
Efficient Range-Trapdoor Functions
and Applications: Rate-1 OT and More

Sanjam Garg1, Mohammad Hajiabadi2(B), and Rafail Ostrovsky3

1 University of California, Berkeley, USA
2 Penn State University, State College, USA

mdhajiabadi@psu.edu
3 UCLA, Los Angeles, USA

Abstract. Substantial work on trapdoor functions (TDFs) has led to
many powerful notions and applications. However, despite tremendous
work and progress, all known constructions have prohibitively large pub-
lic keys.

In this work, we introduce new techniques for realizing so-called range-
trapdoor hash functions with short public keys. This notion, introduced
by Döttling et al. [Crypto 2019], allows for encoding a range of indices
into a public key in a way that the public key leaks no information about
the range, yet an associated trapdoor enables recovery of the correspond-
ing input part.

We give constructions of range-trapdoor hash functions, where for a
given range I the public key consists of O(n) group elements, improv-
ing upon O(n|I|) achieved by Döttling et al. Moreover, by designing our
evaluation algorithm in a special way involving Toeplitz matrix mul-
tiplication and by showing how to perform fast-Fourier transforms in
the exponent, we arrive at O(n log n) group operations for evaluation,
improving upon O(n2), required of previous constructions. Our construc-
tions rely on power-DDH assumptions in pairing-free groups.

As applications of our results we obtain

1. The first construction of (rate-1) lossy TDFs with public keys con-
sisting of a linear number of group elements (without pairings).

2. Rate-1 string OT with receiver communication complexity of O(n)
group elements, where n is the sender’s message size, improving upon
O(n2) [Crypto 2019].

3. Two-round private-information retrieval protocols for one-bit
records, where for a server of N bits, the client’s message consists of
O(λ)polylog(N) group elements, improving upon O(λ2)polylog(N).

S. Garg—University of California, Berkeley. supported in part from DARPA/ARL
SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR
Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826, DARPA
and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants
by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC,
UC Berkeley). The views expressed are those of the author and do not reflect the official
policy or position of the funding agencies.
R. Ostrovsky—University of California, Los Angeles. Supported by DARPA SPAWAR
contract N66001-15-C-4065.

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 88–116, 2020.
https://doi.org/10.1007/978-3-030-64375-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64375-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-64375-1_4

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 89

4. Semi-compact homomorphic encryption for branching programs: A
construction of homomorphic encryption for branching programs,
with ciphertexts consisting of O(λnd2) group elements, improving
upon O(λ2nd3). Here λ denotes the security parameter, n the input
size and d the depth of the program.

1 Introduction

Trapdoor cryptosystems are at the heart of modern cryptography. What is com-
mon among all these cryptosystems is the notion of a trapdoor key, which allows
a certain computation to be inverted. The exact formulation of what inversion
means specifies the strength of the notion.

For example, trapdoor functions (TDFs) extend the functionality of public-
key encryption (PKE) by requiring the inversion algorithm to recover the entire
input. This extension makes the notion relatively versatile, enabling applications
(from variants of TDFs) including CCA2-secure PKE, selective-opening secu-
rity and designated-verifier non-interactive (NIZK) [PW08,BFOR08,BHY09,
LQR+19], which are currently out of reach of the basic PKE primitives.

Perhaps not surprisingly, trapdoor systems that demand a richer functional-
ity are harder to realize, and in cases this is possible, the resulting realizations
come with poor efficiency. For instance, while for PKE we have a plethora of
instantiations with close to optimal public-key, secret-key and ciphertext sizes,
the situation for TDFs is much different. Concretely, the public keys of all DDH-
based TDFs consist of O(n2) group elements, where n is the input size, lagging
behind their PKE counterparts, which consist of a constant number of group ele-
ments. Although recent works [GH18,GGH19,DGI+19,DGH+19] showed how
to make the image size of TDFs almost the same as the input size, they too are
stuck with the O(n2) group elements overhead for the public key. As we will
see later, this is due to a lack of batching techniques for TDF keys. Our goal,
in this work, is to develop techniques that help us mitigate this issue. We will
do this in a way general enough to be applicable not just to TDFs, but also
to more advanced primitives, such as lossy TDFs [PW08] and trapdoor hash
functions [DGI+19].

Trapdoor Hash (TDH) Functions. Recently, Döttling, Garg, Ishai, Mala-
volta, Mour and Ostrovsky introduced a primitive, called trapdoor hash func-
tions [DGI+19], and showed extensive applications of this notion, including
lossy TDFs, rate-1 oblivious transfer (OT), private information retrieval (PIR)
with low communication complexity and more. In its simplest form, a TDH
scheme comes with a length-compressing hash function Hhk : {0, 1}n → {0, 1}λ

and an evaluation algorithm E. The scheme allows one to generate an evalua-
tion/trapdoor key (iki, tki) for any particular index i ∈ [n] in such a way that
(1) the output of E(iki, x) is a single bit, (2) using tki, one may retrieve the value
of xi from H(hk, x) ∈ {0, 1}λ and E(iki, x) ∈ {0, 1} and (3) iki hides the index i.

90 S. Garg et al.

Usefulness of Trapdoor Hash. To show the utility of this notion, let us sketch
a construction of lossy TDFs using this primitive, given by [DGI+19]. Con-
sider a sequence of TDH-evaluation keys ik1, . . . , ikn/2 generated for the range

of indices [1, n/2] and suppose we additionally include a message x∗ $←− {0, 1}n/2

as part of the public key. Assume the input x to the lossy TDF has n/2
bits. To evaluate x, form a bigger string x′ := (x||x∗) ∈ {0, 1}n and return
(H(hk, x′),E(ik1, x′), . . . ,E(ikn/2, x

′)).1 Using the trapdoor keys of ik1, . . . , ikn/2,
we may recover x. Now if we switch the evaluation keys to ikn/2+1, . . . , ikn cor-
responding to the second-half range of indices, then we will statistically lose
information about x. The reason is that n/2 − λ bits of information are lost
about x.

Rate-1 Two-Round Oblivious Transfer (OT): Another important application
of trapdoor hash is in realizing rate-1 two-round OT protocols [DGI+19]. We
say that an OT protocol achieves rate-1 if the ratio |m0|/|ots| asymptotically
approaches one, where ots is the sender’s protocol message on a pair of inputs
(m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) and on the corresponding message otr of the
receiver. As shown by Ishai and Paskin [IP07], rate-1 OT leads to construc-
tions of semi-compact homomorphic encryption for branching programs (where
the ciphertext size grows only with the depth as opposed to the size of the
program) as well as communication-efficient private-information retrieval (PIR)
protocols. All these applications rely on the rate-1 property of the OT in a
crucial way, allowing one to sequentially pass ots as an input to a new OT-
sender’s message and pass the resulting ots to the next sender’s message and
so on; this can continue for a polynomial number of times without having an
exponential-size blowup. Trapdoor hash schemes provide an elegant way for real-
izing rate-1 OT [DGI+19]. Specifically, if the size of each message of the sender
is n, the receiver on an input bit b sends n evaluations key ek1, . . . , ekn corre-
sponding to either indices in [1, n] or [n + 1, . . . , 2n]. The sender then returns
(H(hk,m0||m1)),E(ek1,m0||m1), . . . ,E(ekn,m0||m1). The receiver may then use
his trapdoors to recover the corresponding message.2 We have |ots| = n+poly(λ),
where poly is a fixed function, and hence the protocol has rate-1 (asymptotically).
Döttling et al. [DGI+19] used the above protocol to get the first constructions
of rate-1 OT from DDH, OR and LWE.

Lack of Batching Techniques for Evaluation Keys. In the examples above,
the public key of the lossy TDF or the receiver’s message in the OT proto-
col each consists of O(n) TDH-evaluation keys. Under DDH instantiations of
1 Here for simplicity we assume that E is deterministic and that each trapdoor enables

perfect recovery of the underlying indexed bit. Under the actual definition, the func-
tion E should be randomized, so as to provide the desired privacy guarantees, needed
by OT, etc applications. This issue can be handled by using a fixed randomness for
the sketched construction.

2 Again, we are giving an over-simplified construction, by assuming that decryption
has perfect correctness. Moreover, in the actual construction, the function H should
be randomized, so to provide sender privacy.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 91

TDH [DGI+19], an evaluation key for any given index has O(n) group elements,
resulting in O(n2) group elements for the whole range, an overhead alluded to
earlier. Moreover, lack of batching methods affects similarly the other applica-
tions: the ciphertext size in the case of homomorphic encryption for branching
programs, and the client’s message size in the case of PIR. While bilinear maps
may open up venues for batching-style tricks [BW10,DGI+19], it is not clear
how to do so without pairings. (See Sect. 1.3 for more details.)

Obtaining Linear-Sized Public Keys Asymptotically. We note that if one’s
goal is solely to obtain TDFs with public-key size linear in input size,
that is easy to do by making the input larger; e.g., TDF(ik, x1|| . . . ||xn) =
TDF(ik, x1)|| · · · ||TDF(ikn, xn). Similarly, one may make the size of the receiver’s
message otr in an OT protocol almost the same as that of the sender’s input, by
making each of the sender’s input consist of (sufficiently) many blocks of mes-
sages and re-using otr across each opposite pair of them. These results are only
for the asymptotic case, falling short in concrete cases. For example, increas-
ing the size of the sender’s input messages (so to make the size of otr close to
that of the sender’s message) translates into larger homomorphically-evaluated
ciphertexts for branching programs.

1.1 Our Results

In this work, we will mitigate the above-mentioned issue, through efficient real-
izations of a new notion of range-trapdoor hash, which we introduce next.

Range-Trapdoor Hash. We introduce a notion called range-trapdoor hash func-
tions, which is an immediate generalization of TDH schemes for index functions.
In particular, under range-trapdoor hash, one would issue evaluation keys ekI

(based on a public parameter) for a range of indices I = [i+1, ..., i+s], in such a
way that given ekI ’s trapdoor key, one can recover x[I] := (xi+1, . . . , xi+s) from
H(hk, x) and E(ekI , x). We require that ekI should hide I (except for |I|) and
that |E(ekI , x)| = |I|. Under Diffie-Hellman type assumptions, we seek realiza-
tions where ekI consists only of O(n) group elements, as opposed to O(n|I|).

Our Construction. We give constructions of range-trapdoor hash schemes, where
on inputs of length n, an encoding key for a given range I ⊆ [n] consists of O(n)
group elements, irrespective of |I|. Our construction relies on the 2n-power DDH
assumption—namely, that the distribution (g, ga, ga2

, . . . , ga2n

) should be pseu-
dorandom, where g is a random generator of the group and a is a uniformly-
random exponent. This notion has been used in some previous works, e.g.,
[BB04,DY05,CNs07,AHI11,BMZ19], but for different purposes.

In addition to obtaining a smaller ekI , we obtain efficiency improvements in
the computation time of the evaluation algorithm. Specifically, while the eval-
uation algorithm of [DGI+19] requires O(n|I|) group operations (among some
other private-key operations), the number of public-key operations in our con-
struction is only O(n log |I|). At a high level, we achieve this by designing our

92 S. Garg et al.

range-trapdoor hash scheme in a structured way, so that the evaluation involves
multiplying a Toeplitz matrix (given in the exponent) with an input vector
xT . Since Toeplitz matrices are closely related to circulant matrices which are
amenable to the fast-Fourier transform, we show how to do this matrix multi-
plication in a fast way using (inverse) discrete Fourier transform (IDFT/DFT)
modulo Zp in the exponent.

Applications: Rate-1 Two-Message String OT and More. Our techniques yield
a construction of string OT with rate-1 from the power-DDH assumption with
improved communication and computation. Specifically, in our two round pro-
tocol the communication from receiver to sender consists of a linear (in sender’s
message size) number of group elements. The previous work of [DGI+19] required
a quadratic number of group elements by relying on DDH. Additionally, our
construction also improves the computational cost of the sender—namely, our
construction improves the computational effort of the sender from quadratic to
quasi-linear. This allows us to obtain the following new results:

1. Lossy Trapdoor Functions: We obtain the first construction of lossy trap-
door functions [PW08], where on inputs of size n, the public key consists of
O(n) group elements. All previous (even non-lossy) TDF constructions from
pairing-free groups had public keys with O(n2) group elements.

2. Semi-Compact Homomorphic Encryption for Branching Programs: A con-
struction of public-key homomorphic encryption for branching programs,
with ciphertexts consisting of O(λnd2) group elements, improving upon
O(λ2nd3) [DGI+19], where d denotes the depth of the program. We achieve
this by plugging our rate-1 OT scheme into the homomorphic encryption
construction of [IP07]. See Table 1.

3. Private Information Retrieval : For a database of N bits, we get a two-message
PIR protocol with total communication complexity that grows only polylog-
arithmically with the database size, and with a client’s message consisting
of O(λ)polylog(N) group elements, improving upon O(λ2)polylog(N), given
by [DGI+19]. See Table 2.

Table 1. Bit complexity for branching programs. The size of public keys, secret keys
and homomorphically-evaluated ciphertexts in both schemes are the same. Here p =
Θ(2λ) is the group order, n is the input size of the program and d is the depth of the
branching program.

Work Assumption Ciphertext size

Ours O(λd)-power DDH λnd2 log p

[DGI+19] DDH λ2nd3 log p

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 93

Table 2. Bit complexity: p = Θ(2λ) is the order of the group and n is the bit size of
each of the sender’s message (in the case of OT) and N is the database size (in the
case of PIR).

Work Assumption Primitive Receiver message Sender message

Ours 2n-power DDH OT Θ(n log p) n + log p

[DGI+19] DDH OT Θ(n2 log p) n + log p

Ours Power-DDH PIR Θ(λ2)polylog(N) log(N) log p

[DGI+19] DDH PIR Θ(λ3)polylog(N) log(N) log p

1.2 Related Work and Open Problems

As mentioned above, Döttling et al. [DGI+19] introduced the notion of trapdoor
hash, and used it to build several new primitives. Among others, they obtained
the first DDH-based and QR-based constructions of PIR for one-bit records
with a total communication complexity that grows polylogarithmically with the
database size; i.e., it is p(λ)polylog(N)) for a fixed function p, where N is the
database size and λ is the security parameter. Previously, such protocols were
only known under DCR, LWE and Φ-hiding assumptions [CMS99,Cha04,Lip05,
OS07].

A recent result by Brakerski, Koppula and Mour [BKM20] shows how to
build correlation-intractable hash functions for constant-degree functions from
trapdoor hash schemes. This result is used in conjunction with appropriate com-
mitment schemes (which can in turn be built from LPN) in order to instantiate
the Fiat-Shamir paradigm for obtaining NIZK for all NP.

The notion of trapdoor hash builds on tools that were developed in the con-
text of trapdoor function constructions [GH18,GGH19], as well as those devel-
oped in the context of identity-based encryption (IBE) [DG17b,DG17a,BLSV18,
DGHM18].

Variants of TDFs are typically used as CCA-enhancing tools [PW08,RS09,
GH18,GGH19]. Koppula and Waters [KW19] showed that for CCA applica-
tions, full randomness recovery, a feature provided by TDF-based tools, is not
necessary. They gave a generic transformation from CPA to CCA for PKE
and attribute-based encryption (ABE) using hinting pseudorandom generators
(PRGs). The notion of hinting PRGs was later used in subsequent works in
contexts such as designated-verifier NIZK [LQR+19] and CCA key-dependent-
message (KDM) security [KMT19]. Boyen and Waters show that in the bilin-
ear setting one may shorten the public key of lossy-TDF construction from a
quadratic number of group elements to linear [BW10].

Concurrent Work. In independent and concurrent work, Goyal, Vusirikala and
Waters [GVW19] give constructions of primitives such as hinting PRGs [KW19]
and one-way function with encryption (OWFE) [GH18] with short public-
parameter and ciphertext sizes. In terms of Diffie-Hellman related assumptions,

94 S. Garg et al.

they give (1) a construction of hinting PRGs from power-DDH-related assump-
tions (without pairings) with public parameters of O(n) group elements and (2)
a construction of OWFE from pairing-based power-DDH-related assumptions
with public parameters of O(n) group elements and ciphertexts of one group
element. Specifically, their result (2) also leads to a construction of TDFs (and
deterministic encryption) with public keys of O(n) group elements and images of
O(n) bits. In contrast, in our work we do not use pairings, but focus primitives
such as lossy TDFs and range-trapdoor hash schemes, which have applications
in constructing OT and PIR.

Open Problems. The main open problem is to achieve the same results from
DDH, LWE or QR. Also, it would be interesting to see if one can strengthen
DDH (along the generalization of power-DDH from plain-DDH) which would
allow one to build trapdoor-hash schemes beyond constant-degree polynomials
(even without the range-compactness property).

1.3 Technical Overview

It will be instructive to give an overview of our results in the context of lossy
TDFs and then to adapt them to the trapdoor-hash setting. Let us review an
optimized version of the DDH-based lossy TDF of [PW08], given by [FGK+10].
Recall that in a group with a generator g, if we have an encoding [M] = gM of an
invertible matrix M of exponents, we may encode any column vector X of bits
by computing M · X in the exponent. One may invert using M−1. Lossiness is
argued by making the matrix M rank one. The downside of this scheme is that a
public key and an image point consist of, respectively, n2 and n group elements,
which is rather large. Recent works [GH18,GGH19], which in turn inspired the
notion of TDH, showed how to make the image size linear in input size, but they
still leave us with public keys of O(n2) group elements.

Parallels from Ideal Lattices? To make the public keys smaller, one may be
tempted to draw inspirations from ideal lattices [LPR10,LPR13], and espe-
cially the way ring-LWE is used to shorten public keys. Sample a vector
v := (g1, . . . , gn) and expand v into a “circulant-like” matrix

M :=

⎛
⎜⎜⎜⎝

g1 g2 . . . gn−1 gn

g2 g3 . . . gn g1
...

...
...

...
...

gn g1 . . . gn−2 gn−1

⎞
⎟⎟⎟⎠, (1)

and use M as the public key of the TDF given above. The problem with this
approach is that we do not know how to prove one-wayness. Even if there is a
clever way to prove one-wayness, this approach does not appear to scale to give
us more advanced schemes such as lossy TDFs, (range) trapdoor hash schemes,
or TDFs with linear-sized outputs.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 95

Circulant Structure Using Power DDH. We show how to work out the above
intuition by relying on the power DDH assumption. Specifically, we give a way
of expanding two vectors (v ∈ G

n,w ∈ G
2n−1) into an (n + 1) × n matrix, and

two indistinguishable distributions over (v,w), where under one distribution we
can invert, while under the other, we will lose information.

Given two vectors v = (v1, . . . , vn) ∈ G
n and w = (w1, . . . , w2n−1) ∈ G

2n−1,
we expand them into an (n + 1) × n matrix M = Expand(v,w) as follows:

M :=

⎛
⎜⎜⎜⎝

m1

m2

...
mn+1

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 . . . vn

wn wn+1 . . . w2n−1

wn−1 wn . . . w2n−2

...
... . . .

...
w1 w2 . . . wn

⎞
⎟⎟⎟⎟⎟⎠

∈ G
(n+1)×n (2)

To evaluate an input x ∈ {0, 1}n using M, return (x · m1, . . . , x · mn+1), where
x · v :=

∏n
i=1 vxi

i . Define the lossy distribution lossy as

lossy v := (gα, gα2
, . . . , gαn

)

w := (grα, grα2
, . . . , grα2n−1

).

If (v,w) $←− lossy, then M := Expand(v,w) will be of rank one, statistically
losing information about x. We set the real (i.e., injective) distribution by putting
a bump g on the nth element of w:

real v := (gα, gα2
, . . . , gαn

) (3)

w := (grα, grα2
, . . . , grαn−1

, ggrαn

, grαn+1
, . . . , grα2n−1

). (4)

To see how to invert in injective mode, notice that the matrix M := Expand(v,w)
is

M :=

⎛
⎜⎜⎜⎝

m1

m2

...
mn+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

gα gα2
. . . gαn−1

gαn

ggrαn

grαn+1
. . . grα2n−2

grα2n−1

grαn−1
ggrαn

. . . grα2n−3
grα2n−2

...
...

...
...

...
grα2

grα3
. . . ggrαn

grαn+1

grα grα2
. . . grαn−1

ggrαn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ G
(n+1)×n, (5)

where the bump g propagates as indicated. Using the trapdoor values α and r,
we show how to recover the ith bit of x from the image u := (gh, g1, . . . , gn) :=
(x · m1, . . . , x · mn+1). To do this, notice that the bump that affects the ith bit
of x occurs in row i + 1 of matrix M, which is off the first row by an exponent
rαn−i (excluding the bump). Thus, we may compute gxi ∈ {g0, g1} as

gxi =
gi

grαn−i

h

∈ {g0, g1}. (6)

96 S. Garg et al.

Finally, the indistinguishability between lossy and real follows from (2n − 1)-
power DDH, which implies that the distribution ((gα, gα2

, . . . , gα2n−1
), (grα, grα2

,

. . . , grα2n−1
)) is pseudorandom: the pseudorandom of the first vector comes from

2n − 1-power DDH and the pseudorandomness of the second one is implied by
the fact that t-power (for t ≥ 3) implies DDH (Lemma 1).

Source of Computational Efficiency. Excluding the first row of matrix M, the
rest of the matrix is Toeplitz-like, which, if given in the clear as opposed to
in the exponent, can be multiplied with any given vector in time O(n log n)
using discrete FFT techniques. We observe that this computation may in fact
be carried out in the exponent, enabling a relatively fast way of O(n log n) group
exponentiations for evaluating an input. See Sect. 4 for more details.

Making the Image Shorter. The public key of the above lossy TDF has O(n)
group elements, a goal we had set before. The image, however, is quite large,
consisting of n + 1 group elements. We now show how to use image-shrinking
techniques of Garg, Gay and Hajiabadi [GGH19] (later improved by Döttling et
al. [DGI+19]) in order to make the image size linear in input size. Looking ahead,
this will allow us to make |E(ekI , x)| = |I|, where ekI is the TDH-evaluation key
for a range I. For concreteness, let us focus on how to recover the first bit x1 from
a succinct output. If the corresponding (long) image of x is u := (gh, g1, . . . , gn),
then for recovering x1 we have to look at gh and g1: we either have g1 = grαn−1

h ,
in which case xn = 0, or g1 = ggrαn−1

h , in which case xn = 1 (or informally, xn

has hit the bump). Now instead of outputting one whole group element g1, we
output a single bit, corresponding to the output of a hint function Φk : G →
{0, 1} on g1. This function guarantees that for any g∗ ∈ G, the probability that
Φk(g∗) = Φk(g∗g) (a.k.a., the hung probability) is very small, where k is chosen
at random (and included in the public key). The inverter will then match Φk(g1),
comes as part of the image, against Φk(gr

h) and Φk(gr
hg), hence decoding x1.

Garg, Gay and Hajiabadi [GGH19] gave a function Φ which outputs a constant
c number of bits (instead of a single bit) with hung probability being 1

2c . Later,
Döttling et al. [DGI+19] substantially improved this by making Φ output a single
bit with hung probability being at most 1

nc , for any desired constant c. They
achieved this by using a PRF-based distance-function technique from [BGI16].
Finally, since the inversion algorithm may fail (i.e., be hung) for some indices,
we pre-process the TDF input using erasure-correcting codes, making the task
of decoding easier.

Adaptation to the Trapdoor Hash Setting. The lossy TDF sketched above (with-
out erasure-correcting codes) lends itself naturally into the range TDH setting.
Recall that for range trapdoor hash, we encode an index range I = [s + 1, s + t]
into an encoding key ek in such a way that (1) ek only reveals |I| and (2) Using
the associated trapdoors, one can recover each bit of x[I] with high probability
from H(hk, x) and E(ek, x) ∈ {0, 1}|I|. Moreover, ek should only contain O(n)
group elements (as opposed to O(n|I|)).

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 97

We achieve range-trapdoor hash by carefully placing the bump in a coor-
dinate which enables recovery of exactly x[I], but nothing more. First, let
hk := v := (gα, gα2

, . . . , gαn

) and define H(hk, x) = x·v. Assuming I = [s+1, s+t]
and noting that |I| = t, set ek := (w, t), where

w := (grα, grα2
, . . . , grαs+t−1

, ggrαs+t

, grαs+t+1
, . . . , grα2n−1

), (7)

obtained from hk by raising every element to the power of r and putting the
bump g in the (s+ t)’th coordinate. Now to evaluate x on ek := (w, t+1), return

(x · w[t, n + t − 1], x · w[t − 1, n + t − 2], . . . , x · w[1, n]) ∈ G
n,

where w[i, j] denotes the elements of w which are in the range {i, i + 1, . . . , j}.
Given α and r we may recover all the bits x[s, s + t]. The only remaining thing
is that the output of E consists of t group elements, as opposed to t bits. We
make it consist of t bits by using image-shrinking techniques described above.

2 Preliminaries

Notation. We use λ for the security parameter. We use , to denote computa-
tional indistinguishability and use ≡ to denote two distributions are identical.
For a distribution S we use x

$←− S to mean x is sampled according to S and
use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribu-

tion. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+ s] := {i, i+1, . . . , i+ s}. For
a vector v = (v1, . . . , vn) we define v[i, i + s] := (vi, vi+1, . . . , vi+s).

2.1 Standard Definitions and Lemmas

Definition 1 (Trapdoor functions (TDFs)). Let n = n(λ) be a polynomial.
A family of trapdoor functions TDF with domain {0, 1}n consists of three PPT
algorithms TDF.KG, TDF.F and TDF.F−1 with the following syntax and security
properties.

– TDF.KG(1λ): Takes 1λ as input, and outputs a pair (ik, tk) of index/trapdoor
keys.

– TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and
deterministically outputs an image element u.

– TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs
a value x ∈ {0, 1}n ∪ {⊥}.

98 S. Garg et al.

We require the following properties.

– Correctness: Pr[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) �= x] = negl(λ),

where the probability is taken over (ik, tk) $←− TDF.KG(1λ).
– One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where

(ik, tk) $←− TDF.KG(1λ), x $←− {0, 1}n and u := TDF.F(ik, x).

Definition 2 (Lossy TDFs [PW08,PW11]). An (n, k)-lossy TDF ((n, k)-
LTDF) is given by four PPT algorithms TDF.KG, TDF.KGls, TDF.F, TDF.F−1,
where TDF.KGls(1λ) only outputs a single key (as opposed to a pair of keys), and
where the following properties hold:

– Correctness in real mode. The TDF (TDF.KG,TDF.F,TDF.F−1) satisfies
correctness in the sense of Definition 1.

– k-Lossiness. For all but negligible probability over the choice of ikls
$←−

TDF.KGls(1λ), we have |TDF.F(ikls, {0, 1}n)| ≤ 2k, where we use
TDF.F(ikls, {0, 1}n) to denote the set of all images of TDF.F(ikls, ·).

– Indistinguishability of real and lossy modes. We have ik, ikls, where
(ik, ∗) $←− TDF.KG(1λ) and ikls

$←− TDF.KGls(1λ).

Lossiness Rate. In the definition above, we refer to the fraction 1 − k/n as
the lossiness rate, describing the fraction of the bits lost. Ideally, we want this
fraction to be as close to 1 as possible, e.g., 1 − o(1).

Expansion Rate. In the definition above, we refer to n/|u| as the expansion rate,
and say the scheme has rate 1 if this fraction approaches one asymptotically.

2.2 Computational Assumptions

We review the power DDH assumption, used in our constructions. This notion
is a variant of the t-Diffie-Hellman Inversion (t-DHI) problem [BB04]: given
(g, gα, . . . , gαt

) the adversary should distinguish g1/α from random. Under our
variant, we require the whole distribution (g1/α, g, gα, . . . , gαt

) to be pseudoran-
dom. We present this version, called power-DDH [CNs07], below.

Definition 3 (t-power DDH assumption [CNs07,AHI11]). Let G be a group-
generator scheme, which on input 1λ outputs (G, p, g), where G is the description
of a group, p is the order of the group which is always a prime number and g
is a generator for the group. Let t := t(λ). We say that G is t-DDH-hard if

the distribution (g, gα, . . . , gαt

) is pseudorandom, where (G, p, g) $←− G(1λ) and

α
$←− Zp.

Boneh and Boyen [BB04] show that t-DHI implies the so-called (t + 1)-
generalized Diffie-Hellman ((t + 1)-generalized DH): given (g, ga1 , . . . , gat) and
an oracle that for any given proper subset S ⊂ [t] returns gΠi∈Sai , the adversary
should distinguish ga1...at from random. The following lemma gives an adapta-
tion of this lemma to the power-DDH setting for a very simple case: namely that
power-DDH hadrness implies DDH hardness.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 99

Lemma 1. Let G be t-power DDH hard. Then (g1, gα
1 , . . . , gαt

1) is pseudoran-

dom, where (G, p, g) $←− G(1λ), g1
$←− G and α

$←− Zp.3 Also, for any t ≥ 3, if a
group is t-power DDH hard, it is also DDH-hard.

Proof. The first part of the lemma follows straightforwardly using random self
reducibility. The second part follows immediately from techniques of [BB04], but
we give the proof for completeness. Notice that if a group is t + 1-power DDH
hard, then it is also t-power DDH hard. Thus, it suffices to show that 3-power
DDH hardness implies DDH hardness. Suppose for a group G there is a DDH
adversary A that can distinguish (g, ga, gb, gab) from random. We want to use
A to distinguish (g, gα, gα2

, gα3
) from random, hence breaking 3-power DDH

hardness. The problem is that A is only guaranteed to work as long as the two
exponents a and b are chosen uniformly at random—while in the 3-power DDH
case the two exponents α and α2 are correlated.

To fix the above problem, we use the random-self reducibility of DDH [NR97].

That is, letting (g, g1, g2, g3) be the challenge tuple, we sample r1, r2
$←− Zp and

call A on (g, gr1
1 , gr2

2 , gr1r2
3).

It is easy to see that the above transformation converts a 3-power DDH tuple
into a random DDH tuple, and converts a random tuple into another random
tuple. ��

2.3 Standard Lemmas

Lemma 2 (Chernoff inequality). Let X be binomially distributed with
parameters n ∈ N and p ∈ [0, 1]. Assuming p′ > p:

Pr[X > 2p′n] < e−p′n/3.

In some of our proofs, we need to use a version of Chernoff bounds involving
Bernoulli variables which are not necessarily independent, but where each of
them has a bounded probability of success, conditioned on any fixed sequence of
outcomes of the others. We give such a version of the Chernoff inequality below,
and prove it by relying on Lemma 2.

Lemma 3 (Chernoff inequality with bounded dependence). Let
X1, . . . , Xn be Bernoulli variables (not necessarily independent), where for all
i, and for all values b1, . . . , bi−1, bi+1, . . . , bn:

Pr[Xi = 1 | X1 = b1, . . . , Xi−1 = bi−1,Xi+1 = bi+1, . . . , Xn = bn] ≤ p. (8)

Assuming p′ > p:
Pr[

∑
i∈[n]

Xi > 2p′n] < e−p′n/3.

3 Notice that the only difference between this version and the standard t-power DDH
assumption is that the element g1 is now also chosen uniformly at random—as
opposed to it being g, the fixed group generator.

100 S. Garg et al.

Proof. We will define n random variables X ′
1, . . . , X

′
n and also n independent

i.i.d. boolean random variables Y1, . . . , Yn, where Pr[Y1] = p, and where

1. (X ′
1, . . . , X

′
n) is identically distributed as (X1, . . . , Xn); and

2. for all i ∈ [n], X ′
i ≤ Yi.

Thus

Pr
(X1,...,Xn)

[
∑

i∈[n]

Xi > 2p′n] = Pr
(X′

1,...,X′
n)

[
∑

i∈[n]

X ′
i > 2p′n] ≤ Pr[

∑

i∈[n]

Yi > 2p′n] < e−p′n/3,

where the last inequality comes from Lemma 2.
To define Yi, let Ui for i ∈ [n] be i.i.d. real-valued random variables, each

uniformly distributed over [0, 1]. For i ∈ [n] let Yi be the Bernouli random
variable where Yi = 1 iff Ui ≤ p.

For b1, . . . , bi−1 ∈ {0, 1} define Z = Pr[X1] and

Z(b1, . . . , bi−1) = Pr[Xi = 1|X1 = b1, . . . , Xi−1 = bi−1].

We may now represent the joint distribution (X1, . . . , Xn) as

(X ′
1, . . . , X

′
n) := (U1 ≤ Z, U2 ≤ Z(X1), . . . , Un ≤ Z(X1, . . . , Xn−1)), (9)

where A ≤ B is the Bernoulli random variable which is one if and only if A ≤ B.
We now show that whenever Ui ≤ Z(X1, . . . , Xi−1), we have Yi = 1, as

desired. To see this, recall that by Eq. 8 Z(X1, . . . , Xi−1) ≤ p. Thus, whenever
Ui ≤ Z(X1, . . . , Xi−1), we have Ui ≤ p, which means Yi = 1. The proof is now
complete. ��

2.4 Error Correcting Codes

Definition 4 ((n,m, s)2-Codes). We recall the notion of (n,m, s)2 erasure-
correcting codes. Such a code is given by efficiently computable functions
(Encode,Decode), where Encode : {0, 1}n → {0, 1}m, and where

1. Minimum distance. For any two distinct x1, x2 ∈ {0, 1}n, Hdst(Encode(x1),
Encode(x2)) ≥ s, where Hdst denotes the Hamming distance.

2. Erasure correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any
string z′ ∈ {0, 1,⊥}m, which has at most s − 1 ⊥ symbols, and whose all
non-⊥ symbols agree with z, we have Decode(z′) = x.

We are interested in rate-1 codes (that is, n/m approaches 1 asymptotically)
with fast encoding and decoding algorithms. If we are willing to settle for a
constant rate (as opposed to rate 1), there are binary concatenated codes which
are linear time for both encoding and decoding; see, e.g., [GI05], Theorem 6. For
rate-1 binary codes, we use the following code from [CDD+16].

Theorem 1 ([CDD+16], Theorem 6). Fix a finite field F of constant size.
There exists a constant υ > 0 and a family of F-linear codes C = {Cs}s with
codeword length O(s2), rate 1 − 1

sυ and minimum distance at least s. Moreover,
C admits a linear-time computable encoding algorithm Encode.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 101

3 Lossy TDFs with Short Public Keys from Power DDH

As a warm-up to our range-trapdoor hash construction, we first give a construc-
tion of rate-1 lossy TDFs from the O(n)-power DDH assumption, wherein a
public key has only O(n) group elements.

For our construction, we need a function Φ : G → {0, 1} which has the prop-
erty that for any group element h, Φ(h) �= Φ(hg) with high probability. The work
of Boyle, Gilboa and Ishai [BGI16] gives such a function. Below we review an
adaptation of this function to the binary output space, as done by [DGI+19]. In
what follows, we use LSB(i) to denote the least significant bit of i.

Distance Function DistG,g(h, δ,M, f) [BGI16]. Given a group G with a generator
g, a group element h, a value 0 < δ < 1, integer M ≥ 1 and a function f : G →
{0, 1}log(2M/δ), we define a function Dist as follows:

1. Let T := [2M loge(2/δ)]/δ and set i := 0.
2. While i ≤ T :

(a) if f(hgi) = 0log(2M/δ), then output LSB(i), otherwise set i = i + 1.
3. Output LSB(i).

T -Close/Far Group Elements. For an integer T , we say two group elements
g1 and g2 are T -close with respect to g if g2 ∈ {g1, g1g, . . . , g1g

T } or g1 ∈
{g2, g2g, . . . , g2g

T }. We say g1 and g2 are at least (T + 1)-far with respect to g
if g1 and g2 are not T -close with respect to g. When g is clear from the context,
we simply say g1 and g2 are T -far/T -close.

The following lemma is from [BGI16], giving a distance function, defined
based on a randomly chosen function f , which serves a hint bit in our construc-
tion (i.e., the function Φ described above). We will later replace such a random
function with a PRF.

Lemma 4 (Proposition 3.2 in [BGI16]). Let G be a group of prime order p,
g ∈ G, M ∈ N, δ > 0 and assume [2M loge (2/δ)]/δ < p. Let RF be the set of all
functions f : G → {0, 1}�log(2M/δ)�. Then for any integer x ≤ M and h ∈ G

Pr
f

$←−RF

[DistG,g(h, δ,M, f) = LSB(x) − DistG,g(hgx, δ,M, f)] ≥ 1 − δ. (10)

Moreover, for any set of group elements h1, . . . , hm which are mutually at least
(T + 2)-far, the events Success1, . . . ,Successm are independent, where Successi
is the event that DistG,g(hi, δ,M, f) = 1 − DistG,g(hig, δ,M, f).

Proof. The first part of the lemma was proved in [BGI16]. The second part
follows because (1) f is chosen at random and (2) for any group element h, the
outputs of DistG,g(h, δ,M, f) and DistG,g(hg, δ,M, f) only depend on the outputs
of f on {h, hg, hg2, . . . , hgT+1}. ��

Notation. For x ∈ {0, 1}n and v := (g1, . . . , gn) ∈ G
n we define x ·v :=

∏n
i=1 gxi

i .

102 S. Garg et al.

Construction 2 (Doubly-Linear lossy TDF). Let G be a group scheme and
let (Encode,Decode) for Encode : {0, 1}n → {0, 1}m be an ECC code. Let � :=
log(2/δ) and let PRF : G → {0, 1}� be a PRF with key space {0, 1}λ. We will
instantiate the value of δ later.

– TDF.KG(1λ):

1. Sample (G, p, g) $←− G(1λ). Sample α, r
$←− Zp and set

v := (gα, gα2
, . . . , gαm

) (11)

w := (grα, grα2
, . . . , grαm−1

, ggrαm

, grαm+1
, . . . , grα2m−1

). (12)

2. Sample a key K
$←− {0, 1}λ for PRF.

3. Set ik := (K, g, v,w) and tk := (K, g, α, r). Return (ik, tk).
– TDF.KGls(1λ): Return ikls := (g, v,w′), where g, v are as above, and

w′ := (grα, grα2
, . . . , grα2m−1

). (13)

– TDF.F(ik, x ∈ {0, 1}n): Parse ik := (g, v,w) and z := Encode(x). For 1 ≤ i ≤
m
1. Let w′

i = w[m + 1 − i, 2m − i].
2. Let gi = z · w′

i.
3. Let bi := DistG,g(gi, δ, 1,PRFK).

Let gc := z · v and return

u := (gc, b1, . . . , bm). (14)

– TDF.F−1(tk, u): Parse u := (gc, b1, . . . , bm). Recover z bit-by-bit as follows.
For i ∈ [m]:
1. Let gi,0 = grαm−i

c and gi,1 = gi,0g.
2. If

(a) DistG,g(gi,0, δ, 1,PRFK) = DistG,g(gi,1, δ, 1,PRFK), then set zi = ⊥;
(b) Else, let b the bit for which DistG,g(gi,b, δ, 1,PRFK) = bi, and set

zi = b.
Return Decode(z).

We now prove all the required properties of the scheme.

Lemma 5 (Mode indistinguishability). We have ik, ikls, where ik
$←−

TDF.KG(1λ) and ikls
$←− TDF.KGls.

Proof. Follows immediately from (2m − 1)-power DDH (Lemma 1). ��
Lemma 6 (Lossiness). Assuming p is the oder of the group, for any ikls ∈
TDF.KGls(1λ),

|TDF.F(ikls, {0, 1}n)| ≤ p.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 103

Proof. Parse ikls := (g, v,w′), where v is sampled as in Eq. 11 and w′ is sam-
pled as in Eq. 13. We claim the following: for any x′, x′ ∈ {0, 1}n, letting z :=
Encode(x) and z′ := Encode(x′), if z·v = z′·v, then TDF.F(ikls, x) = TDF.F(ikls, x).
Assuming the claim holds, the lemma follows immediately. This is because, under
the lossy key ikls, once the first component gc of the image u := (gc, . . .) is deter-
mined, the rest of the output is uniquely determined. To prove the claim, suppose
gc = z·v = z′ ·v. Notice that the group element gi computed in Line 2 of TDF.F is
equal to the fixed element grαm−i

c , irrespective of whether the underlying input
is x or x′. This follows from the way w′ is formed (Eq. 13). The proof is now
complete. ��
Lemma 7 (Correctness). Let (Encode,Decode) be an (n,m, s)2 code, where
n = λ+ω(log λ). Assuming δ ≤ s−1

2m and T := [2 loge(2/δ)]/δ = poly(λ), for any
input x:

β(λ) := Pr
(ik,tk)

[TDF.F−1(tk,TDF.F(ik, x)) �= x] ≤ 1

e
s−1
6

+ negl(λ), (15)

where the probability is taken over (ik, tk) $←− TDF.KG(1λ). In particular, by
setting n = λ + ω(log λ), s ∈ ω(log λ) and δ ≤ s−1

2m , we will have a negligible
inversion error.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). Consider a variant of Con-
struction 2, in which we replace the PRF PRFK with a truly random function
f : G

$←− {0, 1}�. (Recall that � = log(2/δ).) That is, in this variant, calls of
the form DistG,g(gi, δ, 1,K) are replaced with DistG,g(gi, δ, 1, f). Let β′ be the
probability that TDF.F−1(tk,TDF.F(ik, x)) �= x in this experiment. We will show
β′ ≤ 1

e
s−1
6

+ negl(λ). By PRF security we have β ≤ β′ + negl(λ), and thus Eq. 15

will follow. The reason that we can use PRF security here (despite the fact that
K is given in the clear in ik) is that the procedure Dist may efficiently be com-
puted via only blackbox access to PRFK (resp., f alternatively) and that we
evaluate PRFK on inputs generated independently of K.

For an index i ∈ [m], let gi = z ·w′
i be the group element computed in Line 2

of TDF.F, and let gi,0 = grαm−i

c and gi,1 = gi,0g be the two corresponding group
elements computed during inversion. Notice that gi = gi,zi

.
For i ∈ [m], let the indicator variable

Faili = 1 ⇔ DistG,g(gi,0, δ, 1, f) = DistG,g(gi,1, δ, 1, f).

Notice that Faili = 1 iff we fail to recover zi. For all i, by setting M = 1 in
Lemma 4, Pr[Faili] < δ, and hence Pr[Faili] < p′, where p′ = s−1

2m .
Let Fail =

∑
i∈[m] Faili. Inversion fails if Fail > s−1. We may now be tempted

to use Lemma 2 to bound the probability that Fail > s − 1. The problem is that
the events Faili’s may not be independent. Thus, we define an event Bad which
captures all the dependencies, and then we will argue that conditioned on Bad,
the events {Faili}i∈[m] are independent.

104 S. Garg et al.

– Bad: there are two distinct indices i, j ∈ [m] such that gi,0 and gj,0 are (T +1)-
close, where T := [2 loge(2/δ)]/δ.

By Lemma 4 we know that conditioned on Bad, the events Faili’s are inde-
pendent. Below we will show Pr[Bad] = negl(λ), but assuming this for now:

Pr[Fail > s − 1] ≤ Pr[Bad] + Pr[Fail > 2p′m | Bad] <∗ negl(λ) +
1

ep′m/3
= negl(λ) +

1

e
s−1
6

,

where the inequality marked with * follows from Lemma 2, noting that condi-
tioned on Bad, the events {Faili}i∈[m] are independent.

We are now left to prove Pr[Bad] = negl(λ). Recall that (g1,0, . . . , gm,0) =
(grαm−1

c , . . . , grα0

c). Notice that gc �= 1 except with negligible probability, and
thus gr

c is statistically close to a uniformly random group element. By Lemma 1

(g1,0, . . . , gm,0) = (grαm−1

c , . . . , grα0

c), (g′
1, . . . , g

′
m),

where g′
i’s are random group elements. When replacing {gi,0}i∈[m] with

{g′
i}i∈[m] the probability of the event Bad becomes negligible. (This is because

T = poly(λ)). Thus, the event Bad with gi,0’s should also be negligible. ��

3.1 Running Time of Our Lossy TDFs

We count the number of public-key operations (i.e., group operations) involved
in the computation of TDF.F. (The other operations involved in TDF.F are either
private-key, i.e., PRF evaluations, or information theoretic; i.e., error correcting
codes).4 For TDF.F, in Line 2, one may compute the group elements gi = z · w′

i

one at a time, by using m group multiplications for each of them, hence O(m2)
group multiplications in total. We observe that the computations of all gi’s
together may be thought of as multiplying a Toeplitz matrix gM ∈ G

m×m, given
in the exponent, with a given vector zT of bits. It is known that one can compute
M × zT (mod p) in O(m log m) time using (inverse) discrete Fourier transform
(IDFT/DFT) modulo p. In Sect. 4 we show how to carry out this computation
in the exponent, at the cost of O(m log m) group exponentiations.

Comparison with the Trivial Approach. As mentioned above, the trivial com-
putation takes O(m2) group multiplications. Our FFT-based approach takes
O(m log m) group exponentiations, which translate into O(mλ log m) multiplica-
tions, assuming |G| = 2λ. Thus, we obtain improvements when λ log m ∈ ω(m).
We also note that the reason that the trivial approach takes O(m log m) multi-
plications (as opposed to exponentiations) is that we multiply with a bit vector,
translating into multiplications. In applications where the entries of the given
vector are integers modulo p, the trivial approach will take O(m2) exponenti-
ations, while our FFT-based approach still takes O(m log m) exponentiations.
This observation may be useful in future work.
4 We only focus on TDF.F, because TDF.F−1 may be done using n group exponentia-

tions, which seems hard to improve.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 105

4 Fast Fourier Transform in the Exponent

In this section we show how to perform FFT in the exponent in order to have a
fast algorithm for multiplying a circulant or a Toeplitz matrix, given in the expo-
nent, with a vector of integers, with the result being computed in the exponent.
We begin with some basic background.

For a vector u of integers and a group element g we use gu to mean element-
wise exponentiation.

Lemma 8 (Primitive nth root of unity mod p). We say w ∈ Zp is a
primitive nth root of unity mod p if wn ≡ 1 (mod p) and for all i ∈ [n − 1],
wi �≡ 1 (mod p). If p is prime, then Zp has a primitive nth root of unity if and
only if p ≡ 1 (mod n).

(Inverse) Discrete Fourier Modulo Zp. Let w ∈ Zp be a primitive nth
root of unity modulo p (Lemma 8). The discrete fourier transform (DFT) of
(y0, . . . , yn−1) ∈ Z

n
p , denoted DFT(y0, . . . , yn−1), is (d0, . . . , dn−1) ∈ Z

n
p , where

for k ∈ {0} ∪ [n − 1]:

dk =
n−1∑
j=0

yjw
−jk (mod p). (16)

The inverse discrete Fourier transform (IDFT) inverts the above process. For
(d0, . . . , dn−1) ∈ Z

n
p , IDFT(d0, . . . , dn−1) is defined to be (y0, . . . , yn−1), where

for k ∈ {0} ∪ [n − 1]

yk = n−1
n−1∑
j=0

djw
jk (mod p). (17)

For all (y0, . . . , yn−1) ∈ Z
n
p , IDFT(DFT(y0, . . . , yn−1)) = (y0, . . . , yn−1).

A major step in performing fast circulant matrix multiplication involves com-
puting DFT and IDFT in a fast way.

Computing (I)DFT in the Exponent. For y := (y0, . . . , yn−1) ∈ Z
n
p , we would

like to compute DFT(y) in the exponent; i.e., to compute gDFT(Y) from gy. Since
DFT(y) is a linear function in the entries of y and w is a fixed integer, we may
compute each component of DFT(y) using n exponentiations, resulting in a total
of O(n2) exponentiations. There is, however, a faster, recursive way of doing this
using O(n log n) exponentiations.

Let f = w−1, and note that f is also a primitive nth root of unity. Computing
DFT(y) amounts to evaluating a degree n − 1 polynomial p(x) =

∑n−1
j=0 yjx

j

at (p(1), p(f), . . . , p(fn−1)). We may now evaluate these n invocations in time
O(n log n) using divide-and-conquer. Specifically, letting n = 2t, we can find two
degree t − 1 = n/2 − 1 polynomials peven and podd such that

(a) p(f2k) = peven(f2k) for k ∈ {0} ∪ [t − 1]; and
(b) p(f2k+1) = podd(f2k) for k ∈ {0} ∪ [t − 1].

106 S. Garg et al.

Now since f2 is a primitive t’th root of unity and since the degree of each of
peven and podd is t − 1, we can recursively continue this process. We now explain
how to find peven and podd.

Specifically, peven(x) :=
∑t−1

j=0 αjx
j and podd(x) :=

∑t−1
j=0 βjx

j , where

αj := yj + yj+t βj := (yj − yj+t)f j . (18)

We now show why peven and podd satisfy Items (a) and (b) above.

p(f
2k

) =

t−1∑

j=0

yjf
2kj

+

n−1∑

j=t

yjf
2kj

=

t−1∑

j=0

(yjf
2kj

+ yj+tf
2k(j+t)

) =

t−1∑

j=0

(yjf
2kj

+ yj+tf
2kj

f
kn

)

=

t−1∑

j=0

(yj + yj+t)f
2kj

= peven(f
2k

). (19)

p(f2k+1) =

t−1∑

j=0

(yjf
(2k+1)j + yj+tf

(2k+1)(j+t)) =

t−1∑

j=0

(yjf
j)f2kj + (yj+tf

j)f2kjfkn+t

=∗
t−1∑

j=0

(yjf
j)f2kj + (yj+tf

j)f2kj(−1) =

t−1∑

j=0

(yj − yj+t)f
(2k+1)j = podd(f

2k), (20)

where the equation marked with * follows from the fact that f t = fn/2 = −1.
Finally, notice that given y := (y0, . . . , yn−1) in the exponent (i.e., given gy),
the coefficients of peven and podd (Eq. 18) can also be computed in the exponent.
Thus, we have the following lemma.

Lemma 9 (DFT/IDFT in the exponent). Let n be a power of two, let p be
a prime number satisfying p ≡ 1 (mod n) and let G be group of order p with a
generator g. Let w ∈ Zp be a primitive nth root of unity modulo p (which exists
by Lemma 8). For any y ∈ Z

n
p we may compute gDFT(y) from gy using O(n log n)

group exponentiations. The same holds for computing gIDFT(y).

Circulant Matrices. Let v = (v0, . . . , vn−1) be a vector of dimension n. The
circulant matrix of v, denoted Rot(v), is

Rot(v) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 vn−1 vn−2 . . . v3 v2 v1
v1 v0 vn−1 . . . v4 v3 v2
v2 v1 v0 . . . v5 v4 v3
...

...
... . . .

...
...

...
vn−1 vn−2 vn−3 . . . v0 vn−1 vn−2

vn−2 vn−3 vn−4 . . . v1 v0 vn−1

vn−1 vn−2 vn−3 . . . v2 v1 v0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

Lemma 10 (Circulant matrix multiplication in the exponent). Let n,
p, G and w be as in Lemma 9. Let u := (u0, . . . , un−1) ∈ Z

n
p and v :=

(v0, . . . , vn−1) ∈ Z
n
p and M := Rot(v). Then we can compute gMuT from gv

and u via O(n log n) group exponentiations.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 107

Proof. Throughout the proof, we may use negative indices, with the understand-
ing the index is taken modulo n. For example, we may write u−1 for un−1. Given
gv and u, for k ∈ {0} ∪ [n − 1] we need to compute ghk , where

hk =
n−1∑
i=0

vjuk−j . (22)

Let (a0, . . . , an−1) and (b0, . . . , bn−1) be the discrete fourier transform of
the two sequences (v0, . . . , vk−1) and (u0, . . . , uk−1), respectively. That is, for
k ∈ {0, . . . , n − 1}

ak =
n−1∑
j=0

vjw
−jk (mod p) bk =

n−1∑
j=0

ujw
−jk (mod p).

It is well-known that the inverse fourier transform of (a0b0, . . . , an−1bn−1)
gives us the values (h0, . . . , hn−1). That is, for k ∈ {0} ∪ [n − 1]

(h0, . . . , hn−1) = IDFT(a0b0, . . . , an−1bn−1). (23)

By Lemma 9 we can perform all the above steps via O(n log n) exponentiations.
��

Fast Toeplitz Matrix Multiplication. We now show how to perform fast Topelitz
matrix multiplication in the exponent, via a well-known conversion to circulant
matrices. See [BDD+00] for further conversions. For x := (x1, . . . , x2n−1) ∈
Z
2n−1
p we define

Toep(x) :=

⎛
⎜⎜⎜⎝

xn xn−1 . . . x1

xn+1 xn . . . x2

...
... . . .

...
x2n−1 x2n−2 . . . xn

⎞
⎟⎟⎟⎠ . (24)

Let M := Toep(x) and y ∈ Z
n
p . We show how to compute gMy from gM and y.

Toward this, define

S :=

⎛
⎜⎜⎜⎜⎜⎝

0 x1 x2 . . . xn−1

x2n−1 0 x1 . . . xn−2

x2n−2 x2n−1 0 . . . xn−3

...
... . . .

...
xn+1 xn+2 xn+3 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
n×n
p . (25)

Let T :=
(
M S
S M

)
∈ Z

2n×2n
p . Note that T is a circulant matrix. We have

M

(
y

0n×1

)
=

(
Ty
Sy

)
. Thus, we may compute My in the exponent via O(n log n)

group exponentiations. Thus, we have the following lemma.

108 S. Garg et al.

Lemma 11 (Toeplitz matrix multiplication in the exponent). Let n,
p, G and w be as in Lemma 9. Let u := (u0, . . . , un−1) ∈ Z

n
p and v :=

(v0, . . . , vn−1) ∈ Z
n
p and M := Toep(v). Then we can compute gMuT from gM

and u using O(n log n) group exponentiations.

5 Range-Trapdoor Hash Functions

In this section we define the notion of range-trapdoor hash functions and give
a construction of this notion with short evaluation keys. This notion generalizes
the notion of trapdoor hash functions for index keys [DGI+19]. We say that an
index set I is a range set if I = {s + 1, . . . , s + t} for some integers s and t.
We now give the definition of range-trapdoor hash for the special case where we
output a single-bit hint for every index in the range set.

Definition 5 (Range Trapdoor Hash). An n-bit input, range-trapdoor hash
is a tuple of PPT algorithms H = (S,KG,H,E,D) with the following syntax,
correctness and security properties.

– S(1λ, n): Takes the security parameter 1λ and input length n, and outputs a
hashing key hk and a trapdoor key thk.

– KG(hk, I): Takes hk and a range of indices I = [s + 1, . . . , s + t] ⊆ [n] as
input, and outputs an evaluation key ek and a trapdoor key tk. We assume ek
contains |I|; i.e., ek := (|I|, . . .), and also assume tk := (I, . . .).

– H(hk, x; ρ): Takes hk, a message x ∈ {0, 1}n and randomness ρ as input, and
outputs a hash value h.

– E(ek, x; ρ): Takes an evaluation key ek, message x and randomness ρ as input,
and outputs a hint value e ∈ {0, 1}|I|.

– D(thk, tk, h, e): Takes as input a hash-trapdoor key thk, a trapdoor key tk :=
(I, . . .), a hash value h and a hint value e, and deterministically outputs |I|
pairs of 0/1-encodings (ei,0, ei,1) ∈ {0, 1} × {0, 1}, for i ∈ [|I|].

We require the following properties.

– Correctness: For 0 ≤ ε < 1 we say H is 1 − ε correct (or has ε decryption
error) if for any n, any range set I := [s + 1, s + t] ⊆ [n], both the following
conditions hold:
1. For any i ∈ [t] and for any input x ∈ {0, 1}n, Pr[ei = ei,x[s+i]] = 1; and
2. For any input x ∈ {0, 1}n, any i ∈ [t] and any bj ∈ {0, 1} for j ∈ [t] \ {i}:

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ ε + negl(λ), (26)

where for i ∈ [t], Faili is an indicator variable, defined as Faili = 1 if
ei = ei,1−x[s+i],

where (hk, thk) $←− S(1λ, n), (ek, tk) $←− KG(hk, I), ρ
$←− {0, 1}∗, h :=

H(hk, x; ρ), e := E(ek, x; ρ), (ei,0, ei,1)i∈[t] := D(thk, tk, h, e).

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 109

– Range privacy: For any n and any two range sets I, I ′ ⊆ [n] satisfying

|I| = |I ′|, (hk, ek), (hk′, ek′), where (hk, ∗) $←− S(1λ, n), (ek, ∗) $←− KG(hk, I)

and (ek′, ∗) $←− KG(hk, I ′).
– Input privacy: Fix polynomial n := n(λ). For any two inputs x, x′ ∈ {0, 1}n,

(hk, h), (hk, h′), where (hk, ∗) $←− S(1λ, n), h $←− H(hk, x) and h′ $←− H(hk, x′).
– Compactness: There exists a polynomial poly(λ) such that for all n := n(λ),

|H(hk, x)| ≤ poly(λ), where (hk, ∗) $←− S(1λ, n) and x ∈ {0, 1}n.

We note the following remark.

Remark 3. For decryption we also require a trapdoor key thk associated with
hk. This will be required in our construction. In contrast, the notion of trapdoor
hash as defined in [DGI+19] does not require a trapdoor for the hash function
in order to perform decryption. Nonetheless, all applications stated in [DGI+19]
still hold with respect to our definition.

Implicit in the work of [DGI+19] is the following construction of range-
trapdoor hash.

Lemma 12 (Theorem 4.3 of [DGI+19]). Assuming DDH, there exists a
range-trapdoor hash scheme where for inputs of length n, an evaluation key for
a range set I consists of O(n|I|) group elements.

We give the following corollary, which helps one in bounding the number of
Faili’s in situations where, e.g., we need to do error correction, such as the rate-1
OT application. We say ε > negl(λ) if ε is not a negligible function.

Lemma 13. Assuming a trapdoor hash scheme H = (S,KG,H,E,D) has decryp-
tion error ε, and that ε > negl(λ), then for any constant c > 1:

Pr[Fail > 2cε|I|] < e−cε|I|/3,

where Fail :=
∑|I|

i=1 Faili and Faili is defined in the correctness condition of Def-
inition 5.

Proof. The proof follows immediately from the bounded-dependence version of
the Chernoff bound (Lemma 3). ��

We now show how to adapt our batching technique from Sect. 3 to obtain
range-trapdoor hash schemes, where the evaluation key consists of O(n) group
elements, as opposed to O(n|I|) group elements given by [DGI+19]. As we will
see in Sect. 6, this size reduction results in a shorter receiver’s message in rate-1
OT protocols and shorter ciphertexts in homomorphic encryption for branching
programs.

110 S. Garg et al.

5.1 Range-Trapdoor Hash with Linear-Sized Evaluation Keys

Construction 4. Let ε ∈ [0, 1) be the decryption error we are wiling to tolerate.
Let � := log(2/ε), G be a group scheme and PRF : G → {0, 1}� a PRF with key
space {0, 1}λ.

– S(1λ, n): and (G, p, g) $←− G(1λ). Sample α
$←− Zp, set thk := α and hk :=

(G, p, g, v), where v := (gα, gα2
, . . . , gα2n

). Return (hk, thk).

– KG(hk, I): Sample a key K
$←− {0, 1}λ for PRF. Let I = [s + 1, s + t]. Parse

hk := (G, p, g, v), where v := (g1, . . . , g2n). Sample r
$←− Zp and let

w := (gr
1, g

r
2, . . . , g

r
s+t−1, ggr

s+t, g
r
s+t+1, . . . , g

r
2n).

Set ek := (t,w,K) and tk := (I, r,K).
– H(hk, x; ρ): Parse hk := (G, p, g, v), where v := (g1, . . . , g2n). Let v′ :=

(g1, . . . , gn), and return (x · v′)gρ
1 .

– E(ek, x; ρ): Parse ek := (t,w,K), where t ∈ N and w ∈ G
2n. Parse w :=

(w1, . . . , w2n). For i ∈ [t]:
1. let w′

i = (w1+t−i, . . . , wn+t−i) ∈ G
n;

2. let g′
i := (x · w′

i)w
ρ
1+t−i;

3. let bi := DistG,g(g′
i, ε, 1,PRFK).

Return (bt, . . . , b1).
– D(thk, tk, h, e): Parse thk := α, tk := (I, r,K) and I := [s+1, s+t]. For i ∈ [t],

set ei,0 := DistG,g(hrαt−i

, ε, 1,PRFK) and ei,1 := DistG,g(ghrαt−i

, ε, 1,PRFK).
Return ((e1,0, e1,1), . . . , (et,0, et,1)).

The compactness of the scheme is clear. Range privacy follows from 2n-power
DDH. We now prove the input privacy and correctness of the scheme.

Lemma 14 (Input privacy). The scheme provides perfect input privacy: for

any two inputs x, x′ ∈ {0, 1}n, (hk, h) ≡ (hk, h′), where (hk, ∗) $←− S(1λ, n), h $←−
H(hk, x) and h′ $←− H(hk, x).

Proof. We need to show (v, (x · v)gαρ) is independent of x, where v :=

(gα, gα2
, . . . , gα2n

) and ρ
$←− Zp. This immediately follows from the presence

of the masking exponent ρ. ��
Lemma 15 (Correctness). Assuming T := [2 loge (2/ε)]/ε = poly(λ) (which
is satisfied if ε is an inverse polynomial), the range TDH scheme provides (1−ε)
correctness.

Proof. Fix n, I, x ∈ {0, 1}n and suppose I = [s + 1, s + t]. We need to prove
Conditions 1 and 2 of the correctness definition. For i ∈ [t] let g′

i be computed
as in E (Line 2 of E’s procedure) and let gi,0 = hrαt−i

and gi,1 = ghrαt−i

.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 111

First, we claim g′
i = gi,x[s+i], which proves Condition 1 of the correctness

definition. To see why this claim holds, recall that

v′ = (gα, gα2
, . . . , gαn

)

w1+t−i = grα1+t−i

w′
i = (grα1+t−i

, . . . , grαs+t−1
, ggrαs+t

︸ ︷︷ ︸
coordinate:s+i

, grαs+t+1
, . . . , grαn+t−i

),

and that h = (x · v′)gαρ, g′
i := (x · w′

i)w
ρ
1+t−i. Letting b = x[s + i]:

gi,x[s+i] = gbhrαt−i

= gb((x · v′)gαρ)rαt−i

= gb(x · v′)rαt−i

(grαt−i+1
)ρ

= gb(x · v′)rαt−i

wρ
1+t−i = (x · w′

i)w
ρ
1+t−i = g′

i, (27)

as desired.
We now prove Condition 2 of the correctness definition. Fix x ∈ {0, 1}n,

i ∈ [t] and bj ∈ {0, 1} for j ∈ [t] \ {i}, and let

β := Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}]. (28)

Consider a variant of Construction 4, in which we replace the PRF PRFK with a
truly random function f : G $←− {0, 1}�. That is, in this variant, calls of the form
DistG,g(gi, ε, 1,K) are replaced with DistG,g(gi, ε, 1, f). Let β′ be the probability
that

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] (29)

in the experiment where we replace PRFK with a random f . We will show
β′ ≤ ε+negl(λ). By PRF security we have β ≤ β′ +negl(λ), and thus Eq. 28 will
follow. The reason that we can use PRF security here (despite the fact that K is
given in the clear in ik) is that the procedure Dist may efficiently be computed
via only blackbox access to PRFK (resp., f alternatively) and that we evaluate
PRFK on inputs generated independently of K.

To bound the probability in Eq. 29 we first define an event Bad which captures
all the dependencies. Then we will argue that conditioned on Bad, the events
{Failj}j∈[t] are independent. To give some intuition, first notice that Failj holds
iff

DistG,g(gj,0, ε, 1, f) = DistG,g(gj,0g, ε, 1, f), (30)

where recall that gj,0 = hrαt−j

. Also, by definition of Dist, the outputs of the two
distance functions of Eq. 30 are only dependent on the outputs of f on group
elements {gj,0, gj,0g, . . . , gj,0g

T+1}, where T := [2 loge(2/ε)]/ε. Since f is chosen
at random, we will have dependencies across Failj ’s only when the following event
Bad holds:

– Bad: there are two distinct indices j, h ∈ [t] such that gj,0 and gh,0 are (T +1)-
close, where T := [2 loge(2/ε)]/ε.

112 S. Garg et al.

By Lemma 4

Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = Pr[Faili = 1] ≤ ε. (31)

Below we will show Pr[Bad] = negl(λ), and this will allow us to conclude

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ Pr[Bad] + Pr[Faili = 1 ∧ Bad | Failj = bj for j ∈ [t]/{i}]
≤ negl(λ) + Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = ε + negl(λ), (32)

as desired. It only remains to show Pr[Bad] = negl(λ). Recall that
(g1,0, g2,0, . . . , gt,0) = (hr, hrα . . . , hrαt−1

). Notice that h �= 1 except with neg-
ligible probability, and thus hr is statistically close to a uniformly random group
element. By Lemma 1

(g1,0, g2,0, . . . , gt,0) = (hrαt−1
, hrαt−2

, . . . , hr), (g′
1, g

′
2, . . . , g

′
t),

where g′
i’s are random group elements. When replacing {gi,0}i∈[t] with

{g′
i}i∈[t], the probability of the event Bad becomes negligible. (This is because

T = poly(λ).) Thus, the event Bad with gj,0’s should also be negligible. ��
Running Time: We specify the running time for tolerated error ε = 1

nc . For E,
we can compute all the values x ·w′

i altogether with total O(n log |I|) exponen-
tiations by Lemma 11. Also, we spend |I| exponentiations for computing wρ

i for
i ∈ [I]. Thus, the total number of group operations is O(n log |I|) exponentia-
tions.

6 Applications of Range-Trapdoor Hash

In this section we review the applications of our range-trapdoor hash scheme.
A two-round OT protocol consists of three PPT algorithms (OT1,OT2,OT3),

where (OT1,OT3) are the two-stage algorithms run by the receiver, and OT2 is
run by the sender. We will be concerned with honest-but-curious security (for
both parties), and the corresponding definitions of security are standard. We use
otr and ots to denote the receiver’s and sender’s message, respectively.

For an OT protocol OT where the size of each message of the sender is
n, we call |n|

|ots| the download rate of the protocol. We say OT is rate-1 if |n|
|ots|

asymptotically approaches one.
As shown in [IP07], a rate-1 OT implies homomorphic encryption for branch-

ing programs with semi-compactness: the size of ciphertexts only grows with the
depth of the program, as opposed to the size.

Let us first present the implication of our results with respect to rate-1 OTs.
Implicit in the work of [DGI+19] is a construction of rate-1 OT from range
trapdoor-hash schemes; see Constructions 5.1 and 5.2 of [DGI+19]. This result
of [DGI+19], combined with Lemma 4, gives us the following.

Corollary 1 (Rate-1 OT with short receiver’s message). Let G be a group
scheme, where the size of a group element is O(λ). Fix a message-size function
t(λ) ∈ ω(λ). Assuming 2t-power DDH, there is a rate-1 two-round honest-but-
curios OT protocol with sender’s input (m0,m1) ∈ ({0, 1}t, {0, 1}t) and receiver’s
input b ∈ {0, 1}, where the receiver’s message otr consists of O(t) group elements.

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 113

Comparison to [DGI+19]. The work of [DGI+19] gives a DDH-based rate-1
OT, where in the parameter regime of Lemma 1, otr consists of O(t2) group
elements. Our efficiency improvement stems from shorter evaluation keys: for
a range set I, our scheme’s evaluation key contains O(n) group elements, as
opposed to O(n|I|) group elements given by [DGI+19]. See Lemma 12.

Improving Upload Rate. As noted in [DGI+19], asymptotically speaking, one
may make the length of |otr| as close as possible to |m0| (i.e., achieving upload
rate 1, defined as |m0|/|otr|) by re-using otr and making the input size of the
sender larger. For example, assuming |m0| = |m1| = O(λ2), one may give a
two-round OT based on DDH with both download and upload rates being 1.
However, in concrete applications (e.g., homomorphic encryption for branching
programs), the OT ends up being applied on sender’s messages of much smaller
asymptotic size, and thus improving the efficiency for this smaller regime leads
to efficiency improvements in those applications.

Homomorphic Encryption for Branching Programs with Shorter Ciphertexts.
Ishai and Paskin [IP07] show how to build semi-compact homomorphic encryp-
tion for bounded-depth branching programs from rate-1 OT. Semi-compact
means that the size of a ciphertexts grows only with the depth and the input
size, and is independent of the program size otherwise. For the OT protocol, let
sizer(λ, n) denote the size of otr when the length of each of sender’s message is
n. Assuming the input size is n and the depth of the branching program is at
most d, the size of a ciphertext is nd × sizer(λ, t), where t ∈ O(λd). The result of
[DGI+19] gives a DDH-based semi-compact encryption for branching programs
with ciphertexts consisting of O(λ2nd3) group elements. Applying Corollary 1,
our ciphertexts will contain O(λnd2) group elements.

Corollary 2. Assuming t-power DDH, there exists a PKE scheme for branching
programs of depth d and input size n, where a ciphertext consists of O(λnd) group
elements.

Private Information Retrieval (PIR) with Improved Communication. A PIR pro-
tocol involves a server, holding N = 2d blocks (m1, . . . ,mN), each of length β,
and a client, holding an index i ∈ [N]. The goal is to allow the client to retrieve
mi while keeping i hidden from the server. We would like to achieve this while
minimizing communication complexity. Ishai and Paskin [IP07] gives a two-round
block single-server PIR (one message from each side), achieving download rate 1,
from rate-1 OT. The download rate of a PIR is defined as the ratio between the
server’s message and β. The size of the client’s message is O(sizer(λ, β) log N),
where β ∈ O(λ log N), and recall that sizer denotes the size parameter of the
receiver’s message in the underlying OT protocol. Thus, under DDH, the rate-
1 OT of [DGI+19] gives rise to a PIR, where the client’s message consists of
O(λ2polylog(N)) group elements. Using Corollary 1 and under the power DDH
assumption, the client’s message will have O(λpolylog(N)) group elements.

114 S. Garg et al.

References

[AHI11] Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key
attacks and applications. In: ICS 2011, pp. 45–60, Tsinghua University
Press, Beijing, China, 7–9 January 2011

[BB04] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryp-
tion without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 14

[BDD+00] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM (2000)

[BFOR08] Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic
encryption: definitional equivalences and constructions without random
oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
360–378. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
85174-5 20

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016,
Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4 19

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BKM20] Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. Cryptology ePrint
Archive, Report 2020/258 (2020). https://eprint.iacr.org/2020/258

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol.
10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-78381-9 20

[BMZ19] Bartusek, J., Ma, F., Zhandry, M.: The distinction between fixed and ran-
dom generators in group-based assumptions. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 801–830. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 27

[BW10] Boyen, X., Waters, B.: Shrinking the keys of discrete-log-type lossy trap-
door functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol.
6123, pp. 35–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13708-2 3

[CDD+16] Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1,
linear time and additively homomorphic UC commitments. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 179–207.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 7

[Cha04] Chang, Y.-C.: Single database private information retrieval with logarith-
mic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27800-9 5

https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-642-01001-9_1
https://eprint.iacr.org/2020/258
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-030-26951-7_27
https://doi.org/10.1007/978-3-642-13708-2_3
https://doi.org/10.1007/978-3-642-13708-2_3
https://doi.org/10.1007/978-3-662-53015-3_7
https://doi.org/10.1007/978-3-540-27800-9_5

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 115

[CMS99] Cachin, C., Micali, S., Stadler, M.: Computationally private information
retrieval with polylogarithmic communication. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 28

[CNs07] Camenisch, J., Neven, G., shelat, A.: Simulatable adaptive oblivious
transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
573–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72540-4 33

[DG17a] Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 372–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 13

[DG17b] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS,
vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 18

[DGH+19] Döttling, N., Garg, S., Hajiabadi, M., Liu, K., Malavolta, G.: Rate-
1 trapdoor functions from the Diffie-Hellman problem. In: Galbraith,
S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923,
pp. 585–606. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34618-8 20

[DGHM18] Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of
identity-based and key-dependent message secure encryption schemes. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–
31. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 1

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short
proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 28

[FGK+10] Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More
constructions of lossy and correlation-secure trapdoor functions. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
279–295. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13013-7 17

[GGH19] Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor
functions and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part III. LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 2

[GH18] Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-
Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part II. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 13

[GI05] Guruswami, V., Indyk, P.: Linear-time encodable/decodable codes with
near-optimal rate. IEEE Trans. Inf. Theory 51(10), 3393–3400 (2005)

[GVW19] Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs,
OWFs with encryption, and more. Cryptology ePrint Archive, Report
2019/962 (2019). https://eprint.iacr.org/2019/962

https://doi.org/10.1007/3-540-48910-X_28
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-3-540-72540-4_33
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-030-34618-8_20
https://doi.org/10.1007/978-3-030-34618-8_20
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-319-96881-0_13
https://eprint.iacr.org/2019/962

116 S. Garg et al.

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 31

[KMT19] Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor func-
tions via key-dependent-message security. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 33–64. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 2

[KW19] Koppula, V., Waters, B.: Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693,
pp. 671–700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26951-7 23

[Lip05] Lipmaa, H.: An oblivious transfer protocol with log-squared communica-
tion. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 314–328. Springer, Heidelberg (2005). https://doi.org/10.
1007/11556992 23

[LPR10] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 1

[LPR13] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptog-
raphy. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 3

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New con-
structions of reusable designated-verifier NIZKs. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[NR97] Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-
random functions. In: 38th FOCS, Miami Beach, Florida, 19–22 October
1997, pp. 458–467. IEEE Computer Society Press (1997)

[OS07] Ostrovsky, R., Skeith, W.E.: A survey of single-database private infor-
mation retrieval: techniques and applications. In: Okamoto, T., Wang,
X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71677-8 26

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: 40th ACM STOC, Victoria, BC, Canada, 17–20 May 2008, pp. 187–196.
ACM Press (2008)

[PW11] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
SIAM J. Comput. 40(6), 1803–1844 (2011)

[RS09] Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products.
In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 25

https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/978-3-030-26951-7_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/11556992_23
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-030-26954-8_22
https://doi.org/10.1007/978-3-540-71677-8_26
https://doi.org/10.1007/978-3-642-00457-5_25

	Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More
	1 Introduction
	1.1 Our Results
	1.2 Related Work and Open Problems
	1.3 Technical Overview

	2 Preliminaries
	2.1 Standard Definitions and Lemmas
	2.2 Computational Assumptions
	2.3 Standard Lemmas
	2.4 Error Correcting Codes

	3 Lossy TDFs with Short Public Keys from Power DDH
	3.1 Running Time of Our Lossy TDFs

	4 Fast Fourier Transform in the Exponent
	5 Range-Trapdoor Hash Functions
	5.1 Range-Trapdoor Hash with Linear-Sized Evaluation Keys

	6 Applications of Range-Trapdoor Hash
	References

