
Round-Efficient Byzantine Broadcast
Under Strongly Adaptive and Majority

Corruptions

Jun Wan1(B), Hanshen Xiao1, Srinivas Devadas1, and Elaine Shi2,3

1 Massachusetts Institute of Technology, Cambridge, USA
{junwan,hsxiao,devadas}@mit.edu

2 CMU, Pittsburgh, USA
runting@gmail.com

3 Cornell, Ithaca, USA

Abstract. The round complexity of Byzantine Broadcast (BB) has been
a central question in distributed systems and cryptography. In the hon-
est majority setting, expected constant round protocols have been known
for decades even in the presence of a strongly adaptive adversary. In the
corrupt majority setting, however, no protocol with sublinear round com-
plexity is known, even when the adversary is allowed to strongly adap-
tively corrupt only 51% of the players, and even under reasonable setup
or cryptographic assumptions. Recall that a strongly adaptive adversary
can examine what original message an honest player would have wanted
to send in some round, adaptively corrupt the player in the same round
and make it send a completely different message instead.

In this paper, we are the first to construct a BB protocol with sublinear
round complexity in the corrupt majority setting. Specifically, assuming
the existence of time-lock puzzles with suitable hardness parameters and
that the decisional linear assumption holds in suitable bilinear groups,
we show how to achieve BB in (n

n−f
)2 ·poly log λ rounds with 1−negl(λ)

probability, where n denotes the total number of players, f denotes the
maximum number of corrupt players, and λ is the security parameter.
Our protocol completes in polylogarithmically many rounds even when
99% of the players can be corrupt.

1 Introduction

Byzantine Broadcast (BB), first defined by Lamport et al. [LSP82], is a founda-
tional abstraction in distributed systems and cryptography, and has been studied
for more than three decades. In Byzantine Broadcast, a designated sender wants
to send a bit b ∈ {0, 1} to n nodes, and we would like to guarantee consistency,
i.e., all honest nodes output the same bit; and validity, i.e., if the designated
sender is honest, all honest nodes must output the sender’s input. In BB, an
important performance metric is the protocol’s round complexity. Due to the
elegant work of Dolev and Strong [DS83], it is long known that any determinis-
tic BB protocol must incur at least Ω(n) number of rounds, and indeed Dolev
c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 412–456, 2020.
https://doi.org/10.1007/978-3-030-64375-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64375-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-64375-1_15

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 413

and Strong [DS83] also demonstrate a round-optimal deterministic protocol with
Θ(n) rounds. It is also well-known that with randomization, expected constant-
round BB protocols exist in the honest-majority setting [FM97,KK09,ADD+19].
On the other hand, for quite a long time, no sublinear (randomized) protocol
was known for the corrupt majority setting. In 2007, after progress had been
stagnant for a long while, Garay et al. [GKKO07] first showed a glimpse of
hope for the corrupt majority setting, by constructing a protocol that achieved
O((2f − n)2) round complexity where f denotes the number of corrupt nodes.
Subsequently, Fitzi et al. [FN09] improved their result to O(2f − n) rounds.
Both Garay et al. [GKKO07] and Fitzi et al. [FN09], however, were somewhat
unsatisfying, since the regime under which they give sublinear round complexity
is rather narrow: even the latter work [FN09] requires f/n − 1

2 to be o(1) frac-
tion to achieve sublinear round complexity. Even when f = 51% · n, both these
works would incur at least linear number of rounds. Progress became somewhat
stagnant again until very recently, Chan et al. [CPS20] made some long-awaited
progress, demonstrating a new BB protocol that achieved O(n

n−f) · poly log λ
number of rounds even in the corrupt majority setting, where the protocol’s fail-
ure probability is guaranteed to be negligibly small in the security parameter λ.
Interestingly, their result is also optimal up to a poly-logarithmic factor due to
an Ω(n

n−f) lower bound by Garay et al. [GKKO07] even for randomized proto-
cols and even assuming static corruptions. Subsequently, a companion work by
Wan et al. [WXSD20] showed how to construct expected O((n

n−f)2)-round BB
under corrupt majority; and this result can be viewed as a further improvement
of Chan et al. [CPS20] for a broad range of parameters, e.g., when 1% (or any
arbitrarily small constant fraction) of the nodes are honest.

Nonetheless, the constructions by Chan et al. [CPS20] and Wan et
al. [WXSD20] remain somewhat unsatisfying, since to achieve their result,
the two works [CPS20,WXSD20] had to significantly weaken the adversary’s
capabilities relative to the prior results in this space. All aforementioned
works [DS83,GKKO07,FN09] prior to Chan et al. [CPS20] secured against a
strongly adaptive adversary, i.e., the adversary can observe the messages in flight
from honest nodes in a round, adaptively corrupt a subset of nodes and erase
an arbitrary subset of their messages in flight, and moreover, make the newly
corrupt nodes send additional messages in the same round. In fact, the strongly
adaptive model is the well-accepted model in the early days of distributed con-
sensus and multi-party protocols (see also Definition 1 in Feldman’s thesis [Fel88]
and Figure 4, page 176 of Canetti’s excellent work [Can00]). By contrast, the
approaches of Chan et al. [CPS20] and Wan et al. [WXSD20] defend only against
a weakly adaptive adversary—such an adversary can observe the messages hon-
est nodes want to send in a round, adaptively corrupt a subset of the nodes,
and make the newly corrupt nodes send additional messages in the same round;
however, the adversary cannot perform “after-the-fact-removal”, i.e., it cannot
retroactively erase the messages any node had sent before it became corrupt
in the same round. The weakly adaptive model is akin to the atomic mes-
sage model first introduced by Garay et al. [GKKZ11] as a way to overcome

414 J. Wan et al.

a lower bound pertaining to a particular adaptive, simulation-based notion of
security proven by Hirt and Zikas [HZ10]. The only slight difference is that in
the atomic message model, not only is the adversary unable to perform “after-
the-fact” message removal, it also must wait for one network delay after a node i
becomes corrupt, before it is able to inject messages on behalf of i. More recently,
a line of works inspired by blockchains [GKL15,PSS17,PS17c,PS17d,DPS16,
ACD+19,CPS19a] also adopted the weakly adaptive model to get bandwidth-
efficient protocols—it turns out that the weakly adaptive relaxation is necessary
for constructing Byzantine Agreement with sublinear communication complex-
ity [ACD+19].

In some settings, however, the weakly adaptive model may be unsatisfactory,
e.g., if the adversary can control intermediate routers in the network, it indeed
can examine the honest messages in flight, then corrupt a subset of the nodes
and fail to deliver any subset of their messages already in flight. Thus, the state
of the art begs the following natural question,

Are there (randomized) BB protocols with sublinear round complexity, and
secure in the presence of a strongly adaptive adversary that is allowed to
corrupt a majority of the nodes?

1.1 Our Results and Contributions

Main Result. We give the first affirmative answer to the above question, and
to achieve this we rely on the existence of a trusted setup, the decisional linear
assumption in suitable bilinear groups, as well as the existence of time-lock
puzzles with suitable hardness parameters. Our main result is stated in the
following theorem.

Theorem 1.1 (Main result). Assuming the existence of a trusted setup, the
decisional linear assumption in suitable bilinear groups (see AppendixA.1), as
well as the existence of time-lock puzzles [RSW96] with hardness parameter ξ,
there exists a protocol that achieves BB in (n

n−f)2 · poly log λ
ξ number of rounds

with probability 1 − negl(λ) where negl(·) is a suitable negligible function (of the
security parameter λ).

More concretely, a time-lock puzzle with hardness parameter ξ ensures that
the puzzle solution remains hidden from any machine running in time that is at
most ξ fraction of the honest evaluation time, even when the machine has access
to unbounded polynomial parallelism. As a typical example, consider the case
when ξ ∈ (0, 1) is a constant just like what prior works have assumed [RSW96,
BBBF18], and moreover, suppose that n

n−f is also a constant (e.g., 99% may be
corrupt)—in this case, our protocol’s round complexity is simply poly log λ.

To the best of our knowledge, no prior work can achieve sublinear-round BB
in the strongly adaptive setting under any reasonable setup assumption, and
even for only 51% corruption. In this sense our result significantly improves our
understanding of the round complexity of BB.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 415

Interpreting the Result. Our result currently requires a trusted setup. We do
not know if the trusted setup is necessary, but some form of setup is necessary:
without any setup, Byzantine Broadcast is impossible under 1/3 or more corrup-
tions due to an elegant lower bound by Lamport et al. [LSP82]. Besides trusted
setup, we also assume the existence of time-lock puzzles; therefore, another open
question is to understand whether time-lock puzzles are necessary. In fact, with-
out time-lock puzzles, even sublinear-round BB under 51% strongly adaptive
corruption remains open. New upper- or lower-bounds along this direction would
be very exciting and seem very challenging.

Another natural question is whether we can improve the round complexity
to expected constant. Due to the companion result of Wan et al. [WXSD20], we
know that expected constant round is possible with a weakly adaptive adver-
sary, and assuming trusted setup and the decisional linear assumption in suitable
bilinear groups. Naturally, it seems tempting to ask for the same in the strongly
adaptive setting. Unfortunately, with our techniques, we do not know how to go
beyond polylogarithmic number of rounds. In fact, even our underlying message
distribution primitive itself already takes polylogarithmically many rounds as
we explain in Sect. 2 and the subsequent technical sections. Therefore, whether
expected constant round BB is possible for 51% strongly adaptive corruption
remains an open question—constructing an upper bound seems challenging even
assuming static corruption, and allowing any reasonable setup assumptions; sim-
ilarly, whether there is possibly a lower bound also seems challenging.

1.2 Technical Highlights

We give a high-level overview of our main techniques.

Delayed-Exposure Message Distribution. One major new technique we
introduce is a delayed-exposure message distribution mechanism. Specifically,
we devise a novel poly-logarithmic round, randomized protocol that allows all
n honest nodes to each distribute a time-lock puzzle that embeds a message
they want to send; moreover, by the end of poly-logarithmically many rounds,
all honest nodes can obtain the solutions of all other honest nodes’ puzzles. On
the other hand, even if the adversary has unbounded parallelism, it cannot learn
any information about honest nodes’ messages encoded in the puzzles within one
round of time; and thus the adversary cannot make informed adaptive corrup-
tions based on the message contents.

To solve this problem, we need to overcome several technical challenges. First,
although we allow the adversary to have access to unbounded parallelism, it is
unrealistic to expect that honest machines are also equipped with up to n amount
of parallelism. Like in the standard distributed protocol literature, we assume
that the honest nodes are sequential RAM machines and thus they cannot solve
puzzles in parallel. However, if they solved all the puzzles sequentially it would
take linear number of rounds which is what we want to avoid in the first place.

Second, the honest nodes do not even have a consistent view of the puz-
zles being distributed which makes it difficult to coordinate who solves which

416 J. Wan et al.

puzzles. To overcome these challenges, we devise a novel age-based sampling tech-
nique where nodes sample puzzles to solve and the probability of sampling grows
exponentially w.r.t. how long ago the puzzle was first seen. We defer the detailed
construction and its analysis to later sections.

We stress that the delayed-exposure primitive can be of independent interest
in other protocol design contexts—in this sense, besides our new construction,
we also make a conceptual contribution in defining this new primitive and for-
mulating its security properties (see Sect. 4).

Applying the Delayed-Exposure Distribution Mechanism. Once we have
the delayed-exposure distribution mechanism, we can combine it with techniques
proposed in the recent work by Chan et al. [CPS20], and upgrade their weakly
adaptive protocol to a strongly adaptive one while still preserving a polyloga-
rithmic round complexity. For this upgrade, the most challenging aspect is how
to prove security. The most natural approach towards proving security is to
first prove that the real-world protocol securely emulates a natural ideal-world
counterpart, and then argue the security of the ideal-world protocol (which does
not use cryptography) using an information-theoretic argument. Unfortunately,
this approach fails partly because the time-lock puzzles only provide transient
secrecy of the messages they encode. Instead, we work around this issue by
devising a sequence of hybrids from the real-world execution to an ideal-world
execution without cryptography, and we show that for every adjacent pair of
hybrids, the probability of certain relevant bad events can only increase. Even-
tually, we upper bound the probability of bad events in the ideal world using an
information theoretic argument.

Soundness of Cryptography w.r.t. an Adaptive Adversary. Last but not
the least, in our construction and when arguing about the sequence of hybrids,
one technicality that arises is that the adversary is strongly adaptive, and there-
fore some of the cryptographic building blocks we use must be commensurate and
secure against selective opening attacks. This technicality will show up through-
out the paper in our definitions, constructions, and proofs.

1.3 Additional Related Work

Several other works [KY,CMS89] proved lower bounds on the worst-case round
complexity of randomized BA; and an online full version [CPS19b] of the
recent work by Chan et al. [CPS20] presented a complete version of these
proofs. Note that these lower bounds are incomparable to Garay et al.’s lower
bound [GKKO07]. Cohen et al. [CHM+19] prove lower bounds on the round
complexity of randomized Byzantine agreement (BA) protocols, bounding the
halting probability of such protocols after one and two rounds.

A line of works in the literature [HZ10,GKKZ11,CCGZ16] have focused on
a simulation-based notion of adaptive security for Byzantine Broadcast, where
the concern is that the adversary should not be able to observe what the sender
wants to broadcast, and then adaptively corrupt the sender to flip the bit. This
simulation-based notion is stronger than the property-based security definitions

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 417

in this paper. To achieve this strong notion of security, Garay et al. [GKKZ11]
adopted the “atomic message model”. As mentioned earlier, the atomic message
model is almost the same as our weakly adaptive model, except that in the
atomic message model, when a node i becomes newly corrupt, the adversary
must wait for a network delay before it can inject corrupt messages on behalf
of i.

In this paper, we consider the “broadcast” version of consensus commonly
called Byzantine Broadcast. There is also another “agreement” version of the
formulation, commonly called Byzantine Agreement. In the agreement version,
each node has an input bit b and they all want to agree on a bit. The consistency
requirement is unchanged, and the validity requirement instead stipulates that if
all honest nodes have the same input bit b, then all honest nodes must output b. It
turns out that the agreement version of the formulation is only possible assuming
honest majority, and that is why our paper does not discuss this formulation.

A line of work has focused on a repeated consensus abstraction either
called State Machine Replication [Sch90,PS17b,PS17a,CL99,Lam98,GKL15] or
blockchains. Imprecisely speaking, a blockchain protocol must reach consensus
repeatedly over time whereas Byzantine Broadcast achieves single-shot consen-
sus. There are typically two approaches for constructing a blockchain protocol: 1)
through sequential/parallel composition of a single-shot abstraction (e.g., Byzan-
tine Broadcast); and 2) direct blockchain construction [CL99,Lam98,YMR+19,
CS20].

Finally, our paper is not the first that uses time-lock puzzles in the context
of distributed consensus. Prior works have used time-lock puzzles to construct
“proof-of-work” type of consensus protocols [KMS14,EFL17].

2 Technical Roadmap

For simplicity, in our informal technical roadmap, we may assume that the adver-
sary may adaptively corrupt an arbitrarily large constant fraction of the nodes.
In other words, we assume that f = (1 − ε)n in the remainder of this section
for an arbitrarily small constant ε ∈ (0, 1). Our full protocol in the subsequent
sections will be stated formally for more general parameters.

The most natural starting point appears to be the very recent work by Chan
et al. [CPS20] which achieves BB with polylogarithmic round complexity in a
weakly adaptive corruption model even in the presence of majority corruptions.
Unfortunately, their protocol needed the weakly adaptive restriction not just
in the proofs; in fact, their protocol is prone to an explicit attack that breaks
consistency assuming a strongly adaptive adversary.

2.1 Chan et al. Breaks Under a Strongly Adaptive Adversary

To aid understanding, we first describe Chan et al.’s approach [CPS20] at a
very high level. Their main idea is a new method of committee election relying
on an adaptively secure Verifiable Random Function (VRF) [MVR99,ACD+19]

418 J. Wan et al.

which they call “bit-specific” committee election. More concretely, during setup,
a VRF public- and secret-key pair denoted (pku, sku) is selected for every node
u ∈ [n] and the corresponding public keys pk1, . . . , pkn are published in the sky.
Recall that a designated sender wants to broadcast a bit to all other nodes.
Using the VRF, we can define two committees called the 0-committee and the
1-committee, each responsible for voting for the 0-bit and the 1-bit, respec-
tively. Specifically, the b-committee consists of all nodes whose VRF evaluation
outcome on the input b is smaller than an appropriate difficulty parameter.
The difficulty parameter is chosen such that each committee’s size is polyloga-
rithmic in expectation. Now, committee members for each bit b will engage in
poly-logarithmically many rounds of voting based on certain voting rules; more-
over, all nodes, including committee members and non-committee members, keep
relaying the votes they have seen. We will not go into the details of the voting
rules, but what is important here is that the security of their scheme critically
relies on the fact that the committee members remain secret until they actually
cast a vote for the corresponding bit b. More specifically, after the setup phase,
each node knows whether it is a member of the 0-committee (or the 1-committee
resp.) but this knowledge is kept secret until the node has cast a vote for the
bit 0 (or the bit 1 resp.). Further, when a vote for b is cast, the vote is attached
with a VRF proof that vouches for the fact that the voter is a member of the
b-committee.

In Chan et al.’s scheme [CPS20], if somehow the adversary could predict
who is in which committee, then security could be broken, since the adversary
would have enough budget to corrupt all members of the 0-committee (or the
1-committee resp.) before their vote gets propagated to everyone. However, since
the VRF scheme satisfies pseudorandomness under adaptive corruptions, essen-
tially the adversary cannot effectively guess which nodes are in either committee
until the nodes actually cast a vote for the corresponding bit b, divulging the
fact that they are in the b-committee. Even though upon observing a node u’s
vote for a bit b, the adversary can act instantly and corrupt the voter u (who
must be a member of the b-committee), it is already too late—u’s vote is guaran-
teed to propagate to all other nodes since a weakly adaptively adversary cannot
retroactively erase the vote u had already sent prior to corruption.

Now, if the adversary is actually strongly adaptive, then an explicit attack is
to wait till a node u casts a vote for b, act immediately and corrupt u in the same
round, and cause u’s vote to be delivered to a subset of the honest recipients
but not all of them—without going into details, such an attack would break the
consistency of Chan et al.’s protocol.

It might be tempting to try to fix the above problem with näıve solutions
along the following vein: have all honest nodes first commit to their messages
(which is either a valid vote or a dummy message), wait for a while, and then
open their messages to reveal whether it is a vote. However, such näıve attempts
do not fundamentally fix the problem, because a strongly adaptive adversary
can always immediately erase a vote as soon as it is opened.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 419

2.2 A Strawman Scheme

A first strawman idea is to use time-lock puzzles to transiently hide message con-
tents and thereby defeat the agility of the strongly adaptive adversary. Imagine
that in some round, some members of the b-committee want to cast a vote for b
(henceforth called voters), and other nodes do not want to cast votes (henceforth
called non-voters). Recall that the adversary cannot predict a-priori which nodes
are members of the b-committee, but if the votes are cast in the clear, then the
voter immediately reveals itself to be a b-committee member.

Our idea is 1) for voters to lock the votes temporarily in a time-lock puzzle
and send the resulting puzzle rather than the clear-text vote; and 2) for non-
voters to send chaff of the same length, also temporarily locked in puzzles. Even if
the adversary may have unbounded parallelism, it cannot distinguish within one
round of time which nodes are voters and which ones are non-voters. Although
the adversary can adaptively corrupt a subset of nodes and prevent their puz-
zles from being delivered, such adaptive corruption is basically performed in a
blindfolded manner. Finally, if a node is not corrupt in the round in which the
puzzle is sent, essentially the puzzle is let through and honest nodes can solve it
later given enough time and obtain the message locked inside it.

In the strawman scheme, each voting round is prolonged to the time needed
for a single node to solve all puzzles (plus one more round for sending the puz-
zles). If every honest node had n parallel processors, then it could solve all
puzzles in parallel consuming only a constant number of rounds. However, it is
quite unreasonable to assume that all honest nodes have so much parallelism—in
particular, note that the amount of parallelism must scale linearly with the num-
ber of nodes. Therefore, we would like a better solution where the honest nodes
may run on sequential machines, and yet the adversary is allowed unbounded
polynomial parallelism.

2.3 Our Approach

In our approach, all nodes propagate their own puzzle to everyone else in the
first round. If a node remains honest till the end of the first round, then its
puzzle is guaranteed to be received by all honest nodes—henceforth we call such
puzzles honest puzzles. Puzzles sent by nodes that are corrupt before the end of
the first round are said to be corrupt puzzles.

We now repeat logarithmically many iterations: in each iteration, all nodes
share the workload of solving the puzzles, and send solutions to each other.
After logarithmically many iterations, we will show that except with negligible
probability, all honest puzzles will have been solved and their solutions received
by all honest nodes (but we do not guarantee that corrupt puzzles are also
solved).

To make this idea work, however, is non-trivial, and we are faced with several
challenges. One difficulty arises from the fact that the honest nodes do not have
common knowledge of the set of puzzles at the start of the protocol, since corrupt
nodes can reveal their puzzles only to a subset of the honest nodes. Similarly,

420 J. Wan et al.

at the end of each iteration, honest nodes also do not have common knowledge
of which set of puzzles have been solved. Therefore, nodes must coordinate and
share the work-load of solving puzzles, regardless of their different views of what
the remaining puzzles are. Our idea is for nodes to randomly select a somewhat
small subset of puzzles to solve in every iteration but how to choose a random
subset is somewhat tricky.

Idealized Randomized Process Assuming Perfect Knowledge of Left-
over Honest Puzzles. Although we use randomness to overcome the inconsis-
tency in nodes’ views of the remaining puzzle set, it still helps to first think of
how a random strategy might work in a perfect, imaginary world where everyone
always knows which are the set of leftover honest puzzles at the beginning of
each iteration—here, a puzzle is said to be leftover if no so-far honest node has
solved it and propagated its solution. In such a perfect world, we could use the
following randomized strategy: in the first iteration, there are at most n honest
puzzles to start with. Now, everyone chooses each of the n puzzles with some
probability p1 such that the expected number of puzzles each node solves is p1 ·n.
Note that the adversary can examine which puzzles’ solutions each node is prop-
agating at the end of the first iteration, and then adaptively decide on a set of
nodes to corrupt, and make these nodes fail to propagate their puzzle solutions.
If all honest nodes that tried to solve a specific puzzle Z are corrupt, then Z will
be leftover. A smart adversary can try to pick a set of nodes to corrupt such that
the set of leftover honest puzzles is maximized. One can prove that as long as
p1 ·n is a sufficiently large constant, even if the adversary chooses the worst-case
set of size (1 − ε)n to corrupt, there cannot be more than n/2 leftover honest
puzzles except with negligible probability. In other words, the adversary cannot
simultaneously deny too many honest puzzles from being solved. Now, in the
second iteration, there at most n/2 honest puzzles left, and we can repeat the
same but setting p2 = 2p1, i.e., the probability of sampling each honest puzzle
doubles. Again, one can show that after two iterations, there cannot be more
than n/4 leftover honest puzzles except with negligible probability, and this goes
on for logarithmically many rounds at which point all honest puzzles are solved
except with negligible probability.

Working with Imperfect Knowledge and Corrupt Puzzles. Our actual
protocol needs to somehow “embed” the above idealized random process in a
world where there can be corrupt puzzles, and moreover, honest nodes do not
have a consistent view of which puzzles are solved. This turns out to be tricky—
for example, the simplest idea is for nodes to always pick puzzles from the set
of puzzles they have seen by the end of the first round (recall that during the
first round nodes propagate their own puzzles to each other). However, if in the
first round, the adversary discloses Θ(n) corrupt puzzles (henceforth denoted Q)
only to one honest node u, then no one else will be helping to solve these corrupt
puzzles Q; and if the probability p keeps doubling in each iteration, u will need
to solve Θ(n) puzzles in the last iteration. So we want u to be able to propagate
Q to others, so that when others receive them, they can start solving them too.
But this introduces a new issue: the adversary can suddenly disclose a new set

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 421

of Θ(n) puzzles late in the protocol, i.e., when the probability p has doubled
logarithmically many times and is close to 1. In this case, the same node would
have to solve too many puzzles.

To overcome the above issues, our approach adjusts the sampling probability
based on the puzzle’s age. Roughly speaking, we define a puzzle’s age as how
many iterations ago the puzzle was first seen. Given a puzzle of age α, we will
sample it with probability p1 · 2α. In other words, the older the puzzle is, the
more likely it will get sampled, and the probability of being sampled doubles
with every iteration. Finally, if a node v is detected to have double-signed more
than one puzzle, all of v’s puzzles will henceforth be ignored.

We will prove later in the technical sections that except with negligible prob-
ability, in every iteration, the number of leftover puzzles of age α in the union of
the honest nodes’ views is upper bounded by n/2α−1, as long as each iteration is
long enough such that honest nodes can indeed solve all puzzles they have sam-
pled. Note that since puzzles of age α are each sampled with probability p1 · 2α,
the expected number of puzzles of age α that are chosen is Θ(np1) = Θ(1). By
the Chernoff bound, we can show that except with negl(λ) probability, no more
than poly log λ puzzles of each age α are chosen. Since the protocol runs for loga-
rithmically many iterations, there can be at most logarithmically many different
ages. Therefore, in each iteration, every node must solve only polylogarithmically
many puzzles (except with negligible probability).

Other Subtleties. So far, we have implicitly assumed that there is a way to
convince another node that some purported puzzle solution is indeed the cor-
rect solution, since otherwise the adversary can convince honest nodes to accept
wrong solutions. To make sure this is indeed the case, honest nodes sign the mes-
sage they want to distribute and then lock both the message and the signature
inside a puzzle. In this way, a valid solution for a correctly constructed puzzle
would be verifiable. However, this is not enough since the adversary can still
construct bad puzzles, and when honest nodes solve them, they cannot convince
others that the solution is valid. This issue can be fixed if we simply attach a
zero-knowledge proof to the puzzle vouching for the fact that it correctly encodes
a message and a signature from the purported sender.

Putting it All Together. In summary, to obtain Byzantine Broadcast, we first
construct a delayed-exposure message distribution mechanism called Distribute.
In a Distribute protocol, at the beginning every node u receives an input message
mu, and each node would like to distribute its input messages to others. If a node
u remains honest at the end of the first round of the protocol, we say its input
mu is an honest message.

The Distribute protocol guarantees the following: 1) liveness, i.e., all honest
messages must be delivered to every honest node at the end of the protocol;
and 2) momentary secrecy, i.e., by the end of the first round, no probabilis-
tic polynomial-time adversary, even when allowed unbounded parallelism, could
have learned any information about the honest messages (although eventually,
given sufficiently long polynomial time, the adversary could solve the puzzles

422 J. Wan et al.

and learn the input messages). The protocol works as follows (described below
for the special case when f = (1 − ε)n where ε ∈ (0, 1) is a constant):

• Round 1: Every node u ∈ [n] computes a signature σu on its input message
mu, and computes a puzzle Zu that encodes (mu, σu). Further, u computes
a non-interactive zero-knowledge proof denoted πu that the puzzle Zu indeed
encodes a pair where the second term is a valid signature on the first one
(w.r.t. u’s public key).
Node u now propagates (Zu, πu) to everyone along with a signature on the
pair.

• Repeat Θ(log n) iterations: Each iteration has duration Tsolve ·poly log λ+1
where Tsolve is the time it takes for a sequential machine to solve a single
puzzle. During each iteration, a node samples each puzzle of age α to solve
with independent probability min(p1 · 2α, 1), and once solved it propagates
the solution (m,σ) to others if σ is a valid signature for m from the purported
sender of m.
At any time, if a node v is detected to have double-signed two different puzzles,
all puzzles signed by v will henceforth be ignored.

• Output. Finally, for each node v ∈ [n], if a valid pair (m,σ) has been observed
where σ is a valid signature on m under v’s public key, then (m,σ) is output
as the message received from v; if no such valid pair has been seen, output ⊥
as the received message from v.

Intuitively, the security properties of Distribute ensure that honest messages
will indeed be delivered, and moreover, the adversary cannot base its corruption
decisions based on the contents of the messages, and must make corruptions
blindly. To get Byzantine Broadcast, we can now plug in the Distribute protocol
to distribute batches of votes in the protocol by Chan et al. [CPS20]. Just like
in the strawman scheme in Sect. 2.2, here, nodes who do not want to transmit
batches of votes must transmit chaff using the Distribute protocol. Through this
transformation, we effectively constrain a strongly adaptive adversary such that
its capability is roughly the same as a weakly adaptive adversary. We defer the
details of the Byzantine Broadcast (BB) protocol to the subsequent technical
sections.

Challenges in Proving Security. Although the intuition is clear, formally
reasoning the security of our BB protocol is actually rather subtle due to the
use of cryptography. Ideally, we would like to abstract the cryptography away
and reason about the core randomized process captured by the protocol in an
ideal-world execution. Unfortunately, the real-world protocol does not securely
emulate the most natural ideal-world protocol that captures the core randomized
process. For example, one concrete challenge is the following: we would like to
argue that the first-round messages of a Distribute protocol can be simulated
by a simulator without knowing the actual input messages of the honest nodes.
Unfortunately, the simulated messages can only fool the adversary for a small
amount of time, and the adversary could eventually discover that they were
being simulated.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 423

To tackle this challenge, our actual proof defines a sequence of hybrids from
the real-world experiment with cryptography, to an ideal-world experiment with-
out cryptography. Instead of arguing that the adversary’s view is computation-
ally indistinguishable in adjacent hybrids, we argue that the probability of cer-
tain bad events happening in the next hybrid is an upper bound of the probabil-
ity in the previous hybrid (ignoring negligible differences). This means that bad
events cannot happen with higher probability in the real-world than in the ideal-
world. Finally, since the ideal-world execution does not involve cryptography, we
can argue through a probabilistic argument that the probability of relevant bad
events is negligibly small.

Finally, another subtlety in both our construction and proofs is the fact
that the adversary is adaptive; and therefore we need to rely on cryptographic
primitives with suitable adaptive notions of security.

Remark 1 (On how general our Distributeprimitive is). One natural question
is whether our Distribute primitive can be used to upgrade any weakly adaptive
protocol to a strongly adaptive one preserving its security properties. Our result
does not imply such a general weakly to strongly adaptive compiler, partly due
to the technical challenges mentioned earlier, specifically, the fact that we cannot
prove that the real-world protocol emulates some natural ideal-world protocol.
As an exciting future direction, it would be great to understand how general our
Distribute primitive is, i.e., for which class of protocols it is applicable. Further,
another exciting question is whether we can get a general weakly to strongly
adaptive compiler (see also Sect. 7).

3 Preliminaries

3.1 Definitions

Protocol Execution Model. We assume a standard protocol execution model
with n nodes numbered 1, 2, . . . , n, respectively. An adversary denoted A can
adaptively corrupt nodes during the middle of the execution. The nodes that
have not been corrupted are called honest nodes. All corrupt nodes are under
the control of A, i.e., the messages they receive are forwarded to A, and A
controls what messages they will send once they become corrupt.

We assume a synchronous network model, i.e., honest nodes can send mes-
sages to each other within one round. More precisely, if an honest node u sends a
message to v during round r, as long as u and v are still honest at the beginning
of round r+1, then v would have received the message by the beginning of round
r +1. We assume that in each round, a node first reads incoming messages from
the network, then it performs some local computation and sends messages.

The adversary A is allowed to examine the messages honest nodes send during
a round r, and then decide who to corrupt in round r, and what messages corrupt
nodes send in round r. If a node u becomes newly corrupt in round r, any message
it wanted to send in round r can be erased by A; further, A can make the newly

424 J. Wan et al.

corrupt u send additional messages of its choice in the same round r. Recall that
such an adversary is said to be strongly adaptive.

We assume that the protocol’s execution may be parameterized by a security
parameter denoted λ ∈ N. We would like the protocol to ensure the desired secu-
rity properties with 1 − negl(λ) probability for some negligible function negl(·).
Modeling Honest and Adversarial Machines. We model honest nodes as
probablistic, sequential Random Access Machines (RAMs), and model the adver-
sary as a non-uniform probabilistic, parallel machine with unbounded polynomial
parallelism running in unbounded polynomial parallel time.

In constructing our protocol, we will leverage certain cryptographic primitives
whose security is only guaranteed against an adversary that is restricted to run
in a small, bounded number of parallel steps. Therefore, we define a T -bounded
adversary as follows:

Definition 3.1. We say that A is a T -bounded, non-uniform p.p.t . parallel
machine iff A is a non-uniform probabilistic parallel machine with unbounded
polynomial parallelism, but restricted to run in at most T parallel steps. Note
that here the usage of the term p.p.t . actually means polynomially bounded
in total work—since in the parallel algorithms literature, the terms “work” and
“sequential time” are used interchangeably to describe a PRAM algorithm’s
work, we preserve the familiar short-hand p.p.t ..

Note that although some of our underlying cryptographic primitives are
secure only against T -bounded adversaries, we need to prove our protocol secure
against an adversary running in unbounded parallel time. This is partly why our
proofs are non-trivial (see Sect. 6.2 for more details).

Duration of a Round. Finally, we discuss the duration of a round in our
execution model. The standard distributed systems and cryptography literature
implicitly assumes that a round is of polynomial duration and it is long enough
such that an honest node can perform the prescribed cryptographic operations,
e.g., verify signatures on all messages received, verify the zero-knowledge proofs
attached to the messages received, sign the messages it wants to send, and so
on. We make the same assumption in this paper, with the exception of the
Solve algorithm of our time-lock puzzle scheme. Specifically, we will later on
parametrize our time-lock puzzle such that a sequential machine (e.g., an honest
node’s machine) would take multiple rounds to solve a single puzzle.

Byzantine Broadcast. Recall that there are n nodes, and without loss of
generality, we call node 1 the designated sender. Prior to protocol start, the
designated sender receives an input b ∈ {0, 1} from A. At the end of the protocol,
every node u ∈ [n] outputs a bit bu. We would like to guarantee the following
security properties with 1 − negl(λ) probability over the randomized execution:

• Consistency: if a forever-honest node u outputs a bit bu and a forever-honest
node v outputs a bit bv, it must be that bu = bv;

• Validity: if the designated sender is forever-honest, it must be that every
forever-honest node outputs the sender’s input bit b.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 425

In the above, forever-honest means that the corresponding node remains
honest till the end of the protocol.

Notations. Throughout the paper, we use n to denote the total number of
nodes, f to denote the maximum number of corrupt nodes, and h = n − f
to denote the number of honest nodes. Since we care about the asymptotical
behavior of the round complexity w.r.t. n, without loss of generality, we may
assume n ≥ log2 λ where λ is the security parameter as mentioned.

3.2 Time-Lock Puzzles

We review the notion of time-lock puzzles [BGJ+16,RSW96,LPS17].

Definition 3.2 (Time-lock puzzles). Let S be a finite domain of size at most
2poly(λ). A time-lock puzzle (TLP) with solution space S is a tuple of algorithms
(Gen,Solve) as defined below:

• Z ← Gen(1λ, T , s): a probabilistic algorithm that takes a security parameter
λ, a time parameter T , and a solution s ∈ S, and outputs a puzzle Z.

• s ← Solve(Z): a deterministic algorithm that takes in a puzzle Z, and outputs
a solution s.

Correctness. We require that for every λ, every s ∈ S, every T ,
Solve(Gen(1λ, T , s)) outputs the correct solution s with probability 1.

Efficiency. We require that on a sequential Random-Access Machine,
Gen(1λ, T , s) runs in at most poly(λ, log T) steps for any s ∈ S; and more-
over Solve(Z) runs in at most T number of steps for any Z in the support of
Gen(1λ, T , ·).
ξ-hardness. An TLP scheme (Gen,Solve) is said to be ξ-hard iff there exists a
polynomial ˜T such that for all polynomials T (·) ≥ ˜T (·) and every ξT -bounded,
non-uniform p.p.t . parallel machine A, there exists a negligible function negl(·),
such that for all λ ∈ N and for all s0, s1 ∈ S it holds that

∣

∣Pr
[

A(Gen(1λ, T , s0)) = 1
]

− Pr
[

A(Gen(1λ, T , s1)) = 1
]∣

∣ ≤ negl(λ).

3.3 Verifiable Random Functions

A verifiable random function (VRF) [MVR99] includes the following (possibly
randomized) algorithms:

• (crs, {pku, sku}u∈[n]) ← Gen(1λ): takes in a security parameter λ and gener-
ates public parameters crs, and a public and secret key pair (pku, sku) for
each node u ∈ [n]; each sku is of the form sku := (su, ρu) where su is said to
be the evaluation key and ρu is said to be the proof key for u.

426 J. Wan et al.

• (y, σ) ← Eval(crs, sku, x): we shall assume that Eval := (E,P) has two
sub-routines E and P where Eval.E is deterministic and Eval.P is possi-
bly randomized. Given the public parameters crs, the secret key sku =
(su, ρu), and input x ∈ {0, 1}|x|, compute y := Eval.E(crs, su, x) and σ :=
Eval.P (crs, su, ρu, x), and output (y, σ).

• {0, 1} ← Vf(crs, pku, x, y, σ): receives the public parameters crs, a public key
pku, an input x, a purported outcome y, and a proof σ, outputs either 0
indicating rejection or 1 indicating acceptance.

For the VRF scheme to satisfy correctness, we require that for any
v ∈ [n], for any input x, the following holds with probability 1: let
(crs, {pku, sku}u∈[n]) ← Gen(1λ), and let (y, σ) ← Eval(crs, skv, x), then it must
be that Vf(crs, pkv, x, y, σ) = 1.

3.3.1 Pseudorandomness Under Selective Opening
To define pseudorandomness under selective opening, we shall consider two
games. The first game is intended to capture that the evaluation outcome, i.e.,
the y term output by Eval, is pseudorandom even when A can selectively cor-
rupt nodes and open the first component of the corrupted nodes’ secret keys.
The second game captures the notion that the proof σ does not reveal anything
additional even under an adaptive adversary.

First Game: Pseudorandomness of the Evaluation Outcome. We con-
sider a selective opening adversary A that interacts with a challenger denoted C
in the following experiment ExptAb (1λ) indexed by the bit b ∈ {0, 1}.

ExptAb (1λ):
• First, the challenger C runs the Gen(1λ) algorithm and remembers the

secret key components (s1, . . . , sn) for later use. Note that C need not
give public parameters to A.

• Next, the adversary A can adaptively make queries of the following
forms:

– Evaluate: A submits a query (u, x), now C computes y ←
Eval.E(crs, su, x) and gives y to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt, and C parses
sku := (su, ρu) and reveals su to A.

– Challenge: A specifies an index u∗ ∈ [n] and an input x. If b = 0,
the challenger returns a completely random string of appropriate
length. If b = 1, the challenger computes y ← Eval.E(crs, su∗ , x) and
returns y to the adversary.

We say that A is compliant iff with probability 1, every challenge tuple (u∗, x)
it submits satisfies the following: 1) A does not make a corruption query on u∗

throughout the game; and 2) A does not make any evaluation query on the tuple
(u∗, x).

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 427

If no efficient and compliant adversary can effectively distinguish ExptA0 (1λ)
and ExptA1 (1λ), then we can be sure that the evaluation outcome of the VRF is
pseudorandom even with an adaptive adversary.

Second Game: Zero-Knowledge of the Proofs. We also need to make sure
that the proof part is zero-knowledge even w.r.t. an adaptive adversary. There-
fore, we define another game below where the adversary A tries to distinguish
whether it is playing in the real-world experiment or in the ideal-world experi-
ment:

• Real-world experiment Real: In the real-world experiment, the challenger runs
the Gen(1λ) algorithm and gives the public parameters crs and all public keys
pk1, . . . , pkn to A, but keeps sk1, . . . , skn to itself. Next, A can adaptively
make the following queries:

– Evaluate: A submits a query (u, x), now C computes (y, σ) ← Eval(crs,
sku, x) and gives (y, σ) to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt. C reveals not only
sku to A, but also all the randomness used in the Eval algorithm for any
earlier Evaluate query pertaining to u.

• Ideal-world experiment IdealS0,S1,S2,S3 : First, the challenger C runs a simu-
lated setup algorithm

(s1, . . . , sn) ← S0(1λ);

(crs, pk1, . . . , pkn, τ) ← S1(1λ);

it gives the public parameters crs and all public keys pk1, . . . , pkn to A, but
keeps the trapdoor τ to itself.

Next, A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), and now the simulator computes
y := Eval.E(crs, su, x), and σ ← S2(τ, pku, x, y) and gives y, σ to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt. Let I denote the indices
of the earlier Evaluate queries that correspond to the node u ∈ [n]; and
moreover, for i ∈ I, let the i-th query be of the form (u, xi) and the result
be of the form (yi, σi).
The challenger C calls (ρu, {ψi}i∈I) ← S3(τ, pku, su, {xi, σi}i∈I), and
returns the secret key sku := (su, ρu) as well as {ψi}i∈I to A.

Definition 3.3 (Pseudorandomness under selective opening). We say that a
VRF scheme satisfies pseudorandomness under selective opening iff:

1. for any compliant non-uniform p.p.t . adversary A, its views in ExptA0 (1λ) and
ExptA1 (1λ) are computationally indistinguishable.

2. there exist p.p.t . simulators (S0,S1,S2,S3) such that the outcome of S0(1λ)
is identically distributed as the (s0, . . . , sn) components generated by the
real-world Gen(1λ) algorithm, and moreover, A’s views in the above Real and
IdealS0,S1,S2,S3 are computationally indistinguishable.

428 J. Wan et al.

3.3.2 Unforgeability
We say that a VRF scheme satisfies unforgeability, if there exists a negligible
function negl(·) such that no non-uniform p.p.t . adversary A can win the follow-
ing game with more than negl(λ) probability:

• First, the challenger C runs the Gen(1λ) algorithm and gives the public param-
eters crs and all public keys pk1, . . . , pkn to A, but keeps sk1, . . . , skn to itself.

• The adversary A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), now C computes (y, σ) ← Eval(crs,
sku, x) and gives (y, σ) to A.

– Corrupt: A specifies an index u ∈ [n] and C reveals sku to A as well as
random coins used in earlier Evaluate queries pertaining to u.

• Finally, A outputs a tuple (u, x, y, σ). It is said to win the game if either
Vf(crs, pku, x, y, σ) = 1, but y �= y′ where (y′,) := Eval(crs, sku, x); or if u
has not been corrupted before and A has not made any Evaluate query of
the form (u, x).

In other words, we want that except with negligible probability, A cannot
forge the VRF outcome and proof on behalf of any honest node on a point that
has not been queried; furthermore, even for corrupted nodes, A cannot forge an
VRF outcome and proof such that the evaluation outcome is different from the
honest evaluation outcome.

Abraham et al. [ACD+19] proved the following theorem where the bilin-
ear group assumptions needed are the same as those adopted by Groth et
al. [GOS12].

Theorem 3.4 (Existence of adaptively secure VRFs [ACD+19]). Assuming
standard bilinear group assumptions and a trusted setup, we can construct a
VRF scheme satisfying pseudorandomness under selective opening and unforge-
ability.

4 Delayed-Exposure Message Distribution

4.1 Definitions

4.1.1 Syntax
We first introduce the syntax of the Distribute(1λ,m1, . . . ,mn) protocol. At the
beginning of the protocol, every node u ∈ [n] is given a message mu ∈ {0, 1}�

of length �(λ, n) which is upper bounded by a fixed polynomial in λ and n. In
the Distribute protocol, every node makes an attempt to multicast its message
mu to everyone else. At the end of Rdistr number of rounds, everyone outputs
(m′

1, . . . ,m
′
n) where m′

u ∈ {0, 1}� ∪{⊥} denotes the message received from node
u ∈ [n], and ⊥ indicates that nothing has been received from u.

In the following we will allow setup assumptions for constructing our
Distribute protocol, specifically, we assume that the setup algorithm Gen(1λ)
outputs a common reference string denoted crs. Moreover, there is a public-key

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 429

infrastructure (PKI) later used for digital signatures. We assume that during the
setup phase, we run the key generation algorithm of a digital signature scheme
which outputs a public- and secret-key pair for every node u ∈ [n], henceforth
denoted vku and ssku, respectively. We assume that the crs and the PKI consist-
ing of {vku, ssku}u∈[n] can be reused across multiple instances of the Distribute
protocol.

4.1.2 Security
At the beginning of the Distribute protocol, either everyone is honest, or a subset
of nodes have already been corrupted by the adversary A. During the Distribute
protocol, the adversary A can adaptively corrupt more nodes, and upon newly
corrupting a node u ∈ [n], the adversary A receives u’s internal state.

Liveness. Liveness requires the following: let ˜H denote the set of nodes that
remain honest till the beginning of the second round of the Distribute protocol;
except with negligible in λ probability, it holds that for every node u ∈ ˜H, all
forever-honest nodes1 output mu as the message received from u.

Momentary Secrecy. Roughly speaking, we want that even when the adver-
sary A may have unbounded polynomial parallelism, the honest nodes’ messages
remain secret to A till the beginning of the second round of Distribute. Formally,
we define the following Expt(1λ, {m∗

u}u∈[n]) experiment.

Experiment Expt(1λ, {m∗
u}u∈[n]): The experiment Expt(1λ, {m∗

u}u∈[n]) is
defined as follows:

• Setup. Run the honest setup algorithm which outputs a common reference
string denoted crs and a key pair (vku, ssku) for every u ∈ [n]. The crs and
the public verification keys {vku}u∈[n] are given to A;

• Query. The query phase runs for an arbitrary polynomial amount of time.
During this time, A may adaptively make the following queries where multiple
sessions of the Distribute protocol are allowed to be initiated concurrently:

– Session. A specifies a session identifier sid , as well as a set of input mes-
sages {mu}u∈H where H denotes the so-far honest nodes. Now, the so-
far honest nodes execute the honest Distribute protocol using the inputs
{mu}u∈H and session identifier sid , and interact with A.

– Corrupt. At any time, A specifies a new node u ∈ [n] to corrupt, and
at this moment ssku and all random coins used by node u so far in the
protocol are given to A;

• Challenge. Finally, A outputs challenge with a challenge session identifier
sid∗: it is required that sid∗ be a fresh one that has never been queried before.
Let H∗ denote the honest nodes at the moment. Now, compute the first-round
messages denoted M∗ that H∗ would send in the real-world Distribute protocol

1 Forever honest w.r.t. the Distribute protocol means that the node remains honest till
the end of the protocol.

430 J. Wan et al.

with the session identifier sid∗, and using the inputs {m∗
u}u∈H∗ . Output A’s

view2 in the experiment as well as M∗.

We say that the Distribute protocol satisfies momentary secrecy iff for any
non-uniform p.p.t . parallel machine A and any non-uniform p.p.t . 2T∅-bounded
parallel distinguisher D, there is a negligible function negl(·) for the following to
be true for any choice of λ, and any {m∗

u}u∈[n] and {m̃∗
u}u∈[n],

∣

∣Pr
[

D(1λ,Expt(1λ, {m∗
u}u∈[n])) = 1

]

− Pr
[

D(1λ,Expt(1λ, {m̃∗
u}u∈[n]))) = 1

]∣

∣

≤ negl(λ).

4.2 Construction

Assumptions. In the construction below, we assume that there is a public-key
infrastructure (PKI) available, and nodes sign all messages that they want to
send. Only messages attached with valid signatures from the purported senders
are considered valid, and all invalid messages are discarded. We also make an
implicit echoing assumption: we assume that every honest node will echo every
fresh message received to everyone, such that if a forever-honest node u ∈ [n]
observes some message at the beginning of round r, then every so-far honest
node will have received it by the beginning of round r + 1.

NP Language. We will make use of a non-interactive zero-knowledge proof
(NIZK) system that is secure against adaptive corruptions. The formal definition
of such a NIZK system is given in Sect. A.2. We now describe the NP language
used in our NIZK proofs. A statement is of the form stmt := (u,Z), and a witness
is of the form w := (m,σ, ρ). We assume that (λ, Tsolve, vk1, . . . , vkn) are global
parameters and do not repeat it in the statement. A statement stmt := (u,Z) is in
the language vouched for by a valid witness w := (m,σ, ρ) iff there exists (m,σ, ρ)
such that Z = TLP.Gen(1λ, Tsolve, (m,σ); ρ) and moreover Σ.Vf(vku,m, σ) = 1.

Protocol. Let TLP := (Gen,Solve) denote a time-lock puzzle with hardness
parameter ξ as defined in Sect. 3.2, and let T∅ denote the duration of one
synchronous round. Let NIZK := (Gen,P,V) denote a non-interactive zero-
knowledge proof system as defined in Sect. A.2. Let Σ := (Gen,Sign,Vf) denote
a digital signature scheme. The Distribute protocol is described below.

Input: Each node u ∈ [n] receives the input mu ∈ {0, 1}�. Without loss of
generality, henceforth we shall assume that the message mu itself is tagged
with the sender’s identifier u ∈ [n]. Below, we may assume that we always
prefix the message mu with the string inp.

Setup: Run crsnizk ← NIZK.Gen(1λ) and publish crsnizk. Recall that there
is a PKI and nodes sign all messages they send, henceforth we use vku and
ssku to denote the public- and secret-key of node u, respectively.

2 Here, A’s view may contain any output A has produced so far which might have
taken an arbitrary polynomial time to compute prior to the start of the challenge
phase.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 431

Protocol:
1. Initial round: every node u ∈ [n] does the following:

• let σ := Σ.Sign(ssku,mu); call Zu ← TLP.Gen(1λ, Tsolve, (mu, σ); ρ)
where Tsolve := 2T∅/ξ and ρ explicitly denotes the randomness con-
sumed by the TLP.Gen algorithm;

• call πu ← NIZK.P(crsnizk, (u,Zu), (mu, σ, ρ));
• sign and multicast the tuple (puz, Zu, πu) to everyone.

Henceforth, we assume that whenever an honest node receives a message
of the form (puz, Zu, πu) signed by u, it calls NIZK.V(crsnizk, (u,Zu), πu)
and if the verification fails, the message is discarded immediately without
being processed. If the verification succeeds, the puzzle Zu is considered
as received and we say that it belongs to u.

2. Solve phase: Henceforth, every Tepoch := Tsolve · 	 2n
h · ln(16n

h) · log2 λ ·
(log n+3)
+1 rounds is called an epoch: round 1 is the beginning of the
first epoch; round Tepoch + 1 is the beginning of the second epoch, and
so on.
Repeat the following for a total of E = 	log2 n
 + 1 epochs.

• At the beginning of each epoch, let S denote the set of all puzzles
received so far and belonging to active nodes. For Z ∈ S, define the
puzzle’s age α(Z) as follows: α(Z) := 	 r−r′

Tepoch

 where r denotes the

beginning round of the epoch and r′ ≤ r denotes the first round in
which Z was observed.

• For each Z ∈ S sequentially, perform the following: flip
a random coin that comes up heads with probability p :=
min

(

2α(Z)·ln(16n/h)
h , 1

)

; if the coin comes up heads, then solve the
puzzle Z by calling (m,σ) ← TLP.Solve(Z). Once solved, multicast
the solution (m,σ) to everyonea.

Output: at any time, upon observing a tuple (m,σ) where σ is a valid
signature on m from the purported sender (henceforth denoted v ∈ [n]),
if no message from v has been output yet, output m as the message
received from v and mark v as inactive. At the end of the protocol, if no
message from some v ∈ [n] has been output, then we output a canonical
message ⊥ as the message from v.
Detect equivocation: at any time, if multiple puzzles have been
received from the same node v ∈ [n], mark v as inactiveb.

aWe may assume that if more than 2n
h

· ln(16n
h

) · log2 λ · (log n + 3) number of
puzzles are chosen to be solved in some epoch, the node simply aborts outputting
failure — we will show in the proof of Lemma 4.3 later that this does not happen
except with negligible probability.
bBoth the Output and Equivocation entry points are processed at the beginning
of every round before all other actions of the round.

432 J. Wan et al.

Clearly, the total round complexity of the Distribute protocol is

(log2 n
 + 1) · Tsolve

T∅
·
(

2n

h
· ln(

16n

h
) · log2 λ · (log n + 3)
 + 1

)

+ 1

Assume that n is polynomially bounded in λ, then the round complexity is upper
bounded by O(n

ξ·h) · poly log λ.

4.3 Proofs: Liveness

Henceforth, we use the term “m is in honest view” to mean that some forever-
honest node has seen m.

Fact 4.1. If some forever-honest node observes a puzzle Z at the beginning of
epoch e, then all so-far honest nodes will have observed Z by the beginning of
epoch e + 1.

Proof. Follows directly from the implicit echoing assumption, i.e., honest nodes
echo every fresh message they see. ��

Fact 4.2. Assume that the NIZK scheme satisfies perfect knowledge extraction,
the TLP scheme satisfies correctness. Then, except with negligible probability, the
following must hold: if any forever-honest node solves a puzzle Z belonging to
v ∈ [n] by the beginning of the last round of epoch e, then no puzzle from v will
still be active in any so-far honest node’s view at the beginning of epoch e + 1.

Proof. If the NIZK satisfies perfect knowledge extraction, then it must be that
the solved solution is a (m,σ) pair such that σ is a valid signature from v on
m. Since an honest node has solved the puzzle and found the solution by the
beginning of the last round of epoch e, it will multicast (m,σ) to everyone in the
last round of epoch e, and by the beginning of epoch e + 1, every so-far honest
node will have observed (m,σ) and will have marked v as inactive. ��

Given Fact 4.1, we know that honest nodes’ perception of a puzzle’s age can
differ by at most 1. We say that a puzzle Z’s minimum age is α ≥ 0 in epoch e,
iff all forever-honest nodes have observed it by the beginning of epoch e−α, but
at least one forever-honest node has not observed it by the beginning of epoch
e − α − 1.

Henceforth, if at the beginning of some epoch e, a so-far honest has seen a
puzzle belonging to an active node, then the puzzle is said to be active. Due to
the equivocation detection rule, it must be that from each active node, at most
one active puzzle has been seen.

Lemma 4.3. Let α ≥ 0 and n ≥ log2 λ. Except with negligible in λ probability,
the following holds: at the beginning of every epoch, there can be at most n/2α−1

active puzzles belonging to distinct nodes, and with minimum age α, in honest
view.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 433

Proof. We first state some simplifying assumptions that can be made without
loss of generality. We may assume that honest nodes use a puzzle’s minimum age
to determine the probability p with which a puzzle is selected to be solved. Note
that in the real-world protocol, a node does not necessarily know the minimum
age of the puzzle, but we may assume it for proving this lemma since making p
smaller will only increase the probability of the bad event stated in the lemma
that we care about bounding. Furthermore, let us first assume that any forever-
honest node has enough time to solve all puzzles it chooses to solve during any
epoch e, and not only so, they can be solved by the beginning of the last round of
the epoch e—later we will show that indeed this is the case except with negligible
probability.

For α = 0, the lemma trivially holds. Henceforth, we may assume that α ≥ 1.
Fix any epoch e, and let Sα−1 denote all active puzzles whose minimum age is
α−1 ≥ 0 at the beginning of epoch e. This means that all so-far honest nodes will
choose to solve any puzzle in Sα−1 with probability p = min(2

α−1·ln(16n/h)
h , 1) in

epoch e. We would like to upper bound the probability that at least n/2α puzzles
in Sα−1 are not selected by any forever-honest node in epoch e. Due to Fact 4.2,
if 2α−1·ln(16n/h)

h ≥ 1, then there cannot be any active puzzles of minimum age α
left in any honest node’s view at the beginning of the next epoch. Henceforth,
we may also assume that p = 2α−1·ln(16n/h)

h < 1.
Consider a fixed honest node u and an active puzzle from a fixed node v:

the probability that u does not select an active puzzle from v is at most 1 − p.
The probability that any fixed set of h forever-honest nodes (denoted W) all do
not select an active puzzle from v is (1 − p)h. For any fixed set of n/2α−1 nodes
denoted Γ that has a puzzle of minimum age α − 1 in honest view in epoch e,
the probability that a fixed set of h forever-honest nodes’ puzzle choices do not
intersect with Γ is at most (1 − p)h·n/2α−1

.
The probability that there exists a choice for the set W (consisting of h

forever-honest nodes), and a set Γ ⊂ [n] of size n/2α−1 (who have a puzzle of
age α−1 in honest view in epoch e), such that W ’s puzzle choices do not intersect
with Γ is upper bounded by the following expression:

(1 − p)h·n/2α−1 ·
(

n

h

)

·
(

n

n/2α−1

)

≤
(

1 − 2α−1 · ln (16n/h)
h

)hn/2α−1

·
(

n

h

)

·
(

n

n/2α−1

)

=
(

1 − 2α−1 · ln (16n/h)
h

)
h

2α−1·ln(16n/h) ·ln(16n
h)·n

·
(

n

h

)

·
(

n

n/2α−1

)

≤ exp
(

− ln
(

16n

h

)

· n

)

·
(

n

h

)

·
(

n

n/2α−1

)

=
(

h

16n

)n

·
(

n

h

)

·
(

n

n/2α−1

)

(∗)

434 J. Wan et al.

=
(

h

16n

)n

·
(

n

h

)

·
(

n

n − n/2α−1

)

≤
(

h

16n

)n

·
(en

h

)h

·
(

en

n(1 − 1/2α−1)

)n(1−1/2α−1)

≤
(

h

16n

)n

·
(en

h

)n

·
(

en

n(1 − 1/2α−1)

)n

=
(

h

16n
· en

h
· en

n(1 − 1/2α−1)

)n

≤ exp(−Θ(n))

In the above derivation, if α = 1, then the last term
(

n
n/2α−1

)

in the expression
(∗) is equal to 1. Therefore, in the derivation steps after the expression (∗), we
can simply assume that α > 1 which only makes the expression

(

n
n/2α−1

)

larger.
[To reviewer: We expanded the derivation to make it more detailed.]
So far, we have assumed that if a forever-honest node selects some puzzle to
solve in some epoch e, it will actually have enough time to solve the puzzle by
the beginning of the last round of epoch e. We now show that the allotted epoch
duration Tepoch := Tsolve · 	 2n

h · ln(16n
h) · log2 λ · (log n + 3)
 + 1 is indeed long

enough to meet this requirement except with negligible probability. Basically,
if in epoch e, the number of puzzles of minimum age α left in honest view
is at most n/2α−1, and an honest node selects each puzzle with probability
p = min(2

α−1·ln(16n/h)
h , 1), we can bound the total number of puzzles of minimum

age α an honest node selects to solve with the following two cases:

• Case 1: if 2α−1·ln(16n/h)
h ≥ 1, then 2α−1 ≥ h/ ln(16n/h). The total number of

puzzles of minimum age α selected to solve is upper bounded by n/2α−1 ≤
n
h · ln(16n/h).

• Case 2: if 2α−1·ln(16n/h)
h < 1, then the expected number of puzzles of minimum

age α selected to solve is upper bounded by

n

2α−1
· 2α−1 · ln(16n/h)

h
=

n

h
· ln(16n/h).

By the Chernoff bound, the probability that the number of puzzles of mini-
mum age α selected to solve is more than

n

h
·ln(16n/h)+

√

n

h
· ln(16n/h)·log2 λ ≤ n

h
·ln(16n/h)·log2 λ (∗∗)

is upper bounded by exp(−Ω(log4 λ)).

Recall that the number of ages is upper bounded by the number of epochs,
that is 	log2 n
 + 1. Now, taking a union bound over all possible ages, except
with exp(−Ω(log4 λ)) probability, the total number of puzzles an honest node
chooses to solve in an epoch is upper bounded by

2n

h
· ln(

16n

h
) · log2 λ · 	log2 n
 ≤ 2n

h
· ln(

16n

h
) · log2 λ · (log n + 3)

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 435

Finally, taking a union bound over the number of epochs which is polynomially
bounded in λ, we have that except with exp(−Ω(log4 λ)) probability, the above
bad event will never happen throughout all epochs.

[To reviewer: We added more steps of derivation in the above calculations.]
Thus, the allotted epoch duration Tepoch := Tsolve ·	 2n

h ·ln(16n
h)·log2 λ·(log n+

3)
 + 1 is sufficiently long such that except with negligible in λ probability, an
honest node has time to solve all puzzles it chooses in every epoch. ��

Remark 2. The expression (∗∗) is by no means the tightest possible bound;
but it is outside the scope of this paper to understand what the best possible
constant c is in the O(logc(λ, n)) round complexity bound. With our current
techniques, we only know how to achieve poly-logarithmic round complexity
in the strongly adaptive setting under corrupt majority. It is an exciting open
question whether we can improve the result to, say, expected constant rounds,
or prove impossibility.

[To reviewer: We added an explanation why we did not focus on calculating
the tightest expression.]

Theorem 4.4 (Liveness). Assume that n ≥ log2 λ, that the NIZK scheme satis-
fies soundness, the TLP scheme satisfies correctness, and the signature scheme Σ
satisfies existential unforgeability under chosen-message attack. Then, the above
Distribute protocol satisfies liveness.

Proof. Let ˜H denote the set of nodes that remain honest till the beginning of
the second round of the Distribute protocol. For every u ∈ ˜H, every so-far honest
node will have received an honestly generated puzzle Zu from u at the beginning
of the second round, i.e., the beginning of the first epoch of the Solve phase.
At the beginning of the next round after the final epoch E, Zu, if still active,
would have age E in every honest node’s view, i.e., its minimum age is E. Due
to Lemma 4.3, except with negligible probability, the number of active puzzles
from nodes in ˜H is then upper bounded by n/2E−1 < 1. Now, since honest nodes
do not double sign puzzles, except with negligible probability, it must be that
every forever-honest node has output a message for everyone in ˜H. ��

4.4 Proofs: Momentary Secrecy

Experiment Hyb(1λ, {m∗
u}u∈[n]). The hybrid experiment Hyb(1λ, {m∗

u}u∈[n]) is
defined almost identically as ExptA(1λ, {m∗

u}u∈[n]), except with the following
modifications:

• Run the simulated NIZK setup algorithm Gen0(1λ) which outputs a crs and
a trapdoor τ ;

• Whenever an honest node u is supposed to compute a NIZK proof by calling

πu ← NIZK.P(crsnizk, stmt = (u,Zu), w = (mu, σ, ρ); coins),

436 J. Wan et al.

now we instead call the simulated prover

πu ← NIZK.P0(crsnizk, τ, stmt = (u,Zu); coins).

Note that P0 uses the trapdoor τ but does not use the witness to output a
simulated proof;

• Whenever a node u newly becomes corrupt and the experiment needs to
explain the random coins used earlier by u, it calls the NIZK’s Explain algo-
rithm, that is,

NIZKcoins ← NIZK.Explain (crsnizk, τ, stmt = (u,Zu), w = (mu, σ, ρ); coins)

to output an explanation of the coins used in generating the earlier NIZK
proofs. These coins are returned to A along with all other random coins
consumed by the newly corrupted node u earlier.
[To reviewer: Indeed, there is no VRF here, the VRF was an editorial typo
due to historical reasons, since we changed our protocol completely at some
point. Thank you for spotting this. We also polished the entire paragraph to
make it more clear.]

For details of the NIZK syntax and security definitions (including the
NIZK.Explain algorithm which is part of the NIZK’s security definition), please
refer to AppendixA.2.

Claim 4.5. Assume that the NIZK scheme satisfies non-erasure computational
zero-knowledge. Then, the outputs of the experiments Expt(1λ, {m∗

u}u∈[n]) and
Hyb(1λ, {m∗

u}u∈[n]) are computationally indistinguishable.

Proof. Follows directly from the computational zero-knowledge of the NIZK
system. ��

Experiment Ideal(1λ). The ideal experiment Ideal(1λ) is almost identical to
Hyb(1λ,), except with the following modification:

• At the beginning of the challenge phase, let H∗ denote the so-far honest
nodes. We compute the first-round message (puz, Zu, πu) for every u ∈ H∗

as below: call Zu ← TLP.Gen(1λ, Tsolve, (0, σ)) where σ ← Σ.Sign(ssku, 0).
Further, call the NIZK’s simulated prover ˜P which uses τ but not the witness
to generate a simulated proof πu.

Claim 4.6. Assume that the TLP scheme satisfies ξ-hardness. Then, for any
{m∗

u}u∈[n], no non-uniform parallel 2T∅-bounded distinguisher D can distinguish
the outputs of the experiments Ideal(1λ) and Hyb(1λ, {m∗

u}u∈[n]) except with neg-
ligible probability.

Proof. We can consider a sequence of hybrids for i ∈ [0, h], such that in the
i-th hybrid, during the challenge session, the first min(i, |H∗|) nodes in H∗ (by
lexicographical ordering) will use the input (0, σ) where σ ← Σ.Sign(ssku, 0)

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 437

to compute a puzzle. If there exists a non-uniform parallel 2T∅-bounded dis-
tinguisher D that can distinguish the outputs of the experiments Ideal(1λ) and
Hyb(1λ, {m∗

u}u∈[n]) with more than negligible probability, by the hybrid argu-
ment, there must exist a pair of adjacent hybrids indexed j and j + 1 that D
can distinguish with non-negligible probability.

We can construct a non-uniform p.p.t . parallel machine B which breaks the
ξ-hardness of the TLP scheme. B simulates the experiment for A and let u be the
(j +1)-th node in H∗ at the beginning of the challenge session. At the beginning
of the challenge session, for every v that is among the first j nodes in H∗, B
computes their puzzles using the input (0, σ) where σ ← Σ.Sign(sskv, 0); and for
everyone else in H∗ that is not among the first j +1 nodes, B will compute their
puzzles using the input (m∗

v, σ′) where σ′ ← Σ.Sign(sskv,m∗
v).

After this computation is done, B now computes the first-round message for
the (j + 1)-th node in H∗. To do so, B interacts with a TLP challenger which
either returns a puzzle either for the string (0, σ) where σ ← Σ.Sign(ssku, 0), or
for the string (m∗

u, σ′) where σ′ ← Σ.Sign(ssku,m∗
u). This answer will be used as

the puzzle for the (j + 1)-th node in H∗.
At this moment, B gives the view of A, including all random coins consumed

by A and all outputs of A so far, as well as the first-round messages of H∗ in
the challenge session to the distinguisher D, and in at most 2T∅ time, it outputs
the same answer as D. ��

At this moment, by the hybrid argument, we have that no non-uniform
p.p.t . 2T∅-bounded parallel machine D can distinguish the outputs of ExptA(1λ,
{m∗

u}u∈[n]) and Ideal(1λ) with more than negligible probability. By a symmet-
ric argument, the same holds for ExptA(1λ, {m̃∗

u}u∈[n]) and Ideal(1λ). Thus, we
can conclude that no non-uniform p.p.t . 2T∅-bounded parallel machine D can
distinguish the outputs of ExptA(1λ, {m∗

u}u∈[n]) and ExptA(1λ, {m̃∗
u}u∈[n]) with

more than negligible probability.

5 Byzantine Broadcast Protocol

5.1 Protocol

Without loss of generality, we may assume that u = 1 is the designated sender
for the Byzantine Broadcast. Our protocol will make use of a VRF scheme which
is defined in Sect. 3.3, and will rely on the Distribute protocol that is defined and
constructed in Sect. 4.

Vote. A vote from a node u ∈ [n] for the bit b ∈ {0, 1} is a tuple of the form
(vote, b, u,D, σ) such that VRF.Vf(crsvrf , pku, b,D, σ) = 1, and moreover, it must
be that either D < Dp or u = 1. Here Dp denotes a difficulty parameter whose
choice will be specified shortly.

Batch of Votes. An r-batch of votes for a bit b ∈ {0, 1} is a collection of valid
votes from r distinct nodes, and moreover, it must be that one of these votes
comes from the designated sender.

438 J. Wan et al.

Protocol. Our Byzantine Broadcast protocol is described below. Recall that
h = n − f denotes the number of honest nodes.

Initially, every node u’s Extractedu set is set to ∅. The designated sender
u = 1 computes and records a vote for its input bit b by computing (D,σ) ←
VRF.Eval(crsvrf , sk1, b).

Parameters. Let � be the length of the first term of the VRF’s evalu-
ation outcome. The difficulty parameter Dp is set such that the proba-
bility that a random string of length � is less than Dp with probability
p ∈ (log

2 λ
h , 3 log2 λ

h) ∩ (0, 1). The number of phases R := 6 log2 λ · n
h .

Setup. We use two instances of the Distribute protocol, denoted Distribute0

and Distribute1 respectively, and each instance is used by nodes to dis-
tribute batches of votes for the bit 0 and 1, respectively. For b ∈ {0, 1},
call the setup of Distribute which outputs (crsbdistr, {vk

b
u, sskb

u}u∈[n]}). Call
(crsvrf , {pku, sku}u∈[n]) ← VRF.Gen(1λ). Now, publish the public parame-
ters (crs0distr, crs

1
distr, crsvrf) and give each node u the secret keys ssk0u, ssk1u,

and sku.

Phase r ∈ [1 . . . R]. Each phase consists of Rdistr + 1 rounds where Rdistr

denotes the round complexity of the Distribute protocol.

1. In the first round, every node u performs the following: for each bit
b ∈ {0, 1}, if node u has seen a valid r-batch of votes for b and b /∈
Extractedu , then it multicasts any such r-batch for b to everyone, and
sets Extractedu ← Extractedu ∪ {b}.

2. The next step lasts for Rdistr rounds. Each node u �= 1 does the following:
for each bit b ∈ {0, 1}, it invokes a new session of the Distributeb protocol
with a new session identifier r to distribute either an (r + 1)-batch of
votes or a dummy message:

• If it has recorded a valid r-batch of votes for b and node u has never
computed a vote for b before, then it attempts to vote for b by com-
puting (D,σ) ← VRF.Eval(crsvrf , sku, b). If D < Dp, then execute the
following:

– let Extractedu ← Extractedu ∪ {b};
– invoke Distributeb to distribute a valid (r + 1)-batch of votes for b,

possibly by adding its own vote (vote, b, u,D, σ).
• Else if the node did not decide to distribute an (r+1)-batch of votes for

b in the above, then invoke Distributeb to distribute a dummy message
⊥ which is encoded as a string of the same length as an (r + 1)-batch
of votes for b.

At any time, if any valid vote is received over the network or output by the
Distribute0 or Distribute1 protocols, the vote is then recorded by the node.

Output. At the end of the R phases, if |Extractedu| = 1 node u outputs
the unique bit in Extractedu; else output the default bit 0.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 439

Round Complexity. The total round complexity of the above protocol is upper
bounded by R ·Rdistr =

(

n
h

)2 · 1
ξ ·poly log λ. As a special case, in the case 99% or

any arbitrarily large constant fraction of nodes are corrupt, and assuming that
the hardness parameter ξ is a constant, the round complexity of the protocol is
poly log λ.

6 Proofs for Our Byzantine Broadcast Protocol

6.1 Additional Terminology

For convenience, we will use the following terminology.

• We say that an execution satisfies consistency for the bit b ∈ {0, 1}, iff the
following holds: if some forever-honest node u has b in its Extractedu set at the
end, then every forever-honest node v have b in its Extractedv set at the end,
too. To show consistency, we just have to prove that except with negligible
probability over the choice of the randomized execution, consistency holds for
b = 0 as well as b = 1.

• For convenience, we say that a node u mines a vote for b ∈ {0, 1} if it calls
(D,σ) ← VRF.Eval(crsvrf , sku, b) to attempt to compute a vote for b, and recall
that whether a mining attempt is successful depends on whether the outcome
D is less than the difficulty parameter Dp. All honest mining attempts are
made in the second round of some phase, i.e., the first round of the Distribute
protocol of that phase.

• We say that a node u ∈ [n] is in the 0-committee iff the first term in the output
of VRF.Eval(crsvrf , sku, 0) is smaller than Dp. Members of the 1-committee is
similarly defined.

We will consider two types of bad events. We will later prove that if, except
with negligible probability, neither type of bad event happens for both bits, then
consistency is respected except with negligible probability.

• Type A bad event for the bit b: In the second round of some phase r, all so-far
honest nodes have made attempts to mine a vote for b (in the second round
of some phase r′ ≤ r); and yet, the adversary A manages to corrupt every
member of the b-committee either before it even made a mining attempt for
b, or by the beginning of the third round of the phase in which it makes a
mining attempt for b.

• Type B bad event for the bit b: Either at least R nodes are members of the
b-committee, or no node is a member of the b-committee.

6.2 Proof Overview: Challenges and Intuition

We would like to use probablistic reasoning to argue that the above two types of
bad events do not happen except with negligible probability. The probabilistic
reasoning could be accomplished using standard measure concentration bounds if

440 J. Wan et al.

all the cryptography we employ were “ideal”. Unfortunately the cryptography we
employ is far from ideal. One problem we encounter is that our delayed-exposure
distribution primitive Distribute guarantees secrecy against only an adversary
who is restricted to run in a small number of parallel steps. An adversary who
can take more parallel steps can completely break the secrecy of Distribute by
solving the time-lock puzzles. For our final protocol, of course, we want to prove
security against any parallel p.p.t. adversary who is allowed to take an unbounded
number of parallel steps.

Partly due to this reason, the most natural proof strategy completely fails:
we are not able describe an ideal protocol (without cryptography), and show
that the real-world protocol securely emulates the ideal protocol by a standard,
simulation-based notion. What comes to the rescue is that we only need to prove
that certain security properties hold in the real-world protocol; and proving these
properties eventually boils down to showing that certain bad events (as defined
above) happen with negligible probability. Therefore, instead of proving that the
real-world protocol securely emulates some ideal protocol, our strategy is to prove
that the probability of bad events is not higher in the real-world protocol than
in the ideal protocol (barring negligible differences). To do this, we will define
a polynomially long sequence of hybrids, starting from the real-world protocol,
all the way to the ideal protocol which does not have any cryptography: we will
prove that for every pair of adjacent hybrids, the probability of bad events in
the former is not higher than the probability of bad events in the latter (barring
negligible differences).

We now elaborate on our blueprint—below in our proof overview, we mainly
focus on how we bound the probability of Type-A bad events since this is the
most technical part of the proof. First, we make several modifications to the real-
world protocol and obtain a hybrid called Hyb′

�. Hyb
′
� is no longer a consensus

protocol, it should simply be viewed as a game in which the adversary Ais trying
to cause Type-A bad events to happen. The modifications we made ensure that
the probability of Type-A bad events can only increase in Hyb′

� in comparison
with the real-world protocol. Importantly, in Hyb′

�, we introduce a final guessing
phase: if at the end of the protocol, A has corrupted f ′ < f number of nodes,
i.e., it has more corruption budget left, we give A an extra opportunity to guess
who, among the remaining honest nodes that have not made a mining attempt
for b, are members of the b-committee. If A can correctly guess all remaining
honest b-committee members in at most f −f ′ tries, we also declare that A wins,
i.e., a Type-A bad event has happened.

At this moment, it is not clear why we introduce the final guessing phase
yet. This will become clear in the next hybrid Hyb�. In Hyb�, we modify the
final guessing phase, such that the remaining honest nodes who have not made
a mining attempt for b yet would use true random coins rather than VRFs
to determine if they are a member of the b-committee. In this way, the game
becomes ideal (i.e., without cryptography) after the final guessing phase starts.
Partly relying on the security of VRF, one can show that any parallel p.p.t . A

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 441

cannot cause Type-A bad events to happen more often in Hyb′
� than in Hyb�

(barring negligible differences).
Now, in the remainder of the proof, our idea is to start from the end of the

experiment, and make each phase “ideal” one by one. In other words, in each
hybrid, we will make the final guessing phase start one phase earlier, until at
the very end, the final guessing phase starts upfront and therefore the whole
game becomes ideal (i.e., no cryptography). In the process, we make sure that
A’s probability of causing bad events does not decrease (barring negligible dif-
ferences).

At this moment, it is a good time to revisit how we can overcome the afore-
mentioned problem where the overall adversary is a parallel machine running in
unbounded parallel steps but our Distribute primitive only gives secrecy against
an adversary who is restricted to run in a small number of parallel steps. With the
above proof strategy, informally speaking, at some point, we need to compare
the probability of Type-A bad event in the following two adjacent hybrids—
henceforth let r∗ be the phase immediately preceding the final guessing phase:

1. in the first hybrid, in phase r∗, honest nodes run the real Distribute protocol
using real inputs;

2. in the second hybrid, in phase r∗, honest nodes run the Distribute protocol
using input 0.

In both of these hybrids, the adversary A can win the game if it either wins in
the final guessing phase, or if A can guess, by the beginning of the third round of
phase r∗, which honest nodes successfully made mining attempts for b in phase
r∗. To succeed in the latter, A might try to gain some leverage by attacking the
Distribute protocol of phase r∗, but because of the short-fuse deadline A must
make the guess by, the Distribute protocol in phase r∗ is unhelpful to A due to
the momentary secrecy property. Even though after phase r∗, A may completely
break the secrecy of the Distribute protocol of phase r∗, recall that the games
becomes ideal immediately after phase r∗. Therefore, breaking the secrecy of the
phase-r∗ Distribute protocol no longer helps A after phase r∗.

Last but not the least, besides the aforementioned technicalities, yet another
is that A is adaptive, and we need to handle the adaptivity with particular care
in our proofs. Now, without further ado, we present our formal proofs.

6.3 Bounding the Probability of Type-A Bad Events

Let Real denote an execution of the real-world protocol in which the adversary
A’s goal is to cause a Type-A bad event to happen. In the remainder of this
section, we will consider a sequence of hybrid experiments starting with Real
such that for each pair of adjacent experiments, the probability of a Type-A bad
event in the latter is an upper bound of the probability of a Type-A bad event
in the former (ignoring negligible differences). In the end, we will upper bound
the probability of a Type-A bad event in the final experiment called Hyb1. Hyb1
essentially gets rid of the cryptography and therefore we can upper bound the

442 J. Wan et al.

probability of a Type-A bad event in Hyb1 with a simple information-theoretic,
probabilistic argument.

In the following we fix an arbitrary b ∈ {0, 1}, and we care about bounding
Type-A bad events for the bit b. Henceforth whenever we say Type-A bad event,
it means a Type-A bad event for the bit b. Also, recall that we use the notation
f = n − h to denote the maximum number of corruptions allowed.

6.3.1 Experiment Hyb′
�

Since we only care about bounding Type-A bad events for the bit b, we make
some simplifications to the protocol without decreasing the probability of a Type-
A bad event. We therefore define a hybrid experiment Hyb′

�:

1. At the beginning of the protocol, for each u ∈ [n], we compute (Du, σu) ←
VRF.Eval(crsvrf , sku, 1 − b) and disclose to A the pair (Du, σu) which is the
evaluation outcome and proof for the bit 1 − b. Of course, upon the new
corruption of some node v, we now need to explain to A the coins in the
above evaluation for v too.

2. During the protocol, in each phase, we only run the Distributeb protocol
but not the Distribute1−b protocol; similarly, we need not run the setup for
Distribute1−b either.

3. If some honest node u tried to call Distributeb to send a valid (r + 1)-batch
of votes for b in the second round of phase r and u remains honest till the
beginning of the third round of phase r, the experiment declares that A has
failed to cause a Type-A bad event, and simply aborts outputting adv-fail.

4. Immediately after the second round of phase R, for every honest node u who
has already made a mining attempt for b, we disclose its VRF secret key skb

to A even if u has not been corrupted by A (and note that these nodes do
not count towards the corruption budget).
Now, we allow A an extra final guessing phase, in which A can adaptively
specify nodes to corrupt one by one; all nodes specified must not have made
a mining attempt for b yet. Every time A specifies a new node u to corrupt,
it learns its VRF secret key sku. The experiment stops when A has made f
corruption queries in total. At this moment, if A has corrupted all members of
the b-committee who have not made a mining attempt for b at the beginning of
the final guessing phase, then declare that a Type-A bad event has happened.

Claim 6.1. If for some non-uniform p.p.t . parallel machine A, a Type-A bad
event happens with probability μ in the real-world experiment Real, then there
exists a non-uniform p.p.t . parallel machine A′ such that a Type-A bad event
happens with probability at least μ in Hyb′

�.

Proof. We can add these modifications one by one and in each step argue that
if there is a non-uniform p.p.t . parallel machine A in the previous experiment
that can cause a Type-A bad event to occur with probability μ, then there is
a non-uniform p.p.t . parallel machine A′ in the modified experiment that can
cause a Type-A bad event to occur with probability at least μ − negl(λ).

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 443

First, we can add the modification 4. It is not hard to see that this phase
only gives the adversary more opportunities in causing a Type-A bad event. In
some sense, the final guessing phase is saying, at the end of the protocol, if not
so-far honest nodes have made mining attempts for b (in this case a Type-A bad
event cannot happen), we will pretend as if all of them made mining attempts
for b and give A another opportunity to guess who the b-committee members
are.

With modification 4, we can essentially imagine that all so-far honest nodes
will have made mining attempts for b by the end of the protocol. Therefore,
modification 3 is cosmetic, it basically checks for Type-A bad events constantly
in the background and does not change the probability of Type-A bad event.

Next, we can add modifications 1 and 2. It is not hard to see that if there
is a non-uniform p.p.t . parallel machine A in the previous experiment that can
cause a Type-A bad event to occur with probability μ, then we can construct
a non-uniform p.p.t . parallel machine A′ in the modified experiment that can
cause a Type-A bad event to occur with probability at least μ. Basically A′

simply simulates the Distribute1−b instances for A using its knowledge of all the
VRF evaluations and proofs for 1 − b. Whenever A corrupts some v, A′ learns
the explanation of the coins that contributed towards v’s VRF proofs for 1 − b,
in this way, A′ can provide the necessary explanation to A too. ��

6.3.2 Experiment Hyb�

Experiment Hyb� is almost the same as Hyb′
�, except that when the final guessing

phase starts, every so-far honest node who has not made a mining attempt for
b yet chooses a random D from an appropriate domain instead of using the
honest VRF outcome to determine whether it is a member of the b-committee.
Furthermore, during the final guessing phase, when A corrupts any node, we no
longer disclose the node’s VRF key to A.

Lemma 6.2. Assume that the VRF scheme satisfies pseudorandomness under
selective opening (see Definition 3.3). Then, suppose that there is a non-uniform
p.p.t . parallel machine A that can cause a Type-A bad event to happen in Hyb′

�

with probability μ, then there is a non-uniform p.p.t . parallel machine A′ that can
cause a Type-A bad event to happen in Hyb� with probability at least μ − negl(λ)
for some appropriate negligible function negl(·).

Proof. We prove this lemma through a sequence of intermediate hybrids
described below.

Hybrid ˜H�. The experiment ˜H� is defined in almost the same way as Hyb′
�

except with the following modifications:

• During the setup, we will replace the VRF’s setup with the simulated setup
algorithms S0 which generates the (s1, . . . , sn) part of the secret keys, and
S1 which generates (crs, pk1, . . . , pkn, τ). The adversary A is given the public
components crs, pk1, . . . , pkn.

444 J. Wan et al.

• Whenever an honest node u needs to evaluate the VRF on input b′, we com-
pute the VRF outcome y honestly using sku, but call S2(τ, pku, b′, y) instead
to compute a simulated proof using the trapdoor τ .

• Whenever an honest node u gets corrupted, we call the S3 algorithm which
returns ρu and all the randomness u used in earlier VRF evaluations. Now
return sku := (su, ρu) to A. If this is before the final guessing round, also
return the random coins output by S3 to A, as well as randomness the newly
corrupted node used in the Distribute protocol instances so far. Immediately
after the second round of phase R, call S3 for every honest node v who has
already made a mining attempt for b, and return su and the term ρv output
by S3 to A.

Claim 6.3. Assume that the VRF scheme satisfies pseudorandomness under
selective opening (see Definition 3.3). Then, A’s views in ˜H� and Hyb′

� are com-
putationally indistinguishable.

Proof. Follows directly from the second part of the definition of pseudorandom-
ness under selective opening. ��

Hybrid ˜Hf . The experiment ˜Hf is almost the same as ˜H� except with the
following modification: when the last node u becomes corrupt during the final
guessing phase, for u and all remaining honest nodes who have not made a mining
attempt for b, we choose a random number of appropriate length to determine
whether the node is in the b-committee. Moreover, for the last corruption u in
the final guessing stage, we do not disclose u’s secret key or coins to A.

Claim 6.4. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜H� with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event
to happen in ˜Hf with probability at least μ − negl(λ) for some negligible function
negl(·).

Proof. Whenever A makes the last corruption query during the final guessing
phase, whether a Type-A bad event has occurred is already determined no mat-
ter whether we disclose the secret key of the newly corrupt node to A. Therefore,
henceforth we simply assume that nothing is disclosed to A upon the last cor-
ruption during the final guessing phase.

Basically we define A′ to be the same as A and it runs A till it makes the
last corruption query during the final guessing phase. We show that if A can
cause a Type-A bad event to happen in ˜H� with more than negligibly higher
probability than A′ in experiment ˜Hf , we can construct a reduction B to break
the first game in the definition of pseudorandomness under selective opening.

Essentially B interacts with its challenger C as defined in the first game in the
definition of pseudorandomness under selective opening. Moreover, B simulates
the experiment ˜H� to A right till the moment A makes the last corruption query
in the final guessing phase.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 445

• During setup, B asks its challenger C to run the setup who generates
(s1, . . . , sn). B now runs S1 to generate crs, pk1, . . . , pkn, τ and it gives the
terms crs, pk1, . . . , pkn to A.

• Whenever the experiment needs to evaluate the first term of the VRF out-
come, B instead forwards the query to its challenger C, and then it simulates
the proof part by calling S2 just like in ˜H�.

• Whenever A corrupts an honest node u (except for the last corruption query
in the final guessing phase), B issues a corruption query to C, learns su, and
then calls the S3 algorithm which returns ρu and all the randomness u used
in earlier VRF evaluations. Now return sku := (su, ρu) to A, and if this is
before the final guessing round, also return the random coins output by S3

to A, as well as the coins u used in Distribute protocol instances so far.
• Immediately after the second round of phase R, for every honest node v who

has already made a mining attempt for b, B issues a corruption query to C
for v, learns the sv, and then calls S3 to obtain ρv. It returns the pair (sv, ρv)
to A.

• When A makes the last corruption query during the final guessing stage, B
sends multiple challenge queries on the input b to C to obtain the evaluation
outcomes for the last corrupted node, as well as all remaining honest nodes
who have not made a mining attempt for b.

Besides the above, B simulates the rest of the ˜H� faithfully.
These evaluation outcomes are used to determine whether a Type-A event

has happened at this moment. Note that if C returned random answers, the
experiment is the same as A′ interacting with ˜Hf ; otherwise it is the same as A
interacting with ˜H�.

We stress that in the above, we are using a multi-challenge version of the
first-game of the pseudorandomness under selective opening notion, where in
the challenge phase, the adversary can specify multiple challenge queries rather
than a single one. As argued in Chan et al. [ACD+19], the multi-challenge version
is equivalent to the single challenge version by a standard hybrid argument. ��

Hybrid ˜Hf−1. The experiment ˜Hf−1 is almost the same as ˜Hf except with the
following modification: when the second to last corruption query u is made in
the final guessing phase (or if fewer than 2 corruption queries are made in the
final guessing phase, then for all of them):

• we do not return anything to A upon the corruption query; and
• we use a random number for the node u as well as all remaining honest nodes

who have not made a mining attempt for b, to determine if the corresponding
node is a member of the b-committee.

Claim 6.5. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜Hf with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event to
happen in ˜Hf−1 with probability at least μ − negl(λ) for some negligible function
negl(·).

446 J. Wan et al.

Proof. Basically, A′ runs A till it makes the second to last corruption query u
in the final guessing phase. A′ also makes the same corruption query u as the
second to last query, but for the last corruption query, it just chooses to corrupt
an arbitrary honest node that has not made a mining attempt for b.

We can construct a reduction B in a similar way as in the proof of Claim6.4,
except that now B stops at the second to last corruption query (for the node
u) in the final guessing stage, and then B asks C for the evaluation outcome
on the input b for u as well as any remaining honest node who has not made
a mining attempt for b. The returned evaluation outcomes are used to decide
whether the corresponding node is a member of the b-committee. It is not hard
to see that if C returns random answers, the experiment above would have the
same probability of causing a Type-A bad event as in ˜Hf−1; else it has the same
probability of causing a Type-A bad event as in ˜Hf . ��

Hybrid ˜H1. We can define a sequence of hybrids ˜Hf , ˜Hf−1, . . ., ˜H1, until eventu-
ally we arrive at ˜H1, which is almost the same as Hyb� except that we are using
the simulated setup and simulated VRF proofs in ˜H1. Specifically, in experiment
˜Hi, when A is making the last but (f−i+1)-th corruption query in the final guess-
ing phase, we switch to using random outcomes for all remaining honest nodes
who have not made a mining attempt for b (including the one being corrupted
right now), to determine if the corresponding node is in the b-th committee; and
moreover at this moment we do not disclose anything more to A.

Claim 6.6. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜Hi with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event to
happen in ˜Hi−1 with probability at least μ − negl(λ) for some negligible function
negl(·).

Proof. The proof is essentially identical to that of Claim6.5. ��

Claim 6.7. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, A’s views in ˜H1 and Hyb� are computationally indistin-
guishable.

Proof. Directly follows from the second part of the pseudorandomness under
selective opening notion. ��

With the above sequence of hybrid experiments, we have concluded the proof
of Lemma 6.2. ��

6.3.3 Experiments Hyb′
r and Hybr

We define a sequence of hybrids below {Hyb′
r,Hybr}r∈[1,R].

Experiment Hyb′
r. Experiment Hyb′

r is almost identical as Hyb� except the
following modifications:

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 447

• In phase r of the protocol, we pretend instead that so-far honest nodes use the
inputs 0 for the phase-r Distributeb protocol, and compute their first-round
messages (denoted M) of the Distributeb protocol. We give M to A, and let it
run till the beginning of the third round of phase r (i.e., the second round of
the phase-r Distribute protocol). A outputs, among other terms, a set of new
nodes to corrupt by the beginning of the third round of phase R.

• At this moment, every remaining honest node who has not yet made a mining
attempt for b will use a random string of appropriate length to determine if
it is a member of the b-committee. We now let A engage in a final guessing
phase as defined before.

The definition of a Type-A bad event in Hybr is the same as in Hyb�.

Experiment Hybr. Experiment Hybr is almost the same as Hyb� except that
at the beginning of the second round of phase r, the experiment discloses all
honest nodes’ secret keys for the Distributeb instance to A. A now enters the
final guessing phase, in which all remaining honest nodes who have not yet
made mining attempts for b switch to using random coins to determine if they
are a member of the b-committee.

Claim 6.8. Assume that the Distribute protocol satisfies momentary secrecy.
Then, there exists a negligible function negl(·) such that the following holds: if
for some non-uniform p.p.t . A, Type-A bad events happen with probability μ in
Hyb�, then there must exist a non-uniform p.p.t . A′ such that Type-A bad events
happen with probability at least μ − negl(λ) in Hyb′

R.

Proof. Consider the following experiment Exptβ in which a reduction B interacts
with a challenger C as well as the adversary A.

• For the Distributeb instance, it will embed the public parameters passed to it
by C.

• Whenever B needs to play on behalf of honest nodes in Distributeb protocols
(not including in phase R), it forwards the query to C instead providing the
inputs of the so-far honest nodes, and acts as a relay between C and A for
messages of the Distributeb protocol.

• Whenever some honest node is corrupted by A, it forwards the corruption
query to C, and forwards the internal states returned by C to A; besides this,
B also gives A the secret keys and random coins pertaining to the VRF of
the newly corrupt node.

• Finally, during phase R, B invokes a challenge session with C. Depending on
the bit β, C will either use the honest nodes’ real inputs in the challenge
Distributeb protocol if β = 0; else if β = 1, it will use the vector 0 as honest
inputs to the challenge Distributeb protocol. Let Mβ be the first-round mes-
sages of the challenge Distributeb protocol computed by C. Let viewβ be the
joint view of A and B at this point.

• (�): Now, give Mβ to A, run it till the beginning of the next round, and A
outputs, among other terms, a set Kβ of nodes to corrupt.

448 J. Wan et al.

• At this moment, any remaining honest node who has not made a mining
attempt for b uses random coins to decide if it is a member of the b-committee,
and we let A engage in the final guessing phase.

Besides the above, B simply runs the experiment Hyb� faithfully. Observe
that if β = 0, the experiment is the same as Hyb� till the beginning of the third
round of phase R (i.e., second round of the phase-R Distribute protocol); else if
β = 1, the experiment is the same Hyb′

R till the beginning of the third round of
phase R.

Let X denote the total number of honest nodes who have not made a mining
attempt for b by the beginning of the third round of phase R, let Y denote the
total number of nodes corrupted by the beginning of the third round of phase
R, and let Z be a bit indicating whether at the beginning of the third round
of phase R, adv-fail has occurred—recall that if the set K does not contain all
honest b-committee members who made a mining attempt for b in phase R, then
adv-fail would occur.

Recall that after the beginning of the third round of phase R, the experiment
enters a final guessing phase in which all honest nodes who have not made a
mining attempt for b yet uses random coins to decide if they are members of the
b committee. To prove that the probability of Type-A bad events in Hyb′

R can
must be at least as high as in Hyb� barring negligible differences, it suffices to
show that for any x ∈ [n], 0 ≤ y ≤ x, and z ∈ {0, 1},

∣

∣

∣

∣

Pr
Expt0

[X = x, Y = y, Z = z] − Pr
Expt1

[X = x, Y = y, Z = z]
∣

∣

∣

∣

≤ negl(λ)

Suppose not. Then, there must exist x ∈ [n], 0 ≤ y ≤ x, and z ∈ {0, 1},
such that PrExpt0 [X = x, Y = y, Z = z] and PrExpt1 [X = x, Y = y, Z = z] differ
by a non-negligible amount. Now, we can construct a non-uniform p.p.t . parallel
2T∅-bounded distinguisher D that can distinguish (M0, view0) and (M1, view1)
with more than negligible probability. Basically D takes Mβ and viewβ , and
runs whatever A runs in the (�) step for exactly one round which is T∅ amount
of time. At this moment, among A’s output, there is an additional set K of
nodes to corrupt. Finally, D tallies the counts X, Y , and the bit Z; here the
tallying includes the set K. D outputs 1 if (X,Y,Z) = (x, y, z); else it outputs
0. The tallying can be computed in logarithmic in n parallel time. Due to our
assumption on the duration of an round, that is, an honest node must be able to
process all n received messages within a round (see Sect. 3.1), the tallying can
be computed in a single round, that is, at most T∅ time. Therefore, D runs in at
most 2T∅ time in total.

Remark 3. We stress that A’s views are NOT computationally indistinguish-
able in the two hybrids since A can run in unbounded parallel time. We are
merely arguing that the probability of Type-A bad events are not decreased by
switching the phase-R Distribute messages. It is NOT true that (M0, view0,K0)
and (M1, view1,K1) are computationally indistinguishable, because (M0,K0)

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 449

and (M1,K1) can potentially be distinguished by an adversary running in suffi-
ciently long time. However, any property on (M0, view0,K0) or (M1, view1,K1)
that can be checked in small parallel runtime should happen with almost the same
probability regardless of the choice of β. ��

Claim 6.9. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, there exists a negligible function negl(·) such that the
following holds: if for some non-uniform p.p.t . A, Type-A bad events happen
with probability μ in Hyb′

R, then there must exist a non-uniform p.p.t . A′ such
that Type-A bad events happen with probability at least μ − negl(λ) in HybR.

Proof. First, disclosing all honest secret keys for the Distributeb protocol at the
beginning of the second round of phase R discloses strictly more information
to A than in the earlier Hyb′

R. Next, we can repeat the same argument as in
the proof of Lemma 6.2, that we can switch to using random coins to decide
whether the following nodes are members of the b-committee: the nodes that
remain honest at the beginning of the second round of phase R and have not yet
made any mining attempts for b. ��

Claim 6.10. Assume that the Distribute protocol satisfies momentary secrecy,
and that the VRF scheme satisfies pseudorandomness under selective opening.
Then, there exists a negligible function negl(·) such that the following holds: if
for some non-uniform p.p.t . A, Type-A bad events happen with probability μ in
Hyb�, then there must exist a non-uniform p.p.t . A′ such that Type-A bad events
happen with probability at least μ − negl(λ) in Hyb1.

Proof. The proof works through a sequence of hybrids from HybR to Hyb′
R−1, to

HybR−1, to Hyb′
R−2 and so on, where to argue each adjacent pair of hybrids we

use either the same proof as Claim 6.8 or the same proof as Claim 6.9. ��

Lemma 6.11. Let b be an arbitrary bit. For any non-uniform p.p.t . parallel
machine A, the probability of a Type-A bad event for b in Real is negligibly
small.

Proof. Notice that in Hyb1, even for an unbounded adversary making f = n−h
corruptions, the expected number of forever-honest nodes that belong to the b-
committee is Θ(log2 λ). By the Chernoff bound, the probability that A succeeds
in guessing and corrupting all members of the b-committee is upper bounded by
negl(λ).

Now, the earlier sequence of hybrids established that the probability of a
Type-A bad event for b in Real must be upper bounded by the probability of a
Type-A bad event in Hyb1 against an unbounded adversary plus negl(λ). ��

6.4 Consistency Proofs

The following lemma bounds the probability of a Type-B bad event for either
b = 0 or b = 1.

450 J. Wan et al.

Lemma 6.12. Fix an arbitrary b ∈ {0, 1}. Assume that the VRF scheme satis-
fies pseudorandomness under selective opening. Then, Type-B bad events do not
happen except with negligible probability.

Proof. If we used random coins to decide if each node is a member of the b-
committee, then the probability that at least R = 6 log2 λ · n

h nodes are members
of the b-committee is upper bounded by a negligible function in λ by the Chernoff
bound. Similarly, the probability that no node is a member of the b-committee
is also negligibly small in λ. Now, rather than true randomness, we are using the
VRF which gives pseudorandomness, and because the function that determines
how many nodes are in the b-committee is a polynomial function on the outcomes
of the VRF, it holds that the same holds when the true random coins are replaced
with pseudorandom ones. ��

So far, we have concluded that neither Type-A nor Type-B bad events happen
except with negligible probability, for either bit b ∈ {0, 1}. To prove consistency,
it suffices to show that if neither types of bad events happen for both bits except
with negligible probability, then consistency follows. This is stated and proven
in the following theorem.

Theorem 6.13 (Consistency). Assume that n ≥ log2 λ, that the VRF scheme
satisfies pseudorandomness under selective opening as well as unforgeability, and
that the Distribute protocol satisfies liveness and momentary secrecy. Then, the
Byzantine Broadcast protocol defined earlier in this section satisfies consistency.

Proof. Due to Lemmas 6.11 and 6.12, the liveness of the Distribute protocol, as
well as the unforgeability of the VRF, it suffices to prove that the following hold
in some execution, then the execution satisfies consistency.

1. for either b = 0 or b = 1, neither Type-A nor Type-B bad events happen for b;
2. the liveness property of Distribute is never broken;
3. for either b = 0 or b = 1, if any so-far honest node u has not made a mining

attempt for b, then there is no valid vote from u for b in any honest node’s
view.

Observe that an inconsistency can only take place if some forever-honest node
u includes a bit b in its Extractedu set but some other honest node v does not
include b in its Extractedv set. We now consider the following cases:

• Case 1: u first added the bit b to its Extractedu set in some phase r but not
in the first round of phase r. According to our protocol, in phase r, u must
have observed an r-batch of votes for b, made a successful mining attempt for
the bit b, and moreover, it must have tried to distribute an (r + 1)-batch of
votes for b. Since Type-B bad events do not happen and votes are not forged,
it must be that r < R.
Since u is forever honest, by the liveness property of Distribute, it must be
that by the end of the phase-r Distribute protocol, all forever-honest nodes
will have observed the (r+1)-batch of votes from u. Therefore, every forever-
honest node v will have added b to its Extractedv set in the first round of
phase r + 1 ≤ R.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 451

• Case 2: u first added the bit b to its Extractedu set in some phase r but in the
first round of phase r. This means that u has observed an r-batch of votes
for b in the first round of phase r. Since Type-B bad events do not happen
and votes are not forged, it must be that r < R.
Because u is forever honest, it must be that at the beginning of the second
round of phase r, all so-far nodes have observed the same r-batch of votes
for b that u saw. Now, all so-far honest nodes will make a mining attempt
for b if they have not done so already. Now, since Type-A and Type-B bad
events do not happen, there must exist a so-far honest node v that made a
successful mining attempt for the bit b in the second round of some phase
r′ ≤ r, and moreover, the adversary did not yet corrupt v at the beginning
of the third round of phase r′. Now, by liveness of the Distribute protocol, by
the beginning of phase r′ +1 ≤ R, all forever-honest nodes will have observed
the (r′ + 1) batch of votes for b that v tried to distribute in phase r′, and
therefore, by the end of the first round of phase r′ + 1, every forever-honest
node w will have added the bit b to its Extractedw set. ��

6.5 Validity Proofs

Theorem 6.14 (Validity). Suppose that n ≥ log2 λ, that the VRF scheme sat-
isfies pseudorandomness under selective opening as well as unforgeability, and
that the Distribute protocol satisfies liveness and momentary secrecy. Suppose
also that the designated sender is forever-honest and its input is b′ ∈ {0, 1}.
Then, except with negligible probability, if any forever-honest node outputs b at
the end of the protocol, it must be that b = b′.

Proof. If the designated sender u = 1 is forever-honest, let b be its input bit,
then node u = 1 must distribute a valid 1-batch of votes for b in the first round
of the first phase. Thus, by the beginning of the second round of the first phase,
all so-far honest nodes will have made a mining attempt for b. Because Type-A
and Type-B bad events do not happen except with negligible probability, it must
be that except with negligible probability, at least one node u successfully mines
a vote for b in phase 1 and the node u remains honest till at least the beginning
of the third round of the first phase. By the liveness property of Distribute, it
must be that except with negligible probability, by the beginning of the second
phase, every so-far honest node v will have observed a valid 2-batch of votes for
b, and will have added the bit b to its Extractedv set. Finally, validity follows by
observing that due to the unforgeability of the VRF, no valid batch of votes for
1 − b can appear in any honest node’s view except with negligible probability. ��

7 Conclusion and Open Questions

Our work is the first to show a sublinear-round Byzantine Broadcast protocol
secure in the presence of corrupt majority and strongly adaptive corruptions.

Our work leaves open several exciting directions for future work:

452 J. Wan et al.

• Recall that Garay et al. [GKKO07] show an Ω(n
n−f) lower bound even

for randomized protocols and static corruptions. Our round complexity is
(

n
n−f

)2

poly log λ assuming that the puzzle’s hardness parameter ξ is a con-
stant. Although our round complexity is only polylogarithmic even with, say,
99% corruption, it is an intriguing question whether we can match the elegant
lower bound of Garay et al. [GKKO07].

• Another interesting and natural direction is whether we can get rid of cryp-
tographic assumptions such as time-lock puzzles.

• In the honest majority setting, it is long known how to construct expected
constant-round protocols even for strongly adaptive adversaries [FM97,KK09,
ADD+19]. Therefore, an interesting question is whether we can attain
expected constant-round protocols in the corrupt majority setting under
strongly adaptive corruptions.

• Finally, as mentioned earlier, it would be interesting to understand how gen-
eral our current Distribute primitive is, and whether one can devise a general
compiler that upgrades any weakly adaptive protocol to a strongly adaptive
one while preserving its security.

Acknowledgment. We are extremely grateful to the TCC reviewers for their detailed
and insightful comments and suggestions that helped greatly in improving the paper.
We are especially grateful to our shepherd Ran Cohen who spent a significant amount
of time to help us improve the paper. We acknowledge helpful technical discussions
with Kai-Min Chung, Ilan Komargodski, Hoeteck Wee, and Rafael Pass about time-
lock puzzles. This work is in part supported by an NSF grant under the award number
CNS-1561209, and a Packard Fellowship.

A Additional Preliminaries

A.1 The Decisional Linear Assumption

Suppose that G(1λ) is a group generator that samples a bilinear group (G,GT)
of prime order p, along with a pairing operation e : G×G → GT , and a random
generator g ∈ G. The decisional linear assumption posits that the following two
probability ensembles are computationally indistinguishable:

1. Run G(1λ) to generate a bilinear group (G,GT) of prime order p, along with
a pairing operation e : G×G → GT , and a random generator g ∈ G. Sample
random x, y, r, s at random from Zp. Output the tuple (g, gx, gy, gxr, gys, gr+s)
as well as the group description.

2. Run G(1λ) to generate a bilinear group (G,GT) of prime order p, along with
a pairing operation e : G×G → GT , and a random generator g ∈ G. Sample
random x, y, r, s, d at random from Zp. Output the tuple (g, gx, gy, gxr, gys, gd)
as well as the group description.

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 453

A.2 Adaptively Secure Non-interactive Zero-Knowledge Proofs

We use f(λ) ≈ g(λ) to mean that there exists a negligible function ν(λ) such
that |f(λ) − g(λ)| < ν(λ).

A non-interactive proof system henceforth denoted NIZK for an NP language
L consists of the following algorithms.

• crs ← Gen(1λ,L): Takes in a security parameter λ, a description of the lan-
guage L, and generates a common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect Completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr
[

crs ← Gen(1λ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1
]

= 1.

Non-erasure Computational Zero-Knowledge. Non-erasure zero-knowle-
dge requires that under a simulated CRS, there is a simulated prover that can
produce proofs without needing the witness. Further, upon obtaining a valid wit-
ness to a statement a-posteriori, the simulated prover can explain the simulated
NIZK with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computa-
tional zero-knowledge iff there exist a probabilistic polynomial-time algorithms
(Gen0,P0,Explain) such that

Pr
[
crs ← Gen(1λ

), AReal(crs,·,·)
(crs) = 1

]
≈ Pr

[
(crs0, τ0) ← Gen0(1

λ
), AIdeal(crs0,τ0,·,·)

(crs0) = 1
]

,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness
r and obtains the proof π, and then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, ρ) with randomness ρ and without a
witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs (π, r).

Perfect Knowledge Extraction. We say that a proof system (Gen,P,V) sat-
isfies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (Gen1,Extr), such that for all (even unbounded) adversary A,

Pr
[

crs ← Gen(1λ) : A(crs) = 1
]

= Pr
[

(crs1, τ1) ← Gen1(1λ) : A(crs1) = 1
]

,

and moreover,

Pr

[
(crs1, τ1) ← Gen1(1

λ
); (stmt, π) ← A(crs1);w ← Extr(crs1, τ1, stmt, π) :

V(crs1, stmt, π) = 1

but (stmt, w) /∈ L

]
= 0.

Theorem A.1 (Instantiation of NIZK [GOS12]). Assume that the decisional
linear assumption holds in suitable bilinear groups. Then, there exists a proof
system that satisfies perfect completeness, non-erasure computational zero-
knowledge, and perfect knowledge extraction.

454 J. Wan et al.

References

[ACD+19] Abraham, I., et al.: Communication complexity of Byzantine agreement,
revisited. In: PODC (2019)

[ADD+19] Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous
Byzantine agreement with optimal resilience, expected o(n2) communi-
cation, and expected o(1) rounds. In: Financial Cryptography and Data
Security (FC) (2019)

[BBBF18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96884-1 25

[BGJ+16] Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V.,
Waters, B.: Time-lock puzzles from randomized encodings. In: Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science (ITCS), pp. 345–356 (2016)

[Can00] Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptol. 13(1), 143–202 (2000)

[CCGZ16] Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and
composability of cryptographic protocols. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 240–269. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53015-3 9

[CHM+19] Cohen, R., Haitner, I., Makriyannis, N., Orland, M., Samorodnitsky, A.: On
the round complexity of randomized Byzantine agreement. In: 33rd Inter-
national Symposium on Distributed Computing, DISC 2019, Budapest,
Hungary, 14–18 October 2019, pp. 12:1–12:17 (2019)

[CL99] Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI (1999)
[CMS89] Chor, B., Merritt, M., Shmoys, D.B.: Simple constant-time consensus pro-

tocols in realistic failure models. J. ACM 36(3), 591–614 (1989)
[CPS19a] Hubert Chan, T.-H., Pass, R., Shi, E.: Consensus through herding. In: Ishai,

Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 720–749.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 24

[CPS19b] Hubert Chan, T.-H., Pass, R., Shi, E.: Sublinear-round byzantine agree-
ment under corrupt majority (2019). Online full version of this paper.
https://eprint.iacr.org/2019/886

[CPS20] Chan, T.-H.H., Pass, R., Shi, E.: Sublinear-round byzantine agreement
under corrupt majority. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas,
V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 246–265. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 9

[CS20] Chan, B.Y., Shi, E.: Streamlet: textbook streamlined blockchains. Cryptol-
ogy ePrint Archive, Report 2020/088 (2020). https://eprint.iacr.org/2020/
088

[DPS16] Daian, P., Pass, R., Shi, E.: Snow white: robustly reconfigurable consen-
sus and applications to provably secure proofs of stake. Cryptology ePrint
Archive, Report 2016/919 (2016)

[DS83] Dolev, D., Raymond Strong, H.: Authenticated algorithms for Byzantine
agreement. SIAM J. Comput. - SIAMCOMP 12(4), 656–666 (1983)

[EFL17] Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consen-
sus based on proofs of work. Cryptology ePrint Archive, Report 2017/915
(2017). https://eprint.iacr.org/2017/915

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-662-53015-3_9
https://doi.org/10.1007/978-3-030-17653-2_24
https://eprint.iacr.org/2019/886
https://doi.org/10.1007/978-3-030-45388-6_9
https://eprint.iacr.org/2020/088
https://eprint.iacr.org/2020/088
https://eprint.iacr.org/2017/915

Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 455

[Fel88] Felman, P.N.: Optimal algorithms for Byzantine agreement. Ph.D. disser-
tation, MIT (1988)

[FM97] Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous
Byzantine agreement. SIAM J. Comput. 26, 873–933 (1997)

[FN09] Fitzi, M., Nielsen, J.B.: On the number of synchronous rounds sufficient
for authenticated Byzantine agreement. In: Keidar, I. (ed.) DISC 2009.
LNCS, vol. 5805, pp. 449–463. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-04355-0 46

[GKKO07] Garay, J., Katz, J., Koo, C.-Y., Ostrovsky, R.: Round complexity of authen-
ticated broadcast with a dishonest majority. In: 48th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), November 2007

[GKKZ11] Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.-S.: Adaptively secure
broadcast, revisited. In: Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 2011,
pp. 179–186. ACM, New York (2011)

[GKL15] Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: anal-
ysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 10

[GOS12] Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11:1–11:35 (2012)

[HZ10] Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110, pp. 466–485. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 24

[KK09] Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine
agreement. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

[KMS14] Katz, J., Miller, A., Shi, E.: Pseudonymous secure computation from time-
lock puzzles. IACR Cryptology ePrint Archive 2014:857 (2014)

[KY] Karlin, A., Yao, A.C.-C.: Probabilistic lower bounds for byzantine agree-
ment. Manuscript

[Lam98] Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2),
133–169 (1998)

[LPS17] Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, 15–17 October 2017, pp. 576–587 (2017)

[LSP82] Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem.
ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

[MVR99] Micali, S., Vadhan, S., Rabin, M.: Verifiable random functions. In: FOCS
(1999)

[PS17a] Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless
model. In: DISC (2017)

[PS17b] Pass, R., Shi, E.: Rethinking large-scale consensus. In: 30th IEEE Com-
puter Security Foundations Symposium, CSF 2017, Santa Barbara, CA,
USA, 21–25 August 2017, pp. 115–129 (2017)

[PS17c] Pass, R., Shi, E.: Rethinking large-scale consensus (invited paper). In: CSF
(2017)

[PS17d] Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70697-9 14

https://doi.org/10.1007/978-3-642-04355-0_46
https://doi.org/10.1007/978-3-642-04355-0_46
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1007/978-3-319-70697-9_14

456 J. Wan et al.

[PSS17] Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in
asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 22

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto. Technical report, USA (1996)

[Sch90] Schneider, F.B.: Implementing fault-tolerant services using the state
machine approach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

[WXSD20] Wan, J., Xiao, H., Shi, E., Devadas, S.: Expected constant round byzantine
broadcast under dishonest majority. Cryptology ePrint Archive, Report
2020/590 (2020). https://eprint.iacr.org/2020/590

[YMR+19] Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff:
BFT consensus with linearity and responsiveness. In: Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing (PODC),
pp. 347–356. Association for Computing Machinery, New York (2019)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://eprint.iacr.org/2020/590

	Round-Efficient Byzantine Broadcast Under Strongly Adaptive and Majority Corruptions
	1 Introduction
	1.1 Our Results and Contributions
	1.2 Technical Highlights
	1.3 Additional Related Work

	2 Technical Roadmap
	2.1 Chan et al. Breaks Under a Strongly Adaptive Adversary
	2.2 A Strawman Scheme
	2.3 Our Approach

	3 Preliminaries
	3.1 Definitions
	3.2 Time-Lock Puzzles
	3.3 Verifiable Random Functions

	4 Delayed-Exposure Message Distribution
	4.1 Definitions
	4.2 Construction
	4.3 Proofs: Liveness
	4.4 Proofs: Momentary Secrecy

	5 Byzantine Broadcast Protocol
	5.1 Protocol

	6 Proofs for Our Byzantine Broadcast Protocol
	6.1 Additional Terminology
	6.2 Proof Overview: Challenges and Intuition
	6.3 Bounding the Probability of Type-A Bad Events
	6.4 Consistency Proofs
	6.5 Validity Proofs

	7 Conclusion and Open Questions
	A Additional Preliminaries
	A.1 The Decisional Linear Assumption
	A.2 Adaptively Secure Non-interactive Zero-Knowledge Proofs

	References

