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Abstract. The hardness of the Ring Learning with Errors problem
(RLWE) is a central building block for efficiency-oriented lattice-based
cryptography. Many applications use an “entropic” variant of the prob-
lem where the so-called “secret” is not distributed uniformly as pre-
scribed but instead comes from some distribution with sufficient min-
entropy. However, the hardness of the entropic variant has not been sub-
stantiated thus far.

For standard LWE (not over rings) entropic results are known, using
a “lossiness approach” but it was not known how to adapt this app-
roach to the ring setting. In this work we present the first such results,
where entropic security is established either under RLWE or under the
Decisional Small Polynomial Ratio (DSPR) assumption which is a mild
variant of the NTRU assumption.

In the context of general entropic distributions, our results in the ring
setting essentially match the known lower bounds (Bolboceanu et al.,
Asiacrypt 2019; Brakerski and Döttling, Eurocrypt 2020).

1 Introduction

Lyubashevsky, Peikert and Regev [16,17] introduced the Ring Learning with
Errors (RLWE) problem as a structured variant of the celebrated LWE prob-
lem [24]. RLWE (and similar variants such as ideal/polynomial LWE [28]) are by
now an indispensable tool for constructing efficient lattice-based cryptographic
primitives, such as public-key encryption, key agreement and signatures. It is
appealing to use RLWE-based cryptographic primitives since they are usually
more succinct and efficient than their non-ring counterparts. Translating a cryp-
tographic construction from LWE to RLWE is often straightforward, and indeed
many LWE based constructions have RLWE counterparts that enjoy a higher
level of efficiency (at the cost of only enjoying hardness respective to a special
class of lattices instead of all lattices as in LWE).
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The focus of this work is entropic hardness, which is an important property
of LWE-based cryptography [2,4,6,8,18] that so far resisted translation to the
RLWE regime. Entropic hardness is the property of the LWE problem (and
hopefully also RLWE) to remain hard even when the so called “LWE secret”
is not sampled from the prescribed distribution, but instead is sampled from
some distribution with sufficient min-entropy. This is relevant in the context of
key-leakage (see e.g. [12] for a survey), and in a number of other applications
which use RLWE with a key that is not sampled according to the prescribed
distribution. These include implementations of fully homomorphic encryption
such as [5,9,10,25] and even some of the candidates in the NIST post-quantum
cryptography contest [19].

The question of entropic security for RLWE is therefore highly motivated.
Nevertheless, very little was known about its security prior to this work. The only
work we are aware of in this context is by Bolboceanu et al. [3], which introduced
a non-standard assumption that they call HLBDD. They prove the hardness of
entropic RLWE for a class of distributions that they call k-wise independent,
based on the hardness of HLBDD and standard RLWE. This solution has a
number of drawbacks in not addressing general entropic distributions, being
applicable only in certain rings (it requires that the ring has CRT representation)
and making a new assumption.

One would have hoped that it would be possible to use similar methods to
those used in the context of LWE also for RLWE. After all, the structure of the
problems is very similar. However, the same barrier seemed to have stopped all
prior attempts. In a nutshell, it is the failure to find a proper analog lossiness
argument in the ring setting. This term refers to a family of proof techniques
that underlie all known entropic hardness results [2,4,6,8,18]. We explain this
barrier in more detail below.

We recall that in standard LWE, an instance is composed of a random matrix
A ∈ Z

n×N
q with N � n, and a vector y = sA + e, where s is the “LWE secret”

and e is a noise vector (usually sampled from a Gaussian). The goal is to find
the vector s, or in the decisional version of the problem to distinguish (A,y)
from uniform. The RLWE problem is a structured variant of the above, usually
defined using elements from the ring of integers of an algebraic number field
(and its dual). For the purpose of this work, it will be instructive to consider
an equivalent (and in fact more general) formulation of RLWE that does not
refer to algebraic number theory at all and takes great resemblance to the above
LWE description. Let us rewrite the above LWE instance as follows, consider
the case where N = n · m. We can break the matrix A into square blocks s.t.
A = [A1, . . . ,Am] and consider the LWE instance as a sequence of blocks of
the form {(Ai,yi = sAi + ei)}m

i=1. RLWE instances can be presented in the
same way, except the matrices Ai are no longer uniform, but instead are drawn
from a distribution over structured matrices.1 Throughout this work we will
attempt to state our results and techniques in terms of this Structured LWE

1 Essentially this structure represents the multiplication of an element a from the
(dual) of a ring of integers by an element from the ring of integers.
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formulation as much as possible, without specifying the exact structure of the
matrices Ai, and the instantiations to the special case of number fields will follow
as straightforward corollaries.

A lossiness argument for LWE hinges on the observation that the entropic
LWE distribution is computationally indistinguishable from one where the matri-
ces Ai are not uniform, but instead are distributed as Ai = B · Ci + Fi,
where B ∈ Z

n×k
q (note that the same B is used for all i) for k � n,

Ci ∈ Z
k×n
q , and Fi is small noise. Indistinguishability is established by deci-

sional LWE. This step makes the matrices Ai “close to low-rank”. Furthermore,
now yi = sAi = sBCi + sFi + ei. From this point the methods diverge some-
what, let us stick to the approach of [2,4] that we follow in this paper. In these
works, it is shown that even information theoretically s cannot be recovered,
essentially because the adversary only has access to sB, which has dimension k
and therefore does not contain much information, and to the terms sFi + ei,
where it is shown that the entropy in ei masks the information about s.

Trying to apply this argument in the structured LWE setting runs into a
problem. The matrices Ai are no longer uniform but instead have some (effi-
ciently verifiable) structure. Therefore, we need to find a distribution that is
both indistinguishable from the structured Ai distribution, and has lossiness
properties as above. In the context of the structure that is imposed by RLWE,
this seems hopeless since the structure imposed by the ring does not allow the
Ai matrices to be close to low-rank for general rings.2 In this work we overcome
this barrier.

1.1 Our Results

We present a new approach to achieve lossiness that generalizes the “closeness
to low-rank” approach, but that can be applied for general RLWE (and possibly
other structured LWE variants). Concretely, we observe that it suffices to replace
Ai with a matrix whose span contains short vectors. That is, we will set Ai =
H·Zi, where H is an invertible matrix that is sampled once and used for all i, and
the Zi come from a distribution over low-norm matrices. The exact norm that
we use depends on the underlying ring, but for the purposes of this overview, it
suffices to think of Zi as a matrix where all entries are shorter than some bound
� q. We observe that the matrices H · Zi are neither low rank nor close to low-
rank, however they become close to low rank under a (common) basis-change
corresponding to the matrix H.3 The level of lossiness will be dictated by the
properties of Zi: the lower the norm of Zi, the more lossiness is obtained. We
note that we can assume that H itself has a short inverse, that we denote by Z0

2 The work of [3] can be viewed as targeting a special case where this is possible, the
case where the ring decomposes into a “CRT representation”. This requires making
a non-standard assumption like their HLBDD assumption which only applies to that
special setting.

3 In fact, under this basis change the matrices are even close to the 0 matrix, which
has the lowest possible rank.
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(we explain below that this does not actually impose an additional restriction).
We show that this notion is both sufficient for proving entropic security, and
that there exist such lossy distributions that are indistinguishable from uniform
under standard assumptions.

The DSPR and NTRU Assumptions. We notice that the assumption
as described above closely resembles the Decisional Small Polynomial Ratio
(DSPR) [15] and NTRU assumptions [11]. Both assumptions are defined over
polynomial rings and have very similar syntax. Both essentially assert that over
some polynomial ring, there is a distribution over ring elements s.t. when sam-
pling f, g1, . . . , gm from this distribution, it holds that g1/f, . . . , gm/f are jointly
indistinguishable from a set of uniformly random ring elements. The NTRU cryp-
tosystem uses a specific and very short distributions for f, gi (over polynomials
with {−1, 0,+1} coefficients) and DSPR considers a Gaussian distribution (say
with some Gaussian parameter γ) which will be easier to use.4 The assump-
tion becomes weaker as γ increases. As observed by Stehlé and Steinfeld [27],
when the distributions become wide enough (γ � √

q), this assumption is actu-
ally implied by RLWE. For other parameter regimes, however, DSPR appears
to provide a lower level of security compared to RLWE, at least with respect
to state of the art attacks [13]. Translating the above into the structured LWE
terminology, we can define Z0 as the matrix that corresponds to the operator
of multiplying by f , and Zi as the matrix that corresponds to multiplying by
gi. Intuitively the parameter γ can be thought of as a measure for the smallness
of the elements in the Zi matrices. We note that since the polynomial rings are
commutative, the matrices H,Z0,Zi all commute with each other in the actual
instantiation. However, we will not require this property.

Lastly, we point out that while RLWE enjoys a worst-case to average-case
hardness reduction [16,23], such reduction is not known for NTRU/DSPR with
small γ. Hence there is a tradeoff between the quality of the result obtained and
the hardness of the assumption that we need to make.

Noise Lossiness and Entropic Security Under DSPR. We follow the app-
roach of [4] and consider the notion of noise lossiness of a distribution of secrets
S, which is defined to be the conditional smooth min-entropy of a sample from
S conditioned on learning its perturbation by Gaussian noise. Formally:

νσ(S) = H̃∞(s|s + e), (1)

where e is Gaussian with parameter σ. We also recall that [4] show a general
relation between noise lossiness and entropy

νσ(S) � H̃∞(S) − n log(q/σ). (2)

We show that similarly to LWE, the hardness of entropic RLWE on a given
secret distribution S is also related to its noise lossiness. We present our result

4 We will consider Gaussians over the canonical embedding of ring elements into
Euclidean space.
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in the context of RLWE in power-of-2 cyclotomic number fields, but the result
is modular and applies to RLWE on any ring that has reasonable regularity
condition. See also discussion below.

Theorem 1.1 (Informal). Assume DSPR with parameter γ. Let S be a distri-
bution s.t. for some σ′ it holds that νσ′(S) � n log(γpoly(n)) + ω(log λ). Then
Entropic RLWE in a power-of-2 cyclotomic with secret distribution S and Gaus-
sian noise parameter σ ≈ σ′ · poly(n) · √m is hard.

Plugging in Eq. (2), we get that for general entropic distributions we require
average min-entropy of roughly H̃∞(S) � n log(q/σ) + O(n log(nmγ)) + ω(log λ)
in order to achieve entropic hardness. We note that better bounds on noise
lossiness are known for “short” distributions, where the entropy requirement can
go almost all the way down to n log γ, which allows to show entropic hardness for
many low-norm distributions but unfortunately is still insufficient for the widely
used setting where the secret is chosen as a ring element with binary coefficients.
Indeed, even in our results, we need to make stronger DSPR assumptions as we
wish to deal with secrets of lower entropy. We believe that there is an inherent
difficulty for proving hardness of such distributions without making extreme
hardness assumptions.

Our results are stated in a rather general form. We present a notion of “struc-
tured LWE” problem, which captures standard LWE, RLWE and potentially
other problems, and present lossiness results based on a “matrix DSPR” assump-
tion, assuming that the matrix distributions in the DSPR instance satisfy some
(mild) non-degeneracy conditions. Proving that the non-degeneracy conditions
indeed hold is the only place where the specifics of the number field are required.
The aforementioned [27] fortunately implies these required conditions for power-
of-2 cyclotomic number fields. We believe that the proof can be generalized to
other number fields (especially cyclotomics) but this would require essentially
repeating the [27] proofs in more generality which we feel is tangent to the pur-
pose of this work.

Since our paper is written in a modular manner, it suffices to simply prove
the non-degeneracy conditions in Sect. 6 in order to obtain entropic hardness
results for other variants of structured LWE, be it RLWE in other number fields
(or a different embedding) or other forms of the problem completely.

To conclude, let us discuss the applicability of our techniques to the so called
“module LWE” problem [1,5,14,22]. Module-LWE interpolates between LWE
and ring-LWE and is appealing in the practical context as it may offer supe-
rior security benefits over RLWE with minimal additional computational cost.
Viewed as a structured LWE problem, in module-LWE the matrix A is simply
a block matrix, where each block is an independent RLWE matrix. Our meth-
ods apply to such matrices as well, under a matrix DSPR assumption. We can
instantiate matrix DSPR under RLWE-like assumptions, but we do not know of
variants of this assumption that rely on module-LWE-like structures. A complete
module LWE analog of our result would require introducing such an analog.
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1.2 Our Techniques

As explained above, in order to prove security for entropic structured LWE, we
rely on the assumption that we can replace the uniform Ai with Ai = H · Zi,
where Zi are short, and there exists Z0 (also short) s.t. HZ0 = I (mod q). We
note that a survey by Peikert [21] uses a similar method when sketching a proof
that the hardness of NTRU implies that of RLWE. Namely, replacing the ai ele-
ments in RLWE samples with NTRU values, and arguing that the RLWE secret
should become information-theoretically irrecoverable. One can view our method
as putting together a rigorous variant of Peikert’s arguments, and showing that
it is possible to obtain lossiness for various entropic distributions.

We start by examining the distribution of the yi values after substituting
Ai = H · Zi. We have

yi = sAi + ei = sH · Zi + ei.

We now take the approach of “flooding at the source” [4]. The idea is to
“bring the noise closer to the secret” and show that all structured LWE blocks
in fact depend on a noisy version of the secret, which allows to apply noise lossi-
ness. Specifically, the technique that is used is Gaussian decomposition. Using
Gaussian decomposition it is possible to show that if the ei Gaussians are wide
enough relative to the norm of the Zi matrices, it is possible to find e s.t. for
all i, ei = eZi + e′

i, where e and all e′
i are independent. This essentially follows

from the covariance-additivity of Gaussian vectors, which can be carried over to
discrete Gaussians as well.

Plugging this decomposed Gaussian into the equation for yi, we get

sH · Zi + eZi + e′
i = (sH + e)Zi + e′

i.

This implies that all information about s is captured in the term sH+ e (mod q).
We now note that already at this point we can derive a non-trivial entropic

result. Let us denote s′ = sH, and notice that since H is invertible, the entropy of
s′ is the same as that of s and recovering s is information-theoretically equivalent
to recovering s′. Now, essentially by definition, the probability of recovering s′

is exactly captured by its noise lossiness. Specifically, if the noise lossiness is
super-logarithmic then s′ is not recoverable. Since we can relate noise lossiness
to entropy (recall Eq. (2)) we have

νσ(s′) � H̃∞(s′) − n log(q/σ) = H̃∞(s) − n log(q/σ),

where σ is the Gaussian parameter of e. Therefore, so long as it holds that
H̃∞(s) � n log(q/σ) + ω(λ), then we have entropic security for RLWE with
secret coming from the distribution of s. This is indeed a non-trivial bound
which may be useful in certain settings (e.g. when we only know the entropy of
the distribution of s but do not know any other properties), but in many cases
we would like to take into account additional properties of the distribution that
reduce the large gap of n log(q/σ) between noise lossiness and entropy. However,
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in the current analysis we can say very little about the distribution of s′ given the
distribution of s (other than the entropy being preserved). We therefore proceed
to show a connection that directly relates to the noise lossiness of s itself.

Recall that we deduced that all information about s is captured in the term
sH + e (mod q). Since H is invertible, we can multiply the equation by its
inverse Z0 (on the right) to obtain s + eZ0 (mod q). We conclude that even
information theoretically, an attacker can only recover s + eZ0 (mod q), where
e is Gaussian and Z0 is a low-norm matrix which is known to the attacker.

We wish to show that s + eZ0 (mod q) does not leak much information about
s. We can see that some information can in fact be leaked. For example, if s is
short, then the reduction modulo q does not have any effect, and the adversary
can learn s + eZ0 (as a value over the integers), this in particular allows to learn
the coset of s relative to the lattice spanned by the rows of Z0 (henceforth we
refer to it as the “Z0 lattice”). This is essentially the reason why our techniques
don’t carry over to the setting of very low norm s – this would require sampling
Z0 from a very narrow distribution that would imply very strong and unrealistic
parameters for our DSPR assumption.

Instead, we show that essentially all the entropy that can be gained by the
adversary, beyond the “usual” noise lossiness, is indeed proportional to learning
a coset of the Z0 lattice. The number of such cosets is ≈ γn, and thus the loss
in entropy of n log γ in Theorem 1.1.

To see this, we consider the distribution: (Z0, s + ẽ, c), where ẽ is a spherical
discrete Gaussian over the integers, and c indicates a coset of ẽ with respect
to the Z0 lattice. We show that there is a (randomized) process that takes this
distribution as input, and outputs (Z0, s + eZ0). This means that the adversary
cannot learn about s from (Z0, s + eZ0) more than it can from (Z0, s + ẽ, c). The
latter, just by definition, translates to the noise lossiness of s (with respect to
the Gaussian parameter of ẽ), minus the “leakage” that is imposed by providing
the adversary the value c. Since this value is a coset indicator, this leakage is
bounded.

To generate (Z0, s + eZ0) from (Z0, s + ẽ, c), we use the Gaussian convolution
theorem of Peikert [20]. This theorem shows that it is possible to sample the
term eZ0, which is just a (non spherical) discrete Gaussian over the Z0 lattice,
in two steps: first sampling from a Gaussian over the integer lattice, and then
“rounding” the sample into the Z0 lattice. The rounding step only requires to
know the coset of the first step (in order to cancel it out). Setting the parameters
appropriately, the theorem can be used and the result follows.

In order to be able to apply Gaussian decomposition and also the Gaussian
convolution theorem, we rely on probabilistic properties of the Z matrices, in
particular their minimal and maximal singular values. The properties required
in order for our method to go through turn out not to hold with high proba-
bility, but rather only with some fixed inverse-polynomial probability. We thus
introduce a notion of “sometimes lossiness” and show that it suffices for proving
entropic hardness. In Sect. 5 we show how to obtain entropic hardness based
on probabilistic properties of the Z matrices. Then in Sect. 6 we show that
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these properties hold for RLWE over power-of-two cyclotomics, using properties
proved in [27].

1.3 Paper Organization

We try to keep the discussion abstract and use the notion of “structured LWE” as
much as we can. Eventually we state our result in terms of properties that need to
hold for the structured LWE problem at hand, and show that the RLWE/DSPR
instantiation indeed possesses these properties. Standard preliminaries in infor-
mation theory, lattices and algebraic number theory are provided in Sect. 2.
Section 3 introduces the entropic structured LWE (entSLWE) problem and shows
that mild form of (entropic) hardness for entSLWE with relatively few samples
implies full-fledged (entropic) hardness. Section 4 presents a notion of lossiness
that we call “sometimes lossiness” and shows how it is used to prove (entropic)
hardness, then a sometimes lossy distribution is constructed in Sect. 5 based
on an abstract problem we call Decisional Small Ratio (DSR) problem. Finally
Sect. 6 shows how to instantiate all required building blocks in the RLWE set-
ting.

2 Notation and Definitions

We will denote the security parameter by λ. We say a function ν(λ) is negligible
if ν(λ) ∈ λ−ω(1). We will generally denote row vectors by x and column vectors
by x�. We will denote the L2 norm of a vector x by ‖x‖ =

√∑
i x2

i and the L∞
norm by ‖x‖∞ = maxi |xi|.

Let X,Y be two discrete random variables defined on a common support X .
We define the statistical distance between X and Y as

Δ(X,Y ) =
1
2

∑

x∈X
|Pr[X = x] − Pr[Y = x]|.

Consider a real valued matrix A ∈ R
n×m, assume for convenience that m ≥

n. The singular values of A are the square roots of the eigenvalues of the positive
semidefinite (PSD) matrix AA�. We will denote the largest singular value of A
by σmax(A). The spectral norm of A is σmax(A). It holds that

σmax(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖ .

2.1 Min-Entropy

Let x be a discrete random variable supported on a set X and z be a possibly
(continuous) random variable supported on a (measurable) set Z. The condi-
tional min-entropy H̃∞(x|z) of x given z is defined by

H̃∞(x|z) = − log
(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]
])

.
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In the case that z is continuous, this becomes

H̃∞(x|z) = − log
(∫

z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,

where pz(·) is the probability density of z.
For an ε > 0 we define the ε-smooth min-entropy H̃ε

∞(x|z) as the maximum
over all H̃ε

∞(x′|z′) for which (x′, z′) is ε-close to (x, z) in statistical distance.

2.2 Leftover Hashing

We recall a version of the generalized leftover hash lemma [7,24].

Lemma 2.1. Let G be a finite Abelian group, and Y be a finite set. Let 	 ≥
log(|G|) + log(|Y|) + ω(log(λ)) be an integer. Let g1, . . . , g� ←$ G be chosen
uniformly at random. Further let x ←$ {0, 1}� be chosen uniformly at random.
Let Y be a random variable supported on Y which is possibly correlated with x but
independent of the gi. Then it holds that (g1, . . . , g�,

∑
i xigi, Y ) is statistically

close to (g1, . . . , g�, u, Y ), where u ←$ G is chosen uniformly at random.

2.3 Lattices and Gaussians

Lattices. We recall the standard facts about lattices. A lattice Λ ⊆ R
m is

the set of all integer-linear combinations of a set of linearly independent basis-
vectors, i.e. for every lattice Λ there exists a full-rank matrix B ∈ R

k×m such
that Λ = Λ(B) = {z · B | z ∈ Z

k}. We call k the rank of Λ and B a basis of Λ,
and we say that Λ is full-rank if k = m. For a lattice Λ ⊆ R

m, the dual lattice
Λ∗ is defined by Λ∗ = {x ∈ Span(Λ) | ∀z ∈ Λ : 〈z,x〉 ∈ Z}.

We say that a lattice is q-ary if (qZ)m ⊆ Λ ⊆ Z
m. In particular, for every

q-ary lattice Λ there exists a matrix A ∈ Z
k×m
q such that Λ = Λq(A) = {y ∈

Z
m | ∃x ∈ Z

k
q : y = x · A mod q}. We also define the lattice Λ⊥

q (A) = {y ∈
Z

m | A · y = 0 mod q}.

Gaussians. The Gaussian function ρσ : Rn → R is defined by

ρσ(x) = e−π· ‖x‖2

σ2 .

For a a non-singular matrix B we define ρB(x) = ρ(xB−1).
The continuous gaussian distribution DB on R

n has the probability density
function ρB(x)/ρB(Rn). We call Σ = B�B the covariance matrix of the gaussian
DB. For a lattice Λ, the discrete gaussian distribution DΛ,B supported on Λ has
the probability mass function ρB(x)/ρB(Λ).

For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ)
is defined to be the smallest real number s for which ρ1/s(Λ∗\{0}) ≤ ε. For a
matrix B we write B ≥ ηε(Λ) if ηε(ΛB−1) ≤ 1.

The following claim follows routinely from the definition of the smoothing
parameter.
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Claim. Let Λ ⊆ R
n and V ∈ R

n×n be a matrix with largest singular value
σmax(V). It holds that ηε(Λ · V) ≤ σmax(V) · ηε(Λ).

The following proposition allows us to decompose spherical gaussians with
respect to a matrix F.

Proposition 2.2 ([4], Proposition 3.2). Let F ∈ R
n×m be an arbitrary matrix

with spectral norm σF . Let σ, σ1 > 0 be s.t. σ > σ1 · σF . Let e1 ∼ Dn
σ1

and let
e2 ∼ D√

Σ for Σ = σ2I − σ2
1F

�F. Then the random variable e = e1F + e2 is
distributed according to Dm

σ .

2.4 Noise Lossiness

The noise lossiness of a distribution S measures how much information is lost
about a sample of S when adding gaussian noise. Another way to think about
noise lossiness is as a measure of how bad S performs as a Euclidean error-
correcting code. The following definition of noise lossiness slightly deviates from
the definition given in [4] by considering potentially non-spherical gaussians.

Definition 2.3 (Noise Lossiness). Fix a matrix B ∈ R
n×n. Let S ⊆ Z

n
q be

a distribution of secrets and let σ > 0 be a gaussian parameter. We define the
noise-lossiness νσB(S) by

νσB(S) = H̃∞(s|s + e)

where s ←$ S and e ←$ DσB.

In [4] the following bounds for the noise lossiness of distributions were pro-
vided.

Lemma 2.4 (Noise-Lossiness for General Entropic Distributions). Let
0 < σ ≤ q

√
π/ ln(4n) be a gaussian parameter and let S be any distribution on

Z
n
q . Then it holds that

νσ(S) ≥ H̃∞(S) − n · log(q/σ) − 1

Lemma 2.5 (Noise-Lossiness for Short Distributions). Let σ > 0 be a
gaussian parameter and let S be a r-bounded distribution on Z

n
q . Then it holds

that
νσ(S) ≥ H̃∞(S) −

√
2πn log(e) · r

σ
.

2.5 Algebraic Number Fields

We will briefly reiterate some basics about algebraic number fields and the Learn-
ing with Errors Problem over Rings. See e.g., [16,17] for more details.

An algebraic number field K is a finite extension of the rationals Q, every
number field can be constructed via Q(ξ) = Q[X]/(f(X)) where f ∈ Q[X] is a
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monic irreducible polynomial and ξ is a root of f . The degree n of K is defined
to be the degree of f and K can be seen as an n-dimensional Q-vectorspace.

The number fields most relevant to us are power-of-two cyclotomics. For this
instantiation the polynomial f is of the form f = Xn + 1 where n is a power of
two.

A number field K of degree n has n embeddings, that is injective ring homo-
morphisms into the complex numbers C, usually denoted by σi : K → C. Each
σi is defined by sending ξ to one of the roots of f in C.

The embeddings σi come in conjugate pairs, there are s1 real embeddings
and 2s2 complex conjugate embeddings with n = s1 + 2s2. We can define the
space H ⊆ R

s1 × C
2s2 by

H = {(x1, . . . , xn) ∈ R
s1 × C

2s2 | ∀j ∈ [s2] : xs1 + s2 + j = xs1 + j}.

It can be shown that the space H is isomorphic to R
n as an inner product space.

Let Θ : H → R
n be this isomorphism. Moreover, the space H is isomorphic as

a ring to the field tensor product KR = K⊗Q R. Let Θ̄ : KR → R
n be the metric

isomorphism which takes KR to R
n, i.e. Θ̄ is just the concatenation of σ and Θ.

The canonical embedding σ : K → H is given by σ(x) = (σ1(x), . . . , σn(x)).
It can be shown that σ is a ring-homomorphism, where both addition and
multiplication on C

n are defined component-wise. The canonical embedding
induces a geometry on K, that is we can define a eucilidean norm on K via
the euclidean norm on C

n, concretely for x ∈ K we define ‖x‖ = ‖σ(x)‖. Note
that ‖σ(x)‖ = ‖Θ(σ(x))‖.

While ‖ · ‖ immediately satisfies the triangle inequality, in the canonical
embedding also the following multiplicative inequality holds: For all x, y ∈ KR

it holds that ‖x · y‖ ≤ ‖x‖∞ · ‖y‖. Here, ‖ · ‖∞ is the L∞ norm defined by
‖x‖∞ = maxi |σi(x)|. We will also use the inequality ‖x · y‖∞ ≤ ‖x‖∞ · ‖y‖∞.

We can define a gaussian distribution DKR,
√

Σ via the gaussian distribution
D√

Σ on R
n, i.e. we set DKR,

√
Σ = Θ̄−1(D√

Σ).
A element x ∈ K is called algebraic integer, if the minimal polynomial of x

has integer coefficients. For a number field K we denote by R ⊆ K the set of all
algebraic integers in K, which can be shown to be a sub-ring of K. For the special
case that K is a cyclotomic, it holds that R = Z[ξ].

Since R is a finitely generated Z-module, it holds that Λ = Θ̄(R) ⊆ R
n is

a lattice. We let L denote some basis for this lattice and we denote B = L−1.
In this notation, multiplication by the matrix B maps a x ∈ λ to an integer
vector, i.e. xB ∈ Z

n, which is exactly the coefficient vector of the ring element
with respect to the basis L. We define the smoothing parameter ηε(R) of R to
be ηε(Λ).

Gaussian distributions over K, or more precisely over KR are defined as fol-
lows. Given a Gaussian distribution D√

Σ over R
n, we map it to KR via Θ̄−1.

The resulting distribution is the Gaussian with parameter
√

Σ over KR.
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2.6 Ring-LWE

Let q be a modulus and R be a ring of integers of a number field K. We will
briefly define the (non-dual) decisional Ring Learning with Errors (Ring-LWE)
problem in Hermite form for an error-distribution χ supported on R is defined
as follows. We discuss other versions of the Ring LWE problem in Sect. 3. We
use a definition provided by Peikert [21, Section 4.4.1] which is slightly different
from the one in [16] but easier to work with. See discussion in [21, Section 4.4.1]
for details.

Definition 2.6 (Decisional Ring-LWE (Hermite Form)). Let s ←$ χ.
Given m samples (ai,bi) ∈ Rq × Rq, the task is to decide whether the bi are
of the form bi = ais + ei for errors ei ←$ χ or if the bi are chosen uniformly
at random from Rq.

Lyubashevsky, Peikert and Regev [16] provided a worst-to-average case
reduction for the Ring LWE problem relative to worst-case problems in ideal
lattices. In particular, they show that if the error distribution χ is an appropri-
ate gaussian, then the Ring LWE search problem is as hard as the approximate
shortest vector problem in worst case ideal lattices. Furthermore, [16] provide
a search-to-decision reduction which bases the hardness of decisional Ring LWE
on the search variant.

3 (Entropic) Structured LWE

In this section, we define a version of LWE which we call structured LWE. Struc-
tured LWE generalizes both standard and ring-LWE.

We will only consider the search version of structured LWE in this work.

Definition 3.1 (Entropic Structured Learning with Errors). Let q be a
modulus and n, k be integers. Let M be a distribution of matrices on Z

n×n
q and Υ

be a distribution of error-distributions on R
n. Furthermore, let S be a distribution

on Z
n
q . The goal of the entSLWE(q, k,M, Υ,S) problem is to find a secret s ←$ S

given k samples ((A1,y1), . . . , (Ak,yk)), where χ ←$ Υ is an error distribution
and for all i ∈ [k] we have Ai ←$ M, ei ←$ χ and yi ← sAi + ei.

If A = (A1, . . . ,Ak), e = (e1, . . . , ek) and y = (y1, . . . ,yk) where yi =
sAi + ei, we will use the shorthand y = sA + e. This in fact corresponds to the
standard matrix multiplication and vector addition if we identify A with to be
the horizontal concatenation of all Ai and e the horizontal concatenation of all
ei. If an unbounded number of samples are given (via an oracle), then we will
omit the parameter k. We note that Regev’s LWE is obtained when M,S are
uniform and Υ is Gaussian. The Ring-LWE instantiation is discussed in Sect. 3.2
below.

We will consider two different hardness notions for entSLWE. In the standard
notion, we require that no PPT adversary find the secret s with non-negligible
probability.
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Definition 3.2 (Standard Hardness). Let q, n, k, M, Υ and S be as above.
We say that the entSLWE(q, k,M, Υ,S) problem is (standard-) hard, if it holds
for every PPT adversary A that

Pr[A(A, sA + e) = s] < negl(λ),

where χ ←$ Υ , A ←$ Mk, s ←$ S and e ←$ χk.

We call the second notion mild hardness. In essence, the success probability
of an adversary which breaks mild hardness only depends on the choice of s and
e, but not on the choice of A.

Definition 3.3 (Mild Hardness). Let q, n, k, M, Υ and S be as above. We
say that the problem entSLWE(q, k,M, Υ,S) is mildly hard, if for every PPT
adversary A and every negligible function ν it holds that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1 − ν] < negl(λ).

In this work we will focus on the notion of mild hardness. While this seems
like a restriction at first glance, it follows by a routine amplification argument
that, given an unbounded number of samples, mild hardness implies standard
hardness.

Lemma 3.4. Let q, n, M and S be as above and let Υ be a distribution of error-
distributions. If entSLWE(q,M, Υ,S) is mildly hard, then it is also standard hard.

Proof. Assume towards contradiction there was a PPT search adversary A with
non-negligible success probability ε′ against standard hardness of the prob-
lem entSLWE(q,M, Υ,S). For notational convenience, the adversary A obtains
its samples via an oracle Os,χ, which has s and χ hardwired. When queried,
Os,χ chooses A ←$ M and e ←$ χ and outputs a sample (A, sA + e). Let
ε = 1/poly(λ) be such that ε(λ) = ε′(λ) infinitely often. We will construct an
adversary B against the mild hardness of entSLWE(q,M, Υ,S) as follows.

Algorithm BOs,χ

– For i = 1, . . . , 2λ/ε:
• Compute si ← AOs,χ(1λ).
• Query λ additional samples and test whether si is a valid solution,
if so output s ← si

– If none of the si passed the check, output ⊥.

Assume that yi = sAi + ei for all i ∈ [k]. We will now analyze the success
probability of B. Say that a pair (s, χ) is good, if it holds that

Pr[AOs,χ(1λ) = s] ≥ ε/2,

where the probability is taken over the remaining random choices of O and the
random coins of A. By a Markov inequality, it holds that

Pr
s,χ

[(s, χ) good] = Pr
s,χ

[Pr[AOs,χ(·)(1λ) = s] ≥ ε/2] ≥ ε/2.
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Now, fix a good (s, χ). We will bound the probability that all iterations of B
fail to compute s. Once we have fixed s and χ, all iterations use independent
random coins, and thus their outcomes are independent. Consequently, it holds
that

Pr[∀i ∈ [2λ/ε] : AOs,χ(·)(1λ) �= s] =
2λ/ε∏

i=1

Pr[AOs,χ(·)(1λ) �= s]

≤ (1 − ε/2)2λ/ε

≤ exp(−ε/2 · 2λ/ε)
= exp(−λ),

which is negligible. We can conclude that

Pr
s

[Pr[B((Ai, sAi + ei)i∈[k]) = s] > 1 − exp(−λ)] ≥ ε/2,

which means that B breaks the mild hardness of entSLWE(q,M, Υ,S).

3.1 Rerandomization

Lemma 3.4 holds given an unbounded number of samples. We will now consider
statistical rerandomization procedures which allow to generate an unbounded
number of samples (Ai, sAi + ei) from a fixed number of samples. A typical
artifact of statistical re-randomization is that if one starts with a bounded num-
ber of samples for a fixed error distribution χ, then the rerandomized samples
will have an error that comes from a distribution of error distributions. We pro-
vide a simple rerandomization procedure which takes random subset sums over
the input samples. While the norm of errors in the output distribution will be
bounded, these errors will not follow a nice distribution.

Lemma 3.5. Let k ≥ log(|G|) + n log(q) + ω(log(λ)), let Φ be an error distri-
bution on Z

n. The distribution of error-distributions ΥΦ,bin is defined as follows:
A distribution χ ←$ ΥΦ,bin is determined by k elements e1, . . . , ek ∈ Z

n chosen
from Φ. To sample from the distribution χ, choose a x ←$ {0, 1}k uniformly at
random and output

∑
i xiei.

If entSLWE(q, k,M, Φ,S) is mildly hard, then entSLWE(q,M, ΥΦ,bin,S) is
also mildly hard.

Note that if the distribution Φ is B-bounded, then ΥΦ,bin is kB-bounded.

Proof. The reduction proceeds via statistical rerandomization. Let A be an
adversary against the mild hardness of entSLWE(q,M, ΥΦ,bin,S). We will con-
struct an adversary B against the mild hardness of entSLWE(q, k,M, Φ,S). More
concretely, assume there is a negligible function ν and a non-negligible function
ε such that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1 − ν] > ε.

The adversary B proceeds as follows.
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Algorithm B
– Input: k samples (A1,y1), . . . , (Ak,yk).
– Setup an oracle O, which when queried chooses a uniformly random x ∈

{0, 1}k and outputs (
∑

i xiAi,
∑

i xiyi).
– Compute and output s ← AO(·)(1λ)

We will now show that B faithfully simulates the oracle O of the problem
entSLWE(q,M, ΥΦ,bin,S). Assume that yi = sAi + ei. Then the rerandomized
sample

(
∑

i

xiAi,
∑

i

xiyi = s(
∑

i

xiAi) +
∑

i

xiei)

has an error term e∗ =
∑

i xiei which follows a distribution χ of ΥΦ,bin, where
χ is defined by e1, . . . , ek ∈ Z

n. Note that e∗ is supported on Z
n
q . Thus, by the

leftover hash lemma (Lemma 2.1), the distribution of
∑

i xiAi is statistically
close to uniform in G given the e∗ and we conclude that the distribution of the
samples generated by O is statistically close to the correct distribution, which
concludes the proof.

3.2 Ring-LWE as Structured LWE

Recall the conventions and properties from algebraic number theory as described
in Sect. 2.5, and the definition of RLWE from Sect. 2.6 (note that we use the
simpler definition that does not use the so-called dual-ring). In particular recall
that the ring of integers R of the number field K is a finitely generated Z-module.
Since the number field K is mapped into R

n via the mapping Θ̄, this mapping
allows to cast R as a lattice Λ. We denote the basis of this lattice by L and its
inverse by B = L−1. The mapping B◦ Θ̄ therefore maps from K to R

n such that
the image of R is Z

n.
Let a ∈ R. Since multiplication with a is a linear function, there exists a

matrix Aa ∈ Z
n×n, such that for all s ∈ R, if s ∈ Z

n is the vector representation
of s according to the aforementioned mapping, then Aas is the vector represen-
tation of a ·s ∈ R according to the above mapping. A Gaussian distribution with
parameter

√
Σ over the field is mapped by B ◦ Θ̄ to a Gaussian over R

n with
parameter σB.

Therefore, a Ring-LWE equation of the form as + e, with a, s ∈ Rq = R/qR is
translated by the mapping B ◦ Θ̄ (which is efficiently computable and efficiently
invertible given B) into the linear equation Aas + e (mod q), where Aa ∈ Z

n×n
q ,

s ∈ Z
n
q and e is sampled from the distribution χ = DσB.

Therefore given a Ring-LWE instance, we can convert it into a struc-
tured LWE instance with the aforementioned parameters, so that solving the
structured-LWE instance will also imply a solution to the original Ring-LWE
instance. The “quality” of the translation relies on the properties of the matrix
B, i.e. on how good of a basis for R we can obtain. We discuss the properties of
B in the case of power-of-two cyclotomic number fields in Sect. 6.
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4 Sometimes Lossiness and Hardness of Entropic
Structured LWE

We will first define a new lossiness notion which we call Sometimes Lossiness.
This notion will serve as our main tool to establish hardness of entropic general-
ized LWE problems. Recall the definitions of smooth min-entropy (see Sect. 2.1).

Definition 4.1. Let q, n, k be integers. Let X be a distribution on (Zn×n
q )k, S

be a distribution on Z
n
q and χ be an error-distribution on Z

n
q . We say that X is a

sometimes lossy pseudorandom distribution for S and χ if there exists negligible
function ε, a κ = ω(log(λ)) and a δ ≥ 1/poly(λ) such that the following properties
hold.

– Pseudorandomness: X is computationally indistinguishable from Mk.
– Sometimes Lossiness: It holds that

Pr
A←$X

[H̃ε
∞(s|A, sA + e) ≥ κ] ≥ δ,

where s ←$ S and e ←$ χk.

4.1 From Sometimes Lossiness to the Hardness of Entropic
Structured LWE

We will now show that a sometimes lossy pseudorandom distribution X for a
distribution of secrets S and an error distribution χ implies that hardness of
entSLWE(q, k,M, χ,S).

Theorem 4.2. Let S be a distribution of secrets and let χ be an error distri-
bution. Assume there exists a sometimes lossy pseudorandom distribution X on
(Zn×n

q )k. Then entSLWE(q, k,M, χ,S) is mildly hard.

Proof. Let δ = 1/poly(λ) be as in Definition 4.1. Set 	 = λ/δ = poly(λ). By a
standard hybrid argument, it holds that

(A(1), . . . ,A(�)) ≈c (U(1), . . . ,U�),

where A(i) ←$ X and U(i) ←$ Mk for all i = 1, . . . , 	. Our argument will make
use of the fact that by our choice of 	, some of the A(i) must be lossy, except
with some negligible probability.

Assume towards contradiction that entSLWE(q, k,M, χ,S) is not mildly
hard, i.e. there exists a PPT adversary A against entSLWE(q, k,M, χ,S) such
that

Pr
s,e

[Pr
A

[A(A, sA + e) = s] > 1 − ν] > ε,

where s ←$ S, A ←$ X , e ←$ χ, ν = ν(λ) is negligible and ε ≥ 1/poly(λ).
We will use A to construct a distinguisher D which distinguishes the random

variables (A(1), . . . ,A(�)) and (U(1), . . . ,U(�)) with non-negligible advantage.
Let N = λ/ε = poly(λ). The distinguisher D is given as follows.
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D(A1, . . . ,A�):
For i = 1, . . . , 	:

– For j = 1, . . . , N :
• Choose si,j ←$ S and ei,j ←$ χk

• Compute s′
i,j ← A(A(i), si,jA(i) + ei,j)

– If for all j ∈ [N ] it holds that s′
i,j �= si,j , abort and output 1.

Output 0.

We will now analyze the distinguishing advantage of D.

1. First assume that A’s input is (A(1), . . . ,A(�)), where each A(i) is chosen
from X . Since the A(i) are all independent and X is sometimes lossy for S
and χ, recalling that 	 = λ/ε it holds that

Pr
A(1),...,A(�)

[∀i ∈ [	] : H̃∞(s|sA(i) + e) < κ] =
�∏

i=1

Pr
A(i)

[H̃∞(s|sA(i) + e) < κ]

≤ (1 − ε)� ≤ e−ε� = e−λ,

which is negligible. Consequently, there exists an index i ∈ [	] such that
H̃∞(s|sA(i) + e) ≥ k, except with negligible probability over the choice of
the A(1), . . . ,A(�). Thus, fix A(1), . . . ,A(�) for which there exists an index
i∗ ∈ [	] with H̃∞(s|sA(i∗) + e) ≥ k. Now, since si∗,1, . . . , si∗,N ←$ S, it holds
by a union-bound that

Pr[∃j ∈ [N ] : A(A(i∗), si∗,jA(i∗) + ei∗,j) = si∗,j ]

≤ N · Pr[A(A(i∗), sA(i∗) + e) = s]

≤ N · 2−H̃∞(s|A(i∗),sA(i∗) + e)

≤ N · 2−κ,

where s ←$ S and e ←$ χ. The term N · 2−κ is negligible as N = poly(λ)
and κ = ω(log(λ)). Consequently, it follows that in the computation of
D(A(1), . . . ,A(�)) in the i∗-th iteration of the outer loop it will hold that
s′
i∗,j �= si∗,j for all j ∈ [N ], except with negligible probability over the choice

of si∗,1, . . . , si∗,N and ei∗,1, . . . , ei∗,N . This will cause D(A(1), . . . ,A(�)) to
output 1.
All together, we conclude that in case (A(1), . . . ,A(�)) is chosen from X �, it
holds that D(A(1), . . . ,A(�)) = 1, except with negligible probability over the
choice of (A(1), . . . ,A(�)) and the random coins of D.

2. Now assume that A’s input is (U(1), . . . ,U(�)), where each Ui is chosen
from Mk. We will show that with high probability over the choice of the
(U(1), . . . ,U(�)) and the random coins of D, for every iteration i there will
be an index j such that s′

i,j = si,j , which will cause D(U(1), . . . ,U(�)) to
output 0.
Now fix an i∗ ∈ [	]. Define the event BAD(s, e) by

BAD(s, e) :⇔ Pr
U

[A(U, sU + e) = s] ≤ 1 − ν,
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where U ←$ M. Recall that since we assume that A breaks mild hard-
ness it holds that Prs,e[BAD(s, e)] ≤ 1 − ε. We will now bound the prob-
ability that all (si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) are bad. Since all the pairs
(si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) are independent, it holds that

Pr[∀j ∈ [N ] : BAD(si∗,j , ei∗,j)] =
∏

j∈[N ]

Pr[BAD(si∗,j , ei∗,j)]

≤ (1 − ε)N ≤ exp(−ε · N) = exp(−λ),

where we have used that N = λ/ε. Consequently, it holds with overwhelm-
ing probability 1 − exp(−λ) that at least one si∗,j is not bad. Thus, fix
(si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) such that there is an index j∗ such that the pair
(si∗,j∗ , ei∗,j∗) is not bad, i.e. PrU[A(U, si∗,j∗U + ei∗,j∗) = si∗,j∗ ] > 1 − ν. It
follows that

Pr
U(i∗)

[∃j ∈ [N ] : A(U(i∗), si∗,jU(i∗) + ei∗,j) = si∗,j ]

≥ Pr
U(i∗)

[A(U(i∗), si∗,j∗U(i∗) + ei∗,j∗) = si∗,j∗ ]

≥ 1 − ν,

which is overwhelming. We can conclude that, it happens with at most neg-
ligible probability over the choice of the si∗,1, . . . , si∗,N , ei∗,1, . . . , ei∗,N and
U(i∗) that the i∗-th iteration of the outer loop does not results in an abort
with output 1.
A union-bound over all i∗ ∈ [	] yields that with at most negligible probability
over the choice of the U(1), . . . ,U(�) and the random coins of D that in the
computation of D(U(1), . . . ,U(�)) any of the 	 iterations of the outer loop
results in an abort with output 1. By construction of D, this means that
D(U(1), . . . ,U(�)) = 0 with overwhelming probability.

Putting everything together, we conclude that

Pr[D(A(1), . . . ,A(�)) = 1] − Pr[D(U(1), . . . ,U(�)) = 1]

= Pr[D(A(1), . . . ,A(�)) = 1] + Pr[D(U(1), . . . ,U(�)) = 0] − 1
= 1 − negl(λ),

Thus, D distinguishes X and Mk with advantage close to 1, which contradicts the
assumption that X and M are computationally indistinguishable. This concludes
the proof.

5 Construction of Sometimes Lossy Distributions

In this section we will construct sometimes lossy distributions from a somewhat
general problem we call Decisional Small Ratio (DSR) problem. In Sect. 6 we
will show that DSR can be instantiated with by the Decisional Small Polyno-
mial Ratio (DSPR) assumption (which is related to the NTRU problem) or



Lossiness and Entropic Hardness for Ring-LWE 19

the standard RLWE assumption, leading to sometimes lossy distributions with
different parameters.

Definition 5.1 (Decisional Small Ratio (DSR) Assumption). Let q be a
modulus and k, n be integers and let M be a distribution of matrices on Z

n×n
q .

Let Ψ be a distribution on (Zn×n
q )× × Z

n×nk
q . The DSR assumption for q, n, k,

M and Ψ postulates that
H · Z ≈c U,

where (Z0,Z) ←$ Ψ , H is the Zq-inverse of Z0 mod q and U ←$ Mk.

The DSR assumption generalizes the Decisional Small Polynomial Ration
(DSPR) assumption [15], which itself is a generalization of the decisional NTRU
assumption. We will show that under certain conditions the DSR assumption
implies a sometimes lossy mode for LWE.

In our analysis, we will make use of the following smoothing lemma and
convolution theorem.

Lemma 5.2 ([24, Claim 3.9]). Let Λ ⊆ R
n be a lattice and let σ ≥ √

2ηε(Λ).
Let e ∼ DΛ,σ be a discrete gaussian and e′ ∼ DRn,σ be a continuous gaussian.
Then e + vce′ is 4ε close to D

Rn,
√
2σ.

Theorem 5.3 ([20, Thm 3.1]). Let Σ1,Σ2 > 0 be two positive definite matrices
such that Σ = Σ1 + Σ2 > 0 and Σ−1

1 + Σ−1
2 > 0. Let Λ1, Λ2 be two lattices

such that
√

Σ1 ≥ ηε(Λ1) and
√

Λ2 ≥ ηε(Λ2) for some ε > 0. Let c1, c2 ∈ R
n be

arbitrary. Consider the following sampling procedure for x ∈ Λ2 + c2.

– Choose x1 ←$ DΛ1 + c1,
√

Σ1
.

– Choose x ←$ x1 + DΛ2 + c2−x1,
√

Σ2
.

Then it holds that the marginal distribution of x is within statistical distance 8ε
to DΛ2 + c2 .

Lemmas 5.4, 5.5 and 5.6 will be used to prove Theorem 5.7, the main technical
result of this section.

Convention: In the following lemmas, always assume the following: q is a mod-
ulus, n is an integer and B ∈ R

n×n. Moreover let Λ = Λ(B−1) and set s = ηε(Λ).

Lemma 5.4 (Blockwise Gaussian Decomposition). Let F = (F1, . . . ,Fk)
∈ R

n×nk, where for all i Fi ∈ R
n×n and set F′ = (BF1B−1, . . . ,BFkB−1).

Assume that the largest singular value of F′ is σF′ . Let σ, σ1 > 0 be such that
σ ≥ σF′ · σ1. There exists a distribution Ψ on R

nk, such that if e′ ∼ Dσ1·B and
e′′ ∼ Ψ are independent, then e = e′F + e′′ is distributed according to Dk

σB.

Proof. Let Σ = σ2I − σ2
1F

′�F′. Let f ′ ∼ Dσ1I = Dn
σ1

and f ′′ ∼ D√
Σ. By

Proposition 2.2 it holds that f = f ′F′ + f ′′ is distributed according to Dnk
σ = Dk

σI.
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Write f = (f1, . . . , fk) and f ′′ = (f ′′
1 , . . . , f ′′

k ). Then it holds for all i

fi = f ′ · F′
i + f ′′ = f ′BFiB−1 + f ′′

i .

Multiplying both sides with B yields

fiB = f ′BF + f ′′
i B.

Now notice that f ′B is distributed according to Dσ1B and for all i ∈ [k] it holds
that fiB is distributed according to DσB. Note that e′ and f ′B are identically
distributed, and also ei and fiB are identically distributed for all i ∈ [k]. Setting
Ψ to be the distribution of the f ′′B the result follows.

Lemma 5.5 (Continuous to Discrete). Let Z0 ∈ Z
n×n. Let τ2 be the largest

singular value of Z′
0 = BZ0B−1. Assume that σ >

√
2τ2ηε(B−1). Let f ∼ D√

2σB

and e ∼ DΛ(Z0),σ·B. Let S be a random variable supported on Z
n
q . Then it holds

that
H̃4ε

∞(s|s + fZ−1
0 ) ≥ H̃∞(s|s + eZ−1

0 ).

Proof. Let ẽ′ ∼ DσI be a spherical continuous gaussian and let ẽ be distributed
according to DΛ(B−1Z′

0),σI. By Claim 2.3 we have that τ1 · ηε(B−1) ≥ σmax(Z′
0) ·

ηε(Λ(B−1)) ≥ ηε(Λ(B−1 ·Z′
0)). Now let f̃ ∼ D√

2σI. Then it holds by Lemma 5.2
that f̃ and ẽ + ẽ′ are 4ε close.

Now note that by the definition of e we have that e and ẽ · B are identically
distributed, also f and f̃ · B are identically distributed. Setting e′ = ẽ′B, we
obtain that fZ−1

0 and eZ−1
0 + e′Z−1

0 are 4ε-close. We can conclude that

H̃∞(s|s+ eZ−1
0 ) = H̃∞(s|s+ eZ−1

0 , e′) ≤ H̃∞(s|s+ eZ−1
0 + e′Z−1

0 ) ≤ H̃4ε
∞(s|s+ fZ−1

0 ).

Lemma 5.6 (Discrete to Continuous). Let f ←$ D
Zn,

√
2σ·B and e ←$ DσB,

then it holds that
H̃8ε

∞(s|s + f) ≥ H̃∞(s|s + e).

Proof Let e′ be distributed according to DZn−e,σB. Then it holds by Theorem
5.3 that the statistical distance between e + e′ and f is smaller than 8ε.

Theorem 5.7. Let Z0 ∈ Z
n×n and for i ∈ [k] Zi ∈ Z

n×n be matrices and
let Z = (Z1, . . . ,Zk) ∈ Z

n×nk
q be the matrix obtained by concatenating the Zi.

Further let Z−1
0 ∈ Q

n×n be the rational inverse of Z0 and H ∈ Z
n×n
q be the

Zq-inverse of Z0 mod q.
Define the matrix Z′

0 = BZ0B−1 and Z′ = (BZ1B−1, . . . ,BZkB−1). Let τ1
be the largest singular value of Z′

0
−1Z′ and τ2 be the largest singular value of Z′

0.
For a σ > τ2ηε(Λ(B−1)) let σ0 ≥ 23/2σ · τ1. Then it holds that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e) − n log(τ2),

where e0 ←$ Dk
σ0B

and e ←$ DσB.
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Proof. Fix a distribution of secrets S and let s ←$ S. Let σ1 = σ0/τ1 ≥ 23/2σ

Since the largest singular value of Z′
0
−1Z′ is τ1, by Lemma 5.4 there exists

a distribution Ψ over R
nk such that we can equivalently sample e0 by e0 =

e1Z−1
0 Z + e′

1, where e1 ∼ Dσ1B and e′
1 ∼ Ψ . Consequently, we can write

y = sHZ + e0 = sHZ + e1Z−1
0 Z + e′

1 = (sH + e1Z−1
0 )Z + e′

1.

Thus, since y can be computed from sH + e1Z−1
0 and e′

1 it follows that

H̃∞(s|sHZ + e0) = H̃∞(s|sH + e1Z−1
0 , e′

1) = H̃∞(s|sH + e1Z−1
0 ),

where the second equality follows as e′
1 is independent from s and e1.

Now let σ2 = σ1/
√

2 ≥ 2σ and let e2 ∼ DΛ(Z0),σ2B be a discrete gaussian.
By Lemma 5.5 it holds that

H̃4ε
∞(s|s + e1Z−1

0 ) ≥ H̃∞(s|s + e2Z−1
0 ).

Now, since H is the Zq-inverse of Z0 mod q, multiplying sH + e2Z−1
0 by Z0

yields
H̃∞(s|sH + e2Z−1

0 ) = H̃∞(s|s + e2).

Now let σ3 = σ2/
√

2 ≥ √
2σ, e3 ∼ DZn,σ3B and e′

3 ∼ DΛ(Z0)−e3,σ3B. Setting
Λ2 = Z

n and Λ1 = Λ(Z0) in Theorem 5.3 and noting that σ3 > σ > ηε(Λ(B−1))
we obtain that the statistical distance between e2 and e3 + e′

3 is at most 8ε.
It follows that

H̃8ε
∞(s|s + e2) ≥ H̃∞(s|s + e3 + e′

3) ≥ H̃∞(s|s + e3, e′
3).

Since e′
3 is distributed according to DΛ(Z0)−e3,σ3 , it only depends on e3

mod Λ(Z0). Thus

H̃∞(s|s + e3, e′
3) ≥ H̃∞(s|s + e3) − H0(e′

3)

≥ H̃∞(s|s + e3) − log(det(Z0))

≥ H̃∞(s|s + e3) − n · log(τ2),

as |Zn/Λ(Z0)| = det(Z0) = det(Z′
0) ≤ n · log(τ) (as the largest singular value of

Z′
0 is τ2).

Finally as σ3/
√

2 = σ > ηε(B−1), by Lemma 5.5 we can bound

H̃8ε
∞(s|s + e3) ≥ H̃∞(s|s + e),

where e ←$ DσB. Putting everything together, we obtain that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e) − n · log(τ2).

We can now summarize the results of this section in the following theorem.

Theorem 5.8. Let τ1, τ2 > 0. Let Ψ be a distribution on (Zn×n)× ×Z
n×nk and

assume the Decisional Small Ratio assumption holds for Ψ . Assume further that
if (Z0,Z) ←$ Ψ then
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– σmax(BZ−1
0 ZB−1) ≤ τ1 where Z−1

0 is the rational inverse of Z0.
– σmax(BZ0B−1) ≤ τ2

with probability at least δ over the choice of (Z0,Z). Define the distribution X
on Z

n×m
q by HZ, where (Z0,Z) ←$ Ψ and H ∈ Z

n×n is the Zq-inverse of Z0.
Let σ > τ2ηε(Λ(B−1)) and σ0 > 23/2τ1σ. Now let χ = Dσ0B. Further assume
that νσB(S) ≥ n log(τ2) + ω(log(λ)).

Then X is a sometimes lossy pseudorandom distribution for S and error
distribution χ.

By combining Theorems 5.8 and 4.2 we obtain the following corollary.

Corollary 5.9. Assume that the conditions of Theorem 5.8 are satisfied. Then
entSLWE(q, k,M,Dσ0B,S) is mildly hard.

6 Instantiation for RLWE over Power-of-Two
Cyclotomics

In this Section, we will instantiate the results of Sect. 5 for Ring LWE over power-
of-two cyclotomics. That is, we will construct a sometimes lossy pseudorandom
distribution in this setting.

Throughout this section let B ∈ R
n×n be a basis-change matrix as described

in Sect. 3.2.
First recall the Decisional Small Polynomial Ratio (DSPR) problem, as

defined by Lopez-Alt et al. [15]. The DSPR problem is in fact a generalization
of the NTRU problem.

Definition 6.1 (Decisional Small Polynomial Ratio problem (DSPR)).
Let R be a ring of integers of a number field K and let q be a modulus. Let
γ > 0. Let g ←$ DR,γ and f ←$ DR,γ conditioned on f mod q ∈ R×

q . Let h be
the Rq-inverse of f . The DSPR problem for distribution DR,γ asks to distinguish
hg ∈ Rq from a uniformly random a ←$ Rq.

We will make use of the following Lemmas and Theorems of Stehlé and
Steinfeld [27].

Theorem 6.2 shows that if the a gaussian χ is sufficiently wide, then ring
elements hg are actually statistically close to a uniform a ←$ Rq.

Theorem 6.2 ([27, Theorem 3.2 restated]). Let n ≥ 8 be a power of 2 such that
Φ = Xn + 1 splits into n linear factors modulo a prime q ≥ 5. Let 0 < α < 1/3
and assume that γ ≥ n ·√ln(8nq) · q1/2+α and that f ,g ←$ DR×

q ,γ . Let h be the
Rq-inverse of f . Then it holds that hg is within statistical distance 210n · q−αn

of the uniform distribution on R×
q .

Lemma 6.3 ([27, Lemma 3.5 restated]). Let n ≥ 8 be a power of 2 such that Φ =
Xn + 1 splits into n linear factors modulo q ≥ 5. Let γ ≥ √

n · ln(2n(1 + n2))/π·
q1/n. Then it holds that

Pr
f←$DR,γ

[f /∈ R×
q ] ≤ n(1/q + 2/n2).
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Lemma 6.4 ([27, Lemma 2.8 restated]). Let R be a ring of integers. Then it
holds for any γ ≥ ηε(R) that

Pr
f←$DR,γ

[‖f‖ ≥ γ log(n)
√

n] ≤ negl(λ)

Lemma 6.5 ([27, Lemma 4.1 restated]). Let n ≥ 8 be a power of 2, Φ = Xn + 1
and R = Z[X]/(Φ). For any γ ≥ 8nηε(R) it holds that

Pr
f←$DR,γ

[
‖f−1‖ ≥ 24

√
n

γ

]
≤ 1/2

We will now establish the hardness of an instance of the DSR problem, assum-
ing RLWE and either the DSPR problem or Theorem 6.2. Let χ be a B-bounded
error distribution on R and let γ > 0 be a gaussian parameter. Define the dis-
tribution Ψ as follows:

– Choose f ,g ←$ DR,γ such that f mod q ∈ R×
q .

– Choose e1, . . . , ek ←$ χ and e′
1, . . . , e

′
k ←$ χ

– For all i ∈ [k] set zi = g · ei + f · e′
i.

– Let Z0 be the multiplication matrix of f and for all i ∈ [k] let Zi be the
multiplication matrix of zi

– Set Z = (Z1, . . . ,Zk)
– Output (Z0,Z)

We will now show that the distribution Ψ is a sometimes lossy pseudorandom
distribution. Recall that by Theorem 5.8 it is sufficient to bound the maximal
singular values of BZ0B−1, BZ−1

0 ZB−1 and establish that the DSR assumption
for Ψ holds. We will start by showing that if the Ring LWE assumption for error
distribution χ and the DSPR assumptions hold, then the DSR assumption holds
for Ψ .

Lemma 6.6. Assuming both DSPR for distribution DR,γ and RLWE for error-
distribution χ, it follows that DSR for distribution Ψ is hard. Moreover, if χ =
DR×

q ,γ and the conditions of Theorem 6.2 are met, then the DSPR assumption
is not necessary.

Proof. Let h be the Rq-inverse of f . Observe that yi = hzi = hg · ei + e′
i.

Under the DSPR assumption we can replace hg by a uniformly random a ∈ Rq.
It then follows by a simple hybrid argument that for all i yi = aei + e′

i is
indistinguishable from a uniformly random ui under Hermite RLWE for error
distribution χ′.

Likewise, if the conditions of Theorem 6.2 are met, hg is statistically close to
a uniformly random a ∈ R×

q . It follows again via a hybrid argument that for all
i yi = aei + e′

i is indistinguishable from a uniformly random ui under Hermite
RLWE for error distribution χ′. Note that RLWE also holds if we condition on
a ∈ R×

q , as this event happens with significant probability.
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The following technical lemma lets us bound the maximal singular value of
a matrix Z′ by bounding the singular values of blocks of Z′.

Lemma 6.7. Let Z′ = (Z′
1| . . . |Z′

m) ∈ R
n×n·k be a block matrix where each

Z′
i ∈ R

n×n. Assume that it holds for all i that σmax(Z′
i) ≤ γ. Then it holds that

σmax(Z′) ≤ √
k · γ.

Proof. Fix any vector x = (x1, . . . ,xk) ∈ R
nk, where the xi ∈ R

n. Then it holds
that

‖Z′x‖ = ‖
k∑

i=1

Z′
ixi‖ ≤

k∑

i=1

‖Z′
ixi‖ ≤

k∑

i=1

γ‖xi‖ ≤ γ
√

k ·
√√√√

k∑

i=1

‖xi‖2 = γ
√

k · ‖x‖,

where the last inequality follows from the relationship between the L1 and L2

norms. It follows that σmax(Z′) ≤ √
k · γ

Lemma 6.8 bounds the maximal singular values of BZ0B−1 and BZ−1
0 ZB−1

Lemma 6.8. Let γ > max{√n · ln(2n(1 + n2))/π · q1/n, 8nηε(R)} and assume
that χ is B-bounded. Let (Z0,Z) ←$ Ψ . It holds that

– Z0 is invertible in Z
n×n
q

– σmax(BZ0B−1) ≤ O(γ log(n)
√

n)
– σmax(BZ−1

0 ZB−1) ≤ O(n log(n)
√

kB)

except with probability 1/2 + o(1) over the choice of (Z0,Z).

Proof. We will bound the maximal singular value of BZ0B−1 by ‖σ(f)‖∞.
Likewise, we will bound the maximal singular values of the BZ−1

0 ZiB−1 via
‖σ(f−1zi)‖∞. The bound on the maximal singular value of BZB−1 will follow
by Lemma 6.7.

Note that

– It holds by Lemma 6.3 that f in invertible in R×
q , except with probability

n/q + 2/n = O(1/n).
– It holds by Lemma 6.4 and a union bound that ‖σ(f)‖ ≤ γ log(n)

√
n and

‖σ(zi)‖ ≤ γ log(n)
√

n for all i ∈ [k], except with negligible probability.
– By Lemma 6.5 we have that ‖σ(f−1)‖ ≤ 24

√
n/γ, except with probability

≤ 1/2.

Consequently, all 3 items hold, except with probability 1/2 + o(1). Moreover,
since the ei and e′

i are distributed according to χ and χ is B-bounded, it holds
that for all i ∈ [k] that ‖σ(ei)‖ ≤ B and ‖σ(e′

i)‖ ≤ B.
Thus, we have that

σmax(BZ0B−1) ≤ ‖σ(f)‖∞ ≤ ‖σ(f)‖ ≤ γ log(n)
√

n = O(γ log(n)
√

n).
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Moreover, it holds for all i that

σmax(BZ−1
0 ZiB−1) ≤ ‖σ(f−1zi)‖∞

= ‖σ(f−1gei + e′
i)‖∞

≤ ‖σ(f−1)‖∞ · ‖σ(g)‖∞ · ‖σ(ei)‖∞ + ‖σ(e′
i)‖∞

≤ ‖σ(f−1)‖ · ‖σ(g)‖ · ‖σ(ei)‖ + ‖σ(e′
i)‖

≤ 24n log(n) · B = O(n log(n)B)

By Lemma 6.7 we conclude that σmax(BZB−1) ≤ O(n log(n)
√

kB).

We can now summarize the results of this section in our main theorem by
combining Lemma 6.8 with Corollary 5.9.

Theorem 6.9. Assume that DSPR with parameter γ and Ring LWE with a B-
bounded noise distribution χ holds. Let S be a distribution s.t. for some σ it
holds that νσ(S) ≥ n log(γ · log(n)

√
n) + ω(log λ). Then Entropic Ring LWE

for power-of-two cyclotomics with k samples, secret distribution S and Gaussian
noise parameter σ0 ≥ O(σn log(n)B

√
k) is mildly hard.

By Theorem 6.2 we know that we can drop the DSPR assumption provided
that γ ≥ poly(n)q1/2+α for an arbitrarily small constant α. This translates to the
stronger requirement that νσ(S) ≥ (1/2 + α)n log(q) + O(n log(n)). Thus, the
distribution S must have at more than (1/2 + α)n log(q) + O(n log(n)) min-
entropy to begin with. However, note that if S is an r-bounded distribution,
where r ≥ poly(n)q1/2+α, then Lemma 2.5 tells us if σ is a poly(n) factor larger
than r, we have essentially νσ(S) ≈ H̃∞(S) and the requirements can be met.
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