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Preface

The 18th Theory of Cryptography Conference (TCC 2020) was held virtually during
November 16-19, 2020. It was sponsored by the International Association for Cryp-
tologic Research (IACR). The general chair of the conference was Alessandra Scafuro.

TCC 2020 was originally planned to be co-located with FOCS 2020 in Durham,
North Carolina, USA. Due to the COVID-19 pandemic both events were converted into
virtual events, and were held on the same day at the same time. The authors uploaded
videos of roughly 20 minutes prior to the conference, and at the conference had a
10-minute window to present a summary of their work and answer questions. The
virtual event would not have been possible without the generous help of Kevin and Kay
McCurley, and we would like to thank them wholeheartedly.

The conference received 167 submissions, of which the Program Committee
(PC) selected 71 for presentation. Each submission was reviewed by at least four PC
members. The 39 PC members (including PC chairs), all top researchers in the field,
were helped by 226 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 71 accepted papers. The revisions
were not reviewed, and the authors bear full responsibility for the content of their
papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions.

This was the 7th year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Perfectly-Secure MPC with
Linear Communication Complexity” by Zuzana Trubini and Martin Hirt. The Award
Committee recognized this paper “for introducing hyper-invertible matrices to perfectly
secure multiparty computation, thus enabling significant efficiency improvements and,
eventually, constructions with minimal communication complexity.”

We are greatly indebted to many people who were involved in making TCC 2020 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro and the TCC Steering Committee.

October 2020 Rafael Pass
Krzysztof Pietrzak
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Recursive Proof Composition
from Accumulation Schemes

Benedikt Biinz', Alessandro Chiesa?, Pratyush Mishra?®, and Nicholas Spooner?

! Stanford University, Stanford, USA
benedikt@cs.stanford.edu
2 UC Berkeley, Berkeley, USA
{alexch, pratyush,nick. spooner}@berkeley. edu

Abstract. Recursive proof composition has been shown to lead to powerful prim-
itives such as incrementally-verifiable computation (IVC) and proof-carrying data
(PCD). All existing approaches to recursive composition take a succinct non-
interactive argument of knowledge (SNARK) and use it to prove a statement
about its own verifier. This technique requires that the verifier run in time sublin-
ear in the size of the statement it is checking, a strong requirement that restricts
the class of SNARKSs from which PCD can be built. This in turn restricts the effi-
ciency and security properties of the resulting scheme.

Bowe, Grigg, and Hopwood (ePrint 2019/1021) outlined a novel approach to
recursive composition, and applied it to a particular SNARK construction which
does not have a sublinear-time verifier. However, they omit details about this
approach and do not prove that it satisfies any security property. Nonetheless,
schemes based on their ideas have already been implemented in software.

In this work we present a collection of results that establish the theoretical
foundations for a generalization of the above approach. We define an accumula-
tion scheme for a non-interactive argument, and show that this suffices to con-
struct PCD, even if the argument itself does not have a sublinear-time verifier.
Moreover we give constructions of accumulation schemes for SNARKSs, which
yield PCD schemes with novel efficiency and security features.

Keywords: Succinct arguments - Proof-carrying data + Recursive proof
composition

1 Introduction

Proof-carrying data (PCD) [CT10] is a cryptographic primitive that enables mutually
distrustful parties to perform distributed computations that run indefinitely, while ensur-
ing that every intermediate state of the computation can be succinctly verified. PCD sup-
ports computations defined on (possibly infinite) directed acyclic graphs, with messages
passed along directed edges. Verification is facilitated by attaching to each message a
succinct proof of correctness. This is a generalization of the notion of incrementally-
verifiable computation (IVC) due to [Val08], which can be viewed as PCD for the path
graph (i.e., for automata). PCD has found applications in enforcing language semantics
[CTV13], verifiable MapReduce computations [CTV 15], image authentication [NT16],
succinct blockchains [Co17,KB20,BMRS20], and others.

(© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12551, pp. 1-18, 2020.
https://doi.org/10.1007/978-3-030-64378-2_1
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Recursive Composition. Prior to this work, the only known method for constructing
PCD was from recursive composition of succinct non-interactive arguments (SNARGs)
[BCCT13,BCTV14,C0S20]. This method informally works as follows. A proof that
the computation was executed correctly for ¢ steps consists of a proof of the claim “the
t-th step of the computation was executed correctly, and there exists a proof that the
computation was executed correctly for ¢ — 1 steps”. The latter part of the claim is
expressed using the SNARG verifier itself. This construction yields secure PCD (with
IVC as a special case) provided the SNARG satisfies an adaptive knowledge soundness
property (i.e., is a SNARK). The efficiency and security properties of the resulting PCD
scheme correspond to those of a single invocation of the SNARK.

Limitations of Recursion. Recursion as realized in prior work requires proving a
statement that contains a description of the SNARK verifier. In particular, for effi-
ciency, we must ensure that the statement we are proving (essentially) does not grow
with the number of recursion steps ¢. For example, if the representation of the veri-
fier were to grow even linearly with the statement it is verifying, then the size of the
statement to be checked would grow exponentially in t. Therefore, prior works have
achieved efficiency by focusing on SNARKSs which admit sublinear-time verification:
either SNARKSs for machine computations [BCCT13] or preprocessing SNARKSs for
circuit computations [BCTV14,COS20]. Requiring sublinear-time verification signifi-
cantly restricts our choice of SNARK, which limits what we can achieve for PCD.

In addition to the above asymptotic considerations, recursion raises additional con-
siderations concerning concrete efficiency. All SNARK constructions require that state-
ments be encoded as instances of some particular (algebraic) NP-complete problem, and
difficulties often arise when encoding the SNARK verifier itself as such an instance. The
most well-known example of this is in recursive composition of pairing-based SNARKGs,
since the verifier performs operations over a finite field that is necessarily different
from the field supported “natively” by the NP-complete problem [BCTV14]. This type
of problem also appears when recursing SNARKSs whose verifiers make heavy use of
cryptographic hash functions [COS20].

A New Technique. Bowe, Grigg, and Hopwood [BGH19] suggest an exciting novel
approach to recursive composition that replaces the SNARK verifier in the circuit with a
simpler algorithm. This algorithm does not itself verify the previous proof m;_;. Instead,
it adds the proof to an accumulator for verification at the end. The accumulator must
not grow in size. A key contribution of [BGH19] is to sketch a mechanism by which
this might be achieved for a particular SNARK construction. While they prove this
SNARK construction secure, they do not include definitions or proofs of security for
their recursive technique. Nonetheless, practitioners have already built software based
on these ideas [Halo19, Pickles20].

1.1 Our Contributions

In this work we provide a collection of results that establish the theoretical founda-
tions for the above approach. We introduce the cryptographic object, an accumulation
scheme, that enables this technique, and prove that it suffices for constructing PCD. We
then provide generic tools for building accumulation schemes, as well as several con-
crete instantiations. Our framework establishes the security of schemes that are already
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being used by practitioners, and we believe that it will simplify and facilitate further
research in this area.

Accumulation Schemes. We introduce the notion of an accumulation scheme for
a predicate ¢: X — {0,1}. This formalizes, and generalizes, an idea outlined in
[BGH19]. An accumulation scheme is best understood in the context of the follow-
ing process. Consider an infinite stream q1, qo, . . . with each q; € X. We augment this
stream with accumulators acc; as follows: at time ¢, the accumulation prover receives
(qs,acc;—1) and computes acc;; the accumulation verifier receives (q;,acc;—1,acc;)
and checks that acc;_; and q; were correctly accumulated into acc; (if not, the process
ends). Then at any time ¢, the decider can validate acc;, which establishes that, for all
i € [t], ®(q;) = 1. All three algorithms are stateless. To avoid trivial constructions, we
want (i) the accumulation verifier to be more efficient than @, and (ii) the size of an
accumulator (and hence the running time of the three algorithms) does not grow over
time. Accumulation schemes are powerful, as we demonstrate next.

Recursion from Accumulation. We say that a SNARK has an accumulation scheme
if the predicate corresponding to its verifier has an accumulation scheme (so X is a set
of instance-proof pairs). We show that any SNARK having an accumulation scheme
where the accumulation verifier is sublinear can be used to build a proof-carrying
data (PCD) scheme, even if the SNARK verifier is not itself sublinear. This broadens
the class of SNARKSs from which PCD can be built. Similarly to [COS20], we show
that if the SNARK and accumulation scheme are post-quantum secure, so is the PCD
scheme. (Though it remains an open question whether there are non-trivial accumula-
tion schemes for post-quantum SNARKS.)

Theorem 1 (informal). There is an efficient transformation that compiles any SNARK
with an efficient accumulation scheme into a PCD scheme. If the SNARK and its accu-
mulation scheme are zero knowledge, then the PCD scheme is also zero knowledge.
Additionally, if the SNARK and its accumulation scheme are post-quantum secure then
the PCD scheme is also post-quantum secure.

The above theorem holds in the standard model (where all parties have access to a
common reference string, but no oracles). Since our construction makes non-black-box
use of the accumulation scheme verifier, the theorem does not carry over to the random
oracle model (ROM). It remains an intriguing open problem to determine whether or
not SNARKSs in the ROM imply PCD in the ROM (and if the latter is even possible).

Note that we require a suitable definition of zero knowledge for an accumulation
scheme. This is not trivial, and our definition is informed by what is required for
Theorem 1 and what our constructions achieve.

Proof-carrying data is a powerful primitive: it implies IVC and, further assuming
collision-resistant hash functions, also efficient SNARKSs for machine computations.
Hence, Theorem 1 may be viewed as an extension of the “bootstrapping” theorem of
[BCCT13] to certain non-succinct-verifier SNARKS.

See Sect. 2.1 for a summary of the ideas behind Theorem 1, and the full version for
technical details.
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Accumulation from Accumulation. Given the above, a natural question is: where
do accumulation schemes for SNARKs come from? In [BGH19] it was informally
observed that a specific SNARK construction, based on the hardness of the discrete
logarithm problem, has an accumulation scheme. To show this, [BGH19] first observe
that the verifier in the SNARK construction is sublinear except for the evaluation of a
certain predicate (checking an opening of a polynomial commitment [KZG10]), then
outline a construction which is essentially an accumulation scheme for that predicate.

We prove that this idea is a special case of a general paradigm for building accumu-
lation schemes for SNARKS.

Theorem 2 (informal). There is an efficient transformation that, given a SNARK whose
verifier is succinct when given oracle access to a “simpler” predicate, and an accumu-
lation scheme for that predicate, constructs an accumulation scheme for the SNARK.
Moreover, this transformation preserves zero knowledge and post-quantum security of
the accumulation scheme.

The construction underlying Theorem 2 is black-box. In particular, if both the
SNARK and the accumulation scheme for the predicate are secure with respect to an
oracle, then the resulting accumulation scheme for the SNARK is secure with respect
to that oracle.

See Sect. 2.3 for a summary of the ideas behind Theorem 2, and the full version for
technical details.

Accumulating Polynomial Commitments. Several works [MBKM19,GWC19,
CHM+20] have constructed SNARKSs whose verifiers are succinct relative to a spe-
cific predicate: checking the opening of a polynomial commitment [KZG10]. We prove
that two natural polynomial commitment schemes possess accumulation schemes in
the random oracle model: PCp,, a scheme based on the security of discrete logarithms
[BCC+16,BBB+18, WTS+18]; and PC,gy, a scheme based on knowledge assumptions
in bilinear groups [KZG10, CHM+20].

Theorem 3 (informal). In the random oracle model, there exist (zero knowledge) accu-
mulation schemes for PCy. and PC,q, that achieve the efficiency outlined in the table
below (n denotes the number of evaluation proofs, and d denotes the degree of commit-
ted polynomials).

Polynomial |Assumption |Cost to check Cost to check an Cost to check final| Accumulator
commitment evaluation proofs |accumulation step |accumulator size

PCoL DLOG +RO|O(nd) G mults. |O(nlogd) G mults.|©(d) G mults. |O(logd) G
PCacm AGM + RO |©(n) pairings O(n) G1 mults. 1 pairing 2Gy

For both schemes the cost of checking that an accumulation step was performed cor-
rectly is much less than the cost of checking an evaluation proof. We can apply Theorem 2
to combine either of these accumulation schemes for polynomial commitments with any
of the aforementioned predicate-efficient SNARKSs, which yields concrete accumulation
schemes for these SNARKSs with the same efficiency benefits.
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We remark that our accumulation scheme for PC,, is a variation of a construction
presented in [BGH19], and so our result establishes the security of a type of construction
used by practitioners.

We sketch the constructions underlying Theorem 3 in Sect. 2.4, and provide details
in the full version of our paper.

New Constructions of PCD. By combining our results, we (heuristically) obtain con-
structions of PCD that achieve new properties. Namely, starting from either PCy,_ or
PCacu, we can apply Theorem 2 to a suitable SNARK to obtain a SNARK with an
accumulation scheme in the random oracle model. Then we can instantiate the random
oracle, obtaining a SNARK and accumulation scheme with heuristic security in the
standard (CRS) model, to which we apply Theorem 1 to obtain a corresponding PCD
scheme. Depending on whether we started with PCy, or PC,q,, we get a PCD scheme
with different features, as summarized below.

— From PCy.: PCD based on discrete logarithms. We obtain a PCD scheme in the
uniform reference string model (i.e., without secret parameters) and small argument
sizes. In contrast, prior PCD schemes require structured reference strings [BCTV14]
or have larger argument sizes [COS20]. Moreover, our PCD scheme can be effi-
ciently instantiated from any cycle of elliptic curves [SS11]. In contrast, prior PCD
schemes with small argument size use cycles of pairing-friendly elliptic curves
[BCTV14,CCW19], which are more expensive.

— From PC,gy: lightweight PCD based on bilinear groups. The recursive statement
inside this PCD scheme does not involve checking any pairing computations,
because pairings are deferred to a verification that occurs outside the recursive state-
ment. In contrast, the recursive statements in prior PCD schemes based on pairing-
based SNARKSs were more expensive because they checked pairing computations
[BCTV14].

Note again that our constructions of PCD are heuristic as they involve instantiat-
ing the random oracle of certain SNARK constructions with an appropriate hash
function. This is because Theorem 3 is proven in the random oracle model, but
Theorem 1 is explicitly not (as is the case for all prior IVC/PCD constructions
[Val08,BCCT13,BCTV14,C0OS20]). There is evidence that this limitation might be
inherent [CL20].

Open Problem: Accumulation in the Standard Model. All known constructions of
accumulation schemes for non-interactive arguments make use of either random ora-
cles (as in our constructions) or knowledge assumptions (e.g., the “trivial” construction
from succinct-verifier SNARKSs). A natural question, then, is whether there exist con-
structions of accumulation schemes for non-interactive arguments, or any other inter-
esting predicate, from standard assumptions, or any assumptions which are not known
to imply SNARKS. A related question is whether there is a black-box impossibility for
accumulation schemes similar to the result for SNARGs of [GW11].

1.2 Related Work

Below we survey prior constructions of [IVC/PCD.
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PCD from SNARKS. Bitansky, Canetti, Chiesa, and Tromer [BCCT13] proved that
recursive composition of SNARKS for machine computations implies PCD for constant-
depth graphs, and that this in turn implies IVC for polynomial-time machine computa-
tions. From the perspective of concrete efficiency, however, one can achieve more effi-
cient recursive composition by using preprocessing SNARKSs for circuits rather than
SNARKS for machines [BCTV14,C0OS20]; this observation has led to real-world appli-
cations [Col7,BMRS20]. The features of the PCD scheme obtained from recursion
depend on the features of the underlying preprocessing SNARK. Below we summarize
the features of the two known constructions.

— PCD from Pairing-based SNARKs. Ben-Sasson, Chiesa, Tromer, and Virza
[BCTV14] used pairing-based SNARKSs with a special algebraic property to achieve
efficient recursive composition with very small argument sizes (linear in the secu-
rity parameter \). The use of pairing-based SNARKS has two main downsides. First,
they require sampling a structured reference string involving secret values (“toxic
waste”) that, if revealed, compromise security. Second, the verifier performs opera-
tions over a finite field that is necessarily different from the field supported “natively”
by the statement it is checking. To avoid expensive simulation of field arithmetic, the
construction uses pairing-friendly cycles of elliptic curves, which severely restricts
the choice of field in applications and requires a large base field for security.

— PCD from IOP-based SNARKs. Chiesa, Ojha, and Spooner [COS20] used a holo-
graphic IOP to construct a preprocessing SNARK that is unconditionally secure in
the (quantum) random oracle model, which heuristically implies a post-quantum pre-
processing SNARK in the uniform reference string model (i.e., without toxic waste).
They then proved that any post-quantum SNARK leads to a post-quantum PCD
scheme via recursive composition. The downside of this construction is that, given
known holographic IOPs, the argument size is larger, currently at O(\? log® N ) bits
for circuits of size N.

IVC from Homomorphic Encryption. Naor, Paneth, and Rothblum [NPR19] obtain
a notion of IVC by using somewhat homomorphic encryption and an information-
theoretic object called an “incremental PCP”. The key feature of their scheme is that
security holds under falsifiable assumptions.

There are two drawbacks, however, that restrict the use of the notion of IVC that
their scheme achieves.

First, the computation to be verified must be deterministic (this appears neces-
sary for schemes based on falsifiable assumptions given known impossibility results
[GW11]). Second, and more subtly, completeness holds only in the case where inter-
mediate proofs were honestly generated. This means that the following attack may be
possible: an adversary provides an intermediate proof that verifies, but it is impossible
for honest parties to generate new proofs for subsequent computations. Our construction
of PCD achieves the stronger condition that completeness holds so long as intermediate
proofs verify, ruling out this attack.

Both nondeterministic computation and the stronger completeness notion (achieved
by all SNARK-based PCD schemes) are necessary for many of the applications of
IVC/PCD.
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2 Techniques

2.1 PCD from Arguments with Accumulation Schemes

We summarize the main ideas behind Theorem 1, which obtains proof-carrying data
(PCD) from any succinct non-interactive argument of knowledge (SNARK) that has an
accumulation scheme. For the sake of exposition, in this section we focus on the special
case of IVC, which can be viewed as repeated application of a circuit F'. Specifically,
we wish to check a claim of the form “F7 () = 27 where F'7' denotes F' composed
with itself 7" times.

Prior Work: Recursion from Succinct Verification. Recall that in previous
approaches to efficient recursive composition [BCTV14,C0OS20], at each step i we
prove a claim of the form “z; = F(z;_1), and there exists a proof 7;_; that attests
to the correctness of z;_1”. This claim is expressed using a circuit R which is the con-
junction of F' with a circuit representing the SNARK verifier; in particular, the size of
the claim is at least the size of the verifier circuit. If the size of the verifier circuit grows
linearly (or more) with the size of the claim being checked, then verifying the final
proof becomes more costly than the original computation.

For this reason, these works focus on SNARKSs with succinct verification, where the
verifier runs in time sublinear in the size of the claim. In this case, the size of the claim
essentially does not grow with the number of recursive steps, and so checking the final
proof costs roughly the same as checking a single step.

Succinct verification is a seemingly paradoxical requirement: the verifier does not
even have time to read the circuit R. One way to sidestep this issue is preprocessing:
one designs an algorithm that, at the beginning of the recursion, computes a small cryp-
tographic digest of R, which the recursive verifier can use instead of reading R directly.
Because this preprocessing need only be performed once for the given R in an offline
phase, it has almost no effect on the performance of each recursive step (in the later
online phase).

A New Paradigm: IVC from Accumulation. Even allowing for preprocessing, suc-
cinct verification remains a strong requirement, and there are many SNARKSs that are
not known to satisfy it (e.g., [BCC+16,BBB+18, AHIV17,BCG+17,BCR+19]). Bowe,
Grigg, and Hopwood [BGH19] suggested a further relaxation of succinctness that
appears to still suffice for recursive composition: a type of “post-processing”. Their
observation is as follows: if a SNARK is such that we can efficiently “defer” the verifi-
cation of a claim in a way that does not grow in cost with the number of claims to be
checked, then we can hope to achieve recursive composition by deferring the verifica-
tion of all claims to the end.

In the remainder of this section, we will give an overview of the proof of Theorem 1,
our construction of PCD from SNARKSs that have this “post-processing” property. We
note that this relaxation of requirements is useful because, as suggested in [BGH19], it
leads to new constructions of PCD with desirable properties (see discussion at the end
of Sect. 1.1). In fact, some of these efficiency features are already being exploited by
practitioners working on recursing SNARKSs [Halo19, Pickles20].

The specific property we require, which we discuss more formally in the next
section, is that the SNARK has an accumulation scheme. This is a generalization of
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the idea described in [BGH19]. Informally, an accumulation scheme consists of three
algorithms: an accumulation prover, an accumulation verifier, and a decider. The accu-
mulation prover is tasked with taking an instance-proof pair (z, 7) and a previous accu-
mulator acc, and producing a new accumulator acc* that “includes” the new instance.
The accumulation verifier, given ((z,7),acc,acc*), checks that acc* was computed
correctly (i.e., that it accumulates (z,7)) into acc). Finally the decider, given a sin-
gle accumulator acc, performs a single check that simultaneously ensures that every
instance-proof pair accumulated in acc verifies.'

Given such an accumulation scheme, we can construct IVC as follows. Given a
previous instance z;, proof 7;, and accumulator acc;, the IVC prover first accumulates
(2, ;) with acc; to obtain a new accumulator acc; ;. The IVC prover also generates
a SNARK proof 7; 11 of the claim: “z;1; = F(2;), and there exist a proof 7; and an
accumulator acc; such that the accumulation verifier accepts ((z;, 7;), acc;, acci+1)”,
expressed as a circuit R. The final IVC proof then consists of (7p,accy). The IVC
verifier checks such a proof by running the SNARK verifier on 77 and the accumulation
scheme decider on accy.

Why does this achieve IVC? Throughout the computation we maintain the invariant
that if acc; is a valid accumulator (according to the decider) and 7; is a valid proof,
then the computation is correct up to the i-th step. Clearly if this holds at time 7" then
the IVC verifier successfully checks the entire computation. Observe that if we were
able to prove that “z; 1 = F(z;), m; is a valid proof, and acc; is a valid accumulator”,
by applying the invariant we would be able to conclude that the computation is correct
up to step ¢ + 1. Unfortunately we are not able to prove this directly, for two reasons: (i)
proving that 7; is a valid proof requires proving a statement about the argument verifier,
which may not be sublinear, and (ii) proving that acc; is a valid accumulator requires
proving a statement about the decider, which may not be sublinear.

Instead of proving this claim directly, we “defer” it by having the prover accumu-
late (2;,7;) into acc; to obtain a new accumulator acc;11. The soundness property of
the accumulation scheme ensures that if acc;; is valid and the accumulation verifier
accepts ((z;,m;),acc;,acc;+1), then 7; is a valid proof and acc; is a valid accumula-
tor. Thus all that remains to maintain the invariant is for the prover to prove that the
accumulation verifier accepts; this is possible provided that the accumulation verifier is
sublinear.

From Sketch to Proof. In the full version of our paper, we give the formal details of our
construction and a proof of correctness. In particular, we show how to construct PCD, a
more general primitive than IVC. In the PCD setting, rather than each computation step
having a single input z;, it receives m inputs from different nodes. Proving correctness
hence requires proving that all of these inputs were computed correctly. For our con-
struction, this entails checking m proofs and m accumulators. To do this, we extend the
definition of an accumulation scheme to allow accumulating multiple instance-proof
pairs and multiple “old” accumulators.
We now informally discuss the properties of our PCD construction.

! We remark that the notion of an accumulation scheme is distinct from the notion of a crypto-
graphic accumulator for a set (e.g., an RSA accumulator), which provides a succinct represen-
tation of a large set while supporting membership queries.
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— Efficiency requirements. Observe that the statement to be proved includes only the
accumulation verifier, and so the only efficiency requirement for obtaining PCD is
that this algorithm run in time sublinear in the size of the circuit R. This implies, in
particular, that an accumulator must be of size sublinear in the size of R, and hence
must not grow with each accumulation step. The SNARK verifier and the decider
algorithm need only be efficient in the usual sense (i.e., polynomial-time).

— Soundness. We prove that the PCD scheme is sound provided that the SNARK is
knowledge sound (i.e., is an adaptively-secure argument of knowledge) and the accu-
mulation scheme is sound (see Sect. 2.2 for more on what this means). We stress that
in both cases security should be in the standard (CRS) model, without any random
oracles (as in prior PCD constructions).

— Zero knowledge. We prove that the PCD scheme is zero knowledge, if the underly-
ing SNARK and accumulation scheme are both zero knowledge (for this part we
also formulate a suitable notion of zero knowledge for accumulation schemes as
discussed shortly in Sect. 2.2).

— Post-quantum security. We also prove that if both the SNARK and accumulation
scheme are post-quantum secure, then so is the resulting PCD scheme. Here by
post-quantum secure we mean that the relevant security properties continue to hold
even against polynomial-size quantum circuits, as opposed to just polynomial-size
classical circuits.

2.2 Accumulation Schemes

A significant contribution of this work is formulating a general notion of an accumu-
lation scheme. An accumulation scheme for a non-interactive argument as described
above is a particular instance of this definition; in subsequent sections we will apply the
definition in other settings.

We first give an informal definition that captures the key features of an accumulation
scheme. For clarity this is stated for the (minimal) case of a single predicate input q and
a single “old” accumulator acc; we later extend this in the natural way to n predicate
inputs and m “old” accumulators.

Definition 1 (informal). An accumulation scheme for a predicate »: X — {0,1}
consists of a triple of algorithms (P, V, D), known as the prover, verifier, and decider,
that satisfies the following properties.

— Completeness: For all accumulators acc and predicate inputs q € X, if D(acc) = 1
and &(q) = 1, then for acc* — P(acc,q) it holds that V(acc,q,acc*) = 1 and
D(acc*) = 1.

— Soundness: For all efficiently-generated accumulators acc,acc* and predicate
inputs q € X, if D(acc*) = 1 and V(acc,q,acc*) = 1 then, with all but negli-
gible probability, (q) = 1 and D(acc) = 1.

An accumulation scheme for a SNARK is an accumulation scheme for the predicate
induced by the argument verifier; in this case the predicate input q consists of an
instance-proof pair (x, 7). Note that the completeness requirement does not place any
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restriction on how the previous accumulator acc is generated; we require that complete-
ness holds for any acc the decider D determines to be valid, and any q for which the
predicate & holds. This is needed to obtain a similarly strong notion of completeness
for PCD, required for applications where accumulation is done by multiple parties that
do not trust one another.

Zero Knowledge. For our PCD application, the notion of zero knowledge for an accu-
mulation scheme that we use is the following: one can sample a “fake” accumulator
that is indistinguishable from a real accumulator acc*, without knowing anything about
the old accumulator acc and predicate input q that were accumulated in acc*. The exis-
tence of the accumulation verifier V complicates matters here: if the adversary knows
acc and q, then it is easy to distinguish a real accumulator from a fake one using V. We
resolve this issue by modifying Definition 1 to have the accumulation prover P produce
a verification proof my in addition to the new accumulator acc*. Then V uses 7y in
verifying the accumulator, but 7y is not required for subsequent accumulation. In our
application, the simulator then does not have to simulate 7y . This avoids the problem
described: even if the adversary knows acc and g, unless 7y is correct, V can simply
reject, as it would for a “fake” accumulator. Our informal definition is as follows.

Definition 2. An accumulation scheme for @ is zero knowledge if there exists an effi-
cient simulator S such that for all accumulators acc and inputs q € X such that
D(acc) = 1 and ¥(q) = 1, the distribution of acc* when (acc*,my) «— P(acc,q)
is computationally indistinguishable from acc* « S(1*).

Predicate Specification. The above informal definitions omit many important details;
we now highlight some of these. Suppose that, as required for IVC/PCD, we have some
fixed circuit R for which we want to accumulate pairs (x;, 7;), where 7; is a SNARK
proof that there exists w; such that R(x;, w;) = 1. In this case the predicate corre-
sponding to the verifier depends not only on the pair (x;,m;), but also on the circuit
R, as well as the public parameters of the argument scheme pp and (often) a random
oracle p.

Moreover, each of these inputs has different security and efficiency considerations.
The security of the SNARK (and the accumulation scheme) can only be guaranteed
with high probability over public parameters drawn by the generator algorithm of the
SNARK, and over the random oracle. The circuit R may be chosen adversarially, but
cannot be part of the input q because it is too large; it must be fixed at the beginning.

These considerations lead us to define an accumulation scheme with respect to both
a predicate @: U(x) x ({0,1}*)3 — {0, 1} and a predicate-specification algorithm H.
We then adapt Definition 1 to hold for the predicate ¢(p, pps, is, -) where p is a random
oracle, ppg is output by H, and ig is chosen adversarially. In our SNARK example,
‘H is equal to the SNARK generator, ig is the circuit R, and &(p, pp, R, (x, 7)) =
VP (pp, R, x, ).

Remark 1 (helped verification). We compare accumulation schemes for SNARKSs with
the notion of “helped verification” [MBKM19]. In a SNARK with helped verification,
an untrusted party known as the helper can, given n proofs, produce an auxiliary proof
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that enables checking the n proofs at lower cost than that of checking each proof indi-
vidually. This batching capability can be viewed as a special case of accumulation, as
it applies to n “fresh” proofs only; there is no notion of batching “old” accumulators. It
is unclear whether the weaker notion of helped verification alone suffices to construct
IVC/PCD schemes.

2.3 Constructing Arguments with Accumulation Schemes

A key ingredient in our construction of PCD is a SNARK that has an accumulation
scheme (see Sect. 2.1). Below we summarize the ideas behind Theorem 2, by explaining
how to construct accumulation schemes for SNARKs whose verifier is succinct relative
to an oracle predicate @, that itself has an accumulation scheme.

Predicate-Efficient SNARKSs. We call a SNARK ARG predicate-efficient with respect
to a predicate &, if its verifier V operates as follows: (i) run a fast “inner” verifier Ve
to produce a bit b and query set Q; (ii) accept iff b = 1 and for all q € Q, P,(q) = 1. In
essence, ) can be viewed as a circuit with “oracle gates” for &,.2 The aim is for Vpe tO
be significantly more efficient than V; that is, the queries to @, capture the “expensive”
part of the computation of V.

As noted in Sect. 1.1, one can view recent SNARK constructions [MBKM19,
GWC19,CHM+20] as being predicate-efficient with respect to a “polynomial commit-
ment” predicate. We discuss how to construct accumulation schemes for these predi-
cates below in Sect. 2.4.

Accumulation Scheme For Predicate-Efficient SNARKSs. Let ARG be a SNARK that
is predicate-efficient with respect to a predicate @,, and let AS, be an accumulation
scheme for @,. To check n proofs, instead of directly invoking the SNARK verifier
V, we can first run Ve n times to generate n query sets for @,, and then, instead of
invoking @, on each of these sets, we can accumulate these queries using AS,. Below
we sketch the construction of an accumulation scheme AS,x; for ARG based on this
idea.

To accumulate n instance-proof pairs [(x;, ;)] starting from an old accumulator
acc, the accumulation prover AS . P first invokes the inner verifier V,e on each (x;, m;)
to generate a query set (); for @,, accumulates their union Q) = U} ;(); into acc using
AS,.P, and finally outputs the resulting accumulator acc*. To check that acc* indeed
accumulates [(x;, ;)] ; into acc, the accumulation verifier ASygc.V first checks, for
each 7, whether the inner verifier Ve accepts (x4, m;), and then invokes AS,.V to check
whether acc* correctly accumulates the query set = Uj~;(;. Finally, to decide
whether acc* is a valid accumulator, the accumulation scheme decider AS,rc.D sim-
ply invokes AS,.D.

From Sketch to Proof. The foregoing sketch omits details required to construct a
scheme that satisfies the “full” definition of accumulation schemes as stated in the full
version of our paper. For instance, as noted in Sect. 2.3, the predicate 9, may be an
oracle predicate, and could depend on the public parameters of the SNARK ARG. We

2 This is not precisely the case, because the verifier is required to reject immediately if it ever
makes a query q with &,(q) = 0.
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handle this by requiring that the accumulation scheme for &, uses the SNARK gen-
erator G as its predicate specification algorithm. We also show that zero knowledge
and post-quantum security are preserved. See the full version of our paper for a formal
treatment of these issues, along with security proofs.

From Predicate-Efficient SNARKS to PCD. In order to build an accumulation scheme
AS,rc that suffices for PCD, ARG and AS, must satisfy certain efficiency properties.
In particular, when verifying satisfiability for a circuit of size N, the running time of
AS .V must be sublinear in N, which means in turn that the running times of Ve
and AS,.V, as well as the size of the query set (), must be sublinear in V. Crucially,
however, AS,.D need only run in time polynomial in V.

2.4 Accumulation Schemes for Polynomial Commitments

As noted in Sect. 2.3, several SNARK constructions (e.g., [MBKM19,GWC19,
CHM+20]) are predicate-efficient with respect to an underlying polynomial commit-
ment, which means that constructing an accumulation scheme for the latter leads (via
Theorem 2) to an accumulation scheme for the whole SNARK.

Informally, a polynomial commitment scheme (PC scheme) is a cryptographic prim-
itive that enables one to produce a commitment C' to a polynomial p, and then to prove
that this committed polynomial evaluates to a claimed value v at a desired point z. An
accumulation scheme for a PC scheme thus accumulates claims of the form “C' commits
to p such that p(z) = v” for arbitrary polynomials p and evaluation points z.

In this section, we explain the ideas behind Theorem 3, by sketching how to con-
struct (zero knowledge) accumulation schemes for two popular (hiding) polynomial
commitment schemes.

— In Sect. 2.4.1, we sketch our accumulation scheme for PCp, a polynomial com-
mitment scheme derived from [BCC+16,BBB+18, WTS+18] that is based on the
hardness of discrete logarithms.

— In Sect. 2.4.2, we sketch our accumulation scheme for PC,gy, a polynomial com-
mitment scheme based on knowledge assumptions over bilinear groups [KZG10,
CHM+20].

In each case, the running time of the accumulation verifier will be sublinear in the
degree of the polynomial, and the accumulator itself will not grow with the number of
accumulation steps. This allows the schemes to be used, in conjunction with a suitable
predicate-efficient SNARK, to construct PCD.

We remark that each of our accumulation schemes is proved secure in the random
oracle model by invoking a useful lemma about “zero-finding games” for committed
polynomials. Security also requires that the random oracle used for an accumulation
scheme for a PC scheme is domain-separated from the random oracle used by the PC
scheme itself. See the full version for details.

2.4.1 Accumulation scheme for PC;,
We sketch our accumulation scheme for PC,, . For univariate polynomials of degree
less than d, PCp, achieves evaluation proofs of size O(Alogd) in the random oracle
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model, and assuming the hardness of the discrete logarithm problem in a prime order
group G. In particular, there are no secret parameters (so-called “toxic waste””). How-
ever, PCp, has poor verification complexity: checking an evaluation proof requires £2(d)
scalar multiplications in G. Bowe, Grigg, and Hopwood [BGH19] suggested a way to
amortize this cost across a batch of n proofs. Below we show that their idea leads to an
accumulation scheme for PC,, with an accumulation verifier that uses only O(n logd)
scalar multiplications instead of the naive ©(n - d), and with an accumulator of size
O(log d) elements in G.

Summary of PC,, . The committer and receiver both sample (consistently via the ran-
dom oracle) a list of group elements {Go, G1, ..., G4} € G in a group G of prime
order ¢ (written additively). A commitment to a polynomial p(X) = Z?:o a; X' €
IFqu[X ] is then given by C' := Z?:o a;G;. To prove that the committed polynomial
p evaluates to v at a given point z € F, it suffices to prove that the triple (C, z,v)
satisfies the following NP statement:

Jag,...,aq EFstv= Z?:o a;z" and C = Z:'i:o a;Gi .

This is a special case of an inner product argument (IPA), as defined in [BCC+16],
which proves the inner product of two committed vectors. The receiver simply ver-
ifies this inner product argument to check the evaluation. The fact that the vector
(1,2,...,2%) is known to the verifier and has a certain structure is exploited in the
accumulation scheme that we describe below.

Accumulation Scheme for the IPA. Our accumulation scheme relies on a special
structure of the IPA verifier: it generates O(logd) challenges using the random ora-
cle, then performs cheap checks requiring O(logd) field and group operations, and
finally performs an expensive check requiring {2(d) scalar multiplications. This latter
check asserts consistency between the challenges and a group element U contained in
the proof. Hence, the IPA verifier is succinct barring the expensive check, and so con-
structing an accumulation scheme for the IPA reduces to the task of constructing an
accumulation scheme for the expensive check involving U.

To do this, we rely on an idea of Bowe, Grigg, and Hopwood [BGH19], which
itself builds on an observation in [BBB+18]. Namely, letting (&1, ..., &g, a) be the
protocol’s challenges, U can be viewed as a commitment to the polynomial h(X) :=
H,liozgg (@)1 (1+&1og, (4)—i X e Fqu[X |- This polynomial has the special property that
it can be evaluated at any point in just O(log d) field operations (exponentially smaller
than its degree d). This allows transforming the expensive check on U into a check that
is amenable to batching: instead of directly checking that U is a commitment to /, one
can instead check that the polynomial committed inside U agrees with h at a challenge
point z sampled via the random oracle.

We leverage this idea as follows. When accumulating evaluation claims about mul-
tiple polynomials py, . . ., p,, applying the foregoing transformation results in n checks
of the form “check that the polynomial contained in U; evaluates to h;(z) at the point 2”.
Because these are all claims for the correct evaluation of the polynomials h,; at the same
point z, we can accumulate them via standard homomorphic techniques. We now sum-
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marize how we apply this idea to construct our accumulation scheme AS = (P,V,D)
for PC,,.

Accumulators in our accumulation scheme have the same form as the instances to
be accumulated: they are tuples of the form (C, z, v, m) where 7 is an evaluation proof
for the claim “p(z) = v” and p is the polynomial committed in C'. For simplicity, below
we consider the case of accumulating one old accumulator acc = (C1, z1,v1,71) and
one instance (Cs, 22, v, T3) into a new accumulator acc* = (C, z, v, 7).

Accumulation prover P: compute the new accumulator acc* = (C, z, v, ) from the
old accumulator acc = (C1, 21, v1, 1) and the instance (Ca, 22, v2, m2) as follows.

— Compute Uy, Us from 71, mo respectively. As described above, these elements can
be viewed as commitments to polynomials hq, ho defined by the challenges derived
from 71, 7o.

— Use the random oracle p to compute the random challenge
a = p([(h1, U1), (he, U2)]).

— Compute C := Uy 4+ aUs, which is a polynomial commitment to p(X) := hy(X) +
Ozhg (X) .

— Compute the challenge point z := p(C, p), where p is uniquely represented via the
tuple ([hy, ho], @).

— Construct an evaluation proof 7 for the claim “p(z) = v”. (This step is the only
expensive one.)

— Output the new accumulator acc* := (C, z,v, 7).

Accumulation verifier V: to check that the new accumulator acc* = (C, z, v, ) was
correctly generated from the old accumulator acc = (C4, z1,v1, 1) and the instance
(Co, 29, v9, ma), first compute the challenges « and z from the random oracle as above,
and then check that (a) (C1, 21, v1, 1) and (Cy, 22, v2, 72 ) pass the cheap checks of the
IPA verifier, (b) C = Uy + aUs, and (¢) hq(2) + aha(z) = v.

Decider D: on input the (final) accumulator acc* = (C, z, v, 7), check that 7 is a
valid evaluation proof for the claim that the polynomial committed inside C evaluates
to v at the point z.

This construction achieves the efficiency summarized in Theorem 3.

We additionally achieve zero knowledge accumulation for the hiding variant of
PCyp.. Informally, the accumulation prover randomizes acc* by including a new ran-
dom polynomial kg in the accumulation step. This ensures that the evaluation claim in
acc* is for a random polynomial, thus hiding all information about the original evalu-
ation claims. To allow the accumulation verifier to check that this randomization was
performed correctly, the prover includes hg in an auxiliary proof 7.

In the full version, we show how to extend the above accumulation scheme to accu-
mulate any number of old accumulators and instances. Our security proof for the result-
ing accumulation scheme relies on the hardness of zero-finding games, and the security
of PCy,.

2.4.2 Accumulation scheme for PC g,
We sketch our accumulation scheme AS = (P, V,D) for PC,qy. Checking an evalua-
tion proof in PC,gy requires 1 pairing, and so checking n evaluation proofs requires n
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pairings. AS improves upon this as follows: the accumulation verifier V only performs
O(n) scalar multiplications in G; in order to check the accumulation of n evaluation
proofs, while the decider D performs only a single pairing in order to check the result-
ing accumulator. This is much cheaper: it reduces the number of pairings from n to 1,
and also defers this single pairing to the end of the accumulation (the decider). In partic-
ular, when instantiating the PCD construction outlined in Sect. 2.1 with a PC,g,-based
SNARK and our accumulation scheme for PC,¢,, we can eliminate all pairings from
the circuit being verified in the PCD construction.

Below we explain how standard techniques for batching pairings using random lin-
ear combinations [CHM+20] allow us to realize an accumulation scheme for PC,¢,
with these desirable properties.

Summary of PC,qy. The committer key ck and receiver key rk for a given maximum
degree bound D are group elements from a bilinear group (Gy, Gz, Gr,q,G, H,e):
ck .= {G,5G,...,pPG} € G1D+1 consists of group elements encoding powers of a
random field element 3, while rk := (G, H, 3H) € G, x G3.

A commitment to a polynomial p € F5”[X] is the group element C' := p(3)G €
G;. To prove that p evaluates to v at a given point z € [Fy, the sender computes a
“witness polynomial” w(X) := (p(X) —v)/(X — z), and outputs the evaluation proof
m:= w(B)G € Gy. The receiver can check this proof by checking the pairing equation
e(C —vG,H) = e(m, BH — zH). This pairing equation is the focus of our accumula-
tion scheme below. (This summary omits details about degree enforcement and about
hiding.)

Accumulation Scheme. We construct an accumulation scheme AS = (P,V,D) for
PCacnm by relying on standard techniques for batching pairing equations. Suppose that
we wish to simultaneously check the validity of n instances [(C;, z;, v;, m;)] -, . First,
rewrite the pairing check for the ¢-th instance as follows:

e(Ci—v;G,H) =e(mi, PH—2H) <— e(Ci—v;G+zm;, H) =e(m;, BH) . (1)

After the rewrite, the Go inputs to both pairings do not depend on the claim being
checked. This allows batching the pairing checks by taking a random linear combina-
tion with respect to a random challenge r := p([C}, z;, v;, m;]}_, ) computed from the
random oracle, resulting in the following combined equation:

el r(C —vG + zm), H) =e(> 1 r'm, BH) . )

We now have a pairing equation involving an “accumulated commitment” C* :=
S 74(Ci — v;G + zim;) and an “accumulated proof” 7* := >""" | rim;. This obser-
vation leads to the accumulation scheme below.

An accumulator in AS consists of a commitment-proof pair (C*,7*), which the
decider D validates by checking that e(C*, H) = e(7*, 3H). Moreover, observe that
by Eq. (1), checking the validity of a claimed evaluation (C, z, v, ) within PC,¢, corre-
sponds to checking that the “accumulator” (C' — vG + z7, ) is accepted by the decider
D. Thus we can restrict our discussion to accumulating accumulators.

The accumulation prover P, on input a list of old accumulators [acc]}; =
[(CF,7F)), computes a random challenge r := p([acc;]?,), constructs C* :=

10 M
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St r'CF oand 7 = >  r'mf, and outputs the new accumulator acc* :=
(C*,7*) € G3. To check that acc* accumulates [acc;|” ;, the accumulation verifier
V simply invokes P and checks that its output matches the claimed new accumulator
acc*.

To achieve zero knowledge accumulation, the accumulation prover randomizes acc*
by including in it an extra “old” accumulator corresponding to a random polynomial,
which statistically hides the accumulated claims. To allow the accumulation verifier
to check that this randomization was performed correctly, the prover includes this old
accumulator in an auxiliary proof 7y .

This construction achieves the efficiency summarized in Theorem 3.

In the full version of our paper, we show how to extend the above accumulation
scheme to account for additional features of PC,¢, (degree enforcement and hiding).
Our security proof for the resulting accumulation scheme relies on the hardness of zero-
finding games (see full version).
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Abstract. Minimizing the computational cost of the prover is a central goal in
the area of succinct arguments. In particular, it remains a challenging open prob-
lem to construct a succinct argument where the prover runs in linear time and the
verifier runs in polylogarithmic time.

We make progress towards this goal by presenting a new linear-time proba-
bilistic proof. For any fixed € > 0, we construct an interactive oracle proof (IOP)
that, when used for the satisfiability of an [V-gate arithmetic circuit, has a prover
that uses O(NV) field operations and a verifier that uses O(IN°) field operations.
The sublinear verifier time is achieved in the holographic setting for every circuit
(the verifier has oracle access to a linear-size encoding of the circuit that is com-
putable in linear time).

When combined with a linear-time collision-resistant hash function, our IOP
immediately leads to an argument system where the prover performs O(N) field
operations and hash computations, and the verifier performs O (N°) field opera-
tions and hash computations (given a short digest of the N-gate circuit).

Keywords: Interactive oracle proofs * Tensor codes - Succinct arguments
1 Introduction

Succinct arguments are cryptographic proofs for NP in which the number of bits
exchanged between the argument prover and the argument verifier is much less than the
size of the NP witness (e.g., polylogarithmic in the size of the NP witness). Succinct
arguments originate in the seminal works of Kilian [Kil92] and Micali [Mic00], and
have now become the subject of intense study from theoreticians and practitioners, with
a great deal of effort invested in improving their asymptotic and concrete efficiency.

The main efficiency measures in a succinct argument are communication complex-
ity (the number of bits exchanged between the prover and the verifier), as well as the
running time of the prover and the running time of the verifier. Over the last decade
there has been much progress in improving the communication complexity and veri-
fier time for succinct arguments whose prover runs in quasilinear time. These advances
have, in particular, enabled real-world deployments of succinct arguments as part of
security systems where the succinct argument is used to certify correctness of certain
medium-size computations (e.g., [Ben+14]).

There are, however, exciting envisioned applications where the succinct argument
is used to prove the correctness of large-scale computations (see [OWWB20] and
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references therein). While a proving time that is quasilinear is arguably asymptotically
efficient, the polylogarithmic overheads severely limit the sizes of computations that
can be supported in applications, because proving time quickly becomes a bottleneck.

This state of affairs motivates the fundamental problem of constructing linear-time
succinct arguments: succinct arguments where the prover runs in linear time and, ide-
ally, also where the verifier runs in sublinear (e.g., polylogarithmic) time. In this paper
we present new constructions that make progress on this problem.

Challenges. There are different approaches for constructing succinct arguments, yet
essentially all of them follow the same high-level pattern: first, arithmetize the com-
putation whose correctness is being proved; second, probabilistically check the arith-
metized problem via the help of cryptography. Typically, the first step alone already
costs more than linear time because it involves, in particular, encoding the computa-
tion as a polynomial, an operation that can be performed in quasilinear time thanks to
the Fast Fourier Transform (FFT) but is not believed to have a linear-time algorithm.
This means that many of the algebraic techniques that have proven useful to construct
succinct arguments seem inapplicable in the linear-time regime.

Prior Work. Few works achieve some form of succinct argument without using FFTs,
and none of them resolve the problem of constructing linear-time succinct arguments.
We briefly review these works below, and also compare their main features in Fig. 1
(alongside the arguments that we construct in this paper).

Several works [BCCGP16,BBBPWM 18, WTSTW18,XZZPS19,Set20] forego the
use of FFTs by using homomorphic commitments to realize a “cryptographic arithme-
tization”, but in doing so also introduce quasilinear work in the cryptography. In some
works the quasilinear costs, due to the cryptography [XZZPS19] or an FFT [ZXZS20],
can be isolated to the witness of the non-deterministic computation and thereby achieve
linear work if the witness is sufficiently small; but, in general, the witness may be as
large as the computation.

While the above works achieve polylogarithmic communication complexity but
not linear-time proving, Bootle et al. [BCGGHJ17] achieve linear-time proving with
square-root communication complexity (and verification): an argument system for arith-
metic circuit satisfiability where, for an N-gate circuit, the prover performs O(N) field
operations and hash computations while the verifier performs O(\/N ) field operations
and hash computations, with a communication complexity of O(\/N ). Crucially, the
hash function is only required to be collision resistant, for which there are linear-
time candidates (e.g., assuming the intractability of certain shortest vector problems
[AHIKV17]), which leads to a linear-time prover.

Overall, the construction in [BCGGHIJ17] remains the only argument system for NP
known to date where the prover runs in linear time and where communication complex-
ity is sublinear. Improving on the square-root communication complexity, and ideally
also the square-root verifier time, is an open problem.

Linear-time IOPs Suffice. The approach used by Bootle et al. [BCGGHJ17] to obtain
their linear-time argument system highlights a natural target for improvement, as we
now explain. First, they construct an interactive oracle proof (I0P) with prover time
tp = O(N), query complexity g = O(v/N), and verifier time tv = O(v/N). (An IOP
is a “multi-round PCP” [BCS16,RRR16], as we will review later on.) Second, they apply



Linear-Time Arguments with Sublinear Verification from Tensor Codes 21

the “commit-then-open” paradigm of Kilian [Kil92], by using a collision-resistant hash
function to transform the IOP into an argument system where communication complexity
is O(q-log N). In this latter step, if one can evaluate the hash function in linear time, the
resulting argument prover runs in time O(tp) and O(tv). We see here that, given linear-
time hash functions, the problem of constructing linear-time succinct arguments reduces
to constructing linear-time IOPs with small query complexity (and verifier time).

In other words, the target for improvement is the IOP. Our goal in this paper is
to construct an IOP with linear-time prover whose query complexity and verifier time
improve on the prior art, which would yield an argument system with corresponding
improvements. For example, improving query complexity to be polylogarithmic would
yield the first linear-time argument with polylogarithmic communication complexity.

We conclude here by noting that the above approach has the additional benefit of
being plausibly post-quantum, as the underlying linear-time hash function candidate is
based on a lattice problem [AHIKV17].

1.1 Our Results

We construct, for any fixed ¢ > 0, an argument system where the prover performs
O(N) field operations and hash computations, communication complexity is O(N€),
and the verifier performs O(N°€) field operations and hash computations. We achieve
this by improving the state of the art in linear-time IOPs (see Fig. 2): our main result is a
public-coin IOP where, for any fixed € > 0, the prover performs O(N) field operations,
query complexity is O(N€), and the verifier performs O(N€) field operations. These
costs are when proving the satisfiability of an /N-gate arithmetic circuit defined over
any field of size 2(N).!

In more detail, we focus on constructing protocols for rank-1 constraint satisfiability
(R1CS), a standard generalization of arithmetic circuits where the “circuit description”
is given by coefficient matrices.”

Definition 1 (informal). The RICS problem asks: given a finite field F, coefficient
matrices A, B,C € FN*N each containing at most M = 2(N) non-zero entries,
and an instance vector x over IF, is there a witness vector w over F such that z :=
(z,w) € FN and Az o Bz = Cz? (Here “o” denotes the entry-wise product.)

Theorem 1 (informal). For every positive constant € > 0, there is a public-coin holo-
graphic IOP for RICS, over any field of size £2(M), with the following parameters:

— round complexity is O(1/e + log M);

! The sublinear time of the argument verifier is achieved in the preprocessing setting, which
means that the verifier receives as input a short digest of the circuit that can be derived by
anyone (in linear time). Some form of preprocessing is necessary for sublinear verification
because the argument verifier just reading the circuit takes linear time. In turn, preprocessing
is enabled by the fact that our IOP is holographic, which means that the IOP verifier has
oracle access to a linear-size encoding of the circuit that is computable in linear time. See
[CHMMVW20,C0OS20] for more on how holography leads to preprocessing.

2 Recall that satisfiability of an IN-gate arithmetic circuit is reducible, in linear time, to an R1CS
instance where the coefficient matrices are N x N and have O(N) non-zero entries.
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— proof length is O(M) elements in TF;

query complexity is O(M¢€);

the prover uses O(M) field operations; and

the verifier uses O(M¥) field operations, given access to a linear-time encoding of
the coefficient matrices.

Our theorem directly follows from two results of independent interest. First, we
construct a proof protocol for R1ICS with a linear-time prover, but in an intermediate
model that extends the type of queries that the verifier can make in an IOP. Second,
we efficiently “implement” this intermediate model via a standard IOP. We summarize
each of these two results below. The formal statement of Theorem 1 is given in the full
version of this paper .

We remark that our result, unlike many other results about efficient probabilistic
proofs, holds over any field IF that is large enough (linear in M) without requiring any
special structure (e.g., smooth subgroups).

(1) IOP with Tensor Queries for R1CS. We use the notion of a tensor IOP, which
is an IOP where the verifier can make fensor queries to the proof strings sent by the
prover, as opposed to just point queries as in a standard IOP. To make a tensor query to
one of the received proof strings, the verifier specifies a vector with prescribed tensor
structure and receives as answer the inner product of the tensor vector and proof string.

Definition 2 (informal). A (F, k, t)-tensor IOP modifies the notion of an IOP as fol-
lows: (a) the prover message in each round i is a string I1; in Féik' for some positive
integer {;; (b) a verifier query may request the value {(ap ® a1 ® -+ ® ay, I1;) for a
chosen round i and chosen vectors ag € F% and a1, . .., a; € F*.

The first part to our proof of Theorem 1 is a (I, k, t)-tensor IOP for RICS with a
O(M)-time prover, constant query complexity, and a O(M'/*)-time verifier (who has
tensor-query access to the coefficient matrices).

Theorem 2 (informal). For every finite field ¥ and positive integers k,t, there is a
(F, k, t)-tensor IOP for R1CS that supports coefficient matrices in FN*N with N = k!
and up to M = O(N) non-zero entries and has the following parameters:

soundness error is O(M/|F|);
— round complexity is O(log N);

proof length is O(N) elements in F;

query complexity is O(1);

the prover uses O(M) field operations; and

the verifier uses O(M 1/ t) field operations, given tensor-query access to the coeffi-
cient matrices.

We sketch the ideas behind this result in two steps: in Sect. 2.4 we describe a ten-
sor IOP for R1CS achieving all efficiency parameters except that the verifier explic-
itly reads the coefficient matrices and uses O(M) field operations; then in Sect. 2.5
we describe how to extend this tensor IOP to the holographic setting, achieving a
sublinear verifier time when the verifier is granted tensor-query access to the coeffi-
cient matrices. The corresponding technical details are provided in the full version of
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this paper. From a technical perspective, our construction builds on tools from several
papers, such as linear-time scalar products in [BCGGHIJ17], linear-time sumchecks in
[Thal3,XZZPS19], and linear-time look-ups in [Set20, GW20].

(2) From Tensor Queries to Point Queries. We prove that any tensor IOP can be
efficiently implemented as a standard IOP, by way of a subprotocol that “simulates”
tensor queries via a collection of point queries.

In more detail, we provide a transformation that receives as input a tensor IOP and
any linear code represented via a circuit for its encoding function, and produces as
output a point-query IOP that decides the same language as the tensor IOP up to an
additional soundness error.

The key efficiency feature of the transformation is that prover complexity is pre-
served up to the number of tensor queries, the code’s rate, and the code’s encoding time.
In particular, if the prover in the tensor IOP uses a linear number of field operations
and the verifier makes a constant number of tensor queries, and the code is linear-time
encodable, then the new prover in the standard IOP uses a linear number of field oper-
ations. In the following theorem, and throughout the paper, we use “Big O” notation
such as O, (+), which means that the parameter « is treated as a constant.

Theorem 3 (informal). There is an efficient transformation that takes as input a
tensor-query IOP and a linear code, and outputs a point-query 1OP that has related
complexity parameters, as summarized below.

— Input IOP: an (F, k, t)-tensor IOP with soundness error €, round complexity rc, proof
length |, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv.

— Input code: a linear code C over F with rate p = %, relative distance § = %, and
encoding time 0(k) - k.

— Output IOP: a point-query I0OP with soundness error Os 1(€) + O(d"/|F|), round
complexity Oy(rc), proof length O,.(q - 1), query complexity O(k - q), prover
arithmetic complexity tp + O, +(q - 1) - 0(k), and verifier arithmetic complexity
tv+ O¢(k - q) - 0(k).

Moreover, the transformation preserves holography up to the multiplicative overhead 0
induced by the encoding function of C and factors that depend on p and t.

We stress that the only property of the code C used in the above transformation is that
it is linear over F, and in particular the code C need not be efficiently decodable, satisfy
the multiplication property (entry-wise multiplication of codewords is a codeword in a
related code), or even be systematic. We believe that developing techniques that work
with a wide range of codes will facilitate further IOP research. For example, known
linear-time encodable codes meeting the Gilbert—Varshamov bound are not systematic
[DI14]; also, efficient zero knowledge (not a goal in this paper) is typically achieved by
using non-systematic codes.

We sketch the ideas behind this result in Sect. 2.2 and 2.3. The technical details are
in the full version of this paper. From a technical perspective, our transformation builds
on ideas from several papers: the sumcheck protocol for tensor codes in [Meil3]; the
ILC-to-IOP compiler in [BCGGHJ17] that works with any linear code; the proximity
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Fig. 1. Comparison of several sublinear argument systems that do not use FFTs. The stated costs
are for the satisfiability of an IN-gate arithmetic circuit over a cryptographically-large field [F;
for argument systems that achieve sublinear verification we also report the cost to preprocess the
circuit. We report separate costs for field operations, group operations, and (collision-resistant)
hash invocations; € is any positive constant and \ is the security parameter. Provers for argu-
ments in the top part of the table run in superlinear time. Indeed, O(NN) exponentiations in G
result in w(N) group operations: O(log |F| - N) group operations if performed naively, or else

(% - N) if using Pippenger’s algorithm [Pip80]. On the other hand, provers in the
bottom part of the table run in linear time. Indeed, as observed in [BCGGHJ17], by using the hash
functions of [AHIKV17] one can ensure that O(N) hash invocations are equivalent, up to con-
stants, to O(NN) operations in F. The argument systems in [WTSTW18,XZZPS19] specifically
require the circuit to be arranged in layers; the reported costs are for a circuit with D layers of
width W, in which case N = D - W furthermore the term “O(D log W) F-ops” in the verifier
cost assumes that the circuit is sufficiently uniform and, if not, increases to “O(N) F-ops” (i.e.,
linear in computation size).

point-query IOPs encode circuit cost prover cost  verifier cost query complexity
[BCGGHI17] O(N) F-ops  O(N) F-ops O(v/N) F-ops O(V/N)
this work O(N)F-ops  O(N) F-ops O(N*) F-ops O(N°)

Fig. 2. Comparison of known IOPs with a linear-time prover. The parameters are for an N-gate
arithmetic circuit defined over a field IF of size £2(N); and € is any positive constant. The sublinear
verification in both cases is achieved in the holographic setting (the verifier has oracle access to
an encoding of the circuit).

test for the Reed—Solomon code in [BBHR18]; and the code-switching technique in
[RR20] for systematic linear codes.

2 Techniques

We summarize the main ideas behind our results. We begin by elaborating on our main
result, Theorem 1, which is a new protocol within a proof model called Interactive
Oracle Proof (I0P) [BCS16,RRR16].
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Recall that an IOP is a proof model in which a prover and a verifier interact over
multiple rounds, and in each round the prover sends a proof message and the verifier
replies with a challenge message. The verifier has query access to all received proof
messages, in the sense that it can query any of the proof messages at any desired loca-
tion. The verifier decides to accept or reject depending on its input, its randomness, and
answers to its queries. The main information-theoretic efficiency measures in an IOP
are proof length (total size of all proof messages) and query complexity (number of read
locations across all proof messages), while the main computational efficiency measures
are prover running time and verifier running time.

In this paper we study IOPs because they directly lead to corresponding succinct
arguments, via cryptography that introduces only constant computational overheads
(and in particular preserves linear complexity).> Namely, following the paradigm of
Kilian [Kil92], any IOP can be “compiled” into a corresponding interactive argument
by using a collision-resistant hash function. The argument’s communication complex-
ity is O(qlogl), where g and | are the query complexity and the proof length of the
IOP.* Moreover, with a suitable choice of hash function (e.g., [AHIKV17]), the running
times of the argument prover and argument verifier are the same, up to multiplicative
constants, as those of the IOP prover and IOP verifier.’

The rest of this section summarizes the proof of Theorem 1. We proceed in three
steps. First, we describe an intermediate proof model called tensor IOPs; we elaborate
on this model in Sect. 2.1. Second, we devise a transformation that, using an arbi-
trary linear code, efficiently “implements” any tensor IOP as a point-query (standard)
IOP; this is our Theorem 3, and we discuss the transformation in Sect. 2.2 and 2.3.
Third, we construct a tensor IOP with linear-time prover, constant query complexity,
and sublinear-time verifier; this is our Theorem 2, and we discuss this construction in
Sect. 2.4 and 2.5.

2.1 1OPs with Tensor Queries

In this work we rely on an intermediate model, informally introduced in Definition 2,
called tensor IOPs. Below we briefly elaborate on why we introduce this model, and
also compare it with other existing models.

Point Queries are for Efficiency. The verifier in an IOP makes point queries to proof
messages received from the prover: the verifier may specify a round ¢ and a location j

3 We stress that this is a non-trivial property, in the sense that other approaches to construct
succinct arguments introduce super-constant multiplicative overheads. For example, the trans-
formation from algebraic proofs to succinct arguments in [CHMMVW20] introduces a linear
number of exponentiations (which translates to a super-linear number of group operations).
These approaches seem unlikely to lead to linear-time succinct arguments, and hence we focus
on IOP-based succinct arguments.

* The “big O” notation here hides a dependence on the output size of the collision-resistant hash
function.

3 We remark that the more restricted proof model of Probabilistically Checkable Proofs (PCPs)
also directly leads to a succinct argument with only constant computational overheads, how-
ever the problem of designing linear-time PCPs, with any non-trivial query complexity, seems
far beyond current techniques.
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and then receives as answer II;[j] (the j-th value of the proof message I7; sent in round
). Our main result (Theorem 1) is about point-query (standard) IOPs because, as we
explained, they lead to succinct arguments via constant computational overheads.

Beyond Point Queries. Researchers have studied variants of the IOP model where
the verifier makes other types of queries. For example, Boneh et al. [BBCGI19]
study linear IOPs, where the verifier may specify a round ¢ and a vector ¢ and then
receives as answer the linear combination (g, IT;), over a field F. These F-linear queries
are a “richer” class because linear combinations can, in particular, select out chosen
locations.

From the perspective of this paper, variants such as linear IOPs offer an opportunity
to reduce our goal (a certain point-query IOP) into two sub-problems. First, design an
efficient IOP with a richer class of queries. Second, devise a way to efficiently “imple-
ment” the rich class of queries via only point queries. The former becomes easier as
the class of queries becomes richer, while the latter becomes harder. Thus, the class of
queries should be chosen to balance the difficulty between the sub-problems, so that
both can be solved.

Tensor Queries. In this paper we do not use linear queries because we do not know how
to implement linear queries via point queries in the linear-time regime.® Nevertheless,
we identify a rich-enough sub-class of linear queries for which we are able to solve both
of the aforementioned sub-problems: tensor queries. These types of linear combinations
were used in the sumcheck protocol for tensor codes [Meil3] and also to construct
IOPs with proof length approaching witness length [RR20] (the latter work defines an
intermediate model that, informally, is an IOP where the verifier is allowed a single
tensor query to the witness).

Informally, in a (F, k, t)-tensor IOP, the verifier may specify a round ¢ and a list
(go,q1,---,q:) and then receives as answer the linear combination (go ® ¢1 ® -+ ®
qt, I1;), where ¢1,...,q: € F* and the 0-th component ¢ of the tensor vector may
be a vector of any length defined over F. The other { components must have fixed
lengths k. The fixed lengths impose a recursive structure that we will exploit, while the
free length accommodates proof messages of varying sizes. For simplicity, in the rest
of the technical overview, we will ignore the 0-th component, assuming that all proof
messages have the same length (k! elements in IF).

We formalize the notion of a tensor IOP in the full version of this paper. In fact, we
formulate a more general notion of IOP where queries belong to a given query class
Q, which specifies which (possibly non-linear) functions of the proof messages are
“allowed”. Via suitable choices of Q, one can recover the notions of point-query IOPs,
linear IOPs, tensor IOPs, and more. Our definitions also account for features such as
holography and proximity (both used in this paper). We consider the formulation of
IOPs with special queries to be a definitional contribution of independent interest that
will help the systematic exploration of other query classes.

% Bootle et al. [BCGGHJ17] show how to implement the Ideal Linear Commitment (ILC) model
in linear time, which is reminiscent of, but distinct from, the linear IOP model. As noted
in [BBCGI19], these are reducible to one another, but with losses in parameters. (Applying
the transformation of [BCGGHJ17] to an ILC protocol obtained from a linear IOP does not
preserve linear time.).
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2.2 From Tensor Queries to Point Queries

We discuss the main ideas behind Theorem 3, which provides a transformation that
takes as input an IOP with tensor queries and a linear code and outputs an IOP with
point queries that has related complexity parameters. (Details of the transformation can
be found in given in the full version.) The main challenge in designing this transfor-
mation is that we need to construct an IOP that efficiently simulates a strong class
of queries (tensor queries) by using only a weak class of queries (point queries) and
the linearity of the given code. Our transformation combines ideas from several works
[Meil3,BCGGHJ17,BBHR18,RR20], as we later explain in Remark 1.

Now we discuss our transformation. Below we denote by (P, V) the (F, k, t)-tensor
IOP that is given as input to the transformation. The other input to the transformation
is a linear code C over the field IF with rate p = k/n and relative distance § = d/n (the
code’s message length & and alphabet F match parameters in the tensor IOP). We denote
by (15’7 V) the point-query IOP that we construct as output. This latter has three parts:
(1) a simulation phase; (2) a consistency test; and (3) a proximity test. We summarize
each in turn below.

Part 1: Simulation Phase. The new prover P and new verifier V simulate P and V,
mediating their interaction with two modifications. First, whenever P outputs a proof
string IT € F* that should be sent to V, P sends to V an encoded proof string g
Enc(Il) € F™, for an encoding function Enc: F** — F' that we discuss shortly
Second, whenever V outputs a tensor query ¢; @ - - - ® g for one of the proof strings I1;,
V forwards this query (as a message) to P, who replles with a “short” proof message
that contains the answer (¢; ® - -+ ® ¢, I1;) € T; then \Y% simply reads this value and
returns it to V as the query answer (so V can continue simulating the execution of V).

Observe that if P really answers each tensor query truthfully in the simulation then
V inherits the soundness of V, because in this case the tensor [OP (P, V) is perfectly
simulated. However, a malicious P need not answer each tensor query truthfully. The
goal of the consistency test and the proximity test (both described below) is to prevent
the prover P from misbehaving. Namely, these additional parts of the point-query IOP
(P V) will enable V to check that the values received from P as answers to V’s tensor
queries are consistent with the received (encoded) proof strings.

On the Encoding Function. The encoding function Enc used in the simulation phase
must be chosen to facilitate the design of the consistency proximity tests. We choose
Enc: F* — F"' to be the encoding function of the t-wise tensor product C®? of the
“base” linear code C, where ¢t matches the parameter in the tensor IOP. The function
Enc is derived from the encoding function enc: F¥ — F” of C. Completeness and
soundness of (f’, V) will ultimately work for any linear code C. Crucially to our results
on linear-time protocols, prior work [DI14] provides linear-time encodable codes with
constant rate over any field IF, ensuring that Enc is computable in linear time when ¢ is
a constant. Such codes achieving the best known parameters are non-systematic.

Qhecking the Simulation Phase. In the simulation phase, P has sent several words
II,...,II; € F™ that allegedly are codewords in the tensor code C‘XA’t C F™ , in which
case they encode some proof strings ITy, . .., I, € F¥ . Moreover, P has also claimed
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that a list of values (vq)q4eq are the answers to a corresponding list of tensor queries Q;
namely, if ¢ = (¢, ¢q1,...,q) thenvy = (1 ® - - @ g4, II;).

Informally, we seek a sub-protocol for V with the following guarantee: (1) if there
is a word I7; that is far from C®' then V rejects with high probability; (2) if all words
II 1. ,ﬁ ¢ are close to C®! but one of the answers is inconsistent with the underly-
ing (unique) encoded messages then V also rejects with high probability. A technical
contribution of this paper is the design and analysis of such a sub-protocol.

Our sub-protocol is a black-box combination of a consistency test and a proximity
test. In the consistency test, the prover P sends, in one round, proof strings that are
partial computations of all the tensor queries, and the verifier \Y% leverages these to
check that the answers to tensor queries are correct. The consistency test assumes that
all proof strings are close to certain tensor codes and so, in the proximity test, the prover
P and the verifier V interact, over ¢ rounds, in a protocol whose goal is to ensure that all
received proof strings are close to the appropriate codes. We now provide more details
for each of the two tests.

Part 2: Consistency Test. For simplicity of exposition, we describe the consistency

test for the simple case where there is a smgle tensor query or, more generally, a single
“extended” tensor query qo @ q1 ® -+ ® ¢ € F*  to the “stacking” of all proof

strings. Namely, P claims that the stacked word IT := Stack(H Tye- Hg) e Ft

be decoded to some stacked proof string IT := Stack(IIy,...,II;) € F* " such that

v={(q®@q @+ ® q,II).” Below we view IT as a function IT: [] x [k]' — F, and

1T as a function 7 : [{] x [n]t — F.

In the special case where the code C is systematic, the sumcheck protocol for tensor
codes [Meil3,RR20] would yield a consistency test that “evaluates” one component
of the tensor query at a time. For the general case, where C can be any linear code,
we provide a consistency test that consists of a sumcheck-like protocol applied to the
“interleaving” of tensor codes. While it is convenient to present the main ideas behind
the prover algorithm by speaking of decoding (whose cost may exceed our linear-time
goal), we stress that the prover need only perform efficient encoding operations. We
will denote by (C®*)¢ the (-wise interleaving of the code C®*, where a single symbol
of (C®*)* is the concatenation of ¢ symbols of C®*-codewords.

Proof messages. For each r € [t], the prover P computes and sends words {¢,: [k] x
[n]'=" — F},e[q where ¢, is allegedly an interleaved codeword in (C®*~")*. Intu-
itively, c1, . .., c; will help \Y% perform the consistency check that the value v € F is the
answer to the tensor query ¢o ® ¢1 ® - -+ ® ¢q; € F¢F".

— For 7 = 1, the word ¢; € (C®*~1)¥ is derived from IT € C® via a “fold-then-
decode” procedure, which uses the component gy € F* of the tensor query. For
v € F*, we denote by Fold(IT;~): [n]' — F the function Zle ~i - IT; (sum the
values of IT: [£] x [n]* — F over the domain [¢] with coefficients determined by
7). Then, ¢; € (C®*~1)* is obtained by partially decoding Fold(II; qo) (by viewing

7 Extended tensor queries capture tensor queries to specific proof strings: for any desired i € [£],
one can choose go € F* to be all zeros except for a 1 in the i-th entry so that (g0 ® 1 ® - -+ ®
qe, ) = @ -+ @ qu, I1;).
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the values of Fold(IT; qo): [n] — F over the first component [n] of its domain as
C-codewords, and decoding them).

— For each subsequent r € {2, ...,t}, the word ¢, is derived via a similar procedure
from ¢, and the component ¢,_; € F¥ of the tensor query. Namely, ¢, is the code-
word in (C®¥~")* obtained by partially decoding Fold(c,_1;¢,_1) € C®'~(r—1)
over the first component of its domain as above.

Each round reduces the rank by 1 and, in the last round, the word c; is a fully decoded
message vector in F¥. The tensor query answer (gy ® q1 ® - - - @ gy, IT) is the successive
folding of IT by components qg, . . ., ;. The r-th message ¢, is an encoding in C®¢~"
of II after it has been folded up to the r-th component by qo, . . ., g,.

Query phase. The verifier V tests the expected relation between messages across rounds
at a random point, and that the execution is consistent with the claimed answer value v.
Namely, since each round’s messages are expected to be partial decodings of foldings
of the prior round’s messages, for an honest prover P the following equations relate
words across rounds:

— forr = 1, enc(c;) = Fold(IT; qo);
— foreachr € {2,...,t}, enc(c,) = Fold(¢cr—1; gr—1).

Above, enc is the encoding function for the base linear code C applied to the first coor-
dinate of a function with domain [k] x [n]*~" (for some ), and the identity on all other
coordinates.

The above equations motivate a natural consistency test for the verifier. Namely, \Y%
samples a random tuple (j1,...,7:) € [n]" and checks all of the relevant equations at
this tuple:

— forr =1, enc(ey)(ji, - - -5 j¢) = Fold(IT; qo) (1, - - -+ je):
— foreachr € {2,...,t}, enc(c,)(Jry - - -, J¢) = Fold(cr—15qr—1)(ry - - -, Jt)-

To compute, e.g., Fold(¢,—1,;¢r—1)(r, - - -, j¢) and enc(c,)(Gr, - - -, jt), V makes k
queries to ¢,—1 and c,.

Finally, V checks consistency with the answer value v via the equation v =
Fold(et; qt)- R

These consistency checks guarantee that when 17, ¢q,...,c;—1 are all codewords
in their respective codes, then they encode consistent partial computations of the tensor
query g @ 1 Q@ -+ Q@ q € F“* on the message II € F“** encoded in IT € F“F'.
However, we must ensure that V will reject in the case that any of II ,Cly...,Cq_1 are
far from being codewords. This will be guaranteed by our proximity test.

Part 3: Proximity Test. We discuss the proximity test, again for the simple case of a

single tensor query. In the simulation phase the prover P has sent words II4, ..., II,
allegedly in C®?; this means that I := Stack(IIy, ..., II,) is allegedly in (C®*). In the
consistency test the prover P has sent words c1, . . ., ¢; where ¢, allegedly is in (C®¢~")*.

The proximity test will ensure that all these words are close to the respective codes.

A reasonable starting point to design such a test is to remember that tensor codes
are locally testable [BS06, Vid15,CMS17]: if a word c is A-far from C®? then a random
axis-parallel line of c fails to be a codeword in C with probability proportional to A.
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Since we wish to test interleaved tensor codewords, a natural strategy is to apply the
axis-parallel test to a random linear combination of the tested words. This strategy
does produce a proximity test, but has two drawbacks. First, a calculation shows that
the query complexity is non-trivial only for ¢ > 2, while we will design a test that
is non-trivial for ¢+ > 1.8 Second, the axis-parallel test has poor tradeoffs between
query complexity and soundness error.” Hence we take a different approach inspired
by the proximity test for the Reed—Solomon code in [BBHR18]; at a modest increase
in proof length, our test will work for any ¢ > 1 (and thereby subsume the prior work
in [BCGGHIJ17]) and will have better query-soundness tradeoffs.

We now describe our proximity test, which has ¢ rounds of interaction, followed by
a query phase.

Interactive Phase. In round r € [t], V sends to P random challenges .., 3, € F*,
and P replies with a word d,.: [k] x [n]'~" — F (computed as described below) that
is allegedly a codeword in (C®*~")¥. Intuitively, for r € [t — 1], the word d,. will be
close to a codeword in C®*~7 if and only if ¢,_, and d,_; are both close to codewords
in C®*~("=1) up to a small error probability.

— In the first round, the word d; is derived from IT via the same “fold-then-decode”
procedure that we have already seen. This time, the folding procedure uses the ran-
dom challenge a; € F*. Then, d; is the codeword in (C®*~1)* obtained by partially
decoding Fold(IT; ay) € C®'.

— Ineach subsequent round r = 2, ..., ¢, the word d,. is derived via a similar procedure
from ¢,_; and d,_1, and the random challenges «,., 3, € F&, Namely, d, is the

codeword in (C®*~")F obtained by partially decoding Fold(c,_1,d,_1; ., B) €
C®t—(r—1).

Each round reduces the rank of the tensor code and, in the last round (when r = t), the
words c; and d are fully decoded message vectors in [F*.

Query Phase. The verifier V tests the expected relation between messages across rounds
at a random point. Since each round’s messages are expected to be partial decodings of
foldings of the prior round’s messages, for an honest prover P the following equations
relate words across rounds:

— forr = 1, enc(dy) = Fold(IT; avy);
— foreachr € {2,...,t}, enc(d,) = Fold(¢c,—1,dr—1; aur, Br).

As in the consistency test, the above equations motivate natural checks for the veri-
fier. Namely, V samples a random tuple (j1, . .., j:) € [n]" and checks all of the relevant
equations at this tuple:

8 Query complexity for the strategy using local testing would be O((£ + kt) - n), while that for
our test will be O (¢ + kt).

% Let § = d/n be the relative distance of C. By incurring a multiplicative increase of A in query
complexity, the strategy using local testing gives a soundness error of, e.g., O(d"/|F|) + (1 —
69® . A)* when applied to an input of distance A from C%*. In contrast, the test in this work

will give a soundness error that is (approximately) O(d*/|F|) + (1 — A)*.
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— forr =1, enc(dy)(j1, - .-, j:) = Fold(IT; 01)(j1, - - -, jie);
— for each r € {2,...,t}, enc(d.)(jr,...,jt) = Fold(er—1,dr_1;r,Gr)
(jra"'vjt)-

Similarly to before, to obtain the values needed to perform these checks, V makes /
point queries to I7 and k point queries to ¢, and d,. for each r € [t — 1].

Efficiency. The tensor IOP (P, V) given as input to the transformation has proof
length |, query complexity q, prover arithmetic complexity tp, and verifier arithmetic
complexity tv. Now we discuss the main information-theoretic efficiency measures of
the constructed point-query IOP (P, V).

— Proof length is O, ;(q - ). Indeed, in the simulation phase P encodes and sends
all the proof strings produced by P, increasing the number of field elements from
| =¢-kttol -nt = z—: -4 -kt = p~t .| (Plus the q answers to the q tensor
queries.) Moreover, in the consistency and proximity tests, P sends, for each of the
q queries, O(n') field elements in total across ¢ rounds. The sum of these is bounded
by O(p~"-q-1).

— Query complexity is O(£ +t - k - q). In the simulation phase, V reads the q answers
to the q tensor queries of V as claimed by P. In the consistency and proximity tests,
V makes a consistency check that requires point queries on each of the ¢ words
I, ... 11, plus O(t - k) point queries for each of the q tensor queries. The sum of
these is bounded by O(£ +t - k - q).

Note that the tensor IOP that we construct has query complexity q = O(1) (see
Sect. 2.4), which means that the multiplicative overheads that arise from the number
of queries are constant.

Next we discuss computational efficiency measures. These will depend, in particu-
lar, on the cost of encoding a message using the base code C. So let #(k) be such that
6(k) - k is the size of an arithmetic circuit that maps a message in F” to its codeword in
C. In this paper we focus on the case where (k) is a constant.

— Verifier arithmetic complexity is tv + Oy((£ + 6(k) - k) - q). The first term is due
toV simulating V in the simulation phase. In addition, in executing the proximity
and consistency tests, A% makes, for each of q queries and for each of ¢ rounds, an
encoding operation that costs §(k) - k plus other linear combinations that cost O(k)
field operations, and O(¥) field operations in the first round. Thus in total, \Y% performs
O((f+1t-6(k) - k) - q) field operations in the proximity and consistency tests.

— Prover arithmetic complexity is tp + O, ,(q - 1) - §(k). The first term is due to P
simulating P in the simulation phase. In the simulation phase, P also has to encode
every proof string output by P. This costs O(p~* - (k) - ) field operations, as can
be seen by observing that the cost of encoding a single proof string I1; € F* to its
corresponding codeword II; € F™' in C® is O(p~" - (k) - k'). Establishing a good
bound on the cost of P in the consistency and proximity tests requires more care, as
we now explain.
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In the consistency and proximity tests, P must compute each of the functions
c1,...,ctanddy, ..., d;. Each ¢, and d,. is defined in terms of the previous ¢,_; and
d,_1 via a “fold-then-decode” procedure. However, we do not wish for P to depend
on the cost of decoding the base code C, because for the codes that we eventu-
ally use ([DI14]), where 6 is constant, no linear-time error-free decoding algorithm
is known. (Only the error-free case need be considered when designing an honest
prover algorithm. Indeed, we never use a decoding algorithm of any sort for C at any
point in this work.) Thankfully, since P knows the message /I encoded in II, P can
compute ¢, and d,. for each r € [¢t] from scratch from IT by partially re-encoding,
which contributes an additional term of O(p~t - O(k) - k') per query.

Remark 1. Our construction of a point-query IOP from a tensor IOP and a linear code
builds on several prior works. Below, we highlight similarities and differences with each
of these works in chronological order.

— The ILC-to-IOP transformation in [BCGGHJ17] shows how any protocol in the

Ideal Linear Commitment (ILC) model can be implemented via a point-query IOP,
using any given linear code C as an ingredient. Crucially, if C has a linear-time
encoding procedure, then computational overheads in the transformation are con-
stant. This is what enables [BCGGHJ17] to obtain a linear-time IOP with square-
root query complexity.
Our construction also relies on an arbitrary linear code C as an ingredient but con-
siders a different implementation problem (tensor queries via point queries), which
ultimately enables much smaller query complexity in the resulting point-query IOP.
The interactive phase of our construction could be viewed as a recursive variant of
the transformation in [BCGGHIJ17].

— The “FRI protocol” in [BBHR18] is an IOP for testing proximity of a function to

the Reed—Solomon code. The interactive phase consists of a logarithmic number
of rounds in which the proximity problem is reduced in size; the reduction relies
on a folding operation defined over subgroups that has small locality, and a low
probability of distortion. The query phase consists of a correlated consistency check
across all rounds.
Our proximity test could be viewed as an analogue of the FRI protocol for (the inter-
leaving of) tensor codes. Our consistency test could then be viewed as an analogue
of using “rational constraints” and the FRI protocol to check the claimed evaluations
of the polynomial committed in a Reed—Solomon codeword.

— The sumcheck protocol for the tensor product of systematic codes [Meil3] can sim-
ulate a tensor query to a proof string via point queries, via the code-switching tech-
nique in [RR20]. This preserves the linear time of the prover, and so could be used
to prove Theorem 3 for the special case of a systematic code. Our protocol can be
viewed as a non-interactive variant that also works for the interleaving of code-
words from the tensor product of non-systematic codes (as required by Theorem 3).
As discussed in Sect. 1.1, the ability to freely choose any linear code allows bet-
ter rate-distance tradeoffs and enables the zero-knowledge property to be achieved
more efficiently. Further, at the cost of a moderate increase in proof length, our
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query complexity and verifier complexity scale better with soundness error when
doing soundness amplification.'?

2.3 On Soundness of the Transformation

The theorem below informally states the security guarantees of the transformation given
in the previous section. Details can be found in the full version of this paper. In the rest
of this section, we provide some intuition behind the structure of the soundness analysis
and the origin of each term in the soundness error.

Theorem 4 (informal). If (P, V) is an (F,k, t)-tensor IOP with soundness error €
and C is a linear code with rate p = k/n and relative distance § = d/n, then the
point-query IOP (P, V) has soundness error

' s\
(0] Ool|ll1-—
o () vo((-3)
when the query phases of the consistency and proximity tests are repeated \ times.

The first term e is inherited from soundness of the original protocol; P may attempt
to cheat by accurately simulating a cheating P in a tensor IOP protocol. The remaining
terms are upper bounds on the probability that V will accept when the messages of P
fail to accurately simulate tensor queries to P’s messages.

The second term is related to a phenomenon of linear codes known as distortion. It
is important to consider distortion in the soundness analysis of the proximity test. Given

interleaved words W = (wy, ..., w;) € F**™ with blockwise distance e := d(W,C*),
we use a result from [AHIV17] that shows that the probability that a random linear
combination w of wy, ..., wy satisfies d(w,C) < e (distortion happens) is O(d/|F|).

In other words, for a random linear combination «, Fold( - ; «) preserves distance with
high probability. The term O(d*/|F|) in the soundness error comes from bounding the
probability of distortion for each code C®*~" forr € [0, ..., ¢—1], which has minimum
distance d'~", as P sends and folds words that are allegedly from each of these codes in
the proximity test. Combining the distortion result with a union bound gives probability
O((d* + d'=1 + --- + d)/|F|) of distortion occurring anywhere in the protocol. The
geometric series is asymptotically dominated by its largest term, hence the bound.

The third term comes from the probability that \Y% rejects in the proximity test, given
that P sends ¢, or d,. which are far from C®~7 or that V rejects in the consistency test,
given that ¢, or d,- contain messages which are inconsistent with earlier ¢ and d words.
In either case, the fraction of indices on which the verification equations do not hold is
then related to the relative distance of C®?, which is §¢. Here, X is the number of entries
at which V makes the verification checks in the consistency and proximity tests.

10 Consider the setting in [RR20], which is a single tensor query (q = 1) to a single tensor
codeword (¢ = 1). The sumcheck protocol in [RR20] branches at each recursion, and has
query complexity \* and verifier time poly(\f, ¢, k) to achieve soundness error 2920, By
contrast, we achieve query complexity O(\ - kt) and verifier time O(\ - 0kt), where 0 is a
constant.
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The above is an intuitive summary, and in the paragraphs below we elaborate further
on our analysis.

Soundness Analysis. The proof that our transformation is sound is rather involved, and
is a key technical contribution of this paper. The proof is split into two main parts; the
analysis of the consistency test and the analysis of the proximity test. The proximity
test comprises the most complex part of the analysis.

Our proximity test is recursive, which initially suggests an analysis that recursively
applies ideas from [BCGGHJ17]. However, a notable feature of our proximity test is
that the verification checks for each - € [t] are correlated. Namely, the verifier V does
not check e.g. Fold (¢,—_1, d,—1; oy, 8) = enc(d,.) for arandom point independently of
the other verification equations for other values of r. Rather, Vv samples (ji,...,Jt) €
[n]* and checks whether Fold(IT; a1)(j1, . - ., ji:) = enc(d1)(j1, ..., j¢). Then, for the
verification check that e.g. Fold(c,—1,d,—1; @p—1, Br—1) = enc(d,), V will truncate
(J1s---,74¢) 0 (4r, ..., Jt) and check that Fold(c,—1,dr—1; @p_1, Br—1)(Gry - -, Jt) =
enc(dy) (rs- -1 jo)-

We take inspiration from the soundness analysis for the Reed—Solomon proxim-
ity test in [BBHR18]. The analysis in [BBHR 18] handles their entire protocol with all
correlated consistency checks in one single analysis, and avoids a multiplicative depen-
dence on the number of rounds, which was important in [BBHR 18] whose protocol had
non-constant round-complexity. The same approach informs our analysis, which has
the same structure as that of [BBHR18], but is adapted to the combinatorial setting of
tensor codes rather than the algebraic setting of Reed—Solomon codes, and modified to
reflect the fact that we wish to perform a proximity test for alleged tensor codewords
II ,C1,...,c¢—1 of different ranks in the same protocol (rather that one codeword).

Our analysis is divided into cases, depending on the behavior of a malicious
prover P.

Proximity Test Soundness. First, suppose that, for some r € [t], P has sent
words ¢,._1 and d,_; that are far from being interleaved Cc®t=(r=1)_codewords. Yet,
through unlucky random choice of o, or B, € F¥, one of the intermediate val-
ues Fold(c,_1,d,_1; ., B3;) is close to C®¢ (r=1)_ Then, there exists a valid partial
decoding d,- that satisfies consistency checks at a large fraction of entries, potentially
causing V to accept even though P has not simulated any inner prover P. Since
Fold(c,_1,d,_1; @, ;) is a random linear combination of words far from C®*~("=1),
this implies that distortion has occurred. We apply upper bounds on the probability of
distortion.

Second, assume that distortion does not occur in any round. Suppose that the prover
P has sent ¢—1 which is far from being an interleaved C ®t—(r—1)_codeword. Consider
the latest round 7 for which P behaves in this way. Then enc(d,.) is close to &t~ ("1
but Fold(c,_1,d,_1; ., 3,) is far from C®*~". Using this fact, the analysis of this case
follows from a simpler sub-case. In this sub-case, suppose that P has behaved honestly
from the (r + 1)-th round of the consistency phase onwards, but V makes checks at
entries correlated with positions where Fold(c,—1,d,—1; o, 3,-) is not a Cot—(r—1)_
codeword. We show that V' will reject.
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Consistency Test Soundness. Suppose that the prover P has sent ¢,_; that is close to an
interleaved codeword, but encodes a message that is not consistent with /7. Consider
the latest round  for which P behaves in this way. Then, enc(c,.) and Fold(¢,—1; ¢r—1)
are close to different codewords of C®*~("=1)_ This means that for a large fraction
of entries (j,,...,J:) € [n]'~" which is related to the relative distance of the code,
Fold(¢r—1;Gr—1)Gry - - - Jt) # enc(er)(Gr, - - -, jt ), causing V to reject.

Finally, suppose that, for each r € [t], P has sent ¢, that is an interleaved C®'~"-
codeword except for noise at a small number of positions, and all encode messages
consistent with queries on II. In this case, P has essentially simulated an inner prover
P correctly, in the sense that an “error-correction” of the words sent by P are a correct
simulation. The soundness error is then inherited from the original protocol (P, V).

2.4 Checking Constraint Systems with Tensor Queries

Our transformation from tensor queries to point queries (Theorem 3) introduces a multi-
plicative blow-up in prover arithmetic complexity (and proof length) that is proportional
to the number q of tensor queries. So, for us to ultimately obtain a point-query IOP with
linear arithmetic complexity, it is important that the tensor IOP given to the transforma-
tion has constant query complexity and a prover with linear arithmetic complexity.

Towards this end, we now turn to Theorem 2, which requires a suitably-efficient
tensor IOP for the problem of rank-1 constraint satisfiability (R1CS), a generalization
of arithmetic circuits given in Definition 1; recall that N is the number of variables and
M is the number of coefficients in each coefficient matrix.

A natural starting point would be to build on interactive proofs for evaluating
layered arithmetic circuits [GKROS8], whose prover can be realized in linear time
[Thal3,XZZPS19]. Indeed, the verifier in these protocols only needs to query the low-
degree extension of the circuit input, which can be realized via a tensor query to a proof
string containing the input sent by the prover. Moreover, the verifier in these protocols
is sublinear given oracle access to the low-degree extension of the circuit description.
These oracles can be implemented via a sub-protocol if the circuit is sufficiently uni-
form [GKROS8] but, in general, this would require a holographic subprotocol that sup-
ports arbitrary circuits (not a goal in those works).

We take a different starting point that is more convenient to describe our holographic
tensor IOP for RICS (and recall that RICS is a generalization of arithmetic circuits).
First, as a warm-up in this section, we discuss a simple construction that fulfills a relax-
ation of the theorem: a tensor IOP for R1CS with linear proof length | = O(N), constant
query complexity g = O(1), a prover with linear arithmetic complexity tp = O(M),
and a verifier with linear arithmetic complexity tv = O(M). After that, in Sect. 2.5,
we describe how to modify this simple protocol to additionally achieve sublinear ver-
ification time (incurring only minor losses in the other efficiency parameters). Along
the way, we uncover new, and perhaps surprising, connections between prior work on
linear-time IOPs [BCGGHJ17] and linear-time sumcheck protocols [Thal3].

In the paragraphs below we denote by (P, V) the (F, k, t)-tensor IOP that we design
for R1CS. We outline its high-level structure, and then describe in more detail the main
sub-protocol that enables linear arithmetic complexity, which is for a problem that we
call twisted scalar product (TSP).
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High-level Structure. The R1CS problem asks whether, given coefficient matrices
A, B,C € FNXN and an instance vector = over F, there exists a witness vector w
over IF such that z := (z,w) € F¥ satisfies Az o Bz = Cz. Using a similar approach
to other proof protocols for R1CS, it suffices for the prover P to send the full assign-
ment z and its linear combinations z4, 25, zc € FY, and convince the verifier V that
za = Az, zp = Bz, 20 = Cz,and z4 o zp = z¢ in linear time and using O(1) tensor
queries.

To check the first three conditions, the verifier sends a random challenge vector
r € F™ov with tensor structure. Multiplying on the left by 7T reduces the first three
conditions to Y4 = (ra,z), y8 = (rp,2), and y¢ = (rc,z); here y4 = (r,z4)
and 74 := rTA, and similarly for B and C. The verifier can directly obtain the inner
products v4,vp, Yo through tensor queries to z4, 25, zc. Moreover, both the prover
and verifier can locally compute the three vectors r 4, 7, r¢ by right-multiplication by
A, B, C respectively, which entails performing a number of arithmetic operations that
is linear in the number M of non-zero entries of the matrices.'! Note that this is the
only place where the verifier has to read the entries of A, B, C'. The verifier must now
check the scalar products y4 = (ra, 2),v5 = (rB, 2),7¢ = {rc, 2).

Thus, to check R1CS satisfiability, it suffices to check three scalar products and
one Hadamard product. (We must also check that z = (z, w), but this is not the main
technical challenge.) We solve both scalar and Hadamard products with a common sub-
routine for twisted scalar products that has a linear-time prover and a constant number
of tensor queries, as we discuss below. We refer the reader to the full version of this
paper for the details.

Twisted Scalar Products. The main technical contribution in our tensor IOP construc-
tion is the design of a protocol for verifying twisted scalar products (TSP).

Definition 3. The twisted scalar product of two vectors uw = (uy,...,uy) and v =
(v1,...,vn) in BN with respect to a third vector y = (y1,...,yn) in FY is defined
to be (uoy,v) = Zivzl u;y; V5. In other words, the i-th term u;v; contributing to the
scalar product (u,v) has been multiplied, or “twisted”, by y;.

Standard scalar products (which we need for v4 = (ra,z), v8 = (rg,z), and
vo = (r¢, z)) follow by setting y := 1N To handle the Hadamard product z4 0 zp =
zc, we pick a random vector y, and up to a small error over the random choice of y,
checking the Hadamard product is equivalent to checking the twisted scalar product
(uoy,v)y =7 withu = z4,v = zg and 7 = (2¢,y). In sum, to check the R1ICS
relation we will check four appropriate instances of the twisted scalar product.

Our result for twisted scalar products is as follows.

Lemma 1 (informal). For every finite field F and positive integers k,t, there is a
(F, k, t)-tensor IOP for twisted scalar products that supports vectors of length N = k!
and twists of the formy = y1 ® - - - ® y;, and has the following parameters:

"' We remark that one can improve this cost from linear in the number M of non-zero entries in
A, B, C to linear in the cost of right multiplication by A, B, C'. By the transposition principle
(see e.g., [KKB88]), this latter is closely related to the cost E of left multiplication by A, B, C,
which could be much less than M. For example, if A is the matrix corresponding to a discrete
Fourier transform, then £ = O(N log N) is much less than M = O(N?).
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log N) .
[F[ />

— round complexity is O(log N);

proof length is O(N) elements in F;

query complexity is O(1);

the prover and verifier both use O(N) field operations.

— soundness error is O(

Lemma 1 follows from prior work: the linear-time sumcheck of [Thal3,XZZPS19]
can be applied to the multi-linear extension of the two vectors in the scalar product, and
the verifier’s queries to those extensions can be implemented as a tensor query. (The
twist can also be handled by “folding it” into a tensor query.)

Below we give an alternative proof inspired by the linear-time protocols of
[BCGGHIJ17], themselves based on [Gro09]. This is interesting because this latter pre-
dates [Thal3] and formerly appeared to be a totally distinct design strategy for interac-
tive protocols. In contrast we show a sumcheck-based protocol inspired by these works,
and show that they are a different application of the same linear-time sumcheck. From
a technical point of view, our scalar-product protocol invokes the linear-time sumcheck
on polynomials that encode information in their coefficients rather than in their evalu-
ations (as is usually the case). This leads to modest opportunities for optimization and
may have applications when used in combination with polynomial commitments not
known to support the Lagrange basis (such as [BFS20]). Below we sketch our construc-
tion; details are in the full version of this paper. For simplicity, below we explain the
case of scalar products without a twist. Readers who are comfortable with Lemma 1
may skip the rest of this section.

Strawman Construction. Before our construction, we first present a simple linear [OP
(an IOP with linear queries as defined in Sect. 2.1) for scalar products, and then high-
light the challenges that we need to overcome to obtain our protocol.

The verifier V has linear query access to two vectors u = (ug,...,un—1) and
v = (vo,...,UN—1) In FN. The prover P wishes to convince the verifier V that
(u,v) = 7 for a given 7 € F. Define the two polynomials U(X) := Zfigl u; X
and V(X) := Eévzgl v; XN =% (the entries of v appear in reverse order in V' (X)). The
product polynomial W(X) := U(X)V(X) has (u,v) as the coefficient of XV ~1,
because for any ¢, j € [IN], the powers of X associated with u; and v; multiply together
to give XV~ if and only if i = j. With this in mind, P sends to V the vector

w := (wo, ..., wsn—_2) of coefficients of W (X).

Next, V checks the equality W(X) = U(X) - V(X) at a random point: it sam-
ples a random p € T; constructs the queries v; = (1,p, p2,...,pN_1), vy =
(pN=1 pN=2 ... 1), and v3 := (1, p, p?,..., p?N~2); queries u, v, w respectively at
2, 10 0btain 1 = (1) = D)1 30 = (1.03) = V(p) 7 = (.3 =

W (p); and checks that 7y, - v, = 7Jw. By the Schwarz—Zippel lemma, this is test is
unlikely to pass unless U(X) - V(X) = W(X) as polynomials, and in particular, if the
coefficient of XN~ in W (X) is not equal to (u,v). Finally, V constructs the query
vg :=(0,...,1,0,...,0), which has a 1 in the N-th position of the vector; then queries
w at vy to get wy_1 = (w, v4), and checks that it is equal to 7.

This approach gives a linear IOP for verifying scalar products, with O(1) queries
and proof length O(N). One can easily convert it into a linear IOP for verifying twisted
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scalar products by using v o y instead of v;. With additional care, these queries can
even be expressed as tensor queries. However, the main problem with this approach is
that P requires O(N log N) operations to compute W (X) by multiplying U(X) and
V(X).

Scalar Products via Sumcheck. We explain how to obtain a tensor IOP for scalar prod-
ucts where P uses O(V) operations. First, we explain how to redesign the polynomials
U(X) and V(X). Then, we explain how to verify that the scalar product is correct via
a sumcheck protocol on the product of these polynomials.

We embed the entries of v and v € F" into multilinear polynomials U (X7, ..., X;)
and V(X1,...,X;) over F. Namely, in U(X), we replace the monomial X?, which
has coefficient u;, with a monomial in formal variables X, X, ..., Xjo¢ n, choosing
to include X; if the j-th binary digit of ¢ is a 1. For example, ug, w1, uz and ug are
associated with monomials 1, X, X5, and X X5. Thus, each coefficient u; is asso-
ciated with a unique monomial in X1, ..., Xjog . As with the strawman solution, the
coefficients of V' (X)) are associated with the same monomials, but in reverse order. For
example, v and v; are associated with monomials X1 X5 - - - Xjog v and Xo - - - X N
This time, the product polynomial W (Xy,..., Xioen) = U(X1,..., Xiogn) -
V(X1,..., Xiog n) has (u,v) as the coefficient of X1 X5 - - - Xiog nv, since for any ¢, j €
[IV] the monomials associated with u; and v; multiply together to give X1 X5 - - - Xjog
ifand only if 7 = j.

Now V has tensor-query access to v and v, and P must convince V that (u, v) = 7,
which now means checking that Coeffx,...x,(W) = 7. We turn this latter condition
into a sumcheck instance, via a new lemma that relates sums of polynomials over mul-
tiplicative subgroups to their coefficients; the lemma extends a result in [BCRSVW19]
to the multivariate setting.

Lemma 2 (informal). Let H be a multiplicative subgroup of F and p(X1,..., X)) a
polynomial over F. Then for every integer vector j = (j1,...,j1) € N,

Y @)= S | 1HI

G=(w1,...,w; ) EH! f+f£6 mod |H|

Above we denote by p; the coefficient of X fl e X lZ “in p and denote by &7 the product
wit Wit

Set H := {—1,1},p:= W,and 7 := (1,...,1). Since W has degree at most 2 in
each variable, the only coefficient contributing to the sum on the right-hand side is the
coefficient of X7 - - - X;, which is (u, v).

In light of the above, the prover P and the verifier V engage in a sumcheck protocol
for the following claim:

S v@v@ at=r-2 .
se{—-1,1}

During the sumcheck protocol, over [ rounds of interaction, V will send ran-
dom challenges pj,...,p;. After the interaction, V needs to obtain the value



Linear-Time Arguments with Sublinear Verification from Tensor Codes 39

U(p1,---,p0)V(p1,---,p1). We show that, in our setting, V can obtain the two val-
ues in this product by making tensor queries to « and v, respectively.

We are left to discuss how P can be implemented in O(2!) = O(IV) operations.

Recall that the problem in the strawman protocol was that P had to multi-
ply two polynomials of degree N. Now the problem seems even worse: P cannot
compute W directly as it has a super-linear number of coefficients (W is multi-
quadratic in [ = log IV variables). However, in the sumcheck protocol, P need not
compute and send every coefficient of W and can compute the messages for the
sumcheck protocol by using partial evaluations U(p1, ..., pj, Xj+1,- .., Xiog v) and
V(p1,--spj, Xjs1, - - - » Xiog n) Without ever performing any high-degree polynomial
multiplications. This is indeed the logic behind techniques for implementing sumcheck
provers in linear time, as discussed in [Thal3,XZZPS19], which, e.g., suffice for sum-
checks where the addend is the product of constantly-many multilinear polynomials, as
is the case for us.

The full details, which give explicit tensor queries for evaluating U and V', and how
to incorporate the “twist” with y € F into the sumcheck to get our TSP protocol, are
given in the full version of this paper.

Remark 2 (binary fields). The astute reader may notice that setting H = {—1,1} in
Lemma 2 is only possible when the characteristic of IF is not equal to 2. Nevertheless, a
statement similar to Lemma 2 holds for additive subgroups, which in particular we can
use in the case of binary fields. Our results then carry over with minor modifications to
binary fields as well (and thus all large-enough fields).

2.5 Achieving Holography

Thus far, we have discussed ingredients behind a relaxation of Theorem 1 with no sub-
linear verification. Namely, (1) an IOP with tensor queries where the verifier receives
as explicit input the R1CS coefficient matrices A, B, C'; and (2) a transformation from
this tensor-query IOP to a corresponding point-query IOP.

We now describe how to additionally achieve the sublinear verification in Theorem 1
via holography.

In a holographic IOP for R1CS, the verifier V no longer receives as explicit input
A, B, C. Instead, in addition to the prover P and the verifier V, a holographic IOP for
RICS includes an additional algorithm, known as the indexer and denoted by I, that
receives as explicit input A, B, C' and outputs an “encoding” of these. The verifier V
then has query access to the output of the indexer I. This potentially enables the verifier
V to run in time that is sublinear in the time to read A, B, C.

Achieving such a verifier speed-up and thereby obtaining Theorem 1, however,
requires modifications in both of the aforementioned ingredients. Below we first discuss
the modifications to the transformation, as they are relatively straightforward. After that
we dedicate the rest of the section to discuss the modifications to the tensor-query IOP,
because making it holographic requires several additional ideas.

Preserving Holography in the Transformation. Informally, we want the modified
transformation to “preserve holography’: if the tensor-query IOP given to the transfor-
mation is holographic (the verifier has tensor-query access to the output of an indexer),
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then the new point-query IOP produced by the transformation is also holographic (the
new verifier has point-query access to the output of the new indexer). Moreover, the
transformation should introduce only constant multiplicative overheads in the cost of
indexing and proving.

So let I be the indexer of the tensor-query IOP. The new indexer I for the point-query
IOP simulates I and encodes its output using Enc, just as the new prover P encodes the
messages from P. (Recall from Sect. 2.2 that Enc is the encoding function for the tensor
code C®'.) Subsequently, in the simulation phase of the transformation, whenever the
verifier V wishes to make a tensor query to the output of I, the new verifier V forwards
this query to the new prover P, who responds with the answer. After that, we extend
the consistency and proximity tests in the transformation to also ensure that P answers
these additional tensor queries correctly. These tests will require the new verifier V to
make point queries to the encoding of the output of I, which is precisely what V has
query access to because that is the output of 1. The constant multiplicative overheads
incurred by the transformation still hold after these (relatively minor) modifications.

A Holographic Tensor IOP. In the non-holographic tensor-query IOP outlined in
Sect. 2.4, the verifier V, receives as input coefficient matrices A, B, C explicitly, and
must perform two types of expensive operations based on these. First, V expands some
random challenges ry,...,7¢ € Ffintoavectorr = 1 ® --- @ 14 € Fkt, which
requires O(k?) arithmetic operations. Second, V computes the matrix-vector product
ra = rTA, which in the worst case costs proportionally to the number of non-zero
entries of A. Similarly for B and C.

Viewed at a high level, these expensive operations are performed as part of a check
that z4 = Az (and similarly for B and C'), which has been referred to as a “lincheck”
(see e.g. [BCRSVW19]). Thus, it is sufficient to provide a “holographic lincheck” sub-
protocol where V has tensor query access to a matrix U (which is one of A, B, or C),
an input vector v, and an output vector vy, and wishes to check that vy, = Uwv.

Challenges to Holography. To illustrate the challenges of obtaining a linear-time holo-
graphic lincheck, we first present a simple strawman: a sound protocol that falls (far)
short of linear arithmetic complexity. First we describe the indexer, and after that the
interaction between the prover and verifier.

— Indexer. The indexer receives as input a matrix U over [F, which for simplicity we
assume has dimension k¢ x k!; we can then identify the rows and columns of U via
tuples (41,...,4¢) € [k]" and (j1,...,7:) € [k]" respectively. The indexer outputs
the vector u € F¥** such that Wiy, ig j1,e..j. 15 the entry of U at row (i1, ..., 4;) and
column (j1, ..., j:). The verifier will have (F, k, 2t)-tensor-query access to u.

— Prover and Verifier. To check that v, = Uw, for the verifier it suffices to check
that (r,v,) = (rTU,v) for a random r = 71 ® --- ® 74 in F*" (up to a small
error over the choice of 7). Since rTUv = (r ® v, u), the verifier wishes to check
whether (r, vy) = (r ® v, u). The verifier makes the (F, k, ¢)-tensor query r to vy to
obtain the left hand side. To help the verifier obtain the right hand side, the prover
computes e := r ® v € F?* and sends it to the verifier. Since v need not have
a tensor structure, the verifier cannot directly obtain (e, u) via a (F, k, 2t)-tensor
query to e; instead, the verifier can receive this value from the prover and rely on a
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scalar-product protocol to check its correctness. The verifier is thus left to check that
indeed e = r ® v. Note that forany s = 51 ®---®@ s, and s’ = 8] ® - - - ® 57 it holds
that (s ® s’,e) = (s,7){(s’,v) = (s1,71) - (s¢,74)(s’,v). The verifier checks this
equality for random s and s’: it directly computes (s;,r;) for each ¢ € [t]; obtains
(s',v) via a (F, k,t)-tensor query to v; obtains (s ® s, e) via a (F, k, 2t)-tensor
query to e; and checks the expression.

Crucially, in the protocol described above, the verifier performs only O(kt) field oper-
ations. In particular, the verifier did not have to incur the cost of reading the matrix U,
which is much greater in general.

However, the foregoing protocol falls (far) short of achieving linear proving time:
the indexer outputs a vector u that specifies the matrix U via a dense representation of
k?* elements, and this leads to the prover having to compute vectors such as e € F?,
which costs O(k?") operations. On the other hand, in order to represent U, it suffices to
specify its non-zero entries. Hence, unless U is a dense matrix (with £2(k?') non-zero
entries), the foregoing protocol does not have a linear-time prover (and also does not
have a linear-time indexer).

Our goal here is thus a holographic protocol that is efficient relative to a sparse
representation of the matrix U, for example the triple of vectors (val,, row,, col,) €
FM x [k x [k']M such that val, is a list of the values of the M non-zero entries of
U, and rowy, col, are the indices of these entries in U (i.e., for all x € [M] it holds
that U (row,, (x), coly, (k) = valy (x)). This is (essentially) the best that we can hope
for, as the indexer and the prover must read a description of U.

Efficiency relative to the sparse representation was achieved in [CHMMVW?20,
COS20], which contributed efficient holographic IOPs for R1CS. However, the prover
algorithm in those constructions runs in quasilinear time, and we do not know how to
adapt the techniques in these prior works, which are based on univariate polynomials,
to our setting (linear-time tensor IOPs). It remains an interesting open problem to build
on those techniques to achieve a linear-time holographic lincheck with tensor queries.

Subsequently, Setty [Set20] constructed a preprocessing SNARG for R1CS without
FFTs by porting the univariate protocols for RICS to the multivariate setting (where we
have a linear-time sumcheck [Thal3]) and solving the matrix sparsity problem by con-
structing a polynomial commitment scheme for “sparse multivariate polynomials”. His
approach to sparsity is combinatorial rather than algebraic: he constructs a linear-size
circuit using memory-checking ideas to “load” each non-zero term of the polynomial
and add it to a total sum, and then invokes an argument system for uniform circuits
that does not use FFTs [WTSTW18]. Since a key component of the construction is a
polynomial commitment scheme for (dense) multilinear extensions, and the multilinear
extension of a vector is a special case of a tensor query, it is plausible that one could
distill a tensor IOP from [Set20] that suits our purposes. However, taking this path is
not straightforward given the protocol’s complexity, and the informal discussions and
proof sketches in [Set20].

Our Approach. To prove our theorem, we build on an earlier protocol of Bootle
et al. [BCGIM18] and a recent simplification by Gabizon and Williamson [GW20].
As described below, this leads to a direct and natural construction for a holographic
lincheck, which is what we need. The key component in our construction, like the
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earlier works, is a look-up protocol, wherein the prover can convince the verifier that
previously-stored values are correctly retrieved. Below we describe how to obtain the
lincheck protocol given the look-up protocol as a subroutine, and after that describe the
look-up protocol.

As in the strawman protocol, to check that v, = Uw, for the verifier it suffices to
check that (r,vy) = (rTU,v) for arandom r = r; ® --- ® r4 in F** (up to a small
error over r). Again, the verifier can directly obtain the value (r, vy) by querying v, at
the tensor 7. The verifier is left to obtain the value of (rTU, v) = rTUwv, and enlists the
prover’s help to do so. Therefore, the verifier sends r1, . . ., 7 to the prover, who replies
with v := rTUwv € F. The prover must now convince the verifier that ~y is correct.

Towards this, the prover will send partial results in the computation of v, and the
verifier will run sub-protocols to check the correctness of each partial result. To see how
to do this, we first re-write the expression »TUwv in terms of the sparse representation
of U:

rTUv = Z valy (k) - r(rowy (K)) - v(coly (k) . (1)

KE[M]

This expression suggests the prover’s first message to the verifier, which consists of the
following two vectors:

= (rowa () and i (o(colu ()

KRE[M] ke[M]

Observe that, if the prover was honest, then the right-hand side of Eq. (1) is equal to
(valy,r* o v*).

Therefore, the verifier is left to check that: (1) v = (valy,r* o v*), and (2) r*, v*
were correctly assembled from the entries of r,v as determined by the indices in
rowy, col,, respectively.

The verifier can check the first condition via a scalar product subprotocol and a
Hadamard product subprotocol (which we have discussed in Sect. 2.4). To check the
second condition, the verifier will use a tensor consistency test and two look-up subpro-
tocols, as we now explain.

Even though the verifier sampled the components 7, ..., € F* that determine
the tensor vectorr =1 ® - - - @1y € F** , the verifier cannot afford to directly compute
r, as this would cost O(k") operations. Instead, the prover sends r, and the verifier
checks that r was computed correctly from rq, ..., r; via a simple subprotocol, which
we describe in the full version of this paper, that only requires making one tensor query
to  and performing O(tk) operations. Now the verifier is in a position to make tensor
queries to (the correct) 7.

Next, observe that r* is correct if and only if, for each x € [M], thereis i € [k?] such
that (r, row, (k)) = (r4,4). We represent this “look-up” condition via the shorthand
(r*,rowy) C (r, [k']). Similarly, v* is correct if and only if (v*, col,) C (v, [k?]). We

now discuss a protocol to check such conditions.

Look-ups via tensor queries. A look-up protocol is to check the condition (¢, I) C
(d,[k']), given that the verifier has tensor-query access to the vectors ¢ € FM and
d € F*', and also to the index vectors I € FM and [k'] € F*'. (Here we are implicitly
associating the integers in [k'] with an arbitrary k'-size subset in F.)
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Look-up protocols for use in proof systems originate in a work of Bootle et al.
[BCGIM18] that aims at low computational overhead for the prover. Their protocol
reduces the look-up condition to a univariate polynomial identity, and then the prover
helps the verifier to check that the polynomial identity holds when evaluated at a random
challenge point. However, the prover in their protocol incurs a logarithmic overhead in
the size of the list ¢, which in our usage would result in a superlinear-time prover.

Gabizon and Williams [GW20] provide a more efficient look-up protocol, which
removes the logarithmic overhead by relying on a more expressive bivariate polynomial
identity. However, they use a different proof model that we do not know how to compile
into ours while preserving linear complexity. Our contribution is to give a linear-time
tensor IOP for look-ups using their polynomial identity as a starting point.

Below we recall the identity and then summarize our look-up protocol; details can
be found in the full version.

First recall that, via a standard use of randomized hashing, we can replace the lookup
condition (¢, I) C (d, [k?]) with a simpler inclusion condition a C b for suitable vectors
a € FM and b € F*' (each entry in the vector a equals some entry of the vector b). The
polynomial identity from [GW20] concerns this latter condition, as we now explain. (We
also note that we have modified the polynomial identity to incorporate “wrap-around” in
the entries of vectors, to simplify other aspects of our protocols.) Assuming for simplicity
that the entries of b are distinct, let sort() denote the function that sorts the entries of its
input in the order by < by < ... < by:.!? Let shift() denote a cyclic shift.

Lemma 1 ((GW20]). Leta € FM and b € F**. Then a C b if and only if there is
w € F*+M gych that

M4kt M Kt
H (Y (1+Z) +w; +shift(w) ;- Z) = 1+2)M H(Y+aj)H (Y (1+2)+b; +shift(b);-Z) .
j=1 j=1 j=1

2

In the case that a C b, we may take w = sort(a, b) to satisfy the above equation.

In our look-up protocol, the prover recomputes this polynomial identity at random
evaluation points chosen by the verifier and sends intermediate computation steps to the
verifier.'*> Both parties run subprotocols to check that the computation was performed
correctly and the evaluated polynomial identity holds.

Having sent w to the verifier, the prover also sends the vectors we, := shift(w) and
bey := shift(b). Then after receiving random evaluation points for Y and Z, the prover
sends vectors w*, a*, b* containing each evaluated term in the first, second, and third
products of Eq. (2) to the verifier, along with the values Y.+ := prod(w*), xq+ =
prod(a*), xp= := prod(b*) of each product as non-oracle messages. Here, prod()
denotes the function which takes the product of the entries of its input.

12 When the entries of b are not distinct, one can consider a more complex merge operation; the
full version of this paper for details.

'3 One can draw parallels between the combination of randomized hashing and the polynomial
identity used in this work, and the combination of randomized and multi-set hashing used
in the memory-checking circuit of [Set20]. Conceptually, the [GW20] polynomial identity
enforces stronger conditions on w, a and b than a multi-set hash and removes the need for the
time-stamping data used in [Set20].
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Apart from simple checks that the vectors w*, a*, b* were correctly computed, and
using X+, Xa* s Xb+ to check that Eq. (2) holds, we rely on two additional subprotocols.

— A cyclic-shift test to show that e.g. b,y = shift(b). The polynomial identity
SE b X — X -5 b ()X = (1= X*') - by, (k) holds if and only
if br, = shift(b). The verifier uses tensor queries to check that this identity holds at
a random point.

— An entry-product protocol to show that e.g. x,,~ = prod(w*). This protocol com-
bines a cyclic-shift test with a Hadamard-product protocol in order to verify the
correct computation of all partial products leading to the entry product.

The details of both subprotocols can be found in the full version of this paper.
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Abstract. We establish barriers on the efficiency of succinct arguments
in the random oracle model. We give evidence that, under standard com-
plexity assumptions, there do not exist succinct arguments where the
argument verifier makes a small number of queries to the random ora-
cle. The new barriers follow from new insights into how probabilistic
proofs play a fundamental role in constructing succinct arguments in the
random oracle model.

— IOPs are necessary for succinctness. We prove that any succinct
argument in the random oracle model can be transformed into a
corresponding interactive oracle proof (IOP). The query complexity
of the IOP is related to the succinctness of the argument.

— Algorithms for IOPs. We prove that if a language has an IOP with
good soundness relative to query complexity, then it can be decided
via a fast algorithm with small space complexity.

By combining these results we obtain barriers for a large class of deter-
ministic and non-deterministic languages. For example, a succinct argu-
ment for 3SAT with few verifier queries implies an IOP with good param-
eters, which in turn implies a fast algorithm for 3SAT that contradicts
the Exponential-Time Hypothesis.

We additionally present results that shed light on the necessity of sev-
eral features of probabilistic proofs that are typically used to construct
succinct arguments, such as holography and state restoration soundness.
Our results collectively provide an explanation for “why” known con-
structions of succinct arguments have a certain structure.

Keywords: Succinct arguments - Interactive oracle proofs

1 Introduction

A succinct argument is a cryptographic proof system for deterministic and non-
deterministic languages, whose communication complexity is “succinct” in the
sense that it is sublinear in the time to decide the language (for deterministic
languages) or witness size (for non-deterministic languages). In the last decade,
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succinct arguments have drawn the attention of researchers from multiple com-
munities, being a fundamental cryptographic primitive that has found applica-
tions in the real world.

A central goal in the study of succinct arguments is improving their efficiency.
An important complexity measure is argument size, which is the number of bits
sent from the prover to the verifier. Achieving small argument size is crucial,
e.g., in applications where non-interactive succinct arguments are broadcast in
a peer-to-peer network and redundantly stored at every node (as in [Ben+14]).
Other important complexity measures include the running time of the prover
and the running time of the verifier—this latter is the complexity measure that
we study in this paper.

There are applications where the running time of the verifier is the main
bottleneck and call for verifiers that are extremely lightweight. These applications
include obfuscating the verifier [Bon+17]|, or recursive constructions where an
outer succinct argument proves that the verifier of an inner succinct argument
has accepted [Val08, Bit-+13]. In these cases, the circuit (or code) representing the
verifier’s computation is used in a white-box manner and the verifier’s running
time dominates the complexity of the final scheme. For instance, in the second
example, the running time of the outer prover mainly depends on the running
time of the inner verifier.

Our goal is to establish lower bounds on the running time of a succinct
argument’s verifier.

We focus on the random oracle model. We deliberately restrict our atten-
tion to studying succinct arguments that are secure in the random oracle model
(ROM). This is because the ROM is an elegant information-theoretic model
within which we could hope to precisely understand the structure of arbitrary
succinct arguments, and prove lower bounds on specific efficiency measures.

Moreover, the ROM supports several well-known constructions of succinct
arguments that can be heuristically instantiated via lightweight cryptographic
hash functions, are plausibly post-quantum secure [CMS19], and have led to real-
izations that are useful in practice. These constructions include the Fiat—Shamir
transformation [FS86], which applies to public-coin interactive proofs (IPs); the
Micali transformation [Mic00], which applies to probabilistically checkable proofs
(PCPs); and the BCS transformation [BCS16], which applies to public-coin inter-
active oracle proofs (IOPs).

How small can verifier query complexity be? As mentioned earlier, the
running time of the verifier is a crucial efficiency measure in applications of
succinct arguments. While in the ROM each query is considered a constant-time
operation, each query actually becomes expensive when the random oracle is
heuristically instantiated via a cryptographic hash function. Each query becomes
a sub-computation involving very many gates for evaluating the cryptographic
hash function, which can dominate the verifier’s running time. This, for example,
is the case in the recursive construction in [COS20]. In this paper, we ask: how
small can the query complexity of a verifier be?
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We make our question precise via the notion of bits of security. The soundness
error € of a succinct argument in the ROM is a function of several parameters: the
instance size, the output size of the random oracle, and the number of queries by
the cheating prover to the random oracle. Then we say that a succinct argument
provides s bits of security if the soundness error e is at most 27° for every
instance size up to 2°, every prover query complexity up to 2°, and when the
output size of the random oracle is ©(s). (See Sect. 3.3 for relevant definitions.)

Known constructions of succinct arguments achieve verifier query complex-
ities that are {2(s). This is true even if one were to rely on conjectured “holy
grail” probabilistic proofs within these constructions. In particular, no approach
is known that could achieve a verifier that makes o(s) queries to the oracle (which
would be very desirable).

We are interested in understanding whether small verifier query complexity
is possible:

Do there exist succinct arguments with s bits of security and verifier query
complexity < s?

1.1 Owur Contributions

In this paper we contribute new insights into the structure of succinct arguments
in the ROM, which we then use to obtain evidence that the answer to the above
question is negative. First we prove that IOPs are an inherent ingredient of any
succinct argument in the ROM. Then we prove limitations of the obtained IOPs,
thereby obtaining lower bounds on the number of queries to the random oracle
by the verifier in the starting succinct argument. The limitations on IOPs that
we prove are rather broad (even when applied to the case of a PCP), and may
be of independent interest.

Here we remind the reader that an interactive oracle proof (I0P) [BCS16,
RRR16] is a proof system that combines the notions of interactive proofs (IP)
and probabilistically-checkable proofs (PCPs). Namely, it is an interactive proof
where the verifier is granted oracle access to the messages sent by the prover and
so can probabilistically query them. As opposed to PCPs, IOPs leverage the mul-
tiple rounds of communication, which gives them many efficiency improvements
in terms of proof size and the running time of the prover. As shown in [BCS16],
IOPs with suitable soundness properties can be compiled into non-interactive
succinct arguments in the ROM. This, along with the concrete efficiency of
IOPs, makes them a central component of many succinct arguments today.

1.1.1 IOPs are Necessary for Succinctness

We prove that IOPs are inherent to succinct arguments in the ROM in a precise
sense: any succinct argument in the ROM can be generically transformed into
an IOP whose query complexity depends on the “succinctness” of the argument.
Namely, if the argument prover sends as bits to the argument verifier, then the
IOP verifier makes as queries to proof strings sent by the IOP prover.



50 A. Chiesa and E. Yogev

Moreover, and less intuitively, the IOP verifier makes O(vq - a) extra queries,
where vq is the number of queries made by the argument verifier to the ran-
dom oracle and a is the number of adaptive rounds of queries by the (honest)
argument prover to the random oracle (see Sect. 3.1 for more on adaptivity).
The adaptivity parameter a plays a key role in our result, and it is small in
all known schemes. (E.g., a = O(logn) in succinct arguments obtained via the
Micali transformation [Mic00].)

Theorem 1 (informal). There is an efficient transformation T that satisfies
the following. Suppose that ARG is a size-as argument in the ROM for a language
L where the honest prover performs pq queries in a rounds and the verifier
performs vq queries. Then IOP := T(ARG) is an IOP for L with proof length
O(pq + as) and query complexity O(as + vq - a). Other aspects of IOP (such as
public coins, soundness, time and space complexities) are essentially the same

as in ARG.

Our result provides a way to construct an IOP by “reverse engineering” an
arbitrary succinct argument, leading to a standalone compelling message: suc-
cinct arguments in the ROM are “hard to construct” because they must contain
non-trivial information-theoretic objects. This holds regardless of the complexity
of the language proved by the succinct argument. For example, IOPs are inherent
even to succinct arguments for deterministic computations (where the primary
efficiency goal is an argument verifier that is faster than directly deciding the
language). Our necessity result is complementary to a result of Rothblum and
Vadhan [RV09], which showed the necessity of PCPs for succinct arguments
obtained via blackbox reductions to falsifiable assumptions (see Sect. 1.2). Their
result does not apply for succinct arguments in the random oracle model.

In this paper, the necessity of IOPs for succinct arguments in the ROM is
more than a compelling message. We demonstrate that the necessity of IOPs is a
useful step towards establishing barriers on succinct arguments, because thanks
to Theorem 1 we have reduced this problem to establishing barriers on IOPs.
Our second main contribution concerns this latter task (see below).

We sketch the ideas behind Theorem 1 in Sect. 2.1; the formal statement of
the theorem, which gives a precise accounting of many more parameters, is given
and proved in Sect. 4.

1.1.2 From IOPs to Algorithms

We show that IOPs with good parameters (small soundness error relative to
query complexity) can be translated to fast algorithms with small space com-
plexity. This translation should be viewed as a tool to establish barriers on IOPs:
if the language proved by the IOP is hard then the corresponding algorithm may
(conjecturally) not exist, contradicting the existence of the IOP to begin with.

Theorem 2 (informal). Suppose that a language L has a public-coin IOP with
soundness error e, round complexity k, proof length | = poly(n) over an alphabet
X, query complezity q, and verifier space complezity vs. If ¢ = 0(2791°81) then,
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the language L _can be decided by a probabilistic algorithm that runs in time
ezponential in O(q-(log | X|+k)) and that runs in space O(vs-q*- (log |X|+k)?).

We sketch the ideas behind Theorem 2 in Sect. 2.2; the formal statement is
proved in Sect. 5.

Our result in fact provides a broad generalization of folklore results that
impose barriers on IPs and PCPs (both are special cases of IOPs) as we discuss
in Sect. 1.2. In particular, the folklore results restrict the verifier and alphabet
size, while we do not. For example, Theorem 2 rules out a broader class of PCPs
for the “small-query high-soundness” regime than what was previously known:
under the (randomized) Exponential-Time Hypothesis (rETH)," if the number
of queries is constant then the best possible soundness error is 1/poly(n), as
long as log | Y| < n (otherwise a trivial PCP exists). We deduce this from the
corollary obtained by setting k := 1 in Theorem 2.

Corollary 1 (informal). Suppose that NP has a PCP with perfect complete-
ness and soundness error €, and where the verifier tosses r random coins, makes
q queries into a proof of length | = poly(n) over an alphabet . Under the rETH
assumption, if O(qlog|X|) = o(n), then ¢ > 2-91s8!,

This yields limitations for PCPs, e.g., in the “cryptographic regime”: constant-
query PCPs with negligible soundness cannot have polynomial size, even over
an exponentially-large alphabet.

1.1.3 Barriers for Succinct Arguments

We now discuss our barriers for succinct arguments, which state that under
standard complexity assumptions there are no succinct arguments where the
verifier makes a small number of queries to the random oracle, and the honest
prover has a small adaptivity parameter a.

Suppose that 3SAT has a succinct argument that provides s bits of security
and has argument size as < n, where n is the number of variables in the 3SAT
formula. Suppose that the argument prover makes a adaptive rounds of queries
to the random oracle, and the argument verifier makes vq queries to the random
oracle. If vq - a <« s then by Theorem 1 we get an IOP with similar efficiency
parameters, and with query complexity roughly o(s). Then by Theorem 2 we
get an algorithm for 3SAT that runs in time 2°(™), contradicting the randomized
Exponential Time Hypothesis.

Theorem 3 (informal). Suppose that 3SAT has a public-coin succinct argu-
ment that provides s bits of security and has argument size as < n, where the
prover makes a adaptive rounds of queries to the random oracle and the verifier
makes vq queries to the random oracle. If vq-a < s then rETH is false.

! The randomized Exponential Time Hypothesis states that there exist ¢ > 0 and ¢ > 1
such that 3SAT on n variables and with c-n clauses cannot be solved by probabilistic
algorithms that run in time 2™ [Del+14].
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The theorem applies to all constructions, but does not completely answer our
motivating question because the theorem has a dependency on the adaptivity
parameter a. The question of whether this dependency can be removed remains
a challenging open problem. If it turns out that it cannot be removed, then
our result suggests a path to construct succinct arguments with more efficient
verifiers: the standard Merkle trees (which lead to very small adaptivity) must
be replaced with a deeper structure that exploits long adaptive paths of queries.
This would be a very exciting development, departing from all paradigms for
succinct arguments known to date!

Note that the requirement as < n is necessary as if as = n then a trivial
argument system, where the prover sends the full satisfying assignment, has no
soundness error with no random oracle calls.

We sketch how to derive our barriers in Sect. 2.3; formal statements can be
found in Sect. 6, in a more general form that separately considers the case of
arbitrary nondeterministic languages (of which 3SAT is an example) and the
case of arbitrary deterministic languages.

1.1.4 Additional Applications and Extensions
Our transformation from succinct arguments to IOPs (Sect. 1.1.1) leads to exten-
sions that provide valuable insights into succinct arguments, as we discuss below.

Extension 1: preprocessing implies holography. We now consider succinct
arguments in the ROM that have an additional useful feature, known as prepro-
cessing. This means that in an offline phase one can produce a short summary
for a given circuit and then, in an online phase, one may use this short sum-
mary to verify the satisfiability of the circuit with different partial assignments
to its inputs.? The online phase now can be sublinear in the circuit size even for
arbitrary circuits.

The BCS transformation extends to obtain preprocessing SNARGs from holo-
graphic IOPs [COS20], following a connection between preprocessing and holog-
raphy introduced in [Chi+20]. Therefore, in light of Theorem 1, it is natural to
ask: do all preprocessing SNARGSs in the random oracle model arise from holo-
graphic I0Ps? Even if SNARGs “hide” IOPs inside them (due to our result),
there may be other approaches to preprocessing beyond holography, at least in
principle.

We show that preprocessing does arise from holography. We extend the ideas
underlying our Theorem 1 to obtain a transformation that given a preprocessing
SNARG in the random oracle model outputs a holographic IOP with related
complexity measures. This reverse direction strengthens the connection between
preprocessing and holography established in [COS20,Chi+20].

Lemma 1. There is an efficient transformation T that satisfies the following.
Suppose that ARG is a size-as preprocessing non-interactive argument in the

2 Here we focus on succinct arguments for circuit satisfiability for simplicity of exposi-
tion. The preprocessing property can be stated more generally, specifically for ternary
relations, and we do so in the rest of this paper.
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ROM for an indexed relation R where the honest prover performs pq queries
in a rounds, the verifier performs vq queries, and the indexer outputs a key of
size ivk. Then IOP := T(ARG) is a holographic IOP for R with proof length
O(pq + as) and query complezity O(ivk + as + vq - a). Other aspects of IOP (such
as public coins, soundness, time and space complexities) are essentially the same
as in ARG.

Extension 2: on state restoration soundness. A careful reader may have
noticed that our discussion so far did not touch upon a technical, yet important,
aspect. Namely, observe that if we applied the transformation in Theorem 1 to
a SNARG in the ROM then we would obtain a corresponding public-coin IOP.
However, given what we said so far, we are not guaranteed that we can compile
this IOP back into a SNARG! Indeed, the known approach for constructing
SNARGs from IOPs requires the IOP to satisfy a stronger notion of soundness
called state restoration soundness [BCS16]|. So we should ask: does the IOP
output by Theorem 1 satisfy this stronger notion?

We prove that the transformation in Theorem 1 yields an IOP with state-
restoration soundness as long as the SNARG had a stronger notion of soundness
that we introduce and call salted soundness. Informally, this notion allows a
cheating SNARG prover to request the random oracle to re-sample the answer
for a chosen query (in case the prover did not “like” the prior answer).

Lemma 2 (informal). The transformation T in Theorem 1 satisfies this addi-
tional property: if ARG is a SNARG with salted soundness error es(t) for query
budget t and the prover runs in a adaptive rounds then IOP := T(ARG) is a
public-coin IOP with state restoration soundness error e(t - m).

This lemma resolves the issue described above because the SNARGs con-
structed from (state-restoration sound) IOPs in [BCS16] do indeed satisfy the
stronger notion of salted soundness (Fig. 1).

1.2 Related Work

Known limitations on IPs and PCPs. Our Theorem 2 implies that IOPs
with good parameters can be translated into good algorithms. Below we sum-
marize known facts that impose limitations on restrictions of the IOP model:
interactive proofs (IPs) and probabilistically checkable proofs (PCPs).

— IPs. The following fact follows from proof techniques in [GH98] (see also
[RRR16, Remark 5.1]).

Folklore 1. If a language L has a public-coin IP where the communication and
verifier space complexity are bounded by c, then L can be decided by an algorithm
running in space O(c).

Since it is believed that DTIME[T] € SPACE[o(T')], the above lemma tells
us that we should not expect every language in DTIMEIT] to have a non-trivial
public-coin interactive proof.
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Fig. 1. Summary of our results. The left part shows results related to “reverse engi-
neering” succinct arguments, which derive IOPs with certain properties from succinct
arguments with certain properties. The right part depicts the fact that IOPs with good
enough parameters lead to algorithms that, for hard enough languages, contradict plau-
sible complexity assumptions.

Both Folklore 1 and our Theorem 2 lead to an algorithm with small space,
and the main difference is that our theorem is a statement about IOPs rather
than IPs. We note, however, that within the proof of our theorem we prove a
lemma (Lemma 3) that can be viewed as a refinement of Folklore 1 as it applies
even when the verifier-to-prover communication is large.

— PCPs. The following fact lower bounds a PCP’s soundness error.

Folklore 2. Suppose that NP has a PCP with perfect completeness and sound-
ness error €, and where the verifier tosses r random coins and makes q queries
into a proof of length | over an alphabet 3. Then the following holds:

1. € >27"; and

2. Under the ETH assumption, if r = o(n) and qlog|X| = o(n) then ¢ >
9—a-log | X

In order to understand the implications of the above limitation, we find it
helpful to recall a well-known conjecture about possible PCP constructions. The
Sliding Scale Conjecture states that, for every e € [1/poly(n), 1], every language
in NP has a PCP with perfect completeness and soundness error ¢, and where
the verifier uses O(logn) random bits and makes O(1) queries into a proof over
an alphabet X of size poly(1/¢). The conjecture is tight in the sense that we
cannot ask for better soundness with the same parameters.

Yet if we allow the verifier to use w(logn) random bits or if log | X| = w(logn)
then Folklore 2 does not rule out PCPs with soundness error 1/n*(). Our Corol-
lary 1 amends this by establishing that one cannot get soundness error better
than 1/poly(n) even if the verifier uses an arbitrary number of random bits and
the alphabet is arbitrarily large.

Probabilistic proofs in succinct arguments. Essentially all known construc-
tions of succinct arguments use some form of probabilistic proof as an ingredient
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(possibly among other ingredients). Prior to this work, the only known formal
statement seeking to explain this phenomenon is a result by Rothblum and
Vadhan [RV09] stating that succinct arguments proved secure via a black-box
reduction to a falsifiable assumption must “contain” a PCP. This is formalized
via a transformation that, given such a succinct argument, outputs a PCP with
size and query complexity related to the succinctness of the argument system
(and also certain aspects of the security reduction).

Our Theorem 1 is complementary to the result in [RV09], in that we con-
sider succinct arguments that are unconditionally secure in the random oracle
model (as opposed to computationally secure in the standard model). Our tech-
niques are also different, in that the technical challenge is to design an efficient
sub-protocol to simulate a random oracle (as opposed to detecting if the adver-
sary has “broken cryptography” by using the falsifiability of the cryptographic
assumption).

2 Techniques

2.1 IOPs are Necessary for Succinctness

We describe the main ideas behind Theorem 1, which states that any succinct
argument in the ROM implies an IOP with related parameters (which in par-
ticular demonstrates that IOPs are necessary for succinctness in the ROM). Let
P and V be the prover and verifier of an arbitrary succinct argument for a lan-
guage L (e.g., 3SAT). We seek to “remove” the random oracle from the succinet
argument by simulating it via an interactive sub-protocol and ending with an
IOP for the same language L. We assume, without loss of generality, that P and
V each never query the same element more than once.?

Below, we first describe a straightforward approach, then explain problems
and challenges on the approach, and finally explain how we overcome the chal-
lenges to obtain our result.

A straightforward approach. We can construct an IP with a new prover
P and a new verifier V that respectively simulate the argument prover P and
argument verifier V. In addition, we task the IP verifier V to simulate the random
oracle for both P and V', as we explain.

— Whenever the argument prover P wants to query the oracle at an element x,
the IP prover P forwards the query x to the IP verifier V, who replies with a
truly random string y that plays the role of the output of the random oracle
on x.

— Whenever the argument verifier V' queries x, then the IP verifier V checks if
x had appeared in the transcript as one of the queries and returns the given
answer to V if so, or otherwise it feeds V' with a truly random value.

3 We can always modify the prover to store previous query answers, so that no query
is performed twice. This might increase the space complexity of the prover, but it
does not affect the results in this paper.
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There is a delicate, yet crucial, issue that needs to be taken care of. A cheating
IP prover might query x twice (or more) to get two possible answers for the same
query, which might affect the soundness of the IP (and indeed there are succinct
arguments where this issue has devastating consequences on the soundness of
the IP). Thus, when simulating a verifier query x, the IP verifier V must assert
that = was not issued twice during the protocol (and otherwise reject).

The approach above perfectly removes the random oracle from the succinct
argument and yields an IP with similar completeness and soundness. Henceforth
we view the IP constructed above as an IOP whose verifier reads the entire
transcript (queries all locations of the exchanged messages).

The problem. The problem with the IOP described above is its parameters.
The argument prover P might perform many queries, and in particular more than
the witness size (as is the case in known constructions of succinct arguments).
This dominates many parameters of the IOP, including the number of rounds,
the number of bits read by the verifier, and its running time—and also yields a
trivial IOP for the language. Note that proof length (the number of bits sent by
P) is fine, as we do not expect all languages in NP to have an IOP with small
proof length, but rather only expect the IOP verifier to read a small number of
locations from the prover messages.

Achieving small round complexity. We crucially exploit a parameter of the
argument prover P not discussed thus far, namely, its adaptivity. We say that P
has adaptivity a if it performs a rounds of queries to the random oracle and in
each round submits a (possibly long) list of queries and receives corresponding
answers. In known constructions, a is very small (e.g., O(logn)). If P has adap-
tivity a, then the number of rounds in the constructed IOP can be easily reduced
to O(a), where the IOP prover P sends the verifier a list of queries 1, ..., 2,
and the IOP verifier V replies with a list of answers y1,...,ym, while applying
the same logic as before. This reduces the number of rounds of the IOP, but
so far has no effect on the number of queries performed by the IOP verifier V,
which remains as large as the number of queries performed by the argument
prover P.

Perfect hash functions with locality. Our main goal now is to reduce the
number of bits read by the IOP verifier V. Consider a query x performed by the
argument verifier V. The IOP verifier V needs to read the transcript to see if the
query x was issued and, if so, check that it was issued only once. A simple way
to find z in the transcript is to have the IOP prover P assist with locating x.
That is, P points to the exact location in the transcript for where = was issued.
Then V reads this specific location in the transcript and is assured that z was
queried and at the same time reads the corresponding response y. However, how
can V check that z was not issued twice? And how can P give a proof that the
rest of the transcript does not contain x?

To deal with these challenges, we use perfect hash functions. These are a
family of functions H = {h: U — [O(m)]} such that for any S of size m there
exists a function h € H that is one-to-one on S. Fixing such a family H, we let



Barriers for Succinct Arguments in the Random Oracle Model 57

the TIOP prover P provide with each set of queries (for each round), a perfect
hash function h for the set X of submitted queries and send an array of length
O(m) such that element x € X resides in the cell at index h(z). This way, instead
of the IOP verifier V scanning (and reading) all prover messages, it suffices for
V to read the description of h and then query the cell h(z) to determine if z is
in the array.

Also, the IOP verifier V writes the response y at the same location h(z) in a
dedicated array of random values, Y[h(x)]. This way, V can be convinced that
x was not issued at a specific round by looking at a single cell h(zx) for the array
given by P at that round. Thus, the query complexity of V for simulating a
single query of V' is mainly determined by the number of rounds of the protocol,
which is the rather small value a (the adaptivity of the honest argument prover
P). Note that while the entire array Y is sent to the prover, the verifier needs
to read only a single location from Y (we elaborate on this further below).

The locality property. Turning the above ideas into our transformation runs
into several delicate issues that need to be handled to achieve soundness and
good parameters. One issue is that the description of A is, in fact, too large for
the verifier to read in its entirety (it is larger than the set itself). However, we
observe that V need not read the entire function description, but only the parts
required for evaluating h at x.

Therefore, we additionally require the perfect hash family to have a locality
property where, in order to evaluate the hash function h on a single element x,
only a relatively small number of bits are required to be read from the description
of h. Luckily, several known constructions have this locality property and, specif-
ically, we use the construction of Fredman, Komlos, and Szemerédi [FKS84]. An
overview of the [FKS84| construction, its locality property, and a bound on the
number of bits required to read are given in Sect. 4.1.

There are additional challenges in realizing the above plan. For example,
in terms of soundness, note that a cheating prover might submit a set X and
choose a function h that is not perfect for X and contains collision—this could
potentially harm soundness. We deal with this and other issues on the way to
proving our transformation from succinct arguments to IOPs.

The resulting IOP. This results in an IOP with the following parameters. If
the prover had a rounds of adaptivity, then the IOP has a+ 1 rounds, where the
first a rounds are used to simulate the random oracle for the prover, and the last
round is dedicated to sending the final output of the prover. The proof length
of the IOP (i.e., the total communication of the protocol) is O(as+ pq) symbols
where each symbol contains an output of the random oracle. Indeed, for each of
the pg queries we an additional O(1) symbols, and for the last round we send
the final argument which is as bits (and can be read as a single symbol).

The query complexity is O(as + vq - a) as for each of the vq queries of the
prover, the verifier needs to scan all a rounds, and performs O(1) queries in each.
Then, it reads last prover message entirely which is as bits (which we can view
as 1 large symbol of as bits).
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The resulting IOP has large communication of randomness from the verifier
to the prover. However, the verifier, in order to decide whether to accepts, has
to read only a small number of locations, and these are included in the count
of the query complexity. Our definition for IOP allows the verifier to have only
oracle access to its own randomness and thus the query complexity includes
both locations read from the proof and from the randomness. We stress that the
compiler of [BCS16] works even for this more general definition of IOP. Therefore,
we do not expect to get an IOP with small verifier-to-prover communication as
it could be that the succinct argument was constructed from an IOP with large
communication (see Sect. 3.4 for the precise definition of IOP and a further
discussion on this topic).

See Sect. 4 for further details of the proof.

2.2 Algorithms for IOPs

We describe the main ideas behind Theorem 2, which states that IOPs with good
parameters can be translated to fast algorithms with small space complexity. We
proceed in two steps.

— Step 1. We prove that any IOP can be simulated by an IP (interactive proof)
with small prover-to-verifier communication, at the cost of a (large) complete-
ness error that depends on how well one can guess all of the IOP verifier’s
query locations (the “query entropy” of the IOP).

— Step 2. We prove a refinement of a result of Goldreich and Hastad [GH9S]
that states that languages with public-coin IPs with small prover-to-verifier
communication can be decided via fast probabilistic algorithms with small
space complexity.

We elaborate on each of these steps in turn below.

Step 1: IOP to laconic IP (Lemma 2 in Lemma 5.1). We prove that any
IOP with good enough soundness relative to its query entropy can be trans-
lated to a laconic IP (an IP with small prover-to-verifier communication). Query
entropy is related to the probability of guessing in advance all locations that
the IOP verifier will read across the proof strings sent by the IOP prover (see
Definition 5 for how query entropy is formally defined). The translation ensures
that if the IOP is public coin (as indeed it is in our case) then the IP is also
public coin. Moreover, at the cost of an additional completeness error, the IP
verifier can be modified so that it makes a single pass on its (large) randomness
tape and runs in small space. (This small-space property will be useful later on
for establishing barriers on succinct arguments for deterministic languages; see
Sect. 2.3.)

We construct the IP as follows. First, the IP prover guesses the locations that
the IOP verifier will read. The probability of guessing all locations correctly is
27" where h is the query entropy. Assuming a correct guess, the IP prover sends
the description of these locations together with corresponding values. If the IOP
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verifier makes q queries across a proof of length | over an alphabet X', then the IP
prover sends q-log |+ q-log | Y| bits. The soundness of the protocol remains the
same. What changes is the completeness error, which drastically increases since
guessing all locations has a small probability. However, if the soundness error is
small enough and as long as there is some difference between completeness and
soundness, we get a non-trivial IP. In particular, if the IOP has soundness error
£ < 27" then the resulting IP has soundness error e, completeness error 1 — 27
and prover communication q - logl + q - log|X| as mentioned above.

Finally, we show that the IP can be modified (at the expense of the com-
pleteness error) to make the IP verifier perform a single pass over its randomness
tape. Note that the IOP verifier might read the randomness in an arbitrary man-
ner, which would make the IP verifier read it in a similar one. Here, we exploit
the fact that the IOP verifier had only oracle access to its own random tape,
and performed only a limited number of queries. We leverage this and let the IP
verifier guess these locations in advance. Then, the verifier reads the random-
ness tape and stores only the locations it guessed. From here on, the verifier will
use only the randomness stored explicitly. Assuming that it guessed correctly, it
uses these locations to simulate random access for the IOP verifier. This again
adds a large completeness error. However, if the soundness error is small enough,
then again the resulting IP is non-trivial and, as discussed above, suffices for our
purposes.

Step 2: IP to algorithm (see Lemma 3 in Lemma 5.2). Goldreich and
Hastad [GH98] showed that languages with public-coin IPs with small prover-
to-verifier communication can be decided via fast probabilistic algorithms. In
particular, if L has a public-coin IP where, for an instance of length n, the
prover-to-verifier communication is bounded by ¢(n) and the number of rounds
is bounded by k(n) then it holds that

L € BPTIME [20(c(m)+k(n)-logk(n) ~poly(n)} .

Their result is shown only for IPs with constant completeness and soundness
errors, which is not the case for the IP constructed in Step 1. We stress that
the IP constructed Step 1 can be amplified via standard repetition to reach the
setting of constant completeness and soundness errors, doing so would increase
communication and render the IP not laconic, and hence not useful for us in this
paper. Instead, we show a refinement of [GH98| that is suitable to work in the
“large-error” regime of IP parameters. Details follow.

We explicitly show the dependency in the completeness and soundness errors,
allowing the theorem to apply to IPs with large completeness errors (which we
need). This refinement is technical, where we follow the original proof blueprint of
[GH98]. We explicitly track the completeness and soundness errors rather than
hiding them as constants in the Big-O notation, and adjust other parameters
as a function of the completeness and soundness error values. The result is a
moderately more involved formula for the running time of the final algorithm,
which has these parameters in addition to the communication complexity and
the number of rounds.



60 A. Chiesa and E. Yogev

In particular, we get that if a language L has a public-coin IP with com-
pleteness error «, soundness error 3, round complexity k, and prover-to-verifier
communication ¢, then it holds that

L € BPTIME {20(“")“(")"0g st B ) | poly(n)} :

For example, plugging in the IP obtained from Step 1, while assuming that € =
o(2791°e!) (and hiding some terms under the O notation) we get the expression
from Theorem 2:

L € BPTIME [25<q~<log\2|+k))] .

Additionally, we show that if the verifier of the IP reads its randomness in
a single pass, then the same algorithm can be implemented in small space (the
original implementation of [GH98] used space proportional to its running time).
Looking ahead, this property is used to achieve the barrier for deterministic
languages. We sketch the main idea behind the new algorithm.

The algorithm’s main goal is to compute the value of a tree A corresponding
to (an approximation of) the interaction in the IP protocol. Each node in the tree
corresponds to a certain partial transcript of the IP, and computing the value
of the tree suffices to decide the language. The straightforward way to compute
the value is to compute the value of each node in the tree from the leaves up to
the root. This would require space proportional to the size of Ay. Yet, in order
to compute the value of the tree it would suffice to store only log |Ay| values at
a time, as for any subtree it suffices to store the value of its root.

There is, however, a major issue with this approach. Namely, the space
required to store even a single value of the tree is too large, as writing the
location of a node in the tree includes the description of the randomness of the
verifier in this partial transcript, which is too large to store explicitly. Here we
exploit the fact that the verifier uses a single pass to read its randomness, and
show how to compress the description of a node in the tree using the internal
memory and state of the verifier, given this partial transcript. This allows us to
implicitly store nodes values with small memory. Since it suffices to store only
log | Ax| values at a time we get an algorithm with small memory.

This results in the following conclusion: if the space complexity of the IP
verifier is vs when reading its randomness random tape in a single pass then

Le SPACE[O (d- (vs+d))},

where d = ¢(n) + k(n) - log % Once again, plugging in the IP obtained
from Step 1, we get the other expression from Theorem 2:

L € SPACE [6(vs -q%- (log | 2| + k)Q)} :
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2.3 Barriers for Succinct Arguments

Our results provide a methodology for obtaining barriers on succinct arguments
for different languages, based on complexity assumptions for the language. We
describe this blueprint and give two examples, one for non-deterministic lan-
guages and one for deterministic languages, and suggest that additional barriers
could be achieved is a similar manner.

This methodology works as follows. Let L be the language for which a barrier
is desired, and suppose that one proves (or conjectures) some hardness property
about the language L. Now assume that there exists a succinct argument for L
with certain efficiency parameters such as soundness, query complexity, prover
adaptivity, and so on. First apply Theorem 1 to obtain an IOP with parameters
related to the succinct argument, and then apply Theorem 2 to obtain an efficient
algorithm for L. If the efficient algorithm violates the hardness of L, then one
must conclude that the assumed succinct argument for L does not exist.

Barriers for 3SAT. We apply the above methodology to obtain barriers for
succinct arguments for NP based on the Exponential-Time Hypothesis. Suppose
that 3SAT over n variables has a succinct argument that provides s bits of
security and has argument size as < n (of course, if as = n then the scheme
is trivial). Suppose also that the argument prover makes a adaptive rounds of
queries to the random oracle, and the argument verifier makes vq queries to the
random oracle.

We apply Theorem 1 to the argument scheme to get a related IOP. Since the
argument scheme provides s bits of security, then for any instance x < 2° and
query bound t < 2¢ and for oracle output size A = O(s) we get that the resulting
IOP has soundness e(x, t, A) < 27°. Moreover, the verifier reads O(vq-a) symbols
from the transcript, the alphabet size is |X| = 2, the number of rounds is O(a),
and the proof length is O(as+pq), which is best to think as poly(n) for simplicity.

What is important to note here is that if vq - a < s then the query entropy
of the IOP is 27" = |7v92 = (27%) and thus ¢ = 0(27"). This means that
we can apply Step 1 above to get an IP for 3SAT where the prover-to-verifier
communication is

c(n) =q-logl+q-log|X| =q-logn+q-s=0(s?),

and the difference between the completeness and soundness error is 1 — a(n) —
B(n) = o(s). Then, using Step 2, we get a (randomized) algorithm for 3SAT that
runs in time 20(@ (og|Z+k) — 90(s) — 20(n) 45 Jong as s? < n. This contradicts
the (randomized) Exponential Time Hypothesis. Note that the condition that
52 < n is relatively mild, as s is a lower bound for the size of the argument
scheme, and the main objective of a succinct argument is to have argument size
much smaller than the trivial n bits of communication (sending the satisfying
assignment).

The above reasoning can be generalized to any non-deterministic language
in NTIME[T], as we work out in detail in Sect. 6.1.
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Barriers for DTIME[T]. As a second example of our methodology, we show
barriers for deterministic languages. Here, we exploit the fact that the final
algorithm obtained in Step 2 has small space complexity. Suppose that there is a
succinet argument as above for languages in DTIME[T], for some time bound T,
with argument size as < T. Assume that DTIME[T] € SPACE[o(T')], a rather
unlikely inclusion (which is currently outside of known techniques to either prove
or disprove).

As before, if vq - a < s then by Theorem 1 we get an IOP with similar
efficiency parameters, and with query complexity vq-a < s. Additionally, if the
argument’s verifier space complexity is sv < T (which is naturally the case with
a non-trivial argument scheme) then the verifier of the obtained IOP can be
implemented with O(sv) space.

Similar to the analysis we did in the non-deterministic case, here we apply
Theorem 2 and get an algorithm for L that runs in space

O(sv-q* - (log | Z| + k)*) = O(s") = o(T),
as long as s* < T (again, a relatively mild condition). This implies that
DTIME[T] C SPACE[o(T)],
which contradicts the initial conjectured hardness.

Is the dependency on a inherent? Our methodology gives meaningful bar-
riers provided that the adaptivity of the honest prover, a, is somewhat small,
e.g., sublinear in the security parameter s. While this is indeed the case for all
known constructions, it is not clear if a succinct argument could benefit from
large adaptivity. We can thus draw the following conclusion. One possibility is
that our results could be improved to eliminate the dependency on a, for exam-
ple by improving the transformation to IOP to be more efficient and contain
queries from several adaptivity rounds to be in the same round of the IOP.
Another possibility is that there exist succinct arguments with small verifier
query complexity and large prover adaptivity. This latter possibility would be
a quite surprising and exciting development, which, in particular, would depart
from all paradigms for succinct arguments known to date.

2.4 Additional Results and Applications

Extension 1: preprocessing implies holography. Our Lemma 1 states that
we can transform any preprocessing succinct argument into a corresponding holo-
graphic IOP. We do so by extending the transformation that underlies our The-
orem 1, and below, we summarize the required changes.

Recall that in a holographic IOP there is an algorithm, known as the TOP
indexer and denoted I, that receives as input, e.g., the circuit whose satisfiability
is proved and outputs an encoding of it that will be given as an oracle to the
IOP verifier. Our goal here is to construct the IOP indexer by simulating the
argument indexer I, which instead relies on the random oracle to output a short
digest of the circuit for the argument verifier.
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Similarly to the transformation outlined in Sect. 2.1, we need to “remove”
the random oracle during the simulation. The IOP indexer uses its randomness
po to answer any oracle query performed by the argument indexer. Let X, be
the set of queries performed by the argument indexer. Then, the IOP indexer
finds a perfect hash function hg for Xy and creates the corresponding arrays Ty
and Yy containing the queried elements and responded positioned according to
ho. Finally, the IOP indexer outputs the string (ivk, ho, Tp, Yp), where ivk is the
output of the argument indexer.

We are left to ensure that, during the transformation, any query simulated
by the IOP verifier is consistent with the queries performed in the preprocessing
step. The IOP prover, uses pg to simulate, in its head, the above (deterministic)
process to get the same output (ivk, hg, To, Yp), and thus can act in a consistent
way to the queries in Xj.

The IOP verifier reads ivk and uses it to simulate the argument verifier. Recall
that for every query x the verifier ensures that x was not issued in any previous
round. Here, we modify the verify to search in the array Ty in addition to the
arrays in all the rounds. In this sense, the preprocessing phase acts as “round 0”
of the protocol. Completeness and soundness follow in a similar manner to the
original transformation.

Extension 2: on state restoration soundness. Our Lemma 2 states that
the transformation in Theorem 1 yields an IOP with state-restoration soundness
when applied to a SNARG that satisfies salted soundness, a stronger notion of
soundness that we introduce and may be of independent interest. The motivation
for this result is that in the “forward” direction we only know how to construct
SNARGs from IOPs that do satisfy state-restoration soundness [BCS16]|, which
informally means that the IOP prover cannot convince the IOP verifier with high
probability even when the IOP prover is allowed to choose from multiple contin-
uations of the interaction up to some budget. We now sketch salted soundness
and the ideas behind Lemma 2.

In a succinct argument with salted soundness, the cheating argument prover
is allowed to resample answers of the random oracle, in a specific way. Suppose
the prover queried some element x; and got response y;. If the prover wishes,
it may resample 21 to get a fresh new uniform response y]. This process may
happen multiple times within the query budget of the algorithm. Then, the
prover selects one of these answers, and proceeds to query another element xs,
and so on. The prover is additionally allowed to go back, and change its decision
for the value of some x;. However, this produces a new branch where the values
for z; for j > ¢ have to be resampled. In general, at any step the prover can
choose a brach from the set of all branches so far and choose to extend it. Finally,
the prover outputs the argument. When the argument verifier queries an element,
then it gets a response that is consistent with the branch the prover chose.

We need this security notion to get an IOP with state restoration sound-
ness since this is precisely what a cheating IOP prover can perform within our
transformation. In the state-restoration game, the cheating IOP prover can go
back to a previous round and ask for new randomness from the IOP verifier.
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In our case, the IOP prover will get new randomness for some set of queries.
Since these queries simulate a random oracle, it can get fresh randomness for a
query intended for a random oracle.

Thus, we show that any cheating prover playing the state-restoration game
can be transformed into a cheating prover to the salted soundness game, and
yields the desired proof.

3 Definitions

3.1 Random Oracles and Oracle Algorithms

We denote by U(A) the uniform distribution over all functions ¢: {0,1}* —
{0,1}* (implicitly defined by the probabilistic algorithm that assigns, uniformly
and independently at random, a A-bit string to each new input). If ¢ is sampled
from U(N), then we say that ¢ is a random oracle.

In this paper, we restrict our attention to oracle algorithms that are deter-
ministic. This is without loss of generality as we do not restrict the running of
the algorithm in the random oracle model only the number of queries.

Given an oracle algorithm A and an oracle ¢ € U()), queries(A, () is the set
of oracle queries that AS makes. We say that A is t-query if |queries(A, ()| < ¢
for every ¢ € U(N).

Moreover, we consider complexity measures that quantify how the algorithm
A makes queries: some queries may depend on prior answers while other queries
do not. Letting ¢™(z1,...,2m) = (¢(x1),...,{(xm)), we say that A makes
queries in a rounds of width m if there exists an a-query oracle algorithm B
such that BS" = AS for every ¢ € U(\). Note that t < m - a.

Finally, we consider the size of oracle queries, i.e., the number of bits used to
specify the query: we say that A has queries of size n if for every ¢ € U()\) and
x € queries(A4, ¢) it holds that |z| < n.

We summarize the above via the following definition.

Definition 1. An oracle algorithm A is (a,m,n)-query if A makes queries in a
rounds of width m, and all queries of A have size at most n.

3.2 Relations

We consider proof systems for binary relations and for ternary relations, as we
now explain.

— A binary relation R is a set of tuples (x, w) where x is the instance and w
the witness. The corresponding language L = L(R) is the set of x for which
there exists w such that (x,w) € R.

— A ternary relation R is a set of tuples (1,x,w) where 1 is the index, x the
instance, and w the witness. The corresponding language L = L(R) is the set
of tuples (1, x) for which there exists w such that (i,x, w) € R. To distinguish
this case from the above case, we refer to R as an indexed relation and L as
an indexed language.
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A binary relation can be viewed as a special case of a ternary relation, where the
same index has been fixed for all instances. For example, the indexed relation
of satisfiable boolean circuits consists of triples where i is the description of a
boolean circuit, x is an assignment to some of the input wires, and w is an
assignment to the remaining input wires that makes the circuit output 0. If
we restrict this indexed relation by fixing the same circuit for all instances, we
obtain a binary relation.

The proof systems that we consider for binary relations are: (a) non-
interactive arguments in the random oracle model; and (b) interactive oracle
proofs. The proof systems that we consider for indexed (ternary) relations are
(a) preprocessing non-interactive arguments in the random oracle model; and
(b) holographic interactive oracle proofs. We will define only the latter two (in
Sect. 3.3 and Sect. 3.4 respectively) because the former two can be derived as
special cases.

3.3 Non-interactive Arguments in the Random Oracle Model

We consider non-interactive arguments in the random oracle model, where
security holds against query-bounded, yet possibly computationally-unbounded,
adversaries. Recall that a non-interactive argument typically consists of a prover
algorithm and a verifier algorithm that prove and validate statements for a binary
relation, which represents the valid instance-witness pairs. Here we define a more
general notion known as a preprocessing non-interactive argument, which works
for indexed relations (see Sect. 3.2). This notion additionally involves an indezer
algorithm, which receives as input an index and deterministically produces a key
pair specialized for producing and validating statements relative to the given
index. The usual notion of a non-interactive argument corresponds to a prepro-
cessing non-interactive argument where the indexer algorithm is degenerate (it
sets the proving key equal to the index, and similarly sets the verification key
equal to the index).

Let ARG = (I, P,V) be a tuple of (oracle) algorithms, with I deterministic.
We say that ARG is a (preprocessing) non-interactive argument, in the random
oracle model, for an indexed relation R with (non-adaptive) soundness error e if
the following holds.

— Completeness. For every (i,x,w) € R and A € N,

U
Pr [V¢(ivk,x,m) =1 (ipk,ivk) « I¢(i) | = 1.
7« PS(ipk, x, w)

~ Soundness (non-adaptive). For every (i,x) ¢ L(R), t-query P, and A € N,
C—UQL)

Pr |Ve(ivk,x,m) = 1| (ipk,ivk) — I°(i) | < e(i,x, A, ¢).
T PS
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Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are, implicitly, functions of
(1,x) and the security parameter \.

— sizes: proving key size ipks := |ipk|; verification key size ivks := [|ivk|; argument
size as := |m|.

— times: the indexer I runs in time it; the prover P runs in time pt; the verifier
V runs in time vt.

— queries: the indexer I is a ig-query algorithm; the prover P is a (a, m, n)-query
algorithm (see Definition 1); the verifier V' is a vq-query algorithm.

Bits of security. We are interested to discuss complexity measures, most
notably argument size, also as a function of bits of security. Note, though, that
we cannot directly equate “bits of security” with —loge(i,x, A, t) because this
value depends on multiple quantities that we cannot set a priori. Indeed, while
we could set the output size A of the random oracle to be a value of our choice,
we may not know which index-instance pairs (i, x) we will consider nor a mali-
cious prover’s query bound ¢. Thus we consider all (1,x) and ¢ up to a large size
that depends on the desired bits of security, and say that the scheme has s bits
of security if —loge(i,x, A, t) < s for all such 1,x,¢ and where X is linear in s.
This is captured is the following definition.

Definition 2. We say that ARG provides s bits of security if its soundness
error € satisfies the following condition with A := c - s for some constant ¢ >
0: for every indez-instance pair (1,x) ¢ L(R) and query bound t € N with
max{|1]| + |x|, ¢} < 2% it holds that e(1,x, \, t) < 275,

The above definition enables us to discuss any complexity measure also, and
possibly exclusively, as a function of bits of security as we illustrate in the fol-
lowing definition.

Definition 3. We say that ARG has argument size as(s) if ARG provides s
bits of security and, moreover, as(s) bounds the size of an honestly-generated
for any index-instance pair (1,x) € L(R) with |i| + |x| < 2° and while setting
A= 0O(s).

3.4 Interactive Oracle Proofs

Interactive Oracle Proofs (IOPs) [BCS16,RRR16] are information-theoretic
proof systems that combine aspects of Interactive Proofs [Bab85, GMR89| and
Probabilistically Checkable Proofs [Bab+91,Fei+91,AS98, Aro+98|, and also
generalize the notion of Interactive PCPs [KRO08]|. Below we describe a gen-
eralization of public-coin IOPs that is convenient in this paper.

Recall that a k-round public-coin IOP works as follows. For each round i €
[k], the prover sends a proof string II; to the verifier; then the verifier sends a
uniformly random message p; to the prover. After k rounds of interaction, the
verifier makes some queries to the proof strings Iy, ..., IIy sent by the prover,
and then decides if to accept or to reject.
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The definition that we use here generalizes the above notion in two ways.

— Holography. The proof system works for indexed relations (see Sect. 3.2),
and involves an indexer algorithm that, given an index as input, samples an
encoding I1y of the index; the randomness py used by the indexer to sample
the encoding Il is public (known to prover and verifier). The verifier receives
oracle access to the encoding I, rather than explicit access to the index.

— Randommness as oracle. The verifier has oracle access to its own randomness
P1,---,pk and to the indexer’s randomness pg. This notion, which naturally
arises in our results, is compatible with known compilers, as we explain in
Remark 1. We will count verifier queries to the randomness pg, p1, . - ., pk Sep-
arately from verifier queries to the encoding Ily and proof strings I1q, ..., IIy.

In more detail, let IOP = (I, P, V) be a tuple where I is a deterministic
algorithm, P is an interactive algorithm, and V is an interactive oracle algorithm.
We say that IOP is a public-coin holographic IOP for an indexed relation R with
k rounds and soundness error ¢ if the following holds.

— Completeness. For every (i,x,w) € R,

HO — I(L PO)
Iy — P(i,x,w, po)
Pr v o1, I, p0,P1 55 Pk(x) -1 1l — P(ﬁ,x,w, POvPl) = 1.

Iy — P(ﬁyx’ W, P0s P15 - - -7Pk71)
~ Soundness. For every (i,x) ¢ L(R) and unbounded malicious prover P,

_ 1 < P(po)
Pr V0 e Iliopo, 1otk (xr) = 1 I, —P(po, p1) | < e(x).

P0,P15--+5Pk

ﬁk — 15(;007/)1a o 7pk71)

Complexity measures. We consider several complexity measures beyond
soundness error. All of these complexity measures are implicitly functions of
the instance x.

— proof length |: the total number of bits in 11y, Iy, ..., Ily.
— proof queries q: the number of bits read by the verifier from Iy, I1y, ..., I.

— randomness length r: the total number of bits in pg, p1,. .., pk-
— randomness queries q,: the total number of bits read by the verifier from
P05 P15 -5 Pk-

— indezer time it: I runs in time it.
— prover time pt: P runs in time pt.
— werifier time vt: V runs in time vt.
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Query entropy. We additionally define a complexity measure called query
entropy that, informally, captures the entropy of the query locations read by
the IOP verifier in an honest execution. In particular, if the query entropy is at
most h then the probability of predicting in advance all the locations that the
verifier will read at the end of the protocol is at least 27", where the probability
is taken over the randomness of the IOP verifier and (any) randomness of the
honest IOP prover.

Definition 4. Let X be a random variable. The sample-entropy of x € supp(X)
with respect to X is H(x) := —logPr[X = z]|. The min-entropy of X is
Hmin(X) = minwESUpp(X) H('T)

Definition 5. Let IOP = (I, P, V) be an IOP with proof length | for an indexed
relation R.

— The query distribution of IOP for (i,x,w) € R is the distribution
D(1,x,w) over subsets T C [l such that the probability of T is the proba-
bility that the honest IOP verifier V reads exactly the locations in T in an
honest execution with the IOP prover P for the triple (1,x, w).

— The query entropy of IOP for an index-instance pair (i,x) € L(R) is

h(l,x) := max Huin(D(1,x,w)) .
( ) w s.t. (i,x,w)ER ( ( ))

For any IOP with proof length | and query complexity q it holds that for
any (i,x,w) € R the query distribution has no more entropy than the uniform
distribution over subsets of size q. Therefore it always holds that h(i,x) < q(1, x)-
log I(1, x).

Remark 1 (randomness in known compilers). The definition of public-coin
(holographic) IOP that we consider additionally grants the verifier oracle access
to its own randomness, which in particular, enables the prover to receive much
more randomness than allowed by the verifier’s running time. We briefly discuss
why this feature is motivated by known cryptographic compilers.

First, the size of arguments produced via known cryptographic compilers does
not depend on the verifier’s randomness complexity. E.g., the Micali compiler
[Mic00] maps a PCP into a corresponding non-interactive argument whose size
is independent of the PCP verifier’s randomness complexity; more generally,
the BCS compiler [BCS16] maps a public-coin IOP into a corresponding non-
interactive argument whose size is independent of the IOP verifier’s randomness
complexity.

Second, the running time of the argument verifier produced by these com-
pilers only depends on the number of queries to the randomness, but not on
randomness complezity. Indeed, both in the Micali compiler and in the BCS
compiler, the argument prover only needs to invoke the random oracle to answer
randomness queries of the underlying PCP/IOP verifier, and in particular, does
not have to materialize the unqueried randomness. This is because the random
oracle, which serves as a shared randomness resource, enables the argument
prover to suitably materialize all the relevant randomness without impacting
the argument verifier.



Barriers for Succinct Arguments in the Random Oracle Model 69

4 From Succinct Arguments to Interactive Oracle Proofs

We formally re-state Theorem 1 and then prove it. The formal theorem statement
is somewhat technical, as it contains the precise relationship between parameters
of the succinct argument and the corresponding IOP. We advise the reader to
first read the informal overview of the proof in Sect. 2.1, as it gives intuition for
the relationships between the parameters.

The theorem is stated with respect to a non-interactive succinct argument,
for the sake of simple presentation. The compiler naturally generalizes to succinct
arguments with multiple rounds, and we describe this is Remark 2. We note that
we additionally provide the query entropy of the compiled IOP (see Definition 5)
as it is used later in Theorem 6.

In the theorem below, an (a,m,n)-query algorithm performs a rounds
each containing m queries to a random oracle over defined over {0,1}" (see
Definition 1).

Theorem 3 (ARG — IOP). There exists a polynomial-time transformation
T that satisfies the following. If ARG is a non-interactive argument in the ROM
for a relation R then 10P := T(ARG) is a public-coin IOP for R, parametrized
by a security parameter X € N, with related complexity as specified below. (All
complexity measures take as input an instance x and the security parameter \.)

IOP
soundness error €(t) for t := O(a-m)
round complexity a+1
prover
d ARG e time (expected) O(pt)
soundness error ® messages II,... I, € »om
argument size as
Ha+1 € ZWas
prover .
o time bt . verifier )
e queries (a,m, n) e time (worst case) vt + O(vq - a 'gsz)r N)
verifier ® messages Ply-ees pavqe 25
e time vt ) Pa+1 € X\
e queries vq e queries O(vq) to each of II,..., I,
1 to Ha+1
O(vq) to p1,..., pat1
query entropy O(vq - a-logm)
[above X, denotes the alphabet {0,1}"]

Moreover, the IOP prover and IOP verifier make only black-box use of the argu-
ment prover and argument verifier respectively (up to intercepting and answering
their queries to the random oracle).

The rest of this section is organized as follows: in Sect. 4.1 we introduce the
main tool that we use in our transformation, and in Sect. 4.2 we describe the
transformation. Proofs are given in the full version of the paper.

Remark 2 (interactive arguments). While the focus of this paper is non-
interactive arguments in the random oracle model (as defined in Sect. 3.3), one
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could also study interactive arguments in the random oracle model. Our proof
of Theorem 3 directly extends to give a result also for this more general case,
with the main difference being that the round complexity of the IOP increases
by the round complexity of the given argument system.

The reason why the proof directly extends is that the main technique for
constructing the IOP is a sub-protocol for simulating queries to a random oracle,
and this sub-protocol does not “care” if in the meantime the argument prover and
argument verifier engage in a conversation. As a result, if the succinct argument
has k rounds, then the compiled IOP has k + a rounds.

4.1 Tool: Perfect Hash Functions with Locality

A perfect hash function for a set S of size m in a universe U is a function
h:U — {1,...,0(m)} that is one-to-one on S. We use a seminal construction
of Fredman, Komlos, and Szemerédi [FKS84]|, observing that it has a certain
locality property that is crucial for us.

Theorem 4 (follows from [FKS84|). For any universe U there exist a
poly(m,log|U|)-time deterministic algorithm that, given as input a subset S C U
of size m, outputs a perfect hash function h: U — {1,...,0(m)} for S with
|h| = O(m - log|U|) bits. In fact, evaluating h on a single input requires read-
ing only O(log |U|) bits from the description of h, and performing O(log|U|)
bit operations. In alternative to the deterministic algorithm, h can be found in
expected time O(m - log |U]).

Proof. The FKS construction achieves a perfect hash function h via two levels of
hashing. The first level is a hash function hg: U — [m] that divides the elements
of S among m bins where bin i has b; elements, with Y ;" b7 = O(m). The
second level is a hash function h;: [m] — [b?], one for each bin i € [m], that
resolves collisions inside bin ¢ by mapping the b; elements in bin ¢ to a range of
size b?. Hence the hash function h consists of a collection of 14m hash functions:
one for the first level and m for the second level. Each of the 1+4m hash functions
is sampled from a family of universal hash functions (see Definition 6), which
can be instantiated via the standard construction in Lemma 1 below.

Definition 6. A family H of hash functions mapping U to [M] is universal if
for any distinct x,y € U it holds that Prpn[h(z) = h(y)] = 1/M.

Lemma 1 (|[CW79]). Let p be a prime with [U| < p < poly(|U|). The fam-
ily H = {hap: U — [M]}acFs ber, where hap(z) := (a -z mod p) mod M is
universal. Each hqyp has bit size O(log|U|) and can be evaluated in O(log |U|)
time.

The above gives us |hg| = O(log |U|) and |h;| = O(log |U]) for all i € [m],
and in particular |h| = O(}.[" |hs|) = O(m - log |U]).

We now discuss the locality property of the FKS construction. In order to
evaluate h on a single element, one needs to use only two hash functions among
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the 1+ m: the first level hash function hg and then the appropriate second level
hash function h;. Thus, to evaluate h on a single element requires reading only
the relevant bits of hy and h; from the description of h, which together amount
to O(log |U]|) bits. The time to evaluate both hg and h; is O(log|U]).

We conclude with a discussion of how to find h. Fredman, Komlés, and Sze-
merédi [FKS84] showed a poly(m,log|U|)-time deterministic algorithm; Alon
and Naor [AN96] showed a faster deterministic algorithm, but the running time
remains super-linear. Alternatively, in [FKS84], it was shown that h can be found
in expected time O(m -log |U|). This follows since for a random hyg it holds that
S b2 = O(m) with high probability, and moreover, for a random h;, the
mapping to [b?] is one-to-one with high probability. Thus, in expectation, only
a constant number of trials are needed to find hg and to find each h;. a

4.2 The Transformation

Construction 5 (transformation T). Let ARG = (P, V) be a non-interactive
argument in the ROM. We construct a public-coin interactive oracle proof |OP =
(P,V), parametrized by a choice of security parameter X € N. The IOP prover
P takes as input an instance x and a witness w, and will internally simulate the
argument prover P on input (x, w), answering P’s queries to the random oracle
as described below. The I0P verifier V takes as input only the instance x, and
will simulate the argument verifier V. on input x, answering V'’s queries to the
random oracle as described below.
The interactive phase of the IOP protocol proceeds as follows:

- For round j =1,...,a:

1. P simulates P to get its j-th query set X; = (x1,...,2m), and finds a
perfect hash function hj: {0,1}" — [M] for the set X; where M = O(m).
Then, P creates an M-cell array T; such that T;h;(z;)] = z; for all
i € [m], and all other cells of T; are L. Finally, P sends II; := (h;,T;)
to'V.

2. 'V samples y1,...,ym € {0,1}* uniformly at random and sends p; =
(1, yar) to P.

3. P answers P’s query x; with the value pjlh;(x;)], for every i € [m].

— P simulates P until it outputs the non-interactive argument w; P sends
1,4 =7 to V.

The query phase of the IOP protocol proceeds as follows. The IOP verifier V
reads the non-interactive argument w sent in the last round (the only symbol in
IT,11), and simulates the argument verifier V. on input (x,7), answering each
oracle query x with an answer y that is derived as follows:

~ 'V reads the necessary bits from h; (in II;) to evaluate hj(x);

~ V reads v; == Tj[hj(x)] (in II;) for all j € [a];

~ifvj # x for all j € [a] then set y to be a random value in {0,1}*;

— if there exists j # j' such that v; = x and vj, = = then halt and reject;
let j be the unique value such that v; = x, and set y := p;[h;(z)].
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If each query was answered successfully, V rules according to the output of V.
(Note that, formally, the randomness used by the IOP wverifier V to answer
queries of the argument verifier V' that were not also asked by the argument
prover P should be treated as a last verifier message p,+1 consisting of vq random
A-bit strings. The IOP verifier will then “consume” this randomness as needed.)

The proof appears in the full version of the paper.

5 From Interactive Oracle Proofs to Algorithms

We formally re-state and prove Theorem 2, which states that IOPs with good
parameters (small soundness error relative to soundness error or, more precisely,
query entropy) can be translated to good algorithms (fast algorithms with small
space complexity). We use this transformation in Sect. 6 to show that, for certain
languages, if the IOP parameters are “too good” then the resulting algorithms
contradict standard complexity assumptions (and therefore cannot exist).

Theorem 6 (IOP to algorithm). Suppose that a language L has a public-
coin IOP with completeness error c, soundness error €, round complexity k,
proof length | over an alphabet X, query complezity q, and query entropy h. If
§:=(1—-c) 27" —¢ >0 then, for c:=q-logl+q-log|X| the language L is in

BPTIME [20(“”)“(”)'1"%%) poly(n)] .

Let the verifier space complexity be vs, randomness length r (over X) and ran-
domness query complezity q,. If 8’ == (1 —c)-27" . r~% —¢ > 0 then the same
algorithm can be implemented in space

0 <v5~ (c(n) +k(n) - log (I;((Z))>2> .

(Above it suffices to take c to be the number of bits to specify the set of queries by the
IOP verifier and their corresponding answers. This is useful when queries are correlated

or answers are from different alphabets.)

The proof appears in the full version of the paper.

5.1 IOP to Laconic IP

The lemma below states that any IOP with good enough soundness relative to
its query entropy can be translated to a laconic IP (an IP with small prover-to-
verifier communication). Query entropy is the probability of guessing in advance
the exact locations that the IOP verifier will read across the proof strings sent
by the IOP prover; see Definition 5 for how query entropy is formally defined.
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Lemma 2 (IOP to laconic IP). Suppose that a language L has an IOP with
completeness error ¢, soundness error €, round complezity k, proof length | over
an alphabet X, query complexity q, and query entropy h. If ¢ < (1 —c)-27"
then L has an IP with completeness error 1 — (1 —c) - 27", soundness error e,
round complexity k, and prover-to-verifier communication q - logl + q - log |X].
(More generally, communication is bounded by the number of bits to specify the
set of queries by the IOP verifier and their corresponding answers.) If the IOP
s public-coin then the IP is public-coin.

Moreover, the IP can be modified so that the IP verifier performs a single
pass over the randomness tape, with completeness error 1 — (1 —c) - 27" .y~
and space complexity O(vs+q,-logr+q,log | X)) where vs is the space complexity
of the IOP wverifier.

The proof appears in the full version of the paper.

5.2 1IP to Algorithm

Goldreich and Héstad [GH98] have shown that languages with public-coin IPs
with small prover-to-verifier communication can be decided via fast probabilistic
algorithms. Their result is shown for IPs with constant completeness and sound-
ness errors. Below we show a refinement of their theorem, where we explicitly
provide the dependency in the completeness and soundness errors, which allows
supporting IPs with large completeness errors (which we need). Moreover, we
note that if the IP verifier reads its randomness in a single pass, the probabilistic
algorithm for deciding the language can be implemented in small space (which
we also need).

Lemma 3 (IP to algorithm). Suppose that a language L has a public-coin IP
with completeness error a, soundness error (3, round complexity k, and prover-
to-verifier communication c¢. Then, for d(n) := c¢(n) + k(n) - log % the
language L is in

BPTIME [20(® . poly(n)} .

Moreover, if the space complexity of the IP verifier is vs when reading its ran-
dommness random tape in a single pass then the language L is in

SPACE [0 (d - (vs + d))] .

The proof appears in the full version of the paper.

6 Barriers for Succinct Arguments

We prove that, under plausible complexity assumptions, there do not exist suc-
cinct arguments where the argument verifier makes a small number of queries
to the random oracle and the honest argument prover has a small adaptivity
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parameter. We separately consider that case of succinct arguments for nondeter-
ministic languages (NTIME) in Sect. 6.1, and the case of deterministic languages
(DTIME) in Sect. 6.2.

In both cases our approach consists of the following steps: (1) we use
Theorem 3 to transform the succinct argument into a corresponding IOP; then,
(2) we use Theorem 6 to transform the IOP into an algorithm with certain time
and space complexity; finally, (3) we argue that, under standard complexity
assumptions, such an algorithm does not exist.

6.1 The Case of Nondeterministic Languages

Theorem 7. Suppose that NTIME[T] has a non-interactive argument ARG
that provides s bits of security and has argument size as = o(T) (see Defini-
tions 2 and 3), where the prover makes a adaptive rounds of m queries to the
random oracle, and the verifier makes vq queries to the random oracle. If (1)
vg - a - log(m) = o(s); and (2) logn < s < o(T'?), then NTIME[T(n)] C
BPTIME[2°T(")] (an unlikely inclusion,).

Remark 3 (s vs. T). If as = £2(T) then the trivial scheme of sending the T bits
of a valid witness yields a non-interactive argument (indeed, proof), and so we
consider the case as = o(T). For technical reasons, we also need that s = o(T"/2),
a rather weak condition. Additionally, we restrict the instance size to be at most
exponential in s, and therefore assume that logn < s.

Remark 4 (“a” in known compilers). In the Micali transformation [Mic00], the
argument prover performs a = @(logl) rounds of queries to the random oracle
(one round for each level of a Merkle tree over a PCP of size |), whereas the
argument verifier performs vq = ©(q - log!| + r) queries to the random oracle.
When using known or conjectured PCPs in the Micali transformation, we get
vq = 2(s). In particular, the hypothesis vq - a - log(m) = o(s) does not apply,
and as expected does not lead to the inclusion stated in the theorem.

Remark 5 (interactive argument). Similar to the way Theorem 3 is presented,
to get a simple presentation, we state the above theorem for non-interactive
succinct arguments. We note, however, that the theorem naturally generalizes
to any public-coin succinct argument with k rounds (note that always k < as),
as long as s2 -k = o(T).

6.2 The Case of Deterministic Languages

Theorem 8. Suppose that DTIME[T] has a non-interactive argument ARG
that provides s bits of security and has argument size as = o(T') (see Defini-
tions 2 and 3), where the prover makes a adaptive rounds of m queries to the
random oracle, and the verifier makes vq queries to the random oracle and has
space complexity sv. If (1) vq-a-log(a-m) = o(s); (2) sv- (s* +as?) = o(T); and
(3) logn < s then DTIME[T (n)] C SPACE[o(T'(n))] (an unlikely inclusion).
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The proof appears in the full version of the paper.
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Abstract. We prove a tight lower bound on the number of group oper-
ations required for batch verification by any generic-group accumula-
tor that stores a less-than-trivial amount of information. Specifically, we
show that (¢ - (A\/log\)) group operations are required for the batch
verification of any subset of ¢ > 1 elements, where A € N is the security
parameter, thus ruling out non-trivial batch verification in the standard
non-interactive manner.

Our lower bound applies already to the most basic form of accu-
mulators (i.e., static accumulators that support membership proofs),
and holds both for known-order (and even multilinear) groups and for
unknown-order groups, where it matches the asymptotic performance
of the known bilinear and RSA accumulators, respectively. In addition,
it complements the techniques underlying the generic-group accumula-
tors of Boneh, Biinz and Fisch (CRYPTO ’19) and Thakur (ePrint '19)
by justifying their application of the Fiat-Shamir heuristic for trans-
forming their interactive batch-verification protocols into non-interactive
procedures.

Moreover, motivated by a fundamental challenge introduced by
Aggarwal and Maurer (EUROCRYPT ’09), we propose an extension of
the generic-group model that enables us to capture a bounded amount
of arbitrary non-generic information (e.g., least-significant bits or Jacobi
symbols that are hard to compute generically but are easy to compute
non-generically). We prove our lower bound within this extended model,
which may be of independent interest for strengthening the implications
of impossibility results in idealized models.

1 Introduction

Cryptographic accumulators [BAM93], in their most basic form, generate a short
commitment to a given set of elements while supporting non-interactive and
publicly-verifiable membership proofs. Such accumulators, as well as ones that
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offer more advanced features (e.g., non-membership proofs, aggregation of proofs
and batch verification) have been studied extensively given their wide applica-
bility to authenticating remotely-stored data (see, for example, [BAM93,ST99,
BLL00, CL02,NN98,CJ10,ABC+12,Sla12, MGG+13,CF14, GGM14,PS14] and
the references therein).

Known constructions of accumulators can be roughly classified into two cat-
egories: hash-based constructions and group-based constructions. Hash-based
constructions generate a short commitment via a Merkle tree [Mer87, CHK+0§],
where the length of the resulting commitment is independent of the number
of accumulated elements, and the length of membership proofs and the ver-
ification time are both logarithmic in the number of accumulated elements.
Group-based constructions, exploiting the structure provided by their underlying
groups, lead to accumulators in which the length of the commitment, the length
of membership proofs and the verification time are all independent of the num-
ber of accumulated elements. Such accumulators have been constructed in RSA
groups [BP97,CL02,LLX07,Lip12] and in bilinear groups [Ngu05, DT08, CKS09).
In both cases the constructions do not exploit any particular property of the rep-
resentation of the underlying groups, and are thus generic-group constructions
[Nec94, BLI6,Sho97, MW98, DK02, Mau05, JS08,JR10,JS13, FKL18].!

Accumulators with Batch Verification. Motivated by recent applica-
tions of accumulators to stateless blockchains and interactive oracle proofs
[Tod16,BCS16, AHI+17, BSBH+18,BCR+19], Boneh, Biinz and Fisch [BBF19]
developed techniques for the aggregation of membership proofs (and even of
non-membership proofs) and for their batch verification. Given that hash-based
accumulators seem less suitable for offering such advanced features [OWW+20],
Boneh et al. exploited the structure provided by RSA groups, and more gener-
ally by unknown-order groups such as the class group of an imaginary quadratic
number field.

Specifically, Boneh et al. showed that membership proofs and non-
membership proofs for any subset of ¢ elements can be aggregated into a single
proof whose length is independent of ¢. Then, by relying on the techniques of
Wesolowski [Wes19], they showed that such aggregated proofs can be verified
via an interactive protocol, where the number of group operations performed by
the verifier is nearly independent of ¢ (instead of growing with ¢ in a multiplica-
tive manner as in the verification of ¢ separate proofs). By applying the Fiat-
Shamir transform with a hash function that produces random primes, Boneh
et al. showed that their interactive verification protocol yields a non-interactive
publicly-verifiable verification procedure. Analogous results were subsequently
obtained in bilinear groups by Thakur [Thal9], who extended the techniques

! We note that the RSA-based accumulator hashes the elements into primes before
accumulating them. This is captured within the generic-group model since the accu-
mulated elements are provided explicitly as bit-strings (i.e., they are not group ele-
ments and therefore such hashing can be performed by generic algorithms). Equiv-
alently, the RSA-based accumulator can be viewed as a generic-group accumulator
that accumulates prime numbers.
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of Boneh et al. and Wesolowski to such groups based on the constructions of
Nguyen [Ngu05] and of Damgard and Triandopoulos [DT08].

Non-trivial Batch Verification vs. Interaction. Other than applying the
Fiat-Shamir transform for obtaining a non-interactive verification procedure, the
constructions of Boneh et al. and Thakur are generic-group constructions, relying
on the existing generic-group accumulators in RSA groups [BP97,CL02, LLX07]
and in bilinear groups [Ngu05,DTO08]. This introduces a substantial gap between
generic-group accumulators that support non-trivial batch verification and
generic-group accumulators that support only trivial batch verification (i.e., via
the verification of individual proofs). Given the key importance of non-interactive
verification in most applications that involve accumulators, this leads to the fol-
lowing fundamental question:

Does non-trivial batch verification in generic-group
accumulators require interaction?

This question is of significant importance not only from the foundational
perspective of obtaining a better understanding of the feasibility and efficiency
of supporting advanced cryptographic features, but also from the practical per-
spective. Specifically, following Wesolowski [Wes19], Boneh et al. implement the
Fiat-Shamir transform using a hash function that produces random primes. As
discussed by Boneh et al. [BBF19] and by Ozdemir, Wahby, Whitehat and Boneh
[OWW-+20], who proposed various potential realizations for such a hash func-
tion, this affects the efficiency, the correctness and the security of the result-
ing accumulator. More generally, and even when implementing the Fiat-Shamir
transform via any standard hash function, in many cases the transformation vio-
lates the elegant algebraic structure of the underlying interactive protocol, lead-
ing to potentially-substantial overheads when implemented within larger systems
(e.g., systems that rely on efficient algebraic proof systems).

1.1 Owur Contributions

We prove a tight lower bound on the number of group operations performed
during batch verification by any generic-group accumulator that uses less-than-
trivial space. In particular, we show that no such accumulator can support
non-trivial batch verification in the standard non-interactive manner. Our lower
bound applies already to the most basic form of accumulators (i.e., static accu-
mulators that support membership proofs), and holds both for known-order
(and even multilinear) groups and for unknown-order groups, where it matches
the asymptotic performance of the known bilinear and RSA accumulators,
respectively.?

Moreover, motivated by a fundamental challenge introduced by Aggarwal
and Maurer [AMO09]), we propose an extension of the generic-group model that

2 Qur results hold also for the more restrictive notion of vector commitments
[CF13,BBF19,LM19], which provide the same functionality as accumulators, but
for ordered lists instead of sets.
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enables us to capture a bounded amount of arbitrary non-generic information
(e.g., least significant bits or Jacobi symbols that are hard to compute generically
but are easy to compute non-generically [AMO09,JS13]). We prove our lower
bound within this extended model, where we measure efficiency in terms of
the number of group operations and in terms of the amount of non-generic
information. This extension of the generic-group model may be of independent
interest for strengthening the implications of impossibility results in idealized
models.

In what follows we state our results somewhat informally in order to avoid
introducing the entire list of parameters with which we capture the efficiency
of generic-group accumulators (we refer the reader to Sect. 2.2 for our formal
definitions). Here we will focus on the following three main parameters, nacc,
lace and ¢, that are associated with an accumulator ACC, where we denote by
A € N the security parameter:

— nacc(A, k) and Lacc(A, k) are the number of group elements and the bit-length
of the explicit string, respectively, stored by the accumulator when accumu-
lating k£ elements.

— q(\, t, k) is the number of group-operation queries issued by the accumula-
tor’s verification procedure when verifying a membership proof for ¢ out of k
elements.

Our Main Result. Our main result is a tight bound on the trade-off between
the amount of information that an accumulator stores when accumulating k& > 1
elements and its number of group operations when verifying a membership proof
for 1 <t < k elements. We prove that this number of group operations must
scale multiplicatively with ¢, thus ruling out non-trivial batch verification. This
is captured by the following theorem which applies both to known-order groups
and to unknown-order groups.?

Theorem 1.1 (Simplified). For any generic-group accumulator ACC over a
domain X = {X\}ren @ holds that

10g2 (‘);?I) - {nAcc : 1Og2 (nAcc + 1) + lacc 1
' k “log A

g\t k) =02t

for all sufficiently large A\ € N. In particular, if |Xx| = 2% then for any
0 <e<1 either

X
NAcc - IOgQ(nAcc + 1) + eAcc > (1 - 6) . 10g2 (| )\|)

k
P
g\ kt) =0 (t~ 10g>\> .

or

3 We note that all logarithms in this paper are to the base of 2, which we omit whenever
used within asymptotic expressions in a multiplicative manner.
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For interpreting our main theorem, note that log, (I),?l) is the expected num-
ber of bits required for an exact representation of k elements, and that
Nace * 108o (NMace + 1) + lacc is the amount of information that is actually stored
by a generic-group accumulator from its verification algorithm’s point of view:
NAce 1089 (Macc +1) bits of information resulting from the equality pattern among
the nacc stored group elements, and fa.. additional explicit bits of information.
Thus, the expression

10g2 (P]?J) - |:77/Acc : 10g2 (nAcc + 1) + EACC]
k

captures the average information loss per accumulated element. Our theorem
shows that as long as the amount of information stored by an accumulator is
bounded away from the information-theoretic amount that is required for an
exact representation, then non-trivial batch verification is impossible.

Our lower bound on the efficiency of batch verification matches the perfor-
mance of the RSA accumulator considered by Boneh et al. [BBF19] in which
nacc = 1 and facc = 0 (i.e., the accumulator stores just a single group element),
and |Xy| = 29N, In this accumulator, batch verification of ¢ elements can be
computed via a single exponentiation in the group Zj3;, where the exponent is
the product of ¢t numbers, each of which is of length A bits. Since the order of
the group is unknown, it seems that the exponent cannot be reduced modulo the

group order prior to the exponentiation, and therefore this computation requires

LA
log A

[BGM+92] — thus matching our lower bound.*
Moreover, we show that our result holds even in the generic d-linear group
model for any d > 2. We generalize Theorem 1.1 and similarly show that

£2(t - A) group operations, or {2 (t ) group operations with preprocessing

04 (t . log 3 é) group operations are required for batch verifying a membership

proof for ¢ elements. This matches the performance of the bilinear accumulator
constructed by Nguyen [Ngu05] in which nacc = 1 and lacc = 0 (i.e., the accumu-
lator stores just a single group element), and |X)\| = 22N In this accumulator,

trivial batch verification of ¢ elements consists of computing ¢ exponentiations,

LA
log A

translating to £2(¢- \) group operations, or to 2 (t ) group operations with

preprocessing as above. This once again matches our lower bound, showing that
trivial batch verification is indeed optimal for this accumulator.

Beyond Generic Groups. Lower bounds in idealized models shed substantial
insight on our understanding of a wide range of both hardness assumptions and
cryptographic constructions. For example, such lower bounds apply to a wide
range of algorithms and constructions, and thus help directing cryptanalytic
efforts and candidate constructions away from generic impossibility results.

4 The additional information resulting from such preprocessing can be included with
the information stored by the accumulator. This amount of information is indepen-
dent of the number of accumulated elements, and thus does not influence our result.
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However, despite their importance, a major drawback of such lower bounds
is clearly their restriction to idealized models. This drawback was discussed
by Aggarwal and Maurer [AMO09], noting that there are certain computations
that are hard with respect to generic algorithms but are extremely simple with
respect to non-generic ones. Two important examples for such computations are
computing the least significant bit [AMO09] or the Jacobi symbol of a random
group element [JS13]. Motivated by this major drawback, Aggarwal and Maurer
proposed the problem of considering more general and realistic models where
all algorithms are given access, for example, to least significant bits or Jacobi
symbols of elements.

Addressing the challenge introduced by Aggarwal and Maurer, we show that
our techniques are applicable even in an extended model that enables us to cap-
ture a bounded amount of non-generic information. Specifically, for any family
& of predicates ¢(-,-) that take as input the group order and a group element,
we equip all algorithms with access to an oracle that responds to @-queries: On
input a query of the form (¢, ), where ¢ € ¢ and 7 is an implicit representation
of a group element z, the oracle returns ¢(N,z) where N is the order of the
group. We refer to this extension as the ¢-augmented generic-group model, and
note that the family & may be tailored to the specific non-generic structure of
any underlying group. This model, allowing a bounded amount of non-generic
information, can be viewed as an intermediate model between the generic-group
model that does not allow any non-generic information, and the algebraic-group
model [FKL18,MTT19, AHK20,FPS20] that allows direct access to the repre-
sentation of the underlying group.

At a high-level, we prove that our result still holds for any family @ of
polynomially-many predicates (in particular, it still holds for the case |¢| = 2
that enables to compute least significant bits and Jacobi symbols). More specif-
ically, letting g(A,t, k) denote the number of group-operation queries and @-
queries issued by an accumulator’s verification procedure when verifying a mem-
bership proof for ¢ out of k elements, and considering also predicate families @
of super-polynomial size, we prove the following theorem (which again applies
both to known-order groups and to unknown-order groups).

Theorem 1.2 (Simplified). For any predicate family ¢ and for any &-

augmented generic-group accumulator ACC over a domain X = {X}ren it
holds that
Ntk 0 10g2 (‘1?') - {nAcc : 10g2 (nAcc + 1) + CAcc 1
t = t- .
a5 k) k log X + log ||

for all sufficiently large X\ € N. In particular, if |Xx| = 29X then for any
0 <e<1 either
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X
NAce * logQ(nAcc + 1) + gAcc Z (1 - 6) : 10g2 <| )\|)
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It should be noted that our result in this augmented model do not con-
tradict the highly-efficient non-interactive batch verification procedures of the
accumulators constructed by Boneh, Biinz and Fisch [BBF19] and by Thakur
[Thal9]. Their verification procedures are obtained by applying the (non-generic)
Fiat-Shamir transform to interactive verification protocols. Although our aug-
mented model does allow any predicate family @, the trade-off resulting from
Theorem 1.2 becomes meaningless when instantiated with the parameters that
are required for accommodating the Fiat-Shamir transform.

For example, it is possible to consider a predicate family @ that consists
of predicates ¢; that output the i-th output bit of any given collection of hash
functions. However, within our model, the family @ has to be fixed ahead of time,
whereas the soundness of the Fiat-Shamir transform relies on the hash function
being completely random. This means that realizing the Fiat-Shamir transform
within our augmented model requires including such a predicate ¢y, ; for every
function A mapping group elements to, say, A bits, as this would then enable
sampling a random function. However, in this case, the size || of the family
@ becomes too large for our trade-off to be meaningful. An additional example
is a predicate family @ that consists of predicates ¢; that directly output the
i-th bit of a group element. Applying these predicates to all group elements in
the view of the verification algorithm increases the number ¢ of queries that are
issued by the verification algorithm at least by a multiplicative factor of A (i.e.,
A queries for each group element), and then once again our trade-off is no longer
meaningful — and thus does not contradict the known non-generic constructions.

1.2 Overview of Our Approach

The Framework. We prove our result within the generic-group model intro-
duced by Maurer [Mau05], which together with the incomparable model intro-
duced by Shoup [Sho97], seem to be the most commonly used approaches for
capturing generic-group computations. At a high level, in both models algo-
rithms have access to an oracle for performing the group operation and for
testing whether two group elements are equal. The difference between the two
models is in the way that algorithms specify their queries to the oracle. In Mau-
rer’s model algorithms specify their queries by pointing to two group elements
that have appeared in the computation so far (e.g., the 4th and the 7th group
elements), whereas in Shoup’s model group elements have an explicit represen-
tation (sampled uniformly at random from the set of all injective mappings from
the group to sufficiently long strings) and algorithms specify their queries by
providing two strings that have appeared in the computation so far as encodings
of group elements.
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Jager and Schwenk [JS08] proved that the complexity of any computational
problem that is defined in a manner that is independent of the representation of
the underlying group (e.g., computing discrete logarithms) in one model is essen-
tially equivalent to its complexity in the other model. However, not all generic
cryptographic constructions are independent of the underlying representation.

More generally, these two models are rather incomparable. On one hand, the
class of cryptographic schemes that are captured by Maurer’s model is a subclass
of that of Shoup’s model — although as demonstrated by Maurer his model still
captures all schemes that only use the abstract group operation and test whether
two group elements are equal. On the other hand, the same holds also for the
class of adversaries, and thus in Maurer’s model we have to break the security
of a given scheme using an adversary that is more restricted when compared
to adversaries in Shoup’s model. We refer the reader to Sect. 2.1 for a formal
description of Maurer’s generic-group model.’

Generic-Group Accumulators. A generic-group accumulator ACC consists of
three algorithms, denoted Setup, Prove and Vrfy. Informally (and very briefly),
the algorithm Setup receives as input a set X C X of elements to accumulate
and produces a representation Acc together with a secret state, where X is the
universe of all possible elements. The algorithm Prove receives as input the secret
state and a set S C X, and outputs a membership proof 7w, which can then be
verified by the algorithm Vrfy. Note that the case |S| = 1 captures standard
verification of individual elements, whereas the case |S| > 1 captures batch
verification (i.e., simultaneous verification of sets of elements). Each of these
algorithms may receive as input and return as output a combination of group
elements and explicit strings.

We consider the standard notion of security for accumulators when naturally
extended to consider batch verification. That is, we consider an adversary who
specifies a set X C X of elements, receives an accumulator Acc that is honestly
generated for X, and can then ask for honestly-generated membership proofs for
sets S C X (in fact, the adversary we present for proving our result does not require
such adaptive and post-challenge access to honestly-generated proofs). Then, the
adversary aims at outputting a pair (S*,7*) that is accepted by the verification
algorithm as a valid membership proof for the set S* with respect to the accumu-
lator Acc although S* ¢ X. We refer the reader to Sect. 2.2 for formal definitions.

From Capturing Information Loss to Exploiting it. We prove our result
by presenting a generic-group adversary that attacks any generic-group accumu-
lator. Our attacker is successful against any accumulator that does not satisfy
the trade-off stated in Theorem 1.1 between the amount of information that the
accumulator stores and the number of group-operation queries issued by its ver-
ification algorithm. The main idea underlying our approach can be summarized
via the following two key steps:

5 In fact, we consider two different flavors of Maurer’s model, for capturing both
known-order and unknown-order groups. The reader is referred to Sect. 2.1 for an
in-depth discussion of these two flavors and of the extent to which each of them
captures group-based cryptographic constructions.
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— Step I: Capturing the information loss. We identify and account for
the total amount of information on a random set X of accumulated elements
from the point of view of a generic-group verification algorithm.

— Step 1I: Exploiting the information loss. We show that any gap between
this amount of information and the amount of information that is required for
an exact representation of such a set X can be exploited by a generic-group
attacker for generating a false batch-membership proof.

In what follows we elaborate on these two steps, first focusing on our main
result and then discussing its extensions. Let ACC = (Setup, Prove, Vrfy) be a
generic-group accumulator, and consider the view of its verification algorithm
Vrfy on input an accumulator Acc, a set S, and a membership proof 7 for the
fact that all elements of S have been accumulated within Acc. For simplicity, we
assume here that Acc and 7 consist only of group elements, and we note that
our proof in fact considers the more general case where they may consist of both
group elements and explicit strings. Then, the view of the verification algorithm
consists of the following ingredients:

— The accumulator Acc consists of group elements, and therefore the verification
algorithm essentially only observes the equality pattern among these elements,
and does not observe the elements themselves. This enables us to upper bound
the amount of information provided by Acc by upper bounding the number
of possible equality patterns among the group elements that are included
in Acc.

— Once the computation starts, the verification algorithm generates a sequence
of group-operation queries, where each such query is specified by pointing to
two group elements that have appeared in the computation so far (we allow
the verification algorithm to issue all possible equality queries). The following
two observations enable us to upper bound the amount of information pro-
vided by this computation by upper bounding the number of possible query
patterns that the verification algorithm observes, together with the number
of possible equality patterns among the group elements included in the proof
7 and among the responses to the queries: (1) There are only polynomially-
many possibilities for the two pointers included in each query (since queries
are specified by pointing to two group elements that have appeared in the
computation so far), and (2) we can effectively upper bound the number of
possible query patterns induced by the proof and the responses using the
number of queries issued by the verification algorithm instead of using the
length of the proof = (which may be significantly larger).

This accounts for the total amount of information that is available to the veri-
fication algorithm from a single execution. However, different executions of the
verification algorithm may be highly correlated via Acc and via the membership
proofs (which are all generated from the secret state). Therefore, in order to
capture the total amount of information that is available on the entire accumu-
lated set X, our attacker A gathers this information as follows. First, it chooses
a random set X C X of k elements for which the setup algorithm Setup will
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honestly generate an accumulator Acc. Then, A partitions X into subsets of
size t, and asks for an honestly-generated batch-membership proof for each such
subset. Next, A executes the verification algorithm to verify each of these k/t
proofs, and records the above information for all of the subsets.

At this point we show that the information recorded from these k/t batch
verifications must be at least the amount of information that is required for
representing a random set X of size k. This is done by proving that, with high
probability over the choice of X, this information can be exploited for forging
a batch-membership proof for a set S* ¢ X of size ¢. The most subtle part
of our proof is in tailoring the set S* and its false proof in a manner that is
indistinguishable to the verification algorithm from those of at least one of the
k/t subsets of X, and we refer the reader to Sect. 3 for the details of this part
of our attack.

Extensions. As discussed above, we extend our result to accumulators in generic
d-linear groups and to accumulators that rely on a bounded amount of non-
generic information. Both of these extensions essentially rely on the same basic
idea, which is the observation that each query issued by the verification algorithm
can be fully represented in a somewhat succinct manner. Specifically, each such
query is determined by: (1) Pointers to its inputs (where the number of inputs
may now range from 2 to d), (2) the type of query (e.g., addition or subtraction
queries in Zx, multilinear queries, or any other type of non-generic query ¢ € @),
and (3) the contribution of its response to the equality pattern among all group
elements involved in the computation, or the contribution of its explicit response
to the overall amount of information in the case of non-generic queries. For each
of these two extensions, we first adapt our proof to identify and account for
the total amount of information on a random set X of accumulated elements
from the verification algorithm’s point of view. Then, we accordingly adapt our
tailored set S* and its false proof in a manner that remains indistinguishable to
the verification algorithm even when equipped with more expressive queries.

1.3 Related Work

In addition to the above-discussed motivation underlying our work, the problem
we consider can be viewed as inspired by a long line of research on proving effi-
ciency trade-offs for various primitives that are constructed in a black-box man-
ner in the standard model (see, for example, [KST99, GGK+05,BM07, Wee07,
BM09,HK10,HHR+15] and the many references therein). Despite the similarity
in terms of the goal of proving efficiency trade-offs, there are several fundamental
differences between this line of research and our work, as we now discuss.
Conceptually, results in this line of research provide lower bounds for construc-
tions that are based on specific and somewhat weak assumptions, such as the exis-
tence of one-way functions or permutations. Our work provides a lower bound for
any generic-group scheme, capturing assumptions that seem significantly stronger
than the existence of minimal cryptographic primitives. As a consequence, our
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lower bound applies to a wide variety of practical constructions, instead of some-
what theoretical constructions that are based on minimal assumptions.

Generally speaking, it is more challenging to prove lower bounds for schemes
in the generic-group model when compared to lower bounds for black-box con-
structions based on minimal assumptions. One-way functions or permutations
are typically modeled via random functions or permutations, which admit very
little structure that can be utilized by cryptographic constructions. This stands
in complete contrast to generic-group constructions that exploit the algebraic
structure of the underlying groups. The prime example for this substantial gap is
the fact that key-agreement protocols do not exist relative to a random function
or permutation, but do exist based on the decisional Diffie-Hellman assumption
and thus in the generic-group model [DH76,IR89, BM09].

Technically, out of this long line of research, the result that is closest to the
problem we consider is that of Horvitz and Katz [HK10]. They proved a lower
bound on the efficiency of statistically-binding commitment schemes based on
one-way permutations, in terms of the number of invocations of the one-way
permutation during the commit stage. In addition to the above-discussed differ-
ences between this line of research and our work, here we would like to point out
two more differences. First, Horvitz and Katz proved a lower bound for a prim-
itive with statistical soundness, whereas we consider a primitive with standard
computational soundness®. Second, and much more crucial, they proved a lower
bound on the efficiency of the commit stage, whereas we prove a lower bound on
the efficiency of verification. This is especially crucial given that accumulators
can be viewed as commitments with short local openings, and thus in general a
lower bound on the efficiency of the commit stage does not seem to imply any
meaningful lower bound on the efficiency of the decommit stage.

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation used throughout the paper, and formally describe the frame-
work of generic-group accumulators. In Sect. 3 we prove our main result in the
generic-group model, and in Sect. 4 we briefly discuss several open problems that
arise from this work. Due to space limitations we refer the reader to the full ver-
sion of this work for the extension of our result to the generic multilinear-group
model and to its extension beyond the generic-group model.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools
that are used in this work. For a distribution X we denote by x « X the process

5 When interpreted in our setting of the generic-group model (where algorithms are
unbounded in their internal computation), computational soundness considers adver-
saries that issue a polynomial bounded of group-operation queries, whereas statis-
tical soundness considers adversaries that may issue an unbounded number of such
queries.
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of sampling a value = from the distribution X. Similarly, for a set X we denote
by & «— X the process of sampling a value x from the uniform distribution
over X. For an integer n € N we denote by [n] the set {1,...,n}. For a vector
v € X*, where X is aset and k € N, and for any j € [k], we denote by (v); the jth
coordinate of v. For a set J C Z and an integer ¢ € Z welet i+J = {i+j|j € T}
A function v : N — R* is negligible if for any polynomial p(-) there exists an
integer N such that for all n > N it holds that v(n) < 1/p(n).

2.1 Generic Groups and Algorithms

We prove our results within the generic-group model introduced by Maurer
[Mau05]. We consider computations in cyclic groups of order N (all of which
are isomorphic to Zy with respect to addition modulo N), for a A-bit integer N
that is generated by an order-generation algorithm OrderGen(1%), where A\ € N
is the security parameter (and N may or may not be prime).

When considering such groups, each computation in Maurer’s model is asso-
ciated with a table B. Each entry of this table stores an element of Zy, and
we denote by V; the group element that is stored in the ith entry. Generic algo-
rithms access this table via an oracle O, providing black-box access to B as
follows. A generic algorithm A that takes d group elements as input (along with
an optional bit-string) does not receive an explicit representation of these group
elements, but instead, has oracle access to the table B, whose first d entries
store the Zy elements corresponding to the d group element in A’s input. That
is, if the input of an algorithm A is a tuple (g1, ..., 94, ), where ¢1,...,gq are
group elements and x is an arbitrary string, then from A’s point of view the
input is the tuple (q1,...,4J4, ), where gi,...,gq are pointers to the group ele-
ments g, ..., gq (these group elements are stored in the table B), and «x is given
explicitly. All generic algorithms in this paper will receive as their first input a
generator of the group; we capture this fact by always assuming that the first
entry of B is occupied by 1 € Zy, and we will sometimes forgo noting this
explicitly. The oracle O allows for two types of queries:

— Group-operation queries: On input (i,4,0) for 4,5 € N and o € {4+, -},
the oracle checks that the ith and jth entries of the table B are not empty,
computes V; o V; mod N and stores the result in the next available entry. If
either the ith or the jth entries are empty, the oracle ignores the query.

— Equality queries: On input (¢,j,=) for i,j € N, the oracle checks that
the ith and jth entries of the table B are not empty, and then returns 1 if
Vi = V; and 0 otherwise. If either the i¢th or the jth entries are empty, the
oracle ignores the query.

In this paper we consider interactive computations in which multiple algo-
rithms pass group elements (as well as non-group elements) as inputs to one
another. This is naturally supported by the model as follows: When a generic
algorithm A outputs k group elements (along with a potential bit-string o), it
outputs the indices of k (non-empty) entries in the table B (together with o).
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When these outputs (or some of them) are passed on as inputs to a generic algo-
rithm C, the table B is re-initialized, and these values (and possibly additional
group elements that C receives as input) are placed in the first entries of the
table. Additionally, we rely on the following conventions:

1. Throughout the paper we refer to values as either “explicit” ones or “implicit”
ones. Explicit values are all values whose representation (e.g., binary strings
of a certain length) is explicitly provided to the generic algorithms under
consideration. Implicit values are all values that correspond to group elements
and that are stored in the table B — thus generic algorithms can access them
only via oracle queries. We will sometimes interchange between providing
group elements as input to generic algorithms implicitly, and providing them
explicitly. Note that moving from the former to the latter is well defined,
since a generic algorithm A that receives some of its input group elements
explicitly can always simulate the computation as if they were received as
part of the table B.

2. For a group element g, we will differentiate between the case where g is
provided explicitly and the case where it is provided implicitly via the table
B, using the notation ¢ in the former case, and the notation g in the latter.
Additionally, we extend this notation to a vector v of group elements, which
may be provided either explicitly (denoted v) or implicitly via the table B
(denoted ).

Known-Order vs. Unknown-Order Generic Groups. We consider two fla-
vors of generic groups: groups of known orders and groups of unknown orders. In
the case of known-order groups, as discussed above we prove our results within
Maurer’s generic-group model [Mau05] that lets all algorithms receive the order
of the underlying group as an explicit input.

In the case of unknown-order groups, we prove our results in a natural variant
of Maurer’s model by following the approach of Damgard and Koprowski [DK02].
They considered a variant of Shoup’s “random-encoding” model [Sho97] where
the order of the underlying group is not included as an explicit input to all algo-
rithms (still, however, the corresponding order-generation algorithm OrderGen
is publicly known). We consider the exact same variant of Maurer’s model (i.e.,
Maurer’s model where the order of the underlying group is not included as an
explicit input to all algorithms) for proving our results for unknown-order groups.

The known-order and unknown-order flavors of generic groups are incompa-
rable for analyzing the security of cryptographic constructions. In the known-
order variant, constructions can explicitly rely on the order of the underlying
group, but this holds for attackers as well. In the unknown-order variant, nei-
ther constructions or attackers can explicitly rely on the order of the underlying
group.

Finally, it should be noted that these two flavors of generic groups seem to
somewhat differ in the extents in which they capture group-based constructions
of cryptographic primitives. While the known-order flavor seems to capture quite
accurately generic computations in prime-order cyclic groups and multilinear
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groups, the unknown-order flavor seems somewhat less accurate in capturing
generic computations in RSA groups. Specifically, in the unknown-order flavor,
the order of the underlying group is hidden in an information-theoretic manner
and generic algorithm are unbounded in their internal computation. However,
in “natural” RSA-based constructions, the order of the underlying group is only
computationally hidden (i.e., the modulus N = P - @ is known but the order
of the multiplicative group Z} is unknown based on the factoring assumption),
and algorithms are polynomially-bounded in their computation.

Addressing these differences, Aggarwal and Maurer [AM09] proposed the
incomparable generic-ring model, where algorithms are provided with the mod-
ulus NV but are restricted in their computation. A interesting open problem for
future research is whether or not our techniques extend to other idealized mod-
els such as the generic-ring model. Despite any potential differences between
the various models, impossibility results in any idealized model direct cryptana-
lytic efforts and candidate constructions away from generic impossibility results,
and serve as a necessary step towards proving such results within less-idealized
models.

2.2 Generic-Group Accumulators

For concreteness, we frame the following definition for known-order generic
groups, noting that the analogous definition for unknown-order generic groups
is obtained by not providing the order N of the underlying group as an input
to any of the algorithms. Our definition is parameterized by 5 functions corre-
sponding to the measures of efficiency that are considered in our work, and we
refer the reader to Table 1 for the list of all the parameters used in the following
definition.

Definition 2.1. A generic-group (nacc, YAcc, Mrs €, @)-accumulator over a
domain X = {X)}.en is a triplet ACC = (Setup, Prove, Vrfy) of generic algo-
rithms defined as follows:

— The algorithm Setup is a probabilistic algorithm that receives as input the
security parameter A € N, the group order N and a set X C &). It outputs
an accumulator Acc = (A/cc\(.;,Accstr) and a state state € {0, 1}*, where Accg
is a sequence of nacc(A, | X|) group elements, and Accg, € {0, 1}¢AcIXD

— The algorithm Prove is a probabilistic algorithm that receives as input an
accumulator Acc, a state state € {0,1}* and a set S C X), and outputs a
proof m = (TG, Tstr), Where 7g is a sequence of n, (), |S|, k) group elements,
s € {0, 1}4"()‘"3"’“) is an explicit string, and k is the number of elements
that have been accumulated by Acc.

— The algorithm Vrfy is a deterministic algorithm that receives as input an
accumulator Acc, a set S C X and a proof 7, issues an arbitrary number of
equality queries and at most g(A, |S|, k) group-operation queries and outputs a
bit b € {0,1}, where k is the number of elements that have been accumulated
by Acc. Note that we do not restrict the number of equality queries that
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Table 1. The parameters considered in Definition 2.1.

A The security parameter

k(X) The number of accumulated elements (i.e., k = | X|)

t(A) The number of elements for which a batch membership
proof is generated and then verified (i.e., ¢ = |S| where
SCX)

NAcc(A, k) | The number of group elements produced by Setup when
accumulating a set of k elements

lacc(A, k) | The bit-length of the explicit string produced by Setup
when accumulating a set of k elements

nx(A\,t, k) | The number of group elements produced by Prove when
proving membership of a set of ¢ elements out of k
accumulated elements

Lx(\ t, k) | The bit-length of the explicit string produced by Prove
when proving membership of a set of ¢ elements out of k
accumulated elements

g(A, t, k) | The number of group-operation queries issued by Vrfy
when verifying a membership proof for a set of ¢
elements out of k accumulated elements (we prove our
lower bound even for verification algorithms that issue
an arbitrary number of equality queries)

are issued by the verification algorithm and this only makes our lower bound
stronger (i.e., our lower bound on the number of group-operation queries holds
even for accumulators in which the verification algorithm issues all possible
equality queries).

Correctness. The correctness requirement for this most basic form of accu-
mulators is quite natural: For any set X C X of accumulated elements, any
membership proof that is generated by the algorithm Prove for any set S C X
should be accepted by the algorithm Vrfy. More formally:

Definition 2.2. A generic-group accumulator ACC = (Setup, Prove, Vrfy) over
a domain X = {X) }aen is correct with respect to an order-generation algorithm
OrderGen if for any A € N and for any two sets S C X C X, it holds that

Pr [Vrfyo (Acc, S, 7) = 1] —1

where N « OrderGen (1), (Acc, state) < Setup® (A, N, X) and 7 < Prove® (Acc,
state, S), and the probability is taken over the internal randomness of all algo-
rithms.

Security. We extend the standard notion of security for accumulators to con-
sider batch verification (i.e., supporting the simultaneous verification of sets of
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elements instead of individual elements). Our notion of security considers an
adversary who specifies a set X C X of elements, receives an accumulator Acc
that is honestly generated for X, and can then ask for honestly-generated mem-
bership proofs for sets S C X. Then, the adversary aims at outputting a pair
(S*,7*), where S* C X, that is accepted by the verification algorithm as a valid
membership proof for the set S* with respect to the accumulator Acc although
S* g X.

Definition 2.3. A generic-group accumulator ACC = (Setup, Prove, Vrfy) over
a domain X = {X)}en is secure with respect to an order-generation algorithm
OrderGen if for any algorithm A = (Ao, A1) that issues a polynomial number of
queries there exists a negligible function v(\) such that

Pr [Expt 400 4(A) = 1] < v())

for all sufficiently large A € N, where the experiment Expt 4cc 4()) is defined as
follows:

. N « OrderGen(1%).
. X « A§(1*, N) where X C Xj.
. (Acc, state) «— Setup®(1*, N, X).
(@}
(ST — A?’Prove (ACC’State")(IA,N, Acc) where S* C X.
. I Vrfy™ (Ace, S*, 7*) = 1 and S* € X then output 1, and otherwise output 0.

Tk W N

Note that the above definition provides the algorithm A; with adaptive and
post-challenge access to the oracle Prove® (Acc, state, -). In fact, the adversaries
we present for proving our results do not require such a strong form of access to
honestly-generated proofs. Specifically, already our algorithm Ay can specify a
list of queries to this oracle, in a completely non-adaptive manner and indepen-
dently of the challenge accumulator Acc. That is, our results apply already for
a seemingly much weaker notion of security.

In addition, note that the output of the setup algorithm consists of two
values: A public value Acc (the accumulator itself) that is used by both the Prove
algorithm and the Vrfy algorithm, and a private state state that is used only by
the Prove algorithm (the private state may include, for example, the randomness
that was used by the Setup algorithm, for generating the accumulator).

Finally, as standard in the generic-group model, the above definition restricts
only the number of queries issued by the adversary, and does not restrict the
adversary’s internal computation (i.e., the definition considers computationally-
unbounded adversaries). As a consequence, note that without loss of generality
such an adversary A = (Ag, A1) is deterministic, and there is no need to transfer
any state information from Ay to A; (this can at most double the number of
queries issued by A).

3 Owur Lower Bound in the Generic-Group Model

In this section we prove our main technical result, providing a lower bound on
the number of group-operation queries required for batch verification. We prove
the following theorem.
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Theorem 3.1. Let ACC be an (nacc, Cace, "ry Uny @) -accumulator in the generic-
group model over a domain X = {Xy}ien, for some polynomials nacc =
nAcc(/\a k); gAcc = EAcc(/\v k); Npg = n‘n’(>‘v kvt); gﬂ = E,T(A, kvt) and q = Q()‘v kat):
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen, then for any polynomials k = k(A) > 1 and t = t(\) < k and for
all sufficiently large A € N it holds that

10g2 (‘)2‘) - {nAcc . 10g2 (nAcc + 1) + fAcc 1

Nt k)=021(1- .
q(??) k' log)\

As discussed in Sect. 1.1, recall that log, (l)z*l) is the expected number of bits
required for an exact representation of k elements, and that nacc - logy(nacc +
1) + lacc is the amount of information that is actually stored by a generic-
group accumulator from its verification algorithm’s point of view. The following
corollary of Theorem 3.1 shows that as long as the amount of information stored
by an accumulator is bounded away from the information-theoretic amount that
is required for an exact representation, then non-trivial batch verification is
impossible.

Corollary 3.2. Let ACC be an (nacc, Lace, ry U, q)-accumulator in the generic-
group model over a domain X = {Xy}ien, for some polynomials nacc =
Nacc(A k), lace = lacc (N k), e = na (N k), b = Lo (N K t) and g = q(\ kK, t),
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen and |Xy| = 27N then for any polynomials k = k()\) > 1 and
t=t(\) <k, for any 0 < e <1 and for all sufficiently large A € N, either

X
N Acc * logz(nAcc + 1) + lacc > (1 - 6) : 10g2 <| )\|)

k
e
Et)y=021(¢t- .
q(\ k1) ( log)\>

or

We prove the following lemma from which we then derive Theorem 3.1 and
Corollary 3.2.

Lemma 3.3. Let ACC be an (nacc, Lace; s Uy @) -accumulator in the generic-
group model over a domain X = {Xy}ien, for some polynomials nacc =
nAcc()‘v k); €Acc = gAcc(/\v k); Npg = nﬂ'()‘a kvt); €7r = eﬂ(Av kvt) and q= Q()‘v kat)7
and let OrderGen be an order-generation algorithm. If ACC is secure with respect
to OrderGen then for any polynomials k = k(X)) > 1 and t = t(\) < k and for all
sufficiently large A € N it holds that

1 X n .
5 . <| k>\|> < (nAcc + 1) Acc | 2@Acc . (nAcc +n, +3q+ 1)64 [k/t] (1)

In what follows, in Sect. 3.1 we prove Lemma 3.3, and then in Sect. 3.2 we
rely on Lemma 3.3 for deriving the proofs of Theorem 3.1 and Corollary 3.2.
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3.1 Proof of Lemma 3.3

For simplicity, we first prove the lemma for the case of known-order groups,
and then show that the proof extends to unknown-order groups. The proof of
Lemma 3.3 relies on the following notation given an (nacc, £acc, rs £, ¢)-generic-
group accumulator ACC = (Setup, Prove, Vrfy) over a domain X = {X)}ren
(recall Definition 2.1):

— In any execution of the verification algorithm VrfyO(Acc, S, 7), note that the
table B which stores group elements (and to which the oracle O provide black-
box access — as described in Sect. 2.1) consists of at most nacc +nr +q + 1
entries: The table contains the generator 1 € Zy in its first entry (as stan-
dard for all computations in this model), then it contains the nac group
elements that are part of the accumulator Acc, the n, group elements that
are part of the proof =w, and finally at most ¢ additional group elements
that result from the group-operation queries issued by the verification algo-
rithm. In addition, recall that each such query can be specified by providing
a pair of indices to entries in the table together with the query type (i.e., the
group operation + or the group operation —). Therefore, each query has at
most 2 (nacc + nx + ¢ + 1)? possibilities. We let VrfyQueriesy . s . denote the
concatenation of the encodings of all queries made during the computation
Vrfy©(Acc, S, 7) (in the order in which the queries were issued). Thus, the
total number of possibilities for VrfyQueriesy . g . is at most

(2 (nace + nr + ¢ +1)*)" < (nace + nr + ¢ +1)%,

since 2 < nacc +Nnr + g+ 1.

~ In any execution of the verification algorithm Vrfy® (Acc, S, ) we would also
like to encode the equality pattern of all group elements in the table B. Recall
that the table contains the generator 1 € Zy, the nac group elements that
are part of the accumulator Acc, the n, group elements that are part of the
proof 7, and then at most ¢ additional group elements that result from the
group-operation queries issued by the verification algorithm. We split this
encoding into the following three ingredients:

e The equality pattern for the generator 1 € Zy and the nac group ele-
ments that are part of the accumulator Acc (i.e., for the nac + 1 first
entries of the table) can be encoded as follows: For each of the nacc group
elements that are part of the accumulator Acc we encode the index of
the minimal entry among the first nacc + 1 entries of the table that con-
tains the same group element (independently of whether a corresponding
equality query was explicitly issued by the verification algorithm). We
denote this encoding by AccEqualities, .. There are at most (nacc + 1)«
possibilities for AccEqualitiesy,..

e The equality pattern for the n, group elements that are part of the proof
7 (i.e., for the next n, entries of the table) can be similarly encoded
which results in at most (nacc + 1, + 1)~ possibilities. However, n, can
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be significantly larger than ¢, and this may potentially lead to a too-long
encoding for the purpose of our proof.

Thus, instead of encoding the equality pattern among all n, group ele-
ments that are part of the proof =, it is in fact sufficient for us to
encode the equality pattern only among those elements that are involved
in the group-operation queries that are issued during the computation
VrfyO(Acc, S, 7). There are at most ¢ such queries, and therefore we
need to encode the equality pattern only among at most 2q elements
out of the n, group elements that are part of the proof w. For each
such element we encode the index of the minimal entry among the first
nacc+2g+1 entries of the table that contains the same group element (not
including the entries that are not involved in any of the group-operation
queries). The number of possibilities for ProofEqualitiesa g ., is at most
(nAcc + 2(] + 1)2q.

e The equality pattern for the (at most) ¢ group elements that result from
the group-operation queries issued by the verification algorithm (i.e., for
the last ¢ entries of the table) can be encoded the same way (while again
not including the entries of the proof 7 that are not involved in any of
the group-operation queries) resulting in at most (nacc + 2¢ + ¢ + 1)¢
possibilities. We denote this encoding by QueriesEqualitiesa.. g -

Equipped with the above notation, we now prove Lemma 3.3.

Proof of Lemma 3.3. Let ACC = (Setup, Prove, Vrfy) be an (nacc, acc, r, €r,
q)-generic-group accumulator for some nacc = nacc(\, k), lacc = lacc(N\ k), np =
ne(A\k,t), be = (N k,t) and ¢ = q(\ k,t), and let OrderGen be an order-
generation algorithm. Fix any polynomials k = k(A) > 1 and ¢t = t(\) < k. We
show that if Eq. (1) does not hold for infinitely many values of A € N, then there
exists a generic-group attacker A that issues a polynomial number of queries
for which Pr [Expt Acc, 4N = 1] is non-negligible in the security parameter \ €
N (recall that the experiment Exptcc 4(\) was defined in Definition 2.3 for
capturing the security of generic-group accumulators).

At a high level, for any security parameter A\ € N our attacker A, participating
in the experiment Expt 4cc 4(A), will choose a random set X C &) of k elements
for which the setup algorithm Setup will honestly generate an accumulator. Then,
A will partition S into subsets of size ¢, and ask for an honestly-generated batch
membership proof for each such subset. Then, with high probability, this will
allow A to forge a batch membership proof for a set S* € X of size t.

In what follows we first describe the attacker A and then analyze its success
probability. For simplicity we assume throughout the proof that ¢ divide k, and
we let v = k/t (this is not essential and can be trivially avoided at the cost of
somewhat degrading the readability of the proof). In addition, we let < denote
any ordering of the elements of the set X = {X)\}nen (e.g., the lexicographic
order). As discussed in Sect. 2.1, recall that for a group element g and for a
vector of group elements v, we will differentiate between the case where g and v
are provided explicitly and the case where they are provided implicitly via the
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table B, using the notation g and v in the former case, and the notation g and
v in the latter.

The attacker A = (A4, A;)

The algorithm Ap. On input (1%, N) and oracle access to O(-), the algorithm Ao
samples a uniformly distributed set X C X that consists of k distinct elements
z1 < --- < xg. It then outputs the set X, and also passes it as its internal state
to the algorithm Aj;.

The algorithm .A;. On input (1*, N, Acc, X) and oracle access to O(-) and to
Prove® (Acc, state, -), where (Acc, state) « Setup®(1*, N, X) is honestly-generated
within the experiment Expt 4cc 4(A), the algorithm A; is defined as follows:

1. The algorithm .A; computes the equality pattern AccEqualities,.. by issuing
equality queries (recall that Acc = (Accg, Accs), where Accg is a sequence of
nacc(A, k) group elements that can be accessed indirectly via oracle queries,
and Accer € {0, l}eA“(A’k) is an explicit string that can be accessed directly).

2. For every i € [v] the algorithm A; queries the oracle Prove®(Acc, state, -)
with the set S; = {z(-1).¢41,--.,Tit} to obtain a proof m
ProveO(Acc, state, S;). We denote m; = (7;.¢, mi,str), Where m; ¢ is a sequence
of nr (A, t, k) group elements that can be accessed indirectly via oracle queries
and 7; s € {0, 1}4”(’\"5”“) is an explicit string that can be accessed directly.
Then, the algorithm A; executes VrfyO(Acc, S;,m;) for obtaining the query
pattern VrfyQueriesy . s, ., by forwarding the queries issued by Vrfy to the
oracle O, and issues additional equality queries for computing the equality
patterns ProofEqualities,.. g, », and QueriesEqualitiesy. g, ;-

3. The algorithm A; finds a set X’ C X, that consists of k distinct elements

] < -+ <z, and strings v’,r1,...,7, € {0,1}* satisfying the following
requirements:

- X' #£X.

— AccEqualitiesp.. = AccEqualitiesy,. and Accl, = Accsy, where

(Acc’,state’) = Setup(1*, N, X’;7') and Acc’ = (Accg, Accstr). Note that
all inputs to the computation Setup(lA, N, X';7') are explicitly known to
Ai, and therefore this computation can be internally emulated without
any oracle queries.

— For every i € [v] it holds that

VrnyuerlesAcc,,ngg = VrfyQueriesy.. g, ..
ProoquuahtlesAcc,’S;m; = ProofEqualitiesa . g, ,

QueriesEqualitiesy s g/ .+ = QueriesEqualitiesy. g, -,

where m; = Prove(Acc’, state’, Si; 1) and S = {&(;_1).4415- -+ Tit }-
If such a set X' and strings r',r1,...,7r, € {0,1}* do not exist, then the
algorithm A; aborts the experiment.
4. Let i* € [v] be any index such that Sj~ ¢ X (e.g., the smallest one), then the

algorithm A; outputs S* = S« and 7* = (775,#;,)7 where 7 is a sequence

of n, group elements that are defined below and 73, = i« &, is an explicit
string.




Accumulators in (and Beyond) Generic Groups 97

(a) Let J C [nx] be the positions of the group elements that are part of
the proof m;+ which are accessed by the group-operation queries issued
during the computation Vrfy© (Acc, Six, mi+).

(b) For every j € J we define (ng;); = (mi=,c); (i-e., we set w¢; to agree with
= ¢ on the group elements in the positions included in J).

(c) Let T' =1+ nacc + nx + g, and for every j € [T] we denote by V; and VJ
the group element at the jth entry of the table B in the computations
Vrfy© (Acc, Six, mi+ ) and Vrfy@ (Acc’, Six, i ), respectively. Note that T’ =
1 4+ nacc + nr + ¢ is indeed an upper bound on the number of entries in
the table B in these computations: The first entry contains the element
1 € Zn, the next nac entries contain the group elements of the given
accumulator, the next n, entries contains the group elements of the given
proof, and then there are at most ¢ entries that result from the group-
operation queries issued by the verification algorithm. Let Z = {1,...,1+
Nacc} U (1 +nace + T)U{l +nacc +nr+1,..., 1+ nacc +n~ + ¢} C [T].

[Recall that 14 nacc + J = {1 + nacc +jlj € T}]
(d) For every j € [n.] \ J in increasing order we define (7(;); as follows:
i. If there exists a position w € Z such that (7 ¢); = Vi, then we
define (7&); = V.
ii. Otherwise, if for all positions w € Z it holds that (7« ¢); # Vi, then
A. If there exists some k € [nx| \ J such that k < j and (mjx ¢); =
(7ix.a )k, then define (75); = (7&)k (note that (w&)x is already
defined in this stage since k < j).
B. Otherwise, we define (7(;); arbitrarily such that (75); # Vi for
all w € T and (n5); # (7g)k for all k € [ng]\ J such that k < j.

At this point, after having described our attacker A, we are ready to analyze
its success probability: In Claim 3.4 we prove that A aborts with probability
at most 1/2, and in Claim 3.5 we prove that any execution in which A does
not abort results in a successful forgery. First, however, we observe that the
query complexity of our attacker is polynomial in k(\), nacc(A, k), ng(A k,t)
and g(\, k, t), and thus polynomial in the security parameter A € N. Specifically,
the algorithm 4y does not issue any queries, and the algorithm 4; issues the
following queries:

— Step 1: This step requires at most (nacc(),k))? queries for computing the
equality pattern AccEqualities,.. among the group elements Accg of the given
accumulator Acc.

— Step 2: This step requires v queries for obtaining the proofs 71, ..., m,, and at
most v - (nx(\, £, k) + nacc(M, k))? queries for computing the equality patterns
ProofEqualitiesy . g, », among the group elements 7; ¢ of the proofs 71, ..., m,.
In addition, this step requires at most v-q(X\, ¢, k)+v-(g(\ t, k) +n. (At k) +
nacc(A, k))? queries for computing the query patterns VrfyQueriesy.. ¢, 1,5 - - -
VrfyQueriesy . g, », and the query equality patterns QueriesEqualitiesa . g, 1,
-+, QueriesEqualitiesa .. g, . -

— Step 3: No queries. All inputs to the relevant computations are explicitly
known to Aj, and therefore these computations can be internally emulated
without any oracle queries.
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— Step 4: The sub-steps 4(a) — 4(c) do not require any queries, whereas sub-step
4(d) does require issuing both group-operation queries and equality queries.
Specifically, in sub-step 4(d).ii.B. the attacker defines (7(;); arbitrarily such
that (n5); # Vi, for all w € 7 and (n,); # (n&)k for all k € [ng] \ J such
that £ < j. This can be done, for example, by adding 1 € Zy to (7); in
an iterative manner until (7); # V,, for all w € 7 and (n); # (&), for
all k € [ng] \ J such that k& < j. The number of such iterations is upper
bounded by the number of distinct elements in the table B, which is at most
1+ nacc(\ k) + ne(Nt, k) + q(A t, k) (the number of entries in B).

Claim 3.4. For any A € N, if

1 X n .
5 (l kA) > (nace + 1) - 9lace . (MAce + 1r + 3q + 1)6q [k/t] (2)

then Pr [Aaborts] < 1/2.

Proof of Claim 3.4. We show that if Eq. (2) holds then with probability at
least 1/2 the attacker is able to find a set X’ C X that consists of k distinct
elements @} < --- < x4, and strings ' = (r/,7},...,7) € {0,1}*, that satisfy
the requirements specified in Step 3. Denote by r € {0,1}* the randomness
used by the algorithm Setup in the experiment Expt 4cc 4() (i-e., (Acc, state) =
Setup®(1*, N, X;7)). In addition, for every i € [v] denote by r; € {0,1}* the
randomness used by the oracle ProveO(Acc,state7 -} when computing a batch
membership proof for the set S; in the experiment Exptscc 4(A) (ie., m =
ProveO(Acc,state, Si;ri)), and let ¥ = (r,rq,...,7,). We show that even when
restricting the attacker to choose 7 = 7 there is still a set X’ that satisfies the
requirements specified in Step 3 with probability at least 1/2 over the choice
of X.

Consider the function Fr that takes as input a set X C X\ of k distinct
elements r1 < --- < xp, and returns as output the following values:

F:(X) = (AccEquaIitiesAcc,Accst,,

VrfyQueriesacc g, rys - - -5 VrfyQueriesac o o,
ProofEqualitiesacc g, x,, - - - , ProofEqualitiesp.. g, .
QueriesEqualitiesp.. g, r, - - - , QueriesEqualitiesy . g m)

where S; = {2(;_1).441, ..., Tst } for every i € [v], (Acc, sk) «— Setupo()\, N, X;r),
and m; <« Prove(Acc,sk, S;;r;) for every i € [v]. Our goal is to prove that with
probability at least 1/2 over the choice of X there exists a set X’ # X such that
Fr(X') = Fr(X). We prove this claim by showing that the size of the image of
the function F, denoted Image(F5), is at most half the size of its domain (this
guarantees that with probability at least 1/2 over the choice of X there exists a
set X' # X as required).
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The domain of the function Fy is of size (‘),?I). The number of possibil-
ities for an output of the function Fj is the product of the following quan-
tities (as discussed above when defining AccEqualitiess.., VrfyQueriesp.. g, .
ProofEqualitiesp.. s, », and QueriesEqualitiesp.. s, r,):

— AccEqualitiesp.. and Accg, have (nac + 1)™<« and 2%« possibilities, respec-
tively.

— VrfyQueries . g, ., for every i € [v] has (nacc + nx + q + 1) possibilities.

~ ProofEqualitiesy,. g, », for every i € [v] has (nacc + 2¢ + 1)?? possibilities.

~ QueriesEqualitiesp g, , for every i € [v] has (nacc + 3¢ + 1)7 possibilities.

Thus, the size of the image of the function Fj can be upper bounded via
[Image(F7)| < (nace +1)™ - 2% - (nace + ng + 3q + 1)1

We assume that Eq. (2) holds, and therefore the size of the image of the function
F- is at most half the size of its domain, and the claim follows.

Claim 3.5. For any A € N it holds that

Pr [Expt 4cc 4(A) = 1|-Adoes not abort] = 1.

Proof of Claim 3.5. Assuming that A does not abort we prove that Vrfy® (Acc,
Sj.,m*) = 1. Together with the fact that Sj. € X, this implies that Expt gcc 4(\)

= 1. Recall that the proof 7* = (7%77@““) is constructed using the two proofs

m;- and m}., where:

— A queried the oracle Proveo(Acc,state, -) with the set S;= to obtain mx =
(7@,7{1‘*75“) — ProveO(Acc,state, S;+), where m;« ¢ is a sequence of group
elements and 7« & is an explicit string.

/ A
— A generated 7. = (ﬂ'i*’GJT

i+ str) < Prove(Acc’,state’, Sj;7}) subject to

RE
the requirements specified in the description of the attack, where 7r§*7G is
a sequence of group elements and 77,2*&, is an explicit string.
The correctness of the accumulator guarantees that VrfyO(Acc, Si, m+) = 1 and
Vrfy(Acc’, S1.,7}.) = 1, and we show that Vrfy®(Acc, Si«,7*) = 1. This will
follow from the fact that the computation of the verification algorithm, which
can access group elements only via the oracle O, cannot distinguish between the
two inputs (Acc’, Si.,7l.) and (Acc, Sl 7*).

Recall that each computation is associated with a table B, where each entry
of this table stores an element of Zy, and that the oracle O provides black-box
access to B via group operations and equality queries. Let T' = 1+ nacc +nx +¢q,

and for every j € [T'] we denote by V;, V/ and V; the Zy element that is
located at the jth entry of the table B in the computations VrfyO (Acc, Six, mix ),
Vrfy(Acc’, S1.,7l.) and Vrfy© (Acc, Sl., m*), respectively.

1%
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Recall that we denoted by J C [n,]| the positions of the group elements
that are part of the proof 7;« which are accessed by the group-operation queries
issued during the computation VrfyO(Acc, Six, mi+ ). Recall also that we defined
T=A1,...,14nacc U1+ nacc+T)U{l+nacc+nr+1,...,1+nacc+nr+q} C
[T]. Observe that (V1,...,Vr) and (V{,...,V]), have the same equality pattern
when restricted to the position included in Z (although they may correspond to
different Zy elements), since based on the description of our attacker it holds
that

AccEqualitiesy.» = AccEqualitiesy,.

ProofEqualitiesa e s/, . = ProofEqualitiesy. g,

/ * T
QueriesEquaIitiesAcc/’Sé* ol = QueriesEqualitiespcc .. . -

In addition, the same queries are issued in the computations VrfyO(Acc, S, Tix )

and Vrfy(Acc’, S}.,7}.), as VrfyQueriesy. g/ . = VrfyQueriesp.c 5, .-

Recall that for every j € J we defined (r¢&); = (mix,¢);. Note that the
first 1 + nacc + n, entries of the table B are the Zy elements corresponding
to the group elements that are provided as part of the inputs to the computa-
tion. In both the computations Vrl‘yO(Acc7 S, mix ) and VrfyO(Acc, Si.,m*) the
first 1 4 nacc + nr entries of the table B are the elements (1, Accg, m+ ) and
(1, Accg, m§) respectively. Therefore, for every w € ZN[1+nacc+n-| it holds that
Vi = Vi. Since (Vi,...,Vp) and (V{,...,V]), have the same equality pattern
on the indices in Z, we get that (V{,...,V{ . )and (V{* ...,V . )
have the same equality pattern on the indices in Z. Recall also that for every
J € [nz]\J we defined (7f;); according to the equalities in (V7 ..., V) using the
elements in (V1,...,Vr) or new element when needed. So (V{*,...,Vi%,, ., )
and (V{,...,V{,, ., ) have the same equality pattern everywhere (i.e., not
only when restricted to the positions included in 7).

In what follows we prove that (Vi*,..., V) and (V/,...,V}) have the same
equality pattern everywhere (although they may correspond to different Z y ele-
ments). Together with the fact that the explicit inputs to their respective compu-
tations, Vrfy®(Acc, 7., 7*) and Vrfy(Acc’, SI.,m.), are the same (these are the
explicit bit-strings Accsy, i and 7. ), We obtain that Vrfy® (Acc, S, %) =
Vrfy(Acc’, SL., . as required.

We prove, via induction on j € {0,...,q}, that (1) for every w € ZT N
[1 + nace + ng + j] it holds that V5 = Vi, and (2) (V... V', 1, ;) and
(Vs sV fnptn,+;) have the same equality pattern. For the case j = 0 this
has already been established above.

Now assume that for some j € {0,...,¢g — 1} we have that for every
w € IN[1+nacc+nx+j] it holds that V;j = V,,, and that (Vi*,..., Vi%, o, 1))
and (V{,...,V{ ., +n +;) have the same equality pattern. We would like
to argue that the same holds for j + 1 as well. The entries Vi%, ., .4
and Vigna.4n.+j+1 contain the result of the next group-operation query in
the computations Vrfy© (Acc, Si.,m*) and Vrfy© (Acc, S;+,m;+). The next group-
operation query in the computation VrfyO(Ach’» 7*) is identical to that of

%
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the computation Vrfy(Acc’, S!.,ml.) (since both computations have the same

explicit inputs and so far have the same equality patterns in their tables),
and the next group-operation query in the computation Vrfy(Acc’, Sk, i) is
identical to that of the computation Vrfy®(Acc, Sj-,m) (since we required
VrnyueriesAcc/ﬁl{*Jr;* = VrfyQueriesp.c s.. x,.)- Therefore, the next group-

operation query in the computation Vrfy© (Acc, Si.,m*) is identical to that of the
computation Vrfy©(Acc, S+, m;-). Since the two tables (Vi ..., Vet ti)
and (V1,...,Vitnsetn.+;) are identical on the indices in Z, which contain
the indices of the queries of Vrfy, this implies that (Vi*,..., V{5, ..\ ..4)
and (Vi,...,Vigtnaetna+j+1) are identical on the indices in Z (which proves
part (1)).

Note that (Vi,...,Vitnaetno+j+1) and (V... Vi o . ..y) have the
same equality pattern on the indices in Z (by the description of our attacker), and
therefore (Vy*, ..., Vi, o o) and (VY ... Vi, 1, L. ;) have the same
equality pattern on the indices in Z. In addition, the elements (7,); of 7§, for all
J € [na] \ J are chosen to agree with the equality pattern of (V{,...,V}). Thus,

VS Ve tnatjrr) and (Vi Vi 1) have the same equality
pattern. ]
This settles the proof of Lemma 3.3. |

Extension to Unknown-Order Groups. As discussed in Sect. 2.1, we con-
sider two different flavors of generic groups: groups of known orders and groups of
unknown orders. When modeling known-order generic groups then all algorithms
receive the order of the underlying group as an explicit input, and when model-
ing unknown-order generic groups then the order is not provided (still, however,
the corresponding order-generation algorithm OrderGen is publicly known). In
our case, this difference corresponds to whether or not the accumulator’s proce-
dures Setup, Prove and Vrfy, and our attacker A receive the order of the group
as input, and the above proof of Lemma 3.3 assumes that they do.

This proof easily extends to the case where the accumulator’s procedures
and our attacker do not receive the order of the group as input. Specifically,
note that our attacker uses the order N of the group only in Step 3 of the
algorithm A, , for finding a set X’ C Xy and randomness 1/ = (r/,7,...,r/) that
satisfy the prescribed requirements (finding these values requires A; to internally
perform computations modulo N). However, if the accumulator’s procedures do
not receive the order of the group as input, then we can modify the algorithm
A; to find in Step 3, together with X’ and 7/, an integer N’ in the support of
the computation OrderGen(1*) such that the exact same conditions are satisfied
(while performing the required internal computations modulo N').

The proof of Claim 3.4 is essentially unchanged, now showing that even
when restricting the attacker to choose 7 = 7 and N’ = N there is still a set X’
that satisfies the prescribed requirements with probability at least 1/2 over the
choice of X (i.e., there exists at least one suitable choice of 7 and N’ exactly as
before). The proof of Claim 3.5 is completely unchanged, since the accumulator’s
procedures do not receive the order of the group as input, the exact same proof
shows that the verification algorithm, which can access group elements only



102 G. Schul-Ganz and G. Segev

via the oracle O, cannot distinguish between the two inputs (Acc’, S.., 7. ) and
(Acc, SL., 7).

1%

3.2 Proofs of Theorem 3.1 and Corollary 3.2

Equipped with Lemma 3.3 we now derive Theorem 3.1 and Corollary 3.2.

Proof of Theorem 3.1. Lemma 3.3 implies that for all sufficiently large A € N
it holds that

X
log, (| kA|> < Nace - 1logy(nace + 1) + lace

k
+ h—‘ -6q - logy(Nacc + 1 +3¢+ 1)+ 1
< NAce 1Og2 (nAcc + 1) + lacc
2k
+7 - 6q - logy(nacc + nx +3¢+ 1) + 1.
Therefore, using the fact that ¢ < k and ¢ > 1 we obtain

10g2 (l‘/“;?‘) - [nAcc : 10g2 (nAcc + ]-) + gAcc

t
k

t
< 12qlogy(nacc +nr + 3¢+ 1) + Z
< 12qlogs(nacc + nxr +3¢+1)+1
< 13qlogs(nacc + nr + 3q + 1).

Since the functions nacc, n, and ¢ are all polynomials in the security parameter
A €N, then logy(nacc + nr + 3¢ + 1) = O(logy A), and therefore

log, ('?I) — {nAcc -logy(nace + 1) + EACC} 1
t.

-0 .
1 k log A

Proof of Corollary 3.2. If we assume that
X
Nace - 10gy (Nace + 1) + lace < (1 —¢€) - logy <| >‘|)
then

X X

log, Al - [nACC -logs(nacc + 1) + EACC} > € - logy [l
k k
|
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where Eq. (3) follows from the assumption that |Xy| > 2N and the fact that
k = k(\) is polynomial in the security parameter A € N. Therefore,

10g2 (M]?I) - |:nAcc : 10%2 (nAcc + 1) + EAcc 1
' k “log A

€A
=0t .
<t log A) "

4 Open Problems

In this section we briefly discuss several open problems that arise from this work.

Randomized Verification and Imperfect Correctness. Our work considers
accumulators with deterministic verification procedures and perfect correctness,
as noted in Sect. 2.2. Although this seems to be the case with the known accu-
mulators, the more general case of accumulators with randomized verification
procedures and imperfect correctness (i.e., valid proofs are accepted with all but
a negligible probability) is clearly fundamental, and thus an interesting direction
for future research.

Non-trivial Non-interactive Batch Verification in Shoup’s Model. As
discussed in Sect. 1.2, we prove our result within the generic-group model intro-
duced by Maurer [Mau05], which together with the incomparable model intro-
duced by Shoup [Sho97], seem to be the most commonly used approaches for
capturing generic-group computations. A natural open problem is whether our
result can be either proved or circumvented within Shoup’s model.

One should note that our result can be circumvented by applying the Fiat-
Shamir transform [BBF19,Thal9], and that the random injective mapping used
in Shoup’s model for explicitly representing group elements may potentially be
exploited towards this goal. Although, this can perhaps be viewed as somewhat
abusing Shoup’s model by relying on the randomness provided by the injective
mapping (which does not actually exist in concrete implementation of crypto-
graphic groups) instead of relying on the algebraic structure of the group.

The Efficiency of Batch Verification in Other Settings. Our work con-
siders the efficiency of batch verification in the specific setting of accumula-
tors. More generally, however, the efficiency of batch verification may be inter-
esting to study in other settings as well. One such setting is the general one
of non-interactive arguments, and specifically that of succinct non-interactive
arguments [Mic94] (which seem tightly related to accumulators as succinct non-
interactive arguments may be used to provide, for example, short membership
proofs for accumulated values).
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Abstract. Suppose Alice wants to convince Bob of the correctness of
k NP statements. Alice could send k witnesses to Bob, but as k grows
the communication becomes prohibitive. Is it possible to convince Bob
using smaller communication (without making cryptographic assump-
tions or bounding the computational power of a malicious Alice)? This
is the question of batch verification for NP statements. Our main result
is a new interactive proof protocol for verifying the correctness of £ UP
statements (NP statements with a unique witness) using communication
that is poly-logarithmic in k (and a fixed polynomial in the length of a
single witness).

This result is obtained by making progress on a different question in
the study of interactive proofs. Suppose Alice wants to convince Bob that
a huge dataset has some property. Can this be done if Bob can’t even
read the entire input? In other words, what properties can be verified in
sublinear time? An Interactive Proof of Proximity guarantees that Bob
accepts if the input has the property, and rejects if the input is far (say
in Hamming distance) from having the property. Two central complexity
measures of such a protocol are the query and communication complexi-
ties (which should both be sublinear). For every query parameter ¢, and
for every language in logspace uniform NC, we construct an interactive
proof of proximity with query complexity ¢ and communication com-
plexity (n/q) - polylog(n).

Both results are optimal up to poly-logarithmic factors, under rea-
sonable complexity-theoretic or cryptographic assumptions. The second
result, which is our main technical contribution, builds on a distance
amplification technique introduced in a beautiful recent work of Ben-
Sasson, Kopparty and Saraf [CCC 2018].

1 Introduction

The power of efficiently verifiable proof-systems is a central question in the
study of computation. It has been the focus of a rich literature spanning cryp-
tography and complexity theory. This literature has put forth and studied dif-
ferent notions of proof systems and different notions of efficient verification.
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Interactive proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMRR9], are one of the most fundamental notions in this field. An
interactive proof is an interactive protocol between a randomized verifier and
an untrusted prover. The prover convinces the verifier of the validity of a com-
putational statement, usually framed as membership of an input z in a lan-
guage L. Soundness is unconditional. Namely, if the input is not in the lan-
guage, then no matter what (unbounded and adaptive) strategy a cheating
prover might employ, the verifier should reject with high probability over its
own coin tosses. Interactive proofs have had a dramatic impact on complexity
theory and on cryptography. Opening the door to randomized and interactive
verification led to revolutionary notions of proof verification, such as zero knowl-
edge interactive proofs [GMR89, GMW91] and probabilistically checkable proofs
(PCPs) [BGKWS88,FRS94, BFLI1,BFLS91,FGL+96,AS92, ALM+98]. Interac-
tive proof-systems also allow for more efficient verification of larger classes of
computations (compared with NP proof systems), as demonstrated in the cele-
brated IP = PSPACE Theorem [LFKN92,Sha92].

Still, foundational questions about the power of interactive proof systems
have remained open. Our work studies two such questions:

1.1 Batch Verification

Can interactive proofs allow for more efficient batch verification of a collection
of NP statements?

Question 1:
How efficiently can an untrusted prover convince a verifier of the correctness of
k NP statements?

A naive solution is sending the k witnesses in their entirety. An honest prover,
who knows the witnesses, runs in polynomial time, but the communication grows
linearly with k. For the case of UP statements—NP statements with a unique
witness—we show a protocol where the communication complexity grows poly-
logarithmically with k& (and the honest prover remains efficient):

Theorem 1 (Informally Stated, see Theorems 4.2 and 4.1). Let L € UP
with witnesses of length m = m(n). There exists an interactive proof for verifying
that k instances 1, . . ., xy, each of length n, all belong to L. The communication
complezity is poly(log(k), m), where poly refers to a fixed polynomial that depends
only on the language L. The number of rounds is polylog(k). The verifier runs in
time O(kn) + polylog(k) - poly(m), where n is the length of each of the instances.
The honest prover runs in time poly(k,n,m) given the k unique witnesses.

This resolves the communication complexity of batch verification for UP up to
poly(log(k), m) factors: under complexity-theoretic assumptions, even for k =
1 there are UP languages (e.g. unique SAT) for which every interactive proof
system requires communication complexity 2(m) [GH98, GVWO02]. When the
number of instances k is large, this can be a significant improvement over the
naive solution in which the prover sends over all k£ witnesses.
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We note that for UP relations that are checkable in log-space uniform NC,
we can reduce the communication complexity to m - polylog(k, m). As discussed
above, this is tight up to polylog(k) factors (under complexity assumptions). We
also note that, assuming the existence of one-way functions, our batch verifica-
tion protocol (which is public coin) can be made zero-knowledge using standard
techniques [BGG+88].

Comparison to Prior Work. A different solution can be obtained via the
IP = PSPACE theorem, by observing that the membership of & inputs in an
NP language can be decided in space O(logk + m - poly(n)), where n is the
length of a single input and m is the length of a single NP witness. Thus, by the
IP = PSPACE Theorem, there is an interactive proof for batch verification with
communication complexity poly(log k, n, m). A major caveat, however, is that the
complexity of proving correctness (the running time of the honest prover) is expo-
nential in poly(n,m). We, on the other hand, focus on batch verification where
the honest prover runs in polynomial time given the k& NP witnesses. We refer
to such an interactive proof as having an efficient prover.! Another significant
drawback of this solution is that the number of rounds becomes poly(m,log k).

Two recent works have constructed protocols for efficient batch verification
of UP statements. Reingold, Rothblum and Rothblum [RRR16] gave a protocol
with communication complexity polylog(k) - poly(m) + k - polylog(m). In a sub-
sequent work [RRR18] they eliminated the additive k factor but increased the
multiplicative factor, by showing a (constant-round) protocol with communica-
tion complexity k¢ - poly(m), for any £ > 0. Our main result achieves the best
of both worlds: eliminating the additive linear factor while preserving the poly-
logarithmic multiplicative factor (although our protocol has a larger number of
rounds than that of [RRR18]).

1.2 Interactive Proofs of Proximity

A different question (which turns out to be related) asks which statements can be
verified in sublinear time, i.e. without even reading the entire input. This imme-
diately raises the question of what computational model is used to capture “sub-
linear time”. Drawing inspiration from the literature on sublinear algorithms, a
natural choice is to adopt the perspective of property testing, a study initiated
by Rubinfeld and Sudan [RS96] and Goldreich, Goldwasser and Ron [GGR9S],
which considers highly-efficient randomized algorithms that solve approximate
decision problems, while only inspecting a small fraction of the input. Such
algorithms, commonly referred to as property testers for a set S (say the set of
objects with some property), are given query access to an input, and are required
to determine whether the input is in S (has the property), or is far (say, in Ham-
ming distance) from every string in S (far from having the property). A rich
literature has put forward property testers for many natural properties.

! Efficiency of the honest prover (given an NP witness) has been central in the study
of zero-knowledge interactive proofs [GMR89, GMW091]. It has also been central to
the study of efficient batch verification in recent works [RRR16,RRR18].
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Analogously, in the proof verification setting, Interactive Proofs of Proximity
(IPPs) aim to verify that a given input is close to a set (or a property). Given
a desired proximity parameter 6 € (0, 1], the soundness condition of standard
interactive proofs is relaxed: it should be impossible to convince the verifier to
accept statements that are d-far (in fractional Hamming distance) from true
statements (except with small probability). Such proof-systems were first intro-
duced by Ergiin, Kumar and Rubinfeld [EKR04] and were more recently further
studied by Rothblum, Vadhan and Wigderson [RVW13] and by Gur and Roth-
blum [GR13]. The verifier’s query complexity and running time, as well as the
communication, should all be sublinear in the input length. Other parameters of
interest include the (honest) prover’s running time and the number of rounds.

The hope is that IPPs can overcome inherent limitations of property testing:
for example, demonstrating specific properties where verifying proximity can be
significantly faster than the time needed to test (without a prover). Another goal
is showing that sublinear-time verification is possible for much richer families of
properties than those for which property testers exist. In particular, research on
property testing has focused on constructing testers for languages based on their
combinatorial or algebraic structure. This limitation seems inherent, because
there exist simple and natural languages for which (provably) no sublinear time
property testers exist. In contrast, it is known that highly non-trivial IPPs exist
for every language that can be decided in bounded-polynomial depth or space
[RVW13,RRR16]. However, the optimal tradeoffs between the query and com-
munication complexities needed for proof verification were not known, and this
is the second foundational question we study:

Question 2:
What are the possible tradeoffs between the query and communication
complezities in interactive proofs of proximity, and for which statements?

For the case of languages in (uniform) NC—languages that can be decided by
polynomial-sized circuits of polylogarithmic depth—we show that the product
of the query and communication complexities can be quasi-linear.

Theorem 2 (Informally Stated, see Theorem 4.1). Let t = t(n) < n be a
parameter. For every 6 < M and every language L in log-space uniform
NC, there exists an IPP for L with respect to proximity parameter §, with com-
munication complezity t - polylog(n) and query complexity O(1/68). The verifier
runs in time O(t +n/t) and the prover runs in time poly(n).

For example, by setting ¢(n) = y/n we obtain an IPP for NC with query,
communication and verification complexity all O(y/n). This result resolves the
question for such languages, up to polylogarithmic factors, as Kalai and Roth-
blum [KR15] showed that (under a reasonable cryptographic assumption) there
exists a language in NC* for which the product of the query and communication
complexities cannot be sublinear.
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Comparison and Relationship to [RVW13]. Theorem 2 shows that the product of
the query complexity and the communication can be quasi-linear (for a distance
parameter that is the inverse of the query complexity). Rothblum, Vadhan and
Wigderson [RVW13] showed a similar statement, but the product of the query
and communication complexities was n'to(1),

Our protocol builds on the framework developed in their work, introduc-
ing several new ideas and using a key distance amplification technique from
a beautiful recent work of Ben-Sasson, Kopparty and Saraf [BKS18]. We find
the improvement from n'*t°() to O(n) to be significant: beyond the fact that
it provides a nearly-optimal (up to polylog(n) factors) trade-off for a founda-
tional problem, it allows for IPPs with polylog(n) communication and sublinear
query complexity. In prior work, achieving sublinear query complexity (for NC)
required n°") communication. The importance of this distinction is exempli-
fied in the application of IPPs towards batch verification for UP [RRR18]. That
construction repeatedly uses IPPs with slightly-sublinear query complexity. The
communication of the resulting batch verification protocol is dominated by the
communication complexity of the IPPs. Indeed, the improved IPP of Theorem 2
is the key component behind the improved UP batch verification protocol of
Theorem 1.

1.3 Related Works

Batch Verification with Computational Soundness. If one is willing to settle
for computational soundness (i.e., soundness holds only against polynomial-
time cheating strategies) and to use cryptographic assumptions, then efficient
batch verification is possible for all of NP. In particular, Kilian [Kil92] gave
an interactive argument-system for all of NP based on collision-resistant hash
functions with only poly-logarithmic communication complexity. Since verifying
the membership of k instances in an NP language is itself an NP problem, we
immediately obtain a batch verification protocol with communication complexity
poly(log(n),log(k), k), where k is a cryptographic security parameter.

More recently, Brakerski, Holmgren and Kalai [BHK17] obtained an effi-
cient mon-interactive batch-verification protocol assuming the existence of a
computational private information retrieval scheme. Non-interactive batch ver-
ification protocols also follow from the existence of succinct non-interactive
zero-knowledge arguments (zkSNARGs), which are known to exist under certain
strong, and non-falsifiable, assumptions (see, e.g. [Ish], for a recent survey).

We emphasize that the batch verification protocols of both [Kil92] and
[BHK17] only provide computational soundness and are based on unproven cryp-
tographic assumptions. In contrast, the result of Theorem 1 offers statistical
soundness and is unconditional.

Interactive Proofs of Proximity. Beyond the works [EKR04, RVW13, GR13] that
were mentioned above, interactive proofs of proximity have drawn considerable
attention [FGL14,GGR15,KR15,RRR16,GR17,BRV18,RRR18,CG18,GLR1S,
RR19,GRSY20].
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In particular, we mention that a recent work of Ron-Zewi and Rothblum
[RR19, Theorem 3, see also Remark 1.3] shows that for every constant €, every
language computable in polynomial-time and bounded polynomial space has an
IPP with communication complexity € - n and constant query complexity. Note
that the product between the query and communication complexity in their
result is O(n), rather than n - polylog(n) as in Theorem 2. However, in constrast
to Theorem 2, their result is restricted to the regime of constant query complexity
and only yields communication complexity that is smaller by a constant factor
than that of the trivial solution (see Proposition 3.3).

1.4 Organization

Section 2 contains a technical overview of our techniques. In Sect. 3 we provide
preliminaries and our main results are stated in Sect. 4. In Sect. 5 we introduce
the PVAL problem and show how to amplify its distance. Our efficient PVAL IPP
is in Sect. 6. Lastly, in Sect. 7 we use the results established in the prior sections
to prove Theorem 1 and Theorem 2.

2 Technical Overview

To prove Theorem 1 we rely on a recent result of Reingold et al. [RRR18] who
showed how to reduce the construction of UP batch verification protocol to that
of constructing efficient IPPs. In particular, via the connection established in
[RRR18], in order to prove Theorem 1, it suffices to prove Theorem 2 with
respect to cc = polylog(n).

Thus, in this overview we focus on proving Theorem 2. Our starting point
for the proof of Theorem 2 is the IPP construction for NC from [RVW13] (which
achieves weaker parameters than those of Theorem 2).

The [RVW13] protocol is centered around a parameterized problem called
PVAL, which stands for “Polynomial eVALuation” and is defined next. A key
step in the [RVW13] proof is showing that PVAL is “complete” for constructing
IPPs for NC. In more detail, for every language £ € NC, [RVW13] show an
interactive reduction, in which the verifier makes no queries to its input. At the
end of the reduction, the verifier generates a “parameterization” of the PVAL
problem so that if the original input = belonged to £ then x belongs to PVAL,
whereas if x was far from £ then, with high probability, x is also far from PVAL.

Thus, an efficient IPP for PVAL immediately yields an efficient IPP for £ as
follows: the prover and verifier first engage in the interactive reduction to obtain
a parameterization of the PVAL problem. Then, the two parties run the efficient
IPP protocol to check proximity to the newly generated PVAL instance.

In this work we follow the same strategy. We do not modify the interactive
reduction step from [RVW13]. Our improved efficiency stems from a more effi-
cient IPP for PVAL (than that of [RVW13]), which suffices to obtain our main
results.
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We start by defining a specific variant? of the PVAL problem that suffices for
our purposes.

The PVAL Problem. Let F be a (sufficiently large) finite field. The PVAL problem
is parameterized by an integer ¢ € N, which we refer to as the arity, and a
dimension m € N. In addition the problem is parameterized by ¢ vectors j =
(G1,---,dt) € (F™) and ¢ scalars v = (vy,...,v;) € F'. The main input to
PVAL(t,j,v) is the truth table of a function f : {0,1}™ — F. We say that
f € PVAL(t,j,v) if it holds that f(j;) = v, for every i € [t], where f : F" — F
is the multi-linear extension of f.3 Thus, the goal of the PVAL verifier is to
distinguish the case that (1) the multilinear extension f of the input function f
is equal, at ¢ given points, to ¢ corresponding values, or (2) is far from any such
function. Note that the verifier is only allowed to make a sub-linear (i.e., < 2™)
number of queries to f, but is allowed to communicate with the (untrusted)
prover who has full access to f.

Our main technical contribution is an IPP for checking §-proximity to
PVAL(t,j, v) with communication complexity roughly ¢-poly(m) and query com-
plexity O(1/6) (see Theorem 6.1 for the formal statement). (Note that setting
§ = 2™ . poly(m)/t results in the product of the query and communication com-
plexities being O(2™), which is quasi-linear in the input length.) We proceed to
describe the new IPP for PVAL.

Attempt 1: Divide and Conguer. Fix a parameterization (t, j, v) for PVAL, where
j=01,---,jr) and v = (v1,...,v:), and consider a given input f : {0,1}" — TF.
Following [RVW13], we would like to first decompose the ¢ claims that we are
given about f into claims about the underlying functions fy, f1 : {0,1}™~! — T,
where fo(-) = f(0,-) and f1(-) = f(1,-). To do so, the verifier asks the prover
to provide the contributions of fy and fi to the linear claims f (j;) = vy, for all
i € [t]. In more detail, let us view each vector j; as j; = (xi,j;) where x; € F
and j; € F™~1 (i.e., we isolate the first component of j; as x; and the remaining
components as an (m — 1)-dimensional vector j;). The prover sends the vectors
vo,v1 € F 1 where vy = fo i and vq = fl - Note that the prover cannot send
arbitrary vectors since the verifier can check (and indeed does check) that vy and
vy are consistent with v. (Le., that v = (1—x)-vo+X-v1, where ¥ = (x1,---,X¢t)
and the multiplication is pointwise.) See Fig. 1 for an illustration.

A natural idea at this point, is to try to combine fy and f; (and the corre-
sponding claims that we have about them) into a single m — 1 variate function
on which we can recurse. For example, we can take a random linear combi-
nation of the two functions as follows: the verifier chooses random coefficients

2 In particular, for simplicity and since it is sufficient for our results we consider
a variant of PVAL with respect to the multi-linear extension rather than a more
general low degree extension considered in [RVW13].

3 Recall that the multilinear extension f :F™ = Fof f:{0,1} — F is the unique
multilinear polynomial that agrees with f on {0,1}™. See Sect. 3.1 for details.
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Fig. 1. Decomposing the claims f|; = v.

9 (M) ¢ F, sends them to the prover. The two parties then recurse on the input
=9 fo + M. f; wrt the claims f'|; = v/, with v/ = ¢ . v + ) . v 4

Note that the input has shrunk by a factor of 2 and it is not too diffi-
cult to argue that if f was d-far from PVAL(¢,j,v) then f’ is about J-far from
PVAL(t,j’, v'). Thus, with very little communication (i.e., O(¢-log(|F|)) we have
reduced the input size by half and preserved the distance. We can continue
recursing as such until the input reaches a sufficiently small size so that the
verifier can solve the problem by itself (or, rather, verifier can employ a “trivial”
protocol, with 1/§ query complexity and linear communication in the size of the
final input).

The problem with this approach is that while the input size has shrunk by
half, as we recurse we will need to emulate each query to f’ by using two queries
to f. Thus, while the input length has shrunk by half, the query complexity has
doubled and essentially no progress has been made. Indeed, if we unwind the
recursion, we see that the total query complexity in the proposed protocol is
linear in the input length.

Doubling the Distance: A Pipe Dream? For every b € {0, 1}, let d;, be the distance
of fp from PVAL(t,j',vy) and let P, € PVAL(t,j’, vp) such that A(fy, Py) = &
(without getting into the details we remark that Py and P; will be unique in our
regime of parameters). Note that if f is é-far from PVAL then dy 4 d; > 26, since
otherwise f is d-close to the function P € PVAL(t,j,v) defined as P(o,x) =
(1-0) - Py(x)+0-P(x).

4 Intuitively, the reason to use a random linear combination rather than some fixed
combination such as fo + f1 is avoiding (w.h.p) the possibility that the differences
of fo and fi from their corresponding PVAL instances (i.e. the 0/1 vectors that can
be added to fo and fi to reach vectors in PVAL) cancel each other out.
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For every b € {0,1}, let I, C {0,1}™ be the set of d; - 2™ points on which P,
and f, disagree (we refer to these as the “error pattern”). Suppose momentarily
that Iy and I; have a small intersection (or are even disjoint). In such a case, f’
is roughly &g + &1 > 26 far from ¢o- Py +¢; - Py € PVAL(¢,j’,v’). This leads us to
wonder whether f’ could actually be 2§ far from PVAL(¢,j’,v') even when the
error patterns have a large intersection (rather than just ¢ far as in the analysis
above).

Note that if it is indeed the case that f’ is 2§ far from the corresponding
PVAL instance then we have improved two parameters: both the distance and
the input size, while only paying in the query complexity. If we continue the
recursion now (stopping when the input size is of size roughly ¢) we obtain an
IPP for PVAL with poly-logarithmic overhead, as we desired.

Unfortunately, the above analysis was centered on the assumption that I
and I; have a small intersection, which we cannot justify. As a matter of fact,
for all we know, the two sets could very well be identical. In such a case, the
distance of f’ from PVAL will indeed be (roughly) § and we are back to square
one.

See Fig. 2 for an illustration for the possible “error patterns” of fy and f;
and how they affect the “error patterns” of f.

fo M/ﬂ(//f}k@/ U .
Wil % cee e

I

fo MW),)/M L . .
fi

R R

Fig. 2. Possible alignments of the “Noise”

We pause here for a detour, recalling the approach of [RVW13] (this is not
essential for understanding our construction and can be skipped). They observe
that if dg and &; are roughly equal, then the verifier can simply recurse on
one of them. This roughly maintains the distance, while avoiding doubling the
query complexity. On the other hand, if say dg > 41, they show that the ran-
dom linear combination technique described above does increase the distance
(intuitively, the row with smaller distance cannot “cancel out” the error pattern
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of the row with larger distance). We remark that they lose a constant multi-
plicative factor in this argument, which leads them to consider a decomposition
into polylog(n) many rows, rather than 2. Of course, the verifier does not know
whether 0y & d; or §y > d;. However, they show that the verifier can “cover its
bases” by considering a small number of (approximations to the) decompositions
of the distance across rows. This results in the creation of O(loglogn) smaller
recursive instances, where the product of the new distance and the new effective
query complexity of at least one of these instances is “good” (the definition of
“good” allows for losing super-constant multiplicative factors). Over the course
of 2(logn/loglogn) recursive steps, the losses and the ballooning number of
recursive instances add up, and result in a roughly 2'egn/loglogn — po(1) gyer-
head in the product between the final query and communication complexities.

Reducing the Intersection Size. A key new ingredient in our protocol is randomly
permuting the truth tables of the functions fy and f1, in order to make the sets Iy
and I (pseudo-)random, and therefore likely to have a small intersection. This
is inspired by the beautiful recent result of Ben Sasson, Kopparty and Saraf
[BKS18] on amplifying distances from the Reed-Solomon code. More precisely,
the verifier chooses random permutations mp, 71 : {0,1}"™ — {0,1}™ (from a
suitable family of permutations, to be discussed below). We consider the new
functions fo o mg and f1 o my. The hope is that the entropy induced by these
permutations will make the error patterns in fy oy and in f; o ; have a small
intersection. Then, rather than recursing on cq- fo +c¢1 - f1, we will aim to recurse
on f'=c¢o-(foom) +ec1-(f1om).

To make this approach work we have to overcome several difficulties. First,
we need to ensure that we can translate the claims that we have about fo and
fl into claims about mo and JTo\m. We do so by choosing 7y and m; as
random affine maps over F" while ensuring that the restriction of these maps
to {0,1}™ forms a permutation. We argue that this ensures that:

moffooﬂo, (1)

and similarly for f;. To see that Eq. (1) holds, observe that if 7 is an affine
function, then both sides of the equation are multilinear polynomials that agree
on {0,1}™. Therefore they must also agree on F™.

Equation (1) implies that the claims that we have about the multi-linear
extensions of fyomy and f1 o7 are simply permutations of the claims about fj
and f1, respectively.

A second difficulty that arises at this point is that the claims that we have
about foomg and fiom; are not “aligned”. The former claims are about positions
75 *(j') and the latter about 77 *(j’) (in the multi-linear extensions of fyomy and
f1om1, respectively). Since the claims are not aligned, it unclear how to combine
them to get ¢ claims about the input f.

As our first step toward resolving this difficulty, we have the prover “complete
the picture” by providing the verifier also with the (alleged) values of foomy at
positions 77 1 (j’') and those of f, o 7y at positions 5 (j').
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Note that the prover can cheat to its heart’s desire about these claims, but
the point is that we now have a single set I = m;*(j’) U, '(j') so that each
function f, is still d, far from the claims that we have about f;|;. Since the
claims are now properly aligned, we can derive a new sequence of claims about
f'. More importantly, we prove a technical lemma (building on the result of
Ben Sasson et al. [BKS18]), showing that if f is d-far from PVAL(¢,j,v) then,
with high probability, f is roughly 26-far from the corresponding PVAL instance
(induced by the prover’s new claims).

To summarize, the approach so far lets us double the distance in each iteration
as we desired. Unfortunately, it also raises a new problem: the arity of the new
PVAL instance that we generated has doubled - rather than just having ¢ claims
we now have roughly 2¢ claims (corresponding to the size of the set I). See Fig. 3
for an illustration.

w"‘/ W f1

fl \m/}"/}}/’/‘ ¥ W W L ¥

Fig. 3. Permuting the inputs and resulting arity growth

Arity Reduction Step. We resolve this final difficulty by once more employing
interaction, and using the prover in order to reduce the 2¢ claims that we have
about fyomy and f1 o m to just ¢ (aligned) claims each, while preserving the
distance.

The idea here is to consider a degree O(t) curve C : F — F™ passing through
the set of points I. The prover sends to the verifier the values of fo o mp|c and
f1 o mi|c. The verifier checks that that the provided values lie on a degree O(t)
univariate polynomial (since fj o, o C has low degree, for both b € {0,1}). The
verifier also checks that the values that correspond to points in the set I, are
consistent with the claims that it has. The verifier now chooses a set of ¢ random
points p = (p1,...,p:) on the curve. The new claims about fo and fi are those
that correspond to the set of points in p. In particular, this lets us reduce the
number of claims from 2t to t.

We want to argue that this arity-reduction sub-protocol preserves the dis-
tance. This is accomplished by taking a union bound over all inputs that are



Batch Verification and Proofs of Proximity with Polylog Overhead 119

(roughly) 26-close to f’, and showing that for each of them, the probability that
it satisfies the new claim is tiny. We conclude that f’ is indeed (roughly) 26-far
from the resulting PVAL instance (a similar idea was used in the proof that PVAL
is complete [RVW13]).

3 Preliminaries

For a string * € X and an index i € [n], we denote by z; € X the i*!' entry
in z. If I C [n] is a set then we denote by z|; the sequence of entries in x
corresponding to coordinates in I.

Let z,y € X" be two strings of length n € N over a (finite) alpha-

bet X. We define the (relative Hamming) distance of z and y as A (z,y) et

Hx; #yi ot €[n]} /n. If A(z,y) < e, then we say that z is e-close to y, and
otherwise we say that x is e-far from y. We define the distance of z from a
(non-empty) set S C X" as A(z,S) e minges A (z,y). If A(z,S) < e, then
we say that x is e-close to S and otherwise we say that x is e-far from S. We
extend these definitions from strings to functions by identifying a function with
its truth table. For a set .S, take its minimum distance to be the minimum, over
all distinct vectors x,y € S of A(z,y). We use A(S) to denote the minimum
distance of S. Fixing a vector space, for a set S and a vector x, we denote
(x+95)={x+y:y e S} For ascalar ¢, we denote (¢-S) ={c-y:y € S}

3.1 Multivariate Polynomials and Low Degree Extensions

We recall some important facts on multivariate polynomials (see [Sud95] for a
far more detailed introduction). A basic fact, captured by the Schwartz-Zippel
lemma is that low degree polynomials cannot have too many roots.

Lemma 3.1 (Schwartz-Zippel Lemma). Let P : F™ — F be a non-zero
polynomial of total degree d. Then,
Pr [P(x)=0] < -
R T

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct poly-
nomials P, Q : F™ — F of total degree d may agree on at most a ‘%l—fraction of
their domain F.

Throughout this work we consider fields in which operations can be imple-
mented efficiently (i.e., in poly-logarithmic time in the field size). Formally we
define such fields as follows.

Definition 3.1. We say that an ensemble of finite fields F = (F,,)nen s con-
structible if elements in F,, can be represented by O(log(|F,|)) bits and field
operations (i.e., addition, subtraction, multiplication, inversion and sampling
random elements) can all be performed in polylog(|F,|) time given this represen-
tation.
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A well known fact is that for every S = S(n), there exists a constructible
field ensemble of size O(S) and its representation can be found in polylog(S)
time (see, e.g., [Gol08, Appendix G.3] for details).

Let H be a finite field and F O H be an extension field of H. Fix an integer m €
N. A basic fact is that for every function ¢ : H™ — T, there exists a unique
extension of ¢ into a function qB : F™ — F (which agrees with ¢ on H™; i.e.,
q§|Hm = ¢), such that qAS is an m-variate polynomial of individual degree at most
|H| — 1. Moreover, there exists a collection of |H|™ functions {7 }zecm= such that
each 7, : F™ — F is the m-variate polynomial of degree |H| — 1 in each variable
defined as:

pS e i_h
df H H ;ih.
m] heH\{z;}

and for every function ¢ : H™ — F it holds that

Bz, s 2m) = > Falz1,o 0 2m) - B(2).

wEH™

The function (;AS is called the low degree extension of ¢ (with respect to F, H and
m). In the special case in which H = GF(2), the function ¢ (which has individual
degree 1) is called the multilinear extension of ¢ (with respect to F| and m).

3.2 A Useful Permutation Family

Let m € N. For every a € GF(2™), let f, : (GF(2))™ — (GF(2))™ be defined as
fa(x) = a -z, where we identify elements in GF(2") with vectors in (GF(2))™
in the natural way. Thus, for every a € (GF(2))™, there exists a matrix M, €
(GF(2))™*™ such that f(z) = M, - . Note that if a # 0 then the matrix M, is
invertible, and its inverse is given by M,-1.

Let F be a finite field that is an extension field of GF(2). For every a,b €
(GF(2))™ consider the function 7, : F”™ — F™ defined as: m, ,(z) = M, -x +b.
Let mqp|(Gr(2))= denote the restriction of 7,5 to the domain (GIF(2))™ and let
I, ={map : a,be (GF(2))™,a # 0}.

Proposition 3.1. The following holds for every a,b € (GF(2))™

1. The function m,4 is an affine map over F.

2. If a # 0 then the function m,y forms a permutation over F™ and mq | (Gr(2))m
forms a permutation over (GIF(2))™

8. The function family {Tapl(Gr(2))m ta,be(GF(2))m 15 pairwise independent.

4. If F and GF(2™) are constructible, then given a,b € (GF(2))™ and x € F™ it
is possible to compute wq () in time poly(m,log(|F|)).

Proof. Ttem 1 is evident from the construction. For Item 2, let a # 0 and take
any x,z’ € F™. Observe that if M, -2 +b= M, -2’ + b then M, - (x —z') = 0.
Multiplying both sides on the left by M -1 (a matrix in GF(2)™>*™ C Fm>xm)
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we get that x = 2’ . Thus, 7, is a permutation over F. Since the image of
Tabl(@r(2))m lies in (GIF(2))™ this also means that 74 4| (Gr(2))= is a permutation
over (GF(2))™.

For Ttem 3, let x1,22,y1,y2 € (GIF(2))™ with z7 # 5. Then:

Pi[Ma~x1+b:y1/\Maox2+b:yg]:P£[a~x1+b:y1/\a~x2+b:yg]

_ a\ (xz11l\ _ (wn

-u1[()-(21) - G2)

_ 2—2m
where in the first expression the arithmetic is over the field GF(2) and in the
second and third expressions the arithmetic is over GF(2™), and the last equality
follows from the fact that det (il }) =x1 —x9 # 0.

2
Lastly, for Item 4, observe that M, can be generated in poly(m) time by

taking the product of a with a basis of (GIF(2))™. Given the full description of
M,, the product M, - = + b can be computed in poly(m,log(|F|)) time.

Proposition 3.2. Let ¢ : (GF(2))"™ — F and let ¢ : F™ — F be its multilinear
extension. Let 1) = ¢ o (Tap|(cr(2))ym) (@ function over (GF(2))™ ), and let ¢ be
the multilinear extension of . Then:

Vo € F™, (QB o) (x) = Y(x).

Proof. By Proposition 3.1, the function m,; is an affine map over F. Thus,
((5 0 Tap) is multilinear. By definition, 1/; is also multilinear (since it is a low
degree extension). We have that 1& and ¢EO Tqp are both multilinear, and they
agree over (GF(2))™. By uniqueness of the multilinear extension, they must also
agree over .

3.3 Succinct Descriptions

Throughout this work we use NC' to refer to the class of logspace uniform
Boolean circuits of logarithmic depth and constant fan-in. Namely, £ € NC*
if there exists a logspace Turing machine M that on input 1™ outputs a full
description of a logarithmic depth circuit C' : {0,1}" — {0,1} such that for
every = € {0,1}" it holds that C'(z) = 1 if and only if 2 € L.

We next define a notion of succinct representation of circuits. Loosely speak-
ing, a function f : {0,1}" — {0,1} has a succinct representation if there is a
short string (f), of poly-logarithmic length, that describes f. That is, (f) can
be expanded to a full description of f. The actual technical definition is slightly
more involved and in particular requires that the full description of f be an NC;
(i.e., logarithmic depth) circuit:

Definition 3.2 (Succinct Description of Functions). We say that a func-
tion f : {0,1}"™ — {0,1} of size s has a succinct description if there exists a
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string (f) of length polylog(n) and a logspace Turing machine M (of constant
size, independent of n) such that on input 1™, the machine M outputs a full
description of an NC' circuit C' such that for every x € {0,1}™ it holds that
C{(f),z) = f(x). We refer to (f) as the succinct description of f.

We also define succinct representation for sets S C [k]. Roughly speaking
this means that the set can be described by a string of length polylog(k). The
formal definition is somewhat more involved:

Definition 3.3 (Succinct Description of Sets). We say that a set S C [k] of
size s has a succinct description if there exists a string (S) of length polylog(k)
and a logspace Turing machine M such that on input 1¥, the machine M outputs
a full description of a depth polylog(k) and size poly(s,logk) circuit (of constant
fan-in) that on input (S) outputs all the elements of S as a list (of length s -
log (k).

We emphasize that the size of the circuit that M outputs is proportional to
the actual size of the set S, rather than the universe size k.

3.4 Interactive Proofs of Proximity

Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-
linear time in the input length, where the soundness requirement is relaxed to
rejecting inputs that are far from the language w.h.p. (for inputs that are not
in the language, but are close to it, no requirement is made). Actually, we will
think of the input of the verifier as being composed of two parts: an explicit input
x € {0,1}™ to which the verifier has direct access, and an implicit (longer) input
y € {0,1}™ to which the verifier has oracle access. The goal is for the verifier to
run in time that is sub-linear in m and to verify that y is far from any 3’ such
that the pair (z,y’) are in the language. Since such languages are composed of
input pairs, we refer to them as pair languages.

Definition 3.4 (Interactive Proof of Proximity (IPP) [EKR04,RVW13]).
An interactive proof of proximity (IPP) for the pair language L is an interac-
tive protocol with two parties: a (computationally unbounded) prover P and a
computationally bounded verifier V. Both parties get as input x € {0,1}"™ and a
prozimity parameter € > 0. The verifier also gets oracle access to y € {0,1}™
whereas the prover has full access to y. At the end of the interaction, the following
two conditions are satisfied:

1. Completeness: For every pair (x,y) € L, and proximity parameter € > 0 it
holds that

Pr[(P(y), V) (@, lyl,2) = 1] = 1.

2. Soundness: For every € > 0, x € {0,1}" and y that is e-far from the set
{y' : (z,9') € L}, and for every computationally unbounded (cheating) prover
P* it holds that

Pr[ (P (), V) (bl o) =1] < 1/2.
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An IPP for £ is said to have query complexity ¢ = ¢(n,m,¢) if, for every
e > 0 and (x,y) € L, the verifier V makes at most ¢(|z|, |y|,&) queries to y
when interacting with P. The IPP is said to have communication complexity
cc = cc(n,m,e) if, for every € > 0 and pair (z,y) € £, the communication
between V and P consists of at most cc(|z|, |y|,e) bits. If the honest prover’s
running time is polynomial in n and m, then we way that the IPP is doubly-
efficient.

The special case of IPPs in which the entire interaction consists of a sin-
gle message sent from the prover to the verifier is called MAPs (in analogy to
the complexity class MA) and was studied in [GR17, GGR15]. We will use the
following simple observation:

Proposition 3.3 (See, e.g., [GR17]). Every L € DTIME(t) has an MAP with
respect to proximity parameter § € (0,1) with communication complexity n and
query complexity O(1/8). The verifier runs in time t + n + O(log(n)/e). The
prover runs in time O(n)

Proof (Proof Sketch). The prover sends to the verifier a full description of the
input x (i.e., an n bit string). Given the message z’ received from the prover
(allegedly equal to the input ), the verifier first checks that @’ € £ (this step
requires no queries to z). The verifier further checks that x and z’ agree on a
random set of O(1/4) coordinates.

Completeness is immediate, whereas to see that soundness holds, observe
that the prover must send «’ € L, since otherwise the verifier rejects. If x is §-far
from £ then z and 2’ disagree on a at least ¢ fraction of their coordinates and
so the verifier accepts with probability at most (1 — §)?(1/9) = 1/2.

4 Our Results

Our first main result is an IPP for any language in NC with optimal
query/communication tradeoff (up to poly-logarithmic factors).

Theorem 4.1. Let 6 = §(n) € (0,1) be a proximity parameter and let L be a
pair language that is computable by logspace-uniform Boolean circuits of depth
D = D(n) > logn and size S = S(n) > n with fan-in 2 (where n denotes the
implicit input and negp denotes the explicit input). Then, L has a public-coin
IPP for §-proximity with perfect completeness and the following parameters:

— Soundness Error: 1/2.

— Query complexity: ¢ = O(1/6).

— Communication Complexity: cc =0 -n - D - poly log(S).

— Round Complexity: D - polylog(S).

Verifier Running Time: ¢ - n - negppoly(D,log(S)) + (1/6) - polylog(n).
— Prover Running Time: poly(S).
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Furthermore, the verification procedure can be described succinctly as fol-
lows. At the end of the interaction either the verifier rejects or in time 6 - n -
poly(D,log(S)) it outputs a succinct description (Q) of a set Q C [n] of size
q and a succinct description (@) of a predicate ¢ : {0,1}7 — {0,1} so that its
decision predicate given an input function f is equal to ¢(f|Q).

Our second main result (which relies on Theorem 4.1) is an interactive proof
for batch verification of any UP language, with communication complexity that
is optimal up to poly-logarithmic factors.

Theorem 4.2. For every UP language £ with witness length m = m(n), whose
witness relation can be computed in logspace-uniform NC, there exists a public-
coin interactive proof (with perfect completeness) for verifying that k instances
Z1,...,Zk, each of length n < poly(m), are all in L. The complezity of the
protocol is as follows:

- Communication complexity: m - polylog(k,m).

— Number of rounds: polylog(k, m).

— Verifier runtime: (n -k +m) - polylog(k, m).

— The honest prover, given the k unique witnesses, runs in time poly(m, k).

Using the Cook-Levin reduction, any UP language can be reduced to
Unique-SAT which is a UP language whose witness relation can be computed in
logspace-uniform NC, with only a poly(n,m) blowup to the witness size. Hence,
Theorem 4.2 yields the following corollary.

Corollary 4.1. For every UP language L with witness length m = m(n), there
exists a public-coin interactive proof (with perfect completeness) for verifying that
k instances x1,...,xy, each of length n < poly(m), are all in L. The complexity
of the protocol is as follows:

~ Communication complexity: poly(m,log(k)).

— Number of rounds: polylog(m, k).

- Verifier runtime: (n - k) - polylog(m, k) + poly(m,logk).

— The honest prover, given the k unique witnesses, runs in time poly(m, k).

5 The PVAL Problem

In this section we define the PVAL problem and state properties related to it
that we will need in our proof. Due to lack of space, all proofs in this section are
deferred to the full version.

Let F be a finite field, H C F and m € N be an integer.

Definition 5.1. The PVAL problem is parameterized by an ensemble (F,H, m),,.
The explicit input to the problem is (n,t,j,v), where t € N, j = (j1,...,7t) €
(F™)t and v = v1,...,v; € Ft. The implicit input is a function f : H™ — T.
YES instances of the problems are all functions f : H™ — F such that for every
i € [t] it holds that f(j;) = vi, where f is the low degree extension of f.
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Since the low-degree extension is an error correcting code with high distance,
for sufficiently large randomly chosen location sets j, the induced PVAL problem
has large minimum distance:

Proposition 5.1 (PVAL on random locations has large distance). Let
H C F be finite fields, and let m,d be integers s.t. |F| > 2m|H]|. For t > (d -
log(|H|™ - |F|) + k) it is the case that:

d
Pr |A(PVAL(t,j,0)) < ——| <27".
JPr ARVALS.0)) < i
The following key lemma builds on the distance amplification theorem for
Reed Solomon codes of Ben-Sasson, Kopparty and Saraf [BKS18].

Lemma 5.1. Fiz a finite field F of characteristic 2 and integers m,t > 0. For
je (Fm)t, suppose that PVAL(t,j,0) has size strictly larger than 1 and minimal
distance \. Let v/, v € Ft be vectors s.t. both PVAL(t,j,v') and PVAL(t,j,v")
are non-empty. Let f’: {0,1}™ — T be at distance 6" from PVAL(t,j,v'), and let
f"{0,1}™ — F be at distance §" from PVAL(t,j,v"). Consider permutations
o,m € II, where II is the useful collection of permutations over F™ defined in
Sect. 3.2. For scalars ¢/, c" € F, define:

féc’-(f’oa)—&—c”-(f"ow),

and let Sm, C F? be the set of pairs of wvectors (u,w) s.t. the sets
PVAL (2t, (0 1(§), 7 *(j)), (v/,u)) and PVAL (2t, (6= (§), 7 (j)), (w,v")) are
non-empty. For (u,w) € S, ., define:

60,77,(;',0",u,w =A (fv PVAL (2t7 (U_l(j)7 ﬂ-_l(j))’ (C/ ' (V/7 u) + CH : (W’ VN)))) .

Then for every ¢ € [0,1/2], taking

6/ 6//
5:max< —; ,min(é’—i—é”—(5’(5”—257)\/3—35)) ,
it is the case that:

Pr |:3(u,w) € So,x s.t.

o, —

11 } min(d’,6") 2

[60,7r,c’,c”,u,w < 5] > E|]F| + m 2 .9m + om

c’ ¢! —F

5.1 Interactive Proof for PVAL Emptiness

Our PVAL IPP will also utilize the following (standard) interactive proof for
checking whether a given PVAL instance (specified by the vector sequence j) is
empty.

Lemma 5.2. Let t,m € N and F a finite field. There is a public-coin interac-
tive proof for the language £ = {j € (F™)" : PVAL(t,j,0) # 0} with perfect
completeness and the following parameters:
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~ Communication complexity: poly(m,log(t)).
— Round Complezity: poly(m,log(t)).

— Verifier running time: t - poly(m, log(|F])).
— Prover running time: poly(2™,t).

6 Efficient IPP for PVAL

In this section we show our efficient IPP protocol for the PVAL problem.
Theorem 6.1 (IPP for PVAL). Let t,m € N such that m € [log(t), %] Let
F be a constructible finite field ensemble of characteristic 2 such that |F| =
O (2m-t*-m?). Let j = (j1,...,j¢) € (F™)" and v = (v1,...,v;) € F' such that
A(PVAL(t,j,0)) > (t/2™) - 11t
Then, for every proximity parameter § > 2020:?3 the set PVAL(t,j,v) has a
public-coin IPP with respect to proximity parameter §, with perfect completeness

and the following parameters:

— Soundness Error: 1/2.

- Query complexity: q = O(max (1/(5, % . poly(m))).
— Round complexity: poly(m).

- Communication Complexity: cc =t - poly(m).
Verifier Running Time: (t + q) - poly(m).

— Prover Running Time: poly(2™).

Furthermore, if § > (t/2™)- m then, the entire verification procedure can
be described succinctly as follows. At the end of the interaction either the verifier
rejects or in time poly(m) it outputs a succinct description (Q) of a set Q C [|2™]]
of size ¢ and a succinct description (¢) of a predicate ¢ : {0,1}2 — {0,1} so that

its decision predicate given an input function f is equal to ¢(f|Q).

The rest of this section is devoted to the proof of Theorem 6.1.

The IPP protocol for PVAL is recursive. In each step we reduce the dimension
m by 1 (which shrinks the input size by half), while simultaneously (roughly)
doubling the distance of the problem from the relevant PVAL instance but also
doubling the query complexity.

We denote the starting dimension by m whereas the current dimension
(within the recursion) is denoted by m (initially we set m = mg. With that
notation, the efficient IPP protocol for PVAL is presented in Fig. 4. Its complete-
ness, soundness and complexity are analyzed in the subsequent subsections.

6.1 Completeness

We prove that completeness holds by induction on m. The base case (i.e., m <
log(t)) follows from Step 1 in the protocol (while relying on Proposition 3.3).
We proceed to analyze the case m > log(t) (under the inductive hypothesis that
the protocol is complete for dimension m — 1).
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Efficient IPP for PVAL

Fixed parameters (unchanged in the recursion): PVAL arity parameter ¢ € N, a
maximal dimension mo € [log(t),t'/%/14] . A finite field F of characteristic 2 such that
[F|=o© (2™ -£* - mj).

Parameters (modified in the recursion): dimension m € [log(t),mo], proximity
parameter § € (0,1). A sequence of vectors j = (ji1,...,j:) € (F™)" and field elements
V:(U1,...,Ut) € F.

3
Invariants: let A = A(PVAL(t,j,0)). We require that § > 2020;% (1 = 2)mo=™ and that
™o
> (t/2m) - 14;%.

Verifier Input: oracle access to f: {0,1}"™ — F.
Prover Input: direct access to f.
Goal: verify that Vi € [t], f(_]z) = v; (recall that f : F™ = F is the multilinear extension of ).
The Protocol:
1. (Base Case:) If m < log(t), then the prover and verifier simply emulate the trivial MAP

protocol of Proposition 3.3 (with soundness error 1/100). The verifier accepts if the un-
derlying MAP verifier accepts and otherwise it rejects.

2. Otherwise (i.e., if m > log(t)), the protocol proceeds as follows.

3. For every i € [t], decompose j; into j; = (xi,j;) € F x F™~ 1

4. For every i € [t] and b € {0, 1}, the prover computes and sends Cfb) = f(b,ji).

5. The verifier receives (fi(b)) and checks v; = (1 — x;) - @(m + Xi - ffl), Vi € [t].

be{0,1},i€[t]

6. The verifier random permutations 7, 7Y «— IT,,,_, where II,,_1 is the useful collection
of permutations over F™ ™! defined in Section 3.2. The verifier sends 7(®) and 7).

7. The verifier chooses ¢t random points p1,...,p: € F™7 ' Let C : F — F™"! be a low

degree curve passing through the set of 3t points {(H’”)*%ﬂ)}bem e U{p1,...,pt}

In more detail, fix a canonical set of distinct field elements {)\Eb)}be{U,l,L},ie[t] C F. Let
C:F — F™ ! be the unique degree 3t — 1 curve such that C()\gb)) = (7r(b))_1(j;)7 for every
i€ [t] and b € {0,1}, and C(AY)) = py, for every i € [t] (such a curve can be found by
interpolation). The verifier sends the values p1, ..., p: (which determine C) to the prover.

8. The prover sends to the verifier the degree O(m - t) univariate polynomials g(® and g(*,
where g(b)(-) = f(b,ﬂ'(b) (C()))7 e.g., by sending their coefficient representations.

9. For every b € {0,1}, the verifier receives g“’) from the prover. The verifer checks that
for every b € {0,1} and i € [f], it holds that g (A")) = ¢, The prover and verifier

also run the interactive proof of Lemma 5.2, with soundness error m to check that

PVAL (26, {0}, o1y i 0O b0y ciy ) 7 05 for both b € {0,1}.

10. The verifier chooses at random &1, ...,& € F and 9 M eF.

11. The parties recurse on the implicit input function f’: {0,1}"" — F defined as f'(x) =
O f 0,79 (x)) + ¢ - f(1, 7 (x)) and the claim that for all i € [t], it holds that
FfreE)) =@ gOeE) + - gV (&) (a PVAL instance of dimension m — 1). Each of
the verifier’s queries to f’ in the recursion are emulated by making 2 queries to f. The
proximity parameter in the recursion is set to be §' = min (26 - (1 — mlo), (t/2m) - m)

12. If any of the verifier’s checks failed then it rejects, otherwise it accepts.

Fig. 4. Efficient IPP for PVAL
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Let j = (ji,.--,j¢) € (F™)! and v = (vy,...,v;) € F'. Suppose that f €
PVAL(t,j, v). As in the protocol, for every i € [t], decompose j; into j; = (xi,J;) €
def . _
Fx F 1 Let i/ = (§,...,j}) € (1L,
We show that all the checks made by the verifier in the protocol pass (when
interacting with the honest prover):

1. In Step 5, for every i € [t]:

(1=xi) ¢+ xi- ¢V = (1= x0) - F0,30) + xi - F(1L,30) = FGi) = i,

as required.
2. In Step 9, for every i € [t] and b € {0,1}:

g® (A7) =7 (b,x® (¢ (A")) = 7 (b.7® ()71 (31)) ) = Fb3i) = ¢,

as required.
3. For Step 11, for every i € [t], it holds that:

fre@)) = - f0,x - c@)) + eV f(1, 7M@) = - g (&) + Vg8,
where the first equality follows from Proposition 3.2.

Since all the verifier’s checks pass, it accepts, and completeness follows.

6.2 Soundness

We prove by induction on m, that the soundness error of the protocol is at most
Toms T 155~ The base case (1 e., m < log(t)) is immediate from Step 1 (while
relying on Proposition 3.3). We proceed to analyze the case that m > log(t)
(under the inductive hypothesis that the protocol has soundness error at most
{gml for dimension m — 1).

Let j = (1,-..,Jc) € (F™)" and v = (v1,...,v) € F'. Let § =

A(ﬁ PVAL(t,j,V)). Fix a cheating prover strategy P. Assume without loss of

generality that P is deterministic (otherwise fix its best choice of randomness).
We start by defining several important values that will be used in the analysis.

Let (¢
¢ (CZ )be{o,l},ie[t]
Step 4). We may assume that

be the (fixed) values sent by P as its first message (i.e., in

(0 (1
A=) - {0+ - {Y =y, (3)
for every i € [t], since otherwise the verifier rejects in Step 5.
Define v(® (5(17),...,@(17)) € F'. Also, for every i € [t], decompose j;

into j; = (xi,j}) € Fx F™~L Let j % (§1,....j}) € (F™1). Lastly, for every
be {01}, let () % f(b,.) and let 5@ LA (f® PVAL (t,§/,v®)).
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Our goal will be to show that the input f’ for the recursive step (i.e., Step 11)
has distance roughly 26 from the corresponding PVAL instance (i.e., the distance
doubles). This is done in two steps: showing that f’ has distance roughly 50 4
6 and that this quantity is lower bounded by 24. Since it is simpler, we start
with the latter step.

Claim 6.2
5O 45 > 26,

Proof. For every b € {0,1}, let P® : {0,1}™"' — TF such that P® ¢
PVAL (t,j’,v(b)) and A (P(b)7 f(b)) = 6. Such a P® exists as long as
PVAL (t, i, v(b)) # () and note that otherwise 6(*) is infinite and the claim clearly
holds).

Consider the function P : {0,1}"™ — F defined as P(b,x) = P®)(x). Observe

that A(P, f) = Lg(s(”. On the other hand, for every ¢ € [t], b € {0,1} and
(jl,---;jm) e Fm:

P(]l»a]m) - (1 _]1) p(oa]27,]m) +J1 P(17]277]m)
= (]‘ _]1) : P(O)(]277]m) +.71 . P(l)(jQW "ajm)7 (4)

where both equalities can be verified by observing that they hold for all
(J1,--+,dm) € {0,1}™, and therefore hold also for all (ji,...,jm) € F™ (since
two multilinear polynomials that agree on the Boolean hypercube agree every-
where).

Thus, for every i € [t], it holds that

P(ii) = (1—xi) - POG) +xi - POG)
=(1—x:) ¥ +x- Y

= Uy,

where the first equality is by Eq. (4), the second equality follows from the fact
that P(®) e PVAL (t,j’, v(b)) and the third equality from Eq. (3).

We conclude that f is (Lg‘s(l))close to PVAL(t,j,v) and so MQ‘;(D > 4.

Now, let 7(9, 7(1) — IT be the permutations sampled randomly by the verifier
in Step 6 and let py,...,p: € F be the random values sampled in Step 7. As in
the protocol, let C : F — F™~! be the unique degree 3t — 1 curve such that
C()\gb)) = (7®))=1(j), for every i € [t] and b € {0,1}, and C()\Z(L)) = p;, for
every i € [t]. Let 3 and gV be the degree O(m-t) univariate polynomials sent
by P in Step 8. Note that C, 3© and gV are all random variables that depend
on 7@, 71 and Ply---s Pt

We may assume without loss of generality that for every choice of
70 7 p ..., p; made by the verifier it holds that

vielt], be{0,1}: g"a") =", (5)
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since otherwise the verifier immediately rejects in Step 9. Thus, we can modify
the prover P to always send polynomials satisfying Eq. (5) without decreasing
P’s success probability.

For every ¢(©,c¢() € T, define the function f;r(m,w(l),c(o),c(l) {0,1}" ! - F
as [l vy oo o0 (X) = - F0, 70 (x)) 4+ D - f(1,7 0 (x)).

Recall that 6 = A (f(b), PVAL (t,j’,v(b))). We now invoke Lemma 5.1 on

£ and O with e def davg/ Mo, where dag = (6 4 §(1) /2. We obtain that:
. 11

(6)

W(o>,,§€>en [Hu’w € Sy St

. in(5© 5 ) )
is less than % + %, where 0,:0) 1) o0 ¢(1) uw 15 defined as the distance

/
of fw<o>,w<1>,c<o),c<1> from

PVAL (gm ((F(O))—l(j/)’ (W(l))—l(j/))’ (C(O) (v 1) 4 D) (W’v(l))))7

and

5* “ max (5avg, min (6@ 4§ — 5@ .50 _ 22 /3 — 35)) : (7)

and S .0) 1) C [F2 is the set of pairs of vectors (u, w) such that the sets PVAL(2t,
(@O, (7)), (v@, ) and  PVAL(2t, (7)), («M) 1)),
(w,v(1))) are non-empty.

min(§(©,§(1) 2 Savg 2 _ _mj 2 1
We haVe that —2aom =+ om S Z.om + om = 6avg'2m + om S 50mo and
__Mmo 1 mo 1 1
that EI]F‘ + I]F\ < Fra20 + 55 < Sy 7 + 5w < T0mg where for both we used

3
the fact that dag > 0 > 100;,,“" (by Claim 6.2 and our invariant on §) and our

setting of [F| and m. Thus, Eq. (6) implies that:

1
Pr Fu, W E 5 gy n1) St (8200 1) @) 1) e < 57] > 100mo} ®

Pr
7O 2 () g7 (0) (D)

is less than =5 —. We proceed to show that 0* is lower bounded by (roughly) 2.
o " : 2
Proposition 6.1. §* > min (26 - (1 — ) A/100).

Proof. Recall that §* > 0,y and that 6* > min(\/3—3¢, 59 451 —5(0).5(1) —2¢)
(see Eq. (7)). The proof of the proposition is based on a (somewhat tedious) case
analysis.

Suppose first that §* > §(0) 461 —§(0).5(1) _2¢. In this case the proposition
follows from the following claim:
Claim 6.3. §© + 61 —§0) .51 _ 22 >25. (1 — -2).

mo
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Proof. By the AM-GM inequality it holds that:

5O 450 — 50 . 51 > 95, — 52

avg*

We consider two cases. Suppose first that davg < 2/mg. Then,

20avg — Oy — 26 = 20ayg — 02y — 20avg/ M0 > 20 - (1 — 2/my),

avg avg
where the inequality is based on Claim 6.2 and our presumed upper bound on
davg. Thus, we may assume that davg > 2/mg. Then,

20avg — 62 — 9% > Savg/2 > 1/mo > 26 - (1 — 2/my),

avg

where the first inequality holds for sufficiently large my and using the fact that

davg < 1 and the last inequality from the fact that 0 < 100m

Thus, we may assume that §* > A\/3 — 3e.

Suppose now that e < A/300. Then, we have that § > A/3 — 3¢ > A/100 and
we are done. Thus, we may assume that A/300 < & = §avg/m0. On the other
hand, we have that 6* > dayg > %6 - A > A/100, for sufficiently large my.

This concludes the proof of Proposition 6.1.

Fix 7 and 7(1) such that the event specified in Eq. (8) does not hold. That

is, for every u,w € Sy (o) ) it holds that

1
100m0 )

Pr 0.(0) £(1) c(0) (1) <0 <
P[0 < ] <

Let u = (3O0(),....5O0") and w = (50G),....50G).
Suppose that u,w & Sﬂ.(o)’ﬂ.(l) then PVAL(Zt,{)\(b)}be{m}ie[t],{g(b,)

b))}be{o,l},ie[t]) = (), for either & = 0 or ' = 1. In Step 9 the verifier and

prover run an interactive proof to check that this is not the case and so the
verifier rejects in this case with probability at least 1 — . Thus, we may
assume that u,w € S ) ).

100m

In particular, this means that for all but 100 fraction of ¢ 1) ¢ F, it
holds that f;m) (1) () o1y 15 at distance at least 5* from

PVAL <2t, (@)@, @) @) e )

where wy.q; =@ - g G0 )()\Eb)) +c® ~§§1)()\l(-b)).
Let us fix ¢(©) and ¢ such that the foregoing statement holds. Let
/ def 2

& = min (20- (1 - —),(t/2™)- !

—_— 9
mo’’ 1400m%) ©)

and observe that by Proposition 6.1 (and the invariant lower bound on M), it
holds that & < §*.
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Claim 6.4. With all but 100 probabilz'ty over the choice of &1,...,& € F it
holds that the function f! 71'(1) (0 o1y 18 at distance at least &' from the set

PVAL (t (C(&)) ey (c(o) 39 (&) + .g(l)(&))ie[t])

Proof. Fix some h : {0,1}""! — F at relative distance < § < §*

from f! ) ) s o1y- By our assumption on ¢ and ¢ we have h &

PVAL (2, (@) 1), (7V) (1)), (@h)pepag ) where wpi = ¢ -50 (A +

) ~§E1)()\§b)). In particular, this means that there exists some b € {0,1} and
i € [t] such that:

B (™)) # ¢ GO0 + eV gAY,

The functions ko C and ¢©@ - GO () + ¢M . g(.) are therefore different
polynomials of degree O(m - t). Thus, the probability over a random ¢ € Fm~1
that h(C(€)) = §(¢) + ¢ - gV (€) is at most O(m - t/|F|) < 1/2. Therefore,
the probability that h € PVAL <t, (C(gi))ie[t] , (gi(o) (&) +c- g(D(@.)) [ ]> is at

iclt
most 27¢.

The number of functions h : {0,1}! — [F| that are §'-close to f} . is
upper bounded by (2m~1 . [F|)¥"2" " < 20"2"-mlog([F)  Therefore, by a union
bound, we have that f. . is &'-far from PVAL(t, (CCEN e @@ - (GO(&) +

e .gU)(gi))ie[t]), with all but 20"2" m1oa(F)~t probability. Since & < (t/2™) -

m, we have that this probability is upper bounded by m.

Assuming that the event stated in Claim 6.4 holds, the protocol is run recur-
sively on input f] o) _) .0 ) that is at least ¢'-far from the relevant PVAL
instance. At this point we would like to argue that by the inductive hypothesis,
the verifier rejects with high probability. However, to do so, we still need to argue
that the recursive invocation satisfies all the prescribed invariants.

Claim 6.5. ¢’ > 200m0 (1 - %Lo)mof(mfl)‘

Proof. We consider two cases. If ' = 2§ - (1 — mlo) then:

200m3 2 2 200m3 2
5 >9 0 . 1— 2 ymo—m ) (] _ 2= 0 . 1- = mo—(m—1)
2o (B - Zymem) o 2y T 1 Dyt

as required. Otherwise,

1 200m3 _ 200m3 (1 2 ymo—tme)

1400m2 = 2m-1 = gm-1~ mo

o = (t/2m)-

where the first inequality follows from the fact that mg < t'/5/14.
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Claim 6.6. With all but 100 probability over the choice of p1,...,p: and
&1,...,&, it holds that N > (t/2m by. where X' = A(PVAL(t,j’,0)).

2
14mg

Proof. Observe that &1,...,& & {)‘Eb)}be{o,l},ie[] with probability 1 — \IFI >
1
1- 200 *
Since the curve C passes through ¢ random points (i.e., p1,...,p:), the

distribution over points through which the curve C passes is t-wise indepen-
dent, other than at the fixed points {)\ (®) }be{o 1},icy)- Putting the above two
facts together, we obtain that with all but 200 probability, the set of points
= (C(&),---,C(&)) is uniformly distributed in (Fm’l)t.
Recall that \' = A(PVAL(t,j’,0)). By Proposition 5.1, since t > ﬁlog@m
[F|) + log(200my),

L] 1
14m2 | = 200my’

Pr |\ < (t/2mh).

and the claim follows.

Thus, the invariants for the recursive step are satisfied and so the verifier
accepts in the recursion with probability at most I’é:ﬂi + 1/100. Overall, by
accounting for all of the bad events in the analysis above, we get that the verifier

accepts with probability at most:

m—1
10myg

+1/100+5 -

< 1/1
100mgy — IOmo +1/100

as required.

6.3 Complexity

Communication Complezity. We first analyze the complexity of a single iteration
(i.e., excluding the recursion). The verifier only sends to the prover a specification
of the permutations 7(%) and 7(*) (which take 2m bits each), the values p1, ..., p,
&,...,& € Fand ¢, ¢ e F. Overall the verifier-to-prover communication is
2m + (2t + 1) logz(\]FD The prover in turn sends (Ci(b))ie[t],be{o,l} and the
polynomials §(® and §(Y) (of degree O(t - m)). Thus, the total prover to verifier
communication is O(t - m - log(|F|)).
Thus, the overall communication complexity is given by cc(m) where cc(m) =
O(t-m-log(|F|)) 4+ cc(m — 1) if m > log(t) and cc(m) = 2™ - log(|F|) otherwise.
Overall we have cc(m) < O(m? -t - log(|F|)).

Query Complezity. Denote the query complexity by ¢(m,d). Note that if m <

log(t) then g(m,d) = O(1/§) and otherwise q(m,d) =2-q(m —1,¢") = 2q(m —

1, min (26 (1— —) (t/2m)- m)). The stated query complexity follows from
9]

the following claim.
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Claim 6.7. There exists a fized constant ¢ such that for every m and § it holds
m 2

that q(m,d) <c- (1 — mlo)_m - max (%, M).

Proof. We prove by induction on m. The base case m = log(t) is immediate.

Suppose that the claim holds for m — 1. Then:

q(m, 6) = 2q(m —1,min (26 - (1 — mlo), (t/2™) ;))

1400m2
Suppose first that 20 - (1 — m%)) < (t/2™) - 1356-=- Then,
0
2
q(m,8) =2q(m—1,26- (1 — —))
mo
2 1 2m71 a2
<2 (1——)~(m=D .max( 5 mo)
mo 20 - (1 — mi()) t
2 1 2m.-mg
= (Lo ) max (5, =)

as required. Otherwise, 2§ - (1 — mio) > (t/2™) - m and we have that:

a(m,0) = 2q (m - L(t/27) 140%)mg>

LM a2 Lom—1_,.2
ggc.(l_l)-(m_l)_max(lzloo 2" mf 28002 mo)
mo t P
2 2 LM 42

<o (1- 2y-m 2800-27 mg
mo t
2 1 2800-2™ . m2
<c (1*7)7m-max(f7u>'
mo 1) t

Prover Runtime. In every iteration, the prover only does elementary manipu-
lations of the truth table of f (and never needs to fully materialize the truth
table of f) It also runs the prover of Lemma 5.2. Overall its running time is
poly(2™,mo, log(|F|), t) = poly(2™).

Verifier Runtime and Succinct Description. The queries made by the verifier
can be succinctly specified by the permutations 7(©) and 7)) used through the
recursion as well as the random locations that it queries in the base case. The
total number of bits needed to describe the permutations is at most 2(mg)?. The
number of bits needed in the base case is equal to the total number of queries
divided by 2™° /t (since in each of the mg—log(t) iterations the number of queries
doubled) and multiplied by log(2™) = m (to specify the location). By the above

analysis this quantity is therefore upper bounded by O(’;‘,Tg - max (1/5, £ -

poly(m))) = O(poly(m) + LZ2) - (1/6)). If § > (t/2™0) - —L— this string has

poly(m)
poly(m) length as required.
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Given the set of base points we can generate the list of ¢ queries by repeatedly
applying the two permutations that we have for each level of the recursion. Since
the permutations can be computed in poly(m) time (see Proposition 3.1), we
obtain that a logspace Turing machine can generate a poly(m) depth circuit
that outputs the entire set of ¢ query locations.

As for the succinct description of the verification predicate, observe that all
of the verifier’s checks that do not involve the input can be implemented in time
poly(t, mg, log(|F|)) = poly(¢). The testing of the actual input only happens in
the case in which the prover sends over the alleged actual input f | (which at
the end of the recursion has length ¢ - log(|F|)). This string f, is part of the
description of the verification predicate, together also with all of the ¢(®), (1)
values generated in the recursion. Using these values it is possible to construct
a q - poly(mo,log(|F|)) size depth poly(myg) circuit that given the query answers
checks their consistency with f 0.

7 Proving Theorem 4.1 and Theorem 4.2

Theorem 4.1 follows immediately by combining [RVW13, Theorem 1.3] with
Theorem 6.1, while setting ¢t = ¢ - n - polylog(n).

In order to prove Theorem 4.2 we utilize an idea from the work of Reingold
et al. [RRR18] who used known IPP protocols to achieve batch verification for
UP languages. We restate a more general form of their reduction below. In the
interest of directness, we avoid defining or using Interactive Witness Verification
protocols, as they did. Instead, we use IPPs for pair languages:

Theorem 7.1 (From IPPs to UP batch verification (generalization of
[RRR18, Theorem 3.3])). Suppose that for every query parameter ¢ = q(n) €
{1,...,m}, and for every pair languages L that can be computed by log-space
uniform polynomial-size circuits with fan-in 2 and depth D = D(n), there exists
an interactive proof of proximity where the verifier is public-coin and, on input
(z,y), at the end of the interaction either the wverifier rejects, or it outputs a
succincet description (Q) of a set Q C [|y|] of size ¢ and succinct description (¢)
of a predicate ¢ : {0,1}? — {0,1}, and for every input pair (z,y):

— Completeness: If (z,y) € L then
Pr [V does not reject and ¢(yg) = 1] =1.

- Soundness: If L(x) =0 (there isnoy’ s.t. (z,y') € L), then for every prover
’P* :
Pr [V does not reject and ¢p(yg) = 1] <1/2.

Let cc = cc(q, D,n,m) be the communication complexity, r = r(q, D,n,m) the
number of rounds, Vtime(q, D,n,m) the verifier’s runtime, and assume that the
honest prover runs in polynomial time.

Then, for every UP language L with witness length m = m(n), whose witness
relation can be computed in NC, there exists a public-coin interactive proof (with
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perfect completeness) for verifying that k instances x1, ..., xk, each of length n,
are all in L. Taking D' = polylog(n,k) and m’ = k- m, the complexity of the
protocol is as follows:

— Communication complexity: O (m + Ziozglk cc(%, D, 72‘—/, 7;)) .

— Number of rounds: O (Ziflk r(&,D', %/, %))
— Verifier runtime: O (m logn + Zi‘flk Vtime(4, D', %7 %/))

— The honest prover, given the k unique witnesses, runs in polynomial time.

Theorem 4.2 now follows from Theorem 7.1 by utilizing the efficient IPPs for
NC given in Theorem 4.1.
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Abstract. A statistical zero-knowledge proof (SZK) for a problem I7
enables a computationally unbounded prover to convince a polynomial-
time verifier that = € IT without revealing any additional information
about z to the verifier, in a strong information-theoretic sense.

Suppose, however, that the prover wishes to convince the verifier that
k separate inputs 1, ...,z all belong to IT (without revealing anything
else). A naive way of doing so is to simply run the SZK protocol sepa-
rately for each input. In this work we ask whether one can do better —
that is, is efficient batch verification possible for SZK?

We give a partial positive answer to this question by constructing
a batch verification protocol for a natural and important subclass of
SZK — all problems IT that have a non-interactive SZK protocol (in
the common random string model). More specifically, we show that,
for every such problem I7, there exists an honest-verifier SZK proto-
col for batch verification of k instances, with communication complexity
poly(n)+k-poly(log n, log k), where poly refers to a fixed polynomial that
depends only on II (and not on k). This result should be contrasted with
the naive solution, which has communication complexity k - poly(n).

Our proof leverages a new NISZK-complete problem, called Approz-
imate Injectivity, that we find to be of independent interest. The goal
in this problem is to distinguish circuits that are nearly injective, from
those that are non-injective on almost all inputs.

1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and
Rackoff [GMRS9], are a remarkable and incredibly influential notion. Loosely
speaking, a zero-knowledge proof lets a prover P convince a verifier V of the
validity of some statement without revealing any additional information.

In this work we focus on statistical zero-knowledge proofs. These proof-
systems simultaneously provide unconditional soundness and zero-knowledge:

The full version is available on ECCC [KRR+20].
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— Even a computationally unbounded prover P* cannot convince V to accept a
false statement (except with some negligible probability).

— Any efficient, but potentially malicious, verifier V* learns nothing in the inter-
action (beyond the validity of the statement) in the following strong, statisti-
cal, sense: there exists an algorithm, called the simulator, which can efficiently
simulate the entire interaction between V* and P based only on the input z,
so that the simulation is indistinguishable from the real interaction even to a
computationally unbounded distinguisher.

The class of promise problems! having a statistical zero-knowledge proof is
denoted by SZK. This class contains many natural problems, including many of
the problems on which modern cryptography is based, such as (relaxations of)
integer factoring [GMR&9], discrete logarithm [GK93, CP92] and lattice problems
[GG00,MV03,PV08,APS18].

Since the study of SZK was initiated in the early 80’s many surpris-
ing and useful structural properties of this class have been discovered (see,
e.g., [For89, AH91, 0ka00,SV03, GSVI8,GVI9,NV06,0V08]), and several appli-
cations have been found for hard problems in this (and related) classes (for exam-
ple, see [Ost91,0W93,BDRV18a,BDRV18b, KY18,BBD+20]). It is known to be
connected to various cryptographic primitives [BL13,KMN+14,1V16,PPS15]
and algorithmic and complexity-theoretic concepts [Drulb], and has conse-
quently been used to show conditional impossiblility results. In particular, a
notable and highly influential development was the discovery of natural com-
plete problems for SZK [SV03,GV99].

In this work we are interested in the following natural question. Suppose that
a particular problem IT has an SZK protocol. This means that there is a way to
efficiently prove that « € IT in zero-knowledge. However, in many scenarios, one
wants to be convinced not only that a single instance belongs to II but rather
that k different inputs x1, ...,z all belong to II. One way to do so is to simply
run the underlying protocol for IT k times, in sequence, once for each input ;.2
However, it is natural to ask whether one can do better. In particular, assuming
that the SZK protocol for IT has communication complexity m, can one prove (in
statistical zero-knowledge) that z1, ...,z € IT with communication complexity
< k- m? We refer to this problem as batch verification for SZK.

We view batch verification of SZK as being of intrinsic interest, and poten-
tially of use in the study of the structure of SZK. Beyond that, batch verification
of SZK may be useful to perform various cryptographic tasks, such as batch ver-
ification of digital signature schemes [NMVR94, BGR98,CHP12] or batch verifi-
cation of well-formedness of public keys (see, e.g., [GMRIS8]).

I Recall that a promise problem IT consists of two ensembles of sets YES = (YES: )nen
and (NO,,)nen, such that the YES,,’s and NO,,’s are disjoint. Instances in YES are
called YES instances and those in NO are called NO instances.

2 The resulting protocol can be shown to be zero-knowledge (analogously to the fact
that sequential repetition preserves statistical zero-knowledge).
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1.1 Owur Results

We show that non-trivial batch verification is possible for a large and natural
subset of languages in SZK. Specifically, we consider the class of promise prob-
lems having non-interactive statistical zero-knowledge proofs. A non-interactive
statistical zero-knowledge proof [BFMS8S] is a variant of SZK in which the verifier
and the prover are given access to a uniformly random common random string
(CRS). Given this CRS and an input z, the prover generates a proof string =
which it sends to the verifier. The verifier, given x, the CRS, and the proof string
7, then decides whether to accept or reject. In particular, no additional interac-
tion is allowed other than the proof 7. Zero-knowledge means that it is possible
to simulate the verifier’s view (which consists of the CRS and proof m) so that
the simulation is statistically indistinguishable from the real interaction. The
corresponding class of promise problems is abbreviated as NISZK.

Remark 1.1. An NISZK for a problem II is equivalent to a two-round public-
coin honest-verifier SZK protocol. Recall that honest-verifier zero-knowledge,
means that the honest verifier learns essentially nothing in the interaction, but
a malicious verifier may be able to learn non-trivial information.

The class NISZK contains many natural and basic problems such as: vari-
ants of the quadratic residuosity problem [BSMP91,DSCP94], lattice prob-
lems [PV08,APS18], etc. It is also known to contain complete problems
[SCPY98,GSV99], related to the known complete problems for SZK.

Our main result is an honest-verifier statistical zero-knowledge protocol for
batch verification of any problem in NISZK. In order to state the result more
precisely, we introduce the following definition.

Definition 1.2. Let I = (YES,NO) be a promise problem, where YES =
(YES;, )nen and NO = (NOy,)nen, and let k = k(n) € N. We define the promise
problem [I%* = (YES®*,NO®F), where YES®* = (YES®®),en, NO®F =
(NOZ*)pen and

YESZF = (YES,)"

and

NO%* = (YES,, UNO,)"\ (YES,)*.

That is, instances of II®* are k instances of IT, where the YES instances are all
in YES and the NO instances consist of at least one NO instances for IT.3

With the definition of IT®* in hand, we are now ready to formally state our
main result:

3 This notion of composition is to be contrasted with that employed in the closure the-
orems for SZK under composition with formulas [SV03]. There, a composite problem
similar to IT®* is considered that does not require in its NO sets that all k instances
satisfy the promise, but instead just that at least one of the instances is a NO
instance of II.
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Theorem 1.3 (Informally Stated, see Theorem 3.1). Suppose that II €
NISZK. Then, for every k = k(n) € N, there exists an (interactive) honest-
verifier SZK protocol for IT®F with communication complexity poly(n) + k -
poly(logn,log k), where n refers to the length of a single instance and poly refers
to a fized polynomial independent of k.

The verifier’s running time is k - poly(n) and the number of rounds is O(k).

We emphasize that our protocol for IT®* is interactive and honest-verifier sta-
tistical zero-knowledge (HVSZK). Since we start with an NISZK protocol (which
as mentioned above is a special case of HVSZK), it is somewhat expected that
the resulting batch verification protocol is only HVSZK. Still, obtaining a similar
result to Theorem 1.3 that achieves malicious-verifier statistical zero-knowledge
is a fascinating open problem (see Sect. 1.4 for additional open problems). We
mention that while it is known [GSV98] how to transform any HVSZK protocol
into a full-fledged SZK protocol (i.e., one that is zero-knowledge even wrt a mali-
cious verifier), this transformation incurs a polynomial overhead that we cannot

afford.

1.2 Related Works

Batch Verification via TP = PSPACE. A domain in which batch computing is
particularly easy is bounded space computation - if a language £ can be decided
in space s then k instances of £ can be solved in space s + log(k) (by reusing
space). Using this observation, the IP = PSPACE theorem [LFKN92, Sha92]
yields an efficient interactive proof for batch verification of any problem in
PSPACE. However, the resulting protocol has several major drawbacks. In par-
ticular, it does not seem to preserve zero-knowledge, which makes it unsuitable
for the purposes of our work.

Batch Verification with Efficient Prover. Another caveat of the IP = PSPACE
approach is that it does not preserve the efficiency of the prover. That is, even if
we started with a problem that has an interactive proof with an efficient prover,
the batch verification protocol stemming from the IP = PSPACE theorem has
an inefficient prover.

Reingold et al. [RRR16,RRR18] considered the question of whether batch
verification of NP proofs with an efficiency prover is possible, assuming that the
prover is given the NP witnesses as an auxiliary input. These works construct
such an interactive batch verification protocol for all problems in UP C NP (i.e.,
languages in NP in which YES instances have a unique proof). In particular, the
work of [RRR18] yields a batch verification protocol for UP with communication
complexity k° - poly(m), where m is the original UP witness length and 6 > 0 is
any constant.

Note that it seems unlikely that the [RRR16,RRR18] protocols preserve zero-
knowledge. Indeed, these protocols fundamentally rely on the so-called unambi-
guity (see [RRR16]) of the underlying UP protocol, which, at least intuitively,
seems at odds with zero-knowledge.
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Batch Verification with Computational Soundness. Focusing on protocols achiev-
ing only computational soundness, we remark that interactive batch verification
can be obtained directly from Kilian’s [Kil92] highly efficient protocol for all of
NP (assuming collision resistant hash functions). A non-interactive batch verifi-
cation protocol was given by Brakerski et al. [BHK17] assuming the hardness of
learning with errors. Non-interactive batch verification protocols also follow from
the existence of succinct non-interactive zero-knowledge arguments (2kSNARGS),
which are known to exist under certain strong, and non-falsifiable, assumptions
(see, e.g. [Ish], for a recent survey).

Randomized Iterates. The randomized iterate is a concept introduced by Goldre-
ich, Krawczyk, and Luby [GKL93], and further developed by later work [HHR11,
YGLW15], who used it to construct pseudorandom generators from regular one-
way functions. Given a function f, its randomized iterate is computed on an
input = and descriptions of hash functions hq, ..., h,, by starting with g = f(x)
and iteratively computing x; = f(h;(z;—1)). The hardcore bits of these iterates
were then used to obtain pseudorandomness. While the randomized iterate was
used for a very different purpose, this process of alternating the evaluation of a
given function with injection of randomness (which is what the hash functions
were for) is strongly reminiscent of our techniques. It would be very interesting
if there is a deeper connection between our techniques and the usage of these
iterates in relation to pseudorandom generators.

1.3 Technical Overview

Batch Verification for Permutations. As an initial toy example, we first consider
batch verification for a specific problem in NISZK. Let PERM be the promise
problem defined as follows. The input to PERM is a description of a Boolean
circuit C : {0,1}" — {0,1}". The YES inputs consist of circuits that define
permutations over {0,1}" whereas the NO inputs are circuits so that every
element in the image has at least two preimages.* It is straightforward to see
that PERM € NISZK.?

Our goal is, given as input k circuits C1, ..., Cf, to distinguish (via a zero-
knowledge proof) the case that all of the circuits are permutations from the case

* PERM can be thought of as a variant of the collision problem (see [Aar04, Chapter
6]) in which the goal is to distinguish a permutation from a 2-to-1 function.

5 A two round public-coin honest-verifier perfect zero-knowledge protocol for PERM
can be constructed as follows. The verifier sends a random string y € {0,1}" and
the prover sends z = C'~!(y). The verifier needs to check that indeed y = C(z). It is
straightforward to check that this protocol is honest-verifier perfect zero-knowledge
and has soundness 1/2, which can be amplified by parallel repetition (while noting
that honest-verifier zero-knowledge is preserved under parallel repetition).

This protocol can be viewed as a NIPZK by viewing the verifier’s coins as the
common random string. On the other hand, assuming that NISZK # NIPZK, PERM
is not NISZK-complete.
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that one or more is 2-to-1. Such a protocol can be constructed as follows: the ver-
ifier chooses at random z; € {0,1}", computes zj+1 = Cx(Cr_1(...C1(z1)...))
and sends x4 to the prover. The prover now responds with the preimage
) = C7N Oy (.. Cp (Tq1) -+ .)). The verifier checks that z; = 2} and if
so it accepts, otherwise it rejects.’

Completeness follows from the fact that the circuits define permutations and
so x1 = x}. For soundness, observe that for a NO instance, x4 has at least
two preimages under the composed circuit C o --- o C;. Therefore, a cheating
prover can guess the correct preimage xo with probability at most 1/2 (and the
soundness error can be reduced by repetition). Lastly observe that the protocol
is (perfect) honest-verifier zero-knowledge: the simulator simply emulates the
verifier while setting x} = ;.

The Approzimate Injectivity Problem. Unfortunately, as mentioned above,
PERM is presumably not NISZK-complete and so we cannot directly use the
above protocol to perform batch verification for arbitrary problems in NISZK.
Instead, our approach is to identify a relaxation of PERM that is both NISZK-
complete and amenable to batch verification, albeit via a significantly more com-
plicated protocol.

More specifically, we consider the Approximate Injectivity (promise) problem.
The goal here is to distinguish circuits that are almost injective, from ones that
are highly non-injective. In more detail, let § € [0, 1] be a parameter. We define
Als to be a promise problem in which the input is again a description of a
Boolean circuit C' mapping n input bits to m > n output bits. YES instances are
those circuits for which all but ¢ fraction of the inputs = have no collisions (i.e.,
Pr.[|C~1(C(x))| > 1] < §). NO instances are circuits for which all but § fraction
of the inputs have at least one colliding input (i.e., Pr.[|C~(C(z))| = 1] < J).

Our protocol for batch verification of any problem IT € NISZK consists of
two main steps:

— First, we show that Als is NISZK-hard: i.e., there exists an efficient Karp
reduction from II to Als.

— Our second main step is showing an efficient HVSZK batch verification pro-
tocol for Als. In particular, the communication complexity of the protocol
scales (roughly) additively with the number of instances k.

Equipped with the above, an HVSZK protocol follows by having the prover and
verifier reduce the instances x1,...,z; for Il to instances C4,...,C} for Als,
and then engage in the batch verification protocol for Als on common input

(C1,...,Cp).

6 A related but slightly different protocol, which will be less useful in our eventual
construction, can be obtained by observing that (1) the mapping (Ci,...,Ck) —
Ck o---0 (4 is a Karp-reduction from an instance of PERM®* to an instance of
PERM with n input/output bits, and (2) that PERM has an NISZK protocol with
communication complexity that depends only on n.
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Before describing these two steps in detail, we remark that we find the identi-
fication of Als as being NISZK-hard (in fact, NISZK-complete) to be of indepen-
dent interest. In particular, while Al; bears some resemblance to problems that
were already known to be NISZK-complete, the special almost-injective nature
of the YES instances of Al seems very useful. Indeed, this additional structure
is crucial for our batch verification protocol.

Als is NISZK-hard. We show that Als is NISZK-hard by reducing to it from
the Entropy Approximation problem (EA), which is known to be complete for
NISZK [GSV99].” An instance of EA is a circuit C' along with a threshold k €
R+, and the problem is to decide whether the Shannon entropy of the output
distribution of C' when given uniformly random inputs (denoted H(C)) is more
than k& + 10 or less than k — 10.%

For simplicity, suppose we had a stronger promise on the output distribution
of C — that it is a flat distribution (in other words, it is uniform over some
subset of its range). In this case, for any output y of C, the promise of EA tells
us something about the number of pre-images of y. To illustrate, suppose C
takes n bits of input. Then, in a YES instance of EA, the size of the set |C’1(y)|
is at most 27~ (+*10) and in the NO case it is at least 27~ (*=10) Recall that
for a reduction to Als, we need to make the sizes of most inverse sets 1 for YES
instances and more than 1 for NO instances. This can now be done by using a
hash function to shatter the inverse sets of C.

That is, consider the circuit C' that takes as input an x and also the descrip-
tion of a hash function h from, say, a pairwise-independent hash family H, and
outputs (C(x), h,h(x)). If we pick H so that its hash functions have output
length (n — k), then out of any set of inputs of size 27~ (10 all but a small
constant fraction will be mapped injectively by a random h from H. On the
other hand, out of any set of inputs of size 2"~(*~10) only a small constant
fraction will be mapped injectively by a random h. Thus, in the YES case, it
may be argued that all but a small constant fraction of inputs (x, h) are mapped
injectively by 6, and in the NO case only a small constant fraction of inputs
are. So for some constant J, this is indeed a valid reduction from EA to Als. For
smaller functions 4, the reduction is performed by first amplifying the gap in the
promise of EA and then proceeding as above.

Finally, we can relax the simplifying assumption of flatness using the asymp-
totic equipartition property of distributions. In this case, this property states
that, however unstructured C' may be, its t-fold repetition C®* (that takes an
input tuple (z1,...,2:) and outputs (C(x1),...,C(x;))) is “approximately flat”
for large enough t. That is, with increasingly high probability over the output
distribution of C®?, a sample from it will have a pre-image set of size close to
its expectation, which is 2 ("=H()  Such techniques have been previously used
for similar purposes in the SZK literature and elsewhere, for example as the

7 In fact, we also show that Als is in NISZK, and thus is NISZK-complete, by reducing
back from it to EA.

8 In the standard definition of EA [GSV99], the promise is that H(C) is either more
than k41 or less than k — 1, but this gap can be amplified easily by repetition of C'.
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flattening lemma of Goldreich et al. [GSV99] (see the full version for details and
the proof).

Batch Verification for Ezact Injectivity. For sake of simplicity, for this overview
we focus on batch verification of the exact variant of Als, that is, when § = 0. In
other words, distinguishing circuits that are truly injective from those in which
every image y has at least two preimages (with no exceptions allowed). We
refer to this promise problem as INJ. Modulo some technical details, the batch
verification protocol for INJ, presented next, captures most of the difficulty in
our batch verification protocol for Als.

Before proceeding we mention that the key difference between INJ and PERM
is that YES instances of the former are merely injective whereas for the latter
they are permutations. Interestingly, this seemingly minor difference causes sig-
nificant complications.

Our new goal is, given as input circuits Cy,...,Cy : {0,1}" — {0,1}", with
m > n, to distinguish the case that all of the circuits are injective from the case
that at least one is entirely non-injective.

Inspired by the batch verification protocol for PERM, a reasonable approach
is to choose x1 at random but then try to hash the output y; = C;(x;) € {0,1}™,
of each circuit C, into an input z; 1 € {0,1}" for C;1;. If a hash function could
be found that was injective on the image of C; then we would be done. However,
it seems that finding such a hash function is, in general, extremely difficult.

Rather, we will hash each y; by choosing a random hash function from a small
hash function family. More specifically, for every iteration 7 € [k] we choose a
random seed z; for a (seeded) randomness extractor Ext : {0,1}™ x {0,1}* —
{0,1}" and compute ;11 = Ext(y;, z;). See Fig. 1 for a diagram describing this
sampling process.

In case all the circuits are injective (i.e., a YES instance), a simple inductive
argument can be used to show that each y; is (close to) a distribution having
min-entropy n, and therefore the output x;1; = Ext(y;, ;) of the extractor is
close to uniform in {0,1}". Note that for this to be true, we need a very good
extractor that essentially extracts all of the entropy. Luckily, constructions of
such extractors with a merely poly-logarithmic seed length are known [GUV07].

This idea leads us to consider the following strawman protocol. The verifier
chooses at random 7 € {0,1}" and k seeds z1, . . ., zx. The verifier then computes
inductively: y; = C;(x;) and 2,11 = Ext(y;, 2;), for every i € [k]. The verifier sends
(Tk+1, 215 - - -, 2k) to the prover, who in turn needs to guess the value of ;.

The major difficulty that arises in this protocol is in completeness: the honest
prover’s probability of predicting xz; is very small. To see this, suppose that all
of the circuits C1,...,C) are injective. Consider the job of the honest prover:
given (Zyy1,21,...,2,) the prover needs to find x;. The difficulty is that zgyq
is likely to have many preimages under Ext(-, z). While this statement depends
on the specific structure of the extractor, note that even in a “dream scenario”
in which Ext(, z;) were a random function, a constant fraction of xx1’s would
have more than one preimage (in the image of Cy).
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Fig. 1. The sampling process

A similar type of collision in the extractor is likely to occur in most of the
steps i € [k]. Therefore, the overall number of preimages 2] that are consistent
with (241,21, ..., 2x) is likely to be 292(K) and the prover has no way to guess the
correct one among them. The natural remedy for this is to give the prover some
additional information, such as a hash of x1, in order to help pick it correctly
among the various possible options. However, doing so also helps a cheating
prover find z; in the case where one of the circuits is non-injective. And it turns
out that the distribution of the number of z1’s in the two cases — where all the
C;’s are injective and where one is non-injective — are similar enough that it is
not clear how to make this approach work as is.

Isolating Preimages via Interaction. We circumvent the issue discussed above
by employing interaction. The key observation is that, even though the number
of pre-images z1 of the composition of all k circuits is somewhat similar in the
case of all YES instance and the case of one NO instance among them, if we look
at this composition circuit-by-circuit, the number of pre-images in an injective
circuit is clearly different from that in a non-injective circuit. In order to exploit
this, we have the verifier gradually reveal the y;’s rather than revealing them all
at once.
Taking a step back, let us consider the following naive protocol:

1. Fori=Fk,..., 1:
(a) The verifier chooses at random x; € {0,1}" and sends y; = C;(x;) to the
prover.
(b) The (honest) prover responds with = = C; ' (y;).
(c) The verifier immediately rejects if the prover answered incorrectly (i.e.,

It is not difficult to argue that this protocol is indeed an HVSZK protocol (with
soundness error 1/2, which can be reduced by repetition). Alas, the communi-
cation complexity is at least k - n, which is too large.

However, a key observation is that this protocol still works even if we generate
the y;’s as in the strawman protocol. Namely, x;11 = Ext(y;, z;) and y; = C;(x;),
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for every ¢ € [k], where the z;’s are fresh uniformly distributed (short) seeds.
This lets us significantly reduce the randomness complezity of the above naive
protocol. Later we shall use this to also reduce the communication complexity,
which is our main goal.

To see that the “derandomized” variant of the naive protocol works, we first
observe that completeness and zero-knowledge indeed still hold. Indeed, since
in a YES case all the circuits are injective, the honest prover always provides
the correct answer - i.e., z; = x;. Thus, not only does the verifier always accept
(which implies completeness), but it can also easily simulate the messages sent
by the prover (which guarantees honest-verifier statistical zero-knowledge).”

Arguing soundness is slightly more tricky. Let ¢* € [k] be the smallest integer
so that C;« is a NO instance. Recall that in the ¢*-th iteration of the protocol,
the prover is given y;+ and needs to predict x;-. If we can argue that x;- is (close
to) uniformly distributed then (constant) soundness follows, since C;- is a NO
instance and therefore non-injective on every input.

We argue that x;- is close to uniform by induction. For the base case i = 1
this is obviously true since z; is sampled uniformly at random. For the inductive
step, assume that x;_; is close to uniform, with ¢ < ¢*. Since C;_; is injective
(since i — 1 < i*), this means that y;—1 = C;_1(2;—1) is close to uniform in the
image of C1, a set of size 2. Thus, Ext(y;—1, z;—1) is applied to a source (that is
close to a distribution) with min-entropy n. Since Ext is an extractor, this means
that z; is close to uniform, concluding the induction.

Reducing Communication Complezity via Hashing. Although we have reduced
the randomness complexity of the protocol, we have not reduced the communi-
cation complexity (which is still k - n). We shall do so by, once more, appealing
to hashing.

Let us first consider the verifier to prover communication. Using hashing, we
show how the verifier can specify each y; to the prover by transmitting only a
poly-logarithmic number of bits. Consider, for example, the second iteration of
the protocol. In this iteration the verifier is supposed to send yx_1 to the prover
but can no longer afford to do so. Notice however that at this point the prover
already knows x;. We show that with all but negligible probability, the number
of candidate pairs (yg—_1,25—1) that are consistent with x; (and so that yi_1
is in the image of C;_1) is very small. This fact (shown in Proposition 4.4 in
Sect. 4), follows from the fact that Ext is an extractor with small seed length.!°
In more detail, we show that with all but negligible probability, the number
of candidates is roughly (quasi-)polynomial. Thus, it suffices for the verifier to
send a hash of poly-logarithmic length (e.g., using a pairwise independent hash

9 Actually the protocol as described achieves perfect completeness and perfect honest-
verifier zero-knowledge. However, the more general Als problem will introduce some
(negligible) statistical errors.

10 This observation is simple in hindsight but we nevertheless find it somewhat surpris-
ing. In particular, it cannot be shown by bounding the expected number of collisions
and applying Markov’s inequality since the expected number of collisions in Ext is
very large (see [Vad1l2, Problem 6.4]).
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function) to specify the correct pair (yx—_1,2x—1). This idea extends readily to
all subsequent iterations.

Thus, we are only left with the task of reducing the communication from the
prover to the verifier (which is currently n - k). We yet again employ hashing.
The observation is that rather than sending x; in its entirety in each iteration, it

suffices for the prover to send a short hash of x;. The reason is that, in the case of
(0)

i

soundness, when we reach iteration ¢*, we know that y; has two preimages: x
(1)

and z,;"’. The prover at this point has no idea which of the two is the correct

1

one and so as long as the hashes of xl(o) and :1:51) differ, the prover will only
succeed with probability 1/2. Thus, it suffices to use a pairwise independent
hash function.

To summarize, after an initial setup phase in which the verifier specifies yy
and the different hash functions, the protocol simply consists of a “ping pong” of
hash values between the verifier and the prover. In each iteration the verifier first
reveals a hash of the pair (y;, z;), which suffices for the prover to fully recover
y;. In response, the prover sends a hash of x;, which suffices to prove that the
prover knows the correct preimage of y;. For further details, a formal description
of the protocol, and the proof, see Sect. 4.

1.4 Discussion and Open Problems

Theorem 1.3 gives a non-trivial batch verification protocol for any problem in
NISZK. However, we believe that it is only the first step in the study of batch
verification of SZK. In particular, and in addition to the question of obtaining
malicious verifier zero-knowledge that was already mentioned, we point out
several natural research directions:

1. As already pointed out, Theorem 1.3 only gives a batch verification protocol

for problems in NISZK. Can one obtain a similar result for all of SZK?
As a special interesting case, consider the problem of batch verification for
the graph non-isomorphism problem: deciding whether or not there exists a
pair of isomorphic graphs among k such pairs. Theorem 1.3 yields an efficient
batch verification protocol for this problem under the assumption that the
graphs have no non-trivial automorphisms. Handling the general case remains
open and seems like a good starting point for a potential generalization of
Theorem 1.3 to all of SZK.

2. Even though we started off with an NISZK protocol for I, the protocol for
IT®* is highly interactive. As a matter of fact, the number of rounds is O(k).
Is there an NISZK batch verification protocol for any IT € NISZK?

3. While the communication complexity in the protocol for IT®* only depends
(roughly) additively on k, this additive dependence is still linear. Is a simi-
lar result possible with a sub-linear dependence on k?'! For example, with
poly(n,log k) communication?

' While a linear dependence on k seems potentially avoidable, we note that a poly-
nomial dependence on n seems inherent (even for just a single instance, i.e., when
kE=1).
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4. A different line of questioning follows from looking at prover efficiency. While
in general one cannot expect provers in interactive proofs to be efficient, it is
known that any problem in SZK N NP has an SZK protocol where the hon-
est prover runs in polynomial-time given the NP witness for the statement
being proven [NV06]. Our transformations, however, make the prover quite
inefficient. This raises the interesting question of whether there are batch ver-
ification protocols for languages in SZK N NP (or even NISZK N NP) that are
zero-knowledge and also preserve the prover efficiency. This could have inter-
esting applications in, say, cryptographic protocols where the honest prover
is the party that generated the instance in the first place and so has a witness
for it (e.g., in a signature scheme where the signer wishes to prove the validity
of several signatures jointly).

While the above list already raises many concrete directions for future work,
one fascinating high-level research agenda that our work motivates is a fine-
grained study of SZK. In particular, optimizing and improving our understanding
of the concrete polynomial overheads in structural study of SZK.

Remark 1.4 (Using circuits beyond random sampling). To the best of
our knowledge, all prior works studying complete problems for SZK and NISZK
only make a very restricted usage of the given input circuits. Specifically, all that
is needed is the ability to generate random samples of the form (r,C(r)), where
r is uniformly distributed random string and C is the given circuit (describing a
probability distribution).

In contrast, our protocol leverages the ability to feed a (hash of an) output of
one circuit as an input to the next circuit. This type of adaptive usage escapes
the “random sampling paradigm” described above. In particular, our technique
goes beyond the (restrictive) black box model of Holenstein and Renner [HR05],
who showed limitations for statistical distance polarization within this model (see

also [BDRV19]).

1.5 Organization

We start with preliminaries in Sect. 2. The batch verification result for NISZK is
formally stated in Sect. 3 and proved therein, based on results that are proved
in the subsequent sections. In Sect. 4 we show a batch verification protocol for
Als. Due to lack of space, we defer the proof that Als is NISZK-complete to the
full version.

2 Preliminaries

2.1 Probability Theory Notation and Background

Given a random variable X, we write x < X to indicate that x is sampled
according to X. Similarly, given a finite set S, we let s < S denote that s is
selected according to the uniform distribution on S. We adopt the convention
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that when the same random variable occurs several times in an expression, all
occurrences refer to a single sample. For example, Pr[f(X) = X] is defined to be
the probability that when = « X, we have f(x) = z. We write U,, to denote the
random variable distributed uniformly over {0, 1}". The support of a distribution
D over a finite set U, denoted Supp(D), is defined as {u € U : D(u) > 0}.

The statistical distance of two distributions P and ) over a finite
set U, denoted as A(P,Q), is defined as maxgcy(P(S) — Q(S)) =
LS ew [P(1) — Qu).

We recall some standard basic facts about statistical distance.

Fact 2.1 (Data processing inequality for statistical distance). For any
two distributions X and Y, and every (possibly randomized) process f:

A(f(X), f(¥)) € A(X,Y)
Fact 2.2. For any two distributions X and Y, and event E:
where X |g denotes the distribution of X conditioned on E.

Proof. Let p, = Pr[X = u] and ¢, = Pr[Y = u]. Also, let p, g = Prx[X = u|E]
and p,|-g = Prx[X = u[-E].

A(X’Y) :%Z |pu _Qu}

1
= ; ‘ PrE] pup + B1[F] - pupp — P[] - qu — PY[E] - g,

<3 S ([BrlB] - pugss — B21E] 4,

u

+| Br[E] - pupp — PE] 0,

)

=Pr(B] - A (X|p,Y) + Pr{~E] - A (X|p, )
<A(X]|g,Y) + Prl-E].

We also recall Chebyshev’s inequality.

Lemma 2.3 (Chebyshev’s inequality). Let X be a random variable. Then,
for every a > 0:

Var [X]
< —.

Pr[lX - B[X]| 2 o] < =55

2.2 Zero-Knowledge Proofs

We use (P,V)(z) to refer to the transcript of an execution of an interactive
protocol with prover P and verifier V on common input z. The transcript includes
the input z, all messages sent by P to V in the protocol and the verifier’s random
coin tosses. We say that the transcript 7 = (P, V)(x) is accepting if at the end of
the corresponding interaction, the verifier accepts.
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Definition 2.4 (HVSZK). Letc = c¢(n) € [0,1], s = s(n) € [0,1] and z = z(n) €
[0,1]. An Honest Verifier SZK Proof-System (HVSZK) with completeness error
¢, soundness error s and zero-knowledge error z for a promise problem II =
(IIygs, IIno), consists of a probabilistic polynomial-time verifier V and a com-
putationally unbounded prover P such that following properties hold:

— Completeness: For any © € Ilygs:
Pr[(P,V)(x) is accepting] > 1 — ¢(|z]).

- Soundness: For any (computationally unbounded) cheating prover P* and
any x € IIno:

Pr [(P*,V)(x) is accepting] < s(|z|).

— Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x €
IIygs:

A((P,V)(x),Sim(z)) < z(|x]).

If the completeness, soundness and zero-knowledge errors are all negligible, we
simply say that IT has an HVSZK protocol. We also use HVSZK to denote the
class of promise problems having such an HVSZK protocol.

We also define non-interactive zero knowledge proofs as follows.

Definition 2.5 (NISZK). Let ¢ = ¢(n) € [0,1], s = s(n) € [0,1] and
z = z(n) € [0,1]. An non-interactive statistical zero-knowledge proof (NISZK)
with completeness error ¢, soundness error s andzero-knowledge error z for a
promise problem IT = (Ilygs, IIno), consists of a probabilistic polynomial-time
verifier V, a computationally unbounded prover P and a polynomial ¢ = £(n)
such that following properties hold:

— Completeness: For any © € Ilygs:

Pr  [V(z,r,7m) accepts] > 1 — c(|z|),
7"6{0,1}“‘””‘)

where m = P(x,r).
- Soundness: For any x € IIno:

Pr [Fr* s.t. V(z,r, ™) accepts| < s(|x]).
re{0,1}¢U=D

— Honest Verifier Statistical Zero Knowledge: There is a probabilistic
polynomial-time algorithm Sim (called the simulator) such that for any x €
IIygs:

A (U, P(x,Up)), Sim(z)) < 2(|z)).

As above, if the errors are negligible, we say that IT has a NISZK protocol and
use NISZK to denote the class of all such promise problems.
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2.3 Many-Wise Independent Hashing

Hash functions offering bounded independence are used extensively in the lit-
erature. We use a popular variant in which the output of the hash function is
almost uniformly distributed on the different points. This relaxation allows us
to save on the representation length of functions in the family.

Definition 2.6 (J-almost (-wise Independent Hash Functions). For { =
ln) e N, m=m(n) € N and § = d(n) > 0, a family of functions F = (Fy)n,
where F,, = {f :{0,1}™ — {0, 1}”} is 6-almost £-wise independent if for every
n € N and distinct x1, 2, ..., € {0,1}" the distributions:

- (f(x1)7 . -af(xf)); where f — Fn; and
~ The uniform distribution over ({0,1}™"),

are §-close in statistical distance.

When § = 0 we simply say that the hash function family is ¢-wise independent.
Constructions of (efficiently computable) many-wise hash function families with
a very succinct representation are well known. In particular, when § = 0 we have
the following well-known construction:

Lemma 2.7 (See, e.g., [Vad12, Section 3.5.5]). For every £ = £(n) € N and
m =m(n) € N there exists a family of £-wise independent hash functions ff,ezn =
{f:{0,1} — {0, 1}"} where a random function from f,g,lizn can be selected using
O(E . max(n,m)) bits, and given a description of f € FO and x € {0,1}™, the
value f(x) can be computed in time poly(n,m,£).

For 6 > 0, the seminal work of Naor and Naor [NN93] yields a highly succinct
construction.

Lemma 2.8 ([NN93, Lemma 4.2]). For every { = {(n) € N, m = m(n) € N
and 6 = d(n) > 0, there exists a family of §-almost (-wise independent hash
functions ]—',(szn = {f:{0,1}™ — {0,1}"} where a random function from fy(l’f%l
can be selected using O(C - n + log(m) + log(1/8)) bits, and given a descrip-
tion of f € F\) and x € {0,1}™, the value f(z) can be computed in time
poly(n, m, £,log(1/4)).

2.4 Seeded Extractors

The min-entropy of a distribution X over a set X is defined as Hy(X) =
mingey log(1/Pr[X = z]). In particular, if Ho(X) = k then, Pr[X = 2] < 27,
for every x € X.

Definition 2.9 ([NZ96]). Let k = k(n) € N, m = m(n) € N, d = d(n)
and € = e(n) € [0,1]. We say that the family of functions Ext = (Ext,)nen,
where Ext, : {0,1}" x {0,1} — {0,1}™, is a (k,e)-extractor if for every
n € N and distribution X supported on {0,1}" with Hoo(X) > k, it holds that
A(Ext(X,Uq),Up,) < €, where Uq (resp., Uy,) denotes the uniform distribution
on d (resp., m) bit strings.
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Lemma 2.10 ([GUV07, Theorem 4.21]). Let k = k(n) € N, m = m(n) € N
and € = ¢(n) € [0,1] such that k < n, m < k+d — 2log(1/e) — O(1), d =
log(n) + O(log(k) - log(k/e€)) and the functions k, m and € are computable in
poly(n) time. Then, there exists a polynomial-time computable (k,¢€)-extractor

Ext = (Ext, )nen such that Ext, : {0,1}" x {0,1}% — {0,1}™.

3 Batch Verification for NISZK

In this section we formally state and prove our main result.

Theorem 3.1. Let I € NISZK and k = k(n) € N such that k(n) = 27"

Then, IT®* has an O(k)-round HVSZK protocol with communication complexity
k - poly(logn,log k) + poly(n) and verifier running time k - poly(n).

The proof of Theorem 3.1 is divided into two main steps:

1. As our first main step, we introduce a new NISZK-hard problem, called
approzimate injectivity. The problem is defined formally in Definition 3.2
below and its NISZK hardness is established by Lemma 3.3. Due to space
restrictions, the proof of Lemma 3.3 is deferred to the full version.

2. The second step is constructing a batch verification protocol for approximate
injectivity, as given in Theorem 3.4. The proof of Theorem 3.4 appears in
Sect. 4.

We proceed to define the approximate injectivity problem and state its
NISZK-hardness.

Definition 3.2. Let 6 = d(n) — [0,1] be a function computable in poly(n) time.
The Approximate Injectivity problem with approximation &, denoted by Als, is
a promise problem (YES,NO), where YES = (YES,,)nen and NO = (NO,,)nen
are sets defined as follows:

YES, =4(1".C) : P
{( ) x<—{OI,l1}n|:

C'(C)|>1] < 6(n)}

NO,, = {(1",0) . pPr |

z—{0,1}"

C'(C@)|>1] >1- (5(n)}

where, in both cases, C is a circuit that takes n bits as input. The size of an
instance (1™, C) is n.

Lemma 3.3. Let§ = §(n) € [0,1] be a non-increasing function such that §(n) >
20" Then, Als is NISZK-hard.

As mentioned above, the proof of Lemma 3.3 appears in the full version. Our
main technical result is a batch verification protocol for Als.
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Theorem 3.4. For any k = k(n) € N, § = §(n) € [0, tgo7z) and security param-
eter A\ = A(n), the problem Al?k has an HVSZK protocol with communication
complexity O(n)+k-poly(\,log N, log k), where N is an upper bound on the size of
each of the given circuits (on n input bits). The completeness and zero-knowledge
errors are O(k? - 6 +27*) and the soundness error is a constant bounded away
from 1.

The verifier running time is k - poly(N,log k, \) and the number of rounds is

O(k).

The proof of Theorem 3.4 appears in Sect. 4. With Lemma 3.3 and Theorem 3.4
in hand, the proof of Theorem 3.1 is now routine.

Proof (Proof of Theorem 3.1). Let IT € NISZK. We construct an HVSZK protocol
for IT®* as follows. Given as common input (z1,...,zy), the prover and verifier
each first employ the Karp reduction of Lemma 3.3 to each instance to obtain
circuits (C1,...,Ck) wrt 6 = m The size of each circuit, as well as the
number of inputs bits, is poly(n).

The parties then emulate a poly(logn,log k) parallel repetition of the SZK
protocol of Theorem 3.4 on input (Cy,...,C%) and security parameter A =
poly(logn,log k). Completeness, soundness and honest-verifier zero-knowledge
follow directly from Lemma 3.3 and Theorem 3.4, with error O(k - 6§ +27) =
negl(n, k), where we also use the fact that parallel repetition of interactive proofs
reduces the soundness error at an exponential rate, and that parallel repetition
preserves honest verifier zero-knowledge.

To analyze the communication complexity and verifier running time, observe
that the instances C; that the reduction of Lemma 3.3 generates have size
poly(n). The batch verification protocol of Theorem 3.4 therefore has com-
munication complexity poly(n) + k - poly(logn,log k) and verifier running time
k - poly(n).

4 Batch Verification for Al

In this section we prove Theorem 3.4 by constructing an HVSZK protocol for
batch verification of the approximate injectivity problem Als (see Definition 3.2
for the definition of Als). For convenience, we restate Theorem 3.4 next.

Theorem 3.4. For any k = k(n) € N,§ = §(n) € [0, 15572
eter X = \(n), the problem AIS* has an HVSZK protocol with communication
complezity O(n)+k poly (X, logN,logk), where N is an upper bound on the size of
each of the given circuits (on n input bits). The completeness and zero-knowledge
errors are O(k? - 6 +27*) and the soundness error is a constant bounded away
from 1.

The verifier running time is k - poly(N,logk, \) and the number of rounds is
O(k).

| and security param-
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HVSZK Batch Verification Protocol for Alg

InPUT: Circuits Ch,...,Ck : {0,1}" — {0,1}™ and security parameter \, where
all circuits have size at most N, input length n, and output length m < N.

— Wlog we assume that all the circuits have the same output length m < N.
This can be achieved by padding.

INGREDIENTS:

— Let Ext = Ext, be the explicit extractor from Lemma 2.10, where Ext, :
{0,1}™ x {0,1}* — {0,1}", so that Ext, supports min-entropy n — 1, has
error € = ﬁ and the seed length d is as guaranteed by Lemma 2.10.

— Let H, be the explicit family of m-almos‘c pairwise-independent
hash functions of Lemma 2.8, where H,, : {0,1}"x{0,1}% — {0,1}* T +2losk
and d is the seed length of the extractor as specified above.

— Let G, be the explicit family of pairwise-independent hash functions of
Lemma 2.7, where G, : {0,1}" — {0,1} and £ = O(1) (e.g., £ = 3 suf-
fices).

THE PROTOCOL:

1. Setup for V:

(a) Sample h + H, and g < G,.

(b) Sample z1 + {0,1}".

(c) Fori=1,... k:

i. Compute y; = Cs(x;).
ii. Sample z; « {0,1}%
iii. Compute x;4+1 = Ext(y;, 2;)-
2. V sends h, g, and xp41 to P.
P sets T}y = Tpy1-
4. Fori =k, ..., 1:

(a) V sends 3; = h(yi, zi) to P.

(b) P computes y; by finding the unique pair (y;, 2;) s.t. Ext(y;, z;) = zj,1
and h(y;, z;) = Bs. If such a pair (y;, ;) does not exist or is not unique,
P sends a special abort symbol to V.

(c) P computes z} by inverting C; at y; and sends a; = g(z}) to V. If an
inverse of y; does not exist or is not unique, P sends a special abort
symbol to V.

(d) If V got an abort symbol or if a; # g(z;), then it rejects and aborts.

5. If all previous tests passed then V accepts.

@

Fig. 2. A batch SZK protocol for Al
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Let k, § and A be as in the statement of Theorem 3.4. In order to prove
the theorem we need to present an HVSZK protocol for AI?IC with the specified
parameters. The protocol is presented in Fig. 2. The rest of this section is devoted
to proving that the protocol indeed satisfies the requirements of Theorem 3.4.

Section Organization. First, in Sect. 4.1 we prove several lemmas that will be
useful throughout the analysis of the protocol. Using these lemmas, in Sects. 4.2
and 4.4, we, respectively, establish the completeness, honest-verifier statistical
zero-knowledge and soundness properties of the protocol. Lastly, in Sect. 4.5 we
analyze the communication complexity and verifier runtime.

4.1 Useful Lemmas

Let C1,...,Ck : {0,1}" — {0,1}" be the given input circuits (these can cor-
respond to either a YES or NO instance of Als). Throughout the proof we use
i* € [k + 1] to denote the index of the first NO instance circuit, if such a cir-
cuit exists, and i* = k + 1 otherwise. That is, i* = min ({k + 1} U {i € [k] :
C; is a NO instance}).

For every i € [k] we introduce the following notations:

— We denote by X; the distribution over the string z; € {0,1}" as sampled in
the verifier’s setup phase. That is, X; = U,, and for every ¢ € [k], it holds
that ¥; = C;(X;) and X; 41 = Ext(Y;, Z;), where each Z; is an iid copy of Uy.

— We denote the subset of strings in {0,1}"™ having a unique preimage under
Ci by S; (ie., Si = {y; : |C; " (y;)| = 1}). Abusing notation, we also use S;
to refer to the uniform distribution over the corresponding set.

For a function f, we define vy as vy(x) = [{2' : f(2’) = f(z)}|. We say that
x € {0,1}" has siblings under f, if v;(z) > 1. When f is clear from the context,
we omit it from the notation.

Lemma 4.1. For every i <i* it holds that A (X;,U,) < k.ly +k-0.
Proof. We show by induction on i that A (X;,U,) < (i —1) - (
lemma follows by the fact that i < k.

wax +0). The

For the base case (i.e., i = 1), since X; is uniform in {0,1}" we have that
A (X1,U,) =0. Let 1 < i <i* and suppose that the claim holds for ¢ — 1. Note
that ¢ — 1 < 4* and so C;_1 is a YES instance circuit.

Claim 4.1.1. A(Ext(Si—1,Ua),Un) < 7z5x-

Proof. By definition of Als, the set S;_; has cardinality at least (1 — ¢) - 2™.
Since § < 1/2, this means that the min-entropy of (the uniform distribution
over) S; is at least n — 1. The claim follows by the fact that Ext is an extractor

for min-entropy n — 1 with error € = ﬁ
We denote by W; the distribution obtained by selecting (x;_1, z;—1) uniformly

in {0,1}" x {0, 1}d and outputting Ext(C’i_l(xi_l),zi_l).
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Claim 4.1.2. A (W;,U,,) < k22A + 9.

Proof. Consider the event that X;_; has a sibling (under C;_1). Since C;_1 is
a YES instance, this event happens with probability at most 4. On the other
hand, the distribution of C;(X;_1), conditioned on X;_; not having a sibling, is
simply uniform in S;. The clalm now follows by Claim 4.1.1 and Fact 2.2.

We are now ready to bound A (X;,U,), as follows:
A (X, Un) < A(Xy, W3) + A (W, Uy)
= A(Bxt(Cin1(Xi-1), Ua), Ext(Cia (Un), Ua) ) + A (W3, U)

1
<A(Xio1,Un) + FERETY L +0

S(i—l)-(kzl +5>

where the first inequality is by the triangle inequality, the second inequality is by
Fact 2.1 and Claim 4.1.2 and the third inequality is by the inductive hypothesis.

Definition 4.2. We say that the tuple (x1,h, z1,...2k) is good if the following

holds, where we recursively define y; = Ci(x;) and x;y1 = Ext(y;, 2;), for every

1<t

1. For every i < i*, there does not exist x; # x; s.t. Ci(x;) = Ci(x}) (i-e., z;
has no siblings).

2. For every i < i*, there does not exist (y},z.) # (yi,z) such that y; € S;,
Ext(y}, zi) = Ext(y;, zi) and h(y,, zl) = h(yi, z:).

Lemma 4.3. The tuple (x1,h,z1,...2,) sampled by the verifier V is good with
probability at least 1 — O(k? - 6 +277).

In order to prove Lemma 4.3, we first establish the following proposition, which
bounds the number of preimages of a random output of the extractor.

Proposition 4.4. For any S C {0,1}™ with 2"~ < |S| < 2" and any security
parameter A > 1, it holds that:

1
P ,2) > 2N <e —.
o (Ve (y, 2) J<etox
Proof. Throughout the current proof we use v as a shorthand for vg,. Abusing
notation, we also use S to refer to the uniform distribution over the set S.

For a given security parameter A > 1, denote by H (for “heavy”) the set
of all (y,2) € S x {0,1}* that have v(y,z) > |S] - 297"+ and by Ext(H) the
set {Ext(y,z) : (y,2) € H}. By definition, for any z € Ext(H), we have that
Pr[Ext(S,Uy) = z] > 27", This implies that:

|Ext(H)| < 2",
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Note again that for any z € Ext(H), the above probability is more than 27",
which is the probability assigned to z by the uniform distribution U,. It then
follows from the definition of statistical distance that:

A(Ext(SUa),Un) > > (PriExt(S,Us) = 2] —27")
z€Ext(H)
= Pr [Ext(S,U,) € Ext(H)] — |Ext(H)| - 27"
> Pr[Ext(S,Uy) € Ext(H)] — 277

Since |S| > 2"~!, the min entropy of S is at least n—1, and therefore, it holds that
A (Ext(S,Uy),Uy) < e. Together with the fact that Pr[Ext(S,Uy) € Ext(H)| =
Pr[(S,Uy) € H], we have:

1
d—n-+\
yeSf;rHUd [v(y,z) > |S] -2 ] <e+ S

And since |S| < 2™ we have

1
d+X
e b0 > 2 S

Using Proposition 4.4 we are now ready to prove Lemma 4.3.

Proof (Proof of Lemma 4.3). For any i < i*, let E; denote the event that either
(1) there exists x} # x; such that C;(z;) = C;(z}), or (2) there exists (v}, z}) #
(yi, z;) such that y € S;, Ext(y}, 21) = Ext(y;, z;) and h(y}, z;) = h(yi, z;), where
(T1y ey Tht1, YLy -+ Yk 21, - - -, 2k) are as sampled by the verifier.

Lemma 4.3 follows from the following claim, and a union bound over all
i€ [k].

Claim 4.4.1. Pr[E;] < (k+1) -6 + 5, for every i € [k].

Proof. We first analyze the probability for the event E; when x; is sampled
uniformly at random. By definition of Als:

Pr [z; has siblings | < 4.
Let us condition on x; with no siblings being chosen. Under this conditioning,
Ci(x;) is uniform in S;. We note that |S;| > (1 —6) - 2" > 2"~ and |S,| < 2™.
Thus, by Proposition 4.4 (using security parameter A 4 log k) it holds that:

2

Pr[vea(y,2) > k- 224 et = < o=

Yi HSi,ZHUd

where the last inequality follows from the fact that e = ﬁ
Let us therefore assume that the pair (y;, 2;) has at most k-2 siblings under
Ext. We wish to bound the probability that there exists a preimage that collides
with (y;, z;) under h. Since h is 2~ A +d+2108k)_almost pairwise-independent (into
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a range of size 22Atd+2108k) for any pair (y', 2’), the probability that it collides
with (y;, z;) under h is at most gzxrarzress. Since y; has at most k- 227 siblings
(under Ext), by a union bound, the probability that any of them collide with
(yi,z) (under h) is at most k- 22+d . 2= (A +d+2logh) — L

Thus, when z; is sampled uniformly at random, the probability that it has
a sibling (under C;) or that there exist (y, z’) such that Ext(y’, z") = Ext(y;, 2:),
where y! € S; and h(y',2") = h(y;, 2i), is at most:

2 1 5 3

2 T E» YT
The claim follows by the fact that, by Lemma 4.1, the actual distribution of x;
is (5~ + k- 6)-close to uniform.

0+

This concludes the proof of Lemma 4.3.

4.2 Completeness

Let Cy,...,Cr € Als. Assume first that V generates a good tuple
(z1,h,21,...,2k) (as per Definition 4.2). Observe that in such a case, by con-
struction of the protocol, it holds that z; = z; and y; = y;, for every i € [k].
Therefore, the verifier accepts in such a case (with probability 1).

By Lemma 4.3, the tuple (z1,h,g,21,...,25) is good with all but
O (k‘2 -0+ 2_>‘) probability. Thus, the completeness error is upper bounded by
0] (k‘2~5+2_>‘).

4.3 Honest-Verifier Statistical Zero-Knowledge

The simulator is presented in Fig. 3.

The generation of (z1,h, g, 21, ..., 2;) is identical for the verifier and for the
simulator. Assuming that the tuple (z1, h, 21, ..., 2x) is good, by construction the
prover does not abort in the honest execution (as in the case of completeness).
Moreover, in this case, each 2} (resp., (y},z})) found by the prover is equal to
x; (resp., (yi,2;)) chosen by the verifier. Therefore, conditioned on the tuple
(x1,h,21,..., 2;) being good, the distributions of (1) the transcript generated
in the honest execution, and (2) the simulated transcript are identically dis-
tributed. The fact that the protocol is honest-verifier statistical zero-knowledge
now follows from Lemma 4.3, and by applying Fact 2.2 twice.

4.4 Soundness

Let C1,...,Ck : {0,1}" — {0,1}™ be such that one of them is a NO instance of
Als. Recall that ¢* € [k] denotes the index of the first such NO instance circuit
(i.e., O« is a NO instance of Als but for every i < ¢*, it holds that C; is a YES
instance).

We first make two simplifying assumptions. First, recall that value of y;~ is
specified by the verifier by having it send xy1, Ok, - - . , Gi= to the prover. Instead,
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Simulator for the Als Batch Verification Protocol

InpuT: C4,...,C}

THE SIMULATOR:

1. Sample h < H,, g + Gy and z1 € {0,1}".
2. Fori=1,... k:
(a) Compute y; = Ci(z;).
(b) Sample z; + {0,1}%.
(¢) Compute a; = g(x;).
(d) Compute 8; = h(yi, zi).
(e) Compute x;41 = Ext(y;, 2i).
3. Output transcript = ((C’l, AN C’k), (ml, Zlye ey Zky h,g), (ak., A al)).

Fig. 3. Simulator for Als batch verification

we will simply assume that the verifier sends y;~ directly to the prover. Since y;«
can be used to generate the verifier’s distribution consistently, revealing y;« only
makes the prover’s job harder and therefore can only increase the soundness
error. Second, we modify the protocol so that the verifier merely checks that
a;- = g(a;+) —if so it accepts and otherwise it rejects. Once again having removed
the verifier’s other tests can only increase the soundness error.

Thus, it suffices to bound the soundness error of the following protocol. The
verifier samples x;+ as in the real protocol, sends y;+ = Ci«(x;+) and the hash
function g to the prover and expects to get in response g(x;-). We show that the
prover’s probability of making the verifier accept is bounded by a constant.

In order to bound the prover’s success probability in the foregoing exper-
iment, we first give an upper bound assuming that z;+ is uniform in {0,1}",
rather than as specified by the protocol (and, as usual, y; = Cj(x;+)). Later
we shall remove this assumption using Lemma 4.1, which guarantees that x;« is
actually close to uniform.

Let P* be the optimal prover strategy. Namely, given g and ¥;-, the prover
P* outputs the hash value oy- € {0,1}" with the largest probability mass (i.e.,
that maximizes |Cy." (yi-) N g~ ()]).

Let Y;- denote the distribution obtained by sampling = € {0,1}" uniformly
at random, conditioned on x have a sibling under C;» and outputting C;«(z).
Using elementary probability theory we have that:
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Pr [P*(g,yi*) = g(wix)] < Pr [P*(g,yi*) = g(xi=) | zi~ has siblings]
g—Gn g—Gn
20 {0,137 z;x —{0,1}"
+ Pr[z;= has no siblings]

< P [PUgwe) = g(@in)] 49
% HC;I(yl*)

= Eyi* ‘*?i* Qfén [P*(g7 yl*) = g(xl*)} + 67
;% HC;I (y;%)

(1)

where the second inequality follows from the fact that C;- is a NO instance.

Fix y;+ in the support of ;- (i.e., |Cix'(y;+)| > 2) and let u = |C;2' (y;)|.
We show that PrgGG”,zi*HC;I(yi*) [P*(g,yi~) = g(z;+)] is upper bounded by a
constant.

Let E be the event (defined only over the choice of g) that for every hash
value a € {0,1}", it holds that |Ci- (yi) Ng~Y(a)| < Zu. That is, the event E
means that no hash value has more than 7/8 fraction of the probability mass
(when sampling 2;- uniformly in C;.*(y;+) and outputting g(z;-)).'?

Claim 4.4.2. The event E occurs with probability a least 1/10.

Proof. Fix ahash value o € {0,1}", and let X = |C2  (yi-)Ng™ ! (@)| be a random
variable (over the randomness of g). Observe that X can be expressed as a sum
of u pairwise independent Bernoulli random variables, each of which is 1 with
probability 27¢ and 0 otherwise. Thus, the expectation of X is u/2¢ and the
variance is u-27¢ - (1 —27¢) < w27, By Chebyshev’s inequality (Lemma 2.3),
it holds that

7 3
Pr [X > SU} < Pr UX %’ > 44
Var [X]
T (3/4)% - u?
16 1

< .

~ 9y 2¢
where the first inequality follows from the fact that ¢ is a sufficiently large con-
stant. Taking a union bound over all a’s we have that the probability that there

exists some a with more than 7/8 fraction of the preimages in U (under g) is
less than % < 0.9, where we use the fact that u > 2.

2 We remark that the choice of 7/8 is somewhat but not entirely arbitrary. In partic-
ular, in case u is very small (e.g., u = 2) there may very well be a hash value that
has 50% of the probability mass.
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Observe that conditioned on the event E, the probability (over x; <«
Cit(yi)) that P*(g,y;+) = g(xs~) is at most 7/8. Thus, by Claim 4.4.2 we
obtain that:

Pr [P*(g,yix) # g(zi=)] > Pr[E] - Pr [P*(g,yi) # g(zs=)|E] > 1/80.

g @i —C s (yx) 9s@ix — O (yyx)

Plugging this into Eq. (1), we have that the prover convinces the verifier to
accept with probability at most 1 — % + 6, when z;« is sampled uniformly at
random in {0,1}".

By Lemma 4.1 it holds that A (X;+,U,) < +5x + k - 8. Therefore (using
Fact 2.2), the probability that the verifier accepts when z;+ is sampled as in the
protocol is at most 1 — g5 + —5x + (k + 1) - 6, which is bounded away from 1

1

since § < {5z and A is sufficiently large.

4.5 Communication Complexity and Verifier Run Time
We first bound the amount of bits sent during the interaction:

— Sending xj41 costs n bits.

— By Lemma 2.10, the seed length of the extractor is d = log(m) + O(logn -
log(2)) = log(N)+A-polylog(n, k) and therefore, the cost of sending 21, ..., zx
is k - (log(N) + X - polylog(n, k)).

— By Lemma 2.8, the description length of h : {0,1}™ x {0, 1}d —
{0,1}2ATdF2lesk soxrarzmer-almost pairwise-independent hash function,
is O(log(N) + X\ 4 polylog(k)). The cost of sending the hashes i, ..., B is
k-ON+d+logk) =k (log(N) + X - polylog(n, k)).

~ By Lemma 2.7, the description length of g € {0,1}" — {0,1}*, a pairwise
independent hash function, is O(n). The cost of sending the hashes aj, ..., ay

is O(k).

In total, the communication complexity is O(n)+k-(log(N)+A-polylog(n, k)).
As for the verifier run time, For each iteration ¢ the verifier running time is as
follows:

Evaluating the circuit C; takes time poly(N).

— By Lemma 2.10, evaluating Ext takes time poly(m,d) = poly(N,logk, \).

— By Lemma 2.8, evaluating A on an input of size m + d takes time
poly(N,log k, \).

— By Lemma 2.7, evaluating g on an input of size n takes time poly(n).

In total, the verifier running time is k - poly(V,log k, \).
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Abstract. Zero-knowledge protocols enable the truth of a mathemat-
ical statement to be certified by a verifier without revealing any other
information. Such protocols are a cornerstone of modern cryptography
and recently are becoming more and more practical. However, a major
bottleneck in deployment is the efficiency of the prover and, in particu-
lar, the space-efficiency of the protocol.

For every NP relation that can be verified in time 7" and space S,
we construct a public-coin zero-knowledge argument in which the prover
runs in time 7' - polylog(T) and space S - polylog(T'). Our proofs have
length polylog(7T') and the verifier runs in time 7 - polylog(7") (and space
polylog(T)). Our scheme is in the random oracle model and relies on the
hardness of discrete log in prime-order groups.

Our main technical contribution is a new space efficient polynomial
commitment scheme for multi-linear polynomials. Recall that in such a
scheme, a sender commits to a given multi-linear polynomial P : F* — F
so that later on it can prove to a receiver statements of the form
“P(x) = y”. In our scheme, which builds on commitments schemes of
Bootle et al. (Eurocrypt 2016) and Biinz et al. (S&P 2018), we assume
that the sender is given multi-pass streaming access to the evaluations
of P on the Boolean hypercube and we show how to implement both the
sender and receiver in roughly time 2" and space n and with communi-
cation complexity roughly n.

1 Introduction

Zero-knowledge protocols are a cornerstone of modern cryptography, enabling
the truth of a mathematical statement to be certified by a prover to a verifier
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without revealing any other information. First conceived by Goldwasser, Micali,
and Rackoff [27], zero knowledge has myriad applications in both theory and
practice and is a thriving research area today. Theoretical work primarily inves-
tigates the complexity tradeoffs inherent in zero-knowledge protocols:

— the number of rounds of interaction,

— the number of bits exchanged between the prover and verifier

— the computational complexity of the prover and verifier (e.g. running time,
space usage)

— the degree of soundness—in particular, soundness can be statistical or com-
putational, and the protocol may or may not be a proof of knowledge.

ZK-SNARKs (Zero-Knowledge Succinct Non-interactive ARguments of
Knowledge) are protocols that achieve particularly appealing parameters: they
are non-interactive protocols in which to certify an NP statement z with wit-
ness w, the prover sends a proof string 7 of length |r| < |w|. Such proof
systems require setup (namely, a common reference string) and (under widely
believed complexity-theoretic assumptions [24,25]) are limited to achieving com-
putational soundness.

One of the main bottlenecks limiting the scalability of ZK-SNARKs is the
high computational complexity of generating proof strings. In particular, a major
problem is that even for the lowest-overhead ZK-SNARKs (see e.g. [4,22,39] and
follow-up works), the prover requires £2(T") space to certify correctness of a time-
T computation, even if that computation uses space S < T.

As typical computations require much less space than time, such space usage
can easily become a hard bottleneck. While it is straight-forward to run a pro-
gram for as long as one’s patience allows, a computer’s memory cannot be
expanded without purchasing additional hardware. Moreover, the memory archi-
tecture of modern computer systems is hierarchical, consisting of different tiers
(various cache levels, RAM, and nonvolatile storage), with latencies and capaci-
ties that increase by orders of magnitude at each successive level. In other words,
high space usage can also incur a heavy penalty in running time.

In this work, we focus on uniform non-deterministic computations—that is,
proving that a nondeterministic time-7" space-S Turing machine accepts an input
x. Our objective is to obtain “complexity-preserving” (ZK-)SNARKs [10] for
such computations, i.e., SNARKs in which the prover runs in time roughly
T and space roughly S. Relatively efficient privately verifiable solutions are
known [11,29]. In such schemes the verifier holds some secret state that, if leaked,
compromises soundness. However, many applications (such as cryptocurrencies
or other massively decentralized protocols) require public verifiability, which is
the emphasis of our work.

To date, publicly verifiable complexity-preserving SNARKSs are known only
via recursive composition [9,47]. This approach indeed yields SNARKs with
prover running time O(T) and space usage S - polylog(T), but with significant
concrete overheads. Recursively composed SNARKS require both the prover and
verifier to make non-black-box usage of an “inner” verifier for a different SNARK,
leading to enormous computational overhead in practice.
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Several recent works [14,16,18] attempt to solve the inefficiency problems
with recursive composition, but the protocols in these works rely on heuristic and
poorly understood assumptions to justify their soundness. While any SNARK
(with a black-box security reduction) inherently relies on non-falsifiable assump-
tions [23], these SNARKS possess additional troubling features. They rely on
hash functions that are modeled as random oracles in the security proof, despite
being used in a non-black-box way by the honest parties. Security thus cannot
be reduced to a simple computational hardness assumption, even in the random
oracle model. Moreover, the practicality of the schemes crucially requires usage
of a novel hash function (e.g., Rescue [1]) with algebraic structure designed to
maximize the efficiency of non-black-box operations. Such hash functions have
endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

In this work, we ask:

Can we devise a complezity-preserving ZK-SNARK in the random oracle
model based on standard cryptographic assumptions?

1.1 Our Results
Our main result is an affirmative answer to this question.

Theorem 1. Assume that the discrete-log problem is hard in obliviously sam-
pleable! prime-order groups. Then, for every NP relation that can be verified by
a random access machine in time T and space S, there exists a publicly verifiable
ZK-SNARK, in the random oracle model, in which both the prover and verifier
run in time T - polylog(T), the prover uses space S - polylog(T), and the verifier
uses space polylog(T'). The proof length is poly-logarithmic in T.

We emphasize that the verifier in our protocol has similar running time to
that of the prover, in contrast to other schemes in the literature that offer poly-
logarithmic time verification. While this limits the usefulness of our scheme in
delegating (deterministic) computations, our scheme is well-geared towards zero-
knowledge applications in which the prover and verifier are likely to have similar
computational resources.

At the heart of our ZK-SNARK for NP relations verifiable by time-T' space-
S random access machine (RAM) is a new public-coin interactive argument of
knowledge, in the random oracle model, for the same relation where the prover
runs in time 7 - polylog(T) and requires space S - polylog(T). We make this
argument zero-knowledge by using standard techniques which incurs minimal

! By obliviously sampleable we mean that there exist algorithms S and S~' such
that on input random coins r, the algorithm S samples a uniformly random group
element g, whereas on input g, the algorithm S™! samples random coins r that are
consistent with the choice of g. In other words, if S uses ¢ random bits then the joint
distributions (Ue, S(Uy)) and (S™1(S(Uy)), S(Ue)) are identically distributed, where
U, denotes the uniform distribution on ¢ bit strings..
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asymptotic blow-up in the efficiency of the argument [2,20,48]. Finally, applying
the Fiat-Shamir transformation [21] to our public-coin zero-knowledge argument
yields Theorem 1.

Space-Efficient Polynomial Commitment for Multi-linear Polynomi-
als. The key ingredient in our public-coin interactive argument of knowledge is
a new space efficient polynomial commitment scheme, which we describe next.

Polynomial commitment schemes were introduced by Kate et al. [32] and have
since received much attention [3,7,17,33,49,50], in particular due to their usage
in the construction of efficient zero-knowledge arguments. Informally, a polyno-
mial commitment scheme is a cryptographic primitive that allows a committer
to send to a receiver a commitment to an n-variate polynomial @ : F* — F, over
some finite field F, and later reveal evaluations y of @ on a point x € F" of the
receiver’s choice along with a proof that indeed y = Q(x).

In this work we construct polynomial commitment schemes where the space
complexity is (roughly) logarithmic in the description size of the polynomial.
In order to state this result more precisely, we must first determine the type of
access that the committer has to the polynomial.

We first note that in this work we restrict our attention to multi-linear poly-
nomials (i.e., polynomials which have individual degree 1). Note that such a
polynomial @ : F"* — F is uniquely determined by its evaluations on the Boolean
hybercube, that is, (Q(O), Q0 — 1)), where the integers in Zgn are associ-
ated with vectors in {0,1}" in the natural way.

Towards achieving our space efficient implementation, and motivated by our
application to the construction of an efficient argument-scheme, we assume that
the committer has multi-pass streaming access to the evaluations of the poly-
nomial on the Boolean hypercube. Such an access pattern can be modeled by
giving the committer access to a read-only tape that is pre-initialized with the
values (Q(O), Q02 — 1)) At every time-step the committer is allowed to
either move the machine head to the right or to restart its position to 0.

Theorem 2 (Informal, see Theorem 5). Let G be an obliviously sampleable
group of prime-order p and let Q : F™ — F be some n-variate multi-linear poly-
nomial. Assuming the hardness of discrete-log over G and multi-pass streaming
access to the sequence (Q(0),...,Q(2"™ — 1)), there exists a polynomial commit-
ment scheme for @ in the random oracle model such that

1. The commitment consists of one group element, evaluation proofs consist of
O(n) group and field elements,

2. The committer and receiver perform 0(2”) group and field operations, make
0(2”) queries to the random oracle, and store only O(n) group and field
elements, and

3. The committer makes O(n) passes over (Q(0),...,Q(2" —1)).

Following [32], a number of works have focussed on achieving asymptotically
optimal proof sizes (more generally, communication), and time complexity for
both committer and receiver. However, the space complexity of the committer
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has been largely ignored; naively it is lower-bounded by the size of the commit-
ter’s input (which is a description of the polynomial). As mentioned above, we
believe that obtaining a space-efficient polynomial commitment scheme in the
streaming model to be of independent interest and may even eventually lead to
significantly improved performance of interactive oracle proofs, SNARKS, and
related primitives in practice.

We also mention that the streaming model is especially well-suited to our
application of building space-efficient SNARKs. The reason is that in such
schemes, the prover typically uses a polynomial commitment scheme to commit
to a low-degree extension of the transcript of a RAM program, which, natu-
rally, can be generated as a stream in space that is proportional to the space
complexity of the underlying RAM program.

At a high level, we use an algebraic homomorphic commitment (e.g., Peder-
sen commitment [40]) to succinctly commit to the polynomial @ (by committing
to the sequence (Q(0),...,Q(2" —1)). Next, to provide evaluation proofs, our
scheme leverages the fact that evaluating ) on point x reduces to computing
an inner-product between (Q(0),...,Q(2™ — 1)) and the sequence of Lagrange
coefficients defined by the evaluation point x. Relying on the homomorphic prop-
erties of our commitment, the basic step of our evaluation protocol is a 2-move
(randomized) reduction step which allows the committer to “fold” a statement
of size 2" into a statement of size 2" /2. Our scheme is inspired from the “inner-
product argument” of Bootle et al. [13] (and its variants [15,48]) but differs in
the 2-move reduction step. More specifically, their reduction step folds the left
half of (Q(0),...,Q(2" — 1)) with its right half (referred to as msb-based folding
as the index of the elements that are folded differ in the most significant bit).
This, unfortunately, is not compatible with our streaming model (we explain this
shortly). We instead perform the more natural Isb-based folding which, indeed, is
compatible with the streaming model. We additionally exploit random access to
the inner-product argument’s setup parameters (defined by the random oracle)
and the fact that any component of the coefficient sequence can be computed
in polylogarithmic time, i.e. poly(n) time. We give a high level overview of our
scheme in Sect. 2.1.

1.2 Prior Work

Complezity Preserving ZK-SNARKs. Bitansky and Chiesa [11] proposed to con-
struct complexity preserving ZK-SNARKS by first constructing complexity pre-
serving multi-prover interactive proof (MIPs) and then compile them using cryp-
tographic techniques. While our techniques share the same high-level approach,
our compilation with a polynomial-commitment scheme yields a publicly verifi-
able scheme whereas [11] only obtain a designated verifier scheme.

Blumberg et al. [12] give a 2-prover complexity preserving MIP of knowledge,
improving (concretely) on the complexity preserving MIP of [11] (who obtain a
2-prover MIP via a reduction from their many-prover MIP). Both Bitansky and
Chiesa and Blumberg et al. obtain their MIPs from reducing RAMs to circuits via
the reduction of Ben-Sasson et al. [5], then appropriately arithmetize the circuit
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into an algebraic constraint satisfaction problem. Holmgren and Rothblum [29]
obtain a non-interactive protocol based on standard (falsifiable assumptions) by
also constructing a complexity preserving MIP for RAMs (achieving no-signaling
soundness) and compiling it into an argument using fully-homomorphic encryp-
tion (4 la [8,30,31]). We remark that [29] reduce a RAM directly to algebraic
constraints via a different encoding of the RAM transcript, thereby avoiding the
reduction to circuits entirely.

Another direction for obtaining complexity preserving ZK-SNARKS is via
recursive composition [9,47], or “bootstrapping”. Here, one begins with an
“inefficient” SNARK and bootstraps it recursively to produce publicly veri-
fiable complexity preserving SNARKs. While these constructions yield good
asymptotics, these approaches require running the inefficient SNARK on many
sub-computations. Recent works [14,16,18] describe a novel approach to recur-
sive composition which attempt to solve the inefficiencies of the aforementioned
recursive compositions, though at a cost to the theoretical basis for the soundness
of their scheme (as discussed above).

Interactive Oracle Proofs. Interactive oracle proofs (IOPs), introduced by Ben-
Sasson et al. [6] and independently by Reingold et al. [41], are interactive proto-
cols where a verifier has oracle access to all prover messages. IOPs capture (and
generalize), both interactive proofs and PCPs.

A recent line of work [5,12,19,26,42, 44,46, 48] follows the framework of Kilian
[34] and Micali [37] to obtain efficient arguments by constructing efficient IOPs
and compiling them into interactive arguments using collision resistant hashing
[6,34] or the random oracle model [6,37].

Polynomial Commitments. Polynomial commitment schemes were introduced
by Kate et al. [32] and have since been an active area of research. Lines of
research for construction polynomial commitment schemes include privately ver-
ifiable schemes [32,38], publicly-verifiable schemes with trusted setup [17], and
zero-knowledge schemes [49]. More recently, much focus has been on obtaining
publicly-verifiable schemes without a trusted setup [3,7,17,33,49,50]. We note
that in all prior works on polynomial commitments, the space complexity of
the sender is proportional to the description size of the polynomial, whereas we
achieve poly-logarithmic space complexity.

2 Technical Overview

As mentioned above, the key component in our construction is that of a public-
coin interactive argument for RAM computations. The latter construction itself
consists of two key technical ingredients. First, we construct a polynomial inter-
active oracle proof (polynomial I0P) for time-T space-S RAM computations
in which the prover runs in time T - polylog(T) and space S - polylog(T). We
note that this ingredient is a conceptual contribution which formalizes prior
work in the language of polynomial IOPs. Second, we compile this IOP with
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a space-efficient extractable polynomial commitment scheme where the prover
has multi-pass streaming access to the polynomial to which it is committing—a
property that plays nicely with the streaming nature of RAM computations. We
emphasize that the construction of the space-efficient polynomial commitment
scheme is our main technical contribution, and describe our scheme in more
detail next.

2.1 Polynomial Commitment to Multi-linear Polynomials
in the Streaming Model

Fix a finite field F of prime order p. Also fix an obliviously sampleable (see
Footnote 1) group G of order p in which the discrete logarithm is hard. Let
H :{0,1}" — G be the random oracle.

In order to describe our polynomial commitment scheme, we start with some
notation. Let n be a positive integer and set N = 2”. We will be considering
N-dimensional vectors over F and will index such vectors using n dimensional
binary vectors. For example, if b € F2° then bgoo101 = bs. For convenience, we
will denote b € FYN by (be : ¢ € {0,1}") where b, is the c-th element of b. For
b = (bn,...,b1) € {0,1}" we refer to by as the least-significant bit (Isb) of b.
Finally, for b € FV, we denote by b, the restriction of b to the even indices, that
is, be = (beo : ¢ € {0,1}"71). Similarly, we denote by b, = (be; : ¢ € {0,1}" 1)
the restriction of b to odd indices.

Let @ : F* — F be a multi-linear polynomial. Recall that such a polyno-
mial can be fully described by the sequence of its evaluations over the Boolean
hypercube. More specifically, for any x € F", the evaluation of () on x can be
expressed as

Qx)= > Qb)-z(x,b), (1)

be{0,1}"
where z(x,b) = [[;¢, (bi- @ + (L —b;)- (1 — ;). We use Q € FV to denote
the restriction of @ to the Boolean hybercube (i.e., Q = (Q(b) : b € {0,1}")).

Next, we describe the our commitment scheme which has three phases: (a)
Setup, (b) Commit and (c) Evaluation.

Setup and Commit Phase. During setup, the committer and receiver both
consistently define a sequence of N generators for G using the random oracle,
that is, g = (b = H(b) : b € {0,1}"). Then, given streaming access to Q, the
committer computes the Pedersen multi-commitment [40] C defined as

o= II (m® @

be{0,1}"

For g € G*" and Q € F?", we use gQ as a shorthand to denote the value
Hbe{0,1}"(9b)Qb~ Assuming the hardness of discrete-log for G, we note that C
in Eq. (2) is a binding commitment to Q under generators g. Note that the
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committer only needs to perform a single-pass over Q and performs N expo-
nentiations to compute C while storing only O(1) number of group and field
elements.?

Evaluation Phase. On input an evaluation point x € F”, the committer com-
putes and sends y = Q(x) and defines the auxiliary commitment Cy < C'- g¥ for
some receiver chosen generator g. Then, both engage in an argument (of knowl-
edge) for the following NP statement which we refer to as the “inner-product”
statement:

3Qez) : y=(Qz) and C,=g" g%, (3)

where z = (2(x,b) : b € {0,1}") as defined in Eq. (1). This step can be viewed
as proving knowledge of the decommitment Q of the commitment Cy, which
furthermore is consistent with the inner-product claim that y = (Q, z).

Inner-product Argument. A basic step in the argument for the above inner-
product statement is a 2-move randomized reduction step which allows the prover
to decompose the N-sized statement (C,,z,y) into two N/2-sized statements
and then “fold” them into a single N/2-sized statement (Cy,Z = (2. : ¢ €
{0, 1}”71),17) using the verifier’s random challenge. We explain the two steps
below (as well as in Fig. 1).

1. Committer computes the cross-product y. = (Qe,2Z,) between the even-
indexed elements Q. with the odd-indexed vectors z,. Furthermore, it com-
putes a binding commitment C, that binds y. (with g) and Q. (with g,).
That is,

C, = g% .gge , (4)

where recall that for g = (¢1,...,¢:) and x = (21, ..., x:) the expression g* =
[Tic 97 This results in an N/2-sized statement (Ce, z,, ye ) with witness Q..
Similarly, as in Fig. 1 it computes the second N/2-sized statement (C,, Ze, Yo )
with witness Q,. The committer sends (ye, Yo, Ce, Cy) to the receiver.

2. After receiving a random challenge o € F*, committer folds its witness Q
into an N/2-sized vector Q = a - Q. + a~! - Q,. More specifically, for every
ce{0,1}",

Qc:a'QCO+a_1'ch . (5)

Similarly, the committer and receiver both compute the rest of the folded
statement (Cy,Z,y) as shown in Fig. 1.

Relying on the homomorphic properties of Pedersen commitments, it can be
shown that if Q were a witness to (Cy,z,y) then Q is a witness for (Cy, 2, 7).3
In the actual protocol, the parties then recurse on smaller statements (Cy, Z, §)

2 Here, we treat exponentiation as an atomic operation but note that computing g for
«a € Z, can be emulated, via repeated squarings, by O(logp) group multiplications
while storing only O(1) number of group and field elements.

3 Albeit under different set of generators but we ignore this for now.
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Reduce(C, € G,g € GV, g€ G,z c FY y c F;Q € FV)
Prover Verifier

Ye < (Qe; Zo), Yo < (Qo, Ze)
Ce + g¥° ,g?e7 Co + g¥° ’ggo

(yﬁv y07 C€7 CU)

QHQ'QSJFO‘_I'QO

Z+a ' zetaz,

g (g)"  *(g0)"
gt yetyt+a oy,
Gy C? ., o
Reduce(Cy, €, 9, 7, 7; Q)

Fig. 1. Our 2-move randomized reduction step for the inner-product protocol where
recall that for any Q € FV, we denote by Q. the elements of Q indexed by even
numbers where Q, denotes the elements with odd indices. On input a statement of
size N > 1, Reduce results in a statement of size N/2.

forming a recursion tree. After log N steps, the statement is of size 1 in which
case the committer sends its witness which is a single field element. This gives
an overall communication of O(log N) field and group elements. Next we briefly
discuss the efficiency of the scheme.

Efficiency. For the purpose of this overview, we focus only on the time and space
efficiency of the committer in the inner-product argument (the analysis for the
receiver is analogous). Recall that in a particular step of the recursion, suppose
we are recursing on the N/2-sized statement (Cy, %, y) with witness Q, the com-
mitter’s computation includes computing (a) the cross-product (Q.,Z,) between
the even half of Q and the odd half of Z, and (b) the “cross-exponentiation” g®«
of the even half of Q with the odd half of the generators g.*

A straightforward approach to compute (a) is to have Q (and Z) in mem-
ory, but this requires the committer to have 2(N) space which we want to
avoid. Towards a space efficient implementation, first note every element of Q
depends on only two, more importantly, consecutive elements of Q. This cou-
pled with streaming access to Q is sufficient to simulate streaming access to
Q while making only one pass over Q. Secondly, by definition, computing any
element of z requires only O(log N) field operations while storing only O(n)
field elements This then allows to compute any element of Z on the fly with
polylog(N) operations. Given the simulated streaming access to Q along with

4 Efficiency for (Q,,Z.) and g2 can be argued similarly.
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Scheme|[13,15] (msb-based)|This work (Isb-based)
Qb |0 Qb+a " Qb a Quot+a " Qu

= -1 -1
Zb a “rzobtQa-czib | - zZbot+ Q- 2Zbl

G | (gon)®  *(g1p)* | (9b0)*  * (gb1)®

Fig. 2. Table highlights the differences between the 2-move randomized reduction steps
of the inner-product argument of [13,15] (second column) and our scheme (third col-
umn). Specifically, given Q, z, g of size 2", the rows describe the definition of the 2" /2
sized vectors Q, Z, g respectively where b € {0, 1}"_1.

the ability to compute any element of zZ on the fly is sufficient to compute the
(Qe,Z,). Note this step, overall, requires performing only a single pass over Q
and N -polylog N operations, and storing only the evaluation point x and verifier
challenge « (along with some book-keeping). The computation of (b) is handled
similarly, except that here we crucially leverage the fact that g is defined using
the random oracle, and hence the committer has random access to all of the
generators in g. Relying on similar ideas as in (a), the committer can compute
g9Q while additionally making O(N) queries to the random oracle. Overall, this
gives the required prover efficiency. Please see Sect. 4.3 for a full discussion on
the efficiency.

Comparison with the 2-move Reduction Step of [13,48]. In their protocol,
a major difference is in how the folding is performed (Step 2, Fig. 1). We list
concrete differences in Fig. 2. But at a high level, since they fold the first element
Qoon—1 with the N/2-nd element Qqgn-1, it takes at least a one pass over Q to
even compute the first element of Q, thereby requiring £2(IN) passes over Q
which is undesirable.® Although we differ in the 2-move reduction steps, the
security of our scheme follows from ideas similar to [13,48].

2.2 Polynomial IOPs for RAM Programs

The second ingredient we use to obtain space-efficient interactive arguments for
NP relations verifiable by time-T space-S RAMs is a space-efficient polynomial
interactive oracle proof system [6,17,41]. Informally, an interactive oracle proof
(IOP) is an interactive protocol such that in each round the verifier sends a
message to the prover, and the prover responds with proof string that the verifier
can query in only a few locations. A polynomial IOP is an IOP where the proof
string sent by the prover is a polynomial (i.e, all evaluations of a polynomial
on a domain), and if a cheating prover successfully convinces a verifier then the
proof string is consistent with some polynomial.

5 When a polynomial commitment is used in building arguments, it takes O(N) time
to stream Q, and requiring 2(IN) passes results in a prover that runs in quadratic
time.
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We consider a variant of the polynomial IOP model in which the prover
sends messages which are encoded by the channel; in particular, the time and
space complexity of the encoding computed by the channel do not factor into
the complexity of the prover. For our purposes, we use the polynomial IOP that
is implicit in [12] and consider it with a channel which computes multi-linear
extensions of the prover messages. We briefly describe the IOP construction for
completeness (see Sect. 5 for more details). The polynomial IOP at its core first
leverages the space-efficient RAM to arithmetic circuit satisfiability reduction
of [12] (adapting techniques of [5]). This reduction transforms a time-7" space-S
RAM into a circuit of size T - polylog(7') and has the desirable property (for our
purposes) that the circuit can be accessed by the prover in a streaming manner:
the assignment of gate values in the circuit can be streamed “gate-by-gate” in
time T+ polylog(T') and space S -polylog(T'), which, in particular, allows a prover
to compute a correct transcript of the circuit in time 7T - polylog(T') and space
S - polylog(T).

The prover sends the verifier an oracle that is the multi-linear extension of
the gate values (i.e., the transcript), where we remark that this extension is
computed by the channel. The correctness of the computation is reduced to
an algebraic claim about a low degree polynomial which is identically 0 on the
Boolean hypercube if and only if the circuit is satisfied by the given witness.
Finally, the prover and verifier engage in the classical sum-check protocol [36,
45] to verify that the constructed polynomial indeed vanishes on the Boolean
hypercube.

Theorem 3. There exists a public-coin polynomial 10P over a channel which
encodes prover messages as multi-linear extensions for NP relations verifiable by
a time-T space-S random access machine M such that if y = M (x;w) then

1. The 10P has perfect completeness and statistical soundness, and has
O(log(T')) rounds;

2. The prover runs in time T -polylog(T') and space S-polylog(T) (not including
the space required for the oracle) when given input-witness pair (z;w) for
M, sends a single polynomial oracle in the first round, and has polylog(T')
communication in all subsequent rounds; and

3. The verifier runs in time (|z| + |y|) - polylog(T), space polylog(T), and has
query complexity 3.

2.3 Obtaining Space-Efficient Interactive Arguments

We compile Theorem 3 and Theorem 2 into a space-efficient interactive argument
scheme for NP relations verifiable by RAM computations.

Theorem 4 (Informal, see Theorem 6). There exists a public-coin inter-
active argument for NP relations verifiable by a time-T space-S random access
machine M, in the random oracle model, under the hardness of discrete-log in
obliviously sampleable prime-order groups such that:

1. The prover runs in time T - polylog(T) and space S - polylog(T);
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2. The verifier runs in time T - polylog(T) and space polylog(T); and
3. The round complexity is O(logT) and the communication complexity is

polylog(T).

The interactive argument of Theorem 4 is obtained by modifying the polynomial
IOP of Theorem 3 with the commitment scheme of Theorem 2 in the following
manner. First, the prover uses the polynomial commitment scheme to send a
commitment to the multi-linear extension of the gate values rather than an ora-
cle. This is possible to do in a space-efficient manner because of the streaming
nature of RAM computations and the streaming nature of the IOP. Second,
the verifier oracle querie are replaced with the prover and verifier engaging in
the evaluation protocol of the polynomial commitment scheme. The remain-
der of the IOP protocol remains unchanged. Thus we obtain Theorem 4. We
obtain Theorem 1 by transforming the interactive argument to a zero-knowledge
interactive argument using standard techniques, then apply the Fiat-Shamir
transformation [21].

3 Preliminaries

We let A denote the security parameter, let n € N and N = 2". For a finite,

non-empty set S, we let 28 denote sampling element x from S uniformly at
random. We let Primes(1%) denote the set of all A\-bit primes. We let F,, denote
a finite field of prime cardinality p, often use lower-case Greek letters to denote
elements of F, e.g., a € F. For a group G, we denote elements of G with sans-serif
font; e.g., g € G. We use boldface lowercase letters to denote binary vectors, e.g.
b € {0,1}". We assume for a bit string (by,...,b1) = b € {0,1}" that b, is the
most significant bit and b; is the least significant bit. For bit string b € {0,1}"
and b € {0,1} we let bb (resp., bb) denote the string (bob) € {0,1}""" (resp.,(bo
b) € {0,1}"""), where “o” is the string concatenation operator. We use boldface
lowercase Greek denotes F vectors, e.g., @ € F" and let @ = (a,...,q1)
for a; € F. We let uppercase letters denote sequences and let corresponding
lowercase letters to denote its elements, e.g., Y = (yp € F: b € {0,1}") is a
sequence of 2" elements in F. We denote by FV the set of all sequences over F
of size N.

Random Oracle. We let /()) denote the set of all functions that map {0, 1}"
to {0, 1}/\. A random oracle with security parameter \ is a function H : {0,1}" —
{0,1}* sampled uniformly at random from /().

3.1 The Discrete-Log Relation Assumption

Let GGen be an algorithm that on input 1* € N returns (G, p, g) such that G is
the description of a finite cyclic group of prime order p, where p has length A,
and g is a generator of G.
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Assumption 1 (Discrete-log Assumption). The Discrete-log Assumption
holds for GGen if for all PPT adversaries A there exists a megligible function
w(N) such that

Pria’ =a:(G,gp) < GGen(1Y), a < Z,, o/ < A(G, g7g‘“)] < p(A) .
For our purposes, we use the following variant of the discrete-log assumption
which is equivalent to Assumption 1.

Assumption 2 (Discrete-log Relation Assumption [13]). The Discrete-log
Relation Assumption holds for GGen if for all PPT adversaries A and for all
n > 2 there exists a negligible function () such that

n $ A §
Pr|3a; #0n ][l =1 (G.g.p) = GGen(1Y), g1, 080 = C | _ )
ey (1, o) €Zy — A(G, g1, ,8n) -
We say H?zl g7 = 11is a non-trivial discrete log relation between g1, ..., gn.

The Discrete Log Relation assumption states that an adversary can’t find a
non-trivial relation between randomly chosen group elements.

3.2 Interactive Arguments of Knowledge in ROM

Definition 1 (Witness Relation Ensemble). A witness relation ensemble or
relation ensemble is a ternary relation Ry that is polynomially bounded, polyno-
mial time recognizable and defines a language £ = {(pp,x) : Jw s.t. (pp,z,w) €
Re}. We omit pp when considering languages recognized by binary relations.

Definition 2 (Interactive Arguments [27]). Let R be some relation ensem-
ble. Let (P,V) denote a pair of PPT interactive algorithms and Setup denote a
non-interactive setup algorithm that outputs public parameters pp given security
parameter 1*. Let (P(pp,z,w),V (pp,x)) denote the output of V'’s interaction
with P on common inputs public parameter pp and statement x where addition-
ally P has the witness w. The triple (Setup, P, V) is an argument for R in the
random oracle model (ROM) if

1. Perfect Completeness. For any adversary A

Pr[(z,w) ¢ R or (P (pp,z,w), V" (pp,x)) =1] =1,

where probability is taken over H < U(N), pp < Setup™ (1), (z, w) <= AH (pp).
2. Computational Soundness. For any non-uniform PPT adversary A

Pr [Vw (z,w) ¢ R and (A (pp, x, st), VI (pp, x)) = 1} < negl(\) ,

where probability is taken over H ﬁU()\),pp < Setu pH(1>‘)7 (z, st) < A (pp).

Remark 1. Usually completeness is required to hold for all (z, w) € R. However,
for the argument systems used in this work, statements x depends on pp output
by Setup and the random oracle H. We model this by asking for completeness

to hold for statements sampled by an adversary A, that is, for (z,w) S A(pp).
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For our applications, we will need (Setup, P, V') to be an argument of knowl-
edge. Informally, in an argument of knowledge for R, the prover convinces the
verifier that it “knows” a witness w for « such that (z,w) € R. In this paper,
knowledge means that the argument has witness-extended emulation [28,35].

Definition 3 (Witness-Extended Emulation). Given a public-coin interac-
tive argument tuple (Setup, P, V) and some arbitrary prover algorithm P*, let
Record(P*, pp, x, st) denote the message transcript between P* and V' on shared
input x, initial prover state st, and pp genmerated by Setup. Furthermore, let
ERecord(P™.pp.2.:5t) denote a machine E with a transcript oracle for this interaction
that can be rewound to any round and run again on fresh verifier randomness.
The tuple (Setup, P, V') has witness-extended emulation if for every determinis-
tic polynomial-time P* there exists an expected polynomial-time emulator E such
that for all non-uniform polynomial-time adversaries A the following holds:

H < UN), pp < Setup™ (1%),
(z,st) < A (pp), tr < Record™ (P*, pp, x, st)

H < UN), pp - Setup™ (11),

(z, st) < A (pp),
) S EH,RecordH(P*,ppJnSt)(

Pr A" (tr)=1:

A (tr) =1 and )
tr accepting = (x,w) € R’

(tr, w pp, )

It was shown in [13,17] that witness-extended emulation is implied by an
extractor that can extract the witness given a tree of accepting transcripts.
For completeness we state this—dubbed Generalized Forking Lemma—more for-
mally below but refer to [17] for the proof.

Definition 4 (Tree of Accepting Transcripts). An (ni,...,n.)-tree of
accepting transcripts for an interactive argument on input x is defined as fol-
lows: The root of the tree is labelled with the statement x. The tree has r depth.
Each node at depth i < r has n; children, and each child is labeled with a distinct
value for the i-th challenge. An edge from a parent node to a child node is labeled
with a message from P to V. Every path from the root to a leaf corresponds to
an accepting transcript, hence there are Hz:1 n; distinct accepting transcripts
overall.

Lemma 1 (Generalized Forking Lemma [13,17]). Let (Setup, P,V) be an
r-round public-coin interactive argument system for a relation R. Let T be a
tree-finder algorithm that, given access to a Record(-) oracle with rewinding capa-
bility, runs in polynomial time and outputs an (ny, ..., n,)-tree of accepting tran-
scripts with overwhelming probability. Let Ext be a deterministic polynomial-time
extractor algorithm that, given access to T'’s output, outputs a witness w for the
statement x with overwhelming probability over the coins of T. Then, (P, V) has
witness-extended emulation.

Definition 5 (Public-coin). An argument of knowledge is called public-coin if
all messages sent from the verifier to the prover are chosen uniformly at random
and independently of the prover’s messages, i.e., the challenges correspond to
the verifier’s randomness H.
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Zero-Knowledge. We also need our argument of knowledge to be zero-
knowledge, that is, to not leak partial information about w apart from what
can be deduced from (z,w) € R.

Definition 6 (Zero-knowledge Arguments). Let (Setup, P, V') be an public-
coin interactive argument system for witness relation ensemble R. Then,
(Setup, P, V') has computational zero-knowledge with respect to an auziliary input
if for every PPT interactive machine V*, there exists a PPT algorithm S, called
the simulator, running in time polynomial in the length of its first input, such
that for every (x,w) € R and any z € {0,1}":

View((P(w), V*(2))(z)) =~ S(z, 2),

where View((P(w), V*(2))(z)) denotes the distribution of the transcript of inter-
action between P and V*, and ~. denotes that the two quantities are computa-
tionally indistinguishable. If the statistical distance between the two distributions
1s negligible then the interactive argument is said to be statistical zero-knowledge.
If the simulatro is allowed to abort with probability at most 1/2, but the dis-
tribution of its output conditioned on mot aborting is identically distributed to
View((P(w), V*(2))(x)), then the interactive argument is called perfect zero-
knowledge.

3.3 Multi-linear Extensions

Definition 7 (Multi-linear Extensions). Let n € N, F be some finite field
and let W : {0,1}" — F. Then, the multi-linear extension of W (denoted as
MLE(W,-) : F™ — F) is the (unique) multi-linear polynomial that agrees with W
on {0,1}". Equivalently,

MLEW, ¢ eF™) = Y w(b)-[]80:¢) ,

be{0,1}" i=1

where B8(b,{) =b- ¢+ (1—0b)-(1—¢).

k
For notational convenience, we denote [] 3(b;,¢;) by B(b, ).

i=1
Remark 2. There is a bijective mapping between the set of all functions from
{0,1}" — T to the set of all n-variate multi-linear polynomials over F. More
specifically, as seen above every function W : {0,1}" — F defines a (unique)
multi-linear polynomial. Furthermore, every multi-linear polynomial @ : F* — F
is, in fact, the multi-linear extension of the function that maps b € {0,1}" —

Q(b).
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Streaming Access to Multi-linear Polynomials. For our commitment
scheme, we assume that the committer will have multi-pass streaming access to
the function table of W (which defines the multi-linear polynomial) in the lexico-
graphic ordering. Specifically, the committer will be given access to a read-only
tape that is pre-initialized with the sequence W = (wp = W(b) : b € {0,1}").
At every time-step the committer is allowed to either move the machine head to
the right or to restart its position to 0.

With the above notation, we can now view MLE(W,¢{ € F™) as an inner-
product between W and Z = (zp = B3(b,¢) : b € {0,1}") where computing 21,
requires O(n = log N) field multiplications for fixed ¢ any b € {0,1}".

3.4 Polynomial Commitment Scheme to Multi-linear Extensions

Polynomial commitment schemes, introduced by Kate et al. [32] and generalized
in [17,44,48], are a cryptographic primitive that allows one to commit to a
multivariate polynomial of bounded degree and later provably reveal evaluations
of the committed polynomial. Since we consider only multi-linear polynomials,
we tailor our definition to them.

Convention. In defining the syntax of various protocols, we use the following
convention for any list of arguments or returned tuple (a,b,c;d, e) — variables
listed before semicolon are known both to the prover and verifier whereas the
ones after are only known to the prover. In this case, a,b, ¢ are public whereas
d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 8 (Commitment to Multi-linear Extensions). A poly-
nomial commitment to multi-linear extensions is a tuple of protocols
(Setup, Com, Open, Eval):

1. pp s SetupH(l)‘,lN) takes as input the unary representations of security
parameter A\ € N and size parameter N = 2™ corresponding to n € N, and
produces public parameter pp. We allow pp to contain the description of the
field F over which the multi-linear polynomials will be defined.

2. (C;d) s ComH(pp, Y) takes as input public parameter pp and sequence Y =
(yp : b € {0,1}") € FN that defines the multi-linear polynomial to be com-
mitted, and outputs public commitment C and secret decommitment d.

3. b«— OpenH(pp, C,Y,d) takes as input pp, a commitment C, sequence commit-
ted Y and a decommitment d and returns a decision bit b € {0,1}.

4. EvaIH(pp7 C,¢,v;Y,d) is a public-coin interactive protocol between a prover P
and a verifer V. with common inputs—public parameter pp, commitment C,
evaluation point ¢ € F™ and claimed evaluation v € F, and prover has secret
inputs Y and d. The prover then engages with the verifier in an interactive
argument system for the relation

Romie(pp) = { (C.¢.7:Y,d) : Open” (pp, C,Y.d) = 1 Ay = MLE(Y. Q) } . (6)

The output of V is the output of Eval protocol.
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Furthermore, we require the following three properties.

1. Computational Binding. For all PPT adversaries A and n € N

H < UN), pp < Setup™ (14, 1V)
(Ca}/EL}/IadCHdI) (iAH(pp)
bO — OpenH(pp,C,Yg,do)
bl A OpenH(ppaCaYiadl)

2. Perfect Correctness. For alln,\ € N and all Y € FN and ¢ € F",

Pr b():bl?é()/\}/o#yll gnegl()\)

H < UN), pp < Setupt (1*,17),

Pr |1 =Evall (pp,C, Z,~;Y,d) : : =
P2 2TV ) 2 Com(pp. ), 5 = MLE(Y. )

3. Witness-extended Emulation. We say that the polynomial commitment
scheme has witness-extended emulation if Eval has a witness-extended emu-
lation as an interactive argument for the relation ensemble {Rmie(pp)}pp
(Eq. (6)) except with negligible probability over the choice of H and coins

of pp < Setup® (1*,1).

4 Space-Efficient Commitment for Multi-linear
Extensions

In this section we describe our polynomial commitment scheme for multilinear
extensions, a high level overview of which was provided in Sect. 2.1. We dedicate
the remainder of the section to proving our main theorem:

Theorem 5. Let GGen be a generator of obliviously sampleable, prime-order
groups. Assuming the hardness of discrete logarithm problem for GGen, the
scheme (Setup, Com, Open, Eval) defined in Sect. 4.1 is a polynomial commit-
ment scheme to multi-linear extensions with witness-extended emulation in the
random oracle model. Furthermore, for every N € N and sequence Y € FN, the
committer/prover has multi-pass streaming access to'Y and

1. Com performs O(N logp) group operations, stores O(1) field and group ele-
ments, requires one pass over Y, makes N queries to the random oracle,
and outputs a single group element. Evaluating MLE(Y, ) requires O(N) field
operations, storing O(1) field elements and requires one pass over'Y .

2. Eval is public-coin and has O(log N) rounds with O(1) group elements sent
i every round. Furthermore,

— Prover performs O(N - (log? N) - logp) field and group operations,
O(Nlog N) queries to the random oracle, requires O(log N) passes over
Y and stores O(log N) field and group elements.

— Verifier performs O(N - (log N) - logp) field and group operations, O(N)
queries to the random oracle, and stores O(log N) field and group ele-
ments.

Section 4.1 describes our scheme, Sect. 4.2 and Sect. 4.3 establish its security
and efficiency.
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Eval(pp,C, ¢, v;Y)

1: V samples and sends g &e
2: PandV define C, «+ C-g”

3: P and V define the sequence Z = (zp = Hﬁ(bi,g) :be{0,1}"7)
i=1

4: P and V engage in EvalReduce(C,, Z,v,8,g;Y)

EvalReduce(C, € G, Z = (2p),7 € F, g = (gb), 8; Y = (yp))

1

1

1:

2
3
4
5
6

proves knowledge of Y such that: C, = Com(g,Y)-g” and (Y, Z) =~.

N « |Z|,n + log N
if N=1: then
Letg=(g), Z=(2), Y = (y)
P sends y to V who accepts iff C, =gV - g¥”*
else
P computes v and g where
N Z Ybo " Zbl 5 TR Z Yb1 * Zbo-
be{0,1}n—1 be{0,1}n—1
P computes and sends C; and Cg where
Geegt J[ @™ Geg™ [ (@0)™.
be{0,1}n—1 be{0,1}7—1
V samples « < F and sends it to P.
P computes and sends 7' = o Y+ a2 .
0: P and V both compute

Chr e (C)™" -Gy (CR)™

Z' = (z{) =a 'zt a- Zb1)b€{071}n717
a~! [
g = (gb=(g00)" - (861)")peioiyn-1-

1: P computes V' = (y{, =a-ypot+a’ 'ybl)b€{071}n—1 .

12 return EvaIReduce(C;/,Z',’y',g',g;Y’)

Fig. 3. Eval protocol for the commitment scheme from Sect. 4.1.

4.1 Commitment Scheme

We describe a commitment scheme (Setup,Com,Open, Eval) to multi-linear
extensions below.

1. Setu pH(l)‘, 1%): On inputs security parameter 1* and size parameter N = 2"

and access to H, Setup samples (G, p,g) < GGen(1*), sets F = F, and returns
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pp = (G,F, N, p). Furthermore, it implicitly defines a sequence of generators
g=(gpb=H(b):be{0,1}").
2. Com™ (pp,Y) returns C € G as the commitment and Y as the decommitment

where
c II (.
be{0,1}"

3. OpenH(pp, C,Y) returns 1 iff C = ComH(pp,Y).

4. Eval (pp,C,¢,7;Y) is an interactive protocol (P, V) that begins with V
sending a random g £ G. Then, both P and V' compute the commitment
C, «— C-g" to additionally bind the claimed evaluation . Then, P and V
engage in an interactive protocol EvalReduce on input (C,, Z,g,g,7v;Y) where
the prover proves knowledge of Y such that

C,=Com(g,Y) -g"A(Y,Z) =,
where Z = (21, = B(b,¢) : b € {0,1}"). We define the protocol in Fig. 3.

Remark 3. In fact, our scheme readily extends to proving any linear relation o
about a committed sequence Y (i.e., the value («,Y")), as long as each element
of ae can be generated in poly-logarithmic time.

4.2 Correctness and Security

Lemma 2. The scheme from Sect. 4.1 is perfectly correct, computationally bind-
ing and Eval has witness-extended emulation under the hardness of the discrete
logarithm problem for groups sampled by GGen in the random oracle model.

The perfect correctness of the scheme follows from the correctness of EvalReduce
protocol, which we prove in Lemma 3, computationally binding follows from that
of Pedersen multi-commitments which follows from the hardness of discrete-log
(in the random oracle model). The witness-extended emulation of Eval follows
from the witness-extended emulation of the inner-product protocol in [15]. At
a high level, we make two changes to their inner-product protocol: (1) sample
the generators using the random oracle H, (2) perform the 2-move reduction
step using the lsb-based folding approach (see Sect. 2.1 for a discussion). At a
high level, given a witness Y for the inner-product statement (C,, g, Z,v), one
can compute a witness for the permuted statement (C,,n(g),n(Z),v) for any
efficiently computable/invertible public permutation 7. Choosing 7 as the per-
mutation that reverses its input allows us, in principle, to base the extractability
of our scheme (Isb-based folding) to the original scheme of [15]. We provide a
formal proof in the full version. Due to (1) our scheme enjoys security only in
the random-oracle model.

Lemma 3. Let (C,,Z,7,8,8;Y) be inputs to EvalReduce and let (C’W”Z','yﬂ
g',g;Y') be generated as in Fig. 3. Then,

C,y = Com(g,Y) . g” Ciy/ = Com(g/7yl) : g’y/
A — A\
(Y,Z) =~ Y',2Z') =~
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Proof. Let N = |Z| and let n = log N. Then,

1. To show ~' = (Y', Z'):

<Y/aZ/> = Z y{a 'le:n

bE{O,l}”fl
= Z (a'ybOJFOfl‘ybl)‘(Ofl 2o + - 2b1),
be{o,1}" 1!

2 -2
= E Yb0o - 2b0 T Q7 - Ybo - bl T Ybl * bl T & ~ - Yb1 - Zbl,
be{0,1}" 1

=y+a®-yw+a?gr=7.

2. €, = Com(g',Y") g7

/ -1 a-ypotalypr
Comg',v)= [ ()™= TI (et 91 ,
be{o,l}n—l be{071}1L—1
= IT (el omo ™ emn™ ely),
be{0,1}n !
_9 2
= II el el ey - (g™
be{o0,1}n !

Then, above with the definition of 4" implies that C, = Com(g’,Y”) - g

4.3 Efficiency

In this section we discuss the efficiency aspects of each of the protocols defined
in Sect. 4.1 with respect to four complexity measures: (1) queries to the random
oracle H, (2) field/group operations performed, (3) field/group elements stored
and (4) number of passes over the stream Y.

For the rest of this section, we fix n, N = 2", H,G,F, € F" and furthermore
fix YV = (ypb : b€ {0,1}"), g =(gp = Hb) : b € {0,1}") and Z = (2p =
B(b,¢) : b € {0,1}"). Note given ¢, any 2}, can be computed by performing
O(n) field operations.

First, consider the prover P of Eval protocol (Fig. 3). Given the inputs
(C,Z,7,8,8;Y), P and V call the recursive protocol EvalReduce on the N sized
statement (C,,Z,7,8,8;Y) where C, = C- g". The prover’s computation in
this call to EvalReduce is dictated by computing (a) v,vr (line 6), (2) C.,Cg
(line 7) and (c) inputs for the next recursive call on EvalReduce with N/2 sized
statement (C.,, Z',7',g’,g;Y") (line 9,11). The rest of its computation requires
O(1) number of operations. The recursion ends on the n-th call with statement
of size 1. For k € {0,...,n}, the inputs at the k-th depth of the recursion
be denoted with superscript k, that is, C*) () Z(#) gk) y(*) For example,
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Computez(k, c, ¢, ) Computeg™ (k, c, @)

1: zék)eo 1: gf:k)e()

2: foreach a € {0,1}" do 2: foreach a € {0,1}* do

3 temp < 1r 3: temp < 1p

4: foreach j € {1,...,k} do 4: foreach j € {1,...,k} do

5 temp < temp - coeff(a ™V ;) 5: temp « temp - coeff(a ) q;)
6: 2 « temp - B(coa,() 6: g « H(coa)®™

7: return zék) 7: return g(ck>

Fig. 4. Algorithms for computing zl()k) and g{)m. In both algorithms ¢ € {0,1}"* and
a=(@9,...,a®* ) where B(b,¢) = [1/, B(bi, () for b = coa and coeff(a, c) =
a-c+a - (1-¢).

Z©) = 7, Y(© =Y denote the initial inputs (at depth 0) where prover com-
putes fyfo),*yéo),C(LO), C}(?O) with verifier challenge o(?). The sequences Z®*) Y (%)
and g®) are of size 2",

At a high level, we ask prover to never explicitly compute the sequences
g®), Z®) Yy (*) (item (c) above) but instead compute elements gék),zl()k),yl()k),
of the respective sequences, on demand, which then can be used to compute
*yfk),vék), CEk)7C|(?k) in required time and space. For this, first it will be useful
to see how the elements of sequences Z*), Y (*) g(k) depend on the initial (i.e.,
depth-0) sequence Z(©), Y (0) g(0),

Relating Y*) with Y(©). First, lets consider Y(®) = (y,(f) :b e {0,1}"7") at
depth k € {0,...,n}. Let (a?, ..., aF=1D) be the verifier’s challenges sent in
all prior rounds.

Lemma 4 (Streaming of Y®)). For every b € {0,1}" ",

k
yl()k) = Z H coeff(a=Y ¢;) | - Yboe, (7)
ce{0,1}* \J=1
where coeff(a,c) =a-(1—c)+a ! c

The proof follows by induction on depth k. Lemma 4 allows us to simulate the
stream Y (%) with one pass over the initial sequence Y, additionally performing
O(N - k) multiplications to compute appropriate coeff functions.

Relating Z®) with Z(©). Next, consider Z(¥) = (zt()k) b e {0,1}"7%) at depth
ke{0,...,n}.
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Lemma 5 (Computing z, )) For every b € {0,1}"~

k
zf)k) = Z H coeff(a=1 ¢;) | - 2boe, (8)
ce{0,1}* \J=1
where coeff(a,¢) = a- ¢+ a~ ! (1 —¢). Furthermore, computing zl()k) requires
O(2F-n) field multiplications and storing O(n) elements (see algorithm Computez
in Fig. 4).

Relating g® with g(®. Finally, consider gi*) = (gf)k) :b e {0,1}"%) at depth
ke {0,...,n}.

Lemma 6 (Computing g{)k)). For every b € {0,1}" ",

k
g = [ e coeff(ae) = [[al Vg4 (D) (1-cp). (9)
CE{O,l}k i=1

Furthermore, computing g( ) requires 2F - k field multiplications, 2% queries to
H, 2% group multiplications and exponentiations, and storing O(k) elements (see
algorithm Computeg in Fig. 4).

We now discuss the efficiency of the commitment scheme.

Commitment Phase. We first note that Com’ on input pp and given stream-
ing access to Y can compute the commitment C = [, (H (b)) for b € {0,1}"
making N queries to H, performing N group exponentiations and a single pass
over Y. Furthermore, requires storing only a single group element.

Note that a single group exponentiation g¢ can be emulated while performing
O(log p) group multiplications while storing O(1) group and field elements. Since,
G, F are of order p, field and group operations can, furthermore, be performed
in polylog(p())) time.

Evaluating MLE(Y, ). The honest prover (when used in higher level proto-

cols) needs to evaluate MLE(Y, ¢) which requires performing O(N log N) field
operations overall and a single pass over stream Y.

Prover Efficiency. For every depth- k of the recursion it is sufficient to dis-

cuss the efﬁmency of computing ’y(k TR (k) C(lc C . We argue the complexity of

computing 7|(_ and C(Lk and the analysis for the remaining is similar. We give

a formal algorithm Prover in Fig. 5.

Computing 'y,_ . Recall that 'y( ) = => yl()o 1) for b e {0,1}" =1 To com-

pute 'y( ) we stream the initial N-sized sequence Y and generate elements of
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ProverH(pp7 k7 Y? C? g7 a(0)7 M ) a(kil))

1: ’YL7’YR,Z/(k> — O]F,g<k),C|_,CR < lg, count < 0
2: foreach b= (b,,...,b1) € {0,1}" do

3: temp < 1p

4 foreach j € {1,...,k} do

5: temp < temp - coeff(a V) b))

6 : y(k> — y(k) + temp - yp

7 count < count + 1

8 : if count == 2" then

9: 2%« Computez(k, (bn, ... bn_ks1,1 —bn_x),C 0P . a7
10 : g(k) — ComputegH(k7 (bry ey bn—kt1, 1 — bri), L a<k_1>)
11 : if b,,_x == 0 then

12 =+ 2 -y(k) ; CL«Cp- (gm)y(k)

13 : else

14 R TR+ 2 y(k) ; CR+ Cgr- (g(k))y(k)

15 : y(k) < Or; g(k> < 1g; count <~ 0

16: CL+CL-g"; CR+Cr-g™®
17: return (v, Ci, R, Cr)

Fig. 5. Space-efficient prover

the sequence (ygg) b € {0,1}" ") in a streaming manner. Since each ygf))

depends on a contiguous block of 2 elements in the initial stream Y, we can

compute yl()%) by performing 2* - k field operations (lines 2-7 in Fig. 5). For every

b € {0, 1}”7]671, after computing yl()%), we leverage “random access” to Z and

compute z](akl) (Lemma 5) which requires O(2% - k) field operations. Overall, 'yfk)

can be computed in O(N - k) field operations and a single pass over Y.

Computing CI(_k). The two differences in computing CEk) (see Fig. 3 for the def-
inition) is that (a) we need to compute g,(okl) instead of computing z,(akl) and (b)

(k)

perform group exponentiations, that is, g](fl)ybo as opposed to group multiplica-

tions as in the computation of ’yfk). Both steps overall can be implemented in
O(N -k-log p) field and group operations and N queries to H (Lemma 6). Overall,
at depth k the prover (1) makes O(N) queries to H, (2) performs O(N -k-log(p))
field and group operations and (3) requires a single pass over Y.

Therefore, the entire prover computation (over all calls to EvalReduce)
requires O(log V) passes over Y, makes O(N log N) queries to H and performs
O(N - log? N - log p) field/group operations. Furthermore, this requires storing
only O(log N) field and group elements.
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Verifier Efficiency. V only needs to compute folded sequence Z(™ and folded
generators g™ at depth-n of the recursion. These can computed by invoking
Computez and Computeg (Fig. 4) with & = n and require O(N - log(N, p)) field
and group operations, O(N) queries to H and storing O(log N) field and group
elements.

Lemma 7. The time and space efficiency of each of the phases of the protocols
are listed belou® :

Computation | H queries |Y passes | F/G ops G/F elements
Com N 1 O(N) O(1)

MLE(Y, ) 0 1 O(NlogN) 0O(1)

P (in Eval) |O(NlogN)|O(log N)|O(Nlog? N) O(log N)

V (in Eval) | O(N) 0 O(NlogN) |O(log N)

Finally, Theorem 5 follows directly from Lemma 2 and Lemma 7.

5 A Polynomial IOP for Random Access Machines

We obtain space efficient arguments for any NP relation verifiable by time-T
space-S RAM computations by compiling our polynomial commitment scheme
with a suitable space-efficient polynomial interactive oracle proof (IOP) [6,17,41].
Informally, a polynomial IOP is a multi-round interactive PCP such that in each
round the verifier sends a message to the prover and the prover responds with a
proof oracle that the verifier can query via random access, with the additional
property that the proof oracle is a polynomial.

We dedicate the remainder of this section to giving a high-level overview
our polynomial IOP (PIOP), presented in Fig. 6, which realizes Theorem 3. Full
details are deferred to the full-version. We first recall that we consider a variant
of the polynomial IOP model in which all prover messages are encoded by a
channel and that the prover does not incur the cost of this encoding in its time
and space complexity. In particular, we consider a channel which computes the
multi-linear extension of the prover messages. Our space-efficient PIOP leverages
the RAM to circuit satisfiability reduction of [12]: this RAM to circuit reduction
outputs an arithmetic circuit of size T - polylog(T"), which we denote as Cy,
over finite field IF of size polylog(T). The circuit is defined such that such that
Cp(z) =y if and only if M (z;w) = y for auxiliary input w. Further, the circuit
has a “streaming” property: the string of gate assignments W of C}; on input x
can be computed “gate-by-gate” in time T - polylog(T') and space S - polylog(T).
In our model, this allows our prover to stream its message through the encoding
channel in time T - polylog(T') and space S - polylog(T') and send the verifier

5 log(p) factors are omitted.
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PIOP(M, z,T, S;w)

1: P compiles circuit Cps and transcript W via the reduction of [12].

2: P provides V with an oracle for W.

3: V samples T < F* and sends T to P.

4: P computes polynomial h, and sets v <— 0. P sends v to V.

5: Vsetsy .

6: foreach j € {1,...,3s} do / sum-check

7: P sends h{(X;) to V, where hi?) (X;) Z he(ou,. .. a5-1,X;,c).
o/€{0,1}3s—3

8: V checks v = h{(0) + h (1), rejecting if equality doesn’t hold.

9: V samples o & F and sets 7/ hs;’l)(a])‘

10 : if j < 3s thenV sends «; to P endif

11: V queries the oracle W and obtains v; + W (') for i € {1,2,3}, where ' « (as1,...,qis).

12: V computes h,(c) using oracle queries y; and accepts if and only if v = h.(cx).

Fig. 6. Our Polynomial IOP for time-T" space-S RAM computations.

with an oracle to the multi-linear extension of W, denoted as W. We emphasize
that W is the only oracle sent by the prover to the verifier, and that this and
the streaming property of W are key to the composition of our PIOP with the
polynomial commitment scheme of Theorem 5.

The circuit satisfiability instance (Cas,z,y) is next reduced to an algebraic
claim about a constant-degree polynomial F, , whose structure depends on the
wiring pattern of Cy/,  and y, and the oracle W. The polynomial F, , has the
property that it is the O-polynomial if and only if W is a multi-linear extension
of a correct transcript; i.e., that W is a witness for Cy(x) = y. A verifier is
convinced that F, , is the O-polynomial if F, ,(7) = 0 for uniformly random
F-vector 7. F, 4 is suitably structured such that a prover can convince a verifier
that F, ,(7) = 0 via the classical sum-check protocol [36,45]. In particular, the
value Fj ,(7) is expressed as a summation of some constant-degree polynomial
h, over the Boolean hypercube:

Foy(r)= 3 ho(c).

ce{0,1}"

The polynomial h, has the following two key efficiency properties: (1) the
prover’s messages in the sum-check that depend on h, are computable in
T - polylog(T) time and space S - polylog(T') (see [12, Lemma 4.2], full details
deferred to the full-version); and (2) given oracle W the verifier in time
polylog(T) can evaluate h, at any point without explicit access to the circuit Cjy
(see [12, Theorem 4.1 and Lemma 4.2], full details deferred to the full-version).
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6 Time- and Space-Efficient Arguments for RAM

We obtain space-efficient arguments (P, Varg) for NP relations that can be
verified by time-T space-S RAMs by composing the polynomial commitment
scheme of Theorem 5 and the polynomial IOP of Fig. 6. Specifically, the prover
P, and V,, runs the prover and the verifier of the underlying PIOP except two
changes: (1) Pag (line 2, Fig. 6) instead provides V,,g with a commitment to the
multilinear extension of the circuit transcript W. Here P, crucially relies on
streaming access to W to compute the commitment in small-space using Com.
(2) P,z and V,,, run the protocol Eval in place of all verifier queries to the oracle

W (line 11, Fig. 6). We state the formal theorem and defer its proof to the
full-version.

Theorem 6 (Small-Space Arguments for RAMSs). There exists a public-
coin interactive argument for NP relations verifiable by time-T space-S random
access machines M, in the random oracle model, under the hardness of discrete-
log in obliviously sampleable prime-order groups with the following complezity.

1. The protocol has perfect completeness, has O(log(T)) rounds and polylog(T)
communication, and has witness-extended emulation.

2. The prover runs in time T - polylog(T') and space S - polylog(T') given input-
witness pair (x;w) for M ; and

3. The verifier runs in time T - polylog(T') and space polylog(T).

We discuss how we modify our interactive argument of knowledge from The-
orem 6 to satisfy zero-knowledge and then make the resulting argument non-
interactive, thus obtaining Theorem 1.

Zero-Knowledge. We use commit-and-prove techniques introduced in [2,20]
and later implemented in [48]. At a high level, this requires making two changes
in our base protocols: (1) modify polynomial commitment from Sect. 4 to satisfy
zero-knowledge—we modify all commitments sent in both Com and Eval proto-
cols (Fig. 3) to additionally include blinding factors. For example, commitment
to x € F under generator g € G is changed from ¢g* to ¢g* - A" for some ran-

domly sampled hG and ré T, Further, at the end of the EvalReduce protocol
when N = 1, prover instead of sending the witness in the clear instead engages
with the verifier in Schnorr’s zero-knowledge proof of dot-product protocol [43].
This along with hiding of the commitments now ensure that the resulting poly-
nomial commitment is zero-knowledge. (2) We replace all messages sent in the
argument Theorem 6 in the clear with Pedersen hiding commitments and use
techniques developed in [48] to ensure verifier checks go through. We empha-
size that these changes do not asymptotically blow up the complexity of the
protocol and, in particular, keep the space-complexity low. Furthermore, this
transformation preserves the knowledge-soundness and public-coin features of
the underlying argument [48].



194 A. R. Block et al.

Non-interactivity. We apply the Fiat-Shamir (FS) transform [21] to our zero-
knowledge argument of knowledge, thereby obtaining a non-interactive, zero-
knowledge argument of knowledge. However, note that it is folklore that apply-
ing F'S to a t-round public-coin argument of knowledge yields a non-interactive
argument of knowledge where the extractor runs in time exponential in ¢. Since
our protocol has O(logT') rounds our extractor runs in poly(T")-time.
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Abstract. Post-Compromise Security, or PCS, refers to the ability of
a given protocol to recover—by means of normal protocol operations—
from the exposure of local states of its (otherwise honest) participants.
While PCS in the two-party setting has attracted a lot of attention
recently, the problem of achieving PCS in the group setting—called group
ratcheting here—is much less understood. On the one hand, one can
achieve excellent security by simply executing, in parallel, a two-party
ratcheting protocol (e.g., Signal) for each pair of members in a group.
However, this incurs O(n) communication overhead for every message
sent, where n is the group size. On the other hand, several related proto-
cols were recently developed in the context of the IETF Messaging Layer
Security (MLS) effort that improve the communication overhead per mes-
sage to O(logn). However, this reduction of communication overhead
involves a great restriction: group members are not allowed to send and
recover from exposures concurrently such that reaching PCS is delayed
up to n communication time slots (potentially even more).

In this work we formally study the trade-off between PCS, concur-
rency, and communication overhead in the context of group ratchet-
ing. Since our main result is a lower bound, we define the cleanest and
most restrictive setting where the tension already occurs: static groups
equipped with a synchronous (and authenticated) broadcast channel,
where up to t arbitrary parties can concurrently send messages in any
given round. Already in this setting, we show in a symbolic execution
model that PCS requires (2(¢) communication overhead per message.
Our symbolic model permits as building blocks black-box use of (even
“dual”) PRFs, (even key-updatable) PKE (which in our symbolic defi-
nition is at least as strong as HIBE), and broadcast encryption, covering
all tools used in previous constructions, but prohibiting the use of exotic
primitives.

To complement our result, we also prove an almost matching upper
bound of O(t - (1 + log(n/t))), which smoothly increases from O(logn)
with no concurrency, to O(n) with unbounded concurrency, matching
the previously known protocols.
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1 Introduction

PosT-COMPROMISE SECURITY. End-to-end (E2E) encrypted messaging sys-
tems including WhatsApp, Signal, and Facebook Messenger have increased in
popularity. In these systems, intermediaries including the messaging service
provider should not be able to read or modify messages. Moreover, as typi-
cal sessions in such E2E systems can last for a very long time, state compromise
of some of the participants is becoming a real concern to the deployment of such
systems. To address this security concern, modern E2E systems fulfill a novel
property called Post-Compromise Security [16], which refers to the ability of a
given protocol to recover—by means of normal protocol operations—from the
exposure of local states of its (otherwise honest) participants. For example, the
famous two-party Signal [28] protocol achieves PCS by having parties continu-
ously run fresh sessions of Diffie-Hellman key agreement “in the background”.

GROUP MESSAGING. By now, the setting of PCS-secure two-party encrypted
messaging systems is relatively well understood [2,10,15,19,23,24,30]. In con-
trast, the setting of PCS-secure group messaging is much less understood. On
the one extreme, several systems, including Signal Messenger itself, achieve PCS
in groups by simply executing, in parallel, a two-party PCS-secure protocol (e.g.,
Signal) for each pair of members in a group. In addition to achieving PCS, this
simple technique is also extremely resilient to asynchrony and concurrency: peo-
ple can send messages concurrently, receive them out-of-order, or be off-line for
extended periods of time. However, it comes at a steep communication over-
head O(n) for every message sent, where n is the group size.

On the other hand, several related protocols [3-5,14] (some of them intro-
duced under the term continuous group key agreement (CGKA)') were recently
developed in the context of the IETF Message Layer Security (MLS) initiative
for group messaging [7]. One of the main goals of this initiative was to achieve
PCS with a significantly lower communication overhead. And, indeed, for static
groups, these protocols improve this overhead per message to O(logn). More
precisely, these protocols separate protocol messages into two categories: Pay-
load messages, used to actually encrypt messages, have no overhead, but also do
not help in establishing PCS. In contrast, update messages carry no payload, but
exclusively establish PCS: intuitively, an update message from user A refreshes
all cryptographic material held by A. These update messages have size propor-
tional to O(log n) in MLS-related protocols, which is a significant saving for large
groups, compared to the pairwise-Signal protocol.

CONCURRENCY. Unfortunately, this reduction of communication overhead for
MLS-related protocols involves a great restriction: all update messages must be
generated and processed one-by-one in the same order by all the group members.

! By distinguishing between “CGKA” and “group ratcheting”, these works differenti-
ate between the asymmetric cryptographic parts of the protocols and the entire key
establishment procedure, respectively [5]. In order to avoid this strict distinction, we
call it “group ratcheting” here.
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We stress that this does not just mean that update messages can be prepared
concurrently, but processed in some fixed order. Instead, fresh update message
cannot be prepared until all previous update messages are processed. In partic-
ular, it is critical to somehow implement what these protocols call a “delivery
server”, whose task is to reject all-but-one of the concurrently prepared update
messages, and then to ensure that all group members process the “accepted
updates” in the same correct order. Implementing such a delivery server poses
a significant burden not only in terms of usability (which is clear), but also for
security of these protocols, as it delays reaching PCS up to n communication time
slots (potentially more in asynchronous settings, such as messaging). Indeed, the
concurrency restriction of MLS is currently one of the biggest criticisms and hur-
dles towards its wide-spread use and adoption (see [3] for extensive discussion
of this). In contrast, pairwise Signal does not have any such concurrency restric-
tion, albeit with a much higher communication overhead. See Sect. 4 and Table 1
for more detailed comparison of various existing methods for group ratcheting.

OUrR MAIN QUESTION. This brings us to the main question we study in this
work:

What is the trade-off between PCS, concurrent sending and low communication
complezity in encrypted group messaging protocols?

For our lower bound, we define the cleanest and most restrictive setting
where the tension already occurs: static groups equipped with a synchronous
(and authenticated) broadcast channel, where up to t arbitrary users can con-
currently send messages in any given round. In particular, ¢ = 1 corresponds
to the restrictive MLS setting which, we term “no concurrency”, and t = n
corresponds to unrestricted setting achieved by pairwise Signal, which we term
“full concurrency”. Also, without loss of generality, and following the conven-
tion already established in MLS-related protocols, we focus on the “key encap-
sulation” mechanism of group messaging protocols. Namely, our model is the
following:

We have a static group of n members whose goal is to continuously share
a group key k. Group members have private states st, and communicate in
rounds over a public broadcast channel. Each round refreshes the current group
key k into the next group key k' as follows: 1. At the beginning of a round,
an arbitrary subset of up to ¢ group members is selected by the adversary to
update the current group key k. These groups members are called senders (of a
given round). 2. During each round, each sender—unaware of the identities of
other senders—tosses fresh random coins, sends a ciphertext ¢ over the broadcast
channel, and updates its private state st. 3. At the end of each round, all (up to t)
ciphertexts c are received by all n users, who use them to update their state st,
and output a new group key k’. 4. At the end of each round, the adversary can
learn the current group key %', and is also allowed to expose an arbitrary number
of group member states st.

For our lower bound, we will demand the following, rather weak, PCS guar-
antee. A key k after round ¢ (not directly revealed to the attacker) is secure
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if: (a) no user is exposed in round ¢’ > 4; (b) all users sent at least one update
ciphertext between their latest exposure and round 7—1; and (c¢) after all exposed
users sent once without being exposed again, at least one user additionally sent
in round j < 4. Condition (a) will only be used in our lower bound (to make
it stronger), to ensure that our lower bound is only due to the PCS, but not
a complementary property called forward-secrecy, which states that past round
keys cannot be compromised upon current state exposure. However, our upper
bound will achieve forward-secrecy, dropping (a).

Condition (b) is the heart of PCS, demanding that security should be eventu-
ally restored once every exposed user updated its state. Condition (c) permits a
one-round delay before PCS takes place. While not theoretically needed, avoid-
ing this extra round seems to require some sort of multiparty non-interactive
key exchange for concurrent state updates, which currently requires exotic cryp-
tographic assumptions, such as multi-linear maps [12,13]. In contrast, the extra
round allows to use traditional public-key cryptography techniques, such as the
exposed user sending fresh public-keys, and future senders using these keys in the
extra round to send fresh secret(s) to this user. While condition (¢) strengthens
our lower bound, our upper bound construction can be minimally adjusted to
achieve PCS for non-concurrent state updates even without this “extra round”.

For conciseness, we call any protocol in our model a group ratcheting scheme,
taking inspiration from the “double ratchet” paradigm used in design of the
Signal protocol [28].

OUR UpPPER BOUND. We show nearly matching lower and upper bounds on
the efficiency of ¢t-concurrent, PCS-secure group ratcheting schemes. With our
upper bound we provide a group ratcheting scheme with message overhead
O(t - (1 4 log(n/t))), which smoothly increases from O(logn) with no concur-
rency, to O(n) with unbounded concurrency, matching the upper bounds of
the previously known protocols. Our upper bound is proven in the standard
computational model. For the weak notion of PCS alone sketched above (i.e.,
conditions (a)—(c)), we only need public-key encryption (PKE) and pseudo-
random functions (PRFs). Our construction carefully borrows elements from
the complete subtree method of [27] used in the context of broadcast encryp-
tion (BE), and the TreeKEM protocol of the MLS standard [3,7] used in the
context of non-concurrent group ratcheting. Similarly, one can view our con-
struction as an adapted combination of components from Tainted TreeKEM [4]
and the most recent MLS draft (verion-09) [8] with its propose-then-commit
technique. By itself, none of these constructions is enough to do what we want:
BE scheme of [27] allows to send a fresh secret to all-but-¢t senders from the
previous round (this is needed for PCS), but needs centralized distribution of
correlated secret keys to various users, while the TreeKEM schemes no longer
need a group manager, but do not withstand concurrency of updates in a rather
critical way. Finally, the propose-then-commit technique,