint archive.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 198–228, 2020.
https://doi.org/10.1007/978-3-030-64378-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64378-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-64378-2_8


On the Price of Concurrency in Group Ratcheting Protocols 199

1 Introduction

Post-Compromise Security. End-to-end (E2E) encrypted messaging sys-
tems including WhatsApp, Signal, and Facebook Messenger have increased in
popularity. In these systems, intermediaries including the messaging service
provider should not be able to read or modify messages. Moreover, as typi-
cal sessions in such E2E systems can last for a very long time, state compromise
of some of the participants is becoming a real concern to the deployment of such
systems. To address this security concern, modern E2E systems fulfill a novel
property called Post-Compromise Security [16], which refers to the ability of a
given protocol to recover—by means of normal protocol operations—from the
exposure of local states of its (otherwise honest) participants. For example, the
famous two-party Signal [28] protocol achieves PCS by having parties continu-
ously run fresh sessions of Diffie-Hellman key agreement “in the background”.

Group Messaging. By now, the setting of PCS-secure two-party encrypted
messaging systems is relatively well understood [2,10,15,19,23,24,30]. In con-
trast, the setting of PCS-secure group messaging is much less understood. On
the one extreme, several systems, including Signal Messenger itself, achieve PCS
in groups by simply executing, in parallel, a two-party PCS-secure protocol (e.g.,
Signal) for each pair of members in a group. In addition to achieving PCS, this
simple technique is also extremely resilient to asynchrony and concurrency: peo-
ple can send messages concurrently, receive them out-of-order, or be off-line for
extended periods of time. However, it comes at a steep communication over-
head O(n) for every message sent, where n is the group size.

On the other hand, several related protocols [3–5,14] (some of them intro-
duced under the term continuous group key agreement (CGKA)1) were recently
developed in the context of the IETF Message Layer Security (MLS) initiative
for group messaging [7]. One of the main goals of this initiative was to achieve
PCS with a significantly lower communication overhead. And, indeed, for static
groups, these protocols improve this overhead per message to O(log n). More
precisely, these protocols separate protocol messages into two categories: Pay-
load messages, used to actually encrypt messages, have no overhead, but also do
not help in establishing PCS. In contrast, update messages carry no payload, but
exclusively establish PCS: intuitively, an update message from user A refreshes
all cryptographic material held by A. These update messages have size propor-
tional to O(log n) in MLS-related protocols, which is a significant saving for large
groups, compared to the pairwise-Signal protocol.

Concurrency. Unfortunately, this reduction of communication overhead for
MLS-related protocols involves a great restriction: all update messages must be
generated and processed one-by-one in the same order by all the group members.

1 By distinguishing between “CGKA” and “group ratcheting”, these works differenti-
ate between the asymmetric cryptographic parts of the protocols and the entire key
establishment procedure, respectively [5]. In order to avoid this strict distinction, we
call it “group ratcheting” here.
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We stress that this does not just mean that update messages can be prepared
concurrently, but processed in some fixed order. Instead, fresh update message
cannot be prepared until all previous update messages are processed. In partic-
ular, it is critical to somehow implement what these protocols call a “delivery
server”, whose task is to reject all-but-one of the concurrently prepared update
messages, and then to ensure that all group members process the “accepted
updates” in the same correct order. Implementing such a delivery server poses
a significant burden not only in terms of usability (which is clear), but also for
security of these protocols, as it delays reaching PCS up to n communication time
slots (potentially more in asynchronous settings, such as messaging). Indeed, the
concurrency restriction of MLS is currently one of the biggest criticisms and hur-
dles towards its wide-spread use and adoption (see [3] for extensive discussion
of this). In contrast, pairwise Signal does not have any such concurrency restric-
tion, albeit with a much higher communication overhead. See Sect. 4 and Table 1
for more detailed comparison of various existing methods for group ratcheting.

Our Main Question. This brings us to the main question we study in this
work:

What is the trade-off between PCS, concurrent sending and low communication
complexity in encrypted group messaging protocols?

For our lower bound, we define the cleanest and most restrictive setting
where the tension already occurs: static groups equipped with a synchronous
(and authenticated) broadcast channel, where up to t arbitrary users can con-
currently send messages in any given round. In particular, t = 1 corresponds
to the restrictive MLS setting which, we term “no concurrency”, and t = n
corresponds to unrestricted setting achieved by pairwise Signal, which we term
“full concurrency”. Also, without loss of generality, and following the conven-
tion already established in MLS-related protocols, we focus on the “key encap-
sulation” mechanism of group messaging protocols. Namely, our model is the
following:

We have a static group of n members whose goal is to continuously share
a group key k. Group members have private states st , and communicate in
rounds over a public broadcast channel. Each round refreshes the current group
key k into the next group key k′ as follows: 1. At the beginning of a round,
an arbitrary subset of up to t group members is selected by the adversary to
update the current group key k. These groups members are called senders (of a
given round). 2. During each round, each sender—unaware of the identities of
other senders—tosses fresh random coins, sends a ciphertext c over the broadcast
channel, and updates its private state st . 3. At the end of each round, all (up to t)
ciphertexts c are received by all n users, who use them to update their state st ,
and output a new group key k′. 4. At the end of each round, the adversary can
learn the current group key k′, and is also allowed to expose an arbitrary number
of group member states st .

For our lower bound, we will demand the following, rather weak, PCS guar-
antee. A key k after round i (not directly revealed to the attacker) is secure
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if: (a) no user is exposed in round i′ ≥ i; (b) all users sent at least one update
ciphertext between their latest exposure and round i−1; and (c) after all exposed
users sent once without being exposed again, at least one user additionally sent
in round j ≤ i. Condition (a) will only be used in our lower bound (to make
it stronger), to ensure that our lower bound is only due to the PCS, but not
a complementary property called forward-secrecy, which states that past round
keys cannot be compromised upon current state exposure. However, our upper
bound will achieve forward-secrecy, dropping (a).

Condition (b) is the heart of PCS, demanding that security should be eventu-
ally restored once every exposed user updated its state. Condition (c) permits a
one-round delay before PCS takes place. While not theoretically needed, avoid-
ing this extra round seems to require some sort of multiparty non-interactive
key exchange for concurrent state updates, which currently requires exotic cryp-
tographic assumptions, such as multi-linear maps [12,13]. In contrast, the extra
round allows to use traditional public-key cryptography techniques, such as the
exposed user sending fresh public-keys, and future senders using these keys in the
extra round to send fresh secret(s) to this user. While condition (c) strengthens
our lower bound, our upper bound construction can be minimally adjusted to
achieve PCS for non-concurrent state updates even without this “extra round”.

For conciseness, we call any protocol in our model a group ratcheting scheme,
taking inspiration from the “double ratchet” paradigm used in design of the
Signal protocol [28].

Our Upper Bound. We show nearly matching lower and upper bounds on
the efficiency of t-concurrent, PCS-secure group ratcheting schemes. With our
upper bound we provide a group ratcheting scheme with message overhead
O(t · (1 + log(n/t))), which smoothly increases from O(log n) with no concur-
rency, to O(n) with unbounded concurrency, matching the upper bounds of
the previously known protocols. Our upper bound is proven in the standard
computational model. For the weak notion of PCS alone sketched above (i.e.,
conditions (a)–(c)), we only need public-key encryption (PKE) and pseudo-
random functions (PRFs). Our construction carefully borrows elements from
the complete subtree method of [27] used in the context of broadcast encryp-
tion (BE), and the TreeKEM protocol of the MLS standard [3,7] used in the
context of non-concurrent group ratcheting. Similarly, one can view our con-
struction as an adapted combination of components from Tainted TreeKEM [4]
and the most recent MLS draft (verion-09) [8] with its propose-then-commit
technique. By itself, none of these constructions is enough to do what we want:
BE scheme of [27] allows to send a fresh secret to all-but-t senders from the
previous round (this is needed for PCS), but needs centralized distribution of
correlated secret keys to various users, while the TreeKEM schemes no longer
need a group manager, but do not withstand concurrency of updates in a rather
critical way. Finally, the propose-then-commit technique, when naively combined
with (Tainted) TreeKEM as in MLS [8], in the worst case induces an over-
head linear in the group size, and still does not completely achieve our desired
concurrency and PCS guarantees. Nevertheless, we show how to combine these
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structures together—in a very concrete and non-black-box way—to obtain our
scheme with overhead O(t · (1 + log(n/t))).

Moreover, we can easily achieve forward-security in addition to PCS (i.e.,
drop restriction (a) on the attacker), by using the recent technique of [3,24],
which basically replaces traditional PKE with so called updatable PKE (uPKE).
Informally, such PKE is stateful, and only works if all the senders are synchro-
nized with the recipient (which can be enforced in our model, even with concur-
rency). Intuitively, each uPKE ciphertext updates the public and secret keys in
a correlated way, so that future ciphertexts (produced with new public key) can
be decrypted with the new secret key, but old ciphertexts cannot be decrypted
with the new secret key. Hence, uPKE provides an efficient and practical mech-
anism for forward-secrecy in such a synchronized setting, without the need of
heavy, less efficient tools, such as hierarchical identity based encryption (HIBE),
directly used as a building block for strongly secure group ratcheting [5], or used
as an intermediary component to build stronger key-updatable PKE (kuPKE)2

for secure two-party messaging [23,30].

Our Lower Bound. We prove a lower bound Ω(t) on the efficiency of any
group ratcheting protocol which only uses “realistic” tools, such as (possibly key-
updatable (See footnote 2)) PKE, (possibly so called “dual”) PRFs, and general
BE (see Sect. 2 for explaining these terms). We define our symbolic notion of key-
updatable PKE so that it even captures functionality and security guarantees
at least as strong as one expects from HIBE. To the best of our knowledge,
these primitives include all known tools used in all “practical” results on group
ratcheting (including our upper bound). Thus, our result nearly matches our
upper bound, and shows that the Ω(n) overheard of pairwise Signal protocol is
optimal for unbounded concurrency, at least within our model.

To motivate our model for the lower bound, group ratcheting would be “easy”
if we could use “exotic” tools, such as multiparty non-interactive key agreement
(mNIKE), multi-linear maps, or general-purpose obfuscation. For example, using
general mNIKE, one can easily achieve PCS and unbounded concurrency, by
having each member simply broadcast its new public key, without any knowledge
of other senders: at the end of each round, the union of latest keys of all the group
members magically (and non-interactively) updates the previous group key to
a new, unrelated value. Of course, we currently don’t have any even remotely
practical mNIKE protocols, so it seems natural that we must define a model
which only permits the use of “realistic” tools, such as (ku)PKE, (dual) PRFs,
BE, (HIBE,) etc.

To formally address this challenge, we use a symbolic modeling framework
inspired by the elegant work of Micciancio and Panjwani [26], who used it to
derive a lower bound for the efficiency of multi-cast encryption. Symbolic models
treat all elements as symbols whose algebraic structure is entirely disregarded,

2 While for our upper bound construction weaker and more efficient uPKE (based on
DH groups) suffices as in [3,24], to strengthen our lower bound we allow constructions
to use stronger and less efficient key-updatable PKE (thus far based on HIBE) as
in [6,23,30].
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and which can be used only as intended. E.g., a symbolic public key can be
defined to only encrypt messages, and the only way to decrypt the resulting
ciphertext is to have another symbol corresponding to the associated secret key.
In particular, one cannot perform any other operations with the symbolic public
key, such as verifying a signature, using it for a Diffie-Hellman key exchange,
etc.

We use such a symbolic model to precisely define the primitives we allow,
including the grammar of symbols and valid derivation rules between them (see
Fig. 1). We then formalize the intuition for our lower bound in Sect. 5 (that we
formally prove in the full version [11]). Our bound is actually very strong: it is
the best-case lower bound, which holds for any execution schedule of group ratch-
eting protocols within our model, and which is proven against highly restricted
adversaries for extremely little security requirements. Specifically, we show that
each sender for round i must send at least one fresh message over the broadcast
channel “specific” to every sender of the previous round i−1.3 While intuitively
simple, the exact formalization of this result is non-trivial, in part due to the
rather advanced nature of the underlying primitives we allow. For example, we
must show that no matter what shared infrastructure was established before
round (i − 1), and no matter what information a sender A sent in round i − 1,
there is no way for A to always recover at round i from potential exposure at
round (i−2), unless every sender B in round i sends some message “only to A”.

Perspective. To put our symbolic result in perspective, early use of sym-
bolic models in cryptography date to the Dolev-Yao model [18], and were used
to prove “upper bounds”, meaning security of protocols which were too com-
plex to analyze in the standard “computational model” (with reductions to well
established simpler primitives or assumptions). In contrast, Micciancio and Pan-
jwani [26] observed that symbolic models can also be used in a different way to
prove impossibility results (i.e., lower bounds) on the efficiency of building vari-
ous primitives using a fixed set of (symbolic) building blocks. This is interesting
because we do not have many other compelling techniques to prove such lower
bounds.

To the best of our knowledge, the only other technique we know is that of
“black-box separations” [22]. While originally used for black-box impossibility
results [22], Gennaro and Trevisan [20] adapted this technique to proving effi-
ciency limitations of black-box reductions, such as building psedorandom gener-
ators from one-way permutations. However, black-box separation lower bounds
are not only complex (which to some extent is true for symbolic lower bounds
as well), but also become exponentially harder, as the primitive in question
becomes more complex to define, or more diverse building blocks are allowed. In
particular, to the best of our knowledge, the setting of group ratcheting using
kuPKE, HIBE, dual PRFs, and BE used in this paper, appears several orders
of magnitude more complex than what can be done with the state-of-the-art
black-box lower bounds.
3 Except for itself, if the sender was active in the prior round. This intuitively explains

why our “best-case” lower bound is actually (t − 1) and not t.
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Thus, we hope that our paper renews the interests in symbolic lower bounds,
and that our techniques would prove useful to study other settings where such
lower bounds could be proven.

2 Preliminaries

We shortly introduce our notation as well as the syntax of the most important
cryptographic building blocks. We also sketch their security guarantees that we
formally define along the full proofs in our full version [11].

Notation. We distinguish between deterministic and probabilistic assignments
with symbols ← and ←$, respectively; the latter denotes sampling of an ele-
ment x from the uniform distribution over a set X (x ←$ X ) and invoking a
probabilistic algorithm alg on input a with output x (x ←$ alg(a)). In order to
make the used random coins r of an invocation explicit (and turning it into a
deterministic invocation), we write x ← alg(a; r). We denote the cardinality of
a set X or the length of a string s with symbols |X | and |s|. Concatenations of
two bit-strings s1, s2 is written as s1‖s2.

Adversaries A in our computational models are probabilistic algorithms
invoked in a security experiment denoted by the term Game. Therein they
can call oracles, denoted by term Oracle.

In our symbolic model we describe grammar rules as follows. For three types
of symbols X, Y , and Z, X �→ Y |Z denotes that symbols of type X can be
parsed as symbols of type Y or type Z. A type that cannot be parsed further
is called terminal type. Using these grammar rules, we define derivation rules
that describe how symbols can be derived from sets of (other) symbols. For a
symbol m and set of symbols M , M � m means that m can be derived from the
symbols in set M by using the grammar and derivation rules that we specify in
our symbolic model.

(Dual) Pseudo-random Function. A pseudo-random function prf takes a sym-
metric key and some associated data, and outputs another symmetric key such
that for sets K,AD: prf(k, ad) → k′ with k, k′ ∈ K and ad ∈ AD. A dual pseudo-
random function dprf takes two symmetric keys and outputs another symmetric
key such that for set K: dprf({k1, k2}) → k′ with k1, k2, k

′ ∈ K with the added
property that dprf(k1, k2) = dprf(k2, k1) = k′. For simplicity (in our proof), we
only consider symmetric dual PRFs [9].

A secure PRF outputs a key that is secret4 if the input key is secret as well.
A dual PRF additionally achieves secrecy of the output key in case at most one
of the two input keys is known by an attacker.

4 Where secrecy means indistinguishable from a random key in the computational
model and underivable from public symbols in the symbolic execution model.
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Key-Updatable Public Key Encryption. Key-updatable public key encryption
(kuPKE) is an extension of public key encryption that allows for independent
updates of public and secret key with respect to some associated data. This
primitive has been used in constructions of two-party ratcheting (e.g., [23,25,29,
30]). Furthermore, a work by Balli et al. [6] recently showed that it is actually
necessary for building optimally secure two-party ratcheting.

A kuPKE scheme UE is a tuple of algorithms UE = (gen,up, enc,dec)
where up takes some associated data together with either a public key or a
secret key and produces a new public key or secret key respectively such that
for sets SK,PK, C,M,AD: gen(sk) → pk , up(sk , ad) → sk ′, up(pk , ad) → pk ′,
enc(pk ,m) →$ c, and dec(sk , c) → m with sk , sk ′ ∈ SK, pk , pk ′ ∈ PK, ad ∈ AD,
m ∈ M, and c ∈ C. A kuPKE scheme UE is correct if for synchronously updated
public key and secret key, the latter can decrypt ciphertexts produced with the
former: Pr[∀n ∈ N dec(skn, enc(pkn,m)) = m : sk0 ←$ SK, pk0 = gen(sk0),∀i ∈
[n] ad i ←$ AD, pk i+1 = up(pk i, ad i), sk i+1 = up(sk i, ad i),m ←$ M] = 1.

A secure kuPKE scheme intuitively guarantees that a message, encrypted
to public key pk ′ that was derived from another public key pk via sequential
updates under associated-data from vector ad ∈ AD∗, cannot be decrypted
by a (computationally bounded, or symbolic) adversary even with access to any
secret keys, derived via updates from pk ’s secret key sk under an associated-data
vector ad ′ ∈ AD∗ such that ad ′ is not a prefix of ad . Note that this intuitive
security notion matches security of HIBE when associated data is being parsed
as identity strings.

Broadcast Encryption. A broadcast encryption (BE) scheme BE is a tuple
of four algorithms BE = (gen, reg, enc,dec) where reg takes a (main) secret
key and an integer and produces an accordingly registered secret key, enc
takes, in addition to public key and message, a set of integers to indicate
which registered secret keys must be unable to decrypt the message such
that for sets MSK,SK,MPK, C,M: gen(msk) → mpk , reg(msk , u) →$ sk ,
enc(mpk ,RM ,m) →$ c, and dec(sk , c) → m with msk ∈ MSK, mpk ∈
MPK, u ∈ N, sk ∈ SK, RM ⊂ N, m ∈ M, and c ∈ C. A broadcast
encryption scheme BE is correct if all registered secret keys that were not
excluded when encrypting with the public key can decrypt the corresponding
encrypted message: Pr[dec(sk , enc(mpk ,RM ,m)) = m : msk ←$ MSK,mpk =
gen(msk), u ←$ N, sk ←$ reg(msk , u),RM ⊂ N\{u}] = 1.

A secure BE scheme intuitively guarantees that a message, encrypted to a
(main) public key mpk with a set of removed users RM , cannot be decrypted
by a (computationally bounded, or symbolic) adversary even with access to any
secret keys, registered under mpk ’s main secret key msk for numbers u ∈ RM .

3 Security of Concurrent Group Ratcheting

In this work we consider an abstraction of group ratcheting under significant
relaxations and restrictions with respect to the real-world. The purpose of this
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approach is to disregard irrelevant aspects in order to highlight the immediate
effects of concurrent state updates in group ratcheting.

In the following, we define syntax and (restricted) security of ratcheting in
static groups against computationally bounded adversaries. We assume in our
model that all group members have access to a round-based reliable and authen-
ticated broadcast. Additionally, since our focus are concurrent operations in an
initialized group, we consider an abstract initialization algorithm for deriving
initial user states.5

Syntax. A static group ratcheting protocol is a tuple of three algorithms GR =
(init, snd, rcv) such that for sets ST GR, CGR,KGR,R:

– init(n; r) → (st1, . . . , stn) with n ∈ N, r ∈ R, and st1, . . . , stn ∈ ST GR;
creates an initial local state for every participating group member.

– snd(st ; r) → (st ′, c) with st , st ′ ∈ ST GR, r ∈ R, and c ∈ CGR; takes the
current state of an instance (in addition to freshly sampled random coins)
and outputs the updated state and update information within a ciphertext
that is to be sent via the broadcast.

– rcv(st , c) → (st ′, k) with st , st ′ ∈ ST GR, c ⊂ CGR, and k ∈ KGR; takes the
current state of an instance and a set of update ciphertexts (e.g., all broadcast
ciphertexts since this instance’s last receiving), and outputs the updated state
and the current (joint) group key.

Security. Security experiments KINDb
GR in which adversary A attacks scheme GR

proceed as follows:

1. A determines the number of group members n. Afterwards the challenger
invokes the init algorithm to generate initial secret states for all members.
Then the security experiment continues in rounds. In every round i

– adversary A chooses set U i
S of senders. For each sender u ∈ U i

S algo-
rithm snd is invoked. All resulting ciphertexts are both given to A and
received by all group members via invocations of algorithm rcv.

– adversary A chooses set U i
X of exposed users. The local state of each

user u ∈ U i
X after receiving in round i is given to A.

2. During the entire security experiment, A can challenge group keys established
in any round i∗. A either obtains a random key (if b = 0) or the actual group
key from round i∗ (if b = 1) in response.

3. When terminating, A returns a guess b′ such that it wins if b = b′ and for all
challenged group keys it holds that:
(a) no user was exposed after a challenged group key was computed,
(b) every user sent at least once after being exposed and before a challenged

group key was computed, and
5 We note that we only consider a single independently established group session.

For protocols in which participants use the same secrets simultaneously across mul-
tiple (thereby dependent) sessions, we refer the reader to a work by Cremers et
al. [17]. Both the problems and the solutions for these two considerations appear to
be entirely distinct.
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(c) after all exposed users sent once without being exposed again, at least
one user additionally sent before a challenged group key was computed.

Group keys for which conditions 3a–3c hold are marked secure.
We restrict the adversary with condition (3a) only because the resulting

weaker security definition already suffices to prove our lower bound of commu-
nication complexity. For our full model in which we prove the construction of our
upper bound secure, we strengthen adversaries by lifting restriction (3a). This
reflects that our upper bound construction achieves immediate forward-secrecy
while our lower bound already holds without requiring any form of forward-
secrecy.

Condition (3b) models that a user who was exposed must generate fresh
secrets and send the respective public values to the group before it can receive
confidential information for establishing new secure group keys. After all exposed
users recovered by sending subsequently, their sent contribution must be used
effectively to establish a new secret group key. Therefore, condition (3c) addi-
tionally requires one further response from a user as a reaction to all newly
contributed public values.

For removing condition (3c) either 1. The last users who recovered did so con-
currently at most as a pair of two (such that their new public contributions can
be merged into a shared group key non-interactively with NIKE mechanisms),
or 2. Multiparty NIKE schemes exist (for resolving cases of more concurrently
recovering users). In order to simplify our security definition by not introducing
an according case distinction tracing occurrences of case 1, we generally restrict
the adversary with condition (3c). We note that for proving our lower bound,
restricting the adversary by this condition strengthens our result.

Intuitively, a group ratcheting scheme is secure if no adversary A exists
that wins the above defined security experiment with probability non-negligibly
higher than 1/2.

Restrictions of the Model. With the following abstractions, simplifications,
and restrictions, we support clarity and comprehensibility of our results and
strengthen the statement of our lower bound. We consider: 1. A round-based
communication setting, 2. Static groups, 3. All group members receive in every
round, 4. Only passive adversaries 5. Adversaries can expose users only after
receiving, and 6. Adversaries cannot attack used randomness. As we do not aim
to develop a functional and secure group messenger but to theoretically analyze
the foundations of concurrent group ratcheting, we believe this is justified.

4 Deficiencies of Existing Protocols

The problem of constructing group ratcheting could be solved trivially if effi-
cient multiparty non-interactive key exchange schemes existed. Especially for
the concurrent recovery from state exposures in group ratcheting, the lack of
this tool appears to be crucial: Due to not being able to combine independently
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proposed fresh public key material, existing efficient group ratcheting construc-
tions cannot process concurrent operations as we will explain in this section. In
Table 1 we summarize the characteristics of previous group ratcheting schemes
in comparison to our construction and the lower bound.

Table 1. Properties of group ratcheting constructions and our lower bound. t =
|U i−1

S | is the number of members who sent concurrently in the previous round. For
the overhead we consider a worst-case scenario in a constant size group. Constructions
denoted with ‘��’/‘��’ provide PCS under no concurrency and can handle concurrent
state updates without reaching PCS with them.

PCS Concurrency Overhead

Sender Key Mechanism [31] � � 1

Parallel Pairwise Signal [2,15,31] � � n

Asynchronous Ratcheting Trees [14] � � log(n)

Causal TreeKEM [32] �� �� log(n)

TreeKEM Familiy [3,4] � � log(n)

MLS Draft-09 [8] �� �� n

Optimally Secure Tainted TreeKEM [5] �� �� log(n)

Our Construction � � t · (1 + log(n/t))

Our Lower Bound � � t − 1

Sender Key Mechanism. WhatsApp uses the so called sender key mechanism for
implementing group chats [31]. This mechanism distributes a symmetric sender
key for each member in a group. When sending a group message, the sender
protects the payload with its own sender key, transmits the resulting (single)
ciphertext, and hashes the used sender key to obtain its next sender key. The
receivers decrypt the ciphertext with the sender’s sender key and also update
the sender’s sender key by hashing it.

While the deterministic derivation of sender keys induces no communication
overhead after the initial distribution of sender keys, it implies the reveal of
all future sender keys as soon as a member state is exposed (breaking post-
compromise security). However, as each group member’s key material is pro-
cessed and used independently, concurrently initiated group operations can be
processed naturally.

Parallel Execution of Pairwise Signal. The group ratcheting mechanism imple-
mented in the Signal messenger bases on parallel executions of the two-
party Double Ratchet Algorithm [2,15,28] between each pair of members in a
group [31]. Due to splitting the group of size n into its n2 independent pairwise
components, this construction can naturally handle concurrency. At the same
time, this approach induces a communication overhead of O(n) ciphertexts per
sent group payload.
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Since the Double Ratchet Algorithm reaches post-compromise security (PCS)
for each pair of members, also its parallel execution achieves this goal for the
group against passive adversaries or if the member set remains static. Rösler et
al. [31] describe an active attack against PCS in dynamic groups that exploits the
implemented decentralized membership management. Furthermore, the delayed
recovery from state exposures in the Double Ratchet Algorithm due to a strictly
alternating update schedule between protocol participants (cf. analysis and fix
in [2]) lets recoveries from state exposures in the group become effective only
after every group member sent once at worst. With stronger two-party ratcheting
protocols (e.g., [2,23,24,29,30]) this problem can be solved.

Asynchronous Ratcheting Tree. While the two above described approaches com-
pute and use multiple symmetric keys in parallel for protecting communication
in groups, the following constructions do so by deriving a single shared group
key at each step of the group’s lifetime. Therefore they arrange asymmetric
key material on nodes in a tree structure in which each leaf represents a group
member and the common root represents the shared group secret. Every group
member stores the asymmetric secrets on the path from its leaf to the common
root in its local state. For updating the local state, in order to recover from an
adversarial exposure, all constructions let the updating member generate new
asymmetric secrets for each node on their path to the root.

In the Asynchronous Ratcheting Trees (ART) design [14], these asymmetric
secrets are exponents in a Diffie–Hellman (DH) group. State updates of a mem-
ber’s path is conducted as follows: the updating member freshly samples a new
secret exponent for its own leaf and then deterministically derives every ancestor
node’s secret exponent as the shared DH key from its two children’s public DH
shares. All resulting new public DH shares on the path are sent to the group,
inducing a communication overhead of O(log(n)) per update operation. Other
members perform the same derivations for updated nodes on their own paths to
the root to obtain the new exponents. Since all secrets in the updating member’s
local state are renewed based on fresh random coins, this mechanism achieves
PCS.

The reason for ART not being able to process concurrent update operations
is that simultaneous updates of nodes in the tree with independently computed
DH exponents cannot be merged into a joint tree structure while reaching PCS.
For t concurrent updates, a t-party NIKE would be needed to combine the
resulting t new proposed DH shares into a shared secret exponent for the ances-
tor node at which all updating members’ paths to the root join together. (As
mentioned before, if multiparty NIKE existed, group ratcheting can be solved
trivially without complex tree structures.)

Causal TreeKEM. As in the ART design [14], Causal TreeKEM [32] uses expo-
nents in a DH group as asymmetric secrets on nodes in the tree. Also the
update procedure is conceptually the same. However, in case of concurrently
proposed path updates, the conflicting new exponents on a node are combined
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via exponent-addition and the conflicting public DH shares on a node are com-
bined via multiplying these group elements.

Although this merge-mechanism resolves conflicts caused by concurrency,
the combination of updated path secrets is not post-compromise secure: the old
exponents of two nodes (from which their updating users A and B aimed to
recover), whose common parent was updated via a combination of concurrent
path updates, suffice to derive their parent’s resulting new exponent. (The new
exponent is the old exponent mixed with random values from A and B that they
encrypt to the other’s old node key.)

TreeKEM Family. In the family of TreeKEM constructions [3,4], the asymmetric
key material of nodes in the tree are key encapsulation mechanism (KEM) key
pairs or, in forward-secure TreeKEM, updatable KEM key pairs. For updating
its local state, a group member samples a fresh secret from which it deter-
ministically derives seeds for each node on its path to the root, such that all
ancestor seeds can be derived from their descendant seeds (but not vice versa).
The updating member generates the new key pair for each updated node from its
seed deterministically, and encapsulates the node’s seed to the public key of the
child which is not on the member’s path to the root. This mechanism achieves
PCS and induces a communication overhead of O(log(n)) per update.

The idea of recovery from exposures is undermined in case of concurrency,
since updating members send their new seeds for a node on their path to public
keys of siblings, simultaneously being updated and replaced by new key mate-
rial of members who concurrently update: the potentially exposed secrets from
which one updating member aims to recover can then be used to obtain the
new secrets with which the other updating user aims to recover (as in the case
of Causal TreeKEM). Consequently, concurrent updates in TreeKEM are essen-
tially ineffective with respect to PCS.

Forward-secure TreeKEM [3] uses an updatable KEM for enhancing forward-
security guarantees of the above described mechanism. Tainted TreeKEM [4]
enhances PCS guarantees with respect to dynamic membership changes in
groups. Neither of these changes affect the trade-offs discussed here.

MLS Draft-09. Based on TreeKEM, the most recent draft of MLS [8] distin-
guishes between two state update variants: (a) In an update proposal a member
refreshes only its own leaf key pair, removes all other nodes on the path from
this leaf to the root, and makes the root parent of all nodes that thereby became
parentless. (b) In a commit a member combines previous update proposals and
refreshes all key pairs on the path from its own leaf to the root (matching the
normal TreeKEM update as described in the last paragraph).

In principle, both update variants achieve PCS for respective the sender.
However, for simultaneously sent commits, all but one are rejected (e.g., by a
central server) meaning that PCS under concurrency is not achieved for rejected
updating commits. Furthermore, while update proposals can be processed
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concurrently, they eventually let the tree’s depth degrade to 1, inducing a worst-
case overhead of O(n) for later commits.6

Optimally Secure Tainted TreeKEM. Recently and concurrent to our work, an
optimally secure variant of group ratcheting, based on a combination of Tainted
TreeKEM and MLS draft-09, was proposed by Alwen et al. [5]. In addition to
authentication guarantees (which is independent of our focus), their protocol
achieves strong security guarantees for group partitions due to concurrency:
instead of assuming that a (consensus) mechanism rejects conflicting commits
as in MLS, they anticipate that different sub-groups of group members may
process different of these commits such that the overall perspective on the group
diverges. Their protocol guarantees that, after diverging, exposing states of one
sub-group’s members does not affect the security of another sub-groups’ secrets.
Intuitively, this is achieved by using HIBE key pairs on the tree’s nodes that are
regularly updated via secret-key-delegation based on identity strings that reflect
the current perspective on the group. (For details, we refer the interested reader
to [5].)

While these changes increase security with respect to some form of forward-
secrecy under group partitions, they do not entirely solve the issue of conflicting
commits as in MLS: committed state updates still only have an effect in a sub-
group that processes the commit such that only one user at a time can update
secrets on the path from its leave to the root whereas other user’s path updates
remain ineffective.

Our construction from Sect. 6 bypasses the issue of concurrently generated,
incompatible path proposals by postponing the update of affected nodes in
the tree by one communication round. However, “immediate” PCS can still be
reached for non-concurrent updates by composing our construction with one of
the above described ones without loss in efficiency. We note that some of the
above constructions provide strong security guarantees with respect to active
adversaries, dynamic groups, entirely asynchronous communication, or weak ran-
domness, which is out (and partially independent) of our consideration’s scope.

5 Intuition for Lower Bound

Our lower bound proof intuitively says that every group ratcheting scheme with
better communication complexity than this bound is either insecure, or not cor-
rect, or cannot be built from the building blocks we consider. In the following,
we first list these considered building blocks and argue why the selection of those
is indeed justified (and not too restrictive). We then abstractly explain the sym-
bolic security definition of group ratcheting, and finally sketch the steps of our
proof that is formally given in the full version [11].

6 Consider, for example, a scenario in which the same majority of members always
sends update proposals and a fixed disjoint set of few members always commits. In
this case, the overhead of commits for these few members converges to O(n).
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5.1 Symbolic Building Blocks

The selection of primitives which a group ratcheting construction may use to
reach minimal communication complexity in our symbolic model is inspired by
the work of Micciancio and Panjwani [26]. For their lower bound of communica-
tion complexity in multi-cast encryption—which can also be understood as group
key exchange—, Micciancio and Panjwani allow constructions to use pseudo-
random generators, secret sharing, and symmetric encryption. We instead con-
sider 1. (dual) pseudo-random functions, 2. key-updatable public key encryption
(with functionality and symbolic security guarantees at least as strong as those of
hierarchical identity based encryption), and 3. broadcast encryption and thereby
significantly extend the power of available building blocks. As secret sharing
appears to be rather irrelevant in our setting—as well as it is irrelevant in their
setting—, we neglect it to achieve better clarity in model and proof.

Bulding Blocks in Related Work. To support the justification of our selection,
we note that all previous constructions of group ratcheting base on less powerful
building blocks than we consider here: The ART construction [14] relies on a
combination of dual PRF and Diffie-Hellman (DH) group. The actual properties
used from the DH group can also be achieved by using generic public key encryp-
tion (PKE)—as demonstrated by its following successors. TreeKEM as proposed
in the MLS initiative [3,8] relies on a PRG and a PKE scheme. TreeKEM with
extended forward-secrecy [3] relies on a PRG and an updatable PKE scheme.
The syntax of the latter in combination with the respective computational secu-
rity guarantees can be considered weaker than our according symbolic variant
of kuPKE. Tainted TreeKEM [4] relies on a PKE scheme in the random oracle
model. Optimally secure Tainted TreeKEM [5] relies on an HIBE scheme in the
random oracle model. As noted before, functionality and security guarantees of
HIBE are captured in our symbolic notion of kuPKE. The property of the ran-
dom oracle that allows for mixing multiple input values of which at least one is
confidential to derive a confidential random output can be achieved similarly by
using (a cascade of) dual PRF invocations.7

Only the post-compromise insecure merge-mechanism of DH shares from
Causal TreeKEM [32] is not captured in our symbolic model. However, turning
this mechanism post-compromise secure results in multi-party NIKE, which we
intentionally exclude.

Grammar. The grammar definition of the considered building blocks bases on
five types of symbols: messages M , secret keys SK , symmetric keys K, public
keys PK , and random coins R (which is a terminal type). These types and
their relation are specified in the lower right corner of Fig. 1. For simplicity

7 If the constructions in [4,5] would rely on stronger (security) guarantees of the
random oracle model, their practicability might be questionable.
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Fig. 1. Grammar and derivation rules of building blocks in the symbolic model.

(and in order to strengthen our lower bound result), we consider algorithms gen
and enc interoperable for kuPKE and BE.8

Derivation Rules. Symbolic security for the building blocks is defined via deriva-
tion rules that describe the conditions under which symbols can be derived from
sets of (other) symbols. These rules are defined in Fig. 1 clustered into those with
which protected values can be obtained, with which secret keys can be updated
or registered, and with which public values can be obtained.

Rules b) and c) describe the security of (dual) PRFs, rules d), e), and g) to
i) describe the security and functionality of kuPKE (and HIBE), and rules d),
f), g), and i) describe the security and functionality of BE.

Rule d), describing the conditions under which a ciphertext can be decrypted,
uses predicate Fit that validates the compatibility of public key and secret key
(and set of removed registered users). Intuitively, a secret key sk is compatible
with a public key pk if all updates for obtaining sk correspond to updates for
obtaining pk in the same order and under the same associated data with respect
to an initial key pair, or if the former was registered under the main secret key
of the latter.

5.2 Symbolic Group Ratcheting

The syntax of group ratcheting was introduced in Sect. 3. In the following we
map this syntax to the grammar definition above, and shortly give an intuition
for the correctness and security of group ratcheting in the symbolic model.

Inputs and outputs of group ratcheting algorithms init, snd, and rcv are
random coins R, local user states ST GR, ciphertexts CGR, and group keys KGR.
In our grammar these random coins are sets of type R symbols, local states and
ciphertexts are sets of type M symbols, and group keys are symbols of type K.

According to this grammar, we require from symbolic constructions of group
ratcheting for being correct that 1. all outputs of a group ratcheting algorithm
8 As a simplification we use N to denote the user input symbol of BE, S(·) to denote an

unordered compilation of multiple such symbols, and {·, ·} to denote an unordered
compilation of two key symbols. For kuPKE encryptions the second parameter in
our symbolic model can be ignored.
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invocation can be derived from its inputs via the derivation rules defined above
and 2. in each round the group keys, computed by all users, are equal. The first
condition is necessary to allow for symbolic adversaries. We note that this condi-
tion furthermore implies “inverse derivation guarantees”, meaning that symbols
can only be obtained via our derivation rules. For example, for inputs IN and
outputs OUT of an algorithm invocation, output k′ ∈ OUT with prf(k, ad) = k′

is either also element of set IN (i.e., k′ ∈ IN), or k′ is encrypted in a cipher-
text contained in set IN, or IN � k holds. We explicitly provide these inverse
derivation guarantees in our full version [11].

Security. To transfer the computational security experiment from Sect. 3 to the
execution of symbolic attackers against group ratcheting, only few small changes
are necessary: 1. a symbolic adversary A follows the above defined derivation
rules for an unbounded time, 2. the target of A is not to distinguish securely
marked real group keys from random ones but to derive such securely marked
keys from the ciphertexts, sent in each round, and the states, exposed at the end
of each round, with these derivation rules.

A group ratcheting scheme is secure in the symbolic model if an unbounded
adversary cannot derive any of the securely marked group keys from the combi-
nation of all rounds’ ciphertexts and exposed states via the above defined rules.
The fully formal variant of this definition is in Fig. 2.

Fig. 2. Security definition of concurrent group ratcheting in our symbolic model.

5.3 Lower Bound

Using this symbolic framework, we formulate (a sketched variant of) the lower
bound of communication complexity for secure (and correct) group ratcheting
constructions:
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Let GR be a secure and correct group ratcheting scheme. For every round i
in a symbolic execution of GR with senders U i

S and exposed users U i
X, the

number of sent symbols is |C[i]| ≥ |U i
S| · (|U i−1

S | − 1).

For our proof, we consider a symbolic adversary that proceeds as follows:

1. In round i − 2 a set of members U i−2
X ⊆ [n] with |U i−2

X | > 1 is exposed.
2. In subsequent round i − 1 these exposed users send (i.e., U i−1

S := U i−2
X ).

3. In round i a non-empty set of members ∅ �= U i
S ⊆ [n] sends.

Assuming no user was exposed in any round before or after i − 2, our symbolic
security definition requires the group key in round i to be secure (i.e., not deriv-
able from exposed states and sent ciphertexts up to round i). In order to show
that each sender in round i must send at least |U i−1

S |−1 ciphertexts to establish
this secure group key, we analyze the effects of exposures in round i−2, sending
in round i − 1, and sending in round i in the following paragraphs.

At the end of round i − 2 any symbol derivable by users in set U i−2
X is also

derivable by the adversary. After generating new secret random coins at the
beginning of round i − 1, users in set U i−1

S can derive symbols, that the adver-
sary cannot derive, from these new random coins and public symbols from their
(exposed) state. We call such derivable symbols of types SK , K, and R that the
adversary cannot derive useful secrets. Symbols of these types that are derivable
by the adversary are called useless secrets ( resulting in two complementary
sets). Before sending in round i − 1, new useful secrets of a user u∗ ∈ U i−1

S

are only derivable for u∗ itself but not for any other user u ∈ [n]\{u∗}. This is
because the origin of these new useful secrets are the new secret random coins
generated at the beginning of round i−1 and no communication took place after
their generation yet. Hence, at sending in round i− 1 users in set U i−1

S share no
compatible useful secrets with other users. Secrets are called compatible if they
are equal or if they are registered via rule f) under the same (main) secret key.

We formulate three observations: I) For deriving a public key pk from a set
of type R symbols it is necessary according to grammar rule 4. and derivation
rules g) and h) (with their inverse derivation guarantees) that its secret key sk
(or one of its update-ancestors’ secret key sk) is derivable from this set as well.
II) For deriving a ciphertext c, encrypted to a public key pk , from a set of type R
symbols it is necessary according to grammar rule 1. and derivation rule i) (with
its inverse derivation guarantees) that this public key pk is derivable from it
as well. III) Unifying all random coins generated by all users up to (including)
round i − 1 except those generated by user u∗ ∈ U i−1

S in round i − 1 forms a set
of type R symbols from which all useful secrets at the beginning of round i − 1
can be derived except those that are new to user u∗ at that point. Combining
these observations shows that at the beginning of round i−1 no user u �= u∗ can
derive public keys to useful secrets of user u∗ ∈ U i−1

S . This further implies that
user u cannot derive ciphertexts encrypted to such public keys. As a result, the
set of symbols sent by one user u ∈ U i−1

S in round i − 1 contains no ciphertexts
directed to useful secrets derivable by another user u∗ ∈ U i−1

S \{u} that would
transport useful secrets between such users.
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We further observe: According to the inverse derivation guarantees of rule c),
both inputs to a dual PRF invocation must be derivable for deriving its output.
As this requires a shared useful secret on input for deriving a shared useful secret
as output, also a dual PRF establishes no shared (compatible) useful secrets
in round i − 1. All remaining derivation rules either output no secrets, or are
unidimensional, meaning that they only immediately derive one (useful) secret
from another. As a result, also after receiving in round i − 1 users in set U i−1

S

share no compatible useful secrets.
Sampling random coins before sending in round i again produces no shared

compatible useful secrets between users that shared none before. Hence, also
before receiving in round i, users in set U i−1

S share no compatible useful secrets.
We remark that our symbolic correctness and security definition requires for the
given adversary that the shared group key derived in round i (after receiving) is
a useful secret.

For quantifying the number of ciphertexts sent in round i, we define two key
graphs Gbefore

i and Gafter
i that represent useful secrets as nodes and derivations

among them as edges. Secret y being derivable from secret x is represented by a
directed edge from x to y. Although inspired by the proof technique of Micciancio
and Panjwani [26], the use of key (derivation) graphs in our proof is entirely new.

Graph Gbefore
i includes a node for each useful secret that exists after receiving

in round i and an edge for each derivation among them except for derivations
possible only due to ciphertexts sent in round i. Graph Gafter

i contains Gbefore
i

and additionally includes edges for derivations possible due to ciphertexts sent
in round i. Thus, the number of additional edges in Gafter

i equals the number
of sent ciphertexts in round i. Mapping our derivation rules to edges is highly
non-trivial (e.g., each sent ciphertext must appear at most once). All details are
in the full version [11].

The fact that users in set U i−1
S share no compatible useful secrets before

receiving in round i finds expression in graph Gbefore
i as follows: Every such

user u ∈ U i−1
S is represented by nodes in a set Vi

u that stand for its useful secret
random coins from rounds i − 1 and i (the latter only if u also sent in round i).
For every pair of users u1, u2 ∈ U i−1

S with u1 �= u2 there exists no node in
graph Gbefore

i that is reachable via a path from a node in set Vi
u1

and a path
from a node in set Vi

u2
simultaneously (including trivial paths). In contrast, every

set Vi
u with u ∈ U i−1

S must contain a node from which a path in graph Gafter
i

reaches node v∗ that represents the group key in round i.
In graph Gbefore

i node v∗ was reachable via a path from nodes Vi
u of at most

one user u ∈ U i−1
S . Otherwise v∗ would have been a compatible useful secret

for two users in set U i−1
S before receiving in round i. Consequently, at least one

edge per user u∗ ∈ U i−1
S \{u} must be included in Gafter

i in addition to those
contained in Gbefore

i . Hence, Gafter
i contains at least |U i−1

S | − 1 more edges than
Gbefore

i , implying that at least |U i−1
S | − 1 ciphertexts were sent in round i.

We now observe that invocations of algorithm snd in every round are inde-
pendent of sets U j

X for all j, and invocations of algorithm snd in round i are inde-
pendent of set U i

S. As a consequence, every sender u ∈ U i
S must send |U i−1

S |− 1
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ciphertexts, anticipating the worst case that it is the only sender in that round.
Therefore, |U i

S| · (|U i−1
S | − 1) ciphertexts are sent in (every) round i.

Interpretation. This lower bound, formally proved in the full version of this arti-
cle [11], describes the best case of communication complexity both within our
model but partially also with respect to the real-world: it holds against very
weak adversaries for significantly reduced functionality requirements of group
ratcheting without any form of required forward-secrecy. Lower bounds, induced
by forward-secrecy for group key exchange [26], may furthermore apply to practi-
cal group ratcheting and therefore increase necessary communication complexity
thereof.9 We note that our result even applies to any two rounds between which
no user sent.

Bypassing our lower bound is possible for constructions that exploit the alge-
braic structure of elements (which is forbidden in symbolic models), base on
building blocks that we do not allow here (e.g., multiparty NIKE), or provide
weaker security guarantees (e.g., recover from state exposures only with an addi-
tional delay in rounds).

For clarity we note that the key graph concept used here is independent of
the tree structure of keys within our upper bound construction in Sect. 6.

6 Upper Bound of Communication Complexity

In order to overcome the deficiencies of existing protocols, we postpone the
refresh of parts of the key material in the group by one operation. The resulting
construction closely (up to a factor of ≈ log(n/t)) meets our communication
complexity lower bound.

For computational security of group ratcheting, games KINDb
GR from Sect. 3

are slightly adapted to additionally require immediate forward-secrecy. We note
that the use of (a weak form of) kuPKE instead of standard PKE in our con-
struction is only due to required forward-secrecy. Furthermore, the weak kuPKE
used can be efficiently built from standard assumptions (see e.g., a construction
from DDH in [24]).

6.1 Construction

Our construction uses ideas from the complete subtree method of broadcast
encryption [27] and resembles concepts from TreeKEM [3,4]. More specifically,
the construction bases on a static complete (directed) binary tree structure τ
with n leaves (i.e., one leaf per group member), on top of which at every node,
there is an evolving kuPKE key pair. The secret key at each of the n leaves is
known only by the unique user that occupies that leaf. For the remaining nodes
9 We observe that if a group-ratcheting-pendant of the amortized log(n) lower bound

for forward-secure group key exchange by Micciancio and Panjwani [26] applies as a
factor on our lower bound, then our construction from Sect. 6 has optimal commu-
nication complexity.
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we maintain the invariant that the only secret keys in a user’s state at a given
time are those that are at nodes along the direct path of its corresponding leaf
to the root of the tree.

We refer to the children of a node v in a tree as v.c0 (left child) and v.c1 (right
child), and its parent as v.p. Furthermore we let i, j, i > j be two rounds in which
the set of sending group members is non-empty and there is no intermediate
round l, i > l > j, with non-empty sending set. For simplicity in the description
we define j := i − 1.

Sending. To recover from state exposures, our construction lets senders in round
i−1 refresh only their own individual leaf key pair. Senders in round i then refresh
all remaining secret keys stored in the local states of round i − 1 senders (i.e.,
for nodes on their direct paths to the root) on their behalf. This is illustrated in
Fig. 3. Note that (as explained below in paragraph Receiving) all group members
collect the senders of round i − 1 into a set Ui−1 in the rcv algorithm of round
i− 1. Our construction, formally defined in Fig. 4, accordingly lets all senders in
a round perform five tasks:

1) To refresh their own individual secret key: Generate a fresh secret key for their
corresponding leaf and send the respective public key to the group (lines 42–
43, 63).

2) To refresh and rebuild direct paths of last round’s senders: Sample a new seed
for the leaf of each sender of the last round and encrypt it to the respective
sender’s (refreshed) leaf public key (lines 46–49). Then derive a seed for each
non-leaf node on the direct paths from these leaves to the root using the
new seeds at the leaves (line 50). Each seed will be used to deterministically
generate a fresh key pair for its node.

3) To share refreshed secrets with members who did not send in the last round:
Encrypt the new seed of each refreshed non-leaf node to the public key of its
child from which it was not derived (lines 52–55, 58–61). Update the used
public keys via kuPKE algorithm up (lines 56, 62).

4) To inform the group of changed public keys: Send all changed public keys to
the group, including those for which seeds were renewed, and those that were
updated via kuPKE (lines 50, 56, 62, 63).

5) Sample and encrypt a group key k for the round to all other users in the
group (lines 44, 48, 54, 63).

In step 2), one seed is individually encrypted to each user in set Ui−1 via
public key encryption, which will allow them to reconstruct their direct path in
the tree. The purpose of this individual encryption is to let the recent senders
forget their old (potentially exposed) secrets and use their fresh secret (which
they generated during their last sending) to obtain new, secure secrets on their
direct path.

We now describe how all remaining group members are able to rebuild the
tree in their view. The reader is invited to follow the explanation and focus their
attention on the tree in the lower right corner of Fig. 3. In this tree, directed edges
represent the derivation of a seed at a node from one of its children (dotted) or
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Fig. 3. Example tree for two rounds i − 1 and i with n = 8, Ui−1 = {1, 4, 8}, and
Ui �= ∅. In round i − 1, senders generate new key pairs for their leaves. In round i,
senders generate seeds for all nodes considered insecure from round i − 1 and replace
leaf key pairs for round i − 1 senders, as shown in the bottom-right corner.

encryption of a seed at a node to one of its children (dashed). We consider the
Steiner Tree ST (Ui−1) induced by the set of leaves of users in Ui−1. ST (Ui−1) is
the minimal subtree of the full tree that connects all of the leaves of Ui−1 and
the root; in the lower right corner tree of Fig. 3, ST (Ui−1) is the subtree of blue
filled circles and edges between them. For each degree-one node v of ST (Ui−1)
(i.e., nodes with only one child in the Steiner Tree), its seed is encrypted to
the public key of its child which is not in ST (Ui−1). This seed can be used to
derive some (possibly all) of the secret keys for the nodes on the direct path of v,
including v itself (lines 51–56). We denote the set of such degree one nodes of the
Streiner Tree as ST (Ui−1)1 and the child of a node v in ST (Ui−1)1 that is not
in the Steiner Tree as v.c/∈ST(Ui−1).

10 For each degree-two node v of ST (Ui−1)
(i.e., nodes with two children in the Steiner Tree), its seed is encrypted to the
public key of its right child (lines 57–62). We denote the set of such degree-two
nodes of the Steiner Tree as ST (Ui−1)2. All of these encrypted seeds are derived
from the fresh leaf seeds of users in set Ui−1 via prf computations, as explained
below in paragraph Construction Subroutines.

Alongside the seeds, some randomly sampled associated data ad is also
encrypted in the ciphertexts of the above paragraph (lines 52, 58). Public keys
used for the encryption are afterwards updated with this associated data ad
(lines 56, 62). Upon receipt, this associated data is used correspondingly to
update the secret keys as well. Due to this mechanism, immediate forward-
secrecy is achieved since secret keys stored in users’ local states are updated as
soon as they are used for decryption.

We refer to the union of nodes that are in the Steiner Tree with nodes that are
children of degree-one nodes in the Steiner Tree as CST = {v : v ∈ ST (Ui−1) ∨
v = w.c�∈ST(Ui−1)∀w ∈ ST (Ui−1)1}. For step 4) above, senders must publish the
new public keys corresponding to all nodes of CST (Ui−1) (lines 50, 56, 62, 63).

10 We overload the set theoretic symbol /∈ here for brevity.
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Receiving. For rounds in which no member sent, the recipients forward-securely
derive symmetric keys (one output group key, and one saved key) from last
round’s secrets (lines 87–88). In addition, they assign Ui ← Ui−1 (line 68), so
that senders of subsequent rounds can refresh the secrets of the senders of round
i − 1.

In case members sent in a round, a receiver determines the first message bc∗

among all sent in this round, via some definite order (e.g., lexicographic). The
receiver then retrieves from this message the ciphertext set CT for decrypting
the symmetric secret k and the first seed needed to rebuild the tree: If the receiver
sent in the last active round (in which anyone sent), it uses its individual (fresh)
secret key (lines 74–75). Otherwise, it uses the secret key of the first node on
its direct path that is the child of some node in ST (Ui−1) (lines 76–79). The
decrypted seed, as well as the rest of CT , and the public keys of the Steiner Tree
within bc∗ are then used to rebuild the secret path for the receiver, as well as
the public key tree, as described below in paragraph Construction Subroutines
(line 81). The resulting symmetric secret is then used to derive the output group
key and a new saved key (as described above for rounds without ciphertexts).

Additionally, secret keys used to decrypt ciphertexts (including those as
described in the Construction Subroutines paragraph below), are updated with
the associated data that was also decrypted from the respective ciphertexts
(lines 79, 80, 111, 112). Finally, all senders of the round are collected into Ui

and their new public keys are saved (lines 82–85) in order to later achieve post-
compromise security.

Construction Subroutines. In the common state initialization algorithm init,
a complete binary tree of n leaves with a public key at each node is initial-
ized using a list of corresponding secret keys SK init with procedure PK τ ←
genPKTree(SK init) (line 34). Also, the secret keys along the direct path to
the root of leaf u for each user are retrieved for that user, using SK u ←
getSKPath(SK init, u).

Figure 5 details the subroutines for genSTree and Rebuild (lines 50 and 81).
Subroutine genSTree is used in the snd algorithm to compute the seeds and
public keys at each node of the Steiner tree ST (Ui−1) using the seeds DK [v]
sampled for the leaves v ∈ Ui−1 (lines 46–49). For each v ∈ Ui−1, the receiver
uses DK [v] to compute the node’s secret key, public key, and (possibly) the seed
to be used for its parent (lines 97–100), continuing up the tree until there has
already been a seed generated for some node w on the path.

Rebuild is used in the rcv algorithm, by each user u to rebuild its “secret
key path” as well as the “public key tree” using the public keys of the Steiner
Tree PK ST(Ui−1), the set of ciphertexts CT , and the seed kder obtained from
CT corresponding to a node v∗ in the tree. First, for every v ∈ CST (Ui−1),
the receiver sets its public key to that which is in the dictionary PK ST(Ui−1)

(lines 104–105). Then, starting from node v∗ using kder, the receiver derives the
secret key for v∗ and a new seed for its parent if the node is the left child of its
parent. Otherwise the receiver uses the secret key just derived to decrypt the
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Fig. 4. Construction of concurrent group ratcheting in the computational model.
CBT(n) calculates the number of nodes in a complete binary tree with n leaves.
getSNode(u,ST (Ui−1)) finds the first node v on the direct path of u that is in
ST (Ui−1).

seed to be used at its parent (lines 107–113). The receiver continues up the tree
until the root is reached.

Efficiency. We here provide a short and simple proof of our communication
complexity upper bound.11

11 One might observe that using ideas from the Layered Subset Difference BE
method [21] could lower the communication complexity of our construction, how-
ever we failed to do so due to potential security issues.



222 A. Bienstock et al.

Fig. 5. Subroutines for construction upper bound. deg(v) refers to the degree of a
node v in a tree, i.e. number of children.

Lemma 1. For every round i ∈ [q], the communication costs in an execution
(n,U0

X,U1
S,U1

X, . . . ,U1
S,U q

X) are

|C[i]| = O
(

|U i
S| · |U i−1

S | ·
(

1 + log
(

n

|U i−1
S |

)))
.

We note that |C[i]| denotes the number of sent items (i.e., ciphertexts and
public keys) per round. Their individual length depends on the respectively
deployed kuPKE scheme. (In a setting that defines a security parameter, the
factor with which the communication costs are multiplied is (asymptotically)
constant in this security parameter.)

Proof. We track communication of each user u ∈ U i
S that sends in round i. From

this, the result follows easily. In round i, user u sends one ciphertext and one pub-
lic key for each v ∈ ST (U i−1

S ) (plus an additional public key for at most one child

cv of each v). It is shown in [27] that |ST (U i−1
S )1| = O

(
|U i−1

S | · log
(

n
|U i−1

S |

))
.

Moreover, it follows from the analysis in [27] that |ST (U i−1
S )2| + |U i−1

S | =
O

(
|U i−1

S |
)
. Since ST (U i−1

S ) = ST (U i−1
S )1 ∪ ST (U i−1

S )2 ∪ U i−1
S ,12 we have

accounted for each node v ∈ ST (U i−1
S ).

Therefore, each user u ∈ U i
S communicates O

(
|U i−1

S | ·
(
1 + log

(
n

|U i−1
S |

)))
information. ��

Theorem 1 (informal). Assuming secure kuPKE (as proposed in [3,24])
and PRF constructions, the construction of Fig. 4 is a secure group ratcheting
scheme according to the forward-secure variant of game KINDb

GR from Sect. 3,
with security loss at most (qRound+1) ·((�log(n)�+1) ·Advprfind

PR (BPR)+�log(n)�·
12 We overload U i−1

S to also refer to the set of leaves corresponding to the users u′ ∈
U i−1

S .
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Advkind
UE (BUE)), where n is the number of group members, qRound is the number

of executed rounds, and Advprfind
PR (BPR), Advkind

UE (BUE) are upper bounds on the
advantage of any adversaries BPR, BUE against the security of PRF and kuPKE,
respectively.

For the formal version of this theorem and the full security proof, we refer the
reader to our full version [11]. Below we provide a proof sketch that intuitively
summarizes our proof idea.

Proof (sketch). Recall that in our construction, for each round i (with senders)
initiated by the adversary, the initial secret key generated at each node in the
Steiner Tree ST (Ui−1) is derived via a PRF computation (lines 98, 108). The
key idea behind our proof is that we slowly replace these initial secret keys with
keys that are drawn uniformly from the space of secret keys. Then, we replace
all encryptions to such keys (lines 48, 54, 60) with fake ciphertexts that are
independent of the actual contents of the message. Furthermore, in the rcv()
algorithm of our hybrid experiments, we hardcode the associated data to be
used to update the secret key to which it is encrypted (lines 80, 112), so that all
users maintain consistent views of the key pairs at each node v in τ , despite the
fake ciphertexts.

However, we must be careful to only replace the secret keys and ciphertexts
which the adversary cannot compute directly because of the corruption of some
user u ∈ [n]. Specifically, after corruption of a user u ∈ [n], we generate the
secret keys along their direct path in τ as well as any ciphertexts encrypted to
these secret keys as in Fig. 4. For any node v in τ , we then wait until each of the
corrupted users corresponding to the leaves of the subtree rooted at v send in a
subsequent round. It is not until this point that we can again replace any of the
secret keys and ciphertexts in our hybrids. This does not violate security because
if some corrupted user u in the subtree rooted at v has not yet refreshed their
leaf key pair in some round i, the adversary can trivially compute the secret key
at v, as well as the output group secret of that round. Thus, the output group
secret is not considered secure for round i anyway. Moreover, by forward secrecy
of the kuPKE scheme’s updates, any ciphertexts encrypted to previous versions
of the key pair (i.e., before the latest update) of a node along the direct path of
a corrupted user u are still secure. Thus all previous secret keys along the direct
path of u and any previous output group secrets are still secure (provided that
no other users were corrupted).

Now recall that the secret key of an interior node v in ST (Ui−1) for some
round i is generated via a PRF computation on a key output at one of the
children of v (lines 98–100). Therefore, our hybrid experiments must proceed by
first replacing the secret keys (resp. subsequent encryptions to them) of leaves in
ST (Ui−1) with uniformly random (resp. fake) values, followed by the secret keys
of their parents, and so on, until we reach the root. When we reach the hybrids
corresponding to the root, for all rounds in which the adversary cannot anyway
trivially compute the uniformly random key encrypted to all users that will be
used to derive the output group secret, all ciphertexts broadcast are indepen-
dent of it. We finally add hybrids replacing the output group secret keys (line 87)
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and any intermediate saved keys for rounds with no senders (line 88) with uni-
formly random keys. Therefore, in our final hybrid, the output group secrets
for non-trivially attackable rounds are uniformly random and independent of all
ciphertexts broadcast throughout the protocol. ��

6.2 Discussion

We shortly reflect on our construction, compare it to previous works, discuss its
limitations with respect to the security model, and propose possible efficiency
improvements.

The main purpose of our protocol is to give an upper bound that confirms
our lower bound, but not to provide optimal security and maximal functionality
under concurrency. Nevertheless, our construction provides the same security as
parallel pairwise Signal executions, i.e. FS and PCS one round with non-empty
sender set after all exposed users updated their states. In addition, it provides
full concurrency for user updates unlike those in [3–5,8,14,32].

When using a variant of our construction for dynamic groups, removed mem-
bers in such groups may maliciously store secrets that they saw during their
membership for breaking confidentiality of group secrets after their membership.
Effectively solving this problem—discussed as “double-join”—could be achieved
by using ideas from protocols constructed for dynamic groups, such as MLS and
Tainted TreeKEM. Without these ideas, it would be required that siblings of all
removed users that are still in the group issue state updates before any removed
user would be unable to derive the output secrets. Yet, as we discuss below,
dynamic member changes appear to happen rather seldom in many practical
applications such that this restriction might be insignificant.

Our security model is somewhat weak: we require an honest (but curious)
mechanism that clocks rounds, we do not allow the adversary access to random
coins used by senders in a round that are not saved to their state, and we do not
allow the adversary to alter broadcast messages. Clock synchronization could,
however, be rather coarse (resulting in long round periods) as our protocol’s
speedup in reaching PCS, compared to non-concurrent alternatives that require
members to update their states one after another, is already significant. Further-
more, we note that all members processing all ciphertexts in a round (as defined
in our model) is not mandatory but allows for immediate forward-secrecy due
to kuPKE key pair updates. Processing all previous ciphertexts before sending
is usually also unproblematic as sending anyways requires a user to come online,
such that all cryptographic operations can be executed at that moment. Espe-
cially for reaching authentication and handling out-of-order receipts, tools that
are independent of our core state update mechanism can be added (maybe even
generically) to our construction. The problem of weak random coins is indeed an
open problem for concurrent group ratcheting that we leave for future research.

As stated earlier, it is not ultimately clear whether our lower bound or upper
bound is loose (or even both of them). One technique to improve our upper
bound would be to utilize more sophisticated broadcast encryption methods
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than the Complete Subtree method [27], such as the Layered Subset Differ-
ence method [21] or techniques from the recently proposed optimal broadcast
encryption scheme [1], while still preserving security. Additionally, if one allows
a slight relaxation in the model by allowing for delayed PCS, i.e. PCS in some
Δ > 1 rounds, then better communication complexity could be achieved. This
is because if users update their state in a given round i by publishing a fresh
public key, other users could send secrets to these users to help them recover in
all rounds i′ ∈ {i + 1, i + 2, . . . , i + Δ}, spreading out the communication costs
across these rounds and allowing for some adaptivity between senders therein.

6.3 Insights for Practice

We shortly summarize concepts from our construction that could enhance, and
insights from our lower bound that could influence real-world protocols (like the
MLS initiative’s design).

Almost-Immediate PCS. As mentioned many times before, immediate PCS
under t-concurrency appears to require t-party NIKE (which is currently inac-
cessible). Postponing the update of shared secrets to a reaction in the next pro-
tocol execution step, as implemented in our construction, bypasses this problem.
The major advantages of this bypass are a significant speedup for PCS, com-
pared to sequential state updates, and a maintained balanced tree structure,
compared to tree modifications, resulting in a reduced tree depth, or group par-
titions. An open question remains to analyze our scheme’s resilience against weak
randomness.

Static Groups are Practical. Some deficiencies of our protocol are only relevant
in dynamic settings. In contrast, constant groups can benefit from this construc-
tion significantly as it maintains communication complexity in all cases nearly
optimally. We emphasize that many groups in real-world applications indeed sel-
dom or never change the set of members (e.g., family groups, friendship group,
smaller working groups, etc.).

To resolve issues with respect to membership changes, the mechanism pro-
posed in Tainted TreeKEM [4] could be applied on path updates in our protocol.
Thereby, the “double-join”-problem could be prevented.

Better Solutions. In the light of our lower bound, finding better solutions for
reaching PCS under concurrency seems very complicated, if not unlikely. The
set of permitted building blocks in our symbolic model is very powerful, the
functionality required by constructions in this setting is very restricted, and the
adversarial power in the lower bound security definition is very limited. Hence,
it seems necessary to utilize “more exotic” primitives or relax the required PCS
guarantees for obtaining better constructions.
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Abstract. Off-the-Record (OTR) messaging is a two-party message
authentication protocol that also provides plausible deniability: there
is no record that can later convince a third party what messages were
actually sent. The challenge in group OTR, is to enable the sender to
sign his messages so that group members can verify who sent a message
(signatures should be unforgeable, even by group members). Also, we
want the off-the-record property: even if some verifiers are corrupt and
collude, they should not be able to prove the authenticity of a message
to any outsider. Finally, we need consistency, meaning that if any group
member accepts a signature, then all of them do.

To achieve these properties it is natural to consider Multi-Designated
Verifier Signatures (MDVS). However, existing literature defines and
builds only limited notions of MDVS, where (a) the off-the-record prop-
erty (source hiding) only holds when all verifiers could conceivably col-
lude, and (b) the consistency property is not considered.

The contributions of this paper are two-fold: stronger definitions for
MDVS, and new constructions meeting those definitions. We strengthen
source-hiding to support any subset of corrupt verifiers, and give the
first formal definition of consistency. We build three new MDVS: one
from generic standard primitives (PRF, key agreement, NIZK), one with
concrete efficiency and one from functional encryption.

1 Introduction

Encrypted and authenticated messaging has experienced widespread adoption
in recent years, due to the attractive combination of properties offered by, for
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example, the Signal protocol [Mar13]. With so many conversations happening
over the internet, there is a growing need for protocols offering security to con-
versation participants. Encryption can be used to guarantee privacy of message
contents, but authenticating messages while maintaining the properties of an
in person conversation is more involved. There are two properties of in person
conversations related to authenticity that we wish to emulate in the context of
digital conversations:

– Unforgeability, meaning that the receiver should be convinced that the mes-
sage actually came from the sender in question, and

– Off-the-record or deniability, meaning that the receiver cannot later prove to
a third party that the message came from the sender.

Off-the-record (OTR) messaging offers a solution to this in the two-party
case, enabling authentication of messages such that participants can convinc-
ingly deny having made certain statements, or even having taken part in the
conversation at all [BGB04]. The protocol deals with encrypted messages accom-
panied by a message authentication code (MAC) constructed with a shared key.
MACs work well in two-party conversations, because for parties S(ender) and
R(eciever) with a shared secret key, a MAC attests ‘this message comes from S or
R’. MACs provide unforgeability, since a party R receiving a message authenti-
cated with such a MAC knows that if this MAC verifies, the message came from
S. MACs provide off-the-record (deniable) communication as R cannot convince
a third party that a message and MAC originally came from S (since R could
have produced it just as easily). More generally, tools that provide unforgeable,
off-the-record two-party communication are known as Designated Verifier Sig-
natures (DVSs, proposed by [JSI96] and [Cha96]).

When there are multiple recipients, for example in group messaging, the situ-
ation becomes more complicated. The need for unforgeability can be generalized
as the need for all parties in the group to agree on a conversation transcript.
There are two components to this: unforgeability, as before, and consistency,
which requires that if one recipient can verify a signature, they all can. Without
the consistency property, a signer could send a message that only one recipi-
ent could verify; that recipient would then be unable to convince the rest to
accept that message, and would disagree with them about the transcript of the
conversation.

DVSs have been extended to the multiparty setting under the name of Multi-
Designated Verifier Signatures (MDVSs) (we give a number of references in
Fig. 1). One might hope that these schemes would work for off-the record group
messaging; however, it turns out that existing MDVS definitions and schemes
do not have the properties one would naturally ask for. In the following section,
we give a motivating example illustrating which properties we should actually
ask from an MDVS scheme, and we explain how existing schemes fall short of
providing them.
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1.1 A Motivating Example for MDVS

Imagine a government official Sophia who wants to blow the whistle on some cor-
rupt government activity; e.g., perhaps her colleague, Aaron, accepted a bribe.1

She wants to send a message describing this corruption to Robert, Rachel and
Rebekah, who are all Reporters at national newspapers.

Naturally, Sophia wants the Reporters to be convinced that she is the true
sender of the message. Otherwise, they would have no reason to believe—or
print—the story.

Goal 1 (Unforgeability). It is vital that each of the Reporters be able to
authenticate that the message came from Sophia.

In order to achieve unforgeability, Sophia produces a signature σ using an
MDVS scheme, and attaches it to her message. (In such a scheme, each sender has
a private signing key and each recipient has a private verification key.) However,
blowing the whistle and reporting on Aaron’s corrupt activity could put Sophia
in danger. If any of Robert, Rachel or Rebekah could use σ to demonstrate to
Aaron that Sophia blew the whistle on him, she could lose her position, or face
other grave consequences.

Goal 2 (Source-Hiding/Off-the-Record). It is vital that the Reporters be
unable to prove to an outsider (Aaron) that the message came from Sophia.

One way to guarantee that the Reporters cannot link Sophia to the message
is to require that the Reporters can simulate a signature σ themselves. Then, if
they try to implicate Sophia by showing σ to Aaron, he would have no reason
to believe them; as far as he is concerned, the Reporters could have produced σ
to try to frame Sophia.

All previous constructions only support off-the-record in the limited sense
that all of the Reporters must collaborate in order to produce a simulated sig-
nature.2 However, this is insufficient. Suppose, for instance, that Aaron knows
Rachel was undercover—and thus unreachable—for the entire time between the
bribery taking place, and Robert and Rebekah bringing σ to Aaron. Then he
1 Ring signatures [RST01] can be similarly used in this context; Sophia could use a ring

signature scheme to sign in such a way that anyone could verify that the signature
came from someone in her organization, but not that it came from her, specifically.
However, MDVS has an advantage here, since it is possible that Aaron only doubts
the trustworthiness of one of his colleagues; if Sophia uses a ring signature, that
signature would convince Aaron that she was the signer, but if she uses an MDVS
signature, Aaron wouldn’t know whether she was the true signer, or whether the
signature was just a simulation (even if Sophia was his only suspect).

In the context of a group off-the-record conversation, MDVS signatures are clearly
the right tool, as members of the group should learn the identity of the sender of
each message.

2 One previous work [Tia12] allows a single verifier to simulate a signature. However,
in this construction a simulated signature created by a malicious verifier will look
like a real signature for all other designated verifers, violating unforgeability.
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would conclude that Rachel could not have collaborated in simulating σ, and so
it must be genuine. Even with the off-the-record definition used in prior works,
it is still possible that some subset of the Reporters would be able to impli-
cate Sophia in the eyes of Aaron. We therefore need a stronger off-the-record
defintion.

Contribution 1 (Off-The-Record For Any Subset). We give a stronger
definition of the off-the-record property, where any subset of Reporters must be
able to simulate a signature. A simulation looks like a genuine signature to an
outsider, even given the verification keys of the subset that produced it (as well
as a number of other signatures that are guaranteed to be genuine).

Under our stronger definition, no set of Reporters is able to use σ to provably
tie Sophia to the message even if Aaron has side information about communi-
cation amongst the Reporters as well as guaranteed-to-be-genuine signatures.

Remark 1 (The Tension Between Off-The-Record and Unforgeability). Note
that, if Rachel did not participate in Robert and Rebekah’s signature simula-
tion (e.g. if she was undercover at the time), she will later be able to distinguish
the simulation from a real signature produced by Sophia. Otherwise, Robert and
Rebekah would have succeeded in producing a forgery that fools Rachel.

This means that under a sufficiently strong model of attack, we cannot have
unforgeability and off-the-record at the same time. Namely, suppose Aaron first
gets a signature σ from Robert and Rebekah, while preventing them from com-
municating with Rachel. Then he coerces Rachel into giving him her secret ver-
ification key. By the unforgeability property, he can use this key to tell if σ is a
simulation. (Note that Aaron will be able to tell whether Rachel gives him her
true verification key, since he may have other signatures from Sophia that he
knows are genuine that he can use to test it. So, she has no choice but to hand
over her real verification key.)

Given this observation, we choose to explore the model where the secret
keys of all coerced/corrupted verifiers (but not honest ones) can be used to
simulate a signature, as this is the strongest model of attack in which both
unforgeability and off-the-record can be achieved. As we shall see, even in this
model, achieving both properties requires highly non-trivial constructions and
implies a lower bound on the size of signatures.

Finally, let us fast forward to the moment when Robert, Rachel and Rebekah
receive Sophia’s message. They want to print this high-profile story as soon
as possible, but of course they want to be sure they won’t make themselves
look foolish by printing the story if their colleagues—the other well-respected
Reporters listed as recipients—don’t believe it actually came from Sophia. The
concern here is that Sophia could be dishonest and her actual goal could be
to discredit the Reporters. Hence we need another property—consistency, or
designated verifier transferability.
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Goal 3 (Consistency/Designated Verifier Transferability). It is desir-
able that, even if Sophia is malicious, if one of the Reporters can authenticate
that the message came from Sophia, all of them can.

Contribution 2. We provide the first formal definition of consistency.

Now that we have covered the basic storyline, let us consider a few possible
plot-twists. First, what if Aaron is tapping the wires connecting the government
building to the outside world? Then he will see Sophia’s message—together with
her signature σ—as she sends it to the Reporters. In such a situation, we would
want the signature σ not to give Sophia—or the Reporters—away.

Goal 4 (Privacy of Identities). It is desirable that σ shouldn’t reveal Sophia’s
or the Reporters’ identities3. When only the signer’s—Sophia’s—identity is hid-
den, this property is called privacy of signer identity (PSI).

Next, what if, at the time at which Sophia has the opportunity to send
out her message, she cannot look up Rebekah’s public key securely—perhaps
because Rebekah has not yet set up an account on the secure messaging system
Sophia uses? Then, it would be ideal for Sophia to need nothing other than
Rebekah’s identity (and some global public parameters) in order to include her
as a designated verifier. Rebekah would then be able to get the appropriate
key from a trusted authority such as the International Press Institute4 (having
proved that she is, in fact, Rebekah), and would be able to use that key to verify
Sophia’s signature.

Goal 5 (Verifier-Identity-Based (VIB) Signing). It is desirable that
Sophia should only need the Reporters’ identities, not their public keys, in order
to produce her designated verifier signature.

Contribution 3. We give the first three constructions that achieve unforge-
ability, off-the-record with any-subset simulation, and consistency. One of them
additionally achieves privacy of identities and verifier-identity-based signing.

The third construction achieves privacy of verifiers identities (PVI) even if
the secret signing key is leaked (but not the random coins used to produce
the signature). This is a stronger flavor of the PVI notion with more possible
applications, such as Post-Compromise Anonymity guarantees.
3 Note that privacy of identities is related to—but very different from—off-the-record.

Neither of these definitions is strictly stronger than the other. Privacy of identities
is weaker in that it assumes that none of the Reporters help in identifying Sophia
as the sender, while off-the-record makes no such assumptions. However, privacy of
identities is stronger in that it requires that σ alone reveal nothing about Sophia’s
identity to anyone other than the Reporters; off-the-record allows such leakage, as
long as it is not provable.

4 This trusted authority can also be distributed; perhaps the master secret is secret-
shared across several different institutions, who must collaborate in order to produce
a secret verification key.
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This last construction, may, at first glance, seem strictly better; however,
the price it pays is two-fold: It uses functional encryption (which requires strong
computational assumptions), and it requires an involved trusted setup in which
a master secret is used to derive verifier keys. Note that such a trusted setup is
clearly necessary in order to achieve verifier-identity-based signing.

In contrast, our first two constructions can be instantiated either in the ran-
dom oracle model, or with a common reference string—in both cases avoiding
the need for a master secret key. They use only standard primitives such as
pseudorandom functions, pseudorandom generators, key agreement and NIZKs.
The first construction uses these primitives in a black-box way; the second con-
struction uses specific instances of these primitives, for concrete efficiency.

In the following subsections, we give an overview of previous work and then
discuss our results in more detail. The main challenge of building stronger MDVS
schemes is combining the three core properties we strive for: unforgeability, off-
the-record for any subset, and consistency. This is highly non-trivial.

1.2 Flavors of Multi-designated Verifier Signatures

There are many ways to define MDVS and its properties. Figure 1 summarizes
the approaches taken by prior work, compared to our own.

Verification. There are several different flavors of verification. In some MDVS
schemes, even a single designated verifier cannot link a signature to the signer;
the designated verifiers need to work together in order to verify a signature. Thus,
we have two notions of verification: local verification and cooperative verification
(where all designated verifiers need to cooperate in order to verify the signature).

Remark 2. In the schemes with cooperative verification, we need not additionally
require consistency, since we have it implicitly: verifiers will agree on the verifi-
cation decision they reach together. The notion of consistency is non-interactive,
and more challenging to achieve in schemes with local verification.

Simulation. Recall that the off-the-record property states that an outsider can-
not determine whether a given signature was created by the signer or simulated
by the designated verifiers. We have three flavors of such simulateability: one
designated verifier (out of n) can by himself simulate a signature (as done by
[Tia12])5, all designated verifiers need to collude in order to simulate a signature
(all other works on MDVS), or any subset of the designated verifiers can simu-
late a signature (this paper). Of course, the simulated signature should remain
indistinguishable from a real one even in the presence of the secrets held by the
simulating parties.
5 If only one designated verifier can simulate a signature, it must be distinguishable

from a real signature by other verifiers (by the strong unforgeability property). Two
colluding verifiers would be able to prove to an outsider that a given signature is not
a simulation by showing that it verifiers for both of them. So, any-subset simulation
gives strictly stronger off-the-record guarantees than one-verifier simulation.
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Unforgeability. There is also the standard security property of signature schemes,
which is unforgeability ; no one (except the signer) should be able to construct a
signature that any verifier will accept as a valid signature from that signer. There
are two flavors of unforgeability. The first is weak unforgeability, where desig-
nated verifiers can forge, but others cannot. The second is strong unforgeability,
where a designated verifier can distinguish between real signatures and signa-
tures simulated by other verifiers; that is, even other designated verifiers cannot
fool a verifier into accepting a simulated signature.6 (In the weak unforgeability
game, the adversary does not have access to any designated verifier keys; in the
strong unforgeability game, the adversary is allowed access to some such keys.)
Since strong unforgeability is the notion of unforgeability we require, in the
rest of this paper, unforgeability refers to strong unforgeability (unless otherwise
specified).

Fig. 1. MDVS constructions and their properties. Let D be the set of designated veri-
fiers, and t ≤ |D| be an upper bound on the set of colluding designated verifiers C ⊆ D.

1.3 Our Contributions

We propose formal definitions of all the relevant security properties of MDVS
in the strongest flavor, including the definition of off-the-record with any-subset
simulation. We also give the first formal (game based) definition of consistency,
where a corrupt signer can collude with some of the designated verifiers to create
an inconsistent signature.
6 Note that when all designated verifiers are needed for the simulation, then a des-

ignated verifier will be able to distinguish a simulation from a real signature based
on whether he participated in the simulation of the signature. However, if this is
the only way he can distinguish, then the signature scheme has weak unforgeability,
since the simulated signature is still a valid forgery.
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Fig. 2. Our MDVS Constructions and Building Blocks

We then give several different constructions of MDVS that achieve these
properties, including local verification, off-the-record with any-subset simulation,
and strong unforgeability. Our constructions, and the tools they require, are
mapped out in Fig. 2. In particular, these are the first constructions that combine
any-subset simulation and with strong unforgeability, as described in Fig. 1. We
get these results at the expense of signature sizes that are larger than in some of
the earlier constructions. However, this is unavoidable, as shown in Theorem1
below.

Theorem 1. Any MDVS with any-subset simulation and strong unforgeability
must have signature size Ω(|D|).
Remark 3. It may seem from the table that our functional encryption based
scheme contradicts the theorem, but this is not the case. It can be instantiated
such that signatures can be simulated by collusions up to a certain maximal size
t, and then signatures will be of size Ω(|C|). However, if we want any subset to
be able to simulate, the signature size is Ω(|D|), in accordance with the theorem.

Proof. Imagine that we give all the verifiers’ keys to a sender and a receiver;
the sender can now encode an arbitrary subset C ⊆ D by letting C construct a
simulated signature σ on some default message, and sending it to the receiver.
The receiver can infer C from σ: by strong unforgeability, all verifiers’ keys outside
C will reject σ, whereas keys in C will accept, since we require the simulation to
look convincing even given the secret keys in C. It follows that σ must consist of
enough bits to determine C, which is log2(2|D|) = |D|. ��
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Why First Ideas Fail

Using MACs. Black-box usage of a standard MAC scheme cannot help us com-
bine unforgeability with consistency.7 There are two straightforward ways to use
a standard MAC scheme in this context: sharing a MAC key among the entire
group, and sharing MAC keys pairwise. Sharing a single key does not provide
the desired notion of unforgeability, since any member of the group can forge
messages from any other member. Sharing keys pairwise does not provide the
desired notion of consistency. If recipients R1 and R2 are the chosen recipients
of a message, and R1 receives a message he accepts as coming from S, he cannot
be sure that R2 would also accept that message: If S is corrupt, he could include
a valid MAC for R1 and an invalid MAC for R2.

Using Proofs of Knowledge. A standard technique for making designated verifier
signatures for a single verifier is to start from an interactive protocol that proves
knowledge of either the signer’s or the verifier’s secret key, and turn this into a
signature scheme using the Fiat-Shamir paradigm. It may seem natural to try
to build an MDVS from this. However, it turns out to be challenging to achieve
strong unforgeability using this technique; a signature cannot consist of a proof
of knowledge of the signer’s or one of the verifiers’ secret keys, since any verifier
will be able to convince other verifiers to accept a signature that did not come
from the signer. For the same reason, a signature cannot consist of a proof of
knowledge of the signer’s secret key or some subset of the verifiers’ secret keys.

MDVS from Standard Primitives. Our first class of MDVS constructions
is based only on standard primitives. With one exception specified below, all
of these constructions can be instantiated in the random oracle model with no
trusted setup. (Without random oracles, we would need to set up a common
reference string.)

The idea is that the signer creates a DVS signature for each verifier indi-
vidually, and then proves the consistency of those signatures.8. To support such
proofs, we define a new primitive called Publicly Simulatable Designated Ver-
ifier Signatures (PSDVS) in Sect. 3.1, which is a single-verifier DVS equipped
with extra properties. We then show, in Sect. 3.2, that a PSDVS together with a
non-interactive zero knowledge proof of knowledge (NIZK-PoK) imply an MDVS
for any number of signers and verifiers. Finally, we give some constructions of
PSDVS. Our first PSDVS construction (in Sect. 3.3) uses only generic tools,
namely psedudorandom functions, non-interactive key exchange (such as Diffie-
Hellman), and non-interactive zero-knowledge proofs of knowledge. Our second
PSDVS construction (in Sect. 3.4) aims at better concrete efficiency. It is based

7 Note that our construction from standard primitives does make use of MAC schemes;
however, it does so in a complex, non-black-box way.

8 Simply proving that all of the signatures verify would violate the off-the-record
property; instead, the signer proves that either all of the signatures are real, or they
are all simulated, as described in Sect. 3.
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on DDH, strong RSA and Paillier encryption, is secure in the random oracle
model, and requires a constant number of exponentiations for all operations.
This scheme requires the trusted generation of an RSA modulus so that the fac-
torization remains unknown. We also sketc.h a variant that requires no trusted
setup, is secure in the random oracle model, and only requires (a variant of) the
DDH assumption. However, this version requires double discrete log proofs, and
therefore requires a non-constant number of exponentiations.

In order to support one of our constructions in which the signer sends an
encrypted MAC key, we introduce a new tool we call Authenticated and Verifi-
able Encryption (AVPKE), which may be of independent interest. This is a vari-
ant of Paillier encryption with built-in authentication, and as such it is related to
the known primitive “signcryption” [Zhe97]. However, our AVPKE scheme has
the additional property that we can give efficient zero-knowledge proofs involving
the encrypted message, using the algebraic properties of Paillier encryption.

To sign in our PSDVS schemes, the signer and verifiers first must establish
a shared symmetric key k. In some cases they can do this non-interactively,
using their secret and public keys, while in other cases the signer must send an
encrypted key alongside the signature. After this, the signer sends a MAC on
the message under key k; this MAC is based on a pseudorandom function.

MDVS from Functional Encryption. Our last construction is based on
Verifiable Functional Encryption (VFE). It has the advantages of additionally
meeting the privacy of identities and verifier-identity-based signing properties.
Additionally, it can be set up to have smaller signatures if we are willing to
make a stronger assumption on the number of colluding verifiers. Namely, the
signature size is O(t), where t is the size of the largest number of colluding
verifiers we want to tolerate. The downsides are that, with current state of the
art, VFE requires non-standard computational assumptions and a trusted setup.

Remark 4. If we are going to put a bound on the size of a collusion, it may seem
we can use bounded collusion FE, which can be realized from standard assump-
tions [GVW12,AV19], and then there is no need for our other constructions from
standard primitives. However, this is not true. Bounded collusion FE requires us
to fix the bound on collusion size at key generation time; a bound that may later
turn out to be too small. Additionally, ciphertext sizes in bounded collusion FE
depend on the bound; thus, choosing a large bound to make sure we can handle
the application implies a cost in efficiency. The MDVS signature sizes would
depend on some upper bound on number of corrupt parties in the system, as
opposed to on the number of recipients for the signature in question, which may
be orders of magnitude smaller.

In a nutshell, the idea behind the functional encryption based construction
is to do the proof of knowledge of one of the relevant secret keys “inside the
ciphertext”. In a little more detail, the idea is to encrypt a list of t standard
signatures, where t is the maximal size of collusion we want to protect against
(that is, t ≥ |C|), and the MDVS signature will simply be this ciphertext. To sign,
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the signer will generate their own standard signature σS on the message, and
then encrypt a list a signatures consisting of σS followed by t−1 dummy values.
To verify a signature, a verifier R gets a functional decryption key that will look
at the list of signatures inside the ciphertext and output accept or reject. It will
accept if the list contains a valid signature from S or a valid signature from R.
Now, if a corrupt set of verifiers C wants to simulate a signature, they will all
sign the message and encrypt the list of these signatures. By security of the
encryption scheme, this looks like a real signature, and will indeed verify under
all verification keys belonging to verifiers in C. However, no honest verifier will
accept it as a signature from S, so we have strong unforgeability.

2 Multi-designated Verifier Signatures

MDVS Algorithms. A multi-designated verifier signature (MDVS) scheme is
defined by the following probabilistic polynomial-time algorithms:

Setup(1κ) → (pp,msk): On input the security parameter κ ∈ N, outputs public
parameters pp and the master secret key msk.

SignKeyGen(pp,msk) → (spk, ssk): On input the public parameter pp and the
master secret key msk, outputs the public key spk and secret key ssk for a
signer.

VerKeyGen(pp,msk) → (vpk, vsk): On input the public parameter pp and the
master secret key msk, outputs the public key vpk and secret key vsk for a
verifier.

Sign(pp, sski, {vpkj}j∈D,m) → σ: On input the public parameters pp, a secret
signing key sski, the public keys of the designated verifiers {vpkj}j∈D, and a
message m, outputs a signature σ.

Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ) → d: On input the public parameters pp,
a public verification key spki, a secret key vskj of a verifier such that j ∈ D,
the public keys of the designated verifiers {vpkj}j∈D, a message m, and a
signature σ, outputs a boolean decision d: d = 1 (accept) or d = 0 (reject).

Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m) → σ′: On input public parameters pp,
a public verification key spki, the public keys of the designated verifiers
{vpkj}j∈D, the secret keys of the corrupt designated verifiers {vskj}j∈C , and
a message m, outputs a simulated signature σ′.

The different algorithms take many different inputs, which are not all needed for
all of our constructions. Thus, to simplify the notation we exclude these inputs
in later sections whenever they are not needed.

MDVS Properties. Let σ be a signature from signer i on message m and
designated for verifiers D. We ask for the following (informal) properties:

Correctness: All verifiers j ∈ D are able to verify an honestly generated signa-
ture σ.
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Consistency: If there exists one verifier j ∈ D that accepts the signature σ,
then all other designated verifiers (i.e. all j′ ∈ D\{j}) also accept σ.

Unforgeability: An adversary without knowledge of the secret key sski for
signer i cannot create a signature σ′ that is accepted by any designated verifier
as a signature from signer i.

Off-The-Record: Given a signature σ, any malicious subset of the designated
verifiers C ⊆ D cannot convince any outsider that σ is a signature from signer
i (i.e. the malicious set could have simulated the signature themselves).

(Optionally) Privacy of Identities: Any outsider (without colluding with
any designated verifiers) cannot determine the identity of the signer and/or
the identities of the designated verifiers.

(Optionally) Verifier-Identity-Based Signing: The signer should be able
to produce a signature for a set of designated verifiers without requiring any
information about them apart from their identities. In other words, we should
have vpkj = j for a verifier with identity j.

Throughout our formal definitions we use the following six oracles:

Signer Key Generation Oracle: OSK(i)
1. If a signer key generation query has previously been performed for i, look

up and return the previously generated key.
2. Otherwise, output and store (spki, sski) ← SignKeyGen(pp,msk).

Verifier Key Generation Oracle: OV K(j)
1. If a verifier key generation query has previously been performed for j,

look up and return the previously generated key.
2. Otherwise, output and store (vpkj , vskj) ← VerKeyGen(pp,msk).

Public Signer Key Generation Oracle: OSPK(i)
1. (spki, sski) ← OSK(i).
2. Output spki.

Public Verifier Key Generation Oracle: OV PK(j)
1. (vpkj , vskj) ← OV K(j).
2. Output vpkj .

Signing Oracle: OS(i,D,m)
1. (spki, sski) ← OSK(i).
2. For all j ∈ D: vpkj ← OV PK(j).
3. Output σ ← Sign(pp, sski, {vpkj}j∈D,m).

Verification Oracle: OV (i, j,D,m, σ)
1. spki ← OSPK(i).
2. (vpkj , vskj) ← OV K(j).
3. Output d ← Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ).

Definition 1 (Correctness). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
MDVS is correct if for all signer identities i, messages m, verifier identity sets
D and j ∈ D, it holds that

Pr
[
Verify(pp, spki, vskj , {vpkj′}j′∈D,m, σ) 	= 1

]
= 0,
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where the inputs to Verify are generated as follows:

– (pp,msk) ← Setup(1κ);
– (spki, sski) ← SignKeyGen(pp,msk, i);
– (vpkj , vskj) ← VerKeyGen(pp,msk, j) for j ∈ D;
– σ ← Sign(pp, sski, {vpkj}j∈D,m).

In Definition 1, we require that all the designated verifiers can verify the
signature, without considering what happens for parties that are not designated
verifiers (i.e. parties who should not be able to verify the signature). Parties that
are not designated verifiers are accounted for by the off-the-record property.

Definition 2 (Consistency). Let κ ∈ N be the security parameter, and let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme.
Consider the following game between a challenger and an adversary A:

Gamecon
MDVS,A(κ)

1. (pp, msk) ← Setup(1κ)

2. (m∗, i∗, D∗, σ∗) ← AOSK ,OV K ,OSP K ,OV P K ,OV (pp)

We say that A wins the game if there exist verifiers j0, j1 ∈ D∗ such that:

Verify(pp, spki∗ , vskj0 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 0,

Verify(pp, spki∗ , vskj1 , {vpkj′}j′∈D∗ ,m∗, σ∗) = 1,

where all keys are the honestly generated outputs of the key generation oracles,
and OV K is never queried on j0 or j1.
MDVS is consistent if, for all PPT adversaries A,

advcon
MDVS,A(κ) = Pr

[A wins Gamecon
MDVS,A(κ)

] ≤ negl(κ).

Definition 2 states that even a valid signer (i.e. someone who knows a secret
signing key) cannot create an inconsistent signature that will be accepted by
some designated verifiers and rejected by others. By the correctness property, an
honestly generated signature is accepted by all designated verifiers. By design,
corrupt designated verifiers can construct an inconsistent signature, since some
verifiers will accept it (i.e. those verifiers that created it), while the remaining
honest designated verifiers will reject the simulated signature. Thus, we need to
ask for j 	= j0, j1 for all queries j to the oracle OV K .

Definition 3 (Existential Unforgeability). Let κ ∈ N be the security
parameter, and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be
an MDVS scheme. Consider the following game between a challenger and an
adversary A:
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Gameeuf
MDVS,A(κ)

1. (pp, msk) ← Setup(1κ)

2. (m∗, i∗, D∗, σ∗) ← AOSK ,OV K ,OSP K ,OV P K ,OS (pp)

We say that A wins the game if we have all of the following:

– for all queries i to oracle OSK , it holds that i∗ 	= i;
– for all queries (i,D,m) to oracle OS that result in signature σ, it holds that

(i∗,D∗,m∗) 	= (i,D,m);
– there exists a verifier j′ ∈ D∗ such that for all queries j to oracle OV K , it

holds that j′ 	= j and

Verify(pp, spki∗ , vskj′ , {vpkj′′}j′′∈D∗ ,m∗, σ∗) = 1,

where all keys are honestly generated outputs of the key generation oracles.

MDVS is existentially unforgeable if, for all PPT adversaries A,

adveuf
MDVS,A(κ) = Pr

[
A wins Gameeuf

MDVS,A(κ)
]

≤ negl(κ).

Definition 3 states that an adversary cannot create a signature that any hon-
est verifier will accept as coming from a signer whose secret signing key the adver-
sary does not know. The adversary will always get the public keys of the involved
parties, i.e. signer with identity i∗ and the designated verifiers D, through the
key generation oracles. He is also allowed to obtain the secret keys of every party
except the signer i∗ and at least one designated verifier. The reason why we need
at least one honest verifier is that corrupt verifiers can create a simulated signa-
ture that will look like a real signature with respect to their own verifier secret
keys. However, this simulation will be rejected by any honest designated verifier,
i.e. the simulation will be a valid forgery for the corrupt verifiers, but not for
the honest verifiers.

Definition 4 (Off-The-Record). Let κ ∈ N be the security parameter, let
MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS scheme,
and let t be an upper bound on the number of verifiers an adversary A can cor-
rupt. Consider the following game between a challenger and a stateful adversary
A, where all keys are honestly generated outputs of the key generation oracles:

Gameotr
MDVS,Sim,A(κ)

1. (pp, msk) ← Setup(1κ)

2. (i∗, D∗, m∗, C∗) ← AOSK ,OV K ,OSP K ,OV P K ,OS,OV (pp)
3. b ← {0, 1}
4. σ0 ← Sign(pp, sski∗ , {vpkj}j∈D∗ , m∗)
5. σ1 ← Sim(pp, spki∗ , {vpkj}j∈D∗ , {vskj}j∈C∗ , m∗)
6. b′ ← AOSK ,OV K ,OSP K ,OV P K ,OS,OV (σb)
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We say that A wins the game if b′ = b, and all of the following hold:

– |C∗| ≤ t and C∗ ⊆ D∗;
– for all queries i to oracle OSK it holds that i∗ 	= i;
– for all queries j to oracle OV K it holds that j /∈ D∗\C∗;
– for all queries (i, j,D,m, σ) to OV it holds that σb 	= σ.

We say that an MDVS scheme is t-off-the-record if, for all PPT adversaries A,

advotr
MDVS,Sim,A(κ) = Pr

[A wins Gameotr
MDVS,Sim,A(κ)

] − 1
2

≤ negl(κ).

If a scheme supports t = |D|, we say that it is off-the-record.

Definition 4 states that any adversary that corrupts a subset (of size t) of
the designated verifiers C∗ cannot determine whether the received signature was
created by real signer i∗ or simulated by the corrupt verifiers C∗. The adversary
is not allowed to see the secret keys for the designated verifiers that are in D∗\C∗.
If the adversary was allowed to get secret keys of additional parties in D∗ (which
are not in C∗), then he would be able to distinguish trivially, since any honest
designated verifiers (i.e. any j ∈ D∗\C∗) can distinguish simulated signatures
from real signatures (from the unforgeability property).

Definition 5 (Privacy of Identities). Let κ ∈ N be the security parameter,
and let MDVS = (Setup,SignKeyGen,VerKeyGen,Sign,Verify,Sim) be an MDVS
scheme. Consider the following game between a challenger and a stateful adver-
sary A, where all keys are the honestly generated outputs of the key generation
oracles:

Gamepri
MDVS,A(κ)

1. (pp, msk) ← Setup(1κ)

2. (m∗, i0, i1, D0, D1) ← AOSK ,OV K ,OSP K ,OV P K ,OS,OV (pp)
3. b ← {0, 1}
4. σ∗ ← Sign(pp, sskib

, {vpkj}j∈Db
, m∗)

5. b′ ← AOSK ,OV K ,OSP K ,OV P K ,OS,OV (σ∗)

We say that A wins the game if b = b′, and all of the following hold:

– |D0| = |D1|;
– for all queries i to OSK , it holds that i /∈ {i0, i1};
– for all gueries j to OV K , it holds that j /∈ D0 ∪ D1;
– for all queries (i, j,D,m, σ) to OV , it holds that σ∗ 	= σ.

MDVS has privacy of identities if, for all PPT adversaries A,

advpri
MDVS,A(κ) = Pr

[
A wins Gamepri

MDVS,A(κ)
]

− 1
2

≤ negl(κ).

We say that MDVS has additional properties as follows:

– privacy of the signer’s identity (PSI) if we make the restriction that D0 = D1;



244 I. Damg̊ard et al.

– privacy of the designated verifiers’ identities (PVI) if we make the restriction
that i0 = i1.

Definition 5 states that an adversary cannot distinguish between signatures
from two different signers (PSI) if he does not know the secret key of any of
the signers or designated verifiers (as designated verifiers are allowed to identify
the signer). Furthermore, it should not help him to see other signatures that he
knows are from the signers in question.

In addition, if we vary the verifier sets (D0 	= D1), then the MDVS scheme has
privacy of designated verifier’s identities (PVI), which means that any outsider
without knowledge of any secret keys cannot distinguish between signatures
meant for different verifiers.

Definition 6 (Verifier-Identity-Based Signing). We say that an MDVS
scheme has verifier-identity-based signing if for honestly generated verifier keys
(vskj , vpkj) for verifier with identity j, we have vpkj = j.

Note that, in order to achieve verifier-identity-based signing, verifier key gen-
eration must require a master secret key msk. Otherwise, any outsider would be
able to generate a verification key for verifier j, and use it to verify signatures
meant only for that verifier.

Relation to Previous Definitions. Our definition of MDVS is consistent with
previous work in this area, but with some differences. Our MDVS syntax closely
follows the one introduced by [LV04], but we allow for a master secret key in the
case where the keys are generated by a trusted party (like in our construction
based on functional encryption). Our security definitions are adapted from those
in [LV04,ZAYS12] to capture the flexibility introduced by allowing any subset
of designated verifiers to simulate a signature, thus providing better deniabil-
ity properties. Finally, we formalize consistency as an additional and desirable
requirement.

3 Standard Primitive-Based MDVS Constructions

In this section we show how to create an MDVS scheme that uses only standard
primitives, such as key exchange, commitments, pseudorandom functions and
generators, and non-interactive zero knowledge proofs.

On a high level, one way to build an MDVS is for the signer to use a sepa-
rate DVS with each verifier; the MDVS signature would then consist of a vector
of individual DVS signatures. This gives us almost everything we need—the
remaining issue is consistency. Each verifier can verify one of the DVS signa-
tures, but is not convinced that all of the other verifiers will come to the same
conclusion.

A solution to this consistency issue is to include as part of the MDVS signa-
ture a zero knowledge proof that all of the DVS signatures verify. However, this
introduces a new issue with off-the-record. Now, a colluding set of verifiers will
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not be able to simulate a signature unless all of the verifiers collude. In order to
produce such a convincing zero knowledge proof as part of the signature, they
would need to forge signatures for the other verifiers in the underlying DVS
scheme, which they should not be able to do.

So, instead of using a zero knowledge proof of knowledge that all of the DVS
signatures verify, we use a proof that either all of the DVS signatures verify, or
they are all simulated. Then, a corrupt set of verifiers can simulate all of the
underlying DVS signatures—with the caveat that the signatures they simulate
for themselves should be convincing simulations even in the presence of their
secret keys—and, instead of proving that all of the signatures verify, they prove
that all of the signatures are simulations.

3.1 New Primitive: Provably Simulatable Designated-Verifier
Signatures (PSDVS)

Designated Verifier Signatures (DVS) have a simulation algorithm Sim which
is used to satisfy the off-the-record property. Given the signer’s public key, the
verifier’s secret key and a message m, Sim should return a signature which is
indistinguishable from a real signature. A Provably Simulatable DVS (PSDVS)
has some additional properties:

Definition 7. A PSDVS must satisfy the standard notions of correctness and
existential unforgeability. Additionally, it should satisfy PubSigSim indstin-
guishability (Definition 8), PubSigSim correctness (Definition 9), PubSigSim
soundness (Definition 10), VerSigSim indstinguishability (Definition 11), Ver-
SigSim correctness (Definition 12), VerSigSim soundness (Definition 13), prov-
able signing correctness (Definition 14), and provable signing soundness (Defi-
nition 15).

Provable Public Simulation. As in PSI (Definition 5), anyone should be able
to produce a signature that is indistinguishable from a real signature. Addition-
ally, the party simulating the signature should be able to produce a proof that
this is not a real signature. This proof will be incorporated into the MDVS
proof of consistency; the colluding verifiers, when producing a simulation, need
to prove that all underlying PSDVS signatures are real, or that they are all fake.

In other words, we require two additional algorithms, as follows:

1. PubSigSim(pp, spk, vpk,m) → (σ, π)
2. PubSigVal(pp, spk, vpk,m, σ, π) → d ∈ {0, 1}

The colluding verifiers will produce a public simulation in the underlying
PSDVS for verifiers outside their coalition, and use PubSigSim to prove that this
simulation is not a real signature. π will not be explicitly included in the proof
of “the underlying PSDVS signatures are all real or all fake,” of course, as it
would give away the fact that all underlying signatures are fake, as opposed to
all being real; rather, it will be wrapped in a larger zero knowledge proof.
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Definition 8 (PubSigSim Indistinguishability). We say that the PSDVS
has PubSigSim Indistinguishability if PubSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GamePubSigSim-Ind
PVDVS,A (κ)

1. pp ← Setup(1κ)
2. (spk, ssk) ← SignKeyGen(pp)
3. (vpk, vsk) ← VerKeyGen(pp)

4. m∗ ← AOS,OV (spk, vpk)
5. b ← {0, 1}
6. σ0 ← Sign(pp, ssk, vpk, m∗)
7. (σ1, π) ← PubSigSim(pp, spk, vpk, m∗)
8. b′ ← AOS,OV (pp, spk, vpk, m∗, σb)

We say that A wins the PubSigSim-Ind game if b = b′ and for all queries
(m,σ) to OV , it holds that (m,σ) 	= (m∗, σb).

Definition 9 (PubSigSim Correctness). We say that the PSDVS has Pub-
SigSim Correctness if for all pp ← Setup(1κ); (spk, ssk) ← SignKeyGen(pp);
(vpk, vsk) ← VerKeyGen(pp); m ∈ {0, 1}∗; (σ, π) ← PubSigSim(pp, spk, vpk,m);

Pr[PubSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 10 (PubSigSim Soundness). We say that the PSDVS has Pub-
SigSim Soundness if it is hard to construct a signature σ which is accepted by the
verifier algorithm and at the same time can be proven to be a simulated signa-
ture. More formally, an adversary should not be able to win the following game
with non-negligible probability:

GamePubSigSim-Sound
PVDVS,A (κ)

1. pp ← Setup(1κ)
2. (spk, ssk) ← SignKeyGen(pp)
3. (vpk, vsk) ← VerKeyGen(pp)
4. (m∗, σ∗, π∗) ← A(pp, ssk, spk, vpk)

We say that A wins the PubSigSim-Sound game if Verify(pp, vsk,m∗, σ∗) = 1
and PubSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

Provable Verifier Simulation. As in off-the-record (Definition 4), a verifier
should be able to produce a signature that is indistinguishable from a real signa-
ture, even given its secret key. Additionally, the verifier should be able to produce
a proof that the signature is not a real signature (that is, that the verifier, and
not the signer, produced it). This proof will be incorporated into the MDVS
proof of consistency.

In other words, we require two additional algorithms, as follows:

1. VerSigSim(pp, spk, vpk, vsk,m) → (σ, π)
2. VerSigVal(pp, spk, vpk,m, σ, π) → d ∈ {0, 1}
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The colluding verifiers will produce a verifier simulation in the underlying
PSDVS for verifiers inside their coalition, and use VerSigSim to prove that this
simulation is not a real signature.

Definition 11 (VerSigSim Indistinguishability). We say that the PSDVS
has VerSigSim Indistinguishability if VerSigSim produces a signature σ that is
indistinguishable from real. More formally, an adversary should not be able to
win the following game with probability non-negligibly more than half:

GameV erSigSim-Ind
PVDVS,A (κ)

1. pp ← Setup(1κ)
2. (spk, ssk) ← SignKeyGen(pp)
3. (vpk, vsk) ← VerKeyGen(pp)

4. m∗ ← AOS (pp, spk, vpk, vsk)
5. b ←$ {0, 1}
6. σ0 ← Sign(pp, ssk, vpk, m∗)
7. (σ1, π) ← VerSigSim(pp, spk, vsk, m∗)
8. b′ ← AOS (pp, spk, vpk, vsk, m∗, σb)

We say that A wins the VerSigSim-Ind game if b = b′.

Definition 12 (VerSigSim Correctness). We say that the PSDVS
has VerSigSim Correctness if for all pp ← Setup(1κ), (spk, ssk) ←
SignKeyGen(pp), (vpk, vsk) ← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π) ←
VerSigSim(pp, spk, vpk, vsk,m),

Pr[VerSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 13 (VerSigSim Soundness). We say that the PSDVS has Ver-
SigSim Soundness if the signer is not able to produce σ and π that pass the val-
idation check VerSigVal, i.e. π is a proof that σ was not produced by the signer.
More formally, an adversary should not be able to win the following game with
non-negligible probability:

GameV erSigSim-Sound
PVDVS,A (κ)

1. pp ← Setup(1κ)
2. (spk, ssk) ← SignKeyGen(pp)
3. (vpk, vsk) ← VerKeyGen(pp)
4. (m∗, σ∗, π∗) ← A(pp, ssk, spk, vpk)

A wins the VerSigSim-Sound game if VerSigVal(pp, spk, vpk,m∗, σ∗, π∗) = 1.

Provable Signing. Lastly, we require a provable variant of signing, so that the
signer is able to produce a proof that a signature is real. In other words, we
require the signing algorithm Sign(pp, spk, ssk, vpk,m) → (σ, π) to output π as
well. We also require one additional validation algorithm, as follows:

RealSigVal(pp, spk, vpk,m, σ, π) → d ∈ {0, 1}
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Definition 14 (Provable Signing Correctness). We say that the PSDVS
has Provable Signing Correctness if ∀pp ← Setup(1κ), (spk, ssk) ← SignKeyGen
(pp), (vpk, vsk) ← VerKeyGen(pp), m ∈ {0, 1}∗, (σ, π) ← Sign(pp, spk, ssk,
vpk,m),

Pr[RealSigVal(pp, spk, vpk,m, σ, π) = 1] = 1.

Definition 15 (Provable Signing Soundness). We say that the PSDVS has
Provable Signing Soundness if the proof of correctness π produced by Sign does
not verify unless σ verifies. More formally, an adversary should not be able to
win the following game with non-negligible probability:

GameSign-Sound
PVDVS,A (κ)

1. pp ← Setup(1κ)
2. (spk, ssk) ← SignKeyGen(pp)
3. (vpk, vsk) ← VerKeyGen(pp)
4. (m∗, σ∗, π∗) ← A(pp, ssk, spk, vpk)

We say that A wins the Sign-Sound game if RealSigVal(pp, spk, vpk,m∗,
σ∗, π∗) = 1 and Verify(pp, spk, vsk,m∗, σ∗) = 0.

Note that none of these proofs π are parts of the signature. If included in
the signature, such proofs would allow an adversary to distinguish a simulation
from a real signature.

3.2 Standard Primitive-Based MDVS Construction

Given a PSDVS, as defined in Sect. 3.1, we can build an MDVS. The transfor-
mation is straightforward: the signer uses the PSDVS to sign a message for each
verifier, and proves consistency using a non-interactive zero knowledge proof of
knowledge. The proof of consistency will claim that either all of the PSDVS
signatures verify, or all of them are simulated.

Construction 1. Let PSDVS = (Setup, SignKeyGen, VerKeyGen, Sign,Verify,
RealSigVal,PubSigSim,PubSigVal,VerSigSim,VerSigVal) be a provably simulat-
able designated verifier signature scheme, and NIZK-PoK = (Setup,Prove,Verify)
be a non-interactive zero knowledge proof of knowledge system and Rcons a rela-
tion that we will define later in the protocol.

Setup(1κ):
1. crs ← NIZK-PoK.Setup(1κ,Rcons).
2. PSDVS.pp ← PSDVS.Setup(1κ).

Output (crs,PSDVS.pp) as the public parameters pp.
SignKeyGen(pp): (spki, sski) ← PSDVS.SignKeyGen(PSDVS.pp).

Output (spki, sski) as signer i’s public/secret key pair.
VerKeyGen(pp): (vpkj , vskj) ← PSDVS.VerKeyGen(PSDVS.pp).

Output (vpkj , vskj) as verifier j’s public/secret key pair.
Sign(pp, sski, {vpkj}j∈D,m):
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1. For every verifier j ∈ D, compute a signature and proof of signature
validity as (σj , πj) ← PSDVS.Sign(PSDVS.pp, sski, vpkj ,m).

2. Create a proof π of consistency, i.e a proof of knowledge of {πj}j∈D such
that either all signatures are real (as demonstrated by {πj}j∈D), or all
signatures are fake (as could be demonstrated by the proofs produced by
PSDVS.PubSigSim or PSDVS.VerSigSim).

3. σ = ({σj}j∈D, π).
Output σ as the signature.

Verify(pp, spki, vskj ,m, σ = ({σj}j∈D, π)):
1. Let dπ ← NIZK-PoK.Verify(crs, u = (PSDVS.pp, spki, {vpkj}j∈D,

{σj}j∈D), π).
2. Let d ← PSDVS.Verify(PSDVS.pp, spki, vskj ,m, σj) ∧ dπ.

Output d as the verification decision.
Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):

1. For j ∈ D ∩ C: (σj , πj) ← VerSigSim(PSDVS.pp, spki, vpkj , vskj ,m).
2. For j ∈ D\C: (σj , πj) ← PubSigSim(PSDVS.pp, spki, vpkj ,m).
3. Use these signatures and proofs to produce the NIZK π for consistency.
4. σ = ({σj}j∈D, π).

Output σ as the signature.

Theorem 2. Assume PSDVS is a secure provably simulatable designated verifier
signature scheme and NIZK-PoK is a secure non-interactive zero knowledge proof
of knowledge system. Then Construction 1 is a correct and secure MDVS scheme
(without privacy of identities (Definition 5)).

Due to space limitations, the proof of Theorem2 is deferred to the full version.

3.3 Standard Primitive-Based PSDVS Construction

We can build a PSDVS from a special message authentication code (MAC) which
looks uniformly random without knowledge of the secret MAC key—such a MAC
can be built from any pseudorandom function. A signature on a message m will
be a MAC on (m, t), where t is some random tag. Proving that the signature
is real simply involves proving knowledge of a MAC key that is consistent with
the MAC and some global public commitment to the MAC key. A public proof
that the signature is simulated and does not verify would involve proving that
the MAC was pseudorandomly generated. A verifier’s proof that the signature is
simulated would involve proving that the tag was generated in a way that only
the verifier could use (e.g. from a PRF to which only the verifier knows the key).

Of course, this is not ideal, since MACs require knowledge of a shared key; in
order to use MACs, we would need to set up shared keys between every possible
pair of signer and verifier. However, we can get around this using non-interactive
key exchange (NIKE). Each signer and verifier publishes a public key, and any
pair of them can agree on a shared secret key by simply using their own secret
key and the other’s public key. The construction is as follows:
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Construction 2. Let:

– COMM = (Setup,Commit,Open) be a commitment scheme,
– PRF = (KeyGen,Compute) be a length-preserving pseudorandom function,
– PRG be a length-doubling pseudorandom generator,
– NIZK = (Setup,Prove,Verify) be a non-interactive zero knowledge proof sys-

tem, and
– NIKE = (KeyGen,KeyExtract,KeyMatch) be a non-interactive key exchange

protocol. KeyMatch is an additional algorithm that checks if a public key and
a secret key match. KeyMatch is not typically defined as a part of a NIKE
scheme; however, such an algorithm always exists.

Setup(1κ):
1. crsi ← NIZK.Setup(1κ,Ri), i = 1, 2, 3.
2. ck ← COMM.Setup(1κ).

Output ({crs1, crs2, crs3}, ck) as the public parameters pp.
SignKeyGen(pp):

1. (NIKE.pkS,NIKE.skS) ← NIKE.KeyGen(1κ).
2. ssk = NIKE.skS.
3. spk = NIKE.pkS.

Output ssk as the signer’s secret key and spk as the signer’s public key.
VerKeyGen(pp):

1. (NIKE.pkR,NIKE.skR) ← NIKE.KeyGen(1κ).
2. kR ← PRF.KeyGen(1κ). (Informally, this key will be used by the verifier

to simulate signatures using VerSigSim.)
3. Choose randomness (i.e. decommitment value) rR at random.
4. cR = COMM.Commit(ck, kR; rR). (Informally, this commitment will be

used by the verifier to support its proofs of fake-ness.)
5. vsk = (NIKE.skR, kR, rR).
6. vpk = (NIKE.pkR, cR).

Output vsk as the verifier’s secret key and vpk as the verifier’s public key.
Sign(pp, ssk = NIKE.skS, vpk = (NIKE.pkR, cR),m):

The signer computes a shared key with the designated verifier and proceeds
to sign the message m:
1. kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR). (Informally, this key

will be used as a MAC key.)
2. Choose t at random.
3. σ = (σ1, σ2) ← (t,PRFkshared

((m, t))).
4. π ← NIZK.Prove(crs1, u, w) where u = ((σ1, σ2),NIKE.pkS,NIKE.pkR,m)

and w = (NIKE.skS, kshared))
We define the relation R1 indexed by NIKE public parameters and PRF
for a statement u and witness w:

R1 = {(u = (σ1, σ2,NIKE.pkS,NIKE.pkR,m), w = (NIKE.skS, kshared)) :
KeyMatch(NIKE.pkS,NIKE.skS) = 1
∧ kshared = NIKE.KeyExtract(NIKE.skS,NIKE.pkR)
∧ σ2 = PRFkshared

((m,σ1))}
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Output σ as the signature, and π as the proof of real-ness.
Verify(pp, spk = NIKE.pkS, vsk = (NIKE.skR, kR, rR),m, σ = (σ1, σ2)):

1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS). (Informally, this key
will be used as a MAC key.)

2. If PRFkshared
((m,σ1)) = σ2, set d = 1. Otherwise, set d = 0.

Output d as the verification decision.
RealSigVal(pp, spk, vpk,m, σ, π):

Output d ← NIZK.Verify(crs1, σ, π) as the validation decision.
PubSigSim(pp,m):

1. Choose a PRG seed seed.
2. Choose σ1 and σ2 pseudorandomly by running PRG on seed.
3. σ ← (σ1, σ2).
4. Let π ← NIZK.Prove(crs2, u = σ,w = seed).

We define the relation R̃2 indexed by the PRG for a statement u = (σ =
(σ1, σ2)) and the witnesses w = seed:

R̃2 = {(u = σ;w = seed) : u = PRG(w)} (1)

Output σ as the simulated signature, and π as the proof of fake-ness.
PubSigVal(pp, spk, vpk,m, σ = (σ1, σ2), π):

Output d ← NIZK.Verify(crs2, σ, π) as the validation decision.
VerSigSim(pp, spk = NIKE.pkS, vpk = (NIKE.pkR, cR), vsk = (NIKE.skR, kR,

rR),m):
The verifier can fake a signature using its PRF key kR.
1. kshared = NIKE.KeyExtract(NIKE.skR,NIKE.pkS).
2. Choose r at random.
3. t ← PRFkR

(r).
4. σ ← (t,PRFkshared

((m, t))).
5. Let π ← NIZK.Prove(crs3, u = (cR, σ1), w = (kR, rR, r)).

We define the relation R̃3 indexed by the c public parameters and PRF
for statements u and witnesses w:

R̃3={(u = (cR, σ1), w = (kR, rR, r)): kR = COMM.Open(cR, rR) ∧ σ1 = PRFkR(r)}

Output σ as the simulated signature and π as the proof of fake-ness.
VerSigVal(pp, spk, vpk,m, σ, π):

Output d ← NIZK.Verify(crs3, (cR, σ1), π) as the validation decision.

Theorem 3. If the schemes COMM,PRF,PRG,NIZK,NIKE are secure, then
Construction 2 is a correct and secure PSDVS scheme as per Definition 7.

Due to space limitations, the proof of Theorem3 is deferred to the full version.
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3.4 DDH and Paillier-Based PSDVS Construction

The goal of this section is to construct a PSDVS scheme based on DDH and
the security of Paillier encryption. The idea in the PSDVS construction is that
the authenticator for a message m will be H(m, t)k in a group G where t is a
nonce, k is a key known to both parties and H is a hash function modeled as
a random oracle. The construction requires that certain properties of the key
can be proved in zero-knowledge, and we can do this efficiently using standard
Σ-protocols because the key is in the exponent. However, naive use of this idea
would mean that a sender needs to store a key for every verifier he talks to, and
the set-up must generate correlated secret keys for the parties. To get around
this, we will instead let the sender choose k on the fly and send it to the verifier,
encrypted using a new variant of Paillier encryption. In the following subsection
we describe and prove this new encryption scheme, and then we specify the
actual PSDVS construction. Paillier-style encryption comes in handy since its
algebraic properties are useful in making our zero knowledge proofs efficient.

Paillier-Based Authenticated and Verifiable Encryption. An authen-
ticated and verifiable encryption scheme (AVPKE) involves a sender S and a
receiver R. Such a scheme comes with the following polynomial time algorithms:

Setup(1κ) → pp: A probabilistic algorithm for setup which outputs public param-
eters.

KeyGenS(pp) → (skS, pkS): A probabilistic sender key generation algorithm.
KeyGenR(pp) → (skR, pkR): A probabilistic receiver key generation algorithm.
Encpp,skS,pkR

(k) → c: A probabilistic encryption algorithm for message k.
Decpp,skR,pkS

(c) → {k,⊥}: A decryption algorithm that outputs either reject or
a message.

We require, of course, that Decpp,skR,pkS
(Encpp,skS,pkR

(k)) = k for all messages k.
Intuitively, the idea is that given only the receiver public key pkR and his

own secret key skS, the sender S can encrypt a message k in such a way that on
receiving the ciphertext, R can check that k comes from S, no third party knows
k and finally, the encryption is verifiable in that it allows S to efficiently prove
in zero-knowledge that k satisfies certain properties.

Our AVPKE scheme adds an authentication mechanism on top of Paillier
encryption:

Construction 3. Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs the description of a cyclic group G and a generator g, such
that the order of G is a random κ-bit RSA modulus n, which is the product
of so-called safe primes. (That is, n = pq where p = 2p′ + 1, q = 2q′ + 1 and
p′, q′ are also primes.) Finally, we need the algorithm to output an element
ĝ ∈ Z

∗
n of order p′q′.
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– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty and
there is no common reference string.

Ggen can be constructed using standard techniques. For instance, first gener-
ate n using standard techniques, then repeatedly choose a small random number
r until P = 2rn + 1 is a prime. Let g′ be a generator of Z∗

P . Then let G be the
subgroup of Z∗

P generated by g = g′2r mod P .9 Finally, to construct the element
ĝ, let u∈R Zn and set ĝ = u2 mod n. Indeed, this is a random square, and since
the subgroup of squares modulo n has only large prime factors in its order (p′

and q′), a random element is a generator with overwhelming probability10.

Setup(1κ): Run Ggen to generate a modulus n and ĝ ∈ Z
∗
n as explained above.

Output pp = (n, ĝ).
KeyGenS(pp): Pick skS∈R Zn, and set pkS = ĝskS . Output (skS, pkS).
KeyGenR(pp): Pick α1, α2∈R Zn, set skR = (α1, α2), and set pkR = (β1, β2) =

(ĝα1 , ĝα2).

The public key values are statistically indistinguishable from random elements
in the group generated by ĝ since n is a sufficiently good “approximation” to the
order p′q′ of ĝ.

Encpp,skS,pkR
(k; r, b1, b2):

1. The randomness should have been picked as follows: r∈R Zn and
b1, b2∈R {0, 1}.

2. Set c1 = (−1)b1 ĝr mod n.
3. Set c2 = (n + 1)k((−1)b2βskS

1 βr
2 mod n)n mod n2.

4. Let πvalid be a non-interactive zero-knowledge proof of knowledge wherein
given public data (n, ĝ, (c1, c2)), the prover shows knowledge of a witness
w = (k, r, b1, v) such that c1 = (−1)b1 ĝr and c2 = (n + 1)kvn mod n2. An
honest prover can use v = (−1)b2βskS

1 βr
2 mod n. The factor (−1)b1 is only

in the ciphertext for technical reasons: it allows πvalid to be efficient.
Output c = (c1, c2, πvalid).

Decpp,skR=(α1,α2),pkS
(c = (c1, c2, πvalid)):

1. Check that c1, c2 have Jacobi symbol 1 modulo n, and check πvalid. Output
reject if either check fails.

2. Let u = pkα1
S cα2

1 mod n and check that (c2u−n)n mod n2 = ±1. Z∗
n2 con-

tains a unique subgroup of order n, generated by n + 1. So here we are
verifying that – up to a sign difference – c2u

−n mod n2 is in the subgroup
generated by n + 1. If the check fails, output reject.

3. Otherwise, compute k such that (n + 1)k = ±c2u
−n mod n2.11

9 The group G will be used in the construction of the PSDVS scheme.
10 This set-up need to keep the factorization of n secret. Hence, to avoid relying on

a trusted party, the parties can use an interactive protocol to generate n securely,
there are several quite efficient examples in the literature.

11 k can be computed using the standard “discrete log” algorithm from Paillier decryp-
tion.
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An AVPKE scheme should allow anyone to make “fake” ciphertexts that
look indistinguishable from real encryptions, given only the system parameters.
Furthermore, the receiver R should be able to use his own secret key skR and
the public key pkS of the sender to make ciphertexts with exactly the same
distribution as real ones. This is indeed true for our scheme:

Fake Encryption: Let r∈R Zn, b, b′∈R {0, 1} and v ∈ Z
∗
n be a random square.

Then, Encpp,fake(k; r, b, b′, v) = ((−1)bĝr mod n, (n + 1)k((−1)b′
v)n mod

n2), πvalid where πvalid is constructed following the NIZK prover algorithm.

R’s Equivalent Encryption: Encpp,skR,pkS
(k; r, b1, b2) = ((−1)b1 ĝr mod n, (n+

1)k(−1)b2(pkα1
S ĝrα2 mod n)n mod n2), πvalid

where r∈R Zn, b1, b2∈R {0, 1} and πvalid is constructed following the NIZK prover
algorithm.
In the following, we will sometimes suppress the randomness from the notation
and just write, e.g., Encpp,skS,pkR

(k).
By simple inspection of the scheme it can be seen that:

Lemma 1. For all k, Decpp,skR,pkS
(Encpp,skS,pkR

(k)) = k. Furthermore, encryp-
tion by S and by R returns the same ciphertexts: for all messages k and random-
ness r, b1, b2, we have Encpp,skS,pkR

(k; r, b1, b2) = Encpp,skR,pkS
(k; r, b1, b2).

Lemma 2. If DDH in 〈ĝ〉 is hard, then (k,Encpp,skS,pkR
(k; r, b1, b2)) is computa-

tionally indistinguishable from (k,Encpp,fake(k; r′, b, b′, v)) for any fixed message
k and randomness r, b1, b2, r

′, b, b′, v, as long as the discrete log of β2 to the base
ĝ is unknown.

Definition 16. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE ,OD (pp, pkR, pkS). Here, OE takes a message k as input and returns
Encpp,skS,pkR

(k), while OD takes a ciphertext and returns the result of decrypting
it under pkS, skR (which will be either reject or a message). A wins if it makes
OD accept a ciphertext that was not obtained from OE. The scheme is authentic
if any PPT A wins with negligible probability.

Lemma 3. If the DDH problem in 〈ĝ〉 is hard, the AVPKE scheme defined above
is authentic.

Due to space limitations, the proof of Lemma3 is deferred to the full version.
We proceed to show that the AVPKE scheme hides the message encrypted

even if adversary knows the secret key of the sender, and even if a decryption
oracle is given. This is essentially standard CCA security.

Definition 17. Consider the following experiment for an AVPKE scheme and
a probabilistic polynomial time adversary A: Run the set-up and key generation
and run AOE (pp, pkR, skS). Here, OE takes two messages k0, k1 as input, selects
a bit η at random and returns c∗ = Encpp,skS,pkR

(kη). OD takes a ciphertext and
returns the result of decrypting it under pkS, skR (which will be either reject or



Stronger Security and Constructions of Multi-designated Verifier Signatures 255

a message). A may submit anything other than c∗ to OD, and must output a bit
η′ at the end. It wins if η′ = η. The scheme is private if any PPT A wins with
negligible advantage over 1

2 .

In the following we will use the assumption underlying the Paillier encryp-
tion scheme, sometimes known as the composite degree residuosity assumption
(CDRA): a random element x in Z

∗
n2 where x mod n has Jacobi symbol 1 is

computationally indistinguishable from yn mod n2 where y ∈ Z
∗
n is random of

Jacobi symbol 112.)

Lemma 4. Assume that DDH in 〈ĝ〉 is hard and that CDRA holds. Then the
AVPKE scheme satisfies Definition 17.

Due to space limitations, the proof of Lemma 4 is deferred to the full version.
We say that an AVPKE scheme is secure if it is authentic, private, supports

equivalent encryption by R and indistinguishable fake encryption.

Construction 4 (PSDVS Scheme). Let:

– Ggen be a Group Generator, a probabilistic polynomial time algorithm which
on input 1κ outputs G, g, n, ĝ exactly as in the previous AVPKE construction.

– H be a hash function which we model as a random oracle. We assume it maps
onto the group G.

– NIZK = (Setup,Prove,Verify) be a simulation-sound non-interactive zero
knowledge proof system. In this section, we will use Σ-protocols made non-
interactive using the Fiat-Shamir heuristic, so in this case Setup is empty and
there is no common reference string.

Setup(1κ): Let (G, g, ĝ, n) ← Ggen(1κ) and let h∈R G. Set pp = (G, g, ĝ, n, h).
Return pp as the public parameters.

SignKeyGen(pp): Run key generation for the AVPKE scheme as defined above
to get keys ssk = skS, spk = pkS for the signer S. Output ssk as the signer’s
secret key and spk as the signer’s public key.

VerKeyGen(pp):
1. Run key generation for the AVPKE scheme as defined above to get keys

skR, pkR for the verifier R. (These keys will be used to sign messages and
verify signatures.)

2. Choose kR∈R Zn. (This key will be used by the verifier to simulate signa-
tures using VerSigSim.)

3. Choose rR∈R Zn and let cR = gkRhrR . (This commitment will be used by
the verifier to support its proofs of fake-ness.)

4. vsk = (skR, kR, rR), vpk = (pkR, cR).
Output vsk as the verifier’s secret key and vpk as the verifier’s public key.

12 The original CDRA assumption does not have the restriction to Jacobi symbol 1,
but since the Jacobi symbol is easy to compute without the factors of n, the two
versions are equivalent.
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Sign(pp, ssk = skS, pkR,m):
1. Choose t∈R G, r∈R Zn, b1, b2∈R {0, 1}, s∈R Z

∗
n, ks∈R Zn.

2. Let σ ← (t,H(m, t)ks ,Encpp,skS,pkR
(ks; r, b1, b2)).

3. π ← NIZK.Prove(u = (σ = (σ1, σ2, σ3), pkV , pkS ,m), w =
(skS , ks, r, b1, b2)) be a zero knowledge proof of knowledge of witness w
such that:

σ2 = H(m,σ1)ks ∧ σ3 = Encpp,skS,pkR
(ks; r, b1, b2)

Output σ as the signature, and π as the proof of real-ness.
Verify(pp, spk = pkS, vsk = (skR, kR, rR),m, σ = (σ1, σ2, σ3)):

1. Decrypt σ3 as ks = Decpp,skR,pkS
(σ3). If this fails, set d = 0 and abort.

2. If σ2 = H(m,σ1)ks , set d = 1. Otherwise, set d = 0.
Output d as the verification decision.

PubSigSim(pp,m):
1. Choose k, k′∈R Zn, such that k 	= k′.
2. Choose t∈R G, r∈R Zn, b, b′∈R {0, 1}, v∈R Zn, such that v has Jacobi

symbol 1.
3. σ ← (t,H(m, t)k,Encpp,fake(k′; r, b, b′, v)).
4. Let π ← NIZK.Prove(u = σ = (σ1, σ2, σ3), w = (k, k′)) be a zero-

knowledge proof of knowledge such that:

σ2 = H(m,σ1)k ∧ σ3 = Encpp,fake(k′; ·, ·, ·, ·) ∧ k 	= k′.

Output σ as the simulated signature, and π as the proof of fake-ness. The
notation Encpp,fake(k′; ·, ·, ·, ·) means that the proof only has to establish that
the plaintext inside the encryption is some value k′ different from k.

VerSigSim(pp, spk = pkS, vpk = (pkR, cR), vsk = (skR, kR, rR),m):
1. Choose rt∈R Zn, t = gkRhrt , ks∈R Zn, b1, b2∈R {0, 1} and v∈R Z

∗
n of

Jacobi symbol 1.
2. σ ← (t,H(m, t)ks ,Encpp,skR,pkS

(ks; r, b1, b2)).
3. Let π ← NIZK.Prove(u = ((σ1, σ2, σ3), cR,m), w = (kR, rR, rt)) be a zero-

knowledge proof of knowledge of witness w = (kR, rR, rt) such that:

σ1 = gkRhrt ∧ cR = gkRhrR .

Output σ as the simulated signature and π as the proof of fake-ness.

Theorem 4. If the AVPKE scheme is secure, and under the DDH assumption,
Construction 4 is a secure PSDVS scheme.

Due to space limitations, the proof of Theorem4 is deferred to the full version.
In the full version we describe a PSDVS scheme based on prime order groups.
It gets around the need to generate a Paillier modulus securely, at the cost of
requiring double discrete log proofs.
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4 FE-Based Construction

In this section, we present an MDVS scheme based on functional encryption. One
disadvantage of this scheme is that it requires a trusted setup; secret verification
keys must be derived from a master secret key. However, the accompanying
advantage is that this scheme has verifier-identity-based signing; verifiers’ public
keys consist simply of their identity, allowing any signer to encrypt to any set of
verifiers without needing to retrieve their keys from some PKI first.

At a high level, we are first given a digital signature scheme (DS) and a
functional encryption scheme (FE). The keys of the signer with identity i are
a secret DS signing key ski and corresponding public DS verification key vki.
An MDVS signature c is a FE ciphertext obtained by encrypting the plaintext
that consists of the message m, the signer’s DS verification key vki, a set of
designated verifier identities D, and the signer’s DS signature σ on the message
using the secret DS signing key ski. That is, c = FE.Enc(pp, (m, vki,D, σ)).
Verifier j’s public key is simply their identity j (that is, vpkj = j). Their secret
key consists of a DS key pair (skj , vkj), and an FE secret key dkj . dkj is the
secret key for a function that checks whether j is among the specified designated
verifiers, and then checks whether the DS signature σ inside the ciphertext c
is either a valid signature under the signer’s verification key vki, or under the
verifier’s verification key vkj . However, this basic scheme does not give us the
off-the-record property; we therefore tweak it slightly, as we describe below.

From One to Many DS Signatures. In order to ensure that any subset of
valid verifiers cannot convince an outsider of the origin of the MDVS signature,
we need to replace the one DS signature in the ciphertext with a set of DS
signatures. The reason is that, if only one signature is contained in the ciphertext,
any designated verifier can prove to an outsider that “it was either me or the
signer that constructed the signature”. If more than one verifier proves this about
the same MDVS signature, then the signature must have come from the signer.

To prevent this kind of “intersection attack”, we allow the ciphertext to
contain a set Σ of DS signatures, and change the corresponding FE secret keys
to check if there exists a DS signature in the set that either verifies under the
signer’s or the verifier’s DS verification key. Now, an outsider will no longer
be convinced that it was the signer who constructed the MDVS signature, since
each of the colluding verifiers could have constructed a DS signature that verifies
under their own verification key, and then encrypted this set together with the
public verification key of the signer.

Achieving Consistency. In order to achieve consistency, we need security
against malicious encryption in the underlying FE scheme. We need to ensure
that any (possibly maliciously generated) ciphertext is consistent with one spe-
cific message across decryption with different functions. Otherwise, a malicious
MDVS signer may be able to construct a ciphertext (i.e. a signature) that will be
valid for one designated verifier but not valid for another, thereby breaking the
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consistency property. Security against a malicious encryption is a property of ver-
ifiable functional encryption (VFE), which was introduced by Badrinarayanan
et al. [BGJS16]. However, it turns out that we do not need the full power of
VFE, which also includes precautions against a malicious setup. Thus, we define
a weaker notion of VFE, and substitute the standard FE scheme with this new
scheme allowing us to achieve the MDVS consistency property.

4.1 Ciphertext Verifiable Functional Encryption

The formal definition of Functional Encryption and Ciphertext Verifiable FE and
the security notions can be found in the full version. Informally, the ciphertext
verifiability property states that for all ciphertexts c, it must hold that if c passes
the verification algorithm, then there exists a unique plaintext x asociated with
c, meaning that for all functions f ∈ F the decryption of c will yield f(x).

4.2 The MDVS Construction

Construction 5. Let SIGN = (KeyGen,Sign,Verify) be a standard digital sig-
nature scheme and let VFE = (Setup,KeyGen,Enc,Dec,Verify) be a functional
encryption scheme secure with ciphertext verifiability. Then we define a MDVS
scheme FEMDVS = (Setup,KeyGen,Sign,Verify,Sim) as follows:

Setup(1κ): (ppFE,mskFE) ← VFE.Setup(1κ).
Output public parameter pp = ppFE and master secret key msk = mskFE.

SignKeyGen(i): (ski, vki) ← SIGN.KeyGen(1κ).
Output the signer’s secret key sski = ski and public key spki = vki.13

VerKeyGen(msk, j):
1. vpkj = j,
2. (skj , vkj) ← SIGN.KeyGen(1κ),
3. dkj ← VFE.KeyGen(mskFE, fj), where fj is defined as follows.

Function fj
Input: m, vki, {vpkj′}j′∈D, Σ;
Const: vpkj , vkj ;
1. If vpkj /∈ {vpkj′}j′∈D: output ⊥;
2. If ∃σ ∈ Σ : SIGN.Verify(vki, m, σ) = 1 OR SIGN.Verify(vkj , m, σ) = 1:

output (m, vki, {vpkj′}j′∈D);

3. Else: output ⊥

Output the verifiers secret key vskj = (skj , dkj) and public key vpkj = j.14

13 We assume that the mapping i → (sski, spki) is unique in the system. This can be
achieved without loss of generality by pseudorandomly generating the randomness
required in the key generation process from the identity i and the master secret key.

14 We assume that the mapping j → (vskj , vpkj) is unique in the system. This can be
achieved wlog by pseudorandomly generating the randomness required in the key
generation process from the identity j and the master secret key.
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Sign(pp, sski, {vpkj}j∈D,m):
1. σ ← SIGN.Sign(ski,m).
2. Output c = VFE.Enc(ppFE, (m, vki, {vpkj}j∈D, {σ,⊥, · · · ,⊥})).

Verify(pp, spki, vskj , {vpkj}j∈D,m, c):
1. Check whether VFE.Verify(ppFE, c) = 1. If not, output 0.
2. Compute (m′, vk′

i, {vpkj}j∈D′)\⊥ ← VFE.Dec(dkj , c). If the output is ⊥,
output 0.

3. Check m′ = m, vk′
i = vki (with spki = vki), and D′ = D. If all hold,

output 1. Otherwise output 0.
Sim(pp, spki, {vpkj}j∈D, {vskj}j∈C ,m):

1. For each j ∈ C, vskj = (skj , dkj).
2. Compute σj ← SIGN.Sign(skj ,m

∗).
3. Let Σ = {σj}j∈C∗ , add default values to get the required size.
4. Output c = VFE.Enc(ppFE, (m∗, spki, {vpkj}j∈D, Σ)).

Theorem 5. Assume that VFE is an IND-CPA secure functional encryption
scheme with ciphertext verifiability, and SIGN is an existential unforgeable digital
signature scheme. Then Construction 5 is a correct and secure MDVS scheme
with privacy of identities and verifier-identity-based signing.

Due to space limitations, the proof of Theorem5 is deferred to the full version.
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Abstract. A continuous group key agreement (CGKA) protocol allows a
long-lived group of parties to agree on a continuous stream of fresh secret
key material. CGKA protocols allow parties to join and leave mid-session
but may neither rely on special group managers, trusted third parties, nor
on any assumptions about if, when, or for how long members are online.
CGKA captures the core of an emerging generation of highly practical end-
to-end secure group messaging (SGM) protocols.

In light of their practical origins, past work on CGKA protocols have
been subject to stringent engineering and efficiency constraints at the cost
of diminished security properties. In this work, we somewhat relax those
constraints, instead considering progressively more powerful adversaries.

To that end, we present 3 new security notions of increasing strength.
Already the weakest of the 3 (passive security) captures attacks to which
all prior CGKA constructions are vulnerable. Moreover, the 2 stronger
(active security) notions even allow the adversary to use parties’ exposed
states combined with full network control to mount attacks. In particular,
this is closely related to so-called insider attacks which involve malicious
group members actively deviating from the protocol. Although insiders are
of explicit interest to practical CGKA/SGM designers, our understanding
of this class of attackers is still quite nascent. Indeed, we believe ours to be
the first security notions in the literature to precisely formulate meaning-
ful guarantees against (a broad class of) insiders.

For each of the 3 new security notions we give a new CGKA scheme
enjoying sub-linear (potentially even logarithmic) communication com-
plexity in the number of group members (on par with the asymptotics of
state-of-the-art practical constructions). We prove each scheme optimally
secure, in the sense that the only security violations possible are those nec-
essarily implied by correctness.
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1 Introduction

1.1 Overview and Motivation

A continuous group key agreement (CGKA) protocol allows a long-lived dynamic
group to agree on a continuous streamof fresh secret groupkeys. InCGKAnewpar-
ties may join and existing members may leave the group at any point mid-session.
In contrast to standard (dynamic) GKA, the CGKA protocols are asynchronous
in that they make no assumptions about if, when, or for how long members are
online.1 Moreover, unlike, say, broadcast encryption, the protocol may not rely
on a (trusted) group manager or any other designated party. Due to a session’s
potentially very long life-time (e.g., years), CGKA protocols must ensure a prop-
erty called post-compromise forward security (PCFS). PCFS strengthens the two
standardnotions of forward security (FS) (the keys outputmust remain secure even
if some party’s state is compromised in the future) and post-compromise security
(PCS) (parties recover from state compromise after exchanging a fewmessages and
the keys become secure again) in that it requires them to hold simultaneously.

ThefirstCGKAprotocolwas introducedbyCohn-Gordon et al. in [15] although
CGKA as a (term and) generic stand-alone primitive was only later introduced by
Alwen et al. in [4]. To motivate the new primitive [4] puts forth the intuition that
CGKA abstracts the cryptographic core of an “MLS-like” approach to SGM pro-
tocol design in much the same way that CKA (the 2-party analogue of CGKA)
abstracts the asymmetric core of a double-ratchet based 2-party secure messaging
protocol [1]. Indeed, MLS’s computational and communication complexities, sup-
port for dynamic groups, it’s asynchronous nature, trust assumptions and it’s basic
security guarantees are naturally inherited from the underlying TreeKEM CGKA
sub-protocol. Finally,we believe that the fundamental nature of key agreement and
the increasing focus on highly distributed practical cryptographic protocols surely
allows for further interesting applications of CGKA beyond SGM.

In [4] the authors analyzed (a version of) the TreeKEM CGKA protocol [12];
the core cryptographic component in the scalable end-to-end secure group mes-
saging (SGM) protocol MLS, currently under development by the eponymous
Messaging Layer Security working group of the IETF [10].

An SGM protocol is an asynchronous (in the above sense) protocol enabling
a dynamic group of parties to privately exchange messages over the Internet.
While such protocols initially relied on a service provider acting as a trusted
third party, nowadays end-to-end security is increasingly the norm and provider
merely act as untrusted delivery services. SGM protocols are expected to provide
PCFS for messages (defined analogously to CGKA).2 The proliferation of SGM
protocols in practice has been extensive with more than 2 billion users today.
1 Instead, the protocol must allow parties that come online to immediately derive all

new key material agreed upon in their absence simply by locally processing all protocol
messages sent to the group during the interim. Conversely, any operations they wish
to perform must be implemented non-interactively by producing a single message to
be broadcasted to the group.

2 As for CGKA, PCFS is strictly stronger than the “non-simultaneous” combination
of FS and PCS. That is, there are protocols that individually satisfy FS and PCS,
but not PCFS [4].
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For both CGKA and SGM, the main bottleneck in scaling to larger groups
is the communication and computational complexity of performing a group
operation (e.g. agree on a new group key, add or remove a party, etc.). Almost all
protocols, in particular all those used in practice today, have complexity Ω(n)
for groups of size n (e.g. [20,24] for sending a message and [26] for removing
a party). This is an unfortunate side effect of them being built black-box on
top of 2-party secure messaging (SM) protocols. The first (CGKA) protocol to
break this mold, thereby achieving “fair-weather” complexity of O(log(n)), is
the ART protocol of [15]. Soon to follow were the TreeKEM family of protocols
including those in [2,4,12] and their variations (implicit) in successive iterations
of MLS. By fair-weather complexity we informally mean that the cost of the
next operation in a session can range from Θ(log(n)) to Θ(n) depending on the
exact sequence of preceding operations. However, under quite mild assumptions
about the online/offline behaviour of participants, the complexity can be kept
in the O(log(n)) range.

The Security of CGKA. To achieve PCFS, TreeKEM (and thus MLS) allows a
party to perform an “update” operation. These refresh the parties state so as to
heal in case of past compromises but come at the price of necessitating a broad-
cast to the group. The current design of MLS (and, consequently, the analysis
by [4]) does not prevent attackers from successfully forging communication from
compromised parties in the time period a state compromise of the party and
their next update. The assumption that attackers won’t attempt such forgeries—
henceforth referred to as the cannot-inject assumption (CIA)—prevents adver-
saries from, say, destroying the group’s state by sending maliciously crafted
broadcasts. Thus it is closely related to insider security, i.e., security against
group members who actively deviate from the prescribed protocol, which has
hitherto been a mostly open problem and remains an ongoing concern for the
MLS working group.3

A second assumption that underlies prior work on secure group messaging is
the no-splitting assumption (NSA): When multiple parties propose a change to
the group state simultaneously, the delivery service (and, hence, the attacker) is
assumed to mediate and choose the change initiated by one of the parties and
deliver the corresponding protocol message to all group members. This (arti-
ficially) bars the attacker from splitting the group into subgroups (unaware of
each other) and thereby potentially breaking protocol security. As such, the NSA
represents a serious limitation of the security model.

Contributions. At a high level, this paper makes 2 types of contributions: (1) we
introduce optimal CGKA security definitions that avoid the CIA and the NSA,
where “optimality” requires that each produced key be secure unless it can be
trivially—due to the correctness of the protocol—computed using the informa-
tion leaked to the attacker via corruption; (2) we provide protocols satisfying
the proposed definitions. These contributions are discussed in Sects. 1.2 and 1.3,
respectively.
3 Note that the Signal [24] 2-party SM protocol is not secure without CIA.
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1.2 Defining Optimally Secure CGKA

Overview. This work proposes the first security definitions in the realm of secure
group messaging that do not impose any unrealistic restrictions on adversarial
capabilities. The definitions allow the adversary to control the communication
network, including the delivery service, as well as to corrupt parties by leak-
ing their states and/or controlling their randomness. Furthermore, two settings,
called the passive setting and the active setting, are considered: The passive set-
ting only makes the CIA (but not the NSA) and hence corresponds to a passive
network adversary (or authenticated channels). It should be considered a step-
ping stone to the active setting, where attackers are limited by neither CIA nor
NSA. We note that [2,3,15] have also considered the setting without the NSA.

While the active setting does not, per se, formally model malicious parties, it
does allow the adversary to send arbitrary messages on behalf of parties whose
states leaked.4 Thus, the new security definition goes a long way towards con-
sidering the insider attacks mentioned above.

Flexible Security Definitions. The security definitions in this work are flexible
in that several crucial parts of the definitions are generic. Most importantly,
following the definitional paradigm of [3], they are parameterized by a so-called
safety predicate, encoding which keys are expected to be secure in any given exe-
cution. Optimal security notions are obtained if the safety predicate marks as
insecure only those keys that are trivially computable by the adversary due to the
correctness of the protocol. While the constructions in this work all achieve opti-
mal security (in different settings), sub-optimal but meaningful security notions
may also be of interest (e.g., for admitting more efficient protocols) and can be
obtained by appropriately weakening the security predicate.

History Graphs. The central formal tool used to capture CGKA security are
so-called history graphs, introduced in [3]. A history graph is a symbolic rep-
resentation of the semantics of a given CGKA session’s history. It is entirely
agnostic to the details of a construction and depends only on the high-level
inputs to the CGKA protocol and the actions of the adversary.

More concretely, a history graph is an annotated tree, in which each node
represents a fixed group state (including a group key). A node v is annotated
with (the semantics of) the group operations that took place when transitioning
from the parent node to v, e.g., “Alice was added using public key epk. Bob was
removed. Charlie updated his slice of the distributed group state.” The node is
further annotated to record certain events, e.g., that bad randomness was used
in the transition or that parties’ local states leaked to the adversary while they
are in group state v. To this end, for each party the history graph maintains a
pointer indicating which group state the party is (meant) to be in.

4 For example, the adversary is allowed to “bypass” the PKI and add new members
with arbitrary keys.
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Active Case: Dealing with Injections. Probably the greatest challenge in defining
security for the active setting is how to sensibly model injected messages in a way
that maintains consistency with a real world protocol, yet provides interesting
security guarantees. In more detail, by using the leaked protocol state of a party
and fixing their randomness, the attacker can “run ahead” to predict the exact
protocol messages a party will produce for future operations. In particular, it
may use an injection to invite new members to join the group at a future history
graph node which does not even exist yet in the experiment. Yet, an existing
member might eventually catch up to the new member at which point their real
world protocols will have consistent states (in particular, a consistent group key).

More fundamentally, the security definition can no longer rely on 2 assump-
tions which have significantly simplified past security notions (and proofs) for
CGKA. Namely, (A) that injections are never accepted by their receiver and (B)
that each new protocol message by an honest party always defines a fresh group
state (i.e. history graph node).

Hence, to begin modeling injections, we create new “adversarial” history
graph nodes for parties to transition to when they join a group by processing
an injected message. This means that, in the active setting, the history graph is
really a forest, not a tree. We restrict our security experiment to a single “Create
Group” operation so there is (at most) 1 tree rooted at a node not created by
an injection. We call this tree the honest group and it is for this group that we
want to provide security guarantees.

The above solution is incomplete, as it leaves open the question of how to
model delivery of injected protocol messages to members already in a group (hon-
est or otherwise). To this end, the functionality relies on 2 reasonable properties
of a protocol:

1. Protocol messages are unique across the whole execution and can be used
to identify nodes. This means that any pair of parties that accept a protocol
message will agree on all (security relevant) aspects of their new group states,
e.g., the group key and group membership.

2. Every protocol message w welcoming a new member to a group in state
(i.e., node) vi must uniquely identify the corresponding protocol message c
updating existing group members to vi.

The net result is that we can now reasonably model meaningful expectations
for how a protocol handles injections. In particular, suppose an existing group
member id1 at a node v1 accepts an injected protocol message c. If another
party id2 already processed c, then we simply move id1 to the same node as
id2. Otherwise, we check if c was previously assigned to a welcome message w
injected to some id3. If so, we can safely attach the node v3 created for w as
a child of v1 and transition id1 to v3. With the two properties above, we can
require that id1 and id2 (in the first case) or id1 and id3 (the second case) end
up in consistent states.

Finally, if neither c nor a matching w has appeared before then we can safely
create a fresh “adversarial” node for id1 as a child of v1. We give no guarantees
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for keys in adversarial nodes (as secrecy is anyway inherently lost). Still, we
require that they do not affect honest nodes.

Composable and Simulation-Based Security. This work formalizes CGKA secu-
rity by considering appropriate functionalities in the UC framework [13]. Since
universal composition is an extremely strong guarantee and seems to be impos-
sible for CGKA in the standard model (for reasons similar to the impossibility
of UC-secure key exchange under adaptive corruptions [18]), this work also con-
siders a weaker definition in which, similarly to [7] and [23], the environment is
constrained to not perform corruptions that would cause the so-called commit-
ment problem. In particular, the weaker statement is still (at least) as strong as
a natural game-based definition (as used by related work) that would exclude
some corruptions as “trivial wins.” In other words, restricting the environment
only impacts composition guarantees, which are not the main aspect of this
work. Nevertheless, we believe that our statements are a solid indication for
multi-group security (see th full version [5] for more discussion).

A simulation-based security notion also provides a neat solution for deciding
how adversarially injected packets should affect the history graph. That is, it
provides a clean separation of concerns, dealing with the protocol specific aspects
in the simulator, while keeping the definition protocol independent.

CGKA Functionalities. As mentioned above, the approach taken in this work is
to formalize CGKA security in the UC framework via ideal CGKA functionali-
ties, which maintain the history graph as the session evolves. A reader familiar
with the use of UC security (in the context of secure multi-party computation)
might expect passive and active security to be captured by considering protocol
executions over an authenticated and an insecure network, respectively.

As we strive to treat CGKA as a primitive, however, and not directly enforce
how it is used, we design our CGKA UC functionalities as “idealized CGKA ser-
vices” (much in the way that PKE models an idealized PKE service in [13,14])
instead. Thus, they offer the parties interfaces for performing all group opera-
tions, but then simply hand out the corresponding idealized protocol message
back to the environment. The attacker gets to choose an arbitrary string to
represent the idealized protocol message that would be created for that same
operation in the real world. This encodes that no guarantees are made about
protocol messages beyond their semantic effects as captured by the history graph.

Just as for PKE, this approach further means that it is up to the environment
to “deliver” the idealized messages from the party that initiated an operation
to all other group members. This carries the additional benefit that it allows
to formalize correctness, whereas typical UC definitions often admit “trivial”
protocols simply rejecting all messages (with the simulator not delivering them
in the ideal world).

The passive setting is then modeled by restricting the environment to only
deliver messages previously chosen to represent a group operation. Meanwhile,
in the active setting, the restriction is dropped instead allowing injections; that
is delivery of new messages.
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Relation to Full Insider Security. We model active corruptions as leaking a
party’s state, intercepting all their communication, and injecting arbitrary mes-
sages on there behalf. While this allows the adversary to emulate the party in
essentially every respect it does leave one last capability out of reach to the
adversary; namely interactions with the PKI. A malicious insider might, say,
register malformed or copied public keys as their own in the PKI. In contrast,
an active adversary may not register keys even on behalf of corrupt parties. At
most they can leak the secret components of honestly generated key pairs.

While one might conceivably implement such strong PKI in certain real world
settings we believe that closing this gap remains an important open problem for
future work.

1.3 Protocols with Optimal Security

Overview. We put forth three protocols, all with the same (fair-weather) asymp-
totic efficiency as the best CGKA protocols in the literature.

Interestingly, even in the passive case, optimal security is not achieved by
any existing protocol—not even inefficient solutions based on pairwise channels.
Instead, we adapt the “key-evolving” techniques of [21] to the group setting
to obtain Protocol P-Pas enjoying optimal security for the passive setting; i.e.,
against passive but adaptive adversaries.5

Next, we augment P-Pas to obtain two more protocols geared to the active
setting and meeting incomparable security notions. Specifically, Protocol P-Act
provides security against both active and adaptive adversaries but at the cost of
a slightly less than ideal “robustness” guarantees. More precisely, the adversary
can use leaked states of parties to inject messages that are processed correctly
by some parties, but rejected by others.

Meanwhile, the protocolP-Act-Rob uses non-interactive zero-knowledge proofs
(NIZKs) to provide the stronger guarantee that if one party accepts a message,
then all other parties do but therefore only against active but static adversaries.

For protocols P-Pas and P-Act we prove security with respect to two models.
First, in a relaxation of the UC framework with restricted environments (this
notion achieves restricted composition and is analogous to game-based notions),
we prove security in the non-programmable random oracle model. Second, we
prove full UC security in the programmable random oracle model. For the third
protocol P-Act-Rob, we consider the standard model, but only achieve semi-
static security (the environment is restricted to commit ahead of time to certain
information—but not to all inputs).

Techniques Used in the Protocols. Our protocol P-Pas for the passive setting
is an adaptation of the TTKEM protocol, a variant of the TreeKEM protocol
introduced in [2] which we have adapted to the propose-and-commit syntax of
MLS (draft 9). Next we use hierarchical identity based encryption (HIBE) in

5 We do place some restrictions on their adaptivity described bellow in the paragraph
on the commitment problem.
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lieu of regular public-key encryption and ensures that all keys are updated with
every operation. This helps in avoiding group-splitting attacks, as it ensures that
different subgroups use keys for different HIBE identities.

In the active setting, there are two difficulties to solve. First, to prevent
injecting messages from uncorrupted parties, we use key-updating signatures
[21] that prevent injections using state from another subgroup after a split.

Second, we have to ensure that the adversary cannot use leaked secrets
(including signing keys) to craft a message that processed by two parties makes
them transition to incompatible states. In other words, a message should prove
to a party that any other party processing it ends up in a compatible state. A
natural attempt to solve this would be a generic compiler inspired by GMW
[19], where the committer provides a non-interactive zero knowledge (NIZK)
proof that it executed the protocol correctly. Unfortunately, the GMW app-
roach requires each part to commit to the whole randomness at the beginning
of the protocol.6 which is incompatible with PCS, since healing from corruption
requires fresh randomness.

Hence, we instead propose two non-black-box modifications of P-Pas. First,
th protocol P-Act uses a simple solution based on a hash function. The mech-
anism guarantees that all partitions that accept a message also end up with a
consistent state. However, parties may not agree on whether to accept or reject
the injection. So our second protocol P-Act-Rob implements the consistency using
a NIZK proof attached to each message proving its consistency. As a price, we
can no longer model a key part of the consistency relation via a random ora-
cle which means our proof technique for adaptive adversaries no longer applies.
Thus, for P-Act-Rob, we only prove a type of static security.

1.4 Related Work

2-Party Ratcheting. 2-party Ratcheting is a similar primitive to CKA (the 2-
party analogue of CGKA), both originally designed with secure messaging pro-
tocols in mind. (Indeed, the terms are sometimes used interchangeably.)

Ratcheting was first investigated as a stand-alone primitive by Bellare
et al. [11]. That work was soon followed by the works of [25] and [21] who consid-
ered active security for Ratcheting (the later in the context of an SM protocol).
In particular, the work of Poettring and Rösler [25] can be viewed as doing for
Ratcheting what our work does for the past CGKA results. In contrast, [16,22]
looked at strong security notions for Ratcheting achievable using practically effi-
cient constructions, albeit at the cost of losing message-loss resilience. In recent
work, Balli et al. [8] showed that for such strong security notions imply a weak
version of HIBE. Two-party continuous key agreement (CKA) was first defined
in [1] where it was used build a family of SM protocols generalizing Signal’s
messaging protocol [24].

6 The NIZK is with respect to th committed randomness. The randomness is sampled
jointly using an MPC protocol.
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CGKA. In comparison to the 2-party primitives, SGM and CGKA have received
less attention. In practice, SGM protocols make black-box use of 2-party SM (or
at least 2-party Ratcheting) which results in Ω(n) computational and commu-
nication complexity in the group size n for certain operations [17,20,24,26].
The first CGKA with logarithmic fair-weather complexity (defined above) was
introduced ART protocol by Cohn-Gordon et al. in [15]. This was soon fol-
lowed by (several variant of) the TreeKEM CGKA [12]. The RTreeKEM (for
“re-randomized TreeKEM”) introduced and analyzed in [3] greatly improves the
FS properties of TreeKEM and ART. However, security is only proven using
both the CIA and NSA and results in a quasi-polynomial loss for adaptive secu-
rity. Meanwhile, the TTKEM construction (i.e. “Tainted TreeKEM”) in [2] has
the first adaptive security proof with polynomial loss and only uses the CIA
(although it does not achieve optimal security). Finally, the CGKA in the cur-
rent MLS draft [9] represents a significant evolution of the above constructions
in that it introduces the “propose and commit” paradigm used in this work and
in [4]. Our construction build on TTKEM, RTreeKEM and the propose-and-
commit version of TreeKEM.

Modeling CGKA. From a definitional point of view, we build on the history
graph paradigm of [3]. That work, in turn, can be seen as a generalization of
the model introduced by Alwen et al. [4]. To avoid the commitment problem we
adopt the restrictions of environments by Backes et al. [7] to the UC framework.
A similar approach has also been used by Jost, Maurer, and Mularczyk [23] in
the realm of secure messaging.

2 Continuous Group Key Agreement

2.1 CGKA Schemes

A CGKA scheme aims at providing a steady stream of shared (symmetric) secret
keys for a dynamically evolving set of parties. Those two aspects are tied together
by so-called epochs: each epoch provides a (fresh) group key to a (for this epoch)
fixed set of participants. CGKA schemes are non-interactive—a party creates
a new epoch by broadcasting a single message, which can then be processed
by the other members to move along. Rather than relying on an actual broad-
cast scheme, CCKA schemes however merely assume an untrusted (or partially
trusted) delivery service. As multiple parties might try to initiate a new epoch
simultaneously, the delivery service’s main job is to determine the successful one
by picking an order. As a consequence, a party trying to initiate a new epoch
itself cannot immediately move forward to it but rather has to wait until its
message is confirmed by the delivery service. For simplicity, we assume that the
party then just processes it the same way as any other member.

Evolving the Member Set: Add and Remove Proposals. During each epoch, the
parties propose to add or remove members by broadcasting a corresponding
proposal. To create a new epoch, a party then selects an (ordered) list thereof
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to be applied. We say that the party commits those proposals, and thus call the
respective message the commit message and the creator thereof the committer.

Group Policies. A higher-level application using a CGKA scheme may impose
various restrictions on who is allowed to perform which operations (e.g. restrict-
ing commits to administrators or restricting valid proposal vectors within a
commit). In this work, we consider a very permissive setting. It is easy to see
that any result in the permissive setting carries over to a more restrictive setting.

PKI. CGKA schemes in many aspects represent a generalization of non-
interactive key exchange (NIKE) to groups. Indeed, adding a new member must
be possible without this party participating in the protocol. Rather, the party
should be able to join the group by receiving a single welcome message that was
generated alongside the commit message. Hence, CGKA schemes rely on a PKI
that provides some initial key material for new members. This work assumes a
simple PKI functionality for this purpose, described in Sect. 3.

State Compromises and Forward Security. CGKA schemes are designed with
exposures of parties’ states in mind. In particular, they strive to provide FS:
exposing a party’s state in some epoch should not reveal the group keys of
past epochs. This also implies, that once removed, a party’s state should reveal
nothing about the group keys.

Post-compromise Security and Update Proposals. In addition, CGKA schemes
should also provide PCS. For this, parties regularly send update proposals, which
roughly suggest removing the sender and immediately adding him with a fresh
key (analogous to the one from PKI). In addition, the committer always implic-
itly updates himself.

2.2 CGKA Syntax

A continuous group key-agreement scheme is a tuple of algorithms CGKA = (kg,
create, join, add, rem, upd, commit, proc, key) with the following syntax. To sim-
plify notation, we assume that all algorithms implicitly know ID of the party
running them.

– Group Creation: γ ← create() takes no input and returns a fresh protocol
state for a group containing only the user party running the algorithm. In
particular, this represents the first epoch of a new session.7

– Key Generation: (pk, sk) ← kg() samples a fresh public/secret key pair
(which will be sent to the PKI).

– Add Proposal: (γ′, p) ← add(γ, idt, pkt) proposes adding a new member to
the group. On input a protocol state, identity of the new member and his
public key (generated by kg), it outputs an updated state and add proposal
message.

7 To create a group, a party adds the other members using individual add proposals.
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– Remove Proposal: (γ′, p) ← rem(γ, idt) proposes removing a member from
the group. On input a protocol state and identity, it outputs an updated state
and remove proposal message.

– Update Proposal: (γ′, p) ← upd(γ) proposes updating the member’s key
material. It outputs an updated state and an update proposal message.

– Join A Group: (γ′, roster, idi) ← join(sk, w) allows a party with secret key
sk (generated by kg) to join a group with a welcome message w. The outputs
are: an updated protocol state, a group roster (i.e. a set of IDs listing the
group members), and the ID of the inviter (i.e. the party that created the
welcome message).

– Commit: (γ, c, w) ← commit(γ, �p) applies (a.k.a. commits) a vector of pro-
posals to a group. The output consists of an updated protocol state, commit
message and a (potentially empty) welcome message (depending on if any
add proposal messages where included in �p).8

– Process: (γ′, info) ← proc(γ, c, �p) processes an incoming commit message
and the corresponding proposals to output a commit info message info and
an updated group state which represents a new epoch in the ongoing CGKA
session. The commit info message captures the semantics of the processed
commit and it has the form:

info = (id, (propSem1, . . . , propSemz))

where id is the ID sender of the commit message the vector conveys the
semantics of the committed add and remove proposals via triples of the form
propSem = (ids, op, idt). Here, ids denotes the identity of the proposal’s sender,
op ∈ {"addP", "remP"} is the proposal’s type and idt is the identity of the
proposal’s target (i.e. the partying being added or removed).

– Get Group Key: (γ′,K) ← key(γ) outputs the current group key for use
by a higher-level application, and deletes it from the state.

3 UC Security of CGKA

This section outlines the basic UC security statements of CGKA schemes we
use throughout the remaining part of this work. The concrete functionalities
FCGKA−AUTH and FCGKA, formalizing the guarantees in the passive and active
setting, are then introduced in Sects. 4 and 5, respectively.

The CGKA Functionalities. This paper captures security of CGKA schemes by
comparing the UC protocol based on CGKA to an ideal functionality. Recall
that we model the functionalities as idealized “CGKA services”. For example,
when a party wishes to commit proposals, it has to input (an idealized version
of) those proposals �p to the functionality. The functionality then outputs an
idealized control message c (and potentially a welcome message w), chosen by

8 For simplicity, we do assume a global welcome message sent to all joining parties,
rather than individual ones (which could result in lower overall communication).
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the simulator. The functionality does not concern itself with the delivery of
control messages c; this must be accomplished by a higher-level protocol.

Our functionalities encode the following basic assumptions: (1) Only group
members allowed to create proposals and commit to sequences thereof. (2) We
require that every proposal individually makes sense, i.e., a party is only allowed
to propose to remove or add a party that is currently in, respectively not in
the group. When committing to a sequence of proposals where some are no
longer applicable (e.g., due to first including a removal proposal and then one
that updates the same party) the offending one is ignored (here the update).
More restrictive policies can of course be enforced by the higher-level application
making use of the CGKA functionality.

Finally, to simplify definitions, the functionality identify epochs by the con-
trol messages c creating them.

PKI. CGKA protocols rely on a service that distributes so-called key bundles
used to add new members to the group. (Using the syntax of Sect. 2, a key
bundle is the public key output by kg.) In order not to distract from the main
results, this work uses a simplified PKI service that generates one key pair for
each identity, making the public keys available to all users. This guarantees to
the user proposing to add someone to the group that the new member’s key is
available, authentic, and honestly generated.

Our PKI is defined by the functionality FPKI, and our CGKA protocols are
analyzed in the FPKI-hybrid model. Concretely, FPKI securely stores key bundle
secret keys until fetched by their owner. For a formal description of FPKI is
presented in the full version [5]. We there also discuss the rationale of our PKI
model and how it relates to how comparable PKI are thought of in practice.

CGKA as a UC Protocol. In order to assess the security of CGKA scheme
as defined in Sect. 2 relative to an ideal functionality, the CGKA scheme is
translated into a CGKA protocol where a user id accepts the following inputs:

– Create: If the party is the designated group creator,9 then the protocol ini-
tializes γ using create().

– (Propose, act), act ∈ {up, add-idt, rem-idt}: If id is not part of the group, the
protocol simply returns ⊥. Otherwise, it invokes the corresponding algorithm
add, rem, or upd using the currently stored state γ. For add, it first fetc.hes
pkt for idt from FPKI. The protocol then outputs p to the environment, and
stores the updated state γ′ (deleting the old one).

– (Join, w): If id is already in the group, the protocol returns ⊥. Otherwise, it
fetches sk and fresh randomness r from FPKI, invokes join(sk, w; r), stores γ,
and outputs the remaining results (or an error ⊥).

– (Commit, �p) and (Process, c, �p) and Key: If id is not part of the group, the
protocol returns ⊥. Otherwise, it invokes the corresponding algorithm using
the current γ, stores γ′, and outputs the remaining results (or ⊥) to the
environment.

9 Formally, the creator is encoded as part of the SID; upon calling Create, a party
checks whether it is the designated one, and otherwise just ignores the invocation.
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Modeling Corruptions. We start with the (non-standard for UC but common for
messaging) corruption model with both continuous state leakage (in UC terms,
transient passive corruptions) and adversarially chosen randomness (this resem-
bles the semi-malicious model of [6]). Roughly, we model this in UC as follows.
The adversary repeatedly corrupts parties by sending them two types of corrup-
tion messages: (1) a message Expose causes the party to send its entire state to
the adversary (once), (2) a message (CorrRand, b) sets the party’s rand-corrupted
flag to b. If this flag is set, the party’s randomness-sampling algorithm is replaced
by asking the adversary to choose the random values. Ideal functionalities are
activated upon corruptions and can adjust their behavior accordingly. We give
a formal description of the corruption model in the full version [5].

Restricted Environments. Recall that in the passive setting we assume that the
adversary does not inject messages, which corresponds to authenticated network.
However, with the above modeling, one obviously cannot assume authenticated
channels. Instead, we consider a weakened variant of UC security, where state-
ments quantify over a restricted class of admissible environments, e.g. those that
only deliver control messages outputted by the CGKA functionality, and pro-
vide no guarantees otherwise. Whether an environment is admissible or not is
defined by the ideal functionality F. Concretely, the pseudo-code description of
F can contain statements of the form req cond and an environment is called
admissible (for F), if it has negligible probability of violating any such cond
when interacting with F. See the full version [5] for a formal definition.

Apart from modeling authenticated channels, we also use this mechanism to
avoid the so-called commitment problem (there, we restrict the environment not
to corrupt parties at certain times, roughly corresponding to “trivial wins” in
the game-based language). We always define two versions of our functionalities,
with and without this restriction.

4 Security of CGKA in the Passive Setting

The History Graph. CGKA functionalities keep track of group evolution using
so-called history graphs (cf. Fig. 1), a formalism introduced in [3]. The nodes in
a history graph correspond either to group creation, to commits, or to proposals.
Nodes of the first two categories correspond to particular group states and form
a tree. The root of the tree is a (in fact, the only) group-creation node, and
each commit node is a child of the node corresponding to the group state from
which it was created. Similarly, proposal nodes point to the commit node that
corresponds to the group state from which they created.

Any commit node is created from a (ordered) subset of the proposals of the
parent node; which subset is chosen is up to the party creating the commit.
Observe that it is possible for commit nodes to “fork,” which happens when
parties simultaneously create commits from the same node.

For each party, the functionality also maintains a pointer Ptr[id] indicating
the current group state of the party. This pointer has two special states: before
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A-com

Ptr[A]

B-up

A-add-C

A-up

B-com

Ptr[B]

A-com

Fig. 1. A graphical representation of a history graph with three commit nodes (circles)
and proposal nodes (rectangles), respectively.

joining the pointer is set to fresh and after leaving the group to removed. Note
that a party’s pointer does not move upon creation of a new commit node.
Rather, the pointer is only moved once the corresponding control message is
input by the party. This models, e.g., the existence of a delivery service that
resolves forks by choosing between control messages that correspond to nodes
with the same parent.10

CGKA functionalities identify commit resp. proposal nodes by the corre-
sponding (unique) control messages c resp. proposal messages p (chosen by the
simulator). The arrays Node[·] resp. Prop[·] map control messages c resp. proposal
messages p to commit resp. proposal nodes. Moreover, for a welcome message
w, array Wel[w] stores the commit node to which joining the group via w leads.
Nodes in the history graph store the following values:

– orig: the party whose action created the node
– par: the parent commit node
– stat ∈ {good, bad}: a status flag indicating whether secret information corre-

sponding to the node is known to the adversary (e.g., by having corrupted
its creator or the creator having used bad randomness).

Proposal nodes further store the following value:

– lbl ∈ {up, add-id′, rem-id′}: the proposed action

Commit nodes further store the following values:

– pro: the ordered list of committed proposals,
– mem: the group members,
– key: the group key,
– chall: a flag set to true if a random group key has been generated for this

node, and to false if the key was set by the adversary (or not generated);
– exp: a set keeping track of parties corrupted in this node, including whether

only their secret state used to process the next commit message or also the
key leaked.

10 Note, however, that such behavior is not imposed by the functionality; it is entirely
possible that group members follow different paths.
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The CGKA Functionality FCGKA−AUTH. The remainder of this section intro-
duces and explains functionality FCGKA−AUTH, which deals with passive network
adversaries, i.e., adversaries who do not create their own control messages (nor
proposals) and who deliver them in the correct order. It is described in Fig. 2
with some bookkeeping functions outsourced to Fig. 3.

Interaction with Parties. The inputs with which uncorrupted parties interact
with FCGKA−AUTH are described first; the boxed content in Fig. 2 is related to
corruption and described later. Initially, the history graph is empty and the only
possible action is for a designated party idcreator to create a new group with itself
in it.

The input Propose allows parties to create new proposals. FCGKA−AUTH

ensures that only parties that are currently in the group can create proposals
(line [a]). Recall that the proposal identifier p is chosen by the simulator (line [b])
but guaranteed to be unique (line [c]). The identifier is returned to the calling
party.

Parties create new commits using the input Commit. As part of the input,
the calling party has to provide an ordered list of proposals to commit to. All
proposals have to be well-defined, belong to the party’s current commit node,
and are valid with respect to its member set (line [d]). Moreover, a party is not
allowed to commit to a proposal that removes the party from the group (line [e]).
Once more, the simulator chooses the identifier c for the commit, and, if a new
party is added in one of the proposals, the attacker also choses the welcome
message w (line [b]). Both c and w must be unique (line [c]).

A current group member can move their pointer to a child node c of their
current state by calling (Process, c,p) (in case the proposals p in c removes the
group member, their pointer is set to ⊥ instead). The functionality ensures a
party always inputs the correct proposal array (line [d]). Moreover, it imposes
correctness: while the simulator is notified of the action (line [f]), the pointer
is moved to c and the helper get-output-process returns the proposals true
interpretations irrespective of the simulator’s actions.

A new member can join the group at node Wel[w] via (Join, w). The value
Wel[w] must exist and correspond to a commit node for which the calling party
is in the group (line [g]).

Finally, Key outputs the group key for the party’s current node. The keys
are selected via the function set-key(c), which either returns a random key or
lets the simulator pick the key if information about it has been leaked due to
corruption or the use of bad randomness (see below).

Corruptions and Bad Randomness. Generally, keys provided by FCGKA−AUTH

are always uniformly random and independent unless the information the adver-
sary has obtained via corruption would trivially allow to compute them (as a
consequence of protocol correctness). In order to stay on top of this issue, the
functionality must do some bookkeeping, which is used by the predicate safe to
determine whether a key would be known to the adversary.

First, when a party id is exposed via (Expose, id), the following from id’s
state that becomes available to the adversary:
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Functionality Fcgka-auth

The group creator idcreator is encoded as part of sid. The functionality is parameterized in:
– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, denoting whether it provides full adaptive security.

Initialization

Ptr[·] ← fresh
Node[·],Prop[·],Wel[·] ← ⊥
RndCor[·],RndPool[·] ← good

HasKey[·] ← false

Inputs from idcreator

Input Create

if Ptr[idcreator] �= fresh then return ⊥
stat ← rand-stat(idcreator)

Node[ε] ← create-root(idcreator, stat )
HasKey[idcreator] ← true

Ptr[idcreator] ← ε

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
b: Send (Propose, id, act) to the adversary and receive

p.
c: assert Prop[p] = ⊥

stat ← good
if act = up then

stat ← rand-stat(id)

Prop[p] ← create-prop(Ptr[id], id, act, stat )
return p

Input (Commit, � p)
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req ∀p ∈ � p: (Prop[p] �= ⊥ ∧ valid-proposal(c, p))

mem ← members(Ptr[id] p�, )
e: req id ∈ mem
b: Send (Commit, id p�, ) to the adversary and receive

(c, w).
c: assert Node[c] = ⊥

stat ← rand-stat(id)

Node[c] ← create-child(Ptr[id], id ,p�, mem, stat )
assert w �= ⊥ iff (mem \ Node[Ptr[id]].mem) �= ∅

if w �= ⊥ then
c: assert Wel[w] = ⊥

Wel[w] ← c
return (c, w)

Input Key

a: if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then
return ⊥

if Node[Ptr[id]].key = ⊥ then
set-key(Ptr[id])

HasKey[id] ← false

return Node[Ptr[id]].key

Input (Process p�,c, )
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req Node[c] �= ⊥ ∧ Node[c].par = Ptr[id]

∧ Node[c].pro = � p
f: Send (Process, id p�,c, ) to the adversary.

if ∃p ∈ � p: Prop[p].act = rem-id then
Ptr[id] ← removed

else
Ptr[id] ← c

rand-stat(id)
HasKey[id] ← true

return get-output-process(c)

Input (Join, w)
if Ptr[id] /∈ {fresh, removed} then return ⊥
c ← Wel[w]

g: req c �= ⊥ ∧ Node[c] �= ⊥ ∧ id ∈ Node[c].mem
Send (Join, id, w) to the adversary

and receive ack .
if Ptr[id] = fresh ∨ ack then

Ptr[id] ← c

rand-stat(id)
HasKey[id] ← true

return get-output-join(c)
else

return ⊥

Corruptions

Input (Expose, id)

if Ptr[id] ∈ {fresh, removed} then
return

Node[Ptr[id]].exp ← Node[Ptr[id]].exp
∪ {(id,HasKey[id])}

update-status-after-expose(id)
RndPool[id] ← bad

if restrict-corruptions then
req ∀c, if Node[c].chall = true then safe(c)

else
Send to the adversary

{(c,Node[c].key) : ¬safe(c)}.

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id] ← b

Fig. 2. The ideal CGKA functionality for the passive setting. The behavior related to

corruptions is marked in boxes. The helper functions are defined in Fig. 3 and the
optimal predicate safe used in this paper is defined in Fig. 4.
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Helper Functions

helper create-child(c, id ,p�, mem, stat)

return new node with par ← c, orig ← id, pro ← � p,
mem ← mem, stat ← stat.

helper create-root(id, stat)

return new node with par ← ⊥, orig ← id, pro ← (),
mem ← {id}, stat ← stat.

helper create-prop(c, id, act, stat)

return new proposal with par ← c, orig ← id,
act ← act, stat ← stat.

helper members( p�,c )

(G, ·) ← apply-proposals( p�,c )
return G

helper get-output-process(c)

(·, propSem) ← apply-proposals(c,Node[c].pro)
return (Node[c].orig, propSem)

helper get-output-join(c)

return (Node[c].mem,Node[c].orig)

helper apply-proposals( p�,c )

G ← Node[c].mem; P ← ()
for p ∈ � pdo

if Prop[p].act = add-id′ ∧ id′ /∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G ← G ∪ {id′}

else if Prop[p].act = rem-id′ ∧ id′ ∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G ← G \ {id′}

return (G, P )

helper valid-proposal(c, p)

return Prop[p].par = c ∧ Prop[p].orig ∈ Node[c].mem
∧ ¬(Prop[p].act = add-id′ ∧ id′ ∈ Node[c].mem)
∧ ¬(Prop[p].act = rem-id′ ∧ id′ /∈ Node[c].mem)

helper set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key ← I
Node[c].chall ← false

else
Node[c].key ←$ I
Node[c].chall ← true

helper rand-stat(id)

if RndPool[id] = good ∨ RndCor[id] = good then
RndPool[id] ← good
return good

else
return bad

helper update-status-after-expose(id)

for each p s.t. Prop[p] �= ⊥ and
(a) Prop[p].par = Ptr[id] and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat ← bad
for each c s.t. Node[c] �= ⊥ and

(a) Node[c].par = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat ← bad

Fig. 3. The helper functions for the CGKA functionality, defined in Fig. 2. The behav-

ior related to corruptions is marked in boxes.

Predicate safe

helper safe(c)

return ¬∃id s.t. key-and-state-leaked(id, c)

helper key-and-state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, true) ∈ Node[c].exp or
(b) state-leaked(id,Node[c].par) ∧ ¬heals(id, c)

or
(c) Node[c].par = ⊥ or
(d) last p ∈ Node[c].pro s.t. Prop[p].act = add-id

and
(if there exists one) has Prop[p].stat = adv

helper state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, false) ∈ Node[c].exp or
(b) key-and-state-leaked(id, c)

helper heals(id, c)

if Node[c].orig = id ∧ Node[c].stat = good then
return true

else Let p be the last element in Node[c].pro s.t.
Prop[p].orig = id ∧ Prop[p].act = up
(return false if no such p exists)
return Prop[p].stat = good

Fig. 4. The predicate safe, that determines if the key in a node c is secure. The part

in the box is only relevant in the active setting (Sect. 4).
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– Any key material id stored locally in order to process future control messages.
– The current group key, if id has not retrieved it yet via Key. The flag HasKey[id]

indicates if id currently holds the key.
– The key material for update proposals and commits that id has created from

its current epoch (but not processed yet).

The functionality records this symbolically as follows: the pair (id,HasKey[id])
is added to the “corrupted set” exp of id’s current node. To address the third
point, the helper function update-status-after-expose(id) sets the status of
all child nodes (update proposals and commits) created by id to stat = bad, i.e.,
they are marked as no longer healing the party.

The second avenue for the attacker to obtain information about group keys is
when the parties use bad randomness. Note that this work assumes that CGKA
schemes use their own randomness pool, which is refreshed with randomness
from the underlying operating system (OS) before every use. This guarantees
that a party uses good randomness whenever (1) the OS supplies random values
or (2) the pool is currently random (from the attacker’s perspective).

In FCGKA−AUTH, the flag RndCor[id] records for each party id whether id’s
OS currently supplies good randomness; the flag can be changed by the adversary
at will via CorrRand. Moreover, for each party id, the functionality stores the
status of its randomness pool in RndPool[id]. Whenever id executes a randomized
action, the functionality checks whether id uses good randomness by calling
rand-stat(id) and stores the result as the stat flag of the created history graph
node. As a side effect, rand-stat(id) updates the pool status to good if good
fresh OS randomness is used.

The Safety Predicate. The predicate safe(c) is defined as follows: The key cor-
responding to c is secure if and only if it has not been exposed via one of
the parties. This can happen in two situations: either if the party’s state has
been exposed in this particular state c while the party still stored the key
((id, true) ∈ Node[c].exp), or its previous state (not necessary with the key) is
known to the adversary and c did not heal the party. This can also be interpreted
as a reachability condition: the key is exposed if the party has been corrupted
in any ancestor of c and there is no “healing” commit in between.

The commit c is said to be healing, iff it contains an update by id with good
randomness or id is the committer and used good randomness. Observe that
this is optimal as those are the only operations, that by definition of a CGKA
scheme, are supposed to affect the party’s own key material.

Adaptive Corruptions. Exposing a party’s state may trigger some keys that
were already output as secure (i.e., random) now to become insecure. Unfortu-
nately, this is a stereotypical situation of the so-called commitment problem11 of
simulation-based security. Hence, we define two variants of FCGKA−AUTH, which
11 Roughly, the simulator, having already outputted a commit message that “binds”

him to the group key, now has to produce a secret state, such that processing this
message results in the (random) key from the functionality.
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differ in the behavior upon exposure (see the part in the dashed box )—in the
weaker notion (restrict-corruptions = true), the environment is restricted
not to corrupt a party if it would cause a challenged key to become insecure,
while in the stronger notion the adversary is simply given all now insecure keys.

5 Security of CGKA in the Active Setting

This section introduces the functionality FCGKA, which deals with active net-
work adversaries, i.e., it allows the environment to input arbitrary messages. It
is defined in Fig. 5, and the differences from FCGKA−AUTH are marked in boxes.

On a high level, the main difficulty compared to the passive setting is that
FCGKA has to account for inherent injections of valid control messages, where the
adversary uses leaked states of parties. To this end, FCGKA marks history graph
nodes created by the adversary via injections by a special status flag stat = adv.
It maintains the following history graph invariant, formally defined in Fig. 7:

1. Adversarially created nodes only occur if inherent, that is, their (claimed)
creator’s state must have leaked in the parent node. (We explain the special
case of creating orphan nodes later.)

2. The history graph is consistent.

The invariant is checked at the end of every action potentially violating it
(cf. lines [g]). We now describe the changes and additional checks in more detail.

Injected Proposals and Commits. First, consider the case where a party calls
commit with an injected proposal p (i.e., Prop[p] = ⊥). In such case, the sim-
ulator is allowed to reject the input (if it is invalid) by sending ack = false.
Otherwise, FCGKA asks the simulator to interpret the missing proposals by pro-
viding properties (action etc.) for new proposal nodes (line [d]) and marks them
as adversarial by setting their status to adv. (Those interpretations must be valid
with respect to the corresponding actions, cf. line [e], as otherwise the simulator
must reject the input.) The behavior of FCGKA in case a party calls process with
an injected commit or proposal message is analogous, except that the simulator
also interprets the commit message, creating a new commit node (line [h]).

While in the authentic-network setting we could enforce that each honest
propose and commit call results in a unique proposal or commit message, this
is no longer the case when taking injections into account. For example, add
proposals are deterministic, so if the adversary uses a leaked state to deliver an
add proposal p, then the next add proposal computed by the party is p as well.
The same can happen with randomized actions where the adversary controls
the randomness. Accordingly, we modify the behavior of FCGKA on propose and
commit inputs and allow outputting messages corresponding to existing nodes,
as long as this is consistent. That is, in addition to the invariant, FCGKA at this
point also needs to enforce that the values stored as part of the preexisting node
correspond to the intended action, and that this does not happen for randomized
actions with fresh randomness (see lines [a]). If all those checks succeed, the node
is treated as non-adversarial and we adjust its status accordingly (see lines [b]).
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Functionality Fcgka

The functionality expects as part of the instance’s session identifier sid the group creator’s
identity idcreator. It is parameterized in:

– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, indicating if it restricts the environment (avoiding the

commitment problem), or if it provides full adaptive security
– the flag robust, indicating that parties must be able to process “honest” messages.

Initialization and input Create from idcreator

This is the same as in Fcgka-auth in Fig. 2.

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Propose, id, act) to the adversary; receive p.
stat ← good
if act = up then

stat ← rand-stat(id)
if Prop[p] = ⊥ then

Prop[p] ← create-prop(Ptr[id], id, act, stat)
else

a: check-prop-consistency(p, id, act, stat)
b: Prop[p].stat ← stat

return p

Input (Commit p�, )
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Commit, id p�, ) to the adversary

and receive ( ack , c, w).

c: if valid-comm-by-correctness(id p�, ) ∨ ack then
d: fill-proposals(id p�, )
e: ∀p ∈ �p : assert valid-proposal(Ptr[id], p)

stat ← rand-stat(id)
mem ← members(Ptr[id] p�, )
assert id ∈ mem
if Node[c] = ⊥ then

Node[c] ← create-child(Ptr[id], id ,p�, mem, stat)
else

a: check-comm-consistency(c, id ,p�, stat,mem)
Node[c].stat ← stat

f: if Node[c].par = ⊥ then attach(c, id p�, )
assert w �= ⊥ iff (mem \ Node[Ptr[id]].mem) �= ∅

if w �= ⊥ then
assert Wel[w] ∈ {⊥, c}
Wel[w] ← c

g: assert invariant
return (c, w)

else return ⊥
Input Key

if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then
return ⊥

if Node[Ptr[id]].key = ⊥ then
set-key(Ptr[id])

HasKey[id] ← false

return Node[Ptr[id]].key

Input (Process p�,c, )
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Process, id p�,c, ) to the adversary

and receive (ack , orig′).
c: if valid-proc-by-correctness(id p�,c, )∨ack then

d: fill-proposals(id p�, )
e: ∀p ∈ � p: assert valid-proposal(Ptr[id], p)

mem ← members(Ptr[id] p�, )
if Node[c] = ⊥ then

h: Node[c] ← create-child(
Ptr[id], orig′ ,p�, mem, adv)

else
i: check-valid-successor(c, id ,p�, mem)
f: if Node[c].par = ⊥ then attach(c, id p�, )

if ∃p ∈ � p: Prop[p].act = rem-id then
Ptr[id] ← removed

else
Ptr[id] ← c
rand-stat(id)
HasKey[id] ← true

g: assert invariant
return get-output-process(c)

else return ⊥
Input (Join, w)

if Ptr[id] �= {fresh, removed} then return ⊥
Send (Join, id, w) to the adversary

and receive (ack , c′, orig′,mem′).

c: if valid-join-by-correctness(id, w) ∨ ack then
c ← Wel[w]
if c = ⊥ then

c ← c′

j: Wel[w] ← c
if Node[c] = ⊥ then

k: Node[c] ← create-child(⊥, orig′, ⊥,mem′, adv)
Ptr[id] ← c
rand-stat(id)
HasKey[id] ← true

g: assert invariant
return get-output-join(c)

else return ⊥

Corruptions

This is the same as in Fcgka-auth in Fig. 2.

Fig. 5. The ideal CGKA functionality for the active setting. The behavior related to
injections is marked in boxes. The corresponding helper functions are defined in Figs. 3
and 6, the invariant in Fig. 7, and the optimal predicate safe in Fig. 4.
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Helper Functions

helper fill-proposals(id p�, )

for p ∈ �p s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary

and receive (orig, act).
Prop[p] ← create-prop(Ptr[id], orig, act, adv)

helper check-prop-consistency(p, id, act, stat)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Prop[p].par = Ptr[id] ∧ Prop[p].stat = adv
if act = up then

assert stat �= good

helper check-comm-consistency(c, id ,p�, stat,mem)

// Preexisting c valid for id committing � p?
check-valid-successor(c, id ,p�, mem)
assert stat �= good ∧ Node[c].stat = adv

∧ Node[c].orig = id

helper check-valid-successor(c, id ,p�, mem)

// Preexisting node valid for id processing (c, � p)?
assert Node[c].mem = mem ∧ Node[c].pro ∈ {⊥ p�, }

∧ Node[c].par ∈ {⊥,Ptr[id]}

helper attach(c, id p�, )

// Attach (detached) node c as successor of id’s current
node with proposals � p

Node[c].par ← Ptr[id]; Node[c].pro ← � p

helper valid-comm-by-correctness(id p�, )

// Does correctness enforce the commit-call to succeed?
return ∀p ∈ � p: Prop[p] �= ⊥ ∧ valid-proposal(Ptr[id], p)

∧ id ∈ members(Ptr[id] p�, )

helper valid-proc-by-correctness(id p�,c, )

// Does correctness enforce the process-call to succeed?
if Node[c] = ⊥ ∨ Node[c].par �= Ptr[id] ∨ Node[c].pro �= � p
then return false

else if robust then
return ¬(Node[c].orig = id ∧ Node[c].stat = adv)

∧ ¬ last p ∈ � ps.t. Prop[p].orig = id∧
Prop[p].act = up exists and has Prop[p].stat = adv

)

else
return Node[c].stat �= adv ∧ ∀p ∈ � p: Prop[p].stat �= adv

helper valid-join-by-correctness(id, w)

// Does correctness enforce the join-call to succeed?
c ← Wel[w]
return robust ∧ Ptr[id] = fresh ∧ c �= ⊥ ∧ Node[c] �= ⊥

∧ Node[c].stat �= adv
∧ id ∈ (Node[c].mem \ Node[c].par.mem)

Fig. 6. The additional helper functions for FCGKA, defined in Fig. 5.

Injected Welcome Messages. If a party calls join with an injected welcome mes-
sage, we again ask the simulator to interpret the injected welcome message by
providing the corresponding commit message c (line [j]), which can either refer
to an existing node or a new one the simulator is allowed to set the correspond-
ing values for (line [k]). The main difficulty compared to injected proposals and
commits, however, is that sometimes this node’s position in the history graph
cannot be determined. For example, consider an adversary who welcomes a party
id to a node at the end of a path that he created in his head, by advancing the
protocol a number of steps from a leaked state. Unless welcome messages contain
the whole conversation history (and not just e.g. a constant size transcript hash
thereof), it is impossible for any efficient simulator to determine the path.

As a result, FCGKA deals with an injected welcome message w as follows:
if the commit node to which w leads does not exist (c is provided by the sim-
ulator), then a new detached node is created, with all values (except parent
and proposals) determined by the simulator. The new member can call propose,
commit and process from this detached node as from any other node, creat-
ing an alternative history graph rooted at the detached node. Moreover, new
members can join the alternative graph. The node, together with its alternative
subtree, can be attached to the main tree when the commit message c is gen-
erated or successfully processed by a party from the main tree. The function
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Predicate invariant

Return true if all of the following are true:

– adversarial nodes created only by corrupted parties:
• ∀c, if Node[c].stat = adv then state-leaked(Node[c].par,Node[c].orig)

or Node[c].par = ⊥
• ∀p, if Prop[p].stat = adv then state-leaked(Prop[p].par,Prop[p].orig)

– the history graph’s state is consistent: ∀c s.t. Node[c].par �= ⊥:
• Node[c].pro �= ⊥ and ∀p ∈ Node[c].pro Prop[p].par = Node[c].par
• Node[c].mem = members(Node[c].par,Node[c].pro)

– pointers consistent: ∀id s.t. Ptr[id] /∈ {fresh, removed} : id ∈ Node[Ptr[id]].mem
– the graph contains no cycles

Fig. 7. The graph invariant. The predicate state-leaked is defined as part of the
predicate safe in Fig. 4.

check-valid-successor, invoked during commit and process (lines [i,a]) verifies
if attaching is allowed.

Security. So far we have explained how the CGKA functionality maintains a
consistent history graph, even when allowing (inherent) injections. It remains to
consider how such adversarially generated nodes affect the secrecy of group keys.
First, obviously an adversarial commit or update does not heal the corresponding
party. Note that heals from the safe predicate (cf. Fig. 4) already handles this
by checking for stat = good. Second, for adversarial add proposals we have to
assume that the contained public-key was chosen such that the adversary knows
the corresponding secret key, implying that the adversary can read its welcome
message. Hence, both secret state of the added party and the new group key are
considered exposed (see the part (d) in Fig. 4 marked with a box ).

Finally, consider a detached node created by an injected welcome message.
Recall that new members join using a welcome message, containing all the rel-
evant information about the group. Since our model does not include any long-
term PKI, this welcome message is the only information about the group avail-
able to them and we cannot hope for a protocol that detects injected welcome
messages. Moreover, we don’t know where in the history graph a detached node
belongs, and in particular whether it is a descendant of a node where another
party is exposed or not. This means that we cannot guarantee secrecy for keys
in detached nodes or their children (the part (c) of in Fig. 4 marked with a
box ). Still, we can at least express that this does not affect the guarantees of
existing group members, and can start considering the subtree’s security once it
is attached to the main tree (e.g. by a party from the main tree moving there).

Robustness. Finally, we consider robustness, i.e., correctness guarantees with
respect to honestly generated ciphertext when parties might have processed
adversarially generated ones beforehand. We define two variants of FCGKA, dif-
fering in the level of robustness. Intuitively, the stronger variant (robust = true)
requires that honestly generated ciphertexts can always be processed by the
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intended recipients, while in the weaker variant (robust = false) the adver-
sary can inject ciphertexts resulting parties to reject subsequent honest ones.

6 Construction for the Passive Setting

We now introduce the protocol P-Pas for the authenticated setting. A formal
description can be found in the full version [5]. The protocol P-Pas is a mod-
ification of the TTKEM protocol [2] when executed in a propose-and-commit
manner. We thus first briefly describe TTKEM and its vulnerability to cross-
group attacks.

6.1 TTKEM

The (distributed) group state consists primarily of a labeled left-balanced binary
tree (LT) τ , where each group member is assigned one of the leafs. All nodes
(except the root that stores the group key) have labels epk and esk, denoting
the public and secret key of a PKE scheme, respectively. The public key and the
overall structure of the tree is considered public information, whereas the secret
keys are only known by the members whose leaf is in the corresponding sub-tree.

Proposals represent suggestions for modifying the current LT. More con-
cretely, a Remove proposal deletes all the labels of the specified member’s leaf,
an Add proposal adds a new leaf assigned to the new member idt where epk is
fetched from the PKI, and an Update proposal suggests replacing esk and epk in
a member’s leaf by a fresh pair, with the public key specified in the proposal.

The proposals are applied upon creating or processing a commit message,
to derive the new state of the tree. When applying the proposals, some of the
keys stored at intermediate leafs can no longer be used: to achieve PCS in case
of updates a party all nodes (potentially) known to that party, and analogously
for removals. Moreover, for freshly added parties it cannot be assumed that they
know the keys on their direct path (to the root). TreeKEM deals with those
issues by blanking all those nodes. TTKEM, on the other hand, simply lets the
committer choose fresh keys for all those nodes and marks them as tainted (i.e.,
sampled) by the committer via an additional public taintedby label. In particular,
those keys now in turn must be assumed to be known to that party12, and thus
when committing one of his updates, also needs to be replaced in turn.

The commit message must allows all other group members to compute their
respective views of the new LT, i.e., to learn all new public keys but also all
replaced secret keys on their direct path. To simplify this, the commit algorithm
generates the keys by first partitioning the to be re-keyed nodes into a number of
path segments from a start node u to one of its ancestors v. Each of this segment
is then re-keyed by “hashing up the path”. Namely, it chooses a random secret
s and iterates over the nodes in (u � v). At each step it derives a new key pair

12 While the party does not need to store any secret keys off his direct path, they might
still have leaked to the adversary e.g. when using adversarially chosen randomness.
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for the node using random coins H2(s) and updates the secret for use with the
next node on the path by setting s ← H1(s).

Hence, each user only needs to learn one ciphertext for each segment: the
seed for where the path first meets the user’s direct path. Thus, the protocol
simply encrypts each fresh key it to all its children’s secrets that are not replaced
as well. Care has to be taken where two different segments meet, i.e., where a
one’s segment’s node is the parent of another segment’s node. There, we still
have to encrypt the node to the child, yet ensure that the child node’s new key
is used (for PCS). This can be done by processing the segments from “lower” to
“higher”, according to the depth of their end point.

Most users then process the above commit message in the obvious way. The
only exception is the committer himself, which for PCS cannot decrypt the
commit using any of his state. He can, however, simply stores the new ratchet
tree at the time of creating it.

A welcome message prepared by the committer contains the public part of the
(new) LT τ ′. Additionally, for each freshly added member, the welcome message
contains the secret labels of all nodes on the new member’s direct path (except
the leaf) encrypted under a second public key epk′ stored as part of the add
proposal. (An add proposal in TTKEM contains two public keys epk and epk′.)

Cross-Group Attacks. The TTKEM protocol is vulnerable against so-called
cross-group attacks. Intuitively, those attacks are possible against protocols
where commits affect only part of the group state. Consider the following
example:

1. Create a group with A,B and C. Move all parties to the same node Node[c0].
2. Make A send a commit c1 and B send a commit c2, neither containing an

update for C.
3. Move C to Node[c1], and A and B to Node[c2].
4. Expose C’s secret state.

In an optimally secure protocol, the two sub-groups should evolve independently,
without the exposure of C in the one branch affecting the security of the other
branch. In case of TTKEM, however, the group states in epochs c0, c1 and c2 all
share the same key pair for C’s leaf. Moreover, if C is added last, then his node
in the tree will be the direct right child of the root. Thus, when generating c1
and c2, both A and B encrypt the new root secret under C’s leaf public key.13

Hence, the adversary can derive the group key of Node[c2] by using C’s leaked
secret key to decrypt the corresponding ciphertext in c2.

We note that this cannot be easily fixed by just mixing the old group key
into the new one. For this, we modify the above attack and corrupt B after Step
1. This leaks the old group key. Still, by PCS the key in c2 should be secure.

13 This attack can be easily extended to C’s leaf not being a direct child of the root.
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6.2 The Protocol P-Pas

To avoid cross-group attacks, we modify TTKEM so that a commit evolves all
key pairs in the LT. For this, we first replace the standard encryption scheme
by HIBE. That is, each node, instead of labels epk and esk, has two public mpk
and id, as well as one private label hsk. In the order listed, these labels contain
a (master) HIBE public key, and a HIBE identity vector and the corresponding
HIBE secret key for identity id. Encryption for a node is done with mpk and id.
Whenever a new key pair is created for an internal node (e.g. during rekeying),
the node’s id is initialized to the empty string. For leaf nodes, the first ID in the
vector id is set to the ID of the user assigned to that leaf.

Second, we can now evolve all keys with every commit: For nodes whose
keys does not get replaced with the commit, we simply append the hash of the
commit message H3(c) to the HIBE ID vectors, and update all secret keys on
the processor’s direct path accordingly.

Intuitively, this provides forward secrecy for individual HIBE keys in the LT.
First, HIBE schemes ensure that secret keys for an ID vector can not be used
to derive secrets for prefixes of that ID vector. So, the HIBE key of a node can
not be used to derive its keys from previous epochs. Second, this guarantees in
the event the group is split into parallel epochs (by delivering different commit
messages to different group members) that the keys of a node in one epoch can
not be used to derive the keys for that node in any parallel epochs. That is
because, more generally, HIBE schemes ensure that secret keys for an ID vector
id can not be used to derive keys for any other ID vector id′ unless id is a prefix
of id′. But as soon as parallel epochs are created, the resulting ID vectors of
any given node in both LTs have different commit messages in them at the same
coordinate ensuring that no such vector is a prefix of another.

We prove two statements about P-Pas. First, if the hash functions are mod-
eled as non-programmable random oracles, then the protocol realizes the relaxed
functionality that restricts the environment not to perform certain corruptions.
Second, for programmable random oracles it achieves full UC security. Formally,
we obtain the following theorems, proven in the full version [5].

Theorem 1. Assuming that HIBE and PKE are IND-CPA secure, the protocol
P-Pas realizes FCGKA−AUTH with restrict-corruptions = true in the (FPKI,
GRO)-hybrid model, where GRO denotes the global random oracle, calls to hash
functions Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval
are replaced by calls to GRO with prefix PRG.

Theorem 2. Assuming that HIBE and PKE are IND-CPA secure, the protocol
P-Pas realizes FCGKA−AUTH with restrict-corruptions = false in the (FPKI,
FRO)-hybrid model, where FRO denotes the (local) random oracle, calls to hash
functions Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval
are replaced by calls to GRO with prefix PRG.
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7 Constructions for the Active Setting

This section explains how to gradually enhance our protocol with passive security
from Sect. 6 to deal with active network adversaries.

7.1 Basic Modifications of the Passive Protocol

Authentication. The goal of the first modification is to prevent injections when-
ever they are not inherent given correctness, i.e., the adversary should be able
to make some party accept a message as coming from id in epoch c only if id’s
state in c is exposed (in the sense of the safe predicate). We achieve this using
key-updatable signatures (KUS) [21], a signature analog on of HIBE, where ver-
ification additionally takes an identity vector and signing keys can be updated
to lower-level ones, for longer identity vectors.

To this end, we modify the group state with each leaf in the LT getting two
additional labels: a KUS verification key spk and a corresponding signing key ssk
for the leafs identity vector id (the same one as for HIBE). The leaf’s KUS keys
live alongside its HIBE keys: each update and commit of the user id assigned
to the leaf contains a fresh spk, and whenever id processes a commit message c,
he updates ssk using the identity c. All messages sent by id are signed with his
current signing key and verified by receiving parties respectively. Accordingly,
the PKI key generation outputs an additional KUS key pair for the new member.

Binding Control Messages to Epochs. The actively secure protocols have to
ensure that control messages are not used of context, e.g., trying to process
a commit message that does not originate from the current state, or using a pro-
posal belonging to a different epoch in a commit message. This is achieved by
each control message (commit or proposal) contains an epoch id epid, which is
simply a hash of the last commit message, and additionally each commit message
containing a hash of the list of committed proposals.

Proposal Validation. For active security, the commit and proc algorithms have to
check that all proposals being committed to were created by a current member
of the group, that add- and remove-proposals only add and remove parties that
are currently not yet in the group, respectively already in the group, and that
the proposals don’t remove the party executing commit from the group (as this
party chooses the next group key).

Validating the Public State in Welcome Messages. Recall that FCGKA allows the
environment to inject a welcome message, making a party join a detached node.
If afterwards the environment makes a different party process the corresponding
commit message, the node is attached to its parent. FCGKA requires that in such
case the joining and the processing party end up in a consistent state (e.g. they
agree on the member set). Our protocol guarantees this by 1) including in a
commit message a hash H5(τpub), where τpub is the public part of the LT in the
new epoch, and 2) including the whole commit c in the welcome message.
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If after processing a commit c the resulting LT doesn’t match the hash, the
protocol returns ⊥. The joining party verifies that τpub in the welcome message
matches the hash in the commit c and computes epid as hash of c.14

7.2 The Non-Robust Protocol

Well-Formedness via Hashing. The next goal is to prevent the adversary from
successfully injecting (using leaked states) malformed control messages. This is
not a problem for our proposal messages, since they only contain public infor-
mation, which can be easily verified.15 However, commit and welcome messages
both contain a number of ciphertexts of (supposedly) related data, only part of
which can be decrypted by a given party. The following simple solution to this
problem provides security, but not robustness.

Consider first commit messages, which contain a number of public keys and
a number of ciphertexts, used by a party to derive his slice of corresponding
secret keys and the new group key. While validity of derived secret keys can be
verified against the public keys, this is not the case for the group key. Hence, we
add to the message an analogue of a public-key for the group key—we use hash
functions H6 and H7 and whenever a party is ready to send a commit c creating
an LT τ , it attaches to c a confirmation key H6(c, τ.grpkey) (recall that grpkey is
the label in the root of τ) with which grpkey can be validated. The actual group
key for the new epoch is then defined to be H7(τ.grpkey).

Second, a welcome message contains the public part of the LT τpub, encryp-
tion of the new member’s slice of the secret part and the commit message c.
The join algorithm performs the same checks as proc: it verifies the decrypted
secret keys against the public keys in τpub and the decrypted τ.grpkey against
the confirmation key in c.

Putting it All Together. Combining the above techniques results in our first
protocol, P-Act. In particular, a commit in P-Act is computed as follows: (1)
Generate the message c as in the protocol with passive security (taking into
account the additional KUS labels). (2) Add the hash of the public state and
epoch id: c ← (c, epid,H5(τpub)). (3) Compute the confirmation key as conf-key =
H6(c, τ.grpkey). (4) Output (c, conf-key), signed with the current KUS secret key.
(We note that we use KUS with unique signatures).

Security. We note that the confirmation key has in fact two functions. Apart
from guaranteeing that parties end up with the same group keys, in the random
oracle model, it also constitutes a proof of knowledge of the group key with
respect to the commit message. This prevents the adversary from copying parts
of commits sent by honest parties, where he does not know the secrets, into

14 Recall that the functionality identifies epochs by c, so in order for the simulator to
determine the epoch for injected welcome messages, it has to contain the whole c.

15 Note that the validity of the public-key contained in add-proposals cannot be verified
as our model does not consider an identity PKI.
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his injected commits (he cannot copy the honest committer’s confirmation key,
because the control message c no longer matches).

As in the case of protocols with passive security, we prove two statements: if
the hash functions are modeled as non-programmable random oracles, then we
achieve security with respect to a restricted class of environments, while if the
random oracles are programmable, we achieve full UC security. Both theorems
are proven in the full version [5].

Theorem 3. Assuming that HIBE and PKE are IND-CCA secure, and KUS is
EUF-CMA secure the non-robust protocol P-Act realizes FCGKA with robust =
false and restrict-corruptions = true in the (FPKI, GRO)-hybrid model,
where GRO denotes the global random oracle, calls to hash functions Hi are
replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by
calls to GRO with prefix PRG.

Theorem 4. Assuming that HIBE and PKE are IND-CCA secure, and KUS is
EUF-CMA secure the non-robust protocol P-Act realizes FCGKA with robust =
false and restrict-corruptions = true in the (FPKI, FRO)-hybrid model,
where FRO denotes the (local) random oracle, calls to hash functions Hi are
replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by
calls to GRO with prefix PRG.

7.3 The Robust Protocol Using NIZKs

Unfortunately, the solution with the confirmation key not provide robustness,
since a party cannot verify all ciphertexts, and so it may accept a commit message
that will be rejected by another party. In order to provide robustness, we need
a mechanism that allows parties to verify well-formedness of all ciphertexts in
a commit message. For this, we replace the simple method of well-formedness
verification via hashing by a non-interactive zero-knowledge argument (NIZK).
In particular, in our robust protocol P-Act-Rob a commit message contains a
NIZK of knowledge of randomness r and secret state γ such that (1) running th
commit of P-Pas with r and γ results in the given message and (2) secret keys in
γ match the public keys in the receiver’s ratchet tree. Intuitively, this is secure
since P-Pas is already secure against adversarial randomness, and since r and γ
can be extracted from the NIZK of knowledge.

For lack of space, we leave details and the security proof to the full version [5].
The statement we prove is that P-Act-Rob realizes in the standard model a static
version of FCGKA, where, whenever an id commits, the environment must specify
if the key in the new node should be secure, in which case certain corruptions
are disabled, or not. The reason for using a different type of statement than for
other protocols is that P-Act-Rob uses a NIZK for a statement involving hash
evaluations. On the other hand, our proofs of adaptive security require modeling
the hash as a random oracle.
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Abstract. We construct a four round secure multip arty computation (MPC) pro-
tocol in the plain model that achieves security against any dishonest majority. The
security of our protocol relies only on the existence of four round oblivious trans-
fer. This culminates the long line of research on constructing round-efficient MPC
from minimal assumptions (at least w.r.t. black-box simulation).

1 Introduction

The ability to securely compute on private datasets of individuals has wide applications
of tremendous benefits to society. Secure multiparty computation (MPC) [18,37] pro-
vides a solution to the problem of computing on private data by allowing a group of
parties to jointly evaluate any function over their private inputs in such a manner that
no one learns anything beyond the output of the function.

Since its introduction nearly three decades ago, MPC has been extensively studied
along two fundamental lines: necessary assumptions [18,26,30], and round complexity
[2,4,6,8,9,13,18,21,28,29,32,33,36].1 Even for the case of malicious adversaries who
may corrupt any number of parties, both of these topics, individually, are by now pretty
well understood:

– It is well known that oblivious transfer (OT) is both necessary and sufficient [26,30]
for MPC.

– A recent sequence of works have established that four rounds are both necessary [13]
and sufficient [2,3,6,25] for MPC (with respect to black-box simulation). However,
the assumptions required by these works are far from optimal, ranging from sub-
exponential hardness assumptions [2,6] to polynomial hardness of specific forms of
encryption schemes [25] or specific number-theoretic assumptions [3].

1 A detailed discussion on related works can be found in the full version.
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In this work, we consider the well studied goal of building round-efficient MPC
while minimizing the underlying cryptographic assumptions. Namely:

Can we construct round optimal MPC from minimal assumptions?

Precisely, we ask whether it is possible to construct four round MPC from four
round OT. This was explicitly left as an open problem in the elegant work of Ben-
hamouda and Lin [5] who constructed k-round MPC from k-round OT for k ≥ 5.

1.1 Our Results

In this work, we resolve the above question in the affirmative. Namely, we construct four
round malicious-secure MPC based only on four round (malicious-secure) OT. Our pro-
tocol admits black-box simulation and achieves security against malicious adversaries
in the dishonest majority setting.

Theorem 1 (Informal). Assuming the existence of four round OT, there exists a four
round MPC protocol for any efficiently computable functionality in the plain model.

This settles the long line of research on constructing round efficient MPC from
minimal cryptographic assumptions.

Our Approach. To obtain our result, we take a conceptually different approach from
the works of [2,3,6,25] for enforcing honest behavior on (possibly malicious) protocol
participants. Unlike these works, we do not require the parties to give an explicit proof
of honest behavior within the first three rounds of the protocol. Instead, we devise a
multiparty conditional disclosure of secretsmechanism that ensures that the final round
messages of the honest parties become “opaque” if even a single participant behaved
maliciously. A key property of this mechanism is that it allows for each party to obtain
a public witness that attests to honest behavior of all the parties, without compromising
the security of any party. We refer the reader to Sect. 2 for details.

On the Minimal Assumptions. We study MPC in the standard broadcast communica-
tion model, where in each round, every party broadcasts a message to the other parties.
In this model, k-round MPC implies k-round bidirectional OT, where each round con-
sists of messages from both the OT sender and the receiver. However, it is not imme-
diately clear whether it also implies k-round OT in the standard, alternating-message
model for two-party protocols where each round consists of a message from only one of
the two parties. As such, the minimal assumption for k-round MPC is, in fact, k-round
bidirectional OT (as opposed to alternating-message OT).

Towards establishing the optimality of Theorem 1, we observe that k-round bidirec-
tional OT implies k-round alternating-message OT.

Theorem 2. k-round bidirectional OT implies k-round alternating-message OT.
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Our transformation is unconditional and generalizes a message rescheduling strat-
egy previously considered by Garg et al. [13] for the specific case of three round coin-
tossing protocols. In fact, this transformation is even more general and applies to any
two-party functionality, with the restriction that only one party learns the output in the
alternating- essage protocol.

An important corollary of Theorem 2 is that it establishes the missing piece from
the result of Benhamouda and Lin [5] who constructed k-round MPC from any k-round
alternating-message OT for k ≥ 5. Their result, put together with our main result in
Theorem 1 provides a full resolution of the fundamental question of basing round effi-
cient MPC on minimal assumptions.

In the sequel, for simplicity of exposition, we refer to alternating-message OT as
simply OT.

2 Technical Overview

Before we dive into the technical contributions of our work, for the uninitiated reader,
we provide a brief summary of the key challenges that arise in the design of a four
round MPC protocol and the high-level strategies adopted in prior works for addressing
them. We group these challenges into three broad categories, and will follow the same
structure in the remainder of the section.

Enforcing Honest Behavior. A natural idea, adopted in prior works, is to start with a
protocol that achieves security against semi-malicious2 adversaries and compile it using
zero-knowledge (ZK) proofs [20] à la GMW compiler [19] to achieve security against
malicious adversaries. This is not easy, however, since we are constrained by the number
of rounds. As observed in prior works, when the underlying protocol is delayed semi-
malicious3 [2,5], we can forego establishing honest behavior in the first two rounds. In
particular, it suffices to establish honest behavior in the third and fourth rounds. The
main challenge that still persists, however, is that ZK proofs – the standard tool for
enforcing honest behavior – are impossible in three rounds w.r.t. black-box simulation
[17]. Thus, an alternative mechanism is required for establishing honest behavior in the
third round.

Need for Rewind Security. Due to the constraint on the number of rounds, all prior
works utilize design templates where multiple sub-protocols are executed in parallel.
This creates a challenge when devising a black-box simulation strategy that works by
rewinding the adversary. In particular, if the simulator rewinds the adversary (say) dur-
ing second and third round of the protocol, e.g., to extract its input, we can no longer
rely on stand-alone security of sub-protocols used in those rounds. This motivates the

2 Roughly speaking, such adversaries behave like semi-honest adversaries, except that they may
choose arbitrary random tapes.

3 Roughly speaking, a delayed semi-malicious adversary is similar to semi-malicious adversary,
except that in the second last round of a k-round protocol, it is required to output (on a special
tape) a witness (namely, its input and randomness) that establishes its honest behavior in all
the rounds so far.
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use of sub-protocols that retain their security even in the presence of some number of
rewinds. Indeed, much work is done in all prior works to address this challenge.

Non-malleability. For similar reasons as above, we can no longer rely on standard
soundness guarantee of ZK proofs (which only hold in the stand-alone setting). All
prior works address this challenge via a careful use of some non-malleable primitive
such as non-malleable commitments [10] in order to “bootstrap non-malleability” in
the entire protocol. This leads to an involved security analysis.

Our primary technical contribution is in addressing the first two issues. We largely
follow the template of prior works in addressing non-malleability challenges. As such,
In the remainder of this technical overview, we focus on the first two issues, and defer
discussion on non-malleability to the full version.

Organization. We describe our key ideas for tackling the first and second issues in
Sects. 2.1 and 2.2, respectively. We conclude by providing a summary of our protocol
in Sect. 2.3.

Full Version. Due to space constraints, preliminaries, details of the proofs, and com-
plexity calculations have been omitted from this manuscript, and can be found in the
full version of the paper [7].

2.1 Enforcing Honest Behavior

In any four round protocol, a rushing adversary may always choose to abort after receiv-
ing the messages of honest parties in the last round. At this point, the adversary has
already received enough information to obtain the output of the function being com-
puted. This suggests that we must enforce “honest behavior” on the protocol partici-
pants within the first three rounds in order to achieve security against malicious adver-
saries. Indeed, without any such safeguard, a malicious adversary may be able learn the
inputs of the honest parties, e.g., by acting maliciously so as to change the functionality
being computed to the identity function.

Since three-round ZK proofs with black-box simulation are known to be impossible,
all recent works on four roundMPC devise non-trivial strategies that only utilize weaker
notions of ZK (that are achievable in three or less rounds) to enforce honest behavior
within the first three rounds of the MPC protocol. However, all of these approaches end
up relying on assumptions that are far from optimal: [2] and [6] use super-polynomial-
time hardness assumptions, [25] use Zaps [11] and affine-homomorphic encryption
schemes, and [3] use a new notion of promise ZK together with three round strong
WI [27], both of which require specific number-theoretic assumptions.

A Deferred Verification Approach. We use a different approach to address the above
challenge. We do not require the parties to give an explicit proof of honest behavior
within the first three rounds. Of course, this immediately opens up the possibility for
an adversary to cheat in the first three rounds in such a manner that by observing the
messages of the honest parties in the fourth round, it can completely break privacy. To
prevent such an attack, we require the parties to “encrypt” their last round message in
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such a manner that it can only be decrypted by using a “witness” that establishes hon-
est behavior in the first three rounds. In other words, the verification check for honest
behavior is deferred to the fourth round.

In the literature, the above idea is referred to as conditional disclosure of secrets
(CDS) [1]. Typically, however, CDS is defined and constructed as a two-party protocol
involving a single encryptor – who encrypts a secret message w.r.t. some statement –
and a single decryptor who presumably holds a witness that allows for decryption.4

This does not suffice in the multiparty setting due to the following challenges:

– The multiparty setting involves multiple decryptors as opposed to a single decryptor.
A naive way to address this would be to simply run multiple executions of two-party
CDS in parallel, each involving a different decryptor, such that the ith execution
allows party i to decrypt by using a witness that establishes its own honest behav-
ior earlier in the protocol. However, consider the case where the adversary corrupts
at least two parties. In the above implementation, a corrupted party who behaved
honestly during the first three rounds would be able to decrypt the honest party mes-
sage in the last round even if another corrupted party behaved maliciously. This
would clearly violate security. As such, we need a mechanism to jointly certify hon-
est behavior of all the parties (as opposed to a single party).

– In the two-party setting, the input and randomness of the decryptor constitutes a
natural witness for attesting its honest behavior. In the multiparty setting, however,
it is not clear how an individual decryptor can obtain such a witness that establishes
honest behavior of all the parties without trivially violating privacy of other parties.

We address these challenges by implementing a multiparty conditional disclosure
of secrets (MCDS) mechanism. Informally speaking, an MCDS scheme can be viewed
as a tuple of (possibly interactive) algorithms (Gen,Enc,Dec): (a) Gen takes as input
an instance and witness pair (x,w) and outputs a “public” witness π. (b) Enc takes as
input n statements (x1, . . . , xn) and a message m and outputs an encryption c of m. (c)
Dec takes as input a ciphertext c and tuples (x1, π1), . . . , (xn, πn) and outputs m or ⊥.
We require the following properties:

– Correctness: If all the instances (x1, . . . , xn) are true, then dec outputs m.
– Message Privacy: If at least one instance is false, then c is semantically secure.
– Witness Privacy: There exists a simulator algorithm that can simulate the output π
of Gen without using the private witness w.

The security properties of MCDS allow us to overcome the aforementioned chal-
lenges. In particular, the witness privacy guarantee allows the parties to publicly release
the witnesses (π1, . . . , πn) while maintaining privacy of their inputs and randomness.

In order to construct MCDS with witness privacy guarantee, we look towards ZK
proof systems. As a first attempt, we could implement public witnesses via a delayed-
input5 four round ZK proof system. Specifically, each party i is required to give a ZK

4 There are some exceptions; we refer the reader to the full version for discussion on other
models.

5 A proof system is said to be delayed input if the instance is only required for computing the
last round of the proof.
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proof for xi such that the last round of the proof constitutes a public witness πi. Fur-
ther, a simple, non-interactive method to implement the encryption and the decryption
mechanism is witness encryption [12]. However, presently witness encryption is only
known from non-standard assumptions (let alone OT).

To achieve our result from minimal assumptions, we instead use garbled circuits
[37] and four round OT to implement MCDS. Namely, each party i garbles a circuit
that contains hardwired the entire transcript of the first three rounds of the underlying
MPC, as well the fourth round message of the MPC of party i. Upon receiving as input
a witness π1, . . . , πn, where πj is a witness for honest behavior of party j, the garbled
circuit outputs the fourth round message. Each party j can encode its witness πj in the
OT receiver messages, where the corresponding sender inputs will be the wire labels
of the garbled circuit. Party j then release its private randomness used inside OT in the
fourth round so that any other party j′ can use it to compute the output of the OT, thereby
learning the necessary wire labels for evaluating the garbled circuit sent by party i. For
security, it is imperative the witness πj remains hidden until the randomness is revealed
in the fourth round.

A problem with the above strategy is that in a four round OT, the receiver’s input
must be fixed by the third round. This means that we can no longer use four round
ZK proofs, and instead must use three round proofs to create public witnesses of hon-
est behavior. But which three round proofs must we use? Towards this, we look to the
weaker notion of promise ZK introduced by [3]. Roughly, promise ZK relaxes the stan-
dard notion of ZK by guaranteeing security only against malicious verifiers who do not
abort. Importantly, unlike standard ZK, distributional6 promise ZK can be achieved in
only three rounds with black-box simulation in the bidirectional message model. This
raises two questions – is promise ZK sufficient for our purposes, and what assumptions
are required for three round promise ZK?

Promise ZK Under the Hood. Let us start with the first question. An immediate chal-
lenge with using promise ZK is that it provides no security in the case where the verifier
always aborts. In application to four round MPC, this corresponds to the case where the
(rushing) adversary always aborts in the third round. Since the partial transcript at the
end of third round (necessarily) contains inputs of honest parties, we still need to argue
security in this case. The work of [3] addressed this problem by using a “hybrid” ZK
protocol that achieves the promise ZK property when the adversary is non-aborting,
and strong witness-indistinguishability (WI) property against aborting adversaries. The
idea is that by relying on strong WI property (only in the case where adversary aborts
in the third round), we can switch from using real inputs of honest parties to input
0. However, three round strong WI is only known based on specific number-theoretic
assumptions [27].

To minimize our use of assumptions, we do not use strong WI, and instead devise
a hybrid argument strategy – similar to that achieved via strong WI – by using promise
ZK under the hood. Recall that since we use the third round prover message of promise
ZK as a witness for conditional decryption, it is not given in the clear, but is instead
“encrypted” inside the OT receiver messages in the third round. This has the positive
effect of shielding promise ZK from the case where the adversary always aborts in the

6 That is, where the instances are sampled from a public distribution.
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third round.7 In particular, we can use the following strategy for arguing security against
aborting adversaries: we first switch from using promise ZK third round prover message
to simply using 0’s as the OT receiver’s inputs. Now, we can replace the honest parties’
inputs with 0 inputs by relying on the security of the sub-protocols used within the first
three rounds. Next, we can switch back to using honestly computed promise ZK third
round prover message as the OT receiver’s inputs.

Let us now consider the second question, namely, the assumptions required for three
round promise ZK. The work of [3] used specific number-theoretic assumptions to con-
struct three round (distributional) promise ZK. However, we only wish to rely on the
use of four round OT. Towards this, we note that the main ingredient in the construc-
tion of promise ZK by [3] that necessitated the use of number-theoretic assumptions is
a three round WI proof system that achieves “bounded-rewind-security.” Roughly, this
means that the WI property holds even against verifiers who can rewind the prover an a
priori bounded number of times.

Towards minimizing assumptions, we note that a very recent work of [23] provides
a construction of such a WI based only on non-interactive commitments. By using their
result, we can obtain three round promise ZK based on non-interactive commitments,
which in turn can be obtained from four round OT using the recent observation of
Lombardi and Schaeffer [31].

2.2 Rewinding Related Challenges

While the above ideas form the basis of our approach, we run into several obstacles
during implementation due to rewinding-related issues that we mentioned earlier. In
order to explain these challenges and our solution ideas, we first describe a high-level
template of our four round MPC protocol based on the ideas discussed so far. To narrow
the focus of the discussion on the challenges unique to the present work, we ignore some
details for now and discuss them later.

An Initial Protocol Template. We devise a compiler from four round delayed semi-
malicious MPC protocols of a special form to a four round malicious-secure MPC pro-
tocol. Specifically, we use a four round delayed semi-malicious protocol Π obtained
by plugging in a four-round malicious-secure (which implies delayed semi-malicious
security) OT in the k-round semi-malicious MPC protocol of [5,14] based on k-round
semi-malicious OT. An important property of this protocol that we rely upon is that it
consists only of OT messages in the first k − 2 rounds. Further, we also rely upon the
random self-reducibility of OT, which implies that the first two rounds do not depend on
the OT receiver’s input, and the first three rounds do not depend on the sender’s input.8

To achieve malicious security, similar to prior works, our compiler uses several
building blocks (see Sect. 2.3 for a detailed discussion). One prominent building block
is a three-round extractable commitment scheme that is executed in parallel with the
first three rounds of the delayed semi-malicious MPC. The extractable commitment

7 Note that if the protocol does progress to the fourth round, then we do not need to shield
promise ZK anymore.

8 We note that this property was also used by [5] in their construction of k-round malicious-
secure MPC.
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scheme is used by the parties to commit to their inputs and randomness. This allows
the simulator for our protocol to extract the adversary’s inputs and randomness by
rewinding the second and third rounds, and then use them to simulate the delayed semi-
malicious MPC.

Bounded-Rewind-Secure OT. The above template poses an immediate challenge in
proving security of the protocol. Since the simulator rewinds the second and third
rounds in order to extract the adversary’s inputs, this means that the second and third
round messages of the delayed semi-malicious MPC also get rewound. For this reason,
we cannot simply rely upon delayed semi-malicious security of the MPC. Instead, we
need the MPC protocol to remain secure even when it is being rewound. More specifi-
cally, since we are using an MPC protocol where the first two rounds only consist of OT
messages, we need a four round rewind-secure OT protocol. Since the third round of a
four round OT only contains a message from the OT receiver, we need the following
form of rewind security property: an adversarial sender cannot determine the input bit
used by the receiver even if it can rewind the receiver during the second and third round.

Clearly, an OT protocol with black-box simulation cannot be secure against an arbi-
trary number of rewinds. In particular, the best we can hope for is security against an
a priori bounded number of rewinds. Following observations from [3], we note that
bounded-rewind security of OT is, in fact, sufficient for our purposes. Roughly, the
main idea is that the rewind-security of OT is invoked to argue indistinguishability of
two consecutive hybrids inside our security proof. In order to establish indistinguisha-
bility by contradiction, it suffices to build an adversary that breaks OT security with
some non-negligible probability (as opposed to overwhelming probability). This, in
turn means that the reduction only needs to extract the adversary’s input required for
generating its view with non-negligible probability. By using a specific extractable com-
mitment scheme, we can ensure that the number of rewinds necessary for this task are
a priori bounded.

Standard OT protocols, however, do not guarantee any form of bounded-rewind
security. Towards this, we provide a generic construction of a four round bounded-
rewind secure OT starting from any four round OT, which may be of independent inter-
est. Our transformation is in fact more general and works for any k ≥ 4 round OT,
when rewinding is restricted to rounds k − 2 and k − 1. For simplicity, we describe our
ideas for the case where we need security against one rewind; our transformation easily
extends to handle more rewinds.

A natural idea to achieve one-rewind security for receivers, previously considered
in [5], is the following: run two copies of an OT protocol in parallel for the first k − 2
rounds. In round k − 1, the receiver randomly chooses one of the two copies and only
continues that OT execution, while the sender continues both the OT executions. In the
last round, the parties only complete the OT execution that was selected by the receiver
in round k − 1. Now, suppose that an adversarial sender rewinds the receiver in rounds
k−2 and k−1. Then, if the receiver selects different OT copies on the “main” execution
thread and the “rewound” execution thread, we can easily reduce one-rewind security
of this protocol to stand-alone security of the underlying OT.
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The above idea suffers from a subtle issue. Note that the above strategy for deal-
ing with rewinds is inherently biased, namely, the choice made by the receiver on the
rewound thread is not random, and is instead correlated with its choice on the main
thread. If we use this protocol in the design of our MPC protocol, it leads to the fol-
lowing issue during simulation: consider an adversary who chooses a random z and
then always aborts if the receiver selects the z-th OT copy. Clearly, this adversary only
aborts with probability 1/2 in an honest execution. Now, consider the high-level sim-
ulation strategy for our MPC protocol discussed earlier, where the simulator rewinds
the second and third rounds to extract the adversary’s inputs. In order to ensure rewind
security of the OT, this simulator, with overall probability 1/2, will select the z-th OT
copy on all the rewound execution threads. However, in this case, the simulator will
always fail in extracting the adversary’s inputs no matter how many times it rewinds.

We address the above problem via a secret-sharing approach to eliminate the bias.
Instead of simply running two copies of OT, we run � · n copies in parallel during the
first k − 2 rounds. These � · n copies can be divided into n tuples, each consisting of
� copies. In round k − 1, the receiver selects a single copy from each of the n tuples
at random. It then uses n-out-of-n secret sharing to divide its input bit b into n shares
b1, . . . , bn, and then uses share bi in the OT copy selected from the i-th tuple. In the
last round, sender now additionally sends a garbled circuit (GC) that contains its input
(x0, x1) hardwired. The GC takes as input all the bits b1, . . . , bn, reconstructs b and
then outputs xb. The sender uses the labels of the GC as its inputs in the OT executions.
Intuitively, by setting � appropriately, we can ensure that for at least one tuple i, the OT
copies randomly selected by the receiver on the main thread and the rewound threads
are different, which ensures that bi (and thereby, b) remains hidden. We refer the reader
to the technical section for more details.

Proofs Of Proofs. We now describe another challenge in implementing our template
of four round MPC. As discussed earlier, we use a three round extractable commitment
scheme to enable extraction of the adversary’s inputs and randomness. For reasons sim-
ilar to those as for the case of OT, we actually use an extractable commitment scheme
that achieves bounded-rewind security. Specifically, we use a simplified variant of the
three-round commitment scheme constructed by [3].9

A specific property of this commitment scheme is that in order to achieve rewind
security, it is designed such that the third round message of the committer is not “veri-
fiable.” This means that the committer may be able to send a malformed message with-
out being detected by the receiver. For this reason, we require each party to prove the
“well-formedness” of its commitment via promise ZK. This, however, poses the follow-
ing challenge during simulation: since the third round prover message of promise ZK is
encrypted inside OT receiver message, the simulator doesn’t know whether the adver-
sary’s commitment is well-formed or not. In particular, if the adversary’s commitment
is not well-formed, the simulator may end up running forever, in its attempt to extract
the adversary’s input via rewinding.

9 The commitment scheme of [3] also achieves some security properties, in addition to bounded
rewind security, that are not required by our compiler. Hence, we use a simplified variant of
their scheme.
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One natural idea to deal with this issue is to first extract adversary’s promise ZK
message from the OT executions via rewinding, and then decide whether or not to
attempt extracting the adversary’s input. However, since we are using an arbitrary
(malicious-secure) OT, we do not know in advance the number of rewinds required
for extracting the receiver’s input. This in turn means that we cannot correctly set the
rewind security of the sub-protocols used in our final MPC protocol appropriately in
advance.

We address this issue via the following strategy. We use another three round
(delayed-input) extractable commitment scheme [34] (ecom) as well as another copy
of promise ZK. This copy of promise ZK proves honest behavior in the first three
rounds, and its third message is committed inside the extractable commitment. Fur-
ther, the third round message of this extractable commitment is such that it allows for
polynomial-time extraction (with the possibility of “over-extraction”10). This, however,
comes at the cost that this extractable commitment does not achieve any rewind secu-
rity. Interestingly, stand-alone security of this scheme suffices for our purposes since
we only use it in the case where the adversary always aborts in the third round (and
therefore, no rewinds are performed).

The main idea is that by using such a special-purpose extractable commitment
scheme, we can ensure that an a priori fixed constant number of rewinds are suffi-
cient for extracting the committed value, namely, the promise ZK third round prover
message, with noticeable probability. This, in turn, allows us to set the rewind security
of other sub-protocols used in our MPC protocol in advance to specific constants.

Of course, the adversary may always choose to commit to malformed promise ZK
messages within the extractable commitment scheme. In this case, our simulator may
always decide not to extract adversary’s input, even if the adversary was behaving hon-
estly otherwise. This obviously would lead to a view that is distinguishable from the real
world. To address this issue, we use a proofs of proofs strategy. Namely, we require the
first copy of promise ZK, which is encrypted inside OT, to prove that the second copy of
promise ZK is “accepting”. In this case, if the adversary commits malformed promise
ZK messages within the extractable commitment, the promise ZK message inside OT
will not be accepting. This, in turn, means that due to the security of garbled circuits,
the fourth round messages of the parties will become “opaque”.

Finally, we remark that for technical reasons, we do extract the promise ZK
encrypted inside the OT receiver message in our final hybrid. However, in this par-
ticular hybrid, the number of rewinds required for extraction do not matter since in this
hybrid, we only make change inside a non-interactive primitive (specifically, garbled
circuit) that is trivially secure against an unbounded polynomial number of rewinds.

2.3 Protocol Design Summary

Putting all the various pieces together, we describe the overall structure of the protocol
at a high level to demonstrate the purpose of its various components in the context of
the protocol.

10 This means the extractor can output a non ⊥ value if the commitment has no valid opening.



Round Optimal Secure Multiparty Computation from Minimal Assumptions 301

Pi Pj

recom1 msg1(x, r) td1 ncom1 rwi1,a ecom1 rwi1,b ot1 wi1

recom2 msg2(x, r) td2 ncom2 rwi2,a ecom2 rwi2,b ot2 wi2

recom3(x, r) msg3(x, r) td3 ncom3(̃r) ecom1(rwi3,a) ot3(rwi3,b)

GC msg4(x, r) ot4 wi3

For simplicity we consider the messages sent from Pi to Pj . Note that even though
Pj is the intended recipient for the messages in a two party sub-protocol, the messages
are broadcast to all parties.

Delayed Semi-malicious MPC (blue). Pi uses input x and randomness r to compute
the messages msgk for the bounded rewind secure four-round delayed semi malicious
protocol Π.

Multiparty Conditional Disclosure of Secrets (red). As discussed earlier, the last
message of Π is not sent in the clear but instead sent inside a garbled circuit GC used
to implement MCDS. We use a four-round oblivious transfer protocol otk to allow the
parties to obtain garbled circuit wire labels corresponding to their witnesses. We defer
the discussion on the witness for MCDS below.

Rewind Secure Extractable commitment (green). The same input and randomness
used to compute messages for Π is committed via an extractable commitment recomk.
This is done to enable the simulator to extract the inputs and randomness of the adver-
sary for simulation. As discussed earlier, we use a three round extractable commitment
that achieves bounded rewind security.

Promise ZK (purple). We use promise ZK in a non-black box manner in our proto-
col. Specifically, it consists of a trapdoor generation phase tdk, and a bounded rewind
secure witness indistinguishable proof rwik. As discussed in our proofs of proofs strat-
egy, we actually use two copies of the promise ZK (indexed by subscripts a and b in
the figure), but both of these copies will share a single instance of the trapdoor genera-
tion. At a high level, both rwis prove that either the claim is true or “I committed to the
trapdoor in the non-malleable commitment” (see below). We also note that one of the
rwi copies, specifically, the copy indexed with subscript b is used as a witness for the
MCDS mechanism.

Witness Indistinguishable Proof (orange). We also use a regular witness indistin-
guishable proof wi (without any rewind security) to establish honest behavior of the
parties in the last round of the protocol. This effectively involves proving that either
the last round message was computed honestly or “I committed to the trapdoor in the
non-malleable commitment” (see below).

Extractable Commitment (brown). As discussed earlier, we use an extractable com-
mitment ecom (without rewind security) to implement our proofs of proofs strategy to
enable simulation.
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Non-malleability (dark blue). We bootstrap non-malleability in our protocol using
non-malleable commitments ncom in a similar manner to prior works [2,3]. Specifi-
cally, in the honest execution of the protocol, the parties simply commit to a random
value r̃. We rely on specific properties of the ncom, which we do not discuss here and
refer the reader to the technical sections.

Finally, we note that our protocol design uses multiple sub-protocols with bounded
rewind security. We do not discuss how the bounds for the sub-protocols are set here,
and instead defer this discussion to Sect. 5.

Complexity of the Protocol Description. One might wonder why our construction is
so involved and whether there is a simpler construction. This is an important question
that needs to be addressed. Unfortunately, our current understanding of the problem
does not allow for a protocol that is easier to describe, but we believe that our solution
is less complex than the prior state-of-the-art solutions [3,25].

3 Preliminaries

We present the syntax and informal definitions of some preliminaries below. Additional
preliminaries, and the full definitions can be found in the full version.

3.1 Extractable Commitments with Bounded Rewinding Security

In this section, we describe an extractable commitment protocol that is additionally
secure against a bounded number of rewinds. Since we are interested in the three round
protocol, we limit our discussion in this section to this setting. A simple extractable
commitment is a commitment protocol between a sender (with input x) and a receiver
which allows an extractor, with the ability to rewind the sender via the second and third
round of the protocol, to extract the sender’s committed value. Several constructions
of three round extractable commitment schemes are known in the literature (see, e.g.,
[34,35]).

When we additionally require bounded rewind security, we shall parameterize this
bound by Brecom. Roughly this means that the value committed by a sender in an exe-
cution of the commitment protocol remains hidden even if a malicious receiver can
rewind the sender back to the start of the second round of the protocol an a priori
bounded Brecom number of times. Extraction will then necessarily require strictly larger
than Brecom rewinds.

In the remainder of the section, we describe a construction of a three round
extractable commitment protocol with bounded rewind security RECom = (S,R). The
construction is adapted from the construction presented in [3], and simplified for our
setting since we do not require the stronger notion of “reusability”, as defined in their
work.

In our application, we setBrecom = 4; however, our construction also supports larger
values of Brecom. For technical reasons, we don’t define or prove Brecom-rewinding
security property and reusability property for our extractable commitment protocol.
Instead, this is done inline in our four round MPC protocol.
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Construction. Let Com denote a non-interactive perfectly binding commitment scheme
based on injective one-way functions. Let N and Brecom be positive integers such that
N − Brecom − 1 ≥ N

2 + 1. For Brecom = 4, it suffices to set N = 12. The three round
extractable commitment protocol RECom is described in Fig. 1.

Fig. 1. Extractable commitment scheme recom.

The corresponding properties for the above construction is presented in the full
version.

3.2 Trapdoor Generation Protocol with Bounded Rewind Security

This section, we discuss the syntax and provide an intuitive definition, along with a
sketched construction, for a Trapdoor Generation Protocol with Bounded Rewind Secu-
rity [3]. The complete definition along with the construction is provided in the full
version.

In a Trapdoor Generation Protocol, without bounded rewind security, a sender S
(a.k.a. trapdoor generator) communicates with a receiver R. The protocol itself has no
output, and the receiver has no input. The goal is for the sender to establish a trapdoor
upon completion. On the one hand, the trapdoor can be extracted via a special extraction
algorithm that has the ability to rewind the sender. On the other hand, no cheating
receiver should be able to recover the trapdoor.
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Syntax. A trapdoor generation protocol TDGen = (TDGen1,TDGen2,TDGen3,
TDOut,TDValid,TDExt) is a three round protocol between two parties - a sender
(trapdoor generator) S and receiver R that proceeds as below.

1. Round 1 - TDGen1(·): S computes and sends tdS→R
1 ← TDGen1(rS) using a

random string rS .
2. Round 2 - TDGen2(·): R computes and sends tdR→S

2 ← TDGen2(tdS→R
1 ; rR)

using randomness rR.
3. Round 3 - TDGen3(·): S computes and sends tdS→R

3 ← TDGen3(tdR→S
2 ; rS)

4. Output - TDOut(·) The receiver R outputs TDOut(tdS→R
1 , tdR→S

2 , tdS→R
3 ).

5. Trapdoor Validation Algorithm - TDValid(·): Given input (t, tdS→R
1 ), output a

single bit 0 or 1 that determines whether the value t is a valid trapdoor corresponding
to the message td1 sent in the first round of the trapdoor generation protocol.

In what follows, for brevity, we set td1 to be tdS→R
1 . Similarly we use td2 and td3

instead of tdR→S
2 and tdS→R

3 , respectively. Note that the algorithm TDValid does not
form a part of the interaction between the trapdoor generator and the receiver. It is, in
fact, a public algorithm that enables public verification of whether a value t is a valid
trapdoor for a first round message td1.

The protocol satisfies two properties: (i) Sender security, i.e., no cheating PPT
receiver can learn a valid trapdoor, and (ii) Extraction, i.e., there exists an expected
PPT algorithm (a.k.a. extractor) that can extract a trapdoor from an adversarial sender
via rewinding.

Extraction. There exists a PPT extractor algorithm TDExt that, given a set of values11

(td1, {tdi
2, td

i
3}3

i=1) such that td1
2, td

2
2, td

3
2 are distinct and TDOut(td1, td

i
2, td

i
3) = 1

for all i ∈ [3], outputs a trapdoor t such that TDValid(t, td1) = 1.

1-Rewind Security. Intuitively, a Trapdoor Generation protocol is 1-rewind secure if it
protects a sender against a (possibly cheating) receiver that has the ability to rewind it
once. Specifically, the receiver is allowed to query the sender on two (possibly adaptive)
different second round messages, thereby receiving two different third round responses
from the sender. It should be the case that the trapdoor still remains hidden to the
receiver.

Construction Based on One-way Functions. We sketch here the simple construction
based on any signature scheme. In the first round, the sender samples a signing key pair
and sends the verification key to the receiver. The receiver queries a random message
in the second round, and the sender responds with the corresponding signature in the
third. The trapdoor is defined to be 3 distinct (message, signature) pairs. It is easy to see
that both extraction and 1-rewind security are satisfied for this construction.

11 These values can be obtained from the malicious sender via an expected PPT rewinding proce-
dure. The expected PPT simulator in our applications performs the necessary rewindings and
then feeds these values to the extractor TDExt.
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3.3 Witness Indistinguishable Proofs with Bounded Rewinding Security

In this section we discuss the informal definition of a delayed input witness indis-
tinguishable arguments (WI) to additionally satisfy Brwi-bounded rewinding security,
where the same statement is proven across all the rewinds. We refer to such primitives
as Brwi-bounded rewind secure WI.

Brwi-Bounded Rewinding Security. The intuition for the definition is similar to that
of the trapdoor generation protocol as described in the previous section. Here, for the
three round delayed-input witness indistinguishable argument we want witness indistin-
guishability to be preserved as long as the verifier is restricted to rewinding the prover
Brwi-1 times. Specifically, the prover sends its first round message to the verifier, who
then chooses (i) a triple consisting of a statement, and any two corresponding witnesses
w0 and w1; (ii) Brwi-1 s round verifier messages for the single first round prover mes-
sage. The prover then completes the protocol, responding to each of the Brwi-1 verifier
messages, using either witness w0 or w1 for every response.

We refer the reader to the full version for the formal definitions of both, a delayed
input WI, and the Brwi-bounded rewind secure WI.

It was recently shown in [24] that there exists such WI arguments assuming non-
interactive commitments. For further details, see the full version. We will use their
scheme in our protocol.

3.4 Special Non-Malleable Commitments

In this work we make use of a commitment scheme that is non-malleable, non-malleable
with respect to extraction and enjoys some additional properties. We refer to such
a commitment scheme as a special non-malleable commitment scheme. We refer the
reader to the full version for the basic definitions of non-malleable commitments. In the
full version we also briefly detail the non-malleable commitment scheme of [22] and
show that it is a special non-malleable commitment scheme.

4 Oblivious Transfer with Bounded Rewind Security

In this section we define, and then construct, a strengthening of regular oblivious trans-
fer. We construct a rewinding secure Oblivious Transfer (OT) assuming the existence
of four round OT protocol. For an OT protocol to be rewind secure, we require security
against an adversary who is allowed to re-execute the second and third round of the
protocol multiple times. But the first and fourth round are executed only once.

4.1 Definition

We start by formalizing the notion of a rewind secure oblivious transfer protocol. We
shall denote by outR〈S(x), R(y)〉 the output of the receiver R on execution of the
protocol between R with input y, and sender S with input x. The four round oblivious
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transfer protocol is specified by four algorithms OTj for j ∈ [4]; and the corresponding
output protocol message is denoted by otj . We consider a delayed receiver input notion
of the protocol where the receiver input is only required for the computation of ot3.

Definition 1. An interactive protocol (S,R) between a polynomial time sender S with
inputs s0, s1 and polynomial time receiver R with input b, is a four round bounded
rewind secure oblivious transfer (OT) if the following properties hold:

– Correctness. For any selection bit b, for any messages s0, s1 ∈ {0, 1}, it holds that

Pr

[

outR〈S(s0, s1), R(b)〉 = sb

]

= 1

where the probability is over the random coins of the sender S and receiver R.
– Security against Malicious Sender with B rewinds. Here, we require indistin-
guishability security against a malicious sender where the receiver uses input b[k]
in the k-th rewound execution of the second and third round. Specifically, consider
the experiment described below. ∀{

b0[k], b1[k]
}

k∈[B]
∈ {0, 1} where

Experiment Eσ:
1. Run OT1 to obtain ot1 which is independent of the receiver input. Send to A.
2. A then returns {ot2[j]}j∈[B] messages.
3. For each j ∈ [B], run OT3 on (ot1, ot2[j], bσ[j]) and send the response to A.
4. The output of the experiment is the entire transcript.
We say that the scheme is secure against malicious senders with B rewinds if the
experiments E0 and E1 are indistinguishable.

4.2 Construction

We describe below the protocol ΠR which achieves rewind security against malicious
senders. The Sender S’s input is s0, s1 ∈ {0, 1} while the receiver R’s input is b ∈
{0, 1}.
Components. We require the following two components:

– n ·BOT instances of a 4 round OT protocol which achieves indistinguishability secu-
rity against malicious senders.

– GC = (Garble,Eval) is a secure garbling scheme.

Protocol. The basic idea is to split the receiver input across multiple different OT exe-
cutions such that during any rewind, a different set of OTs will be selected to proceed
with the execution thereby preserving the security of the receiver’s input. The sender
constructs a garbled circuit which is used to internally recombine the various inputs
shares and only return the appropriate output. The protocol is described below.
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We now have the corresponding Lemma, which we prove in the full version.

Lemma 1. Assuming receiver indistinguishability ofOT against malicious senders, the
receiver input in ΠR remains indistinguishable under BOT-rewinds.

Remark 1. We note that while our construction is proved against malicious senders, for
our application it suffices to have the following two properties:

– bounded rewind security against semi malicious senders.
– standalone security against receivers.
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Remark 2. While not relevant to the bounded rewind security of the scheme, we note
that in our applications, a malicious sender might compute the garbled circuit incor-
rectly. This stems from the fact that there will be multiple participants evaluating the
garbled circuit to compute the OT output. We will therefore have to prove that the mes-
sages of the protocol were in fact computed correctly.

4.3 Four Round Delayed Input Multiparty Computation with Bounded Rewind
Security

Looking ahead, for our main result, we will compile an underlying semi-malicious pro-
tocol to achieve malicious security. In order to use the underlying semi-malicious pro-
tocol in a black-box manner, we will require the protocol to satisfy bounded rewind
security. We start with an intuitive definition which we follow by formalizing the intu-
ition.

To start with, we consider a four round delayed input semi-malicious protocols sat-
isfying the following additional properties, where we denote by msgk the messages of
all parties output in the k-th round by Π.

1. Property 1: msg1 and msg2 of Π contain only messages of OT instances.
2. Property 2:msg1 andmsg2 of Π do not depend on the input. The input is used only

in the computation of msg3 and msg4.
3. Property 3: The simulator S simulates the honest parties’ messagesmsg1 andmsg2

via S1 and S2 by simply running the honest OT sender and receiver algorithms.
4. Property 4: msg3 can be divided into two parts: (i) components independent of the

OT messages; and (ii) OT messages.

Here we clarify what it means for a component of a message to be independent of OT
messages. We say a component of msg3 is independent of OT messages if its com-
putation in the third round is independent of the both the private and public state of
OT.

The recent works of [5,14] construct two round semi-malicious protocols. Both
protocols when instantiated with a four round OT protocol, satisfy the above structure.
This follows from the fact that when their protocols are instantiated with a four round
OT protocol, the non-OT components of their protocol are executed only in round 3.

The bounded rewind security notion follows in similar vein to the bounded rewind
secure primitives we have previously defined. Note that the primary difference here
stems from the fact that the protocol we consider is in the simultaneous message model.
We say that a protocol satisfying the above properties is bounded rewind secure if the
protocol remains secure in the presence of an that adversary is able to rewind the hon-
est parties in the second and third round of the execution. Specifically, an adversary
is allowed to: (a) initially query B − 1 many distinct second round messages and
receive third round messages in response; (b) in the last (B-th) query, the adversary
also includes inputs for the honest parties. The adversary should then be unable to dis-
tinguish between the case that the protocol completes from the B-th query onward,
where the last round was either completed with honest inputs provided by the adver-
sary, or simulated.
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Instantiation. On plugging in the bounded rewind-secure OT constructed in the pre-
vious section into the semi-malicious protocols of [5,14] gives us the required delayed
input MPC protocol with bounded rewind security.

5 Four Round MPC

Building Blocks. We list below all the building blocks of our protocol.

– Trapdoor Generation Protocol: TDGen = (TDGen1,TDGen2,TDGen3,TDOut,
TDValid,TDExt) is a three round Btd-rewind secure trapdoor generation protocol
based on one-way functions (see Sect. 3.2). We set Btd to be 2.
In our MPC construction, we use a “multi-receiver” version of TDGen that works
as follows: whenever a sender party i sends its first round message td1, all of the
other (n − 1) parties send a second round receiver message td2,i. The sender now
prepares td2 = (td2,1|| . . . ||td2,n−1), and then uses it to compute td3. All the (n−1)
receivers individually verify the validity of td3.

– Delayed-Input WI Argument: WI = (WI1,WI2,WI3,WI4) is a three round
delayed-input witness indistinguishable proof system (see Sect. 3.3), where WI4 is
used to compute the decision of the verifier.

– Bounded-Rewind Secure WI Argument: RWI = (RWI1,RWI2,RWI3,RWI4) is a
three round delayed-input witness-indistinguishable proof with Brwia -rewind secu-
rity (see Sect. 3.3). RWI4 is used to compute the decision of the verifier. We will
use two different instances of RWI that we will refer to as RWIa and RWIb, where
the subscripts a and b denote the different instances. We set their respective rewind
security parameters Brwia and Brwib to be some fixed polynomial.

– Special Non-malleable Commitment: NMCom =
(

NMCom1,NMCom2,

NMCom3

)

is a three round special non-malleable commitment scheme. Let

ExtNMCom denote the extractor associated with NMCom.
– Bounded-Rewind Secure Extractable Commitment: RECom = (RECom1,

RECom2,RECom3) is the three round Brecom-rewind secure delayed-input
extractable commitment based on non-interactive commitments (see Section 3.1).
We set rewinding security parameter Brecom to be 4. ExtRECom is the extractor asso-
ciated with RECom.

– Extractable Commitment: Ecom = (Ecom1,Ecom2,Ecom3,ExtEcom) is the three
round delayed-input extractable commitment scheme based on statistically binding
commitment schemes. They satisfy the 2-extraction property.

– Delayed Semi-Malicious MPC: Π is a four round BΠ-bounded rewind secure
delayed input MPC protocol based on oblivious transfer (see Sect. 4.3). We set BΠ

to be 9.
– Garbled Circuits: GC = (Garble,Eval) is a secure garbling scheme. We denote the
labels {labi,0, labi,1}i∈[L] by lab. We will often partition the labels of the garbled
circuit to indicate the party providing the input corresponding to the label indices,
and denote this by lab|j for party j.
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– Oblivious Transfer: OT = (OT1,OT2,OT3,OT4) is a four round oblivious trans-
fer protocol. We abuse notation slightly and use this as implementing parallel OT
executions where the receiver’s input is a string of length � and the sender now has �
pairs of inputs. We require regular indistinguishability security against a malicious
sender. In addition, we require extraction of the receiver’s input bit.

Levels of Rewind Security. We recall the notion of bounded-rewind security and
the need for levels of rewind security. Bounded-rewind security, as in [3], is used
in the security proof to argue indistinguishability in intermediate hybrids. The main
idea is that when arguing indistinguishability of two hybrids, to derive a contradic-
tion it suffices to build an adversary with non-negligible success probability. As such,
as long as the adversary does not abort with some non-negligible probability (which
is indeed true), a small constant number of rewinds are sufficient for extracting with
non-negligible probability. The exact bounded-rewind security constants for various
primitives are carefully set to establish various “levels” of security.

For primitives with bounded rewind security, we require

Brwia , Brwib , BΠ > Brecom > Btd

where they denote the total number of rewinds (including the main thread) that they
are secure against. In addition, we require all of them to be larger than the number of
threads required to extract from NMCom and Ecom. For the above primitives, we have
Brwia = Brwib = poly(λ) (for some fixed polynomial), BΠ = 9, Brecom = 4 and
Btd = 2 thus satisfying our requirements.

Notation for Transcripts.We introduce a common notation that we shall use to denote
partial transcripts of an execution of different protocols that we use in our MPC con-
struction. For any execution of protocol X , we useTX [�] to denote the transcript of the
first � rounds.

NP Languages.We define the NP languages used for the three different proof systems
that we use in our protocol.We denote statements andwitnesses as st andw, respectively.

1. RWIa: We use RWIa for language La, which is characterized by the following rela-
tion Ra:
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2. RWIb: We use RWIb for language Lb, which is characterized by the following rela-
tion Rb:

3. WI: We use WI for language Lc, which is characterized by the following relation
Rc:
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Fig. 2. Circuit C

5.1 The Protocol

In this section, we describe our four round MPC protocol between n players
P1, · · · ,Pn. Let xi denote the input of party Pi. At the start of the protocol, each
party samples a sufficiently long random tape to use in the various sub-protocols; let
rX denote the randomness used in sub-protocol X .

Notational Conventions.We establish some conventions for simplifying notation in the
protocol description. We only indicate randomness as an explicit input for computing
the first round message of a sub-protocol; for subsequent computations, we assume it
to be an implicit input. Similarly, we assume that any next-message of a sub-protocol
takes as input a partial transcript of the “previous” rounds, and do not write it explicitly.
Whenever necessary, we augment our notation with superscript i → j to indicate the a
instance of an execution of a sub-protocol between a “sender” i and “receiver” j (where
sometimes, the sender is a prover and receiver is a verifier). When the specific instance
is clear from context, we shall drop the superscript. When we wish to refer to multiple
instances involving a party i, we will use the shorthand superscript i → • or • → i,
depending upon whether i is the sender or the receiver. For example, Ti→•

X [�] will be a

shorthand to indicate
{

Ti→j
X [�]

}

j∈[n]
.

We will sometimes use explanatory comments within the protocol description,
denoted as //comment. Finally, we note that all messages in the protocol are broadcast;
if any party aborts during the first three rounds of the protocol, it broadcasts an abort in
the subsequent round. We do not write this explicitly in the protocol, and assume it to
be implicit. We now proceed to describe the protocol.
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Our main result is stated in the following theorem.

Theorem 3. Assuming the hiding property of oblivious transfer, the hiding property of
extractable commitment, the hiding property of extractable commitment with bounded
rewind security, delayed semi malicious protocol with bounded rewind security com-
puting any function F , special non-malleable commitments, witness indistinguishable
proofs with bounded rewind security, security of garbled circuits, trapdoor generation
protocol with bounded rewind security, in addition to the correctness of these primitives,
then the presented protocol is a four round protocol for F secure against a malicious
dishonest majority.

Remark 3. All the above primitives can be based on one-way functions, non-interactive
commitments and oblivious transfer (OT). In a recent note by Lombardi and Schaeffer
[31], they give a construction of a perfectly binding non-interactive commitment based
on perfectly correct key agreement. As they point out, such key agreement schemes
can be based on perfectly correct oblivious transfer [15]. This gives us both a non-
interactive commitment schemes, and one-way functions, based on perfectly correct
oblivious transfer. Thus it suffices to instantiate all our primitives using just oblivious
transfer.

We thus have the following corollary.

Corollary 1. Assuming polynomially secure oblivious transfer with perfect correct-
ness, our constructed protocol is a four round multiparty computation protocol for any
function F .
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The complete security analysis of the above protocol is presented in the full version.
Below we present a high level description of the main ideas of the proof and how the
bounded rewind-security parameters are set.

5.2 Security

We emphasize that our discussion below is informal, and not a complete picture of the
simulator and hybrids. Our intent is to give an outline of the key hybrids and simulation
steps to convey the main ideas. This will already highlight the need for various levels
of rewind security, one of the main challenges in proving security. There are lots of
other challenges that we do not discuss here, and similar to prior works, the full secu-
rity analysis is much more complex and we refer the reader to the full version for the
analysis.

One particular challenge that we ignore is that of an aborting adversary, either
implicitly or explicitly, in the first three rounds of the protocol. The case of an explicitly
aborting adversary is dealt with in a similar manner to [3,16] by initially sampling a
partial transcript, using dummy inputs, to determine if the adversary aborts, and then
re-sampling the transcript in case the adversary does not abort. For an implicitly abort-
ing adversary, the simulator (via extraction) can determine if the adversary aborted, but
honest parties are not aware of this in the first three rounds of the protocol. This case
relies on the security of the multi-party CDS (via OT and garbled circuits) to deal with
the implicit aborts. Stepping around these challenges, the main steps in the simulation
involve (a) rewinding the adversary to extract the trapdoor and inputs; (b) completing
the witness indistinguishable arguments using the extracted trapdoor; (c) simulating the
underlying protocol using the output obtained from the ideal functionality.

Key Hybrid Components. We give below a high level overview of some key hybrids
in keeping with our simplified description of the simulator above. This will allow us to
discuss our specific choices for the level of rewinds.

– The first hybrid is identical to the real protocol execution. Each witness indistin-
guishable (WI) argument in our protocol allows for a trapdoor witness, arising from
the trapdoor generation protocol and the non-malleable commitment (NMCom). We
would like it to be the case that a simulator is able to derive the trapdoor and pro-
duce a simulated transcript via the trapdoor witness, an adversary should not be
in possession of a trapdoor witness thereby forcing honest behavior if the witness
indistinguishable argument is accepting.
In order to argue that the adversary is not in possession of the trapdoor witness,
we need to ensure the following invariant: the adversary does not commit to the
trapdoor inside of the NMCom.
In order to do so in this hybrid, we rely on the rewind security of the trapdoor gen-
eration protocol. Specifically, we extract from the NMCom by rewinding the adver-
sary once in the second and third round (two total executions of the second and third
round). If indeed the adversary was committing to the trapdoor, the extraction is suc-
cessful with some noticeable probability and thereby breaking the rewind security of
the trapdoor generation protocol. Note, as observed in [3], to arrive at a contradiction
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via reduction it is sufficient to extract with noticeable (as opposed to overwhelming)
probability. This explains why we require Btd ≥ 2.
For each change that we subsequently make through the various primitives, we will
bootstrap the above technique, and argue that this invariant continues to hold. Specif-
ically, in order to arrive at a contradiction, we will extract from the NMCom to break
the security property of the corresponding primitive if the invariant ceases to hold.
This already gives us a flavor for primitives to be secure against (at least) two rewinds
needed for the extraction from the NMCom.

– In this hybrid, the simulator creates sufficient rewind execution threads in order to
extract the adversary’s input and the trapdoors needed to prove the WI using the
trapdoor witness. These rewind threads have the same first round messages as the
“main” execution thread, but the second and third round messages are computed in
each rewind thread with fresh randomness. The rewind threads terminate on com-
pletion of the third round of the protocol.

– In the previous hybrid, the simulator is still using the honest inputs in the rewind
threads. In this hybrid the rewind threads are switched from using the honest party’s
inputs, to an honest execution with input 0. Note that these threads finish by the end
of the third round.
While the changes made in this hybrid are done in a sequence of steps, and needs to
be argued carefully, the sequence closely resembles the changes that will be made
in the main execution thread below. Therefore, we primarily focus on the hybrids
pertaining to the main execution thread.

– In this hybrid, the simulator uses the trapdoors extracted from the rewind threads to
commit to the trapdoor inside the NMCom on the main execution thread. In order
to argue indistinguishability, we perform a reduction to an external NMCom chal-
lenger. In order to generate the transcript internally, and complete the reduction, we
need to rewind the adversary to get the trapdoor and inputs. But this causes a problem
since the rewind threads might require responses to challenges that are meant for the
external challenger. Here, we rely on the fact that the third round of our instantiated
NMCom has pseudorandom messages, allowing us to respond to adversarial queries
in the third round, that cannot be forwarded to the external NMCom challenger. This
prevents the need for bounded rewind security from the NMCom.

– In a sequence of sub-hybrids, the simulator uses the extracted trapdoor to complete
both the bounded rewind secure witness indistinguishable arguments using the trap-
door witness. As seen above, for the reduction we will need to rewind the adversary
to extract, thereby rewinding the external challenger. Since we require extraction of
the adversary’s inputs, the parameter for the bounded rewind secure witness indis-
tinguishable argument needs to satisfy Brwi > Brecom.

– In this hybrid, the simulator uses the extracted trapdoor to complete the witness
indistinguishable argument. Since the third round of this protocol is completed in
the fourth round of our compiled protocol, rewinding the adversary to extract the
trapdoor and input in the second and third round circumvents issues discussed above.
Therefore, we don’t require this primitive to be rewind secure.

– In this hybrid, the simulator switches to committing to 0 inside the rewind secure
extractable commitment (RECom). Unlike the previous cases, this is potentially cir-
cularity since the arguments above do not directly extend. This is because it cannot
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be the case that the external challenger remains secure if we rewind the adversary
Brecom times to extract its input.
Instead, this is argued carefully where initially we argue that switching to a com-
mitment of a “junk” value in the third round of the RECom doesn’t affect our abil-
ity to extract from the adversary. This “junk” commitment can be made without
knowledge of any randomness of the specific RECom instance. To argue this, we
rely on the bounded rewind security of the extractable commitment, while still
extracting the trapdoor to complete the transcript. This gives us the requirement
that Brecom > Btd. This then allows for extraction of input in the reduction without
violating rewinding circularity since, on the look ahead threads to extract, we can
commit to junk without affecting input extraction.

– In this hybrid, the simulator simulates the transcript of the underlying bounded
rewind secure protocol Π. Here too, we require extracting the inputs in order to
send it to the ideal functionality. Therefore, we require BΠ > Brecom.
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Abstract. We present a reusable two-round multi-party computation
(MPC) protocol from the Decisional Diffie Hellman assumption (DDH).
In particular, we show how to upgrade any secure two-round MPC proto-
col to allow reusability of its first message across multiple computations,
using Homomorphic Secret Sharing (HSS) and pseudorandom functions
in NC1— each of which can be instantiated from DDH.

In our construction, if the underlying two-round MPC protocol is
secure against semi-honest adversaries (in the plain model) then so is
our reusable two-round MPC protocol. Similarly, if the underlying two-
round MPC protocol is secure against malicious adversaries (in the com-
mon random/reference string model) then so is our reusable two-round
MPC protocol.

Previously, such reusable two-round MPC protocols were only known
under assumptions on lattices. At a technical level, we show how to
upgrade any two-round MPC protocol to a first message succinct two-
round MPC protocol, where the first message of the protocol is generated
independently of the computed circuit (though it is not reusable). This
step uses homomorphic secret sharing (HSS) and low-depth pseudoran-
dom functions. Next, we show a generic transformation that upgrades
any first message succinct two-round MPC to allow for reusability of its
first message.

1 Introduction

Motivating Scenario. Consider the following setting: a set of n hospitals pub-
lish encryptions of their sensitive patient information x1, . . . , xn. At a later stage,
for the purposes of medical research, they wish to securely evaluate a circuit C1

on their joint data by publishing just one additional message - that is, they wish
to jointly compute C1(x1, . . . , xn) by each broadcasting a single message, with-
out revealing anything more than the output of the computation. Can they do
so? Furthermore, what if they want to additionally compute circuits C2,C3 . . .
at a later point on the same set of inputs?
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Seminal results on secure multi-party computation (MPC) left quite a bit to
be desired when considering the above potential application. In particular, the
initial construction of secure multi-party computation by Goldreich, Micali and
Wigderson [GMW87] required parties to interact over a large number of rounds.
Even though the round complexity was soon reduced to a constant by Beaver,
Micali and Rogaway [BMR90], these protocols fall short of achieving the above
vision, where interaction is reduced to the absolute minimum.

Making progress towards this goal, Garg et al. [GGHR14] gave the first con-
structions of two-round MPC protocols, assuming indistinguishability obfusca-
tion [GGH+13] (or, witness encryption [GLS15,GGSW13]) and one-way func-
tions.1 A very nice feature of the Garg et al. construction is that the first round
message is indeed reusable across multiple executions, thereby achieving the
above vision. Follow up works realized two-round MPC protocols based on signif-
icantly weaker computational assumptions. In particular, two-round MPC pro-
tocols based on LWE were obtained [MW16,BP16,PS16], followed by a protocol
based on bilinear maps [GS17,BF01,Jou04]. Finally, this line of work culmi-
nated with the recent works of Benmahouda and Lin [BL18] and Garg and
Srinivasan [GS18], who gave constructions based on the minimal assumption
that two-round oblivious transfer (OT) exists.

However, in these efforts targeting two-round MPC protocols with secu-
rity based on weaker computational assumptions, compromises were made in
terms of reusability. In particular, among the above mentioned results only
the obfuscation based protocol of Garg et al. [GGHR14] and the lattice based
protocols [MW16,BP16,PS16] offer reusability of the first message across mul-
tiple executions. Reusability of the first round message is quite desirable. In
fact, even in the two-party setting, this problem has received significant atten-
tion and has been studied under the notion of non-interactive secure compu-
tation [IKO+11,AMPR14,MR17,BJOV18,CDI+19]. In this setting, a receiver
first publishes an encryption of its input and later, any sender may send a single
message (based on an arbitrary circuit) allowing the receiver to learn the output
of the circuit on its input. The multiparty case, which we study in this work,
can be seen as a natural generalization of the problem of non-interactive secure
computation. In this work we ask:

Can we obtain reusable two-round MPC protocols from assumptions not based
on lattices?

1.1 Our Result

In this work, we answer the above question by presenting a general compiler
that obtains reusable two-round MPC, starting from any two-round MPC and
using homomorphic secret sharing (HSS) [BGI16] and pseudorandom functions
in NC1. In a bit more detail, our main theorem is:

1 The Garg et al. paper required other assumptions. However, since then they have all
been shown to be implied by indistinguishability obfuscation and one-way functions.
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Theorem 1 (Main Theorem). Let X ∈ {semi-honest in plain model, mali-
cious in common random/reference sting model}. Assuming the existence of a
two-round X -MPC protocol, an HSS scheme, and pseudorandom functions in
NC1, there exists a reusable two-round X -MPC protocol.

We consider the setting where an adversary can corrupt an arbitrary number of
parties. We assume that parties have access to a broadcast channel.

Benmahouda and Lin [BL18] and Garg and Srinivasan [GS18] showed how to
build a two-round MPC protocol from the DDH assumption. The works of Boyle
et al. [BGI16,BGI17] constructed an HSS scheme assuming DDH. Instantiating
the primitives in the above theorem, we get the following corollary:

Corollary 2. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming DDH, there exists a reusable two-round
X -MPC protocol.

Previously, constructions of reusable two-round MPC were only known
assuming indistinguishability obfuscation [GGHR14,GS17] (or, witness encryp-
tion [GLS15,GGSW13]) or were based on multi-key fully-homomorphic encryp-
tion (FHE) [MW16,PS16,BP16]. Furthermore, one limitation of the FHE-based
protocols is that they are in the CRS model even for the setting of semi-honest
adversaries.

We note that the two-round MPC protocols cited above additionally achieve
overall communication independent of the computed circuit. This is not the
focus of this work. Instead, the aim of this work is to realize two-round MPC
with reusability, without relying on lattices. As per our current understanding,
MPC protocols with communication independent of the computed circuit are
only known using lattice techniques (i.e., FHE [Gen09]). Interestingly, we use
HSS, which was originally developed to improve communication efficiency in
two-party secure computation protocols, to obtain reusability.

First Message Succinct Two-Round MPC. At the heart of this work is a
construction of a first message succinct (FMS) two-round MPC protocol— that
is, a two-round MPC protocol where the first message of the protocol is computed
independently of the circuit being evaluated. In particular, the parties do not
need to know the description of the circuit that will eventually be computed over
their inputs in the second round. Furthermore, parties do not even need to know
the size of the circuit to be computed in the second round.2 This allows parties
to publish their first round messages and later compute any arbitrary circuit on
their inputs. Formally, we show the following:

Theorem 3. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming DDH, there exists a first message succinct
two-round X -MPC protocol.

2 Note that this requirement is more stringent than just requiring that the size of the
first round message is independent of the computed circuit, which can be achieved
using laconic OT [CDG+17] for any two-round MPC protocol.
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Such protocols were previously only known based on iO [GGHR14,DHRW16]
or assumptions currently needed to realize FHE [MW16,BP16,PS16,ABJ+19].
Note that for the learning-with-errors (LWE) based versions of these protocols,
the first message can only be computed knowing the depth (or, an upper bound
on the maximum depth) of the circuit to be computed. We find the notion of
first message succinct two-round MPC quite natural and expect it be relevant
for several other applications. In addition to using HSS in a novel manner, our
construction benefits from the powerful garbling techniques realized in recent
works [LO13,GHL+14,GLOS15,GLO15,CDG+17,DG17b].

From First Message Succinctness to Reusability. On first thought, the
notion of first message succinctness might seem like a minor enhancement. How-
ever, we show that this “minor looking” enhancement is sufficient to enable
reusable two-round MPC (supporting arbitrary number of computations) gener-
ically. More formally:

Theorem 4. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming a first message succinct two-round MPC
protocol, there exists a reusable two-round X -MPC protocol.

Two recent independent works have also explicitly studied reusable two-
round MPC, obtaining a variety of results. First, Benhamouda and Lin [BL20]
construct reusable two-round MPC from assumptions on bilinear maps. Their
techniques are quite different than those used in this paper and, while they need
stronger assumptions than us, their protocol does have the advantage that the
number of parties participating in the second round need not be known when
generating first round messages. In our protocol, the number of parties in the
system is a parameter used to generate the first round messages. Second, Ananth
et al. [AJJ20] construct semi-honest reusable two-round MPC from lattices in
the plain model. Prior work from lattices [MW16] required a CRS even in the
semi-honest setting. The work of Ananth et al. [AJJ20] includes essentially the
same transformation from “first message succinct” MPC to reusable MPC that
constitutes the third step of our construction (see Sect. 2.3).

2 Technical Overview

In this section, we highlight our main ideas for obtaining reusability in two-
round MPC. Our construction is achieved in three steps. Our starting point is
the recently developed primitive of Homomorphic Secret Sharing (HSS), which
realizes the following scenario. A secret s is shared among two parties, who can
then non-interactively evaluate a function f over their respective shares, and
finally combine the results to learn f(s), but nothing more.

2.1 Step 1: Overview of the scHSS Construction

First, we show how to use a “standard” HSS (for only two parties, and where
the reconstruction algorithm is simply addition) to obtain a new kind of HSS,
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which we call sharing compact HSS (scHSS). The main property we achieve with
scHSS is the ability to share a secret among n parties, for any n, while main-
tainting compactness of the share size. In particular, as in standard HSS, the
sharing algorithm will be independent of the circuit that will be computed on the
shares. We actually obtain a few other advantages over constructions of standard
HSS [BGI16,BGI17], namely, we get negligible rather than inverse polynomial
evaluation error, and we can support computations of any polynomial-size cir-
cuit. To achieve this, we sacrifice compactness of the evaluated shares, simplicity
of the reconstruction algorithm, and security for multiple evaluations. However,
it will only be crucial for us that multiple parties can participate, and that the
sharing algorithm is compact.

The approach: A sharing-compact HSS scheme consists of three algorithms,
Share,Eval, and Dec. Our construction follows the compiler of [GS18] that takes
an arbitrary MPC protocol and squishes it to two rounds. At a high level, to
share a secret x among n parties, we have the Share algorithm first compute an
n-party additive secret sharing x1, . . . , xn of x. Then, it runs the first round of
the squished n-party protocol on behalf of each party j with input xj .3 Finally,
it sets the j’th share to be all of the first round messages, plus the secret state
of the j’th party. The Eval algorithm run by party j will simply run the second
round of the MPC, and output the resulting message. The Dec algorithm takes
all second round messages and reconstructs the output.

Recall that we aim for a sharing-compact HSS, which in particular means that
the Share algorithm must be independent of the computation supported during
the Eval phase. Thus, the first observation that makes the above approach viable
is that the first round of the two-round protocol that results from the [GS18]
compiler is independent of the particular circuit being computed. Unfortunately,
it is not generated independently of the size of the circuit to be computed, so
we must introduce new ideas to remove this size dependence.

The [GS18] compiler: Before further discussing the size dependence issue, we
recall the [GS18] compiler. The compiler is applied to any conforming MPC
protocol, a notion defined in [GS18].4 Roughly, a conforming protocol operates
via a sequence of actions φ1, . . . , φT . At the beginning of the protocol, each
party j broadcasts a one-time pad of their input, and additionally generates
some secret state vj . The encrypted inputs are arranged into a global public
state st, which will be updated throughout the protocol. At each step t, the
action φt = (j, f, g, h) is carried out by having party j broadcast the bit γt :=
NAND(stf ⊕ vj,f , stg ⊕ vj,g) ⊕ vj,h. Everybody then updates the global state
by setting sth := γt. We require that the transcript of the protocol is publicly
decodable, so that after the T actions are performed, anybody can learn the
(shared) output by inspecting st.

3 Actually, we use an nλ-party MPC protocol, for reasons that will become clear later
in this overview.

4 We tweak the notion slightly here, so readers familiar with [GS18] may notice some
differences in this overview.
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Now, the [GS18] compiler works as follows. In the first round of the compiled
protocol, each party runs the first round of the conforming protocol and broad-
casts a one-time pad of their input. In the second round, each party generates a
set of garbled circuits that non-interactively implement the computation phase
of the conforming protocol. In particular, this means that an evaluator can use
the garbled circuits output by each party to carry out each action φ1, . . . , φT ,
learn the resulting final st, and recover the output. The garbled circuits operate
as follows. Each garbled circuit for party j takes as input the public state st,
and outputs information that allows recovery of input labels for party j’s next
garbled circuit, corresponding to an updated version of the public state. To facil-
itate this, the initial private state of each party must be hard-coded into each of
their garbled circuits.

In more detail, consider a particular round t and action φt = (j∗, f, g, h).
Each party will output a garbled circuit for this round. We refer to party j∗

as the “speaking” party for this round. Party j∗’s garbled circuit will simply
use its private state to compute the appropriate NAND gate and update the
public state accordingly, outputting the correct labels for party j∗’s next gar-
bled circuit, and the bit γt to be broadcast. It remains to show how the garbled
circuit of each party j �= j∗ can incorporate this bit γt, revealing the correct
input label for their next garbled circuit. We refer to party j as the “listening”
party. In [GS18], this was facilitated by the use of a two-round oblivious transfer
(OT). In the first round, each pair of parties (j, j∗) engages in the first round of
multiple OT protocols with j acting as the sender and j∗ acting as the receiver.
Specifically, j∗ sends a set of receiver messages to party j. Then during action t,
party j’s garbled circuit responds with j’s sender message, where the sender’s two
strings are garbled input labels lab0, lab1 of party j’s next garbled circuit. Party
j∗’s garbled circuit reveals the randomness used to produce the receiver’s mes-
sage with the appropriate receiver bit γt. This allows for public recovery of the
label labγt

.
However, note that each of the T actions requires its own set of OTs to be

generated in the first round. Each is then “used up” in the second round, as the
receiver’s randomness is revealed in the clear. This is precisely what makes the
first round of the resulting MPC protocol depend on the size of the circuit to be
computed: the parties must engage in the first round of Ω(T ) oblivious transfers
during the first round of the MPC protocol.

Pair-Wise Correlations: As observed also in [GIS18], the point of the first
round OT messages was to set up pair-wise correlations between parties that
were then exploited in the second round to facilitate the transfer of a bit from
party j∗’s garbled circuit to party j’s garbled circuit. For simplicity, assume for
now that when generating the first round, the parties j and j∗ already know
the bit γt that is to be communicated during action t. This is clearly not the
case, but this issue is addressed in [GS18,GIS18] (and here) by generating four
sets of correlations, corresponding to each of the four possible settings of the
two bits of the public state (α, β) at the indices (f, g) corresponding to action
φt = (j∗, f, g, h).
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Now observe that the following correlated randomness suffices for this task.
Party j receives uniformly random strings z(0), z(1) ∈ {0, 1}λ, and party j∗

receives the string z(∗) := z(γt). Recall that party j has in mind garbled input
labels lab0, lab1 for its next garbled circuit, and wants to reveal labγt

in the clear,
while keeping lab1−γt

hidden. Thus, party j’s garbled circuit will simply output
(lab0⊕z(0), lab1⊕z(1)), and party j∗’s garbled circuit outputs z(∗). Now, instead
of generating first round OT messages, the Share algorithm could simply generate
all of the pair-wise correlations and include them as part of the shares. Of course,
the number of correlations necessary still depends on T , so we will need the Share
algorithm to produce compact representations of these correlations.

Compressing Using Constrained PRFs: Consider a pair of parties (j, j∗),
and let Tj∗ be the set of actions where j∗ is the speaking party. We need the
output of Share to (implicitly) include random strings {z

(0)
t , z

(1)
t }t∈Tj∗ in j’s

share and {z
(γt)
t }t∈Tj∗ in j∗’s share. The first set of strings would be easy to

represent compactly with a PRF key kj , letting z
(b)
t := PRF(kj , (t, b)). However,

giving the key kj to party j∗ would reveal too much, as it is imperative that we
keep {z

(1−γt)
t }t∈Tj∗ hidden from party j∗’s view. We could instead give party

j∗ a constrained version of the key kj that only allows j∗ to evaluate PRF(kj , ·)
on points (t, γt). We expect that this idea can be made to work, and one could
hope to present a construction based on the security of (single-key) constrained
PRFs for constraints in NC1 (plus a standard PRF computable in NC1). Such
a primitive was achieved in [AMN+18] based on assumptions in a traditional
group, however, we aim for a construction from weaker assumptions.

Utilizing HSS: Inspired by [BCGI18,BCG+19], we take a different approach
based on HSS. Consider sharing the PRF key kj between parties j and j∗,
producing shares shj and shj∗ , and additionally giving party j the key kj in the
clear. During action t, we have parties j and j∗ (rather, their garbled circuits)
evaluate the following function on their respective shares: if γt = 0, output 0λ

and otherwise, output PRF(kj , t). Assuming that the HSS evaluation is correct,
and using the fact that HSS reconstruction is additive (over Z2), this produces
a pair of outputs (yj , yj∗) such that if γt = 0, yj ⊕ yj∗ = 0λ, and if γt = 1,
yj ⊕ yj∗ = PRF(kj , t). Now party j sets z

(0)
t := yj and z

(1)
t := yj ⊕ PRF(kj , t),

and party j∗ sets z
(∗)
t := yj∗ . This guarantees that z

(∗)
t = z

(γt)
t and that z

(1−γt)
t =

z
(∗)
t ⊕ PRF(kj , t), which should be indistinguishable from random to party j∗,

who doesn’t have kj in the clear.

Tying Loose Ends: This approach works, except that, as alluded to before,
party j’s garbled circuit will not necessarily know the bit γt when evaluating its
HSS share. This is handled by deriving γt based on public information (some bits
α, β of the public shared state), and the private state of party j∗. Since party j∗’s
private state cannot be public information, this derivation must happen within
the HSS evaluation, and in particular, the secret randomness that generates j∗’s
private state must be part of the secret shared via HSS. In our construction,
we compile a conforming protocol where each party j∗’s randomness can be
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generated by a PRF with key sj∗ . Thus, we can share the keys (kj , sj∗) between
parties j and j∗, allowing them to compute output shares with respect to the
correct γt. Finally, note that the computation performed by HSS essentially only
consists of PRF evaluations. Thus, assuming a PRF in NC1 (which follows from
DDH [NR97]), we only need to make use of HSS that supports evaluating circuits
in NC1, which also follows from DDH [BGI16,BGI17].

Dealing with the 1 − 1/Poly Correctness of HSS: We are not quite done,
since the [BGI16,BGI17] constructions of HSS only achieve correctness with
1 − 1/poly probability. At first glance, this appears to be straightforward to fix.
To complete action φt = (j∗, f, g, h), simply repeat the above λ times, now gener-
ating sets {z

(0)
t,p , z

(1)
t,p }p∈[λ] and {z

(∗)
t,p }p∈[λ], using the values {PRF(kj , (t, p))}p∈[λ].

Party j now masks the same labels lab0, lab1 with λ different masks, and to
recover labγt

, one can unmask each value and take the most frequently occurring
string to be the correct label. This does ensure that our scHSS scheme is correct
except with negligible probability.

Unfortunately, the 1/poly correctness actually translates to a security issue
with the resulting scHSS scheme. In particular, it implies that an honest party’s
evaluated share is indistiguishable from a simulated evaluated share with proba-
bility only 1−1/poly. To remedy this, we actually use an nλ-party MPC protocol,
and refer to each of the nλ parties as a “virtual” party. The Share algorithm now
additively secret shares the secret x into nλ parts, and each of the n real parties
participating in the scHSS receives the share of λ virtual parties. We are then
able to show that for any set of honest parties, with overwhelming probability,
there will exist at least one corresponding virtual party that is “simulatable”.
The existence of a single simulatable virtual party is enough to prove the security
of our construction.

At this point it is important to point out that, while the above strategy
suffices to prove our construction secure for a single evaluation (where the circuit
evaluated can be of any arbitrary polynomial size), it does not imply that our
construction achieves reusability, in the sense that the shares output by Share
may be used to evaluate any unbounded polynomial number of circuits. Despite
the fact that the PRF keys shared via HSS should enable the parties to generate
an unbounded polynomial number of pair-wise correlations, the 1/poly evaluation
error of the HSS will eventually break simulation security. Fortunately, as alluded
to before, the property of sharing-compactness actually turns out to be enough
to bootstrap our scheme into a truly reusable MPC protocol. The key ideas that
allow for this will be discussed in Sect. 2.3.

2.2 Step 2: From scHSS to FMS MPC

In the second step, we use a scHSS scheme to construct a first message succinct
two-round MPC protocol (in the rest of this overview we will call it FMS MPC).
The main feature of a scHSS scheme is that its Share algorithm is independent
of the computation that will be performed on the shares. Intuitively, this is very
similar to the main feature offered by a FMS MPC protocol, in that the first
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round is independent of the circuit to be computed. Now, suppose that we have
an imaginary trusted entity that learns everyone’s input (x1, . . . , xn) and then
gives each party i a share shi computed as (sh1, . . . , shn) ← Share(x1‖ . . . ‖xn).
Note that, due to sharing-compactness this step is independent of the circuit C
to be computed by the FMS MPC protocol. After receiving their shares, each
party i runs the scHSS evaluation circuit Eval(i,C, shi) to obtain their own out-
put share yi, and then broadcasts yi . Finally, on receiving all the output shares
(y1, . . . , yn), everyone computes y := C(x1, . . . xn) by running the decoding pro-
cedure of scHSS: y := Dec(y1, . . . , yn).

A Straightforward Three-Round Protocol. Unfortunately, we do not have
such a trusted entity available in the setting of FMS MPC. A natural approach
to resolve this would be to use any standard two-round MPC protocol (from now
on we refer to such a protocol as vanilla MPC) to realize the Share functionality
in a distributed manner. However, since the vanilla MPC protocol would require
at least two rounds to complete, this straightforward approach would incur one
additional round. This is inevitable, because the parties receive their shares only
at the end of the second round. Therefore, an additional round of communication
(for broadcasting the output shares yi) would be required to complete the final
protocol.

Garbled Circuits to the Rescue. Using garbled circuits, we are able to squish
the above protocol to operate in only two rounds. The main idea is to have each
party i additionally send a garbled circuit ˜Ci in the second round. Each ˜Ci

garbles a circuit that implements Eval(i,C, ·). Given the labels for shi, ˜Ci can
be evaluated to output yi ← Eval(i,C, shi). Note that, if it is ensured that every
party receives all the garbled circuits and all the correct labels after the second
round, they can obtain all (y1, . . . , yn), and compute the final output y without
further communication. The only question left now is how the correct labels are
communicated within two rounds.

Tweaking Vanilla MPC to Output Labels. For communicating the correct
labels, we slightly tweak the functionality computed by the vanilla MPC proto-
col. In particular, instead of using it just to compute the shares (sh1, . . . , shn),
we have the vanilla MPC protocol compute a slightly different functionality that
first computes the shares, and rather than outputting them directly, outputs the
corresponding correct labels for everyone’s shares.5 This is enabled by having
each party provide a random value ri, which is used to generate the labels, as
an additional input to D. Therefore, everyone’s correct labels are now available
after the completion of the second round of the vanilla MPC protocol. Recall
that parties also broadcast their garbled circuits along with the second round of

5 It is important to note that the set of garbled labels corresponding to some input x
hides the actual string x. Hence, outputting all the labels instead of specific shares
enables everyone to obtain the desired output without any further communication,
but also does not compromise security.
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the vanilla MPC. Each party i, on receiving all ˜C1, . . . ˜Cn and all correct labels,
evaluates to obtain (y1, . . . , yn) and then computes the final output y.6

2.3 Step 3: From FMS MPC to Reusable MPC

Finally, in this third step, we show how FMS MPC can be used to construct
reusable two-round MPC, where the first message of the protocol can be reused
across multiple computations.

We start with the observation that a two-round FMS MPC protocol allows us
to compute arbitrary sized circuits after completion of the first round. This offers
a limited form of (bounded) reusability, in that all the circuits to be computed
could be computed together as a single circuit. However, once the second round
is completed, no further computation is possible. Thus, the main challenge is how
to leverage the ability to compute a single circuit of unbounded size to achieve
unbounded reusability. Inspired by ideas from [DG17b], we address this challenge
by using the ideas explained in Step 2 (above) repeatedly. For the purposes of
this overview, we first explain a simpler version of our final protocol, in which the
second round is expanded into multiple rounds. A key property of this protocol
is that, using garbled circuits, those expanded rounds can be squished back into
just one round (just like we did in Step 2) while preserving reusability.

Towards Reusability: A Multi-round Protocol. The fact that FMS MPC
does not already achieve reusability can be re-stated as follows: the first round of
FMS MPC (computed using an algorithm MPC1) can only be used for a single
second round execution (using an algorithm MPC2). To resolve this issue, we
build a GGM-like [GGM84] tree-based mechanism that generates a fresh FMS
first round message for each circuit to be computed, while ensuring that no FMS
first round message is reused.

The first round of our final two-round reusable protocol, as well the multi-
round simplified version, simply consists of the first round message corresponding
to the root level (of the GGM tree) instance of the FMS protocol. We now
describe the subsequent rounds (to be squished to a single second round later)
of our multi-round protocol.

Intuitively, parties iteratively use an FMS instance at a particular level of
the binary tree (starting from the root) to generate two new first-round FMS
messages corresponding to the next level of the tree. The leaf FMS protocol
instances will be used to compute the actual circuits. The root to leaf path
traversed to compute a circuit C is decided based on the description of the
circuit C itself.7

6 We remark that, in the actual protocol each party i sends their labels, encrypted,
along with the garbled circuit ˜Ci in the second round. The vanilla MPC protocol
outputs the correct sets of decryption keys based on the shares, which allows everyone
to obtain the correct sets of labels, while the other labels remain hidden.

7 We actually use the string whose first λ bits are the size of C, and the remaining
bits are the description of C. This is to account for the possibility that one circuit
may be a prefix of another.
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In more detail, parties first send the second round message of the root (0’th)
level FMS protocol instance for a fixed circuit N (independent of the circuit C
to be computed) that samples and outputs “left” and “right” MPC1 messages
using the same inputs that were used in the root level FMS. Now, depending
on the first bit of the circuit description, parties choose either the left (if the
first bit is 0) or the right (if the first bit is 1) MPC1 messages for the next (1st)
level. Now using the chosen FMS messages, parties generate the MPC2 message
for the same circuit N as above. This results in two more fresh instances of the
MPC1 messages for the next (2nd) level. As mentioned before, this procedure is
continued until the leaf node is reached. At that point the MPC2 messages are
generated for the circuit C that the parties are interested in computing.

Note that, during the evaluation of two different circuits (each associated with
a different leaf node), a certain number of FMS protocol instances might get re-
executed. However, our construction ensures that this is merely a re-execution
of a fixed circuit with the exact same input/output behavior each time. This
guarantees that no FMS message is reused (even though it might be re-executed).
Finally, observe that this process of iteratively computing more and more MPC1

messages for the FMS protocol is only possible because the generation of the
first message of an FMS protocol can be performed independently of the circuit
that gets computed in the second round. In particular, the circuit N computes
two more MPC1 messages on behalf of each party.

Squishing the Multiple Rounds: Using Ideas in Step 2 Iteratively.
We take an approach similar to Step 2, but now starting with a two-round
FMS MPC (instead of a vanilla MPC). In the second round, each party will
send a sequence of garbled circuits where each garbled circuit will complete one
instance of an FMS MPC which generates labels for the next garbled circuit.
This effectively emulates the execution of the same FMS MPC instance in the
multi-round protocol, but without requiring any additional round. Now, the only
thing left to address is how to communicate the correct labels.

Communicating the Labels for Each Party’s Garbled Circuit. The trick
here is (again very similar to step 2) to tweak the circuit N, in that instead of
outputting the two MPC1 messages for the next level, N (with an additional
random input ri from each party i) now outputs labels corresponding to the
messages.8

For security reasons, it is not possible to include the same randomness ri in
the input to each subsequent FMS instance. Thus, we use a carefully constructed
tree-based PRF, following the GGM [GGM84] construction and pass along not
the key of the PRF but a careful derivative that is sufficient for functionality and
does not interfere with security.

Adaptivity in the Choice of Circuit. Our reusable two-round MPC proto-
col satisfies a strong adaptive security guarantee. In particular, the adversary

8 Again, the actual protocol is slightly different, in that all labels are encrypted and
sent along with the garbled circuits, and N outputs decryption keys corresponding
to the correct labels.
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may choose any circuit to compute after seeing the first round messages (and
even after seeing the second round messages for other circuits computed on the
same inputs). This stronger security is achieved based on the structure of our
construction, since the first round messages of the FMS MPC used to compute
the actual circuit are only revealed when the actual execution happens in the
second round of the reusable protocol. In particular, we do not even have to rely
on “adaptive” security of the underlying FMS protocol to achieve this property.9

3 Preliminaries

For standard cryptographic preliminaries, see the full version [BGMM20].

3.1 Two-Round MPC

Throughout this work, we will focus on two-round MPC protocols. We now
define the syntax we follow for a two-round MPC protocol.

Definition 5 (Two-Round MPC Procotol). An n-party two-round MPC
protocol is described by a triplet of PPT algorithms (MPC1,MPC2,MPC3) with
the following syntax.

– MPC1(1λ,CRS,C, i, xi; ri) =: (st(1)i ,msg
(1)
i ): Takes as input 1λ, a common

random/reference string CRS, (the description of) a circuit C to be computed,
identity of a party i ∈ [n], input xi ∈ {0, 1}∗ and randomness ri ∈ {0, 1}λ (we
drop mentioning the randomness explicitly when it is not needed). It outputs
party i’s first message msg

(1)
i and its private state st

(1)
i .

– MPC2(C, st
(1)
i , {msg

(1)
j }j∈[n]) → (st(2)i ,msg

(2)
i ): Takes as input (the descrip-

tion of) a circuit10 C to be computed, the state11 of a party st
(1)
i , and the

first round messages of all the parties {msg
(1)
j }j∈[n]. It outputs party i’s sec-

ond round message msg
(2)
i and its private state st

(2)
i .

– MPC3(st
(2)
i , {msg

(2)
j }j∈[n]) =: yi: Takes as input the state of a party st

(2)
i , and

the second round messages of all the parties {msg
(2)
j }j∈[n]. It outputs the ith

party’s output yi.

Each party runs the first algorithm MPC1 to generate the first round message of
the protocol, the second algorithm MPC2 to generate the second round message

9 This is for reasons very similar to those in [DG17a].
10 It might seem unnatural to include C in the input of MPC2 when it was already used

as an input for MPC1. This is done to keep the notation consistent with a stronger
notion of two-round MPC where C will be dropped from the input of MPC1.

11 Without loss of generality we may assume that the MPC2 algorithm is deterministic
given the state st

(1)
i . Any randomness needed for the second round could be included

in st
(1)
i . Even in the reusable (defined later) case, it is possible to use a PRF computed

on the input circuit to provide the needed randomness for the execution of MPC2.
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of the protocol and finally, the third algorithm MPC3 to compute the output.
The messages are broadcasted after executing the first two algorithms, whereas
the state is kept private.

The formal security definition is provided in the full version [BGMM20].

First Message Succinct Two-Round MPC. We next define the notion
of a first message succinct (FMS) two-round MPC protocol. This notion is a
strengthening (in terms of efficiency) of the above described notion of (vanilla)
two-round MPC. Informally, a two-round MPC protocol is first message suc-
cinct if the first round messages of all the parties can be computed without
knowledge of the circuit being evaluated on the inputs. This allows parties to
compute their first message independent of the circuit (in particular, indepen-
dent also of its size) that will be computed in the second round.

Definition 6 (First Message Succinct Two-Round MPC). Let π =
(MPC1, MPC2,MPC3) be a two-round MPC protocol. Protocol π is said to be first
message succinct if algorithm MPC1 does not take as input the circuit C being
computed. More specifically, it takes an input of the form (1λ,CRS, i, xi; ri).

Note that a first message succinct two-round MPC satisfies the same correctness
and security properties as the (vanilla) two-round MPC.12

Reusable Two-Round MPC. We next define the notion of a reusable two-
round MPC protocol, which can be seen as a strengthening of the security of a
first message succinct two-round MPC protocol. Informally, reusability requires
that the parties should be able to reuse the same first round message to securely
evaluate an unbounded polynomially number of circuits C1, . . . ,C�, where � is a
polynomial (in λ) that is independent of any other parameter in the protocol.
That is, for each circuit Ci, the parties can just run the second round of the
protocol each time (using exactly the same first round messages) allowing the
parties to evaluate the circuit on the same inputs. Note that each of these circuits
can be of size an arbitrary polynomial in λ.

Very roughly, security requires that the transcript of all these executions
along with the set of outputs should not reveal anything more than the inputs
of the corrupted parties and the computed outputs.

We again formalize security (and correctness) via the real/ideal world
paradigm. Consider n parties P1, . . . , Pn with inputs x1, . . . , xn respectively.
Also, consider an adversary A corrupting a set I ⊂ [n] of parties.

The Real Execution. In the real execution, the n-party first message suc-
cinct two-round MPC protocol π = (MPC1,MPC2,MPC3) is executed in the
presence of an adversary A. The adversary A takes as input the security param-
eter λ and an auxiliary input z. The execution proceeds in two phases:

12 In particular, for an FMS two-round MPC protocol, its first message is succinct but
may not be reusable.
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– Phase I: All the honest parties i /∈ I execute the first round of the protocol
by running the algorithm MPC1 using their respective input xi. They broad-
cast their first round message msg

(1)
i and preserve their secret state st

(1)
i .

Then the adversary A sends the first round messages on behalf of the cor-
rupted parties following any arbitrary (polynomial-time computable) strategy
(a semi-honest adversary follows the protocol behavior honestly and runs the
algorithm MPC1(·)).

– Phase II (Reusable): The adversary outputs a circuit C, which is provided
to all parties.
Next, each honest party computes the algorithm MPC2 using this circuit C

(and its secret state st
(1)
i generated as the output of MPC1 in Phase I). Again,

adversary A sends arbitrarily computed (in PPT) second round messages on
behalf of the corrupt parties. The honest parties return the output of MPC3

executed on their secret state and the received second round messages.
The adversary A decides whether to continue the execution of a different
computation. If yes, then the computation returns to the beginning of phase
II. In the other case, phase II ends.

The interaction of A in the above protocol π defines a random variable REALπ,A(
λ,x, z, I) whose distribution is determined by the coin tosses of the adversary and
the honest parties. This random variable contains the output of the adversary
(which may be an arbitrary function of its view) as well as the output recovered
by each honest party.

The Ideal Execution. In the ideal execution, an ideal world adversary Sim
interacts with a trusted party. The ideal execution proceeds as follows:

1. Send inputs to the trusted party: Each honest party sends its input
to the trusted party. Each corrupt party Pi, (controlled by Sim) may either
send its input xi or send some other input of the same length to the trusted
party. Let x′

i denote the value sent by party Pi. Note that for a semi-honest
adversary, x′

i = xi always.
2. Adversary picks circuit: Sim sends a circuit C to the ideal functionality

which is also then forwarded to the honest parties.
3. Trusted party sends output to the adversary: The trusted party com-

putes C(x′
1, . . . , x

′
n) = (y1, . . . , yn) and sends {yi}i∈I to the adversary.

4. Adversary instructs trusted party to abort or continue: This is for-
malized by having the adversary Sim send either a continue or abort message
to the trusted party. (A semi-honest adversary never aborts.) In the latter
case, the trusted party sends to each uncorrupted party Pi its output value
yi. In the former case, the trusted party sends the special symbol ⊥ to each
uncorrupted party.

5. Reuse: The adversary decides whether to continue the execution of a different
computation. In the yes case, the ideal world returns to the start of Step 2.

6. Outputs: Sim outputs an arbitrary function of its view, and the honest par-
ties output the values obtained from the trusted party.
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Sim’s interaction with the trusted party defines a random variable IDEALSim(λ,
x, z, I). Having defined the real and the ideal worlds, we now proceed to define
our notion of security.

Definition 7. Let λ be the security parameter. Let π be an n-party two-round
protocol, for n ∈ N. We say that π is a reusable two-round MPC protocol in
the presence of malicious (resp., semi-honest) adversaries if for every PPT real
world adversary (resp., semi-honest adversary) A there exists a PPT ideal world
adversary (resp., semi-honest adversary) Sim such that for any x = {xi}i∈[n] ∈
({0, 1}∗)n, any z ∈ {0, 1}∗, any I ⊂ [n] and any PPT distinguisher D, we have
that

|Pr[D(REALπ,A(λ,x, z, I)) = 1] − Pr[D(IDEALSim(λ,x, z, I)) = 1]|
is negligible in λ.

4 Step 1: Constructing Sharing-Compact HSS from HSS

In this section, we start by recalling the notion of homomorphic secret shar-
ing (HSS) and defining our notion of sharing-compact HSS. We use the stan-
dard notion of HSS, which supports two parties and features additive recon-
struction. In contrast, our notion of sharing compactness is for the multi-party
case, but does not come with the typical bells and whistles of a standard HSS
scheme—specifically, it features compactness only of the sharing algorithm and
without additive reconstruction. For brevity, we refer to this notion of HSS as
sharing-compact HSS (scHSS). In what follows, we give a construction of sharing-
compact HSS and prove its security.

4.1 Sharing-Compact Homomorphic Secret Sharing

We continue with our definition of sharing-compact HSS, which differs from HSS
in various ways:

– we support sharing among an arbitrary number of parties (in particular, more
than 2);

– we have a simulation-based security definition;
– we support a notion of robustness;
– we have negligible correctness error;
– our reconstruction procedure is not necessarily additive;
– we require security for only one evaluation.

We do preserve the property that the sharing algorithm, and in particular,
the size of the shares, is independent of the size of the program to be computed.

Definition 8 (Sharing-compact Homomorphic Secret Sharing (scHSS)).
A scHSS scheme for a class of programs P is a triple of PPT algorithms
(Share,Eval,Dec) with the following syntax:
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Share(1λ, n, x): Takes as input a security parameter 1λ, a number of parties
n, and a secret x ∈ {0, 1}∗, and outputs shares (x1, . . . , xn).
Eval(j, P, xj): Takes as input a party index j ∈ [n], a program P , and share
xj, and outputs a string yj ∈ {0, 1}∗.
Dec(y1, . . . , yn): Takes as input all evaluated shares (y1, . . . , yn) and outputs
y ∈ {0, 1}∗.

The algorithms satisfy the following properties.

– Correctness: For any program P ∈ P and secret x,

Pr
[

Dec(y1, . . . , yn) = P (x) : (x1, . . . , xn) ← Share(1λ, x)
∀j, yj ← Eval(j, P, xj)

]

= 1 − negl(λ).

– Robustness: For any non-empty set of honest parties H ⊆ [n], program
P ∈ P, secret x, and PPT adversary A,

Pr

⎡
⎣Dec(y1, . . . , yn) ∈ {P (x), ⊥} :

(x1, . . . , xn) ← Share(1λ, x)

∀j ∈ H, yj ← Eval(j, P, xj)

{yj}j∈[n]\H ← A({xj}j∈[n]\H , {yj}j∈H)

⎤
⎦ = 1 − negl(λ).

– Security: There exists a PPT simulator S such that for any program P ∈ P,
any secret x, and any set of honest parties H ⊆ [n] we have that:

{
{xi}i∈[n]\H , {yi}i∈H :

(x1, . . . , xn) ← Share(1λ, n, x),
∀i ∈ H, yi ← Eval(i, P, xi)

}
c≈

{
S(1λ, P, n,H, P (x))

}
.

4.2 Conforming Protocol

In our construction, we need a modification of the notion of conforming MPC
protocol from [GS18]. Consider an MPC protocol Φ between parties P1, . . . , Pn.
For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. We consider any
random coins used by a party to be part of its input (we can assume each party
uses at most λ bits of randomness, and expands as necessary with a PRF). A
conforming protocol Φ is defined by functions inpgen, gen, post, and computation
steps or what we call actions φ1, · · · φT . The protocol Φ proceeds in three stages:
the input sharing stage, the computation stage, and the output stage. For those
familiar with the notion of conforming protocol from [GS18,GIS18], we outline
the differences here.

– We split their function pre into (inpgen, gen), where inpgen is universal, in the
sense that it only depends on the input length m (and in particular, not the
function to be computed).

– We explicitly maintain a single public global state st that is updated one bit
at a time. Each party’s private state is maintained implicitly via their random
coins si chosen during the input sharing phase.

– We require the transcript (which is fixed by the value of st at the end of the
protocol) to be publicly decodable.

Next, we give our description of a conforming protocol.
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– Input sharing phase: Each party i chooses random coins si ← {0, 1}λ,
computes (wi, ri) := inpgen(xi, si) where wi = xi ⊕ ri, and broadcasts wi.
Looking ahead to the proof of Lemma 9, we will take si to be the seed of a
PRF(si, ·) : {0, 1}∗ → {0, 1}.

– Computation phase: Let T be a parameter that depends on the circuit C
to be computed. Each party sets the global public state

st := (w1‖0T/n‖w2‖0T/n‖ · · · ‖wn‖0T/n),

and generates their secret state vi := gen(i, si).13 Let � be the length of st or
vi (st and vi will be of the same length). We will also use the notation that
for index f ∈ [�], vi,f := genf (i, si).
For each t ∈ {1 · · · T} parties proceed as follows:
1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [�].
2. Party Pi computes one NAND gate as

γt = NAND(stf ⊕ vi,f , stg ⊕ vi,g) ⊕ vi,h

and broadcasts γt to every other party.
3. Every party updates sth to the bit value γt received from Pi.

We require that for all t, t′ ∈ [T ] such that t �= t′, we have that if φt =
(·, ·, ·, h) and φt′ = (·, ·, ·, h′) then h �= h′ (this ensures that no state bit is ever
overwritten).

– Output phase: Denote by Γ = (γ1, . . . , γT ) the transcipt of the protocol,
and output post(Γ).

Lemma 9. For any input length m, there exists a function inpgen such that any
n party MPC protocol Π (where each party has an input of length at most m)
can be written as a conforming protocol Φ = (inpgen, gen, post, {φt}t∈T ) while
inheriting the correctness and the security of the original protocol.

The proof of this lemma is very similar to the proof provided in [GS18], and
is deferred to the full version [BGMM20].

4.3 Our Construction

We describe a sharing-compact HSS scheme for sharing an input x ∈ {0, 1}m

among n parties.

Ingredients: We use the following ingredients in our construction.

– An nλ-party conforming MPC protocol Φ (for computing an arbitrary func-
tionality) with functions inpgen, gen, and post.

13 Technically, gen should also take the parameters n, T as input, but we leave these
implicit.
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– A homomorphic secret sharing scheme (HSS.Share,HSS.Eval) supporting eval-
uations of circuits in NC1. To ease notation in the description of our proto-
col, we will generally leave the party index, identifier, and error parameter δ
implicit. The party index will be clear from context, the identifier can be the
description of the function to be evaluated, and the error parameter will be
fixed once and for all by the parties.

– A garbling scheme for circuits (Garble,GEval).
– A robust private-key encryption scheme (rob.enc, rob.dec).
– A PRF that can be computed in NC1.

Theorem 10. Assuming a semi-honest MPC protocol (with any number of
rounds) that can compute any polynomial-size functionality, a homomorphic
secret sharing scheme supporting evaluations of circuits in NC1, and a PRF
that can be computed in NC1, there exists a sharing-compact homomorphic secret
sharing scheme supporting the evaluation of any polynomial-size circuit.

Notation: As explained in Sect. 2, our construction at a high level follows the
template of [GS18] (which we refer to as the GS protocol). In the evaluation step
of our construction, each party generates a sequence of garbled circuits, one for
each action step of the conforming protocol. For each of these action steps, the
garbled circuit of one party speaks and the garbled circuits of the rest listen. We
start by describing three circuits that aid this process: (i) circuit F (described
in Fig. 1), which includes the HSS evaluations enabling the speaking/listening
mechanism, (ii) circuit P∗ (described in Fig. 2) garbled by the speaking party,
and (iii) circuit P (described in Fig. 3) garbled by the listening party.
(i) Circuit F. The speaking garbled circuit and the listening garbled circuit
need shared secrets for communication. Using HSS, F provides an interface for
setting up these shared secrets. More specifically, consider a speaking party j∗

and a listening party j �= j∗ during action t. In our construction, the parties
j, j∗ will be provided with HSS shares of their secrets {sj , sj∗}, {kj , kj∗}. Note
that the order of sj and sj∗ in {sj , sj∗} and the order of kj and kj∗ in {kj , kj∗}
is irrelevant. All of the secret information used by party j∗ in computation of its
conforming protocol messages is based on sj∗ . Also, during action t, party j’s
garbled circuit will need to output encrypted labels for its next garbled circuit.
Secret kj is used to generate any keys needed for encrypting garbled circuit
labels. Concretely, in the circuit G (used inside F), observe that sj∗ is used to
perform the computation of γ, and kj is used to compute the “difference value”,
explained below.

Both party j and party j∗ can compute F on their individual share of
{sj , sj∗}, {kj , kj∗}. They either obtain the same output value (in the case that
party j∗’s message bit for the tth action is 0) or they obtain outputs that differ
by a pseudorandom difference value known only to party j (in the case that
party j∗’s message bit for the tth action is 1). This difference value is equal
to PRF(kj , (t, α, β, p)), where t, α, β and p denote various parameters of the
protocol.
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Fig. 1. The Circuit F.

Next, we’ll see how the circuit F enables communication between garbled
circuits. In our construction the speaking party will just output the evaluation
of F on its share (for appropriate choices of t, α, β and p). On the other hand,
party j will encrypt the zero-label for its next garbled circuit using the output of
the evaluation of F on its share (for appropriate choices of t, α, β and p) and will
encrypt the one-label for its next garbled circuit using the exclusive or of this
value and the difference value. Observe that the output of the speaking circuit
will be exactly the key used to encrypt the label corresponding to the bit sent
by j∗ in the tth action.

Finally, we need to ensure that each circuit G evaluated under the HSS can be
computed in NC1. Observe that G essentially only computes genf (j∗, sj∗) evalu-
ations and PRF(kj , ·) evaluations. The proof of Lemma 9 shows that genf (j∗, sj∗)
may be computed with a single PRF evaluation using key sj∗ . Thus, if we take
each sj , kj to be keys for a PRF computable in NC1, it follows that G will be
in NC1.
(ii) The Speaking Circuit P∗. The construction of the speaking circuit is
quite simple. The speaking circuit for the party j∗ corresponding to action t
computes the updated global state and the bit γ sent out in action t. However,
it must somehow communicate γ to the garbled circuit of each j �= j∗. This effect
is achieved by having P∗ return the output of F (on relevant inputs as explained
above). However, technical requirements in the security proof preclude party
j∗ from hard-coding its HSS share sh into P∗, and having P∗ compute on this
share. Thus, we instead hard-code the outputs of F on all relevant inputs. More
specifically, we hard-code

{

z
(α,β)
j,p

}

α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, where z
(α,β)
j,p is obtained as the

output F[t, α, β, p](sh).
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Fig. 2. The Speaking Circuit P∗.

(iii) The Listening Circuit P. The construction of the listening circuit mirrors
that of the speaking circuit. The listening circuit outputs the labels for all wires
except the hth wire that it is listening on. For the hth wire, the listening circuit
outputs encryptions of the two labels under two distinct keys, where one of
them will be output by the speaking circuit during this action. As in the case of
speaking circuits, for technical reasons in the proof, we cannot have the listening
circuit compute these value but must instead hard-code them. More specifically,
we hard code

{

z
(α,β)
p,0 , z

(α,β)
p,1

}

α,β∈{0,1},
p∈[λ]

where z
(α,β)
p,0 is obtained as F[t, α, β, p](sh)

and z
(α,β)
p,1 is obtained as z

(α,β)
p,0 ⊕ PRF (kj , (t, α, β, p)).

Fig. 3. The Listening Circuit P.
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The Construction Itself: The foundation of a sharing-compact HSS for eval-
uating circuit C is a conforming protocol Φ (as described earlier in Sect. 4.2)
computing the circuit C. Very roughly (and the details will become clear as we
go along), in our construction, the Share algorithm will generate secret shares
of the input x for the n parties. Additionally, the share algorithm generates the
first round GS MPC messages on behalf of each party. The Eval algorithm will
roughly correspond to the generation of the second round messages of the GS
MPC protocol. Finally, the Dec algorithm will perform the reconstruction, which
corresponds to the output computation step in GS after all the second round
messages have been sent out.

The Sharing Algorithm: Because of the inverse polynomial error probability
in HSS (hinted at in Sect. 2 and explained in the proof), we need to use an
n′ = nλ (virtual) party protocol rather than just an n party protocol. Each of
the n parties actually messages for λ virtual parties. Barring this technicality and
given our understanding of what needs to be shared to enable the communication
between garbled circuits, the sharing is quite natural.

On input x, the share algorithm generates a secret sharing of x (along with
the randomness needed for the execution of Φ) to obtain a share xj for each
virtual party j ∈ [n′]. In addition, two PRF keys sj , kj for each virtual party
j ∈ [n′] are sampled. Now, the heart of the sharing algorithm is the generation
of HSS shares of {sj , sj′}, {kj , kj′} for every pair of j �= j′ ∈ [n′], which are then
provided to parties j and j′. Specifically, the algorithm computes shares sh

{j,j′}
j

and sh
{j,j′}
j′ as the output of HSS.Share

(

1λ, ({sj , sj′}, {kj , kj′})
)

. Note that we
generate only one set of shares for each j, j′ and the ordering of j and j′ is
irrelevant (we use the set notation to signify this).

Share(1λ, n, x) :

1. Let n′ = nλ, m′ = m+λ, and x1 := (z1‖ρ1) ∈ {0, 1}m′
, . . . , xn′ := (zn′‖ρn′) ∈

{0, 1}m′
, where z1, . . . , zn′ is an additive secret sharing of x, and each ρi ∈

{0, 1}λ is uniformly random. The ρi are the random coins used by each party
in the MPC protocol Π underlying the conforming protocol Φ.

2. For each j ∈ [n′]:
(a) Draw PRF keys sj , kj ← {0, 1}λ, so that PRF(sj , ·) : {0, 1}∗ → {0, 1}

and PRF(kj , ·) : {0, 1}∗ → {0, 1}λ, where both of these pseudorandom
functions can be computed by NC1 circuits.

(b) Compute (wj , rj) := inpgen(xj , sj).

3. For each j �= j′ ∈ [n′], compute
(

sh
{j,j′}
j , sh

{j,j′}
j′

)

← HSS.Share
(

1λ,
(

{sj ,

sj′}, {kj , kj′}
))

.

4. Let shj =
(

xj , sj , kj ,
{

sh
{j,j′}
j

}

j′∈[n′]\{j}

)

.

5. For each i ∈ [n], output party i’s share shi :=
(

{wj}j∈[n′],
{

shj

}

j∈[(i−1)λ+1,··· ,iλ]

)

.
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The Evaluation Algorithm: Observe that the sharing algorithm is indepen-
dent of the conforming protocol Φ (and the circuit C to be computed), thus
achieving sharing compactness. This is due to the fact that the function inpgen
is universal for conforming protocols Φ (as explained in Sect. 4.2).

In contrast, the evaluation algorithm will emulate the entire protocol Φ. First,
it will set the error parameter δ for HSS, depending on the protocol Φ. Then, each
virtual party j (where each party controls λ virtual parties) generates a garbled
circuit for each action of the conforming protocol. For each action, the speaking
party uses the speaking circuit P∗ and the rest of the parties use the listening
circuit P.

Eval(i,C, shi):

1. Parse shi as
(

{wj}j∈[n′],
{

shj

}

j∈[(i−1)λ+1,··· ,iλ]

)

, let T be a parameter14 of
the conforming protocol Φ computing C, and set the HSS error parameter
δ = 1/8λ2T .

2. Set st := (w1‖0T/n′‖w2‖0T/n′‖ · · · ‖wn′‖0T/n′
).

3. For each j ∈ [(i − 1)λ + 1, · · · , iλ], run the following procedure.
VirtualEval(j,C, shj):

(a) Parse shj as
(

xj , sj , kj ,
{

sh
{j,j′}
j

}

j′∈[n′]\{j}

)

.

(b) Compute vj := gen(j, sj).
(c) Set lab

j,T+1
:=

{

labj,T+1
k,0 , labj,T+1

k,1

}

k∈[�]
where for each k ∈ [�] and b ∈

{0, 1}, labj,T+1
k,b := 0λ.

(d) For each t from T down to 1:
i. Parse φt as (j∗, f, g, h).
ii. If j = j∗, compute (where P∗ is described in Fig. 2 and F is described

in Fig. 1)

arg1 :=
{

F[t, α, β, p]
(

sh
{j∗,j}
j∗

)}

j∈[n′]\{j∗},
α,β∈{0,1},

p∈[λ]

arg2 := (vj∗,f , vj∗,g, vj∗,h)
(

˜Pj∗,t, lab
j∗,t

)

← Garble
(

1λ,P∗
[

j∗, arg1, arg2, lab
j∗,t+1

])

.

iii. If j �= j∗, compute (where P is described in Fig. 3 and F is described
in Fig. 1)

arg1 :=

⎧

⎨

⎩

F[t, α, β, p]
(

sh
{j∗,j}
j

)

,

F[t, α, β, p]
(

sh
{j∗,j}
j

)

⊕ PRF (kj , (t, α, β, p))

⎫

⎬

⎭

α,β∈{0,1},
p∈[λ]

arg2 := (f, g, h)
(

˜Pj,t, lab
j,t

)

← Garble
(

1λ,P
[

j, arg1, arg2, lab
j,t+1

])

.

14 Recall that T is the number of actions to be taken.



342 J. Bartusek et al.

(e) Set yj :=
(

{

˜Pj,t
}

t∈[T ]
,
{

labj,1
k,stk

}

k∈[�]

)

. Recall st was defined in step 2.

4. Output yi :=
{

yj

}

j∈[(i−1)λ+1,··· ,iλ]
.

The Decoding Algorithm: The decoding algorithm is quite natural given what
we have seen so far. Garbled circuits from each virtual party are executed sequen-
tially, communicating among themselves. This results in an evaluation of the con-
forming protocol Φ and the final output can be computed using the post algorithm.

Dec(y1, . . . , yn):

1. For each i ∈ [n], parse yi as
{(

{

˜Pj,t
}

t∈[T ]
,
{

labj,1
k

}

k∈[�]

)}

j∈[(i−1)λ+1,··· ,iλ]

.

2. For each j ∈ [n′], let ˜lab
j,1

:=
{

labj,1
k

}

k∈[�]
.

3. For each t from 1 to T ,
(a) Parse φt as (j∗, f, g, h).

(b) Compute

(

γt,
{

z∗
j,p

}

j∈[n′]\{j∗},
p∈[λ]

, ˜lab
j∗,t+1

)

:= GEval

(

˜Pj∗,t, ˜lab
j∗,t

)

.

(c) For each j �= j∗:

i. Compute
(

{elabp,0, elabp,1}p∈[λ] ,
{

labj,t+1
k

}

k∈[�]\{h}

)

:= GEval
(

˜Pj,t,

˜lab
j,t)

.

ii. If there exists p ∈ [λ], such that rob.dec
(

z∗
j,p, elabp,γt

) �= ⊥, then set
the result to labj,t+1

h . If all λ decryptions give ⊥, then output ⊥ and
abort.

iii. Set ˜lab
j,t+1

:=
{

labj,t+1
k

}

k∈[�]
.

4. Set Γ = (γ1, . . . , γT ) and output post(Γ).

The proof of correctness, security and robustness can be found in the full
version [BGMM20].

5 Step 2: FMS MPC from Sharing-Compact HSS

In this section, we use a sharing-compact HSS scheme to construct a first message
succinct two-round MPC protocol that securely computes any polynomial-size
circuit. We refer to Sect. 2.2 for a high-level overview of the construction. For
modularity of presentation, we begin by defining a label encryption scheme.

Label Encryption. This is an encryption scheme designed specifically for
encrypting a grid of 2 × � garbled input labels corresponding to a garbled cir-
cuit with input length �. The encryption algorithm takes as input a 2 × � grid
of strings (labels) along with a 2 × � grid of keys. It encrypts each label using
each corresponding key, making use of a robust private-key encryption scheme
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Fig. 4. A first message succinct MPC protocol (FMS.MPC1,FMS.MPC2,FMS.MPC3)

Fig. 5. The (randomized) circuit D

(rob.enc, rob.dec). It then randomly permutes each pair (column) of ciphertexts,
and outputs the resulting 2×� grid. On the other hand, decryption only takes as
input a set of � keys, that presumably correspond to exactly one ciphertext per
column, or, exactly one input to the garbled circuit. The decryption algorithm
uses the keys to decrypt exactly one label per column, with the robustness of
(rob.enc, rob.dec) ensuring that indeed only one ciphertext per column is able to
be decrypted. The random permutations that occur during encryption ensure
that a decryptor will recover a valid set of input labels without knowing which
input they actually correspond to. This will be crucial in our construction.
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LabEnc(K, lab) : On input a key K = {Ki,b}i∈[�],b∈{0,1} and lab =
{labi,b}i∈[�],b∈{0,1} (where Ki,b, labi,b ∈ {0, 1}λ), LabEnc draws n

random bits b′
i ← {0, 1} and outputs elab = {elabi,b}i∈[�],b∈{0,1},

where elabi,b := rob.enc(Ki,b⊕b′
i
, labi,b⊕b′

i
).

LabDec( ̂K, elab): On input a key ̂K = {Ki}i∈[�] and elab = {elabi,b}i∈[�],b∈{0,1},
for each i ∈ [�] output rob.dec(Ki, elabi,0) if it is not ⊥ and
rob.dec(Ki, elabi,1) otherwise.

We present the formal construction in Fig. 4. It is given for functionalities C
where every party receives the same output, which is without loss of generality.
Throughout, we will denote by � the length of each party’s scHSS share. Note
that the circuit D used by the construction is defined immediately after in Fig. 5.
Finally, p[t] denotes the t’th bit of a string p ∈ {0, 1}∗.

Theorem 11. Let X ∈ {semi-honest in the plain model, semi-honest in
the common random/reference string model, malicious in the common ran-
dom/reference string model}. Assuming a (vanilla) X two-round MPC protocol
and a scHSS scheme for polynomial-size circuits, there exists an X first message
succinct two-round MPC protocol.

The proof of Theorem 11 can be found in the full version [BGMM20].

6 Step 3: Two-Round Reusable MPC from FMS MPC

We start by giving a high-level overview of the reusable MPC, which we call
r.MPC. Recall from Sect. 2.3 that round one of r.MPC essentially just consists
of round one of an FMS.MPC instance computing the circuit N. We refer to this
as the 0’th (instance of) MPC. Now fix a circuit C to be computed in round
two, and its representative string p := 〈C〉, which we’ll take to be length m. This
string p fixes a root-to-leaf path in a binary tree of MPCs that the parties will
compute. In round two, the parties compute round two of the 0’th MPC, plus
m (garbled circuit, encrypted labels) pairs. Each of these is used to compute an
MPC in the output phase of r.MPC. The first m − 1 of these MPCs compute N,
and the m’th MPC computes C.

In the first round of r.MPC, each party i also chooses randomness ri, which
will serve as the root for a binary tree of random values generated as in [GGM84]
by a PRG (G0,G1). Below, we set ri,0 := ri, where the 0 refers to the fact that the
0’th MPC will be computing the circuit N on input that includes {ri,0}i∈[n]. The
string p then generates a sequence of values ri,1, . . . , ri,m by ri,d := Gp[d](ri,d−1).
The d’th MPC will be computing the circuit N on input that includes {ri,d}i∈[n].

Now, it remains to show how the m (garbled circuit, encrypted labels) pairs
output by each party in round two can be used to reconstruct each of the m
MPC outputs, culminating in C. We use a repeated application of the mecha-
nism developed in the last section. In particular, the d’th garbled circuit output
by party i computes their second round message of the d’th MPC. The input
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labels are encrypted using randomness derived from party i’s root randomness
ri. Specifically, as in last section, we use a PRF to compute a 2 × � grid of keys,
which will be used to LabEnc the 2× � grid of input labels. The key to this PRF
will be generated by a PRG (H0,H1) applied to ri,d−1. Since we are branching
based on the bit p[d], the key will be set to Hp[d](ri,d−1).

Likewise, the d’th MPC (for d < m), using inputs {ri,d}i∈[n], computes two
instances of the first round of the d + 1’st MPC, the “left child” using inputs
{G0(ri,d)}i∈[n] and the “right child” using inputs {G1(ri,d)}i∈[n]. It then uses the
PRF key H0(ri,d) to output the � keys corresponding to party i’s left child first
round message, and the key H1(ri,d) to output the � keys corresponding to party
i’s right child first round message.

Finally, in the output phase of r.MPC, all parties can recover party i’s second
round message of the d’th MPC, by first using the output of the d − 1’st MPC
to decrypt party i’s input labels corresponding to its first round message of
the d’th MPC, and then using those labels to evaluate its d’th garbled circuit,
finally recovering the second round message. Once all of the d’th second round
messages have been recovered, the output may be reconstructed. Note that this
output is exactly the set of keys necessary to repeat the process for the d + 1’st
MPC. Eventually, the parties will arrive at the m’th MPC, which allows them to
recover the final output C(x1, . . . , xn). One final technicality is that each party’s
second round message for each MPC may be generated along with a secret state.
We cannot leak this state to other parties in the output phase, so in the second
round of r.MPC, parties will actually garble circuits that compute their second
round (state, message) pair, encrypt the state with their own secret key, and
then output the encrypted state plus the message in the clear. In the output
phase, each party i can decrypt their own state, (but not anyone else’s) and use
their state to reconstruct the output of each MPC.

The formal construction and the proof of the following theorem are deferred
to the full version [BGMM20].

Theorem 12. Let X ∈ {semi-honest in the plain or CRS model, malicious in
the CRS model}. Assuming a first message succinct X two-round MPC protocol,
there exists an X reusable two-round MPC protocol.

Acknowledgements. We thank Saikrishna Badrinarayanan for valuable contribu-
tions while collaborating during the early stages of this work.
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Abstract. Reducing interaction in Multiparty Computation (MPC) is
a highly desirable goal in cryptography. It is known that 2-round MPC
can be based on the minimal assumption of 2-round Oblivious Trans-
fer (OT) [Benhamouda and Lin, Garg and Srinivasan, EC 2018], and 1-
round MPC is impossible in general. In this work, we propose a natural
“hybrid” model, called multiparty reusable Non-Interactive Secure Com-
putation (mrNISC). In this model, parties publish encodings of their pri-
vate inputs xi on a public bulletin board, once and for all. Later, any subset
I of them can compute on-the-fly a function f on their inputs xI = {xi}i∈I

by just sending a single message to a stateless evaluator, conveying the
result f(xI) and nothing else. Importantly, the input encodings can be
reused in any number of on-the-fly computations, and the same classical
simulation security guaranteed by multi-round MPC, is achieved. In short,
mrNISC has a minimal yet “tractable” interaction pattern.

We initiate the study of mrNISC on several fronts. First, we formalize
the model of mrNISC protocols, and present both a UC security defini-
tion and a game-based security definition. Second, we construct mrNISC
protocols in the plain model with semi-honest and semi-malicious security
based on pairing groups. Third, we demonstrate the power of mrNISC by
showing two applications: non-interactive MPC (NIMPC) with reusable
setup and a distributed version of program obfuscation.

At the core of our construction of mrNISC is a witness encryp-
tion scheme for a special language that verifies Non-Interactive Zero-
Knowledge (NIZK) proofs of the validity of computations over commit-
ted values, which is of independent interest.

1 Introduction

Reducing interaction in Multiparty Computation (MPC) is a highly desirable
goal in cryptography, both because each round of communication is expensive
and because the liveness of parties is hard to guarantee, especially when the num-
ber of participants is large. Contrary to throughput, latency is now essentially
limited by physical constraints, and the time taken by a round of communication
cannot be significantly reduced anymore. Moreover, non-interactive primitives
are more versatile and more amenable to be used as powerful building blocks.
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Recent works [7,21] constructed 2-round MPC protocols from the minimal prim-
itive of 2-round Oblivious Transfer (OT), where in each round all participants
simultaneously broadcast one message. Is it possible to further reduce interac-
tion? The answer is no in general as any non-interactive (i.e., one-round) protocol
is susceptible to the so-called residual attack, and cannot achieve the classical
simulation security.

In this work, we introduce and study a natural “hybrid” model, between the
2-round and the 1-round settings, which gets us close to having non-interactive
protocols while still providing classical security guarantees. We call this model
multiparty reusable Non-Interactive Secure Computation (mrNISC).
In this model, parties publish encodings of their private inputs xi on a pub-
lic bulletin board, once and for all. Later, any subset I of them can compute
on-the-fly a function f on their inputs xI = {xi}i∈I by just sending a single
public message to a stateless evaluator, conveying the result f(xI) and nothing
else. Importantly, the input encodings are reusable across any number of com-
putation sessions, and are generated independently of any information of later
computation sessions—each later computation can evaluate any polynomial-time
function, among any polynomial-size subset of participants. Figure 1 depicts the
setting. The security guarantee is that an adversary corrupting a subset of par-
ties, chosen statically at the beginning, learns no information about the private
inputs of honest parties, beyond the outputs of the computations they partici-
pated in. This holds for any polynomial number of computation sessions.

Fig. 1. mrNISC market (z is a public input to the function)

Our Contributions. We initiate the study of mrNISC at the following fronts:

Modeling: We introduce the mrNISC model and formalize both UC security
through an ideal mrNISC functionality, and a simpler game-based security
notion that implies UC security. Our model aims for maximal flexibility. Con-
sider the simplest form of 2-round MPC with reusable first messages, where
the first messages could potentially depend on the number of parties, com-
plexity of the computations, and potentially all parties must participate in all
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computations. mrNISC does not have such restriction. In addition, our model
allows adaptive choices of inputs and computations, uses weak communication
channels, and allows honest parties to individually opt out of computations.

Construction: We construct the first mrNISC protocols based on SXDH in asym-
metric (prime-order) pairing groups. Our protocols are in the plain-model
(without any trusted setup), and satisfies semi-honest, and semi-malicious
security. For malicious security, reliance on some trusted setups is inevitable.
We use a CRS.

Techniques: At the core of our construction is a witness encryption (WE) scheme
for a special language that verifies non-interactive zero-knowledge (NIZK)
proofs of the validity of computations over committed values. We construct
it from bilinear groups. This significantly extends the range of languages for
which we know how to construct WE from standard assumptions, which is a
result of independent interest.

Applications: We demonstrate the power of mrNISC protocols in two cryp-
tographic applications. First mrNISC allows to generically transform non-
interactive MPC protocols [5] using correlated randomness into non-
interactive MPC protocols in the PKI plus CRS model. Second, mrNISC
enables a secret-sharing analogue of Virtual Black-Box program obfusca-
tion [4]—called secret sharing VBB.

Comparing with previous models of MPC with minimal interaction, mrNISC
naturally generalizes the beautiful notion of reusable NISC by Ishai et al. [30]
from two party to multiple parties. It differs from the notions of non-interactive
MPC (NIMPC) [5] and Private Simultaneous Messages (PSM) [17,29] which
achieves weaker security or restricts the corruption pattern.

It is very plausible that multi-key fully-homomorphic encryption (MKFHE)
with threshold decryption, which implies 2-round MPC [2,13,33], is sufficient for
mrNISC. However, proving it is not straightforward. For instance, the current
definitions of threshold decryption e.g., [3,33] are insufficient for constructing
mrNISC, as simulatability only ensures that a single partial decryption can be
simulated (hence this definition does not allow to re-use ciphertexts.)

Organization of the Paper. Next we start with giving more details of our
results. In Sect. 2, we formally define mrNISC schemes, and provide an overview
of our construction of mrNISC from bilinear maps; the technical bulk of the
construction is constructing WE for NIZK of commitments. Next, we define
witness encryption for NIZK of commitments, and construct a scheme for NC1

in Sect. 3. Due to the lack of space, we refer the reader to the full version [8] for the
following: 1) Bootstrapping WE for NIZK of commitments for NC1 to a scheme
for P, 2) the UC definition of mrNISC protocols, 3) The formal constructions
of UC-secure mrNISC protocols from mrNISC schemes, 4) the applications of
mrNISC, and 5) more detailed comparison with related works.
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1.1 Our Results in More Detail

Definition. We start with defining a mrNISC scheme, consisting of an input
encoding Com, computation Encode, and output Eval algorithms. An mrNISC
scheme immediately yields an MPC protocol with minimal interaction pat-
tern, called an mrNISC protocol. We formalize a game-based security notion
for mrNISC scheme, as well as UC-security for mrNISC protocols, and show
that the former implies the latter. We have both definitions since they each has
its own advantage: UC security is the strongest security notion for MPC proto-
cols, and implies security under composition. The ideal mrNISC functionality we
define provides a simple interface for using our protocols in bigger systems. On
the other hand, the game-based security notion is more succinct and easier to
manipulate. By showing that game-based security implies UC security, we have
the best of both sides.
mrNISC Scheme. A mrNISC scheme is defined by:

– Input Encoding: A party Pi encodes its private input xi by invoking (x̂i, si) ←
Com(1λ, xi). It then publishes the encoding x̂i and keeps the secret state si.

– Computation: In order for a subset of parties {Pi}i∈I to compute the func-
tionality f on their private inputs xI and a public input z, each party in
I generates a computation encoding αi ← Encode(z, {x̂j}j∈I , si) and sends
it to the evaluator. Here, z can be viewed as part of the description of the
function f(z, �) that is computed.

– Output: The evaluator reconstructs the output y = Eval(z, {x̂i}i∈I , {αi}i∈I).
(Note that reconstruction is public as the evaluator has no secret state.)Correct-
ness requires that y = f(z, {xi}i∈I) when everything is honestly computed.

It is easy to see that an mrNISC scheme for f immediately gives an mrNISC
protocol for f . Simulation-security requires that the view of an adversary cor-
rupting the evaluator and any subset of parties, can be simulated using just
the outputs of the computations that honest parties participate in. We consider
static corruption: The set of corrupted parties C are chosen at the beginning
and fixed; later, in a computation involving parties I, the corrupted and honest
parties are respectively I ∩ C and I ∩ C̄.

The same security intuition can be formalized with different degree of flex-
ibility. In the simplest selective setting, where the function f , parties’ inputs
x1, . . . , xm, and (z1, I1), . . . , (zK , IK) for different computations are all chosen
selectively at the beginning, the view of corrupted parties in C is simulatable by
a universal simulator S as follows.

Selective Security:
{

{xi, ri}i∈C , {x̂i}i∈C̄ , {α1
i }i∈I1∩C̄ , . . . , {αK

i }i∈IK∩C̄

}

≈
{

S ({xi}i∈C ,
(
y1, z1, I1

)
, . . . ,

(
yK , zK , IK

)) }

yk = f(zk,xIk), ∀k ∈ [K]

where {xi, ri}i∈C are the inputs and randomness of corrupted parties, x̂i is the
input encoding of an honest party Pi, and αk

i the computation encoding from an
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honest party Pi in session k. The above definition captures semi-honest security.
In the stronger semi-malicious security [2], the corrupted parties still follow the
protocol specification but are allowed to choose the randomness arbitrarily.

Dynamics in the mrNISC. The simple selective setting has several drawbacks
undesirable for capturing a dynamic mrNISC setting we envision. Instead, in
mrNISC, we have:

– Adaptive Choices: Each party’s input xi is chosen adaptively. Each computa-
tion specified by (z, I) is chosen adaptively, before it starts. Different compu-
tation can use the same z and/or I, or different ones. Parties outside I are
not involved in and not even aware of computation (z, I). f(z, �) can be any
polynomial time computable function, and I any polynomial size subset.

– Asynchronous P2P Communication: Parties have access to a common public
bulletin board, but otherwise should only use asynchronous point-to-point
authenticated channels. We do not assume any broadcast channel.

– Optional Participation: In a computation session (zk, Ik), honest parties in Ik

may opt in or out of any computation. We do not require all honest parties to
participate. Furthermore, the output of a computation is revealed only after
all parties in Ik send their computation encoding. (This means that, in any
computation session, the simulation of all but the last honest computation
encoding must be done without knowing the output of the computation.)

Our mrNISC ideal functionality in the UC framework [11] captures all above
features. Clearly, selective security is insufficient for implementing the mrNISC
ideal functionality. We thus formalize a game-based adaptive-security of mrNISC
schemes, Definition 3 in the overview (Sect. 2.1) and we show that it implies UC-
security. We emphasize that our adaptive security does not mean security against
adaptive corruptions.

Lemma 1 (Informal). An mrNISC scheme for a function f satisfying adaptive
semi-malicious (or semi-honest) privacy implies a protocol that UC-implements
the mrNISC ideal functionality for f in the plain model with semi-malicious (or
semi-honest) security.

Following standard techniques [2], semi-malicious UC protocols in the plain
model can be transformed into malicious UC protocols in the CRS model using
malicious UC-NIZK.

Plain-Model mrNISC from Bilinear Groups. We construct mrNISC
schemes for polynomial time computable functions in the plain model from bilin-
ear maps.

Theorem 1 (Informal). There is an mrNISC scheme in the plain model for
any function in P, satisfying adaptive semi-malicious security, based on the
SXDH assumption on asymmetric bilinear groups.

Our construction builds upon the construction of 2-round MPC protocols using
general purpose WE and NIZK [24], which in turn improves upon the protocols
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of [18] based on indistinguishability obfuscation. (Unfortunately, follow-up works
based on standard assumptions [7,20,21] do not have reusable first messages.)

So far, known WE schemes can be split into two categories. The first is
WE for general NP language from very strong obfuscation-like assumptions,
e.g., [19]. The second is WE from standard assumptions, but for very specific
languages, such as, language of commitment (or hashes) of a given message, like
in [15,16], and languages of commitments that commit to value satisfying up to
quadratic equations, like in [20,21]. These functionality, however, is too weak for
constructing 2-round MPC.

WE for NIZK of Com. We observe that it suffices to have witness encryption
for a language that verifies NIZK proofs for the validity of computation over
committed values. We then construct a commitment scheme Com, a NIZK proof
system NIZK, and a WE scheme for the language LWE of statements of form
XWE = (crs, c1, . . . , cm, G, y) (where crs is a CRS of NIZK, every ci is a commit-
ment of Com, and G is an arbitrary polynomial-sized circuit). The statement is
true if and only if there exists a NIZK proof π (i.e., the witness) proving w.r.t.
crs that G evaluated on the values v1, . . . , vm committed in c1, . . . , cm through
Com outputs y, i.e., G(v1, . . . , vm) = y. More precisely, the witness relations for
WE and NIZK proof are:

RWE(XWE = (crs, c1, . . . , cm, G, y), π) = 1 iff NIZKVer(crs,XNIZK, π) = 1 (1)

RNIZK(XNIZK = (c1, . . . , cm, G, y), ((v1, ρ1), . . . , (vm, ρm))) = 1
iff ∀i ∈ [m], (vi, ρi) is a valid opening of ci and G(v1, . . . , vm) = y (2)

We call such a triple (Com,NIZK,WE) as WE for NIZK of commitments and
construct it from bilinear pairing groups.

Theorem 2 (Informal). There is a WE for NIZK of commitments
(Com,NIZK,WE) based on SXDH over asymmetric bilinear pairing groups.

We remark that our construction co-designs (Com,NIZK,WE) together. It sig-
nificantly extends the range of statements that WE supports, and is based on
standard assumptions, which is of independent interest.

Fig. 2. Construction of mrNISC schemes and protocols (mrNISC protocols implement
the mrNISC ideal functionality; MPC� is an MPC with some special properties). Cita-
tion [8] is the full version of the paper.

Applications. We show two applications of mrNISC. A summary of the appli-
cations is in Fig. 3.
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Fig. 3. Applications of mrNISC schemes (mrNISC protocols implement the mrNISC
ideal functionality). See the full version [8].

Non-Interactive MPC with Reusable Setup [5] proposed the model of
non-interactive MPC (NIMPC), where to jointly compute a function, each party
sends a single message to an evaluator, without initially committing to their
inputs. In this setting, adversaries can always evaluate the residual function
f |H,{xi}i∈H

where the inputs of the honest parties are fixed, on all possible
inputs of the corrupted parties, a.k.a. the residual attack. Thus, NIMPC aims
at achieving the best-possible security that the only information of honest par-
ties’ inputs revealed is the residual function f |H,{xi}i∈H

. NIMPC is a powerful
and flexible concept equivalent, under different corruption models (i.e., what set
C of parties can be corrupted), to garbled circuits, Private Simultaneous Mes-
sages [17,29] protocols, and program obfuscation. Almost all NIMPC protocols
are constructed in a model where parties receive correlated randomness sampled
by a trusted third party from some distribution. However, correlated random-
ness is not reusable, and must be re-sampled independently for each computation
session. So far, the only construction of NIMPC protocols with reusable setups
is by [28], which makes use of a (reusable) PKI plus CRS, but is based on the
sub-exponential security of IO and DDH. Using mrNISC, we give a generic trans-
formation from any NIMPC protocols using correlated randomness to ones in
the PKI plus CRS model.

Corollary 1. Applying our transformation to known NIMPC protocols [5,6],
gives the following NIMPC protocols in the PKI plus CRS model assuming
mrNISC for P and UC-NIZK for NP.

1. NIMPC for the iterated product function f(x1, . . . , xn) = x1 · · · xn over a
group, against any number of corruption.

2. NIMPC for P from multi-input functional encryption, against any number of
corruption.

3. NIMPC for P, against a constant number of corruption (each holding a O(1)-
bit input).

The first and third bullets are achieved for the first time, using only reusable
setups. We weaken the assumption needed for the second bullet from sub-
exponentially secure IO in [28] to polynomially secure IO, equivalent to multi-
input functional encryption [23], which is a necessary assumption.
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Secret-Sharing VBB We propose a new primitive called secret-sharing VBB
obfuscation. As the name suggests, it enables the owner of a private program
M to secret share M among N servers, where the i’th server holds share Mi.
Later, the servers can evaluate the program on any input x, by sending one
message, called the output shares, to an evaluator who learns the output M(x)
and nothing else; this holds even if the evaluator colludes with all but one server.
Analogous to VBB obfuscation, the secret shares of M are reusable and security
is simulation-based. While VBB is impossible in general, secret-sharing VBB
can be implemented using mrNISC in a simple way. Though the construction
from mrNISC is simple, we found secret-sharing VBB conceptually interesting
and it can be readily used to turn applications of VBB into their secret-sharing
counterparts. For instance, for cryptographic primitives, such as, IBE, ABE, PE,
and FE, where a central trusted authority issues secret keys for identities, key
policies, and functions respectively, we can decentralize the trusted authority
by creating a secret-sharing VBB obfuscation of the key generation algorithm
among multiple servers. Importantly, the servers do not need to communicate
with each other and only need to send a single message to the inquirer of a key.

The notion of secret-sharing VBB appears similar to the notions of Homomor-
phic Secret Sharing and Function Secret Sharing (HSS/FSS) [9,10]. The main dif-
ference is that in secret-sharing VBB the evaluator may collude with all but one
servers, whereas in HSS/FSS the evaluator is honest. Consequently, the security
of secret-sharing VBB must hold even when all output shares are made public,
whereas HSS/FSS does not guarantee security in this setting. Another similar
notion is bit-fixing homomorphic sharing proposed in [31], which is tailor made
for the construction there. Secret sharing VBB is simpler and more natural.

2 Technical Overview

2.1 Security Definition of mrNISC Schemes

We now present the game-based definition of adaptive security of mrNISC
scheme. In the full version [8], we present the ideal mrNISC functionality and
show that the definition below implies UC-security.

Definition 3 (Adaptive Security). An mrNISC scheme mrNISC for f is semi-
honest (or semi-malicious) private if there exists a PPT simulator S, such
that, for all PPT adversary A, the views of A in the following experiments
ExpA,S(Real, λ, f) and ExpA,S(Ideal, λ, f) are indistinguishable.
Experiment ExpA,S(Real, λ, f): A chooses the number of parties M and the
set of honest parties H ⊆ [M ]; the set of corrupted parties is H̄. It interacts
with a challenger in an arbitrary number of iterations till it terminates. In every
iteration k, it can submit one query of one of the following three types.

Corrupt Input Encoding: Upon A sending a query (input, Pi, xi, ρi) for a
corrupt party i ∈ H̄, record x̂i generated by (x̂i, si) = Com(1λ, xi; ρi). In the
semi-honest case, ρi is randomly sampled, whereas in the semi-malicious case,
it is chosen by A.
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Honest Input Encoding: Upon A choosing the input (input, Pi, xi) of an hon-
est party i ∈ H, generate (x̂i, si) ← Com(1λ, xi) and send x̂i to A.
A is restricted to submit one input query for each party Pi.

Honest Computation Encoding: Upon A querying (compute, Pi, z, I) for
an honest party i ∈ H ∩ I, if the input encodings {x̂j}j∈I of all parties
in H ∩ I have been generated, send A the computation encoding αi ←
Encode(z, {x̂j}j∈I , si). ((z, I) is the unique identifier of a computation.)

Experiment ExpA,S(Ideal, λ, f): Same as the above experiment, except: Invoke
S(1λ, f).

Corrupt Input Encoding: Additionally send query (input, Pi, xi, ρi) to S.
Honest Input Encoding: Upon A choosing (input, Pi, xi) for i ∈ H, send

query (input, Pi) to S who generates a simulated input encoding x̃i for Adv.
Honest Computation Encoding: Upon A choosing (compute, Pi, z, I), if this

is the last honest computation encoding to be generated for computation (z, I)
(i.e., ∀ j �= i ∈ I ∩ H, A has queried (compute, Pj , z, I) before), send S the
query (compute, Pi, z, I) and the output y = f(z, {xt}t∈I); otherwise, send S
the query (compute, Pi, z, I) without y. S generates a simulated computation
encoding α̃i for Adv.

We emphasize that the definition above captures all dynamic choices described
in the introduction. For instance, in the ideal world, for each computation ses-
sion, simulation of all but the last honest computation encoding do not use the
output of that session, ensuring that the output remains hidden until all honest
computation encodings are sent.

2.2 Overview of Our mrNISC Scheme

Our construction of mrNISC scheme follows the round collapsing approach for
constructing 2-round MPC protocols started in [18]; in particular, we build on
the work of [24].

The Round Collapsing Approach. The round-collapsing approach collapses
a inner MPC protocol with a polynomial L number of rounds into a 2-round
outer MPC protocol as follows. Assume that each party Pi in the inner MPC
broadcast one message m�

i in each round �. In the first round of outer MPC, each
party Pi commits ci ← COM(xi, ri) to its input xi and some random tape ri

to be used to execute the inner MPC protocol. In the second round, each party
Pi sends one garbled circuit F̂�

i per round � ∈ [L] of the inner MPC protocol
corresponding to the next message function F�

i of Pi. This garbled circuit takes
as input all the messages m<� = {ml

j}l<�,j∈[n]
sent in previous rounds, and

outputs the next message m�
i of Pi of the inner MPC (or the output for the last

round � = L).
To compute the output from all garbled circuits {F̂�

i}�∈[L],i∈[n], each Pi needs

to provide a way to compute the labels of its garbled circuits F̂�
i that correspond
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to the correct messages of the inner MPC, where a message ml
j is correct if it

is computed from Pj ’s input and randomness (xj , rj) committed to in the first
round. For this, [24] proposed the following mechanism using a general purpose
WE and NIZK. Let k0, k1 be two labels of Pi’s garbled circuit F̂�

i for an input
wire that takes in the t’th bit y = ml

j,t of a message from Pj . Recall that ml
j is

output by Pj ’s garbled circuit F̂l
j . The goal is translating the valid bit y to the

corresponding label ky—that is “let F̂l
j communicate y to F̂�

i”. [24] modifies the
garbled circuits as follows.

– To “receive” y, F̂�−1
i for round �−1 additionally outputs cty ← WEnc(Xy, ky)

for y ∈ {0, 1}, under the statement Xy that there is a NIZK proof πy proving
that y = ml

j,t is computed correctly from Pj ’s input and randomness (xj , rj)
committed in cj , according to the protocol specification and the partial tran-
script of messages m<l before round l.

– To “send” y, F̂l
j additionally outputs a NIZK proof π that y = ml

j,t is com-
puted correctly from (xj , rj) committed in cj .

For correctness, decrypting cty using π as a witness reveals ky. For security, k1−y

remains hidden, thanks to the security of WE and soundness NIZK. Moreover,
the ZK property of NIZK ensures that Pj ’s committed input and randomness
(xj , rj) remains hidden, protecting Pj ’s privacy.

Observe that the first messages of the [24] protocol consist of a commitment
to parties’ input xi and randomness ri. We show (as a corollary of our mrNISC
construction) that the first messages can be made reusable if we replace ri with a
PRF seed si which can generate pseudo-random tapes for an unbounded number
of computations.

Challenge and Our Method. The problem is we do not have general purpose
WE from standard assumptions. Previous 2-round MPC constructions from stan-
dard assumptions circumvent this problem using weaker tools, namely functional
commitment with witness encryption from OT in [7], or homomorphic proof com-
mitment with encryption from bilinear pairing groups in [20], or achieving its
effect using OT in [21]. Unfortunately, as we explain shortly, using these weaker
tools kills the reusability of the first messages.

We restore the reusability of first messages using WE for NIZK of com-
mitments, which suffices for the purpose of [24]. WE for NIZK of commitments
is a triple (Com,NIZK,WE) of commitment, NIZK, and WE schemes. It allows to
commit to any values c1 ← Com(v1) . . . cm ← Com(vm) and later reveal multiple
NIZK proofs πk w.r.t. a crs that Gk(v1 . . . vm) = yk for multiple polynomial-
size circuits Gk and outputs yk. In addition, the proofs πk can be used to
decrypt ciphertexts ct ← WEnc((crs, c1 . . . cm, Gk, yk),m) tied to a statement
Xk = (crs, c1 . . . cm, Gk, yk), so that, the message m is recovered if and only if
πk is an accepting proof that Gk(v1 . . . vm) = yk w.r.t. crs. The formal witness
relation for WE is in Eq. (1) and that for NIZK in Eq. (2).

The two key properties of WE for NIZK of commitments are i) reusabil-
ity of commitments – one can generate an unbounded number of NIZK proofs
and WE ciphertexts w.r.t. them while keeping committed values hidden (only
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information in the statements is revealed), and ii) support for P computation –
the statements Xk = (c,G, y) are about the correctness of arbitrary polynomial-
sized circuits. These two properties are crucial for achieving the reusability of
MPC first messages. Our specific definition and construction of WE for NIZK
of commitments has an additional bonus feature that it is “dual-mode” in the
sense that in a binding mode, binding of commitments, soundness of NIZK,
and semantic security of WE are all information theoretic and perfect, and in
a simulation mode, the commitments are perfectly equivocable, NIZK perfectly
zero-knowledge. These two modes are controlled by how the CRS is sampled and
are indistinguishable. The “dual-mode” feature is not necessary for mrNISC, but
might be useful for other applications. We give an overview of our WE for NIZK
of commitments in Sect. 2.3, and formal construction for NC1 in Sect. 3 and for
P in the full version [8].

Combined with the round-collapsing approach of [24], we obtain semi-honest,
in fact semi-malicious, mrNISC protocols in the CRS model from pairing groups.
We can further remove the CRS, by letting each party Pi sample a CRS in
the binding mode for generating its own commitments and NIZK proofs, while
generating WE ciphertexts w.r.t. other parties’ CRS, yielding protocols in the
plain model. This does not hurt security because for every correctly generated
binding CRS, the binding of commitments and the soundness of NIZK hold
information theoretically; hence semi-malicious corrupted parties can’t cheat
and the WE ciphertexts they receive are information theoretically secure. The
simulator on the other hand can sample honest parties’ CRS in the simulation
mode to simulate their commitments and NIZK proofs.

Implementing Additional Features in mrNISC. Beyond making the first
messages reusable, we carefully implement features in mrNISC—namely, adap-
tive choices of inputs and computations, asynchronous P2P communication, and
optional participation of honest parties. Technically, this means simulation of a
message can only use information that is available to the simulator at the moment,
e.g., only the last delivered honest message in a session can be simulated using
the output of that session, all other honest messages are simulated with no infor-
mation. We show this can be achieved if the inner MPC satisfies output-delayed
simulatability—all but the last message from honest parties can be simulated with-
out the output, which is the case w.r.t. the GMW protocol [22]. We then show that
the resulting collapsed protocols achieves dynamics in mrNISC.

Comparison with Homomorphic Proof Commitments with Encryp-
tion. The homomorphic proof commitment with encryption of [20,21] can be
viewed as a WE for NIZK of the statement that (a linear combination of)
committed values is 0 or 1. This in turns gives WE for NIZK of NAND,
which verifies NIZK proofs that c1, c2, c3 commit to three values v1, v2, v3 such
that v3 = NAND(v1, v2). The acute reader may remark that being able to
prove NAND relations between committed values allow to prove any statement
Xk = (c,Gk, yk), by including, in the NIZK proof, commitments to intermediate
values in the computation of Gk, and proofs of correctness of every NAND gate
computation w.r.t. them. This is the whole idea of GOS NIZK [25], on which
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[20] is based. However, we do not know how to construct WE for verifying such
NIZK proofs, because checking these proofs require verifying quadratic relations
among (committed) elements in the proof. The essence of the problem is that
we do not how to construct WE verifying quadratic relations in the witness (i.e.,
the NIZK proof here); if we knew, we would have obtained general purpose WE.
This should be distinguished from checking quadratic relations between (com-
mitted) elements in the statement. The latter is the case in [20] and is easier,
because the WE encryption procedure knows the statement and can use it to
create the ciphertext, but it cannot do the same with the witness.

2.3 Construction of WE for NIZK of Commitments

Key Ideas. Our key idea is to design NIZK proofs π that can be verified by
a linear equation, so that we can construct WE for verifying the proofs using a
WE for linear languages, which are essentially hash proof systems (see, e.g., [1]).
More specifically, we want to turn verifying a NIZK proof π of a statement
X = (c,G, y) into verifying a system of linear equations θ = Γπ. Crucially, θ
and Γ , which describe the linear equations, must depend only on the statement X
(independent of π). As such, θ,π are known at WE encryption time, and we can
use hash proof systems to generate a WE ciphertext that reveals the message
given a witness π satisfying the linear system, and information theoretically
hides the message if no such witness exists. More precisely, commitments and
NIZKs are pairing group elements, and the linear equations are on values in the
exponent; at the moment, we ignore this detail.

Unfortunately, verifying known NIZK proofs requires verifying quadratic rela-
tions between elements in the proof—the proof contains intermediate computa-
tion values, and verification checks the correctness of computation of each gate,
which is quadratic. Designing WE for checking quadratic relations between ele-
ments in the witness is a barrier, which would give general purpose WE. Our
next idea is leveraging that NC1 circuits can be represented as restricted mul-
tiplication straight-line (RMS) programs, where multiplication occurs between
intermediate values and input elements; importantly, the latter are committed
in c contained in the statement X. This asymmetry in multiplication allows to
design NIZK proofs π verified by a linear system θ,Γ defined by the statement.
Roughly speaking, the proof π contain (encodings of) intermediate values, while
θ,Γ contain (encodings of) inputs elements. Then, multiplication between Γ
and π captures multiplication between input elements and intermediate values
in RMS programs. Hence, we can use WE for linear language to obtain WE
for NIZK of commitments for NC1. Finally, we present a generic bootstrapping
technique for lifting from a scheme for NC1, to a scheme for all polynomial-size
circuits P.

Our NIZK for NC1 with linear verification equations makes use of the homo-
morphic commitment schemes developed in existing NIZK proofs and some of the
ideas behind these proofs [25,27]. For simplicity, our description below uses GOS
homomorphic proof commitments which are based on composite-order bilinear
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groups. Our final solution in Sect. 3 uses the same ideas but is based on the
Groth and Sahai NIZK [27] which uses prime order bilinear groups.

WE for Linear Languages. We start with witness encryption for linear lan-
guages. A linear language over Zp consists of tuples of a matrix Γ ∈ Z

K×k
p and

a vector θ ∈ Z
K
p in the column span of Γ . A witness for (θ, Γ ) is a vector π

s.t. θ = Γπ. There is an extremely simple WE scheme for linear language: A
ciphertext encrypting m ∈ Zp consists of αT Γ and αT θ + m for a random row
vector αT . When the statement is false, that is, θ is outside the column span of
Γ , αT Γ contains no information of αT θ, which hides m.

Linear WE LWEnc((θ, Γ ),m) : α ← Z
K
p , ct = αT θ + m,αT Γ

Can we use linear WE to verify a complex computation G(v) = y over com-
mitted values v? If we had a fully homomorphic commitment scheme for which
verification of the opening (i.e., decommitment) is linear, we would solve the
problem. Verifying that “c opens to v and G(v) = y” is equivalent to that “c′

opens to y” w.r.t. c′ obtained from homomorphic evaluation of G on c. Now a
message m can be encrypted using linear WE w.r.t. c′, y (which decides θ, Γ )
and a proof π is simply an opening of c′ (ignoring ZK for now). Unfortunately,
we do not know how to construct such commitment scheme.

Linear Proof for One Multiplication. GOS [25] constructed a commitment
scheme with linear opening that can do one homomorphic multiplication, using
pairing groups.

Let (N,G1,G2,Gt, e, g1, g2) describe a bilinear group of order N . We use
the bracket notation [a]b := ga

b in Gb for a ∈ ZN – referred to as an encoding
of a, and write a[a′]b = [aa′]b as applying group exponentiation in Gb and
[aa′]t = [a]1[a

′]2 as applying the pairing operation. GOS uses a composite order
N = pq symmetric bilinear group, where the two source groups are the same
G = G1 = G2; we simply write [a] as a source group element.

The CRS of the commitment scheme contains [h] for a random element in
ZN of order q. A commitment to v in Zp is simply [c] = [rh + v] using a random
scalar r ← ZN . Such a commitment is perfectly binding, because h has order q,
and v is in Zp. Given two commitments [c1] = [r1h + v1] and [c2] = [r2h + v2],
we can compute a commitment of the product in the target group. Furthermore,
we can prove that the product v1v2 is equal to some value v12, and the verification
is linear in the proof π:

One Multiplication [c1c2]t = [c1][c2] = [(r1r2h + r1v2 + r2v1) h + v1v2]t
Proof [π] := [t1 + t2h] for t1 = r1v2 + r2v1, t2 = r1r2

Verification 0 ?= [c1][c2] − [h][π] − [1][v12]

In other words, the last equation shows that [π] = [t1 + t2h] is a proof for the
statement “[c1] and [c2] commits to values v1 and v2 so that v1v2 = v12.”

Since the verification is linear, combined with WE for linear language, this
immediately gives a WE for NIZK of correctness of one multiplication. This app-
roach was exploited in [20] for obtaining WE for NIZK of correctness of one NAND.
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Going beyond one Multiplication (Step 1). The main issue of the above
construction is that a GOS commitment only allows for the evaluation of a
single multiplication gate (or equivalently a single NAND), as [c1c2]t is now in
the target group. To evaluate more complex functions G, we need to be able to
make further multiplications. The idea is that the prover can commit to v1v2 in
the source group: [c×] = [r×h + v1v2] and then prove that [c×] indeed commits
to the same value as [c1c2]t:

Multiplication [c× − c1c2]t = [1][c×] − [c1][c2] = [(−r1r2h + r× − r1v2 − r2v1) h]t
Proof [π×] := [t1 + t2h] for t1 = r× − r1v2 − r2v1, t2 = −r1r2 (3)

Verification 0 ?= [1][c×] − [c1][c2] − [h][π×] (4)

Furthermore, by linearity of the GOS commitment, it is also possible to prove
that a commitment [c+] = [r+h + v+] commits to a value v+ that is a linear
combination of values v1 and v2 committed in [c1] and [c2]: v+ = μ1v1 + μ2v2
(for some public scalars μ1, μ2).

Linear [c+ − μ1c1 − μ2c2]t = [c+] − μ1[c1] − μ2[c2] = [(r+ − μ1r1 − μ2r2) h]t

Proof [π+] := r+ − μ1r1 − μ2r2 (5)

Verification 0 ?= [c+] − μ1[c1] − μ2[c2] − [h][π+] (6)

To extend to proving P computations, we can proceed as follows. To commit
a bitstring v, we commit each bit individually as a GOS commitment: [ci] =
[rih + vi]. Then, to prove that G(v) = y, we represent G as a sequence of linear
operations and multiplications, and introduce an intermediate commitment for
each intermediate result. The proof consists of these intermediate commitments[
c′
j

]
, intermediate proofs that they were computed properly (using Eq. (3) or Eq.

(5)) and the opening r′
o of the commitment [c′

o] = [r′
oh + y] corresponding to

the output of G. Verification would consist of verifying the intermediate proofs
(using Eqs. (4) and (6)) and the opening of the output commitment.

The final proof would actually be a zero-knowledge proof and would in essence
be a GOS or a Groth-Sahai proof [25,27]. The zero-knowledge property comes
from the following two facts: (1) if h is chosen to be of order N (instead of q),
commitments are fully equivocable, and (2) there is a single proof [π×] (resp.,
[π+] satisfying the verification Eq. 3 (resp., Eq. (5)). Leveraging these two facts,
a ZK simulator for a proof of, say one multiplication, can equivocate c1, c2, c×
to any values satisfying ṽ× = ṽ1ṽ2, the equivocation gives a fake witness for
computing the unique proof.

Unfortunately, the final proof verification is not linear: if two intermediate
values v1, v2 need to be multiplied, Eq. (4) would involve a product of the cor-
responding two commitments c1, c2, which is quadratic in the final proof.

Restricted Multiplication Program (Step 2). To keep verification linear in
the final proof, we remark that we just need to ensure that every multiplication
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involves at least one input commitment, but never two intermediate commit-
ments (which are part of the final proof). In that case Eq. (4) becomes linear
in the intermediate commitment. Hence, we can use the above ideas to ver-
ify any restricted multiplication straight-line (RMS) computation [10,14], which
includes all NC1 computations. Indeed, in an RMS program, the only allowed
operations are linear operations over inputs or intermediate values, and multi-
plications of one intermediate value v′

j with one input vi (but not of two inter-
mediate values).

Improved NC1 Scheme Based on SXDH. The above construction of WE for
NIZK of commitments for NC1 uses composite group order with pairings which
are notoriously inefficient. In Sect. 3, we propose a construction solely based on
the standard assumption SXDH over asymmetric prime order pairing groups.
The construction follows the same ideas described above, but is based on the
Groth-Sahai NIZK proofs, which use vector subspaces to implement features
of the subgroup structure. The scheme becomes more complex. That’s why we
explain our ideas w.r.t. the simpler GOS NIZK system.

Polynomial-Size Circuits. We now present a generic bootstrapping technique
from a WE scheme for NIZK of commitments for RMS to one for P. We can
encode any polynomial-size computation y = G(v) into a randomized encoding
o = RE(G, v;PRF(k)) that reveals only y (with randomness expanded from a
seed k using a PRF). Since both RE and PRF are computable in NC1, our RMS-
scheme can verify whether o is correctly computed from v, k committed in some
commitments c, but cannot verify that o indeed decodes to y (which belongs to
P). Instead, we use a garbled circuit to verify the latter and use WE to ensure
that only labels corresponding to the correct RE encoding o are revealed. More
precisely, a WE ciphertext of m w.r.t. (G, c, y) for a polynomial-size circuit G

contains 1) a garbled circuit F̂y,m of Fy,m that outputs m iff given an input
o′ that decodes to y, and 2) WE encryption (using the RMS-scheme) of labels
under statements that verify the computation of o from (k, v) committed in c.
Decryption requires NIZK proofs certifying the correctness of o, which allows
recovering labels for o, and then m.

Applications. Due to the lack of space, we refer the reader to the full ver-
sion [8] for applications of mrNISC. At a very high-level, in scenarios where a
set of parties need many copies of freshly sampled correlated randomness, we
can use mrNISC to replace correlated randomness with reusable PKI and CRS
setup: Parties’ public key in the PKI is simply an encoding of their private PRF
key, later on, they can jointly run mrNISC to sample fresh correlated random-
ness using the pseudorandom coins generated from all parties’ PRF keys. In
NIMPC, sampling correlated randomness and generating NIMPC message using
this correlated randomness can be combined in one mrNISC computation.
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3 WE for NIZK of Commitments: NC1

In this section, we define and construct our new primitive: witness encryption
(WE) for NIZK of commitments (for the complexity class P), which is the main
component for the construction of our mrNISC scheme.

As explained in Sect. 2.3, from a high-level point of view, WE for NIZK
of commitments combines the properties of homomorphic proof commitments
with encryption [20] and of functional commitments with witness selector [7].
Compared with the former, it supports general statements in P (instead of a
single NAND gate evaluation). Compared with the latter, it allows for zero-
knowledge to hold when multiple NIZK proofs are generated.

3.1 Definition of Witness Encryption for NIZK of Commitments

We start by defining dual-mode commitment schemes (a.k.a., hybrid commit-
ments [12]), where the CRS can be generated in two computationally indistin-
guishable ways: one yielding perfectly binding commitments and one yielding
equivocal (a.k.a., simulatable or trapdoor) commitments. The term “dual-mode
commitment” comes from [32].

We may not need dual-mode commitments to construct mrNISC, but just
simulatable/equivocal commitments (without a perfectly binding setup). How-
ever using dual-mode commitments significantly simplifies definitions and proofs.
Since our constructions achieve this stronger security notion, we use it. More
precisely, without a dual-mode commitment, we could not use the standard
definition of witness encryption: witness encryption indeed just ensures that
ciphertexts related to a false statement (about the committed value, in our set-
ting) cannot be decrypted. Without the dual mode, because of equivocality of
the commitments, it would be possible to open any commitment to any value.
Hence any statement about a committed value would be always true or always
false (independently of the committed value).

Definition 4 (Dual-Mode Commitments). A (dual-mode) commitment
scheme COM has a binding mode and a simulation mode, each involves three
polynomial-time algorithms.

– Binding Setup: crs ← CSetupbind(1λ) on input the security parameter λ gen-
erates a binding CRS crs.

– Commitment: (c, d) ← CCom(crs, v) on input the CRS crs and a message v in
some implicitly defined message set V,1 generates a commitment c of v and
an associated decommitment (a.k.a., opening) d.

1 The message set V may depend on the CRS crs. The only required constraints
are that messages in V have polynomial size in the security parameter λ and that
testing membership to V can be done in polynomial-time given crs. The reason to
use messages spaces more complicated than {0, 1}poly(λ) is to allow messages to be
elements of some finite field Zp for the definition of bilinear commitments with proofs
of quadratic relations.
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– Verification: b := CVer(crs, c, v, d) on input the CRS crs, a commitment c, a
message v ∈ V, and a decommitment d, outputs 1 if c indeed commits to v,
and 0 otherwise.

– Simulation Setup: (crs, τ) ← CSetupsim(1λ) on input the security parameter
λ generates a simulation CRS crs and an associated trapdoor τ .

– Commitment Simulation: (c, aux) ← CSimCom(τ) on input a simulation trap-
door τ , generates a simulated commitment c and some auxiliary data aux.

– Opening Simulation: d ← CSimOpen(τ, aux, v) on input an auxiliary data aux
and a message v ∈ V, generates some decommitment d corresponding to an
opening of the associated commitment c to v.

satisfying the following properties:

Perfect Correctness: For every security parameter λ ∈ N, CRS crs ←
CSetupbind(1λ) or (crs, τ) ← CSetupsim(1λ), message v ∈ V, and commitment
(c, d) ← CCom(crs, v), we have: CVer(crs, c, v, d) = 1.

Setup Indistinguishability: The following two distributions are computationally
indistinguishable:

{
crs ← CSetupbind(1

λ) : crs
}

λ
≈ {

(crs, τ) ← CSetupsim(1λ) : crs
}

λ
.

Perfect Binding in Binding Mode: For every security parameter λ ∈ N, bind-
ing CRS crs ← CSetupbind(1λ), message v ∈ V, commitment (c, d) ←
CCom(crs, v), message v′ ∈ V, bitstring d′, if v′ �= v: CVer(crs, c, v′, d′) = 0.

Perfect Equivocality in Simulation Mode: For every security parameter λ ∈ N,
simulation CRS (crs, τ) ← CSetupsim(1λ), message v ∈ V, the following two
distributions are identical:

{(c, d) ← CCom(crs, v) : (c, d)} ,

{(c, aux) ← CSimCom(τ), d ← CSimOpen(τ, aux, v) : (c, d)} .

We are interested in proving statements “in zero-knowledge” of the form: “c
commits to some value v such that G(v) = y,” where G is a circuit in some cir-
cuit class G and y is the expected output of the function. In our construction, the
trapdoor of the NIZK will actually be the trapdoor of the commitment. That is
why we cannot easily rely on a generic definition of NIZK and instead introduce
the notion of dual-mode NIZK of commitments. The binding setup yields perfectly
sound NIZK proofs, while the simulation setup yields zero-knowledge proofs.

Definition 5 (Dual-Mode NIZK of Commitments). Let COM be as in
Definition 4, and G be a class of polynomial-size circuits. A dual-mode NIZK
NIZK associated with COM for G consists of two polynomial-time algorithms:

– Proof: π ← CProve(crs, c, G, v, d) on input the CRS crs, a commitment c,
a circuit G ∈ G,2 the committed message v ∈ V, the decommitment d, as
defined by COM, generates a proof π that G on input the value v committed
in c outputs y = G(v). Refer to (c,G, y) as the statement and (v, d) the
witness.

2 We implicitly systematically assume that G has input size corresponding to the size
of messages in the message set V.
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– Proof Verification: b := CPVer(crs, c, G, y, π) on input the CRS crs, a state-
ment (c,G, y), and a proof π, accepts or rejects the proof.

The algorithms satisfy the following properties:

Perfect Proof Correctness: For every security parameter λ ∈ N, CRS crs ←
CSetupbind(1λ) or (crs, τ) ← CSetupsim(1λ), message v ∈ V, circuit G ∈ G,
commitment (c, d) ← CCom(crs, v) and proof π ← CProve(crs, c, G, v, d), we
have: CPVer(crs, c, G(v), π) = 1.

Perfect Soundness in Binding Mode: For every security parameter λ ∈ N, bind-
ing CRS crs ← CSetupbind(1λ), message v ∈ V, commitment (c, d) ←
CCom(crs, v), circuit G ∈ G, incorrect output y′ �= G(v), and bitstring π,
CPVer(crs, c, y′, π) = 0.

Zero-Knowledge in Simulation Mode: There exists a PPT simulator algorithm
CPSim, such that for any PPT adversary A, the quantity is negligible in λ:∣∣∣∣∣ Pr

[
(crs, τ) ← CSetupsim(1λ), (st, v) ← A(crs, τ),
(c, aux) ← CSimCom(τ), d ← CSimOpen(τ, aux, v) : AProve(st) = 1

]

−Pr
[

(crs, τ) ← CSetupsim(1λ), (st, v) ← A(crs, τ),
(c, aux) ← CSimCom(τ) : ASim(st) = 1

] ∣∣∣∣∣ ,

where Prove(G) := CProve(crs, c, G, v, d) and
Sim(G) := CPSim(τ, aux, G,G(v)).

We remark that our notion of zero-knowledge allows the adversary to see
the trapdoor τ but not the auxiliary data aux, that is why we let the adversary
consider a single simulated commitment but as many simulated proofs as it
wants. The reason that aux is not given to the adversary is because we need to
store a PRF key in aux, to generate the randomness for simulation, to be sure to
use the same randomness if the simulation is called twice with the same circuit
G in the construction for P.

Definition 6 (Witness Encryption for NIZK of Commitments). Let
COM, NIZK, and G be as in Definition 4 and 5. A Witness Encryption WE
associated with COM,NIZK for G consists of two polynomial-time algorithms:

–Witness Encryption: ct ← CWEnc(crs, c, G, y,m) on input the CRS crs, a state-
ment (c,G, y) where G ∈ G, and a bitstring m, encrypts m into a ciphertext
ct, under that statement.

–Witness Decryption: m := CWDec(crs, ct, c, G, y, π) on input the CRS crs, a
ciphertext ct, a statement (c,G, y), and a NIZK proof π, decrypts ct into the
message m, or outputs ⊥.

The algorithms satisfy the following properties:

Perfect Encryption Correctness: For every λ ∈ N, CRS crs ← CSetupbind(1λ) or
(crs, τ) ← CSetupsim(1λ), message v ∈ V, circuit G ∈ G, commitment (c, d) ←
CCom(crs, v) and proof π ← CProve(crs, c, G, v, d), bitstring m, and ciphertext
ct ← CWEnc(crs, c, G,G(v),m), we have: CWDec(crs, ct, c, G,G(v), π) = m.
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Semantic Security: For any PPT adversary A, the following is negligible in λ:
∣∣∣∣∣∣∣∣∣∣
2 · Pr

⎡
⎢⎢⎢⎢⎣

(st, ρ′) ← A(1λ), crs ← CSetupbind(1λ; ρ′),
(st, v, ρ,G, y,m0,m1) ← A(st, crs),
(c, d) := CCom(crs, v; ρ),
b ← {0, 1}; ct ← CWEnc(crs, c, G, y,mb)
ct :=⊥ if G(v) = y

: A(st, ct) = b

⎤
⎥⎥⎥⎥⎦

− 1

∣∣∣∣∣∣∣∣∣∣
,

where ρ denotes the random tape used by CCom to generate the commitment
c of the message v (ρ is provided by the adversary).

We remark that semantic security of our WE holds even when the binding CRS
is generated semi-maliciously, i.e., the adversary chooses the random tape ρ′. This
is important for our semi-malicious construction of mrNISC schemes, as the adver-
sary generates itself the binding CRS. We also note that our construction for NC1

actually achieves perfect semantic security for binding CRS, however, our trans-
formation from NC1 to P only achieves computational semantic security.

3.2 Bilinear Commitments with Proofs of Quadratic Relations

As a tool to construct witness encryption for NIZK of commitments, we first
introduce the notion of bilinear commitments with proofs of quadratic relations.
Such commitments essentially allow to “prove linearly and in a strong form of
zero-knowledge” that one commitment c× commits to the product of the values
committed by two commitments c1 and c2 (quadratic proofs), and that one
commitment c+ commits to some linear combination of the values committed
by two commitments c1 and c2 (linear proofs). These proofs are amenable to be
verified by hash proof systems and can be combined to construct WE for NIZK
of commitments.

Bilinear Groups and Notations. Denote by (p,G1,G2,Gt, e, g1, g2) a bilinear
group where e : G1 × G2 → Gt is an efficiently computable bilinear map (called
a pairing) such that e(g1, g2) = gT generates Gt. We use the bracket notation
[a]ι to denote the element ga

ι in group Gι for a ∈ Zp and write a[a′]ι = [aa′]ι
as applying group exponentiation in Gι and [aa′]t = [a]1[a

′]2 as applying the
pairing operation. This notation extends to vectors and matrices. We assume
the Symmetric External Diffie-Hellman assumption (SXDH) assumption over
asymmetric bilinear pairing groups, which requires the Decisional Diffie-Hellman
(DDH) assumption to hold in each source group G1 and G2, namely, for any
ι ∈ {1, 2}, {[r]ι, [s]ι, [rs]ι} ≈ {[r]ι, [s]ι, [t]ι}, where r, s, t are random scalars
sampled from Zp. All vectors are denoted by bold letters and all matrices are
denoted by uppercase letters.

Bilinear Commitments. Our construction starts from the SXDH-based com-
mitment scheme used in Groth-Sahai NIZK [26]. This commitment scheme allows
to commit values both in G1 and G2. The resulting commitments are dual-mode
and called type-1 and type-2 commitments respectively. More formally we define:
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– Binding Setup: crs ← QSetupbind(1λ) generates a bilinear group
(p,G1,G2,Gt, e, g1, g2), and for ι ∈ {1, 2}, generates a random matrix Aι ∈
Z
2×2
p of rank 1 such that the vector 1 := (1, 1)T ∈ Z

2
p is not in the column

span of Aι, and outputs crs = (p,G1,G2,Gt, e, g1, g2, [A1]1, [A2]2).
– Simulation Setup: (crs, τ) ← QSetupsim(1λ) is identical to binding setup

except that A1 and A2 are chosen of rank 2. The trapdoor is τ = (A1, A2).
Note that 1 is in the column spans of A1 and A2.

– Commitment: (c,d) ← QComι(crs, v) generates a type-ι commitment of a
message v ∈ V := Zp as follows:

d ← Z
2
p , c := [c̃]ι := [Aι · d + v · 1]ι ∈ G

2
ι .

– Verification: b := QVerι(crs, c, v,d) checks whether c is a valid type-ι com-
mitment of v as follows: it returns 1 if and only if:

c ?= [Aι · d + v · 1]ι . (7)

– Commitment Simulation: (c, aux) ← QSimComι(τ) simulates a type-ι com-
mitment as follows:

aux ← Z
2
p , c := [aux]ι ∈ G

2
ι . (8)

– Opening Simulation: d ← QSimOpenι(τ = (A1, A2), aux, v) opens the type-ι
commitment corresponding to aux as follows:

d := A−1
ι · (aux − v · 1) ∈ Z

2
p . (9)

We have the following lemma following directly from [26].

Lemma 2 (in [26]). The two commitment schemes (QSetupbind,QComι,QVerι,
QSetupsim,QSimComι,QSimOpenι) (for ι ∈ {1, 2}) described above are both dual-
mode commitments.

Remark 1. Jumping ahead, for semi-malicious security of mrNISC in the plain
model, we want the binding of COM, soundness of NIZK, and semantic security
of WE to hold against every CRS in the support of QSetupbind. This boils down
to ensuring that the bilinear group generated by QSetupbind is always a valid
one: p must be a prime number, g1, g2 generates the cyclic groups G1 and G2 of
order p, and it is possible to check in polynomial time whether an element is in
G1 or G2. This can be done, and we implicitly assume that this is the case.

Bilinear Commitments with Proofs of Linear Relations. We now show
how to prove that a type-2 commitment c+ commits to a given linear combi-
nation of values committed in two type-2 commitments c1 and c2. Concretely,
we want to prove that c1, c2, c+ respectively commit to values v1, v2, v+ that
satisfy the linear relation: v+ = μ1v1 + μ2v2, where μ1, μ2 ∈ Zp are some public
parameters.

Statement: (Linear, crs, {μi, ci}i∈{1,2}, c+), Witness: (v1,d1, v2,d2,d+)
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The main idea of the construction is to remark that the commitments are
linearly homomorphic and the above statement is equivalent to proving that
[c̃+ − μ1c̃1 − μ2c̃2]2 is a commitment of 0, where for i ∈ {1, 2,+}, ci = [c̃i]2.
Hence the proof π+ is the opening of this commitment to the value v = 0:

[c̃+ − μ1c̃1 − μ2c̃2]2 = [A2 · π+ + 0 · 1]2 .

Zero-knowledge comes from the fact that this value π+ always exists and is
unique in the simulation mode, as the matrix A2 is full rank in that mode.

Formally, the construction is as follows:

– Linear Proof: QLinProve(crs, {μi, ci, vi,di}i∈[2], (c+,d+)), given information
of both statement and witness, outputs:

π+ := d+ − μ1d1 − μ2d2 ∈ Z
2
p . (10)

– Linear Proof Verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) returns 1 iff:

[c̃+ − μ1c̃1 − μ2c̃2]2
?= [A2 · π+]2 , (11)

where ci = [c̃i]2 for i ∈ {1, 2,+}.

Lemma 3. For any security parameter λ ∈ N, for any CRS crs ←
QSetupbind(1λ) or (crs, τ) ← QSetupsim(1λ), messages v1, v2, v+ ∈ Zp, scalars
μ1, μ2, μ+ ∈ Zp, bitstrings c1,d1, c2,d2, c+,d+ s.t. ∀i ∈ {1, 2,+},QVer2(crs, ci,
vi,di) = 1,

Perfect Correctness: If v+ = μ1v1 + μ2v2, a proof π+ ← QLinProve(crs, {μi,
ci, vi,di}i, (c+,d+)) passes verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) = 1

Perfect Uniqueness: If v+ = μ1v1 + μ2v2 and the CRS is simulated, then there
is a unique vector π+ = (c̃+ −μ1c̃1 −μ2c̃2)A−1

2 ∈ Z
2
p that passes verification.

Perfect Soundness: If v+ �= μ1v1 + μ2v2 and the CRS is binding, then no vector
π+ ∈ Z

2
p passes verification: QLinVer(crs, {μi, ci}i∈[2], c+,π+) = 0 for all

π+ ∈ Z
2
p.

Proof. Perfect correctness is straightforward. Perfect uniqueness follows
from Eq. (11) and the fact that when the CRS is simulated, the matrix A2 is
full rank. Perfect soundness comes from the fact that:

[μ1c̃1 + μ2c̃2]2 = [A2 · (μ1d1 + μ2d2) + (μ1v1 + μ2v2) · 1]2 ∈ G
2
2

is a (perfectly binding) commitment of μ1v1 + μ2v2 �= v+. �
Remark 2 (Zero-knowledge of the linear proof π+ in simulation mode). Perfect
uniqueness of the proof π+ in simulation mode is a very strong form of wit-
ness indistinguishability: whatever witness (v1,d1, v2,d2,d+) is used, the proof
is exactly the same π+ = (c̃+ −μ1c̃1 −μ2c̃2)A−1

2 . To show further that it is ZK,
we need to argue that π+ is also efficiently computable. This the case when the
commitments ci = [c̃i]2 are simulated with QSimCom, as the simulator can then
equivocate c1, c2, c+ to any v′

1, v
′
2, v

′
+ satisfying v′

+ = μ1v
′
1+μ2v

′
2 with decommit-

ments d′
1,d

′
2,d

′
+ using QSimOpen. This gives a valid witness (v′

1,d
′
1, v

′
2,d

′
2,d

′
+)

for the statement and a simulated proof can be generated by running the honest
prover algorithm QLinProve with this witness.
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Bilinear Commitments with Proofs of Quadratic Relations. We now
show how to prove that a type-2 commitment c× commits to the product
of values committed in a type-1 commitment c1 and a type-2 commitment
c2. Concretely, we want to prove that c1, c2, c+ respectively commit to values
v1, v2, v× that satisfy the quadratic relation v× = v1 · v2.

Statement: (Mult, crs, {ci}i∈{1,2,×}), Witness:(v1,d1, v2,d2,d×) (12)

The main idea of the construction is to construct from c1 = [c̃1]1 and c2 = [c̃2]2
a commitment of v1 · v2. Remember that in the technical overview Sect. 2.3, we
could multiply commitments c1 and c2 directly (by using a pairing operation) to
get a commitment of v1 · v2, as commitments were a single group element. Intu-
itively, the equivalent of this multiplication to vector of group elements c1 and c2
is the tensor product operation ⊗. And we want to prove that [1 ⊗ c̃× − c̃1 ⊗ c̃2]t
is a “commitment” of 0 in Gt, where 1 is used as a type-1 commitment of 1.3

Similar to multiplication of commitments in Sect. 2.3, computing these tensor
products uses pairings.

The basic idea is then that the proof is a decommitment of this commitment
[1 ⊗ c̃× − c̃1 ⊗ c̃2]t to 0. Unfortunately, this would not be zero-knowledge since
there are multiple possible decommitments and choosing one may reveal informa-
tion about the witness (v1,d1, v2,d2,d×). To tackle this subtle issue (which does
not happen with the commitments from the technical overview in Sect. 2.3 nor
with proof of linear relations), the prover needs to rerandomize this decommit-
ment, similarly to what is done in [26] to get perfect witness indistinguishability.
This is the purpose of the vector ρ in Eq. (14).

Tensor Products. We first need to briefly recall the notion of tensor products.
The tensor product of two matrices M ∈ Z

k×m
p and M ′ ∈ Z

k′×m′
p is the matrix

T = M ⊗ M ′ ∈ Z
kk′×mm′
p defined as:

T =

⎛
⎜⎝

M1,1 · M ′ · · · M1,m · M ′
...

...
Mk,1 · M ′ · · · Mk,m · M ′

⎞
⎟⎠ .

We extensively use the following identity: if M ∈ Z
k×m
p , M ′ ∈ Z

k′×m′
p , N ∈

Z
m×n
p and N ′ ∈ Z

m′×n′
p , then we have,

(M ⊗ M ′) · (N ⊗ N ′) = (M · N) ⊗ (M ′ · N ′) . (13)

Construction. Recall that the construction essentially consists of proving that
[1 ⊗ c̃× − c̃1 ⊗ c̃2]t is a commitment of 0, which is what Eq. (15) below ensures.

3 [1 ⊗ c̃× − c̃1 ⊗ c̃2]t is not a type-1 commitment (using the matrix A1) nor a type-
2 commitment (using the matrix A2) but yet another type of commitment using
another matrix B (formally defined in the proof in Eq. (17)). When the CRS is
binding, this matrix B is such that the commitment is also binding.
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To better understand how this value is computed (in term of group elements,
pairings, and exponentiations), we explicitly write it down:

[1 ⊗ c̃× − c̃1 ⊗ c̃2]t =

⎛
⎜⎜⎝

e(g1, c×,1) · e(c1,1, c2,1)
−1

e(g1, c×,1) · e(c1,1, c2,2)
−1

e(g1, c×,2) · e(c1,2, c2,1)
−1

e(g1, c×,2) · e(c1,2, c2,2)
−1

⎞
⎟⎟⎠ where ci =

(
ci,1

ci,2

)

The construction is as follows:

– Quadratic Proof: π× ← QQuadProve(crs, {ci, vi,di}i∈[2], c×,d×) picks ρ ∈
Z
4
p and outputs:

π× :=
([

π̃�
×

]
2[

π̃⊥
×

]
1

)
=

(
[−v2 · d1 ⊗ 1 + (Id ⊗ A2) · ρ]2

[1 ⊗ d× − c̃1 ⊗ d2 − (A1 ⊗ Id) · ρ]1

)
, (14)

where Id ∈ Z
2×2
p is the identity matrix. Recall that the vector ρ is used to

randomize the proof so that it is uniformly random among the valid proofs,
and hence is perfectly witness indistinguishable.

– Quadratic Proof Verification: b := QQuadVer(crs, c1, c2, c×,π×) returns 1 if
and only if:

[1 ⊗ c̃× − c̃1 ⊗ c̃2]t =
(
[A1 ⊗ Id]1 [Id ⊗ A2]2

) · π× , (15)

where Id ∈ Z
2×2
p is the identity matrix. Note that computing [c̃1 ⊗ c̃2]t

involves pairing operations between elements of vectors c1 ∈ G
2
1 and c2 ∈ G

2
2.

Computing the right hand side also involves pairing operations.

Remark 3. Quadratic proof verification just consists of checking a linear equa-
tion in (c2, c×,π×). Indeed, thanks to Eq. (13), Eq. (15) is equivalent to:

0 =
(
[1 ⊗ Id]1 [−c̃1 ⊗ Id]1 [A1 ⊗ Id]1 [Id ⊗ A2]2

) ·

⎛
⎜⎜⎝

[c̃×]2
[c̃2]2[
π̃�

×
]
2[

π̃⊥
×

]
1

⎞
⎟⎟⎠ .

Lemma 4. For any security parameter λ ∈ N, for any CRS crs ←
QSetupbind(1λ) or (crs, τ) ← QSetupsim(1λ), messages v1, v2, v× ∈ Zp, bitstrings
c1,d1, c2,d2, c×,d× such that ∀i ∈ {1, 2,×},QVeri(crs, ci, vi,di) = 1, we have:

Perfect Correctness: If v× = v1v2, a proof QQuadProve(crs, {ci, vi,di}i∈[2],
(c×,d×)) passes verification: QQuadVer(crs, {μi, ci}i∈[2], c×,π×) = 1

Perfect Uniformity: If v× = v1v2 and the CRS is simulated, then the vector π×
generated by QQuadProve follows a uniform distribution among the solutions
of Eq. (15).

Perfect Soundness: If v× �= v1v2 and the CRS is binding, then no π× ∈ Z
8
p

passes verification: QQuadVer(crs, c1, c2, c×,π×) = 0 for all π× ∈ Z
8
p.
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Proof. To prove perfect correctness, we use Eqs. (13) and (14) and remark:

1 ⊗ c̃× − c̃1 ⊗ c̃2 = 1 ⊗ (A2d× + v× · 1) − c̃1 ⊗ (A2d2 + v2 · 1)
= 1 ⊗ (A2d×) + v× · 1 ⊗ 1 − c̃1 ⊗ (A2d2) − (A1d1 + v1 · 1) ⊗ (v2 · 1)

= 1 ⊗ (A2d×) − c̃1 ⊗ (A2d2) − (A1d1) ⊗ (v2 · 1) + (v× − v1v2) · (1 ⊗ 1)
= (Id ⊗ A2) · (1 ⊗ d×) − (Id ⊗ A2) · (c̃1 ⊗ d2)

−(A1 ⊗ Id) · (v2d1 ⊗ 1) + (v× − v1v2) · (1 ⊗ 1) . (16)

We conclude by remarking that v× = v1v2 and that:

(
A1 ⊗ Id Id ⊗ A2

) ·
(

(Id ⊗ A2) · ρ
−(A1 ⊗ Id) · ρ

)
= 0 .

Perfect soundness follows from Eq. (16) and the fact that 1 ⊗ 1 is not in
the subspace generated by the columns of the matrix

B :=
(
A1 ⊗ Id Id ⊗ A2

) ∈ Z
4×8
p , (17)

when the CRS is binding, because if a1,a2 ∈ Z
2
p are two vectors generating the

column space of A1 and A2 respectively, then (a1 ⊗ a2, a1 ⊗ 1, 1 ⊗ a2, 1 ⊗ 1)
is a basis of Z4

p.
Finally, perfect uniformity comes from the fact that the kernel of the

matrix B (from Eq. (17)) consists of all the vectors:
(

(Id ⊗ A2) · ρ
−(A1 ⊗ Id) · ρ

)
,

for ρ ∈ Z
4
p, since these elements are clearly in the kernel and form a subspace of

dimension 4, and the kernel is of dimension 4 as B ∈ Z
8×4
p is of rank 4 (because

A1 is of full rank and hence A1 ⊗ Id ∈ Z
4×4
p is of full rank).

Remark 4 (Zero-knowledge of the quadratic proof π× in simulation mode). Per-
fect uniformity in the simulation mode is a very strong form of witness indistin-
guishability: whatever witness is used, the proof follows exactly the same uni-
form distribution over solutions of Eq. 15. To show that π× is zero-knowledge,
it remains to argue that this distribution can be efficiently sampled. This can be
done similarly as in Remark 2: for simulated commitments ci, the simulator can
equivocate c1, c2, c× to any v′

1, v
′
2, v

′
× satisfying v′

× = v′
1v

′
2 with decommitment

d′
1,d

′
2,d

′
× using QSimOpen. This gives a valid witness (v′

1,d
′
1, v

′
2,d

′
2,d

′
×) for the

statement and a simulated proof can be generated by running the honest prover
algorithm QQuadProve with this witness.

3.3 WE for NIZK of Commitments for NC1

We now describe our construction of WE for NIZK of commitments for NC1.
It follows the technical overview Sect. 2.3. The idea is to represent the function
by a Restricted Multiplication Straight-line (RMS) Program [10,14], which only
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performs multiplications or quadratic operations between an intermediate vari-
able and an input. We start with defining a variant of RMS where operations
are done modulo some prime number p.

Definition 7 (RMS Programs). Let p be a prime. A Restricted Multiplica-
tion Straight-line (RMS) program modulo p with input v = v1‖ · · · ‖vn ∈ {0, 1}n

and output y = y1‖ · · · ‖ym ∈ {0, 1}m is a sequence of the following instructions:

– Load a constant ω ∈ Zp into the memory value uj : (uj ← ω).
– Linearly combine memory values ui and uj into the memory value uk: (uk ←

μui + μ′uj mod p), with (μ, μ′) ∈ Z
2
p \ {(0, 0)} a non-zero pair of constants.

– Multiply the input value vi by the memory value uj into the memory value
uk: (uk ← vi · uj mod p).

where each memory value is written at most once and each memory value that
is read was written before. The program aborts if one memory value uk is not
in {0, 1}. If it does not abort, it outputs y = y1‖ · · · ‖ym = u1‖ . . . ‖um.

The size of an RMS is the number of instructions. Furthermore, any NC1 cir-
cuit G can be written as an RMS program of polynomial size, because determin-
istic branching programs can be encoded into RMS with constant overhead [10,
Claim A.2]. The resulting RMS program outputs the correct value when evalu-
ated modulo any prime number p, as when evaluated without modulo, all the
memory values are in {0, 1}.

Construction. Let QC = (QSetupbind,QSetupsim, {QComi,QVeri,QSimComi,
QSimOpeni}i∈{1,2},QQuadProve,QQuadVer) be the bilinear commitment scheme
with proofs of quadratic relations from the previous section. We construct a wit-
ness encryption WE for NIZK of commitments for NC1 below. To help differ-
entiate type-1 and type-2 commitments, all type-ι commitments have subscript
starting with ι, such as, cι,k.

– Commitment: (c, d) ← CCom(crs, v) for v ∈ V := {0, 1}n, generates type-1
commitments for each bit of v = v1‖ . . . ‖vn. More formally, c = (c1,1, . . . , c1,n

and d = (d1,1, . . . ,d1,n), where for i ∈ [n], (c1,i,d1,i) ← QCom1(crs, vi).
– Verification, Commitment Simulation and Opening: just consist in running

the respective algorithms QVer1,QSimCom1,QSimOpen1 in parallel for each
commitment c1,i.

– Proof π ← CProve(crs, c, G, v, d), for an NC1 circuit G represented as
an RMS program with n-bit input and m-bit output works as follows.
Let Sω, S+, and S× be the sets of memory indexes written by con-
stant loading, linear, and multiplication instructions respectively. We sup-
pose that the used memory values are u1, . . . , uL. The proof π is a tuple
({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×) where these values are generated
as follows, for each instruction
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• (uk ← ω): generate (c2,k,d2,k) ← QCom2(crs, ω).
• (uk ← μui + μ′uj mod p): compute

(c2,k,d2,k) ← QCom2(crs, μui + μ′uj) ,

πk := QLinProve(crs, (μ, c2,i, ui,d2,i), (μ′, c2,j , uj ,d2,j), (c2,k,d2,k)) .

• (uk ← vi · uj mod p): compute

(c2,k,d2,k) ← QCom2(crs, vi · uj) ,

πk := QQuadProve(crs, (c1,i, vi,d1,i), (c2,j , uj ,d2,j), (c2,k,d2,k)) .

(Note that values vi and uj are known by the prover.)
– Proof Verification: just consists in verifying the provided openings and

quadratic proofs. More formally, CPVer(crs, c, G, y, π) where y = y1‖ · · · ‖ym

returns 1 if and only if all the following tests pass:
• For every i ∈ [m], check that QVer2(crs, c2,i, yi,d2,i)

?= 1.
• For every instruction:

* (uk ← ω): check QVer2(crs, c2,k, ω,d2,k) ?= 1.
* (uk ← μui + μ′uj mod p): check QLinVer(crs, (μ, c2,i), (μ′, c2,j),
c2,k,πk) ?= 1.
* (uk ← vi · uj mod p): check QQuadVer(crs, c1,i, c2,j , c2,k,πk) ?= 1.

– Proof Simulation: π ← CPSim(τ, aux, c, G, y) where c = (c1,1, . . . , c1,n) are
simulated with auxiliary data aux = (aux1,1, . . . , aux1,n), simulates a proof
π = ({c2,k}k∈[L], {d2,k}k∈[m]∪Sω

, {πk}k∈S+∪S×) as follows: Run through the
instructions in RMS in order and for each instruction do:

• (uk ← ω): generate

(c2,k, aux2,k) ← QSimCom2(τ) , d2,k ← QSimOpen2(τ, aux2,k, ω) .

• (uk ← μui + μ′uj mod p): set u′
k := yk if k ∈ [m] or 0 otherwise, and

let u′
i, u

′
j ∈ Zp be arbitrary scalars such that μu′

i + μ′u′
j = u′

k (which is
possible as (μ, μ′) �= 0), and compute:

(c2,k, aux2,k) ← QSimCom2(τ) ,

d′
2,� ← QSimOpen2(τ, aux2,�, u

′
�) for � ∈ {i, j, k} , (18)

πk := QLinProve(crs, (μ, c2,i, u
′
i,d

′
2,i), (μ

′, c2,j , u
′
j ,d

′
2,j), (c2,k,d′

2,k)) .

Note: values u′
i, u′

j , u′
k are local and may be different for different instruc-

tions.
• (uk ← vi · uj mod p): set u′

k := yk is k ∈ [m] or 0 otherwise, as well as
u′

i := 1 and u′
j := u′

k (so that u′
k = u′

iu
′
j—again values u′

i, u′
j , u′

k are
local) and compute:

(c2,k, aux2,k) ← QSimCom2(τ) ,

d′
1,i ← QSimOpen1(τ, aux1,i, u

′
i) (19)
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d′
2,� ← QSimOpen2(τ, aux2,�, u

′
�) for � ∈ {j, k} , (20)

πk := QQuadProve(crs, (c1,i, u
′
i,d

′
1,i), (c2,i, u

′
j ,d

′
2,j), (c2,k,d′

2,k)) .

– Witness Encryption: Looking at Eqs. (7) and (11) and Remark 3, we remark
that the proof verification CPVer(crs, c, G, y, π) is affine in the vector π.
Concretely, there exists a matrix [Γcrs,c,G,y]� and a vector [θcrs,c,G,y]� (both
only depend on crs, c, G, y and can be efficiently computed from these three
values—the star � denotes the fact that elements are not necessarily in the
same group), such that, seeing π as a vector of elements in Zp,G1,G2 of
length β, and denoting by π̃ ∈ Z

β
p the vector derived from π by replacing

every Gι element with its discrete logarithm, we have:

[θcrs,c,G,y]t = [Γcrs,c,G,y · π̃]t .

(Note: This is because: By Eq. 7 and 11, verification of opening and verifica-
tion of a linear proof are both linear equations whose coefficients are either
constants or elements in crs. By Remark 3, verification of a quadratic proof
is a linear equation whose coefficients are constants, or elements in crs, or
commitments c1,i (as in Eq. 19) to the first operand in the multiplication.
Since in RMS the first operand of multiplication is always an input bit, c1,i

is contained in c.)
The witness encryption then just uses hash proof systems from [1]. More
formally, to encrypt a bit message m ∈ {0, 1}, CWEnc(crs, c, G, y,m) picks a
uniformly random row vector α ∈ Z

1×ν
p , where ν is the number of rows of

Γcrs,c,G,y, and outputs the ciphertext ct = ([γ]�, [δ]t) where:

[γ]� := [α · Γcrs,c,G,y]� , [δ]t := [α · θcrs,c,G,y + m]t .

– Witness Decryption: Using the notation from witness encryption, CWDec(crs,
ct, c, G, y, π) outputs m ∈ {0, 1} satisfying

[m]t = [δ − γ · π̃]t .

Efficiency: The algorithms CSetupbind,CCom,CVer (as well as the sim-
ulators CSetupsim,CSimCom,CSimOpen) of the resulting WE for NIZK of
commitments run in time polynomial in their inputs. The algorithms
CProve,CPVer,CWEnc,CWDec run in time polynomial in their inputs and expo-
nential in the depth of the circuit G. This exponential blow up is due to the
representation by a RMS program and explains the restriction to NC1.

Theorem 8. Assuming SXDH over bilinear groups. The construction Π
described above is a WE for NIZK of commitments for NC1.

Proof. Perfect correctness of the commitment, setup indistinguishabil-
ity, perfect binding, and perfect equivocality follow directly from the fact
that (QSetupbind,QSetupsim,QCom1,QVer1,QSimCom1,QSimOpen1) is a dual-
mode commitment scheme. Perfect proof correctness follows from perfect
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correctness of linear and quadratic proofs. Perfect soundness follows from
perfect binding of type-1 and type-2 commitments as well as perfect soundness
of linear and quadratic proofs. Perfect encryption correctness and perfect
semantic security follow immediately from correctness and smoothness of the
hash proof systems in [1]. It remains to prove the perfect zero-knowledge
property. This is where the uniqueness of linear proofs (Remark 2) and the
perfect uniformity (Remark 4) of the quadratic proofs are used. We give a proof
by games:

– Game 0 corresponds to the zero-knowledge game where proofs are honestly
generated.

– Game 1 is similar to Game 0 except that all the commitments are simulated
but still opened to the value a real prover would use. This game is perfectly
indistinguishable from the previous one by perfect equivocality of type-1 and
type-2 commitments.

– Game 2 is similar to Game 1, except that the decommitments d2,k for k ∈
(S+ ∪ S×) \ [m] (i.e., the ones which are not published) and d′

�,� used to
generate the linear and quadratic proofs (see Eqs. (18) to (20)) are generated
as by CPSim. By perfect equivocality of type-1 and type-2 commitments,
these values d2,k and d′

�,� are valid decommitments. Hence by uniqueness of
linear proofs and perfect uniformity of quadratic proofs, the resulting proofs
πk are perfectly indistinguishable between Game 1 and Game 2.

As Game 2 corresponds to the zero-knowledge game where proofs are simulated,
this conclude the proof of perfect zero-knowledge. �
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Abstract. This work concerns secure protocols in the massively parallel
computation (MPC) model, which is one of the most widely-accepted mod-
els for capturing the challenges of writing protocols for the types of parallel
computing clusters which have become commonplace today (MapReduce,
Hadoop, Spark, etc.). Recently, the work of Chan et al. (ITCS ’20) initi-
ated this study, giving a way to compile any MPC protocol into a secure
one in the common random string model, achieving the standard secure
multi-party computation definition of security with up to 1/3 of the par-
ties being corrupt.

We are interested in achieving security for much more than 1/3 corrup-
tions. To that end, we give two compilers for MPC protocols, which assume
a simple public-key infrastructure, and achieve semi-honest security for all-
but-one corruptions. Our first compiler assumes hardness of the learning-
with-errors (LWE) problem, and works for any MPC protocol with “short”
output—that is, where the output of the protocol can fit into the storage
space of one machine, for instance protocols that output a trained machine
learning model. Our second compiler works for any MPC protocol (even
ones with a long output, such as sorting) but assumes, in addition to LWE,
indistinguishability obfuscation and a circular secure variant of threshold
FHE. Both protocols allow the attacker to choose corrupted parties based
on the trusted setup, an improvement over Chan et al., whose protocol
requires that the CRS is chosen independently of the attacker’s choices.

1 Introduction

In the past two decades, the model of a sequential algorithm executing on a
RAM machine with one processor has become increasingly impractical for large-
scale datasets. Indeed, numerous programming paradigms, such as MapReduce,
Hadoop, and Spark, have been developed to utilize parallel computation power
in order to manipulate and analyze the vast amount of data that is available
today. Starting with the work of Karloff, Suri, and Vassilvitskii [49], there
have been several attempts at formalizing a theoretical model capturing such
frameworks [3,33,47,49,52,54,57,70]. Today the most widely accepted model
is called the Massively Parallel Computation (MPC) model. Throughout this
c© International Association for Cryptologic Research 2020
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paper, whenever the acronym MPC is used, it means “Massively Parallel Com-
putation” and not “Multi-Party Computation”.

The MPC model is believed to best capture large clusters of Random Access
Machines (RAM), each with a somewhat considerable amount of local memory
and processing power, yet not enough to store the massive amount of available
data. Such clusters are operated by large companies such as Google or Facebook.
To be more concrete, letting N denote the total number of data records, each
machine can only store s = N ε records locally for some ε ∈ (0, 1), and the total
number of machines is m ≈ N1−ε so that they can jointly store the entire data-
set. One should think of N as huge, say tens or hundreds of petabytes, and ε as
small, say 0.21. In many MPC algorithms it is also okay if m · s = N · logc N for
some constant c ∈ N or even m · s = N1+θ for some small constant θ ∈ (0, 1),
but not much larger than that (see, e.g., [1,4,49,54]).

The primary metric for the complexity of algorithms in this model is their
round complexity. Computations that are performed within a machine are essen-
tially “for free”. The rule of thumb in this context is that algorithms that
require o(log2 N) rounds (e.g., O(1) or O(log log N))) are considered efficient.
With the goal of designing efficient algorithms in the MPC model, there is an
immensely rich algorithmic literature suggesting various non-trivial efficient algo-
rithms for tasks of interest, including graph problems [1,3–5,7–10,12,16–18],
[30,33,38,41,43,53,54,62,68], clustering [13,15,35,42,73] and submodular func-
tion optimization [36,52,58,67].

Secure MPC. In a very recent work, Chan, Chung, Lin, and Shi [26] initiated the
study of secure computation in the MPC model. Chan et al. [26] showed that any
task that can be efficiently computed in this model can also be securely computed
with comparable efficiency. More precisely, they show that any MPC algorithm
can be compiled to a secure counterpart that defends against a malicious adver-
sary who controls up to 1/3 − η fraction of machines (for an arbitrarily small
constant η), where the security guarantee is similar to the one in cryptographic
secure multiparty computation. In other words, an adversary is prevented from
learning anything about the honest parties’ inputs except for what the output of
the functionality reveals. The cost of this compilation is very small: the compiled
protocol only increases the round complexity by a constant factor, and the space
required by each machine only increases by a multiplicative factor that is a fixed
polynomial in the security parameter. Since round complexity is so important in
the MPC setting, it is crucial that these cost blowups are small. Indeed, any use-
ful compiler must preserve even a sublogarithmic round complexity. The security
of their construction relies on the Learning With Errors (LWE) assumption and
they further rely on the existence of a common random string that is chosen
after the adversary commits to its corrupted set.

Why is secure MPC hard? Since there is a long line of work studying secure mul-
tiparty computation (starting with [19,45]), a natural first question is whether
1 If N is one Petabyte (106 Gigabytes), then the storage of each machine in the cluster

needs to be < 16 Gigabytes.
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these classical results extend to the MPC model in a straightforward way. The
crucial aspect of algorithms in the MPC model which makes this task non-trivial
is the combination of the space constraint with the required small round com-
plexity. Indeed, many existing techniques from the standard secure computation
literature fail to extend to this model, since they either require too many rounds
or they require each party to store too much data. For instance, it is impossible
for any one party to store commitments or shares of all other parties’ inputs, a
common requirement in many secure computation protocols (e.g., [50,65]). This
also rules out naively adapting protocols that rely on more modern tools such as
threshold FHE [6,34,59], as they also involve a similar first step. Even previous
work that focused on large-scale secure computation [22] required one broadcast
message per party, which either incurs a large space overhead or a large blowup
in the number of rounds. Chan et al. [26] give an exciting feasibility result for
secure protocols in this model, but their construction, as mentioned, has some
significant limitations: (1) it only tolerates at most ≈1/3 corruptions, and (2) it
relies on a trusted setup which must be chosen after the choice of the corrupted
parties. Whether these limitations are inherent in this new model remains an
intriguing open question.

This work. We consider the setting of all-but-one corruptions, where the com-
putation is performed in the MPC model but security is required even for a
single honest machine if all other players are controlled by an adversary. In the
classical secure multi-party computation literature this setting is referred to as
the dishonest majority setting and generic protocols tolerating such adversarial
behaviour are well known (e.g., [45]). In contrast, in the MPC model, it is a-
priori not even clear that such a generic result can be obtained with the space
and round complexity constraints. This raises the following question, which is
the focus of this work:

Is there a generic way to efficiently compile any massively parallel protocol
into a secure version that tolerates all-but-one corruptions?

1.1 Our Results

We answer the above question in the affirmative. We give two compilers that can
be used to efficiently compile any algorithm in the MPC model into an algorithm
that implements the same functionality also in the MPC model, but now secure
even in the presence of an attacker who controls up to m− 1 of the m machines.
Both of our protocols handle semi-honest attackers who are assumed to follow
the specification of the protocol.

In terms of trusted setup, in both of our protocols we assume that there is
a public-key infrastructure (PKI) which consists of a (pk, sk1, . . . , skm): a single
public key and m secret keys, one per machine. Machine i ∈ [m] knows pk and
ski, whose size is independent of N (and none of the other secret keys). Crucially,
our protocols allow the adversary to choose the corrupted parties based on the
setup phase, an improvement over the construction of [26], for which there is
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an obvious and devastating attack if the adversary can choose corrupted parties
based on the common random string.

Notation and parameters. Let N denote the bit size of the data-set2 and suppose
that each machine has space s = N ε for some fixed constant ε ∈ (0, 1). We further
assume that the number of machines, m, is about N1−ε or even a little bigger.
The security parameter is denoted λ and it is assumed that N < λc for some
c ∈ N and s > λ.

Secure MPC with Short Outputs. Our first result is a compiler that fits
best for tasks whose output is “short”. By short we mean that it fits into the
memory of (say) a single machine. The compiler blows up the number of rounds
by a constant and the space by a fixed polynomial in the security parameter,
which is identical to the efficiency of the compiler in [26]. For security, we rely
on the LWE assumption [69].

While at first it may seem that this compiler is quite restricted in the class of
algorithms it supports, in fact, there are many important and central function-
alities that fit in this class. For instance, this class contains all graph problems
whose output is somewhat succinct (like finding a shortest path in a graph, a
minimum spanning tree, a small enough connected component, etc.). Even more
impressively, all submodular maximization problems, a class of problems that
captures a wide variety of problems in machine learning, fit into this class [67].

Theorem 1 (Secure MPC for Short Output, Informal). Assume hard-
ness of LWE. Given any massively parallel computation (MPC) protocol Π which
after R rounds results in an output of size ≤ s for party 1 and no output for
any other party, there is a secure MPC algorithm Π̃ that securely realizes Π
with semi-honest security in the presence of an adversary that statically corrupts
up to m − 1 parties. Moreover, Π̃ completes in O(R) rounds, consumes at most
O(s)·poly(λ) space per machine, and incurs O(m·s)·poly(λ) total communication
per round.

As mentioned above, by security we mean an analogue of standard cryp-
tographic multiparty computation security, adapted to the massively parallel
computation (MPC) model. We use the LWE assumption to instantiate a secure
variant of an n-out-of-n threshold fully-homomorphic scheme (FHE) [6,20] which
supports “incremental decoding”. This is an alternative to the standard decod-
ing procedure of threshold FHE schemes which is suited to work in the MPC
model. See Sect. 2 for details.

We prove that our construction satisfies semi-honest security where the
attacker gets to choose its corrupted set before the protocol begins but after
the public key is published. (In comparison, recall that [26] had their attacker
commit on its corrupted set before even seeing the CRS.)

2 We assume for simplicity that a data record takes up one bit.
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Secure MPC with Long Outputs. Our second result is a compiler that works
for any protocol in the MPC model. Many MPC protocols perform tasks whose
output is much larger than what fits into one machine. Such tasks may include,
for example, the task of sorting the input. Here the result of the protocol is that
each machine contains a small piece of the output, which is considered to be
the concatenation of all machines’ outputs in order. Our second compiler can be
used for such functionalities.

In this construction we rely, in addition to LWE, on a circular secure variant
of the threshold FHE scheme from the short output protocol and also on indis-
tinguishability obfuscation [14,39,71]. The compiler achieves the same round
and space blowup as the short-output compiler.

Theorem 2 (Secure MPC for Long Output, Informal). Assume the exis-
tence of an circular secure n-out-of-n threshold FHE scheme with incremental
decoding, along with iO and hardness of LWE. Given any massively parallel com-
putation (MPC) protocol Π that completes in R rounds, there is a secure MPC
algorithm Π̃ that securely realizes Π with semi-honest security in the presence of
an adversary that statically corrupts up to m−1 parties. Moreover, Π̃ completes
in O(R) rounds, consumes at most O(s) · poly(λ) space per machine, and incurs
O(m · s) · poly(λ) total communication per round.

1.2 Related Work

The cryptography literature has extensively studied secure computation on par-
allel architectures, but most existing works focus on the PRAM model (where
each processing unit has O(1) local storage) [2,22,23,27–29,31,32,56,61]. Most
real-world large-scale parallel computation is now done on large clusters which
are much more accurately modeled by the MPC architecture, and the afore-
mentioned works usually do not apply to this setting. Other distributed models
of computations have been considered in cryptographic contexts. Parter and
Yogev [63,64] considered secure computation on graphs in the so-called CON-
GEST model of computation (where each message is of size at most O(log N)
bits).

Paper Organization

An overview of our constructions is given next in Sect. 2. Some standard pre-
liminaries and the building blocks that we use in our construction are formally
defined in Sect. 3. The MPC model is formally defined in Sect. 4. The compiler
for short output protocols appears in Sect. 5 and the compiler for long output
protocols is in Sect. 6.

2 Technical Overview

In this section we give the high-level overview of our protocols. Let us briefly
recall the model. The total input size contains N bits and there are about
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m ≈ N1−ε machines, each having space s = N ε. In every round, each machine
can send and receive at most s bits since its local space is bounded (e.g.,
a machine cannot broadcast a message to everyone in one round). We are
given some protocol in the MPC model that computes some functionality
f : ({0, 1}lin)m → ({0, 1}s)m, where lin ≤ s, and we would like to compile it
into a secure version that computes the same functionality. We would like to
preserve the round complexity up to constant blowup, and to preserve the space
complexity as much as possible. Moreover, we want semi-honest security, which
means there must exist a simulator which, without the honest parties’ inputs,
can simulate the view of a set of corrupted parties, provided the parties do not
deviate from the specification of the protocol.

Since our goal is to use cryptographic assumptions to achieve security for
MPC protocols, we introduce an additional parameter λ, which is a security
parameter. One should assume that N is upper bounded by some large polyno-
mial in λ and that s is large enough to store O(λ) bits.

We first note that we can start by assuming that the communication patterns,
i.e., the number of messages sent by each party, the size of messages, and the
recipients, do not leak anything about the parties’ inputs. We call a protocol
that achieves this communication oblivious. A generic transformation for any
MPC protocol was shown by [26], which achieved communication obliviousness
with constant blowup in rounds and space.

2.1 The Short Output Protocol

We start with a protocol in the easier case where the underlying MPC results
with a “short” output, meaning that it fits into the memory of a single machine
(say the first one).

In a nutshell, the idea is as follows: we want to execute an encrypted version
of the (insecure) MPC algorithm using a homomorphic encryption scheme. In
the classical setting of secure computation this idea was extensively used in
threshold/multi-key FHE based solutions, for instance, in [6,11,20,25,55,60,66]
There, in a high-level, each party first broadcasts an encryption of its input.
Then each party can (locally) homomorphically compute the desired function
over the combined inputs of all parties, and finally all parties participate in a joint
decryption protocol that allows them to decrypt the output. Moreover, this joint
decryption protocol does not allow any party to decrypt any ciphertext beyond
the output ciphertext. The classical joint decryption protocol is completely non-
interactive: each party broadcasts a “partial decryption” value so that each party
who holds partial decryptions from all other parties can locally decode the final
output of the protocol.

Recall that in our setting each party has bounded space and so it is impos-
sible for any party to store all partial decryptions and so the joint decryption
protocol described above cannot work in the MPC model. To get around this,
we relax the joint decryption protocol by allowing it to be interactive. To this
end, we design a new joint decryption protocol that splits the process of “com-
bining” partial decryption into many rounds (concretely, logλ m ∈ O(1) rounds).
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We use the additive-secret-sharing threshold FHE scheme of Boneh et al. [20]
and modify their decryption procedure, as we explain next.

At a high-level, the ciphertext in the simplest variant of Boneh et al.’s [20]
scheme is a GSW [40] ciphertext, and each party’s secret key is a linear share of
the GSW secret key. In addition, partial decryption works in the same way as the
GSW decryption using the secret key share with an additional re-randomization,
and then the final decryption phase is just a linear function that combines the
partial decryptions and a final step of rounding3. We observe that the first part
of final decryption, which is just a linear function, can be executed in a tree-like
fashion, so that if each party has a partial decryption, no party will need to store
more than a few partial decryptions at a time.

Our trick is to adjust the parameters of this tree to be aligned with the MPC
model. We let each machine hold about λ different partial decryptions (causing
a λ blow up in space) which causes the depth of the tree to be roughly logλ m.
Since m is bounded by some fixed polynomial in λ this is still O(1). Overall, this
step adds O(1) rounds of communication and results with a single party knowing
the output. As a small technical note, to simulate the view of set of corrupted
parties which do not learn the output, we require one additional property of the
threshold FHE scheme: it must be possible to simulate partial decryptions of
an incomplete set I ′

� [m] of parties without knowing even the output of the
circuit. This requirement is not captured in the original definition of threshold
FHE in [20], but we show that their construction satisfies it.

2.2 The Long Output Protocol

Here, we would like to support MPC protocols whose output is “long”, namely,
each party will have an output. Directly extending the short output protocol fails.
Indeed, there, we used a tree-like protocol to gradually “aggregate” the sum of all
partial decryption at a single machines’s memory. In the current case, each party
needs to do the same procedure to recover its own output. Since we have a bound
on the total communication of each party, we cannot run all gradual decryptions
in parallel, so this requires about m/ε rounds (which is way too much).

Recall that the goal of the decryption phase is for the parties to learn the
decryption of its output, without learning the decryptions of any other cipher-
text. If we can somehow construct a decryption phase where the communication
is independent of the output size, we would have a valid long output protocol.
This is non-trivial: what we essentially need is some “limited” master secret
key, which somehow only decrypts a limited set of ciphertexts, and nothing else.
Moreover, we need to be able to generate this key within the limitations of the
MPC model: no single machine can even hold the complete set of ciphertext
which this secret key is supposed to decrypt.

Let us define the functionality of this “limited” master secret key more for-
mally. It will be convenient to describe it as a circuit. Ideally, the circuit has
3 Note that although the Shamir-based TFHE scheme in [20] requires a field size which

is polynomial in the number of parties n, the field size in the simpler additive-based
scheme is independent of n, which is crucial in our construction.
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hardwired the secret keys from all parties along with all ciphertexts which corre-
spond to the output of the computation. Each party would be able to submit its
output to the circuit, and the circuit would be able to check if this ciphertext is
a member of the valid set, and decrypt if this is the case. Even ignoring security
(namely, that a machine can learn all keys; we will address this later), there are
two efficiency problems: first, the circuit contains m ciphertexts, and the second
is that it contains m secret keys (and recall that m � s).

To solve the first problem, instead of storing the ciphertexts explicitly, we
use a succinct commitment thereof. We need a way for the parties to collectively
compute this commitment in the MPC model and without increasing the number
of rounds too much. To this end, we use a variant of Merkle commitments with
larger arity. We note that the tree structure of Merkle commitments suits our
model very well: if a single machine is responsible for computing the label of
a single node in the tree, we achieve a low-communication-complexity protocol
relatively easily. Then, if we set the arity to be O(λ), the number of rounds will
be roughly logλ m, which is constant assuming m is at most a fixed polynomial
in λ.

To solve the second problem, we observe an important property about the
basic n-out-of-n threshold FHE scheme of Boneh et al. Namely, in this scheme,
the public key is a GSW public key, each party’s secret key is a linear share of the
corresponding GSW secret key, and encryption under the threshold FHE scheme
is simply a GSW encryption with this public key. This means that knowing the
sum of all parties’ secret keys is sufficient to decrypt, and this sum is compact.

So we have a feasible circuit with the functionality we need in order to imple-
ment a “limited” master secret key. We of course need a secure version of this
circuit, which will not leak the master secret key hardcoded in the circuit. To
do this we use indistinguishability obfuscation. We give a high-level overview of
the techniques which we use in conjunction with obfuscation to achieve secu-
rity. Since we want to be able to simulate the view of the corrupted parties, we
need a simulated version of the circuit, which has no master secret key embed-
ded but which can still produce the decrypted outputs. The main idea for how
we overcome this is to exploit the fact that the simulator is allowed to set the
randomness of the corrupted parties. We will use the Merkle commitment to
force each party to input their randomness to the circuit, and when simulating
we will embed the output in this randomness, padded with a PRF. The cir-
cuit can then unpad and use this as its output without knowing the secret key.
This is a somewhat standard technique in iO literature first used by [46]. One
technical detail is that since iO only guarantees indistinguishability against cir-
cuits which are functionally equivalent, we need a succinct commitment which
can guarantee statistical binding for some indices. This type of primitive, a
somewhere-statistically-binding (SSB) hash, was also constructed by [46] from
the learning-with-errors (LWE) assumption. We observe that the construction of
[46] also uses a tree structure similar to a Merkle tree, which allows the machines
to collectively compute the commitment without too much communication or
storage.
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Now that we have a way to generate a “limited” secret key, the question is, how
can the parties do this without leaking their secret key shares? We need to some-
how assemble this obfuscated circuit, which has the master secret key embedded,
even though no party is allowed to know the master secret key. Our key idea is to
leverage our short-output secure MPC protocol for this purpose: we can use that
protocol to securely compute the obfuscated circuit! The short-output protocol
guarantees that parties learn nothing about the execution of the protocol beyond
the output and their inputs, and this is exactly what we need in order to compute
the obfuscated circuit without revealing the master secret key.

One final technical challenge we need to overcome is that an SSB hash com-
mitment does not guarantee privacy; it may leak information about the commit-
ted values. In order to achieve output privacy, we introduce an extra step in the
protocol where each party pads their encrypted output before committing. We
refer to Sect. 6 for details.

On the necessity of a PKI. Our constructions require a public-key infrastructure
(PKI); a trusted party must generate a (single) public key and (many) secret key
shares which it distributes to each machine. We do not know if this is necessary,
but at least we argue that known techniques from the classical secure compu-
tation literature do not work in the MPC model (and so drastically new ideas
are needed). Indeed, classically, secure multi-party computation protocols avoid
using a PKI by using threshold multi-key FHE (e.g., [6,11,25,55,60,66]), where
each party generates its own key pair and uses the concatenation of all public
keys as the master public key. This does not extend to our setting, since the
number of machines is much larger than the space of each individual machine
(and so a machines cannot even store all public keys). Of course, obtaining our
results without a PKI is a natural open problem.

3 Preliminaries

For x ∈ {0, 1}∗, let x[a : b] be the substring of x starting at a and ending at
b. A function negl : N → R is negligible if it is asymptotically smaller than any
inverse-polynomial function, namely, for every constant c > 0 there exists an
integer Nc such that negl(λ) ≤ λ−c for all λ > Nc. Two sequences of random
variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable
if for any non-uniform PPT algorithm A there exists a negligible function negl
such that

∣
∣Pr[A(1λ,Xλ) = 1] − Pr[A(1λ, Yλ) = 1]

∣
∣ ≤ negl(λ) for all λ ∈ N.

3.1 Threshold FHE with Incremental Decryption

We will use a threshold FHE scheme with an “incremental” decryption proce-
dure, specialized for the MPC model. Our definition follows that of [48].

An n-out-of-n threshold fully homomorphic encryption scheme with incre-
mental decryption is a tuple (TFHE.Setup,TFHE.Enc,TFHE.Eval,TFHE.Dec,
TFHE.PartDec,TFHE.CombineParts,TFHE.Round) of algorithms which satisfy
the following properties:
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– TFHE.Setup(1λ, n) → (pk, sk1, . . . , skn): On input the security parameter λ
and the number of parties n, the setup algorithm outputs a public key and a
set of secret key shares.

– TFHE.Encpk(m) → ct: On input a public key pk and a plaintext m ∈ {0, 1}∗,
the encryption algorithm outputs a ciphertext ct.

– TFHE.Eval(C, ct1, . . . , ctk) → ĉt: On input a public key pk, a circuit C :
{0, 1}l1 × · · · × {0, 1}lk → {0, 1}lo , and a set of ciphertexts ct1, . . . , ctk, the
evaluation algorithm outputs a ciphertext ĉt.

– TFHE.Decsk(ct) → m: On input the master secret key sk1 + · · · + skn and a
ciphertext ct, the decryption algorithm outputs the plaintext m.

– TFHE.PartDecski
(ct) → pi: a ciphertext ct and a secret key share ski, the

partial decryption algorithm outputs a partial decryption pi for party Pi.
– TFHE.CombineParts(pI , pJ ) → pI∪J : On input two partial decryptions pI and

pJ , the combine algorithm outputs another partial decryption algorithm pI�J

– TFHE.Round(p) → m: On input a partial decryption p, the rounding algo-
rithm outputs a plaintext m.

Compactness of ciphertexts: There exists a polynomial p such that |ct| ≤ poly(λ)·
|m| for any ciphertext ct generated from the algorithms of the TFHE, and pi ≤
poly(λ) · |m| as well for all i4.

Correctness with local decryption: For all λ, n,C,m1, . . . ,mk, the follow-
ing condition holds. For (pk, sk1, . . . , skn) ← TFHE.Setup(1λ, n), ctj ←
TFHE.Encpk(mj) for j ∈ [k], ĉt ← TFHE.Eval(C, ct1, . . . , ctk), and pi ←
TFHE.PartDecski

(ĉt), take any binary tree with n leaves labeled with the pi,
and with each non-leaf node v labeled with TFHE.CombineParts(pl, pr), where
pl is the label of v’s left child and pr is the label of v’s right child. Let ρ be the
label of the root; then

Pr [TFHE.Round(ρ) = C(m1, . . . ,mk)] = 1 − negl(λ).

Correctness of MSK decryption: For all λ, n,C,m1, . . . ,mk, the following condi-
tion holds. For (pk, sk1, . . . , skn) ← TFHE.Setup(1λ, n), cti ← TFHE.Encpk(mi)
for i ∈ [k], ĉt ← TFHE.Eval(C, ct1, . . . , ctk),

Pr
[

TFHE.Decsk(ĉt) = C(m1, . . . ,mk)
]

= 1 − negl(λ),

where sk = sk1 + · · · + skn.

Semantic (and circular) security of encryption: We give two alternative defini-
tions of semantic security, the standard one and a notion of circular security. For
any PPT adversary A, the following experiment ExptA,TFHE,sem outputs 1 with
1/2 + negl(λ) probability:

4 As noted in the technical overview, although this does not hold for the Shamir-based
TFHE scheme in [20], it does hold for the simpler additive-based TFHE scheme given
in the same paper.
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ExptA,TFHE,sem:

1. The challenger runs (pk, sk1, . . . , skn) ← TFHE.Setup(1λ, n) and
provides pk to A.

2. A outputs a set I � [n] and a message m; for circular security m
can contain special symbols �ski�.

3. The challenger provides {ski}i∈I to A.
4. In circular security, the challenger computes m′ by replacing every

symbol �ski� with the secret key ski. In normal semantic security
the challenger sets m′ = m.

5. The challenger chooses b
$← {0, 1}; if b = 0 then the challenger

sends TFHE.Encpk(m′), and if b = 1 then the challenger sends
TFHE.Encpk(0|m′|).

6. A outputs a guess b′. The experiment outputs 1 if b = b′.

(Circular) Simulation security: There exists a simulator (TFHE.Sim.Setup,
TFHE.Sim.Query) such that for any PPT A, the following experiments
ExptA,TFHE,real and ExptA,TFHE,ideal are indistinguishable:

ExptA,TFHE,real:

1. The challenger runs (pk, sk1, . . . , skn) ← TFHE.Setup(1λ) and
provides pk to A.

2. A outputs a set I � [n] and messages m1, . . . ,mk, along with
{rj}J for some subset J ⊂ [k]. In addition, for circular simulation
security each mi can contain special symbols �ski′�.

3. In circular simulation security, for each i ∈ [k], the challenger
computes m′

i by replacing every symbol �ski′� with the secret key
ski′ . In normal simulation security, the challenger sets m′

i = mi.
4. The challenger provides {ski}i∈I to A and {TFHE.Encpk(m′

i)}i∈[k]

to A. For each i ∈ [k], if the adversary supplied randomness ri,
then this randomness is used as the randomness for encrypting
m′

i.
5. A issues a polynomial number of adaptive queries of

the form (I ′, C), and for each query the challenger com-
putes ĉt ← TFHE.Eval(C, ct1, . . . , ctk) and responds with
{TFHE.PartDecski

(ĉt)}i∈I′ .
6. At the end of the experiment, A outputs a distinguishing bit b.
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ExptA,TFHE,ideal:

1. The challenger runs (pk, sk′
1, . . . , sk

′
n, σsim) ← TFHE.Setup(1λ)

and provides pk to A.
2. A outputs a set I � [n] and messages m1, . . . ,mk, along with

{rj}J for some subset J ⊂ [k]. In addition, for circular simulation
security each mi can contain special symbols �ski′�.

3. In circular simulation security, for each i ∈ [k], the challenger
computes m′

i by replacing every symbol �ski′� with the secret key
ski′ . In normal simulation security, the challenger sets m′

i = mi.
4. The challenger runs ({ski}i∈I , σsim) ← TFHE.Sim.Setup(pk, I)

and provides {ski}i∈I and {TFHE.Encpk(m′
i)}i∈[k] to A. For each

i ∈ [k], if the adversary supplied randomness ri, then this ran-
domness is used as the randomness for encrypting m′

i.
5. A issues a polynomial number of adaptive queries of the form

(I ′, C), and the challenger runs the simulator {pi}i∈I′ ←
TFHE.Sim.Query(C, {cti}i∈[k], {rj}j∈J , C(m′

1, . . . ,m
′
k), I ′, σsim)

and responds with {pi}i∈I′ .
6. At the end of the experiment, A outputs a distinguishing bit b.

Simulation of incomplete decryptions: We additionally require that, for the above
experiments, if I ∪ I ′ 
= [n], then it is possible to simulate partial decryptions
without knowing the circuit output. In other words, if I ∪ I ′ 
= [n] then in the
ideal world the challenger can compute

{pi}i∈I′ ← TFHE.Sim.Query(C, {cti}i∈[k], {m′
j , rj}j∈J ,⊥, I ′, σsim)

in step 4 above, and indistinguishability still holds.
Although this additional requirement is not explicit in the simulation secu-

rity definition of [48], it follows implicitly from the fact that semantic security
holds whenever the adversary does not have all secret keys ski. More specifically,
assume the adversary requests an “incomplete” partial decryption set I ′ from
the challenger, where I ∪ I ′ 
= [m]. This means that for all i ∈ [m] \ (I ∪ I ′),
the adversary receives no information at all about ski, so by TFHE semantic
security it is possible to switch all encryptions for i 
∈ J (i.e. where the adver-
sary does not supply the encryption randomness) to 0. Thus to simulate partial
decryptions for I ′, it is only necessary to know the output of C over the inputs
m′

i, i ∈ J , and 0, i 
∈ J . Since the TFHE simulator receives m′
i for all i ∈ J , it

can thus simulate partial decryptions without knowing the output of C over the
true inputs.

The next theorem states that a threshold FHE (TFHE) scheme with incre-
mental decryption exists under the Learning with Errors (LWE) assumption.

Theorem 3. Assuming LWE, there exists a threshold FHE (TFHE) scheme
with incremental decryption satisfying the above requirements except for circular
security.
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Proof sketch. We use the most basic construction of [20] and observe that it
can be modified to satisfy the incremental decryption property as follows. In
their decryption procedure, one gets all partial decryptions and they are added
together and then a non-linear rounding is performed. We obtain incrementality
by separating the two parts into two procedures. The first only performs the
first part of adding up partial decryptions–this can be done incrementally since
this is a linear operation. The second operation is the rounding operation which
is executed in the end.

To see why the simulation of incomplete decryptions property holds, note
that the secret keys of the parties are linear shares of a GSW secret key. This
means that if I ∪ I ′ 
= [n] then the distribution of shares corresponding to I ∪ I ′

are identical to uniform. Thus the simulator can pick uniform random ski for
each i ∈ I ′ in order to simulate partial decryptions without knowing the circuit
evaluation.

Remark 1. We note that we will use a plain threshold FHE (TFHE) scheme
with incremental decryption in the protocol for short output functionalities (see
Sect. 5) and so that one can be based on the hardness of LWE. However, the long
output protocol (see Sect. 6) will require a circular secure version of threshold
FHE (TFHE) scheme with incremental decryption (defined above) which we do
not know how to base on any standard assumption, except by assuming that the
construction from Theorem 3 satisfies it).

3.2 Somewhere Statistically Binding Hash

A somewhere statistically binding (SSB) hash [46] consists of the following algo-
rithms, which satisfy the properties below:

– SSB.Setup(1λ, L, d, f, i∗) → h: On input integers L, d, f , and an index i∗ ∈
[fdL], outputs a hash key h.

– SSB.Start(h, x) → v: On input h and a string x ∈ {0, 1}L, output a hash tree
leaf v.

– SSB.Combine(h, {vi}i∈[f ]) → v̂: On input h and f hash tree nodes {vi}i∈[f ],
output a parent node v̂.

– SSB.Verify(h, i, xi, z, {v}) → b: On input h, and index i, a string xi, a hash
tree root z, and a set {v} of nodes, output 1 iff {v} consists of a path from
the leaf corresponding to xi to the root z, as well as the siblings of all nodes
along this path.

Correctness: For any integers L, d, and f , and any indices i∗, j, strings {xi}i∈[fd]

where |xi| = L, and any h ← SSB.Setup(1λ, L, d, f, i∗), if {v} consists of a path
in the tree generated using SSB.Start(h, ·) and SSB.Combine(h, ·) on the leaf
strings {xi}i∈[fd], from the leaf corresponding to xj to the root z, along with the
siblings of all nodes along this path, then SSB.Verify(h, j, xj , z, {v}) = 1.

Compactness of commitment and openings: All node labels generated by the
SSB.Start and SSB.Combine algorithms are binary strings of size poly(λ) · L.
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Index hiding: Consider the following game between an adversary A and a chal-
lenger:

1. A(1λ) chooses L, d, and f , and two indices i∗0 and i∗1.
2. The challenger chooses a bit b ←$ {0, 1} and sets h ←

SSB.Setup(1λ, L, d, f, i∗b).
3. The adversary gets h and outputs a bit b′. The game outputs 1 iff b = b′.

We require that no PPT A can win the game with non-negligible probability.

Somewhere statistically binding: For all λ, L, d, and f , i∗, and for any key
h ← SSB.Setup(1λ, L, d, f, i∗), there do not exist any values z, x, x′, {v}, {v′}
such that SSB.Verify(h, i∗, x, z, {v}) = SSB.Verify(h, i∗, x′, z, {v′}) = 1.

Theorem 4 ([46, Theorem 3.2]). Assume LWE. Then there exists an SSB
hash construction satisfying the above properties.

3.3 Indistinguishability Obfuscation for Circuits

Let C be a class of Boolean circuits. An obfuscation scheme for C consists of one
algorithm iO with the following syntax.

iO(C ∈ C, 1λ): The obfuscation algorithm is a PPT algorithm that takes as
input a circuit C ∈ C, security parameter λ. It outputs an obfuscated circuit.

An obfuscation scheme is said to be a secure indistingushability obfuscator
for C [14,39,71] if it satisfies the following correctness and security properties:

– Correctness: For every security parameter λ, input length n, circuit C ∈ C
that takes n bit inputs, input x ∈ {0, 1}n, C ′(x) = C(x), for C ′ ← iO(C, 1λ).

– Security: For every PPT adversary A = (A1, A2), the following experiment
outputs 1 with at most 1/2 + negl(λ):

Experiment ExptA,iO :

1. (C0, C1, σ) ← A1(1λ)
2. If |C0| 
= |C1|, or if either C0 or C1 have different input lengths,

then the experiment outputs a uniformly random bit.
Else, let n denote the input lengths of C0, C1. If there exists an
input x ∈ {0, 1}n such that C0(x) 
= C1(x), then the experiment
outputs a uniformly random bit.

3. b ← {0, 1}, C̃ ← iO(Cb, 1λ).
4. b′ ← A2(σ, C̃).
5. Experiment outputs 1 if b = b′, else it outputs 0.
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3.4 Puncturable Pseudorandom Functions

We use the definition of puncturable PRFs given in [72], given as follows. A punc-
turable family of PRFs F is given by a triple of turing machines PPRF.KeyGen,
PPRF.Puncture, and F , and a pair of computable functions n() and m(), satis-
fying the following conditions:

– Functionality preserved under puncturing: For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ)

where x 
∈ S, we have that:

Pr
[

F (K,x) = F (KS , x) | K ← PPRF.KeyGen(1λ),
KS ← PPRF.Puncture(K,S)

]

= 1

– Pseudorandom at punctured points: For every PPT adversary (A1,A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}n(λ) and state σ, consider an exper-
iment where K ← PPRF.KeyGen(1λ) and KS ← PPRF.Puncture(K,S). Then
we have
∣
∣
∣Pr

[A2(σ,KS , S, F (K,S)) = 1
] − Pr

[A2(σ,KS , S, U
m(λ)|̇S|) = 1

]
∣
∣
∣ ≤ negl(λ)

where F (K,S) denotes the concatenation of F (K,x) for all x ∈ S in lexico-
graphic order and U� denotes the uniform distribution over 	 bits.

Theorem 5 ([21,24,44,51]). If one-way functions exist, then for all efficiently
computable n(λ) and m(λ) there exists a puncturable PRF family that maps n(λ)
bits to m(λ) bits.

4 Model

4.1 Massively Parallel Computation (MPC)

We now describe the Massively Parallel Computation (MPC) model. This
description is an adaptation of the description in [26]. Let N be the input size
in bits and ε ∈ (0, 1) a constant. The MPC model consists of m parties, where
m ∈ [N1−ε, poly(N)] and each party has a local space of s = N ε bits. Hence,
the total space of all parties is m · s ≥ N bits. Often in the design of MPC
algorithms we also want that the total space is not too much larger than N , and
thus many works assume that m · s = Õ(N) or m · s = O(N1+θ) for some small
constant θ ∈ (0, 1). The m parties are pairwise connected, so every party can
send messages to every other party.

Protocols in the MPC model work as follows. At the beginning of a protocol,
each party receives N/m bits of input, and then the protocol proceeds in rounds.
During each round, each party performs some local computation bounded by
poly(s), and afterwards may send messages to some other parties through pair-
wise channels. A well-formed MPC protocol must guarantee that each party
sends and receives at most s bits each round, since there is no space to store more
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messages. After receiving the messages for this round the party appends them
to its local state. When the protocol terminates, the result of the computation is
written down by all machines, i.e., by concatenating the outputs of all machines.
Every machine’s output is also constrained to at most s bits. An MPC algorithm
may be randomized, in which case every machine has a sequential-access random
tape and can read random coins from the random tape. The size of this random
tape is not charged to the machine’s space consumption.

Communication Obliviousness: In this paper we will assume that the underlying
MPC protocol discussed is communication-oblivious. This means that in each
round, the number of messages, the recipients, and the size of each message are
determined completely independently of all parties’ inputs. More formally, we
assume that there is an efficient algorithm which, given an index i and round
number j, outputs the set of parties Pi sends messages to in round j, along with
number of bits of each message. The work of [26] showed that this is without
loss of generality: any MPC protocol can be compiled into an communication-
oblivious one with constant round blowup. We also assume for simplicity that
the underlying MPC protocol is given in the form of a set of circuits describing
the behavior of each party in each round (one can emulate a RAM program with
storage s with a circuit of width O(s)).

4.2 Secure Massively Parallel Computation

We are interested in achieving secure MPC: we would like protocols where,
if a subset of the parties are corrupted, these parties learn nothing from an
execution of the protocol beyond their inputs and outputs. We focus on semi-
honest security, where all parties follow the protocol specification completely
even if they are corrupted. We will also work in the PKI model, where we assume
there is a trusted party that runs a setup algorithm and distributes a public key
and secret keys to each party.

For an MPC protocol Π and a set I of corrupted parties, denote with
viewΠ

I (λ, {(xi, ri)}i∈[m]) the distribution of the view of all parties in I in an exe-
cution of Π with inputs {(xi, ri)}. This view contains, for each party Pi, i ∈ I,
Pi’s secret key ski, inputs (xi, ri) to the underlying MPC protocol, the ran-
dom coins it uses in executing the compiled protocol, and all messages it
received from all other parties throughout the protocol. We argue the exis-
tence of simulator S, a polynomial-time algorithm which takes the public key
and the set I off corrupted parties and generates a view indistinguishable from
viewΠ

I (λ, {(xi, ri)}i∈[m]).

Definition 1. We say that an MPC protocol Π is semi-honest secure in the PKI
model if there exists an efficient simulator S such that for all {(xi, ri)}i∈[m],
and all I � [m] chosen by an efficient adversary after seeing the public
key, S(λ, pk, I{(xi, ri)}i∈I , {yi}i∈I) is computationally indistinguishable from
viewΠ

I (λ, {(xi, ri)}i∈[m]).

Note that in this definition we allow the simulator to choose each corrupted
party’s secret key and the random coins it uses.
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5 Secure MPC for Short Output

In this section, we prove the following theorem:

Theorem 6 (Secure MPC for Short Output). Assume hardness of LWE.
Suppose that s = N ε and that m is upper bounded by a fixed polynomial in N .
Let λ denote a security parameter, and assume λ ≤ s and that N ≤ λc for some
fixed constant c. Given any massively parallel computation (MPC) protocol Π
that completes in R rounds where each of the m machines has s local space,
and assuming Π results in an output of size lout ≤ s for party 1 and no output
for any other party, there is a secure MPC algorithm Π̃ in the PKI setting that
securely realizes Π with semi-honest security in the presence of an adversary that
statically corrupts up to m − 1 parties. Moreover, Π̃ completes in O(R) rounds,
consumes at most O(s) ·poly(λ) space per machine, and incurs O(m · s) ·poly(λ)
total communication per round.

The rest of this section is devoted to the proof of Theorem 6.

5.1 Assumptions and Notation

We assume, without loss of generality, the following about the massively paral-
lel computation (MPC) protocol which we will compile (these assumptions are
essentially the same as in the previous section):

– The protocol takes R rounds, and is represented by a family of circuits
{Mi,j}i∈[m],j∈[R], where Mi,j denotes the behavior of party Pi in round j.
In the proof of security we will also use the circuit M , the composition of
all Mi,j , which takes in all parties’ initial states and outputs the combined
output of the protocol.

– The protocol is communication-oblivious: during round j, each party Pi sends
messages to a prescribed number of parties, each of a prescribed number of
bits, and that these recipients and message lengths are efficiently computable
independent of Pi’s state in round j.

– Mi,j takes as input Pi’s state σj−1 ∈ {0, 1}≤s at the end of round j − 1,
and outputs Pi’s updated state σj . We assume σj includes Pi’s outgoing
messages for round j, and that these messages are at a predetermined location
in σj . Let MPCMessages(i, j) be an efficient algorithm which produces a set
{(i′, si′ , ei′)}, where σ[si′ : ei′ ] is the message for Pi′ .

– At the end of each round j, Pi appends all messages received in round j to
the end of σj in arbitrary order.

– The parties’ input lengths are all lin, and the output length is lout.

We assume the following about the Threshold FHE (TFHE) scheme:

– For simplicity, we assume each ciphertext ct has size blowup λ.
– If ct is a valid ciphertext for message m, then ct[λ · (i − 1) : λ · i] is a valid

ciphertext for the i-th bit of m.
– We assume the TFHE scheme takes an implicit depth parameter, which we

set to the depth of M ; we omit this in our descriptions for simplicity.
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5.2 The Protocol

We now give the secure MPC protocol. The protocol proceeds in two phases:
first, each party encrypts its initial state under pk, and the parties carry out
an encrypted version of the original (insecure) MPC protocol using the TFHE
evaluation function. Second, P1 distributes the resulting ciphertext, which is an
encryption of the output, and all parties compute and combine their partial
decryptions so that P1 learns the decrypted output. This second phase crucially
relys on the fact that the TFHE scheme partial decryptions can be combined
locally in a tree.

The formal description of the protocol is below. Note that we use two sub-
protocols Distribute and Combine, which are given after the main protocol.

Short Output Protocol

Setup: Each party Pi knows a public key pk along with a secret key ski,
where (pk, sk1, . . . , skm) ← TFHE.Setup(1λ,m).

Input: Party Pi has input xi and randomness ri to the underlying MPC
protocol.

Encrypted MPC Phase: For the first R rounds, the behavior of each
party Pi is as follows:

– Before starting: Pi computes ctσi,0 ← TFHE.Encpk((xi, ri)), its
encrypted initial state.

– During round j: Pi starts with a ciphertext ctσi,j−1 , and does the
following:
1. Compute ctσi,j

← TFHE.Eval(Mi,j , ctσi,j−1)
2. For each (i′, si′ , ei′) ∈ MPCMessages(i, j), send

ctσi,j
[λ · si′ : λ · ei′ ] to party Pi′ .

3. For each encrypted message ctm received in round j, append to
ctσi,j

.

Distributed Output Decryption Phase: At the end of the encrypted
execution of the MPC protocol, P1’s resulting ciphertext ctσ1,R = cto is
an encryption of the output of the protocol, and the parties do the
following:
1. All parties: Run Distribute(cto).
2. Each party Pi: Compute cto,i ← TFHE.PartDecski

(cto).
3. All parties: Run Combine(TFHE.CombineParts, {co,i}i∈[m]); P1

obtains the resulting ρ.
4. Output: P1 runs TFHE.Round(ρ) to obtain a decryption of the

output of the underlying MPC protocol.
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Distribute(x):

Parameters: Let the fan-in f be s/(λ|x|). Let t = �logf m�.

Round k: In this round, the parents are all Pi such that i ≡ 0
(mod f t−k), and the children are all Pj such that j ≡ 0 (mod f t−k+1)
but j 
≡ 0 (mod f t−k). Each parent Pi sends x to all its child nodes.
The protocol stops after t rounds. After this point all nodes have x.

Combine(op, {xi}i∈[m]):

Parameters: Assume op is associative and commutative, |xi| = |xj | for
all i, j, and that |xiopxj | = |xi| = |xj |. Let the fan-in f be s/(λ|x|).

Start: Each node Pi sets xi,0 ← xi.

Round k: In this round, the parents are all Pi such that i ≡ 0 (mod fk),
and the children are all Pj such that j ≡ 0 (mod fk−1) but j 
≡ 0
(mod fk). Each child Pj sends xj,k−1 to its parent Pi. Pi sets
xi,k ← xjs,k−1opxjs+1,k−1op . . . opxje,k−1, where js is the index of the
first child of Pi, and je is the index of the last child.

End: After t = �logf m� rounds, P1 has x1,t = x1op . . . opxm.

5.3 Correctness and Efficiency

We refer to the full version of the paper [37] for the proofs of correctness and
efficiency.

5.4 Security

To prove security, we exhibit a semi-honest simulator for the protocol given
above. This simulator will generate a view of an arbitrary set of corrupted parties
using only the corrupted parties’ inputs and randomness and the output of the
protocol, which will be indistinguishable from the view of the corrupted parties in
an honest execution of the protocol. Note that the simulator receives the public
key which is assumed to be generated honestly by the TFHE setup algorithm,
and also receives the set I as input. This allows the corrupted set I to be chosen
based on the public key.

The behavior of the simulator is described below.
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Short Output Simulator

Input: The simulator receives the corrupted set I, the public key pk, the
corrupted parties’ inputs and randomness {(xi, ri)}i∈I , and, if 1 ∈ I, the
output y.

Simulated Setup: To generate the corrupted parties’ secret keys, the
simulator uses the TFHE simulated setup:
({skc,i}i∈I , σsim) ← TFHE.Sim.Setup(pk, I).
After initializing the PKI, the simulator carries out a virtual execution
of the protocol to generate the corrupted parties’ views.

Simulated Encrypted MPC Phase: For the first R rounds, the behavior
of the simulator is as follows:

– Before starting:
• For each corrupted party Pi: The simulator generates

uniform randomness ri and then encrypts Pi’s inputs and
randomness under the public key: ctσi,0 ← TFHE.Encpk((xi, ri)).

• For each honest party Pi′ : The simulator computes an
encryption of 0: ctσi,0 ← TFHE.Encpk((0|xi|, 0|ri|))

– During round j: The simulator carries out round j in the same
way as in the real world.

Distributed Output Decryption Phase: At the end of the encrypted
execution of the MPC protocol, the simulator has P1’s resulting
ciphertext ctσ1,R = cto. It then does the following:
1. On behalf of all parties: Run Distribute(cto).
2. For each corrupted Pi: Compute cto,i ← TFHE.PartDecski

(cto).
3. Invoke the TFHE simulator to obtain simulated partial decryptions:

{cto,i′}i	∈I ← TFHE.Sim.Query(M, {ctσi,0}i∈[m], y, [m] \ I, σsim), or if
1 
∈ I,
{cto,i′}i	∈I ← TFHE.Sim.Query(M, {ctσi,0}i∈[m],⊥, [m] \ I, σsim).

4. Compute cto,i ← TFHE.PartDecski
(cto).

5. On behalf of all parties: Run
Combine(TFHE.CombineParts, {co,i}i∈[m]); P1 obtains the resulting ρ.

6. Output: P1 runs TFHE.Round(ρ) to obtain a decryption of the
output of the underlying MPC protocol.

We refer to the full version of the paper [37] for the proof of indistinguisha-
bility between the real and ideal worlds.

On the source of randomness. The massively parallel computation model states
that a party should not incur a space penalty for the random coins it uses. For
simplicity, we did not address this part of the model in our construction, but
a simple modification allows our protocol to support arbitrarily many random
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coins. We can do this by having the randomness embedded in the circuit Mi,j

for each step of the underlying MPC protocol, and having each party rerandom-
ize the ciphertexts encrypting the MPC messages before sending, the standard
technique for circuit privacy in FHE, to hide this randomness.

6 Long Output

We now discuss our long-output result. The theorem we prove is below.

Theorem 7 (Secure MPC for Long Output). Assume the existence of an
n-out-of-n threshold FHE scheme with circular security, along with iO and LWE.
Suppose that s = N ε and that m is upper bounded by a fixed polynomial in N .
Let λ denote a security parameter, and assume λ ≤ s and that N ≤ λc for some
fixed constant c. Given any massively parallel computation (MPC) protocol Π
that completes in R rounds where each of the m machines has s local space,
and assuming Π results in each party having an output of size lout ≤ s, there
is a secure MPC algorithm Π̃ that securely realizes Π with semi-honest security
in the presence of an adversary that statically corrupts up to m − 1 parties.
Moreover, Π̃ completes in O(R) rounds, consumes at most O(s) · poly(λ) space
per machine, and incurs O(m · s) · poly(λ) total communication per round.

The rest of this section is devoted to proving Theorem 7.

6.1 Assumptions and Notation

We assume, without loss of generality, the following about the massively parallel
computation (MPC) protocol which we will compile:

– The protocol takes R rounds, and is represented by a family of circuits
{Mi,j}i∈[m],j∈[R], where Mi,j denotes the behavior of party Pi in round j.
In the proof of security we will also use the circuit M , the composition of
all Mi,j , which takes in all parties’ initial states and outputs the combined
output of the protocol.

– The protocol is oblivious: during round j, each party Pi sends messages to a
prescribed number of parties, each of a prescribed number of bits, and that
these recipients and message lengths are efficiently computable independent
of Pi’s state in round j.

– Mi,j takes as input Pi’s state σj−1 ∈ {0, 1}≤s at the end of round j − 1,
and outputs Pi’s updated state σj . We assume σj includes Pi’s messages
for round j, and that these messages are at a predetermined location in
σj . Let MPCMessages(i, j) be an efficient algorithm which produces a set
{(i′, si′ , ei′)}, where σ[si′ : ei′ ] is the message for Pi′ .

– At the end of each round j, Pi appends all messages received in round j to
the end of σj in arbitrary order.

– Each party’s input is of size lin and its output is of size lout.
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We assume the following about the TFHE scheme:

– For simplicity, we assume each ciphertext ct has size blowup λ.
– If ct is a valid ciphertext for message m, then we assume ct[λ · (i − 1) : λ · i]

is a valid ciphertext for the i-th bit of m.
– We assume the TFHE scheme takes an implicit depth parameter, which we

set to the maximum depth of M , SSBDistSetup, or GenerateCircuit; we omit
this in our descriptions for simplicity.

6.2 The Protocol

We now give the secure MPC protocol. Recall that we are working under a PKI,
so every party Pi knows the public key along with its secret key ski. At a high
level, the protocol is divided into two main phases, as in the previous protocol,
with the major differences occurring in the second phase. In the first phase, as in
the short-output protocol, each party encrypts its initial state under pk, and the
parties carry out an encrypted version of the original (insecure) MPC protocol
using the TFHE evaluation function. In the second phase, the parties interact
with each other so that all parties obtain an obfuscation of a circuit which will
allow them to decrypt their outputs and nothing else. This involves carrying out a
subprotocol CalcSSBHash in which the parties collectively compute a somewhere-
statistically-binding (SSB) commitment to their ciphertexts along with some
randomness. Recall that an SSB hash is a construction Merkle-tree which is
designed specifically to enable security proofs when using iO.

We briefly explain CalcSSBHash. The purpose of this protocol is for all parties
to know an SSB commitment z to their collective inputs, and for each party Pi

to know an opening πi for its respective input. We will perform this process
over a tree with arity f (which we will specify later), mirroring the Merkle-like
tree of the SSB hash. In the first round, the parties use SSB.Start, and then
send the resulting label to the parties Pi′ , i′ ≡ 0 (mod f) (call these nodes the
parents). Each of these parties Pi′ then uses SSB.Combine on the labels {yi,0} of
its children to get a new combined label yi′,1, and then all the Pi′ parties send
their new labels to Pi′′ , i′′ ≡ 0 (mod f2). In addition, since the string each party
P ′

i now has a part of its children’s openings, namely yi′,1 and the set {yi,0} of
sibling labels, it sends πi,1 = (yi′,1, {yi,0}) to each of its children.

This process completes within 2�logf m� rounds, where in each round the
current layer calculates new labels and sends them to the new layer of parents,
and each layer sends any πi,j received from its parent to all its children. At the
end, all parties will know z and πi.

The formal description of the protocol is below. Note that we use the subpro-
tocols Distribute and CalcSSBHash; Distribute was defined in the previous section,
and CalcSSBHash is defined after the main protocol.
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Long Output Protocol

Setup: Each party Pi knows a public key pk along with a secret key ski,
where (pk, sk1, . . . , skm) ← TFHE.Setup(1λ,m).

Input: Each party Pi has input xi and randomness ri to the underlying
MPC protocol.

Encrypted MPC Phase: For the first R rounds, the behavior of each
party Pi is exactly as in the encrypted MPC phase of the short output
protocol.

Output Padding Phase: Assume without loss of generality each party’s
plaintext output in the underlying MPC protocol is of size L. After the
R rounds of the encrypted MPC protocol are done, each party Pi does
the following:
1. Compute a random string padi ∈ {0, 1}lout .
2. Calculate ctpadi

← TFHE.Encpk(padi).
3. Calculate cto,i ← TFHE.Eval(⊕, ctpadi

, ctσi,R
), the TFHE evaluation

of the circuit which pads σi,R with padi.

Output Circuit Generation Phase: At the end of the previous phase,
each party Pi has an encryption cto,i of their output padded with padi.
The parties then coordinate with each other in a manner which is now
described, so that at the end P1 has an obfuscation of the circuit Csk,z,
defined below.
1. Each party Pi chooses a uniform random string rh,i.
2. All parties run the short-output compiler from the previous section

over the protocol SSBDistSetup(2lout, 1, {rh,i}) defined below, so that
P1 obtains an SSB hash key h.

3. The parties run the protocol Distribute(h).
4. Each party chooses a uniform random string ro,i of size lout, and the

parties run the protocol CalcSSBHash(h, {(cto,i, ro,i)}) defined below,
so that each party Pi obtains an SSB commitment z and an opening
πi to (cto,i, ro,i).

5. Each party chooses a uniform random string riO,i, and the parties
run the short-output compiler over the protocol
GenerateCircuith,z({(ski, riO,i)}) defined below, so that P1 obtains an
obfuscation C ′ of the circuit Cz,sk, also defined below.

6. The parties run Distribute(C ′).

Offline Output Decryption Phase: Once every party knows C ′, each
party Pi can run C ′(i, cto,i, πi) to obtain y′

i, Pi’s padded output under
the original MPC protocol. Pi can then compute yi ← yi ⊕ padi.
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CalcSSBHash(h, {xi}i∈[m]):

Input: Each party Pi has a key h and xi. In this protocol we will
number the parties starting at 0 (so the first party will be P0).

Parameters: Let λ ≤ s. Assume h is an SSB hash which has been
initialized with fan-in f = s1/2λ/|x|1/2 and t = �logf m�.

Before starting: Each party Pi first computes ← SSB.Start(h, xi) to
obtain a string yi,0 of size λ.
When carrying out the protocol, we will divide the parties into subsets.
Let Sr = {Pi | i ≡ 0 (mod fr)} (and let S0 = {Pi}i∈[m]), let the set of
children for i in Sr be Di,r = {Pj | j ≡ 0 (mod fr−1) and i ≤ j ≤ i +
fr}, and let the parent of i in Sr be qi,r = fr�i/fr�.
For k = 1, . . . , �logf m� + 1, do the following:

Round k: In this round, the parties in the sets Sk−t,
t = 1, 3, . . . , 2�k/2� − 1 will participate.

– Each party Pi in Sk−1 does the following:
1. If k − 1 > 0, receive yj,k−2 from each Pj ∈ Di,k−1

2. If k − 1 > 0, calculate
yi,k−1 ← SSB.Combine(h, {yj,k−2}Pj∈Di,k−1), and send
(yi,k−1, {yj,k−2}j∈Di,k−1 to all parties Pj , j ∈ Di,k−1.

3. Send yi,k−1 to Pqi

– Each party Pj in Sr for r = 0, . . . , k − 2 does the following:
1. Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′ ) from Pqj

2. If so, append πj,r′ to πj .
3. If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

For k′ = �logf m� + 2, . . . , 2�logf m� + 1:

Round k′: Each party Pj in Sr for r = 0, . . . , �logf m� does the following:
1. Check if received πj,r′ = (yi,r′ , {yj′,r′−1}j′∈Di,r′ ) from Pqj

2. If so, append πj,r′ to πj .
3. If r > 0, send πj,r′ to all Pj′′ ∈ Dj,r.

Output: The protocol stops after 2�logf m� rounds, and every party Pi

knows the SSB tree root y and the opening πi of xi.
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SSBDistSetup(l, i∗, {rh,i}):

Parameters: Let λ ≤ s. Let the fan-in f be s1/2λ/l1/2 and d = �logf m�.
1. Parties run Combine(+, {rh,i}) so that P1 gets rh =

∑
rh,i.

2. P1 generates an SSB hash key h ← SSB.Setup(1λ, l, d, f, i∗; rh) with l
as the block size and i∗ as the statistically binding index.

Output: At the end of the protocol, P1’s output is defined as h. All other
parties have blank output.

GenerateCircuith,z({(ski, riO,i)}i∈[m]):

Input: P1 the SSB commitment z; each party Pi has ski.
1. Parties run Combine(+, {ski}) so that P1 has the master secret key

sk.
2. Parties run Combine(+, {riO,i}) so that P1 has riO =

∑
riO,i.

3. P1 calculates the obfuscation C ′ ← iO(Csk,z; riO).

Output: At the end of the protocol, P1’s output is defined as C ′. All
other parties have blank output.

Circuit Ch,sk,z(i, cto,i, ro,i, πi):

1. If SSB.Verify(h, z, i, (cto,i, ro,i), πi) = 1:
(a) Output TFHE.Decsk(cto,i).

1. Otherwise, output ⊥.

6.3 Correctness and Efficiency

We refer to the full version of the paper [37] for the proofs of correctness and
efficiency.

6.4 Security

Let I ⊂ [m] be the set of corrupted parties. We describe the behavior of the sim-
ulator, which takes as input 1λ, I, the public key, the parties’ outputs {yi}i∈[m],
and the corrupted parties’ inputs {xi}i∈I , and outputs the secret keys and the
view of the corrupted parties. Note that as in the short output construction the
construction of this simulator allows the corrupted set I to be chosen based on
the public key.
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Long output protocol simulator:

Input: The simulator receives the corrupted set I, the public key pk, the
corrupted parties’ inputs and randomness {(xi, ri)}i∈I , and the
corrupted parties’ outputs {yi}i∈I .

Simulated Setup: To generate the corrupted parties’ secret keys, the
simulator uses the TFHE simulated setup:
({skc,i}i∈I , σsim) ← TFHE.Sim.Setup(pk, I).
After initializing the PKI, the simulator carries out a virtual execution
of the protocol to generate the corrupted parties’ views.

Simulated Encrypted MPC Phase: The simulator performs this phase in
exactly the same way as in the short output simulator.

Output Padding Phase: After the R rounds of the encrypted MPC
protocol are done, the simulator does the following on behalf of each Pi:
1. Compute a random string padi ∈ {0, 1}lout .
2. If i ∈ I, calculate ctpadi

← TFHE.Encpk(padi); otherwise calculate
ctpadi

← TFHE.Encpk(0lout).
3. Calculate cto,i ← TFHE.Eval(⊕, ctpadi

, ctσi,R
), the TFHE evaluation

of the circuit which pads σi,R with padi.

Simulated Output Circuit Generation Phase: At the end of the
encrypted execution of the MPC protocol, each party Pi has an
encryption cto,i of their output. The simulator then simulates the output
circuit generation phase in the following manner, so that at the end P1

has an obfuscation of the circuit C̃h,k,z, defined below.
1. The simulator uses the short-output simulator from the previous

section for the compiled SSBDistSetup protocol, where the protocol
output is set to be h ← SSB.Setup(1λ, 2lout, f, d,m, r) for uniform
random r.

2. The simulator runs the protocol Distribute(h) on behalf of all parties.
3. The simulator chooses a PRF key k.
4. The simulator sets ro,i = PRFk(i) ⊕ yi ⊕ padi for all i ∈ I, and ro,i

uniformly random for i 
∈ I.
5. The simulator runs the protocol CalcSSBHash(h, {(cto,i, ro,i)}) on

behalf of all parties, so that each party Pi obtains an SSB
commitment z and an opening πi to (cto,i, ro,i).

6. The simulator uses the short-output simulator from the previous
section for the compiled GenerateCircuit protocol, where the protocol
output is set to be the obfuscation C̃ ′ = iO(C̃h,k,z).

7. The simulator runs Distribute(C ′) on behalf of all parties.
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Circuit C̃h,k,z(i, cto,i, ri,c, πi):

1. If SSB.Verify(z, i, (cto,i, ri,c), πi) = 1:
(a) Output ri,c ⊕ PRFk(i).

2. Otherwise, output ⊥.

We refer to the full version of paper [37] for the proof of indistinguishability
between the real and ideal worlds.
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Abstract. Incoercible multi-party computation [Canetti-Gennaro’96] allows
parties to engage in secure computation with the additional guarantee that the
public transcript of the computation cannot be used by a coercive external entity
to verify representations made by the parties regarding their inputs to and outputs
from the computation. That is, any deductions regarding the truthfulness of such
representations made by the parties could be made even without access to the
public transcript. To date, all incoercible secure computation protocols withstand
coercion of only a fraction of the parties, or else assume that all parties use an
execution environment that makes some crucial parts of their local states physi-
cally inaccessible even to themselves.

We consider, for the first time, the setting where all parties are coerced, and
the coercer expects to see the entire history of the computation. In this setting we
construct:
– A general multi-party computation protocol that withstands coercion of all

parties, as long as none of the coerced parties cooperates with the coercer,
namely they all use the prescribed “faking algorithm” upon coercion. We
refer to this case as cooperative incoercibility. The protocol uses deniable
encryption and indistiguishability obfuscation, and takes 4 rounds of com-
munication.

– A general two-party computation protocol that withstands even the “mixed”
case where some of the coerced parties cooperate with the coercer and dis-
close their true local states. This protocol is limited to computing functions
where the input of one of the parties is taken from a small (poly-size) domain.
This protocol uses deniable encryption with public deniability for one of the
parties; when instantiated using the deniable encryption of Canetti, Park, and
Poburinnaya [Crypto’20], it takes 3 rounds of communication.

Finally, we show that protocols with certain communication pattern cannot be
incoercible, even in a weaker setting where only some parties are coerced.
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1 Introduction

Consider a tight-knit society whose members regularly meet behind closed doors and
run their society’s business with complete privacy. An external entity might be able
to deduce information on the nature of the interactions that take place in the society’s
meetings from the external behavior of the society members, but no direct information
on what really takes place at the meetings can be obtained. As long as the meetings are
not directly monitored by the external entity, this continues to be the case even if the
external entity has coercive power over the society’s members and demand that they
fully disclose the contents of the meetings: All that the coercive entity can obtain is the
word of the members, which may or may not be truthful.

Can we reproduce this situation online, where the society members communicate
over public channels that are accessible to the external entity? That is, can the society
members engage in a multiparty computation that allows them to limit the power of the
external coercive entity to the power that it had when they met behind closed doors?
Furthermore, can they do so even in the case where all members are coerced, and the
coercive entity now expects to have the complete history of the interaction and the local
states of all parties, including all the local randomness used? Indeed, doing so essentially
results in rewriting the entire history of a system, in a way that’s undetectable to anyone
that did not directly witness the events at the time and location where they took place.

This is a special case of the incoercible multiparty computation problem, first stud-
ied in [CG96]. In a nutshell, a multiparty protocol is incoercible if it enables the partic-
ipants to preserve the privacy of their inputs and outputs even against coercive adver-
saries who demand to see the entire internal state of coerced parties1. Towards this end,
each party is equipped with a “faking procedure” that enables it to run the protocol as
prescribed on the given input x, obtain an output y, and then, given arbitrary values
x′, y′, generate a “fake internal state” (or, equivalently, fake local randomness) r′ such
that the public communication transcript of the party is consistent with input x′, output
y′ and randomness r′. Moreover, we would like to guarantee more global incoercibility
properties. Specifically: (a) As long as the inputs and outputs claimed by the coerced
parties are consistent with the evaluated function, the entire information reported by
the parties should look like an honest execution of the protocol with these inputs and
outputs; this should hold regardless of whether the inputs and outputs are true or fake
or partially true and partially fake. (b) If the claimed inputs and outputs are not globally
consistent with the evaluated function, the coercer should not be able to deduce any
information which it cannot deduce given the inputs and outputs alone - such as, e.g.,
the identities of parties which reported fake values.

Incoercibility might indeed appear unobtainable at first. Still, [CG96] construct an
incoercible general multi-party function evaluation protocol, for the case where only a
minority of the parties are coerced, and furthermore the coercions takes place at the end
of the interaction. The [CG96] protocol assumes sender-deniable encryption [CDNO96,
SW14]. The works of [DKR14] and [CGP15] extend these results to the case where all
but one of the parties are coerced. The works of [MN06,AOZZ15] consider the case
where all parties are coerced - in fact they consider an even more adversarial setting of
active coercions, where the coercer may force parties to deviate from the protocol, to

1 In [AOZZ15] this is referred to as semi-honest incoercibility.
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make it harder for them to deceive the coercer. However, they assume that the parties
have access to secure hardware whose internals are not available even to the parties
themselves.

Still, whether incoercibility is at all possible in a setting where all parties are
coerced, the communication is public, and the parties have full access to the transcripts
of their own internal computations, has remains open. Indeed, in this case the adversary
obtains an entire transcript of a computation, which can be verified step by step. Still, it
should be unable to tell a fake transcript from a real one.

Our Results. We consider the case where the parties have full access to the computing
devices they use, all communication is public, and all parties are eventually coerced.
Still, we concentrate on the case where coercions take place only at the end of the
protocol. We consider two main settings, or levels, of incoercibility:

Cooperative Incoercibility. In the cooperative incoercibility setting, it is guaranteed that
all parties “cooperate” with each other, in a sense that either they all present their real
randomness (and real inputs and outputs), or they all present randomness computed via
their faking algorithms, along with the corresponding input and output values (which
may be either fake or real). This scenario corresponds to a standard setting where a
group of participants wants to protect itself against an external coercer. (We stress that
we assume no additional coordination between parties: each party runs its faking algo-
rithm locally, only based on the information available to that party. Further, the inputs
and outputs claimed by the parties need not necessarily be globally consistent with each
other.)

Full Incoercibility. In this setting, there are no guarantees of behavior of the parties.
In particular, upon coercion, some parties may decide to present their real randomness
(and real inputs and outputs), and some parties may decide to present their fake ran-
domness (and real or fake inputs and outputs). Further, the claimed inputs and outputs
could even be globally inconsistent - and still the protocol has to hide everything which
is not revealed by inputs and outputs alone (e.g., the identities of the liars could still
remain hidden). This definition additionally gives protection in the setting where par-
ties have conflicting insentives and might act against each other; we will refer to the
case where parties present mixed (real and fake) randomness as off-the-record case.
Thus, full incoercibility incorporates both cooperative incoerciblity and off-the-record
incoercibility.

Moreover, in full incoercibility we even allow the environment to make standard
(adaptive) corruption requests, in addition to coercion requests.2

We show:

– A cooperatively incoercible protocol for general secure multi-party function evalua-
tion. Our protocol works in the common reference string (CRS) model and requires
4 rounds of communication.

2 Note that the adversary receives the party’s true internal state both in case of a corruption and
in case of a coercion, if that party decides to tell the truth. However, in the former case the
adversary knows that the given internal state is authentic, and in the latter it doesn’t.
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– A fully incoercible protocol for secure two-party function evaluation, for functions
with poly-size input domains. For this protocol, we build an incoercible oblivious
transfer (OT) from any deniable encryption with certain properties. In particular, our
construction, instantiated with deniable encryption of [CPP20], yields a 3-message
protocol in the CRS model.

– For n ≥ 3, no n-party protocols with a certain communication pattern can be secure
even against coercion of 2 parties, except for trivial functions.

On the Applicability of Off-the-Record/Full incoercibility. First, with cooperative inco-
ercibility only, the adversarial parties may be able to provide an unequivocal proof that
other parties are lying; thus, this type of incoercibility doesn’t protect the participants
against each other. In contrast, incoercibility in the off-the-record case guarantees that
the coercer will not be able to use the protocol transcript to verify claims of parties—
any deduction made by the coercer will be exclusively based on “taking the word” of
the coerced parties.

Furthermore, cooperatively incoercible protocols may drop their security guarantees
if some parties give real coins to the coercer, and other parties give fake coins. Because
of that, cooperatively incoercible protocols impose a classical prisoner’s dilemma onto
the participants, due to the fact that the identities of liars could be revealed by such
a protocol. Indeed, upon coercion, each party has to make a decision - whether to lie
or tell the truth. On one hand, for each party it is better to tell the truth - otherwise it
may get caught lying, if some other party tells the truth. On the other hand, all parties
jointly are better off if they all present fake randomness - no one gets caught, and their
inputs remain protected. In contrast, if a protocol remains incoercible even in the off-
the-record setting, once parties have already decided on which inputs and outputs to
disclose, for each party it is strictly better to disclose fake randomness (even if it still
reports the true inputs and outputs). Indeed, no matter how other parties act, the protocol
guarantees that nothing is revealed beyond inputs and outputs.

1.1 Related Work

Prior Work on Generic Incoercible MPC. The prior work on generic incoercible MPC
can be split into two parts, depending on whether it focuses on semi-honest or active
coercion (in the language of [AOZZ15]). Intuitively, a coercer is semi-honest if it lets
the party participate in the protocol as prescribed (by following the instructions of the
protocol), but after that demands to see the entire view of that party and checks whether
it matches the claimed input of that party. In contrast, an active coercer assumes full
control over the party and in particular may instruct the party to deviate from the proto-
col, in order to make it harder for the party to deceive the coercer.

As already noted in [BT94] in the context of secure voting, active coercion is clearly
unachievable with cryptography alone: coerced parties have no hope of lying about their
inputs if the adversary watches over their shoulder during the computation. As a result,
security against active coercion requires some form of physical unaccessibility assump-
tion. Indeed, to come up with the protocol secure against active coercion, [AOZZ15]
makes use of a stateful hardware token which can generate keys, distribute them to all
parties, and encrypt.
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In contrast, semi-honest incoercibility is well within the reach of “digital cryptogra-
phy”, without the need to assume inaccessible hardware: sender-deniable encryption
and encryption deniable for both parties was constructed by [SW14] and [CPP20],
respectively, from indistinguishability obfuscation and one-way functions, and it was
shown back in 1996 how to transform any sender-deniable encryption into incoercible
MPC which withstands coercion of up to half participants [CG96]. The protocols of
[CGP15,DKR14], originally devised as adaptively secure protocols withstanding cor-
ruption of all parties, can withstand coercion of a single party.

Note that, although from a practical standpoint active incoercibility is stronger and
more desirable than semi-honest one, from theoretical perspective semi-honest and
active incoercibility are two completely different and incomparable problems. Indeed,
achieving semi-honest incoercibility requires solving the problem of “inverting the
computation” - i.e. finding randomness which makes some computation appear to stem
from a different input (note that this problem is also interesting on its own, without
its connection to incoercibility). Active incoercibility, as discussed above, inherently
requires inaccessible hardware to hide parts of the computation and thus avoids the
inverting problem altogether; instead, the goal there is to ensure that the active coercer
cannot force parties to output something committing, while making the underlying
physical assumptions as realistic as possible.

Impossibility Results. [CG96] shows that semi-honest incoercible computation is not
achievable against unbounded adversaries; this impossibility holds even in the pres-
ence of private channels. To the best of our knowledge, in the computational setting no
impossibility results specific to incoercible MPC were known. However, the impossibil-
ity of non-interactive (i.e. 2-message) receiver-deniable encryption [BNNO11] imme-
diately implies that 2-round incoercible MPC is impossible, even against coercion of a
single party which receives the output3 (in particular, the 2-round protocol of [CGP15]
only withstands coercion of a party which doesn’t receive the output); this impossibility
holds for all functions which imply a bit transmission.

On the Difference Between the Definitions of Incoercible MPC in [CG96] and [CGP15].
In this work we use the definition of incoercible computation from [CGP15]. We briefly
explain how it differs from the one in [CG96]. The definitions of [CG96] and [CGP15]
are conceptually similar but differ in case when an environment instructs a party to fake,
but sets its fake input and output to be exactly the same as its real input and output. In
this case the definition in [CG96] instructs the party to output its true randomness,
while the definition in [CGP15] instructs the party to run the fake algorithm anyways
and output the resulting fake randomness.

3 Indeed, any incoercible protocol for a message transmission functionality can be turned into
a 2-message receiver-deniable encryption, by letting the party R which receives the output
be a receiver of deniable encryption, and letting the sender run the MPC protocol on behalf
of all other parties. In particular, the first message (sent by the receiver) will consist of all
messages sent by R in the first round of the protocol, and the second message (sent by the
sender) will consist of all messages sent to R in rounds 1 and 2. Messages sent by R in round
2 of MPC protocol do not have to be sent, since S doesn’t receive the output, nor does S have
to deny later.
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This difference may appear minor - indeed, if a party is not going to lie about its
inputs nor outputs, why fake the randomness? Nevertheless, there are situations when
a party may want to fake its randomness anyways. Indeed, as we discuss in the tech-
nical overview, our incoercible MPC protocol only retains its incoercibility properties
as long as all parties disclose their fake coins to the coercer. In particular, there may
be a party which has no interest in lying about its own input, but which anticipates that
other participants may need to lie about theirs, and which thus decides to give out its
fake randomness to make sure its true randomness doesn’t compromise other parties’
security.

Deniable Encryption. Perhaps the most relevant prior work for us is the interactive
deniable encryption of [CPP20], which we use as a building block in all our protocols. It
is an encryption scheme which withstands coercion of both the sender and the receiver
even in the off-the-record setting. The protocol requires a common reference string,
takes 3 rounds, and assumes subexponential indistinguishability obfuscation and one
way functions.

1.2 Technical Overview

On the Definition of Incoercible Computation. We use the definition of incoercible
computation from [CGP15], which can be seen as the “UC equivalent” of the definition
of [CG96], with one critical difference. (See Sect. 1.1 for the discussion of the difference
between the two.) Specifically, this definition models coercion as the following special
form of corruption: When a party is notified that it is coerced, it first contacts the its
caller to ask whether to disclose true or fake randomness, and if fake, what value (input
and output) to report to the coercer. The response can be either “fake” together with an
input and an output, or “tell the truth”. In the former case, the coerced party runs the
faking algorithm with the prescribed value; in the latter case it reveals its actual internal
state.

In the ideal process, when the simulator asks to coerce a party, the ideal function-
ality obtains from the environment either the value v to be presented, or the “tell the
truth” directive. If the response was a value v, then the functionality forwards v to the
simulator. If the response was “tell the truth”, then the ideal functionality provides the
actual input and output values of the coerced party to the simulator. Crucially, the sim-
ulator isn’t told if this value is true or fake. Intuitively, the fact that the simulator can
simulate the protocol without learning whether the inputs were real or fake, means that
in the real world the adversary doesn’t learn this information either.

This definition in particular means that the protocol must maintain the best possible
incoercibility even when claimed inputs and outputs are inconsistent. For instance, even
in case of clearly inconsistent inputs and outputs, the total number of liars or their
identities may be still hidden; thus the real-world protocol is required to provide the
same guarantee.

We note that we still allow standard adaptive corruption requests, in addition to
coercion requests.

We refer to this setting as full incoercibility. The case of cooperative incoercibility
is obtained from the above definition by restricting the environment in two ways: first,
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it must either provide “tell the truth” to all parties, or else provide it to no participant;
second, we prohibit corruption operation.

As noted in [CG96], this definition of incoercibility immediately implies semi-
honest adaptive security.

Obstacles to Incoercibility: Inversion and Coordination. We start by giving some intu-
ition for why it is hard to build incoercible protocols. For instance, consider a two-party
computation protocol based on Yao garbled circuits [Yao86], where the sender sends
a garbled circuit, together with labels for the inputs of the sender and the receiver; the
latter is sent via oblivious transfer (OT). If both the sender and the receiver become
coerced and decide to lie about their inputs and outputs, then:

– the receiver should demonstrate the adversary how it receives (potentially incorrect)
output of the OT corresponding to a different receiver bit. At the same time, the
receiver shouldn’t be able to obtain the true OT output for that bit - indeed, this
would violate sender privacy.

– the sender should explain how the garbled circuit was generated, i.e. provide its
generation randomness. The problem is, the sender has already “committed” to its
own labels (by sending them over the public channel), and now it has to come up
with different generation randomness such that those labels, initially corresponding
to its true input, now represent a fake input.

– further, this generation randomness also has to be consistent with the labels of the
receiver and fake input of the receiver, which the sender doesn’t know.

This example already demonstrates two difficulties with designing incoercible pro-
tocols. One is the problem of inversion, where some or all parties have to invert some
randomized function f(x; r) with respect to a different x′ (like the generation of a gar-
bled circuit)4. The other is a problem of coordination, where parties have to lie about
their intermediate states in a consistent way, even though parties do not know fake
inputs and outputs of each other.

These problem are reminiscent of the problems arising in the context of adaptive
security. However, incoercibility is much stronger than adaptive security. Indeed, in the
setting of adaptive security fake randomness is only created by a simulator in the proof,
as part of a mental experiment, and not by parties in the real protocol. In particular,
the simulator may keep secret trapdoors to help with generating fake randomness (thus
simplifying the problem of inversion), and the fact that all fake randomness is generated
by the same entity eliminates the problem of coordination. In contrast, in incoercible
protocols, the parties themselves should be able to fake their randomness, and they must
do so independently of each other (after the protocol finishes).

These issues manifest themselves even in a simpler task of a message transmis-
sion function. To date, despite having a number of clean and modular constructions of
adaptively secure (or, non-committing) encryption schemes [DN00,CDMW09,BH92,
HOR15,HORR16,YKT19] we have only one construction of a deniable encryption

4 Note that in the model where not everybody is coerced, it is easy to avoid the inversion problem
altogether by, e.g., secret-sharing r across all parties, thus guaranteeing that the coercer never
gets to see r.
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scheme (withstanding coercion of both parties), and this construction is very non-
modular: it is built from the ground up using obfuscation, and both the construction
and its security proof are quite heavy [CPP20].

Thus, we have two potential approaches for designing incoercible MPC. One is
to build the whole protocol from scratch, perhaps using obfuscation, similar to the con-
struction of deniable encryption; needless to say, such a construction is likely to be even
more complicated. The other approach is to use deniable encryption as a primitive and
explore how much incoercibility can we obtain by composing it with other primitives.

In this work we take the latter approach. We show how to combine deniable encryp-
tion with adaptive security to obtain an incoercible protocol, and how to turn certain
deniable encryption schemes into incoercible OT, thus yielding incoercible 2PC with
short inputs.

Our Setting. We allow parties (and adversaries) to have an access to a common refer-
ence string (CRS), which has to be generated only once and is good for unboundedly
many executions. However, we require that protocols should only rely on cryptographic
assumptions (as opposed to inaccessible hardware assumptions). We consider the case
where coercions and corruptions happen only after the execution has finished. Our two
main settings are the setting of cooperative incoercibility, where security is guaranteed
to hold only as long as partitipants lie or tell the truth simultaneously, and the setting of
full incoercibility, which doesn’t have such a restriction.

We present semi-honestly incoercible protocols, which withstand coercion of all
participants. Faking procedure of each party is local: that is, each party fakes only based
on its own real and fake inputs and outputs and the information made available by the
protocol. In particular, neither party knows fake inputs of other parties, nor does it know
whether other parties are corrupted or coerced, and if coerced, whether they tell the truth
or li.e.

Deniable Encryption. A common building block in all our protocols is a deniable
encryption scheme [CDNO96], which can be thought of as an incoercible protocol for
the message transmission functionality. We require deniable encryption which remains
deniable even when both parties are coerced, and even in the off-the-record setting;
as of September 2020, the only such protocol is given by [CPP20]. Roughly, deniable
encryption give the following security guarantee:

1. the adversary cannot distinguish whether it sees
– real randomness s of the sender, real randomness r of the receiver, and the com-
munication transcript for plaintext m, or

– fake randomness of the sender s′ consistent with fake m, fake randomness of
the receiver r′ consistent with fake m, and the communication transcript for
plaintext m′.

2. (off-the-record setting) the adversary cannot distinguish whether it sees
– real randomness s of the sender, fake randomness r′ of the receiver consistent

with m′, and the communication transcript for plaintext m,
– fake randomness of the sender s′ consistent with m, real randomness of the
receiver r consistent with m′, and the communication transcript for plaintext
m′,
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– fake randomness s′ of the sender consistent with m, fake randomness r′ of the
receiver consistent with m′, and the communication transcript for plaintext m′′.

This should hold for any, potentially equal, m,m′,m′′.

Incoercible Oblivious Transfer and 2PC with Short Inputs. Incoercible oblivious
transfer has the functionality of a standard oblivious transfer - i.e. it allows the receiver
to obtain exactly one value xb (corresponding to its own input b), out of two values
x0, x1 held by the sender. However, it additionally provides security guarantees against
a coercer: that is, even if the coercer demands to see all randomness used by both parties
in the protocol, parties can successfully lie about their inputs. That is, the sender can
claim that it used any, possibly different inputs x′

0, x
′
1 (and provide convincing random-

ness supporting this claim). Similarly, the receiver can claim it used a possibly different
input bit b′, and received a different output x′ of its choice.

This primitive can be constructed from any receiver-oblivious deniable encryption
(DE) with public receiver deniability. Here “public receiver deniability” means that the
faking algorithm of the receiver doesn’t take true receiver coins as input (thus anyone
can fake on behalf of the receiver). “Receiver-oblivious” DE means that the adversary
cannot tell if the receiver messages were generated honestly (following the algorithm
of DE), or instead chosen at random (in this case, we say that these messages were
generated obliviously); further, this indistinguishability should hold even given fake
random coins of the sender. We note that deniable encryption of [CPP20] has public
receiver deniability, and in the full version we show that it is also receiver-oblivious.

Theorem 1. Any receiver-oblivious deniable encryption, which remains deniable even
in the off-the-record setting and has public receiver deniability, can be converted into
fully incoercible 1-out-of-m oblivious transfer, for any polynomial m, in a round-
preserving way.

The construction of incoercible OT is inspired by the construction of adaptively
secure OT from non-committing (adaptively secure) encryption [CLOS02]. Namely, let
x0, x1 be the inputs of the sender, and b be the input of the receiver. The parties should
run in parallel two instances of DE: DE0 and DE1. The sender’s input to each DEi is
xi, for both i = 0, 1. The receiver should pick random r and generate messages of
DEb honestly (using r as randomness of the receiver in the protocol), while messages
of DE1−b should be generated by the receiver obliviously.

It is easy to see that the receiver can learn only xb but not x1−b, since the receiver
knows r, which allows it to decrypt DEb, but doesn’t know randomness for DE1−b and
therefore cannot decrypt it. The sender, in turn, doesn’t learn the receiver bit b, since it
doesn’t know which execution was generated obliviously by the receiver. Further, this
OT is indeed incoercible: the sender can directly use deniability of DE to claim that
different inputs x′

0, x
′
1 were sent. The receiver can lie about its input b by claiming that

DEb was generated obliviously, and by presenting fake r′ as randomness for DE1−b.
This fake r′ can be generated by using the faking algorithm on DE1−b and y′, where y′

is the desired fake output of the oblivious transfer. Note that the receiver doesn’t know
true coins for obliviously generated DE1−b, but it can generate fake r′ anyway due to
the fact that receiver deniability is public.
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This construction can be extended to 1-out-of-m incoercible OT in a straightforward
way.

Incoercible 2PC for Short Inputs from incoercible OT. Recall that, when the number m
of possible inputs of some party is polynomial, standard 1-out-of-m OT immediately
implies general 2PC [GMW87]: The OT sender should input to the OT m possible
values of f(x, y), corresponding to m possible values of the receiver’s input y, and a
single sender’s input x. Using incoercible 1-out-of-m OT in this protocol immediately
makes the resulting 2PC protocol incoercible.

Incoercible MPC from OT? Despite the fact that standard OT implies general secure
multi-party computation [GMW87], it is not clear whether incoercibleOT implies inco-
ercibleMPC as well. In particular, simply plugging (even ideal) incoercible OT into the
protocol of [GMW87] doesn’t seem to result in an incoercible protocol, even just for
two parties. The problem here is the following: recall that this protocol works by letting
the parties compute additive secret shares of each wire of the circuit of f(x1, x2). On
one hand, since in the normal execution two shares add up to the value of the wire of
f(x1, x2), the same should hold in the fake case: fake secret shares should add up to the
value of the wire of f(x′

1, x
′
2). However, it is not clear how, upon coercion, parties can

compute these fake shares locally, without the knowledge of the other party’s input.

Incoercible MPC. A natural starting point for building an incoercible MPC is to make
parties run any secure MPC protocol, where each message is encrypted under a sepa-
rate instance of deniable encryption. If in addition the parties are allowed to communi-
cate outside of the view of the adversary - e.g. by meeting physically - and if they are
comfortable sharing their fake inputs with each other, this method immediately gives
incoercible MPC. Indeed, upon coercion parties can use their out-of-band channel to
all agree on some transcript tr′ = tr({x′

i, r
′
i}) of an underlying MPC executed on their

fake inputs. When coerced, each party can use deniability of encryption to lie (by pre-
senting consistent randomness and keys of deniable encryption) that it sent and received
messages of tr′. In addition, each party should claim that x′

i, r
′
i are the true input and

randomness which it used to compute the messages of tr′.
However, this protocol fails when no out-of-band interaction is possible, since par-

ties do not have means to agree on tr′. To fix this problem, we combine deniability
with adaptive security. That is, we use MPC which is adaptively secure and has a spe-
cial property called corruption oblivious simulation (defined in [BCH12] in a setting of
leakage tolerance). Roughly, it means that there is a “main” simulator which simulates
the transcript, and in addition each party has its own, “local” simulator which simulates
the coins of that party, using that party’s inputs only and the state of the “main” sim-
ulator (but not the inputs of other parties). If parties had a way to agree on the same
simulation randomness rSim, then upon coercion, they could do the following: First
they should run the main simulator on rSim to generate (the same) simulated transcript
tr′ of an underlying adaptive MPC, and then each party should use its own local simu-
lator to locally compute fake coins consistent with this simulated transcript and its own
input. Finally, as before, each party can use deniability of encryption to claim that the
messages of tr′ were indeed sent.
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It remains to determine how the parties agree on the random coins rSim of the main
simulator. A natural approach to do this is to let one of the parties (say, the first) choose
rSim at random and send it, encrypted under deniable encryption, to each other party
at the beginning of the protocol, for case that they need to fake later. However, this
introduces another difficulty: now the adversary can demand to see rSim, and revealing
it would allow the adversary to check that the transcript was simulated and thus detect a
li.e. Therefore, instead of sending rSim, the first party should send randomly chosen seed
s to all other parties. This seed is not used by parties in the execution of the protocol.
However, upon coercion each party can use a pseudorandom generator to expand s into
a string rSim||s′, where rSim, as before, is used to produce the same simulated transcript
of an adaptive MPC, and s′ is what parties will claim as their fake seed (instead of a true
seed s). Note that it is safe to reveal s′ to the adversary, since s′||rSim is pseudorandom,
and therefore s′ cannot help the adversary to indicate in any way that tr′ was simulated.

We underline that security of this protocol is only maintains in the cooperative set-
ting. As a result, this protocol is useful in scenarios where parties “work together” and
are interested in keeping all their inputs secret, rather than turn against each other try-
ing to make sure others get caught cheating. We note however that the protocol remains
secure even if inputs of some parties are real and inputs of some other parties are fake
- as long as randomness of all parties is fake. Indeed, it might happen so that a certain
party is not interested in lying about its input, but still wishes the whole group of people
to succeed in deceiving; then this party may provide fake randomness for its real input,
thus not ruining the joint attempt to deceive, while achieving its own goals5. Further,
this protocol maintains the best possible security even in the case when the claimed
inputs and outputs are clearly inconsistent.

4-Round Protocol for Incoercible MPC. We now describe the same protocol more for-
mally and in particular show how to achieve 4 rounds of communication:

Theorem 2. It is possible to build cooperatively incoercible secure function evaluation
protocol from deniable encryption and adaptively secure MPC protocol with a global
CRS and corruption-oblivious simulator.

We need the following ingredients for our protocol:

– 2-round adaptively secure MPC aMPC with global CRS6 and corruption-oblivious
simulator, e.g. that of [CPV17].

– 3-round delayed-input7 deniable encryption DE, e.g. that of [CPP20]. While that
construction is not delayed-input, we observe that it is easy to turn any deniable
encryption into its delayed-input version. This can be done by letting the sender
send a randomly chosen key k using deniable encryption, and also send m ⊕ k in
the clear at the last round.

5 Note that this scenario highlights a subtle but important difference between the modelling of
coercion in [CG96] and [CGP15]. Indeed, in [CG96], if the party is given a real input, it has
to provide its true randomness.

6 The CRS of the protocol is said to be global, if the simulator can simulate the execution, given
the CRS (as opposed to generating the CRS on its own, possibly from a different distribution,
or with underlying trapdoors).

7 That is, only the third message of the sender depends on the plaintext.
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Then our protocol proceeds as follows:

1. In rounds 1−3 parties exchange the messages of the first round of aMPC, encrypted
under point-to-point deniable encryption.

2. In rounds 2 − 4 parties exchange the messages of the second round of aMPC,
encrypted under point-to-point deniable encryption. It is important that deniable
encryption requires its input only by the last round, since parties receive the mes-
sages of the first round of aMPC only after round 3.

3. In rounds 2 − 4 party 1 sends to each party randomly chosen seed, encrypted under
point-to-point deniable encryption. Note that each party receives the same value of
seed.

After round 4, parties learn all messages of aMPC and therefore can compute the
output. Note that our protocol is delayed input, since inputs are required only by round
3. Upon coercion, each party first computes fake transcript tr′ of aMPC. tr′ is com-
puted by running the “main” simulator of aMPC on rSim, where rSim is obtained by
expanding seed into seed′||rSim using a prg. (Note that parties use the same rSim and
therefore obtain the same tr′ upon coercion). Next, each party can use its local simu-
lator to produce fake coins consistent with tr′ and fake input x′. Therefore, each party
can claim that the transcript of the underlying protocol was tr′, and this claim will be
consistent with party’s own fake input, and across different parties. Finally, each party
should claim that the seed value sent by party 1 was in fact seed′.

Note that our construction crucially uses the fact that underlying adaptive MPC has
global CRS. Indeed, this allows to put this CRS as part of the final CRS of the protocol,
and lets parties simulate the transcript of underlying adaptive MPC with respect to that
CRS. Had the CRS been local, parties would have to generate it during the protocol
and thus eventually provide the adversary with the generation coins; yet, security of
protocols with local CRS usually holds only as long as the generation randomness of
this CRS remains private.

Impossibility of Incoercible MPC with Lazy Parties

Impossibility of Incoercible MPC with Lazy Parties. We show that unlike 2-party pro-
tocols, multiparty protocols with some communication structure cannot be incoercible
(this holds even against coercion of only 2 parties). Concretely, let us say that a party
is lazy, if it only sends its messages in the first and the last round of a protocol, but
doesn’t send anything in intermediate rounds (if any). In particular, in all 2 round pro-
tocols all parties are lazy by definition. We show that coercing a lazy party and some
output-receiving party allows to learn information about inputs of other parties, there-
fore rendering the protocol insecure for most functions:

Theorem 3. Assume there exists an n-party protocol withstanding 2 corruptions and 1
coercion for computing function f with a lazy party, where n ≥ 3. Then the function f
is such that for any inputs x1, . . . , xn it is possible, given x1, xn, and f(x1, . . . , xn), to
compute f(x, x2, . . . , xn) for any x.
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We consider this negative result to be especially important in light of the fact that
building fully incoercible protocols may require complicated obfuscation-based con-
structions. For instance, consider the following natural attempt to build a 3-round fully
incoercible protocol. Take deniable encryption of [CPP20] which essentially lets the
sender send an encryption of a plaintext together with some auxiliary information,
which the receiver can decrypt using an obfuscated decryption program. This protocol
features a “ping-pong” communication pattern, with a total of 3 messages sent between
a sender and a receiver. One could attempt to turn it into MPC with a similar “ping-
pong” communication pattern by letting n − 1 senders P1, . . . , Pn−1 send its input to a
single receiver Pn in a similar manner, and let the obfuscated evaluation program of the
receiver decrypt the messages and evaluate the result. While this approach sounds very
plausible and appealing in a sense that it potentially requires only minor modifications
of the construction of deniable encryption, our impossibility result implies that such
protocol cannot be incoercible.

Finally, it is interesting to note that this impossibility result is “tight” both with
respect to the number of participants n, and with respect to coercion operation (as
opposed to adaptive corruption). Indeed, there exists a 3-round two-party incoercible
protocol (e.g. our OT-based protocol), and a 3-round multi-party adaptively secure pro-
tocol [DKR14], which features such a “ping-pong” communication pattern.8

To get an idea of why impossibility holds, consider standard MPC with a super-
lazy party who only sends its messages in the very last round; clearly, such a protocol
is insecure, since the adversary who corrupts this party together with some output-
receiving party can rerun the protocol on many inputs of the lazy party and therefore
infer some information about the inputs of uncorrupted parties.

Such an attack in the standard MPC case doesn’t work when a lazy party sends
messages in two rounds of the protocol. However, we show that in case of incoercible
protocols there is a way for a lazy party to modify its last message such that the protocol
now thinks that a different input is used - despite the fact that its first message still
corresponds to the original input. With this technique in place we can mount the same
attack as described before. This technique is based on the observation in [CPP20] that
sender-deniability in any deniable encryption implies that a party can “fool” its own
protocol execution into thinking that a different input is being used. We refer the reader
to Sect. 5 for details.

Discussion, Open Problems, and Future Work. Our results naturally lead to the fol-
lowing open problems:

– Round Complexity: is it possible to build an incoercible protocol, withstanding coer-
cion of all parties, for general functions in 3 rounds?

– Full Incoercibility: Is it possible to obtain a protocol which withstands coercion
of all parties and remains incoercible even in the off-the-record setting - with any
number of rounds?

8 Note that formally speaking, the protocol of [DKR14] takes 4 rounds; however, the receiver
learns the output already after round 3. The 4-th round is only required to send this output back
to everyone.
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The protocols in this paper follow a blueprint of composing deniable encryption
with non-deniable primitives, resulting in a simple and clean protocol design. However,
it could be problematic to use this approach for answering the questions listed above.
The reason is the following. Since incoercible MPC implies deniable encryption, any
construction of incoercible MPC:

– either has to use some construction of deniable encryption,
– or has to build deniable encryption from scratch, at least implicitly.

As we explain in more detail next, improving on our results would likely require the
latter. This is a problem because the only known construction of encryption which is
deniable for both parties [CPP20] is fairly complex and has lengthy proofs (the paper
is more than 250 pages), and moreover, complex constructions could be inherent for
deniable encrypion, because of a certain attack which can be done by the adversary (see
the technical overview of [CPP20] for more details).

We now give more details about each open question separately.

Round Complexity. We show the existence of a 4-round deniable protocol, whereas
2-round incoercible protocols are ruled out by the impossibility of receiver-deniable
encryption in 2 rounds [BNNO11]. This leads to a natural question of whether deniable
computation can be done in 3 rounds generically.

It could be hard to achieve this by using deniable encryption as a building block.
Since deniable encryption itself provably takes 3 rounds of communication, this means
that only the last message in the protocol can be “protected” by deniability of encryp-
tion; yet, previous messages have to depend on the inputs as well and somehow have to
be deniable. We leave it to future work to either extend this argument towards a lower
bound, or to come up with a protocol which avoids this issue.

Off-the-Record Incoercibility. A natural attempt to build an off-the-record incoercible
protocol is to combine deniable encryption (secure even in the off-the-record setting)
with other, weaker-than-incoercible primitives (e.g. standard MPC). Unfortunately, this
is unlikely to help. Indeed, a very simple argument made by [AOZZ15] shows that in
any construction of off-the-record incoercible MPC with the help of secure channels,
parties have to use these (perfectly deniable!) channels in an inherently non-deniable
way: that is, if a party sends (receives) a message M via secure channel during the
protocol, then its faking algorithm cannot instruct this party to lie about M 9. This can
be informally interpreted as follows: in any incoercible protocol which uses deniable
encryption, deniable encryption can be replaced with standard encryption such that the
protocol still remains incoercible10. This in turn indicates that such a protocol would
have to be incoercible to begin with.

9 Roughly, this is because said party doesn’t know whether its peer is lying or telling the truth;
it could be telling the truth, thus revealing true M , and from definition of off-the-record deni-
ability, their joint state should look valid even in the case when the party is lying and its peer
is telling the truth - as long as their inputs and outputs are consistent.

10 We underline again that this is an informal statement - indeed, such a statement is tricky to
even formalize, let al.one prove.
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2 Preliminaries

2.1 Incoercible Computation

We use the definition of incoercible computation from [CGP15], which can be regarded
as a re-formulation of the definition of [CG96] within the UC framework. (We note that
the formulations of [MN06,AOZZ15] are similar to and consistent with the one we use,
with the exception that they allow also Byzantine corruptions and incorporate modeling
of ideally opaque hardware.) Specifically, we let the adversary send a special coercion
message (in addition to standard corruption messages) to parties; upon receiving this
message a party notifies a predetermined external entity (say, its “caller” via subroutine
output) that it was coerced and expects an instruction to either “tell the truth”, in which
case it reveals its entire local state to the adversary, or “fake to input x and output y”,
in which case the party runs the faking algorithm provided as part of the protocol, on
x, y and the current local state, and uses the output of the algorithm as the fake internal
state reported to the adversary. We also restrict the parties to accept coercion/corruption
messages from the environment only once the protocol execution ended. We refer to
this setting as full incoercibility.

Cooperative Environments. If an environment is guaranteed to either instruct all
coerced parties to “tell the truth”, or else neither of the coerced/corrupted parties are
instructed to “tell the truth” (in which case, each party is instructed to fake to some
input x and output y, of the environment’s choice), and in addition if standard corrup-
tions are prohibited, then we say that it is cooperative.

Incoercible Ideal Functionalities. An ideal functionality can now guarantee incoercibil-
ity via the following mechanism: When asked by the adversary (or, simulator) to coerce
a party P , the ideal functionality outputs a request to coerce P to the said external entity,
in the same way as done by the protocol. If the response is “fake to input x and output
y, then the pair x, y is returned to the adversary. If the response is “tell the truth” then
the actual input x and output y are returned to the adversary. Crucially, the simulator is
not told whether the values received are real or fake.

This behavior is intended to mimic the situation where the computation is done
“behind closed doors” and no information about it is ever exposed, other than the inputs
and outputs of the parties. In particular, such an ideal functionality does not prevent
situations where the outputs of the parties are globally inconsistent with their inputs, or
where a certain set of inputs of the parties are inconsistent with auxiliary information
that’s known outside the protocol execution. Indeed, the only goal here is to guarantee
that any determination made by an external coercer (modeled by the environment) after
interacting with the protocol, could have been done in the ideal model, given only the
claimed inputs and outputs.

Figures 1, 2 and 3 depict incoercible variants of the standard ideal functionalities
for secure message transmission, oblivious transfer, and multiparty function evaluation,
respectively.

We say that π is a fully incoercible message transmission protocol if π UC-realizes
Fimt. If π UC-realizes Fimt only with respect to cooperative environments then π is a
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Fig. 1. The incoercible message transmission functionality Fimt.

Fig. 2. The incoercible oblivious transfer functionality Fiot.

Fig. 3. The incoercible function evaluation functionality Fife.
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cooperatively incoercible message transmission protocol. Incoercible oblivious transfer
and function evaluation are defined analogously.

2.2 Other Preliminaries

Our protocols require deniable encryption with special properties, and adaptively secure
MPC with corruption-oblivious simulator. An informal description of these primitives
can be found in the introduction. We refer the reader to the full version for rigorous
definitions.

3 Incoercible Oblivious Transfer

In this section we describe our construction of incoercible oblivious transfer. As noted
in the introduction, such a protocol immediately implies incoercible 2PC for the case
where one of the parties has polynomial input space.

3.1 Protocol Description

For simplicity, we consider 1-out-of-2 OT (the construction can be generalized to 1-
out-of-n OT in a straightforward way), and we also assume that all inputs are bits. Our
protocol is described on Fig. 4. It requires a special deniable encryption (DE) scheme,
where deniability of the receiver is public (i.e. the faking algorithm of the receiver
doesn’t take receiver’s true coins as input), and which satisfies receiver-obliviousness,
i.e. the real transcript is indistinguishable from a transcript where receiver simply gen-
erated all its messages at random. As noted in [CPP20], their DE protocol satisfies
public receiver deniability. In the full version we note that this protocol is also receiver-
oblivious.

Before stating the theorem, we remind that we consider the model of semi-honest
coercions of potentially all parties, and we assume that all coercions happen after the
protocol finishes. We refer the reader to Sect. 2 for a description of our coercion model.

Theorem 4. Assume DE is an interactive deniable encryption scheme which satisfies
public receiver deniability and receiver obliviousness, and remains deniable even in the
off-the-record scenario. Then the protocol on Fig. 2 is a semi-honest, fully incoercible
oblivious transfer protocol.

3.2 Proof of the Theorem

Correctness. Correctness immediately follows from correctness of deniable encryption.

Incoercibility. Consider the simulator depicted on Fig. 5, which essentially generates
two transcripts of deniable encryption, each encrypting plaintext m = 0, and then uses
faking algorithm of deniable encryption to simulate the coins. Note that the simulator
generates the simulated coins in the same way (by using faking algorithm), no matter
whether the party is corrupted or coerced.
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Fig. 4. Incoercible oblivious transfer.

We need to show that for every pattern of corruptions and coercions, and every
set of real and fake inputs and outputs, the real execution is indistingusihable from a
simulated one. This boils down to showing indistinguishability in the following cases:

1. If claimed inputs and outputs are consistent, we should prove indistinguishability
between the case where both the sender and the receiver show their true coins, the
case where both the sender and the receiver show their fake coins, the case where
the sender shows true coins and the receiver shows fake coins, and the case where
the sender shows fake coins and the receiver shows true coins.
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Fig. 5. Simulation

2. If claimed inputs and outputs are inconsistent, we should prove indistinguishability
between the case where the sender shows true coins and the receiver shows fake
coins, the case where the sender shows fake coins and the receiver shows true coins,
and the case where they both show fake coins.

The proof is very straighforward and uses two main steps - (a) switching between
normally and obliviously generated execution of DE, using obliviousness and public
receiver deniability of DE, and (b) switching randomness of DE of the sender between
real and fake, using sender-deniability of DE.

Below we formally prove indistinguishability between the simulated execution
(HybSim) and the real execution with consistent inputs x′

0, x
′
1, b

′ and output x′
b′ , where

both parties tell the truth (i.e. disclose their true coins) (HybReal). Indistinguishability
between other distributions can be shown in a very similar manner.

– HybSim. This is the execution from Fig. 5, where both the sender and the receiver
are either corrupted or coerced, and the values reported to the simulator are the
following: inputs x′

0, x
′
1 of the sender, input b

′ of the receiver, output x′ = x′
b′ of the

receiver. The simulator gives the adversary (DE0,DE1, s
′
0, s

′
1, r

′
b′ , r̃′).

– Hyb1. In this hybrid the receiver generates messages in DE1−b′ obliviously (instead
of generating them honestly, using r1−b′ ). Indistinguishability between this and the
previous hybrid follows from obliviousness of the receiver of deniable encryption.
Note that it is important for the reduction that the receiver deniability is public, since
the reduction needs to compute fake randomness of execution 1−b′, r′

1−b′ , for which
it doesn’t know the true coins r1−b′ .
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– Hyb2. In this hybrid the sender encrypts x′
0 (instead of 0) in the execution i = 0. It

also gives the adversary its true randomness s0 instead of fake s′
0. Indistinguishabil-

ity follows from bideniability of the encryption scheme DE0.
– HybReal. In this hybrid the sender encrypts x′

1 (instead of 0) in the execution i = 1.
It also gives its true randomness s1 instead of fake s′

1. Indistinguishability follows
from sender deniability of the encryption scheme DE1.
Note that this distribution corresponds to the real world where parties use x′

0, x
′
1, b

′

as inputs.

4 4-Round Incoercible MPC

4.1 Description of the Protocol

In this section we describe our protocol achieving incoercibility even when all parties
are coerced, but only in cooperative scenario. That is, as discussed in the introduction,
the deception remain undetectable only as long as all parties lie about their randomness
(however, then can still tell the truth about their inputs, if they choose so). We remind
that in this work we only focus on coercions and corruptions which happen after the
protocol execution.

Our protocol is presented on Fig. 6. As discussed more in detail in the introduction,
the protocol essentially instructs parties to run the underlying adaptively secure proto-
col, where each message is encrypted under a separate instance of deniable encryption.
In addition, party P1 sends to everyone the same seed seed of the prg, to be used in the
faking procedure. Parties’ faking algorithm instructs parties to use seed to derive (the
same for all parties) coins rSim, which are used to generate (the same for all parties)
simulated transcript σ′ of the underlying MPC. Next each party uses the local simula-
tor of that MPC (recall that we need that MPC to have corruption-oblivious simulator)
to simulate its own fake coins of the underlying MPC. Finally parties claim that they
indeed exchanged messages of σ′, using deniability of encryption.

Faking the Inputs vs Faking the Inputs and the Outputs. We note that it is enough for
parties to be able to fake their inputs (as opposed to inputs and outputs), due to the
standard transformation allowing parties to mask their output with a one time pad k:
f ′((x1, k1), (x2, k2)) = f(x1, x2)⊕ k1||f(x1, x2)⊕ k2. Indeed, here faking the output
can be achieved by faking inputs ki instead. Thus, in the protocol, we only describe an
input-faking mechanism.

Theorem 5. Assume the existence of the following primitives:

– aMPC = (aMPC.msg1, aMPC.msg2, aMPC.Eval, aMPC.Sim, aMPC.Simi) is a 2-
round adaptively secure MPC with corruption-oblivious simulation, in a global CRS
model;

– DE = (DE.msg1,DE.msg2,DE.msg3,DE.Dec,DE.SFake,DE.RFake) is a 3-
message, delayed-input deniable encryption protocol, in a CRS model;

– prg is a pseudorandom generator.
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Then the protocol iMPC on Figs. 6, 7 is a 4-round semi-honest MPC protocol in a CRS
model11, which is cooperatively incoercible.

We note that all required primitives can be built using subexponentially-secure
indistinguishability obfuscation and one-way functions [CPP20,CPV17]. Therefore we
obtain the following corollary:

Corollary 1. Assume the existence of subexponentially secure indistinguishability
obfuscation and subexponentially secure one-way functions. Then in a CRS model there
exists a 4-round semi-honest MPC, which is cooperatively incoercible.

Notation and Indexing. Subscript i, j on the message of the protocol means that the
message is sent from Pi to Pj . Subscript i, j of the randomness means that this ran-
domness is used as sender or receiver randomness in the protocol where i is the sender
and j is the receiver.

For example, M1i,j is the first message of aMPC, sent from Pi to Pj . Our protocol
transmits this message inside deniable encryption, which in turn consists of messages
a1i,j , a2j,i, and a3i,j . To compute these messages, party Pi uses its sender randomness
si,j,1, and party Pj uses its receiver randomness ri,j,1.

4.2 Proof of the Theorem

Correctness. Correctness of the protocol immediately follows from correctness of the
underlying aMPC protocol and correctness of deniable encryption DE.

Incoercibility. We define a simulator which can simulate communication and internal
states of all parties, given inputs and outputs only, but without knowing whether these
inputs are real or fake.

We can assume that the simulator knows the output y before the protocol starts, due
to the following standard transformation, where parties additionally choose OTP keys ki
and use it to mask the output: f ′((x1, k1), x2, k2) = f(x1, x2)⊕k1||f(x1, x2)⊕k2. Due
to this transformation, the simulator can always choose output z of parties uniformly at
random, and once the first coercion occurs and the true output y becomes known, set
the corresponding ki to be z⊕(y||y). From now on we assume that the simulator knows
the output y ahead of time.

Simulation. The simulator is formally described on Fig. 8. Informally, the simulator
uses the underlying simulator of aMPC to simulate communication between parties, σ′.
It then encrypts messages of σ′ under deniable encryption. It encrypts randomly chosen
seed′ under deniable encryption as well. This concludes the description of simulation
of communication.

Upon coercion of a party, given an input x′
i (without knowing whether xi is real

or fake), the simulator computes fake random coins of aMPC by running the local
simulator aMPC.Simi on input x′

i. These are the only coins which are faked by the
simulator; the simulator reveals true values of seed′ and all randomness of DE.
11 Note that our CRS is global (recall that the notion of deniability or incoercibility only makes
sense in the global CRS model).
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Fig. 6. 4-round incoercible MPC protocol.
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Fig. 7. Faking procedure of party Pi, i = 1, . . . , n

Let x1, . . . , xn and x′
1, . . . , x

′
n be some inputs to the protocol, and let y be some

output. Consider the following distributions:

– HybReal: this is the distribution corresponding to the real execution of the protocol
with inputs x′

1, . . . , x
′
n, where parties disclose their true inputs and randomness.
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Fig. 8. Simulation

– HybFake: this is the distribution corresponding to the real execution of the protocol
with inputs x1, . . . , xn, where parties disclose fake inputs x′

1, . . . , x
′
n, output y, and

fake randomness.
– HybSim: this is the distribution corresponding to the simulation from Fig. 8, where
the simulator is given output y and claimed inputs x′

1, . . . , x
′
n.

We need to show the following:

1. If x′
1, . . . , x

′
n and y are consistent (i.e. f(x′

1, . . . , x
′
n) = y), then we need to show

that HybSim ≈ HybReal and HybSim ≈ HybFake.
2. If x′

1, . . . , x
′
n and y are not consistent, then we need to show that HybSim ≈ HybFake.

We show this below. First, we show indistinguishability between HybSim ≈ HybFake,
for any values x1, . . . , xn, x′

1, . . . , x
′
n, and y:
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– HybFake. We start with the distribution corresponding to the real-world execution of
the protocol, where parties fake their random coins upon coercion. In other words,
the adversary sees CRS, π, and x′

i, s
′
i for each i, generated as in Figs. 6, 7. In partic-

ular, the truly sent transcript σ of the underlying MPC is a transcript on inputs xi;
however, parties claim that they instead sent (simulated) transcript σ′, which appears
consistent with fake inputs x′

i.
– Hyb1. In this hybrid P1 sends seed′ instead of seed inside {c11,j , c2j,1, c31,j}j �=1,

and parties (both senders and receivers) give the adversary true randomness for this
deniable encryption (instead of faking it to seed′). Indistinguishability between this
and the previous distribution holds by n−1 invocations of bideniability of encryption
for plaintexts seed and seed′.

– Hyb2. In this hybrid we switch rSim||seed′ from prg(seed) to uniformly random.
Indistinguishability holds by security of a prg. Note that seed is not used anywhere
else in the distribution, thus the reduction is possible.

– HybSim. In this hybrid we set {a1i,j , a2i,j , a3i,j}i�=j to encrypt 1-round messages
of simulated σ′ (consistent with fake x′

i), instead of encrypting 1-round messages
of real transcript σ (consistent with xi). Also, all parties give true randomness
{si,j,1}j �=i , {ri,j,1}j �=i, instead of giving fake randomness consistent with σ′.
Similarly, we change {b1i,j , b2i,j , b3i,j}i�=j to encrypt 1-round messages of sim-
ulated σ′ (consistent with fake x′

i), instead of encrypting 1-round messages of
real transcript σ (consistent with xi). Also, all parties give true randomness
{si,j,2}j �=i , {ri,j,2}j �=i, instead of giving fake randomness consistent with σ′.
Indistinguishability between this and the previous distribution holds by 2n(n − 1)
invocations of bideniability of encryption, where plaintexts are messages of σ
and σ′.
Note that this is the simulated distribution.

Further, for the case when f(x′
1, . . . , x

′
n) = y, in one last step we show that HybSim ≈

HybReal:

– HybReal. Compared to HybSim, we switch the messages of aMPC, encrypted inside
deniable encryption, from simulated σ′ to real σ, which is the true transcript
of aMPC on inputs x′

i. In addition, parties reveal their true randomness saMPC,i

instead of computing simulated s′
aMPC,i consistent with x′

i using the local simulator
aMPC.Simi.
Indistinguishability between this and the simulation follows from adaptive security
of aMPC. Note that indeed rSim, randomness of the simulator, is not used anywhere
else in the distribution.
This distribution corresponds to the real execution of the protocol on inputs x′

i,
where parties disclose their true randomness upon being coerced.

This concludes the security proof.

5 Incoercible MPC with Lazy Parties is Impossible

In this section we describe our impossibility result for incoercible MPC protocols with a
certain communication pattern. We consider the synchronous model of communication,
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where parties send their messages in rounds. We call a party lazy, if it sends its messages
only in the first and in the last round of the protocol, but not in any other round12. We
show that a protocol for 3 or more parties cannot be incoercible, as long as there is at
least one lazy party Z, and there is another party (different from Z) which receives the
output.

In particular, this impossibility rules out protocols with the following communi-
cation structure, which is a natural extention of a “ping-pong” communication of 3-
message 2PC to a multiparty setting: assume just one party receives the output; we call
this party the receiver, and call all other parties the senders. Then the communication
proceeds as follows:

– In round 1 the senders send out their messages to everybody;
– In round 2 the receiver sends its messages to the senders;
– In round 3 the senders send out their messages to everybody13.

Our impossibility is based on the fact that in an incoercible protocol with lazy party
Z it is possible to do a variation of a residual function attack, similar to impossibility of
standard (non-incoercible) non-interactive MPC. Concretely, we show that lazy party Z
can always pick an input x′ different from its real input x and generate a different last
message of the protocol corresponding to new input x′, such that the resulting transcript
will be a valid transcript for this new input x′, as if Z used x′ even in the first message
(despite the fact that in reality its first message was generated using x). As a result, the
adversary may coerce (or even corrupt) Z together with some output-receiving party
and evaluate the function on any possible input of Z, thus compromising security of
other parties.

Theorem 6. Let n ≥ 3, and assume there exists an n-party protocol for evaluating
function f(x1, . . . , xn), such that P1 is lazy and Pn receives the output. Further, assume
it is secure against up to one coercion and up to two corruptions. Then the function f
is such that for any inputs x1, . . . , xn it is possible, given x1, xn, and f(x1, . . . , xn), to
compute f(x, x2, . . . , xn) in polynomial time for any x of the same length as x1.

Note that, while the theorem statement also holds for the case of 2 parties, it doesn’t
imply any impossibility since for any 2-input function f it is always possible to compute
f(·, x2) given x1, x2, and thus the theorem doesn’t impose any restrictions on functions
f which can be computed incoercibly using 2-party protocols.

Proof of Theorem 6. Without loss of generality we assume that the lazy party is P1, and
party which receives the output is Pn. Further, we assume that P1 is the first to send its
messages in round 1, and the last to send its messages in round N .

Let us denote the randomness of P1 by r1, the concatenated randomness of all other
parties by R = r2|| . . . ||rn, the input of P1 by x1, the concatenated input of all other
parties by X = x2|| . . . ||xn. In addition, let X0 denote some fixed set of inputs such

12 In particular, when the protocol requires only 2 rounds, each party is lazy by definition.
13 Note that in standard, non-deniable MPC the last message doesn’t need to be sent to parties
who don’t receive the output. However, in deniable MPC parties who don’t get the output may
still need the last message in order to fake.
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that |X| = |X0|, e.g. all-zero inputs 0|X|. Let NMFi denote the next message function
of the protocol for party 1 in round i. Let Eval(xn; transcript; rn) denote the output
evaluation function of party Pn which takes as input its randomness rn, input xn, and all
communication in the protocol. Let α = NMF1(x1; r1) denote the concatenated mes-
sages sent by P1 to all other parties in round 1, ,=, (α;X;R) denote the concatenated
messages sent by parties P2, . . . , Pn in all rounds, ,N−1 denote , except for messages
of the last round, and β = NMFN (x1, ,N−1 ; r1) denote the concatenated messages
sent by P1 to all other parties in round N . Finally, let Fake1(r1, x1, x

′
1, , ; ρ) denote

the faking algorithm of party P1, which takes as input its true coins and input r1, x1,
desired fake input x′

1, and ,, all communication sent to P1. Fake1 could be deterministic
or randomized; without loss of generality we assume that it is randomized using its own
random coins ρ.

Consider the following algorithm NewMessage (Fig. 9) which for any x′
1 allows

P1 to generate a different β′ such that (α, , , β′) is a valid transcript resulting in the
output f(x′

1,X). The intuition behind this procedure is as follows: First, P1 computes
a transcript which starts with the same α but continues with a different ,̃ (computed
under freshly chosen randomness of other parties and fixed inputs X0). Next, it runs its
faking algorithm to generate fake coins r′

1 which make this transcript look consistent
with x′

1 (in particular, this makes r′
1, x

′
1 look like valid coins and input for α, even

though α was generated under x1). Finally, it uses fake r′
1 to generate its last message

β′ using the original communication , and new input x′
1. In the following Lemma 1 we

claim that β′, together with the original communication (α, , ), forms a valid transcript
for inputs x1,X which will be evaluated correctly by the output-receiving party:

Fig. 9. Algorithm NewMessage to generate the last message consistent with a different x′
1.

Lemma 1. Let α, , , β′ be generated as described above, and let the protocol be secure
against the coercion of P1. Then for any f, x1,X, x′

1, with overwhelming probability
over the choice of r1, R, ρ it holds that Eval(xn;α, , , β′; rn) = f(x′

1,X).

We defer the proof of Lemma 1 to the full version.
Nowwe finish the proof of the Theorem 6.We claim that the adversary who corrupts

P1 and Pn in the real world can compute f(x, x2, . . . , xn) for any input x (of the
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same length as x1), where x1, . . . , xn are inputs of the parties in the protocol. Indeed,
the adversary can do so in two steps: first it corrupts P1 to learn r1 and x1 and runs
β′ ← NewMessage(x1, r1, x, α, , ; ρ) for any desired input x and random ρ (as before,
α, , is the communication of P1 in round 1 and of all other parties). Next it corrupts Pn

to learn rn and computes Eval(xn;α, , , β′; rn), which is with overwhelming probability
equal to f(x, x2, . . . , xn), as shown in the Lemma 1. Note that in the ideal world the
adversary who only corrupts P1 and Pn and learns x1, xn, and f(x1, . . . , xn) cannot
compute residual function f(·, x2, . . . , xn) (except for very special functions f ), and
therefore the adversary in the real world has strictly more power. This finishes the proof
of the Theorem 6.

Finally, we note that a similar proof can be made in case when the adversary coerces
P1 and Pn, instead of corrupting them.
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Abstract. This paper proposes a simple synchronous composable secu-
rity framework as an instantiation of the Constructive Cryptography
framework, aiming to capture minimally, without unnecessary artefacts,
exactly what is needed to state synchronous security guarantees. The
objects of study are specifications (i.e., sets) of systems, and traditional
security properties like consistency and validity can naturally be under-
stood as specifications, thus unifying composable and property-based def-
initions. The framework’s simplicity is in contrast to current composable
frameworks for synchronous computationwhich are built on top of an asyn-
chronous framework (e.g. theUC framework), thusnot only inheriting arte-
facts and complex features used to handle asynchronous communication,
but adding additional overhead to capture synchronous communication.

As a second, independent contribution we demonstrate how secure
(synchronous) multi-party computation protocols can be understood as
constructing a computer that allows a set of parties to perform an arbi-
trary, on-going computation. An interesting aspect is that the instruc-
tions of the computation need not be fixed before the protocol starts
but can also be determined during an on-going computation, possibly
depending on previous outputs.

1 Introduction

1.1 Composable Security

One can distinguish two different types of security statements about multi-party
protocols. Stand-alone security considers only the protocol at hand and does not
capture (at least not explicitly) what it means to use the protocol in a larger
context. This can cause major problems. For example, if one intuitively under-
stands an r-round broadcast protocol as implementing a functionality where the
sender inputs a value and r rounds later everybody learns this value, then one
missed the point that a dishonest party learns the value already in the first
round. Therefore a naive randomness generation protocol, in which each party
broadcasts (using a broadcast protocol) a random string and then all parties
compute the XOR of all the strings, is insecure even though naively it may look
secure [17]. There are also more surprising and involved examples of failures
when using stand-alone secure protocols in larger contexts.

The goal of composable security frameworks is to capture all aspects of a
protocol that can be relevant in any possible application; hence the term uni-
versal composability [6]. While composable security is more difficult to achieve
c© International Association for Cryptologic Research 2020
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than some form of stand-alone security, one can argue that it is ultimately neces-
sary. Indeed, one can sometimes reinterpret stand-alone results in a composable
framework. There exist several frameworks for defining and reasoning about
composable security (e.g. [6,11,19,24,29,32,34]).

1.2 Composable Synchronous Models

One can classify results on distributed protocols according to the underlying
interaction model. Synchronous models, where parties are synchronized and pro-
ceed in rounds, were first considered in the literature because they are relatively
simple in terms of the design and analysis of protocols. Asynchronous models
are closer to the physical reality, but designing them and proving their secu-
rity is significantly more involved, and the achievable results (e.g. the fraction
of tolerable dishonest parties) are significantly weaker than for a synchronous
model. However, synchronous models are nevertheless justified because if one
assumes a maximal latency of all communication channels as well as sufficiently
well-synchronized clocks, then one can execute a synchronous protocol over an
asynchronous network.

Most composable treatments of synchronous protocols are in (versions of)
the UC framework by Canetti [6], which is an inherently asynchronous model.
The models presented in [6,18,22,33] propose different approaches to model
synchronous communication on top of the UC framework [6]. These approaches
inherit the complexity of the UC framework designed to capture full asynchrony.
Another approach was introduced with the Timing Model [12,14,21]. This model
integrates a notion of time in an intuitive manner, but as noted in [22] fails to
exactly capture the guarantees expected from a synchronous network. A sim-
ilar approach was proposed in [2], which modifies the asynchronous reactive-
simulatability framework [3] by adding an explicit time port to each automaton.

Despite the large number of synchronous composable frameworks, the over-
head created when using them is still too large. For example, when using a model
built on top of UC, one typically needs to consider clock/synchronization func-
tionalities, activation tokens, message scheduling, etc. Researchers wish to make
composable statements, but using these models often turn out to be a burden
and create huge overhead. As a consequence, papers written in synchronous UC
models tend to be rather informal: the descriptions of the functionalities are
incomplete, clock functionalities are missing, protocols are underspecified and
the proofs are often made at an intuitive level. This leaves the question:

Can one design a composable framework targeted to minimally capture syn-
chronous protocols?

People have considered capturing composable frameworks for restricted settings
(e.g. [7,36]), but to the best of our knowledge, there is no composable framework
that is targeted to minimally capture any form of synchronous setting.
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1.3 Multi-party Computation

In the literature on secure multi-party computation (MPC) protocols, of which
secure function evaluation (SFE) is a special case, most of the results are for the
synchronous model as well as stand-alone security, even though intuitively most
protocols seem to provide composable security. To the best of our knowledge,
the first paper proving the composable security of a classical SFE protocol is [8],
where the security of the famous GMW-protocol [15] is proved. The protocol
assumes trusted setup, and security is obtained in the UC framework. In [1], the
security of the famous BGW-protocol [4] is proved in the plain model. With the
results in [22,23], one can prove security in the UC framework.

1.4 Contributions of this Paper

A guiding principle in this work is to strive for minimality and to avoid unnec-
essary artefacts, thus lowering the entrance fee for getting into the field of com-
posable security and also bringing the reasoning about composable security for
synchronous protocols closer to being tractable by formal methods.

Our contributions are two-fold. First, we introduce a new composable frame-
work to capture settings where parties have synchronized clocks (in particular,
traditional synchronous protocols), and illustrate the framework with a few sim-
ple examples. Our focus is on the meaningful class of information-theoretic secu-
rity as well as static corruption. However, in Sect. 9, we discuss how one can
further extend the framework.

As a second contribution, we prove the composable security of Maurer’s
simple-MPC protocol [27] and demonstrate that it perfectly constructs a ver-
satile computer resource which can be (re-)programmed during the execution.
Compared to [1,8], our treatment is significantly simpler for two reasons. First,
the protocol of [27] is simpler than the BGW-protocol. Second, and more impor-
tantly, the simplicity of our framework allows to prove security of the protocols
without the overhead of asynchronous models: we do not deal with activation
tokens, message scheduling, running time, etc.

Synchronous Constructive Cryptography. Our framework is an instanti-
ation of the Constructive Cryptography framework [28–30], for specific instan-
tiations of the resource and converter concepts. Moreover, we introduce a new
type of construction notion, parameterized by the set Z of potentially dishon-
est parties, allowing to capture the guarantees for every such dishonest set Z.
An often considered special case is that nothing is guaranteed if Z contains too
many parties.

Synchronous resources are very simple: They are (random) systems where
the alphabet is list-valued. That is, a system takes a complete input list and
produces a complete output list. Parallel composition of resources is naturally
defined. There is no need to talk about a scheduler or activation patterns.

To allow that dishonest parties can potentially make their inputs depend on
some side information of the round, we let one round r of the protocol corre-
spond to two rounds, r.a and r.b (called semi-rounds). Honest parties provide the
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round input in semi-round r.a and the dishonest parties receive some informa-
tion already in the same semi-round r.a. In semi-round r.b, the dishonest parties
give their inputs and everybody receives the round’s output.1

The framework is aimed at being minimal and differs from other frameworks
in several ways. One aspect is that the synchronous communication network is
simply a resource and not part of the framework; hence it can be modelled arbi-
trarily, allowing to capture incomplete networks and various types of channels
(e.g., delay channels, secure, authenticated, insecure, etc.).

We demonstrate the usage of our model with three examples: a two-party
protocol to construct a common randomness resource (Sect. 5), the protocol
introduced in [5] to construct a broadcast resource (Sect. A), and the simple
MPC protocol [27] as the construction of a computer resource (Sects. 7 and 8).

The Computer Resource. We introduce a system Computer which captures
intuitively what traditional MPC protocols like GMW, BGW or CCD [4,9,13,
15,27,35] achieve. Traditionally, in a secure function evaluation protocol among
n parties, the function to compute is modelled as an arithmetic circuit assumed
to be known in advance. However, the same protocols are intuitively secure even
if parties do not know in advance the entire circuit. It is enough that parties
have agreement on the next instruction to execute.

We capture such guarantees in an interactive computer resource, similar to a
(programmable) old-school calculator with a small instruction set (read, write,
addition, and multiplication in our case), an array of value-registers, and an
instruction queue. The resource has n interfaces. The interfaces 1, . . . , n − 1 are
used to give inputs to the resource and receive outputs from the resource. Inter-
face n is used to write instructions into the queue. A read instruction (input, i, p)
instructs the computer to read a value from a value space V at interface i and
store it at position p of the value register. A write instruction (output, i, p)
instructs the computer to output the value stored at position p to interface i. A
computation instruction (op, p1, p2, p3), op ∈ {add,mult} instructs the com-
puter to add or to multiply the values at positions p1 and p2 and store it at
position p3. We then show how to construct the computer resource using the
Simple MPC protocol [27]. A similar statement could be obtained using other
traditional MPC protocols.

1.5 Notation

We denote random variables by capital letters. Prefixes of sequences of ran-
dom variables are denoted by a superscript, e.g. Xi denotes the finite sequence
X1, . . . , Xi. For random variables X and Y , we denote by pX|Y the correspond-
ing conditional probability distribution.2 Given a tuple t, we write the projection
1 What is known as a rushing adversary in the literature is the special case of com-

munication channels where a dishonest receiver sees the other parties’ inputs of a
round before choosing his own input for that round.

2 Conditional probability distributions are denoted by a small “p” because they are
defined without defining a random experiment. A capital P for probabilities is used
only if a random experiment is defined.
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to the j-th component of the tuple as [t]j . Given a sequence ti of tuples t1, . . . , ti,
we write [ti]j as the sequence [t1]j , . . . , [ti]j . For a finite set X, x ←$ X denotes
sampling x uniform randomly from X.

2 Constructive Cryptography

The basic concepts of the Constructive Cryptography framework by Maurer
and Renner [28–30] needed for this paper are quite simple and natural and are
summarized below.

2.1 Specifications

A basic idea, which one finds in many disciplines, is that one considers a set Φ
of objects and specifications of such objects. A specification U ⊆ Φ is a subset
of Φ and can equivalently be understood as a predicate on Φ defining the set
of objects satisfying the specification, i.e., being in U . Examples of this general
paradigm are the specification of mechanical parts in terms of certain tolerances
(e.g. the thickness of a bolt is between 1.33 and 1.34 mm), the specification of
the property of a program (e.g. the set of programs that terminate, or the set
of programs that compute a certain function within a given accuracy and time
limit), or in a cryptographic context the specification of a close-to-uniform n-bit
key as the set of probability distributions over {0, 1}n with statistical distance
at most ε from the uniform distribution.

A specification corresponds to a guarantee, and smaller specifications hence
correspond to stronger guarantees. An important principle is to abstract a spec-
ification U by a larger specification V (i.e., U ⊆ V) which is simpler to under-
stand and work with. One could call V an ideal specification to hint at a certain
resemblance with terminology often used in the cryptographic literature. If a
construction (see below) requires an object satisfying specification V, then it
also works if the given object actually satisfies the stronger specification U .

2.2 Constructions

A construction is a function γ : Φ → Φ transforming objects into (usually in
some sense more useful) objects. A well-known example of a construction useful
in cryptography, achieved by a so-called extractor, is the transformation of a
pair of independent random variables (say a short uniform random bit-string,
called seed, and a long bit-string for which only a bound on the min-entropy is
known) into a close-to-uniform string.

A construction statement of specification S from specification R using con-
struction γ, denoted R γ−→ S, is of the form

R γ−→ S :⇐⇒ γ(R) ⊆ S.

It states that if construction γ is applied to any object satisfying specification
R, then the resulting object is guaranteed to satisfy (at least) specification S.
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The composability of this construction notion follows immediately from the
transitivity of the subset relation:

R γ−→ S ∧ S γ′
−→ T =⇒ R γ′◦γ−−−→ T .

2.3 Resources and Converters

The above natural and very general viewpoint is also taken in Constructive Cryp-
tography, where the objects in Φ are systems, called resources, with interfaces
to the parties considered in the given setting. If a party performs actions at its
interface, this corresponds to applying a so-called converter which can also be
thought of as a system or protocol engine. At its inside, the converter “talks to”
the party’s interface of the resource and at the outside it emulates an interface
(of the transformed resource). Applying such a converter induces a mapping
Φ → Φ. We denote the set of converters as Σ.

Figure 1 shows a resource with four interfaces where converters are applied
at two of the interfaces. The resource obtained by applying a converter π at
interface j of resource R is denoted as πjR. Applying converters at different
interfaces commutes.3 The resource shown in Fig. 1 can hence be written

π2ρ4R,

which is equal to ρ4π2R.

Fig. 1. Example of a resource with 4 interfaces, where converters π and ρ are attached
to interfaces 2 and 4.

Several resources (more precisely a tuple of resources) can be understood
as a single resource, i.e., as being composed in parallel. One can think that for
each party, all its interfaces are merged into a single interface, where the original
interfaces can be thought of as sub-interfaces.

3 This is an abstract requirement, in the sense of an axiom, which for an instantiation
of the theory, for example to the special case of discrete systems, must be proven to
hold.
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2.4 Multi-party Protocols and Constructions

Let us consider a setting with n parties, where P = {1, . . . , n} denotes the set of
parties (or, rather, interfaces).4 A protocol consists of a tuple π = (π1, . . . , πn) of
converters, one for each party, and a construction consists of each party applying
its converter. However, an essential aspect of reasoning in cryptography is that
one considers that parties can either be honest or dishonest, and the goal is
to state meaningful guarantees for the honest parties.5 While an honest party
applies its converter, there is no such guarantee for a dishonest party, meaning
that a dishonest party may apply an arbitrary converter to its interface, including
the identity converter that gives direct access to the interface.

In many cryptographic settings one considers a set of (honest) parties and
a fixed dishonest party (often called the adversary). However, in a so-called
multi-party context one considers each party to be either honest or dishonest.
For each subset Z ⊆ P of dishonest parties one states a separate guarantee:
If the assumed resource satisfies specification RZ , then, if all parties in P \ Z
apply their converter, the resulting resource satisfies specification SZ . Typically,
but not necessarily, all guarantees RZ (and analogously all SZ) are compactly
described, possibly all derived as variations of the same resource.

Definition 1. The protocol π = (π1, . . . , πn) constructs specifications SZ from
RZ if

∀Z ⊆ P RZ

πP\Z−−−−→ SZ .

A special case often considered is that one provides guarantees only if the set
of dishonest parties is within a so-called adversary structure [16], for example
that there are at most t dishonest parties. This simply corresponds to the special
case where SZ = Φ if |Z| > t. In other words, if Z is not in the adversary
structure, then the resource is only known to satisfy the trivial specification Φ.

2.5 Specification Relaxations

As mentioned above, that a party j is possibly dishonest means that we have
no guarantee about which converter is applied at that interface. For a given
specification S, this is captured by relaxing the specification to the larger spec-
ification S∗j :

S∗j := {πjS | π ∈ Σ ∧ S ∈ S}.
If we consider a set Z of potentially dishonest parties, we can consider the set

of interfaces in Z as being merged to a single interface with several sub-interfaces,
and applying the above relaxation to this interface. The resulting specification
4 In the literature, one often refers to parties with a name, say Pi for party at inter-

face i, but we do not need explicit party names and can simply refer to party i.
5 Note that in this view, the often used term “corruption” does not mean that a party

switches from being honest to being dishonest, it rather means that a resource loses
some guarantees, for example the memory resource of a party becomes accessible to
some other parties.



446 C.-D. Liu-Zhang and U. Maurer

is denoted S∗Z . This corresponds to the viewpoint that all dishonest parties
collude (or, as sometimes stated in the literature, are under control of a central
adversary). It is easy to see that the described ∗-relaxation is idempotent: For
any specification S and any set of interfaces Z, we have (S∗Z )∗Z = S∗Z .

If one wants to prove that a given specification U is contained in S∗Z , one
can exhibit for every element U ∈ U a converter α such that U = αZS for some
S ∈ S. Here αZS means applying α to the interface resulting from merging the
interfaces in Z. If the same α works for every U , then one can think of α as
corresponding to a (joint) simulator for the interfaces in Z.

It should be pointed out that Constructive Cryptography [30] considers gen-
eral specifications, and the above described specification type is only a special
case. Therefore the construction notion does not involve a simulator. Indeed,
this natural viewpoint allows to circumvent impossibility results in classical
simulation-based frameworks (including the early version of Constructive Cryp-
tography [28,29]) because the type of specifications resulting from requiring a
single simulator is too restrictive. See [20] for an example.

3 Synchronous Systems

To instantiate the Constructive Cryptography framework at the level of syn-
chronous discrete systems, we need to instantiate the notions of a resource R ∈ Φ
and a converter π ∈ Σ. We define each of them as special types of random sys-
tems [26,31]. We briefly explain the role of random systems in such definitions.

3.1 Random Systems

Definition 2. An (X ,Y)-random system R is a sequence of conditional prob-
ability distributions pR

Yi|XiY i−1 , for i ≥ 1. Equivalently, the random system can

be characterized by the sequence pR
Y i|Xi =

∏i
k=1 pR

Yk|XkY k−1 , for i ≥ 1.

As explained in [25], a random system is the mathematical object correspond-
ing to the behavior of a discrete system. A deterministic system is a special type
of function (or sequence of functions), and the composition of systems is defined
via function composition. Probabilistic systems are often thought about (and
described) at a more concrete level, where the randomness is made explicit (e.g.
as the randomness of an algorithm or the random tape of a Turing machine).
Hence a probabilistic discrete system (PDS) corresponds to a probability dis-
tribution over deterministic systems, and the definition of the composition of
probabilistic systems is induced by the definition of composition of deterministic
systems (analogously to the fact that the definition of the sum of real-valued ran-
dom variables is naturally induced by the definition of the sum of real numbers,
which are not probabilistic objects).

Different PDS can have the same behavior, which means that the behavior,
i.e., a random system, corresponds to an equivalence class of PDS (with the
same behavior). The fact that the composition of (independent) random systems
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corresponds to a particular product of the involved conditional distribution can
be proved and should not be seen as the definition. However, in this paper, which
only considers random systems (the actual mathematical objects of study), the
product of distributions appears as the definition.

It is important to distinguish the type and the description of a mathemat-
ical object. An object of a given type can be described in may different ways.
For example, a random system can be described by several variants of pseudo-
code, and as is common in the literature we also use such an ad-hoc description
language. The fact that a random system is defined via conditional probability
distributions does not mean that they have to described in that way.

3.2 Resources

A resource (the mathematical type) is a special type of random system [26,31].

Definition 3. An (X ,Y)-random system R is a sequence of conditional prob-
ability distributions pR

Yi|XiY i−1 , for i ≥ 1. Equivalently, the random system can

be characterized by the sequence pR
Y i|Xi =

∏i
k=1 pR

Yk|XkY k−1 , for i ≥ 1.

A resource with n interfaces takes one input per interface and produces an
output at every interface (see Fig. 2). Without loss of generality, we assume that
the alphabets at all interfaces and for all indices i are the same.6 An (n,X ,Y)-
resource is a resource with n interfaces and input (resp. output) alphabet X
(resp. Y).

Fig. 2. An example resource with 4 interfaces. At each invocation, the resource takes
an input xj ∈ X at each interface j, and it outputs a value yj ∈ Y at each interface j.

Definition 4. An (n,X ,Y)-resource is an (X n,Yn)-random system.

Parallel Composition. One can take several independent (n,Xj ,Yj)-resources
R1, . . . ,Rk and form an (n,×k

j=1
Xj ,×k

j=1
Yj)-resource, denoted [R1, . . . ,Rk].

6 The alphabets are large enough to include all values that can actually appear.
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A party interacting with the composed resource [R1, . . . ,Rk] can give an input
a = (a1, . . . , ak), which is interpreted as giving each input aj ∈ Xj to resource
Rj , and then receive an output b = (b1, . . . , bk) containing the output from each
of the resources.

In the following definition, we denote by xi = (a1,i, . . . ,an,i) the i-th input
to the resource, and by yi = (b1,i, . . . ,bn,i) the i-th output from the resource.
We further let [[xi]]j = ([a1,i]j , . . . , [an,i]j) be the tuple with the j-th component
of each tuple a·,i; and let [[xi]]j be the finite sequence [[x1]]j , . . . , [[xi]]j . We let
[[yi]]j and [[yi]]j be defined accordingly.

Definition 5. Given a tuple of resources (R1, . . . ,Rk), where Rj is an
(n,Xj ,Yj)-resource. The parallel composition R := [R1, . . . ,Rk], is an
(n,×k

j=1
Xj ,×k

j=1
Yj)-resource, defined as follows:

pR
Yi|XiY i−1(yi, x

i, yi−1) =
k∏

j=1

pRj

Yi|XiY i−1([[yi]]j , [[xi]]j , [[yi−1]]j)

3.3 Converters

An (X ,Y)-converter is a system (of a different type than resources) with two
interfaces, an outside interface out and an inside interface in. The inside inter-
face is connected to the (n,X ,Y)-resource, and the outside interface serves as
the interface of the combined system. When an input is given (an input at the
outside), the converter invokes the resource (with an input on the inside), and
then converts its response into a corresponding output (an output on the out-
side). When a converter is connected to several resources in parallel [R1, . . . ,Rk],
we address the corresponding sub-interfaces with the name of the resource, i.e,
in.R1 is the sub-interface connected to R1.

More concretely, an (X ,Y)-converter is an (X ∪ Y,X ∪ Y)-random system
whose input and output alphabets alternate between X and Y. That is,

– On the first input, and further odd inputs, it takes a value x ∈ X and produces
a value x′ ∈ X .

– On the second input, and further even inputs, it takes a value y′ ∈ Y, and
produces a value y ∈ Y.

Definition 6. An (X ,Y)-converter π is a pair of sequences of conditional prob-
ability distributions pπ

X′
i|XiX′i−1Y ′i−1Y i−1 and pπ

Yi|XiX′iY ′iY i−1 , for i ≥ 1. Equiv-
alently, a converter can be characterized by the sequence
pπ

X′iY i|XiY ′i =
∏i

k=1 pπ
X′

k|XkX′k−1Y ′k−1Y k−1 · pπ
Yk|XkX′kY ′kY k−1 , for i ≥ 1.

Application of a Converter to a Resource Interface. The application of
a converter π to a resource R at interface j can be naturally understood as the
resource that operates as follows (see Fig. 3):
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– On input (x1, . . . , xn) ∈ X n: input xj to π, and let x′
j be the output.

Then, input (x1, . . . , xj−1, x
′
j , xj+1, . . . , xn) ∈ X n to R.

– On output (y1, . . . , yj−1, y
′
j , yj+1, . . . , yn) ∈ Yn from R, input y′

j to π, and let
yj be the output.
The output is (y1, . . . , yn) ∈ Yn.

Fig. 3. The figure shows the application of a converter π to the interface 2 of a resource
R. On input a value x2 ∈ X to interface out of π, the converter π outputs a value
x′
2 ∈ X at interface in. The resource R takes as input (x1, x

′
2, x3, x4) ∈ X 4, and outputs

(y1, y
′
2, y3, y4) ∈ Y4. On input y′

2 to interface in of π, the converter outputs a value y2

at interface out.

Given a tuple a = (a1, . . . , an), we denote a{j→b} the tuple where the j-
th component is substituted by value b, i.e. the tuple (a1, . . . , aj−1, b, aj+1, an).
Moreover, given a sequence ai of tuples t1, . . . , ti and a sequence bi of values
b1, . . . , bi, we denote ai

{j→bi}, the sequence of tuples t1{j→b1}, . . . , ti{j→bi}.

Definition 7. The application of an (X ,Y)-converter π at interface j of an
(n,X ,Y)-resource R is the (n,X ,Y)-resource πjR defined as follows:

pπjR
Y i|Xi

(
yi, xi

)
=

∑

x′i,y′i
pπ

X′iY i|XiY ′i
(
x′i, [yi]j , [x

i]j , y
′i)pR

Y i|Xi

(
yi

{j→y′i}, x
i
{j→x′i}

)

One can see that applying converters at distinct interfaces commutes. That
is, for any converters π and ρ, any resource R and any disjoint interfaces j, k,
we have that πjρkR = ρkπjR.

For a tuple of converters π = (π1, . . . , πn), we denote by πR the resource
where each converter πj is attached to interface j. Given a subset of interfaces I,
we denote by πIR the resource where each converter πj with j ∈ I, is attached
to interface j.

4 Resources with Specific Round-Causality Guarantees

The resource type of Definition 4 captures that all parties act in a synchronized
manner. The definition also implies that any (dishonest) party’s input depends
solely on the previous outputs seen by the party.
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In practice this assumption is often not justified. For example, consider a
resource consisting of two parallel communication channels (in a certain round)
between two parties, one in each direction. Then it is typically unrealistic to
assume that a dishonest party can not delay giving its input until having seen
the output on the other channel. Such adversarial behavior is typically called
“rushing” in the literature. More generally, a dishonest party’s input can depend
on partial information of the current round inputs from honest parties.

To model such causality guarantees, we introduce resources that proceed in
two rounds (called semi-rounds) per actual protocol round.7 This makes explicit
what a dishonest party’s input can (and can not) depend on.

More concretely, each round r consists of two semi-rounds, denoted r.a and
r.b. In the first semi-round, r.a, the resource takes inputs from the honest parties
and gives an output to the dishonest parties. No output is given to honest parties,
and no input is taken from dishonest parties. In the second semi-round, r.b,
the resource takes inputs from the dishonest parties and gives an output to all
parties. Figure 4 illustrates the behavior of such a resource within one round.
When describing such resources, we often omit specifying the semi-round when
it is clear from the context.

Fig. 4. Figure depicts a resource operating in a round. The dashed lines indicate that
no value is taken as input to the resource, and is output from the resource. The honest
(resp. dishonest) parties give inputs to the resource in the first (resp. second) invocation,
and all parties receive an output in the second invocation. The dishonest parties receive
in addition an output in the first invocation.

When applying a protocol converter to such a resource, we formally attach
the corresponding converter that operates in semi-rounds, where round-r inputs
are given to the resource at r.a, and round-r outputs are obtained at r.b.

7 This type of resource is similar to the notion of canonical synchronous functionalities
in [10].
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5 A First Example

We demonstrate the usage of our model to describe a very simple 2-party protocol
which uses delay channels to generate common randomness. The protocol uses
a channel with a known lower and upper bound on the delay, and proceeds as
follows: Each party generates a random value and sends it to the other party via a
delay channel. Then, once the value is received, each party outputs the sum of the
received value and the previously generated random value. It is intuitively clear
that the protocol works because 1) a dishonest party does not learn the message
before round r, and 2) an honest party is guaranteed to learn the message at
round R.

Bounded-Delay Channel with Known Lower and Upper Bound. We
model a simple delay channel

−→DC (resp.
←−DC) from party 1 to party 2 (resp.

party 2 to party 1) with known lower and upper bound on the delay. It takes
a message at round 1, and is guaranteed to not deliver the message until round
r to a dishonest party, but is guaranteed to deliver it at round R to an honest
party. To model such a delay channel, we define a delay channel

−→
DCr,R,Z with

message space M from party 1 to party 2 with fixed delay that takes a message
at round 1 and delivers it at round r if the receiver is dishonest, and at round
R if the receiver is honest. The set Z indicates the set of dishonest parties. The
channel

←−
DCr,R,Z in the other direction is analogous.

msg ← 0
On input m ∈ M at interface 1 of round 1, set msg ← m.
if 2 ∈ Z then

Output msg at interface 2 at round r.
else

Output msg at interface 2 at round R.
end if

Resource
−→
DCr,R,Z

To capture that the delay channel is not guaranteed to deliver the message to
a dishonest receiver exactly at round r, we consider the ∗-relaxation (

−→
DCr,R,Z)∗Z

on the delay channel at the dishonest interfaces Z. This specification includes
resources with no guarantees at Z. For example, the resource may deliver the
message later than r, or garbled, or not at all.

Common Randomness Resource. The sketc.hed protocol constructs a com-
mon randomness resource CRS that outputs a random string. We would like to
model a CRS that is guaranteed to output the random string at round R to an
honest party, but does not output the random string before r to a dishonest
party. For that, we first consider a resource which outputs a random string to
each honest (resp. dishonest) party at round R (resp. r).
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rnd ←$ M
For each party i ∈ {1, 2}:
if i ∈ Z then

Output rnd at interface i at round r.
else

Output rnd at interface i at round R.
end if

Resource CRSr,R,Z

With the same idea as with the delay channels, we can model a common
randomness resource that is guaranteed to deliver the randomness to the honest
parties at round R but is not guaranteed to deliver the output to the dishon-
est parties at round r, by considering a ∗-relaxation on the resource over the
dishonest interfaces Z, (CRSr,R,Z)∗Z .

Two-Party Construction. We describe the 2-party protocol π = (π1, π2)
sketc.hed at the beginning of the section and show that it constructs a common
randomness resource.

Local variable: rnd

Round 1

rnd ←$ M
Output rnd at in.

−→
dc. // in.

←−
dc for π2

Round R

On input v ∈ M at in.
←−
dc, output rnd + v at out. // in.

−→
dc for π2

Converter π1

Lemma 1. π = (π1, π2) constructs the specification (CRSr,R,Z)∗Z from the spec-
ification [(

−→
DCr,R,Z)∗Z , (

←−
DCr,R,Z)∗Z ].

Proof. We prove each case separately.
1) Z = ∅: In this case, it is easy to see that π1π2[

−→
DCr,R,∅,

←−
DCr,R,∅] = CRSr,R,∅

holds, since the sum of two uniformly random messages is uniformly random.
2) Z = {2}: Consider now the case where party 2 is dishonest (the case where
party 1 is dishonest is similar). Let S := [

−→
DCr,R,Z ,

←−
DCr,R,Z ]. It suffices to prove

that π1S ∈ (CRSr,R,Z)∗Z because:
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π1[(
−→
DCr,R,Z)∗Z , (

←−
DCr,R,Z)∗Z ] ⊆ (π1[

−→
DCr,R,Z ,

←−
DCr,R,Z ])∗Z

= (π1S)∗Z ⊆ ((CRSr,R,Z)∗Z )∗Z = (CRSr,R,Z)∗Z ,

where the last equality holds because the ∗-relaxation is idempotent. Hence,
we show that the converter σ described below is such that π1S = σ2CRSr,R,Z .

Initialization

rcv ← 0.

Round 1.b

On input v ∈ M at out.
←−
dc, set rcv ← v.

Round r.a

On input rnd at in, output rnd − rcv at out.
−→
dc.

Converter σ

Consider the system π1S. The system outputs at interface 1 of round R.b,
a value rnd + v, where rnd is a random value and v is the value received at
interface 2 of round 1.b (and v = 0 if no value was received). Moreover, the
system outputs at interface 2 of round r.a, the value rnd.

Now consider the system σ2CRSr,R,Z . The system outputs at interface 1 of
round R.b, a random value rnd′. Moreover, the system outputs at interface 2 of
round r.a, the value rnd′ − v, where v is the same value received at interface 2
of round 1.b (and v = 0 if no value was received).

Since the joint distribution {rnd + v, rnd} and {rnd′, rnd′ − v} are exactly
the same, we conclude that π1S = σ2CRSr,R,Z .

�

6 Communication Resources

6.1 Point-to-Point Channels

We model the standard synchronous communication network, where parties have
the guarantee that messages input at round k are received by round k + 1, and
dishonest parties’ round-k messages potentially depend on the honest parties’
round-k messages. Let CH�,Z(s, r) be a bilateral channel resource with n inter-
faces, one designated to each party i ∈ P, and where two of the interfaces, s and
r are designated to the sender and the receiver. The channel is parameterized
by the set of dishonest parties Z ⊆ P. The privacy guarantees are formulated
by a leakage function 
(·) that determines the information leaked to dishonest
parties. For example, in an authenticated channel 
(m) = m, and in a secure
channel 
(m) = |m|.
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Round k, k ≥ 1

On input m at interface s, output m at interface r.
Output �(m) at each interface i ∈ Z.

Resource CH�,Z(s, r)

Let NZ be the complete network of pairwise secure channels. That is, NZ is
the parallel composition of secure channels CH�,Z(i, j) with 
(m) = |m|, for each
pair of parties i, j ∈ P.

6.2 Broadcast Resource Specification

Broadcast is an important building block that many distributed protocols use.
It allows a specific party, called the sender, to consistently distribute a message.
More formally, it provides two guarantees: 1) Every honest party outputs the
same value (consistency), and 2) the output value is the sender’s value in case
the sender is honest (validity).

The broadcast specification BCk,l,Z(s) involves a set of parties P, where one
of the parties is the sender s. It is parameterized by the round numbers k and
l indicating when the sender distributes the message and when the parties are
guaranteed to receive it. The specification BCk,l,Z(s), is the set of all resources
satisfying both validity and consistency. That is, there is a value v such that the
output at each interface j for j /∈ Z at round l.b is yl.b

j = v, and if the sender is
honest, this value is the sender’s input xk.a

s at round k.a. That is:

BCk,l,Z(s) :=
{

R ∈ Φ
∣
∣
∣ ∃v

[(
∀j ∈ Z yl.b

j = v
)

∧
(
s ∈ Z → v = xk.a

s

)]}

We show how to construct such a broadcast specification in Sect. A. Let
BCΔ,Z(s) be the parallel composition of BCk,k+Δ,Z(s), for each k ≥ 1, and let
BCΔ,Z be the parallel composition of BCΔ,Z(s), for each party s ∈ P.

7 The Interactive Computer Resource

In this section, we introduce a simple ideal interactive computer resource with
n interfaces. Interfaces 1, . . . , n − 1 are used to give input values and receive
output values. Interface n allows to input instruction commands. The resource
has a memory which is split into two parts: an array storing values S and a queue
C storing instruction commands to be processed. We describe the functionality
of the resource in two parts: Storing the instructions that are input at n, and
processing the instructions.

Store Instructions. On input an instruction at interface n at round r, the
instruction is stored in the queue C. Then, after a fixed number of rounds, the
input instruction is output at each honest interface i, and at dishonest interfaces
at round r.a.
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Instruction Processing. The interactive computer processes instructions
sequentially. There are three types of instructions that the resource can pro-
cess. Each instruction type has a fixed number of rounds.

1. An input instruction (input, i, p) instructs the resource to read a value from
a value space V at interface i and store it at position p of the array S. If
party i is honest, it inputs the value at the first round of processing the input
instruction, otherwise it inputs the value at the last round. This models the
fact that a dishonest party i can defer the choice of the input value to the
end of processing the instruction.

2. An output instruction (output, i, p) instructs the computer to output the
value stored at position p to interface i. If party i is dishonest, it receives the
value at the first round of processing the output instruction. Otherwise, the
value is output at the last round of processing the instruction.

3. A computation instruction (op, p1, p2, p3)), op ∈ {add,mult} instructs the
computer to add or to multiply the values at positions p1 and p2 and store it
at p3.

One could consider different refinements of the interactive computer. For
example, a computer that can receive lists of instructions, process instructions in
parallel, or a computer that allows instructions to be the result of a computation
using values from S. For simplicity, we stick to a simple version of the computer
and leave possible refinements to future work.

Parameters: ri,ro,ra,rm, rs. // #rounds to process an input, output, addition or

multiplication instruction, and to store an instruction

Initialization

L ← empty array. // Store values
C ← empty queue. // Store instructions
Next2Read ← 1. // Counter indicating when to read the next instruction
Current ← ⊥. // Contains the current instruction being processed

Round k, k ≥ 1

// Read next instruction
if Next2Read = k then

Current ← C.pop()
if Current �= ⊥ then

Next2Read ← k + rj , where rj , for j ∈ {i, o, a, m}, is the round delay of
the instruction in Current.

else
Next2Read ← k + 1

end if
end if
// Process instruction

Resource ComputerZ
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if Current = (input, i, p) then
if i /∈ Z then

Read x ∈ V at interface i at round Next2Read − ri.
else

Read x ∈ V at interface i at round Next2Read − 1.
end if
L[p] ← x

else if Current = (op, p1, p2, p3), op ∈ {add,mult} then
L[p3] ← L[p1] op L[p2]

else if Current = (output, i, p) then
if i /∈ Z then

Output L[p] at interface i at round Next2Read − 1.
else

Output L[p] at interface i at round Next2Read − ro.
end if

end if
Current ← ⊥
// Store instruction in queue
Read instruction I at interface n.
If I is a valid instruction, output I at each interface i ∈ Z. Then, at round
k + Δ introduce the instruction in the queue C.push(I), and output I at each
interface i /∈ Z. // If party n is honest, output to honest parties at (k + Δ).b
and dishonest parties at k.a. Otherwise, output to all parties at (k + Δ).b

8 Protocol Simple MPC

We adapt Maurer’s Simple MPC protocol [27], originally described for SFE in
the stand-alone setting, to realize the resource Computer from Sect. 7, thereby
proving a much stronger (and composable) statement. The protocol is run among
a set P = {1, . . . , n} of n parties. Parties 1, . . . , n − 1 process the instructions,
give input values and obtain output values. Party n has access to the instructions
that the other parties needs to execute.

General Adversaries. In many protocols, the sets of possible dishonest parties
are specified by a threshold t, that indicates that any set of dishonest parties is
of size at most t. However, in this protocol, one specifies a so-called adversary
structure Z, which is a monotone8 set of subsets of parties, where each subset
indicates a possible set of dishonest parties. We are interested in the condition
that no three sets in Z cover [n − 1], also known as Q3([n − 1],Z) [16].

8.1 Protocol Description

Let Z be an adversary structure that satisfies Q3([n − 1],Z). Protocol sMPC =
(π1, . . . , πn) constructs the resource ComputerZ , introduced in Sect. 7, for any
Z ∈ Z. For sets Z /∈ Z, the protocol constructs the trivial specification Φ.
8 If Z ∈ Z and Z′ ⊆ Z, then Z′ ∈ Z.
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Assumed Specifications. The protocol assumes the following specifications: a
network specification NZ among the parties in P (see Sect. 6.1) and a parallel
broadcast specification BCΔ,Z which is the parallel composition of broadcast
channels where any party in P can be a sender and the set of recipients is P (see
Sect. 6.2).

Converters. The converter πn is the identity converter. It allows to give direct
access to the flow of instructions that the parties need to process. Because the
instructions are delivered to the parties in P via the broadcast specification
BCΔ,Z(n), parties have agreement on the next instruction to execute.

We now describe the converters π1, . . . , πn−1. Each converter πi keeps an (ini-
tially empty) array L with the current stored values, and a queue C of instruc-
tions to be executed. Each time an instruction is received from BCΔ,Z(n), it is
added to C and also output. Each instruction in C is processed sequentially.

In order to describe how to process each instruction, we consider the adver-
sary structure Z ′ := {Z \ {n} : Z ∈ Z}. Let the maximal sets in Z ′ be
max(Z ′) := {Z1, . . . , Zm}.

Input Instruction (input, i, p), for i ∈ [n − 1]. Converter πi does as follows:
On input a value s from the outside interface, compute shares s1, . . . , sm using
a m-out-of-m secret-sharing scheme (m is the number of maximal sets in Z ′).
That is, compute random summands such that s =

∑m
j=1 sj . Then, output sj to

the inside interface in.net.chi,k, for each party k ∈ Zj .
Then each converter for party in Zj , echoes the received shares to all parties

in Zj , i.e. outputs the received shares to in.net.chi,k, for each party k ∈ Zj . If
a converter obtained different values, it broadcasts a complaint message, i.e. it
outputs a complaint message at in.bc. In such a case, πi broadcasts the share sj .
At the end of the process, the converters store the received shares in their array,
along with the information that the value was assigned to position p. Intuitively,
a consistent sharing ensures that no matter which set Zk of parties is dishonest,
they miss the share sk, and hence s remains secret.

Output Instruction (output, i, p), for i ∈ [n−1]. Each converter πl, l ∈ [n−1],
outputs all the stored shares assigned to position p at interface in.net.chl,i.
Converter πi does: Let vl

j be the value received from party l as share j at
in.net.chl,i. Then, converter πi reconstructs each share sj as the value v such
that {l | vl

j �= v} ∈ Z, and outputs
∑

j sj .

Addition Instruction (add, p1, p2, p3). Each converter for a party in Zj adds
the j-th shares of the values assigned to positions p1 and p2, and stores the result
as the j-th share of the value at position p3.

Multiplication Instruction (mult, p1, p2, p3). The goal is to compute a share
of the product ab, assuming that the converters have stored shares of a and of b
respectively. Given that ab =

∑m
p,q=1 apbq, it suffices to compute shares of each

term apbq, and add the shares locally. In order to compute a sharing of apbq,
the converter for each party i ∈ Zp ∩ Zq executes the same steps as the input
instruction, with the value apbq. Then, converters for parties in Zp ∩ Zq check
that they all shared the same value by reconstructing the difference of every pair
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of shared values. In the case that all differences are zero, they store the shares
of a fixed party (e.g. the shares from the party in Zp ∩ Zq with the smallest
index). Otherwise, each term ap and bq is reconstructed, and the default sharing
(apbq, 0, . . . , 0) is adopted.

Theorem 1. Let P = {1, . . . , n}, and let Z be an adversary structure that sat-
isfies Q3([n − 1],Z). Protocol sMPC constructs (ComputerZ)∗Z with parameters
(ri, ro, ra, rm, rs) = (2Δ + 2, 1, 0, 2Δ + 4,Δ) from [NZ ,BCΔ,Z ], for any Z ∈ Z,
and constructs Φ otherwise.

Proof. Case Z = ∅: In this case all parties are honest. We need to argue that:

R∅ := sMPC[N∅,BCΔ,∅] = Computer
∅

.

At the start of the protocol, the computer resource Computer
∅

, and each
protocol converter has an empty queue C of instructions and empty array L
of values. Consider the system R∅. Each time party n inputs an instruction
I to BCΔ,∅(n), because of validity, it is guaranteed that after Δ rounds each
protocol converter receives I, stores I in the queue C and outputs I at interface
out. Each converter processes the instructions in its queue sequentially, and
each instruction takes the same constant amount of rounds to be processed for
all parties. Hence, all honest parties keep a queue with the same instructions
throughout the execution of the protocol.

Now consider the system Computer
∅

. It stores each instruction input at inter-
face n in its queue C, and outputs the instruction I at each party interface i ∈ P
after Δ rounds. The instructions are processed sequentially, and it takes the same
amount of rounds to process each instruction as in R∅.

We then conclude that each queue for each protocol converter in R∅ contains
exactly the same instructions as the queue in Computer

∅
.

We now argue that the behavior of both systems is identical not only when
storing the instructions, but also when processing them.

Let us look at the content of the arrays L that Computer
∅

and each protocol
converter in R∅ has. Whenever a value s is stored in the array L of Computer

∅

at position p, there are values sl, such that s =
∑m

l=1 sl and sl is stored in each
converter πj such that j /∈ Zl. For each value sl, the converters that store sl,
also stores additional information containing the position p and the index l.

Consider an input instruction, (input, i, p) at round k, and a value x is input
at the next round at interface i. In the system R∅, the converter πi computes
values sl, such that s =

∑m
l=1 sl and sends each sl to each converter πj such

that j /∈ Zl. All broadcasted messages are 0, i.e. there are no complaints, and
as a consequence sl is stored in each converter πj , where j /∈ Zj . In the system
Computer

∅
, the value x is stored at the p-th register of the array L.
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Consider an output instruction, (output, i, p). In the system R∅, each con-
verter πj sends the corresponding previously stored values sl associated with
position p, and πi outputs s =

∑m
l=1 sl. In the system Computer

∅
, the value x

stored at the p-th register of the array L is output at interface i.
Consider an addition instruction, (add, p1, p2, p3). In the system R∅ each

converter adds, for each share index l, the corresponding values associated with
position p1 and p2, and stores the result as a value associated with position p3
and index l. In the system Computer

∅
, the sum of the values a and b stored at

the p1-th and p2-th positions is stored at position p3.
Consider a multiplication instruction, (mult, p1, p2, p3). In the ideal system

Computer
∅

, the product of the values a and b stored at positions p1-th and
p2-th is stored at position p3. In the system R∅, let ap (resp. bq) be the value
associated with position p1 (resp. p2) and with index p (resp. q), that each
converter for party in Zp (resp. Zq) has. For each 1 ≤ p, q ≤ m, consider each
protocol converter for party j ∈ Zp∩Zq. (Note that since the adversary structure
satisfies Q3(P,Z), then, for any two sets Zp, Zq ∈ Z, Zp∩Zq �= ∅.) The converter
does the following steps:

1. Input instruction steps with the value apbq as input. As a result, each con-
verter in Zu stores a value, which we denote vu

j , from j ∈ Zp ∩ Zq.
2. Execute the output instruction, with the value vu

j −vu
j0

and towards all parties
in [n − 1]. As a result, every party obtains 0, and the value vu

j0
is stored.

3. The value associated with position p3 and index p, stored by each converter
for party in Zp, is the sum wp =

∑
j0

vp
j0

.

As a result, each party in Zp stores wp, and
∑

p wp = ab.

Case Z �= ∅: In this case, the statement is only non-trivial if Z ∈ Z, because
otherwise the ideal system specification is SZ = Φ, i.e. there are no guarantees.

We need to show that when executing sMPC with the assumed specification,
we obtain a system in the specification (ComputerZ)∗Z . That is, for each network
resource N ∈ NZ and parallel broadcast resource PBC = [BC1, . . . ,BCn] ∈ BCΔ,Z

we need to find a system σ such that:

R := sMPCP\Z [N,PBC] = S := σZComputerZ .



460 C.-D. Liu-Zhang and U. Maurer



Synchronous Constructive Cryptography 461

We first argue that the instructions written at the queue C in resource
σZComputerZ follow the same distribution as the instructions that the honest
parties store in their queue in the system RZ . If party n is honest, this is true, as
argued in the previous case for Z = ∅. In the case that party n is dishonest, the
converter σ inputs (equally distributed) instructions as BCn outputs to honest
parties in RZ by emulating the behavior of BCn, taking into account the inputs
from dishonest parties provided at the outside interface, and the honest parties’
inputs are ⊥.

Now we need to show that the messages that dishonest parties receive in
both systems are equally distributed. We argue about each single instruction
separately. Let I be the next instruction to be executed.
Input instruction: I = (input, i, p). We consider two cases, depending on
whether party i is honest.

Dishonest party i. In the system R, if a complaint message is generated from
an honest party, the exact same complaint message will be output by σ in the
system S. This is because σ stores the shares received at the outside interface
by the dishonest parties, and checks that the shares are consistent. Moreover, at
the end of the input instruction it is guaranteed that all shares are consistent
(i.e., all honest parties in each Zq have the same share), and hence the sum of
the shares is well-defined. This exact sum is input at ComputerZ by σ.

Honest party i. In this case, the converter σ generates and outputs random
consistent values as the shares for dishonest parties. On input a complaint from
a dishonest party, output at the broadcast interface its share to all dishonest
parties. In the system R, dishonest parties also receive shares that are randomly
distributed. Observe that in this case, the correct value is stored in the queue of
ComputerZ , but σ only has the shares of dishonest parties.
Output instruction: I = (output, i, p). In this case, the emulation is only
non-trivial if party i is dishonest. The converter outputs random shares such
that the sum of the random shares and the corresponding shares from dishon-
est parties that are stored, corresponds to the output value x obtained from
ComputerZ . Observe that in the system R, the shares sum up to the value x as
well, because of the Q3 condition. Given that the correct value was stored in the
queue in every input instruction, the same shares that are output by σ follow
the same distribution as the shares received by dishonest parties in R (namely,
random shares subject to the fact that the sum of the random shares and the
dishonest shares is equal to x).
Addition instruction: I = (add, p1, p2, p3). The converter σ simply adds the
corresponding shares and stores them in the correct location.
Multiplication instruction: I = (mult, p1, p2, p3). Consider each 1 ≤ p, q ≤
m. Consider the following steps in the execution of the multiplication instruction
in R:

1. Honest parties execute the input instruction steps with the value apbq as
input. Dishonest parties can use any value as input. However, it is guaranteed
that the sharing is consistent. That is, each converter for an honest party in
Zu stores a value, which we denote vu

j , from j ∈ Zp ∩ Zq.
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2. Execute the output instruction, with the value vu
j −vu

j0
and towards all parties

in P. If any dishonest party used a value different than apbq in the previous
step, one difference will be non-zero, and the default sharing (apbq, 0, . . . , 0)
is adopted. Otherwise, the sharing from Pj0 , i.e. the values vu

j0
, is adopted.

Case Z ∩ Zp ∩ Zq �= ∅: If there is a dishonest party in Zp ∩ Zq, then the
converter σ has the values ap and bq stored.

Step 1: For each dishonest party i ∈ Zp ∩Zq, the converter σ checks whether
the shares are correctly shared (it checks that the dishonest parties in Zp ∩
Zq input a consistent sharing), in the same way as when emulating the input
instruction.

Step 2: After that, σ checks that the shares from party i add up to apbq. If
not, the converter σ defines the sharing of apbq as (apbq, 0, . . . , 0), and outputs
the corresponding shares to the dishonest parties.

Observe that given that the adversary structure satisfies the Q3 condition,
there is always an honest party in Zp∩Zq. Then, in the system R, it is guaranteed
that the value apbq is shared. Moreover, as in S, the default sharing is adopted
if and only if a dishonest party shared a value different from apbq.

Case Z ∩ Zp ∩ Zq = ∅: If all parties in Zp ∩ Zq are honest, dishonest parties
receive random shares in R. Moreover, all reconstructed differences are 0, since
honest parties in Zp ∩Zq share the same value. In S, σ generates random values
as shares of apbq as well, and then open 0s as the reconstructed differences.

�

9 Concluding Remarks

The fact that the construction notion in Definition 1 states a guarantee for
every possible set of dishonest parties, might suggest that our model cannot
be extended to the setting of adaptive corruptions. However, the term adaptive
corruption most often refers to the fact that a resource can be adaptively com-
promised, e.g. a party’s computer has a weakness (e.g. a virus) which allows the
adversary to take it over, depending on environmental events. This can be mod-
eled by stating explicitly the party’s resources with an interface to the adversary
and with a so-called free interface on which the corruptibility can be (adap-
tively) initiated. If one takes this viewpoint, it is actually natural to consider a
more fine-grained model of the resources (e.g. the computer, the memory, and
the randomness resource as separate resources) with separate meanings of what
“corruption” means. Note that the guarantees for honest parties whose resources
have been (partially) taken over are (and must be) still captured by the con-
structed resource specification.
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Appendix

A Broadcast Construction

We show how to construct the broadcast resource specification introduced in
Sect. 6.2, using the so-called king-phase paradigm [5]. The construction consists
of several steps, each providing stronger consistency guarantees.

A.1 Weak-Consensus

Let Z be a set of parties. The primitive weak-consensus provides two guarantees:

– Validity: If all parties in Z input the same value, they agree on this value.
– Weak Consistency: If some party i ∈ Z decides on an output yi ∈ {0, 1}, then

every other party j ∈ Z decides on a value yj ∈ {yi,⊥}.

A specification WCk,l,Z,t capturing the guarantees of a weak-consensus primitive
(up to t dishonest parties, and where parties input at round k and output at
round l) can be naturally defined as the set of all resources satisfying validity
and weak consistency. More concretely, for |Z| ≤ t, WCk,l,Z,t, is the set of all
resources which output a value at round l.b that satisfy the validity and weak
consistency properties, according to the inputs from round k.a. That is:

WCk,l,Z,t :=
{

R ∈ Φ
∣
∣
∣ ∃v

(
∀j ∈ Z yl.b

j ∈ {v,⊥}
)

∧
(
∃v′ ∀j ∈ Z xk.a

j = v′ → ∀j ∈ Z yl.b
j = xk.a

j

)}

And when |Z| > t, WCk,l,Z,t = Φ.

Protocol Πk
wc = (πwc

1 , . . . , πwc
n ) constructs specification WCk,k,Z,t from NZ . The

protocol is quite simple: At round k each party sends its input message to every
other party via each channel. Then, if there is a bit b that is received at least
n − t times, the output is b. Otherwise, the output is ⊥. At a very high level,
the protocol meets the specification because, if a party i outputs a bit b, it
received b from at least n− t parties, and hence it received b from at least n− 2t
honest parties. This implies that every other party received the bit 1− b at most
2t < n − t times (since t < n

3 ). Hence, no honest party outputs 1 − b.

Local Variable: y.

Round k

On input xi at out, output xi to each in.net.chi,j , where j ∈ P.
On input values yj at each in.net.chi,j :
if

∣
∣{j ∈ P | yj = 0}∣

∣ ≥ n − t then
y ← 0

Converter πwc
i
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else if
∣
∣{j ∈ P | yj = 1}∣

∣ ≥ n − t then
y ← 1

else
y ← ⊥

end if
Output y at out.

Theorem 2. Let t < n
3 . Πk

wc constructs WCk,k,Z,t from NZ , for any Z ⊆ P
such that |Z| ≤ t, and constructs Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system specifi-
cation RZ := (Πk

wc)ZNZ ⊆ WCk,k,Z,t.
For that, all we need to prove is that at round k.b, the outputs from the honest

parties satisfy both the weak-consistency and the validity property, where the
inputs to be taken into account are those at round k.a. We divide two cases:

– If every party i ∈ Z had as input value b at round k (there was pre-agreement):
In the system specification WCk,k,Z,t, the parties output the bit b by defini-
tion. In the system specification RZ , each party i ∈ Z receives the bit b at
least n − t times. Hence, each party i ∈ Z also outputs b.

– Otherwise, in RZ , either every party i ∈ Z outputs ⊥ (in which case the
parties meet the specification WCk,k,Z,t), or some party i outputs a bit b.
In this case, we observe that it received b from at least n − t parties, and
hence it received b from at least n−2t honest parties. This implies that every
other party received the bit 1 − b at most 2t < n − t times (since t < n

3 ).
In conclusion, no honest party outputs 1 − b, and the parties output a value
vi ∈ {⊥, b}.

�

A.2 Graded-Consensus

We define graded-consensus with respect to a set of parties Z. In this protocol,
each party inputs a bit xi ∈ {0, 1} and outputs a pair value-grade (yi, gi) ∈
{0, 1}2. The primitive provides two guarantees:

– Validity: If all parties in Z input the same value, they agree on this value
with grade 1.

– Graded Consistency: If some party i ∈ Z decides on a value yi ∈ {0, 1} with
grade gi = 1, then every other party j ∈ Z decides on the same value yj = yi.

Specification GCk,l,Z,t captures the guarantees of a graded-consensus primitive
secure up to t dishonest parties, and where parties give input at round k and
output at round l. If |Z| ≤ t:
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GCk,l,Z,t :=
{

R ∈ Φ
∣
∣
∣

∀v
(
∃j ∈ Z yl.b

j = (v, 1) → ∀i ∈ Z yl.b
i = (v, g) ∧ g ∈ {0, 1}

)
∧

(
∃v ∀j ∈ Z xk.a

j = v → ∀j ∈ Z yl.b
j = (xk.a

j , 1)
)}

And when |Z| > t, GCk,l,Z,t = Φ.

We show a protocol Πk
gc = (πgc

1 , . . . , π
gc
n ) that constructs specification GCk,k+1,Z,t

from the assumed specification [WCk,k,Z,t,NZ ]: At round k, each party i invokes
the weak consensus protocol on its input xi. Then, at round k + 1, each party
sends the output from the weak consensus protocol to every other party via the
network. After that, each party i sets the output value yi to be the most received
bit, and the grade gi = 1 if and only if the value was received at least n−t times.

If any party i decides on an output yi with gi = 1, it means that the party
received yi from at least n − t parties, where at least n − 2t are honest parties.
Hence, every other honest party received the value yi at least n−2t times. Given
that n − 2t > t, at least one honest party obtained yi as output of WCk,k,Z,t.
Therefore, by weak consistency, no honest party obtained 1 − yi as output from
WCk,k,Z,t, from which it follows that each honest party j received it at most
t < n − 2t times and therefore outputs yj = yi.

Local Variables: y, g.

Round k

On input xi at out, output xi at in.wc. // Output the value to WCk,k,Z,t

On input zi at in.wc, store the value.
Round k + 1

Output zi at each interface in.net.chi,j , for j ∈ P.
On input a message zj from each in.net.chj,i: // Value from each party j
if

∣
∣{j ∈ P | zj = 0}∣

∣ ≥ ∣
∣{j ∈ P | zj = 1}∣

∣ then
y ← 0

else
y ← 1

end if
if

∣
∣{j ∈ P | zj = y}∣

∣ ≥ n − t then
g ← 1

else
g ← 0

end if
Output (y, g) at out.

Converter πgc
i
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Theorem 3. Let t < n
3 . Πk

gc constructs GCk,k+1,Z,t from [WCk,k,Z,t,NZ ], for
any Z ⊆ P such that |Z| ≤ t, and constructs Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system specifi-
cation RZ := (Πk

gc)Z [WCk,k,Z,t,NZ ] ⊆ GCk,k+1,Z,t.
For that, all we need to prove is that at round (k + 1).b, the outputs from

the honest parties satisfy both the graded-consistency and the validity property,
where the inputs to be taken into account are those at round k.a.

At round k.a, each party i ∈ Z inputs the message xi to WCk,k,Z,t. Then, it
is guaranteed that at round k.b, honest parties obtain an output that satisfies
validity and weak-consistency. At round (k + 1).b, we divide two cases:

– If every party i ∈ Z had as input value b at round k (there was pre-agreement):
In GCk,k+1,Z,t, the parties output the bit (b, 1) by definition. In RZ , each party
i ∈ Z outputs the bit b as zj because of the validity of WCk,k,Z,t. Then, party i
receives at least n − t times the bit b. Hence, each party i ∈ Z also outputs b.

– If an honest party i decides on an output yi with gi = 1, then it means that
the party received yi from at least n − t parties, where at least n − 2t are
honest parties. This implies that every other honest party received the value
yi at least n − 2t times. Given that n − 2t > t, at least one honest party
obtained yi as output of WCk,k,Z,t at round (k + 1).b. Therefore, by weak
consistency, no honest party obtained 1 − yi as output from WCk,k,Z,t, from
which it follows that each honest party j received at most t < n − 2t times
and therefore outputs yj = yi.

�

A.3 King-Consensus

We first define a specification that achieves king-consensus with respect to a set
of parties Z. In the king-consensus primitive, there is a party K, the king, which
plays a special role. The primitive provides two guarantees:

– Validity: If all parties in Z input the same value, they agree on this value.
– King Consistency: If party K ∈ Z, then there is a value y such that every

party j ∈ Z decides on the value yj = y.

We describe a specification KCk,l,Z,t,K that models a king-consensus primitive
where K has the role of king, and is secure up to t dishonest parties, which starts
at round k and ends at round l. If |Z| ≤ t:

KCk,l,Z,t,K :=
{

R ∈ Φ
∣
∣
∣

(
K ∈ Z → ∃v ∀i ∈ Z yl.b

i = v
)

∧
(
∃v ∀j ∈ Z xk.a

j = v → ∀j ∈ Z yl.b
j = xk.a

j

)}
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And when |Z| > t, KCk,l,Z,t,K = Φ.

Protocol Πk
kc = (πkc

1 , . . . , πkc
n ) constructs specification KCk,k+2,Z,t,K from the

assumed specification [GCk,k+1,Z,t,NZ ]: At round k, each party i invokes the
graded consensus protocol on its input xi. Then, at round k + 2, the king K
sends the output zK from the graded consensus protocol to every other party.
Finally, each party i sets the value yi = zi to the output of graded consensus if
the grade was gi = 1, and otherwise to the value of the king yi = zK . Note that
consistency is guaranteed to hold only in the case the king is honest: if every
honest party i has grade gi = 0, they all adopt the king’s value. Otherwise, there
is a party j with grade gj = 1, and graded consistency ensures that all honest
parties (in particular the king) have the same output.

Local Variable: y.

Round k

On input xi at out, output xi at in.gc. // Output to GCk,k+1,Z,t

Round k + 1

On input (zi, gi) from in.gc, store the pair.

Round k + 2

If i = K, output zK to each in.net.chK,j , for j ∈ P. // Party i is the king
On input zK from in.net.chK,i:
if gi = 0 then

y ← zK

else
y ← zi

end if
Output y at out.

Converter πkc
i

Theorem 4. Let t < n
3 . Πk

kc constructs KCk,k+2,Z,t,K from [GCk,k+1,Z,t,NZ ],
for any Z ⊆ P such that |Z| ≤ t, and constructs Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We want to prove that the system specifi-
cation RZ := (Πk

kc)Z [GCk,k+1,Z,t,NZ ] ⊆ KCk,k+2,Z,t,K .
At round k.a, each party i ∈ Z inputs the message xi to GCk,k+1,Z,t. Then,

it is guaranteed that at round (k + 1).b, honest parties obtain an output that
satisfies validity and graded-consistency. We divide two cases:

– If every party i ∈ Z had as input value b at round k (there was pre-agreement):
In KCk,k+2,Z,t,K , the parties output the bit b at round k + 2 by definition. In
the system specification RZ , each party i ∈ Z receives the bit (b, 1) at round
k + 1, because of the validity of GCk,k+1,Z,t. Hence, each party i ∈ Z also
outputs b at round k + 2.
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– Otherwise, assume the king is honest. If every honest party i obtains an
output (zi, 0), then at round (k +2).b, every party takes the value of the king
zK . Otherwise, there is a party j that obtained an output (zj , 1) at round
(k +1).b. In this case, graded consistency implies that all honest parties have
the same output. In particular, this holds for the honest king. Thus, all parties
decide on the same output. �

A.4 Consensus

We define a specification that achieves consensus with respect to a set of parties
Z. The primitive provides two guarantees:

– Validity: If all parties in Z input the same value, they agree on this value.
– Consistency: There is a value y such that every party j ∈ Z decides on the

value yj = y.

We describe a specification Ck,l,Z,t that models consensus, secure up to t dishon-
est parties, which starts at round k and ends at round l. If |Z| ≤ t:

Ck,l,Z,t :=
{

R ∈ Φ
∣
∣
∣

(
∃v ∀i ∈ Z yl.b

i = v
)

∧
(
∃v ∀j ∈ Z xk.a

j = v → ∀j ∈ Z yl.b
j = xk.a

j

)}

And when |Z| > t, Ck,l,Z,t = Φ.

Protocol Πk
cons = (πcons

1 , . . . , πcons
n ) constructs specification Ck,k+3(t+1)−1,Z,t from

the assumed specification [KCk,k+2,Z,t,1, . . . ,KCk+3t,k+3(t+1)−1,Z,t,t+1]. The idea
is simply to execute the king consensus protocol sequentially t + 1 times with
different kings. More concretely, at round k + 3j, j ∈ [0, t], parties execute
the king consensus protocol, where the king is j + 1. If parties start with the
same input bit, validity of king consensus guarantees that this bit is kept until
the end. Otherwise, since the number of dishonest parties is at most t, one of
the executions has an honest king. After the execution with the honest king,
consistency is reached, and validity ensures that consistency is maintained until
the end of the execution.

Local Variable: y.

On input x at round k, y ← x.
for j = 0 to t do

Output y at in.kc at round k + 3j. // Output to KCk+3j,k+3j+2,Z,t,j+1

On input x′ at in.kc at round k + 3j + 2, set y ← x′.
end for
Output y at out.

Converter πcons
i
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Theorem 5. Let t < n. Πk
cons constructs Ck,k+3t+2,Z,t from [KCk,k+2,Z,t,1, . . . ,

KCk+3t,k+3t+2,Z,t,t+1], for any Z ⊆ P such that |Z| ≤ t, and constructs Φ oth-
erwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We divide two cases:

– If every party i ∈ Z had as input value b at round k (there was pre-agreement):
After each input to KCk+3j,k+3j+2,Z,t,j+1, the parties obtain the bit b because
of validity. This is the same in Ck,k+3t+2,Z,t by definition.

– Otherwise, given that there are up to t dishonest parties and there are t +
1 different kings, there is an honest king K. The output of any system in
the specification KCk+3(K−1),k+3K−1,Z,t,K is the same value v for all honest
parties because of the king consistency. All the following invocations to king
consensus keep the value v as the output because of the validity property.
Thus, all parties decide on the same output.

�

A.5 Broadcast

In Sect. 6.2 we introduced a broadcast resource specification. We show how to
achieve such a specification from Ck,l,Z,t, as long as |Z| ≤ t, for any t ≤ n

3 .
We recall the broadcast specification resource secure up to t dishonest parties,
which starts at round k and ends at round l. If |Z| ≤ t:

BCk,l,Z,t :=
{

R ∈ Φ
∣
∣
∣ ∃v

[(
∀j ∈ Z yl.b

j = v
)

∧
(
s ∈ Z → v = xk.a

s

)]}

And when |Z| > t, BCk,l,Z,t = Φ.

Protocol Πk
bc = (πbc

1 , . . . , πbc
n ) constructs specification BCk,k+3t+3,Z,t from the

assumed specification [Ck+1,k+3t+3,Z,t,NZ ]. The sender simply sends its input
value x to every party, and then parties execute the consensus protocol on the
received value from the sender.

Theorem 6. Let t < n
2 . Πk

bc constructs BCk,k+3t+3,Z,t from [Ck+1,k+3t+3,Z,t,
NZ ], for any Z ⊆ P such that |Z| ≤ t, and constructs Φ otherwise.

Proof. Let Z ⊆ P such that |Z| ≤ t. We divide two cases:

– If the sender is honest, every honest party receives the sender’s input xs

and inputs this value into the consensus resource. Because of the validity of
consensus, every honest party obtains xs from the consensus resource and
outputs it. This is the same in BCk,k+3t+3,Z,t by definition.

– Otherwise, the consistency of the consensus resource guarantees that every
honest party receives the same value from the consensus resource, and hence
every honest party outputs the same value. �
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As a corollary of composing all the previous protocols, we obtain that there
is a protocol which constructs broadcast from a network of bilateral channels.

Corollary 1. Let t < n
3 . There is a protocol that constructs BCk,k+3t+3,Z,t from

NZ , for any Z ⊆ P such that |Z| ≤ t, and constructs Φ otherwise.

References

1. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

2. Backes, M., Hofheinz, D., Müller-Quade, J., Unruh, D.: On fairness in
simulatability-based cryptographic systems. In: Proceedings of the 2005 ACM
workshop on Formal methods in security engineering, pp. 13–22. ACM (2005)

3. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (rsim) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

5. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In:
FOCS, pp. 410–415. IEEE (1989)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

7. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 1

8. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, May 2002
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Abstract. Topology-hiding broadcast (THB) enables parties communi-
cating over an incomplete network to broadcast messages while hiding
the topology from within a given class of graphs. THB is a central tool
underlying general topology-hiding secure computation (THC) (Moran et
al. TCC’15). Although broadcast is a privacy-free task, it was recently
shown that THB for certain graph classes necessitates computational
assumptions, even in the semi-honest setting, and even given a single
corrupted party.

In this work we investigate the minimal assumptions required for
topology–hiding communication—both Broadcast or Anonymous Broad-
cast (where the broadcaster’s identity is hidden). We develop new tech-
niques that yield a variety of necessary and sufficient conditions for the
feasibility of THB/THAB in different cryptographic settings: information
theoretic, given existence of key agreement, and given existence of obliv-
ious transfer. Our results show that feasibility can depend on various
properties of the graph class, such as connectivity, and highlight the role
of different properties of topology when kept hidden, including direction,
distance, and/or distance-of-neighbors to the broadcaster.

An interesting corollary of our results is a dichotomy for THC with
a public number of at least three parties, secure against one corruption:
information-theoretic feasibility if all graphs are 2-connected; necessity
and sufficiency of key agreement otherwise.

1 Introduction

Reliable communication between a set of mutually distrustful parties lies at the
core of virtually any distributed protocol, ranging from consensus tasks [15,19]
to secure multiparty computation [5,9,11,21]. Classical protocols from the ’80s
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considered complete communication graphs between the parties, where each pair
of parties is connected by a communication channel. However, in many real-life
scenarios the parties are not pairwise connected; this raises the need for dis-
tributed interactive computations, and in particular communication protocols,
over an incomplete graph. Often, the network topology itself may be sensitive
information that should not be revealed by the protocol.

Topology–Hiding Broadcast. With this motivation, Moran et al. [18] formalized
the concept of topology–hiding computation (THC). Here, the goal is to allow
parties who see only their immediate neighborhood (and possibly know that the
graph belongs to some class), to securely compute arbitrary functions without
revealing any additional information about the graph topology other than the
output (computations on the graphs, e.g., establishing routing tables, are also
supported). THC is of theoretical interest, but is also motivated by real-world
settings where it is desired to keep the underlying communication graph private.
These include social networks, ISP networks, ad hoc (or mesh) networks, vehicle-
to-vehicle communications, and possible approaches for contact tracing.

Given the existence of general MPC protocols, achieving THC for arbitrary
functions hinges on communicating in a topology–hiding way, rather than on
keeping inputs private. In particular, a core bottleneck for achieving general
THC is the special case of topology–hiding broadcast (THB), where a designated
party (the broadcaster) reliably sends its message to all other parties. Indeed,
given an MPC protocol for a function f defined in the broadcast model (where
all communication is sent via a broadcast channel, possibly encrypted),1 the
parties can replace the broadcast channel by a THB protocol to obtain a THC
protocol for the function f .

Although broadcast is a privacy-free task, realizing THB turns out to be chal-
lenging, even in the semi-honest setting where all parties follow the protocol. This
is in stark contrast to standard (topology-revealing) broadcast, which is trivially
achievable in the semi-honest setting, e.g., simply “flooding” the network, forward-
ing received messages. For general semi-honest corruptions, the best THB con-
structions follow from a series of works [1,2,12,16,18], culminating in THB (as
well as THC) protocols for all graphs. However, even for THB, all known proto-
cols require structured public-key cryptographic assumptions, such as QR, DDH,
or LWE.2 The use of strong assumptions was justified by Ball et al. [3] who showed
that without an honest majority, even THB implies oblivious transfer (OT).3

A central paradigm in standard (topology–revealing) secure computation is to
exchange cryptographic assumptionswith an honest-majority assumption [5,9,20].
A recent work of Ball et al. [4] asked whether such a paradigm can be applied in the
1 Such protocols exist in the honest-majority setting assuming key agreement, and

thus under this assumption, THB implies THC. In the information-theoretic setting
THC can be strictly stronger, as we will see.

2 That is, the Quadratic Residuosity assumption, the Decisional Diffie-Hellman
assumption, and the Learning With Errors assumption, respectively.

3 The lower bound of [3] holds for 4-party 2-secure THB with respect to a small class of
4-node graphs, namely, a square, and a square with any of its edges removed.
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topology-hiding realm. The results of [4] demonstrated that answering this ques-
tion is more subtle than meets the eye, even when considering the basic case of one
semi-honest corruption. On the one hand, they showed that information-theoretic
THB (IT-THB) can be achieved for the graph class of cycles, where the protocol
hides the ordering of parties within the cycle. On the other hand, they identified
that THB for paths of n ≥ 4 nodes (again hiding ordering) implies key agreement.

This Work. In a sense, [4] unveiled the tip of the iceberg, revealing a range of
questions: Which aspects of the topology can be hidden information theoretically,
and which require cryptographic hardness? Is key agreement sufficient for 1-
corruption THB, or are there graph classes that require stronger assumptions?

In this paper we study the cryptographic power of THB. The main question
that we ask is:

What are the minimal cryptographic assumptions
required for THB for a given class of graphs?

We focus on a minimal setting, with a small number of parties and a single,
or few, semi-honest corruptions, which we denote by t-THB for t corruptions.
This makes our lower bounds stronger; and, as we demonstrate, even this simple
setting offers a rich multi-layered terrain, and provides insights and implications
for more general settings (including THC).

Before proceeding to state our results, we note that prior THB protocols
actually achieved the stronger property of topology-hiding anonymous broadcast
(THAB), where the identity of the broadcaster remains hidden [7,8]. From the
definitions of these primitives, we have that

THC =⇒ THAB =⇒ THB.

Thus, all lower bounds for THB (such as the one from [4] and our own results)
apply also for THAB and THC. As we will show, there are classes of graphs
where THB is possible information theoretically, but THAB, and thus THC,
require strong cryptographic assumptions. Understanding for which topologies
the reverse implications hold is addressed here in part, but the full answer
remains an interesting open question.

1.1 Our Results

This work makes significant strides in mapping the landscape of THB, THAB,
and THC in minimal settings, in the process developing new techniques that may
be useful to achieve a full understanding of its complexities. As standard in the
THC literature, we consider a synchronous setting, where the protocol proceeds
in rounds.4

4 LaVigne et al. [17] recently studied THC in a non-synchronous setting, demonstrating
many barriers.
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New Lower Bounds and Techniques

– THB. We explore which properties of graph topology are “hard” to hide,
in the sense of requiring cryptographic assumptions to do so. We show that
hiding any one of the properties of direction, distance, and/or distance-of-
neighbors to the broadcaster is hard—while revealing all three but nothing
else (in fact, only revealing distance-of-neighbors) can always be achieved
information theocratically, using the trivial flooding protocol.

– THAB. We observe that t-THAB for any graph class containing a graph that
is not (t + 1)-connected5 implies key agreement. We further show that hiding
the number of participants in certain graph classes implies infinitely often
oblivious transfer, even for 1-THAB.

Unconditional & KA-Based Upper Bounds.

– Unconditional. We provide a construction of 1-THAB for all 2-connected
graphs, whose complexity grows with the number of potential graphs in the
class (in particular, it is efficient for constant-size graphs), which achieves
statistical information-theoretic security.

– Key Agreement. Assuming the existence of key agreement, we achieve 1-THB
for all graphs, and 1-THAB for all graphs of ≥3 nodes.

Corollaries and Conclusions

– Dichotomy for 1-THC with ≥3 parties. An interesting corollary of our results
is a dichotomy for 1-THC with a fixed and known set of at least three parties6

(i.e., where all graphs share the same vertex set): if all graphs in a class are
2-connected, the class supports information-theoretic 1-THC; otherwise, key
agreement is necessary and sufficient for 1-THC.

– Dichotomy for 1-THAB with ≥3 parties. A similar result holds for 1-THAB
for a dynamic set of parties (i.e., the vertex set of every graph is a subset of
[n]) as long as each graph contains at least three nodes: if all graphs in a class
are 2-connected, the class supports information-theoretic 1-THAB; otherwise,
key agreement is necessary and sufficient for 1-THAB.

– Characterization of 1-THB for small graphs. Our results introduce several
new constructions and analysis techniques; as a demonstration of their wider
applicability, we provide a characterization of the more complex case of 1-
THB for all graph classes on four nodes or fewer. Note that the feasibility
boundaries of 1-THB are more complex than 1-THAB since, as we show,
certain lower bounds for 1-THAB do not apply to 1-THB.

– THB without OT. Our upper bounds constitute the first protocols using
machinery “below” oblivious transfer,7 aside from the specific graph class
of cycles of fixed length (that was shown in [4]).

5 A graph is k-connected if and only if every pair of nodes is connected by k vertex-
disjoint paths.

6 If the class of graphs contains a 2-path, then oblivious transfer is necessary for secure
computation [14].

7 Note that OT is strictly stronger than KA in terms of black-box reductions, since
OT implies KA in a black-box way, but the converse does not hold [10].
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We next describe these results in more detail.

Lower Bounds. We begin by investigating the conditions under which THB
and THAB for a graph class G necessitate cryptographic assumptions.

THB: Hiding direction, distance, or distance-of-neighbors. Recall that restricting
attention to a class of graphs G captures that a THB protocol hides partial infor-
mation about a graph topology. For example, if all graphs in G have property P ,
then the THB protocol need not hide whether P is satisfied when providing indis-
tinguishability within this class. Our question thus becomes: for which properties
of a graph topology is it the case that hiding necessitates cryptography?

Consider as a baseline the trivial “flooding” protocol, which in general is not
topology hiding. Parties flood the network: on receiving the broadcast message,
a party forwards it to all neighbors from which it was not previously received.
Indeed, this protocol reveals information; e.g., the round number in which a
party first receives the message corresponds directly to its distance from the
broadcaster. However, even for this simple protocol, the amount of information
revealed is limited. The leakage can be quantified precisely: each party learns
exactly the distance from the broadcaster of each of its neighbors,8 or “distance-
of-neighbors.” In particular, this includes the information of (a) direction of the
broadcaster (i.e., which neighbors are on a shortest path to the broadcaster),
and (b) distance to the broadcaster. Since the flooding protocol can be executed
unconditionally for any graph class G, it can only be some combination of this
leaked distance-of-neighbors information for which hiding requires cryptography.

Examining the lower bound of [4], we observe that it constitutes an example
where hiding the direction of the broadcaster from a given party necessitates
key agreement (KA). This is embodied via the class of two graphs G4−path =
{(A−B−C−D), (B−C−D−A)} on a path, where party C is unaware whether
the broadcasting party A lies to its left or right. Indeed, broadcaster direction
is central to their lower bound, where KA agents Alice and Bob emulate the
THB parties B and D, respectively, and jointly emulate C. Each flips a (private)
coin to decide whether to also emulate A on their corresponding side. The two
parties can detect cases where both (or neither) party decided to emulate A. In
the remaining cases both parties agree on which side the broadcaster appears:
this will serve as the secret common key bit.

At a high level, the security of this KA protocol relies on the fact that the
eavesdropper’s view is essentially that of party C—who, by topology hiding, can-
not distinguish the relative direction of A. Thus, one may naturally ask whether
hiding the direction to the broadcaster captures the essence of the cryptographic
power of THB.

8 If the neighbor sends the message in the first round that the party learns it, then
its distance is one less of the party’s distance. If the neighbor sends after the party
learned it, then its distance equals the party’s distance. If the neighbor does not
send, then its distance is one more than the party’s distance.
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Our first result shows that the direction to the broadcaster is not the complete
answer. We present a class of graphs Goriented−5−path for which any constant-round
1-secure THB implies infinitely often key agreement,9 but for which the direction
to the broadcaster is always known. Specifically, we consider the class of 5-path
graphs where the broadcaster A is always on the left,10 i.e.,

Goriented−5−path =
{
(A−B−C−D−E), (A−E−B−C−D), (A−D−E−B−C), (A−C−D−E−B)

}
.

Because of this structure, the lower-bound techniques of Ball et al. [4] do not
apply. Proving a key-agreement implication for Goriented−5−path requires a new,
more subtle approach, which we discuss in Sect. 2. In particular, unlike [4], we
must leverage the fact that topology hiding holds for any choice of corrupted
party. For example, party C cannot distinguish between (A−B−C−D−E) and
(A−E−B−C−D), and party B cannot distinguish between (A−E−B−C−D)
and (A − D − E − B − C).

Taking a broader view of this example, we observe that while the direction
of the broadcaster is public for Goriented−5−path, the information to be hidden
corresponds directly to the distance of the given parties to the broadcaster. One
may thus once again wonder whether revealing both the direction and distance
to the broadcaster dictates unconditional THB feasibility.

Our second result reveals that the answer is even more intricate. We demon-
strate a class of graphs for which each party publicly knows both its direction and
distance to the broadcaster, but for which 1-THB still implies key agreement.

Specifically, we consider the class Gtriangle consisting of a triangle, with pos-
sibly one of its edges missing (see Fig. 1). Interestingly, this is a very basic
communication pattern: if a party has two neighbors it does not know if its
neighbors are directly connected or not, but a party with one neighbor knows
the entire topology. Notably, direction and distance from the broadcaster are
both clearly identifiable to each party given just its neighbor set; the only infor-
mation hidden from a party is its neighbor’s distance to the broadcaster. We
show that this is enough to imply KA (see Sect. 2 for details).

Fig. 1. The class Gtriangle.

To summarize, for each strict subset of the properties that are leaked by
the flooding protocol (namely, direction and/or distance to the broadcaster), we

9 An infinitely often key agreement guarantees correctness and security for infinitely
many λ ∈ N (where λ stands for the security parameter).

10 In particular, the “left/right” orientation can be deduced locally from each node’s
neighbor set.
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demonstrate a graph class for which hiding only these properties implies public-
key cryptographic assumptions. Complementarily, if all three properties (essen-
tially, just the distance-of-neighbors) are known then one can use the flooding
protocol to obtain THB information theoretically.

Theorem 1. (THB lower bounds, informal). We consider THB with 1 semi-
honest corruption.

– 1-secure THB for the graph class Goriented−5−path of 5-path graphs for which
the broadcasting party is always in the leftmost direction (see above) implies
infinitely often key agreement.

– 1-secure THB for the graph class Gtriangle (Fig. 1), for which the broadcasting
party is always at a known distance and direction, implies key agreement.

In contrast, for any class G such that for every party the distance of each of its
neighbors to the broadcaster is fixed and known across all graphs, there exists an
unconditionally 1-secure THB protocol.

THAB: Key Agreement and Beyond. We next turn to topology-hiding anonymous
broadcast (THAB). As mentioned above, any lower bound for THB is also a lower
bound for THAB; however, we show even stronger results for THAB.

The connection between anonymous communication and cryptographic hard-
ness was previously studied by Ishai et al. [13]. They showed that in a com-
munication network that provides sender-anonymity (under relatively strong
adversarial observation), key agreement exists unconditionally; i.e., each pair of
parties within the system can agree on a secret key. Our setting is slightly differ-
ent, however, using the lower-bound technique from [4] a similar observation can
be made: sender-anonymous communication over a path of three nodes implies
the existence of standard Alice-Bob key agreement, where the eavesdropper can
see which party sends which message.

This clear-cut impossibility of information-theoretic 1-THAB (in fact, 1-
secure anonymous broadcast) on arbitrary incomplete networks stands in con-
trast to 1-THB, where the determination of when a graph class yields an impli-
cation to key agreement was demonstrably complex. Concretely, consider the
following (singleton) class G{a−b−c}:

G{a−b−c} = {(A − B − C)} .

THB for this class is glaringly trivial (indeed, there is no information to hide
because the topology is fixed); however, as discussed, 1-THAB on this class
implies key agreement. For completeness, in Sect. 5.1 we prove this implica-
tion as a direct corollary of the key-agreement lower bound of Ball et al. [4],
where the “direction” of the broadcaster (either A or C) in this case is hidden
from the intermediate party B by anonymity.

At this moment, the reader may pause, ensnared in the underwhelming
nature of the above class G{a−b−c}. However, by a standard player-partitioning
argument (“projecting” a larger graph down onto the 3-path), the above result
yields a much broader statement.
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Proposition 1 (THAB lower bound 1, informal, [4,13]). Let G be a class
of graphs that contains a graph with at least (t + 2) nodes that is not (t + 1)-
connected. Then t-secure THAB for G implies KA.

In our final lower-bound result, we demonstrate an even more extreme form
of separation between THB and THAB. We consider the graph class G2−vs−3 that
consists of all possible 2-path and 3-path graphs over three parties, i.e.,

G2−vs−3 = {(A − B), (A − C), (B − C), (A − B − C), (B − C − A), (C − A − B)} .

In this class, for example, if A is only connected to B, it does not know whether
B has a second neighbor or not. It is easy to see that 1-secure THB exists
unconditionally (by the flooding protocol); however, we show that 1-secure THAB
implies infinitely often oblivious transfer.11 We emphasize that as opposed to
other classes of graphs discussed thus far, the “hardness” of the class G2−vs−3 is
based on hiding the number of nodes participating in the protocol. We refer the
reader to Sect. 2 and 5.2 for further details on the lower bound.

Overall, we obtain the following theorem.

Theorem 2 (THAB lower bound 2, informal). 1-secure THAB for G2−vs−3

implies infinitely often OT.

We remark that these results separate THB from THAB for very simple graph
classes, where THAB requires computational assumptions whereas unconditional
THB exists via the trivial flooding protocol. Later, in Section 1.1 we will show
a more interesting separation via the “butterfly” graph, where the existence of
information-theoretic THB itself is non-trivial.

Upper Bounds. Before stating our results, we recall the state-of-the-art for
semi-honest THB and THAB with one corruption. Assuming oblivious transfer
(OT), 1-THAB can be obtained for all graphs following the construction app-
roach of Moran et al. [18].12 Without assuming OT, the only previously known
nontrivial13 construction of THB or THAB is the information-theoretic 1-THAB
for the specific graph class of cycles on a known number of nodes in [4].

We consider three settings of upper bounds: (1) with information-theoretic
security, (2) assuming only key agreement, and (3) converting generically from
THB to THAB.

11 An infinitely often OT protocol guarantees correctness and security for infinitely
many λ ∈ N (where λ stands for the security parameter).

12 The result of [18] was limited to graphs of small diameter to allow an arbitrary
number of corruptions. With a single corruption the same construction can support
all graphs.

13 THB exists trivially for any graph class in which each party’s neighborhood uniquely
identifies the graph topology.
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Information-Theoretic Security. First, we consider protocols for achieving 1-
THAB (and THB) in the information-theoretic setting, without cryptographic
assumptions. Recall that the lower bound in Proposition 1 above rules out the
possibility of 1-THAB for any graph class containing a graph that is not 2-
connected. We show that conversely, if a class of graphs G contains only 2-
connected graphs, then 1-THAB for G is feasible.

The protocol’s communication grows polynomially in the size of the class G
and its computation grows polynomially in the size of G and exponentially in
the maximal degree of any G ∈ G. However, our results are meaningful despite
this caveat: First, the protocol is efficient when considering a constant number
of parties (or appropriate graph classes of polynomial size). Second, since the
protocol remains secure against computationally unbounded adversaries, it is
still meaningful to consider protocols that are inefficient in the class.

Theorem 3 (1-IT-THAB for 2-connected, informal). Let G be a class con-
taining only 2-connected graphs. Then, there exists a statistical information-
theoretic 1-THAB for G whose communication complexity is polynomial in the
size of G, and whose computation complexity is polynomial in the size of G and
exponential in the maximal degree of G.

Combining Proposition 1 and Theorem 3 gives a characterization for
information-theoretic 1-THAB: Namely, a protocol exists if and only if all graphs
in the class are 2-connected (with the exception of the trivial class containing
only the 2-path). For the case of 1-THB such dichotomy does not hold and,
as we show, there exist graph classes with 1-connected graphs that still admit
information-theoretic 1-THB protocols.

Remark 1 (1-IT -THB for Gbutterfly). Consider the 5-node, 1-connected but-
terfly graph (Fig. 2) and let Gbutterfly contain all permutations of the nodes on
the graph (where parties’ positions are permuted). In Sect. 6.2, we show that
although the simple flooding protocol does not directly hide topology, there
exists a (perfectly secure) information-theoretic 1-THB protocol for Gbutterfly.

Fig. 2. The butterfly graph.

Upper bounds from KA. Recall that from the lower bounds presented above (see
Sect. 1.1), key agreement is a necessary assumption for 1-THB and 1-THAB for
many classes of graphs. This begs the question of when key agreement is also
a sufficient assumption for 1-THB and 1-THAB. We show that assuming key
agreement there exist 1-secure THB for all graphs, and 1-secure THAB for all
graphs containing at least 3 nodes.
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Theorem 4 (1-THAB and 1-THB from KA, informal).

– Let G be a class consisting of graphs with at least three nodes. Assuming key
agreement, there exist 1-THAB for G.

– Let G be a class of graphs. Assuming key agreement, there exist 1-THB for G.

We note that in the first item of Theorem 4, removing the restriction of
at least three nodes would require bypassing black-box separation results, due
to Theorem 2 that asserts the necessity of (infinitely often) OT for the class
G2−vs−3. On the other hand, by [18], assuming OT there exists 1-THAB for all
graphs, essentially closing the gap in this regime.

THC Dichotomy. Upon closer inspection, we observe that our upper bounds—
both the information-theoretic protocols for 2-connected graphs, as well as the
results from KA above—give something even stronger than 1-THAB: they give
topology-hiding secure message transmission, i.e., emulating pairwise secure
point-to-point channels. In this case, assuming that the number of parties is fixed
and known across all graphs, we can run the semi-honest “BGW” protocol [5],
which only requires pairwise secure channels and works for an honest majority.
Thus, together with our lower bounds, we arrive at the following dichotomy for
1-THC:

Corollary 1 (1-secure THC dichotomy, informal). Consider a class of
graphs G on n ≥ 3 nodes. Then, the following hold regarding existence of THC
for G secure against 1 semi-honest corruption:

– If all graphs G ∈ G are 2-connected, then there exists a statistically
information-theocratically secure, 1-THC protocol for G, whose communica-
tion is polynomial in the size of G and whose computation is polynomial in
the size of G and exponential in the maximal degree of G.

– If there exists G ∈ G that is not 2-connected, then KA is necessary and
sufficient for 1-secure THC for G.

Generically converting THB to THAB. Our results have demonstrated a num-
ber of nontrivial separations between THB and THAB, identifying classes of
t-connected graphs and computational assumptions which admit t-THB proto-
cols but provably cannot obtain t-THAB. This includes, for example, G{a−b−c}
and Gbutterfly for information theoretic vs. key agreement, as well as G2−vs−3 for
information theoretic vs. oblivious transfer.

Finally, we show that graph connectivity is, indeed, a critical property for
determining the relation between THB and THAB on a class of graphs. Specifi-
cally, we show that (t + 1)-connectivity is a sufficient condition for equivalence
of the two notions against t corruptions.

Theorem 5 (t-THB⇒ t-THAB given (t+1)-connectivity, informal). Let
n ∈ N and let G be a class consisting of (t + 1)-connected graphs over n nodes.
If there exists t-THB for G then there exists t-THAB for G.
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Our reduction builds upon the “Dining Cryptographers” approach for anony-
mous broadcast due to Chaum [8]. Recall in THAB there exists a unique broad-
caster who wishes to convey its input bit x ∈ {0, 1} to all parties without reveal-
ing its identity (or the topology). To do so, each party first additively secret
shares its input—defined to be 0 for any non-broadcaster—across its neighbors,
locally sums all received shares to si ∈ {0, 1}, and then acts as broadcaster within
the underlying (non-anonymous) THB with input value si. After this phase, all
parties receive the vector of shares (s1, . . . , sn), which can be summed to yield
the original input x. It was shown by [8] that if the graph is (t + 1)-vertex con-
nected (so as to ensure that the adversary cannot corrupt a vertex cut), then the
protocol is anonymous. We observe that the protocol further preserves the topol-
ogy hiding of the underlying THB protocol. Indeed, given (t + 1)-connectivity,
the vector of broadcasted shares (s1, . . . , sn) will be uniform conditioned on the
necessary sum, independent of the graph structure.

Summary and Characterization of Graphs with up to Four Nodes. We
summarize our combined contributions in Table 1, together with relevant prior
results.

Table 1. Summary of Upper and Lower Bound Results. Read as “[row label] is nec-
essary/sufficient for [column label].” E.g. the IT setting suffices to construct 1-THAB
for any 2-connected family of graphs, whereas KA is needed to construct 1-THB for
Gtriangle.

1-THB 1-THAB

Sufficient Necessary Sufficient Necessary

IT Gcycle [4]
Gbutterfly (Remark 1)
2-connected
(Theorem 3)

– 2-connected
(Theorem 3)

–

KA All graphs
(Theorem 4)

G4−path [4]
Goriented−5−path

(Theorem 1)
Gtriangle

(Theorem 1)

All graphs (≥3
nodes)
(Theorem 4)

Not 2-connected
(≥3 nodes)
(Proposition 1)

OT All graphs [18] – All graphs [18] G2−vs−3

(Theorem 2)

In addition, and as a demonstration of the power and applicability of the
techniques developed, in the full version of this work we provide a characteri-
zation of the feasibility of 1-THB and 1-THAB for all graph classes on up to 4
parties. The characterization uses a partition of the 4-node graphs into multiple
classes, each of which can be handled by a separate technique.

Organization of the Paper. We proceed in Sect. 2 to provide an overview of
the core new techniques toward proving our main results. In Sect. 3 we provide
the necessary definitions and preliminaries. In Sect. 4 and Sect. 5 we present an
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abbreviated version of our THB and THAB lower bounds, respectively. And, in
Sect. 6 and Sect. 7 we include a short version of our information-theoretic and
KA-based upper bounds. We refer the reader to the full version of this paper
for detailed treatment of these results, as well as corollaries and implications to
characterization of 1-THB, 1-THAB, and 1-THC.

2 Technical Overview

We next highlight a selection of our new analysis and protocol-construction
techniques, described in Sects. 2.1 and 2.4. We will describe two analysis tech-
niques that are used in our lower bounds: “phantom jump” and “artificial over-
extension.” In addition, we will describe two protocol-design techniques that are
used in our upper bounds: “censored brute force” and “dead-end channels.”

2.1 Analysis Technique: “Phantom Jump”

The “phantom jump” technique is a means for proving indistinguishability of
the transcript of messages sent across a given edge A − B in THB executions on
two different graphs, via a sequence of intermediate indistinguishability steps,
each appealing to THB security for a different graph pair. In applications, the
initial and final graphs will have a party “jump” from one side of the graph to
the other, which will be used within the key-agreement implication analysis.

This technique is used within some of our key-agreement lower bounds. We
focus here on a specific example for the class Gtriangle (of a triangle graph with
a potential edge missing). We point the reader to more elaborate examples on
4-node graph classes in the full version.

We start by recalling how a 1-THB protocol π for G4−path = {(A − B − C −
D), (B − C − D − A)} was used to construct key agreement in [4]. The idea is
for Alice to choose two long random strings r1 and r2 and send them to Bob in
the clear. Next, Alice and Bob continue in phases as follows:

– In each phase Alice and Bob locally toss coins xAlice and xBob, respectively.
– They proceed to run two executions of π in which Alice always emulates B

and C and Bob emulates D. In addition, if xAlice = 0 then Alice emulates A
(as a neighbor of B) broadcasting r1 in the first run; otherwise she emulates
A broadcasting r2 in the second run. Similarly, if xBob = 1 then Bob emulates
A (as a neighbor of D) broadcasting r1 in the first run; otherwise he emulates
A broadcasting r2 in the second run.

– If parties B and D output r1 in the first run and r2 in the second, Alice and
Bob output their bits xAlice and xBob, respectively; otherwise, they execute
another phase.

Clearly, if xAlice = xBob in some iteration then Alice and Bob will output the same
coin, and by the assumed security of π, the eavesdropper Eve will not be able
to learn who emulated A in the first run and who in the second. If xAlice �= xBob,
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then in at least one of the runs nobody emulates the broadcaster A, so with
overwhelming probability Alice and Bob will detect this case.

We now show how to adjust this argument to Gtriangle. Constructing the KA
protocol is rather similar, where Alice always emulates B and Bob always emu-
lates C, and each party emulates the broadcaster A based on their local coins
xAlice and xBob (see Fig. 3). Proving correctness follows exactly as in the argu-
ment from [4]; however, proving security is more involved. Indeed, in G4−path the
view of Eve corresponds to a partial view of the intermediate node C who is
never a neighbor of A, and so by the security of π, never learns its direction
to A. When considering Gtriangle, the view of Eve consists of the communication
between B and C, and one of them must be a neighbor of A.

This is where the new phantom-jump technique comes into play. As opposed
to [4], we do not construct a reduction from Eve to the security of the THB
protocol; rather, we use a direct indistinguishability argument. Notice that the
KA construction required the use of only two graphs (A−B−C) and (B−C−A).
The third graph (the triangle) is needed for the proof.

Fig. 3. 1-THB on Gtriangle implies KA.

As depicted in Fig. 3, the view of Eve consists of the communication between
B and C. By THB security B cannot distinguish between the 3-path (A−B−C)
and the complete triangle; in particular, the distribution of the messages on the
channel between B and C is indistinguishable in both cases. Similarly, by THB
security C cannot distinguish between the 3-path (B −C −A) and the complete
triangle; in particular, the distribution of the messages on the channel between B
and C is indistinguishable in both cases. By a simple hybrid argument it follows
that the messages between B and C are indistinguishable when communicating
in (A − B − C) and when communicating in (B − C − A). It follows that the
distinguishing advantage of Eve is negligible.

2.2 Analysis Technique: “Artificial Over-Extension”

The artificial over-extension technique is used for proving two of our lower
bounds. First, Theorem 1 where 1-THB for Goriented−5−path is used to construct
infinitely often KA (see also Sect. 4.1); and second, Theorem 2 where 1-THAB for
G2−vs−3 is used to construct infinitely often OT (see Sect. 5.2). In the following,
we focus on the latter.
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Recall that in the class G2−vs−3 a party (say A) that has a single neighbor (say
B) does not know whether B has another neighbor C or not. This uncertainty is
the source of the cryptographic hardness we present; indeed, if the parties know
that an honest majority cannot be assumed (i.e., there are only two parties)
then 1-THAB is trivial, whereas if an honest majority can be assumed (i.e.,
there are three parties) then 1-THAB exists assuming KA (by Theorem 4). We
also note that without anonymity, 1-THB trivially exists in G2−vs−3 (via the
flooding protocol).

We start with an intermediate goal, that of constructing oblivious transfer
from a two-round 1-THAB protocol π for the graph class G2−vs−3,14 and later
explain how the novel “artificial over-extension” technique allows us to extend
this construction to arbitrary constant-round protocols. Note that using this
technique we can only construct infinitely often OT, and extending the implica-
tion to a full-blown OT is left as an interesting open question.

OT from two-round 1-THAB. Given a two-round 1-THAB protocol π we con-
struct a secure two-party protocol for Boolean AND (which in turn implies
OT [14]).

In the protocol, Alice and Bob will emulate an execution of the 1-THAB
protocol on a path, where each extends the length of the path (by emulating an
extra party) if their input is 1. More concretely, Alice simulates a single node B
if her input is 0, and two nodes A−B if her input is 1. Similarly, Bob simulates
a single node C if his input is 0 and two nodes C − A if his input is 1 (see Fig.
4). Next, Alice chooses a message m

R←{0, 1}λ at random, sends it to Bob in the
clear, and initiates an execution of π on message m on the graph with her left-
most node (either B or A) as broadcaster. At the conclusion of π, Bob identifies
whether his right-most emulated party (either C or A) correctly outputs m. If
so, then Bob outputs 0; if not, he outputs 1.

Fig. 4. Boolean AND from two-round 1-THAB for {B − C,A − B − C,B − C − A}

We show that this protocol securely computes AND of Alice and Bob’s inputs.

14 In fact, for this step we will only need for the smaller graph class {B − C,A − B −
C,B − C − A} ⊂ G2−vs−3.
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– For security, we exploit the fact that the only case where there is something
to hide (namely, if a party holds input 0) is where the respective party has
control over just a single node in π. Security therefore follows from the fact
that π is a THAB protocol with security against one corruption. For example,
the views of a corrupt Alice emulating B within executions over graphs B−C
(Bob has input 0) and B − C − A (Bob has input 1) are indistinguishable.
Note here that for security it is crucial that π is an anonymous broadcast
protocol, because in case x = 0, Alice broadcasts from node B and in case
x = 1 from node A. (In fact, as noted above, 1-THB can be achieved trivially
on G2−vs−3.)

– For correctness, first note that when at least one party has input 0, the cor-
responding graph is an element of {B − C,A − B − C,B − C − A} ⊂ G2−vs−3,
in which case proper delivery of m to Bob’s right-most node is guaranteed by
correctness of π. On the other hand, when x∧y = 1 (i.e., both Alice and Bob
emulate node A) the parties effectively emulate π over an “invalid” length-4
path A−B−C−A. While behavior of π within such execution is unclear, since
π runs in only 2 rounds, the message m simply cannot reach the right-most
node emulated by Bob at distance 3. Thus, Bob will correctly output 1.

Infinitely often OT from constant-round 1-THAB. Note that correctness of the
construction above crucially relies on efficiently detecting an execution of π on
the graph A−B−C−A, leveraging its insufficient round complexity. However, this
argument is no longer guaranteed when π completes in more than two rounds.
This is where the “artificial over-extension” technique comes into play.

The insight is that either an execution of π on graph A − B − C − A can
indeed be efficiently detected, in which case the protocol above extends (and we
are done), or π actually provides a stronger form of topology hiding that we
can further leverage. Namely, if neither Alice nor Bob can identify when π is
executed on A − B − C − A as opposed to a legal graph, then in particular π
provides 1-THAB for the larger graph class G2−vs−3

′ := G2−vs−3∪{A−B−C−A}.
In this case, we can take a similar approach to above, but with the graphs

{A−B,C−A−B,A−B− C−A} ⊂ G2−vs−3
′, with Alice emulating A or C−A,

and Bob emulating B or B−C−A, and hope that π identifiably breaks down on
the “over-extended” path C − A − B − C − A of length 5. If not, this argument
repeats, until—via this artificial over-extension technique—ultimately we reach
a graph class G for which:

– π is 1-THAB on G, including {Y − Z,X − Y − Z,Y − Z − P } ⊂ G
– π is not 1-THAB on G ∪ {X − Y − Z − P },

where X,Y,Z ∈ {A,B,C}, and P is a path of length upper-bounded by the round
complexity of π. Once we do, then the original secure-AND protocol approach
will succeed, modulo some differences described below, with Alice emulating Y
or X − Y, and Bob emulating Z or Z − P .

To argue that eventually we find a path X−Y−Z−P for which π identifiably
breaks down, we again appeal to its bounded round complexity, i.e., π must
fail identifiably (with probability 1) once the length of the path exceeds the
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round complexity. The limitation of constant rounds is a subtle side effect of the
corresponding hybrid argument, to argue that there must be some step where
we jump sufficiently from indistinguishable to efficiently identifiable.

Consider the resulting secure-AND protocol, once an appropriate X,Y,Z,P
are found. The only modification from the simpler two-round version is how to
detect the (over-extended) case x ∧ y = 1. When π was two rounds, identify-
ing this event was immediate: Bob’s right-most party simply will not receive
the delivered message. Here, this is not necessarily the case, as the identifiable
“breakdown” of π may occur before the length of X−Y−Z−P exceeds π’s round
complexity. Thus, instead, the parties will run the distinguisher that—roughly
speaking—exists from the fact that π is not 1-THAB on G∪{X−Y−Z−P }. This
is the reason why our final protocol guarantees correctness only for infinitely
many λ ∈ N: All we can say is that either the protocol π is 1-THAB on
G ∪ {X − Y − Z − P } and we can continue with the extension argument, or
π is not 1-THAB, i.e., there exists a distinguisher that efficiently detects the
“too-long” path X − Y − Z − P with noticeable advantage for infinitely many
λ ∈ N. Finally, in order to boost correctness towards negligible correctness error
(for infinitely many λ), Alice and Bob simply run the protocol π and the distin-
guisher sufficiently many times, each time on input of a fresh message m, and
take a corresponding majority vote.

2.3 Protocol Design: “Censored Brute Force”

This technique enables constructing unconditionally secure pairwise channels
between each pair of parties which further guarantees sender anonymity. Such
anonymous and private channels are used for proving Theorem 3 and Corollary 1,
by constructing 1-THAB and 1-THC with information-theoretic security for any
class G for which all graphs are 2-connected (see Sect. 6.1 for more details). Recall
that the communication complexity of the resulting protocols is polynomial in
the size of G (which could be superpolynomial) and the computation complexity
is polynomial in the size of G and exponential in the maximal degree of G.

The high-level idea is twofold: For any single 2-connected graph G, we show
how to unconditionally perform sender-anonymous point-to-point communica-
tion on G with an ability for any party to (anonymously) “censor” the communi-
cation, i.e., yielding delivery of random garbage instead of the intended message.
Then, for a given class of 2-connected graphs G, the parties will simultaneously
execute (in parallel) a separate anonymous-communication protocol for every
graph G ∈ G; for each such G-execution, a party will censor the execution if its
true neighborhood is inconsistent with its neighborhood in G. As such, the only
protocol execution that remains uncensored will be the one corresponding to the
correct execution graph G (and the identity of which G this corresponds to can
be made hidden to the receiving party). We elaborate on these two aims below.

Communicating Anonymously in a 2-Connected Graph. More concretely, sup-
pose we have a single 2-connected graph G on vertex set [n], and fix some
designated source and target nodes σ �= τ ∈ [n]. Let Hστ denote an arbitrary
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στ -orientation of G,15 i.e., a directed acyclic graph with unique sink τ and
unique source σ formed by assigning a direction to each edge in G. Moreover,
label all nodes 1, 2, . . . , n according to a topologically consistent ordering of Hστ

(beginning with σ and ending at τ). We consider the numbering/orientation of
any graph G to be a public parameter, computed according to some deterministic
procedure (see full version).

Now suppose node u wishes to send a message m to the target node τ anony-
mously and securely on the graph G. In the first round, the source σ (i.e., the
node labeled 1) prepares additive shares of 0 (or of m if σ = u) for each of
its outgoing edges in Hστ . In round 2, the source σ sends the corresponding
share to its neighbor node labeled 2, who then prepares secret shares of what it
received (+m if it is u) for each outgoing edge. More generally, in round i < n
all nodes with an edge to the ith node send their shares to the ith node. The
ith node, having received shares on all incoming edges, then sums up what it
receives (adds m if it is u) and prepares additive shares of the result for each of
its outgoing edges. In round n, all nodes with edges to τ (the target node) send
their shares to τ and τ outputs their summation.

Correctness follows from the homomorphic properties of additive secret shar-
ing. To see why this protocol is secure (namely, that it hides u and m), note that
the 2-connectivity of G implies that there are at least 2 vertex-disjoint στ -paths
in Hστ . Thus, the messages any intermediate party (corresponding to 2, . . . , n−1)
receives are uniformly random because that node is in some sense always missing
at least one share (corresponding to a disjoint στ -path); the source σ does not
receive anything at all, and the view of the target τ is simply a random sharing
of its output m.

This protocol enjoys some other useful properties. Most notably, any non-sink
node can covertly “censor” communication by simply preparing (and sending)
shares of a uniformly random message, instead of preparing shares corresponding
to what they received (as per the protocol). The view of every other party is
identically distributed, with the exception of τ who now receives secret shares
of a uniformly random message in the final round.

Compiling to Hide Topology. Now, let G be a class of 2-connected graphs on
vertex set [n]. Loosely speaking, the parties will simulate the above protocol for
every possible graph in G simultaneously. Each node will covertly censor every
protocol corresponding to a graph that is not locally consistent with their local
neighborhood (sending random messages at the appropriate times). As a result,
exactly one protocol (corresponding to the “real” graph) will give the correct
output message and all others will give uniformly random output.

To be slightly more concrete, all nodes will execute the protocol above for
each graph in the class in parallel. To keep track of which message is which, for
every node but τ we will label the messages with the graph/protocol that the
message corresponds to. If an edge is missing from the real graph, but present in

15 The standard notation in the literature is st-orientation; to avoid confusion with the
notation t that stands for the corruption threshold, we use στ -orientation instead.
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a graph corresponding to one of the simulated protocols, the corresponding mes-
sage cannot be sent. However, the receiving node knows not to expect a message
either. From this and the uniformly random nature of non-terminal messages in
the above protocol, nothing is leaked locally by labeling the simulations. How-
ever, sending labeled messages to τ would clearly identify the “real” topology. So
instead, all parties will send all final protocol messages in randomly permuted
order. To enable τ identifying the real output, the sender will append a long
checksum to the message. The target τ will try all message combinations (this is
the reason for the exponential dependency in the maximal degree) and output
the unique one with a correct checksum (or abort if more than one message has
a valid checksum).

2.4 Protocol Design Technique: “Dead-End Channels”

The Dead-End Channels technique is used to obtain 1-THAB for all graphs of at
least 3 nodes (and 1-THB for all graphs), assuming existence of key agreement.
Recall that before the present work, such results were only known assuming
oblivious transfer [18].

The high-level idea of our 1-THAB protocol, as in Moran et al. [18], is to
broadcast the message via flooding, but in a way that hides from the parties
at which round they received the broadcast message. This can be achieved by
passing the message between virtual parties, each consisting of two real parties
that hold additive secret shares of the message (depicted, e.g., as purple bars for
each neighboring pair of parties below). Only in the final round will the parties
exchange their secret shares and recover the message.

The challenge thus becomes passing the messages between virtual parties.
In [18] this is solved by using oblivious transfer (OT) to run an MPC protocol
realizing the virtual party, and allowing every adjacent pair of virtual parties to
securely compute the OR of their messages.

In our setting, we do not have the ability to perform secure computations
pairwise between parties without OT. Instead, we leverage the fact that given at
least three nodes we are guaranteed an honest majority, and can therefore (once
the parties establish secure channels using the key agreement protocol) build on
techniques from information-theoretic secure computation to appropriately pass
along the message.

However, this itself is not so straightforward. For example, in the image
above, the neighboring parties 2 − 3 − 4 would wish to jointly emulate a three-
party secure computation to perform the secure transfer from 2−3 to 3−4. But,
the issue is that parties cannot reveal whether they truly have neighbors with
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which to jointly compute: for example, party 2 above must then emulate a nonex-
istent neighbor 1 to hide its true degree. Thus grouping parties in three, including
possibly a simulated neighbor, would allow the adversary to gain control over
a majority. (On the other hand, building on secure computation including four
our more neighbored parties, the same party could appear several times in the
protocol and therefore potentially learn about the connectivity of its neighbors.)

Our approach builds on the following idea: We will give one party within
each group of three the role of a dealer to deal OT correlations, which can be
used to establish a secure OT channel between two other parties. This alone
is not sufficient, as one of the parties could be simulated by the dealer (in the
case that the dealer has degree one), and therefore allows the dealer to gain
full control over the OT channel, and in particular learn the honest parties’
inputs. To prevent this, we observe that—again using OT correlations—one can
establish dead-end channels (i.e., information sent via such a channel cannot be
read by anyone apart from the sender) if and only if the receiver is a simulated
party. Therefore, even if the dealer simulates one of the parties, it does not learn
anything about the honest parties’ inputs. Note that it is crucial that dead-end
channels are indistinguishable from secure channels from the view of the sender.
Further, a key observation is that using OT correlations to establish dead-end
channels does not leak anything about the topology, even if the dealer of the OT
correlations has degree one. This is the case, because the only thing the dealer
could potentially learn from the other party is whether its degree is one—but if
the dealer has degree one it already knows that the degree of its neighbor must
be at least two (as we are guaranteed a connected graph with a strict honest
majority).

3 Preliminaries

Notations. For n ∈ N let [n] = {1, · · · , n}. In our protocols we sometimes denote
by B an upper bound on the number of participating parties, by n the number
of actually participating parties, and by t an upper bound on the number of
corrupted parties. The security parameter is denoted by λ.

Graph Notations and Properties. A graph G = (V,E) is a set V of vertices and
a set E of edges, each of which is an unordered pair {v, w} of distinct vertices. A
graph is directed if its edges are instead ordered pairs (v, w) of distinct vertices.
An oriented graph is a directed graph having no symmetric pair of directed edges,
and an orientation of an undirected graph is an assignation of a direction to each
of its edges so as to make it oriented. A graph is k-connected if it has more than
k vertices and remains connected whenever fewer than k vertices are removed.
A graph class G is k-connected if every graph G ∈ G is k-connected. Throughout
this paper we only consider connected graphs, even if we do not systematically
make this explicit. The (open) neighborhood of a vertex v in an undirected graph
G, denoted NG(v), is the set of vertices sharing an edge with v in G. The closed
neighborhood of v in G is in turn defined by NG[v] := NG(v) ∪ {v}.
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UC Framework. We work in the UC framework of Canetti [6]. Unless stated
otherwise, we will consider computationally unbounded, static, and semi-honest
adversaries and environments.

Topology-Hiding Computation (THC). We recall the definition of topology-
hiding computation from [4,18]. The real-world protocol is defined in a model
where all communication is transmitted via the functionality FG

graph (described in
Fig. 5). The functionality is parametrized by a family of graphs G, representing
all possible network topologies (aka communication graphs) that the protocol
supports. We implicitly assume that every node in a graph is associated with a
specific party identifier, pid. To simplify the notation, we will consider that Pv

in the protocol is associated with node v in the graph.
Initially, before the protocol begins, FG

graph receives the network communication
graph G from a special graph party Pgraph, makes sure that G ∈ G, and provides
to each party Pv with v ∈ V its local neighbor-set. Next, during the protocol’s
execution, whenever party Pv wishes to send a message m to party Pw, it sends
(v, w,m) to the functionality; the functionality verifies that the edge (v, w) is
indeed in the graph, and if so delivers (v, w,m) to Pw.

Note that if all the graphs in G have exactly n nodes, then the exact number of
participants is known to all and need not be kept hidden. In this case, defining the
ideal functionality and constructing protocols becomes a simpler task. However,
if there exist graphs in G that contain a different number of nodes, then the model
must support functionalities and protocols that only know an upper bound B on
the number of participants. In the latter case, the actual number of participating
parties n must be kept hidden.

Given a class of graphs G with an upper bound B on the number of parties,
we define a protocol π with respect to G as a set of B ppt interactive Turing
machines (ITMs) (P1, . . . , PB) (the parties), where any subset of them may be
activated with (potentially empty) inputs. Only the parties that have been acti-
vated participate in the protocol, send messages to one another (via FG

graph), and
produce output.

An ideal-model computation of a functionality F is augmented to provide the
corrupted parties with the information that is leaked about the graph; namely,
every corrupted (dummy) party should learn its neighbor-set. Note that the func-
tionality F can be completely agnostic about the actual graph that is used, and
even about the family G. To augment F in a generic way, we define the wrapper-
functionality WG

graph−info(F), that runs internally a copy of the functionality F.
The wrapper WG

graph−info(·) acts as a shell that is responsible to provide the rel-
evant leakage to the corrupted parties; the original functionality F is the core
that is responsible for the actual ideal computation.

More specifically, the wrapper receives the graph G = (V,E) from the graph
party Pgraph, makes sure that G ∈ G, and sends a special initialization message
containing G to F. (If the functionality F does not depend on the communica-
tion graph, it can ignore this message.) The wrapper then proceeds to process
messages as follows: Upon receiving an initialization message from a party Pv

responds with its neighbor set NG(v) (just like FG
graph). All other input messages
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Fig. 5. The communication graph functionality

from a party Pv are forwarded to F and every message from F to a party Pv is
delivered to its recipient.

Note that formally, the set of all possible parties V ∗ is fixed in advance. To
represent a graph G′ = (V ′, E′) where V ′ ⊂ V ∗ is a subset of the parties, we use
the graph G = (V ∗, E′), where all vertices v ∈ V ∗ \ V ′ have degree 0.

Definition 1 (Topology-hiding computation). We say that a protocol π
securely realizes a functionality F in a topology-hiding manner with respect to
G tolerating a semi-honest adversary corrupting t parties if π securely realizes
WG

graph−info(F) in the FG
graph-hybrid model tolerating a semi-honest adversary

corrupting t parties.

Broadcast and Anonymous Broadcast. In this work we will focus on topology-
hiding computation of two central functionalities. The first is the broadcast func-
tionality (see Fig. 6), where a designated and publicly known party, named the
broadcaster, starts with an input value m. Our broadcast functionality guaran-
tees that every party that is connected to the broadcaster in the communication
graph receives the message m as output. In this paper, we assume the com-
munication graphs are always connected. However, the broadcaster may not be
participating, in which case it is represented as a degree-0 node in the com-
munication graph (and all the participating nodes are in a separate connected
component.)

Parties that are not connected to the broadcaster receive a message that is
supplied by the adversary (we can consider stronger versions of broadcast, but
this simplifies the proofs).

We denote the broadcast functionality where the broadcaster is Pi by Fbc(Pi).
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Fig. 6. The broadcast functionality

Definition 2 (t-THB). Let G be a family of graphs and let t be an integer.
A protocol π is a t-THB protocol with respect to G if π(Pv) securely realizes
Fbc(Pv) in a topology-hiding manner with respect to G, for every Pv, tolerating
a semi-honest adversary corrupting t parties.

The second is the anonymous-broadcast functionality (see Fig. 7). This func-
tionality is similar to broadcast with the exception that the broadcaster is not
known and its identity is kept hidden even after the computation completes.
Namely, the environment will activate exactly one of the parties with an input
value, informing this party that it is the broadcaster. We denote the anonymous
broadcast functionality Fanon−bc.

Fig. 7. The anonymous-broadcast functionality
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Definition 3 (t-THAB). Let G be a family of graphs and let t be an integer. A
protocol π is a t-THAB protocol with respect to G if π securely realizes Fanon−bc in
a topology-hiding manner with respect to G, tolerating a semi-honest adversary
corrupting t parties.

4 THB Lower Bounds

In this section we demonstrate that achieving broadcast while hiding certain
graph properties necessitates cryptographic assumptions.

4.1 Hiding Distance Requires io-KA (The Oriented 5-Path)

In this section, we show that hiding the distance from the broadcaster, in con-
stant rounds, requires infinitely-often Key Agreement (io-KA). In particular, we
will show that any constant-round protocol for the class Goriented−5−path (Fig. 8),
implies io-KA.

Fig. 8. The class Goriented−5−path of oriented paths, rooted in P1. Communication is
bidirectional, arrows simply indicate that nodes can deduce the broadcaster’s direction.

In this class the nodes 2©, 3©, 4©, 5© always know the direction of the broad-
caster, 1© (it’s in the direction of their lowest-valued neighbor, mod 5), but
cannot distinguish (from their local neighborhood) whether they are distance 2
or 3 from the broadcaster. E.g. 3© cannot distinguish between 1©- 2©- 3©- 4©- 5©
and 1©- 5©- 2©- 3©- 4©, as in both cases its local neighborhood is 2©- 3©- 4©. Note
that if just distance is leaked to this class, the trivial flooding protocol is secure.

Intriguingly, the resulting key agreement construction is not fully-black-box,
nor is it even explicit. Further, our result critically requires the Goriented−5−path-
THB to be efficient in round complexity. We remark that such a limitation
is inherent, as we demonstrate that Goriented−5−path unconditionally admits an
ε-secure topology-hiding broadcast protocol that works in O(1/ε) rounds, for
any ε > 0.16 In contrast, the key agreement construction of Sect. 4.2 is fully

16 In fact, the upper bound holds for a large body of graph classes, where only distance
need be hidden.
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black-box and rules out the existence of such an upper bound for the class
Gtriangle. It remains open whether an ε-secure Goriented−5−path-THB in < 1/ε rounds
requires io-KA, or more generally whether negligible security in polynomial
rounds requires io-KA.

Theorem 6 If there exists a constant-round 1-THB protocol for the class
Goriented−5−path, then infinitely-often key-agreement also exists.

The proof introduces an argument called ‘artificial over-extension’ (Sect. 2)
which involves using the 1-THB on longer and longer graphs (outside of the
scope of its correctness and security guarantees) until the protocol breaks in an
identifiable way. Details are deferred to the full version of this paper.

4.2 Hiding Neighbor Distances Requires KA (The Triangle)

Consider the class Gtriangle = {G0
tr, G

1
tr, G

2
tr} as represented in Fig. 9, which we

(abusively) call ‘the Triangle’. The players are P1, P2, P3 with the broadcaster
always being P1; P2 and P3 are connected, and P2 and/or P3 is connected to P1.

Fig. 9. The class Gtriangle.

The secret of the topology can be summarized as follows: if one of the two
non-broadcasting parties P2 or P3 is connected to the broadcaster, it does not
know if the other is as well. Note that preserving the secret of the topology
of Gtriangle can also be reformulated as ‘hiding the neighbor distances’ from the
parties. Indeed, for P2 (resp. P3) knowing the topology means knowing if P3

(resp. P2) is at distance one or two from the broadcaster.

Theorem 7 (Broadcast on ‘The Triangle’ requires KA) If there exists a
1-THB(1) protocol for the class Gtriangle then there exists a key-agreement protocol.

In order to prove this theorem, we explicitly construct a key-agreement
scheme from a 1-THB(1) protocol π on Gtriangle. The construction of this KA
protocol follows very closely the proof of Theorem 3.1 (and the associated Pro-
tocol 3.2) in Ball et al. [4], but we use a novel technique (the phantom jump
argument to reduce the security of the key-agreement scheme to the topology-
hiding properties of π. See description in Sect. 2.1; the details of the proof are
deferred to the full version of this paper.
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5 THAB Lower Bounds

5.1 Low Vertex Connectivity Requires KA

In this section we show how t-THAB on a class which contains even a single
graph with at least t+2 vertices and which is not (t+1)-connected implies Key-
Agreement. It should be noted that this is a relatively weak result on its own,
as testified by the fact that even non topology-hiding anonymous broadcast on
such a class already implies KA, but we present it here for completeness’ sake
and because it matches the upper bound of Theorem 11.

Proposition 2 t-THAB on a class containing a graph with at least (t + 2) ver-
tices which is not (t + 1)-vertex-connected implies KA.

The result is similar in spirit to that of Ishai et al. [13]—who showed how
anonymity can be leveraged to obtain privacy—. We show it using techniques
from [4] however, which are more directly applicable as their setting is the same
as ours. The proof is deferred to the full version of this paper.

5.2 Uncertain Honest Majority Requires io-OT (The 2-vs-3 Paths)

In the previous section we showed that, for a large number of graph classes, key-
agreement is necessary to achieve 1-THAB. A natural follow-up question is to ask
whether key agreement is sufficient to achieve 1-THAB on all graphs or not. We
answer this question negatively by showing that constant-round 1-THAB on the
class of paths of length two and three implies infinitely often oblivious transfer.

This is similar to the result of Ball et al. [3], who showed no honest majority
can imply oblivious transfer in the 2-corruption setting. Note though that our
result requires inherently different techniques, as in the one-corruption setting
there exists only one graph with no honest majority, namely the path of length 2.
1-THAB on this graph only is trivial, as the only party that is not the broadcaster
knows that the other party must be the broadcaster. But, adding the path of
length 3 (where in fact there is always a honest majority), we can prove an
implication to infinitely-often oblivious transfer (io-OT). From a certain point
of view, we show that one cannot hide how far information travels, unless always
guaranteed an honest majority.

Theorem 8 Let π be a constant-round 1-THAB protocol for G2−vs−3. Then,
there exists a uniform infinitely-often OT protocol secure in the presence of a
semi-honest adversary.

In order to prove this theorem, we show that a constant-round 1-THAB for
G2−vs−3 can be used to build a secure two-party infinitely often AND function-
ality, which in turn implies infinitely often OT. The proof closely follows that
of Theorem 6, which introduced the “artificial over-extension” technique, and is
described in Sect. 2.2. The details are deferred to the full version of this paper.
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6 Information-Theoretic Upper Bounds

In this section, we present our information-theoretic constructions: in Sect. 6.1, 1-
IT-THAB for 2-connected graphs, and in Sect. 6.2, 1-IT-THB for the 1-connected
butterfly graph.

6.1 2-Connectivity is Sufficient for 1-IT-THAB

On an intuitive level, (t + 1)-vertex-connectivity could be a sufficient condition
to perform t-IT-THAB since messages exchanged between distant parties in the
graph can be secret-shared among t + 1 vertex-disjoint paths. This way, privacy
of communication can be ensured (since, with only t corruptions, an adversary
cannot recover all the shares). The core challenge, however, is how to have the
parties route message shares consistently on general, unstructured graphs, in a
topology-hiding fashion (in particular, message routing can only be done locally).
We prove this intuition to be true for t = 1, and provide a way for parties to
route secret-shares in 2-connected graphs.

Theorem 9. Let n ∈ N, let G be a class of 2-connected graphs of vertex set size
at most n, let dmax is the maximal degree of any graph in G, and let δ > 0. Then,
there exists a protocol that securely realizes Fanon−bc with security δ in a topology-
hiding manner with respect to G, tolerating a single semi-honest corruption.

Moreover, the protocol completes within n rounds with total communication
complexity O(n2dmax·|G|·(�+log(n/δ)+dmax·log |G|)) and computation complexity
O(|G|dmax) per node.

The proof revolves around a technique we call “censored brute-force” (see Sect.
2.3). Full details are deferred to the full version of this paper.

6.2 2-Connectivity is Not Necessary for 1-IT-THB (Butterfly
Graph)

Section 5.2 shows a separation between 1-THAB and 1-THB, with the class
G2−vs−3: 1-THAB implies infinitely often OT, yet 1-THB is possible information-
theoretically by flooding. In order to understand if the separation is really mean-
ingful or due to an edge case of the definition of THB, we ask whether there is a
class which separates the two functionalities and for which 1-THB is not trivial
(i.e., cannot be achieved by simple flooding). To this end, we prove there exist
graph classes on which 1-IT-THAB is impossible and flooding is not topology-
hiding, but there still exist 1-IT-THB. One such class is the family of butterfly
graphs (Fig. 10), on which 1-IT-THAB is impossible by Proposition 2.
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Fig. 10. The class of butterfly graphs consists of all possible permutations of the graph
depicted above with nodes in {1, 2, 3, 4, 5}.

Theorem 10 (IT-THB on butterfly). There exists a 1-IT-THB protocol with
respect to Gbutterfly with perfect security.

What makes this problem non-trivial is that the center node cannot learn
which of its neighbors are connected, while the other nodes cannot learn which
node is the center node. We present an information-theoretic protocol which
runs in two phases. In the first, the broadcaster sends the message to all its
neighbors which ensures the center node gets hold of it. In the second phase, the
center node broadcasts the message in parallel on a bunch of subgraphs. Each
of these is the graph induced by the center and any other two parties. Note
that each of these subgraphs is either a triangle or a 3-path, much like in ‘the
Triangle’, described in Sect. 6.1. Crucially, we ensure the center node does not
learn which of them are triangles and which are 3-paths, while also preventing
the other parties learning the identity of the center node. Now, every neighbor of
the center—i.e., every party—knows the broadcast bit. The protocol is detailed
in the full version of the paper.

7 Key-Agreement Upper Bounds

We show that key-agreement is sufficient to achieve 1-THAB on all graphs with at
least 3 nodes—in other words, on all graphs where we are guaranteed an honest
majority. As shown in Sect. 5.2 this is the best we can hope to achieve for general
graph classes. This result can then be extended to 1-THB for all graphs.

Theorem 11 (KA is sufficient for 1-THAB on all graphs of size at least
3). If there exists a key-agreement protocol, there exists a 1-THAB protocol on
the class of all graphs with at least 3 and at most B vertices.

Based on [18], the idea is to broadcast the message via flooding, but in a
way that hides from the parties at which round they received the broadcast
message. We leverage the fact there is a guaranteed honest local majority nearly
everywhere in the network to run a protocol between locally simulated virtual
parties.17 The weakened assumption when compared to [18] (KA instead OT)
17 In fact, we critically exploit the fact that if a party has a single neighbor (and thus

no guaranteed local honest majority), she knows that neighbor’s neighborhood is
majority honest.
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means we have to take extra steps to run secure protocols locally; to that effect
we introduce the trick of ‘dead-end channels’. The details of this construction
are deferred to the full version of this paper.

Theorem 12 (KA is sufficient for 1-THB on all graphs). If there exists a
key-agreement protocol, there exists a 1-THB protocol on the class of all graphs
with at most B vertices.

The proof of Theorem 12 follows almost immediately from that of Theo-
rem 11, and only involves introducing a small step to handle the case of size-2
networks. Again, it is left to the full version.
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Abstract. We present simpler and improved constructions of 2-round
protocols for secure multi-party computation (MPC) in the semi-honest
setting. Our main results are new information-theoretically secure pro-
tocols for arithmetic NC1 in two settings:
(i) the plain model tolerating up to t < n/2 corruptions; and
(ii) in the OLE-correlation model tolerating any number of corruptions.
Our protocols achieve adaptive security and require only black-box access
to the underlying field, whereas previous results only achieve static secu-
rity and require non-black-box field access. Moreover, both results extend
to polynomial-size circuits with computational and adaptive security,
while relying on black-box access to a pseudorandom generator. In the
OLE correlation model, the extended protocols for circuits tolerate up to
n − 1 corruptions.

Along the way, we introduce a conceptually novel framework for 2-
round MPC that does not rely on the round collapsing framework under-
lying all of the recent advances in 2-round MPC.

1 Introduction

Secure multi-party computation (MPC) [5,12,18,23] allows a group of n mutu-
ally distrusting parties to jointly evaluate a function over their private inputs
in a manner that reveals nothing beyond the output of the function. In this
work, we focus on semi-honest two-round MPC protocols. The state of the art,
following the recent breakthroughs in [6,17] may be broadly classified as follows:
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– protocols for NC1 achieving information-theoretic security tolerating t < n/2
adversarial parties [2];

– protocols for polynomial-size circuits P/poly achieving computational secu-
rity tolerating t < n/2 adversarial parties, assuming the existence of one-way
functions [1,2];

– protocols for polynomial-size circuits P/poly achieving computational secu-
rity tolerating t < n adversarial parties, assuming the existence of oblivious
transfer [6,17].

All of these constructions follow the same high-level “round collapsing” strategy
introduced in [15]. In particular, they apply garbled circuits to the circuits of
parties’ algorithms of a multi-round MPC protocol, where the garbling is used
to collapse the multi-round MPC protocol to a 2-round protocol.

1.1 Our Results

We present simpler and improved constructions of 2-round protocols for secure
multi-party computation (MPC) in the semi-honest setting. Our main results
are new information-theoretically secure protocols for arithmetic NC1 in two
settings:

(i) the plain model tolerating up to t < n/2 corruptions; and
(ii) in the OLE-correlation model tolerating any number of corruptions.

Two parties with an Oblivious Linear Evaluation (OLE) correlation hold
respectively random elements (a(1), b(1)) and (a(2), b(2)) such that a(1)a(2) =
b(1) + b(2) over a field.

Our protocols achieve adaptive security [10,11] and require only black-box access
to the underlying field, whereas previous results only achieve static security and
require non-black-box field access. Moreover, both results extend to polynomial-
size circuits with computational and adaptive security, while relying on black-box
access to a pseudorandom generator. In the OLE correlation model, the extended
protocols for circuits tolerate up to n − 1 corruptions. While the honest major-
ity setting is a natural and well-established model, we believe that the OLE-
correlation model is also very natural to study, especially for arithmetic computa-
tion: OLE correlations enable very efficient online computation, and the correla-
tions themselve can be generated efficiently in the pre-processing phase [8,9]. We
provide a comparison of our results with the state of the art in Fig. 1 and Fig. 2.

Along the way, we introduce a conceptually novel framework for 2-round
MPC that does not rely on the round collapsing framework underlying all of the
recent advances in 2-round MPC staring from [15].

Our Techniques. The crux of our protocols, following [2,19,20], is a way to
“encode” degree-3 polynomials into randomized polynomials that have degree
2 after pre-processing of local inputs and randomness – known as multi-party
randomized encodings (MPREs). Following the round-collapsing framework of 2-
round MPC, prior MPRE schemes garble the next-step circuits of a multi-round
MPC protocol, to reduce the degree from 3 to 2.
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Fig. 1. Summary of semi-honest 2-round MPC protocols with a honest majority. All
of the constructions for P/poly (starting with [13]) make black-box use of a PRG.
The protocol by [16] handles only a constant number of parties. * They did not fully
specify the adaptive simulator.

Fig. 2. Summary of semi-honest 2-round MPC protocols with a honest minority (that
is, any t < n). * They did not fully specify the adaptive simulator.

We construct MPRE directly without using “inner” multi-round MPC. We
observe that the [20] randomizing polynomials give a way to replace the multi-
plication between two input elements with multiplication between two random
elements. With an OLE-correlation, the product of two random elements are
additively shared between two parties, immediately reducing the degree to 2. In
the honest majority setting, we exploit a delicate interplay between the IK02 ran-
domized polynomials and the 2-round BGW [5] protocol for computing degree-2
polynomials (or essentially Shamir’s secret sharing scheme) to turn multiplica-
tion between two input elements into multiplication between two local random
elements, again reducing the degree to 2. Our MPRE schemes and 2-round MPC
protocols based on them enjoy simplicity and better efficiency.

Information-Theoretic Security vs Adaptive Security. The folklore belief is that
any information theoretically secure protocol is also adaptively secure with an
inefficient simulator. Therefore, to formally prove adaptive security, the techni-
cal issue is presenting an explicit efficient simulator. We systematically present
and analyze efficient adaptive simulators for our protocols, taking into account
different corruption schedules. The analysis benefits greatly from our simpler
and modular approach.
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2 Technical Overview

We present an overview of our constructions, focusing on the honest-majority
2-round MPC for arith-NC1, followed by a more detailed comparison with prior
approaches.

Following [19,20], to construct 2-round MPC for arith-NC1, it suffices to
construct a 2-round protocol for the 3-party functionality (x1, x2, x3) �→ x1x2x3.
More precisely, we need the functionality ((x1, s1), (x2, s2), (x3, s3)) �→ x1x2x3 +
s1 + s2 + s3; for simplicity, we ignore the additive terms in this overview, as
they are easy to handle. As with [2], the starting point of our construction is the
BGW protocol for computing x1x2x3. In BGW and also in ABT, the parties (i)
multiply Shamir shares of x2, x3 for threshold t, (ii) perform degree reduction to
obtain Shamir shares of x2x3 for threshold t, (iii) multiply the ensuing shares by
that of x1 to obtain Shamir shares of x1x2x3 for threshold 2t, (iv) interpolate
the shares to recover x1x2x3. Our construction replaces steps (ii) and (iii) with
a completely different gadget.

MPRE. A (n, t)-MPRE [2] for a n-party functionality f(x1, . . . ,xn) is a ran-
domized function f̂(x1, . . . ,xn; r1, . . . , rn) with the following properties:

– (correctness). There exists an efficient decoder Dec such that for all x =
(x1, . . . ,xn), r = (r1, . . . , rn),

Dec(f̂(x; r)) = f(x)

– (security). We say that the MPRE is (selectively) secure against up to t
corruptions if there exists a simulator Sim such that for any x1, . . . ,xn and
any subset T ⊆ [N ], |T | ≤ t,

Sim(f(x1, . . . ,xn),xT ) ≈
(
f̂(x1, . . . ,xn; r1, . . . , rn), rT

)

by distribution, where r1, . . . , rn on the right side are random, and xT :=
(xi : i ∈ T ), rT := (ri : i ∈ T ).

– (effective degree). We say that a MPRE has effective degree d if there exists
functions h1, . . . , hn such that f̂ can be expressed as a degree d function of
h1(x1, r1), . . . , hn(xn, rn). The functions hi capture pre-computation on the
local input xi and randomness ri of party Pi.

In this work, we think of x1, . . . ,xn, r1, . . . , rn as vectors over some field F. In
addition, we define the following new properties:

– We say that an MPRE is adaptively secure if the adversaries can adaptively
decide which party to corrupt next, based on the encoding and/or local input
and randomness of previously corrupted parties. Correspondingly, simulation
is done in an “online” fashion using the output and/or inputs of already
corrupted parties.
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– We extend MPRE security with leakage: Each party Pi is associated with a
leakage function Li. If Pi is corrupted, the simulator will get Li(x1, . . . ,xn)
in addition to xi. Unless otherwise specified, the leakage function Li simply
outputs ⊥.

MPRE with leakage is the key notion that captures our main gadget which uses
preprocessing to reduce the degree of IK randomized polynomials from 3 to 2.
This notion is also new to this work.

2.1 Our Basic Construction

Main gadget. Our main gadget is MPRE for the 4-party functionality

((x, μ), a, b,⊥) �→ xab + μ

with the following properties:

(I) it has effective degree 2;
(II) tolerates any number of corruptions with leakage L4((x, μ), a, b,⊥) = (a, b).

To build this gadget, we start with the IK02 randomized encoding for xab + μ
where

(x, a, b, μ ; w1, w2, w3, w4, w5) �→
⎡
⎢⎢⎣

a − w1

(
aw3 + xw1

− w3w1 − w2

) (
w2b − w2w5 − w1w4

+ w1w5x + w4a + μ

)

−1 x − w3 −w4 + w5x
−1 b − w5

⎤
⎥⎥⎦ (1)

As a quick warm-up, observe that we can have P4 sample all of the ran-
domness w1, w2, w3, w4, w5. This achieves effective degree 2, but with leakage
L4((x, μ), a, b,⊥) = (x, a, b, μ). We show that by distributing the randomness
more cleverly, we can reduce the leakage upon corruption of P4 to just a, b while
preserving effective degree 2.

In particular, we will crucially rely on the fact that the randomized encoding
contains exactly one monomial w1w5x of degree 3. In our MPRE,

– w2, w3, w4 are shared additively, wi = w
(1)
i + w

(4)
i , between P1 and P4 (if

both P1 and P4 are corrupted, then the adversary already learns all inputs
x, a, b, μ);

– P4 samples w1, w5 and pre-computes w1w5 so that the encoding has effective
degree two.

In summary, the MPRE computes the following in effective degree 2:

f̂((x, μ), a, b,⊥ ; w)

= g
((

x, μ,w
(1)
2 , w

(1)
3 , w

(1)
4

)
, a, b,

(
w1w5, w

(4)
2 , w

(4)
3 , w

(4)
4

))
= (1)
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To handle corruption of P4 in the analysis of the MPRE, we crucially rely on
the fact that we can simulate the randomized encoding together w1, w5 given
(xab + μ, a, b). To see this, observe that given a simulated encoding Π and a, b,
one can compute matching w1 = Π[1, 1] + a and w5 = Π[3, 3] + b.

MPRE for x1x2x3 with OLE correlations. A two-party OLE correlation over F

is a pair
(w(1), b(1)), (w(2), b(2)) : b(1) + b(2) = w(1) · w(2)

Observe that in the IK02 randomized encoding Eq. (1), multiplication of input
elements a and b is replaced with multiplication of random elements w1 and w5.
If assuming OLE correlation between P2, P3, the IK02 encoding can be computed
in degree 2, without any leakage to P4 (in fact there is no need for P4 at all).
This gives an effective degree 2 MPRE for computing the 3-party functionality

x1, x2, x3 �→ x1x2x3

– P2 and P3 hold (w1, b
(1)), (w5, b

(5)) such that b(1) + b(5) = w1w5;
– w2, w3, w4 are shared additively between P1, P2, P3.

Then the encoding computes the following in effective degree 2:

f̂(x1, x2, x3 ; w,b) = g
((

x1, w
(1)
2 , w

(1)
3 , w

(1)
4

)
,

(
x2, w1, b

(1), w
(2)
2 , w

(2)
3 , w

(2)
4

)
,
(
x3, w5, b

(5), w
(3)
2 , w

(3)
3 , w

(3)
4

))
= (1)|μ=0

Since every degree-3 polynomial can be expanded into a sum of degree-3 mono-
mials, we immediately obtain a degree-2 MPRE for computing general degree-3
polynomials, by computing independent MPRE for each degree-3 monomial.

Lemma 1 (MPRE for Degree-3, Honest Minority). There exists an adap-
tively secure MPRE for degree-3 polynomials with effective degree 2 in the OLE-
correlation model, for t ≤ n.

MPRE for x1x2x3 for honest majority. Next, we build a n-party MPRE with
effective degree 2 for

x1, x2, x3, ⊥, . . . ,⊥︸ ︷︷ ︸
n−3

�→ x1x2x3

tolerating t < n/2 corruptions, as long as |F| > n (without any leakage). For
simplicity, we consider the setting where P1 is never corrupted. Following the
overview,

– P2 samples a random degree-t polynomial Q2 such that Q2(0) = x2.
– Similarly, P3 samples Q3 with Q3(0) = x3.
– P1 samples a random degree-(n − 1) polynomial Z such that Z(0) = 0.
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Now, consider the polynomial

Y := x1Q2Q3 + Z

Observe that Y has degree at most n − 1, and satisfies Y (0) = x1x2x3. Then,
for each i = 1, 2, . . . , n, parties P1, P2, P3, Pi run the gadget MPRE to compute

((x1, Z(i)), Q2(i), Q3(i),⊥) �→ Y (i) = x1Q2(i)Q3(i) + Z(i)

The output party can recover Y (0) = x1x2x3 given Y (1), . . . , Y (n) via poly-
nomial interpolation. In summary, the MPRE is the parallel composition of n
gadget MPRE and hence have effective degree 2.

F̂ (x1, x2, x3,⊥, . . . ,⊥︸ ︷︷ ︸
P4 to Pn

; r) =
(
f̂
(
(x1, Z(i))︸ ︷︷ ︸

P1

, Q2(i)︸ ︷︷ ︸
P2

, Q3(i)︸ ︷︷ ︸
P3

, ⊥︸︷︷︸
Pi

))
i∈[n]

We can in fact prove security of this MPRE for up to t < n/2 corruptions, as
long as P1 is not corrupted. We sketc.h the security proof for the setting where
the last t parties Pn−t+1, . . . , Pn are corrupted:

– We can simulate the encoding by sampling a random degree n−1 polynomial
Y whose constant term is x1x2x3, thanks to the randomization via Z;

– To simulate the view of the last t parties, security of the gadget MPRE tells us
that it suffices to simulate Q2(i), Q3(i), i = n− t+1, . . . , n. By the security of
Shamir’s secret sharing, these are just a collection of uniformly random field
elements, and leaks no additional information to the adversary.

More generally, P1 may be corrupted, at which point x1 and the polynomial
Z are revealed. To ensure privacy of x2, x3 in this case, we need to modify the
polynomial to Y := x1Q2Q3 + Z + S, with an additional random degree-(n − 1)
polynomial S jointly sampled by all parties, with Pi sampling S(i) at random.
To recover the output x1x2x3, the parties additionally compute S(0), which is a
linear function over local inputs.

Since MPRE for computing degree-3 monomials gives MPRE for general
degree-3 polynomials, we obtain

Lemma 2 (MPRE for Degree-3, Honest Majority). There exists an
adaptively secure MPRE for degree-3 polynomials with effective degree 2 in the
plain model, for t < n/2.

Handling Adaptive Corruptions. All our MPRE schemes introduced so far have
perfect information theoretic security. In later sections, we construct an efficient
and stateful simulator for simulating the view of adaptive adversaries. In par-
ticular, the simulator Sim can be decomposed into a stateful two-subroutine
simulator (SimO,SimI) in which SimO(f(x1, . . . ,xn)) simulates the encoding
f̂(x1, . . . ,xn; r1, . . . , rn), and SimI(i,xi) simulates ri, in the order that the adap-
tive adversary corrupts parties.
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Putting Pieces Together for NC1. Given an MPRE for computing degree-3 poly-
nomials in a model (the OLE correlation model or in the plain model with honest
majority), we can “lift” it to handle arithmetic NC1 computation in the same
model, while preserving the effective degree. The IK02 randomized encoding [20]
for arith-NC1 allows for transforming a function g in NC1 by a degree-3 polyno-
mial ĝ, such that, ĝ(x1, · · ·xn ; r) reveals only g(x1, · · · ,xn) and nothing else.
This means it suffices to compute the following n-party degree-3 functionality
where randomness r is additively shared among all parties.

(x1, r(1)) · · · (xn, r(n)) �→ ĝ(x1, · · ·xn ; r =
∑

ir
(i)) . (2)

The above is an effective-degree-3 MPRE for arithmetic NC1. We further reduce
the effective degree to 2, by computing the effective-degree-3 MPRE using the
effective-degree-2 MPREs for degree 3 polynomials.

Lemma 3 (MPRE for Arith-NC1). There exist adaptively secure MPRE for
arith-NC1 with effective degree 2 in the OLE-correlation model for any number
t ≤ n of corruptions, and in the plain model for t < n/2.

Finally, to obtain 2-round MPC for arith-NC1, we compute the effective-degree-
2 MPRE using 2-round MPC for degree-2 polynomials. In the honest majority
model, the BGW protocol has only 2 rounds when computing degree-2 polyno-
mials. In the OLE correlation model, we design a very simple 2-round protocol
for computing degree-2 polynomials.

Extension to Circuits. Starting from Yao’s garbled circuits, we can get a (n−1)-
private MPRE for P/poly with effective degree 3 that makes black-box use
of a PRG G, using the techniques introduced in [4,13]. For simplicity, con-
sider garbling a single gate g with input wire u, v and output wire o. For each
input/output wire j, each party Pi samples a pair of PRG seeds s

(i)
j,0, s

(i)
j,1 corre-

sponding the wire having value 0 or 1; the two labels for wire j is then set to
�j,b = s

(1)
j,b ‖ . . . ‖s

(n)
j,b . To hide the labels of the output wire o, each party locally

expands their seeds through G, and hide label �o,g(a,b) using the XOR of PRG
outputs from all parties. For instance,

�o,g(a,b) ⊕
(⊕

i

Gd(s(i)u,a)
)

⊕
(⊕

i

Gd′(s(i)v,b)
)

where Gd for d = 0 or 1 outputs the first or second half of the PRG output bits
respectively, and d, d′ are set so that the same output bit is never reused. These
table entries are further randomly permuted using mask bits ku, kv which are
additively shared among all parties. The computed encoding is secure as long
as one party remains uncorrupted. The computation makes black-box use of the
PRG and has effective degree 3 after pre-processing of form:

h(xi ; k(i), s(i)) = (xi, (k
(i)
j , s

(i)
j,0, s

(i)
j,1, G(s(i)j,0), G(s(i)j,1))j)

We can then combine this with our MPRE for degree-3 polynomials with effective
degree 2 (over a sufficiently large field extension of F2).
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Lemma 4 (MPRE for P/poly). There exist adaptively secure MPRE for
P/poly with effective degree 2 in the OLE-correlation model for any number
t ≤ n − 1 of corruptions, and in the plain model for t < n/2. The scheme makes
black-box use of a PRG.

2-round MPC protocols for P/poly in the same models then follow.

3 Preliminaries and Definitions

For any positive integer n, define [n] := {1, 2, . . . , n}. For any set S ⊆ [n] and
vector x = (x1, . . . ,xn), where xi itself can be a vector, let x[S] denote the
indexed set (xi)i∈S . Let F denote a finite field, and ⊗ tensor product.

3.1 MPC Protocols

Definition 1 (Functionality). An n-party functionality is a function f : X1×
. . . × Xn → Y, where Xi is the i-th party’s input domain and Y is the output
space.

Definition 2 (MPC Protocol). An r-rounds MPC protocol Π for a n-party
functionality f consists of n algorithms (Ci)i∈[n]. An execution of Π with inputs
x = (x1, . . . ,xn) ∈ X1 × . . . × Xn and security parameter 1λ proceeds as follows:

Randomness. Each party Pi samples local randomness ri ← Ri, where Ri is
the local randomness space of the Pi. It initializes its state as st

(0)
i = (xi, ri).

Round. 1 ≤ j ≤ r: Every party Pi computes (m(j)
i→1, · · · ,m

(j)
i→n) ←

Ci(1λ, st
(j−1)
i ). For every i′ ∈ [n] \ {i}, Pi sends message m

(j)
i→i′ to party

Pi′ , and receives message m
(j)
i′→i from party Pi′ . It updates its state st

(j)
i =

(st(j−1)
i , (m(j)

i′→i)i′∈[n]\{i}).
Output: After r rounds, every party Pi computes yi ← Ci(1λ, st(ri)), and out-

puts yi.

Define the view of party Pi in the above execution to be ViewΠ(1λ,x)[i] = st
(r)
i =

(xi, ri, (m
(j)
i′→i)i′∈[n]\{i},j∈[r]). Let ViewΠ(1λ,x) denote the array of views of all

parties.
We also consider MPC protocol that relies on correlated randomness. If the

MPC protocol relies on correlated randomness, which is a distribution D over
R′

1×· · ·×R′
n, then in each execution of the protocol, (r′

1, . . . , r
′
n) ← D is sampled

by the beginning of the protocol, and each party Pi initialize its state as st
(0)
i =

(xi, ri, r′
i).

Below, we suppress the appearance of the security parameter 1λ, which is
assumed implicitly.

Remark 1. We remark that the above definition considers the same output for all
parties. It can be generalized to the case where each party has a different output.
From a protocol design point of view, it is without loss of generality to consider a
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common output: To compute function f mapping x1, . . . ,xn to different outputs
y1, . . . ,yn, every party Pi can sample a one-time pad ki of appropriate length
and jointly compute the augmented functionality mapping (x1,k1), . . . , (xn,kn)
to (y1 + k1), . . . , (yn + kn), where ki’s and + should be defined appropriately
for the specific functionality f . For instance, if f is a Boolean computation, ki’s
should be random strings and + is XOR, and if f is an arithmetic computation
over a finite field, ki’s should be random vectors and + over the field.

Definition 3 (MPC Correctness). A protocol Π for a functionality f : X1 ×
. . . × Xn → Y is perfectly or statistically correct, if for every input tuple x ∈
X1 × . . . × Xn and every security parameter λ ∈ N, the output of every party
Pi equals f(x1, . . . , xn), with probability 1 or with overwhelming probability
respectively.

Definition 4 (Semi-honest Security Against Static Corruption). A pro-
tocol Π for a n-party functionality f is perfectly, or statistically, or compu-
tationally semi-honest secure against t-corruption, if there is a PPT simulator
Sim, such that for every subset T ⊆ [n] of at most t parties, input tuple x, it
holds that the real views ViewΠ(x)[T ] of parties in T and the output of the
simulator Sim(T,x[T ], f(x)) are identically distributed, or statistically close, or
computationally indistinguishable respectively.

Semi-honest Adaptive Security. In the adaptive corruption model, a semi-honest
adversary is allowed to choose which party to corrupt next adaptively (up to t
corruptions) depending on its current view, which includes the views of pre-
viously corrupted parties. Correspondingly, the simulator for adaptive adver-
saries is an interactive stateful algorithm that responds to adversary’s corrup-
tion requests with simulated views, generated from the inputs and output of
corrupted parties.

Definition 5 (Semi-honest Security Against Adaptive Corruption.). A
protocol Π for a n-party functionality f is perfectly, or statistically, or compu-
tationally semi-honest adaptively secure against t-corruption, if there is a PPT
interactive and stateful simulator Sim, such that, for every adversary A (PPT
in the computational setting, computationally unbounded otherwise), input tuple
x, the outputs of the following two experiments are identically distributed, or
statistically close, or computationally indistinguishable respectively.

– In the real world: The challenger runs an execution of Π on input x using
fresh randomness, obtaining parties’ views ViewΠ(x).
The adversary A adaptively and iteratively queries Corrupt(i), and receives
Pi’s view ViewΠ(x)[i], up to at most t corruptions.
Return A’s output.

– In the simulation: Proceed identically as in the real world, except that upon
A’s request Corrupt(i), invoke the simulator (Ṽiew[i], st) ← Sim(i,xi, y, st)
and sends Ṽiew[i] to A, where st is initialized to be empty.



512 H. Lin et al.

3.2 (Multi-party) Randomized Encoding

Definition 6 (Randomized Encoding [3,20]). Let f : X → Y be some func-
tion. The randomized encoding of f is a function f̂ : X × R → zY, where R is
the randomness space. A randomized encoding should be both correct and private.

Correctness. There is a decoding function Dec such that for all x ∈ X , r ∈ R,
it holds that

Dec(f̂(x; r)) = f(x).

Privacy. There exists a efficient randomized simulation algorithm Sim such that
for any x ∈ X , the distribution of Sim(f(x)) is identical to that of f̂(x; r).
The privacy can be relaxed to statistical privacy (resp. computational pri-
vacy), if the Sim(f(x)) and f̂(x; r) are statistically close (resp. computational
indistinguishable).

Definition 7 (Multi-party Randomized Encoding [2]). Let f : X1 × · · · ×
Xn → Y be some n-party functionality. A multi-party randomized encoding
(MPRE) of f consists of

– Input space X = X1 × · · · × Xn and output space Y;
– Local randomness space Ri for i ∈ [n];

Correlated randomness space R′
1 × · · · × R′

n together with a distribution D
over it;

– Local preprocessing function hi : Xi × Ri × R′
i → X̂i;

– Encoding function f̂ : X̂1×· · ·×X̂n → Ŷ, the degree of f̂ is called the effective
degree of this MPRE.

Such that for any input (x1, . . . , xn), the encoding f̂
(
h1(x1, r1, r

′
1), . . . ,

hn(xn, rn, r′
n)

)
represents y = f(x1, . . . , xn) in the following sense:

Correctness. There exists a decoding function Dec : Ŷ → Y, such that for any
input (x1, . . . , xn) ∈ X1 × · · · × Xn, randomness (r1, . . . , rn) ∈ R1 × · · · × Rn

and correlated randomness (r′
1, . . . , r

′
n) in the support of D, the corresponding

encodings ŷ = f̂(h1(x1, r1, r
′
1), . . . , hn(xn, rn, r′

n)) satisfies that f(x1, . . . , xn) =
Dec(ŷ).

Semi-honest Adaptive t-Privacy. The MPRE is perfectly (resp. statistically or
computationally) secure against t adaptive corruptions if there exists an adaptive
simulator such that the following real world and ideal world are perfectly (resp.
statistically or computationally) indistinguishable.

In both the real world and the ideal world, the distinguisher first chooses input
x = (x1, . . . , xn), and sends it to the challenger. Then the distinguisher can make
queries and tries to guess which world it is.

– In the real world: The distinguisher chooses input x = (x1, . . . , xn), and
sends it to the challenger. The challenger samples local randomness ri ← Ri

for each i ∈ [n] and correlated randomness (r′
1, . . . , r

′
n) ← D; computes
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x̂i = hi(xi, ri, r
′
i) for i ∈ [n] and ŷ = f̂(x̂1, . . . , x̂n). In short, the challenger

follows the protocol.
The challenger allows the distinguisher to adaptively query the following two
oracles. The later one can be queried up to t times.
Upon CorruptO: Output ŷ
Upon CorruptI(i): Output ri, r

′
i.

– In the ideal world: The distinguisher chooses input x = (x1, . . . , xn), and
sends it to the challenger. The challenger does nothing other than stores the
input. The queries are answered by the simulator, which is a randomized
stateful algorithm (SimO,SimI).
The challenger allows the distinguisher to adaptively query the following two
oracles. The later one can be queried up to t times.
Upon CorruptO: Compute y = f(x) and output whatever SimO(y) outputs.
Upon CorruptI(i): Output what is output by SimI(i, xi).

3.3 Composition of MPREs

If there is a MPRE for f whose encoding function is f̂ , together with a MPRE
for f̂ whose encoding function is ˆ̂f . Then Theorem 1 shows that they can be
composed as a MPRE for f whose encoding function is ˆ̂f . Theorem 1 is adaptive
version of Lemma 3.3 and 3.4 in [2]. Such composition is useful when ˆ̂f is simpler
than f̂ .

If there are MPREs for f1, f2. W.l.o.g., assume their input domain are the
same. Then Theorem 2 shows that they can be composed as a MPRE for the
functionality

f(x1, . . . , xn) = (f1(x1, . . . , xn), f2(x1, . . . , xn))

while preserving the complexity.

Theorem 1 (Sequential Composition). Assume there is a perfectly (resp.
statistically or computationally) adaptively t-private MPRE for functionality f :
X1 × · · · × Xn → Y, whose encoding function is f̂ : X̂1 × · · · × X̂n → Ŷ. Assume
there is a perfectly (resp. statistically or computationally) adaptively t-private
MPRE for f̂ , whose encoding function is ˆ̂f : ˆ̂X1×· · ·× ˆ̂Xn → ˆ̂Y. Then there exists
a perfectly (resp. statistically or computationally) adaptively t-private MPRE for
f whose encoding function is ˆ̂f .

Theorem 2 (Parallel Composition). For each j ∈ [m], assume there is a
perfectly (resp. statistically or computationally) adaptively t-private MPRE for
functionality f (j) : X1 × · · · × Xn → Y(j), whose encoding function is f̂ (j) :
X̂ (j)

1 × · · · × X̂ (j)
n → Ŷ(j). Then there exists a perfectly (resp. statistically or

computationally) adaptively t-private MPRE for f whose encoding function is
f̂ , where f concatenate the outputs of f (1), . . . , f (m)

f(x1, . . . , xn) := (f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn))
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and f̂ is the concatenation of f̂ (1), . . . , f̂ (m).
Additionally, if the MPRE for f (j) has leakage l

(j)
i : X1 × · · · × Xn → L(j)

i to
Pi for i ∈ [n], j ∈ [m], then the resulting MPRE has leakage li : X1 × · · · × Xn →
L(1)

i × · · · × L(m)
i ,

li(x1, . . . , xn) = (l(1)i (x1, . . . , xn), . . . , l(m)
i (x1, . . . , xn)),

to the i-th party.

The proof of composition theorems are defered to the full version.

4 MPRE for Degree-3 Polynomials

In this section, we build MPRE for degree-3 polynomials in two settings: (i)
honest majority, and (ii) OLE correlations. Our road-map is as follows: In Sect.
4.1, we construct a 4-party gadget MPRE; in Sect. 4.2, we construct an MPRE for
the 3-party functionality 3MultPlus3 described below, which computes a degree-3
monomial shifted by some linear terms, in the OLE-correlation model; then in
Sect. 4.3, we consider the n-party version of the functionality 3MultPlusn and
construct an MPRE for it in the honest majority setting.

3MultPlus3 : ((x1, α), (x2, β), (x3, γ)) �→ x1x2x3 + α + β + γ

3MultPlusn : ((x1, α), (x2, β), (x3, γ),⊥, . . . ,⊥︸ ︷︷ ︸
n−3

) �→ x1x2x3 + α + β + γ

Finally, 3MultPlus is complete in the sense that MPRE for the 3MultPlus func-
tionalities implies MPRE for general degree-3 functionalities. The proof can be
found in the full version. All our MPRE have effective degree 2.

4.1 Our 4-Party Gadget MPRE with Leakage

Fix a field F. We begin with a MPRE with leakage for the following 4-party
gadget function

((x, μ), a, b, ν) �→ abx + μ + ν.

For randomly sampled w1, . . . , w5, [19,20] show that (φ1, . . . , φ6) is a ran-
domized encoding of abx + μ + ν, where φ1, . . . , φ6 are defined as

⎡
⎣

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

⎤
⎦ :=

⎡
⎣

1 w1 w2

1
1

⎤
⎦

⎡
⎣

a μ + ν
−1 x

−1 b

⎤
⎦

⎡
⎣

1 w3 w4

1 w5

1

⎤
⎦

=

⎡
⎢⎢⎣

a − w1

(
aw3 + xw1

− w3w1 − w2

) (
w2b − w2w5 − w1w4

+ w1w5x + w4a + μ + ν

)

−1 x − w3 −w4 + w5x
−1 b − w5

⎤
⎥⎥⎦ .

(3)

[19,20] guarantee that φ1, . . . , φ5 are i.i.d. uniform despite the value of
(a, b, x, μ, ν). We would like to transfer this randomized encoding into an effective
degree-2 MPRE with leakage.
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Fig. 3. Effective degree-2 MPRE for the gadget functionality

Lemma 5. The scheme defined in Fig. 3 is an MPRE for the following 4-party
gadget function

((x, μ), a, b, ν) �→ abx + μ + ν

with the following properties:

(I) it has effective degree 2;
(II) tolerates any number of corruptions with leakage L4((x, μ), a, b, ν) = (a, b).

Proof. The correctness is straight forward. The decoding function is the deter-
minant of the matrix in (3), thus

Dec(φ1, . . . , φ6) = det

⎡
⎣

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

⎤
⎦ = det

⎡
⎣

a μ + ν
−1 x

−1 b

⎤
⎦ = abx + μ + ν.

For the adaptive privacy, we need to define the simulator.

– In the real world: For input x, a, b, μ, ν
At the outset: Sample random w1, w3, w5, w

′
2, w

′′
2 , w′

4, w
′′
4 , compute w2 =

w′
2 + w′′

2 , w4 = w′
4 + w′′

4 , compute (φ1, . . . , φ6) according to Eq. (3).
CorruptO: Output φ1, . . . , φ6.
CorruptI(1): Output w3, w

′
2, w

′
4.

CorruptI(2): Output ⊥.
CorruptI(3): Output ⊥.
CorruptI(4): Output w1, w5, w

′′
2 , w′′

4 .
– In the ideal world:

At the Outset: Sample random φ1, . . . , φ5,

Upon CorruptO, SimO(y): Let φ6 be the unique value that det
[

φ1 φ2 φ6
−1 φ3 φ4

−1 φ5

]
=

y. Output φ1, . . . , φ6.
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Upon CorruptI(1), SimI(1, (x, μ)): Set w3 as the unique value that φ3 =
x − w3.
If P4 is not corrupted yet, sample w′

2, w
′
4 at random.

If P4 is already corrupted, subroutine SimI(4, ν, (a, b)) has learned a and
has sampled the values of w1, w5. Then, set w2, w4 to satisfy φ2 = aw3 +
xw1 −w3w1 −w2, φ4 = −w4 +w5x, and set w′

2 = w2 −w′′
2 , w′

4 = w4 −w′′
4 .

Output w3, w
′
2, w

′
4.

Upon CorruptI(2), SimI(2, a): Output ⊥.
Upon CorruptI(3), SimI(3, b): Output ⊥.
Upon CorruptI(4), SimI(4, ν, (a, b)): Set w1, w5 to satisfy φ1 = a − w1, φ5 =

b − w5.
If P1 is not corrupted yet, sample w′′

2 , w′′
4 at random.

If P1 is already corrupted, subroutine SimI(1, (x, μ)) has learned x and
has sampled the value of w3. Then, set w2, w4 to satisfy φ2 = aw3 +
xw1 −w3w1 −w2 and φ4 = −w4 +w5x, set w′′

2 = w2 −w′
2, w′′

4 = w4 −w′
4.

Output w1, w5, w
′′
2 , w′′

4 .

To formally show that adversary cannot distinguish between the real world
and the ideal world, we introduce a middle world.

– In the middle world:
At the Outset: Sample random φ1, . . . , φ5.

Let φ6 be the unique value that det
[

φ1 φ2 φ6
−1 φ3 φ4

−1 φ5

]
= abx + μ + ν.

Solve w1, . . . , w5 from Eq. (3). Sample w′
2, w

′′
2 as additive sharing of w2,

Sample w′
4, w

′′
4 as additive sharing of w4.

CorruptO: Output φ1, . . . , φ6.
CorruptI(1): Output w3, w

′
2, w

′
4.

CorruptI(2): Output ⊥.
CorruptI(3): Output ⊥.
CorruptI(4): Output w1, w5, w

′′
2 , w′′

4 .

The real world is indistinguishable from the middle world, due to the security
of the randomized encoding in (3).

Comparing the ideal world with the middle world, the only difference is
that the computation is deferred in the ideal world: Same as the real world,
the simulator in the ideal samples random φ1, . . . , φ5. But the simulator can-
not compute w1, . . . , w5 at the beginning as it doesn’t know a, b, x, μ, ν at that
moment. Instead, the simulator compute each of w1, . . . , w5 once it has the nec-
essary information, using exactly the method as the middle world (i.e. by solving
(3)). Thus the ideal world is also indistinguishable from the middle world.

4.2 MPRE for 3-Party 3MultPlus Using OLE Correlation

In this section, we construct an MPRE for the three party functionality

3MultPlus3 : ((x1, α), (x2, β), (x3, γ)) �→ x1x2x3 + α + β + γ
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that has effective degree 2 and tolerates any number of corruptions in the OLE-
correlation model.

For randomly sampled w1, . . . , w5, [19,20] show that (φ1, . . . , φ6) is a ran-
domized encoding of x1x2x3 + α + β + γ, where φ1, . . . , φ6 are defined as

⎡
⎣

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

⎤
⎦ :=

⎡
⎣

1 w1 w2

1
1

⎤
⎦

⎡
⎣

x1 α + β + γ
−1 x2

−1 x3

⎤
⎦

⎡
⎣

1 w3 w4

1 w5

1

⎤
⎦

=

⎡
⎢⎢⎣

x1 − w1

( x1w3 + x2w1

− w3w1 − w2

) ( w2x3 − w2w5 − w1w4 + w4x1

+ w1w5x2 + α + β + γ

)

−1 x2 − w3 −w4 + w5x2

−1 x3 − w5

⎤
⎥⎥⎦ .

(4)

[19,20] guarantee that φ1, . . . , φ5 are i.i.d. uniform despite the value of (x1, x2, x3,
α + β + γ). We would like to transfer this randomized encoding into an effective
degree-2 MPRE using OLE correlated randomness.

Notice that w1w5x2 is the only degree-3 monomial in the randomized encod-
ing, and w1, w5 belong to the randomness of the randomized encoding. Thus if
w1, w5 are sampled from OLE correlated randomness, monomial w1w5x2 can be
transferred into a degree-2 term. More precisely, let (w1, b

(1), w5, b
(3)) ∈ F

4 be
sampled from OLE correlation, it holds that w1w5 = b(1) + b(3). The marginal
distribution of (w1, w5) is still uniform; and w1w5x2 equals (b(1) + b(3))x2, which
is a degree-2 term. Then the randomized encoding has “effective” degree 2 as it
can be computed from

⎡
⎣

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

⎤
⎦ =

⎡
⎢⎢⎣

x1 − w1

( x1w3 + x2w1

− w3w1 − w2

) ( w2x3 − w2w5 − w1w4 + w4x1

+ (b(1) + b(3))x2 + α + β + γ

)

−1 x2 − w3 −w4 + w5x2

−1 x3 − w5

⎤
⎥⎥⎦ .

(5)

Fig. 4. Effective degree-2 MPRE for the 3MultPlus3 functionality
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Lemma 6. The MPRE in Fig. 4 for the 3-party functionality 3MultPlus3
has effective degree 2 and tolerates any number of corruptions, in the OLE-
correlation model.

Proof. The correctness is straight forward,

Dec(φ1, . . . , φ6) = det

⎡
⎣

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

⎤
⎦ = det

⎡
⎣

x1 α + β + γ
−1 x2

−1 x3

⎤
⎦

= x1x2x3 + α + β + γ.

For the adaptive privacy, we need to define the simulator.

– In the real world: For input x1, x2, x3, α, β, γ

At the Outset: Sample random w1, w5, w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(1)
3 , w

(2)
3 , w

(3)
3 , w

(1)
4 ,

w
(2)
4 , w

(3)
4 ∈ F, sample random b(1), b(3) that b(1) + b(3) = w1w5, com-

pute w2 =
∑

i∈[3] w
(i)
2 , w3 =

∑
i∈[3] w

(i)
3 , w4 =

∑
i∈[3] w

(i)
4 , compute

(φ1, . . . , φ6) according to Eq. (5).
CorruptO: Output φ1, . . . , φ6.
CorruptI(1): Output w1, b

(1), w
(1)
2 , w

(1)
3 , w

(1)
4 .

CorruptI(2): Output w
(2)
2 , w

(2)
3 , w

(2)
4 .

CorruptI(3): Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

– In the ideal world:
At the Outset: Sample random φ1, . . . , φ5,

Upon CorruptO, SimO(y): Let φ6 be the unique value that det
[

φ1 φ2 φ6
−1 φ3 φ4

−1 φ5

]
=

y. Output φ1, . . . , φ6.
Upon CorruptI(1), SimI(1, (x1, α)): Set w1 to satisfy φ1 = x1 − w1.

If P3 is not corrupted yet, sample b(1) at random.
If P3 is already corrupted, subroutine SimI(3, (x3, γ)) has set the values
of w5, b

(3). Set b(1) = w1w5 − b(3).
If both P2 and P3 are corrupted, subroutines SimI(2, (x2, β)),
SimI(3, (x3, γ)) have set w

(2)
j , w

(3)
j for j ∈ {2, 3, 4}. Then solve w2, w3,

w4 from Eq. (4) and set w
(1)
j = wj − w

(2)
j − w

(3)
j for j ∈ {2, 3, 4}.

If at least one of P2, P3 is not corrupted yet, sample w
(1)
2 , w

(1)
3 , w

(1)
4 ∈ F.

Output w1, b
(1), w

(1)
2 , w

(1)
3 , w

(1)
4 .

Upon CorruptI(2), SimI(2, (x2, β)): If both P1 and P3 are corrupted, subrou-
tines SimI(1, (x1, β)), SimI(3, (x3, γ)) have set w

(1)
j , w

(3)
j for j ∈ {2, 3, 4}.

Then solve w2, w3, w4 from Eq. (4) and set w
(2)
j = wj − w

(1)
j − w

(3)
j for

j ∈ {2, 3, 4}.
If at least one of P1, P3 is not corrupted yet, sample w

(2)
2 , w

(2)
3 , w

(2)
4 ∈ F.

Output w
(2)
2 , w

(2)
3 , w

(2)
4 .
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Upon CorruptI(3), SimI(3, (x3, γ)): Set w5 to satisfy φ5 = x3 − w5.
If P1 is not corrupted yet, sample b(3) at random.
If P1 is already corrupted, subroutine SimI(1, (x1, α)) has set the values
of w1, b

(1). Set b(3) = w1w5 − b(1).
If both P1 and P2 are corrupted, subroutines SimI(1, (x1, β)),
SimI(2, (x2, γ)) have set w

(1)
j , w

(2)
j for j ∈ {2, 3, 4}. Then solve w2, w3, w4

from Eq. (4) and set w
(3)
j = wj − w

(1)
j − w

(2)
j for j ∈ {2, 3, 4}.

If at least one of P1, P2 is not corrupted yet, sample w
(3)
2 , w

(3)
3 , w

(3)
4 ∈ F.

Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

To show the indistinguishability between the real world and the ideal world,
we introduce a middle world.

– In the middle world: For input x1, x2, x3, α, β, γ
At the Outset: Sample random φ1, . . . , φ5.

Let φ6 be the unique value that det
[

φ1 φ2 φ6
−1 φ3 φ4

−1 φ5

]
= y.

Solve w1, . . . , w5 from Eq. (4).
Sample random b(1), b(3) that b(1) + b(3) = w1w5. For each of j ∈ {2, 3, 4},
sample random w

(1)
j , w

(2)
j , w

(3)
j that w

(1)
j + w

(2)
j + w

(3)
j = wj .

CorruptO: Output φ1, . . . , φ6.
CorruptI(1): Output w1, b

(1), w
(1)
2 , w

(1)
3 , w

(1)
4 .

CorruptI(2): Output w
(2)
2 , w

(2)
3 , w

(2)
4 .

CorruptI(3): Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

The real world is indistinguishable from the middle world, due to the security
of the randomized encoding in (3).

Comparing the ideal world with the middle world, the only difference is
that the computation is deferred in the ideal world: Same as the real world,
the simulator in the ideal samples random φ1, . . . , φ5. But the simulator cannot
compute w1, . . . , w5 by solving (4) at the beginning as it doesn’t know x1, x2, x3,
α, β, γ at that moment. Instead, the simulator compute w1 once it knows x1;
compute w5 once it knows x3; and compute w2, w3, w4 once it knows all the
inputs. Thus the ideal world is also indistinguishable from the middle world.

4.3 MPRE for n-Party 3MultPlus with Honest Majority

We construct an MPRE (Fig. 5) for the n-party functionality

3MultPlusn : ((x1, α), (x2, β), (x3, γ),⊥, . . . ,⊥︸ ︷︷ ︸
n−3

) �→ x1x2x3 + α + β + γ

that has effective degree 2 and tolerates minority corruptions. The construction
requires |F| > n.
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Additional Notation. Let F be a field that |F| > n, let 1, . . . , n denote n dis-
tinct non-zero elements in F. Denote by P(t,m) the set of degree-t polyno-
mials P with constant term m over F, so that Q ← P(t,m) refers to sam-
pling a random degree-t polynomial Q whose constant term is m. In addition,
m = rec(t, (i1, σ1) . . . , (it+1, σt+1)) denotes the procedure for reconstructing the
constant term from t + 1 points on the polynomial via interpolation. For con-
venience, we also denote by P(t,m) | (i1, σ1) . . . , (is, σs) the set of polynomials
Q ∈ P(t,m) such that Q(i1) = σ1, . . . , Q(is) = σs, for s ≤ t + 1.

Protocol Overview. We decompose the computation of x1x2x3 + α + β + γ, into
two parts x1x2x3 + z + s and α + β + γ − z − s where z is sampled by P1 and s
is jointly sampled by all n parties. Since the second term is linear, we focus on
designing an MPRE for the first part.

– P1 samples z ← F, Z ← P(n − 1, z).
– P2 samples Q2 ← P(t, x2) and P3 samples Q3 ← P(t, x3).
– Pi samples S(i) ← F, for every i ∈ [n].

Let s = rec(n − 1, (1, S(1)), . . . , (n, S(n)).

Observe that

Y := x1Q2Q3 + Z + S ∈ P(n − 1, x1x2x3 + z + s) .

Here, we rely on the fact that 2t ≤ n − 1. Then, for each i = 1, 2, . . . , n, parties
P1, P2, P3, Pi can run the gadget MPRE described in Sect. 4.1 to compute Y (i)

((x1, Z(i)), Q2(i), Q3(i), S(i)) �→ x1Q2(i)Q3(i) + Z(i) + S(i) = Y (i) ,

from which the output party can reconstruct Y and the constant term x1x2x3 +
z + s.

Security Intuition. We can prove security of this protocol for up to t < n/2
corruptions. Consider two cases: If P1 is not corrupted, or corrupted. In the first
case, the view of the output party consists of α+β+γ−z−s, and a degree n−1
polynomial Y with constant term x1x2x3 +z +s, which is random thanks to the
randomization via Z. Now, suppose the adversary additional corrupts t parties,
excluding P1; call this set of parties T . Then, security of the gadget MPRE tells
us that the adversary also learns {Q2(i), Q3(i), S(i) : i ∈ T}. Suppose for now
2, 3 /∈ T . By the property of Shamir’s secret sharing, this leaks no additional
information about x1, x2, x3 to the adversary. Now, if 2 ∈ T , then the adversary
also learns Q2, but that is okay since it already learns x2; the same argument
applies to 3 ∈ T .

In the second case that P1 is corrupted and adversary learns x1 and all Z(i)’s,
the polynomial Y is still a random degree-(n−1) polynomial with constant term
x1x2x3 + z + s thanks to the randomization via S. If the adversary corrupts at
set T of t parties, including P1, and learns {Q2(i), Q3(i), S(i) : i ∈ T}, Shamir’s
secret sharing, again protects x2, x3 from being leaked to the adversary.
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Protocol Specification. In short, the MPRE F̂ for x1x2x3 + α + β + γ simply
computes n 4-party gadget MPRE,

f̂((x1, Z(i)), Q2(i), Q3(i), S(i)) for all i ∈ [n]

together with the linear term α + β + γ + z + s. A formal description is in
Fig. 5. It is easy to see that F̂ has effective degree 2 since f̂ has effective degree
≤ 2.

Fig. 5. Effective degree-2 MPRE F̂ for the n-party gadget functionality

Lemma 7. The MPRE scheme in Fig. 5 for the n-party functionality
3MultPlusn has effective degree 2 and satisfies t-adaptive privacy for t < n/2.
The construction requires |F| > n.

Simulator. Observe that the MPRE F̂ invokes the 4-party gadget MPRE f̂ for
n times and computes a linear function �. By the adaptive security of f̂ and
Theorem 2, we have that the parallel composition of all n invokations of f̂ and
the linear function � is an MPRE Ĝ for the following composed functionality G:

G :
( (

x1, α, (Z(i))i, S(1)
)
,

(
x2, β, (Q2(i))i, S(2)

)
,

(
x3, γ, (Q3(i))i, S(3)

)
, . . . , S(i), . . . , S(n)

)

�→ α + β + γ − s − z, (Y (i))i .
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The leakage function of f̂ gives the leakage function of Ĝ, which is Li leaking
(Q2(i), Q3(i)) to Pi for every i. Ĝ is secure against t < n/2 adaptive corruption.
Let (SimIG,SimOG) be its simulator. Below, we use this simulator to construct
the simulator (SimIF ,SimOF ) for F̂ .

Overview. The encoding of F̂ consists of encoding of f̂ and the output of � with
appropriate input / output. The job of (SimIF ,SimOF ) is: 1) simulate the input
/ output of calls to Ĝ, i.e., calls to f̂ and �̂, and 2) invoke (SimIG,SimOG) to sim-
ulate the encoding and local randomness of all calls to f̂ and �. Task 1) requires
simulating Y (i), a random n-out-of-n Shamir sharing of x1x2x3+z+s belonging
to the output of encoding, all Z(i) belonging to P1, each S(i) belonging to Pi,
and each Q2(i), Q3(i) belonging to P2, P3 respectively, and leaked to Pi. Consis-
tency between Y (i) and Z(i), S(i) is maintained by “programming” the variable
that is simulated the last. This can be done as S(i) Z(i) are all marginally ran-
dom and provide enough degree of freedom for programming even if all parties
were corrupted. Consistency between simulating Q2(i), Q3(i) when P2, P3 are
corrupted and when Pi is corrupted can be maintained, thanks to the fact that
at most t parties are corrupted and Q2, Q3 have degree t with constant term
x2, x3.

Proof (Proof of Lemma 7). We start with the formal description of the simulator.

Upon CorruptO, SimO(y = x1x2x3 + α + β + γ):
– Sample τ ← F.
– ∀i, if P1, Pi are already corrupted, Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i) is

fixed.
– Sample O ← P(n − 1, τ) | (i1, Y (i1)), . . . , (is, Y (is)) conditioned on the

list of fixed (ij , Y (ij))’s from previous step. (Note that s ≤ t points are
fixed.)

Send to adversary SimOG(y − τ, (Y (i))i).
Upon CorruptI(1), SimI(x1, α):

– Sample S(1) ← F.
– ∀i, if Pi and the output party are already corrupted, find the unique Z(i)

that satisfies the equation Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).
Send to adversary SimIG(x1, α, (Z(i))i, S(1)).

Upon CorruptI(2), SimI(x2, β)):
– ∀i, if Pi is already corrupted, Q2(i) is already fixed.
– Sample Q2 ← P(t, x2) | (i1, Q2(i1)), . . . , (is, Q2(is)), conditioned on the

list of fixed (ij , Q2(ij)). (Note that this can be done as s ≤ t points are
fixed, and Q3 has degree t.)

– if P1 and the output party are already corrupted, find the unique S(2)
that satisfies the equation Y (2) = x1Q2(2)Q3(2) + Z(2) + S(2).

Send to adversary SimIG(x2, β, (Q2(i))i, S(2)).
Upon CorruptI(3), SimI(x3, γ)): Same as in SimI(x2, β):

– ∀i, if Pi is already corrupted, Q3(i) is already fixed.
– Sample Q3 ← P(t, x3) | (i1, Q3(i1)), . . . , (is, Q3(is)), conditioned on the

list of fixed (ij , Q3(ij)).
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– if P1 and the output party are already corrupted, find the unique S(3)
that satisfies the equation Y (3) = x1Q2(3)Q3(3) + Z(3) + S(3).

Send to adversary SimIG(x3, γ, (Q3(i))i, S(3)).
Upon CorruptI(i), SimI(⊥)) for i /∈ {1, 2, 3}:

– If P2 and/or P3 is already corrupted, Q2 and/or Q3 are fixed. Otherwise,
sample Q2(i), Q3(i) ← F.

– Sample Q3 ← P(t, x3) | (i1, Q3(i1)), . . . , (is, Q3(is)), conditioned on the
list of fixed (ij , Q3(ij)).

– if P1 and the output party are already corrupted, find the unique S(i)
that satisfies the equation Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).

Send to adversary SimIG(S(i), Q2(i), Q3(i)).

Correctness of Simulation. We argue that the view of the adversary in the real
world and simulation are identically distributed following from the simulation
security of Ĝ and the fact that the input/output of the invokation of Ĝ are
simulated perfectly.

Hybrid. More formally, consider the following hybrid, where input/output of the
invokation of Ĝ is generated at the beginning as in the real world, while the
encoding of Ĝ is still simulated.

At the Outset: With knowledge of x1, x3, x3, α, β, γ.
– ∀i, sample Z(i) ← F. Let z = Z(0).
– Sample Q2 ← P(t, x2).
– Sample Q3 ← P(t, x3).
– ∀i, sample S(i) ← F. Let s = S(0).
– ∀i, compute Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).
– Compute τ = x1x2x3 + z + s, and y = x1x2x3 + α + β + γ.

Upon CorruptO: Send to adversary SimOG(y − τ, (Y (i))i).
Upon CorruptI(1): Send to adversary SimIG(x1, α, (Z(i))i, S(1)).
Upon CorruptI(2) Send to adversary SimIG(x2, β, (Q2(i))i, S(2)).
Upon CorruptI(3): Send to adversary SimIG(x3, γ, (Q3(i))i, S(3)).
Upon CorruptI(i): Send to adversary SimIG(S(i), Q2(i), Q3(i)).

The only difference between the above hybrid and the real world is whether the
encoding of Ĝ is simulated or not, it follows from the security of Ĝ that the
views of the adversary are identically distributed. The only difference between
the hybrid and the simulation is whether the input/output of the call to Ĝ is
generated at the beginning with knowledge of x1, x2, x3, α, β, γ or generated in a
delayed fashion. Since these two ways of generation yield the same distribution,
the hybrid and simulation are also identically distributed. We conclude that the
real world and simulation are identically distributed.

5 MPRE for NC1 and P/poly

We lift our effective degree-2 MPRE for degree-3 functionalities constructed in
the previous section, to MPRE for NC1 and P/poly. The transformation uses
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the former MPRE to compute degree-3 randomized encodings for NC1 [20]
and for P/poly [22], and preserves the effective degree. The resulting effective-
degree-2 MPRE for NC1 is information theoretically secure and tolerates any
adaptive corruptions, while the resulting MPRE for P/poly is computation-
ally secure making black box access to a PRG, and tolerates n − 1 adaptive
corruptions.

By our sequential composition theorem (Theorem 1), it is sufficient to con-
struct degree-3 MPRE for NC1 and for P/poly. The former is constructed in
[2]. The later, a (n−1)-private degree-3 MPRE for P/poly that makes black-box
use of PRG, has been implicitly constructed in [13]. We will formally analyze
the adaptive security of our MPRE for P/poly in the rest of the section. The
adaptive security of the our MPRE for NC1 is deferred to the full version.

5.1 Computational MPRE for P/poly based on Black-box PRG

Lemma 8. The scheme in Fig. 6 is a MPRE for P/poly such that
– the MPRE uses PRG as a black-box;
– the MPRE is computationally secure against n − 1 adaptive corruptions;
– the MPRE has effective degree 3 over boolean field.

Proof Overview. The construction is similar to Yao’s garbled circuits. Yao’s
garbled circuits can be viewed as a degree-3 computational randomized encoding
for P/poly.

Recall that in Yao’s garbled circuits, the construction involves many pairs of
the form

(sj , ŝj),
so that they need to satisfy the following properties
– sj is uniformly random;
– ŝj is longer than sj and can be deterministically computed from sj ;
– if sj is hidden, ŝj is computationally indistinguishable from uniform distri-

bution.

PRG exactly fits the requirements. In Yao’s garbled circuits, sj is sampled at
random, and ŝj := G(sj), where G is a PRG.

To convert Yao’s garbled circuit into a computational MPRE, the label sj

should be jointly sampled by all parties. For the MPRE to be secure, ŝj should be
indistinguishable from uniform randomness as long as at least one party’s local
randomness is hidden. Moreover, for the MPRE to have low effective degree,
PRG should be only be used in the preprocessing phase.

A natural construction that satisfies all the requirements is

– sj := s
(1)
j ‖ . . . ‖s

(n)
j , where s

(i)
j is locally sampled by the i-th party;

– ŝj := G(s(1)j ) ⊕ · · · ⊕ G(s(n)j ).

Denote the mapping from sj to ŝj by GMP, i.e.

GMP(z(1)‖ . . . ‖z(n)) := G(z(1)) ⊕ · · · ⊕ G(z(n)).

Under the new notation, ŝj = GMP(sj).
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Circuit Definition. To rigorously state our MPRE, we formalize the notations
for functionality in P/poly. A boolean circuit is specified by a directed acyclic
graph. The nodes in the graph are indexed by numbers in [m], each represents
a wire in the circuit.

– For any j ∈ [m], let xj denote the wire value of the j-th wire.
– Let Ji denote the input wires of the i-th party. For each j ∈ Ji, the i-th party

knows the value of xj . Let Jin :=
⋃

i Ji denote all the input wires.
– Any wire other than the input wires is the output of a gate. Let j1, j2 < j

denotes the input wires of the gate (j1, j2 are implicit functions of j), let
gj : {0, 1} × {0, 1} → {0, 1} be the corresponding gate function. Thus xj =
gj(xj1 , xj2).

– For each wire j, let d(j) denote the fan-out of the wire.
– Let Jout denote all the output wires. Thus the circuit output consists of xj

for all j ∈ Jout.

Proof (Proof of Lemma 8). Scheme is essentially Yao’s garbled circuit which uses
GMP as PRG. kj is the permutation bit of the j-th wire. sj,0, sj,1 are the wire
keys of the j-th wire. (wj,0,0, wj,0,1, wj,1,0, wj,1,1) is the table associated with the
j-th gate. Thus both the correctness and privacy can be proved in a similar
fashion as garbled circuit.

The correctness is implied from the statement that

x̄j := xj ⊕ kj , ẑj := ŝj,x̄j
(6)

for all j ∈ [m]. The statement can be proved by induction. For any j ∈ Jin, (6)
is directly guaranteed by the encoding function. For any j /∈ Jin, assume the
statement holds for j1, j2 – the two input wire of the j-th gate, then

x̄j‖zj = wj,x̄j1 ,x̄j2
⊕ ŝj1,x̄j1

[j, x̄j2 ] ⊕ ŝj2,x̄j2
[j, x̄j1 ]

= (kj ⊕ gj(x̄j1 ⊕ kj1 , x̄j2 ⊕ kj2)‖sj,kj⊕gj(x̄j1⊕kj1 ,x̄j2⊕kj2 )
)

= kj ⊕ gj(xj1 , xj2)‖sj,kj⊕gj(xj1 ,xj2 )

= kj ⊕ xj‖sj,kj⊕xj
,

thus x̄j = kj ⊕xj , zj = sj,kj⊕xj
= sj,x̄j

and ẑj = GMP(zj) = GMP(sj,x̄j
) = ŝj,x̄j

.
As the consequence, for each j ∈ Jout, the decoding function will output x̄j ⊕kj ,
which equals the right output xj .

For adaptive privacy, the simulator in the ideal world works as the follows

At the Outset: Sample x̄j ← {0, 1} for all j ∈ [m], sample random ẑj for all
j ∈ Jin, sample random zj and sets ẑj = GMP(zj) all j /∈ Jin.

Upon CorruptI(i), SimI(i, (xj)j∈Ji
): Sets kj = xj ⊕ x̄j for all j ∈ Ji.

Sample random ŝ
(i)
j,0, ŝ

(i)
j,1 for all j ∈ Jin, sample random k

(i)
j for all j /∈ Jin.

Set s
(i)
j,x̄i

as the i-th part of zj and sample random s
(i)
j,x̄i⊕1 for all j /∈ Jin.

Output
(
xj , kj

)
j∈Ji

,
(
ŝ
(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k
(i)
j , s

(i)
j,0, s

(i)
j,1

)
j /∈Jin

.
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Fig. 6. Computational MPRE for P/poly using Black-box PRG

Upon CorruptO, SimO((xj)j∈Jout): Sets kj = xj ⊕ x̄j for all j ∈ Jout.
For each j /∈ Jin, the simulator sets

wj,x̄j1 ,x̄j2
= ẑj1 [j, x̄j2 ] ⊕ ẑj2 [j, x̄j1 ] ⊕ (x̄j‖zj),

and samples random wj,b1,b2 for (b1, b2) �= (x̄j1 , x̄j2).
Output (x̄j , ẑj)j∈Jin , (wj,b1,b2)j /∈Jin,b1,b2∈{0,1}, (kj)j∈Jout to the adversary.

In order to show the real world and the ideal world are computationally
indistinguishable from the adversary’s view, we define a sequence of 2m + 1
hybrid worlds. In the t-th hybrid world ( t ∈ {0, 1

2 , 1, 3
2 , . . . ,m}):

At the Outset: The adversary decides input (xj)j∈Jin .
Sample x̄j ∈ {0, 1} for all j ∈ [m], sample random ẑj for all j ∈ Jin, sample
random zj and sets ẑj = GMP(zj) all j /∈ Jin.
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For all j ∈ [m], set kj = xj ⊕ x̄j . For all j ∈ Jin, set ŝj,x̄j
= ẑj and sam-

ple random ŝj,x̄j⊕1. For all j /∈ Jin, set sj,x̄j
= zj , set ŝj,x̄j

= GMP(sj,x̄j
),

ẑj = GMP(zj), thus ẑj = ŝj,x̄j
.

set sj,x̄j
= zj , sample random sj,x̄j⊕1 .

For each j /∈ Jin that j ≤ t, sample random sj,x̄j⊕1, ŝj,x̄j⊕1.
For each j /∈ Jin that j > t, sample random sj,x̄j⊕1, set ŝj,x̄j⊕1 =
GMP(sj,x̄j⊕1).

Upon CorruptI(i): Sample random ŝ
(i)
j,0, ŝ

(i)
j,1 for all j ∈ Jin. Sample random k

(i)
j

for all j /∈ Jin. Set s
(i)
j,b as the i-th part of sj,b for all j /∈ Jin.

Send
(
xj , kj

)
j∈Ji

,
(
ŝ
(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k
(i)
j , s

(i)
j,0, s

(i)
j,1

)
j /∈Jin

to the adversary.
Upon CorruptO: For each j /∈ Jin that j ≤ t + 1

2 , set

wj,x̄j1 ,x̄j2
= ẑj1 [j, x̄j2 ] ⊕ ẑj2 [j, x̄j1 ] ⊕ (x̄j‖zj),

and sample random wj,b1,b2 for (b1, b2) �= (x̄j1 , x̄j2).
For each j /∈ Jin that j > t + 1

2 , set

wj,b1,b2 = ŝj1,b1 [j, b2]⊕ŝj2,b2 [j, b1]⊕(kj⊕gj(b1⊕kj1 , b2⊕kj2)‖sj,kj⊕gj(b1⊕kj1 ,b2⊕kj2 ))

for b1, b2 ∈ {0, 1}.
The simulator sends (x̄j , ẑj)j∈Jin , (wj,b1,b2)j /∈Jin,b1,b2∈{0,1}, (kj)j∈Jout to the
adversary.

The ideal world is computationally indistinguishable from the real world,
because 1) the real world is indistinguishable from the 0-th hybrid world; 2) the
ideal world is indistinguishable from the m-th hybrid world; 3) the j-th hybrid
world is computationally indistinguishable from the (j − 1)-th hybrid world.

The Real World is Indistinguishable from the 0-th Hybrid World as they are
essentially the same. E.g. in the real world, k

(1)
j , . . . , k

(n)
j are i.i.d. random

boolean, and kj := k
(1)
j ⊕· · ·⊕k

(n)
j , x̄j := kj ⊕xj ; while in the 0-th hybrid world,

x̄j and k
(i)
j for all corrupted party i are randomly sampled, and kj := x̄j ⊕ xj .

There two methods of sampling yield the same distribution.

The Ideal World is Indistinguishable from the m-th Hybrid World. Compared
with the m-th hybrid world, the only difference of the ideal world is that some
computation is deferred. E.g. in the m-th hybrid world, it sets kj := x̄j ⊕ xj at
the beginning; while in the ideal world, the simulator can only set kj after xj is
given.

The the (j − 1)-th hybrid world. is indistinguishable from the (j − 1
2 )-th hybrid

world. The only difference between them is how wj,0,0, wj,0,1, wj,1,0, wj,1,1 are
generated.

As for wj,x̄j1 ,x̄j2
, we have

wj,x̄j1 ,x̄j2
(in the (j − 1

2 )-th hybrid world)

= ẑj1 [j, x̄j2 ] ⊕ ẑj2 [j, x̄j1 ] ⊕ (x̄j‖zj)
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= ŝj1,x̄j1
[j, x̄j2 ] ⊕ ŝj2,x̄j2

[j, x̄j1 ] ⊕ (x̄j‖sj,x̄j
)

= ŝj1,x̄j1
[j, x̄j2 ] ⊕ ŝj2,x̄j2

[j, x̄j1 ]

⊕ (kj ⊕ gj(x̄j1 ⊕ kj1 , x̄j2 ⊕ kj2)‖sj,kj⊕gj(x̄j1⊕kj1 ,x̄j2⊕kj2 )
)

= wj,x̄j1 ,x̄j2
(in the (j − 1)-th hybrid world).

For the other three terms, wj,b1,b2 for (b1, b2) �= (x̄j1 , x̄j2), we have

wj,b1,b2 (in the (j − 1)-th hybrid world)
= ŝj1,b1 [j, b2] ⊕ ŝj2,b2 [j, b1] ⊕ (kj ⊕ gj(b1 ⊕ kj1 , b2 ⊕ kj2)‖sj,kj⊕gj(b1⊕kj1 ,b2⊕kj2 )

).

Notice that in the (j − 1)-th hybrid world, ŝj1,x̄j1⊕1, ŝj2,x̄j2⊕1 are fresh random-
ness that are only used to generate wj,x̄j1⊕1,x̄j2⊕1, wj,x̄j1 ,x̄j2⊕1, wj,x̄j1⊕1,x̄j2

. Thus
it’s equivalent to sampling wj,b1,b2 for (b1, b2) �= (x̄j1 , x̄j2) at random as they are
already one-time padded by fresh randomness, which is exactly how they are
generated in the (j − 1

2 )-th hybrid world.

The Last Piece is the Computational Indistinguishability between the j-th Hybrid
World and the (j − 1

2 )-th Hybrid World. The only difference between them is
how ŝj,x̄j⊕1 is generated.

In the (j − 1
2 )-th hybrid world, sj,x̄j⊕1 = s

(1)
j,x̄j⊕1‖ . . . ‖s

(n)
j,x̄j⊕1 are randomly

sampled and ŝj,x̄j⊕1 is determined by ŝj,x̄j⊕1 = GMP(sj,x̄j⊕1) =
⊕

i G(s(i)j,x̄j⊕1).
As we are proving (n−1)-privacy, the adversary cannot corrupts all parties. Let
i∗ denote a party currently not corrupted by the adversary. Notice that s

(i∗)
j,x̄j⊕1

is only used to generate ŝj,x̄j⊕1, thus it is computational indistinguishable if
G(s(i

∗)
j,x̄j⊕1) is replaced by uniform randomness. Replacing G(s(i

∗)
j,x̄j⊕1) by uniform

randomness is equivalent to sampling ŝj,x̄j⊕1 at random, which is how ŝj,x̄j⊕1 is
generated in the j-th hybrid world.

6 Two-Round MPC

As what we are going to show in Lemma 9, an effective-degree-2 adaptive MPRE
for functionality f and an adaptive 2-round MPC for any degree-2 functions will
imply an adaptive 2-round MPC for the functionality f . In previous sections,
we construct effective degree-2 MPRE for NC1 and P/poly under different
settings. The last step is to construct adaptive 2-round MPC protocols for degree-
2 functionalities in these settings, which are Sect. 6.1 and 6.2.

Lemma 9. Let (f̂, h1, . . . , hn) be a MPRE for functionality f that tolerates t

adaptive corruptions. Assume there is a MPC protocol for f̂ that tolerates t
adaptive corruptions. Then there exists a MPC protocol for f such that

– the resulting MPC protocol has the same round and communication complexity
as the MPC protocol for f̂ ;
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– the resulting MPC protocol tolerates t adaptive corruptions; the type of the
simulation security (prefect, statistical or computational) align with that of
the MPRE for f and MPC for f̂ ;

– if the MPC for f̂ or the MPRE for f uses correlated randomness, the resulting
MPC uses the same correlated randomness.

The proof is deferred to the full version.

6.1 Honest Majority and Plain Model

In the honest majority setting, the BGW [5] protocol when restricted to comput-
ing degree-2 polynomials has only two rounds. The adaptive security of BGW is
proved in [14].

Lemma 10. For any degree-2 functionality f , the BGW protocol computes f in
2-round and tolerates adaptive minority corruptions.

6.2 Honest Minority and OLE Correlations

We now construct a very simple adaptively secure MPC protocol using OLE-
correlation for the following 2MultPlus functionality, which is sufficient for com-
puting any degree-2 polynomials.

Fig. 7. 2-round MPC for 2MULTPlus in OLE correlation model

Lemma 11. The 2-round MPC described in Figure 7 is a adaptive secure MPC
protocol for the following functionality

2MultPlus : ((x1, z1), (x2, z2)) �→ x1x2 + z1 + z2

and it tolerates an arbitrary number of corruptions.

Proof Overview. The scheme can also be explained as a randomized encoding for
branching program. As (b1, b2) is the additive secret sharing of a1a2, the receiver
essentially learns m1,1,m2,1 and m1,2 + m2,2.
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As [
1 a1

1

] [
x1 z1 + z2
−1 x2

] [
1 a2

1

]
=

[
m1,1 m1,2 + m2,2

−1 m2,1

]
,

the message received by the receiver is a randomized encoding of x1x2 + z1 + z2,
and a1, a2 are the randomness of the randomness encoding. The formal proof is
deferred to the full version.
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work was done while the authors were visiting the Simons Institute for the Theory of
Computing.
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Abstract. There has been a large body of work characterizing the round
complexity of general-purpose maliciously secure two-party computation
(2PC) against probabilistic polynomial time adversaries. This is partic-
ularly true for zero-knowledge, which is a special case of 2PC. In fact, in
the special case of zero knowledge, optimal protocols with unconditional
security against one of the two players have also been meticulously stud-
ied and constructed.

On the other hand, general-purpose maliciously secure 2PC with sta-
tistical or unconditional security against one of the two participants has
remained largely unexplored so far. In this work, we initiate the study of
such protocols, which we refer to as 2PC with one-sided statistical secu-
rity. We settle the round complexity of 2PC with one-sided statistical
security with respect to black-box simulation by obtaining the following
tight results:

– In a setting where only one party obtains an output, we design 2PC
in 4 rounds with statistical security against receivers and computa-
tional security against senders.

– In a setting where both parties obtain outputs, we design 2PC in 5
rounds with computational security against the party that obtains
output first and statistical security against the party that obtains
output last.

Katz and Ostrovsky (CRYPTO 2004) showed that 2PC with black-box
simulation requires at least 4 rounds when one party obtains an output
and 5 rounds when both parties obtain outputs, even when only compu-
tational security is desired against both parties. Thus in these settings,
not only are our results tight, but they also show that statistical security
is achievable at no extra cost to round complexity. This still leaves open
the question of whether 2PC can be achieved with black-box simulation
in 4 rounds with statistical security against senders and computational
security against receivers. Based on a lower bound on computational
zero-knowledge proofs due to Katz (TCC 2008), we observe that the
answer is negative unless the polynomial hierarchy collapses.
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1 Introduction

Secure two-party computation allows two mutually distrustful participants to
compute jointly on their private data without revealing anything beyond the
output of their computation. Protocols that securely compute general function-
alities have been constructed under a variety of assumptions, and with a variety
of efficiency guarantees.

A fundamental question in the study of secure computation is round com-
plexity. This question has been researched extensively, and even more so for the
special case of zero-knowledge.

Zero-Knowledge. Computational zero-knowledge arguments with negligible
soundness error can be achieved in 4 messages [19], under the minimal assump-
tion that one-way functions exist [7]. This is tight: for languages outside BPP,
with black-box simulation and without any trusted setup, zero-knowledge argu-
ments require at least four messages [24].

For zero-knowledge with black-box simulation, different flavors have been
studied depending on the level of soundness and zero knowledge achieved. Either
property can be statistical or computational, meaning that it holds against
unbounded or computationally bounded adversaries, respectively. Protocols that
satisfy both properties statistically, known as statistical zero knowledge proofs,
are only possible for languages in AM∩ coAM [1,20]; however, once either prop-
erty is relaxed to be computational, protocols for all of NP can be constructed
assuming the existence of one way functions [11,25,26,40,41]. Specifically,

– Statistical Zero-knowledge Arguments for NP, where soundness is computa-
tional and zero-knowledge is statistical, are known to be achievable in 4 rounds
with black-box simulation, assuming the existence of collision resistant hash
functions [7].

– Computational Zero-knowledge Proofs for NP, that satisfy statistical sound-
ness and computational zero-knowledge, are known to be achievable in 5
rounds with black-box simulation, assuming the existence of collision resis-
tant hash functions [24].

Protocols that satisfy statistical security, either against a malicious prover
or a malicious verifier, are more secure and therefore can be more desirable
than protocols that are only computationally secure on both sides. For instance,
statistical zero-knowledge arguments provide an unconditional privacy guarantee
– even a verifier that runs an arbitrary amount of post-processing on the proof
transcript, does not obtain any information that cannot be simulated efficiently.

Secure Computation of General Functionalities. While tight results for zero-
knowledge with black-box simulation with statistical security against one party
are known, the state of affairs is significantly lacking in the case of two-party
secure computation of general functionalities. Specifically, in the two-party set-
ting, it is natural to ask whether statistical or unconditional security can be
achieved, against at least one of the parties.
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In a setting where both parties are computationally bounded, Katz and
Ostrovsky [33] showed how to securely compute general functionalities with
black-box simulation, with only 4 messages of interaction, when one party
receives the output, and 5 messages when both parties receive the output. They
also demonstrate that this result is tight with respect to black-box simulation.
There has been significant progress in the last few years, extending the results
of Katz and Ostrovsky to obtain better round optimal secure protocols both
in [15,44] and beyond the two-party setting [3,6,10,13,14,23].

Despite all this progress, there are significant gaps in our understanding
of the round complexity of 2PC with one-sided statistical security, i.e. statisti-
cal security against one of the participants. While there are known techniques
to achieve weaker notions such as super-polynomial simulation with statistical
security [12,31,43], the (standard) setting of polynomial simulation is not well
understood at all.

1.1 Our Results

In this paper, we settle the round complexity of two-party secure computation
with black-box simulation and one-sided statistical security. This is the best
possible security that can be achieved by any non-trivial two-party protocol in
the plain model.

We now describe our results in some detail. First, we consider a setting
where only one party receives the output of the computation. Without loss of
generality, we call the party that receives the output, the receiver R, and the
other party the sender S. We obtain a tight characterization with respect to
black-box simulation, as follows.

Informal Theorem 1. Assuming polynomial hardness of either DDH or QR
or LWE, there exists a 4 round two-party secure computation protocol for gen-
eral functionalities with black-box simulation, with statistical security against an
adversarial receiver and computational security against an adversarial sender.

Next, we recall a result due to Katz [32] who proved that 4 round compu-
tational zero-knowledge proofs for NP with black-box simulation cannot exist
unless the polynomial hierarchy collapses. This helps rule out the existence of
a 4 round two-party protocol for secure computation of general functionalities
with black-box simulation, with statistical security against an adversarial sender
and computational security against an adversarial receiver, unless the polyno-
mial hierarchy collapses. A formal proof of this statement appears in the full
version of the paper. We also match this lower bound with the following result.

Informal Theorem 2. Assuming polynomial hardness of either DDH or QR
or LWE, there exists a 5 round two-party secure computation protocol for gen-
eral functionalities with black-box simulation, with statistical security against an
adversarial sender and computational security against an adversarial receiver.
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We formalize and prove Informal Theorem 1 and Informal Theorem 2 by
demonstrating a single 5 round protocol for symmetric functionalities (i.e. func-
tionalities that generate identical output for both parties), where the receiver R
obtains the output at the end of the 4th round, and the sender S obtains the out-
put at the end of the 5th round. This protocol is unconditionally secure against
malicious receivers, and computationally secure against malicious senders. Such
a protocol can be unconditionally compiled (in a round-preserving way) to work
for asymmetric functionalities using the following folklore technique: each partic-
ipant additionally inputs a random key to the functionality, and the symmetric
functionality masks each participant’s output with their respective key.

We prove that our protocol provides statistical security against a malicious
receiver R and computational security against a malicious sender S. We observe
that Informal Theorem 1 follows from this protocol by simply eliminating the
last message from the receiver R to the sender S. Informal Theorem 2 also follows
from this protocol by simply renaming the players: that is, we will now call the
party S in our original protocol, R; and we will call R, S. The resulting proto-
col, after renaming parties, is statistically secure against a malicious sender S
and computationally secure against a malicious receiver R. Because both parties
obtain the output by the end of the 5th round, the (re-named) receiver R is
guaranteed to obtain the output at the end of round 5.

Together, these results completely characterize the round complexity of
secure two-party computation with black-box simulation and statistical secu-
rity against one participant. Along the way, we develop a toolkit for establishing
statistical security that may be useful in other settings.

In the rest of this paper, in protocols where a single party gets the output –
we will call the party that obtains an output the receiver, and the other party
the sender. In protocols both parties get the output, we call the party that
obtains its output first, the receiver and the party that obtains output second,
the sender.

2 Our Techniques

We now provide an informal overview of our techniques. Our starting point is the
simple case of security against semi-honest adversaries, with statistical security
against one party and computational security against the other. A simple way
to obtain round-optimal secure computation for general functionalities, in the
semi-honest setting, is to rely on Yao’s garbling technique. In this technique,
one party, referred to as the garbler, computes a garbled circuit and labels for
the evaluation of a circuit. The garbler sends the resulting circuit to the other
party, the evaluator, and both parties rely on 2-choose-1 oblivious transfer (OT)
to transfer the “right” labels corresponding to the input of the evaluator. The
evaluator then executes a public algorithm on the garbled circuit and labels to
recover the output of the circuit.

Limitations in the Semi-honest Setting. Even in the semi-honest setting, garbled
circuits that provide security against unbounded evaluators are only known for
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circuits in NC1. In fact, whether constant round two-party semi-honest protocols
secure against unbounded senders and unbounded receivers exist, even in the
OT hybrid model, is an important unresolved open problem in information-
theoretic cryptography. In the absence of such protocols, the best security we
can hope to achieve even in the semi-honest setting, is when at least one party
is computationally bounded. As a result, in the malicious setting also, the best
we can hope for is security against unbounded senders and bounded receivers,
or unbounded receivers and bounded senders.

As discussed in the previous section, we construct a single 5 round protocol
for symmetric functionalities (i.e. functionalities that generate identical output
for both parties), where the receiver R obtains the output at the end of the
4th round, and the sender S obtains the output at the end of the 5th round1.
We prove that this protocol provides statistical security against an unbounded
malicious receiver R∗ and security against a computationally bounded malicious
sender S∗. For simplicity, we discuss the first 4 rounds of this protocol in more
detail: specifically, we discuss a 4 round protocol where R obtains the output
(and S does not), that we prove is secure against an unbounded malicious R∗

and computationally bounded malicious S∗.
R must generate the garbled circuit, and S must evaluate it. Garbled circuits form
an important component of our protocol. Because garbled circuits for functions
outside of NC1 are insecure against unbounded evaluators, when looking at all
efficiently computable functions (which is the focus of this work), our de-facto
strategy will be to have a malicious evaluator that is computationally bounded
whereas a malicious garbler may be computationally unbounded.

Because we desire statistical security against R∗, the receiver R must be the
entity that generates the garbled circuit, and S will evaluate this circuit on labels
obtained via a 2-choose-1 oblivious transfer (OT) protocol. Recall that we also
require the receiver R to obtain the output by the end of round 4. Since S is the
one evaluating the garbled circuit, this enforces that the garbled circuit must be
evaluated by the sender by the end of round 3. In other words, R must output
the garbled circuit and transfer labels to the sender by round 3.

This requires that labels for the garbled circuit be transferred from R to
S via a 3 round OT protocol, in which R is the OT sender and S is the OT
receiver. Naturally, this oblivious transfer protocol is also required to be statis-
tically secure against malicious R∗ (who is the OT sender) and computationally
secure against malicious S∗ (who is the OT receiver). Unfortunately, no OT pro-
tocols achieving malicious security are known in 3 rounds (in fact, the existence
of such protocols with black-box simulation would contradict the lower bound
of [33]). The fact that the OT must also be statistically secure against malicious
senders complicates matters further. This brings us to our first technical barrier:
identifying and using weaker forms of OT to obtain full malicious security.

1 We note that this is without loss of generality, since any asymmetric functionality
can be unconditionally computed from a symmetric one by having each party input
a random value, and using it to mask the output.
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Reconciling Three Round Oblivious Transfer. Here, it is appropriate to discuss
known notions of oblivious transfer that are achievable in three rounds and
provide some semblance of malicious security. A popular notion has been game-
based security: roughly, this requires that the receiver choice bit be hidden from
a malicious sender, and one of the sender messages remain hidden from the
receiver. A further strengthening of this notion is security with superpolyno-
mial simulation, commonly called SPS-security. Very roughly, this requires the
existence of a superpolynomial simulator that simulates the view of a malicious
sender/receiver only given access to the ideal functionality. There are known
constructions of SPS-secure OT: in 2 rounds, SPS-secure OT was first con-
structed by [5] based on two-round game-based OT, which can itself be real-
ized based on a variety of assumptions, including DDH, LWE, QR, and N th-
residuosity [2,9,27,30,42].

Here, recall that we also desire statistical security against an adversarial
sender. Achieving this property requires at least three rounds [31], and [31]
obtained 3 round OT with SPS security based on superpolynomial hardness
of DDH, LWE, QR, and N th-residuosity. Even more recently, [28] improved
this result to rely only on polynomial hardness of any of the same assump-
tions. In fact, [28] achieve a notion in between SPS-security and standard secu-
rity against malicious receivers: their protocol obtains distinguisher-dependent
security [18,29] against malicious receivers. This relaxes the standard notion
of malicious security by reversing the order of quantifiers, namely, by allowing
the simulator to depend upon the distinguisher that is attempting to distin-
guish the real and ideal experiments. Importantly, unlike standard security, a
distinguisher-dependent OT simulator is not guaranteed to efficiently extract the
adversary’s actual input, unless it has access to the distinguisher. On the other
hand, we would like to achieve full-fledged malicious security in our 2PC protocol.
This means that our 2PC simulator must nevertheless find a way to extract the
adversary’s input and cannot rely on the OT simulator for this purpose. Looking
ahead, we will only rely on the OT protocol to obtain an indistinguishability-
based guarantee, and our 2PC simulator will not use the OT simulator at all.
Next, we describe additional components that we add to this protocol to enable
full-fledged malicious security.

Immediate Pitfalls of the Current Template. Now as discussed previously, gar-
bled circuits and an appropriate OT protocol do not by themselves guarantee
meaningful security against malicious adversaries. A malicious garbler could gen-
erate the garbled circuit or labels so as to completely alter the output of an honest
evaluator. As such, the sender must be convinced that the garbled circuit and
labels that she obtained from the receiver were generated “correctly”, before she
evaluates the garbled circuit. In other words, R should convince S, within three
rounds, that the garbled circuit and oblivious transfer messages were correctly
generated, so that it is “safe” for the sender to evaluate the garbled circuit.

A näıve approach would entail the use of a computational zero-knowledge
proof, where R proves to S that the garbled circuit, labels and OT messages
sent by R were correctly generated. Unfortunately, computational zero-knowledge
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proofs are not known to exist in less than 4 rounds of interaction from standard
assumptions, even assuming non-black-box simulation. This brings us to our
second technical barrier.

We overcome this barrier with the help of a special conditional disclosure of
secrets (CDS) protocol, that we will detail towards the end of this overview. This
CDS protocol will help us compile protocols that are secure against adversaries
that “promise to behave well” (that we will denote as explainable adversaries in
line with [8]) into protocols secure against arbitrarily malicious adversaries, while
retaining one-sided statistical security. An “explainable” adversary generates
messages in the support of the distribution of all honestly generated messages.2

In fact, we take a modular approach to building 2PC with one-sided statistical
security against fully malicious adversaries: first, we obtain a protocol secure
against explainable adversaries alone, and next, we compile this protocol to
one that is secure against arbitrary malicious adversaries. For now, we focus
our attention towards achieving simulation-based security against explainable
adversaries alone, instead of arbitrary malicious ones. Later, we discuss our CDS-
based approach to achieve security against arbitrary malicious adversaries.

Extracting inputs of Explainable Adversaries. Recall that by definition of
explainability, for every garbled circuit GC and OT message that an explainable
R∗ sends, there exists randomness r and input inp such that GC is generated as an
output of the garbling algorithm for the circuit corresponding to the two-party
function f , on input inp and with randomness r.

As already discussed, proving security requires establishing the existence of
a simulator that interacts with an ideal functionality and with the adversary to
output a view that is indistinguishable from the adversary’s view in its interac-
tion with the honest party. Importantly, this simulator must extract the input
of a malicious R∗ or S∗, and cannot use the 3-round OT for this purpose.

Therefore, to enable extraction from R∗, we modify the protocol to require the
receiver to send a statistically binding extractable commitment (constructed, eg,
in [45]) to its input, in parallel with the rest of the protocol. By definition, an
explainable R∗ is guaranteed to send an extractable commitment to the “right”
input that is consistent with the garbled circuit, and a simulator SimR∗

will be able
to extract R∗’s input from the extractable commitment. Such extractable commit-
ments are known to exist in 3 rounds by the work of Prabhakaran et al. [45].

Similarly, in order to enable the extraction of S∗’s input, we will modify the
protocol to require S to send an extractable commitment to its input, in paral-
lel with the rest of the protocol. The simulator SimS∗

will be able to extract the

2 Importantly, this is different from semi-malicious security [38,39] where the adver-
sary in addition to generating messages in the support of the distribution of all
honestly generated messages, outputs the input and randomness that it used, on a
special tape. On the other hand, simulating an explainable adversary is much more
challenging: since in this case the adversary does not output any such special tape,
and therefore the input and randomness must still be extracted from an explainable
adversary by the simulator.
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sender’s input from this extractable commitment. Since we require statistical secu-
rity againstR, the extractable commitment used byS should be statistically hiding.
A simple modification to the extractable commitments of Prabhakaran et al. [45],
replacing statistically binding computationally hiding commitments with statisti-
cally hiding computationally binding commitments yields the required extractable
commitment in 4 rounds. Unfortunately, this also means that SimS∗

can only send
the input of S∗ and obtain an output from the ideal functionality at the end of the
4th round. However, S∗ evaluates the garbled circuit and may obtain an output
before round 4 even begins, which would allow S∗ to distinguish the real and ideal
executions. Said differently, this would leaveSimS∗

with no opportunity to program
the output of the ideal functionality in the view of S∗.

To provide SimS∗
with such an opportunity and overcome this technical bar-

rier, we modify the protocol as follows: instead of garbling the circuit correspond-
ing to the function f , R samples the keys (pk, sk) for a public key encryption
scheme, and garbles a circuit that computes (Encpk ◦ f). Here Encpk denotes the
encryption algorithm of an IND-CPA secure encryption scheme, and the ran-
domness used for encryption is hardwired by R into the circuit. As a result, S
on evaluating the garbled circuit, obtains a ciphertext that encrypts the output
of the function under R’s public key. It must then forward this ciphertext to
R, who uses the corresponding secret key to decrypt the ciphertext and recover
the output of the function3. This concludes the bare-bones description of our
5-round protocol with security against explainable adversaries.

In addition to proving that this protocol is secure against explainable PPT
adversaries, we also establish an additional property, that will come in handy
later. We prove that the protocol is robust in the first two rounds: meaning
that even an adversary that behaves arbitrarily maliciously (and not necessarily
explainably) in the first two rounds can only influence the function output, but
not obtain any information about the private input of the other participant.

Simulating Explainable Adversaries. This completes a simplified overview of
our protocol with security against explainable adversaries. But there are several
subtleties that arise when formalizing the proof of security. We describe our
simulators and discuss a few of these subtleties below.

First, we discuss how to build a simulator SimS∗
that simulates the view of

a malicious sender S∗. Recall that SimS∗
must extract the input of a malicious

S∗, query the ideal functionality, and program the resulting output in the view
of S∗. The use of statistically hiding extractable commitments allows SimS∗

to
extract S∗’s input by the end of the fourth round. Therefore, SimS∗

only obtains
an output from the ideal functionality by the end of the fourth round. But SimS∗

must send to S∗ a garbled circuit in the third round, on behalf of R, even before
learning the output. How should SimS∗

construct this circuit? SimS∗
cannot even

3 Alternatively, R could withhold the garbled circuit decoding information, i.e. the
correspondence between the output wire labels and the output of the circuit, from S
until the 5th round. This would achieve the same effect, but leads to a more complex
analysis. For simplicity of analysis, we choose to garble an encrypted circuit in our
formal presentation.
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invoke the simulator of the garbled circuit because it has not extracted S∗’s input
at this time. Instead, we have the simulator simply garble a circuit that outputs
an encryption of the all zeroes string. Finally, the simulator extracts the input of
S∗ from the fourth round message, and queries the ideal functionality to obtain
an output. In the fifth round, it sends this output S∗ in the clear.

Recall that S∗ can behave arbitrarily maliciously while generating its OT
message, and only provides a proof of correct behaviour in round 4. Therefore,
we must use a careful argument to ensure that the result appears indistinguish-
able to S∗. The indistinguishability argument heavily relies on the distinguisher-
dependent simulation property of the OT protocol. In particular, we build a
careful sequence of hybrids where we extract S∗’s (who is the OT receiver) input
to the OT protocol in a distinguisher-dependent manner, and use the extracted
input to replace the actual garbled circuit with a simulated one. Next, we change
the output of the garbled circuit from an encryption of the right output to an
encryption of the all zeroes string, and finally we replace the simulated garbled
circuit with a real circuit that always outputs an encryption of the all zeroes
string. All intermediate hybrids in this sequence are distinguisher-dependent.
A similar argument also helps prove robustness of our protocol against S∗ that
behaves maliciously in the second round.

Next, we discuss how we simulate the view of an unbounded malicious R∗.
The simulator SimR∗

uses the third round extractable commitment to obtain
the input of R∗, queries the ideal functionality to obtain an output, and in the
fourth round message, sends an encryption under the receiver’s public key pk of
this output. Here, we carefully prove that for any explainable receiver R∗, the
simulated message (encrypting the output generated by the ideal functionality)
is indistinguishable from the message generated by an honest sender.

This concludes an overview of how we achieve a protocol with security against
explainable adversaries. Next, we discuss techniques to compile any explainable
protocol with robustness in the first two rounds, into one that is secure against
malicious adversaries. We also discuss a few additional subtleties that come up
in this setting.

Security against Malicious Senders via Statistical ZK Arguments. In order to
achieve security against arbitrary malicious S∗, the protocol is further modified
to require R and S to execute a statistical zero-knowledge argument, where S
proves to R that S generated its OT messages correctly, and perform the garbled
circuit evaluation correctly to obtain the result that it output to R. Because
of a technical condition in the proof, we actually require the SZK argument to
be an argument of knowledge. Such arguments of knowledge with delayed-input
completeness and soundness, and requiring exactly 4 rounds can be obtained
by instantiating the FLS paradigm with statistically hiding extractable com-
mitments. These are executed in parallel with our 4 round explainable protocol
described above. With these arguments in place, at the end of the fourth round
R will decrypt the ciphertext to recover the output only if the verification algo-
rithm applied to the zero-knowledge argument accepts. Otherwise R rejects. This
helps argue security against malicious S∗, but we point out one subtlety: the SZK
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argument can only be verified at the end of round 4, an unwitting receiver
could send its round 3 message in response to an arbitrarily maliciously gener-
ated round 2 sender message. This is where we invoke the additional robustness
property discussed earlier. Next, we discuss the somewhat more complex case of
malicious receivers.

Security against Malicious Receivers via Statistical Conditional Disclosure of
Secrets. So far, an arbitrary malicious R∗ could recover additional information
about the sender’s input based on the output of evaluation of incorrectly garbled
circuits. Ideally, we would like to ensure that R∗ can obtain the sender’s fourth
round message if and only if R∗ generated its first and third round messages in
an “explainable” manner.

As discussed at the beginning of this overview, using zero-knowledge proofs
to enable this requires too many rounds: therefore, our next idea is to rely on
a two-round conditional disclosure of secrets (CDS) protocol. This will allow R∗

to recover the message sent by S if and only if R∗ inputs a witness attesting to
the fact that its first and third messages were explainable. Notably, the witness
input by R∗ is hidden from S. Furthermore, when no such witness exists (i.e. when
R∗ does not generate explainable messages), the CDS protocol computationally
hides the message of S4. Clearly, such a protocol can be used to ensure that
R∗ recovers the output of evaluation of the garbled circuit iff it behaved in an
explainable fashion, and otherwise obtains no information.

However, because we desire statistical security against R∗, we need the CDS
protocol to provide statistical security against R∗. Fortunately, a CDS proto-
col with statistical security can be obtained for the class of relations that are
verifiable by NC1 circuits, by combining two round game-based OT (eg, Naor-
Pinkas [42]) with information-theoretic garbled circuits for NC1. Specifically, the
receiver generates OT receiver messages corresponding to each of the bits in his
witness, and the sender garbles a circuit that outputs the original sender mes-
sage if and only if the receiver’s input is a valid witness. We also note that there
exists a generic transform [21] that allows verifying (given the randomness and
inputs of R∗) that R∗ behaved in an explainable way – in logarithmic depth, or
by an NC1 circuit.

Next, we rely on robustness of the underlying protocol to argue security
against a receiver that may have behave arbitrarily maliciously in the first round
of the protocol. Finally, to ensure that the receiver sends the correct output to
the sender in the fifth round, we require the receiver to send a zero-knowledge
proof asserting that it computed this final message explainably. This proof can
be obtained in 5 rounds [24], and is executed in parallel with the rest of the
protocol.

Another hurdle, and its Resolution. While CDS helps keep round complexity
low, it leads to another technical barrier when simulating the view of a mali-
cious sender. Specifically, the malicious simulator obtains messages from the

4 Such protocols have been used previously in the literature, most recently in [8].
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underlying simulator of the robust explainable protocol. Because it obtains these
messages externally, there is no way for the malicious simulator to recover the
sender’s next message encoded within the CDS protocol. At the same time, the
simulator needs to necessarily recover this next message in order to generate the
final message of the protocol. To get around this issue, we require the statis-
tical ZK argument provided by the simulator to be an argument of knowledge
(AoK). As a result, the malicious simulator is able to use the AoK property of
the sender’s SZK argument to extract a witness, and we carefully ensure that
this witness helps the simulator reconstruct the next message of the sender, and
proceed as before.

Concluding Remarks. This completes an overview of our techniques. In sum-
mary, we obtain round optimal two-party computation with one-sided statisti-
cal security assuming the existence of public key encryption, collision resistant
hash functions, and two round statistically sender-private OT. We also note
that we depart from existing work by using OT protocols with distinguisher-
dependent simulation to achieve an end goal of standard simulation security in a
general-purpose two-party computation protocol. We believe that this applica-
tion to statistically secure 2PC represents a meaningful new application domain
for distinguisher-dependent simulation [29], beyond [16,17,29,34]. In addition,
we rely on several other technical tools such as deferred evaluation of garbled
circuits, and combining robust protocols with delayed-input proofs - that may
be of independent interest.

Open Problems and Future Directions. Our work obtains feasibility results for
round optimal two-party secure computation with one-sided statistical security,
which is the best possible security that one can hope to achieve in two-party pro-
tocols in the plain model. A natural question is whether statistical security can
be obtained against at least one of the participants in more general multi-party
settings. It is also interesting to understand the minimal assumptions required
to obtain 2PC with one-sided statistical security, in a round optimal manner,
following similar investigations on assumptions versus round complexity in ZK
with one-sided statistical security, perhaps via highly optimized cut-and-choose
techniques. Another interesting question is whether it is possible to achieve one-
sided statistically secure protocols that make black-box use of cryptography.
Finally, it is also interesting to understand whether 4 rounds are necessary to
obtain specialized statistically secure protocols, such as statistical ZAPs, from
polynomial hardness assumptions (in light of the fact that recent constructions of
statistical ZAPs in less that 4 rounds [4,28,37] rely on superpolynomial hardness
assumptions).

Roadmap. We refer the reader to Sect. 4 for a detailed description of our protocol
against explainable adversaries, and a sketch of the proof of its security; and to
Sect. 5 for a description of our protocol against malicious adversaries, and a
sketch of the proof of its security.
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3 Preliminaries

In the rest of this paper, we will denote the security parameter by k, and we will
use negl(·) to denote any function that is aymtpotically smaller than the inverse
of every polynomial.

3.1 Secure Two-Party Computation

Two Party Computation. A two-party protocol Π is cast by specifying a process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to
such a process as a functionality and denote it by F = fn : {0, 1}n × {0, 1}n →
{0, 1}poly(n) × {0, 1}poly(n). We restrict ourselves to symmetric functionalities,
where for every pair of inputs (x, y), the output is a random variable f(x, y)
ranging over pair of strings.

Secure Two Party Computation. In this definition we assume an adversary that
corrupts one of the parties. The parties are sender S and receiver R. Let A ∈
{S,R} denote a corrupted party and H ∈ {S,R},H �= A denote the honest party.

– Ideal Execution. An ideal execution for the computation of functionality
F proceeds as:

• Inputs: S and R obtain inputs x ∈ Xn and y ∈ Yn, respectively.
• Send inputs to trusted party: H sends its input to F . Moreover, there

exists a simulator SimA that has black box access to A, that sends input
on behalf of A to F .

• Trusted party output to simulator: If x /∈ Xn, F sets x to some
default input in Xn; likewise if y /∈ Yn, F sets y equal to some default
input in Yn. Then the trusted party sends f(x, y) to SimA. It waits for a
special symbol from SimA, upon receiving which, it sends the output to
H. If it receives ⊥ from SimA, it outputs ⊥ to H.

• Outputs: H outputs the value it obtained from F and A outputs its
view. We denote the joint distribution of the output of H and the view
of A by IDEALF,Sim,A(x, y, n).

We let IDEALF,Sim,A(x, y, n) be the joint distribution of the view of the cor-
rupted party and the output of the honest party following an execution in
the ideal model as described above.

– Real Execution. In the real world, the two party protocol Π is executed
between S and R. In this case, A gets the inputs of the party it has cor-
rupted and sends all the messages on behalf of this party, using an arbitrary
polynomial-time strategy. H follows the instructions in Π.
Let F be as above and let π be two-party protocol computing F . Let A be
a non-uniform probabilistic poly-time machine with auxiliary input z. We let
REALΠ,A(x, y, n) denote the joint distribution the view of corrupted party
and the output of the honest party, in the real execution of the protocol.
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Definition 1. A protocol Π securely computes F with computational security
against a party if there exists a PPT simulator Sim such that for every non-
uniform probabilistic polynomial time adversary A corrupting the party,

IDEALF,Sim,A(x, y, n) ≈c REALΠ,A(x, y, n)

It securely computes F with statistical security against a party if there exists
a PPT simulator Sim such that for every non-uniform probabilistic polynomial
time adversary A corrupting the party,

IDEALF,Sim,A(x, y, n) ≈s REALΠ,A(x, y, n)

Definition 2 (Explainable transcript). Let ΠS∗,R∗ be a protocol between an
arbitrary sender S∗ and arbitrary receiver R∗. We say that a transcript T of an
execution Π between S∗ and R∗ is explainable for S∗ if there exists an input i
and coins r such that T is consistent with the transcript of an execution between
Si,r and R∗, until the point in T where Si,r aborts. (Here Si,r is the honest sender
on input i using coins r). Similarly, we say that a transcript T of an execution
Π between S∗ and R∗ is explainable for R∗ if there exists an input i coins r such
that T is consistent with the transcript of an execution between Ri,r and S∗, until
the point in T that Ri,r aborts. (Here Ri,r is the honest receiver strategy using
input i and coins r).

Definition 3 (Explainable sender). Let ΠS∗,R∗ be a protocol between an
arbitrary sender S∗ and arbitrary receiver R∗. A (possibly probabilistic) sender
S∗ = {S∗

k}k∈N is explainable if there exists a negligible μ(·) such that for any
receiver R∗ = {R∗

k}k∈N, and large enough k ∈ N,

Pr
S∗
k

[T is explainable |T ← ΠS∗
k,R∗

k
] ≥ 1 − μ(k).

Definition 4 (Explainable receiver). Let ΠS∗,R∗ be a protocol between an
arbitrary sender S∗ and arbitrary receiver R∗. A (possibly probabilistic) receiver
R∗ = {R∗

k}k∈N is explainable if there exists a negligible μ(·) such that for any
sender S∗ = {S∗

k}k∈N, and large enough k ∈ N,

Pr
R∗
k

[T is explainable |T ← ΠS∗
k,R∗

k
] ≥ 1 − μ(k).

Definition 5 (Robust Explainable Secure Protocol). We will say that a
protocol is secure against explainable adversaries, if Definition 1 holds against
explainable adversaries. Furthermore, such a protocol is robust if for every (arbi-
trarily) malicious R∗, the real view of an adversary conditioned on aborting after
round 2 is indistinguishable from the adversary’s simulated view, and for every
(arbitrarily) malicious S∗, the real view of the adversary conditioned on aborting
after round 3 is indistinguishable from the adversary’s simulated view.
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3.2 Yao’s Garbled Circuits

We will also rely on Yao’s technique for garbling circuits [46]. In the following,
we define the notation that we will use, and the security properties of Yao’s
garbling scheme.

Definition 6. Let p(·) denote any fixed polynomial. We will consider a circuit
family C : {0, 1}k → {0, 1}p(k), that takes an input of size k bits and outputs p(k)
bits. Yao’s garbled circuits consist of the following algorithms:

– GARBLE(1k, C; r) obtains as input a circuit C ∈ C and randomness r, and
outputs the garbled circuit GC as well as a set of 2k keys corresponding to
setting each of the k input bits to 0 and 1. We will denote this by:

(GC, {labeli,b}i∈[k],b∈{0,1}) ← GARBLE(1k, C; r).

– EVAL(GC, {labeli,xi
}i∈[k]) obtains as input garbled circuit GC, and a set of k

keys. It generates an output z. We will denote this by

z ← EVAL(GC, {labeli,xi
}i∈[k]).

We require these algorithms to satisfy the following properties:

– Correctness: For all C ∈ C, x ∈ {0, 1}k,

Pr

[
C(x) = z

∣∣∣∣∣(GC,{labeli,b}i∈[k],b∈{0,1})←GARBLE(1k,C;r)

z←EVAL(GC ,{labeli,xi
}i∈[k])

]
= 1 − negl(k)

– Security: There exists a PPT simulator Sim such that for all non-uniform
PPT D, and all C ∈ C, x ∈ {0, 1}k,∣∣∣ Pr[D(GC, {labeli,xi

}i∈[k]) = 1] − Pr[D(Sim(1k, C(x))) = 1]
∣∣∣ = negl(k)

where
(GC, {labeli,b}i∈[k],b∈{0,1}) ← GARBLE(1k, C; r).

3.3 Extractable Commitments

Definition 7 (Extractable Commitment). A statistically binding and com-
putationally hiding three round commitment scheme is said to be extractable if
there exists a PPT extractor Ext such that for any PPT committer C and every
polynomial p(·), If

Pr
c1←C,

c2←R(c1,1k),
c3←C(c1,c2)

[R(c1, c2, c3) �= ⊥] ≥ 1
p(k)
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then

Pr
c1←C

c2←R(c1,1k)
c3←C(c1,c2)

⎡
⎢⎢⎢⎢⎣
R(c1, c2, c3) = 1∧
d ← C(c1, c2, c3)∧
s ← R(c1, c2, c3, d)∧
s′ ← ExtC(1k, 1p(k))∧
s′ �= s ∧ s �= ⊥

⎤
⎥⎥⎥⎥⎦ ≤ negl(k)

where R denotes the honest receiver algorithm, d denotes a decommitment string
(obtained from C(c1, c2, c3) at the start of the decommit phase), and R outputs
s to be equal to the decommitted value if it accepts the decommitment, and ⊥
otherwise.

Three-message computationally hiding extractable commitments can be con-
structed from non-interactive commitments [45]. We will also consider statisti-
cally hiding extractable commitments, that satisfy the same extraction guar-
antee, except against computationally unbounded committers. These can be
obtained in four rounds by substituting non-interactive commitments in the
construction of [45] with two round statistically hiding commitments.

3.4 Zero-Knowledge Proofs and Arguments for NP

An n-round delayed-input interactive protocol 〈P,V〉 for deciding a language L
with associated relation RL proceeds in the following manner:

– At the beginning of the protocol, P and V receive the size of the instance and
execute the first n − 1 rounds.

– At the start of the last round, P receives input (x,w) ∈ RL and V receives x.
Upon receiving the last round message from P, V outputs 0 or 1.

We will rely on proofs and arguments for NP that satisfy delayed-input com-
pleteness, adaptive soundness and adaptive ZK.

Definition 8 (Statistical Zero Knowledge Argument). Fix any language
L. Let 〈P,V〉 denote the execution of a protocol between a PPT prover P and a
(possibly unbounded) verifier V, let Vout denote the output of the verifier and let
ViewA〈P,V〉 denote the transcript together with the state and randomness of a
party A ∈ {P,V} at the end of an execution of a protocol. Then we say 〈P,V〉 is
zero knowledge proof system for L if the following properties hold:

– Completeness: For all x ∈ L,

Pr[Vout〈P,V〉 = 1] = 1 − negl(k),

where the probability is over the random coins of P and V.
– Adaptive Soundness: For all polynomial size P∗ and all x /∈ L sampled by
P∗ adaptively depending upon the first n − 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = negl(k)



On Statistical Security in Two-Party Computation 547

– Statistical Zero Knowledge: There exists a PPT simulator Sim such that
for all V ∗ and all x ∈ L,∣∣∣ Pr[V∗(ViewV∗〈P(x,w),V∗〉) = 1] − Pr[V∗(SimV∗

(x)) = 1]
∣∣∣ = negl(k)

These can be obtained by a simple modification to delayed-input ZK argu-
ments based on the Lapidot-Shamir [35] technique, by relying on a two round
statistically hiding commitent (that can itself be based on any collision-resistant
hash functions), instead of a one-round statistically binding one.

Definition 9 (Zero Knowledge Proof). Fix any language L. Let 〈P,V〉
denote the execution of a protocol between a (possibly unbounded) prover P and
a PPT verifier V, let Vout denote the output of the verifier and let ViewA〈P,V〉
denote the transcript together with the state and randomness of a party A ∈
{P,V} at the end of an execution of a protocol. Then we say 〈P,V〉 is zero
knowledge proof system for L if following properties hold:

– Completeness: For all x ∈ L,

Pr[Vout〈P,V〉 = 1] = 1 − negl(k),

where the probability is over the random coins of P and V.
– Adaptive Soundness: For all P∗ and all x /∈ L sampled by P∗ adaptively

depending upon the first n − 1 rounds,

Pr[Vout〈P∗,V〉 = 1] = negl(k)

– Computational Zero Knowledge: There exists a PPT simulator Sim such
that for all polynomial size V ∗ and all x ∈ L,∣∣∣ Pr[V∗(ViewV∗〈P(x,w),V∗〉) = 1] − Pr[V∗(SimV∗

(x)) = 1]
∣∣∣ = negl(k)

Such proofs were first constructed by [24], and can be made complete and sound
when the instance is chosen by the prover in the last round of the interaction,
by relying on the work of [35].

Imported Theorem 1 [24,35]. Assuming the existence of collision-resistant
hash functions, there exist 5 round zero-knowledge proofs for all languages in
NP, satisfying Definition 9.

3.5 Oblivious Transfer (OT)

Oblivious Transfer (OT) is a protocol between two parties, an (unbounded)
sender S with messages (m0,m1) and a (PPT) receiver R with choice bit b,
where R receives output mb at the end of protocol. We let 〈S(m0,m1), R(b)〉
denote execution of the OT protocol with sender input (m0,m1) and receiver
input b. We will rely on a three round oblivious transfer protocol that satisfies
perfect correctness and the following security guarantee:
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Definition 10 (Statistically Receiver-Private OT). We will say that an
oblivious transfer protocol is statistically receiver private if it satisfies the follow-
ing properties.

– Statistical Receiver Security. For every unbounded S∗ and all (b, b′) ∈
{0, 1}, the following distributions are statistically indistinguishable:

ViewS∗〈S∗, R(b)〉 and ViewS∗〈S∗, R(b′)〉
– Sender Security (Distinguisher-dependent Simulation Under Par-

allel Composition). For every polynomial n = n(k), for every efficiently
sampleable distribution over messages {M0,i,M1,i}i∈[n], there exists a PPT
simulator Sim such that for every non-uniform PPT receiver R∗ and non-
uniform PPT distinguisher D,

|Pr[D(ViewR∗〈S({m0,i,m1,i}i∈[n]), R∗〉) = 1]

− Pr[D(SimR∗,D,{FOT,i(m0,i,m1,i,·)}i∈[n]) = 1]| = negl(k)

where the probability is over the randomness of sampling {(m0,i,m1,i)}i∈[n]
$←

{(M0,i,M1,i)}i∈[n], the randomness of the sender and the simulator, and
where FOT is a single-query ideal OT functionality with {(m0,i,m1,i)}i∈[n]

hardwired, that on input {bi}i∈[n] outputs {mbi,i}i∈[n] and then self-destructs.

Imported Theorem 2 [28]. Assuming the existence of any two-round sta-
tistical sender-private OT (resp., polynomial hardness of CDH), there exists a
three-round statistically receiver-private OT protocol in the plain model satisfying
Definition 10.

Here, we note that two-round statistical sender-private OT can in turn be based
on the polynomial hardness of DDH [42], QR and N th residuosity [27,30] and
LWE [9]. We will represent the three messages of an OT protocol satisfying
Definition 10 by OTS,1,OTR(·),OTS,3(·).

3.6 Conditional Disclosure of Secrets

Conditional disclosure of secrets for an NP language L [2] can be viewed as
a two-message analog of witness encryption [22]. That is, the sender holds an
instance x and message m and the receiver holds x and a corresponding witness
w. If the witness is valid, then the receiver obtains m, whereas if x /∈ L, m
remains hidden. We further require that the protocol hides the witness w from
the sender.

Definition 11. A conditional disclosure of secrets scheme (CDS.R,CDS.S,
CDS.D) for a language L ∈ NP satisfies:

1. Correctness: For any (x,w) ∈ RL, and message m ∈ {0, 1}∗,

Pr
[
CDS.DK(c′) = m

∣∣∣(c,K)←CDS.R(x,w)
c′←CDS.S(x,m,c)

]
= 1
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2. Message Indistinguishability: For any x ∈ {0, 1}k \ L, c∗, and two
equal-length messages m0,m1, the following distributions are statistically
indistinguishable:

CDS.S(x,m0, c
∗) and CDS.S(x,m1, c

∗)

3. Receiver Simulation: There exists a simulator CDS.Sim such that for any
polynomial-size distinguisher D, there exists a negligible μ such that for any
x ∈ L, w ∈ RL(x) and large enough security parameter k ∈ N,

|Pr[D(CDS.R(x,w)) = 1] − Pr[D(CDS.Sim(x)) = 1]| = μ(k)

Instantiations. CDS schemes satisfying Definition 11 for relations that are veri-
fiable in NC1 can be instantiated by combining information-theoretic Yao’s gar-
bled circuits for NC1 with any two-message oblivious transfer protocol where
the receiver message is computationally hidden from any semi-honest sender, and
with (unbounded) simulation security against malicious receivers. Such oblivious
transfer schemes are known based on DDH [42], Quadratic (or N th) Residuos-
ity [27], and LWE [9].

3.7 Low-Depth Proofs

We will describe how any computation that is verifiable by a family of polynomial
sized ciruits can be transformed into a proof that is verifiable by a family of
circuits in NC1. Let R be an efficiently computable binary relation. For pairs
(x,w) ∈ R we call x the statement and w the witness. Let L be the language
consisting of statements in R.

Definition 12 (Low-Depth Non-Interactive Proofs). A low-depth non-
interactive proof with perfect completeness and soundness for a relation R con-
sists of an (efficient) prover P and a verifier V that satisfy:

– Perfect Completeness. A proof system is perfectly complete if an honest
prover with a valid witness can always convince an honest verifier. For all
(x,w) ∈ R we have

Pr[V (π) = 1|π ← P (x)] = 1

– Perfect Soundness. A proof system is perfectly sound if it is infeasible to
convince an honest verifier when the statement is false. For all x �∈ L and all
(even unbounded) adversaries A we have

Pr[V (x, π) = 1|π ← A(x)] = 0.

– Low Depth. The verifier V can be implemented in NC1.

We discuss a very simple construction of a low-depth non-interactive proof, that
was outlined in [21]. The prover P executes the NP-verification circuit on the
witness and generates the proof as the concatenation (in some specified order)
of the bit values assigned to the individual wires of the circuit. The verifier V
proceeds by checking consistency of the values assigned to the internal wires of
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the circuit for each gate. In particular for each gate in the NP-verification circuit
the verifier checks if the wire vales provided in the proof represent a correct
evaluation of the gate. Since the verification corresponding to each gate can be
done independent of every other gate and in constant depth, we have that V
itself is constant depth.

4 2PC with One-Sided Statistical Security Against
Explainable Parties

4.1 Construction

As a first step, in Fig. 1, we describe a 5 round protocol with security against
explainable adversaries (Definitions 3 and 4). In a nutshell, these adversaries are
like malicious adversaries, but with an additional promise: explainable adver-
saries generate messages that are in the suport of honestly generated messages,
except with negligible probability.

Our protocol uses the following building blocks:

– A 3 round statistically binding and computationally hiding commitment
scheme satisfying extractability according to Definition 7, denoted by Ecom.

– A 4 round statistically hiding and computationally binding commitment
scheme satisfying extractability according to Definition 7, denoted by SHEcom.

– A 3 round statistically receiver private oblivious transfer protocol satisfying
Definition 10, denoted by OT.

– Garbled circuits satisfying Definition 6, with algorithms denoted by
Garble,Eval.

4.2 Analysis

We demonstrate security of our protocol against explainable adversaries by prov-
ing the following theorem.

Theorem 1. Assuming 3 round computationally hiding and 4 round statistically
hiding extractable commitments according to Definition 7, garbled circuits sat-
isfying Definition 6 and three round oblivious transfer satisfying Definition 10,
there exists a robust 5-round secure two-party computation protocol with black-box
simulation against unbounded explainable receivers and PPT explainable senders,
where the receiver obtains its output at the end of round 4 and the sender obtains
its output at the end of the fifth round5.

We observe that 3 round computationally hiding commitments can be based
on any non-interactive commitment scheme [45], which can itself be based on
any public-key encryption [36], and 4 round statistically hiding extractable com-
mitments can be based on collision-resistant hash functions. Garbled circuits

5 We point out that Informal Theorem 2 follows from this theorem by exchanging the
roles of S and R.
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Fig. 1. The protocol Πexp〈S,R〉 secure against explainable adversaries.
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can be obtained only assuming the existence of one-way functions [46], and three
round oblivious transfer satisfying Definition 10 can be based on any statistically
sender-private 2 round OT. All of these primitives can be based on the hardness
of the Decisional Diffie-Hellman assumption (DDH), or Quadratic Residuosity
(QR), or the Learning with Errors assumption (LWE), and we therefore have
the following corollary.

Corollary 1. Assuming polynomial hardness of the Decisional Diffie-Hellman
assumption (DDH), or Quadratic Residuosity (QR), or the Learning with Errors
assumption (LWE), there exists a robust 5-round secure two-party computation
protocol with black-box simulation against unbounded explainable receivers and
PPT explainable senders, where the receiver obtains its output at the end of
round 4 and the sender obtains its output at the end of round 5.

Theorem 1 follows immediately from Lemma 1 that proves security against
bounded explainable senders and Lemma 2 that proves security against
unbounded explainable receivers.

Lemma 1. Assuming computational hiding of Ecom, extractability of SHEcom
according to Definition 7, security of garbled circuits according to Definition
6, and sender security of OT according to Definition 10, the construction in
Fig. 1 satisfies robust simulation-based security against explainable PPT senders
according to Definition 3.

Proof. We prove that there exists a simulator SimS∗
that with black-box access

to a computationally bounded explainable sender S∗, outputs a simulated view
that is indistinguishable from the real view of S∗. Our simulator is described in
Fig. 2, with differences from the real protocol underlined.

In the full version of the paper, we prove via a sequence of hybrids, that the
real and ideal distributions are indistinguishable.

Lemma 2. Assuming statistical hiding of SHEcom and extractability of Ecom
according to Definition 7 and receiver security of OT according to Definition 10,
the construction in Fig. 1 satisfies robust statistical simulation security (Defini-
tion 1) against explainable unbounded receivers as per Definition 3.

Proof. We prove that there exists a PPT simulator SimR∗
that with black-box

access to an unbounded explainable sender R∗, outputs a simulated view that is
statistically indistinguishable from the real view of R∗. Our simulator is described
in Fig. 3, with changes from the real protocol underlined.

In the full version of the paper, we prove via a sequence of hybrids, that the
real and ideal distributions are indistinguishable.

5 From Explainable to Malicious One-Sided Statistical
Security

In this section, we describe a compiler that compiles any robust two-party
secure computation protocol against explainable adversaries, into one that
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Fig. 2. Simulation strategy for an explainable adversarial sender S∗

is secure against arbitrary malicious adversaries. Assuming the hardness of
DDH/LWE/QR, the resulting protocol is computationally secure against PPT
malicious senders. In addition, we demonstrate that the resulting protocol is
secure against unbounded malicious receivers if the underlying robust explain-
able protocol is secure against unbounded malicious receivers.

5.1 Construction

In Fig. 4, we describe a protocol compiler that compiles any 5 round robust
explainable protocol into a fully malicious protocol while preserving round com-
plexity. Our protocol uses the following building blocks:

– Any robust two-party protocol secure against explainable adversaries from
Fig. 1 by Πexp〈S,R〉. We denote the messages of this protocol where S uses
input B and randomness rS, and R uses input A and randomness rR, by:(

τR,1 = Πexp,R,1(A; rR), τS,2 = Πexp,S,2(τR,1,B; rS), τR,3 = Πexp,R,3(τS,2,A; rR),

τS,4 = Πexp,S,4(τR,1, τR,3,B; rS), τR,5 = Πexp,R,5(τS,2, τS,4,A; rR)
)
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Fig. 3. Simulation strategy against an explainable unbounded adversarial receiver R∗

– A 4 round delayed-input adaptively sound and adaptively statistical ZK argu-
ment of knowledge according to Definition 8, with messages denoted by

SZKA.V,SZKA.P(·),SZKA.V(·),SZKA.P(·, x, w),

and the output of the verifier denoted by SZKA.out(·, x).
– A 5 round delayed-input adaptively sound and adaptively computational ZK

proof according to Definition 9, with messages denoted by

ZKP.P,ZKP.V(·),ZKP.P(·),ZKP.V(·),ZKP.P(·, x, w),

and the output of the verifier denoted by ZKP.out(·, x).

Languages for the CDS protocol, SZK argument and ZK proof are defined as:

LCDS = {(τR,1, τR,3) : ∃(A, rR, ldp) s.t. ldp is for (τR,1, τR,3) = R(A, rR, τS,2)}
LZKP = {(τR,1, τR,3, τR,5) : ∃(A, rR) s.t. (τR,1, τR,3, τR,5) = R(A, rR, τS,2, τS,4)}

LSZKA = {(τS,2, c) : ∃(B, rS) s.t. (τS,2, c) = S(B, rS, τR,1, τR,3)}
where R(A, rR, τS,2)) denotes that the transcript (τR,1, τR,3) is generated using
honest receiver strategy with input A and randomness rR; R(A, rR, τS,2, τS,4))
denotes that the transcript (τR,1, τR,3, τR,5) is generated using honest receiver
strategy with input A and randomness rR; and S(B, rS, τR,1, τR,3)) denotes that
the transcript (τS,2, c) is generated using honest sender strategy with input B
and randomness rS, and ldp denotes a low-depth proof.
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Fig. 4. Our two-party secure computation protocol Πmal〈S,R〉 for general functional-
ities, with computational security against malicious S and statistical security against
malicious R.

5.2 Analysis

We demonstrate one-sided statistical security of our protocol against arbitrary
malicious adversaries by formally proving the following theorem.
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Theorem 2. Assume the existence of four round delayed-input adaptive statis-
tical zero-knowledge arguments of knowledge with adaptive soundness according
to Definition 8, five round delayed-input adaptive computational zero-knowledge
proofs with adaptive soundness according to Definition 9, and two round sta-
tistical CDS for NP relations verifiable by NC1 circuits according to Definition
11. Assume also that there exists a robust two-party secure computation proto-
col against explainable adversaries according to Definition 5. Then there exists
a 5-round secure two-party computation protocol for general functionalities with
black-box simulation against unbounded malicious receivers and PPT malicious
senders, where the receiver obtains its output at the end of round 4 and the
sender obtains its output at the end of round 5.

Here, we note that the required proof systems can be based on two round
statistically hiding commitments, which can themselves be based on the hardness
of Decisional Diffie-Hellman (DDH), Quadratic Residuosity (QR) or the Learning
with Errors (LWE) assumption. Furthermore, the requisite statistical CDS for NP
relations verifiable by NC1 circuits can be based on any two round statistically
sender private OT, which can itself be based on DDH/QR/LWE. We also make
use of a transform due to [21] that converts arbitrary proofs to low depth proofs
(Definition 12) verifiable in NC1 – this is done to ensure that the CDS relation
of interest is verifiable in NC1. In addition, we observe that the robust two-party
secure computation protocol against explainable adversaries constructed in Sect.
4 satisfies Definition 5, and can be instantiated based on DDH/QR/LWE. This
results in the following Corollary of Theorem 2.

Corollary 2. Assuming polynomial hardness of the Decisional Diffie-Hellman
(DDH) assumption, or Quadratic Residuosity (QR) or Learning with Errors
(LWE), there exists a 5-round secure two-party computation protocol with
black-box simulation against unbounded malicious receivers and PPT malicious
senders, where the receiver obtains its output at the end of round 4 and the
sender obtains its output at the end of round 5.

The proof of Theorem 2 follows from Lemma 3 and Lemma 4, that prove secu-
rity against malicious senders and unbounded malicious receivers respectively.
These are formally stated and proved below.

Lemma 3. Assuming CDS satisfies receiver simulation according to Definition
11, SZKA is adaptively sound according to Definition 8 and ZKP satisfies adap-
tive computational zero-knowledge according to Definition 9, and assuming Πexp

is a robust explainable protocol satisfying the additional property described in
Theorem 2, the protocol Πmal〈S,R〉 in Fig. 4 is secure against PPT malicious
senders according to Definition 1.
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Proof. We prove that there exists a simulator SimS∗
that with black-box access

to a computationally bounded malicious sender S∗, outputs a simulated view
that is indistinguishable from the real view of S∗. Our simulator is in Fig. 5, and
the proof is deferred to the full version.

Fig. 5. Simulation strategy against a PPT malicious sender S∗

Lemma 4. Assuming CDS satisfies statistical message indistinguishability for
NP relations verifiable by NC1 circuits according to Definition 11, assuming
LCDS is verifiable in NC1, assuming ZKP is adaptively sound against unbounded
provers according to Definition 9 and SZKA satisfies adaptive statistical zero-
knowledge according to Definition 8, and assuming Πexp is robust and statisti-
cally secure against unbounded explainable receivers, the protocol Πmal〈S,R〉 in
Fig. 4 is statistically secure against unbounded malicious receivers according to
Definition 1.

Proof. We prove that there exists a simulator SimR∗
that with black-box access

to a malicious receiver R∗, outputs a simulated view that is indistinguishable
from the real view of R∗. Our simulator is described in Fig. 6, and the proof is
deferred to the full version.
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Fig. 6. Simulation strategy against a malicious receiver R∗
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Abstract. We study information-theoretic secure multiparty protocols
that achieve full security, including guaranteed output delivery, at the
presence of an active adversary that corrupts a constant fraction of the
parties. It is known that 2 rounds are insufficient for such protocols even
when the adversary corrupts only two parties (Gennaro, Ishai, Kushile-
vitz, and Rabin; Crypto 2002), and that perfect protocols can be imple-
mented in 3 rounds as long as the adversary corrupts less than a quarter
of the parties (Applebaum, Brakerski, and Tsabary; Eurocrypt, 2019).
Furthermore, it was recently shown that the quarter threshold is tight for
any 3-round perfectly-secure protocol (Applebaum, Kachlon, and Patra;
FOCS 2020). Nevertheless, one may still hope to achieve a better-than-
quarter threshold at the expense of allowing some negligible correctness
errors and/or statistical deviations in the security.

Our main results show that this is indeed the case. Every function can
be computed by 3-round protocols with statistical security as long as the
adversary corrupts less than third of the parties. Moreover, we show
that any better resiliency threshold requires 4 rounds. Our protocol is
computationally inefficient and has an exponential dependency in the
circuit’s depth d and in the number of parties n. We show that this over-
head can be avoided by relaxing security to computational, assuming the
existence of a non-interactive commitment (NICOM). Previous 3-round
computational protocols were based on stronger public-key assumptions.
When instantiated with statistically-hiding NICOM, our protocol pro-
vides everlasting statistical security, i.e., it is secure against adversaries
that are computationally unlimited after the protocol execution.

To prove these results, we introduce a new hybrid model that allows
for 2-round protocols with linear resiliency threshold. Here too we prove
that, for perfect protocols, the best achievable resiliency is n/4, whereas
statistical protocols can achieve a threshold of n/3. In the plain model,
we also construct the first 2-round n/3-statistical verifiable secret sharing
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that supports second-level sharing and prove a matching lower-bound,
extending the results of Patra, Choudhary, Rabin, and Rangan (Crypto
2009). Overall, our results refine the differences between statistical and
perfect models of security, and show that there are efficiency gaps even
for thresholds that are realizable in both models.

Keywords: Information-theoretic cryptography · Cryptographic
protocols · Secure computation · Round complexity

1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed
computation. Consequently, a huge amount of research has been devoted towards
characterizing the amount of interaction, typically measured via round com-
plexity, that is needed for various distributed tasks (e.g., Byzantine agree-
ment [27,29,44], coin flipping [24,45], and zero-knowledge proofs [19,35]) under
different security models. In this paper, we focus on two central cryptographic
goals: secure-multiparty-computation (MPC) of general n-party functionali-
ties and verifiable secret sharing (VSS) [23]. We strive for full information-
theoretic security, including guaranteed output delivery, at the presence of a
computationally-unbounded active (aka Byzantine or malicious) rushing adver-
sary that controls up to t of the parties. In this setting, originally presented
in the classical works of Ben-Or, Goldwasser, and Wigderson [17] and Chaum,
Crépeau and Damg̊ard [21], we assume that each pair of parties is connected by a
secure and authenticated point-to-point channel and that all parties have access
to a common broadcast channel, which allows each party to send a message to
all players and ensures that the received message is identical.

The round complexity of information-theoretic MPC was extensively stud-
ied [2–5,8,12,16,28,31,32,34,37,39–41,43,46,52]. For passive perfect security, it
was recently showed that optimal resiliency of t = �(n − 1)/2� and optimal round
complexity of two can be simultaneously achieved [4,31]. For active-security the
picture is more complicated, and there seems to be a tradeoff between the num-
ber of rounds r and the resiliency threshold t. If the adversary is allowed to
corrupt a single party (t = 1) then 2 rounds are sufficient whenever n ≥ 4 [37].
Any larger resiliency threshold t > 1 requires at least three rounds [32,34].
For 3-round error-free perfectly-secure protocols, it was recently showed that
a resiliency threshold of t = �(n − 1)/4� is achievable [5] and that no better
resiliency can be achieved [8]. The latter paper also shows that, for error-free
perfectly-secure protocols, 4 rounds suffice for a threshold of tp = �(n − 1)/3�
which is known to be optimal for perfect protocols regardless of their round
complexity [17].

In this paper, we will be studying the other extreme point of this tradeoff. We
fix a minimal model of communication (i.e., a round-complexity bound rmin) for
which linear resiliency is realizable, and try to characterize the best achievable
resiliency t within this model. Since 2-round protocols cannot achieve resiliency
larger than 1, we ask:
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Q1: What is the best resiliency threshold t that can be achieved by a
three-round protocol with full information-theoretic active security? Can
we beat the �(n − 1)/4� perfect-MPC barrier by resorting to statistical
security?
Q2: Can we formalize a meaningful two-round model in which a linear
resiliency threshold is achievable ?

We provide a complete answer to the first question and show that statistical
three-round protocols can achieve �(n − 1)/3� resiliency and nothing beyond
that! We also answer the second question to the affirmative by presenting a
new two-round hybrid model in which linear-resiliency is achievable. This model
will serve as a stepping stone towards constructing three-round protocols. Along
the way, we reveal new interesting differences between perfectly-secure error-
free protocols to protocols that achieve perfect-secrecy but make errors with
negligible probability. We continue with a detailed account of our results starting
with the two-round hybrid model.

1.1 Two-Round Protocols in a Single-Input First-Round Hybrid
Model

Single-Input First-Round Hybrid (SIFR) Model. We present a new Single-Input
First-Round Hybrid Model (SIFR). In this model the communication network,
which contains the usual peer-to-peer/broadcast channels, is augmented with
some ideal n-party functionalities F that are restricted in two ways: (1) Every
party Pi is allowed to invoke the functionalities multiple times but only during
the first round ; and (2) The ideal functionalities must be single-input func-
tionalities, that is, when Pi invokes a functionality F i

si : {0, 1}∗ → ({0, 1}∗)n

the functionality delivers an output that depends only on the input of Pi. For
example, both the authenticated-private channel functionality (that delivers a
message from Pi to Pj) and the broadcast functionality (that delivers a message
from Pi to all other parties) are simple instances of single-input functionalities.
A more interesting example is the polynomial-VSS functionality that takes from
Pi a degree-t polynomial Q over some finite field F, and delivers to every party
Pj an evaluation of Q in some canonical point αj ∈ F. We refer to this model
as the F-SIFR model or simply as the SIFR model when we wish to keep the
oracles F unspecified.

We will be interested in two-round protocols in the SIFR model. In such
protocols, all the first-round messages depend solely on the input of a single
party and the only “mixing” (between different inputs of different parties) occurs
during the second round. Hence, two rounds are indeed essential for computing
any non-trivial functionality. As an additional feature, we note that single-input
functionalities can be trivially implemented with passive security via a single-
round protocol, and so any two-round protocol in the SIFR model immediately
translates into a two-round passively-secure protocol in the plain model.

Limitations of Perfect protocols in SIFR Model. To get a sense of the model, note
that one can perfectly compute any degree-2 functionality over any finite field F
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of size larger than n with resiliency of t = �(n − 1)/4�. Roughly speaking, at the
first round each party uses the single-input Fpoly functionality to share each input
via Shamir-based secret-sharing with polynomials of degree t; then each party
locally computes the functionality over the shares (making an arbitrary number
of additions and a single multiplication). At the end of this local computation,
each party holds a share of the output that lies on a degree-2t polynomial. At the
second round, the parties broadcast the output shares and apply Reed-Solomon
decoding to overcome the effect of at most t adversarial corruptions.1 In fact,
it was recently showed in [8] (building on [5]) that degree-2 functionalities over
any binary extension field are complete under non-interactive reductions either
with perfect resiliency of �(n − 1)/3� or with statistical resiliency of �(n − 1)/2�.
Therefore, the above observation yields an �(n − 1)/4�-perfect protocol in our
model for an arbitrary functionality. In the full version [7], we prove that for
perfect protocols this is the best achievable threshold.

Theorem 1 (perfect 2-round SIFR-protocols). General n-party function-
alities can be perfectly-computed in two rounds in the SIFR Model with resiliency
of t if and only if t ≤ �(n − 1)/4�.
The upper-bound holds in the Fpoly-SIFR model. The lower-bound holds rela-
tive to any (vector of) computationally-unbounded single-input functionalities
and applies even when the adversary is non-rushing. In fact, the negative result
shows that even the AND functionality cannot be computed in this model. As
a corollary, for any t ≥ n/4, the theorem rules out the existence of t-private
secret sharing scheme that is robustly-multiplicative in the sense that parties can
locally convert shares of x and shares of y to shares of xy that are t-robust,
i.e., they are recoverable even at the presence of t-corruptions. (This notion
of multiplicative secret-sharing is stronger than the standard variants of multi-
plicative and strongly-multiplicative secret sharing, see [26].) The negative part
of Theorem 1 is proved by turning a two-round n/4-perfectly secure protocol for
the AND-functionality in the SIFR hybrid model into a two-party protocol in
the plain model for AND with perfect security against semi-honest adversaries,
contradicting the impossibility result of [22].

Statistical Protocols in Fvsh-SIFR Model. We show that the n/4 lower-bound
can be bypassed by allowing the protocol to make negligible correctness errors
while preserving perfect secrecy.2 Our protocol makes use of the bivariate version
of the VSS functionality, denoted by Fvsh. Roughly speaking, this single-input

1 The above description ignores some technical details such as output randomization
which can be easily applied in the Fpoly-SIFR model; see for example [5].

2 Formally, this means that, in addition to standard statistical security, the output
distribution of the simulator S in the ideal world and the output distribution of the
adversary A in the real world are identically distributed. This additional property
(which is common to all our positive results) does not seem to be very useful as
a feature, but it indicates more accurately what is needed in order to bypass the
lower-bounds in the perfect setting.
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functionality receives a symmetric bivariate polynomial F (x, y) of degree less
than or equal to t from a dealer and sends the polynomial fi(x) = F (x, i) to
every party Pi. (See Fig. 2 in Sect. 3 for a formal definition.)

Theorem 2 (statistical 2-round SIFR-protocols). Any n-party function-
ality f of degree-2 over some finite field F of cardinality larger than n can be
computed by a two-round Fvsh-SIFR protocol with �(n − 1)/3�-resiliency, perfect-
secrecy, statistical-correctness and complexity of poly(S, n, log |F|, log(1/ε))
where S is the circuit size of f and ε is the error probability.

Moreover, a similar result applies to any functionality f except that the com-
plexity is also exponential in the depth of the Boolean circuit that computes f .
The dependency in the depth can be avoided at the expense of downgrading secu-
rity to computational and under the assumption that one-way functions exist.

The “Moreover” part follows from the first part by using the aforementioned
completeness of degree-2 functionalities [8, Theorem. 5.23] whose overhead is
exponential in the circuit’s depth in the case of information-theoretic security.
This makes the statistical variant of the theorem efficient only for NC1 function-
alities.3 Similar limitations apply to all known constant-round protocols in the
information-theoretic setting even for the case of passively-secure protocols. Let
us further mention that even inefficient protocols are non-trivial since security
holds against a computationally-unbounded adversary.
On the proof of Theorem. 2: Round Compression via Guards. The proof of Theo-
rem 2 is based on several novel components. In a nutshell, following a blue-print
suggested in [8], we derive a three-round protocol π in the SIFR-hybrid model.
We then exploit the special structure of the last two-rounds and show how to
compress them into a single round. In slightly more concrete terms, at the end
of the first round, some party, say Alice, holds two values a and b and some
other party, say Bob, also has a copy of b. (Think of b as a secret-share that was
shared by Alice in the first round of π.) The purpose of the remaining rounds
is to release to all parties a value c = g(a, b) that depends on Alice’s a and
Bob’s b while keeping b private. This is done by using two additional rounds:
First Alice broadcasts a, and then Bob computes the value c based on (a, b)
and broadcasts the result. The key observation is that all the relevant infor-
mation (a and b) is known to Alice, and the role of Bob is to make sure that
the outcome c is computed properly with respect to his own copy of b. (Other
consistency mechanisms take care of the “correctness” of a). We abstract this
notion via a new form of Secure Computation with a Guard (SCG) and show
that if one is willing to tolerate statistical errors, then any function g can be
realized (in the plain model) by a single-round protocol that employs correlated
randomness. Furthermore, the correlated randomness can be sampled by Bob
in a single preprocessing round. This allows us to collapse the last two rounds
of π into a single round (plus an additional offline preprocessing that is being

3 As usual in such settings, the exponential dependency in the depth can be replaced by
an exponential dependency in the (non-deterministic) branching-program complexity
of f .
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handled during the first round.) Overall, our single-round SCG’s allow us to
compress the three-round SIFR-protocol into a two-round SIFR-protocol. The
resulting protocol makes use of the Fvsh functionality and an additional single-
input functionality Ftsh that essentially deals the shares of a random multiplica-
tive triple (a, b, c = ab). In order to remove the Ftsh oracle, we first implement
it in three-rounds in the Fvsh-SIFR model, and then compress the last round
via an additional use of SCG. (See Sect. 3 for further details.) Our SCG con-
structions are based on a combination of message-authentication codes (MACs)
and multiparty private-simultaneous-message protocols [28,38] (also known as
fully-decomposable randomized encoding of functions [6,39]). (See Sect. 2 for
details.)

1.2 Two-Round Verifiable Secret Sharing

Motivated by Theorem 2, our next goal is to realize the Fvsh functionality in
the standard model within a minimal number of rounds. The round complexity
of VSS was extensively studied in the literature [1,10,30,32,37,42,43,46,49]. In
the perfect setting, we have a complete answer: In order to achieve a linear
resiliency t, one must use a two-round protocol, and within this “budget” the
best achievable resiliency is t = �(n − 1)/4� [32]. Patra et al. [46] were the first
to suggest that this bound may be bypassed by allowing negligible statistical
errors. Specifically, they view VSS as a stand-alone two-phase primitive, and
showed that the sharing phase of VSS with statistical error and perfect secrecy
can be realized in two rounds if and only if t ≤ �(n − 1)/3�.

Unfortunately, the resulting protocol does not implement the polynomial-
based Fvsh-functionality and so we cannot plug it into Theorem 2. Indeed, the
existing protocol suffer from several caveats that make it less suitable for MPC
applications. Specifically, after the sharing phase some of the honest parties may
not hold a valid share, let alone a “second-level share”. In addition, the sub-
protocol needed for the “reconstruction” phase is relatively complicated and
requires two rounds. In contrast, existing perfect VSS protocols [32,42] realize
the Fvsh functionality, and correspondingly enable a trivial single-round recon-
struction in which the parties broadcast their views. The possibility of an anal-
ogous statistical realization of Fvsh in two rounds and resiliency threshold of
�(n − 1)/3� was left open by previous works. We answer this question in the
affirmative. (See Sect. 4 for further details.)

Theorem 3 (2-round statistical protocols for Fvsh). There exists a 2-round
protocol that �(n − 1)/3�-securely realizes the n-party functionality Fvsh over an
arbitrary finite field F with perfect-secrecy and statistical-correctness. The com-
munication complexity is polynomial in n, log |F| and log(1/ε) where ε is the
error-probability. The computational complexity is polynomial in log |F|, log(1/ε)
and exponential in the number of parties.

The exponential dependency in the number of parties is due to the use of a
clique finding algorithm over an “agreement graph” of size n. While this depen-
dency is unfortunate, the protocol is still meaningful since it provides security
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against unbounded adversaries. The existence of a similar protocol with polyno-
mial dependency in n is left as an interesting open question.

Resiliency Lower-bounds. We further strengthen the lower-bounds of [46] and
show that any resiliency of t ≥ n/3 cannot be achieved by a VSS with a two-
round sharing phase even if both secrecy and correctness are statistical, and
even if the adversary is non-rushing. This result applies to the more general
setting where the VSS is viewed as a two-phase primitive, as opposed to an
MPC functionality. (See the full version [7] for further details.) We also reveal
an additional qualitative difference for the t ≥ n/3 regime: No matter how many
rounds are used in the sharing phase, the reconstruction phase cannot be imple-
mented by letting the parties broadcast their local view. That is, even during
the reconstruction some secrecy must be maintained. (See the full version [7]
for further details.) Indeed, existing constructions in this regime [43,51], employ
information-theoretic MACs or signatures and keep some of the secret-key infor-
mation private even during reconstruction. Our lower-bound shows that this is
inherent.

1.3 Three-Round MPC in the Standard Model

We can now get back to the case of three-round plain-model protocols for general
functionalities. Recall that in Q1 we asked what is the best resiliency that can
be achieved by 3 rounds protocols. This question was recently resolved in the
perfect setting. Specifically, it was shown that 3 rounds can achieve a resiliency
of t = �(n − 1)/4� [5]4, and that even a slightly better resiliency threshold of
t = �(n − 1)/4� + 1 requires at least four rounds [8].5

Again, we show that a small statistical error allows us to bypass the lower-
bound. Specifically, by taking the two-round Fvsh-SIFR protocol from Theorem 2
and instantiating the Fvsh oracle with the two-round implementation from Theo-
rem 3, we derive a three-round statistical protocol that remains secure as long as
at most �(n − 1)/3� of the parties are being corrupted. We further prove a match-
ing lower bound on the resiliency of three-round statistical protocols by showing
that a 3-round protocol with (�(n − 1)/3� + 1)-resiliency for an authenticated-
VSS functionality can be collapsed into a VSS with a 2-round sharing phase,

4 The positive result can now be obtained by combining the simple 2-round VSS-
hybrid protocol for quadratic functions (Theorem 1) with the 2-round perfect-VSS
of [32] and with the completeness of degree-2 arithmetic functionalities [8]. The
original proof from [5] was significantly more complicated since it relied on a weaker
degree-2 completeness result that was applicable only over the binary field.

5 The impossibility of three-round plain-model perfect protocols with resiliency t ≥
�(n − 1)/4� + 1 seems to be incomparable to the impossibility of two-round perfect
SIFR-model protocols (Theorem 1). One could deduce the latter result from the for-
mer with the aid of two-round protocols for single-input functionalities with perfect
resiliency of t ≥ �(n − 1)/4� + 1. However, such protocols do not exist even for the
special case of the VSS functionality [32].
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contradicting our VSS negative results. (See full version [7] for further details.)
Overall we derive the following theorem.

Theorem 4 (3-round protocols with optimal resiliency). Every n-party
functionality can be computed in three-rounds with statistical security against
an active rushing computationally-unbounded adversary that corrupts at most
�(n − 1)/3� of the parties. The communication complexity of the protocol is poly-
nomial in n, 2D and S and the computational complexity is polynomial in 2n, 2D

and S where S and D are the size and depth of the Boolean circuit that computes
f .

Furthermore, the security threshold is tight for three-round protocols. That
is, there is a finite functionality that cannot be computed in three rounds at the
presence of an active (non-rushing) computationally-unbounded adversary that
corrupts �(n − 1)/3� + 1 of the parties.

Theorem 4 fully characterizes the feasible security threshold of three-round pro-
tocols with information-theoretic active security. As already mentioned the expo-
nential dependency in the depth is expected, and seems to be unavoidable given
the current state of the art. The exponential dependency in n is derived from
our VSS construction (Theorem 3), and we hope that future works will be able
to improve it and get a polynomial overhead.

Downgrading to Computational Security. One way to bypass the exponential
blow-up in n is to replace the two-round �(n − 1)/3�-statistical VSS with the
cryptographic VSS of [10]. The latter achieves the same �(n − 1)/3�-resiliency
against computationally-bounded adversaries assuming the existence of a non-
interactive commitment (NICOM). Specifically, by plugging this VSS into the
computational part of Theorem 2, we get the following theorem. (See full ver-
sion [7] for further details.)

Theorem 5 (3-round computational MPC). Assuming the existence of
NICOM, every n-party functionality f admits a three-round protocol with com-
putational security against a computationally-bounded adversary that actively
corrupts up to t ≤ �(n − 1)/3� of the parties. The complexity is polynomial in n
and in the circuit’s size of f . Moreover, if f is a single-input functionality the
round complexity can be reduced to 2.

The optimality of three rounds for any t > 1 is owing to the two-round
impossibility result of [34] that remains valid even in the cryptographic setting.
For the special case of t = 1 and n = 4, [37] shows a two-round construction
from any one-way function. Other existing round-optimal constructions [2,11]
work with t < n/2, albeit rely on public-key encryption schemes and two-
round witness indistinguishable proofs (ZAPs). These assumptions are believed
to be strictly stronger than NICOM that can be based on injective one-way
functions [18,36,55] or even on general one-way functions assuming standard
complexity-theoretic de-randomization assumptions [13].
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We further mention that if one employs a perfectly-hiding NICOM, then
our protocol achieves everlasting security, i.e., it is secure against adversaries
that are computationally unlimited after the protocol execution [54]. For this
result one has to invoke the statistical variant of Theorem 2, and so the protocol
is efficient only for NC1 functionalities or general single-input functionalities.
Perfectly-hiding NICOM can be based on collision-resistance hash functions at
the CRS model. Even in this model, the round-complexity lower-bounds of [34]
hold, and one cannot hope for two-round protocols.

The “moreover” part of the theorem covers an interesting family of “single-
input” functionalities including important tasks such as distributed ZK, multi-
plication triple generation (modellled via Ftsh) and VSS. Our two-round proto-
col complements the incomparable result of [34] that achieves a similar round-
complexity with perfect-security, but with a smaller resiliency threshold of
t < n/6. The proof of Theorem 5 of appears in the full version [7].

1.4 Discussion: The Benefit of Errors

Since the works of Rabin and Ben-Or [51] and Beaver [15], it is known that statis-
tical protocols can achieve a resiliency threshold ts = �(n − 1)/2� that is strictly
larger than the best resiliency threshold tp = �(n − 1)/3� that is achievable by
perfect protocols [17,50]. Patra et al. [46] were the first to suggest that the sta-
tistical setting may lead to better round complexity even for thresholds of t ≤ tp
which are perfectly realizable (i.e., realizable with perfect security). Specifically,
they showed that the sharing phase of statistical VSS with t = �(n − 1)/3� can
be carried in two rounds, bypassing a three-round lower-bound of [34]. Another
indication for a possible advantage was given by [37] who showed that 4-party
linear functions can be statistically computed in two rounds with threshold of
t = 1 which is impossible in the perfect setting as shown by [33, Thm 8].6 How-
ever, to the best of our knowledge, so far we did not have a single example
of an infinite MPC functionality whose statistical round complexity is strictly
smaller than its perfect round complexity under a perfectly-realizable threshold
t ≤ tp. Theorem 4 settles this question in a strong way showing that, for any
n/4 ≤ t ≤ �(n − 1)/3�, statistical t-security can be achieved for all functions in
three rounds, whereas perfect t-security cannot be achieved in three rounds even
for simple finite functionalities [8].

The separation proved in the SIFR model (Theorem 1 vs. Theorem 2) should
be taken with more care. An immediate corollary of Theorem 1 asserts that for
any perfect resiliency-threshold t that is larger than �(n − 1)/4�, one cannot
transform an r-round perfect-VSS (modeled as some ideal sharing function-
ality) into an r + 1-round general MPC in a “black-box” way. Furthermore,
since it is known that for tp = �(n − 1)/3� perfect VSS takes exactly 3 rounds,
one can naively conclude that for such resiliency general perfectly-secure MPC
cannot be implemented in less than 3 + 2 = 5 rounds. Nevertheless, [8] con-
structed a 4-round perfectly-secure tp-resilient MPC protocol in the plain model.

6 We thank Yuval Ishai for pointing this out.
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This construction is based on a 3-round implementation of the Fvsh functionality
in a fairly complicated way that exploits the concrete properties of the under-
lying Fvsh-protocol. Specifically, the transformation makes use of intermediate
values that are available before the Fvsh-protocol terminates. The impossibility
of perfect two-round Fvsh-SIFR protocol for general functionalities (Theorem 1)
should therefore be interpreted as saying that such a complication is inherent !
In contrast, the statistical relaxation allows us to obtain a significantly simpler
reduction (i.e., two-round Fvsh-SIFR) as shown in Theorem 2.

We end up the introduction, by depicting in Fig. 1 the resiliency-vs-round
landscape of MPC in various models.

Fig. 1. The best trade-offs known between the thresholds t and the number of rounds
r in the plain model. Circles, triangles and squares indicate perfect, statistical and
computational security, respectively. Our results are marked with solid shapes. Each
of the marked points is optimal in the sense that it cannot be moved up. That is, no
better resiliency can be achieved under the corresponding model with the permitted
round complexity.

Organization. In the extended abstract version, we present a succinct version
of the upper bounds. Section 2 presents the high-level idea of the Secure-
Computation-with-Guard primitive, which is being employed in Sect. 3 towards
the construction of 2-round statistical Fvsh-SIFR Protocols. In Sect. 4 we con-
struct 2-round VSS protocols.

2 Secure Computation with a Guard

In this section we present a new Secure Computation with a Guard (SCG) prim-
itive that will be employed later in our constructions. In SCG, there are two



572 B. Applebaum et al.

senders, Alice and Bob, with asymmetric roles: Bob knows a single input b ∈ B
whereas Alice knows both inputs a ∈ A and b ∈ B. The goal is to release the
value of f(a, b) to a receiver Carol who holds no input. (This can be formalized
by the 3-party functionality F ((a, b), b,⊥) = (⊥,⊥, f(a, b)).) Syntactically, the
protocol consists of an offline phase, denoted scg.off, and an online phase, scg.on.
In the offline phase, Bob sends a single message to Carol and a single message to
Alice, these messages depend only on the randomness of Bob and do not depend
on his input. In the online phase, both Alice and Bob send a single message to
Carol based on the offline messages and on their inputs a, b. At the end Carol
should output the value f(a, b) or a special abort symbol. As in the setting of
private simultaneous message (PSM) protocols [28], we require security against
an adversary that corrupts the receiver. In addition, if Alice (resp., Bob) is mali-
cious, the receiver must abort or terminate with an output of the form f(a′, b)
for some a′ ∈ A (resp., f(a′, b)). In this sense, “Bob guards the computation”
against corrupted Alice and “Alice guards the computation” against a corrupted
Bob.

Roughly speaking, in our construction Bob samples, in the offline phase,
randomness r for a 2-party f -PSM protocol and sends it to Alice. In addition,
Bob signs all the possible messages that Alice may send in the PSM protocol via
an information-theoretic message authentication code, sends the tags to Alice
and delivers to Carol a permuted version of all the keys. In the online phase, Bob
sends the PSM message sB(b; r) that corresponds to his input b, whereas Alice
sends the messages sA(a; r), sB(b; r) together with their tags. Carol aborts if the
tags do not match or if the B-part of the messages is inconsistent, otherwise
it used the PSM decoder to recover the output. A naive implementation of
this idea yields an overhead which is linear in the domain size, however, by
using multiparty PSM, we can reduce the overhead to be poly-logarithmic in
the domain-size. Overall, we prove the following theorem. (See full version [7]
for a proof.)

Lemma 1 (Polynomial-time SCG Protocols). Let A = F
m1
2 , B = F

m2
2

and C = F
p
2. Let m = m1 + m2 and let f : A × B → C be a Boolean circuit

with depth logarithmic in m, size polynomial in m and bounded fan-in and fan-
out. Then, for every statistical parameter ε, there exists an SCG protocol with
complexity poly(m) · log(1/ε).

3 A Two-Round Statistically-Secure Fvsh-SIFR Protocol

In this section, we prove Theorem 2. For an integer x, we use ‖x‖ to denote the
set {1, . . . , x}. Let us denote the set of n parties by P.

3.1 Definitions

The following definitions are parameterized by a resiliency threshold t, a finite
field F of size q > n, and a tuple of n non-zero elements in F, one for each party
in P, which are denoted (with a slight abuse of notation) by 1, . . . , n. Throughout
this section, we fix t to �(n − 1)/3�.
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Definition 1 (�·
-sharing). A value s is said to be committed amongst P,
denoted as �s
, if there exists a polynomial f(x) of degree at most t with f(0) = s
such that every honest party Pi either holds f(i) or ⊥ and at least t + 1 honest
parties hold non-⊥ values.

Definition 2 ([·]-sharing). A value s is said to be t-shared amongst P, denoted
as [s], if there exists a polynomial f(x) of degree at most t with f(0) = s such
that every honest party Pi holds f(i).

Definition 3 ([[·]]-sharing). A value s is said to be doubly t-shared amongst
P, denoted as [[s]], if there exist polynomials f(x), {fi(x)}i∈{1,...,n}, all of degree
at most t with f(0) = s and f(i) = fi(0) for i ∈ {1, . . . , n} such that
f(0), {fi(0)}i∈{1,...,n} are t-shared via polynomials f(x), {fi(x)}i∈{1,...,n} and
every honest Pi holds fi(x).

Definition 4 (〈·〉-sharing). A value s is said to be doubly 2t-shared amongst
P, denoted as 〈s〉, if there exist a degree-2t polynomial f(x) and degree-t poly-
nomials {fi(x)}i∈{1,...,n} with f(0) = s and f(i) = fi(0) for every honest party
Pi such that {fi(0)}i∈{1,...,n} are t-shared via polynomials {fi(x)}i∈{1,...,n} and
every honest Pi holds f(i) and fi(x).

Definition 5 (First-level and Second-level sharing, Shares and Share-
shares). In the double secret sharing definitions ([[·]] and 〈·〉), the sharings done
for the shares of the secret are referred as second-level sharings, while the sharing
for the actual secret is termed as first-level sharing and the shares of the shares
are termed as share-shares. The ith share of s is denoted as si (the context will
make it clear whether the shares correspond to t or 2t sharing). The jth share-
share of the ith share si of s is denoted as sij.

The sharings [·], [[·]] and 〈·〉 are linear i.e. local addition of the shares of [a]
and [b] results in [a + b] (similarly for the other types of sharing). Furthermore,
addition of 〈a〉 and [[b]] results in 〈a + b〉.

3.2 The High-Level Idea

Our goal is to build a 2-round statistical protocol in the Fvsh-SIFR model, that
can evaluate any n-party degree-2 functionality (over a field larger than n).

Prologue. Our starting point is the following completeness theorem from
[8, Prop. 4.5 and Theorem. 5.23].

Proposition 1. [8]. Let F be an n-party functionality that can be computed by
a Boolean circuit of size S and depth D and let F be an arbitrary extension field
of the binary field F2. Then, the task of securely-computing F non-interactively
reduces to the task of securely-computing the degree-2 n-party functionality f
over F that each of its outputs is of the form

xαxβ +
n∑

j=1

rj , (1)
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where xα and xβ are the inputs of party Pα and Pβ respectively and rj is an
input of party Pj for j ∈ {1, . . . , n}.

The reduction preserves active perfect-security (resp., statistical-security)
with resiliency threshold of �(n − 1)/3� (resp., �(n − 1)/2�) and the complex-
ity of the function f and the overhead of the reduction is poly(n, S, 2D, log |F|).
Furthermore, assuming one-way functions, one can get a similar reduction that
preserves computational-security with resiliency threshold of �(n − 1)/2� and
complexity/security-loss of poly(n, S, log |F|).

Throughout this section we fix F to an F2-extension field of size larger than
n, and assume that all the sharing functionalities are defined with respect to F.
(Specifically, we can take the smallest such field.) By Proposition 1, it suffices
to focus on functionalities whose output can be written as (1). From now on, we
focus on such a functionality f and construct a 2-round Fvsh-SIFR protocol whose
complexity is polynomial n and in the description of f . For simplicity, we will
discuss computation of one degree-2 term as above. The extension, guaranteeing
that the same x values are used across different degree-2 terms, will follow easily.

2-round Fvsh-SIFR Protocol. Given access to an ideal VSS functionality, denoted
Fvsh, that can generate a [[·]]-sharing of a party’s secret, we show how to con-
struct a 2-round Fvsh-SIFR protocol for degree-2 computation. The Fvsh-SIFR
protocol is efficient and statistically-secure for threshold t < n/3. Therefore,
when the protocol is instantiated with a realisation of VSS, the security (statis-
tical vs. cryptographic) and efficiency of the final MPC protocol reduce to that
of underlying realisation of VSS.

Building on Fvsh, we first design a 2-round triple secret sharing (TSS) protocol
in the Fvsh-SIFR model, that verifiably generates [·]-sharing of a party’s triple
secrets a, b, c satisfying the product relation c = ab. The TSS completes the
sharing in the first round, and the verification of the product relation is done
in the second round. Subsequently, we use both the VSS functionality Fvsh and
the TSS protocol, in order to obtain a protocol for degree-2 computation in the
Fvsh-SIFR model, which is both efficient and statistically secure.

Partial Degree-reduction. Traditionally, evaluating a degree-2 function involves
secret-sharing the values and multiplying them distributively. The secret sharing
takes the form of t-sharing and the share-wise multiplication results in a non-
random 2t-sharing of the product. The latter is transformed to a t-sharing via
degree-reduction and randomization, and lastly the t-shared product is recon-
structed robustly to complete degree-2 function evaluation. The degree-reduction
in each step of multiplication seems necessary to keep the degree inflation in
check when a sequence of multiplications needs to be performed. With degree-two
functions as the end goal, we ditch full-fledged round-expensive degree-reduction.
Rather we settle for generating a randomized double 2t-sharing of the product
which enables robust reconstruction via the second-level t-sharings. That is, we
perform one-time degree reduction for the second-level sharings alone. This idea
is borrowed from [8]. As we demonstrate in this work, the degree reduction is an
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easier task than the degree-reduction of the first-level sharing. The key idea is to
have Pi monitor the degree reduction for the ith second-level sharings. We elab-
orate more below, starting with the description of a 3-round Fvsh-SIFR protocol,
and then showing how to shave a round in order to obtain a 2-round protocol.

A 3-round Fvsh -SIFR protocol. Our aim is to compute 〈xαxβ +
∑n

k=1 rk〉 and
reconstruct the output via robust reconstruction of its second-level t-sharings.
For simplicity, we ignore the additive terms and focus on producing 〈y〉 = 〈xαxβ〉
and reconstructing the product. First, the Fvsh functionality is used to gener-
ate [[xα]] and [[xβ ]] in the first round. A local multiplication over the shares
generates a non-random 2t-sharing of the product xαxβ . Generating 〈y〉 is then
done in two steps– randomization of the sharing and degree-reduction of the
second-level sharing. The former requires generating a 〈0〉 and adding to the
non-random second-level degree-reduced sharing of y. Generating a 〈0〉 requires
producing t [[·]]-sharing via the Fvsh functionality and can be concluded in the
first round. Next, the degree reduction for the ith second-level sharing is con-
ducted under the supervision of Pi that produces an independent triple sharing
([ai], [bi], [ci]) which is then used to turn the t-sharing of the ith shares of xα and
xβ (respectively, xα

i and xβ
i ) to a t-sharing of their product via Beaver’s circuit

randomization technique [14]. The TSS generates the triple sharings in the first
round via Fvsh and completes the verification of product relation in the second
round. Having all the material ready by the first round (except the verification of
the product-relation), Beaver’s technique can be initiated in the second round,
and it requires the reconstruction of ui = (xα

i − ai), vi = (xβ − bi) to compute
[yi] = [xα

i xβ
i ] as uivi + ui[bi] + vi[ai] + [ci]. Subsequently, degree-2 computation

requires reconstruction of yi (the randomized version of it) which, if correct, is
a share of the first-level 2t-sharing of the product xαxβ . The above approach
leads to a 3-round protocol. We compress the two sequential reconstructions,
each of which typically achieved via a single round communication followed by
error correction, into a single-round affair.

Shaving a Round using 3-party Secure Computation with a Guard (SCG). Our
approach takes note that the jth share-share yij is expressed as uivi+uib

i
j+via

i
j+

ci
j (where ai

j , b
i
j and ci

j are the j-th shares of ai, bi and ci), and the parties Pi, Pj

jointly hold all the inputs before the start of round 2. Specifically, the two values
ui, vi that can be publicly reconstructed earliest at round 2 are already available
to Pi in the end of round 1 (as she herself generated the triples and Fvsh instances
for xα, xβ conclude in round 1). The shares of a, b, c, on the other hand, is known
to both Pi, Pj in the end of round 1 as soon as the relevant Fvsh conclude. This
perfectly creates a vacuum for a 3-party primitive between Alice, Bob and Carol.
Alice holds inputs x, y respectively from sets X and Y and Bob holds y. Together,
they would like to enable Carol to compute f(x, y) (and nothing else) with a
one-shot communication. While Alice alone can do this, having Bob allows us
to conduct a ‘secure computation with a guard’ (SCG). Between Alice and Bob,
the honest party guards the computation ensuring certain level of correctness.
Specifically, Carol outputs either f(x′, y) or ⊥ when Alice is corrupt, whereas
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f(x, y) or ⊥ when Bob is corrupt. Using a SCG for a slightly tweaked function
g(x, y) = (x, f(x, y)) and ensuring that correct x is made available to Carol in
round 2, it is possible to make Carol output either f(x, y) or ⊥ in the Alice-
corrupt case. We plug in an SCG, for every triple (i, j, k), with Pi in the shoes of
Alice with inputs x = (ui, vi), y = (ai

j , b
i
j , c

i
j), Pj in the shoes of Bob with input

y, and the function g outputting (ui, vi, yij) to Pk (Carol). We reconstruct ui, vi

from their t-sharing in round 2 to make them available with every Pk, to make
sure that either f(x, y) or ⊥ are extracted from the reconstruction of the SCG
of g. For an honest Pi, SCG with every honest Pj will disclose yij , while with
that of a corrupt Pj is guaranteed to output either yij or ⊥. Denoting a SCG
leading to ⊥ as a silent one, the reconstruction of yi for an honest Pi reduces
to fitting the unique t-degree polynomial over the disclosed yij . On the other
hand, a corrupt Pi needs to keep at least n − t SCGs non-silent (which is the
case for an honest Pi), and consequently it must agree to the inputs fed by the
n−2t honest parties. Furthermore, the SCG, together with the reconstructed ui

and vi, ensure that nothing but yij or ⊥ can make way to the output. Thus, if
some value is reconstructed in this case, it will be yi. Lastly, Pi can cheat by not
ensuring ci = aibi for its triple. However, TSS offers a mechanism to detect this
mischief in round 2. Therefore, the reconstruction, if at all successful, results in
the correct yi for a corrupt Pi. Leveraging super-honest majority, we will always
have enough yi (n − t ≥ 2t + 1) for the reconstruction of y.

Employing the SCGs. Recall that apart from the single-round communication,
SCGs need an offline input-independent communication round. In our protocols,
the offline can be run in round 1. Furthermore, we apply the SCG’s only to
functions whose formula size is polynomial in n, and our construct is polynomial-
time. SCG also plays a key role in our TSS protocol.

Epilogue. For the degree-2 completeness, we need every party to output different
y (yet with the same form). To ensure that the same x inputs are used for
computation of all the y values, the same secret sharing of the x values needs to
be used for computation of 〈y〉 as above for all y values. With the above high-
level idea, we first present the notion of secure computation with a guard, and
then use this notion to derive a 2-round statistically-secure degree-2 protocol in
the Fvsh-SIFR model.

3.3 Fvsh-SIFR Protocol for Degree-2 Computation

For the Fvsh-SIFR protocol, we use an idealized version of VSS given in Fig 2,
which is used in the first round of the Fvsh-SIFR protocol.

Fig. 2. Functionality Fvsh
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We further require a reconstruction protocol for [s]. We define two variants of
reconstruction– rec for public reconstruction and recj for private reconstruction to
party Pj . recj is given below and rec can be realized by running n copies of recj for
every Pj . Both require one round. In recj , on holding si (ith share of s), Pi sends
si to Pj who applies RS error correction to correct t errors and reconstruct the
underlying polynomial f(x) and output s = f(0).

We now move on to present a TSS protocol and then building on it, a degree-2
computation protocol, both in the Fvsh-SIFR model.

Triple Secret Sharing. The goal of this protocol is to allow a dealer to share
three values (a, b, c) via VSS such that c = ab holds. Given access to an ideal
VSS in the first round, we achieve our goal in 2 rounds. We abstract out the need
in a functionality Ftsh given in Fig. 3 and present our protocol subsequently.

Fig. 3. Functionality Ftsh

Following the idea proposed in [17] and recalled in [9], the dealer chooses
two polynomials of degree at most t, fa(x) and f b(x) with fa(0) = a and
f b(0) = b. It then picks a sequence of t polynomials f1(x), . . . , f t(x), all of
degree at most t such that fc(x) which is equal to fa(x)f b(x) − ∑t

α=1 xαfα(x)
is a random polynomial of degree at most t with the constant term equalling ab.
Both [9,17] elucidate the idea of choosing the coefficients of f1(x), . . . , f t(x) in a
way that simultaneously cancels out the higher order coefficients and randomizes
the remaining coefficients of the product polynomial fa(x)f b(x). The dealer
hides these t + 3 polynomials in symmetric bivariate polynomials and invokes
t+3 instances of Fvsh. At the end of the first round the sharings are returned by
the Fvsh functionalities, and the check for the product relation c = ab is enabled
by letting every party Pi verify if fc(i) = fa(i)f b(i)−∑t

α=1 xαfα(i). Therefore,
a complaint can be raised in round 2 and reconstruction of the shares of the
complainant can be done in round 3 to enable public verification. To conclude
the verification in round 2, we need to shave a round, or compress the rounds
2 and 3 into a single one. Given that, the complaint bit (indicating whether
Pi’s verification succeeds or not) is known to Pj and the jth share-shares are
known to both Pi and Pj at the end of round 1, round 2 can be used for running
(the online phase) of an SCG protocol to reveal the jth share-shares when the
complaint bit is true. So the function of our interest is f : F2 × F

t+3 → F
t+4

defined by

f(x, {xα}α∈‖t+3‖) =

{
(x, 0, . . . , 0) if x = 0,

(x, {xα}α∈‖t+3‖) otherwise,
(2)
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with A := F2, B := F
t+3 and C := F

t+4 (as per Lemma 1). To conduct Pi’s
verification, we plug in SCGs between every triple (i, j, k) varying over all j, k,
with Pi as Alice Pj as Bob and Pk as carol. Pi and Pj together allow Pk to
compute the jth share-shares of all the t + 3 [[·]]-sharing if Pi’s complaint bit
is on. Precisely, Pi’s inputs are the complaint bit and the share-shares, whereas
Pj ’s input is just the share-shares. The offline of the SCGs are run during the
first round, and the online in round 2. An SCG instance that leads to ⊥ for a
Carol, is labelled as silent.

For an honest Pi with genuine complaint, n − t SCGs corresponding to the
honest Pjs will spit out the correct share-shares (via correctness), while the rest
will either be silent or spit out correct share-shares (via correctness with a guard
for honest-Alice case). This enables public reconstruction of the ith shares of
all the t + 3 [[·]]-sharing and so subsequent public verification will instate the
compliant publicly. Thus an honest party can always convince others about its
complaint and can ensure D’s disqualification. A corrupt Pi, on the other hand,
can only force the SCGs to output f on either x = 0 or 1, apart from turning
them silent. A corrupt Pi needs to keep at least n − t SCGs non-silent (which
is the case for an honest Pi) for not to be disqualified. Among these, it must
allow every Pk to receive at least n−2t correct share-shares corresponding to the
SCGs with honest Pjs. Therefore, the reconstruction, if at all successful, results
in reconstructing the correct shares, ensuring a successful public verification and
absolution of D. Therefore, a corrupt Pi cannot make a false allegation against an
honest D. Protocol tsh is described in Fig. 4 and is proven to realize functionality
Ftsh (Lemma 2) in the full version [7]. Finally, note that the function, that is
computed using SCG is a formula of constant multiplicative depth and therefore
has an efficient realization.

Lemma 2 (Security). Protocol tsh realises functionality Ftsh, except with
probability ε, tolerating a static, active adversary A corrupting t parties, possibly
including the dealer D. Moreover, it is a statistically-correct and perfectly-secret
protocol. Assuming the error probability of protocols scg and vsh, as εscg and
respectively εvsh, we have ε ≤ t(2t + 1)εscg + (t + 3)εvsh.

Lemma 3 (Efficiency). In Fvsh-SIFR model, protocol tsh has a complexity of
O

(
poly(n log |F|) log (1/ε)

)
.

Simplifications in Cryptographic Setting. Protocol tsh can be simplified in the
cryptographic setting significantly, using the specifics of the VSS realization.
In particular, the SCGs can be avoided altogether and further two rounds are
enough to complete theTSS protocol. In fact, we prove a stronger statement–
VSS and any single-input functionality has the same round complexity in crypto-
graphic setting. However, the latter uses the VSS in a non-black-box way (hence
does not lead to a one-round protocol in Fvsh-SIFR model). We postpone these
details to the full version [7].



The Resiliency of MPC with Low Interaction: The Benefit of Making Errors 579

Fig. 4. Protocol tsh

Degree-2 Computation. Here we show how to compute a degree-2 computa-
tion of the following form: y = xαxβ+

∑n
k=1 rk, where xα and xβ are the inputs of

Pα and Pβ respectively and rk is an input of Pk for k ∈ {1, . . . , n}. This extended
computation was proven to be complete for any polynomial-time computation.
The goal is abstracted as a functionality Fdeg2c below and the protocol appears
subsequently for the computation of a single y. We assume the output is given
to everyone for simplicity. The functionality can be modified to take a random
input from the rightful recipient Pγ and y can be sent out in blinded form using
the randomness as the blinder. The realisation of this slightly modified func-
tionality can obtained relying on the realisation of the below functionality and
additionally asking Pγ to run a VSS on a random polynomial (with a uniform
random element mγ in the constant term). The value y is then reconstructed in
blinded form to everyone with mγ as the blinder, which only Pγ can unblind.
Thus, we assume y be dispatched to all in Fdeg2c.

Recall that the high-level idea our protocol is to generate 〈xαxβ +
∑n

�=1 r�〉
from [[xα]], [[xβ ]], {[[r�]]}�∈{1,...,n} and reconstruct the secret xαxβ +

∑n
�=1 r� via

its second-level t-sharings. A bunch of VSS instances are invoked to generate
[[xα]], [[xβ ]], {[[r�]]}�∈{1,...,n} in the first round. Ignoring the additive terms, the
major task boils down to generating 〈xαxβ〉 from [[xα]] and [[xβ ]]. Local product
of the shares and share-shares of these two sharings results in a non-randomized
2t-sharing in both the first and second level. To compute a 〈·〉-sharing, we (a)
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Fig. 5. Functionality Fdeg2c

use the Beaver’s trick to compute t-sharing of the product-share xα
i xβ

i from the
t-sharing of shares xα

i and xβ
i and then (b) randomize the first-level 2t-degree

product polynomial. For the latter, we use the existing techniques via VSS (for
example see [8]). We only recall the functionality F〈0〉 responsible for generating
a 〈0〉, and mention that it can be implemented in one round in the Fvsh-SIFR
model. Let zsh denote a one-round Fvsh-SIFR protocol for zero-sharing (these
protocols are termed as ZSS protocols).

Fig. 6. Functionality F〈0〉

To achieve the former task, every Pi generates ([ai], [bi], [ci]) such that
(ai, bi, ci) are random and independent of the actual inputs and satisfy ci = aibi

using an instance of protocol tsh. Recall that while generating the sharings takes
is done in the first round, the verification of the product relation takes place
in the second round. Beaver’s trick requires reconstruction of ui = (xα

i − ai),
vi = (xβ

i − bi) first to compute [yi] = [xα
i xβ

i ] as uivi + ui[bi] + vi[ai] + [ci] and
subsequently, degree-2 computation requires reconstruction of yi (the random-
ized version of it) which, if correct, is a share of the first-level 2t-sharing of the
product xαxβ . Therefore, the above approach leads a 3 round protocol. To con-
clude within 2 rounds, we need a reconstruction mechanism that achieves– (a)
for an honest Pi, the reconstruction is robust and yi is the correct share (b)
for a corrupt Pi, either the reconstruction fails or yi is the correct share. This
reconstruction is enabled via SCGs. For the reconstruction of yi, Pi in the role
of Alice, Pj in the role of Bob run an SCG to allow every Pk learn yij , the jth
share-share of yi. The input of Pi is (ui, vi) and the jth share-shares, ai

j , b
i
j , c

i
j

of a, b, c. The input of Pj is jth share-shares of a, b, c. The function f computes
yij = uivi + uib

i
j + via

i
j + ci

j and outputs (ui, vi, yij). With all the inputs ready
at the end of the first round, we compute the offline phase in the first round as
well, while the online phase can be executed in the second round. During the
online phase, we also make sure Pk, as Carol, holds ui, vi, by reconstructing these
values from their t-sharing. This allows Pk to make sure that Pi used the values
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ui and vi as an input to the SCG, thus making sure that the value extracted
from the SCG is either yij or ⊥, even when Pi is corrupt. The protocol appears
in Fig. 7 and the proof that it realizes functionality Fdeg2c (Theorem 6) in the
full version of the paper [7].

Fig. 7. Protocol deg2c

Theorem 6 (Security). Protocol deg2c realises functionality Fdeg2c, except
with probability ε, tolerating a static adversary A corrupting t parties. More-
over, it is a statistically-correct and perfectly-secret protocol. Assuming the
error probability of protocols scg and vsh, as εscg and respectively εvsh, we have
ε ≤ (nt + 5n + 2)εvsh + (n + 1)t(2t + 1)εscg.

Theorem 7 (Efficiency). In Fvsh-SIFR model, protocol deg2c has a complexity
of O

(
poly(n log |F|) log 1/ε)

)
.
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4 Verifiable Secret Sharing

Here, we introduce a new statistical VSS and recall the existing cryptographic
VSS of [10]. In the latter section, we also suggest a simplified computational TSS
protocol that is devoid of the SCGs.

In this section, the underlying field for sharing, F, can be taken to be an
arbitrary finite field of size q > n. We let κ denote a statistical security parameter
that guarantees a correctness error of 2−Ω(κ) (and perfect secrecy), and always
take κ to be super-logarithmic in the number of parties, i.e., κ = ω(log n). We
assume without loss of generality that log |F| > Ω(κ), and if this is not the case,
we lift F up to a sufficiently-large extension field. Finally, we assume that basic
arithmetic operations over F can be implemented with polynomial complexity
in the log |F|. As usual, we fix the resiliency t to �(n − 1)/3�.

4.1 Statistical VSS

In this section, we construct the first 2-round statistical VSS that produces [[s]]
of D’s secret from F. The existing 2-round VSS of [1,46] does not generate
[[·]]-sharing and further the set of secrets that are allowed to be committed is
F ∪ {⊥}. The latter implies that a corrupt D has the liberty of not committing
to any secret or put differently, the committed secret can be ⊥. A natural conse-
quence of being able to produce [[·]]-sharing is that the reconstruction turns to
a mere one-round communication of shares followed by error correction, unlike
the complicated approach taken in [1,46].

As a stepping stone towards a statistical VSS, we first build two weaker
primitives–interactive signature and weak commitment.

Interactive Signature. An interactive signature protocol is a three-phase pro-
tocol (distribute, verify and open), involving four entities–a dealer D ∈ P, an
intermediary I ∈ P, a receiver R ∈ P and a set of verifiers P. In the distribute
phase, the dealer D, on holding a secret, distributes the secret and a signature on
the secret to intermediary I and private verification information to each party
Pi in P. In the verify phase, I and the verifiers P together verify if the secret and
signature verify with the verification information. In the open phase, I opens
the message and signature to R and the verifiers open verification information
to R who verifies and accepts the message if it verifies correctly. Intuitively, we
require four properties from the primitive–(a) privacy of the secret till the end of
execution of the three phases when D, I,R are honest and at most t of the veri-
fiers are corrupt; (b) unforgeability of honest D’s secret in the open phase against
the collusion of a corrupt I and at most t corrupt verifiers; (c) nonrepudiation
of the secret after the verify phase succeeds against the collusion of a corrupt
D and at most t corrupt verifiers, i.e. an honest R accepts an honest I’s secret
and signature after a successful verify phase and a corrupt D, colluding with t
verifiers cannot repudiate to not have sent the message to I during distribute
phase; and lastly (a) correctness i.e. R outputs D’s secret when D and I are
honest. We give the formal definition below.
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Definition 6 (Interactive Signature Scheme (ISS)). In an interactive sig-
nature scheme (ISS) amongst a set of n parties P, there is a distinguished party
D ∈ P that holds an input s picked over a field F, referred to as a secret. The
scheme involves three more entities apart from D, an intermediary I ∈ P, a
receiver R ∈ P and a set of verifiers P and consists of three phases, a distribute,
a verify and an open phase. In the beginning, D holds s and each party including
the dealer holds an independent random input.

– Distribute: In this phase, D sends private information (computed based on its
secret and randomness) to a designated intermediary I ∈ P and to each of
the verifiers in P.

– Verify: In this phase, I and the verifiers interact to ensure that the informa-
tion received from D are consistent. This phase ends with a public accept or
reject, indicating whether verification is successful or not.

– Open: Here, I and each verifier in P send the information received from D
in distribute phase to a designated receiver R ∈ P that applies a verification
function to conclude if the message sent by I can be accepted or not. The
output of this phase is considered only upon a successful execution of verify
phase.

A three-phase, n-party protocol as above is called a (1−ε)-secure ISS scheme,
if for any adversary A corrupting at most t parties amongst P, the following
holds:

– Correctness: If D and I are honest, the verify phase will complete with a
success and an honest R accepts and outputs s in the open phase.

– ε-nonrepudiation: If I and R are honest and the verify phase has completed
with a success, then R accepts and outputs s′ sent by I in the open phase,
except with probability ε.

– ε-unforgeability: If D and R are honest, then R accepts and outputs s′ sent
by I in the open phase only if s′ = s, except with probability ε.

– Privacy: If D, I,R are honest, then at the end of the protocol the adversary’s
view is identical for any two secrets s and s′. Denoting Ds as A’s view during
the ISS scheme when D’s secret is s, the privacy property demands Ds ≡ Ds′

for any s �= s′.

We would like to note that the existence of a similar primitive, known as
information-checking protocol (ICP) [20,25,51]. ICP is played amongst three
entities a dealer D, an intermmediary INT and a receiver R, where the verifi-
cation information is held by R alone. In a variant of ICP [47,48], R is replaced
with the set of parties P, similar to our definition, but the secret and the sig-
nature are disclosed in the public. We introduce the definition above that suits
best for our protocols using ISS as the building block.

We now present an ISS scheme where the three phases will require one round
each and importantly the verify and open phase can be run in parallel, making
the whole scheme consume only two rounds. At a very high level, D hides its
secret in a high-degree polynomial and gives out the polynomial as its signature
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to I. A bunch of secret evaluation points and evaluation of the signature poly-
nomial on those points are given out as verification information to the verifiers.
The idea of using secret evaluation points dates back to Tompa and Woll [53].
The verification is now enabled via cut-and-choose proof, though public disclo-
sure of a padded form of the signature polynomial by I and evaluations of it by
the verifiers on a set of randomly selected points. The high-degree of the poly-
nomial and the padding ensure that the privacy of the secret and signature is
maintained during the verification. Lastly, the opening simply involves revealing
the signature polynomial and the remaining secret evaluation points and the
evaluations to the designated receiver R that simply checks if the polynomial
and the evaluations are consistent or not. It should be noted that a cheating I,
exercising its rushing capability, may try to foil the cut-and-choose proof during
the verify phase. Nevertheless, we show that such an adversary will be caught,
with overwhelming probability, during the opening phase. We present our pro-
tocol iSig and state its properties below. For more details, see the full version of
this paper [7].

Fig. 8. Protocol iSig

Lemma 4. The Protocol iSig is (1−2−Ω(κ))-secure ISS tolerating a static adver-
sary A corrupting t parties, possibly including the dealer D, I and R. Moreover,
the protocol achieves perfect privacy, and perfect correctness, and can be imple-
mented in time poly(n, κ, log |F|).



The Resiliency of MPC with Low Interaction: The Benefit of Making Errors 585

Weak Commitment. As a stepping stone towards VSS, we first build a weaker
primitive called weak commitment (WC) [8]. WC and opening are distributed
information-theoretic variant of cryptographic commitment schemes. It also can
be viewed as a (weaker) variant of the typical building block of VSS, known
as Weak Secret Sharing (WSS). WC has a clean goal of ensuring that– for a
unique secret s, at least t + 1 honest parties must hold the shares of the secret.
WSS, on the other hand, ensures that a unique secret must be committed in the
sharing phase so that either the secret or ⊥ will be reconstructed latter during
the distributed reconstruction phase. It is noted that a committed secret in WC
needs the help of the dealer for its opening, unlike the secret committed in WSS.
With a simpler instantiation, weak commitment and opening are sufficient to
build a VSS scheme.

The dealer D starts with a polynomial of degree at most t and generates
�·
-sharing of its constant term through the input polynomial. For an honest
D, WC in fact produces [·]-sharing of the constant term. We abstract out the
need in terms of a functionality Fwcom given in Fig. 9 and present the protocol
realizing the functionality below. The dealer sends a polynomial g(x) and a set
P′, indicating who should receive a share, to the functionality. An honest D
will send g(x) of degree at most t and P′ = P. When a corrupt D sends either
a polynomial which is of degree more than t or a set of size less than n − t
(denying shares to at least t + 1 honest parties), all the parties receive ⊥ from
the functionality.

Fig. 9. Functionality Fwcom

At a high level, D, on holding a polynomial g(x) of degree at most t, initi-
ates the protocol by picking a symmetric bivariate polynomial G(x, y) of degree
t in both variables uniformly at random over F such that G(x, 0) and G(0, y)
are the same as the input polynomial g(x) (with change of variable for G(0, y)).
Following some of the existing WSS/VSS protocols based on bivariate polyno-
mials [32,42], D sends gi(x) = G(x, i) to party Pi and in parallel the parties
exchange random pads to be used for pairwise consistency checking of their
common shares. When a bivariate polynomial is distributed as above, a pair of
parties (Pi, Pj) will hold the common share G(i, j) via their respective polyno-
mials gi(x) and gj(x). Namely, gi(j) = gj(i) = G(i, j). A pair (Pi, Pj) is marked
to be in conflict when the padded consistency check fails. In addition, D runs an
ISS protocol for every ordered pair (i, j) with Pi as the intermediary and Pj as
the receiver for secret G(i, j). This allows D to pass a signature on G(i, j) to Pi

who can later use the signature to convince Pj of the receipt of G(i, j). (D,Pi)
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are marked to be in conflict when one of the n instances with Pi as the inter-
mediary results in failure. Now a set of non-conflicting parties, W, of size n − t,
including D, is computed (using a deterministic clique finding algorithm). Due
to pair-wise consistency of the honest parties in W, their polynomials together
define a unique symmetric bivariate polynomial, say G′(x, y) and an underlying
degree t univariate polynomial g′(x) = G′(x, 0), the latter of which is taken as
D’s committed input. For an honest D, such a set exists and can be computed
(in exponential time in n), albeit, it may exclude some honest parties. The pos-
sibility of exclusion of some of the honest parties makes this protocol different
from existing 3-round constructions where D gets to resolve inconsistencies in
round 3 and therefore an honest party is never left out of such a set. The honest
parties in W output the constant term of their gi(x) polynomials received from
D as the share of g′(x). An honest outsider recomputes its g′

i(x) interpolating
over the non-⊥ outcomes from interactive signatures (as a receiver) correspond-
ing to intermediaries residing in set W. When D is honest, the correct gi(x)
can be recovered this way, thanks to the unforgeability of the signature and as
a result, every honest party will hold a share of g(x). For a corrupt D, while
non-repudiation allows honest parties in W to convey and convince an honest
outsider about their common share, the corrupt parties in W can inject any
value as their common share. As a result, the interpolated polynomial may be
an incorrect polynomial of degree more than t. In this case, an honest outsider
may not be able to recover its polynomial g′

i(x) and share of g′(x). Protocol
swcom, which realizes functionality Fwcom (Lemma 5) is described in Fig. 10.
For more details, see the full version of this paper [7].

We point out that the error in the outputs of the honest parties in WC are
totally inherited from the underlying ISS instances.

Fig. 10. Protocol swcom
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Lemma 5. Protocol swcom realises functionality Fwcom, except with probabil-
ity ε, tolerating a static adversary A corrupting t parties, possibly including
the dealer D. Moreover, it is a statistically-correct and perfectly-secret protocol.
Assuming the error probability of protocol iSig as εiSig, we have ε ≤ (2t+1)2εiSig =
O(n2εiSig). The communication complexity is poly(n, κ, log |F|), and the compu-
tational complexity is exponential in n and polynomial in κ and log |F|.

While we never need to reconstruct a �·
-shared secret, non-robust recon-
struction can be enabled by allowing D to broadcast the committed polynomial
and the parties their shares. The D’s polynomial is taken as the committed one
if n − t parties’ share match with it. Clearly an honest D’s opened polynomial
will be accepted and a non-committed polynomial will always get rejected.

The Statistical VSS. VSS allows a dealer to distributedly commit to a secret
in a way that the committed secret can be recovered robustly in a reconstruction
phase. Our VSS protocol vsh allows a dealer D to generate double t-sharing of the
constant term of D’s input bivariate polynomial F (x, y) of degree at most t and
therefore allows robust reconstruction via Read-Solomon (RS) error correction,
unlike the weak commitment scheme swcom.

At a high level, protocol svsh proceeds in the same way as the weak commit-
ment scheme wcom, except that each blinder polynomial is now committed via
an instance of swcom. A happy set, V, is formed in the same way. Two conflicting
honest parties cannot belong to V, implying all the honest parties in V are pair-
wise consistent and together define a unique symmetric bivariate polynomial,
say F ′(x, y) and an underlying degree t univariate polynomial f ′(x) = F ′(x, 0),
the latter of which is taken as D’s committed input. A crucial feature that vsh
offers by enforcing the W set of every party in V to have an intersection of size
at least n − t with V, is that the blinded polynomial of a corrupt party from
V is consistent with F ′(x, y). This follows from the fact that the shares (pads)
that the parties in W receive as a part of wcom remain unchanged, implying
n − 2t ≥ t + 1 of the honest parties in V ensure the consistency of the blinded
polynomial of the corrupt party. This feature crucially enables an honest party
Pi that lies outside V (in case of a corrupt dealer) to extract out her polynomial
f ′

i(x) = F ′(x, i) and thereby completing the double t-sharing of f ′(0). To recon-
struct f ′

i(x), Pi looks at the blinded polynomial of all the parties in V who kept
her happy in their respective weak commitment instances (implying her share
did not change). For each such party, the blinded polynomial evaluated at i and
subtracted from Pi’s share/pad from the underlying wcom instance, allows Pi to
recover one value on f ′

i(x). All the honest parties in V (which is at least t + 1)
contribute to one value each, making sure Pi has enough values to reconstruct
f ′

i(x). A corrupt party in V, being committed to the correct polynomial as per
F ′(x, y), with respect to the parties in its W set, cannot inject a wrong value.
Protocol vsh, which realizes functionality Fvsh (Theorem 8), is now described in
Fig. 11. See the full version of this paper [7] for more details.

We point out that the error in the outputs of the honest parties in VSS are
totally inherited from the underlying WC and in turn the ISS instances.
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Fig. 11. Protocol svsh

Theorem 8. Protocol svsh realises functionality Fvsh, except with probability ε,
tolerating a static adversary A corrupting t parties, possibly including the dealer
D. Moreover, it is a statistically-correct and perfectly-secret protocol. Assuming
the error probability of protocol iSig as εiSig, we have ε ≤ n(2t+1)2εiSig. The com-
munication complexity is poly(n, κ, log |F|), and the computational complexity is
exponential in n and polynomial in κ and log |F|.

It is easy to note that svsh generates [[F (0, 0)]] via the set of polynomials{
F (x, 0), {fi(x)}i∈{1,...,n}

}
. Plugging in the above VSS in the deg2c protocol,

we get a 3-round MPC for degree-2 computation.

4.2 Cryptographic VSS and Computation of Any Single-Input
Functions

We briefly recall the construction of [10]. In Round 1, D publicly commits to a
symmetric bivariate polynomial F (x, y) using a NICOM and delivers the open-
ing corresponding to fi(x) = F (x, i) to Pi. The commitments are computed in
a way that simple public verification suffice for the checking of pairwise con-
sistency between the common points (such as fi(j) and fj(i)). To ensure that
the commitments correspond to a polynomial of degree at most t in both x
and y, it suffices if the honest parties (which are n − t in number) confirm that
their received polynomials are consistent with their commitments and they are
of degree at most t. If this is not true, then Pi’s goal is to make D publicly reveal
the polynomial consistent with the commitments in the second round. Towards
realizing the goal, Pi commits to a pad publicly and send the opening to D alone
during Round 1. If D finds the opening inconsistent to the public commitment,
then it turns unhappy towards Pi and opens the commitments corresponding to
fi(x) publicly. Otherwise, it blinds the opening of fi(x) using the pad and makes
it public. When Pi’s check about fi(x) fails, she similarly turns unhappy with
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D and opens the pad which in turn unmask the opening for fi(x). A corrupt Pi

cannot change the pad and dismiss an honest D, owing to the binding property
of NICOM. A corrupt D however may choose not to hand Pi the correct fi(x) in
Round 1 and reveal fi(x) correctly in Round 2. The above technique therefore
makes the fi(x) that is consistent with the public commitment of D publicly
known when D and Pi are in conflict (and Pi is honest).

In the cryptographic setting, the VSS of [10] has the special feature of making
the share (the entire univariate polynomial) of a party public when they are in
conflict. We can tweak the TSS protocol (Sect. 3.3) so that the shares for all the
t+3 instances are made public for party Pi in round 2, if Pi is in conflict with D
(which also includes the reason that Pi’s share do not satisfy the relation). This
allows the public verification for corrupt parties in round 2 itself and thus TSS
concludes in 2 rounds, like the VSS. We, in fact, can prove a stronger version
of the result– any single-input function takes 2 rounds in cryptographic setting.
TSS is a special case. We present this general result below. Plugging in the
above VSS, and TSS in the deg2c protocol, we get a 3-round MPC for degree-2
computation.

Cryptographic MPC for Single-Input Functions. In this section, we
obtain a 2-round protocol for every function whose outputs are determined by
the input of a single party (single-input functions). This class of functions include
important tasks such as distributed ZK and VSS. While a VSS protocol will be
implied from our result from this section, we have separated out VSS in the
previous section, as the VSS of [10] is used in a non-blackbox way for MPC for
single-input functions.

[34] reduces secure computation of a single-input function to that of degree-2
polynomials and subsequently show a 2-round construct to evaluate the latter
with perfect security and threshold t < n/6. In this work, we complement their
reduction with a 2-round protocol to evaluate a degree-2 polynomial with thresh-
old t < n/3 and relying on NICOMs. Let the sole input-owner be denoted as
D ∈ P, the inputs be x1, . . . , xm and the degree-2 polynomial be p (in most
general form, there can be a vector of such polynomials). Broadly, the goal is
to compute 2t-sharing of p(x1, . . . , xm) and reconstruct the secret relying on the
guidance of D in 2 rounds. The protocol starts with D sharing all the inputs
using m instances of VSS. For the guided reconstruction, D locally computes the
shares p(x1

i , . . . , x
m
i ) (p applied on the ith shares of the inputs) of the degree 2t

polynomial holding p(x1, . . . , xm) in the constant term and broadcasts all the n
points. In Round 2, apart from the checks Pi conducts inside the VSS instances,
it also verifies if the broadcast of D is consistent with her received polynomials.
If the check fails, then it becomes unhappy with D in all the instances and opens
the pads distributed in the VSS instances to expose all the polynomials in her
share. This allows public reconstruction of the correct p(x1

i , . . . , x
m
i ). The recon-

struction in Round 2 is then achieved simply by fitting a degree 2t polynomial
over the values p(x1

i , . . . , x
m
i )– (i) if Pi is not in conflict with D, this value is

taken from D’s broadcast (ii) otherwise, this value is publicly recomputed as
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explained. If there is no such 2t degree polynomial, then D is concluded to be
corrupt and is discarded. An honest D will always broadcast the correct values
p(x1

i , . . . , x
m
i ) that lie on a 2t degree polynomial and a corrupt unhappy Pi can-

not open a different value than this (due to binding property of NICOM). Lastly,
since these values correspond to a non-random 2t degree polynomial, they are
randomized using a 〈0〉 before broadcast. The 〈0〉 sharing is created by D by
running t additional instances of VSS.

We present the functionality and the protocol below, the security proof of the
latter (Lemma 6) is deferred to the full version of this paper [7]. We assume the
output is given to everyone for simplicity. For a function that outputs distinct
values for the parties, say yi to Pi, the functionality can be modified to deliver
yi to Pi. This can be implemented by D t-sharing ([·]-sharing) a random pad,
padi for every party Pi, where the bivariate polynomial (used for sharing) and
all the commitment opening are disclosed to Pi, who becomes unhappy when
there is any inconsistency. D broadcasts masked values p(x1

j , . . . , x
m
j ) + padi

j so
that yi +padi gets publicly reconstructed and yi gets privately reconstructed by
Pi alone.

Fig. 12. Functionality Fsif

Fig. 13. Protocol sif

Lemma 6. Protocol sif realizes Fsif tolerating a static adversary A corrupting t
parties, relying on NICOM.
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Abstract. We investigate fairness in secure multiparty computation
when the number of parties n = poly(λ) grows polynomially in the secu-
rity parameter, λ. Prior to this work, efficient protocols achieving fairness
with no honest majority and polynomial number of parties were known
only for the AND and OR functionalities (Gordon and Katz, TCC’09).
We show the following:

– We first consider symmetric Boolean functions F : {0, 1}n →
{0, 1}, where the underlying function fn/2,n/2 : {0, . . . , n/2} ×
{0, . . . , n/2} → {0, 1} can be computed fairly and efficiently in the
2-party setting. We present an efficient protocol for any such F tol-
erating n/2 or fewer corruptions, for n = poly(λ) number of parties.

– We present an efficient protocol for n-party majority tolerating
n/2 + 1 or fewer corruptions, for n = poly(λ) number of parties.
The construction extends to n/2 + c or fewer corruptions, for con-
stant c.

– We extend both of the above results to more general types of adver-
sarial structures and present instantiations of non-threshold adver-
sarial structures of these types. These instantiations are obtained via
constructions of projective planes and combinatorial designs.

1 Introduction

In secure multiparty computation (MPC), parties compute the joint function
of their inputs in a distributed fashion, while keeping their inputs private. For-
mally defining the security model for MPC is quite complex and there are vari-
ous different flavors of security such as computational vs. information-theoretic,
security-with-abort vs. fairness vs. guaranteed output delivery, broadcast-channel
vs. no broadcast channel, rushing vs. non-rushing.

In this work, we focus on the setting of computationally-secure, n-party MPC
in the presence of a broadcast channel with a rushing adversary. Further, we
will require the fairness guarantee, which, informally, states that if one party
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obtains the output of the function being computed, then all parties must obtain
the output.

It is known how to securely compute every functionality in the above setting,
assuming honest majority (i.e. more than half the parties are uncorrupted) [10,
12,17,18,37]. On the other hand, impossibility results, showing that there are n-
party functionalities that cannot be computed fairly (even computationally and
even with a broadcast channel), are known in the case of no honest majority.
Negative results on fairness include the early work of Cleve [13], who showed that
fair coin-tossing is impossible when n/2 out of n parties are fail-stop (i.e. behave
in an honest-but-curious manner with the exception that they may abort early).
In the 2-party case, non-trivial functions that can be computed fairly without
honest majority, were first discovered in the seminal work of Gordon et al. [19].
By now, the 2-party setting is well-understood, with a full characterization of
the necessary and sufficient conditions for fair computation of large classes of
functionalities [2,3].

In this paper we focus on the n-party case, where n = poly(λ) is any poly-
nomial in λ, the security parameter. We will begin by considering threshold
adversaries, these are adversaries who may corrupt up to some threshold th
number of parties. In this case, Cleve’s result [13] tells us that it is impossible
to achieve fairness for all functionalities when th ≥ n/2.

Threshold Adversaries. The relevant prior works that we are aware of are those
of Gordon and Katz [21] and Asharov et al. [3]. Gordon and Katz [21] present
fair protocols for 3-party majority and for the OR function (and by symmetry
for the AND function) for any polynomial n number of parties and n − 1 or
fewer corruptions. Asharov et al. [3] present n-party protocols with up to n/2
corruptions for functions F for which every n/2-size partition can be computed
fairly in the 2-party setting. We emphasize, however, that the protocol of Asharov
et al. [3] only scales to O(log λ) number of parties, regardless of the efficiency of
the underlying fair 2-party protocol employed. Moreover, extending their results
to more than n/2 out of n corruptions was considered an open problem in their
work. Thus, prior to our work, AND and OR were the only functionalities for
which efficient protocols achieving fairness with no honest majority for any n =
poly(λ) parties were known.

We also consider non-threshold adversaries. Specifically, we consider adver-
sarial structures Aadv for which it is known to be impossible to achieve fairness
for all functionalities. We ask whether for such adversarial structures there exist
non-trivial functions that can be computed fairly.

Background on MPC with General Adversarial Structures. An adversarial struc-
ture Aadv on a set [n]—corresponding to n parties P1, . . . , Pn—is a monotone
collection of non-empty sets S. We say that an MPC protocol is secure with
fairness for adversarial structure Aadv if it is secure with fairness under any
set of corruptions S ∈ Aadv. In the seminal works of Hirt and Maurer [26,27],
they defined a set of adversarial structures Q(2), which consists of adversarial
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structures Aadv for which no two sets in Aadv cover [n]. They presented an (inef-
ficient) information-theoretic secure protocol for fail-stop adversaries for adver-
sarial structures Q(2). They also gave a simple argument that it is impossible
to achieve (even computational) fairness for adversarial structures not in Q(2)

using the classical result of Cleve [13].

Fairness for (Aadv, F )-pairs. In this work, we initiate the research direction
of achieving MPC protocols with fairness against—possibly non-threshold—
adversarial structures Aadv that are not in Q(2). While for any adversarial struc-
ture Aadv /∈ Q(2), it is impossible (even computationally) to achieve MPC with
fairness for all functionalities F , there can be some functionalities F for which
it is possible to achieve MPC with fairness. We will investigate pairs of func-
tionalities and adversarial structures (Aadv, F ) for which is it possible to achieve
fairness in the multiparty setting. To the best of our knowledge, prior work on
complete fairness in multiparty computation for adversarial structures outside
Q(2) has considered only threshold adversarial structures.

1.1 Our Results

Consider a symmetric Boolean function1 F (w) = F (x,y), where w = x||y and
x,y ∈ {0, 1}n/2. We consider n-party MPC protocols for computing the func-
tion F . Note that since F is symmetric, there exists a two-input function f such
that F (x,y) = fn/2,n/2(

∑n/2
i=1 xi,

∑n/2
i=1 yi). In our first result, we present a fair

MPC protocol for functionalities F that are symmetric and for which the cor-
responding fn/2,n/2 can be computed fairly in the 2-party setting. Importantly,
our protocol handles any polynomial n = poly(λ) number of parties (polynomial
in security parameter λ) and is secure against n/2 or fewer corruptions. Recall
that Asharov et al. [3] gave a transformation from fair 2-party protocols to fair
n-party protocols, secure against n/2 or fewer corruptions. Their transforma-
tion, however, requires running the underlying protocol with all possible subsets
S ⊆ [n] of size |S| = n/2 playing the part of the two parties in the underlying
2-party protocol. This means that their protocol can only handle a number of
parties n that is at most logarithmic in the security parameter n = O(log(λ)).
In this work, we show how to extend their construction to any number of par-
ties n that is polynomial in the security parameter n = poly(λ). However, the
extension applies only to symmetric Boolean functions.

Theorem 1 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric function,
such that there is an efficient protocol for computing fn/2,n/2 fairly in the two-
party setting. Then for any n = poly(λ), there is an efficient protocol for com-
puting F fairly in the n-party setting with up to n/2 corruptions.

We extend the above result to more general, non-threshold, adversarial
structures outside of Q(2), which may include corrupted sets of parties of
1 In this context, we mean a Boolean function whose output depends only on the

number of ones in the input. See [36], Def. 2.8.
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size greater than n/2. For symmetric F and any n′ ∈ [n − 1], we consider
F (x,y) = fn′,n−n′(

∑n′

i=1 xi,
∑n−n′

i=1 yi), and require that for all n′ ∈ [n − 1]
there is an efficient protocol computing fn′,n−n′ fairly in the two-party setting.
For any such F , we define a corresponding set of adversarial structures Q(F ).
Informally, Q(F ) contains adversarial structures Aadv such that Aadv can be par-
titioned into Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2) such that for any pair of distinct
sets (T, T ′) ∈ Aadv,2, T ′ �⊆ T . Additionally, we require certain efficient secret
sharing schemes corresponding to Aadv,1 and Aadv,2. See the full version for a
formal definition of Q(F ).

Theorem 2 (Informal). Let F : {0, 1}n → {0, 1} be a symmetric function,
such that there is an efficient protocol for computing fn′,n−n′ fairly in the two-
party setting for all n′ ∈ [n − 1]. Let Q(F ) be defined as above. Then for any
n = poly(λ), there is an efficient protocol for computing F fairly in the n-party
setting under any adversarial structure Aadv ∈ Q(F ).

As an additional result of interest, we show that (ignoring efficiency require-
ments for the underlying secret-sharing schemes) any projective plane can be
used to construct a non-threshold adversarial structure in Q(F ). See the full
version for additional details.

In our second main result, we present a fair MPC protocol for the majority
function, for any polynomial n = poly(λ) number of parties, and n/2+1 or fewer
corruptions.

Theorem 3 (Informal). There is an efficient protocol for computing n-party
Majority fairly for any n = poly(λ) (s.t. n ≥ 8) with n/2+1 or fewer corruptions.

The construction can be straightforwardly extended to work for n/2 + c or
fewer corruptions, where c is a constant.

As before, we extend the result to more general, non-threshold, adversarial
structures outside of Q(2), by defining a set of adversarial structures Q(Maj).
Informally, Q(Maj) contains adversarial structures Aadv such that Aadv can be
partitioned into Aadv,1 ∈ Q(2) and Aadv,2 /∈ Q(2) such that for any pair of distinct
sets (T, T ′) ∈ Aadv,2 such that T ′ ⊆ T , it is the case that |T\T ′| ≤ c. Additionally,
we require certain efficient secret sharing schemes corresponding to Aadv,1 ∈ Q(2)

and Aadv,2 /∈ Q(2). See the full version for a formal definition of Q(Maj).

Theorem 4 (Informal). There is an efficient protocol for computing n-party
Majority fairly for any n = poly(λ) under every adversarial structure Aadv ∈
QMaj.

As an additional result of interest, we show that (ignoring efficiency require-
ments for the underlying secret-sharing schemes) starting from an appropriate
type of combinatorial design and adding certain sets to it, we obtain a non-
threshold adversarial structure in Q(Maj). See the full version for additional
details.
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1.2 Technical Overview

Half ( n/2 ) or Fewer Corruptions. Recall that [3] showed that, for n = O(log(λ))
number of parties, a function F (x1, . . . , xn) is computable with fairness under
n/2 corruptions if and only if for every partition (SL, SR) of [n] of size n/2,
F ([xi]i∈SL

, [xi]i∈SR
) is computable with complete fairness in the two party set-

ting, where one party holds input [xi]i∈SL
and the other holds input [xi]i∈SR

.
We begin by re-casting the protocol of [3] in a player-simulation model (sim-
ilar to Hirt and Maurer [26,27]). The protocol of [3] considers all possible 2-
partition (SL, SR) of [n] of size n/2 (where SL always contains 1) and for each
partition, parties Pi, i ∈ SL simulate virtual party PL and parties Pi, i ∈ SR

simulate virtual party PR in the fair two party protocol ΠF for functionality
F ([xi]i∈SL

, [xi]i∈SR
) that exists by assumption. WLOG, we can take the states

of PL and PR in round r of ΠF to simply consist of “backup values” ar, br,
respectively. For simplicity, we first construct an n-party protocol in a “trusted
dealer” model (later we will show how to get rid of the assumption). In each
round r, the dealer secret shares the backup values of each virtual party PL

(resp. PR) across the corresponding parties in SL (resp. SR). This is referred
to as the inner secret sharing scheme in [3]. If at any time, all the real parties
simulating a certain virtual party (say PL) abort, the dealer stops handing out
shares and the remaining real parties reconstruct virtual PR’s state to obtain
the corresponding backup value. The above description relies on the fact that
there are at most n/2 corruptions, since if exactly n/2 parties corresponding to
some virtual party PL abort there is a uniquely identifiable corresponding virtual
party PR, simulated by exactly the remaining set of n/2 parties (all of whom
are honest). The remaining parties can therefore identify PR and compute the
correct backup value. On the other hand, if the protocol completes, any set of
parties of size n/2 or more can reconstruct the correct value, since all subsets of
size n/2 receive the output of the functionality in the final round. To implement
the dealer and ensure that the protocol continues if less than n/2 parties abort,
[3] additionally perform an (n/2 + 1)-out-of-n secret sharing of each real party’s
state during the preprocessing, called the outer secret sharing. In each round,
the parties send their share of the outer-secret sharing to each party. In case
at most n/2 − 1 parties abort, the remaining parties can continue the protocol
by simulating the aborting parties using the (n/2 + 1)-out-of-n secret sharing.
The number of simulated sub-protocols is essentially

(
n

n/2

) ≈ 2n/
√

n. Thus, they
can only handle at most n = O(log(λ)) number of parties, where λ is security
parameter.

In our first result we show that the above paradigm can be modified to
work for symmetric functions F : {0, 1}n → {0, 1} without requiring the blowup
of running the protocol across each possible subset. Since F is symmetric, its
value at all inputs is equivalent to the output of some fn/2,n/2 : {0, . . . , n/2} ×
{0, . . . , n/2} → {0, 1}. Let us assume that there is a fair protocol Πfn/2,n/2

for computing fn/2,n/2. We describe the constructed fair protocol for n-party
functionality F in the “trusted dealer” setting: The dealer receives all the parties’
inputs x = x1, . . . , xn and computes N =

∑n
i=1 xi. For every z ∈ {0, . . . , n/2},
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the dealer runs protocol Πfn/2,n/2(z,N −z) and Πfn/2,n/2(N −z, z) “in the head”
to obtain backup values for each party and each round.2 Specifically, for virtual
party PL (resp. PR), its share when running with input z (resp. N − z) in the
r-th round is denoted ar,z,N−z (resp. br,z,N−z). We now use an appropriate type
of secret sharing scheme to share ar,z,N−z (resp. br,z,N−z), which ensures that a
set of corrupted parties can open only the backup values corresponding to one of
the virtual parties’ views in a single execution of the (at most) n/2+1 executions
of the underlying 2PC protocol (i.e. corresponding to the view of PL or PR in a
single (z,N −z) pair). This is done by defining an augmented set [n]×{0, 1} and
defining access structures over this set. Specifically, a party Pi holding input bit
b, will correspond to the element (i, b) ∈ [n] × {0, 1}. Thus, parties along with
their inputs correspond to subsets S+ of [n] × {0, 1}, and a share that a party
receives from the dealer depends both on its index i as well as its input b. Let
S0 := {(i, 0) : i ∈ [n]} and S1 := {(i, 1) : i ∈ [n]}. We will use a secret sharing
scheme to share ar,z,N−z (resp. br,z,N−z) so that its value can be reconstructed
by any set S+ that consists of party P1 holding either input 0 or 1 (resp. does
not include party P1), z (resp. N −z) parties holding input 1 (i.e. |S+ ∩S1| ≥ z,
resp. |S+∩S1| ≥ N −z) and n/2−z (resp. n/2−(N −z)) parties holding input 0
(i.e. |S+ ∩S0| ≥ n/2− z, resp. |S+ ∩S0| ≥ n/2− (N − z)). If exactly n/2 parties
abort, the remaining honest parties output the “backup” value corresponding to
the remaining party in the same underlying protocol execution. E.g., if a set of
n/2 parties, including P1, holding z number of 1’s, abort, the remaining parties
can open br,z,N−z, since if the corrupt parties hold z number of 1’s, the honest
parties must hold N − z number of 1’s and n/2 − (N − z) number of 0’s. On
the other hand, if less than n/2 parties abort, the outer secret sharing scheme
is used to ensure that all the honest parties continue to receive their shares in
each round.

Difficulty of a Generic Transformation for more than n/2 Corruptions. In the
following, we provide some intuition on the difficulty of extending the above
protocol to more than n/2 corruptions. We do not make any formal claims here.
For concreteness, let us assume we want to handle n/2 + 1 corruptions. First,
we must ensure that if n/2 + 1 parties abort, the remaining parties can output
some backup value from the underlying protocol, as otherwise there is no hope
of obtaining a fair protocol. But this means that any set of n/2− 1 parties must
be able to reconstruct a view from the underlying execution, which means that
the set of n/2 + 1 corrupted parties will be able to reconstruct multiple views
(since there are multiple subsets of size n/2 − 1—with distinct values of z—
among the set of n/2 + 1 corrupted parties, and each must be able to open an
underlying view). When using a generic protocol, it is not clear how to argue
that if the underlying protocol is fair when a party sees a single view, it is still
fair when a party sees multiple views of the protocol running in parallel with
correlated inputs. Another difficulty is that if less than n/2+1 parties abort—say

2 If N − z is an invalid input (i.e. N − z /∈ {0, . . . , n/2}), then the dealer simply uses
dummy values.
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n/2−1 parties abort—then the remaining parties do not necessarily know which
backup value to output. As before, there are multiple subsets of size n/2 − 1—
with distinct values of z—among the set of n/2 + 1 remaining parties, and each
may correspond to a different backup value. Further, note that the outer secret
sharing can no longer be used when n/2 − 1 (or more) parties abort, since if the
outer secret sharing scheme can be reconstructed by n/2+1 or fewer parties, then
the set of corrupt parties can recover backup values for round r before round r is
executed, thus negating the fairness guarantees of the underlying protocol. Our
solution for n/2+1 or fewer corruptions will resolve each of these problems, but
will use special properties of a specific protocol, and will not work generically
for any underlying fair-2-PC protocol.

Direct Construction for Majority with n/2 + 1 or Fewer Corruptions. We next
present our protocol for n-party computation of Maj assuming at most n/2 + 1
corruptions. As discussed above, the generic transformation techniques no longer
work. Therefore, we extend the two-party protocol of Gordon et al. [19] and the
analysis of Asharov et al. [2] to our setting. Specifically, recall that in the 2-party
protocol of Gordon et al. [19], the dealer chooses a designated round r∗, drawn
from a geometric distribution with parameter α (and with all but negligible
probability is assured that r∗ ≤ rounds, where rounds = ω(log(λ)) · 1/α is the
number of rounds in the protocol) in which to begin releasing the correct output
of the functionality. In the rounds previous to this, each party receives the output
of the functionality evaluated with its own input and a randomly chosen input
for the other party. Now, in the n party case, we set R := {1, 2, 3}. In each
round r, the dealer computes backup values ar,R′,n′,z for each R′ ⊆ R, n′ ∈
{n/2−1, n/2, n/2+1} and each z ∈ {0, . . . , n′}. For r < r∗, each value ar,R′,n′,z

is chosen as fn′,n−n′(z, x̂), where x̂ is chosen uniformly from {0, . . . , n−n′}, and
fn′,n−n′ outputs 1 when the sum of its inputs is at least n/2+1. For r ≥ r∗, each
value ar,R′,n′,z is set to fn′,n−n′(x, y), where x, y are the inputs of the corrupted
and uncorrupted parties, respectively. Each ar,R′,n′,z is shared so that it can be
opened by any set S that has a subset W of size n′ such that W ∩ R = R′ and
has a subset W ′ of size n′ consisting of z parties holding a 1 input and n′ − z
parties holding a 0 input. We observe than any set of corrupt parties of size
at most n/2 + 1 can open at most a constant number, deg, of backup values.
Furthermore, if n/2 − 1 or more parties abort in round r, the remaining set of
parties, S′, which has size n′ ∈ {n/2−1, n/2, n/2+1} and for which S′ ∩R = R′,
run a secure computation protocol (with fairness and guaranteed output delivery,
since when n ≥ 8 we have an honest majority among the remaining parties) to
recover ar−1,R′,n′,z for the appropriate values of R′, n′, and z. The set R′ is
needed since in the security proof, we will argue that the backup value opened
by the remaining parties cannot be opened by the set of corrupt parties before
aborting. If less than n/2 − 1 parties abort, then each remaining party can still
recover its share in each round using the outer secret sharing scheme and so the
protocol continues. By setting α correctly, the ideal adversary is able to skew the
output appropriately (as in [19]), even though the corrupt parties see multiple
random values in rounds r < r∗. Intuitively, this comes from the fact that the
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real adversary will with some 1/poly(n) probability obtain the same view in
round r when r = r∗ or when r < r∗. In the case r = r∗, the honest parties
output their backup value (which is distributed as described above) in the real
world, but always output the correct output value in the ideal world. In the
case that r < r∗, the honest parties still output their backup value in the real
world. However, the simulator in the ideal world can lie about the corrupted
parties’ inputs and submit values from a carefully constructed distribution to
the ideal functionality, since the ideal functionality has not yet been called in
the simulation (it is only called in round r∗). Thus, it is possible that for a fixed
adversarial view, the distribution of outputs of the honest parties is the same in
the real and ideal worlds. To analyze the resulting distributions in the real and
ideal world, we follow the techniques of Asharov [2], who explicitly computes the
required probabilities as a vector and finds the sufficient conditions so that this
vector falls within the convex hull of a set of vectors corresponding to the rows of
the truthtable. Unfortunately, the proof of Asharov [2] works only for constant-
size domain. Since we want to extend our case to any polynomial number of
parties n, we necessarily require a polynomial domain (since the domain will be
exactly {0, . . . , n}). Specifically, Asharov’s technique [2] fixed the domain size to
be constant and used existence theorems to prove that α can be set sufficiently
small so that the vector is contained in the convex hull. Instead, we consider the
spectral norm of the matrix corresponding to the inverse of M+

˜f
, where M

˜f is

the truthtable corresponding to a function f̃ that is closely related to fn′,n−n′ ,
and M+

˜f
is equal to M

˜f concatenated with a column of 1’s, and show that it is
upper bounded by a constant. This allows us to achieve the desired result. We
note that the techniques outlined above can be straightforwardly extended to
the case of n/2 + c corruptions, where c is a fixed constant.

Extending to more General Adversarial Structures. Secret sharing schemes are
used in two ways in the results for threshold adversarial structures described
above: (1) The outer secret sharing scheme, which ensures that when certain
sets of parties abort, the protocol can continue. We require that no set from the
adversarial structure is an authorized set for the access structure corresponding
to this scheme. (2) The inner secret sharing scheme, which ensures that if the
surviving parties cannot continue the protocol using the outer secret sharing
scheme, they can reconstruct a backup value using this scheme. We can no
longer require that no set from the adversarial structure is an authorized set for
the access structure corresponding to this scheme. Instead, we merely limit the
number of instances of the inner secret sharing scheme that can be opened by
the corrupt parties.

To achieve this, we view an arbitrary adversarial structure as the union of a
Q(2) adversarial structure, Aadv,1 and a non-Q(2) adversarial structure, Aadv,2.
The outer secret sharing scheme will correspond to access structure, Ahon,1, which
is equal to the complement of Aadv,1. For the inner secret sharing scheme, we
consider Ahon,2 = Aadv,2 and we partition Ahon,2 according to the size n′ of the
authorized sets, yielding sets An′

hon,2. We then obtain monotone access structures
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An′,+
hon,2 for all n′ ∈ [n], consisting of An′

hon,2 and all supersets of sets in An′
hon,2.

We then construct a secret sharing scheme for each n′ and each z ∈ {0, . . . , n′},
which allows a set of parties to reconstruct the secret if the set of parties is
contained in An′,+

hon,2 and the set of parties includes z number of parties holding a
1 and n′ − z number of parties holding a 0. For the first result (corresponding to
fair computation of symmetric functions) we require that Aadv,2 does not contain
any two sets T, T ′ such that T ′

� T . For the second result (corresponding to
fair computation of Maj) we require that for any two sets T, T ′ ∈ Aadv,2 if T is a
superset of T ′, it can only contain c additional elements, where c is a constant.

1.3 Related Work

The 2-party Setting. Subsequent to the seminal paper of Gordon et al. [19], a
large body of work has been dedicated to understanding which functionalities
can be computed fairly in the two-party setting. Various works, culminating
in a full characterization for symmetric, constant-size-domain functionalities,
include [2,3].

The n-party Setting. Hirt and Maurer [26,27] characterized the set of access
structures that are necessary and sufficient for fair n-party computation of all
functionalities, and dubbed this set Q(2). The question remained of whether
there are non-trivial functionalities that can be computed fairly for adversarial
structures outside of Q(2). In particular, the works of [21] and [3], which have
already been discussed above, considered threshold access structures outside of
Q(2).

Partial Fairness and Other Notions. Another line of works has considered achiev-
ing partial fairness (also called 1/p-fairness) guarantees for large classes of func-
tionalities, even when there is no honest majority. Specifically, the goal is to
obtain protocols for which the real and ideal world are distinguishable by at
most 1/p, for some polynomial p = p(λ). Partial fairness has been studied in
both the 2-party and multiparty setting [7,9,22]. Note that our focus in the
current work is to achieve “complete” fairness, where the real and ideal world
are computationally indistinguishable. “Best of both worlds” security has also
been studied–where protocols are required to achieve fairness in the case of hon-
est majority and security-with-abort in the case of honest minority [7,28,29].
We also mention other desirable security properties related to fairness that have
been considered in the literature such as guaranteed output delivery [14,23] and
security with identifiable abort [30,31].

Partial Fairness for Coin-Tossing. For the special case of coin-tossing, it is known
by the classical result of Cleve [13] that complete fairness is impossible. However,
there are several results in the two-party and multi-party settings that deal with
achieving partial fairness—i.e. bias of 1/p—for the best possible p [1,6,8,11,34,35].

Lower Bounds. Lower bounds on number of rounds or computational assump-
tions necessary to achieve (partially) fair protocols have also been stud-
ied [15,16,24,25]. Complete primitives for fairness and primitives that imply
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secure coin-tossing were studied in [4,20]. Further works have elucidated prop-
erties of protocols necessary to achieve fairness [33].

2 Notation, Definitions and Preliminaries

Definitions of MPC with full security (i.e. fairness) and security-with-abort are
deferred to the full version. We follow [5] for the definitions of access structures
and secret sharing schemes. Given a set S ⊆ [n], denote by S := [n] \ S and by
P(S) the power set of S.

Useful Access Structures. We consider access structures over the set [n], as
well as the set [n]×{0, 1}. Let S0 := [n]×{0} and S1 := [n]×{1}. Access structure
Aa,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists of sets S+ ⊆ [n] × {0, 1}
with corresponding S := {i : (i, 0) or (i, 1) ∈ S+} that satisfy all of the following:
(1) 1 ∈ S; (2) |S+ ∩ S1| ≥ z; (3) |S+ ∩ S0| ≥ n′ − z.

Access structure Ab,z,n′−z,2n, for n′ ∈ [n] and z ∈ {0, . . . , n′}, consists of sets
S+ ⊆ [n] × {0, 1} with corresponding S := {i : (i, 0) or (i, 1) ∈ S+} that satisfy
all of the following: (1) 1 /∈ S; (2) |S+ ∩ S1| ≥ z; (3) |S+ ∩ S0| ≥ n′ − z.

More generally, let R be a set of distinguished elements of [n]. Let R′ ⊆ R
and let R′′ = R \ R′. Access structure AR,R′,z,n′,2n, for R′ ⊆ R, n′ ∈ [n] and
z ∈ {0, . . . , n′}, consists of sets S+ ⊆ [n] × {0, 1} with corresponding S := {i :
(i, 0) or (i, 1) ∈ S+} that satisfy all of the following: (1) R′ ⊆ S; (2) R′′ ∩S = ∅;
(3) |S+ ∩ S1| ≥ z; (4) |S+ ∩ S0| ≥ n′ − z.

See full version for constructions.

3 Symmetric Functions and n/2 Corruptions

Let F : {0, 1}n/2 × {0, 1}n/2 → {0, 1} be a symmetric Boolean func-
tion. Then we have that for all x ∈ {0, 1}n/2 and y ∈ {0, 1}n/2,
F (x,y) = fn/2,n/2(

∑n/2
i=1 xi,

∑n/2
i=1 yi), for some fn/2,n/2. Assume that fn/2,n/2 :

{0, . . . , n/2} × {0, . . . , n/2} can be fairly computed in the two-party setting and
let Πfn/2,n/2 denote the two-party protocol (with parties PL, PR) that fairly
computes fn/2,n/2(x, y). For x, y ∈ {0, . . . , n/2}, let Πfn/2,n/2(x, y) denote an
execution of Πfn/2,n/2 , where PL has input x and PR has input y. Let ax,y,r

fn/2,n/2

denote the backup value of PL in the r-th round of an execution of Πfn/2,n/2(x, y)
and let bx,y,r

fn/2,n/2
denote the backup value of PR in the r-th round of the same

execution of Πfn/2,n/2(x, y). In the following, p is set to p = 2 · (n/2 + 1).

Theorem 5. Let F , fn/2,n/2 be as above. Assume there is an efficient protocol
for computing fn/2,n/2 fairly in the two-party setting. Then for any n = poly(λ),
the protocol presented in Fig. 1 (and Fig. 2) is an efficient protocol for computing
F fairly in the n-party setting with n/2 or fewer corruptions.

The protocol in Fig. 1 uses a secret sharing scheme for access structure
Aa,z,n/2−z,2n and Ab,z,n/2−z,2n, defined in Sect. 2.
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Fig. 1. Fair, efficient, multiparty computation of F with n parties and n/2 or fewer
corruptions.
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Fig. 2. Reconstruction functionality with respect to p sets of secret shares.

Proof. Let T ⊆ [n], |T | = n/2 denote the set of corrupt parties. Assume WLOG
that 1 ∈ T . Sim applies the simulator Simfn/2,n/2 of the two-party protocol
Πfn/2,n/2 .

– Sim constructs the following adversary Afn/2,n/2 for Πfn/2,n/2 , playing the
same role as A.

• Afn/2,n/2 invokes A expecting its inputs x.
• Afn/2,n/2 sends inputs x =

∑
i∈T xi to the dealer of Πf .

• For r = 1, . . . , rounds, upon receiving backup value ar, set ax,r =
ar||0λ and az,r = 0 for z ∈ {0, . . . , n/2} \ {x}. For z ∈ {0, . . . , n/2},
secret share az,r using access structure Aa,z,n/2−z,2n, producing shares
[s̃b,z,r

i ]b∈{0,1},i∈[n]. Each party Pi holding input b receives shares
[s̃b,z,r

i ]z∈{0,...,n/2}.
• If all the parties in T abort, then Afn/2,n/2 aborts, otherwise it continues.
• If the final round rounds completes, Afn/2,n/2 submits shares for all

remaining parties in T to the ideal functionality and simulates an output
of out in return.

– Let Simfn/2,n/2 be the simulator for Afn/2,n/2 in the hybrid model.
– The simulator Sim interacts with the two-party protocol simulator Simfn/2,n/2

by invoking it on adversary Af with input x. It then receives a simulated
view for Afn/2,n/2 , containing its random coins and backup outputs. Having
received this view of Afn/2,n/2 , the simulator Sf can extract from it the view
of A in this execution, as it is implied by the view of Afn/2,n/2 . Specifically,
the randomness Afn/2,n/2 uses to share different secrets determines the shares
that the corrupted parties see. If Afn/2,n/2 does not abort before the final
reconstruction, Simfn/2,n/2 obtains from Afn/2,n/2 ’s view any inputs to the

functionality F
th,n/2
Recon,S,p. It uses the output out contained in the view (since

the last round was reached) to simulate the output of the ideal functionality
F

th,n/2
Recon,S,p. If some parties abort and the remaining parties re-submit their
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inputs to the ideal functionality, Simfn/2,n/2 can still use out to simulate the
output each time.

3.1 Implementing the Dealer and F
th,n/2
Recon,S,p

This is done similarly to Asharov et al. [3] and our exposition follows theirs. Fol-
lowing [3,7,8], we eliminate the trusted on-line dealer of our multiparty protocols
in a few steps using a few layers of secret-sharing schemes. In the first step, we
convert the on-line dealer to an off-line dealer. That is, we construct a proto-
col in which the dealer sends only one message to each party in an initialization
stage; the parties then interact in rounds using a broadcast channel (without the
dealer) and in each sub-round of round i each party learns its shares of the r-th
round. Specifically, in round r, party Pj learns a share in a secret sharing scheme
for access structure Aa,z,n/2−z,2n, Ab,z,n/2−z,2n, for every z ∈ {0, . . . , n/2} (we
call these shares Pj ’s shares of the inner secret-sharing scheme).

For this purpose, the dealer computes, in a preprocessing phase, the appro-
priate shares for the inner secret-sharing scheme. For each round, the shares of
each party Pj are shared in a special 2-out-of-2 secret-sharing scheme, where Pj

gets one of the two shares (called the mask). In addition, all parties (including
Pj) receive shares in a n/2 + 1-out-of-n secret-sharing scheme of the other share
of the 2-out-of-2 secret sharing. We call the resulting secret-sharing scheme the
outer (n/2 + 1)-out-of-n scheme (n/2 parties and the holder of the mask are
needed to reconstruct the secret).

The use of the outer secret-sharing scheme with threshold n/2 + 1 plays a
crucial role in eliminating the on-line dealer. On one hand, it guarantees that
an adversary, corrupting at most n/2 parties cannot reconstruct the shares of
round r before round r. On the other hand, at least n/2 parties must abort to
prevent the reconstruction of the outer secret-sharing scheme. Note that n/2
aborting parties can prevent the remaining parties from receiving their shares
and, indeed, in the description of the protocol, if n/2 parties abort, the remaining
parties no longer receive shares from the dealer. Finally, we replace the off-line
dealer by using a secure-with-abort and cheat-detection protocol computing the
functionality computed by the dealer.

To prevent corrupted parties from cheating, by e.g., sending false shares
and causing reconstruction of wrong secrets, every message that a party should
send during (any possible flow of) the execution of the protocol is signed in
the preprocessing phase (together with the appropriate round number and the
party’s index). In addition, the dealer sends a verification key to each of the
parties. To conclude, the off-line dealer gives each party the signed shares for
the outer secret-sharing scheme together with the verification key.

Whenever F
th,n/2
Recon,S,p is run in Steps 5a and 5b, all parties are honest, so it

can be trivially implemented. When F
th,n/2
Recon,S,p is run in Step 6, there may not be

an honest majority. In this case, however, it is the final round so the reconstruc-
tion protocol will output the same value, regardless of which subset of parties
participate (as long as the subset includes all the n/2 honest parties). Thus,
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the adversary may get its output early and abort to prevent the honest parties
to obtain output. The view of the adversary can be simulated since the ideal
functionality has already been called at this time. Moreover, the protocol simply
gets restarted until either no party aborts during the protocol (which happens
in the worst case when only honest parties are remaining).3 Therefore, the hon-
est parties are guaranteed to obtain their output. We emphasize that the ideal
functionality checks that the shares inputted by the parties are correctly authen-
ticated (and are those same shares that were distributed by the “dealer”). Note
also that corrupt parties may input an incorrect verification key for verifying
the authenticated inputs and shares. In this case, the MPC functionality will
partition the inputs according to the submitted verification key. Each party will
receive as output the evaluation of the functionality with respect to the inputs
of the set of parties who inputted the same verification key as it did.

4 Majority and n/2 + 1 Corruptions

We begin by presenting the protocol for computing n-party majority (Maj) in
Figs. 3 and 4. The protocol in Fig. 3 uses a secret sharing scheme for access
structure AR,R′,z,n′−z,2n, defined in Sect. 2. In the following, p is set to p = 8 ·
(3n/2 + 3).

Notation. Let T be the set of corrupted parties with corresponding input x,
where x is indexed by the elements of T . Let T = [n]\T be the set of uncorrupted
parties with corresponding input y, where y is indexed by the elements of T .
Let x :=

∑
i∈T xi and y :=

∑
i∈T yi. Let T ′ ⊆ T , |T ′| ≥ n/2 − 1 be the subset

of parties who do not submit valid inputs in Step 4. Let x+ =
∑

i∈T ′ xi, x− =∑
i∈T\T ′ xi.
Define f val

n1,n2
(x, y) where n1 + n2 = n, x ∈ {0, . . . , n1}, y ∈ {0, . . . , n2} and

val ∈ {0, . . . , 2} to be the function that outputs 1 if x + y + val ≥ n/2 + 1
and outputs 0 otherwise. If val = 0, we sometimes abbreviate by fn1,n2(x, y) =
f val

n1,n2
(x, y). Let Mf val

n1,n2
be the truth table corresponding to f val

n1,n2
. Define the

distribution XReal,m to be the uniform distribution over {0, . . . , m}.
Let a be a vector of length 4n + 12, indexed by tuples (R′, n′, z), where

R′ ⊆ R = {1, 2, 3}, n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}. On input x,
We define a function φ(x) that outputs a set of triples (R′, n′, z), such that
(R′, n′, z) ∈ φ(x) if there exists a subset W ⊆ T of size |W | = n′ such that
W ∩ R = R′ and a subset W ′ ⊆ T of size |W ′| = n′ such that z =

∑
i∈W ′ xi.

For any set T of size |T | ≤ n/2 + 1 and input x ∈ {0, 1}|T |, |φ(x)| is at most

3 We require an identifiable abort property to allow elimination of abort-
ing/misbehaving parties and restarting of the protocol. Similar properties were
needed in the work of [21]. They required secure computation with designated abort:
If the output of the protocol is ⊥, the parties restart without the lowest indexed
party. Also, if the protocol outputs a set S (indicating those parties whose inputs
were inconsistent), the set S is eliminated.
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Fig. 3. Fair, efficient, multiparty computation of Maj with n parties and n/2 + 1 or
fewer corruptions.

Fig. 4. Reconstruction functionality with respect to p sets of secret shares.
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a constant, deg, where deg ≤ 3 · 8 · 3 = 48. Define a0 (resp. a1) such that all
indeces in φ(x) are set to 0 (resp. 1) and all other indeces are set to ⊥.

For (R′, n′, z) ∈ φ(x), define pR′,n′,z(x) := Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1]
and pR′,n′,z(x) := 1 − pR′,n′,z(x). pR′,n′,z(x) denotes the probability that the
corrupt parties, using sets W,W ′ ⊆ T , where W ∩ R = R′, |W ′| = n′, and
z =

∑
i∈W ′ xi, reconstruct a 1. For (R′, n′, z) /∈ φ(x), define pR′,n′,z(x) := 1 and

pR′,n′,z(x) := 1.

Definition 1. We say that a setting of parameters (T, t,x, T ′, t′, x+, x−,a) is
valid if:

1. T ⊆ [n], n/2 − 1 ≤ |T | = t ≤ n/2 + 1.
2. T ′ ⊆ T , |T ′| = t′ ≥ n/2 − 1.
3. x ∈ {0, 1}|T |

4. x+ =
∑

i∈T ′ xi. x− =
∑

i∈T\T ′ xi,
5. Indeces of a in φ(x) are set to 0\1 and all other indeces are set to ⊥.

We say that a setting of parameters (T, t,x, T ′, t′, x+, x−) is valid if all the
above except (5) hold.

For every valid (T, t,x, T ′, t′, x+, x−), for k ∈ {0, . . . , n − t}, define the prob-
abilities px−,t,t′

y=k := Prx̂∼XReal,t′}[fx−
t′,n−t(x̂, y = k) = 1]. px−,t,t′

y=k corresponds to
the probability the honest parties output a 1 in the Real execution in rounds
prior to the designated round r∗, when the combined input of the honest parties
is y = k, the input of the t′ aborting parties is chosen from XReal,t′ , and the
input of the (t − t′) corrupt but non-aborting parties is x−.

For every valid (T, t,x, T ′, t′, x+, x−), define the row vectors Qx+,x−,a0 =
(qx+,x−,a0

y=n−t , . . . , qx+,x−,a0
y=0 ) and Qx+,x−,a1 = (qx+,x−,a1

y=n−t , . . . , qx+,x−,a1
y=0 ) indexed by

k ∈ {0, . . . , n − t} as follows:

qx+,x−,a0
y=k =

⎧
⎨

⎩

px−,t,t′
y=k if fx−

t′,n−t(x
+, y = k) = 1

px−,t,t′
y=k +

α·px−,t,t′
y=k

(1−α)·∏(R′,n′,z)(p
R′,n′,z(x))

) if fx−
t′,n−t(x

+, y = k) = 0

qx+,x−,a1
y=k =

⎧
⎨

⎩

px−,t,t′
y=k if fx−

t′,n−t(x
+, y = k) = 0

px−,t,t′
y=k +

α·(px−,t,t′
y=k −1)

(1−α)·∏(R′,n′,z) pR′,n′,z(x)
) if fx−

t′,n−t(x
+, y = k) = 1

For every valid (T, t,x, T ′, t′,a, x+, x−), such that a /∈ {a0,a1}, define the
row vectors Qx+,x−,a = (qx+,x−,a

y=n−t , . . . , qx+,x−,a
y=0 ), indexed by k ∈ {0, . . . , n − t}

as follows: Qx+,x−,a = (px−,t,t′
y=n−t, . . . , p

x−,t,t′
y=0 ).

Intuition. qx+,x−,a
y=k corresponds to the probability that the Ideal honest par-

ties receive an output of 1, when the simulator chooses its input to the Ideal
functionality from distribution Xx+,x−,a

ideal,t′ ,in the case that the adversary aborts
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in a round prior to the designated round r∗, the honest parties collectively hold
input y = k, the aborting parties hold input x+, the corrupted but non-aborting
parties hold input x−, and the view of the adversary consists of a. Our goal
is to set the values of qx+,x−,a0

y=k so that the distributions in the Ideal and Real
world are identical. Note, however, that the simulator does not know the value
of y. Therefore, the simulator can only sample from a single probability distri-
bution for all possible values of y, denoted Xx+,x−,a

ideal,t′ , and we must ensure that

the resulting distribution over outputs, corresponding to Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

,

produces the desired values of Qx+,x−,a = (qx+,x−,a
y=n−t , . . . , qx+,x−,a

y=0 ).

In the upcoming theorem, we show that setting Qx+,x−,a = (qx+,x−,a
y=n−t , . . . ,

qx+,x−,a
y=0 ) as described above, yields identical distributions in the Ideal/Real

worlds. Then, we must show that there exists a probability vector Xx+,x−,a
ideal,t′

such that Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

We observe that in some cases finding Xx+,x−,a
ideal,t′ as above is easy. Specifi-

cally, for every valid (T, t,x, T ′, t′,a, x+, x−), and for a /∈ {a0,a1}, Xx+,x−,a
ideal,t′ =

Xreal,t′ satisfies Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Theorem 6. Assume that for every valid setting of parameters (T, t,x, T ′,
t′, x+, x−,a), there exists a probability vector Xx+,x−,a

ideal,t′ such that

Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Then the protocol in Fig. 3 securely computes Maj for any n = poly(λ) (s.t. n ≥ 8)
and |T | ≤ n/2 + 1 corruptions.

Proof. We begin with a description of the simulator Sim:

– Sim invokes A expecting its inputs x, as sent to the dealer.
– Sim samples r∗ from a geometric distribution with parameter α.
– For every r = 1 to r∗ − 1

• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and R′ ⊆ R, sam-
ple x̂ ∼ Xreal,n−n′ and set ar,R′,n′,z := fn′,n−n′(z, x̂). Secret share
each ar,R′,n′,z||0n using access structure AR,R′,z,n′−z,2n, producing shares
[s̃b,R′,n′,z,2n

i ]b∈{0,1},i∈[n]. Each party Pi ∈ T holding input b receives shares
[s̃b,R′,n′,z,2n

i ].
• Fix the resulting view a, consisting of the ar,R′,n′,z values that can be

reconstructed by the adversary holding input x.
• If n/2 − 1 parties abort, Sim simulates the ideal functionality F

th,n/2+1
Recon,S,p .

Recall that S′ ⊆ S submit valid inputs for F
th,n/2+1
Recon,S,p to Sim. Let T ′ =

[n] \ S′, where |T ′| = t′. Let x+ =
∑

i∈T ′ xi and x− =
∑

i∈T\T ′ xi. Sim

chooses x̂ ∼ Xx+,x−,a
Ideal,t′ and submits x̂ + x− to the ideal functionality,
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receiving out in return. Note that the set S enjoys an honest majority,
and so we can compute F

th,n/2+1
Recon,S,p with fairness and guaranteed output

delivery. Sim returns out as the output of F
th,n/2+1
Recon,S,p .

– For r = r∗
• Sim sends input x to the ideal functionality computing ft,n−t and receives

out = ft,n−t(x, y). For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′}, and
R′ ⊆ R, set ar,R′,n′,z := out. Secret share each ar,R′,n′,z||0n using access
structure AR,R′,z,n′−z,2n, producing shares [s̃b,R′,n′,z,2n

i ]b∈{0,1},i∈[n]. Each
corrupt party Pi ∈ T holding input b receives shares [s̃b,R′,n′,z,2n

i ].
– For r > r∗

• For n′ ∈ {n/2 − 1, n/2, n/2 + 1}, z ∈ {0, . . . , n′} and R′ ⊆ R, set
ar,R′,n′,z := out. Secret share each ar,R′,n′,z||0n using access structure
AR,R′,z,n′−z,2n, producing shares [s̃b,R′,n′,z,2n

i ]b∈{0,1},v∈[n]. Each party Pi

holding input b receives shares [s̃b,R′,n′,z,2n
i ].

– Final share reconstruction. At this point, Sim holds the output out from the
ideal functionality. Furthermore, the same out will be reconstructed by any
set of parties of size n/2−1 or more that remain. Sim also obtains from A any
inputs to the functionality F

th,n/2+1
Recon,S,p in the last stage. It uses out to simulate

the output of the ideal functionality F
th,n/2+1
Recon,S,p . If some parties abort and the

remaining parties re-submit their inputs to the ideal functionality, Simf can
still use out to simulate the output each time.

In case the adversary aborts exactly at r∗, the simulator Sim sends the input
x to the trusted party, and so both parties receive ft,n−t(x, y), unlike the real
execution. Moreover, in case the adversary has aborted at round r < r∗, upon
viewing a at round i, the simulator Sim chooses input x̂ according to distribution
Xx+,x−,a

ideal,t′ and submits x̂ + x− to the ideal functionality.
We show that the joint distribution of the view of the adversary and the

output of the honest party is distributed identically in the hybrid and the
ideal executions. This is done easily in the case where n/2 − 1 or more par-
ties abort at some round r > r∗ (and thus, both parties receive the correct
output ft,n−t(x, y)). Now, we consider the case where r ≤ r∗. The view of the
adversary holding input x in the r-th round consists of: ar,R′,n′,z for all (R′, n′, z)
such that a(R′,n′,z) �= ⊥.

The view of the adversary until round i is distributed identically in both
executions. Thus, all that is left to show is that the view of the adversary in the
last round and the output of the honest party are distributed identically in both
executions. That is, we show that for every (a, b), where b ∈ {0, 1} and a is such
that all indeces in φ(x) are set to 0/1 and all other indeces are set to ⊥, it is
the case that:

Pr[(Viewr
hyb,Outhyb) = (a, b) | r ≤ r∗] = Pr[(Viewr

ideal,Outideal) = (a, b) | r ≤ r∗].
(4.1)

Formally, (Viewr
hyb,Outhyb) and (Viewr

ideal,Outideal) denote the entire view and
output in the hybrid and ideal execution. Note that Viewr

hyb,View
r
ideal actually
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consist of secret shares, whereas a denotes the reconstructed values for the
instances that can be opened by the adversary. We simplify our computations by
assuming that the views Viewr

hyb,View
r
ideal consist only of the values the adver-

sary can reconstruct given its set of shares, and not the shares themselves. Given
the “perfect privacy” property of sharing schemes (see [5]), if the probabilities
are the same with respect to the reconstructed values, then they will also be the
same with respect to the original view.

Implicit in our argument, is that—in the hybrid execution—the output b
of the honest parties in round r < rounds is independent of the view of the
adversary, represented by a. While this is trivially true in the two-party case, It
is not as obvious in our protocol, since when n/2 or n/2+1 parties are corrupted,
the adversary can open many instances of the secret sharing scheme. Specifically,
we must show that for the instance used in Step 4 to reconstruct—identified by
(R

′
, n − t′, ∗)—it is always the case that a(R

′
,n−t′,∗) = ⊥.

This will follow from the following property that is straightforward to check:

Property 1. Let t be the number of corruptions. If for some
(R1, n1, z1), (R2, n2, z2), a(R1,n1,z1) �= ⊥ and a(R2,n2,z2) �= ⊥ then

|R1 ∪ R2| + max(n1 − |R1|, n2 − |R2|) ≤ t.

Recall that the set of corrupted parties is denoted by T , and the set of
parties who abort and/or do not submit valid input in Step 4 is denoted T ′. Let
R′ = T ′ ∩ R. Let |T ′| = t′. Then parties reconstruct with S′ := T

′
, n′ = n − t′,

and R
′
= T

′ ∩ R. Note that {R′, R
′} form a partition of R. Note that corrupted

parties can open (R′, t′, ∗), while the parties in S′ can open (R
′
, n−t′, ∗). Assume

towards contradiction that the adversary can also open (R
′
, n − t′, ∗). Note that

(t′−|R′|)+(n−t′−|R′|) = n−|R| = n−3. Therefore, max(t′−|R′|, n−t′−|R′|) ≥
n/2 − 1. Thus,

|R′ ∪ R
′| + max(t′ − |R′|, n − t′ − |R′|) ≥ 3 + n/2 − 1 > n/2 + 1 ≥ t,

which contradicts Property 1.
We now show that Eq. (4.1) holds by considering all possible values for (a, b).

First, observe that

Pr[r = r∗ | r ≤ r∗] = α and Pr[r < i∗ | r ≤ i∗] = 1 − α.

In the following we will consider only valid parameter settings
(T, t,x, T ′, t′, x+, x−,a).

In case fx−
t′,n−t(x

+, y) = 0. Let a′ /∈ {a0,a1}. Let Sa′ be the set of positions in
a′ that are set to 0 and S′

a′ be the set of positions in a′ that are set to 1. a0,a1

are defined as before. For condensed notation, we let a0,a1,a
′ be indexed by

t = (R′, n′, z).
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View Real Ideal

(a0, 0) α · (1 − p
x−,t,t′
y ) + (1 − α)

∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) α + (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 0
y )

(a0, 1) α · p
x−,t,t′
y + (1 − α)

∏

t

(p
t
x) · p

x−,t,t′
y (1 − α)

∏

t

(p
t
x) · (qx+,x−,a 0

y )

(a ′, 0) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − q

x+,x−,a ′
y )

(a ′, 1) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (qx+,x−,a ′

y )

(a1, 0) (1 − α)
∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 1
y )

(a1, 1) (1 − α)
∏

t

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t

(p
t
x) · (qx+,x−,a 1

y )

In the table, we compute the probabilities of representative choices of (a, b)
in the Real and Ideal worlds:

It can be seen that for a′ /∈ {a0,a1} we get the following constraint:
qx+,x−,a′
y = px−,t,t′

y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx+,x−,a0
y = px−,t,t′

y +
α · px−,t,t′

y

(1 − α) · ∏
(R′,n′,z)(p

(R′,n′,z)
x )

)

and
qx+,x−,a1
y = px−,t,t′

y ,

which are satisfied according to our assumptions in the theorem.

In case fx−
t′,n−t(x

+, y) = 1. Let a′ /∈ {a0,a1}. Let Sa′ be the set of positions in
a′ that are set to 0 and S′

a′ be the set of positions in a′ that are set to 1. a0,a1

are defined as before. For condensed notation, we let a0,a1,a
′ be indexed by

t = (R′, n′, z).
In the table, we compute the probabilities of representative choices of (a, b)

in the Real and Ideal worlds:

View Real Ideal

(a0, 0) (1 − α)
∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 0
y )

(a0, 1) (1 − α)
∏

t

(p
t
x) · p

x−,t,t′
y (1 − α)

∏

t

(p
t
x)(q

x+,x−,a 0
y )

(a ′, 0) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (1 − q

x+,x−,a ′
y )

(a ′, 1) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (px−,t,t′

y ) (1 − α)
∏

t∈S
a ′

(p
t
x)

∏

t∈S′
a ′

(p
t
x) · (qx+,x−,a ′

y )

(a1, 0) α · (1 − p
x−,t,t′
y ) + (1 − α)

∏

t

(p
t
x) · (1 − p

x−,t,t′
y ) (1 − α)

∏

t

(p
t
x) · (1 − q

x+,x−,a 1
y )

(a1, 1) α · p
x−,t,t′
y + (1 − α)

∏

t

(p
t
x) · (px−,t,t′

y ) α + (1 − α)
∏

t

(p
t
x) · (qx+,x−,a 1

y )
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It can be seen that for a′ /∈ {a0,a1} we get the following constraint:
qx+,x−,a′
y = px−,t,t′

y . Thus, all constraints for a′ /∈ {a0,a1} can be satisfied

by setting Xx+,x−,a
ideal,t′ = Xreal,t′ .

Additionally, we obtain the constraints:

qx+,x−,a1
y = px−,t,t′

y +
α · (px−,t,t′

y − 1)

(1 − α) · ∏
(R′,n′,z) p

(R′,n′,z)
x

)

and
qx+,x−,a0
y = px−,t,t′

y .

Since Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a , the above constraints are satisfied.

This concludes the proof of Theorem 6.
The following lemma concludes the analysis of the protocol in Fig. 3:

Lemma 1. There exists α = 1/poly(n) such that for every valid setting of
parameters (T, t,x, T ′, t′, x+, x−,a), there exists a probability vector Xx+,x−,a

ideal,t′

such that Xx+,x−,a
ideal,t′ · M

fx−
t′,n−t

= Qx+,x−,a .

Proof. We begin by proving the lemma for the special case where t = n/2 + 1,
t′ = n/2 − 1 and x− = 1.

Define P
1,n/2+1,n/2−1
y = (p1,n/2+1,n/2−1

y=n/2−1 , . . . , p
1,n/2+1,n/2−1
y=0 ).

Note that the output of the function f1
n/2−1,n/2−1 is 1 in position [x, y] if the

sum of x+y ≥ n/2. In the following example we set n/2−1 = 3. The truthtable
of f1

n/2−1,n/2−1 is as follows:

y = 3 y = 2 y = 1 y = 0
x = 0 0 0 0 0
x = 1 1 0 0 0
x = 2 1 1 0 0
x = 3 1 1 1 0

And becomes the following in matrix form:

Mf1
n/2−1,n/2−1

=

⎡

⎢
⎢
⎣

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

⎤

⎥
⎥
⎦

Since the final column of the matrix is all 0, we can simply remove it, since
p
1,n/2+1,n/2−1
y=0 = 0, qx+,1,a0

y=0 = 0, and qx+,1,a1
y=0 = 0. Thus, Mf1

n/2−1,n/2−1
denotes

the above matrix with the final column deleted.
For every valid (T, t = n/2 + 1,x, T ′, t′ = n/2 − 1, x+, x− = 1,a) we need

to find a vector s ∈ R
n/2−1 such that sMf1

n/2−1,n/2−1
= Qx+,1,a and the vector
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s = s0, . . . , sn/2−1 further needs to correspond to a probability distribution–
i.e. we require that

∑n/2−1
k=0 sk = 1. In addition, we require that each sk is

non-negative.
Let M+

f1
n/2−1,n/2−1

denote the matrix obtained when a column vector of 1’s is

concatenated with the matrix Mf1
n/2−1,n/2−1

. For the case n/2−1 = 3, we obtain
the following:

M+
f1
n/2−1,n/2−1

=

⎡

⎢
⎢
⎣

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎤

⎥
⎥
⎦

We need to find a setting of α, such that α = 1/poly(n) and such that the
unique solution for s, where sM+

f1
n/2−1,n/2−1

= (1||Qx,1,0,a) is non-negative. In

the following, we argue that by setting α sufficiently small, but still 1/poly(n)
(yielding a protocol with 1/α · ω(log(λ)) = poly(n, λ) rounds), we can find such
a solution.

We know there is a non-negative solution s to sM+
f1
n/2−1,n/2−1

=

(1||P 1,n/2+1,n/2−1
y ). In fact, the solution is simply s = ( 1

n/2 , . . . , 1
n/2 ), as this

is the distribution Xreal,t′=n/2−1 over inputs x̂ ∈ {0, . . . , n/2− 1} that produces
the real output distribution P

1,n/2+1,n/2−1
y . Note that s has distance at least

2/n from any vector with negative entries (since each coordinate of s has magni-
tude 2/n). If (1||Qx−1,1,a) = (1||P 1,n/2+1,n/2−1

y ) + w, where w is a vector with
magnitude at most d, we have that

(s+s′)M+

f1
n/2−1,n/2−1

= sM+

f1
n/2−1,n/2−1

+s′M+

f1
n/2−1,n/2−1

= (1||P 1,n/2+1,n/2−1
y )+w,

where
s′ = w(M+

f1
n/2−1,n/2−1

)−1.

Now, the matrix (M+
f1
n/2−1,n/2−1

)−1 has the following form:

(M+
f1
n/2−1,n/2−1

)−1 =

⎡

⎢
⎢
⎣

1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤

⎥
⎥
⎦

In other words, the diagonal entries are set to 1, the second diagonal entries
are set to −1 and all other entries are set to 0. We upper bound the spectral
norm of (M+

f1
n/2−1,n/2−1

)−1 by
√

5 (see full version). Bounding the spectral norm

of (M+
f1
n/2−1,n/2−1

)−1 by
√

5 guarantees that since w has magnitude d, s′ has

magnitude at most d′ =
√

5 · d. By choosing d = 2√
5·n , we have that (s + s′)

has all non-negative entries. To ensure that w has magnitude at most d, it is



Revisiting Fairness in MPC 617

sufficient to ensure that each coordinate of w = (1||Qx−1,1,a) − (1||P 1
y ) has

magnitude at most d/
√

n. This can be achieved by setting α ≤ 1/2 such that

2α
∏

(R′,n′,z) p
(R′,n′,z)
x

≤ d/
√

n and
2α

∏
(R′,n′,z)(p

(R′,n′,z)
x )

≤ d/
√

n. (4.2)

Now, both p
(R′,n′,z)
x and p

(R′,n′,z)
x must be at least 1/(n/2 + 2), since if they

are not identically 0 (resp. identically 1), then there is at least one value of
ŷ ∈ {0, . . . , n − n′} for which fn′,n−n′(z, ŷ) = 1 (resp. fn′,n−n′(z, ŷ) = 0) and
since n′ ≥ n/2 − 1, Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 1] ≥ 1/(n/2 + 2) > 1/n
(resp. Prŷ∼{0,...,n−n′}[fn′,n−n′(z, ŷ) = 0] ≥ 1/(n/2 + 2) > 1/n). Since, further-

more, |φ(x)| ≤ deg,
∏

(R′,n′,z) p
(R′,n′,z)
x ≥ 1/ndeg and

∏
(R′,n′,z)(p

(R′,n′,z)
x ) ≥

1/ndeg. Thus, (4.2) is achieved by setting α ≤ d
2ndeg+0.5 . Finally, plugging in

d = 2√
5·n , we have that α ≤ 1√

5ndeg+1.5 . This results in a number of rounds
ω(log(λ)) · 1/α, which is polynomial in the security parameter λ and in the
number of parties n.

We now formalize the argument for any setting of t = n/2 + 1, t′ = n/2 − 1
and x− = 1. In fact, we see that the only thing that changes in the argument is
M+

f1
n/2−1,n/2−1

. We must prove that M+

fx−
t′,n−t

is invertible and that the spectral

norm of (M+

fx−
t′,n−t

)−1 is bounded by
√

5.

In fact, we will show something slightly more general: For any m,n and any
threshold th, consider the function f th

m,n : {0, . . . ,m} × {0, . . . , n} defined as:
f th

m,n(x, y) = 1 iff x + y ≥ th. For non-triviality, we assume that th > 0 and that
m + n ≥ th. Consider the matrix Mfth

m,n
.

We begin by removing from Mfth
m,n

columns that are all 0. I.e. columns
y = k such that m + k < th. The number of columns removed is �0 := th − m,
if th − m ≥ 1 and 0 otherwise.

We next remove from Mfth
m,n

any columns (y = k) that are all 1 (this is ok

since in this case px+,x−
y=k = 1, qx+,x−,a0

y=k = 1, and qx+,x−,a1
y=k = 1, and since the

column will be added back at the end). Column y = k will be all 1 if k ≥ th.
The number of columns removed is �1 := n − th + 1, if n − th + 1 ≥ 1 and 0
otherwise.

Now, we will show that the number of columns remaining ((n + 1) − �1 − �0)
is at least one fewer than the number of rows (m + 1). The number of columns
remaining is

(n + 1) − �1 − �0 ≤ (n + 1) − (th − m) − (n − th + 1)
= n + 1 − th + m − n + th − 1 = m.

Furthermore, if m + 1 > (n + 1) − �1 − �0 + 1, then there must be two identical
rows, one of which can be removed. Therefore, after removing the columns,
removing duplicate rows and adding a column of 1’s, M+

fth
m,n

has the form of a
(non-singular) lower triangular matrix with 1’s in each lower triangular entry
and dimension (n + 2 − �1 − �0) × (n + 2 − �1 − �0).
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4.1 Implementing the Dealer and F
th,n/2+1
Recon,S,p

Implementing the Dealer proceeds almost the same as the case of n/2 or fewer
corruptions described in Sect. 3.1. The only differences are that we use a differ-
ent access structure for the inner/outer secret-sharing schemes. Specifically, in
round r, party Pj learns a share in a secret sharing scheme for access structure
AR,R′,n′−z,2n, for every R′ ⊆ R, n′ ∈ [n], z ∈ {0, . . . , n′} (we call these Pj ’s
shares of the inner secret-sharing scheme).

For each round, the shares of each party Pj are then shared in a special
2-out-of-2 secret-sharing scheme, where Pj gets one of the two shares (called the
mask). In addition, all parties (including Pj) receive shares in a n/2+2-out-of-n
Shamir secret-sharing scheme of the other share of the 2-out-of-2 secret sharing.
We call the resulting secret-sharing scheme the outer (n/2 + 2)-out-of-n scheme
(since n/2 + 1 parties and the holder of the mask are needed to reconstruct the
secret).

To implement ideal functionality F
th,n/2+1
Recon,S,p , when F

th,n/2+1
Recon,S,p is run in Step 4,

not all parties remaining in the sets S and S′ are necessarily honest. However,
our restriction on n ≥ 8 ensures that S and S′ contains an honest majority.
Therefore, F

th,n/2+1
Recon,S,p can be implemented with a fully secure protocol (with fair-

ness and guaranteed output delivery). When F
th,n/2+1
Recon,S,p is run in Step 5, there

may not be an honest majority, and the same approach from the previous section
(Sect. 3.1) works.
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Abstract. Fully secure multiparty computation (MPC) allows a set of
parties to compute some function of their inputs, while guaranteeing
correctness, privacy, fairness, and output delivery. Understanding the
necessary and sufficient assumptions that allow for fully secure MPC is
an important goal. Cleve (STOC’86) showed that full security cannot be
obtained in general without an honest majority. Conversely, by Rabin
and Ben-Or (FOCS’89), assuming a broadcast channel and an honest
majority enables a fully secure computation of any function.

Our goal is to characterize the set of functionalities that can be com-
puted with full security, assuming an honest majority, but no broadcast.
This question was fully answered by Cohen et al. (TCC’16) – for the
restricted class of symmetric functionalities (where all parties receive
the same output). Instructively, their results crucially rely on agreement
and do not carry over to general asymmetric functionalities. In this work,
we focus on the case of three-party asymmetric functionalities, provid-
ing a variety of necessary and sufficient conditions to enable fully secure
computation.

An interesting use-case of our results is server-aided computation,
where an untrusted server helps two parties to carry out their compu-
tation. We show that without a broadcast assumption, the resource of
an external non-colluding server provides no additional power. Namely,
a functionality can be computed with the help of the server if and only if
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1 Introduction

In the setting of secure multiparty computation [9,16,28,38,39], a set of mutually
distrustful parties wish to compute a function f of their private inputs. The
computation should preserve a number of security properties even facing a subset
of colluding cheating parties, such as: correctness (cheating parties can only
affect the output by choosing their inputs), privacy (nothing but the specified
output is learned), fairness (all parties receive an output or none do), and even
guaranteed output delivery (meaning that all honestly behaving parties always
learn an output). Informally speaking, a protocol π computes a functionality f
with full security if it provides all of the above security properties.1

In the late 1980’s, it was shown that every function can be computed with
full security in the presence of malicious adversaries corrupting a strict minor-
ity of the parties, assuming the existence of a broadcast communication channel
(such a channel allows any party to reliably send its message to all other par-
ties, guaranteeing that all parties receive the same message) and pairwise private
channels (that can be established over broadcast using standard cryptographic
techniques) [9,38]. On the other hand, a well-known lower bound by Cleve [17]
shows that if an honest majority is not assumed, then fairness cannot be guar-
anteed in general (even assuming a broadcast channel). More specifically, Cleve’s
result showed that given a two-party, r-round coin-tossing protocol, there exists
an (efficient) adversarial strategy that can bias the output bit by Ω(1/r).

Conversely, a second well-known lower bound from the 1980’s shows that in
the plain model (i.e., without setup/proof-of-work assumptions), no protocol for
computing broadcast can tolerate corruptions of one third of the parties [22,34,37].

This leads us to the main question studied in this paper:

What is the power of the honest-majority assumption
in a model where parties cannot broadcast?

Namely, we set to characterize the set of n-party functionalities that can be
computed with full security over point-to-point channels in the plain model (i.e.,
without broadcast), in the face of malicious adversaries, corrupting up to t par-
ties, where n/3 ≤ t < n/2.

Cohen et al. [19] answered the above question for symmetric functionalities,
where all parties obtain the same common output from the computation. They
showed that, in the plain model over point-to-point channels, a function f can
be computed with full security if and only if f is (n − 2t)-dominated, i.e., there
exists a value y∗ such that any n − 2t of the inputs can determine the output of
f to be y∗ (for example, Boolean OR is 1-dominated since any input can be set
to 1, forcing the output to be 1). They further showed that there is no n-party,
�n/3�-secure, δ-bias coin-tossing protocol, for any δ < 1/2.

1 The notion of full security is formally captured via the real vs. ideal paradigm,
where the protocol is said to be secure if it emulates some ideal setting, in which the
capabilities of the adversary are very limited.
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The results in [19] leave open the setting of asymmetric functionalities, where
each party computes a different function over the same inputs. Such functionali-
ties include symmetric computations as a special case, but they are more general
since the output that each party receives may be considered private and some
parties may not even receive any output. Specifically, the lower bound from [19]
does not translate into the asymmetric setting, as it crucially relies on a consis-
tency requirement on the protocol, ensuring that all honest parties output the
same value.

Asymmetric computations are very natural in the context of MPC in general,
however, the following two use-cases are of particular interest:

Server-aided computation: Augmenting a two-party computation with a (poten-
tially untrusted) server that provides no input and obtains no output has
proven to be a very useful paradigm in overcoming lower bounds, even when
the server may collude with one of the parties as in the case of optimistic
fairness [6,14]. In the broadcast model, considering a non-colluding server is
a real game changer, as it enables two parties to compute any function with
full security. In our setting, where broadcast is not available, we explore to
what extent a non-colluding server can boost the security of two-party com-
putation. For the specific task of coin tossing we ask: “can two parties use a
non-colluding third party to help them toss a coin?”

Computation with solitary output: Halevi et al. [32] studied computations in
which only a single party obtains the output, e.g., a server that learns a
function of the inputs of two clients. The focus of [32] was on the broadcast
model with a dishonest majority, and they showed a variety of feasibility
and infeasibility results. In this work we consider a model without broadcast
but with an honest majority, which reopens the feasibility question. Fitzi
et al. [25] showed that if the three-party solitary-output functionality con-
vergecast2 can be securely computed facing a single corruption, then so can
the broadcast functionality; thus, proving the impossibility of securely com-
puting convergecast in our setting. In this work, we extend the exploration
of the set of securely computable solitary-output functionalities.

1.1 Split-Brain Simulatability

In this paper, we focus on general asymmetric three-party functionalities, where
party A with input x, party B with input y, and party C with input z, compute
a functionality f = (f1, f2, f3). The output of A is f1(x, y, z), the output of B
is f2(x, y, z), and the output of C is f3(x, y, z). We will also consider the special
cases of two-output functionalities where only A and B receive output (meaning
that f3 is degenerate), and of solitary-output functionalities where only A receives
output (meaning that f2 and f3 are degenerate).
2 Convergecast [25] is a three-party functionality where two of the parties start with

a non-Boolean input, and the receiver learns exactly one of the input values. The
receiver does not learn anything about the other input, and none of the senders
learns the receiver’s choice as well as the input of the other sender.
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Our main technical contribution is adapting the so called split-brain argu-
ment, which was previously used in the context of Byzantine agreement [11,12,21]
(where privacy is not required, but agreement must be guaranteed) to the setting
of MPC. Indeed, aiming at full security, we are able to broaden the collection of
infeasible functionalities. In particular, our results apply to the setting where the
parties do not necessarily agree on a common output.

In Sect. 1.3 we provide a more detailed overview of the split-brain attack,
however, the core idea can be explained as follows. Let f = (f1, f2, f3) be an
asymmetric (possibly randomized) three-party functionality and let π be a secure
protocol computing f over point-to-point channels, tolerating a single corruption.
For the sake of simplicity of the presentation, in the remaining of this introduc-
tion we only consider perfect security and functionalities with finite domain and
range. A formal treatment for general functionalities and computational security
is given in Sect. 3.1. Consider the following two scenarios:

– A corrupted (split-brain) party C playing two independent interactions: in the
first interaction, C interacts with A on input z1 acting as if it never received
any incoming messages from B, and in the second interaction, C interacts
with B on input z2, acting as if it never received any incoming messages from
A.

– A corrupted party A internally emulating a first interaction of the above split-
brain C: A interacts with B, ignoring all incoming messages from the honest
C; instead, A emulates in its head the above (first-interaction) C on input z1
(This part of the attack relies on the no-trusted-setup assumption, and on
the fact that emulating C requires no interaction with B).

Clearly, the view of party B is identically distributed in both of these scenarios;
hence, its output must be identically distributed as well. Note that by symmetry,
an attacker B can be defined analogously to the above A, causing the output of
an honest A to distribute as when interacting with the split-brain C.

By the assumed security of the protocol π, each of the three attacks described
above can be simulated in an ideal world where a trusted party computes f for
the parties. Since the only power the simulator has in the ideal world is to
choose the input for the corrupted party, we can capture the properties that the
functionality f must satisfy to enable the existence of such simulators via the
following definition.

Definition 1 (CSB-simulatability, informal). A three-party functionality
f = (f1, f2, f3) is C-split-brain (CSB) simulatable if for every quadruple
(x, y, z1, z2), there exist a distribution Px,z1 over the inputs of A, a distribu-
tion Qy,z2 over the inputs of B, and a distribution Rz1,z2 over the inputs of C,
such that

f1(x, y∗, z1) ≡ f1(x, y, z∗) and f2(x∗, y, z2) ≡ f2(x, y, z∗),

where x∗ ← Px,z1 , y∗ ← Qy,z2 , and z∗ ← Rz1,z2 .
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1.2 Our Results

Using the notion of split-brain simulatability, mentioned in Sect. 1.1, we present
several necessary conditions for an asymmetric three-party functionality to be
securely computable without broadcast while tolerating a single corruption. We
also present a sufficient condition for two-output functionalities (including soli-
tary output functionalities as a special case); the latter result captures and gener-
alizes previously known feasibility results in this setting, including 1-dominated
functionalities [18,19] and fair two-party functionalities [5]. Examples illustrat-
ing the implications of these theorems for different functionalities is provided in
Table 1.

Impossibility Results. Our first impossibility result asserts that CSB simulata-
bility is a necessary condition for securely computing a three-party functionality
in our setting.

Theorem 1 (necessity of split-brain simulatability, informal). A three-
party functionality that can be securely computed over point-to-point channels,
tolerating a single corruption, must be CSB simulatable.

We can define A-split-brain and B-split-brain simulatability analogously, thus
providing additional necessary conditions for secure computation. For a formal
statement and proof we refer the reader to Sect. 3.1.

To illustrate the usefulness of the theorem, consider the two-output function-
ality where f1 = f2 are defined as f1 (x, y, z) = (x ∧ y) ⊕ z. Note that since f3
is degenerate, this functionality is not symmetric and therefore the lower bound
from [19] does not rule it out. We next show that f is not CSB simulatable, and
hence, cannot be securely computed. Clearly, input 0 for A and C will fix the
output to be 0, whereas input 0 for B and input 1 for C will fix the output to be
1. The CSB simulatability of f would require that there exists distributions for
sampling x∗ and y∗ such that

0 ≡ f1(0, y∗, 0) ≡ f1(x∗, 0, 1) ≡ 1.

This leads to a contradiction.
Our second result, is in the server-aided model, where only A and B provide

input and receive output. We show that in this model, a functionality can be
computed with the help of C if and only if it can be computed without C. In the
theorem below we denote by λ the empty string.

Theorem 2 (server-aided computation is as strong as two-party com-
putation, informal). Let f be a three-party functionality where C has no input
and no output. Then, f can be securely computed over point-to-point channels
tolerating a single corruption if and only if the induced two-party functionality
g(x, y) = f(x, y, λ) can be computed with full security.

An immediate corollary from Theorem 2 is that a non-colluding third party
cannot help the two parties to toss a fair coin. In fact, if C cannot attack the
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protocol (i.e., C cannot bias the output coin), then the attack that is guaranteed
by Cleve [17] (on the implied two-party protocol) can be directly translated to an
attack on the three-party protocol, corrupting either A or B. Stated differently,
either A or B can bias the output by Ω (1/r), where r is the number of rounds
in the protocol. However, the above argument does not deal with protocols that
allow a corrupt C to slightly bias the output. For example, one might try to
construct a protocol where every party (including C) can bias the output by at
most 1/r2. We strengthen the result for coin tossing, showing that this is in fact
impossible.

Theorem 3 (implication to coin tossing, informal). Consider a three-
party, two-output, r-round coin-tossing protocol. Then, there exists an adversary
corrupting a single party that can bias the output by Ω (1/r).

As a result, letting A and B run the protocol of Moran et al. [36] constitutes an
optimally fair (up to a constant) coin-tossing protocol.

We note that using a standard player-partitioning argument, the impossibil-
ity result extends to n-party r-round coin-tossing protocols, where two parties
receive the output. Specifically, there exists an adversary corrupting �n/3� par-
ties that can bias the output by Ω (1/r). Further, using [19, Lem. 4.10] we rule
out any non-trivial n-party coin-tossing where three parties receive the output.

Another immediate corollary from Theorem 2 is that two-output functionali-
ties that imply coin-tossing are not securely computable, even if C has an input.
For example, the XOR function (x, y, z) 	→ x⊕y⊕z is not computable facing one
corruption. For a formal treatment of server-aided computation, see Sect. 3.2.

Our third impossibility result presents two functionalities that are not cap-
tured by Theorems 2 and 3. Interestingly, unlike the previous results, here we
make use of the privacy requirement on the protocol for obtaining the proof. We
refer the reader to Sect. 1.3 below for an intuitive explanation, and Sect. 3.3 for
a formal proof.

Theorem 4 (Informal). Let f be a solitary-output three-party functionality
where f1 (x, y, z) = (x ∧ y) ⊕ z (equivalently, f1(x, y, z) = (x ⊕ y) ∧ z). Then,
f cannot be securely computed over point-to-point channels tolerating a single
corruption.

Feasibility Results. We proceed to state our sufficient condition. We present a
class of two-output functionalities f that can be computed with full security.
Interestingly, our result shows that if f is CSB simulatable, then under a simple
condition that a related two-party functionality needs to satisfy, the problem is
reduced to the two-party case. In the related two-party functionality, the first
party holds x and z1, while the second party holds y and z2, and is defined as
f ′((x, z1), (y, z2)) = f (x, y, z∗), where z∗ ← Rz1,z2 is sampled as in the require-
ment of CSB simulatability.

Roughly, we require that there exist two distributions, for z1 and z2 respec-
tively, such that the input z1 can be sampled in a way that fixes the distribution
of the output of f ′ to be independent of z2, and similarly, that the input z2
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can be sampled in a way that fixes the distribution of the output of f ′ to be
independent of z1. Specifically, we prove the following.

Theorem 5 (Informal). Let f = (f1, f2) be a CSB simulatable three-
party, two-output functionality. Define the two-party functionality f ′ as
f ′ ((x, z1), (y, z2)) = f(x, y, z∗), where z∗ ← Rz1,z2 .

Assume that there exists a randomized two-party functionality g = (g1, g2)
and two distributions R1 and R2 over C’s inputs such that for every x, y, z ∈
{0, 1}∗ it holds that g(x, y) ≡ f ′((x, z1), (y, z)) ≡ f ′((x, z), (y, z2)), where z1 ←
R1 and z2 ← R2.

If g can be securely computed with full security then f can be securely computed
with full security over point-to-point channels tolerating a single corruption.

The idea behind the protocol is as follows. First, by the honest-majority
assumption, the parties can compute f with guaranteed output delivery assum-
ing a broadcast channel [38]. By [18] it follows that they can compute f with
fairness without using broadcast. If the parties receive an output, they can ter-
minate; otherwise, A and B compute g using their inputs, ignoring C in the
process (even if it is honest).

Intuitively, the existence of R1 and R2 allows the simulators of a corrupt A
or a corrupt B, to “force” a computation of g in the ideal world of f ; that is, the
output will be independent of the input of C. To see this, consider a corrupt A and
let z1 ← R1. Then, by the CSB simulatability assumption, sending x∗ ← Px,z1

to the trusted party results in the output being

f (x∗, y, z) ≡ f (x, y, z∗) ≡ f ′((x, z1), (y, z)) ≡ g(x, y),

where z∗ ← Rz1,z.
In Sect. 1.3 below we give a more detailed overview of the proof. In Sect. 4

we present the formal statement and proof of the theorem.
We briefly describe a few classes of functions that are captured by Theorem 5.

First, observe that the class of functionalities satisfying the above conditions
contains the class of 1-dominated functionalities [19]. To see this, notice that x∗,
y∗, and z∗ can be sampled in a way that always fixes the output of f to be some
value w∗. Then, any choice of R1 and R2 will do. Furthermore, observe that the
resulting two-party functionality g will always be the constant function, with
the output being w∗.

Another class of functions captured by the theorem is the class of fair two-
party functionalities. For such functionalities the distributions Rz1,z2 , R1, and
R2 can be degenerate, as z∗, z1, and z2 play no role in the computation of f and
f ′. Additionally, taking x∗ = x and y∗ = y with probability 1 will satisfy the
CSB simulatability constraint.

Next, we show that the class of functionalities satisfying the conditions of
Theorem 5 includes functionalities that are not 1-dominated. Consider as an
example the solitary XOR function f(x, y, z) = x⊕ y ⊕ z. Note that for solitary-
output functionalities the two-party functionality g can always be securely com-
puted assuming oblivious transfer [33]. Furthermore, f is CSB simulatable since
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we can sample y∗ and z∗ uniformly at random. In addition, taking R1 and R2

to output a uniform random bit as well will satisfy the conditions of Theorem 5.
Finally, there are even two-output functionalities that are not 1-dominated,

yet are still captured by Theorem 5. For example, consider the following three-
party variant of the GHKL function [29], denoted 3P-GHKL: let f = (f1, f2),
where f1, f2 : {0, 1, 2} × {0, 1} × {0, 1} 	→ {0, 1}. The functionality is defined by
the following two matrices

M0 =

⎛
⎜⎝

0 1
1 0
1 1

⎞
⎟⎠ M1 =

⎛
⎜⎝

1 0
0 1
1 1

⎞
⎟⎠

where f1(x, y, z) = f2(x, y, z) = Mz (x, y). That is, A’s input determines a row,
B’s input determines a column, and C’s input determines the matrix. For the
above functionality, sampling y∗ and z∗ uniformly at random, and taking x∗ = x
if x = 2 and a uniform bit otherwise, will always generate an output that is equal
to 1 if x = 2 and a uniform bit otherwise. See Sect. 4.1 for more details.

Table 1. Summarizing the feasibility of interesting three-party functionalities tolerat-
ing one corruption. The second column considers the solitary case where only A receives
the output, the third the two-output case where both A and B receive the same output,
and the last column the case where all parties receive the same output.

functionality A outputs A,B output A,B,C output

x ∧ y ∧ z ✓ [18] ✓ [18] ✓ [18]

(x ⊕ y) ∧ z
(x ∧ y) ⊕ z

✗ Theorem 4 ✗ Theorem 1 (also 4) ✗ [19] (also Theorem 1, 4)

x ⊕ (y ∧ z)
x ∧ (y ⊕ z)
x ⊕ y ⊕ z

✓ Theorem 5 ✗ Theorem 2 ✗ [19] (also Theorem 2)

3P-GHKL ✓ Theorem 5 ✓ Theorem 5 ✗ [19]

coin tossing
δ-bias

✓ δ = 0 (trivial)
✗

✓

δ = o(1/r), Theorem 3
δ = Θ(1/r) [36]

✗ δ < 1/2 [19]

1.3 Our Techniques

We now turn to describe our techniques, starting with our impossibility results.
The core argument in all of our proofs, is the use of an adaptation of the split-
brain argument [11,12,21] to the MPC setting.

The C-split-brain argument. In the following, let f be a three-party functional-
ity and let π be a protocol computing f with full security over point-to-point
channels, tolerating a single corrupted party. Consider the following three attack-
scenarios with inputs x, y, z1, z2 depicted in Fig. 1.
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Fig. 1. Three adversaries of the C-split-brain attack. The shaded yellow areas in each
scenario correspond to the (virtual) parties the adversary controls.

Scenario 1: Parties A and B both play honestly on inputs x and y respectively.
The adversary corrupts C and applies the split-brain attack, that is, it emu-
lates in its head two virtual copies of C, denoted CA and CB. CA interacts
with A as an honest C would on input z1 as if it never received messages from
B, and CB interacts with B as an honest C would on input z2 as if it never
received messages from A.
By the assumed security of π, there exists a simulator for the corrupted C.
This simulator defines a distribution over the input it sends to the trusted
party. Thus, the outputs of A and B in this case must equal to f1(x, y, z∗) and
f2(x, y, z∗), respectively, where z∗ is sampled according to some distribution
that depends only on z1 and z2.

Scenario 2: Party A plays honestly on input x and party C plays honestly on
input z1. The adversary corrupts party B, ignoring all incoming messages
from C and not sending it any messages. Instead, the adversary emulates in
its head the virtual party CB as in Scenario 1, that plays honestly on input
z2 as if it never received any message from A. Additionally, the adversary
instructs B to play honestly in this setting.
As in Scenario 1, by the assumed security of π, the output of A in this case
must equal f1(x, y∗, z1), where y∗ is sampled according to some distribution
that depends only on y and z2.

Scenario 3: This is analogous to Scenario 2. Party B plays honestly on input
y and party C plays honestly on input z2. The adversary corrupts party
A, ignoring all incoming messages from C and not sending it any messages.
Similarly to Scenario 2, the adversary emulates in its head the virtual CA,
that plays honestly on input z1 as if it never received any message from B,
and instructs A to plays honestly in this setting.
As in the previous two scenarios, the output of B must equal f2(x∗, y, z2),
where x∗ is sampled according to some distribution that depends only on x
and z1.

Observe that the view of the honest A in Scenario 1 is identically distributed
as its view in Scenario 2; hence the same holds with respect to its output, i.e.,
f1(x, y∗, z1) ≡ f1(x, y, z∗). Similarly, the view of the honest B in Scenario 1 is
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identically distributed as its view Scenario 3; hence, f2(x∗, y, z2) ≡ f2(x, y, z∗).
This proves the necessity of C-split-brain simulatability (i.e., Theorem 1).

The Four-Party Protocol. A nice way to formalize the above argument is by
constructing a four-party protocol π′ from the three-party protocol π, where
two different parties play the role of C (see Fig. 2). In more detail, define the
four-party protocol π′, with parties A′, B′, C′

A, and C′
B, as follows. Party A′

follows the code of A, party B′ follows the code of B, and parties C′
A and C′

B

follow the code of C.
The parties are connected on a path where (1) C′

A is the leftmost node, and is
connected only to A′, (2) C′

B is the rightmost node, and is connected only to B′,
and (3) A′ and B′ are also connected to each other. The second communication
line of party C′

A is “disconnected” in the sense that C′
A is sending the messages as

instructed by the protocol, but the messages arrive at a “sink” that does not send
any messages back. Stated differently, the view of C′

A corresponds to the view of
an honest C in π that never received any message from B. Similarly, the second
communication line of party C′

B is “disconnected,” and its view corresponds to
the view of an honest C in π that never receives any message from A.

Fig. 2. The induced four-party protocol

Server-Aided Computation. We now make use of the four-party protocol to sketch
the proof of Theorem 2. Recall that here we consider the server-aided model,
where C (the server) has no input and obtains no output. Observe that under the
assumption that π securely computes f , it follows that the four-party protocol
π′ correctly computes the two-output four-party functionality f ′ (x, y, λ, λ) ..=
f(x, y, λ), where λ is the empty string, as otherwise C could emulate C′

A and C′
B

in its head and force A and B to output an incorrect value.
Next, consider the following two-party protocol π̂ where each of two pairs

{A′,C′
A} and {B′,C′

B}, is emulated by a single entity, Â and B̂ respectively, as
depicted in Fig. 3. Observe that the protocol computes the two-party function-
ality g(x, y) ..= f ′ (x, y, λ, λ) = f(x, y, λ). Furthermore, it computes g securely,
since any adversary for the two-party protocol directly translates to an adver-
sary for the three-party protocol corrupting either A or B. Moreover, since C
does not have an input, the simulators of those adversaries in π can be directly
translated to simulators for the adversaries in π̂. Thus, f can be computed with
the help of C if and only if it can be computed without C.

The proof of Theorem 3, i.e., that the optimal bias for the server-aided coin-
tossing protocol is Θ (1/r), extends the above analysis. We show that for any
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Fig. 3. The induced two-party protocol

r-round server-aided coin-tossing protocol π there exists a constant c and an
adversary that can bias the output by at least 1/cr. Roughly, assuming that
party C cannot bias the output of π by more than 1/cr, the output of A′ and B′

in the four-party protocol is a common bit that is (1/cr)-close to being uniform.
Therefore, the same holds with respect to the outputs of Â and B̂ in the two-party
protocol. Now, we can apply the result of Agrawal and Prabhakaran [1], which
generalizes Cleve’s [17] result to a general two-party sampling functionality. Their
result provides an adversary for the two-party functionality that can bias by 1/dr
for some constant d. Finally, we can emulate their adversary in the three party
protocol as depicted in Scenarios 2 and 3. For sufficiently large c (specifically,
c > 2d), the bias resulting from emulating the adversaries for the two-party
protocol will be at least 1/cr.

Impossibility Based on Privacy. We next sketch the proof of Theorem 4. That
is, the solitary-output functionalities f1(x, y, z) = (x ∧ y) ⊕ z and f1 (x, y, z) =
(x⊕y)∧z cannot be computed in our setting. We prove it only for the case where
the output of A is defined to be f1 (x, y, z) = (x∧y)⊕z. The other case is proved
using a similar analysis. The proof starts from the C-split-brain argument used
in the proof of Theorem 1. Assume for the sake of contradiction that π computes
f with perfect security. First, let us consider the following two scenarios.

– C is corrupted as in Scenario 1, i.e., it applies the split-brain attack with inputs
z1 and z2. By the security of π, the output of A in this case is (x ∧ y) ⊕ z∗,
for some z∗ that is sampled according some distribution that depends on z1
and z2.

– B is corrupted as in Scenario 2, i.e., it imagines that it interacts with CB with
input z2 that does not receive any message from A. In this case, the output
of A is (x ∧ y∗) ⊕ z1, where z1 is the input of the real C, and y∗ is sampled
according some distribution that depends on y and z2.

By Theorem 1 these two distributions are identically distributed for all x ∈
{0, 1}. Notice that setting x = 0 yields z∗ = z1 and that setting x = 1 yields
y∗ ⊕ z1 = y ⊕ z∗, hence y∗ = y. Therefore, the output of A in both scenarios is
(x ∧ y) ⊕ z1.

Finally, consider an execution of π over random inputs y for B and z for C,
where A is corrupted as in Scenario 2, and it emulates C′

A on input z1. Since its
view is exactly the same as in the other two scenarios, it can compute (x∧y)⊕z1.
However, in this scenario A can choose x = 1 and z1 = 0 and thus learn y. In the
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ideal world, however, A cannot guess y with probability better than 1/2, as the
output it sees is (x ∧ y) ⊕ z for random y and z. Hence, we have a contradiction
to the security of π.

A Protocol for Computing Certain Two-Output Functionalities. Finally, We
describe the idea behind the proof of Theorem 5. First, by the honest-majority
assumption, the protocol of Rabin and Ben-Or [38] computes f assuming a
broadcast channel ; by [18] it follows that f can be computed with fairness over
a point-to-point network. We now describe the protocol. The parties start by
computing f with fairness. If they receive outputs, then they can terminate, and
output what they received. If the protocol aborts, then A and B compute g with
their original inputs using a protocol that guarantees output delivery (such a pro-
tocol exists by assumption), and output whatever outcome is computed. Clearly,
a corrupt C cannot attack the protocol. Indeed, it does not gain any information
in the fair computation of f ; hence, if it aborts in this phase then the output of
A on input x and B on input y will be g(x, y) = f ′((x, z1), (y, z)) = f(x, y, z∗),
where z1 ← R1 and z∗ ← Rz1,z.

We next consider a corrupt A (the case of a corrupt B is analogous). The idea
is to take the distribution over the inputs used by the two-party simulator, and
translate it into an appropriate distribution for the three-party simulator. That
is, regardless of the input of C, the output of the honest party will be distributed
exactly the same as in the ideal world for the two-party computation. To see how
this can be done, consider a sample z1 ← R1 and let x′ be the input sent by
the two-party simulator to its trusted party. The three-party simulator will send
to the trusted party the sample x∗ ← Px′,z1 . Then, by the CSB simulatability
constraint, it follows that the output will be f (x∗, y, z) ≡ f (x′, y, z∗), where
z∗ ← Rz1,z. However, by requirement from the two-party functionality g, it
follows that g(x′, y) ≡ f (x′, y, z∗); hence, the output in the three-party ideal-
world of f , is identically distributed as in the two-party ideal-world of g.

1.4 Additional Related Work

The split-brain argument has been used in the context of Byzantine agreement
(BA) to rule out three-party protocols tolerating one corruption in various set-
tings: over asynchronous networks [12] and partially synchronous networks [21],
even with trusted setup assumptions such a public-key infrastructure (PKI), as
well as over synchronous networks with weak forms of PKI [11]. The argument
was mainly used by considering three parties (A,B,C) where party A starts with
0, party B starts with 1, and party C plays towards A with 0 and towards B
with 1. By the validity property of BA it is shown that A must output 0 and B
must output 1, which contradicts the agreement property. Our usage of the split-
brain argument is different as it considers (1) asymmetric computations where
parties do not agree on the output (and so we do not rely on violating agree-
ment) and (2) privacy-aware computations that do not reveal anything beyond
the prescribed output (as opposed to BA which is a privacy-free computation).

For the case of symmetric functionalities Cohen et al. [19] showed that f(x, y, z)
can be securely computed with guaranteed output delivery over point-to-point
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channels if and only if f is 1-dominated. Their lower bound followed the clas-
sical Hexagon argument of Fischer et al. [22] that was used for various consen-
sus problems. Starting with a secure protocol π for f tolerating one corruption,
they constructed a sufficiently large ring system where all nodes are guaran-
teed to output the same value (by reducing to the agreement property of f).
Since the ring is sufficiently large (larger than the number of rounds in π), informa-
tion from one side could not reach the other side. Combining these two properties
yields an attacker that can fix some output value on one side of the ring, and force
all nodes to output this value—in particular, when attacking π, the two honest par-
ties participate in the ring (without knowing it) and so their output is fixed by the
attacker. We note that this argument completely breaks when considering asym-
metric functionalities, since it no longer holds that the nodes on the ring output
the same value.

Cohen and Lindell [18] showed that any functionality that can be computed
with guaranteed output delivery in the broadcast model can also be computed
with fairness over point-to-point channels (using detectable broadcast proto-
cols [23,24]); as a special case, any functionality can be computed with fairness
assuming an honest majority. Indeed, our lower bounds do not hold when the
parties are allowed to abort upon detecting cheats, and rely on robustness of the
protocol.

Recently, Garay et al. [26] showed how to compute every function in the
honest-majority setting without broadcast or PKI, by restricting the power of
the adversary in a proof-of-work fashion. This result falls outside our model as
we consider the standard model without posing any restrictions on the resources
of the adversary.

The possibility of obtaining fully secure protocols for non-trivial functions
in the two-party setting (i.e., with no honest majority) was first investigated
by Gordon et al. [29]. The showed that, surprisingly, such protocols do exist,
even for functionalities with an embedded XOR. The feasibility and infeasibility
results of [29] were substantially generalized in the works [4,35]. The set of
Boolean functionalities that are computable with full security was characterized
in [5].

The breakthrough result of Moran et al. [36], who gave an optimally fair two-
party coin-tossing protocol, paved the way to a long line of research on optimally
fair coin-tossing. Positive results for the multiparty setting (with no honest major-
ity) where given [2,7,13,20,30] alongside some new lower-bounds [8,31].

Organization

In Sect. 2 we present the required preliminaries and formally define the model
we consider. Then, in Sect. 3 we present our impossibility results. Finally, in
Sect. 4 we prove our positive results.
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2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and
distributions, lowercase for values, and we use bold characters to denote vectors.
For n ∈ N, let [n] = {1, 2 . . . n}. For a set S we write s ← S to indicate that s is
selected uniformly at random from S. Given a random variable (or a distribution)
X, we write x ← X to indicate that x is selected according to X. A ppt is
probabilistic polynomial time, and a pptm is a ppt (interactive) Turing machine.
We let λ be the empty string.

A function μ : N → [0, 1] is called negligible, if for every positive polynomial
p(·) and all sufficiently large n, it holds that μ(n) < 1/p(n). For a randomized
function (or an algorithm) f we write f(x) to denote the random variable induced
by the function on input x, and write f(x; r) to denote the value when the
randomness of f is fixed to r. For a 2-ary function f and an input x, we denote
by f(x, ·) the function fx(y) ..= f(x, y). Similarly, for an input y we let f(·, y) be
the function fy(x) ..= f(x, y). We extend the notations for n-ary functions in a
straightforward way.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of ran-
dom variables indexed by a ∈ Dn and n ∈ N, where Dn is a domain that might
depend on n. The statistical distance between two finite distributions is defined
as follows.

Definition 2. The statistical distance between two finite random variables X
and Y is

SD (X,Y ) =
1
2

∑
a

|Pr [X = a] − Pr [Y = a]| .

For a function ε : N 	→ [0, 1], the two ensembles X = {Xa,n}a∈Dn,n∈N and
Y = {Ya,n}a∈Dn,n∈N are said to be ε-close, if for all large enough n and a ∈ Dn,
it holds that

SD (Xa,n, Ya,n) ≤ ε(n),

and are said to be ε-far otherwise. X and Y are said to be statistically close,

denoted X
S≡ Y , if they are ε-close for some negligible function ε. If X and Y

are 0-close then they are said to be equivalent, denoted X ≡ Y .

Computational indistinguishability is defined as follows.

Definition 3. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two
ensembles. We say that X and Y are computationally indistinguishable, denoted

X
C≡ Y , if for every non-uniform ppt distinguisher D, there exists a negligible

function μ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1] − Pr [D(Ya,n) = 1]| ≤ μ(n).
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2.2 The Model of Computation

We provide the basic definitions for secure multiparty computation according
to the real/ideal paradigm, for further details see [27]. Intuitively, a protocol is
considered secure if whatever an adversary can do in the real execution of proto-
col, can be done also in an ideal computation, in which an uncorrupted trusted
party assists the computation. For concreteness, we present the model and the
security definition for three-party computation with an adversary corrupting a
single party, as this is the main focus of this work. We refer to [27] for the general
definition.

The Real Model
A three-party protocol π is defined by a set of three ppt interactive Turing
machines A, B, and C. Each Turing machine (party) holds at the beginning of
the execution the common security parameter 1κ, a private input, and random
coins. The adversary Adv is a non-uniform ppt interactive Turing machine,
receiving an auxiliary information aux ∈ {0, 1}∗, describing the behavior of a
corrupted party P ∈ {A,B,C}. It starts the execution with input that contains
the identity of the corrupted party, its input, and an additional auxiliary input
aux.

The parties execute the protocol over a synchronous network. That is, the
execution proceeds in rounds: each round consists of a send phase (where parties
send their messages for this round) followed by a receive phase (where they
receive messages from other parties). The adversary is assumed to be rushing,
which means that it can see the messages the honest parties send in a round
before determining the messages that the corrupted parties send in that round.

We consider a fully connected point-to-point network, where every pair of
parties is connected by a communication line. We will consider the secure-
channels model, where the communication lines are assumed to be ideally private
(and thus the adversary cannot read or modify messages sent between two hon-
est parties). We assume the parties do not have access to a broadcast channel,
and no preprocessing phase (such as a public-key infrastructure that can be used
to construct a broadcast protocol) is available. We note that our upper bounds
(protocols) can also be stated in the authenticated-channels model, where the
communication lines are assumed to be ideally authenticated but not private
(and thus the adversary cannot modify messages sent between two honest par-
ties but can read them) via standard techniques, assuming public-key encryp-
tion. On the other hand, stating our lower bounds assuming secure channels will
provide stronger results.

Throughout the execution of the protocol, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted party receive its
instructions from the adversary. The adversary is considered to be malicious,
meaning that it can instruct the corrupted party to deviate from the protocol in
any arbitrary way. Additionally, the adversary has full-access to the view of the
corrupted party, which consists of its input, its random coins, and the messages
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it sees throughout this execution. At the conclusion of the execution, the honest
parties output their prescribed output from the protocol, the corrupted party
outputs nothing, and the adversary outputs a function of its view (containing
the views of the corrupted party). In some of our proofs we consider semi-honest
adversaries that always instruct the corrupted parties to honestly execute the
protocol, but may try to learn more information than they should.

We denote by REALπ,Adv(aux) (κ, (x, y, z)) the joint output of the adversary
Adv (that may corrupt one of the parties) and of the honest parties in a random
execution of π on security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗, and an
auxiliary input aux ∈ {0, 1}∗.

The Ideal Model
We consider an ideal computation with guaranteed output delivery (also referred
to as full security), where a trusted party performs the computation on behalf
of the parties, and the ideal-world adversary cannot abort the computation. An
ideal computation of a three-party functionality f = (f1, f2, f3), with f1, f2, f3 :
({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security parameter κ, with
an ideal-world adversary Adv running with an auxiliary input aux and corrupting
a single party P proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input
to the trusted party. The adversary Adv sends a value v from its domain as
the input for the corrupted party. Let (x′, y′, z′) denote the inputs received
by the trusted party.

The trusted party performs computation: The trusted party selects a ran-
dom string r, computes (w1, w2, w3) = f (x′, y′, z′; r), and sends w1 to A,
sends w2 to B, and sends w3 to C.

Outputs: Each honest party outputs whatever output it received from the
trusted party and the corrupted party outputs nothing. The adversary Adv
outputs some function of its view (i.e., the input and output of the corrupted
party).

We denote by IDEALf,Adv(aux) (κ, (x, y, z)) the joint output of the adversary
Adv (that may corrupt one of the parties) and the honest parties in a random
execution of the ideal-world computation of f on security parameter κ ∈ N,
inputs x, y, z ∈ {0, 1}∗, and an auxiliary input aux ∈ {0, 1}∗.

Ideal Computation with Fairness. Although all our results are stated with respect
to guaranteed output delivery, in our proofs in Sect. 4 we will consider a weaker
security variant, where the adversary may cause the computation to prematurely
abort, but only before it learns any new information from the protocol. Formally,
an ideal computation with fairness is defined as above, with the difference that
during the Parties send inputs to the trusted party step, the adversary can send a
special abort symbol. In this case, the trusted party sets the output w1 = w2 =
w3 = ⊥ instead of computing the function.
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The Security Definition
Having defined the real and ideal models, we can now define security of protocols
according to the real/ideal paradigm.

Definition 4 (security). Let f be a three-party functionality and let π be a
three-party protocol. We say that π computes f with 1-security, if for every non-
uniform ppt adversary Adv, controlling at most one party in the real world, there
exists a non-uniform ppt adversary Sim, controlling the same party (if there is
any) in the ideal world such that

{
IDEALf,Sim(aux) (κ, (x, y, z))

}
κ∈N,x,y,z,aux∈{0,1}∗

C≡ {
REALπ,Adv(aux) (κ, (x, y, z))

}
κ∈N,x,y,z,aux∈{0,1}∗ .

We define statistical and perfect 1-security similarly, replacing computational
indistinguishability with statistical distance and equivalence, respectively.

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party
that provides ideal computation for specific functionalities. The parties commu-
nicate with this trusted party in the same way as in the ideal models described
above.

Let f be a functionality. Then, an execution of a protocol π computing a
functionality g in the f -hybrid model involves the parties sending normal mes-
sages to each other (as in the real model) and in addition, having access to a
trusted party computing f . It is essential that the invocations of f are done
sequentially, meaning that before an invocation of f begins, the preceding invo-
cation of f must finish. In particular, there is at most a single call to f per
round, and no other messages are sent during any round in which f is called.

Let type ∈ {g.o.d., fair}. Let Adv be a non-uniform ppt machine with
auxiliary input aux controlling a single party P ∈ {A,B,C}. We denote by
HY BRIDf,type

π,Adv(aux)(κ, (x, y, z)) the random variable consisting of the output
of the adversary and the output of the honest parties, following an execu-
tion of π with ideal calls to a trusted party computing f according to the
ideal model “type”, on input vector (x, y, z), auxiliary input aux given to Adv,
and security parameter κ. We call this the (f, type)-hybrid model. Similarly
to Definition 4, we say that π computes g with 1-security in the (f, type)-
hybrid model if for any adversary Adv there exists a simulator Sim such that
HY BRIDf,type

π,Adv(aux)(κ, (x, y, z)) and IDEALg,Sim(aux)(κ, (x, y, z)) are computa-
tionally indistinguishable.

The sequential composition theorem of Canetti [15] states the following. Let
ρ be a protocol that securely computes f in the ideal model “type”. Then, if a
protocol π computes g in the (f, type)-hybrid model, then the protocol πρ, that
is obtained from π by replacing all ideal calls to the trusted party computing f
with the protocol ρ, securely computes g in the real model.
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Theorem 6 ([15]). Let f be a three-party functionality, let type1, type2 ∈
{g.o.d., fair}, let ρ be a protocol that 1-securely computes f with type1, and let π
be a protocol that 1-securely computes g with type2 in the (f, type1)-hybrid model.
Then, protocol πρ 1-securely computes g with type2 in the real model.

3 Impossibility Results

In the following section, we present our impossibility results. The main ingredi-
ent used in the proofs of these results, is the analysis of a four-party protocol
that is derived from the three-party protocol assumed to exist. In Sect. 3.1 we
present the four-party protocol alongside some of its useful properties. Most
notably, we show that if a functionality f can be computed with 1-security, then
f must satisfy a requirement that we refer to as split-brain simulatability. Then,
in Sect. 3.2 we show our second impossibility result, where we characterize the
class of securely computable functionalities where one of the parties has no input.
Finally, in Sect. 3.3 we present a class of functionalities where the impossibility
of computing them follows from privacy.

3.1 The Four-Party Protocol

We start by presenting our first impossibility result that provides necessary
conditions for secure computation with respect to the outputs of each pair of
parties. Therefore, without loss of generality we will state and prove the results
with respect to the outputs of A and B.

Fix a three-party protocol π = (A,B,C) that is defined over secure point-to-
point channels in the plain model (without a broadcast channel or trusted setup
assumptions). Consider the split-brain attacker controlling C that interacts with
A on input z1 as if never receiving messages from B and interacts with B on
input z2 as if never receiving messages from A. The impact of this attacker can
be emulated towards B by a corrupt A and towards A by a corrupt B. A nice
way to formalize this argument is by considering a four-party protocol, where
two different parties play the role of C. The first interacts only with A, and the
second interacts only with B. The four-party protocol is illustrated in Fig. 2 in
the Introduction.

Definition 5 (the four-party protocol). Given a three-party protocol π =
(A,B,C) we denote by π′ = (A′,B′,C′

A,C′
B) the following four-party protocol.

Party A′ is set with the code of A, Party B′ with the code of B, and parties C′
A

and C′
B with the code of C.

The communication network of π′ is a path. Party A′ is connected to C′
A and

to B′, and party B′ is connected to A′ and to C′
B. In addition to its edge to A′,

party C′
A has a second edge that leads to a sink that only receives messages and

does not send any message (this corresponds to the channel to B in the code of
C′
A). Similarly, in addition to its edge to B′, party C′

B has a second edge that
leads to a sink.
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We now formalize the above intuition, showing that an honest execution in
π′ can be emulated in π by any corrupted party. In fact, we can strengthen the
above observation. Any adversary in π′ corrupting A′ and C′

A, can be emulated
by an adversary in π corrupting A. Similarly, we can emulate any adversary
corrupting B′ and C′

B by an adversary in π corrupting B, and any adversary
corrupting C′

A and C′
B by an adversary in π corrupting C.

Lemma 1 (mapping attackers for π′ to attackers for π). Let π = (A,B,C)
and π′ = (A′,B′,C′

A,C′
B) be as in Definition 5. Then

1. For every non-uniform ppt adversary Adv′
1 corrupting {A′,C′

A} in π′, there
exists a non-uniform ppt adversary Adv1 corrupting A in π, receiving the
input z1 for C′

A as auxiliary information, that perfectly emulates Adv′
1, namely

{
REALπ,Adv1(z1,aux) (κ, (x, y, z2))

}
κ,x,y,z1,z2,aux

≡ {
REALπ′,Adv′

1(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

2. For every non-uniform ppt adversary Adv′
2 corrupting {B′,C′

B} in π′, there
exists a non-uniform ppt adversary Adv2 corrupting B in π, receiving the
input z2 for C′

B as auxiliary information, that perfectly emulates Adv′
2, namely

{
REALπ,Adv2(z2,aux) (κ, (x, y, z1))

}
κ,x,y,z1,z2,aux

≡ {
REALπ′,Adv′

2(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

3. For every non-uniform ppt adversary Adv′
3 corrupting {C′

A,C′
B} in π′, there

exists a non-uniform ppt adversary Adv3 corrupting C in π, receiving the
input z2 for C′

B as auxiliary information,3 that perfectly emulates Adv′
3,

namely
{
REALπ,Adv3(z2,aux) (κ, (x, y, z1))

}
κ,x,y,z1,z2,aux

≡ {
REALπ′,Adv′

3(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

Proof. We first prove Item 1. The proof of Item 2 is done using an analogous
argument and is therefore omitted. Fix an adversary Adv′

1 corrupting {A′,C′
A}.

Consider the following adversary Adv1 for π that corrupts A. First, it initializes
Adv′

1 with input x for A′, input z1 for C′
A and auxiliary information aux. In each

round, it ignores the messages sent by C, passes the messages it received from B
to Adv′

1 (recall that Adv′
1 internally runs A′ and C′

A), and replies to B as Adv′
1

replied. Finally, Adv1 outputs whatever Adv′
1 outputs.

By the definition of Adv1, in each round, the message it receives from B is
identically distributed as the message received from B′ in π′. Since it ignores
the messages sent from the real C and answers as Adv′

1 does, it follows that the
messages it will send to B are identically distributed as well. Furthermore, since
Adv1 does not send any message to C, the view of C will be identically distributed
3 The choice of giving Adv3 the input z2 as auxiliary is arbitrary.
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as well to that of C′
B in π′. In particular, the joint outputs of B and C in π are

identically distributed as the joint outputs of B′ and C′
B in π′, conditioned on

the messages received from Adv1 and Adv′
1 respectively, hence

{
REALπ,Adv1(z1,aux) (κ, (x, y, z2))

}
κ,x,y,z1,z2,aux

≡ {
REALπ′,Adv′

1(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

We next prove Item 3. Fix an adversary Adv′
3 corrupting {C′

A,C′
B}. The

adversary Adv3 corrupts C, initializes Adv′
3 with inputs z1 and z2 for C′

A and
C′
B respectively, and auxiliary information aux. Then, in each round it passes

the messages received from A and B to Adv′
3 and answers accordingly. Finally,

it outputs whatever Adv′
3 outputs. Clearly, the transcript of π when interacting

with Adv3 is identically distributed as the transcript of π′. The claim follows.
As a corollary, it follows that if π securely computes some functionality f ,

then any adversary for π′ corrupting {A′,C′
A}, or {B′,C′

B}, or {C′
A,C′

B} can be
simulated in the ideal-world of f .

Corollary 1. Let π = (A,B,C) be a three-party protocol that computes a func-
tionality f : ({0, 1}∗)3 	→ ({0, 1}∗)3 with 1-security and let π′ = (A′,B′,C′

A,C′
B)

be as in Definition 5. Then

1. For every adversary Adv′
1 for π′ corrupting {A′,C′

A} there exists a simulator
Sim1 in the ideal world of f corrupting A, such that

{
IDEALf,Sim1(z1,aux) (κ, (x, y, z2))

}
κ,x,y,z1,z2,aux

C≡ {
REALπ′,Adv′

1(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

2. For every adversary Adv′
2 for π′ corrupting {B′,C′

B} there exists a simulator
Sim2 in the ideal world of f corrupting B, such that

{
IDEALf,Sim2(z2,aux) (κ, (x, y, z1))

}
κ,x,y,z1,z2,aux

C≡ {
REALπ′,Adv′

2(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

3. For every adversary Adv′
3 for π′ corrupting {C′

A,C′
B} there exists a simulator

Sim3 in the ideal world of f corrupting C, such that
{
IDEALf,Sim3(z2,aux) (κ, (x, y, z1))

}
κ,x,y,z1,z2,aux

C≡ {
REALπ′,Adv′

3(aux)
(κ, (x, y, z1, z2))

}
κ,x,y,z1,z2,aux

.

One important use-case of Corollary 1 is when the three adversaries for π′

are semi-honest. This is due to the fact that the views of the honest parties are
identically distributed in all three cases, hence the same holds with respect to
their outputs. Next, we consider the distributions over the outputs of A and B
in the ideal world of f with respect to each such simulators. Recall that these



On the Power of an Honest Majority 641

simulators are for the malicious setting, hence they can send arbitrary inputs to
the trusted party. Thus, the distributions over the outputs depend on the dis-
tribution over the input sent by each simulator to the trusted party. Notice that
when considering semi-honest adversaries for π′ that have no auxiliary input,
these distributions would depend only on the security parameter and the inputs
given to the semi-honest adversary. For example, in the case where {A′,C′

A} are
corrupted, the simulator samples an input x∗ according to some distribution
P that depends only on the security parameter κ, the input x, and the input
z1, given to the semi-honest adversary corrupting A′ and C′

A. We next give a
notation for semi-honest adversaries, their corresponding simulators, and the
distributions used by the simulators to sample an input value.

Definition 6. Let π = (A,B,C) be a three-party protocol that computes a three-
party functionality f : ({0, 1}∗)3 	→ ({0, 1}∗)3 with 1-security. We let Advsh1 be
the semi-honest adversary for π′, corrupting {A′,C′

A}. Similarly, we let Advsh2 and
Advsh3 be the semi-honest adversaries corrupting {B′,C′

B} and {C′
A,C′

B}, respec-
tively. Let Sim1, Sim2, and Sim3 be the three simulators for the malicious ideal
world of f , that simulate Advsh1 , Advsh2 , and Advsh3 , respectively, guaranteed to
exist by Corollary 1.

We define the distribution P sh
κ,x,z1

to be the distribution over the inputs sent by
Sim1 to the trusted party, given the inputs x, z1 and security parameter κ. Simi-
larly, we define the distributions Qsh

κ,y,z2
and Rsh

κ,z1,z2
to be the distributions over

the inputs sent by Sim2 and Sim3, respectively, to the trusted party. Addition-
ally, we let Psh = {P sh

κ,x,z1
}κ∈N,x,z1∈{0,1}∗ , Qsh = {Qsh

κ,y,z2
}κ∈N,y,z2∈{0,1}∗ , and

Rsh = {Rsh
κ,z1,z2

}κ∈N,z1,z2∈{0,1}∗ be the corresponding distribution ensembles.

Now, as the simulators simulate the semi-honest adversaries for π′, it follows
that all the outputs of the honest parties in {A,B} in the executions of the
ideal-world computations are the same. This results in a necessary condition
that the functionality f must satisfy for it to be securely computable. We call
this condition C-split-brain simulatability. Similarly, we can define A-split-brain
and B-split-brain simulatability to get additional necessary conditions. We next
formally define the class of functionalities that are C-split-brain simulatable. We
then show that it is indeed a necessary condition.

Definition 7 (C-split-brain simulatability). Let f = (f1, f2, f3) be
a three-party functionality and let P = {Pκ,x,z1}κ∈N,x,z1∈{0,1}∗ , Q =
{Qκ,y,z2}κ∈N,y,z2∈{0,1}∗ , and R = {Rκ,z1,z2}κ∈N,z1,z2∈{0,1}∗ be three ensembles
of efficiently samplable distributions over {0, 1}∗. We say that f is computa-
tionally (P,Q,R)-C-split-brain (CSB) simulatable if

{
f1(x, y∗, z1)

}
κ∈N,x,y,z1,z2∈{0,1}∗

C≡
{

f1(x, y, z∗)
}

κ∈N,x,y,z1,z2∈{0,1}∗
, and

{
f2(x∗, y, z2)

}
κ∈N,x,y,z1,z2∈{0,1}∗

C≡
{

f2(x, y, z∗)
}

κ∈N,x,y,z1,z2∈{0,1}∗
,
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where x∗ ← Pκ,x,z1 , y∗ ← Qκ,y,z2 , and z∗ ← Rκ,z1,z2 . We say that f is com-
putationally CSB simulatable, if there exist three ensembles P, Q, and R such
that f is (P,Q,R)-CSB simulatable.

We define statistically and perfectly CSB simulatable functionalities in a similar
way, replacing computational indistinguishability with statistical closeness and
equivalence, respectively. In Sect. 3.1.1 we give several simple examples and
properties of CSB simulatable functionalities.

We next prove the main result of this section, asserting that if a functional-
ity is computable with 1-security, then it must be CSB simulatable. We stress
that CSB simulatability is not a sufficient condition for secure computation.
Indeed, the coin-tossing functionality is CSB simulatable, however, as we show
in Sect. 3.2 below, it cannot be computed securely.

Theorem 7 (CSB simulatability – a necessary condition). If a three-
party functionality f = (f1, f2, f3) is computable with 1-security over secure
point-to-point channels, then f is computationally CSB simulatable.

Proof. Let π = (A,B,C) be a protocol that securely realizes f tolerating one
malicious corruption. Consider the four-party protocol π′ = (A′,B′,C′

A,C′
B) from

Definition 5, and let Advsh1 , Advsh2 , and Advsh3 , be three semi-honest adversaries
corrupting {A′,C′

A}, {B′,C′
B}, and {C′

A,C′
B}, respectively, with no auxiliary infor-

mation. We will show that f is (Psh,Qsh,Rsh)-C-split-brain simulatable, where
Psh, Qsh, and Rsh are as defined in Definition 6.

We next analyze the output of the honest party B′, once when interacting with
Advsh1 and once when interacting withAdvsh3 . The claim would then follow since the
view ofB′, and in particular its output, is identically distributed in both cases. The
analysis of the output of an honestA′ is similar and therefore is omitted. Let us first
focus on the output of B′ when interacting with Advsh1 . By Corollary 1 there exists
a simulator Sim1 for Advsh1 in the ideal world of f , that is,

{
IDEALf,Sim1(z1) (κ, (x, y, z2))

}
κ,x,y,z1,z2

C≡
{

REALπ′,Advsh1
(κ, (x, y, z1, z2))

}

κ,x,y,z1,z2
.

In particular, the equivalence holds with respect to the output of the honest party
B on the left-hand side, and the output of B′ on the right-hand side. Recall that
P sh

κ,x,z1
is the probability distribution over the inputs sent by Sim1 to the trusted

party. Thus, letting x∗ ← P sh
κ,x,z1

, it follows that the output of B in the ideal world
is identically distributed to f2 (x∗, y, z2); hence, the output of B′ in the four-party
protocol is computationally indistinguishable from f2 (x∗, y, z2). By a similar argu-
ment, the output of B′ when interacting with Advsh3 is computationally indistin-
guishable from f2(x, y, z∗), where z∗ ← Rsh

κ,z1,z2
, and the claim follows.

3.1.1 Properties of Split-Brain Simulatable Functionalities
Having defined C-split-brain simulatability, we proceed to provide several exam-
ples and properties of CSB simulatable functionalities. The proof and further
generalizations of these properties appear in the full version [3]. To simplify the
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presentation, we consider deterministic two-output functionalities f = (f1, f2)
over a finite domain with f1 = f2. We denote it as a single functionality
f : X × Y × Z 	→ W. Furthermore, we only discuss perfect CSB simulatability,
and where the corresponding ensembles are independent of κ.

In the Introduction (Sect. 1.2) we showed that the two-output three-party
functionality f : {0, 1}3 	→ {0, 1} defined by f (x, y, z) = (x ∧ y) ⊕ z is not CSB
simulatable. We next state a generalization of this example.

Proposition 1. Let f : X × Y × Z 	→ W be a perfectly CSB simulatable two-
output three-party functionality. Assume there exist inputs x ∈ X , y ∈ Y,
and z1, z2 ∈ Z, and two outputs w1, w2 ∈ W, such that f(x, ·, z1) = w1 and
f(·, y, z2) = w2. Then, w1 = w2.

We next show that for C-split-brain simulatable functionalities, if a pair of
parties P and C, where P ∈ {A,B}, can fix the output to be some w, then P can
do it by itself. In particular, if C can fix the output to be w, then A and B can
do it as well, which implies that f must be 1-dominated.

Proposition 2. Let f : X × Y × Z 	→ W be a perfectly (P,Q,R)-CSB simu-
latable two-output three-party functionality. Assume there exist x ∈ X , z ∈ Z,
and w ∈ W such that f(x, ·, z) = w. Then, there exists an input x∗ ∈ X such
that f(x∗, ·, ·) = w. Similarly, assuming there exist y ∈ Y and z ∈ Z such that
f(·, y, z) = w, then there exists an input y∗ ∈ Y such that f(·, y∗, ·) = w.

3.2 Server-Aided Two-Party Computation

In this section, we consider the server-aided model where two parties – A and
B – use the help of an additional untrusted yet non-colluding server C that has
no input in order to securely compute a functionality. The main result of this
section is showing that the additional server does not provide any advantage in
the secure point-to-point channels model. The proof of Theorem 8 can be found
in the full version.

Theorem 8. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1} × {0, 1} × ∅ 	→ {0, 1} be
a three-party functionality computable with 1-security over secure point-to-point
channels. Then, the two-party functionality

g(x, y) ..=
((

f1(x, y, λ), f3(x, y, λ)
)
,
(
f2(x, y, λ), f3(x, y, λ)

))

is computable with 1-security.

As a corollary of Theorem 8, a two-output server-aided functionality can be
computed with C if and only if it can be computed without it. Formally, we have
the following.

Corollary 2. Let f = (f1, f2) with f1, f2 : {0, 1} × {0, 1} × ∅ 	→ {0, 1} be a
two-output three-party functionality and let g(x, y) = (f1(x, y, λ), f2(x, y, λ)) be
its induced two-party variant. Then, f can be computed with 1-security if and
only if g can be computed with 1-security.
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Observe that Theorem 8 only provides a necessary condition for secure com-
putation, while Corollary 2 asserts that for two-output functionalities, the nec-
essary condition is also sufficient. In other words, even when the induced two-
party functionality g can be securely computed, if f3 is non-degenerate, then
f might not be computable with 1-security. Indeed, consider the functionality
(x, λ, λ) 	→ (x, x, λ). Clearly, it is computable in our setting, however, the func-
tionality where C also receive x is the broadcast functionality, hence it cannot
be computed securely.

The proof of Theorem 8 is done by constructing a two-protocol for computing
g. We next present the construction. The proof of security is deferred to the full
version of the paper [3].

Definition 8 (the two-party protocol). Fix a protocol π = (A,B,C) and
let π′ = (A′,B′,C′

A,C′
B) be the related four-party protocol from Definition 5.

We define the two-party protocol π̂ = (Â, B̂) as follows. On input x ∈ {0, 1}∗,
party Â will simulate A′ holding x and C′

A in its head. Similarly, on input y ∈
{0, 1}∗, party B̂ will simulate B′ holding y and C′

B. The messages exchanged
between Â and B̂ will be the same as the messages exchanged between A′ and B′

in π′, according to their simulated random coins, inputs, and the communication
transcript so far. Finally, Â will output whatever A′ and C′

A output, and similarly,
B̂ will output whatever B′ and C′

B output.

Similarly to the four-party protocol, we can emulate any malicious adversary
attacking π̂ using the appropriate adversary for the three-party protocol π.

Lemma 2 (mapping attackers for π̂ to attackers for π). For any non-
uniform ppt adversary Âdv1 corrupting Â in π̂, there exists a non-uniform ppt

adversary Adv1 corrupting A in π that perfectly emulates Âdv1. That is, the
following two random variables are identically distributed:

{
REALπ,Adv1(aux) (κ, (x, y))

}
κ,x,y,aux

≡
{

REAL
π̂,̂Adv1(aux)

(κ, (x, y))
}

κ,x,y,aux
.

(1)

Similarly, for any non-uniform ppt adversary Âdv2 corrupting B̂ in π̂, there
exists a non-uniform ppt adversary Adv2 corrupting B in π, that perfectly emu-
lates Âdv1, namely

{
REALπ,Adv2(aux) (κ, (x, y))

}
κ,x,y,aux

≡
{

REAL
π̂,̂Adv2(aux)

(κ, (x, y))
}

κ,x,y,aux
.

(2)

3.2.1 Coin-Tossing Protocols
Coin-tossing protocols [10] allow a set of parties to agree on uniform common
random bit, such that even if some of the parties are malicious, the honest
parties output a common bit close to being uniform. The seminal result of Cleve
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[17] states that unless an honest majority is assumed, for any r-round protocol
computing coin-tossing there is always an adversary that can bias the outcome
by at least Ω (1/r) (even assuming a broadcast channel). In the honest-majority
case without broadcast, the result of [19] rules out non-trivial n-party coin-
tossing protocols (with any bias δ < 1/2) that tolerate �n/3� corruptions, as
long as all parties receive the output.

In this section, we consider three-party two-output coin tossing that tolerates
one corruption; the results of [17,19] do not apply in this case since we assume
an honest majority but not all parties learn the output. A direct implication of
Corollary 2 together with [17] shows that this variation of coin tossing cannot
be computed with negligible bias. Looking further into the proof, it follows that
if we are given a protocol that is secure against a malicious C (i.e., C cannot bias
the output coin), then Cleve’s attackers (on the implied two-party protocol)
can be directly translated to attackers for the three-party protocol, corrupting
either A or B. Thus, either A or B can bias the output by Ω (1/r), where r is the
number of rounds in the protocol. However, the above argument does not deal
with protocols that allow a corrupt C to slightly bias the output. For example,
one might try to construct a protocol where no party (including C) can bias the
output by more than 1/r2.

We next prove a stronger result, showing that this is impossible. In particular,
letting A and B execute the protocol of Moran, Naor, and Segev [36] results
with an optimally fair protocol (up to a constant factor). We first formalize the
security notion of the task at hand.

Definition 9 (coin-tossing protocol). Let γ, δ : N 	→ N be such that γ (r) ≤
δ (r) for all r ∈ N, and let t, �, n ∈ N be such that t, � ≤ n. A polynomial-time
n-party protocol π = (P1, . . . ,Pn) is a (γ, δ, t, �)-bias coin-tossing protocol, if the
following holds.

1. In an honest execution, parties P1, . . . ,P� output a common bit that is γ-close
to a uniform random bit. The rest of the parties do not output any value.

2. For any ppt adversary corrupting at most t parties, the honest parties in
{P1, . . . ,P�} output a common bit that is δ-close to a uniform bit.

We next state that in the three-party case, for every protocol there exists
an adversary corrupting a single party that can bias the output by Ω(1/r). The
proof of Lemma 3 can be found in the full version.

Lemma 3. There exists c ∈ R
+, for which there is no r-round three-party

(0, 1/cr, 1, 2)-bias coin-tossing protocol.

Using a standard player-partitioning argument, we can extend the impossi-
bility of coin-tossing to the n-party case, assuming at least two parties receive
the output. Specifically, we show that there exists an adversary biasing the out-
put by Ω(1/r) if at least two parties receive the output, and there exists an
adversary biasing the output by 1/2 − 2−κ if at least three parties receive the
output.
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Corollary 3. Fix n ∈ N. Then, there is no r-round n-party (0, 1/cr, �n/3� , 2)-
bias coin-tossing protocol, where c ∈ R

+ is as in Lemma 3. Moreover, there is
no n-party (0, 1/2 − 2−κ, �n/3� , 3)-bias coin-tossing protocol.

3.3 Impossibility Based on Privacy

In this section we present examples of functionalities that are C-split-brain sim-
ulatable yet are not securely computable tolerating one corruption.

Claim 9. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1}3 	→ {0, 1} be a functionality
where A’s output is defined as f1(x, y, z) = (x∧y)⊕z. Then f cannot be computed
with 1-security.

The proof of Claim 9 can be found in the full version. Using a similar argu-
ment, if we take f1(x, y, z) = (x ⊕ y) ∧ z then f cannot be computed with
1-security.

Claim 10. Let f = (f1, f2, f3) with f1, f2, f3 : {0, 1}3 	→ {0, 1} be a function-
ality where A’s output is defined as f1(x, y, z) = (x ⊕ y) ∧ z. Then f cannot be
computed with 1-security.

4 A Class of Securely Two-Output Computable
Functionalities

In this section, we present a class of two-output functionalities that can be
securely computed over point-to-point channels tolerating a single corruption.
This class generalizes previously known feasibility results in this setting, namely,
1-dominated functionalities [18,19] and fair two-party functionalities [5].

Our result shows that if f is a two-output (P,Q,R)-CSB simulatable func-
tionality, then under a simple condition that a related two-party functionality
needs to satisfy, the problem is reduced to the two-party case. Given a two-output
three-party functionality f we define the following related two-party function-
ality. Roughly, in addition to x and y, each of the two parties holds a possible
input for C, denoted z1 and z2. The real input of C is then chosen according to
some predetermined distribution that depends on z1 and z2, and output will be
whatever is computed by f .

Definition 10. Let f : ({0, 1}∗)3 	→ ({0, 1}∗)2 be a two-output three-party
functionality and let R = {Rκ,z1,z2}z1,z2∈{0,1}∗ be an ensemble of efficiently
samplable distributions over {0, 1}∗. Define the two-party functionality hR :
({0, 1}∗ × {0, 1}∗)2 	→ ({0, 1}∗)2 as hR((x, z1), (y, z2)) = f (x, y, z∗), where
z∗ ← Rκ,z1,z2 .

We now present a sufficient condition for f to be computable with 1-security.
Roughly, we require that there exist two distributions, for z1 and z2 respectively,
such that the input z1 can be sampled in a way that fixes the distribution of
the output of hR to be independent of z2, and furthermore, the same holds with
respect to z2. Specifically, we prove the following.
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Theorem 11. Let f : ({0, 1}∗)3 	→ ({0, 1}∗)2 be a computationally
(P,Q,R)-CSB simulatable two-output three-party functionality, and let hR :
({0, 1}∗ × {0, 1}∗)2 	→ ({0, 1}∗)2 be the two-party functionality from Definition 10.

Assume there exist a (randomized) two-party functionality g : ({0, 1}∗)2 	→
({0, 1}∗)2 and two ensembles of efficiently samplable distributions R1 =
{R1,κ}κ∈N

and R2 = {R2,κ}κ∈N
over {0, 1}∗, such that for every x, y, z ∈ {0, 1}∗,

and sufficiently large κ ∈ N, it holds that

g (x, y) ≡ hR ((x, z1), (y, z)) ≡ hR ((x, z), (y, z2)) ,

where z1 ← R1,κ and z2 ← R2,κ. Then, f can be computed with 1-security over
secure point-to-point channels in the (g, g.o.d.)-hybrid model.

Stated differently, if the two-party functionality g can be computed with
1-security then the three-party f can be computed with 1-security as well.

In Sect. 4.1 below, we give another example of a non-solitary functionality
where both A and B receive the same output, that can be securely computed.

We proceed by providing a general construction alongside the necessary and
sufficient conditions for security to hold. The proof of Theorem 11 is deferred to
the full version.

4.1 The Protocol

We proceed to describe a simple generic protocol πR∗ for computing an arbi-
trary two-output three-party functionality f . The protocol is parametrized by an
ensemble of efficiently samplable distributions R∗ = {R∗

κ}κ∈N. Lemma 4 below
describes the properties that f and R∗ must satisfy in order for the protocol to
be 1-secure.

To illustrate the main ideas behind the protocol and its proof of security, we
first give a simple example. Consider the two-output functionality f = (f1, f2),
where f1, f2 : {0, 1, 2} × {0, 1} × {0, 1} 	→ {0, 1}2 given by the following two
matrices

MA
0 = MB

0 =

⎛
⎜⎝

0 1
1 0
1 1

⎞
⎟⎠ MA

1 = MB
1 =

⎛
⎜⎝

1 0
0 1
1 1

⎞
⎟⎠

Stated differently, we let f1 ≡ f2 and let MA
z (x, y) = f1(x, y, z), where A’s

input determines a row, B’s input determines a column, and C’s input deter-
mines the matrix. The protocol follows similar lines to that of [19]. First, the
parties compute f with fairness (this can be done over point-to-point channels
by the honest-majority assumption [18]). If the computation fails, then A and B
compute the following symmetric randomized two-party functionality

⎛
⎜⎝

1/2 1/2
1/2 1/2
1 1

⎞
⎟⎠
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That is, if A’s input is 2 the output is 1; otherwise, the output is a uniform
bit. Note that this two-party functionality can be computed with guaranteed
output delivery [5]. Clearly, as B and C have no affect over the distribution of
the output of the two-party functionality, any adversary corrupting either party
can be simulated by sending a uniformly random bit to the trusted party. The
output of the honest parties will be 1 if A inputs 2 and a uniform bit otherwise,
regardless of the other honest party’s input – the same distribution is induced
by the simulator for the two-party functionality. To simulate a corrupt A in the
three-party protocol, the simulator will send input 2 with the same probability
p that the two-party simulator sends input 2 to the trusted party; otherwise,
the simulator will send a uniform random bit. Observe that regardless of the
input of C, the output of B will be 1 with probability 1

2 (1 + p). Similarly to the
previous cases, this is the same distribution as the one induced by the simulator
for the two-party functionality.

We now generalize the above ideas. We next present the protocol in the
{(f, fair), (fR∗ , g.o.d.)}-hybrid model.

Protocol 12 (πR∗).

Private input: party A holds x ∈ {0, 1}∗, party B holds y ∈ {0, 1}∗, and party C
holds z ∈ {0, 1}∗.

Common input: the parties hold the security parameter 1κ.

1. Each party invokes (f, fair) with its input. Let w1 be the output of A and w2

the output of B.
2. If w1, w2 �= ⊥ then A outputs w1 and B outputs w2.
3. Otherwise, A and B invoke (fR∗ , g.o.d.) on their inputs x and y, respectively,

and output the result.

We next intuitively explain the properties that f and R∗ must satisfy for
πR∗ to be secure. Since there are no messages exchanged between the parties,
constructing a simulator amounts to defining an appropriate distribution over
the inputs of the corrupted parties. In particular, simulating a corrupt C can
be easily simulated by either sending the input it used when calling (f, fair),
or sampling according to R∗

κ. Next, consider a corrupted A or B. Similarly to
the above example, we first take the distribution given by the simulator for the
two-party functionality fR∗ , and construct a distribution for the three-party
functionality f , so that the outputs of the honest party in both ideal-worlds are
identically distributed, regardless of C’s inputs. That is, A and B can each sample
an input for the three-party functionality f in such a way that the distribution
over the output is the same as if C sampled its input according to R∗

κ.

Lemma 4. Let f : ({0, 1}∗)3 	→ ({0, 1}∗)2 be a two-output three-party func-
tionality, and let R∗ be an ensemble of efficiently samplable distributions over
{0, 1}∗. Assume that the following holds.
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1. There exists an ensemble of efficiently samplable distributions P∗ =
{P ∗

κ,x}κ∈N,x∈{0,1}∗ over {0, 1}∗ such that

{
fR∗,2 (x, y)

}
κ,x,y,z

C≡
{

f2 (x∗, y, z)
}

κ,x,y,z
,

where x∗ ← P ∗
κ,x.

2. There exists an ensemble of efficiently samplable distributions Q∗ =
{Q∗

κ,y}κ∈N,y∈{0,1}∗ over {0, 1}∗ such that

{
fR∗,1 (x, y)

}
κ,x,y,z

C≡
{

f1 (x, y∗, z)
}

κ,x,y,z
,

where y∗ ← Q∗
κ,y.

Then, πR∗ computes f with 1-security in the {(f, fair), (fR∗ , g.o.d.)}-hybrid
model.

The proof of Lemma 4 can be found in the full version.
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Abstract. We present a new secure multiparty computation protocol
in the preprocessing model that allows for the evaluation of a number of
instances of a boolean circuit in parallel, with a small online communica-
tion complexity per instance of 10 bits per party and multiplication gate.
Our protocol is secure against an active dishonest majority, and can also
be transformed, via existing techniques, into a protocol for the evalua-
tion of a single “well-formed” boolean circuit with the same complexity
per multiplication gate at the cost of some overhead that depends on the
topology of the circuit.
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honest majority and information-theoretical security which, using an
algebraic notion called reverse multiplication friendly embeddings, essen-
tially transforms a batch of evaluations of an arithmetic circuit over a
small field into one evaluation of another arithmetic circuit over a larger
field. To obtain security against a dishonest majority we combine this
approach with the well-known SPDZ protocol that operates over a large
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which bases its security on the use of error-correcting codes, but our
protocol has a communication complexity which is half of that of Min-
iMAC when the best available binary codes are used. With respect to
certain variant of MiniMAC that utilizes codes over larger fields, our
communication complexity is slightly worse; however, that variant of
MiniMAC needs a much larger preprocessing than ours. We also show
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1 Introduction

The area of secure multiparty computation (MPC) studies how to design proto-
cols that allow for a number of parties to jointly perform computations on private
inputs in such a way that each party learns a private output, but nothing else
than that. In the last decade efficient MPC protocols have been developed that
can be used in practical applications.

In this work we focus on secret-sharing based MPC protocols, which are
among the most used in practice. In secret-sharing based MPC, the target com-
putation is represented as an arithmetic circuit consisting of sum and multiplica-
tion gates over some algebraic ring; each party initially shares her input among
the set of parties, and the protocol proceeds gate by gate, where at every gate
a sharing of the output of the gate is created; in this manner eventually parties
obtain shares of the output of the computation, which can then be reconstructed.

A common practice is to use the preprocessing model, where the computation
is divided in two stages: a preprocessing phase, that is completely independent
from the inputs and whose purpose is to distribute some correlated randomness
among the parties; and an online phase, where the actual computation is per-
formed with the help of the preprocessing data. This approach allows for pushing
much of the complexity of the protocol into the preprocessing phase and having
very efficient online computations in return.

Some secret sharing based MPC protocols obtain security against any static
adversary which actively corrupts all but one of the parties in the computation,
assuming that the adversary is computationally bounded. Since in the active
setting corrupted parties can arbitrarily deviate from the protocol, some kind of
mechanism is needed to detect such malicious behaviour, and one possibility is
the use of information-theoretic MACs to authenticate the secret shared data,
which is used in protocols such as BeDOZa [3] and SPDZ [14].

In SPDZ this works as follows: the computation to be performed is given
by an arithmetic circuit over a large finite field F. There is a global key α ∈ F

which is secret shared among the parties. Then for every value x ∈ F in the
computation, parties obtain not only additive shares for that value, but also for
the product α · x which acts as a MAC for x. The idea is that if a set of corrupt
parties change their shares and pretend that this value is x+e, for some nonzero
error e, then they would also need to guess the correction value α · e for the
MAC, which amounts to guessing α since F is a field. In turn this happens with
probability 1/|F| which is small when the field is large.

The problem is that over small fields the cheating success probability 1/|F|
is large. While one can take a large enough extension field L of F (e.g. if F = F2,
then L could be the field of 2s elements) and embed the whole computation into
L, this looks wasteful as communication is blown up by a factor of s.

An alternative was proposed in MiniMAC [15]. MiniMAC uses a batch
authentication idea: if we are willing to simultaneously compute k instances
of the same arithmetic circuit over a small field at once, we can bundle these
computations together and see them as a computation of an arithmetic circuit
over the ring F

k, where the sum and multiplication operations are considered
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coordinatewise. Note the same authentication technique as in SPDZ does not
directly work over this ring (if |F| is small): if we define the MAC of a data
vector x in F

k to be α ∗ x where the key α is now also a vector in F
k and ∗

is the coordinatewise product, the adversary can introduce an error in a single
coordinate with probability 1/|F|. Instead, MiniMAC first encodes every vector
x as a larger vector C(x) by means of a linear error-correcting code C with large
minimum distance d, and then defines the MAC as α ∗ C(x). Now introducing
an error requires to change at least d coordinates of C(x) and the MAC can
be fooled with probability only 1/|F|d. However, when processing multiplication
gates, the minimum distance d∗ of the so-called Schur square code C∗ also needs
to be large. These requirements on the minimum distance of these two codes have
an effect on the communication overhead of the protocol, because the larger d
and d∗ are, the worse the relation between the length of messages and the length
of the encoding.

This same article shows how to adapt this technique for computing a single
boolean “well-formed” circuit while retaining the efficiency advantages of the
batch simultaneous computation of k circuits. The idea is that if the target
boolean circuit is structured into layers of addition and multiplication gates,
where each layer has a large number of gates and its inputs are outputs of
previous layers, then we can organize them into blocks of k gates of the same type,
which can be computed using the above method. We then need an additional
step that directs each block of outputs of a layer into the right block of inputs of
next layers; this uses some additional preprocessed random sharings, and some
openings, which slightly increases the communication complexity of the protocol.

In this paper, we explore an alternative to the error-correcting codes app-
roach from MiniMAC, using an idea recently introduced in the honest majority,
information-theoretically secure setting [8]. The point is that we can embed the
ring F

k
q in some extension field of Fq in such a way that we can make the opera-

tions of both algebraic structures, and in particular the products (in one case the
coordinatewise product, in the other the product in the extension field), “some-
what compatible”: i.e., we map F

k
q into a slightly larger field Fqm with some

dedicated linear “embedding” map φ, that satisfies that for any two vectors x,y
in F

k
q the field product φ(x) · φ(y) contains all information about x ∗ y, in fact

there exists a “recovery” linear map ψ such that x ∗ y = ψ(φ(x) · φ(y)). The
pair (φ, ψ) is called a (k,m)-reverse multiplication friendly embedding (RMFE)
and was introduced in [5,8]. With such tool, [8] embeds k evaluations of a circuit
over Fq (i.e. an evaluation of an arithmetic circuit over F

k
q with coordinatewise

operations) into one evaluation of a related circuit over Fqm , which is securely
computed via an information-theoretically secure MPC protocol for arithmetic
circuits over that larger field (more precisely the Beerliova-Hirt protocol [2]).
The use of that MPC protocol over Fqm is not black-box, however, as there are a
number of modifications that need to be done at multiplication and input gates,
for which certain additional correlated information has to be created in the pre-
processing phase. Note that the reason for introducing this technique was that
Beerliova-Hirt uses Shamir secret sharing schemes and hyperinvertible matrices,
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two tools that are only available over large finite fields (larger than the number
of parties in the protocol).

1.1 Our Contributions

In this paper we construct a new secure computation protocol in the dishonest
majority setting that allows to compute several instances of a boolean circuit
at an amortized cost.1 We do this by combining the embedding techniques from
[8] with the SPDZ methodology. As opposed to [8], where one of the points of
the embedding was precisely to use Shamir secret sharing, in our construction
vectors x ∈ F

k
2 are still additively shared in F

k
2 , and it is only the MACs which

are constructed and shared in the field F2m : the MAC of x will be α ·φ(x) where
φ is the embedding map from the RMFE. Only when processing a multiplication
gate, authenticated sharings where the data are shared as elements in F2m are
temporarily used. MACs are checked in a batched fashion at the output gate, at
which point the protocol aborts if discrepancies are found.

By this method we obtain a very efficient online phase where processing mul-
tiplication gates need each party to communicate around 10 bits2 per evaluation
of the circuit, for statistical security parameters like s = 64, 128 (meaning the
adversary can successfully cheat with probability at most 2−s, for which in our
protocols we need to set m ≥ s).

Our protocol can also be adapted to evaluating a single instance of a boolean
circuit by quite directly adapting the ideas in MiniMAC that we mentioned
above, based on organizing the circuit in layers, partitioning the layers in blocks
of gates and adding some preprocessing that allows to map each block into the
appropriate one in the next layer. The reason is that the maps used between
layers of gates are F2-linear, and essentially all we need to use is the F2-linearity
of the map φ from the RMFE. The actual complexity added by this transfor-
mation is quite dependent on the topology of the circuit. Under some general
assumptions one can expect to add 2 bits of communication per gate.

Our online phase follows a similar pattern to MiniMAC in the sense that,
up to the output phase, every partial opening of a value in F

k
2 takes place when

a partial opening of a C-encoding occurs in MiniMAC. Respectively, we need
to open values in F2m whenever MiniMAC opens C∗-encodings. At every multi-
plication gate, both protocols need to apply “re-encoding functions” to convert
encodings back to the base authentication scheme, which requires a preprocessed
pair of authenticated sharings of random correlated elements.

However, the encoding via RMFE we are using is more compact than the one
in MiniMAC; the comparison boils down to comparing the “expansion factor”
m/k of RMFEs with the ratio k∗/k between the dimensions of C∗ and C for
the best binary codes with good distances of C∗ [7]. We cut the communication

1 Our ideas can be extended to arithmetic circuits over other small fields.
2 Here we assume that broadcasting messages of M bits requires to send M bits to

every other player, which one can achieve with small overhead that vanishes for large
messages [14, full version].
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cost of multiplication gates by about half with respect to MiniMAC where those
binary codes are used. We achieve even better savings in the case of the output
gates since in this case MiniMAC needs to communicate full vectors of the same
length as the code, while the input and addition gates have the same cost.

We also compare the results with a modified version of MiniMAC proposed
by Damg̊ard, Lauritsen and Toft [13], that allows to save communication cost
of multiplication gates, by essentially using MiniMAC over the field of 256 ele-
ments, at the cost of a much larger amount of preprocessing that essentially
provides authenticated sharings of bit decompositions of the F256-coordinates of
the elements in a triple, so that parties can compute bitwise operations. This
version achieves a communication complexity that is around 80% of that of our
protocol, due to the fact that this construction can make use of Reed-Solomon
codes. However, it requires to have created authenticated sharings of 19 ele-
ments, while ours need 5 and as far as we know there is no explicit preprocessing
protocol that has been proposed for this version of MiniMAC.

Finally we compare the results with Committed MPC [16], a secret-sharing
based protocol which uses (UC-secure) homomorphic commitments for authen-
tication, rather than information-theoretical MACs. In particular, this proto-
col can also be used for boolean circuits, given that efficient constructions of
homomorphic commitments [9,10,17] over F2 have been proposed. These con-
structions of homomorphic commitments also use error-correcting codes. We
find that, again, the smaller expansion m/k of RMFE compared to the relations
between the parameters for binary error-correcting codes provides an improve-
ment in the communication complexity of a factor ∼ 3 for security parameters
s = 64, 128.

We also provide a preprocessing phase producing all authenticated sharings
of random correlated data that we need. The preprocessing follows the steps of
MASCOT [19] (see also [18]) based on OT extension, with some modifications
due to the slightly different authentication mechanisms we have and the different
format of our preprocessing. All these modifications are easily to carry out based
on the fact that φ and ψ are linear maps over F2. Nevertheless, using the “triple
sacrificing steps” from MASCOT that assure that preprocessed triples are not
malformed presents problems in our case for technical reasons. Instead, we use
the techniques from Committed MPC [16] in that part of the triple generation.

1.2 Related Work

The use of information-theoretical MACs in secret-sharing based multiparty
computation dates back to BeDOZa (Bendlin et al. [3]), where such MACs where
established between every pair of players. Later SPDZ (Damg̊ard et al. [14])
introduced the strategy consisting of a global MAC for every element of which
every party has a share, and whose key is likewise shared among parties. Tiny OT
(Nielsen et al. [21]), a 2-party protocol for binary circuits, introduced the idea
of using OT extension in the preprocessing phase. Larraia et al. [20] extended
these ideas to a multi-party protocol by using the SPDZ global shared MAC
approach. MiniMAC (Damg̊ard and Zakarias, [15]), as explained above, used
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error-correcting codes in order to authenticate vectors of bits, allowing for effi-
cient parallel computation of several evaluations of the same binary circuits on
possibly different inputs. Damg̊ard et al. [13] proposed several improvements
for the implementation of MiniMAC, among them the use of an error correct-
ing code over an extension field, trading smaller communication complexity for a
larger amount of preprocessing. Frederiksen et al. [18] gave new protocols for the
construction of preprocessed multiplication triples in fields of characteristic two,
based on OT extension, and in particular provided the first preprocessing phase
for MiniMAC. MASCOT (Keller et al. [19]) built on some of these ideas to cre-
ate preprocessing protocols for SPDZ based on OT extension. Committed MPC
(Frederiksen et al. [16]) is a secret-sharing based secure computation protocol
that relies on UC-secure homomorphic commitments instead of homomorphic
MACs for authentication, but other than that, it follows a similar pattern to
the protocols above. Efficient constructions of UC-secure homomorphic commit-
ments from OT have been proposed by Frederiksen et al. [17] and Cascudo et
al. [10] based on error correcting codes. Later, in [9] a modified construction
from extractable commitments, still using error-correcting codes, was proposed
that presents an important advantage for its use in Committed MPC, namely
the commitment schemes are multi-verifier.

The notion of reverse multiplication friendly embedding was first explicitly
defined and studied in the context of secure computation by Cascudo et al. in
[8] and independently by Block et al. in [5]. The former work is in the context
of information-theoretically secure protocols, while the latter studied 2-party
protocols over small fields where the assumed resource is OLE over an extension
field. This is partially based on a previous work also by Block et al. [4] where
(asymptotically less efficient) constructions of RMFEs were implicitly used.

2 Preliminaries

Let Fq denote a finite fields with q elements. Vectors are denoted with bold letters
as x = (x1, x2, . . . , xn) and componentwise products of two vectors are denoted
by x∗y = (x1 ·y1, x2 ·y2, . . . , xn ·yn). Fixing an irreducible polynomial f of degree
m in Fq[X], elements in the field Fqm with qm elements can be represented as
polynomials in Fq[X] with degree m−1, i.e α = α0+α1 ·X+· · ·+αm−1 ·Xm−1 ∈
Fqm , where αi ∈ Fq. The sums and products of elements are defined modulo f .

In our protocols we will assume a network of n parties who communicate by
secure point-to-point channels, and an static adversary who can actively corrupt
up to n − 1 of these parties. Our proofs will be in the universal composable
security model [6].

We recall the notion of reverse multiplication friendly embeddings from [8].

Definition 1. Let k,m ∈ Z
+. A pair of Fq-linear maps (φ, ψ), where φ : Fk

q →
Fqm and ψ : Fqm → F

k
q is called a (k,m)q-reverse multiplication friendly embed-

ding (RMFE) if for all x,y ∈ F
k
q

x ∗ y = ψ(φ(x) · φ(y))
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In other words, this tool allows to multiply coordinatewise two vectors over Fq

by first embedding them in a larger field with φ, multiplying the resulting images
and mapping the result back to a vector over Fq with the other map ψ.

Several results about the existence of such pairs can be found in [8], both in
the asymptotic and concrete settings. For our results we will only need the fol-
lowing construction, which can be obtained via simple interpolation techniques:

Theorem 1 ([8]). For all r ≤ 33, there exists a (3r, 10r − 5)2 -RMFE.

However, we remark that for implementations, it might be more useful to con-
sider the following constructions of RMFEs which can also be deduced from the
general framework in [8] (also based on polynomial interpolation). They have
worse rate k/m than those in Theorem 1, but they have the advantage that
their image can be in a field of degree a power of two, e.g. Fqm = F264 or F2128 .

Theorem 2. For any r ≤ 16, there exists a (2r, 8r)2-RMFE.3

For our numerical comparisons we will mainly consider the constructions with
better rate in Theorem 1 and point out that, should one want to use Theorem 2
instead, then some small overhead in communication is introduced.

It is important to understand some properties and limitations of the RMFEs.
Because φ and ψ are Fq-linear then

φ(x + y) = φ(x) + φ(y), ψ(x + y) = ψ(x) + ψ(y)

holds for all x,y ∈ F
k
q and x, y ∈ Fqm . However, for example

φ(x ∗ y) �= φ(x) · φ(y)

in general. Likewise we will need to take into account that the composition
φ ◦ ψ : Fqm → Fqm is a linear map over Fq but not over Fqm . Therefore

(φ ◦ ψ)(x + y) = (φ ◦ ψ)(x) + (φ ◦ ψ)(y) for allx, y ∈ Fqm , but
(φ ◦ ψ)(α · x) �= α · (φ ◦ ψ)(x)

for α, x ∈ Fqm in general (it does hold when α ∈ Fq, but this is not too relevant).
These limitations on the algebra of φ and ψ posed certain obstacles in the

information-theoretical setting [8], since processing multiplication gates required
to compute gates given by the map φ◦ψ, and this cannot be treated as a simple
linear gate over Fqm . The additivity of φ ◦ ψ combined with certain involved
preprocessing techniques saved the day there. For completion (and comparison
to our paper) we sum up some of the main details of [8] in the full version of
this paper [11]. In our case, we will again encounter problems caused by these
limitations as we explain next, but can solve them in a different way.
3 Specifically the result is obtained by noticing that the proof of Lemma 4 in [8] can

also be used to show the existence of (k, 2k)q-RMFE for any q ≤ k + 1, and then
composing (2, 4)2 and (r, 2r)16-RMFEs in the manner of Lemma 5 in the same paper.
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3 The Online Phase

In this section we present our protocol for computing simultaneously k instances
of a boolean circuit in parallel, which we can see as computing one instance of
an arithmetic circuit over the ring F

k
2 of length k boolean vectors with coordi-

natewise sum and product.
Our strategy is to have mixed authenticated sharings: inputs and the rest of

values in the computation x are additively shared as vectors over Fk
2 (we refer to

this as data shares), but their MACs are elements α ·φ(x) in the larger field F2m ,
where α ∈ F2m is (as in SPDZ) a global key that is additively shared among
the parties from the beginning (with α(i) denoting the share for party Pi), and
parties hold additive shares of α · φ(x) also in the field F2m (the MAC shares).
We will denote the authentication of x by 〈x〉. That is

〈x〉 =
(
(x(1),x(2), . . . ,x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)

where each party Pi holds an additive share x(i) ∈ F
k
2 and a MAC share m(i)(x) ∈

F2m , such that
∑n

i=1 m(i)(x) = α · ∑n
i=1 φ(x(i)) = α · φ(x).

The additivity of φ guarantees that additions can still be computed locally,
and we can define 〈x〉 + 〈y〉 = 〈x + y〉 where every party just adds up their
shares for both values. Moreover, given a public vector a and 〈x〉, parties can
also locally compute an authenticated sharing of a + x as

a+〈x〉 =
(
(x(1)+a,x(2), . . . ,x(n)), (α(1)·φ(a)+m(1)(x), . . . , α(n)·φ(a)+m(n)(x))

)

This allows to easily process addition with constants. Moreover, this also allows
us to explain how inputs are shared in the first place. In the preprocessing phase
parties have created for each input gate an authenticated random values 〈r〉
where r is known to the party that will provide the input x at that gate. This
party can just broadcast the difference ε = x − r, and then parties simply add
ε + 〈r〉 = 〈x〉 by the rule above.

As in SPDZ, parties in our protocol do not need to open any MAC until
the output gate. At the output gate, the parties check MACs on random linear
combinations of all values partially opened during the protocol, ensuring that
parties have not cheated except with probability at most 2−m (we need that
m ≥ s if s is the statistical security parameter); then, they open the result of
the computation and also check that the MAC of the result is correct.

A harder question, as usual, is how to process multiplication gates; given 〈x〉,
〈y〉 parties need to compute 〈x∗y〉 which implies not only obtaining an additive
sharing of x ∗ y but also of its MAC α · φ(x ∗ y). If we try to apply directly the
well-known Beaver’s technique [1] we encounter the following problem. Suppose
we have obtained a random triple 〈a〉, 〈b〉, 〈a ∗ b〉 from the preprocessing phase
and, proceeding as usual, parties partially open the values ε = x−a, δ = y−b (a
partially opening is an opening of the shares but not the MAC shares). From here,
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computing data shares for x ∗ y is easy; however, the obstacle lies in computing
shares of α · φ(x ∗ y). Indeed

α · φ(x ∗ y) = α · φ(a ∗ b) + α · φ(a ∗ δ) + α · φ(ε ∗ b) + α · φ(ε ∗ δ),

and the two terms in the middle present a problem: for example for α · φ(a ∗ δ)
we have by the properties of the RMFE

α · φ(a ∗ δ) = α · φ(ψ(φ(a) · φ(δ))) = α · (φ ◦ ψ)(φ(a) · φ(δ))

However, φ ◦ ψ is only F2-linear, and not F2m -linear, so we cannot just “take
α inside the argument” and use the additive sharing of α · φ(a) given in 〈a〉 to
compute a sharing of the expression above. Instead, we use a two-step process
to compute multiplication gates, for which we need to introduce regular SPDZ
sharings on elements x ∈ F2m . I.e. both x and its MAC α·x are additively shared
in F2m . We denote these by [x], that is

[x] =
(
(x(1), x(2), . . . , x(n)), (m(1)(x),m(2)(x), . . . ,m(n)(x))

)
,

where Pi will hold x(i) and m(i)(x) ∈ F2m with
∑n

i=1 m(i)(x) = α · ∑n
i=1 x(i).

To carry out the multiplication we need to preprocess a triple (〈a〉, 〈b〉, 〈c〉)
where c = a∗b, and a pair of the form (〈ψ(r)〉, [r]) where r is a random element
in F2m . In the first step of the multiplication we compute and partially open

[σ] = [φ(x) · φ(y) − φ(a) · φ(b) − r]. (1)

This can be computed from the ε and δ described above (details will be given
later). In the second step, we create 〈x ∗ y〉 from (1) by using the properties of
the RMFE; namely, x∗y = ψ(φ(x) ·φ(y)) and a∗b = ψ(φ(a) ·φ(b)), so applying
ψ on σ in (1) yields x ∗ y − a ∗ b − ψ(r) because of the additivity of ψ. Adding
〈a ∗ b〉 + 〈ψ(r)〉 (the yet unused preprocessed elements) gives 〈x ∗ y〉.

We still need to explain how to construct [σ]. For this we introduce some alge-
braic operations on the two types of authenticated sharings and public values.
First given a public vector a and a shared vector x we define:

a ∗ 〈x〉 =
(
(φ(a) · φ(x(1)), . . . , φ(a) · φ(x(n))), (φ(a) · m(1)(x), . . . , φ(a) · m(n)(x))

)

Note that the data shares are shares of φ(a) · φ(x), which is an element of F2m ,
and the MAC shares also correspond to additive shares of α·φ(a)·φ(x). However,
the data shares are not distributed uniformly in F2m because φ is not surjective,
so one cannot say this equals [φ(a) · φ(x)]. Nevertheless, given another [z], with
z ∈ F2m , it is true that a ∗ 〈x〉 + [z] = [φ(a) · φ(x) + z] where the sum on the left
is defined by just local addition of the data and MAC shares. We also define

〈x〉 + [y] =
(
(φ(x(1)) + y(1), . . . , φ(x(n)) + y(n)),

(m(1)(x) + m(1)(y), . . . , m(n)(x) + m(n)(y))
)

= [φ(x) + y]
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Now, given 〈x〉, 〈y〉 and a triple 〈a〉, 〈b〉, 〈a ∗ b〉, parties can open ε = x − a,
δ = y − b and construct

ε ∗ 〈y〉 + δ ∗ 〈x〉 − φ(ε) · φ(δ) − [r] = [φ(ε) · φ(y) + φ(δ) · φ(x) − φ(ε) · φ(δ) − r]
= [φ(x) · φ(y) − φ(a) · φ(b) − r],

where the latter equality can be seen by developing the expressions for ε and δ,
and using the additivity of φ. The obtained sharing is the [σ] we needed above.
Summing up, the whole multiplication gate costs 2 openings of sharings of vectors
in F

k
2 and one opening of a share of an element in F2m . Every multiplication gate

requires fresh preprocessed correlated authenticated sharings (〈a〉, 〈b〉, 〈a ∗ b〉)
and (〈ψ(r)〉, [r]) for random a,b, r.

We present formally the online protocol we just explained, the functionality
it implements, and the functionalities needed from preprocessing. The function-
ality constructing the required preprocessed randomness is given in Fig. 2, and
relies on the authentication functionality in Fig. 1. The latter augments the one
in MASCOT [19] allowing to also authenticate vectors and to compute linear
combinations involving the two different types of authenticated values and which
can be realized by means of the [·]- and 〈·〉-sharings.

The functionality for our MPC protocol is in Fig. 3 and the protocol imple-
menting the online phase is in Fig. 4.

Theorem 3. ΠOnline securely implements FMPC in the FPrep-hybrid model.

Proof. The correctness follows from the explanation above. For more details
we refer to the full version, but we also note that the online phase from this
protocol is similar to the online phases of protocols such as [14–16,19], except
that in every multiplication we additionally need to use the pair (〈ψ(r)〉, [r]) in
order to transform a [·]-sharing into 〈x∗y〉. However, since r is uniformly random
in the field F2m , the opened value σ masks any information on x, y.

3.1 Comparison with MiniMAC and Committed MPC

We compare the communication complexity of our online phase with that of
MiniMAC [15] and Committed MPC [16], two secret-sharing based MPC proto-
cols which are well-suited for simultaneously evaluating k instances of the same
boolean circuit. We will count broadcasting a message of M bits as communi-
cating M(n − 1) bits (M bits to each other party). This can be achieved using
point-to-point channels as described in the full version of [14].

Communication Complexity of Our Protocol. Partially opening a 〈·〉-au-
thenticated secret involves 2k(n − 1) bits of communication, since we have one
selected party receive the share of each other party and broadcast the recon-
structed value. Likewise, partially opening a [·]-authenticated value communi-
cates 2m(n − 1) bits. In our online phase, every input gate requires k(n − 1)



662 I. Cascudo and J. S. Gundersen

Fig. 1. Functionality – authentication

Fig. 2. Functionality – preprocessing
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Fig. 3. Functionality – MPC

Fig. 4. Online phase

bits of communication. Multiplication gates require the partial opening of two
〈·〉-authenticated values and one [·]-authenticated value, hence (4k + 2m)(n − 1)
bits of communication. An output gate requires to do a MAC-check on (a linear
combination of) previously partially opened values, then partially opening the
output, and finally doing a MAC check on the output. A MAC check require
every party to communicate a MAC share in F2m , for a total of mn bits com-
municated. Hence output gates require 2k(n − 1) + 2mn bits of communication.
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MiniMAC. MiniMAC uses a linear error correcting code C with parameters
[�, k, d] (i.e., it allows for encoding of messages from F

k
2 into F

�
2 and has minimum

distance d). Parties have additive shares of encodings C(x), where the shares
are also codewords, and shares of the MAC α ∗ C(x), which can be arbitrary
vectors in F

�
2. In addition, at multiplication gates C∗-encodings of information

are needed, where C∗ is the code C∗ = span{x ∗ y | x,y ∈ C}, the smallest
linear code containing the coordinatewise product of every pair of codewords
in C∗, with parameters [�, k∗, d∗]. We always have d ≥ d∗, and the cheating
success probability of the adversary in the protocol is 2−d∗

, so we need d∗ ≥
s for the statistical parameter s. The online phase of MiniMAC has a very
similar communication pattern to ours: a multiplication requires to open two
elements encoded with C (coming from the use of Beaver’s technique) and one
encoded with C∗. Since shares of C-(resp C∗-)encodings are codewords in C
(resp C∗), and describing such codewords require k bits (resp. k∗ bits)4 the
total communication complexity is (4k + 2k∗)(n − 1), so the difference with our
protocol depends on the difference between the achievable parameters for their
k∗ and our m, compared below. Input gates require k(n− 1) bits, as in our case,
and for output gates, since MAC shares are arbitrary vectors in F

�
2, a total of

2k(n − 1) + 2�n bits are sent. See full version for more details on this.

Committed MPC. Committed MPC [16] is a secret-sharing based MPC pro-
tocol that relies on UC-secure additively homomorphic commitments for authen-
tication, rather than on MACs. Efficient commitments of this type have been
proposed in works such as [9,10,17] where the main ingredient5 is again a lin-
ear error correcting code C with parameters [�, k, d]. In committed MPC, for
every x ∈ F

k
2 , each party Pi holds an additive share xi ∈ F

k
2 to which she com-

mits towards every other party Pj (in the multi-receiver commitment from [9],
this can be accomplished by only one commitment). During most of the online
phase there are only partial openings of values and only at output gates the
commitments are checked. Multiplication is done through Beaver’s technique. In
this case only two values ε, δ are partially opened. In exchange, parties need
to communicate in order to compute commitments to δ ∗ a (resp. ε ∗ b) given
δ, and commitments to a (resp. ε and commitments to b) at least with cur-
rent constructions for UC-secure homomorphic commitments. [16, full version,
Fig. 16] provides a protocol where each of these products with known constant
vectors requires to communicate one full vector of length � and two vectors of k∗

components (again � is the length of C and k∗ is the dimension of C∗). In total
the communication complexity of a multiplication is (4k + 2k∗ + �)(n − 1) bits.
Output gates require to open all the commitments to the shares of the output.
Since opening commitments in [9,10,17] requires to send two vectors of length
� to every other party, which has a total complexity of 2�(n − 1)n. Input gates
have the same cost as the other two protocols.

4 We observe that this is more lenient than the description of MiniMAC in [13,15]
where it is implied that � bits need to be sent in order to do these openings.

5 The constructions rely also on OT (in the first two cases) and extractable commit-
ments (in the third) but these primitives are only used in a preprocessing phase.
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Concrete Parameters. Summing up we compare the communication costs of
multiplication and output gates in Table 1 since these are the gates where the
communication differs.

Table 1. Total number of bits communicated in the different gates in the online phases,
when computing k instances of a boolean circuit in parallel. Communication per party
is obtained dividing by n.

MiniMAC Committed MPC Our protocol

Multiply (4k + 2k∗)(n − 1) (4k + 2k∗ + �)(n − 1) (4k + 2m)(n − 1)
Output 2 · � · n + 2k(n − 1) 2 · � · (n − 1)n 2 · m · n + 2k(n − 1)

The key quantities are the relation between m/k (in our case) and k∗/k and
�/k in the other two protocols. While the possible parameters �, k, d of linear
codes have been studied exhaustively in the theory of error-correcting codes,
relations between those parameters and k∗, d∗ are much less studied, at least in
the case of binary codes. As far as we know, the only concrete non-asymptotic
results are given in [7,12]. In particular, the parameters in Table 2 are achievable.

Table 2. Parameters for C and C∗2 from [7].

� k d ≥ k∗ d∗ ≥ k∗/k �/k

2047 210 463 1695 67 8.07 9.75
4095 338 927 3293 135 9.74 12.11

Table 3. Parameters for RMFE
from [8].

k m m/k

21 65 3.10
42 135 3.21

On the other hand, the parameters for our protocol depend on parameters
achievable by RMFEs. By Theorem 1 for all 1 ≤ r ≤ 33, there exists a RMFE
with k = 3r and m = 10r − 5. Some specific values are shown in Table 3.

This leads to the communication complexities per computed instance of the
boolean circuit for security parameters s = 64 and s = 128 given in Table 4.
For larger security parameter, the comparison becomes more favourable to our
technique, since the “expansion factor” m/k degrades less than the one for known
constructions of squares of error correcting codes.

If instead we want to use Theorem 2, so that we can define the MACs over
a field of degree a power of two, then the last column would have complexities
12 · (n − 1) and 8 · n + 2(n − 1) in both the cases s = 64 and s = 128.

Comparison with an Online Communication-Efficient Version of Min-
iMAC. In [13], a version of MiniMAC is proposed which uses linear codes over
the extension field F256. The larger field enables to use a Reed-Solomon code, for
which k∗ = 2k − 1. However, because this only gives coordinatewise operations
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Table 4. Total number of bits sent per instance at multiplication and output gates

Sec. par. Phase MiniMAC Committed MPC Our protocol

s = 64 Multiply 20.14 · (n − 1) 29.89 · (n − 1) 10.2 · (n − 1)
Output 19.5 · n + 2(n − 1) 19.5 · (n − 1)n 6.2 · n + 2(n − 1)

s = 128 Multiply 23.48 · (n − 1) 35.58 · (n − 1) 10.42 · (n − 1)
Output 24.22 · n + 2(n − 1) 24.22 · (n − 1)n 6.42 · n + 2(n − 1)

in F
k
256, the protocol needs to be modified in order to allow for bitwise oper-

ations instead. The modified version requires the opening of two C∗-encodings
at every multiplication gate and a more complicated and much larger prepro-
cessing, where in addition to creating certain type of multiplication triple, the
preprocessing phase needs to provide authenticated sharings of 16 other vectors
created from the bit decompositions of the coordinates of the two “factor” vec-
tors in the triple. As far as we know, no preprocessing phase that creates these
authenticated elements has been proposed.

The amortized communication complexity of that protocol is of 8(n− 1) bits
per multiplication gate, per instance of the circuit, which is slightly less than 80%
of ours. On the other hand, we estimate that the complexity of the preprocessing
would be at least 4 times as that of our protocol and possibly larger, based on
the number of preprocessed elements and their correlation.

Computation and Storage. In terms of storage, each authenticated share of
a k-bit vector is m + k bits, which is slightly over 4 bits per data bit. MiniMAC
and Committed MPC require a larger storage of � + k bits because the MAC
shares/commitments are in F

�
2. In [13] shares are also 4 bits per data bit because

of using RS codes, but the amount of preprocessed data is much larger. In
terms of computation, while our protocol does slightly better for additions (again
because of the shorter shares, and since the addition in F2m is as in F

m
2 ), and

the same happens with additions required by multiplication gates, computing
the terms ε ∗ 〈y〉, δ ∗ 〈x〉, φ(ε) · φ(δ) requires in total 5 multiplications in F2m

which, being field multiplications, are more expensive than the coordinatewise
ones required by MiniMAC, even if some of them are in a larger space F

�
2.

4 From Batch Computations to Single Circuit
Computations

We explain now how to adapt our protocol, which was presented as a protocol
for the simultaneous secure evaluation of k instances of the same boolean circuit,
into a protocol that computes a single evaluation of a boolean circuit with little
overhead, as long as the circuit is sufficiently “well-formed”. This is a quite
straightforward adaptation of the ideas presented in [15]. The technique can
be used in general for any boolean circuit but it works better when the circuit
satisfies a number of features, which we can loosely sum up as follows:
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– The circuit is organized in layers, each layer consisting of the same type of
gate (either additive or multiplicative). We number the layers in increasing
order from the input layer (layer 0) to the output layer.

– For most layers, the number of gates u is either a multiple of k or large enough
so that the overhead caused by the need to add u′ dummy gates to obtain a
multiple of k and compute the gates in batches of k is negligible.

– For most pairs of layers i and j, where i < j, the number of output bits from
layer i that are used as inputs in layer j is either 0 or sufficiently large so
that we do not incur in much overhead by adding dummy outputs or inputs
(again to achive blocks of size exactly k).

The idea from [15] is that given a layer of u gates, where we can assume u = t ·k
we organize the inputs of the layers in t blocks of k gates, and we will compute
each block by using the corresponding subroutine in our protocol.

For that we need to have authenticated shared blocks of inputs 〈x〉, 〈y〉
where the i-th coordinates xi, yi are the inputs of the i-th gate in the block.
This assumes gates are of fan-in 2. For the case of addition gates, we can also
support of course arbitrary fan-in gates, but then we want to have the same
fan-in in every gate in the same block, again to avoid overheads where we need
to introduce dummy 0 inputs. In any case at the end of the computation of this
layer we obtain t authenticated sharings 〈z〉.

The question is how to now transition to another layer j. Let us assume that
layer j takes inputs from l blocks 〈x1〉, . . . , 〈xl〉 of k bits each coming from some
previous layer. Of course the issue is that we are not guaranteed that we can
use these as input blocks for the layer j. We will likely need to reorganize the
bits in blocks, we may need to use some of the bits more than once, and we
may not need to use some of the bits of some output blocks. At first sight this
reorganization may look challenging, because note that the bits of each xi can
be “quite intertwined” in the MAC α · φ(xi).

However in all generality, we can define l′ functions F1, . . . , Fl′ : Fkl
2 → F

k
2

such that if we write X = (x1,x2, . . . ,xl) the concatenation of the output blocks,
then F1(X), . . . , Fl′(X) are the input blocks we need. These maps are F2-linear;
in fact, each of the coordinates of each Fi are either a projection to one coordinate
of the input or the 0-map. We assume that all these reorganizing functions can
be obtained from the description of the function and therefore they are known
and agreed upon by all parties.

Calling F = (F1, F2, . . . , Fl′), suppose we can obtain by preprocessing

((〈r1〉, 〈r2〉, . . . , 〈rl〉), (〈F1(R)〉, 〈F2(R)〉, . . . , 〈Fl′(R)〉),

where R = (r1, r2, . . . , rl) is again the concatenation in F
kl
2 . To ease the notation

we will write (〈R〉, 〈F (R)〉) and call this a reorganizing pair.
Then, reorganizing is done in the following way. The parties compute 〈xj〉 −

〈rj〉 and open these values for j = 1, 2, . . . , l. Afterwards, they compute

Fj(x1 − r1, . . . ,xl − rl) + 〈Fj(r1, . . . , rl)〉 = 〈Fj(x1, . . . ,xl)〉
which holds by the linearity of Fj .
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We can add this property to our setup above by including the supplements
in Fig. 5 to FPrep, FMPC, and ΠOnline. Apart from this we also need to point
out that at the input layer, a party may need to add dummy inputs so that her
input consists of a number of blocks of k bits.

Fig. 5. Reorganizing supplement

Of course, it looks as though we have moved the problem to the preprocessing
phase, as we still need to construct the reorganizing random pairs (〈R〉, 〈F (R)〉).
But this will be easy because of the F2-linearity of the maps φ and F .

The communication complexity of each reorganizing round is that of opening
l vectors in F

k
2 , therefore 2lk(n − 1) bits of communication. Therefore, the effi-

ciency of this technique clearly depends much on the topology of the circuit. For
example if all the output bits of a given layer are used in the next layer and only
there, then we can say that this technique adds roughly 2 bits of communication
per party per gate.

5 Preprocessing

In this section, we present how to obtain the preprocessed correlated informa-
tion we need in our online protocols. The implementation of authentication and
construction of multiplication triples is adapted in a relatively straightforward
way from MASCOT. This is because MASCOT is based on bit-OT extension,
and working bit-by-bit is well suited for our situation because of the maps φ, ψ
being F2-linear. For the preprocessing of multiplication triples we do need to
introduce some auxiliary protocols with respect to MASCOT: one is the pre-
processing of reencoding pairs (〈ψ(r)〉, [r]) that we anyway need for the online
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protocol; another one creates [r] for a random r in the kernel of ψ, which we need
in order to avoid some information leakage in the sacrifice step. Both types of
preprocessing can be easily constructed based on the F2-linearity of ψ. Finally,
we use the sacrifice step in Committed MPC, rather than the one in MASCOT,
because of some technical issues regarding the fact that the image of φ is not
the entire F2m which creates problems when opening certain sharings.

Fig. 6. Overview of dependency of the protocols needed for the preprocessing.

Aside from the aforementioned multiplication triples (〈a〉, 〈b〉, 〈c〉) where c =
a∗b, for the online phase we also need to generate input pairs (r, 〈r〉), reencoding
pairs of the form (〈ψ(r)〉, [r]), and (in case we want to use the techniques in
Sect. 4) layer reorganizing pairs (〈R〉, 〈F (R)〉).

To obtain an overview of the way the functionalities presented in this section
are dependent on each consider Fig. 6. We use the following basic ideal func-
tionalities: parties can generate uniform random elements in a finite set using
the functionality FRand (for the sake of notational simplicity we omit referring
to FRand in protocols). Moreover, parties have access to a commitment func-
tionality FComm, see Fig. 7. We will also make use of a functionality Fn,k

ROT that
implements n 1-out-of-2 oblivious transfers of k-bit strings (Fig. 8).

We adapt the correlated oblivious product evaluation functionality FCOPEe

defined in MASCOT [19]. We recall how this functionality works: we again see
the field F2m as F2[X]/(f) for some irreducible polynomial f ∈ F2[X]. Then
{1,X,X2, . . . , Xm−1} is a basis for F2m as a F2-vector space. The functionality
as described in [19] takes an input α ∈ F2m from one of the parties PB in
the initialization phase; then there is an arbitrary number of extend phases
where on input x ∈ F2m from PA, the functionality creates additive sharings
of α · x for the two parties. However, if PA is corrupted it may instead decide
to input a vector of elements (x0, x1, . . . , xm−1) ∈ (F2m)m, and in that case the
functionality outputs a sharing of

∑m−1
i=0 xi ·αi ·Xi (where αi are the coordinates
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Fig. 7. Functionalities – randomness generation and commitment

Fig. 8. Functionality – random OT

of α in the above basis). The honest case would correspond to all xi being
equal to x. This functionality from MASCOT corresponds to the steps Initialize
and ExtendField in our version Fig. 10. We augment this by adding the step
ExtendVector, where party PA can input a vector x ∈ F

k
2 and the functionality

outputs an additive sharing of α · φ(x) ∈ F2m . If party PA is corrupted it may
instead input (x0,x1, . . . ,xm−1) ∈ (Fk

2)
m. In that case the functionality outputs

an additive sharing of
∑m−1

i=0 φ(xi) ·αi ·Xi, and note that this is more restrictive
for the corrupted adversary than ExtendField since the values φ(xi) are not free
in F2m but confined to the image of φ. We define the functionality FCOPEe in
Fig. 9 and present a protocol implementing the functionality in Fig. 10.

Proposition 1. ΠCOPEe securely implements FCOPEe in the Fm,λ
OT -hybrid

model.

Proof. The commands Initialize and ExtendField are as in [19] (the latter being
called Extend there). The proof for our ExtendVector command is analogous to
the one for the ExtendField except, as explained, because the ideal functionality
restricts the choice by a corrupt PA of the element that is secret shared. We
briefly show the simulation of ExtendVector together with Initialize.

If PB is corrupted, the simulator receives (α0, . . . , αm−1) from the adversary,
and simulates the initialization phase by sampling the seeds at random, and send-
ing the corresponding one to the adversary. It simulates the ExtendVector phase
by choosing ui uniformly at random in the corresponding domain, computes q as
an honest PB would do and inputs this to the functionality. Indistinguishability
holds by the pseudorandomness of F , as shown in [19].

If PA is corrupted then the simulator receives the seeds from the adversary
in the Initialize phase, and from there it computes all the ti

b in the ExtendVector
phase. Then when the adversary sends ui, the simulators extract xi = ui−ti

0+ti
1
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Fig. 9. Functionality – correlated oblivious product evaluation with errors.

and inputs t = −∑m−1
i=0 φ(ti

0) · Xi and (x1,x2, . . . ,xm) to FCOPEe. In this case
all outputs are computed as in the real world and indistinguishability follows.

5.1 Authentication

In protocol ΠAuth (Figs. 11, 12, and 13), we use FCOPEe to implement FAuth.
In the initialize phase each pair of parties (Pi, Pj) call the initialize phase from

FCOPEe where Pi inputs a MAC key. Afterwards Pj can create authenticated
sharings to the desired values, both of boolean vectors and of elements in the
larger field: namely Pj constructs additive random sharings of the individual
values and uses the appropriate extend phase of FCOPEe to obtain additive
sharings of the MACs. At last, a random linear combination of the values chosen
by Pj is checked. Here privacy is achieved by letting Pj include a dummy input
xt+1 to mask the other inputs.

Proposition 2. ΠAuth securely implements FAuth in the
(FCOPEe,FRand,FComm)-hybrid model

Proof. Since the proof is similar to the proof of security for Π[[·]] in [19], we point
out the differences and argue why it does not have an impact on the security.

First of all note that our functionality, in contrary to Π[[·]], has an Add
command and a LinComb command. This is because we reserve the LinComb
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Fig. 10. Correlated oblivious product evaluation with errors.

command for linear combinations which output [·]-sharings, while Add outputs
a 〈·〉-sharing. In any case, the Add and LinComb command consist of local
computations so it is trivial to argue their security. The Initialize command only
invokes the Initialize command from the ideal functionality FCOPEe, which is
exactly the same as in [19]. Since the Open command lets the adversary choose
what to open to there is not much to discuss here either.

Therefore, what we need to discuss is the Input and Check commands. The
idea is that if the check in the input phase is passed and the adversary opens
to incorrect values later on, then the probability to pass a check later on will
be negligible. In comparison to [19], we have both values in F2m and vectors
in F

k
2 , but we can still use the same arguments there, because the check in the

Input phase and all further checks are in F2m and therefore the simulation and
indistinguishability is following by the exact same arguments as in [19].

5.2 Input, Reencoding, and Reorganizing Pairs

The two functionalities FCOPEe and FAuth are the building blocks for the pre-
processing. They are very similar in shape to the MASCOT functionalities but
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Fig. 11. Authenticated shares – part 1.

with some few corrections to include that sharings can be of vectors instead of
field elements in F2m . With these building blocks we can produce the randomness
needed for the online phase. First of all, we produce input pairs with protocol
ΠInputPair in Fig. 14. Proposition 3 is straightforward.

Proposition 3. ΠInputPair securely implements FPrep.InputPair in the FAuth-
hybrid model.

We also need to construct pairs to re-encode [·]-sharings to 〈·〉-sharings after
a multiplication. A protocol ΠReEncodePair for producing the pairs (〈ψ(r)〉, [r])
for random r ∈ F2m is shown in Fig. 15.
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Fig. 12. Authenticated shares – part 2.

Proposition 4. ΠReEncodePair securely implements FPrep.ReEncodePair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

Proof. First notice that at least one of the parties is honest and hence rj =∑n
i=1 r

(i)
j is random because one of the terms is. Suppose that at the end of the

Combine phase parties have created (〈sj〉, [rj ]), where possibly sj �= ψ(rj).
Let εj = sj − ψ(rj) for all j. By F2-linearity of ψ, bi − ψ(bi) =

∑t+s
j=1 aijεj .

Hence if all εj = 0, the check passes for all i. While if there is some εj �= 0,
j = 1, . . . , t, then for every i the probability that

∑t+s
j=1 aijεj = 0 is at most 1/2.

Since the checks are independent we obtain that if some εj �= 0, j = 1, . . . , t
then the protocol will abort except with probability at most 2−s. Note also that
bi = rt+i+

∑t
j=1 aijrj , so opening the bi reveals no information about the output

values r1, . . . , rt.

Finally, a protocol for producing reorganizing pairs is given in Fig. 16.
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Fig. 13. Authenticated shares – part 3.

Fig. 14. Creating input pairs.

Proposition 5. ΠReOrgPair securely implements FPrep.ReOrgPair in the
(FAuth,FRand)-hybrid model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 4.

5.3 Multiplication Triples

Our protocol ΠTriple for constructing triples is given in Figs. 17 and 18. We note
that c = a∗b =

∑
i,j a(i)∗b(j) and hence sharings of c can be obtained by adding

sharings of summands, where each of the summands only require two parties Pi



676 I. Cascudo and J. S. Gundersen

Fig. 15. Re-encode pairs.

Fig. 16. Re-organize pairs.

and Pj to interact. Again, the construction step is much like the construction
step from the protocol ΠTriple in [19]. where we have modified the protocol such
that it produces triples (〈a〉, 〈b〉, 〈c〉) instead of ([a], [b], [c]).
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Fig. 17. Construction of multiplication triples.

However, after authentication, we use techniques from Committed MPC [16]
to check correctness and avoid leakage on the produced triples. Indeed using
the combine and sacrifice steps in MASCOT presents some problems in our
case: in the sacrificing step in MASCOT parties take two triples ([a], [b], [c]) and
([â], [b], [ĉ]) and start by opening a random combination s · [a]− [â] to some value
ρ, so that they can later verify that s · [c]− [ĉ]−ρ · [b] opens to 0. Since the second
triple will be disregarded, and s · a − â completely masks a since â is uniformly
random, no information is revealed about a. In our case we would have triples
(〈a〉, 〈b〉, 〈c〉) and (〈â〉, 〈b〉, 〈ĉ〉) and sample a random s ∈ F2m , it would not be
the case that φ(â) would act as a proper one-time pad for s · φ(a)6. A similar
problem would arise for adapting the combine step in [19].

Therefore, we proceed as in [16]: in the protocol ΠTriple we start by construct-
ing additive sharings of N = τ1 +τ1 ·τ2

2 ·T triples. Then some of these triples are
opened and it is checked that they are correct. This guarantees that most of the
remaining triples are correct. The remaining triples are then organized in buckets
and for each bucket all but one of the triples are sacrified in order to guarantee
that the remaining triple is correct with very high probability. In order to be

6 Sampling s ∈ F
k
2 instead would not solve the problem since s ∗ 〈a〉 − 〈â〉 is not a

proper [·]-sharing as described in Sect. 3.
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Fig. 18. Multiplication triples.
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Fig. 19. Functionality – authenticated random element in ker(ψ).

Fig. 20. Authenticated random element in ker(ψ).

able to open proper sharings in the sacrifice step we need to add authenticated
sharings of an element in the kernel of ψ. We present a functionality serving that
purpose in Fig. 19 and a protocol implementing it in Fig. 20.

Proposition 6. ΠRanKer securely implements FRanKer in the (FAuth,FRand)-
hybrid model with statistical security parameter s.

The proof of this proposition is similar to that of Proposition 4. The correctness
follows from the additivity of ψ.

The sacrifice step opens the door for a selective failure attack, where the
adversary can guess some information about the remaining triples from the fact
that it has not aborted, so a final combining step is used to remove this leakage.

Proposition 7. ΠTriple securely implements FPrep.Triple in the
(FAuth,Fm,k

ROT,FRand,FRanKer)-hybrid model.

The proof uses similar arguments as in [16] and can be found in the full version.

Proposition 8. ΠInputPair, ΠReEncodePair, and ΠTriple securely implements
FPrep in the (FAuth,Fm,k

ROT,FRand)-hybrid model.

Proof. This follows directly from Propositions 3, 4, and 7.



680 I. Cascudo and J. S. Gundersen

Complexity of Preprocessing

We briefly describe the communication complexity for producing the random-
ness needed for the online phase. Starting by considering the construction of an
input pair the only communication we have to consider here is a single call to
FAuth.Input. The main cost of authentication is the call to ΠCOPEe where the
parties needs to send mk(n − 1) bits for each vector authenticated. In the case
where a field element is authenticated instead they need to send m2(n − 1) bits.
Furthermore, the party who is authenticating needs to send the shares of the
vector authenticating but this has only a cost of k(n− 1) bits. At last, the check
is carried out but we assume that the parties authenticate several vectors/values
in a batch and hence this cost is amortized away.

For the re-encoding pairs we assume that t is much larger than s. This means
that in order to obtain a single pair the parties need to authenticate n field
elements and n vectors. Once again we assume that the check is amortized away,
so this gives a total cost of sending (m2 + mk)n(n − 1) bits.

The same assumption, that t is much larger than s, is made for the reorga-
nizing pairs and the random elements in the kernel of ψ. This means that the
amortized cost of producing a reorganizing pair is (l+l′)n vector-authentications
and to obtain [r] for r ∈ ker(ψ) costs n authentication amortized.

Regarding the communication for obtaining a single multiplication triple we
ignore the vectors sent in the construction since the authentication is much
more expensive. Besides authentication we make τ1τ

2
2n(n−1) calls to Fk,1

ROT. We
authenticate 3τ1τ2

2n vectors in the construction. Furthermore, we need (τ2−1)τ2
2

elements from FRanKer and 2 reencoding pairs for the construction of the triple.
The cost of the remaining steps is not close to be as costly, so we ignore these.

In [16] it is suggested to use τ1 = τ2 = 3. The cost of preparing a multiplica-
tion gate using these parameters is that of producing 3 reencoding pairs (2 for
the preprocessing and 1 for the online phase), 18 authenticated elements in the
kernel of ψ and the multiplication triple which yields 27 calls to Fk,1

ROT and 3 · 27
authentication of vectors. Thus using m = 3.1k from Table 3 in order to obtain
security s ≥ 64 and ignoring the calls to Fk,1

ROT the communication becomes

3 · (3.12 + 3.1)k2n(n − 1) + 18 · 3.12k2n(n − 1) + 3 · 27 · 3.1 · k2n(n − 1) bits

= 462.21 · k2n(n − 1) bits.

Similarly, in order to obtain s ≥ 128 we use m = 3.21k from Table 3 and the
communication becomes 486.03 · k2n(n − 1) bits.
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time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 7

11. Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for boolean
circuits with good amortized complexity (full version). Cryptology ePrint Archive,
Report 2020/162 (2020). https://eprint.iacr.org/2020/162.pdf

12. Cascudo, I., Gundersen, J.S., Ruano, D.: Squares of matrix-product codes. Finite
Fields Appl. 62, 101606 (2020)

13. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Abdalla, M., De Prisco, R.
(eds.) SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10879-7 23

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

15. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 35

16. Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC. In: Abdalla, M., Dahab,
R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 587–619. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 20

https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-319-63715-0_1
https://doi.org/10.1007/978-3-030-05378-9_20
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-319-96878-0_14
https://doi.org/10.1007/978-3-030-34621-8_22
https://doi.org/10.1007/978-3-662-53015-3_7
https://eprint.iacr.org/2020/162.pdf
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-319-76578-5_20


682 I. Cascudo and J. S. Gundersen

17. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity
of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 23

18. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

19. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 830–842.
ACM (2016)

20. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 28

21. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-642-32009-5_40


On the Round Complexity of the Shuffle
Model

Amos Beimel1, Iftach Haitner2, Kobbi Nissim3, and Uri Stemmer4,5(B)

1 Ben-Gurion University, Beersheba, Israel
amos.beimel@gmail.com

2 Tel-Aviv University, Tel Aviv, Israel
iftachh@cs.tau.ac.il

3 Georgetown University, Washington, D.C., USA
kobbi.nissim@georgetown.edu

4 Ben-Gurion University, Beersheba, Israel
u@uri.co.il

5 Google Research, Mountain View, USA

Abstract. The shuffle model of differential privacy [Bittau et al. SOSP
2017; Erlingsson et al. SODA 2019; Cheu et al. EUROCRYPT 2019] was
proposed as a viable model for performing distributed differentially pri-
vate computations. Informally, the model consists of an untrusted ana-
lyzer that receives messages sent by participating parties via a shuf-
fle functionality, the latter potentially disassociates messages from their
senders. Prior work focused on one-round differentially private shuffle
model protocols, demonstrating that functionalities such as addition and
histograms can be performed in this model with accuracy levels similar
to that of the curator model of differential privacy, where the computa-
tion is performed by a fully trusted party. A model closely related to the
shuffle model was presented in the seminal work of Ishai et al. on estab-
lishing cryptography from anonymous communication [FOCS 2006].

Focusing on the round complexity of the shuffle model, we ask in
this work what can be computed in the shuffle model of differential pri-
vacy with two rounds. Ishai et al. showed how to use one round of the
shuffle to establish secret keys between every two parties. Using this
primitive to simulate a general secure multi-party protocol increases its
round complexity by one. We show how two parties can use one round
of the shuffle to send secret messages without having to first establish a
secret key, hence retaining round complexity. Combining this primitive
with the two-round semi-honest protocol of Applebaum, Brakerski, and
Tsabary [TCC 2018], we obtain that every randomized functionality can
be computed in the shuffle model with an honest majority, in merely two
rounds. This includes any differentially private computation.

We hence move to examine differentially private computations in the
shuffle model that (i) do not require the assumption of an honest major-
ity, or (ii) do not admit one-round protocols, even with an honest major-
ity. For that, we introduce two computational tasks: common element,
and nested common element with parameter α. For the common element
problem we show that for large enough input domains, no one-round
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differentially private shuffle protocol exists with constant message com-
plexity and negligible δ, whereas a two-round protocol exists where every
party sends a single message in every round. For the nested common ele-
ment we show that no one-round differentially private protocol exists for
this problem with adversarial coalition size αn. However, we show that
it can be privately computed in two rounds against coalitions of size cn
for every c < 1. This yields a separation between one-round and two-
round protocols. We further show a one-round protocol for the nested
common element problem that is differentially private with coalitions of
size smaller than cn for all 0 < c < α < 1/2.

Keywords: Shuffle model · Differential privacy · Secure multiparty
computation

1 Introduction

A recent line of work in differential privacy focuses on a distributed model
where parties communicate with an analyzer via a random shuffle. The shuf-
fle collects messages from the participating parties and presents them to the
analyzer in a random order, hence potentially disassociating between messages
and their senders [11,16,21]. The hope is that the shuffle model would be useful
for the implementation of practical distributed differentially private statistical
and machine learning analyses, and with accuracy comparable to that of cen-
tralized differential privacy solutions. The implementation of the shuffle itself is
envisioned to be based on technologies such as secure enclaves, mix nets, and
secure computation.

The theoretical work on the shuffle model has so far focused on developing
protocols for the model formalized in [16]. In this synchronous one-round model,
all the participating parties send their messages through the shuffle at once (par-
ties may send one message or multiple messages). Already in this limited com-
munication model there are fundamental statistical tasks for which differentially
private shuffle model protocols exist with error comparable to that achievable in
the (centralized) curator model of differential privacy [2,4–6,16,23–25].

A model similar to the shuffle model was presented already in 2006 by Ishai,
Kushilevits, Ostrovsky, and Sahai in the context of secure multiparty compu-
tation [27]. In particular, Ishai et al. presented a one-round secure summation
protocol that has become one of the building blocks of noise efficient real summa-
tion differentially-private protocols, where each party holds a number xi ∈ [0, 1]
and the analyzer’s task is to estimate the sum

∑
xi [4,6,23,24]. Ishai et al. also

presented a one-round protocol allowing any two parties to agree on a secret key,
a step after which the parties can privately exchange messages. Combining this
primitive with general constructions of secure multiparty computation protocols
that rely on private or secure channels, Ishai et al. showed that it is possible to
compute any (finite) function of the parties’ joint inputs in a constant number of
rounds. In particular, we observe that combining the key agreement protocol of
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Ishai et al. [27] with the recent two-round secure multiparty protocol of Apple-
baum, Brakersky, and Tsabary [1] (denoted the ABT protocol), no more than
three rounds suffice for computing any (finite) randomized function securely in
the shuffle model, with semi-honest parties assuming an honest majority: one
round for every pair of parties to setup a secret key, and hence private commu-
nication channels. Two more round to simulate the ABT protocol using these
private channels. To conclude, the previous results imply that any randomized
function (including, in particular, any curator model differential privacy com-
putation) can be computed in the shuffle model with security against an honest
majority.1

1.1 Our Results

In this work, we focus on the shuffle model with semi-honest parties. We ask what
can be computed in the shuffle model with one and two rounds of communication,
and at the presence of coalitions of semi-honest parties that can put together
their inputs, randomization, and messages they receive during the computation
with the goal of breaching the privacy of other parties. We present new techniques
for constructing round-efficient protocols in the shuffle models as well as new
lowerbound techniques for studying the limitations of one-round protocols. In
more detail:

One-Round Private Message Transmission. In Sect. 3.1 we present a new
building block for shuffle model protocols. This is a protocol that allows a party
Pi to send a secret message to another party Pj in one round. In the key agree-
ment protocol of Ishai et al. [27], mentioned above, to agree on a bit b of the key,
each of Pi and Pj selects and sends through the shuffle a random element chosen
from a large set. Denoting the elements sent by Pi, Pj as x, y resp., parties Pi

and Pj can set the secret bit b to 0 if x < y and to 1 if x > y. (The protocol
fails if x = y.) The other parties cannot distinguish which of the two values is
x and which is y and gain no information about the bit b. Using this protocol,
party Pi learns the secret key only after the conclusion of one communication
round, and only then can Pi use the key to encrypt a message. In contrast, our
construction saves a round in the communication, as it allows Pi to encrypt a
message without having to first establish a key.

Generic Two-Round Secure MPC for the Shuffle Model. Using the one-
round message transmission protocol, we show in Sect. 3.2 how to simulate the
two-round semi-honest secure multi-party computation protocol with informa-
tion theoretic security of Applebaum et al. [1].2 The result is a general con-
struction in the shuffle model of two-round honest majority protocols for the

1 Curator model computations returning real numbers, such as those resulting by
adding Laplace or Gaussian noise, would need to be carefully truncated to finite
precision.

2 An alternative construction was given by Garg et al. [22]; the communication com-
plexity of their protocol is exponential in the number of parties.
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semi-honest setting, with information theoretic security. The construction is effi-
cient in the size of the formula representing the functionality.

Our generic two-round construction shows that the shuffle model is extremely
expressive: no more than two rounds suffice for computing any (finite) random-
ized function, including any curator level differential privacy computation, with
semi-honest parties assuming an honest majority of players. We hence move to
examine differentially private computations in the shuffle model that (i) do not
require the assumption of an honest majority, or (ii) do not admit one-round
protocols, even with an honest majority. To demonstrate our lowerbound and
upperbound techniques, we introduce two computational tasks:

Common Element: Each of n parties holds an input xi taken from a large
finite domain X . The parties communicate with an analyzer via the shuffle. If
all the parties hold the same input x ∈ X then the analyzer’s task is to output
x. Otherwise, the analyzer’s outcome is not restricted.

Nested Common Element with Parameter α: This is a variant of the
common element problem, where parties P1, . . . , P�αn� each holds an input xi ∈
X . The other parties P�αn�+1, . . . , Pn each holds a vector of |X | elements taken
from some finite domain Y, i.e., yi ∈ Y |X |. The parties communicate with an
analyzer via the shuffle. If all the parties of the first type hold the same input
x ∈ X and all the vectors held by parties of the second type have the same
value z in their x-th entry, then the analyzer’s task is to output z (otherwise,
the analyzer’s outcome is not restricted). We consider the case where |X | is
polynomial in n, thus, the size of the inputs is polynomial in n even when |Y| is
exponential in n.

Both tasks need to be performed with differential privacy, assuming semi-
honest parties. We now describe the bounds we prove for these problems:

A Lowerbound on One-Round Shuffle Model Protocols for the Com-
mon Element Problem. In Sect. 4.1 we present a new lowerbound technique
for one-round shuffle model protocols where the mutual information between
input and output is high. Unlike other lowerbounds in the shuffle model of dif-
ferential privacy that we are aware of, our lowerbound proof works for the multi-
message setting, and does not require all parties to use the same randomizer.3

For the common element problem, we show a relationship between the mes-
sage complexity �, the input domain size |X |, and the privacy parameters ε and
δ. In particular, for constant ε and negligible δ, our bound yields that for con-
stant number of messages � and domain size |X | > 2nO(�)

the common element
problem does not admit a one-round shuffle model protocol. At the heart of the
lowerbound proof is a transformation from a shuffle model protocol into a local
differential privacy randomizer, for which bounds on the mutual information
between the input and output are known (see, e.g., [29]).

The one-round lowerbound is contrasted in Sect. 4.2 with a two-round proto-
col for the common element problem where each party sends a single message in
3 Three exceptions are the recent works of Balcer et al. [3], Cheu and Ullman [17],

and Chen et al. [15], mentioned in Sect. 1.2.
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each round. In this protocol, the parties need to communicate through the shuf-
fle in only one of the rounds (and can either use the shuffle or a public channel
in the other round).

An Impossibility Result for the Nested Common Element Problem. In
Sect. 5.1 we show (for large enough X , i.e., |X | = Ω̃(n2)) that, regardless of the
number of messages sent by each party, no one-round shuffle protocol exists for
the problem that is secure against coalitions of αn semi-honest parties, even when
the domain Y is binary. We observe that for every c < 1 the nested common
element problem has a 2-round private protocol secure against a coalition of
size cn. This gives a separation between what can be computed with coalitions
of size up to αn in one- and two-round shuffle model protocols. Intuitively, the
lowerbound follows from the fact that after seeing the shuffle outcome, a coalition
covering P1, . . . , P�αn� can simulate the protocol’s execution for any possible
value x ∈ X and hence learn all vector entries on which the inputs of parties
P�αn�+1, . . . , Pn agree. When Y is binary, Bun et al. [13] have used fingerprinting
codes to show that this task is impossible when the dimension of the vectors is
Ω̃(n2), even in the curator model of differential privacy (in the setting of the
nested common element the dimension corresponds to |X |). 4

A One-Round Protocol for the Nested Common Element Problem. A
natural approach to solve the nested common element problem in two rounds
is to execute a (one-round) protocol for the common element problem among
parties P1, . . . , P�αn�, then, if a common element x is found, repeat the protocol
with parties P�αn�+1, . . . , Pn ignoring all but the x-th entry of their vectors. It
may seem that any shuffle model protocol for the problem should require more
than one round. We show that this is not the case. In fact, there is a one-round
protocol that tightly matches the above impossibility result for α ≤ 1/2. For all
c < min {α, 1 − α} there exist one-round shuffle model protocols for the nested
common element problem that are secure in the presence of coalitions of size
up to cn.

1.2 Other Related Work

Private protocols for the common element problem in the shuffle model are
implied by protocols for histograms [2,16,23]. Specifically, for all c < 1, one-
round shuffle model protocols for the common element problem that are secure
in the presence of coalitions of size up to cn (provided that n = Ω( 1

ε2 log 1
δ )) are

implied by the protocols of Balcer and Cheu [2]. While they only considered pri-
vacy given the view of the analyzer, their protocols are secure against coalitions
containing a constant fraction of the parties.

Lowerbounds on the error level achievable in the one-round single message
shuffle model for the problems of frequency estimation and selection were pro-
vided by Ghazi et al. [23]. Robustness against adversarial behaviour in the shuffle

4 Bun et al. [13] have considered a related problem, however their technique applies
also to this task.
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model was informally discussed by Balle et al. [6], when discussing the effect mali-
cious parties can have on the accuracy guarantees in their protocols for addition
of real numbers.

Closest to our interest are the recent lowerbounds by Balcer et al. [3]. They
define robustly shuffle private one-round protocols, where privacy guarantees
are required to hold if at least γn parties participate in the protocol. The other
malicious parties avoid sending messages to the shuffle. While this model is
equivalent to ours in the one-round setting, the lowerbound techniques in [3] are
different from ours. In particular, they forge an interesting relationships between
online pan-privacy [20] and robustly shuffle private one-round protocols and
hence can use lowerbounds from pan-privacy to deduce lowerbounds for robustly
shuffle private one-round protocols. Specifically, for estimating the number of
distinct elements they prove that the additive error grows as Θε(

√
k), and for

uniformity testing they prove that the sample complexity grows as Θ̃ε,δ(k2/3). In
both cases k is the domain size. (These bounds also hold in our model.) As with
our bounds, the lowerbounds by Balcer et al. hold in the case where different
parties may use different randomizers, and send multiple messages.

Independent and parallel to our work, Cheu and Ullman [17] and Chen
et al. [15] presented strong impossibility results for 1-round shuffle model pro-
tocols. In particular, Cheu and Ullman [17] showed that every 1-round shuf-
fle model protocol for private agnostic learning of parity functions over d bits
requires Ω(2d/2) samples, while O(d) samples suffice in the (centralized) curator
model. Our work shows, in particular, that private agnostic learning of parity
functions using O(d) samples can be done in the shuffle model in two rounds
(with semi-honest parties assuming an honest majority). Hence, combined with
our work, the results of [17] provide additional separations between one-round
and two-round shuffle model protocols.

2 Preliminaries

2.1 The Communication Model

Let X be a data domain and let M be an arbitrary message domain (w.l.o.g.,
⊥ ∈ X ,M). We consider a model where the inputs and the computation are
distributed among n parties P1, . . . , Pn executing a protocol Π = (R̄, S), where
R̄ = (R1, . . . , Rn) are n stateful randomized functionalities and S is a stateless
channel that acts either as a shuffle functionality or as a public channel. See
Fig. 1 for a formal description of protocols in the shuffle model.

Definition 2.1. Consider an execution of a protocol in the shuffle model as
described in Fig. 1. The message complexity of Π is �, the number of messages
that each party sends to the shuffle in each round. The round complexity of Π
is r. The shuffle complexity of Π is the number of rounds where S is used as a
shuffle.
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Fig. 1. The communication model.

Remark 2.2. A protocol that uses a public random string w can always be con-
verted into a protocol that does not use a public random string, at the cost of
one additional communication round in which party P1 sends the string w (in
the semi-honest setting). This additional communication round can be thought
of as an “offline” round, as it is independent of the inputs and the function.

2.2 Differentially Private Shuffle Model Protocols

Definition 2.3. We say that input vectors x = (x1, . . . , xn) ∈ X n and x′ =
(x′

1, . . . , x
′
n) ∈ X n are i-neighboring if they differ on exactly the i-th entry. We

say that x and x′ are neighboring if there exists an index i such that they are
i-neighboring.

Definition 2.4. We say that two probability distributions D0,D1 ∈ Δ(Ω) are
(ε, δ)-close and write D0 ≈ε,δ D1 if for all events T ⊂ Ω and for b ∈ {0, 1},

Pr
t∼Db

[t ∈ T ] ≤ eε · Pr
t∼D1−b

[t ∈ T ] + δ.
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Definition 2.5 (Differential privacy [18,19]). An algorithm A is (ε, δ) dif-
ferentially private if for all neighboring x,x′ we have that A(x) ≈ε,δ A(x′).

We are now ready to define what it means for a protocol to be differentially
private in the (semi-honest) shuffle model. Intuitively, this means that the view
of every coalition C of up to t parties cannot depend too strongly on the input
of a party Pi �∈ C. More formally,

Definition 2.6 (View in shuffle model). The view of a coalition C on input
x in protocol Π, denoted ViewΠ

C (x), is the random variable consisting of the
public randomness w, the inputs and local randomness of the parties in C, and
the output of the r rounds of Π when executed on x, i.e., s1, . . . , sr.

Definition 2.7 (Multiparty semi-honest differential privacy[10,29]). A
protocol Π is (ε, δ)-differentially private against coalitions of size t if for all
i ∈ [n], for all coalitions C of t parties s.t. Pi �∈ C, and for all i-neighboring
x,x′,

ViewΠ
C (x) ≈ε,δ ViewΠ

C (x′).

Observe that if a protocol is differentially private against coalitions of size t
as in the definition above, then it also the case that ViewΠ

C (x) ≈ε,δ ViewΠ
C (x′)

for all coalitions C of size less than t.

Remark 2.8.

1. The shuffle functionality S. It is not essential that the shuffle functionality
S be randomized. The shuffle output s in Step (1d) of Protocol Π in Fig. 1 can
be replaced with any canonical representation of the multiset {m̂1, . . . , m̂n�}
(e.g., in lexicographic order) without affecting any of our results.

2. Hybrid-shuffle model. The shuffle model can equivalently be thought of as
a hybrid model, where all parties have access to a shuffle functionality.

3. The local randomizers Ri . In deviation from most of prior work on the
shuffle model, the randomizers R1, . . . , Rn need not be identical. In particular,
the execution of Ri may depend on the identity i of player Pi.

4. Local model protocols. An (ε, δ)-differentially private protocol Π with zero
shuffle complexity satisfies local differential privacy [28,29].

5. Shuffle model with an analyzer. In prior work on the shuffle model one
party, A, is an analyzer. The analyzer has no input (xA = ⊥) and does not
send messages, i.e., (mA,j [1], . . . , mA,j [�]) = ⊥� for 1 ≤ j ≤ r. In this setting
the local output of parties P1, . . . , Pn is ⊥ and the outcome of the protocol
is the local output of A. Sects. 4 and 5 consider the shuffle model with an
analyzer.

2.3 Secure Computation Protocols with Semi-honest Parties

Let f : X n → Yn be a randomized functionality. We recall the definition from the
cryptographic literature of what it means that a protocol Π securely computes
f(x1, . . . , xn) with semi-honest parties. We will use this definition both in the
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shuffle model and in the setting where the parties communicate over a complete
network of private channels. For the latter we define the view of a coalition as
follows:

Definition 2.9 (View in a complete network of private channels). The
view of a coalition C on input x in protocol Π, denoted viewπ

C(x), is the random
variable consisting of the inputs and local randomness of the parties in C and the
messages the parties in C receive from the parties in C = {P1, . . . , Pn} \ C.

Definition 2.10 (Secure computation in the semi-honest model). A
protocol Π is said to δ-securely compute f with coalitions of size at most t if
there exists a simulator SimΠ such that for any coalition C of at most t parties
and every input vector x = (x1, . . . , xn) ∈ X n,

(
SimΠ(C,x[C],y[C]),y[C]

) ≈0,δ

(
ViewΠ

C (x),Output (C)
)
,

where y = f(x) and Output (C) is the output of the parties in C in the protocol.
The probability distribution on the left is over the randomness of f and the
randomness of the simulator, and the probability distribution on the right is over
the randomness of the honest parties and the adversary. When δ = 0 we say that
Π provides perfect privacy.

Remark 2.11. In the shuffle model, ViewΠ
C (x) also includes the public random

string w (if exists), and the probability distribution on the right in Definition 2.10
is also over the public random string.

We next state a composition theorem for differentially private protocols using
secure protocols.

Lemma 2.12. Let Π be a protocol with one invocation of a black-box access
to some function f (the f-hybrid model). Let Πf be a protocol that δ′-securely
computes f with coalitions of size up to t. Let Π ′ be as in Π, except that the call
to f is replaced with the execution of Πf . If Π is (ε, δ)-differentially private
with coalitions of size up to t, then Π ′ is (ε, (eε +1) · δ′ + δ)-differentially private
with coalitions of size up to t.

Proof. Consider a coalition C of up to t parties. The random variable ViewΠ′
C (x)

consisting the view of coalition C in an execution of protocol Π ′ can be parsed
into the view of C in protocol Π, i.e., ViewΠ

C (x), and the view of C in the exe-
cution of protocol Πf , i.e., ViewΠf

C (y). In the latter y is the input to f in the
execution of Π on input x (similarly, we will use y′ to denote the input to f in
the execution of Π on input x′). Note that, by Definition 2.10, ViewΠf

C (y) can
be simulated as SimΠf (C,y[C], fC(y)) up to statistical distance δ′. Observe that
ViewΠ

C contains the inputs yC sent to f as well as the outcome seen by the coali-
tion, fC(y). Hence, SimΠf (C,y[C], fC(y)) is a post-processing of ViewΠ

C (x). To
emphasize this fact, we write SimΠf (ViewΠ

C (x)) instead of SimΠf (C,y[C], fC(y)).
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Let Pi �∈ C. For all i-neighboring x,x′ and all T we have that

Pr[ViewΠ′
C (x) ∈ T ] = Pr[(ViewΠ

C (x),ViewΠf

C (y)) ∈ T ]

≤ Pr[(ViewΠ
C (x),SimΠf (ViewΠ

C (x))) ∈ T ] + δ′

≤ eε · Pr[(ViewΠ
C (x′),SimΠf (ViewΠ

C (x′))) ∈ T ] + δ + δ′

≤ eε · (Pr[(ViewΠ
C (x′),ViewΠf

C (y′)) ∈ T ] + δ′) + δ + δ′

= eε · Pr[ViewΠ′
C (x′) ∈ T ] + (eε + 1)δ′ + δ.

The second step in the analysis follows from the fact that differential privacy
is preserved under post-processing. 
�

2.4 Pairwise Independent Hash Functions

In our constructions We use pair pairwise independent hash functions, defined
below.

Definition 2.13 (Pairwise independent hash functions). A family of hash
functions H = {h : X → R} is said to be pairwise independent, if for any two
distinct elements x1 �= x2 ∈ X , and any two (possibly equal) values y1, y2 ∈ R,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2 ,

where h is chosen with uniform distribution from H independently of x1, x2.

In particular, if H is a pairwise independent family, then for every x1 �= x2 ∈ X
it holds that Prh∈H [h(x1) = h(x2)] = 1

|R| , and for every set A ⊆ X we have

Prh∈H [∃x1 �=x2∈A h(x1) = h(x2)] ≤ |A|2
|R| , in this case we say that A is perfectly

hashed by h.

3 A Two-Round Secure MPC Protocol in the Shuffle
Model

In this section we show that every functionality that can be computed with differ-
ential privacy in the centralized model can be computed with differential privacy
in the shuffle model in two rounds assuming an honest majority. To achieve this
result we first show a one-round protocol in the shuffle model for secure mes-
sage transmission, that is, we show that how to emulate a private channel. This
result together with an honest-majority two-round MPC protocol of [1] in the
private channel model imply that every functionality (including differentially-
private functionalities) can be securely computed in the shuffle model in two
rounds assuming an honest majority.
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3.1 A One-Round Secure Message Transmission Protocol

Assume that party Pi wants to send a message to party Pj using the shuffle such
that any other party will not learn any information on the message. In [27] this
was done in two rounds. In the first round Pi and Pj agree on a secret key, and in
the second round Pi encrypts the message using this key as a one-time pad. We
present a protocol such that Pi knows the key in advance and can encrypt the
message already in the first round. The resulting protocol has statistical security.

We start by describing a variant of the protocol of [27] for key exchange.
As a first step, we describe a key exchange protocol in which Pi and Pj agree
with probability 1/2 on a random bit (and with probability 1/2 the output is
“FAIL”). The protocol is as follows: Party Pi samples a uniformly distributed
bit a and sends to the shuffle the message (i, j, a). Similarly, party Pj samples a
uniformly distributed bit b and sends to the shuffle the message (i, j, b).5 If a = b
the protocol fails. Otherwise, the joint key is a. As both parties Pi, Pj get the
output of the shuffle, they both know if the protocol fails (a = b) or not, and if
the protocol does not fail (a �= b) they both know a – the common key. On the
other hand, an adversary that sees the output of the shuffle when a �= b, sees a
shuffle of the two messages {(i, j, 0), (i, j, 1)} and does not get any information
on a. To generate a k-bit key, the above protocol is repeated 3k times in parallel
with independent random bits a�, b� in each execution, and the shared key is the
bits of Pi in the first k indices where a� �= b�. By a simple Chernoff-Hoefding
bound, the probability that there are no such k indices is exponentially small.
See Fig. 2 for a formal description of the protocol.

Fig. 2. A one-round key exchange protocol.

To construct a one-round protocol for secure message transmission from Pi

to Pj , we want Pi to know the key in advance so it can use the key to encrypt

5 We add the prefix i, j to the messages sent by Pi and Pj to enable all pairs of parties
to exchange keys in parallel. It is essential that both Pi and Pj list the identities i, j
in the same order (e.g., lexicographic order).
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the message at the same time it sends the messages for the key exchange. In
Protocol KeyExchange, party Pi does not know the key in advance since it
does not know the bits that (a1, . . . , a3k) and (b1, . . . , b3k) disagree. To overcome
this problem Pi will use all the bits it generates as a pre-key K. In this case
Pj will know all bits of the pre-key K whereas an adversary will learn only
about half of the bits of K. Parties Pi and Pj wish to agree on a key generated
from the pre-key K without interaction such that the adversary gets negligible
information about the agreed key. This is an instance of the privacy amplification
problem and a simple solution is to sample a pairwise independent hash function
h and set the key as h(K). It follows by the left-over hash lemma [26] that
h(K) is close to uniform given h and the knowledge of the adversary about the
pre-key K.

Theorem 3.1 (The left-over hash lemma [26]). Let m,n be integers and
X be a random variable distributed over {0, 1}n such that Pr[X = x] ≤ 2−m

for every x ∈ {0, 1}n. Let H be a family of pairwise independent hash functions
from {0, 1}n to {0, 1}m−2k. Then, for a random h uniformly distributed in H
and independent of X,

SD ((h(X), h), (U, h)) ≤ 2−k,

where U is uniform over {0, 1}m−2k and independent of h, and where SD denotes
the statistical distance (total variation distance) (Fig. 3).

Fig. 3. A one-round protocol for secure message transmission.

Theorem 3.2. Protocol SecureMessageTransmission is a correct and
secure protocol for message transmission, that is (1) Pj can always recover M ,
(2) For every two messages M,M ′ the statistical distance between the views
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of the referee and all parties except for Pi and Pj in an executions of Proto-
col SecureMessageTransmission with M and Protocol SecureMessage-
Transmission with M ′ is at most 3 · 2−k.

Proof. For the correctness of the protocol, as Pj knows its messages, it can
deduce for every � the message (i, j, �, a�) sent by Pi, hence compute the common
key h(a1, . . . , a7k) and compute M .

For the security of the protocol, first note that by a Chernoff-Hoefding bound,
the probability that there are less than 3k indices � such that a� �= b� is less than
2−k, and such executions add at most 2−k to the statistical distance. We continue
the analysis assuming that such event did not occur.

We consider an execution of Protocol SecureMessageTransmission in
which is Step (3) party Pi sends the message (i, j, “message”, h, u ⊕ M) for a
uniformly sampled u ∈ {0, 1}k. In this case, the executions for M and M ′ are
equally distributed (as u acts as a one-time pad). To prove the security it suffices
to prove that for every message M , the statistical distance in the view in the
executions of Protocol SecureMessageTransmission and the modified Pro-
tocol SecureMessageTransmission (both with M) is at most 2−k. Fix a set
L ⊂ [7k] of size at least 3k, and consider all executions in which a� �= b� if and
only if � ∈ L. For every index � ∈ L, the view discloses no information on a� in
these executions (since an adversary sees a random shuffle of the two messages
(i, j, �, 0), (i, j, �, 1) and does not get any information on a�). In other words, there
are at least 23k strings (a1, . . . , a7k) possible given the executions are consistent
with L, and all strings are equiprobable. Thus, by Theorem 3.1, the statistical
distance between u and h(a1, . . . , a7k) is at most 2−k. This completes the proof
of security. 
�

3.2 A Two Round MPC Protocol

We construct a two-round MPC protocol in the shuffle model for every func-
tionality on inputs from a finite domain assuming an honest majority. The
construction is via a combination of the two-round MPC protocol of Apple-
baum, Brakersky, and Tsabary [1] (Henceforth, Protocol ABT, see Theorem 3.3
below), which assumes private channels between every pair of parties, with Pro-
tocol SecureMessageTransmission executed in the shuffle model. The latter
is used for simulating the private channels.

Theorem 3.3 (Protocol ABT [1, Theorem 1.1]). At the presence of honest
majority, any function f can be computed with perfect privacy in a complete net-
work of private channels in two rounds with polynomial efficiency in the number
of parties and in the size of the formula that computes f .

Theorem 3.4. Let f : X n → {0, 1} be a function and γ > 0 (γ can depend on
n and f). At the presence of honest majority, any function f can be computed
with γ-statistical privacy in the shuffle model in two rounds with polynomial
efficiency in the number of parties, in the size of the formula that computes f ,
and in log 1/γ.
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Proof. In Fig. 4, we describe Protocol MPCinShuffle – the two round MPC
protocol in the shuffle model.

Fig. 4. A two-round MPC protocol in the shuffle model for arbitrary functionalities.

As Protocol SecureMessageTransmission has perfect correctness, each
party in Protocol MPCinShuffle can compute the messages it gets in Protocol
ABT and compute f without any error.

For the security of the protocol, let C be a coalition of less than n/2 parties.
We construct a simulator that generates a view for C that is O(n22−k) far from
the view of C in the real-world execution of Protocol MPCinShuffle:

– Execute the simulator of Protocol ABT of Theorem 3.3 and generate a view
for C that is identically distributed as the real view of C in Protocol ABT.

– For each round and for each pair Pi, Pj :
• If at least one of Pi, Pj is in C then let Mi,j be the message that Pi sends

to Pj in the simulated view.
• Otherwise, let Mi,j be some fixed arbitrary message.
• Execute Protocol SecureMessageTransmission with the message Mi,j

and generate the messages that Pi, Pj send to the shuffle.
– For each round, shuffle the messages generated by Pi, Pj for every i, j ∈ [n].
– Output: The shuffled messages of round 1 and the shuffled messages of

round 2, the randomness of every Pi generated by the simulator of Protocol
ABT, and the randomness used by every Pi ∈ C in an execution of Proto-
col SecureMessageTransmission for which Pi is either the sender or the
receiver.

By Theorem 3.2, for every Pi, Pj /∈ C, the messages generated in the sim-
ulation (i.e., the messages of Protocol SecureMessageTransmission for the
fixed message Mi,j and the message that Pi and Pj send to the shuffle in the real



On the Round Complexity of the Shuffle Model 697

world for the real message of the Protocol ABT of Theorem 3.3 are only O(2−k)
far. Thus, the output of the simulator we constructed is at most O(n2−k) far
from the view of C in the real execution of Protocol MPCinShuffle. 
�
Remark 3.5.

1. In Protocol SecureMessageTransmission we use the shuffle in both
rounds as we execute Protocol SecureMessageTransmission in each
round. We can optimize the protocol and only use the shuffle in the first
round. To achieve this, in the first round each ordered pair of parties Pi, Pj

also executes Protocol KeyExchange in round 1 and generate a key, which
is used by Pi to encrypt the message that it send to Pj in round 2. The
encrypted messages is sent on the public channel.

2. In a setting with an analyzer as in Remark 2.8, the protocol can be simplified,
with the expense that we now need to assume that the number of colluding
parties in P1, . . . , Pn is less than (n − 1)/2. We execute Protocol ABT with
n+1 parties, where the (n+1)-th party (i.e., the analyzer) has no input and
is the only party that receives an output. Furthermore, we assume that the
analyzer is always in the coalition, and, therefore, the messages that it sends
and receives are public. As the analyzer cannot send messages to the shuffle,
we use the public random string as the random string of the analyzer and
the messages that the input-less analyzer sends in the first round to party Pj

in Protocol ABT are generated by Pj without interaction using the random
common string. Furthermore, in the second round each party only sends its
message to the analyzer and this message is sent in the clear.

3. In Protocol SecureMessageTransmission the shuffle receives O(k) mes-
sages and shuffles them. We actually only need to shuffle every pair of mes-
sages (i, j, �, a�), (i, j, �, b�), thus, we can use many copies of 2-message shuffle.
The same is true for Protocol MPCinShuffle.

Corollary 3.6. Let f be an (ε, δ)-differentially private functional (in the cen-
tralized model) acting on inputs from a finite domain and using a finite number
of random bits and γ > 0. At the presence of honest majority, the functionality
f can be computed with (ε, δ +(eε +1)γ)-differential privacy in the shuffle model
in two rounds with polynomial efficiency in the number of parties, in the size of
the formula that computes f , and in log 1/γ.

Proof. We use Protocol MPCinShuffle to compute the function f . By
Lemma 2.12 the resulting protocol is private. 
�

4 The Common Element Problem

In this section we study the following problem.

Definition 4.1 (The common element problem). In the common element
problem, there are n parties P1, . . . , Pn, where each party Pi gets an input xi ∈
X , and there is an analyzer P0 (with no input). If all inputs are equal, i.e.,
x1 = x2 = · · · = xn, then with probability at least 3/4 the analyzer must output
x1 at the end of the execution. The outcome is not restricted otherwise.
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4.1 An Impossibility Result for Single-Round Constant-Message
Protocols

We present an impossibility result for 1-round protocols for the common element
problem. Informally, we show that if the domain size |X | is large, then either
the number of messages � must be large, or else the privacy parameter δ must
be “large”. Before we state and prove this impossibility result, we introduce the
following bound on the mutual information between the input of a party in a
1-round differentially protocol and the messages she submits to the shuffle. This
bound holds for any 1-round differentially protocol (not only for protocols for
the common element problem).

Theorem 4.2. Let Π be a 1-round shuffle model protocol for n parties satisfying
(ε, δ)-differential privacy for coalitions of size 1, with message complexity �. Let
X denote the input domain (i.e., the input of every party is an element of X ).
Let (Z1, . . . , Zn) ∈ X n denote (possibly correlated) random variables. Consider
the execution of Π on inputs x1 = Z1, . . . xn = Zn, and for i ∈ [n] let Yi denote
the vector of messages submitted by party Pi to the shuffle, in lexicographic order.
Also let W be a random variable denoting the public randomness of the protocol.
Then for every i ∈ [n], if Zi is uniformly distributed over X then

I(Yi,W ;Zi) = O

(

(en)� ·
(

ε2 +
δ

ε
log |X | +

δ

ε
log

ε

δ

)

+ � · log (n)
)

.

In words, the theorem states that the mutual information between Zi (the
input of party Pi), and (Yi,W ) (the messages submitted by party Pi and the
public randomness) is bounded.

Before proving Theorem 4.2, we quote two basic results from information
theory (see the full version of this work for the proofs of these lemmas, as well
as additional preliminaries form information theory). Consider three random
variables Y1, Y2, Z, where Y1 and Y2 are conditionally independent given Z. The
following lemma shows that the amount of information that (Y1, Y2) give about
Z, is at most the amount that Y1 gives on Z plus the amount that Y2 gives on Z.
(This is not necessarily true without the conditionally independent assumption.)

Lemma 4.3. Let Y1, Y2, Z be random variables, where Y1 and Y2 are condition-
ally independent given Z. Then, I(Z;Y1) + I(Z;Y2) ≥ I(Z;Y1, Y2).

The following lemma shows that if I(X;Y |Z) is high and if H(Z) is low,
then I(X;Y ) must also be high. That is, if X gives a lot of information on Y
when conditioning on a random variable Z with low entropy, then X gives a lot
of information on Y even without conditioning on Z.

Lemma 4.4. Let X,Y,Z be three random variables. Then, I(X;Y ) ≥
I(X;Y |Z) − H(Z).

We are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Let R1, . . . , Rn denote the randomizers in the protocol Π,
and fix i ∈ [n]. We use Π and i to construct the following algorithm, which
we call LocalRandomizer, that gets a single input xi and a public random
string w.

1. Compute m̃i ← Ri(w, xi). That is, m̃i is the vector of � messages chosen by
Ri.

2. For j �= i, sample xj ∈ X uniformly at random, and let m̃j ← Rj(w, xj).
3. For j ∈ [n], we write ỹj to denote m̃j after sorting it in lexicographic order.
4. Let s̃ be a random permutation of the collection of all messages in

m̃1, . . . , m̃n .
5. Let ỹ denote a (sorted) vector of � messages chosen randomly (without rep-

etition) from s̃.
6. Return ỹ, w.

Consider the execution of LocalRandomizer on a uniformly random input
xi = Z̃ with the public randomness W̃ . We will use Ỹ , S̃ and

{
M̃i

}

i∈[n]

{
Ỹi

}

i∈[n]

to denote the random variables taking values ỹ, s̃, {m̃i}i∈[n], and {ỹi}i∈[n] dur-
ing the execution.

Observe that S̃ is identically distributed to the outcome of the shuffler
in an execution of Π on random inputs, and observe that the outcome of
LocalRandomizer is computed as a post-processing of S̃ and W̃ . Algorithm
LocalRandomizer is, therefore, (ε, δ)-differentially private (as a function of xi).
Since the mutual information between the input and the output of a differen-
tially private algorithm is bounded (see, e.g., [8] or Theorem A.1), there exists
a constant λ such that

I
(
Ỹ , W̃ ; Z̃

)
≤ λ ·

(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

. (1)

We now relate I
(
Ỹ , W̃ ; Z̃

)
to I

(
Ỹi, W̃ ; Z̃

)
. Intuitively, the connection is that

with probability ≈ n−� we get that Ỹ = Ỹi. Formally, let T be a random variable
taking value 0 if Ỹ = Ỹi and otherwise T = 1, and denote p = Pr[T = 0] =
1/

(
�n
�

)
. By Lemma 4.4 and using standard bounds on the entropy of a binary

random variable we get that

I
(
Ỹ , W̃ ; Z̃

)
≥ I

(
Ỹ , W̃ ; Z̃

∣
∣
∣ T

)
− H(T ) ≥ I

(
Ỹ , W̃ ; Z̃

∣
∣
∣ T

)
− p log

(
4
p

)

= E
t←T

[
I

(
Ỹ , W̃ ; Z̃

∣
∣
∣ T = t

)]
− p log

(
4
p

)

≥ p · I
(

Ỹ , W̃ ; Z̃
∣
∣
∣ T = 0

)
− p log

(
4
p

)

= p · I(Ỹi, W̃ ; Z̃) − p log
(

4
p

)

. (2)
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So, combining Inequalities (1) and (2) we get that

I
(
Ỹi, W̃ ; Z̃

)
≤ λ

p
·
(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

+ log
(

4
p

)

≤ λ · (en)� ·
(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

+ � · log (4en) .

Finally, observe that the input Z̃, the public randomness W̃ , and the (sorted)
vectors of messages Ỹi in the execution of LocalRandomizer are identically dis-
tributed to these variables in the execution of Π on inputs (Z1, . . . , Zn) with the
public randomness W . That is, the random variables

(
Ỹi, W̃ , Z̃

)
and (Yi,W,Zi)

are identically distributed. Therefore,

I (Yi,W ;Zi) ≤ λ · (en)� ·
(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

+ � · log (4en) .


�
We next present our impossibility result for the common element problem.

Theorem 4.5. There exists a constant λ > 1 such that the following holds.
Let ε ≤ 1, let � ∈ N , and let X be such that |X | ≥ 2λ(4en)�+1

. Let Π be a 1-
round protocol for the common element problem over the domain X with message
complexity �, such that Π is (ε, δ)-differentially private for coalitions of size 1.
Then,

δ = Ω
(
(en)−�−1

)
.

Proof. We first give a short overview of the proof. Recall that if all inputs are
equal to some element x ∈ X , then the analyzer must output x with high proba-
bility. This also holds when the (common) input x is chosen uniformly at random
from X , which means that the mutual information between the (common) input
and the output of the analyzer must be high. We show that this means that
there must be at least one party Pi∗ such that mutual information between the
random (common) input and the messages submitted by Pi∗ must be high, which
will contradict Theorem 4.2.

Let R1, . . . , Rn denote the randomizers in the protocol Π. Let Z be a
uniformly random element of X and consider the execution of Π on inputs
x1 = x2 = · · · = xn = Z with a public random string W . For i ∈ [n], let
Mi denote a random variable representing the vector of � messages submitted
to the shuffler by party Pi, and let Yi be the same as Mi after sorting it in
lexicographic order. Let S be a random variable denoting the outcome of the
shuffler. That is, S is a random permutation of all the messages in M1, . . . , Mn.
Alternatively, S is a random permutation of all the messages in Y1, . . . , Yn. We
use A for the random variable denoting the outcome of the analyzer at the end
of the execution.

Since A = Z with probability at least 3/4, the mutual information between
A and Z must be high. Specifically, Let B be a random variable taking value 0
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if A = Z and otherwise B = 1. By Lemma 4.4

I(A;Z) ≥ I(A;Z|B) − H(B) ≥ I(A;Z|B) − 1 = E
b←B

[
I(A;Z|B = b)

]
− 1

≥ 3
4

· I(A;Z|B = 0) − 1 =
3
4

· I(Z;Z) − 1 =
3
4

· H(Z) − 1

=
3
4

· log |X | − 1 ≥ 1
2

· log |X |.

Recall that A is a (possibly randomized) function of the outcome of the shuffle
S and the public randomness W . Hence, I(S,W ;Z) ≥ I(A;Z) ≥ 1

2 · log |X |. We
now show that there must exist an index i∗ ∈ [n] such that

I(Yi∗ ,W ;Z) ≥ 1
n

· I(S,W ;Z) ≥ 1
2n

· log |X |.

To that end, observe that since Π is a 1-round protocol, then conditioned on
Z and on the public randomness W we have that the messages that party Pi

sends are independent of the messages that party Pj , where j �= i, sends. That
is, the random variables Y1, . . . , Yn are conditionally independent given (Z,W ).
Therefore, by Lemma 4.3 we have that

∑

i∈[n]

I(Yi,W ;Z) =
∑

i∈[n]

(
I(W ;Z) + I(Yi;Z|W )

)

=
∑

i∈[n]

I(Yi;Z|W )

≥ I(Y1, . . . , Yn;Z|W )
≥ I(S;Z|W )
= I(S,W ;Z) − I(W ;Z)
= I(S,W ;Z)

≥ 1
2

· log |X |.

Hence, there must exist an index i∗ such that

I(Yi∗ ,W ;Z) ≥ 1
n

· I(S,W ;Z) ≥ 1
2n

· log |X |.

We are now ready to complete the proof. Observe that it suffices to prove the
theorem assuming that ε = 1 and that |X | = 2λ(4en)�+1

. The reason is that any
(ε, δ)-differentially private protocol with ε ≤ 1 is also (1, δ)-differentially private,
and that a protocol for the common element problem over a domain X is, in
particular, a protocol for the common element problem over subsets of X . By
Theorem 4.2 (our bound on the mutual information between the input and the
messages submitted by any single party in a 1-round protocol), there exists a
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constant λ > 1 such that
1
2n

· log |X | ≤ I(Yi∗ ,W ;Z)

≤ λ · (en)� ·
(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

+ � · log (4en) .

Substituting ε = 1 and |X | = 2λ(4en)�+1
, and solving for δ, we get that δ ≥

1
8λ(en)�+1 . 
�

4.2 A Two-Round Protocol with Message Complexity 1

Intuitively, Theorem 4.5 shows that in any 1-round protocol for the common
element problem, we either have that the message complexity is large, or we
have that δ cannot be too small. In Fig. 5 we present a two round protocol for
the common element problem, in which the message complexity is 1 and δ can
be negligible. Our protocol, which we call Protocol CommonTwoRound, uses
the shuffle channel in only one of the two rounds, and the communication in the
second round is done via a public channel.

Theorem 4.6. Let δ ∈ (0, 1). Protocol CommonTwoRound, described in
Fig. 5, is (O(1), O(δ))-differentially private against coalitions of size 0.9n that
solves the common element problem. The protocol uses two rounds (one via a
public channel and one via the shuffle) and has message complexity 1.

We begin with the privacy analysis of Protocol CommonTwoRound.

Lemma 4.7. Protocol CommonTwoRound is (O(1), O(δ))-differentially pri-
vate against coalitions of size 0.9n.

Proof. Fix an index i ∈ [n], fix two i-neighboring input vectors x and x′, and
fix a coalition C of size |C| = 0.9n such that Pi /∈ C. We need to show that
ViewΠ

C (x) ≈ε,δ ViewΠ
C (x′). First observe that with probability at least 1 − δ

over the choice of the hash function h, we have that h perfectly hashes all the
different inputs in x,x′ (note x,x′ span at most n + 1 different values). We
proceed with the analysis after fixing such a hash function h.

We write xC = x′C to denote the inputs of the parties in C, and fix the
internal randomness rC of the parties in C. Now let S1 and S2 be random variables
representing the output of the public channel and the shuffle, respectively, during
the execution on x, where we denote S2 = ⊥ if the execution halted on Step (3).
Similarly, S′

1, S
′
2 denote the outputs of these channels during the execution on

x′. With these notations we have that

ViewΠ
C (x) = (h, rC ,xC , S1, S2) and ViewΠ

C (x′) = (h, rC ,xC , S′
1, S

′
2) .

Observe that S1 and S′
1 are computed using an (ε, 0)-differentially private

protocol in the local model (see Theorem A.2), and hence,

(h, rC ,xC , S1) ≈(ε,0) (h, rC ,xC , S′
1) .
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Fig. 5. A two-round protocol in the shuffle model for the common element problem
with message complexity 1.

We next argue about S2 and S′
2. For an element x ∈ X we write fx(x) to

denote the number of occurrences of x in the input vector x. Also, let x∗ ∈ X
denote the most frequent element in x, that is, an element such that fx(x∗) is
maximized.

Case (a) fx(x∗) ≤ 96·n
100

: By the utility guarantees of the protocol for his-
tograms (executed on Step (2)), each of the two executions terminates in Step (3)
with probability at least (1 − δ). This is because if n = Ω( 1

ε2 log( 1
εδ )) then with

probability at least (1 − δ) all of the estimates given by D(·) are accurate to
within ±0.01n (see Theorem A.2). Therefore, in case (a) we have

ViewΠ
C (x) = (h, rC ,xC , S1, S2) ≈(0,δ) (h, rC ,xC , S1,⊥)

≈(ε,δ) (h, rC ,xC , S′
1,⊥) ≈(0,δ) (h, rC ,xC , S′

1, S
′
2) = ViewΠ

C (x′).

Case (b) fx(x∗) > 96·n
100

: Fix any value s1 for the outcome of the public
channel, such that all the estimates given by the resulting data structure D(·)
are accurate to within ±0.01n w.r.t. x. We first show that conditioned on such
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an s1 we have that

(h, rC ,xC , s1, S2) ≈(ε,δ) (h, rC ,xC , s1, S
′
2) .

To see this, observe that once we condition on s1 then either both executions
terminate on Step (3), or in the two executions we have that y∗ = h(x∗) (because
fx(x∗) > 0.96n). If s1 is such that the two executions terminate on Step (3),
then (conditioned on s1) we have S2 = S′

2 = ⊥ and so

(h, rC ,xC , s1, S2) ≡ (h, rC ,xC , s1, S
′
2) .

Now suppose that the two executions do not halt prematurely, and that y∗ =
h(x∗). In that case, the outcome of the shuffle contains (randomly permuted)
copies of ⊥ and copies of x∗. Note that since the outcome of the shuffle is
randomly permuted, then the outcome distribution of the shuffle is determined
by the number of occurrences of x∗.

Note that if xi and x′
i are both equal to x∗, or are both different from x∗,

then S2 and S′
2 are identically distributed, which would complete the proof. We,

therefore, assume that exactly one of xi, x
′
i is equal to x∗. Suppose without loss

of generality that xi = x∗ and x′
i �= x∗.

Since fx(x∗) > 0.96n and since |C| = 0.9n, there is a set of parties I of size
|I| = 0.05n such that

1. I ∩ (C ∪ {i}) = ∅.
2. For every j ∈ I we have that xj = x′

j = x∗.

We show that the outcome of the shuffle preserves differential privacy (over
the randomness of the parties in I and the randomness of the shuffle). Fix the
randomness of all parties except for parties in I. Note that this fixes the messages
that these parties submit to the shuffle, and suppose that party Pi submits x∗

during the first execution and submits ⊥ during the second execution (if party
Pi submits ⊥ during both execution then the outcome of the shuffle is, again,
identically distributed). Let k denote the number of parties among the parties
not in I that submitted x∗ to the shuffle during the execution on x. (So during
the execution on x′ exactly k − 1 such parties submitted x∗.)

Let us denote by Z the number of parties from I that submits x∗ to the
shuffle. Note that Z ≡ Binomial

(|I|, 1
2

)
. By the Hoeffding bound, assuming

that n = Ω(ln(1/δ)) (large enough), with probability at least 1− δ we have that
9
20 · |I| ≤ Z ≤ 11

20 · |I|. In addition, by the properties of the Binomial distribution,
for every 9

20 · |I| ≤ z ≤ 11
20 · |I| we have that

Pr[Z = z]
Pr[Z = z + 1]

=
2−|I| · (|I|

z

)

2−|I| · ( |I|
z+1

) =
z + 1

|I| − z
∈ e±1.

Let us denote the number of occurrences of x∗ at the output of the shuffle
during the two executions as |S2| and |S′

2|, respectively. So |S2| ≡ k + Z and
|S′

2| ≡ k − 1 + Z. Fix a set F ⊆ [n] of possible values for |S2|, and denote

T = {(f − k) : f ∈ F} and T ′ = {(f − k + 1) : f ∈ F}
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We have that

Pr [|S2| ∈ F ] = Pr[Z ∈ T ] ≤ δ + Pr
[

Z ∈ T ∩
{

z :
9|I|
20

≤ z ≤ 11|I|
20

}]

≤ δ + e1 · Pr
[

Z − 1 ∈ T ∩
{

z :
9|I|
20

≤ z ≤ 11|I|
20

}]

≤ δ + e1 · Pr [Z − 1 ∈ T ] = δ + e1 · Pr [Z ∈ T ′]

= δ + e1 · Pr [|S′
2| ∈ F ] .

A similar analysis shows that Pr [|S′
2| ∈ F ] ≤ δ + e1 · Pr [|S2| ∈ F ]. This shows

that conditioned on an output of the public channel s1 such that D(·) is accurate
for x, we have that

(h, rC ,xC , s1, S2) ≈(1,δ) (h, rC ,xC , s1, S
′
2) .

So far, we have established that the outcome of the first round (that uses
the public channel) preserves (ε, 0)-differential privacy, and, conditioned on the
outcome of the first round being “good” (i.e., the resulting data structure D is
accurate) we have that the outcome of the second round (that uses the shuffle)
preserves (1, δ)-differential privacy. Intuitively, we now want to use composition
theorems for differential privacy to show that the two rounds together satisfy
differential privacy. A small technical issue that we need to handle, though, is
that the privacy guarantees of the second round depend on the success of the
first round. As the outcome of the first round is “good” with overwhelming
probability, this technical issue can easily be resolved, as follows.

Consider two random variables S̃1 and S̃′
1 that are identical to S1 and S′

1,
except that if the resulting data structure D(·) is not accurate, then the value
is replaced such that the resulting data structure D(·) is exactly correct. Since
the protocol for histograms fails with probability at most δ, we have that
(
h, rC ,xC , S̃1

)
≈(0,δ) (h, rC ,xC , S1) ≈(ε,δ) (h, rC ,xC , S′

1) ≈(0,δ)

(
h, rC ,xC , S̃′

1

)
.

In words, consider an imaginary protocol in which the outcome distribution of the
first round during the two executions is replaced by S̃1 and S̃′

1, respectively. The
statistical distance between the outcome distribution of this imaginary protocol
and the original protocol is at most δ. In addition, for every possible fixture of
the outcome of the first (imaginary) round we have the second round preserves
differential privacy. Therefore, composition theorems for differential privacy show
that the two rounds together satisfy differential privacy. Formally,

ViewΠ
C (x) = (h, rC ,xC , S1, S2) ≈(0,δ)

(
h, rC ,xC , S̃1, S2

)

≈(1+ε,δ)

(
h, rC ,xC , S̃′

1, S
′
2

)
≈(0,δ) (h, rC ,xC , S′

1, S
′
2) = ViewΠ

C (x′).


�
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Lemma 4.8. Protocol CommonTwoRound solves the common element
problem.

Proof. Fix an input vector x = (x1, . . . , xn) ∈ X n such that for every i we have
xi = x. By the utility guarantees of the locally-private protocol for histograms,
with probability at least 1− δ it holds that all of the estimates given by D(·) are
accurate to within ±0.01n. In that case, we have that y∗ (defined in Step (3))
satisfies y∗ = h(x). Thus, every message submitted to the shuffle in the second
round is equal to x with probability 1/2, and otherwise equal to ⊥. Therefore,
the analyzer fails to output x in Step (6) only if all of the parties submitted ⊥ to
the shuffle. This happens with probability at most 2−n. Overall, with probability
at least (1 − δ − 2−n) the analyzer outputs x. 
�

Theorem 4.6 now follows by combining Lemma 4.7 and Lemma 4.8.

5 Possibility and Impossibility for the Nested Common
Element Problem

In this section we define a nested version of the common element problem of Defi-
nition 4.1. This problem has a parameter 0 < α < 1. We show that this problem
cannot be solved in the shuffle model in one round with differential privacy
against coalitions of size αn (regardless of the number of messages each party
can send). In contrast, we show that it can be solved with differential privacy in
one round against coalitions of size cn for any constant c < min {α, 1 − α} and
in two rounds against coalitions of size cn for any constant c < 1. The impossi-
bility result for one round and the two round protocol imply a strong separation
between what can be solved in one round and in two rounds.

Definition 5.1 (Nested common element problem with parameter α).
Let 0 < α < 1. Consider n parties P1, . . . , Pn and an analyzer P0 (as in
Remark 2.8). The input of each party in P1, . . . , P�αn� is an element xi ∈ X and
the input of each party P�αn�+1, . . . , Pn is a vector yi of |X | elements from some
finite domain Y. The analyzer P0 has no input. If all inputs of P1, . . . , P�αn�
are equal (i.e., x1 = x2 = · · · = x�αn�) and the x1-th coordinate in all inputs
of P�αn�+1, . . . , Pn are equal (i.e., y�αn�+1[x1] = y�αn�+2[x1] = · · · = yn [x1]),
then the analyzer P0 must output y�αn�+1[x1] with probability at least 3/4. The
output is not restricted otherwise.

Remark 5.2. When |X | = poly(n) and |Y| is at most exponential in n, then the
length of the inputs of all parties is polynomial in n. Our impossibility result
for the nested common element problem holds in this regime (specifically, when
|X | = Ω̃(n2) and |Y| = 2). Our protocols are correct and private regardless of
the size of X and Y.

We prove the following three theorems.
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Theorem 5.3. Let |X | = Ω̃(n2). There is no one-round (1, o(1/n))-
differentially private protocol in the shuffle model against coalition of size �αn�
for the nested common element problem with parameter α (regardless of the
number of messages each party can send).

Theorem 5.4. For every 0 < c < 1, ε, δ ∈ [0, 1], and n ≥ 200
(1−c)n ln 4

δ there
exists a two-round (ε, δ)-differentially private protocol against coalitions of size
cn that with probability at least 1 − 1/2n−1 solves the nested common element
problem with parameter α.

Theorem 5.5. For every constants c, α such that 0 < c < min {α, 1 − α} < 1,
there exists a constant ε0 such that there exits a one-round (ε0, δ)-differentially
private protocol against coalitions of size cn that with probability at least 3/4
solves the nested common element problem with parameter α, where δ =
2−O(min{α,1−α}−c)n) and n ≥ 6 · max {1/α, 1/(1 − α)}.

In the rest of this section we prove Theorem 5.3. The proofs of Theorems 5.4
and 5.5 are given in the full version of this paper.

5.1 An Impossibility Result for Private One-Round Protocols for
the Nested Common Element Problem

We next show that the nested common element problem with parameter α cannot
be solved privately against coalitions of size αn when X is large enough, namely,
when |X | = Ω̃(n2). The proof of the impossibility result is done by using an
impossibility result to the vector common element problem (in the centralized
model) defined below.

Definition 5.6 (The vector common element problem). The input of the
problem is a database containing n vectors (y1, . . . ,yn ) ∈ ({0, 1}d)n. For a given
set of vectors y1, . . . ,yn , define for every b ∈ {0, 1}

Ib = {j : y1[j] = · · · = yn [j] = b} .

To solve the the vector common element problem, an analyzer must output with
probability at least 1 − o(1/n) sets J0 and J1 such that I0 ⊆ J0, I1 ⊆ J1, and
J0 ∩ J1 = ∅.
In words, the task in the vector common element problem is to identify the
coordinates in which the inputs vectors agree, that is, for each coordinate if
all the vectors agree on the value of the coordinate then the algorithm should
return this coordinate and the common value; if the vectors do not agree on this
coordinate then the algorithm can say that this is either a zero-coordinate, a
one-coordinate, or none of the above.

The following theorem is implied by the techniques of [14] (i.e., the reduction
to fingerprinting codes).

Theorem 5.7 ([14]). For every d ∈ N, any (1, o(1/n))-differentially private
algorithm in the centralized model for the vector common element problem with
vectors of length d has sample complexity Ω̃(

√
d).
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We next prove our impossibility result, i.e., prove Theorem 5.3.

Proof of Theorem 5.3. We show that if for |X | = Ω̃(n2) there is an n-party
protocol, denoted Π, in the shuffle model for the nested common element prob-
lem with parameter α that is private against the coalition of parties holding
the x-inputs, namely, C =

{
P1, . . . , P�αn�

}
, then there is an algorithm in the

centralized model for the vector common element problem with database of size
O(n2 log n) violating Theorem 5.7.

As a first step, consider the following algorithm A1 for the vector common
element problem in the centralized model, whose inputs are y�αn�+1, . . . ,yn

(each vector of length |X |).
1. The analyzer chooses a public random string w.
2. For each i ∈ {�αn� + 1, . . . , n}, the analyzer simulates party Pi in protocol

Π with the input yi and the public random string w, generating a vector of
messages mi .

3. The analyzer shuffles the messages in m�αn�+1, · · · ,mn , denote the output
of the shuffle by m̃.

4. For every x ∈ X do:
(a) For each i ∈ {1, . . . , �αn�}, the analyzer simulates party Pi in protocol Π

with the input x and the public random string w, generating a vector of
messages mi .

(b) The analyzer shuffles the messages in m̃,m1, . . . ,m�αn�, gives the shuf-
fled messages to the analyzer of Π, and gets an output zx.

5. The analyzer returns Ib = {x : zx = b} for b ∈ {0, 1}.

First we argue that A1 is (1, o(1/n))-differentially private: The coalition C
sees the output of the shuffle in Π and can remove the messages it sent to the
shuffle in Π, therefore computing m̃ from the view is a post-processing of an
(ε, o(1/n))-differentially private output. Second, notice that for every x ∈ X , the
shuffled messages that the analyzer of Π gets in Step (4b) are distributed as in
Π, thus, if y�αn�+1[x] = · · · = yn [x] = b, then zx = b with probability at least
3/4 (however for x �= x′ these events might be independent).

The success probability of A1 is not enough to violate Theorem 5.3 and we
repeat it O(log |X |) times. This is done in A2, which preserves the privacy using
sub-sampling:

1. Inputs: vectors y1, . . . ,yt , where t = O(n ln |X |).
2. For � = 1 to 4 ln |X | do:

(a) Sample a set T ⊂ [t] of size t
(3+exp(1))4 ln |X | = n and execute A1 on the

vectors (yi)i∈T and get sets J�
0, J

�
1.

3. For b ∈ {0, 1}, let Jb =
{
j : j ∈ J�

b for more than 4 ln |X | indices �
}

.

By Theorem A.3 (i.e., sub-sampling) and since A1 is (1, o( 1
n ))-differentially pri-

vate, each execution of Step (2a) is ( 1
4 ln |X | , o(

1
n ln |X | ))-differentially private. By

simple composition, algorithm A2 is (1, o(1/n))-differentially private.
We next argue that with probability at least 1−o(1/n) algorithm A2 outputs

disjoint sets J0, J1 such that I0 ⊆ J0 and I1 ⊆ J1. Fix j such that y1[j] = · · · =
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yt [j] = b for some b. By the correctness of A1, for every � ∈ [4 ln |X |] it holds
that j ∈ J�

b with probability at least 3/4 and these events are independent.
Thus, by the Hoeffding inequality, j ∈ J�

b for more than half of the values of �
with probability at least 1 − 1/|X |2. By the union bound, the probability that
the algorithm errs for some coordinate for which all vectors yi agree is at most
1/|X | = Õ(1/n2) = o(1/n).

To conclude, assuming that Π as above exits, we constructed a (1, o(1/n))-
differentially private algorithm A2 with database of size O(n2 log n) and d =
|X | = Ω̃(|X |2), contradicting Theorem 5.7. 
�
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A Additional Preliminaries from Differential Privacy

The following theorem bounds the mutual information between the input and
the output of a differentially private algorithm (that operates on a database of
size 1).

Theorem A.1 ([8]). Let X be uniformly distributed over X . Let A be an (ε, δ)-
differentially private algorithm that operates on a single input (i.e., a database
of size 1) from X . Let Z denote A(X). Then,

I(X;Z) = O

(

ε2 +
δ

ε
log |X | +

δ

ε
log(ε/δ)

)

.

In our protocols we will use the following protocol in the local model for
computing histograms.

Theorem A.2 (Histogram protocol [7,8,12]). Let β, ε ≤ 1 and X be some
finite domain. There exists a 1-round (ε, 0)-differentially private protocol in the
local model for n parties with message complexity 1, in which the input of each
agent is a single element from X and the outcome is a data structure D : X → [n]
such that for every input to the protocol x ∈ X n, with probability at least 1 − β,
for every input vector x = (x1, . . . , xn) ∈ X we have

∣
∣
∣ D(x) − |{i : xi = x}|

∣
∣
∣ ≤ O

(
1
ε

·
√

n · log
( |X |

β

))

.
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We next recall the sub-sampling technique from [9,28].

Theorem A.3 (Sub-sampling [9,28]). Let A1 be an (ε∗, δ)-differentially pri-
vate algorithm operating on databases of size n. Fix ε ≤ 1, and denote t =
n
ε (3+exp(ε∗)). Construct an algorithm A2 that on input a database D = (zi)t

i=1

uniformly at random selects a subset T ⊆ {1, 2, ..., t} of size n, and runs A1 on
the multiset DT = (zi)i∈T . Then, A2 is

(
ε, 4ε

3+exp(ε∗)δ
)
-differentially private.

Secure Addition Protocols in the Shuffle Model. Ishai et al. [27] gave a
protocol where n ≥ 2 parties communicate with an analyzer (as in Remark 2.8)
to compute the sum of their inputs in a finite group G, in the semi-honest
setting and in the presence of a coalition including the analyzer and up to n − 1
parties. In their protocol, each participating party splits their input into � =
O(log |G|+log n+σ) shares and sends each share in a separate message through
the shuffle. Upon receiving the n� shuffled messages, the analyzer adds them
up (in G) to compute the sum. Recent work by Ghazi et al. [24] and Balle et
al. [6] improved the dependency of the number of messages on the number of
participating parties to � = O (1 + (log |G| + σ)/ log n).

Theorem A.4 ([6,24,27]). Let G be a finite group. There exist a one-round
shuffle model summation protocol with n parties holding inputs xi ∈ G and an
analyzer. The protocol is secure in the semi-honest model, and in the presence
of coalitions including the analyzer and up to n − 1 parties.
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