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Preface

The 18th Theory of Cryptography Conference (TCC 2020) was held virtually during
November 16–19, 2020. It was sponsored by the International Association for Cryp-
tologic Research (IACR). The general chair of the conference was Alessandra Scafuro.

TCC 2020 was originally planned to be co-located with FOCS 2020 in Durham,
North Carolina, USA. Due to the COVID-19 pandemic both events were converted into
virtual events, and were held on the same day at the same time. The authors uploaded
videos of roughly 20 minutes prior to the conference, and at the conference had a
10-minute window to present a summary of their work and answer questions. The
virtual event would not have been possible without the generous help of Kevin and Kay
McCurley, and we would like to thank them wholeheartedly.

The conference received 167 submissions, of which the Program Committee
(PC) selected 71 for presentation. Each submission was reviewed by at least four PC
members. The 39 PC members (including PC chairs), all top researchers in the field,
were helped by 226 external reviewers, who were consulted when appropriate. These
proceedings consist of the revised version of the 71 accepted papers. The revisions
were not reviewed, and the authors bear full responsibility for the content of their
papers.

As in previous years, we used Shai Halevi’s excellent Web-review software, and are
extremely grateful to him for writing it, and for providing fast and reliable technical
support whenever we had any questions.

This was the 7th year that TCC presented the Test of Time Award to an outstanding
paper that was published at TCC at least eight years ago, making a significant con-
tribution to the theory of cryptography, preferably with influence also in other areas of
cryptography, theory, and beyond. This year the Test of Time Award Committee
selected the following paper, published at TCC 2008: “Perfectly-Secure MPC with
Linear Communication Complexity” by Zuzana Trubini and Martin Hirt. The Award
Committee recognized this paper “for introducing hyper-invertible matrices to perfectly
secure multiparty computation, thus enabling significant efficiency improvements and,
eventually, constructions with minimal communication complexity.”

We are greatly indebted to many people who were involved in making TCC 2020 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro and the TCC Steering Committee.

October 2020 Rafael Pass
Krzysztof Pietrzak



Organization

General Chair

Alessandra Scafuro North Carolina State University, USA

Program Chairs

Rafael Pass Cornell Tech, USA
Krzysztof Pietrzak IST Austria, Austria

Program Committee

Prabhanjan Ananth University of California, Santa Barbara, USA
Marshall Ball Columbia University, USA
Sonia Belaïd CryptoExperts, France
Jeremiah Blocki Purdue University, USA
Andrej Bogdanov The Chinese University of Hong Kong, Hong Kong
Chris Brzuszka Aalto University, Finland
Ignacio Cascudo IMDEA Software Institute, Spain
Kai-Min Chung Academia Sinica, Taiwan
Aloni Cohen Boston University, USA
Ran Cohen Northeastern University, USA
Nico Dottling CISPA - Helmholtz Center for Information Security,

Germany
Stefan Dziembowski University of Warsaw, Poland
Oriol Farràs Universitat Rovira i Virgili, Spain
Georg Fuchsbauer TU Wien, Austria
Niv Gilboa Ben-Gurion University of the Negev, Israel
Vipul Goyal Carnegie Mellon University, USA
Mohammad Hajiabadi University of California, Berkeley, USA
Justin Holmgren NTT Research, USA
Zahra Jafargholi Aarhus University, Denmark
Yael Tauman Kalai Microsoft Research and MIT, USA
Seny Kamara Brown University, USA
Dakshita Khurana University of Illinois Urbana-Champaign, USA
Markulf Kohlweiss The University of Edinburgh, UK
Ilan Komargodski NTT Research, USA
Huijia Lin University of Washington, USA
Mohammad Mahmoody University of Virginia, USA
Jesper Buus Nielsen Aarhus University, Denmark
Emmanuela Orsini KU Leuven, Belgium
Sunoo Park MIT and Harvard University, USA



Anat Paskin-Cherniavsky Ariel University, Israel
Oxana Poburinnaya Simons Institute for the Theory of Computing, USA
Silas Richelson University of California, Riverside, USA
Alon Rosen IDC Herzliya, Israel
Abhi Shelat Northeastern University, USA
Nicholas Spooner University of California, Berkeley, USA
Uri Stemmer Ben-Gurion University of the Negev, Israel
Justin Thaler Georgetown University, USA
Daniel Wichs Northeastern University and NTT Research, USA
Eylon Yogev Boston University, USA, and Tel Aviv University,

Israel

External Reviewers

Hamza Abusalah
Amit Agarwal
Archita Agarwal
Divesh Aggarwal
Navid Alamati
Younes Talibi Alaoui
Bar Alon
Joel Alwen
Joël Alwen
Miguel Ambrona
Ghous Amjad
Christian Badertscher
Saikrishna

Badrinarayanan
James Bartusek
Balthazar Bauer
Carsten Baum
Alex Block
Alexander Block
Jonathan Bootle
Adam Bouland
Elette Boyle
Zvika Brakerski
Pedro Branco
Benedikt Bünz
Alper Cakan
Matteo Campanelli
Wouter Castryck
Hubert Chan
Lijie Chen
Yanlin Chen

Yilei Chen
Ilaria Chillotti
Arka Rai Choudhuri
Hao Chung
Michele Ciampi
Katriel Cohn-Gordon
Sandro Coretti
Sandro Coretti-Drayton
Henry Corrigan-Gibbs
Geoffroy Couteau
Dana Dachman-Soled
Hila Dahari
Jost Daniel
Pratish Datta
Bernardo David
Bernardo Machado David
Gareth Davies
Akshay Degwekar
Jack Doerner
Rafael Dowsley
Betul Durak
Betül Durak
Naomi Ephraim
Daniel Escudero
Grzegorz Fabianski
Islam Faisal
Xiong Fan
Song Fang
Antonio Faonio
Prastudy Fauzi
Serge Fehr

Rex Fernando
Ben Fisch
Cody Freitag
Shiuan Fu
Tommaso Gagliardoni
Chaya Ganesh
Sanjam Garg
Romain Gay
Marilyn George
Marios Georgiou
Essam Ghadafi
Alexandru Gheorghiu
Satrajit Ghosh
Aarushi Goel
Sasha Golovnev
Junqing Gong
Rishab Goyal
Daniel Grier
Alex Grilo
Siyao Guo
Iftach Haitner
Britta Hale
Ariel Hamlin
Adam Blatchley Hansen
Alexander Hartl
Carmit Hazay
Javier Herranz
Kyle Hogan
Thibaut Horel
Yao-Ching Hsieh
James Hulett

viii Organization



Shih-Han Hung
Rawane Issa
Håkon Jacobsen
Aayush Jain
Abhishek Jain
Ruta Jawale
Zhengzhong Jin
Fatih Kaleoglu
Chethan Kamath
Simon Holmgaard Kamp
Pihla Karanko
Shuichi Katsumata
Tomasz Kazana
Thomas Kerber
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Klooß
Dima Kogan
Dmitry Kogan
Lisa Kohl
Yash Kondi
Yashvanth Kondi
Venkata Koppula
Ashutosh Kumar
Po-Chun Kuo
Thijs Laarhoven
Fabien Laguillaumie
Kasper Green Larsen
Eysa Lee
Seunghoon Lee
Yi Lee
Tancrède Lepoint
Xiao Liang
Chengyu Lin
Wei-Kai Lin
Yao-Ting Lin
Quanquan Liu
Tianren Liu
Alex Lombardi
Sébastien Lord
Julian Loss
George Lu
Ji Luo
Fermi Ma
Yi-Hsin Ma
Urmila Mahadev

Saeed Mahloujifar
Christian Majenz
Nikolaos Makriyannis
Giulio Malavolta
Mary Maller
Easwar Mangipudi
Nathan Manohar
Jeremias Mechler
Pierre Meyer
Tarik Moataz
Tomoyuki Morimae
Tamer Mour
Marta Mularczyk
Jörn Müller-Quade
Ryo Nishimaki
Olga Nissenbaum
Adam O’Neill
Maciej Obremski
Michele Orrù
Elena Pagnin
Georgios Panagiotakos
Omer Paneth
Alain Passelègue
Sikhar Patranabis
Alice Pellet–Mary
Rafael Del Pino
Rolando La Placa
Antoine Plouviez
Antigoni Polychroniadou
Sihang Pu
Chen Qian
Luowen Qian
Willy Quach
Jordi Ribes-González
Thomas Ricosset
Schuyler Rosefield
Dragos Rotaru
Lior Rotem
Sylvain Ruhault
Alexander Russell
Paul Rösler
Pratik Sarkar
Or Sattath
Sarah Scheffler
Adam Sealfon
Gil Segev

Ido Shahaf
Sina Shiehian
Omri Shmueli
Jad Silbak
Mark Simkin
Luisa Siniscalchi
Marjan Skrobot
Fang Song
Pratik Soni
Akshayaram Srinivasan
Ron Steinfeld
Patrick Struck
Marika Swanberg
Akira Takahashi
Aravind Thyagarajan
Rotem Tsabary
Yiannis Tselekounis
Prashant Vasudevan
Muthuramakrishnan

Venkitasubramaniam
Daniele Venturi
Mikhail Volkhov
Philip Wadler
Hendrik Waldner
Mingyuan Wang
Tianhao Wang
Rachit Garg and

Brent Waters
Hoeteck Wee
Weiqiang Wen
Jeroen van Wier
David Wu
Sophia Yakoubov
Takashi Yamakawa
Lisa Yang
Kevin Yeo
Michal Zajac
Mark Zhandry
Bingsheng Zhang
Chen-Da Liu Zhang
Hong-Sheng Zhou
Jiadong Zhu
Vassilis Zikas
Georgios Zirdelis

Organization ix



Contents – Part I

Lossiness and Entropic Hardness for Ring-LWE . . . . . . . . . . . . . . . . . . . . . 1
Zvika Brakerski and Nico Döttling

Multi-key Fully-Homomorphic Encryption in the Plain Model . . . . . . . . . . . 28
Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin,
and Giulio Malavolta

Constant Ciphertext-Rate Non-committing Encryption from Standard
Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Zvika Brakerski, Pedro Branco, Nico Döttling, Sanjam Garg,
and Giulio Malavolta

Efficient Range-Trapdoor Functions and Applications: Rate-1 OT
and More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Sanjam Garg, Mohammad Hajiabadi, and Rafail Ostrovsky

CP-ABE for Circuits (and More) in the Symmetric Key Setting . . . . . . . . . . 117
Shweta Agrawal and Shota Yamada

Optimal Broadcast Encryption from LWE and Pairings in the Standard
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Shweta Agrawal, Daniel Wichs, and Shota Yamada

Equipping Public-Key Cryptographic Primitives with Watermarking
(or: A Hole Is to Watermark) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Ryo Nishimaki

Functional Encryption for Quadratic Functions from k-Lin, Revisited . . . . . . 210
Hoeteck Wee

On Perfect Correctness in (Lockable) Obfuscation . . . . . . . . . . . . . . . . . . . . 229
Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala,
and Brent Waters

Can a Public Blockchain Keep a Secret? . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi,
Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin

Blockchains from Non-idealized Hash Functions. . . . . . . . . . . . . . . . . . . . . 291
Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos

Ledger Combiners for Fast Settlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Matthias Fitzi, Peter Gaži, Aggelos Kiayias, and Alexander Russell



Asynchronous Byzantine Agreement with Subquadratic Communication . . . . 353
Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss

Expected Constant Round Byzantine Broadcast Under Dishonest Majority . . . 381
Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas

Round-Efficient Byzantine Broadcast Under Strongly Adaptive
and Majority Corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi

A Lower Bound for One-Round Oblivious RAM . . . . . . . . . . . . . . . . . . . . 457
David Cash, Andrew Drucker, and Alexander Hoover

Lower Bounds for Multi-server Oblivious RAMs . . . . . . . . . . . . . . . . . . . . 486
Kasper Green Larsen, Mark Simkin, and Kevin Yeo

On Computational Shortcuts for Information-Theoretic PIR . . . . . . . . . . . . . 504
Matthew M. Hong, Yuval Ishai, Victor I. Kolobov, and Russell W. F. Lai

Characterizing Deterministic-Prover Zero Knowledge . . . . . . . . . . . . . . . . . 535
Nir Bitansky and Arka Rai Choudhuri

NIZK from SNARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Fuyuki Kitagawa, Takahiro Matsuda, and Takashi Yamakawa

Weakly Extractable One-Way Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 596
Nir Bitansky, Noa Eizenstadt, and Omer Paneth

Towards Non-interactive Witness Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Benjamin Kuykendall and Mark Zhandry

FHE-Based Bootstrapping of Designated-Prover NIZK . . . . . . . . . . . . . . . . 657
Zvika Brakerski, Sanjam Garg, and Rotem Tsabary

Perfect Zero Knowledge: New Upperbounds and Relativized Separations. . . . 684
Peter Dixon, Sutanu Gayen, A. Pavan, and N. V. Vinodchandran

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705

xii Contents – Part I



Contents – Part II

Recursive Proof Composition from Accumulation Schemes . . . . . . . . . . . . . 1
Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra,
and Nicholas Spooner

Linear-Time Arguments with Sublinear Verification from Tensor Codes . . . . 19
Jonathan Bootle, Alessandro Chiesa, and Jens Groth

Barriers for Succinct Arguments in the Random Oracle Model . . . . . . . . . . . 47
Alessandro Chiesa and Eylon Yogev

Accumulators in (and Beyond) Generic Groups: Non-trivial Batch
Verification Requires Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Gili Schul-Ganz and Gil Segev

Batch Verification and Proofs of Proximity with Polylog Overhead . . . . . . . . 108
Guy N. Rothblum and Ron D. Rothblum

Batch Verification for Statistical Zero Knowledge Proofs . . . . . . . . . . . . . . . 139
Inbar Kaslasi, Guy N. Rothblum, Ron D. Rothblum, Adam Sealfon,
and Prashant Nalini Vasudevan

Public-Coin Zero-Knowledge Arguments with (almost) Minimal Time
and Space Overheads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum,
and Pratik Soni

On the Price of Concurrency in Group Ratcheting Protocols. . . . . . . . . . . . . 198
Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler

Stronger Security and Constructions of Multi-designated Verifier
Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Ivan Damgård, Helene Haagh, Rebekah Mercer, Anca Nitulescu,
Claudio Orlandi, and Sophia Yakoubov

Continuous Group Key Agreement with Active Security . . . . . . . . . . . . . . . 261
Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk

Round Optimal Secure Multiparty Computation
from Minimal Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal,
Abhishek Jain, and Rafail Ostrovsky



Reusable Two-Round MPC from DDH . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee

Mr NISC: Multiparty Reusable Non-Interactive Secure Computation . . . . . . . 349
Fabrice Benhamouda and Huijia Lin

Secure Massively Parallel Computation for Dishonest Majority . . . . . . . . . . . 379
Rex Fernando, Ilan Komargodski, Yanyi Liu, and Elaine Shi

Towards Multiparty Computation Withstanding Coercion of All Parties . . . . . 410
Ran Canetti and Oxana Poburinnaya

Synchronous Constructive Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Chen-Da Liu-Zhang and Ueli Maurer

Topology-Hiding Communication from Minimal Assumptions . . . . . . . . . . . 473
Marshall Ball, Elette Boyle, Ran Cohen, Lisa Kohl, Tal Malkin,
Pierre Meyer, and Tal Moran

Information-Theoretic 2-Round MPC Without Round Collapsing: Adaptive
Security, and More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Huijia Lin, Tianren Liu, and Hoeteck Wee

On Statistical Security in Two-Party Computation . . . . . . . . . . . . . . . . . . . . 532
Dakshita Khurana and Muhammad Haris Mughees

The Resiliency of MPC with Low Interaction: The Benefit of Making
Errors (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

Benny Applebaum, Eliran Kachlon, and Arpita Patra

Revisiting Fairness in MPC: Polynomial Number of Parties and General
Adversarial Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

Dana Dachman-Soled

On the Power of an Honest Majority in Three-Party Computation
Without Broadcast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Bar Alon, Ran Cohen, Eran Omri, and Tom Suad

A Secret-Sharing Based MPC Protocol for Boolean Circuits with Good
Amortized Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Ignacio Cascudo and Jaron Skovsted Gundersen

On the Round Complexity of the Shuffle Model . . . . . . . . . . . . . . . . . . . . . 683
Amos Beimel, Iftach Haitner, Kobbi Nissim, and Uri Stemmer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

xiv Contents – Part II



Contents – Part III

Universal Composition with Global Subroutines: Capturing Global Setup
Within Plain UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Christian Badertscher, Ran Canetti, Julia Hesse, Björn Tackmann,
and Vassilis Zikas

Security Analysis of SPAKE2þ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Victor Shoup

Schrödinger’s Pirate: How to Trace a Quantum Decoder . . . . . . . . . . . . . . . 61
Mark Zhandry

Quantum Encryption with Certified Deletion . . . . . . . . . . . . . . . . . . . . . . . 92
Anne Broadbent and Rabib Islam

Secure Quantum Extraction Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Prabhanjan Ananth and Rolando L. La Placa

Non-interactive Classical Verification of Quantum Computation . . . . . . . . . . 153
Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung

Classical Verification of Quantum Computations with Efficient Verifier . . . . . 181
Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa

Coupling of Random Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
David Lanzenberger and Ueli Maurer

Towards Defeating Backdoored Random Oracles: Indifferentiability
with Bounded Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Yevgeniy Dodis, Pooya Farshim, Sogol Mazaheri, and Stefano Tessaro

Zero-Communication Reductions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Varun Narayanan, Manoj Prabhakaran, and Vinod M. Prabhakaran

Lower Bounds on the Time/Memory Tradeoff of Function Inversion . . . . . . . 305
Dror Chawin, Iftach Haitner, and Noam Mazor

Super-Linear Time-Memory Trade-Offs for Symmetric Encryption . . . . . . . . 335
Wei Dai, Stefano Tessaro, and Xihu Zhang

Algebraic Distinguishers: From Discrete Logarithms to Decisional
Uber Assumptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Lior Rotem and Gil Segev



On the Security of Time-Lock Puzzles and Timed Commitments . . . . . . . . . 390
Jonathan Katz, Julian Loss, and Jiayu Xu

Expected-Time Cryptography: Generic Techniques and Applications
to Concrete Soundness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414

Joseph Jaeger and Stefano Tessaro

On the Complexity of Arithmetic Secret Sharing. . . . . . . . . . . . . . . . . . . . . 444
Ronald Cramer, Chaoping Xing, and Chen Yuan

Robust Secret Sharing with Almost Optimal Share Size and Security
Against Rushing Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Serge Fehr and Chen Yuan

The Share Size of Secret-Sharing Schemes for Almost All Access
Structures and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Amos Beimel and Oriol Farràs

Transparent Error Correcting in a Computationally Bounded World. . . . . . . . 530
Ofer Grossman, Justin Holmgren, and Eylon Yogev

New Techniques in Replica Encodings with Client Setup. . . . . . . . . . . . . . . 550
Rachit Garg, George Lu, and Brent Waters

Non-malleable Codes, Extractors and Secret Sharing for Interleaved
Tampering and Composition of Tampering. . . . . . . . . . . . . . . . . . . . . . . . . 584

Eshan Chattopadhyay and Xin Li

On Average-Case Hardness in TFNP from One-Way Functions . . . . . . . . . . 614
Pavel Hubáček, Chethan Kamath, Karel Král, and Veronika Slívová

On Pseudorandom Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
Thomas Agrikola, Geoffroy Couteau, Yuval Ishai, Stanisław Jarecki,
and Amit Sahai

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

xvi Contents – Part III



Lossiness and Entropic Hardness
for Ring-LWE

Zvika Brakerski1 and Nico Döttling2(B)

1 Weizmann Institute of Science, Rehovot, Israel
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

nico.doettling@gmail.com

Abstract. The hardness of the Ring Learning with Errors problem
(RLWE) is a central building block for efficiency-oriented lattice-based
cryptography. Many applications use an “entropic” variant of the prob-
lem where the so-called “secret” is not distributed uniformly as pre-
scribed but instead comes from some distribution with sufficient min-
entropy. However, the hardness of the entropic variant has not been sub-
stantiated thus far.

For standard LWE (not over rings) entropic results are known, using
a “lossiness approach” but it was not known how to adapt this app-
roach to the ring setting. In this work we present the first such results,
where entropic security is established either under RLWE or under the
Decisional Small Polynomial Ratio (DSPR) assumption which is a mild
variant of the NTRU assumption.

In the context of general entropic distributions, our results in the ring
setting essentially match the known lower bounds (Bolboceanu et al.,
Asiacrypt 2019; Brakerski and Döttling, Eurocrypt 2020).

1 Introduction

Lyubashevsky, Peikert and Regev [16,17] introduced the Ring Learning with
Errors (RLWE) problem as a structured variant of the celebrated LWE prob-
lem [24]. RLWE (and similar variants such as ideal/polynomial LWE [28]) are by
now an indispensable tool for constructing efficient lattice-based cryptographic
primitives, such as public-key encryption, key agreement and signatures. It is
appealing to use RLWE-based cryptographic primitives since they are usually
more succinct and efficient than their non-ring counterparts. Translating a cryp-
tographic construction from LWE to RLWE is often straightforward, and indeed
many LWE based constructions have RLWE counterparts that enjoy a higher
level of efficiency (at the cost of only enjoying hardness respective to a special
class of lattices instead of all lattices as in LWE).
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The focus of this work is entropic hardness, which is an important property
of LWE-based cryptography [2,4,6,8,18] that so far resisted translation to the
RLWE regime. Entropic hardness is the property of the LWE problem (and
hopefully also RLWE) to remain hard even when the so called “LWE secret”
is not sampled from the prescribed distribution, but instead is sampled from
some distribution with sufficient min-entropy. This is relevant in the context of
key-leakage (see e.g. [12] for a survey), and in a number of other applications
which use RLWE with a key that is not sampled according to the prescribed
distribution. These include implementations of fully homomorphic encryption
such as [5,9,10,25] and even some of the candidates in the NIST post-quantum
cryptography contest [19].

The question of entropic security for RLWE is therefore highly motivated.
Nevertheless, very little was known about its security prior to this work. The only
work we are aware of in this context is by Bolboceanu et al. [3], which introduced
a non-standard assumption that they call HLBDD. They prove the hardness of
entropic RLWE for a class of distributions that they call k-wise independent,
based on the hardness of HLBDD and standard RLWE. This solution has a
number of drawbacks in not addressing general entropic distributions, being
applicable only in certain rings (it requires that the ring has CRT representation)
and making a new assumption.

One would have hoped that it would be possible to use similar methods to
those used in the context of LWE also for RLWE. After all, the structure of the
problems is very similar. However, the same barrier seemed to have stopped all
prior attempts. In a nutshell, it is the failure to find a proper analog lossiness
argument in the ring setting. This term refers to a family of proof techniques
that underlie all known entropic hardness results [2,4,6,8,18]. We explain this
barrier in more detail below.

We recall that in standard LWE, an instance is composed of a random matrix
A ∈ Z

n×N
q with N � n, and a vector y = sA + e, where s is the “LWE secret”

and e is a noise vector (usually sampled from a Gaussian). The goal is to find
the vector s, or in the decisional version of the problem to distinguish (A,y)
from uniform. The RLWE problem is a structured variant of the above, usually
defined using elements from the ring of integers of an algebraic number field
(and its dual). For the purpose of this work, it will be instructive to consider
an equivalent (and in fact more general) formulation of RLWE that does not
refer to algebraic number theory at all and takes great resemblance to the above
LWE description. Let us rewrite the above LWE instance as follows, consider
the case where N = n · m. We can break the matrix A into square blocks s.t.
A = [A1, . . . ,Am] and consider the LWE instance as a sequence of blocks of
the form {(Ai,yi = sAi + ei)}m

i=1. RLWE instances can be presented in the
same way, except the matrices Ai are no longer uniform, but instead are drawn
from a distribution over structured matrices.1 Throughout this work we will
attempt to state our results and techniques in terms of this Structured LWE

1 Essentially this structure represents the multiplication of an element a from the
(dual) of a ring of integers by an element from the ring of integers.
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formulation as much as possible, without specifying the exact structure of the
matrices Ai, and the instantiations to the special case of number fields will follow
as straightforward corollaries.

A lossiness argument for LWE hinges on the observation that the entropic
LWE distribution is computationally indistinguishable from one where the matri-
ces Ai are not uniform, but instead are distributed as Ai = B · Ci + Fi,
where B ∈ Z

n×k
q (note that the same B is used for all i) for k � n,

Ci ∈ Z
k×n
q , and Fi is small noise. Indistinguishability is established by deci-

sional LWE. This step makes the matrices Ai “close to low-rank”. Furthermore,
now yi = sAi = sBCi + sFi + ei. From this point the methods diverge some-
what, let us stick to the approach of [2,4] that we follow in this paper. In these
works, it is shown that even information theoretically s cannot be recovered,
essentially because the adversary only has access to sB, which has dimension k
and therefore does not contain much information, and to the terms sFi + ei,
where it is shown that the entropy in ei masks the information about s.

Trying to apply this argument in the structured LWE setting runs into a
problem. The matrices Ai are no longer uniform but instead have some (effi-
ciently verifiable) structure. Therefore, we need to find a distribution that is
both indistinguishable from the structured Ai distribution, and has lossiness
properties as above. In the context of the structure that is imposed by RLWE,
this seems hopeless since the structure imposed by the ring does not allow the
Ai matrices to be close to low-rank for general rings.2 In this work we overcome
this barrier.

1.1 Our Results

We present a new approach to achieve lossiness that generalizes the “closeness
to low-rank” approach, but that can be applied for general RLWE (and possibly
other structured LWE variants). Concretely, we observe that it suffices to replace
Ai with a matrix whose span contains short vectors. That is, we will set Ai =
H·Zi, where H is an invertible matrix that is sampled once and used for all i, and
the Zi come from a distribution over low-norm matrices. The exact norm that
we use depends on the underlying ring, but for the purposes of this overview, it
suffices to think of Zi as a matrix where all entries are shorter than some bound
� q. We observe that the matrices H · Zi are neither low rank nor close to low-
rank, however they become close to low rank under a (common) basis-change
corresponding to the matrix H.3 The level of lossiness will be dictated by the
properties of Zi: the lower the norm of Zi, the more lossiness is obtained. We
note that we can assume that H itself has a short inverse, that we denote by Z0

2 The work of [3] can be viewed as targeting a special case where this is possible, the
case where the ring decomposes into a “CRT representation”. This requires making
a non-standard assumption like their HLBDD assumption which only applies to that
special setting.

3 In fact, under this basis change the matrices are even close to the 0 matrix, which
has the lowest possible rank.
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(we explain below that this does not actually impose an additional restriction).
We show that this notion is both sufficient for proving entropic security, and
that there exist such lossy distributions that are indistinguishable from uniform
under standard assumptions.

The DSPR and NTRU Assumptions. We notice that the assumption
as described above closely resembles the Decisional Small Polynomial Ratio
(DSPR) [15] and NTRU assumptions [11]. Both assumptions are defined over
polynomial rings and have very similar syntax. Both essentially assert that over
some polynomial ring, there is a distribution over ring elements s.t. when sam-
pling f, g1, . . . , gm from this distribution, it holds that g1/f, . . . , gm/f are jointly
indistinguishable from a set of uniformly random ring elements. The NTRU cryp-
tosystem uses a specific and very short distributions for f, gi (over polynomials
with {−1, 0,+1} coefficients) and DSPR considers a Gaussian distribution (say
with some Gaussian parameter γ) which will be easier to use.4 The assump-
tion becomes weaker as γ increases. As observed by Stehlé and Steinfeld [27],
when the distributions become wide enough (γ � √

q), this assumption is actu-
ally implied by RLWE. For other parameter regimes, however, DSPR appears
to provide a lower level of security compared to RLWE, at least with respect
to state of the art attacks [13]. Translating the above into the structured LWE
terminology, we can define Z0 as the matrix that corresponds to the operator
of multiplying by f , and Zi as the matrix that corresponds to multiplying by
gi. Intuitively the parameter γ can be thought of as a measure for the smallness
of the elements in the Zi matrices. We note that since the polynomial rings are
commutative, the matrices H,Z0,Zi all commute with each other in the actual
instantiation. However, we will not require this property.

Lastly, we point out that while RLWE enjoys a worst-case to average-case
hardness reduction [16,23], such reduction is not known for NTRU/DSPR with
small γ. Hence there is a tradeoff between the quality of the result obtained and
the hardness of the assumption that we need to make.

Noise Lossiness and Entropic Security Under DSPR. We follow the app-
roach of [4] and consider the notion of noise lossiness of a distribution of secrets
S, which is defined to be the conditional smooth min-entropy of a sample from
S conditioned on learning its perturbation by Gaussian noise. Formally:

νσ(S) = H̃∞(s|s + e), (1)

where e is Gaussian with parameter σ. We also recall that [4] show a general
relation between noise lossiness and entropy

νσ(S) � H̃∞(S) − n log(q/σ). (2)

We show that similarly to LWE, the hardness of entropic RLWE on a given
secret distribution S is also related to its noise lossiness. We present our result

4 We will consider Gaussians over the canonical embedding of ring elements into
Euclidean space.
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in the context of RLWE in power-of-2 cyclotomic number fields, but the result
is modular and applies to RLWE on any ring that has reasonable regularity
condition. See also discussion below.

Theorem 1.1 (Informal). Assume DSPR with parameter γ. Let S be a distri-
bution s.t. for some σ′ it holds that νσ′(S) � n log(γpoly(n)) + ω(log λ). Then
Entropic RLWE in a power-of-2 cyclotomic with secret distribution S and Gaus-
sian noise parameter σ ≈ σ′ · poly(n) · √m is hard.

Plugging in Eq. (2), we get that for general entropic distributions we require
average min-entropy of roughly H̃∞(S) � n log(q/σ) + O(n log(nmγ)) + ω(log λ)
in order to achieve entropic hardness. We note that better bounds on noise
lossiness are known for “short” distributions, where the entropy requirement can
go almost all the way down to n log γ, which allows to show entropic hardness for
many low-norm distributions but unfortunately is still insufficient for the widely
used setting where the secret is chosen as a ring element with binary coefficients.
Indeed, even in our results, we need to make stronger DSPR assumptions as we
wish to deal with secrets of lower entropy. We believe that there is an inherent
difficulty for proving hardness of such distributions without making extreme
hardness assumptions.

Our results are stated in a rather general form. We present a notion of “struc-
tured LWE” problem, which captures standard LWE, RLWE and potentially
other problems, and present lossiness results based on a “matrix DSPR” assump-
tion, assuming that the matrix distributions in the DSPR instance satisfy some
(mild) non-degeneracy conditions. Proving that the non-degeneracy conditions
indeed hold is the only place where the specifics of the number field are required.
The aforementioned [27] fortunately implies these required conditions for power-
of-2 cyclotomic number fields. We believe that the proof can be generalized to
other number fields (especially cyclotomics) but this would require essentially
repeating the [27] proofs in more generality which we feel is tangent to the pur-
pose of this work.

Since our paper is written in a modular manner, it suffices to simply prove
the non-degeneracy conditions in Sect. 6 in order to obtain entropic hardness
results for other variants of structured LWE, be it RLWE in other number fields
(or a different embedding) or other forms of the problem completely.

To conclude, let us discuss the applicability of our techniques to the so called
“module LWE” problem [1,5,14,22]. Module-LWE interpolates between LWE
and ring-LWE and is appealing in the practical context as it may offer supe-
rior security benefits over RLWE with minimal additional computational cost.
Viewed as a structured LWE problem, in module-LWE the matrix A is simply
a block matrix, where each block is an independent RLWE matrix. Our meth-
ods apply to such matrices as well, under a matrix DSPR assumption. We can
instantiate matrix DSPR under RLWE-like assumptions, but we do not know of
variants of this assumption that rely on module-LWE-like structures. A complete
module LWE analog of our result would require introducing such an analog.
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1.2 Our Techniques

As explained above, in order to prove security for entropic structured LWE, we
rely on the assumption that we can replace the uniform Ai with Ai = H · Zi,
where Zi are short, and there exists Z0 (also short) s.t. HZ0 = I (mod q). We
note that a survey by Peikert [21] uses a similar method when sketching a proof
that the hardness of NTRU implies that of RLWE. Namely, replacing the ai ele-
ments in RLWE samples with NTRU values, and arguing that the RLWE secret
should become information-theoretically irrecoverable. One can view our method
as putting together a rigorous variant of Peikert’s arguments, and showing that
it is possible to obtain lossiness for various entropic distributions.

We start by examining the distribution of the yi values after substituting
Ai = H · Zi. We have

yi = sAi + ei = sH · Zi + ei.

We now take the approach of “flooding at the source” [4]. The idea is to
“bring the noise closer to the secret” and show that all structured LWE blocks
in fact depend on a noisy version of the secret, which allows to apply noise lossi-
ness. Specifically, the technique that is used is Gaussian decomposition. Using
Gaussian decomposition it is possible to show that if the ei Gaussians are wide
enough relative to the norm of the Zi matrices, it is possible to find e s.t. for
all i, ei = eZi + e′

i, where e and all e′
i are independent. This essentially follows

from the covariance-additivity of Gaussian vectors, which can be carried over to
discrete Gaussians as well.

Plugging this decomposed Gaussian into the equation for yi, we get

sH · Zi + eZi + e′
i = (sH + e)Zi + e′

i.

This implies that all information about s is captured in the term sH+ e (mod q).
We now note that already at this point we can derive a non-trivial entropic

result. Let us denote s′ = sH, and notice that since H is invertible, the entropy of
s′ is the same as that of s and recovering s is information-theoretically equivalent
to recovering s′. Now, essentially by definition, the probability of recovering s′

is exactly captured by its noise lossiness. Specifically, if the noise lossiness is
super-logarithmic then s′ is not recoverable. Since we can relate noise lossiness
to entropy (recall Eq. (2)) we have

νσ(s′) � H̃∞(s′) − n log(q/σ) = H̃∞(s) − n log(q/σ),

where σ is the Gaussian parameter of e. Therefore, so long as it holds that
H̃∞(s) � n log(q/σ) + ω(λ), then we have entropic security for RLWE with
secret coming from the distribution of s. This is indeed a non-trivial bound
which may be useful in certain settings (e.g. when we only know the entropy of
the distribution of s but do not know any other properties), but in many cases
we would like to take into account additional properties of the distribution that
reduce the large gap of n log(q/σ) between noise lossiness and entropy. However,
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in the current analysis we can say very little about the distribution of s′ given the
distribution of s (other than the entropy being preserved). We therefore proceed
to show a connection that directly relates to the noise lossiness of s itself.

Recall that we deduced that all information about s is captured in the term
sH + e (mod q). Since H is invertible, we can multiply the equation by its
inverse Z0 (on the right) to obtain s + eZ0 (mod q). We conclude that even
information theoretically, an attacker can only recover s + eZ0 (mod q), where
e is Gaussian and Z0 is a low-norm matrix which is known to the attacker.

We wish to show that s + eZ0 (mod q) does not leak much information about
s. We can see that some information can in fact be leaked. For example, if s is
short, then the reduction modulo q does not have any effect, and the adversary
can learn s + eZ0 (as a value over the integers), this in particular allows to learn
the coset of s relative to the lattice spanned by the rows of Z0 (henceforth we
refer to it as the “Z0 lattice”). This is essentially the reason why our techniques
don’t carry over to the setting of very low norm s – this would require sampling
Z0 from a very narrow distribution that would imply very strong and unrealistic
parameters for our DSPR assumption.

Instead, we show that essentially all the entropy that can be gained by the
adversary, beyond the “usual” noise lossiness, is indeed proportional to learning
a coset of the Z0 lattice. The number of such cosets is ≈ γn, and thus the loss
in entropy of n log γ in Theorem 1.1.

To see this, we consider the distribution: (Z0, s + ẽ, c), where ẽ is a spherical
discrete Gaussian over the integers, and c indicates a coset of ẽ with respect
to the Z0 lattice. We show that there is a (randomized) process that takes this
distribution as input, and outputs (Z0, s + eZ0). This means that the adversary
cannot learn about s from (Z0, s + eZ0) more than it can from (Z0, s + ẽ, c). The
latter, just by definition, translates to the noise lossiness of s (with respect to
the Gaussian parameter of ẽ), minus the “leakage” that is imposed by providing
the adversary the value c. Since this value is a coset indicator, this leakage is
bounded.

To generate (Z0, s + eZ0) from (Z0, s + ẽ, c), we use the Gaussian convolution
theorem of Peikert [20]. This theorem shows that it is possible to sample the
term eZ0, which is just a (non spherical) discrete Gaussian over the Z0 lattice,
in two steps: first sampling from a Gaussian over the integer lattice, and then
“rounding” the sample into the Z0 lattice. The rounding step only requires to
know the coset of the first step (in order to cancel it out). Setting the parameters
appropriately, the theorem can be used and the result follows.

In order to be able to apply Gaussian decomposition and also the Gaussian
convolution theorem, we rely on probabilistic properties of the Z matrices, in
particular their minimal and maximal singular values. The properties required
in order for our method to go through turn out not to hold with high proba-
bility, but rather only with some fixed inverse-polynomial probability. We thus
introduce a notion of “sometimes lossiness” and show that it suffices for proving
entropic hardness. In Sect. 5 we show how to obtain entropic hardness based
on probabilistic properties of the Z matrices. Then in Sect. 6 we show that
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these properties hold for RLWE over power-of-two cyclotomics, using properties
proved in [27].

1.3 Paper Organization

We try to keep the discussion abstract and use the notion of “structured LWE” as
much as we can. Eventually we state our result in terms of properties that need to
hold for the structured LWE problem at hand, and show that the RLWE/DSPR
instantiation indeed possesses these properties. Standard preliminaries in infor-
mation theory, lattices and algebraic number theory are provided in Sect. 2.
Section 3 introduces the entropic structured LWE (entSLWE) problem and shows
that mild form of (entropic) hardness for entSLWE with relatively few samples
implies full-fledged (entropic) hardness. Section 4 presents a notion of lossiness
that we call “sometimes lossiness” and shows how it is used to prove (entropic)
hardness, then a sometimes lossy distribution is constructed in Sect. 5 based
on an abstract problem we call Decisional Small Ratio (DSR) problem. Finally
Sect. 6 shows how to instantiate all required building blocks in the RLWE set-
ting.

2 Notation and Definitions

We will denote the security parameter by λ. We say a function ν(λ) is negligible
if ν(λ) ∈ λ−ω(1). We will generally denote row vectors by x and column vectors
by x�. We will denote the L2 norm of a vector x by ‖x‖ =

√∑
i x2

i and the L∞
norm by ‖x‖∞ = maxi |xi|.

Let X,Y be two discrete random variables defined on a common support X .
We define the statistical distance between X and Y as

Δ(X,Y ) =
1
2

∑

x∈X
|Pr[X = x] − Pr[Y = x]|.

Consider a real valued matrix A ∈ R
n×m, assume for convenience that m ≥

n. The singular values of A are the square roots of the eigenvalues of the positive
semidefinite (PSD) matrix AA�. We will denote the largest singular value of A
by σmax(A). The spectral norm of A is σmax(A). It holds that

σmax(A) = max
x∈Rm\{0}

‖Ax‖
‖x‖ .

2.1 Min-Entropy

Let x be a discrete random variable supported on a set X and z be a possibly
(continuous) random variable supported on a (measurable) set Z. The condi-
tional min-entropy H̃∞(x|z) of x given z is defined by

H̃∞(x|z) = − log
(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]
])

.
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In the case that z is continuous, this becomes

H̃∞(x|z) = − log
(∫

z′
pz(z′) max

x′∈X
Pr[x = x′|z = z′]

)
,

where pz(·) is the probability density of z.
For an ε > 0 we define the ε-smooth min-entropy H̃ε

∞(x|z) as the maximum
over all H̃ε

∞(x′|z′) for which (x′, z′) is ε-close to (x, z) in statistical distance.

2.2 Leftover Hashing

We recall a version of the generalized leftover hash lemma [7,24].

Lemma 2.1. Let G be a finite Abelian group, and Y be a finite set. Let 	 ≥
log(|G|) + log(|Y|) + ω(log(λ)) be an integer. Let g1, . . . , g� ←$ G be chosen
uniformly at random. Further let x ←$ {0, 1}� be chosen uniformly at random.
Let Y be a random variable supported on Y which is possibly correlated with x but
independent of the gi. Then it holds that (g1, . . . , g�,

∑
i xigi, Y ) is statistically

close to (g1, . . . , g�, u, Y ), where u ←$ G is chosen uniformly at random.

2.3 Lattices and Gaussians

Lattices. We recall the standard facts about lattices. A lattice Λ ⊆ R
m is

the set of all integer-linear combinations of a set of linearly independent basis-
vectors, i.e. for every lattice Λ there exists a full-rank matrix B ∈ R

k×m such
that Λ = Λ(B) = {z · B | z ∈ Z

k}. We call k the rank of Λ and B a basis of Λ,
and we say that Λ is full-rank if k = m. For a lattice Λ ⊆ R

m, the dual lattice
Λ∗ is defined by Λ∗ = {x ∈ Span(Λ) | ∀z ∈ Λ : 〈z,x〉 ∈ Z}.

We say that a lattice is q-ary if (qZ)m ⊆ Λ ⊆ Z
m. In particular, for every

q-ary lattice Λ there exists a matrix A ∈ Z
k×m
q such that Λ = Λq(A) = {y ∈

Z
m | ∃x ∈ Z

k
q : y = x · A mod q}. We also define the lattice Λ⊥

q (A) = {y ∈
Z

m | A · y = 0 mod q}.

Gaussians. The Gaussian function ρσ : Rn → R is defined by

ρσ(x) = e−π· ‖x‖2

σ2 .

For a a non-singular matrix B we define ρB(x) = ρ(xB−1).
The continuous gaussian distribution DB on R

n has the probability density
function ρB(x)/ρB(Rn). We call Σ = B�B the covariance matrix of the gaussian
DB. For a lattice Λ, the discrete gaussian distribution DΛ,B supported on Λ has
the probability mass function ρB(x)/ρB(Λ).

For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ)
is defined to be the smallest real number s for which ρ1/s(Λ∗\{0}) ≤ ε. For a
matrix B we write B ≥ ηε(Λ) if ηε(ΛB−1) ≤ 1.

The following claim follows routinely from the definition of the smoothing
parameter.
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Claim. Let Λ ⊆ R
n and V ∈ R

n×n be a matrix with largest singular value
σmax(V). It holds that ηε(Λ · V) ≤ σmax(V) · ηε(Λ).

The following proposition allows us to decompose spherical gaussians with
respect to a matrix F.

Proposition 2.2 ([4], Proposition 3.2). Let F ∈ R
n×m be an arbitrary matrix

with spectral norm σF . Let σ, σ1 > 0 be s.t. σ > σ1 · σF . Let e1 ∼ Dn
σ1

and let
e2 ∼ D√

Σ for Σ = σ2I − σ2
1F

�F. Then the random variable e = e1F + e2 is
distributed according to Dm

σ .

2.4 Noise Lossiness

The noise lossiness of a distribution S measures how much information is lost
about a sample of S when adding gaussian noise. Another way to think about
noise lossiness is as a measure of how bad S performs as a Euclidean error-
correcting code. The following definition of noise lossiness slightly deviates from
the definition given in [4] by considering potentially non-spherical gaussians.

Definition 2.3 (Noise Lossiness). Fix a matrix B ∈ R
n×n. Let S ⊆ Z

n
q be

a distribution of secrets and let σ > 0 be a gaussian parameter. We define the
noise-lossiness νσB(S) by

νσB(S) = H̃∞(s|s + e)

where s ←$ S and e ←$ DσB.

In [4] the following bounds for the noise lossiness of distributions were pro-
vided.

Lemma 2.4 (Noise-Lossiness for General Entropic Distributions). Let
0 < σ ≤ q

√
π/ ln(4n) be a gaussian parameter and let S be any distribution on

Z
n
q . Then it holds that

νσ(S) ≥ H̃∞(S) − n · log(q/σ) − 1

Lemma 2.5 (Noise-Lossiness for Short Distributions). Let σ > 0 be a
gaussian parameter and let S be a r-bounded distribution on Z

n
q . Then it holds

that
νσ(S) ≥ H̃∞(S) −

√
2πn log(e) · r

σ
.

2.5 Algebraic Number Fields

We will briefly reiterate some basics about algebraic number fields and the Learn-
ing with Errors Problem over Rings. See e.g., [16,17] for more details.

An algebraic number field K is a finite extension of the rationals Q, every
number field can be constructed via Q(ξ) = Q[X]/(f(X)) where f ∈ Q[X] is a
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monic irreducible polynomial and ξ is a root of f . The degree n of K is defined
to be the degree of f and K can be seen as an n-dimensional Q-vectorspace.

The number fields most relevant to us are power-of-two cyclotomics. For this
instantiation the polynomial f is of the form f = Xn + 1 where n is a power of
two.

A number field K of degree n has n embeddings, that is injective ring homo-
morphisms into the complex numbers C, usually denoted by σi : K → C. Each
σi is defined by sending ξ to one of the roots of f in C.

The embeddings σi come in conjugate pairs, there are s1 real embeddings
and 2s2 complex conjugate embeddings with n = s1 + 2s2. We can define the
space H ⊆ R

s1 × C
2s2 by

H = {(x1, . . . , xn) ∈ R
s1 × C

2s2 | ∀j ∈ [s2] : xs1 + s2 + j = xs1 + j}.

It can be shown that the space H is isomorphic to R
n as an inner product space.

Let Θ : H → R
n be this isomorphism. Moreover, the space H is isomorphic as

a ring to the field tensor product KR = K⊗Q R. Let Θ̄ : KR → R
n be the metric

isomorphism which takes KR to R
n, i.e. Θ̄ is just the concatenation of σ and Θ.

The canonical embedding σ : K → H is given by σ(x) = (σ1(x), . . . , σn(x)).
It can be shown that σ is a ring-homomorphism, where both addition and
multiplication on C

n are defined component-wise. The canonical embedding
induces a geometry on K, that is we can define a eucilidean norm on K via
the euclidean norm on C

n, concretely for x ∈ K we define ‖x‖ = ‖σ(x)‖. Note
that ‖σ(x)‖ = ‖Θ(σ(x))‖.

While ‖ · ‖ immediately satisfies the triangle inequality, in the canonical
embedding also the following multiplicative inequality holds: For all x, y ∈ KR

it holds that ‖x · y‖ ≤ ‖x‖∞ · ‖y‖. Here, ‖ · ‖∞ is the L∞ norm defined by
‖x‖∞ = maxi |σi(x)|. We will also use the inequality ‖x · y‖∞ ≤ ‖x‖∞ · ‖y‖∞.

We can define a gaussian distribution DKR,
√

Σ via the gaussian distribution
D√

Σ on R
n, i.e. we set DKR,

√
Σ = Θ̄−1(D√

Σ).
A element x ∈ K is called algebraic integer, if the minimal polynomial of x

has integer coefficients. For a number field K we denote by R ⊆ K the set of all
algebraic integers in K, which can be shown to be a sub-ring of K. For the special
case that K is a cyclotomic, it holds that R = Z[ξ].

Since R is a finitely generated Z-module, it holds that Λ = Θ̄(R) ⊆ R
n is

a lattice. We let L denote some basis for this lattice and we denote B = L−1.
In this notation, multiplication by the matrix B maps a x ∈ λ to an integer
vector, i.e. xB ∈ Z

n, which is exactly the coefficient vector of the ring element
with respect to the basis L. We define the smoothing parameter ηε(R) of R to
be ηε(Λ).

Gaussian distributions over K, or more precisely over KR are defined as fol-
lows. Given a Gaussian distribution D√

Σ over R
n, we map it to KR via Θ̄−1.

The resulting distribution is the Gaussian with parameter
√

Σ over KR.
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2.6 Ring-LWE

Let q be a modulus and R be a ring of integers of a number field K. We will
briefly define the (non-dual) decisional Ring Learning with Errors (Ring-LWE)
problem in Hermite form for an error-distribution χ supported on R is defined
as follows. We discuss other versions of the Ring LWE problem in Sect. 3. We
use a definition provided by Peikert [21, Section 4.4.1] which is slightly different
from the one in [16] but easier to work with. See discussion in [21, Section 4.4.1]
for details.

Definition 2.6 (Decisional Ring-LWE (Hermite Form)). Let s ←$ χ.
Given m samples (ai,bi) ∈ Rq × Rq, the task is to decide whether the bi are
of the form bi = ais + ei for errors ei ←$ χ or if the bi are chosen uniformly
at random from Rq.

Lyubashevsky, Peikert and Regev [16] provided a worst-to-average case
reduction for the Ring LWE problem relative to worst-case problems in ideal
lattices. In particular, they show that if the error distribution χ is an appropri-
ate gaussian, then the Ring LWE search problem is as hard as the approximate
shortest vector problem in worst case ideal lattices. Furthermore, [16] provide
a search-to-decision reduction which bases the hardness of decisional Ring LWE
on the search variant.

3 (Entropic) Structured LWE

In this section, we define a version of LWE which we call structured LWE. Struc-
tured LWE generalizes both standard and ring-LWE.

We will only consider the search version of structured LWE in this work.

Definition 3.1 (Entropic Structured Learning with Errors). Let q be a
modulus and n, k be integers. Let M be a distribution of matrices on Z

n×n
q and Υ

be a distribution of error-distributions on R
n. Furthermore, let S be a distribution

on Z
n
q . The goal of the entSLWE(q, k,M, Υ,S) problem is to find a secret s ←$ S

given k samples ((A1,y1), . . . , (Ak,yk)), where χ ←$ Υ is an error distribution
and for all i ∈ [k] we have Ai ←$ M, ei ←$ χ and yi ← sAi + ei.

If A = (A1, . . . ,Ak), e = (e1, . . . , ek) and y = (y1, . . . ,yk) where yi =
sAi + ei, we will use the shorthand y = sA + e. This in fact corresponds to the
standard matrix multiplication and vector addition if we identify A with to be
the horizontal concatenation of all Ai and e the horizontal concatenation of all
ei. If an unbounded number of samples are given (via an oracle), then we will
omit the parameter k. We note that Regev’s LWE is obtained when M,S are
uniform and Υ is Gaussian. The Ring-LWE instantiation is discussed in Sect. 3.2
below.

We will consider two different hardness notions for entSLWE. In the standard
notion, we require that no PPT adversary find the secret s with non-negligible
probability.
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Definition 3.2 (Standard Hardness). Let q, n, k, M, Υ and S be as above.
We say that the entSLWE(q, k,M, Υ,S) problem is (standard-) hard, if it holds
for every PPT adversary A that

Pr[A(A, sA + e) = s] < negl(λ),

where χ ←$ Υ , A ←$ Mk, s ←$ S and e ←$ χk.

We call the second notion mild hardness. In essence, the success probability
of an adversary which breaks mild hardness only depends on the choice of s and
e, but not on the choice of A.

Definition 3.3 (Mild Hardness). Let q, n, k, M, Υ and S be as above. We
say that the problem entSLWE(q, k,M, Υ,S) is mildly hard, if for every PPT
adversary A and every negligible function ν it holds that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1 − ν] < negl(λ).

In this work we will focus on the notion of mild hardness. While this seems
like a restriction at first glance, it follows by a routine amplification argument
that, given an unbounded number of samples, mild hardness implies standard
hardness.

Lemma 3.4. Let q, n, M and S be as above and let Υ be a distribution of error-
distributions. If entSLWE(q,M, Υ,S) is mildly hard, then it is also standard hard.

Proof. Assume towards contradiction there was a PPT search adversary A with
non-negligible success probability ε′ against standard hardness of the prob-
lem entSLWE(q,M, Υ,S). For notational convenience, the adversary A obtains
its samples via an oracle Os,χ, which has s and χ hardwired. When queried,
Os,χ chooses A ←$ M and e ←$ χ and outputs a sample (A, sA + e). Let
ε = 1/poly(λ) be such that ε(λ) = ε′(λ) infinitely often. We will construct an
adversary B against the mild hardness of entSLWE(q,M, Υ,S) as follows.

Algorithm BOs,χ

– For i = 1, . . . , 2λ/ε:
• Compute si ← AOs,χ(1λ).
• Query λ additional samples and test whether si is a valid solution,
if so output s ← si

– If none of the si passed the check, output ⊥.

Assume that yi = sAi + ei for all i ∈ [k]. We will now analyze the success
probability of B. Say that a pair (s, χ) is good, if it holds that

Pr[AOs,χ(1λ) = s] ≥ ε/2,

where the probability is taken over the remaining random choices of O and the
random coins of A. By a Markov inequality, it holds that

Pr
s,χ

[(s, χ) good] = Pr
s,χ

[Pr[AOs,χ(·)(1λ) = s] ≥ ε/2] ≥ ε/2.



14 Z. Brakerski and N. Döttling

Now, fix a good (s, χ). We will bound the probability that all iterations of B
fail to compute s. Once we have fixed s and χ, all iterations use independent
random coins, and thus their outcomes are independent. Consequently, it holds
that

Pr[∀i ∈ [2λ/ε] : AOs,χ(·)(1λ) �= s] =
2λ/ε∏

i=1

Pr[AOs,χ(·)(1λ) �= s]

≤ (1 − ε/2)2λ/ε

≤ exp(−ε/2 · 2λ/ε)
= exp(−λ),

which is negligible. We can conclude that

Pr
s

[Pr[B((Ai, sAi + ei)i∈[k]) = s] > 1 − exp(−λ)] ≥ ε/2,

which means that B breaks the mild hardness of entSLWE(q,M, Υ,S).

3.1 Rerandomization

Lemma 3.4 holds given an unbounded number of samples. We will now consider
statistical rerandomization procedures which allow to generate an unbounded
number of samples (Ai, sAi + ei) from a fixed number of samples. A typical
artifact of statistical re-randomization is that if one starts with a bounded num-
ber of samples for a fixed error distribution χ, then the rerandomized samples
will have an error that comes from a distribution of error distributions. We pro-
vide a simple rerandomization procedure which takes random subset sums over
the input samples. While the norm of errors in the output distribution will be
bounded, these errors will not follow a nice distribution.

Lemma 3.5. Let k ≥ log(|G|) + n log(q) + ω(log(λ)), let Φ be an error distri-
bution on Z

n. The distribution of error-distributions ΥΦ,bin is defined as follows:
A distribution χ ←$ ΥΦ,bin is determined by k elements e1, . . . , ek ∈ Z

n chosen
from Φ. To sample from the distribution χ, choose a x ←$ {0, 1}k uniformly at
random and output

∑
i xiei.

If entSLWE(q, k,M, Φ,S) is mildly hard, then entSLWE(q,M, ΥΦ,bin,S) is
also mildly hard.

Note that if the distribution Φ is B-bounded, then ΥΦ,bin is kB-bounded.

Proof. The reduction proceeds via statistical rerandomization. Let A be an
adversary against the mild hardness of entSLWE(q,M, ΥΦ,bin,S). We will con-
struct an adversary B against the mild hardness of entSLWE(q, k,M, Φ,S). More
concretely, assume there is a negligible function ν and a non-negligible function
ε such that

Pr
s,e,χ

[Pr
A

[A(A, sA + e) = s] > 1 − ν] > ε.

The adversary B proceeds as follows.
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Algorithm B
– Input: k samples (A1,y1), . . . , (Ak,yk).
– Setup an oracle O, which when queried chooses a uniformly random x ∈

{0, 1}k and outputs (
∑

i xiAi,
∑

i xiyi).
– Compute and output s ← AO(·)(1λ)

We will now show that B faithfully simulates the oracle O of the problem
entSLWE(q,M, ΥΦ,bin,S). Assume that yi = sAi + ei. Then the rerandomized
sample

(
∑

i

xiAi,
∑

i

xiyi = s(
∑

i

xiAi) +
∑

i

xiei)

has an error term e∗ =
∑

i xiei which follows a distribution χ of ΥΦ,bin, where
χ is defined by e1, . . . , ek ∈ Z

n. Note that e∗ is supported on Z
n
q . Thus, by the

leftover hash lemma (Lemma 2.1), the distribution of
∑

i xiAi is statistically
close to uniform in G given the e∗ and we conclude that the distribution of the
samples generated by O is statistically close to the correct distribution, which
concludes the proof.

3.2 Ring-LWE as Structured LWE

Recall the conventions and properties from algebraic number theory as described
in Sect. 2.5, and the definition of RLWE from Sect. 2.6 (note that we use the
simpler definition that does not use the so-called dual-ring). In particular recall
that the ring of integers R of the number field K is a finitely generated Z-module.
Since the number field K is mapped into R

n via the mapping Θ̄, this mapping
allows to cast R as a lattice Λ. We denote the basis of this lattice by L and its
inverse by B = L−1. The mapping B◦ Θ̄ therefore maps from K to R

n such that
the image of R is Z

n.
Let a ∈ R. Since multiplication with a is a linear function, there exists a

matrix Aa ∈ Z
n×n, such that for all s ∈ R, if s ∈ Z

n is the vector representation
of s according to the aforementioned mapping, then Aas is the vector represen-
tation of a ·s ∈ R according to the above mapping. A Gaussian distribution with
parameter

√
Σ over the field is mapped by B ◦ Θ̄ to a Gaussian over R

n with
parameter σB.

Therefore, a Ring-LWE equation of the form as + e, with a, s ∈ Rq = R/qR is
translated by the mapping B ◦ Θ̄ (which is efficiently computable and efficiently
invertible given B) into the linear equation Aas + e (mod q), where Aa ∈ Z

n×n
q ,

s ∈ Z
n
q and e is sampled from the distribution χ = DσB.

Therefore given a Ring-LWE instance, we can convert it into a struc-
tured LWE instance with the aforementioned parameters, so that solving the
structured-LWE instance will also imply a solution to the original Ring-LWE
instance. The “quality” of the translation relies on the properties of the matrix
B, i.e. on how good of a basis for R we can obtain. We discuss the properties of
B in the case of power-of-two cyclotomic number fields in Sect. 6.
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4 Sometimes Lossiness and Hardness of Entropic
Structured LWE

We will first define a new lossiness notion which we call Sometimes Lossiness.
This notion will serve as our main tool to establish hardness of entropic general-
ized LWE problems. Recall the definitions of smooth min-entropy (see Sect. 2.1).

Definition 4.1. Let q, n, k be integers. Let X be a distribution on (Zn×n
q )k, S

be a distribution on Z
n
q and χ be an error-distribution on Z

n
q . We say that X is a

sometimes lossy pseudorandom distribution for S and χ if there exists negligible
function ε, a κ = ω(log(λ)) and a δ ≥ 1/poly(λ) such that the following properties
hold.

– Pseudorandomness: X is computationally indistinguishable from Mk.
– Sometimes Lossiness: It holds that

Pr
A←$X

[H̃ε
∞(s|A, sA + e) ≥ κ] ≥ δ,

where s ←$ S and e ←$ χk.

4.1 From Sometimes Lossiness to the Hardness of Entropic
Structured LWE

We will now show that a sometimes lossy pseudorandom distribution X for a
distribution of secrets S and an error distribution χ implies that hardness of
entSLWE(q, k,M, χ,S).

Theorem 4.2. Let S be a distribution of secrets and let χ be an error distri-
bution. Assume there exists a sometimes lossy pseudorandom distribution X on
(Zn×n

q )k. Then entSLWE(q, k,M, χ,S) is mildly hard.

Proof. Let δ = 1/poly(λ) be as in Definition 4.1. Set 	 = λ/δ = poly(λ). By a
standard hybrid argument, it holds that

(A(1), . . . ,A(�)) ≈c (U(1), . . . ,U�),

where A(i) ←$ X and U(i) ←$ Mk for all i = 1, . . . , 	. Our argument will make
use of the fact that by our choice of 	, some of the A(i) must be lossy, except
with some negligible probability.

Assume towards contradiction that entSLWE(q, k,M, χ,S) is not mildly
hard, i.e. there exists a PPT adversary A against entSLWE(q, k,M, χ,S) such
that

Pr
s,e

[Pr
A

[A(A, sA + e) = s] > 1 − ν] > ε,

where s ←$ S, A ←$ X , e ←$ χ, ν = ν(λ) is negligible and ε ≥ 1/poly(λ).
We will use A to construct a distinguisher D which distinguishes the random

variables (A(1), . . . ,A(�)) and (U(1), . . . ,U(�)) with non-negligible advantage.
Let N = λ/ε = poly(λ). The distinguisher D is given as follows.
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D(A1, . . . ,A�):
For i = 1, . . . , 	:

– For j = 1, . . . , N :
• Choose si,j ←$ S and ei,j ←$ χk

• Compute s′
i,j ← A(A(i), si,jA(i) + ei,j)

– If for all j ∈ [N ] it holds that s′
i,j �= si,j , abort and output 1.

Output 0.

We will now analyze the distinguishing advantage of D.

1. First assume that A’s input is (A(1), . . . ,A(�)), where each A(i) is chosen
from X . Since the A(i) are all independent and X is sometimes lossy for S
and χ, recalling that 	 = λ/ε it holds that

Pr
A(1),...,A(�)

[∀i ∈ [	] : H̃∞(s|sA(i) + e) < κ] =
�∏

i=1

Pr
A(i)

[H̃∞(s|sA(i) + e) < κ]

≤ (1 − ε)� ≤ e−ε� = e−λ,

which is negligible. Consequently, there exists an index i ∈ [	] such that
H̃∞(s|sA(i) + e) ≥ k, except with negligible probability over the choice of
the A(1), . . . ,A(�). Thus, fix A(1), . . . ,A(�) for which there exists an index
i∗ ∈ [	] with H̃∞(s|sA(i∗) + e) ≥ k. Now, since si∗,1, . . . , si∗,N ←$ S, it holds
by a union-bound that

Pr[∃j ∈ [N ] : A(A(i∗), si∗,jA(i∗) + ei∗,j) = si∗,j ]

≤ N · Pr[A(A(i∗), sA(i∗) + e) = s]

≤ N · 2−H̃∞(s|A(i∗),sA(i∗) + e)

≤ N · 2−κ,

where s ←$ S and e ←$ χ. The term N · 2−κ is negligible as N = poly(λ)
and κ = ω(log(λ)). Consequently, it follows that in the computation of
D(A(1), . . . ,A(�)) in the i∗-th iteration of the outer loop it will hold that
s′
i∗,j �= si∗,j for all j ∈ [N ], except with negligible probability over the choice

of si∗,1, . . . , si∗,N and ei∗,1, . . . , ei∗,N . This will cause D(A(1), . . . ,A(�)) to
output 1.
All together, we conclude that in case (A(1), . . . ,A(�)) is chosen from X �, it
holds that D(A(1), . . . ,A(�)) = 1, except with negligible probability over the
choice of (A(1), . . . ,A(�)) and the random coins of D.

2. Now assume that A’s input is (U(1), . . . ,U(�)), where each Ui is chosen
from Mk. We will show that with high probability over the choice of the
(U(1), . . . ,U(�)) and the random coins of D, for every iteration i there will
be an index j such that s′

i,j = si,j , which will cause D(U(1), . . . ,U(�)) to
output 0.
Now fix an i∗ ∈ [	]. Define the event BAD(s, e) by

BAD(s, e) :⇔ Pr
U

[A(U, sU + e) = s] ≤ 1 − ν,
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where U ←$ M. Recall that since we assume that A breaks mild hard-
ness it holds that Prs,e[BAD(s, e)] ≤ 1 − ε. We will now bound the prob-
ability that all (si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) are bad. Since all the pairs
(si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) are independent, it holds that

Pr[∀j ∈ [N ] : BAD(si∗,j , ei∗,j)] =
∏

j∈[N ]

Pr[BAD(si∗,j , ei∗,j)]

≤ (1 − ε)N ≤ exp(−ε · N) = exp(−λ),

where we have used that N = λ/ε. Consequently, it holds with overwhelm-
ing probability 1 − exp(−λ) that at least one si∗,j is not bad. Thus, fix
(si∗,1, ei∗,1), . . . , (si∗,N , i∗, N) such that there is an index j∗ such that the pair
(si∗,j∗ , ei∗,j∗) is not bad, i.e. PrU[A(U, si∗,j∗U + ei∗,j∗) = si∗,j∗ ] > 1 − ν. It
follows that

Pr
U(i∗)

[∃j ∈ [N ] : A(U(i∗), si∗,jU(i∗) + ei∗,j) = si∗,j ]

≥ Pr
U(i∗)

[A(U(i∗), si∗,j∗U(i∗) + ei∗,j∗) = si∗,j∗ ]

≥ 1 − ν,

which is overwhelming. We can conclude that, it happens with at most neg-
ligible probability over the choice of the si∗,1, . . . , si∗,N , ei∗,1, . . . , ei∗,N and
U(i∗) that the i∗-th iteration of the outer loop does not results in an abort
with output 1.
A union-bound over all i∗ ∈ [	] yields that with at most negligible probability
over the choice of the U(1), . . . ,U(�) and the random coins of D that in the
computation of D(U(1), . . . ,U(�)) any of the 	 iterations of the outer loop
results in an abort with output 1. By construction of D, this means that
D(U(1), . . . ,U(�)) = 0 with overwhelming probability.

Putting everything together, we conclude that

Pr[D(A(1), . . . ,A(�)) = 1] − Pr[D(U(1), . . . ,U(�)) = 1]

= Pr[D(A(1), . . . ,A(�)) = 1] + Pr[D(U(1), . . . ,U(�)) = 0] − 1
= 1 − negl(λ),

Thus, D distinguishes X and Mk with advantage close to 1, which contradicts the
assumption that X and M are computationally indistinguishable. This concludes
the proof.

5 Construction of Sometimes Lossy Distributions

In this section we will construct sometimes lossy distributions from a somewhat
general problem we call Decisional Small Ratio (DSR) problem. In Sect. 6 we
will show that DSR can be instantiated with by the Decisional Small Polyno-
mial Ratio (DSPR) assumption (which is related to the NTRU problem) or
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the standard RLWE assumption, leading to sometimes lossy distributions with
different parameters.

Definition 5.1 (Decisional Small Ratio (DSR) Assumption). Let q be a
modulus and k, n be integers and let M be a distribution of matrices on Z

n×n
q .

Let Ψ be a distribution on (Zn×n
q )× × Z

n×nk
q . The DSR assumption for q, n, k,

M and Ψ postulates that
H · Z ≈c U,

where (Z0,Z) ←$ Ψ , H is the Zq-inverse of Z0 mod q and U ←$ Mk.

The DSR assumption generalizes the Decisional Small Polynomial Ration
(DSPR) assumption [15], which itself is a generalization of the decisional NTRU
assumption. We will show that under certain conditions the DSR assumption
implies a sometimes lossy mode for LWE.

In our analysis, we will make use of the following smoothing lemma and
convolution theorem.

Lemma 5.2 ([24, Claim 3.9]). Let Λ ⊆ R
n be a lattice and let σ ≥ √

2ηε(Λ).
Let e ∼ DΛ,σ be a discrete gaussian and e′ ∼ DRn,σ be a continuous gaussian.
Then e + vce′ is 4ε close to D

Rn,
√
2σ.

Theorem 5.3 ([20, Thm 3.1]). Let Σ1,Σ2 > 0 be two positive definite matrices
such that Σ = Σ1 + Σ2 > 0 and Σ−1

1 + Σ−1
2 > 0. Let Λ1, Λ2 be two lattices

such that
√

Σ1 ≥ ηε(Λ1) and
√

Λ2 ≥ ηε(Λ2) for some ε > 0. Let c1, c2 ∈ R
n be

arbitrary. Consider the following sampling procedure for x ∈ Λ2 + c2.

– Choose x1 ←$ DΛ1 + c1,
√

Σ1
.

– Choose x ←$ x1 + DΛ2 + c2−x1,
√

Σ2
.

Then it holds that the marginal distribution of x is within statistical distance 8ε
to DΛ2 + c2 .

Lemmas 5.4, 5.5 and 5.6 will be used to prove Theorem 5.7, the main technical
result of this section.

Convention: In the following lemmas, always assume the following: q is a mod-
ulus, n is an integer and B ∈ R

n×n. Moreover let Λ = Λ(B−1) and set s = ηε(Λ).

Lemma 5.4 (Blockwise Gaussian Decomposition). Let F = (F1, . . . ,Fk)
∈ R

n×nk, where for all i Fi ∈ R
n×n and set F′ = (BF1B−1, . . . ,BFkB−1).

Assume that the largest singular value of F′ is σF′ . Let σ, σ1 > 0 be such that
σ ≥ σF′ · σ1. There exists a distribution Ψ on R

nk, such that if e′ ∼ Dσ1·B and
e′′ ∼ Ψ are independent, then e = e′F + e′′ is distributed according to Dk

σB.

Proof. Let Σ = σ2I − σ2
1F

′�F′. Let f ′ ∼ Dσ1I = Dn
σ1

and f ′′ ∼ D√
Σ. By

Proposition 2.2 it holds that f = f ′F′ + f ′′ is distributed according to Dnk
σ = Dk

σI.
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Write f = (f1, . . . , fk) and f ′′ = (f ′′
1 , . . . , f ′′

k ). Then it holds for all i

fi = f ′ · F′
i + f ′′ = f ′BFiB−1 + f ′′

i .

Multiplying both sides with B yields

fiB = f ′BF + f ′′
i B.

Now notice that f ′B is distributed according to Dσ1B and for all i ∈ [k] it holds
that fiB is distributed according to DσB. Note that e′ and f ′B are identically
distributed, and also ei and fiB are identically distributed for all i ∈ [k]. Setting
Ψ to be the distribution of the f ′′B the result follows.

Lemma 5.5 (Continuous to Discrete). Let Z0 ∈ Z
n×n. Let τ2 be the largest

singular value of Z′
0 = BZ0B−1. Assume that σ >

√
2τ2ηε(B−1). Let f ∼ D√

2σB

and e ∼ DΛ(Z0),σ·B. Let S be a random variable supported on Z
n
q . Then it holds

that
H̃4ε

∞(s|s + fZ−1
0 ) ≥ H̃∞(s|s + eZ−1

0 ).

Proof. Let ẽ′ ∼ DσI be a spherical continuous gaussian and let ẽ be distributed
according to DΛ(B−1Z′

0),σI. By Claim 2.3 we have that τ1 · ηε(B−1) ≥ σmax(Z′
0) ·

ηε(Λ(B−1)) ≥ ηε(Λ(B−1 ·Z′
0)). Now let f̃ ∼ D√

2σI. Then it holds by Lemma 5.2
that f̃ and ẽ + ẽ′ are 4ε close.

Now note that by the definition of e we have that e and ẽ · B are identically
distributed, also f and f̃ · B are identically distributed. Setting e′ = ẽ′B, we
obtain that fZ−1

0 and eZ−1
0 + e′Z−1

0 are 4ε-close. We can conclude that

H̃∞(s|s+ eZ−1
0 ) = H̃∞(s|s+ eZ−1

0 , e′) ≤ H̃∞(s|s+ eZ−1
0 + e′Z−1

0 ) ≤ H̃4ε
∞(s|s+ fZ−1

0 ).

Lemma 5.6 (Discrete to Continuous). Let f ←$ D
Zn,

√
2σ·B and e ←$ DσB,

then it holds that
H̃8ε

∞(s|s + f) ≥ H̃∞(s|s + e).

Proof Let e′ be distributed according to DZn−e,σB. Then it holds by Theorem
5.3 that the statistical distance between e + e′ and f is smaller than 8ε.

Theorem 5.7. Let Z0 ∈ Z
n×n and for i ∈ [k] Zi ∈ Z

n×n be matrices and
let Z = (Z1, . . . ,Zk) ∈ Z

n×nk
q be the matrix obtained by concatenating the Zi.

Further let Z−1
0 ∈ Q

n×n be the rational inverse of Z0 and H ∈ Z
n×n
q be the

Zq-inverse of Z0 mod q.
Define the matrix Z′

0 = BZ0B−1 and Z′ = (BZ1B−1, . . . ,BZkB−1). Let τ1
be the largest singular value of Z′

0
−1Z′ and τ2 be the largest singular value of Z′

0.
For a σ > τ2ηε(Λ(B−1)) let σ0 ≥ 23/2σ · τ1. Then it holds that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e) − n log(τ2),

where e0 ←$ Dk
σ0B

and e ←$ DσB.
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Proof. Fix a distribution of secrets S and let s ←$ S. Let σ1 = σ0/τ1 ≥ 23/2σ

Since the largest singular value of Z′
0
−1Z′ is τ1, by Lemma 5.4 there exists

a distribution Ψ over R
nk such that we can equivalently sample e0 by e0 =

e1Z−1
0 Z + e′

1, where e1 ∼ Dσ1B and e′
1 ∼ Ψ . Consequently, we can write

y = sHZ + e0 = sHZ + e1Z−1
0 Z + e′

1 = (sH + e1Z−1
0 )Z + e′

1.

Thus, since y can be computed from sH + e1Z−1
0 and e′

1 it follows that

H̃∞(s|sHZ + e0) = H̃∞(s|sH + e1Z−1
0 , e′

1) = H̃∞(s|sH + e1Z−1
0 ),

where the second equality follows as e′
1 is independent from s and e1.

Now let σ2 = σ1/
√

2 ≥ 2σ and let e2 ∼ DΛ(Z0),σ2B be a discrete gaussian.
By Lemma 5.5 it holds that

H̃4ε
∞(s|s + e1Z−1

0 ) ≥ H̃∞(s|s + e2Z−1
0 ).

Now, since H is the Zq-inverse of Z0 mod q, multiplying sH + e2Z−1
0 by Z0

yields
H̃∞(s|sH + e2Z−1

0 ) = H̃∞(s|s + e2).

Now let σ3 = σ2/
√

2 ≥ √
2σ, e3 ∼ DZn,σ3B and e′

3 ∼ DΛ(Z0)−e3,σ3B. Setting
Λ2 = Z

n and Λ1 = Λ(Z0) in Theorem 5.3 and noting that σ3 > σ > ηε(Λ(B−1))
we obtain that the statistical distance between e2 and e3 + e′

3 is at most 8ε.
It follows that

H̃8ε
∞(s|s + e2) ≥ H̃∞(s|s + e3 + e′

3) ≥ H̃∞(s|s + e3, e′
3).

Since e′
3 is distributed according to DΛ(Z0)−e3,σ3 , it only depends on e3

mod Λ(Z0). Thus

H̃∞(s|s + e3, e′
3) ≥ H̃∞(s|s + e3) − H0(e′

3)

≥ H̃∞(s|s + e3) − log(det(Z0))

≥ H̃∞(s|s + e3) − n · log(τ2),

as |Zn/Λ(Z0)| = det(Z0) = det(Z′
0) ≤ n · log(τ) (as the largest singular value of

Z′
0 is τ2).

Finally as σ3/
√

2 = σ > ηε(B−1), by Lemma 5.5 we can bound

H̃8ε
∞(s|s + e3) ≥ H̃∞(s|s + e),

where e ←$ DσB. Putting everything together, we obtain that

H̃20ε
∞ (s|sHZ + e0) ≥ H̃∞(s|s + e) − n · log(τ2).

We can now summarize the results of this section in the following theorem.

Theorem 5.8. Let τ1, τ2 > 0. Let Ψ be a distribution on (Zn×n)× ×Z
n×nk and

assume the Decisional Small Ratio assumption holds for Ψ . Assume further that
if (Z0,Z) ←$ Ψ then
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– σmax(BZ−1
0 ZB−1) ≤ τ1 where Z−1

0 is the rational inverse of Z0.
– σmax(BZ0B−1) ≤ τ2

with probability at least δ over the choice of (Z0,Z). Define the distribution X
on Z

n×m
q by HZ, where (Z0,Z) ←$ Ψ and H ∈ Z

n×n is the Zq-inverse of Z0.
Let σ > τ2ηε(Λ(B−1)) and σ0 > 23/2τ1σ. Now let χ = Dσ0B. Further assume
that νσB(S) ≥ n log(τ2) + ω(log(λ)).

Then X is a sometimes lossy pseudorandom distribution for S and error
distribution χ.

By combining Theorems 5.8 and 4.2 we obtain the following corollary.

Corollary 5.9. Assume that the conditions of Theorem 5.8 are satisfied. Then
entSLWE(q, k,M,Dσ0B,S) is mildly hard.

6 Instantiation for RLWE over Power-of-Two
Cyclotomics

In this Section, we will instantiate the results of Sect. 5 for Ring LWE over power-
of-two cyclotomics. That is, we will construct a sometimes lossy pseudorandom
distribution in this setting.

Throughout this section let B ∈ R
n×n be a basis-change matrix as described

in Sect. 3.2.
First recall the Decisional Small Polynomial Ratio (DSPR) problem, as

defined by Lopez-Alt et al. [15]. The DSPR problem is in fact a generalization
of the NTRU problem.

Definition 6.1 (Decisional Small Polynomial Ratio problem (DSPR)).
Let R be a ring of integers of a number field K and let q be a modulus. Let
γ > 0. Let g ←$ DR,γ and f ←$ DR,γ conditioned on f mod q ∈ R×

q . Let h be
the Rq-inverse of f . The DSPR problem for distribution DR,γ asks to distinguish
hg ∈ Rq from a uniformly random a ←$ Rq.

We will make use of the following Lemmas and Theorems of Stehlé and
Steinfeld [27].

Theorem 6.2 shows that if the a gaussian χ is sufficiently wide, then ring
elements hg are actually statistically close to a uniform a ←$ Rq.

Theorem 6.2 ([27, Theorem 3.2 restated]). Let n ≥ 8 be a power of 2 such that
Φ = Xn + 1 splits into n linear factors modulo a prime q ≥ 5. Let 0 < α < 1/3
and assume that γ ≥ n ·√ln(8nq) · q1/2+α and that f ,g ←$ DR×

q ,γ . Let h be the
Rq-inverse of f . Then it holds that hg is within statistical distance 210n · q−αn

of the uniform distribution on R×
q .

Lemma 6.3 ([27, Lemma 3.5 restated]). Let n ≥ 8 be a power of 2 such that Φ =
Xn + 1 splits into n linear factors modulo q ≥ 5. Let γ ≥ √

n · ln(2n(1 + n2))/π·
q1/n. Then it holds that

Pr
f←$DR,γ

[f /∈ R×
q ] ≤ n(1/q + 2/n2).
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Lemma 6.4 ([27, Lemma 2.8 restated]). Let R be a ring of integers. Then it
holds for any γ ≥ ηε(R) that

Pr
f←$DR,γ

[‖f‖ ≥ γ log(n)
√

n] ≤ negl(λ)

Lemma 6.5 ([27, Lemma 4.1 restated]). Let n ≥ 8 be a power of 2, Φ = Xn + 1
and R = Z[X]/(Φ). For any γ ≥ 8nηε(R) it holds that

Pr
f←$DR,γ

[
‖f−1‖ ≥ 24

√
n

γ

]
≤ 1/2

We will now establish the hardness of an instance of the DSR problem, assum-
ing RLWE and either the DSPR problem or Theorem 6.2. Let χ be a B-bounded
error distribution on R and let γ > 0 be a gaussian parameter. Define the dis-
tribution Ψ as follows:

– Choose f ,g ←$ DR,γ such that f mod q ∈ R×
q .

– Choose e1, . . . , ek ←$ χ and e′
1, . . . , e

′
k ←$ χ

– For all i ∈ [k] set zi = g · ei + f · e′
i.

– Let Z0 be the multiplication matrix of f and for all i ∈ [k] let Zi be the
multiplication matrix of zi

– Set Z = (Z1, . . . ,Zk)
– Output (Z0,Z)

We will now show that the distribution Ψ is a sometimes lossy pseudorandom
distribution. Recall that by Theorem 5.8 it is sufficient to bound the maximal
singular values of BZ0B−1, BZ−1

0 ZB−1 and establish that the DSR assumption
for Ψ holds. We will start by showing that if the Ring LWE assumption for error
distribution χ and the DSPR assumptions hold, then the DSR assumption holds
for Ψ .

Lemma 6.6. Assuming both DSPR for distribution DR,γ and RLWE for error-
distribution χ, it follows that DSR for distribution Ψ is hard. Moreover, if χ =
DR×

q ,γ and the conditions of Theorem 6.2 are met, then the DSPR assumption
is not necessary.

Proof. Let h be the Rq-inverse of f . Observe that yi = hzi = hg · ei + e′
i.

Under the DSPR assumption we can replace hg by a uniformly random a ∈ Rq.
It then follows by a simple hybrid argument that for all i yi = aei + e′

i is
indistinguishable from a uniformly random ui under Hermite RLWE for error
distribution χ′.

Likewise, if the conditions of Theorem 6.2 are met, hg is statistically close to
a uniformly random a ∈ R×

q . It follows again via a hybrid argument that for all
i yi = aei + e′

i is indistinguishable from a uniformly random ui under Hermite
RLWE for error distribution χ′. Note that RLWE also holds if we condition on
a ∈ R×

q , as this event happens with significant probability.
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The following technical lemma lets us bound the maximal singular value of
a matrix Z′ by bounding the singular values of blocks of Z′.

Lemma 6.7. Let Z′ = (Z′
1| . . . |Z′

m) ∈ R
n×n·k be a block matrix where each

Z′
i ∈ R

n×n. Assume that it holds for all i that σmax(Z′
i) ≤ γ. Then it holds that

σmax(Z′) ≤ √
k · γ.

Proof. Fix any vector x = (x1, . . . ,xk) ∈ R
nk, where the xi ∈ R

n. Then it holds
that

‖Z′x‖ = ‖
k∑

i=1

Z′
ixi‖ ≤

k∑

i=1

‖Z′
ixi‖ ≤

k∑

i=1

γ‖xi‖ ≤ γ
√

k ·
√√√√

k∑

i=1

‖xi‖2 = γ
√

k · ‖x‖,

where the last inequality follows from the relationship between the L1 and L2

norms. It follows that σmax(Z′) ≤ √
k · γ

Lemma 6.8 bounds the maximal singular values of BZ0B−1 and BZ−1
0 ZB−1

Lemma 6.8. Let γ > max{√n · ln(2n(1 + n2))/π · q1/n, 8nηε(R)} and assume
that χ is B-bounded. Let (Z0,Z) ←$ Ψ . It holds that

– Z0 is invertible in Z
n×n
q

– σmax(BZ0B−1) ≤ O(γ log(n)
√

n)
– σmax(BZ−1

0 ZB−1) ≤ O(n log(n)
√

kB)

except with probability 1/2 + o(1) over the choice of (Z0,Z).

Proof. We will bound the maximal singular value of BZ0B−1 by ‖σ(f)‖∞.
Likewise, we will bound the maximal singular values of the BZ−1

0 ZiB−1 via
‖σ(f−1zi)‖∞. The bound on the maximal singular value of BZB−1 will follow
by Lemma 6.7.

Note that

– It holds by Lemma 6.3 that f in invertible in R×
q , except with probability

n/q + 2/n = O(1/n).
– It holds by Lemma 6.4 and a union bound that ‖σ(f)‖ ≤ γ log(n)

√
n and

‖σ(zi)‖ ≤ γ log(n)
√

n for all i ∈ [k], except with negligible probability.
– By Lemma 6.5 we have that ‖σ(f−1)‖ ≤ 24

√
n/γ, except with probability

≤ 1/2.

Consequently, all 3 items hold, except with probability 1/2 + o(1). Moreover,
since the ei and e′

i are distributed according to χ and χ is B-bounded, it holds
that for all i ∈ [k] that ‖σ(ei)‖ ≤ B and ‖σ(e′

i)‖ ≤ B.
Thus, we have that

σmax(BZ0B−1) ≤ ‖σ(f)‖∞ ≤ ‖σ(f)‖ ≤ γ log(n)
√

n = O(γ log(n)
√

n).
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Moreover, it holds for all i that

σmax(BZ−1
0 ZiB−1) ≤ ‖σ(f−1zi)‖∞

= ‖σ(f−1gei + e′
i)‖∞

≤ ‖σ(f−1)‖∞ · ‖σ(g)‖∞ · ‖σ(ei)‖∞ + ‖σ(e′
i)‖∞

≤ ‖σ(f−1)‖ · ‖σ(g)‖ · ‖σ(ei)‖ + ‖σ(e′
i)‖

≤ 24n log(n) · B = O(n log(n)B)

By Lemma 6.7 we conclude that σmax(BZB−1) ≤ O(n log(n)
√

kB).

We can now summarize the results of this section in our main theorem by
combining Lemma 6.8 with Corollary 5.9.

Theorem 6.9. Assume that DSPR with parameter γ and Ring LWE with a B-
bounded noise distribution χ holds. Let S be a distribution s.t. for some σ it
holds that νσ(S) ≥ n log(γ · log(n)

√
n) + ω(log λ). Then Entropic Ring LWE

for power-of-two cyclotomics with k samples, secret distribution S and Gaussian
noise parameter σ0 ≥ O(σn log(n)B

√
k) is mildly hard.

By Theorem 6.2 we know that we can drop the DSPR assumption provided
that γ ≥ poly(n)q1/2+α for an arbitrarily small constant α. This translates to the
stronger requirement that νσ(S) ≥ (1/2 + α)n log(q) + O(n log(n)). Thus, the
distribution S must have at more than (1/2 + α)n log(q) + O(n log(n)) min-
entropy to begin with. However, note that if S is an r-bounded distribution,
where r ≥ poly(n)q1/2+α, then Lemma 2.5 tells us if σ is a poly(n) factor larger
than r, we have essentially νσ(S) ≈ H̃∞(S) and the requirements can be met.
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Abstract. The notion of multi-key fully homomorphic encryption
(multi-key FHE) [López-Alt, Tromer, Vaikuntanathan, STOC’12] was
proposed as a generalization of fully homomorphic encryption to the
multiparty setting. In a multi-key FHE scheme for n parties, each party
can individually choose a key pair and use it to encrypt its own pri-
vate input. Given n ciphertexts computed in this manner, the parties
can homomorphically evaluate a circuit C over them to obtain a new
ciphertext containing the output of C, which can then be decrypted via
a decryption protocol. The key efficiency property is that the size of the
(evaluated) ciphertext is independent of the size of the circuit.

Multi-key FHE with one-round decryption [Mukherjee and Wichs,
Eurocrypt’16], has found several powerful applications in cryptography
over the past few years. However, an important drawback of all such
known schemes is that they require a trusted setup.

In this work, we address the problem of constructing multi-key FHE
in the plain model. We obtain the following results:

– A multi-key FHE scheme with one-round decryption based on the
hardness of learning with errors (LWE), ring LWE, and decisional
small polynomial ratio (DSPR) problems.

– A variant of multi-key FHE where we relax the decryption algo-
rithm to be non-compact – i.e., where the decryption complexity
can depend on the size of C – based on the hardness of LWE. We
call this variant multi-homomorphic encryption (MHE). We observe
that MHE is already sufficient for some of the applications of multi-
key FHE.

1 Introduction

Fully-homomorphic encryption [21] (FHE) allows one to compute on encrypted
data. An important limitation of FHE is that it requires all of the data to be
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encrypted under the same public key in order to perform homomorphic evalu-
ations. To circumvent this shortcoming, López-Alt et al. [29] proposed a multi-
party extension of FHE, namely, multi-key FHE, where each party can sample a
key pair (ski, pki) locally and encrypt its message under its own public key. Then
one can publicly evaluate any (polynomially computable) circuit over the result-
ing ciphertexts ci = Enc(pki,mi), each encrypted under an independently sam-
pled public key. Naturally, decrypting the resulting multi-key ciphertext requires
one to know all the secret keys for the parties involved.

In this work we are interested in multi-key FHE schemes with a one-round
decryption protocol: Given a multi-key ciphertext c = Enc((pk1, . . . , pkN ), C(m1,
. . . ,mN )), the decryption consists of (i) a local phase, where each party indepen-
dently computes a decryption share pi using its secret key ski, and a (ii) public
phase, where the plaintext m can be publicly recovered from the decryption
shares (p1, . . . , pN ).

Other than being an interesting primitive on its own, multi-key FHE with
one-round (also referred to as “non-interactive”) decryption implies a natural
solution for secure multi-party computation (MPC) with optimal round com-
plexity and communication complexity independent of the size of the circuit
being computed [31]. Additionally, multi-key FHE with one-round decryption
has proven to be a versatile tool to construct powerful cryptographic primi-
tives, such as spooky encryption [18], homomorphic secret sharing [11,12], obfus-
cation and functional encryption combiners [4,5], multiparty obfuscation [25],
homomorphic time-lock puzzles [14,30], and ad-hoc multi-input functional
encryption [1].

To the best of our knowledge, all known multi-key FHE schemes with one-
round decryption assume a trusted setup [16,17,31,32] or require non-standard
assumptions, such as the existence of sub-exponentially secure general-purpose
obfuscation [18]. A major open question in this area (stated in [16,31]) is whether
it is possible to avoid the use of a common setup and obtain a solution in the
plain model.

1.1 Our Results

We present the first construction of a multi-key FHE with one-round decryption
in the plain model, i.e. without a trusted setup, from standard assumptions over
lattices. Specifically, we prove the following main theorem:

Theorem 1 (Informal). Assuming,

– Two-round semi-malicious oblivious transfer in the plain model,
– Multi-key FHE with trusted setup and one-round decryption and,
– Multi-key FHE in the plain model but with arbitrary round decryption,

there exists multi-key FHE in the plain model with one-round decryption.

A multi-key FHE with one-round decryption in the common reference string
(CRS) model can be constructed assuming the hardness of the standard learning
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with errors (LWE) problem [17,31]. Similarly, two-round semi-malicious oblivi-
ous transfer can also be instantiated assuming learning with errors [13]. On the
other hand, a multi-key FHE scheme without setup, but with complex decryp-
tion, was proposed in [29] assuming the hardness of the Ring LWE and the
decisional small polynomial ratio (DSPR) problems,1 Thus, we obtain the fol-
lowing implication:

Theorem 2 (Informal). Assuming that the LWE, Ring LWE, and DSPR
problems are hard, there exists a leveled multi-key FHE scheme in the plain
model with one-round decryption. Additionally assuming circular security of
our scheme, there exists multi-key FHE in the plain model with one-round
decryption.

We remark that our compiler is completely generic in the choice of the scheme
and thus can benefit from future development in the realm of multi-key FHE
with multi-round decryption. We also point out that our construction achieves a
relaxed security notion where, among other differences, we require computational
indistinguishability of simulated decryption shares, whereas the works of [16,31,
32] achieved statistical indistinguishability (see Sect. 4 for a precise statement).
To the best of our knowledge, this definition suffices for known applications of
multi-key FHE.

Multiparty Homomorphic Encryption. As a stepping stone towards our
main result, we introduce the notion of multiparty homomorphic encryption
(MHE). MHE is a variant of multi-key FHE that retains its key virtue of com-
munication efficiency but sacrifices on the efficiency of final output computation
step. Specifically, the reconstruction of the message from the decryption shares
is “non-compact”, i.e. its computational complexity might depend on the size
of the evaluated circuit. Crucially, we still require that the size of the (eval-
uated) ciphertexts is independent of size of the circuit. As we discuss below,
MHE suffices for some applications of multi-key FHE, including a two-round
MPC protocol where the first message depends only on the input of each party
and can be reused for arbitrarily many evaluations of different circuits.

Note that unlike the case of (single-key) FHE, allowing for non-compact
output computation does not trivialize the notion of MHE. Indeed, in the case
of FHE, a trivial scheme with non-compact output computation can be obtained
via any public-key encryption scheme by simply considering a decryption process
that first recovers the plaintext and then evaluates the circuit to compute the
output. Such an approach, however, does not extend to the multiparty setting
since it would violate the security requirement of MHE (defined similarly to that
of multi-key FHE).

We prove the following theorem:

1 These assumptions have been cryptanalyzed in [2,27], which affects the concrete
choice of the parameters of the scheme. However, all known attacks (including these
works) run in sub-exponential time. We refer the reader to [26] for recommendations
on the parameter choices for conjectured λ-bits of security.
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Theorem 3 (Informal). Assuming the hardness of the LWE problem (with
sub-exponential modulus-to-noise ratio), there exists an MHE scheme in the plain
model.

At a technical level, we develop a recursive self-synthesis transformation that
lifts any one-time MHE scheme (i.e. where the first message can be securely used
only for the evaluation of a single circuit) to an unbounded MHE. Our approach
bears resemblance to and builds upon several seemingly unrelated works dating
as far back as the construction of pseudorandom functions from pseudorandom
generators [23], as well as recent constructions of indistinguishability obfusca-
tion from functional encryption [6,9] (and even more recently, constructions of
identity-based encryption [15,20]).

Reusable MPC. A direct application of MHE is a two-round (semi-honest)
MPC protocol in the plain model with the following two salient properties:

– The first round of the protocol, which only depends on the inputs of the
parties, can be reused for an arbitrary number of computations. That is, after
the completion of the first round, the parties can execute the second round
multiple times, each time with a different circuit C� of their choice, to learn
the output of C� over their fixed inputs.

– The communication complexity of the protocol is independent of the circuit
size (and only depends on the circuit depth).

Alternately, we can use our multi-key FHE to achieve the same result with com-
munication complexity independent of the circuit size, albeit based on stronger
assumptions.

Previously, such a protocol – obtained via multi-key FHE – was only known in
the CRS model [31]. Benhamouda and Lin [8] recently investigated the problem
of two-round reusable MPC (with circuit-size dependent communication) and
give a construction for the same, in the plain model, based on bilinear maps.2

Our construction is based on a different assumption, namely, LWE, and therefore
can be conjectured to satisfy post-quantum security.

Concurrent Work on Reusable MPC. The work of Bartusek et al. [7] inves-
tigate the question of two-round MPC with reusable first message. They propose
schemes assuming the hardness of the DDH assumption over traditional groups.
In contrast with our work, the resulting MPC is non-compact, i.e. the communi-
cation complexity is proportional to the size of the circuit. Moreover, unlike [7],
our scheme can be conjectured to be secure against quantum adversaries.

1.2 Open Problems

Our work leaves open some interesting directions for future research. The most
compelling problem is to construct a multi-key FHE with one-round decryption
2 The authors communicated their result statement privately to us. A public version

of their paper was not available at the time of first writing of this paper, but can
now be found in [8].
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assuming only the hardness of the (plain) LWE problem. Another relevant direc-
tion is to improve the practical efficiency of our proposal and to obtain a more
“direct” construction of multi-key FHE from lattice assumptions.

2 Technical Overview

Towards constructing both multi-key FHE and MHE, we first consider a relaxed
notion of MHE where the evaluation algorithm is allowed to be private; we call
this notion pMHE.

MHE with Private Evaluation (pMHE). An MHE scheme with private
evaluation, associated with n parties, consists of the following algorithms:

– Encryption: The ith party, for i ∈ [n], on input xi produces a ciphertext cti
and secret key ski.

– Evaluation: The ith party on input all the ciphertexts ct1, . . . , ctN , secret key
ski, and circuit C, it evaluates the ciphertexts to obtain a partial decrypted
value pi. We emphasize that the ith party requires ski for its evaluation and
thus is not a public operation.

– Final Decryption: Given all the partial decrypted values (p1, . . . , pN ) and
the circuit C, reconstruct the output C(x1, . . . , xN ).

Towards obtaining our main results, we will also sometimes consider a version of
pMHE in the CRS model, where the encryption, evaluation and the final decryp-
tion algorithms additionally take as input a CRS, generated by a trusted setup.
Furthermore, we will also consider pMHE schemes with an efficiency property
that we refer to as ciphertext succinctness. We postpone defining this property
to later in this section.

Roadmap of our Approach. Using the abstraction of pMHE, we achieve both
of our results as illustrated in Fig. 1:

– The starting point of our approach is a one-time pMHE, namely, a pMHE
scheme where the initial ciphertexts, i.e., encryptions of xi for every i ∈ [n],
can be evaluated upon only once. The first step in our approach, involving the
technical bulk of our work, is a reusability transformation that takes a one-
time pMHE in the CRS model and converts it into a pMHE scheme (in the
plain model), that allows for (unbounded) polynomially-many homomorphic
evaluations (of different circuits) over the initial ciphertexts. We outline this
in Sect. 2.1.

– We next describe two different transformations: The first transformation con-
verts a pMHE scheme to multi-key FHE (Sect. 2.2) and the second transfor-
mation converts it to an MHE scheme (Sect. 2.3).

– Finally, in Sect. 2.4, we discuss instantiation of one-time pMHE.
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One-Time pMHE
with

ciphertext succinctness

(Reusable) pMHE
with

ciphertext succinctness

Multi-key FHE
in plain model

(Reusable) MHE
in plain model

CRS

Reusability Transformation (Section 7)

+ [29] (Section 8)

+ LFE (Section 9.1)
+ FHE (Section 9.2)

Fig. 1. Our approach

2.1 Reusability Transformation

We now proceed to describe our reusability transformation from a one-time
pMHE scheme in the CRS model to a (reusable) pMHE scheme in the plain
model. We will in fact first consider the simpler problem of obtaining a pMHE
scheme in the CRS model. Later, we show how we can modify the transformation
to get rid of the CRS.

Reusability: Naive Attempt. Let OneMHE denote a one-time pMHE scheme.
Using two instantiations of OneMHE that we call OneMHE0 and OneMHE1, we
first attempt to build an pMHE scheme for a circuit class C = {C0, C1} that
allows for only two decryption queries, denoted by TwoMHE.

– The ith party, for i ∈ [N ], on input xi, produces two ciphertexts cti0 and cti1,
where cti0 is computed by encrypting xi using OneMHE0 and ct1 is computed
by encrypting xi using OneMHE1.

– To evaluate a circuit Cb, for b ∈ {0, 1}, run the evaluation procedure of
OneMHEb to obtain the partial decrypted values.

– The final decryption on input Cb and partial decrypted values produces the
output.

It is easy to see that the above scheme supports two decryption queries. While
the above template can be generalized if C consists of polynomially many circuits;
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every circuit in C is associated with an instantiation of OneMHE. However, it is
clear that this approach does not scale when C consists of exponentially many
circuits.

Recursive Self-synthesis. Instead of generating all the instantiations of
OneMHE during the encryption phase, as is done in TwoMHE, our main insight is
to instead defer the generation of the instantiations of OneMHE to the evaluation
phase. The advantage of this approach is that, during the evaluation phase, we
know exactly which circuit is being evaluated and thus we can afford to be frugal
and only generate the instantiations of OneMHE that are necessary, based on the
description of this circuit. The idea of bootstrapping a”one-time” secure scheme
into a “multi-time” secure scheme is not new and has been studied in different
contexts in cryptography; be it the classical result on pseudorandom functions
from pseudorandom generators [24] or the more recent results on indistinguisha-
bility from functional encryption [6,10,28] and constructions of identity-based
encryption [15,19,20]. In particular, as we will see soon, our implementation of
deferring the executions of OneMHE and only invoke the instantiations as needed
bears some resemblance to techniques developed in these works, albeit in a very
different context.

Illustration. Before explaining our approach to handle any polynomial number
of decryption queries, we start with the same example as before: The goal is to
build pMHE scheme for a circuit class C = {C0, C1} that allows for 2 decryption
queries. The difference, however, is, unlike before, the approach we describe
below will scale to exponentially many circuits.

We employ a tree-based approach to solve this problem. The tree associated
with this scheme consists of three nodes: a root and two leaves. The first leaf is
associated with the circuit C0 and the second leaf is associated with the circuit
C1. Every node is associated with an instantiation of the one-time pMHE scheme.
Denote the one-time pMHE scheme associated with the root to be OneMHE⊥,
with the left leaf to be OneMHE0 and the right leaf node to be OneMHE1.

Armed with the above notation, we now present an overview of construction
of a pMHE scheme for C = {C0, C1} allowing for 2 decryption queries as follows:

– The ith party, for i ∈ [N ], on input xi, produces the ciphertext cti⊥, where
cti⊥ is computed by encrypting xi using OneMHE⊥.

– To evaluate a circuit Cb, for b ∈ {0, 1}, the ith party does the following:
• First run the evaluation procedure of OneMHE⊥ on input circuit C⊥
(defined below) to obtain the ith partial decrypted value associated with
OneMHE⊥.
Denote C⊥ to be the circuit3 that takes as input (x1, . . . , xN ) and pro-
duces: (i) GCi,0 wire labels for OneMHE0 ciphertext of xi under the ith

party’s secret key, for every i, and, (ii) GCi,1 wire labels for OneMHE1

ciphertext of xi under the ith party’s secret key, for every i.
3 We consider the setting where the circuit is randomized; this is without loss of

generality since we can assume that the randomness for this circuit is supplied by
the parties.
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• It computes a garbled circuit GCi,b defined below.
Denote GCi,b to be the garbling of a circuit that takes as input OneMHEb

ciphertexts of x1, . . . , xN , performs evaluation of Cb using the ith secret
key associated with OneMHEb and outputs the OneMHEb partial decryp-
tion values.

Output the ith partial decrypted value of OneMHE⊥ and the garbled circuit
GCi,b.

– The final decryption algorithm takes as input the OneMHE⊥ partial decryp-
tion values from all the parties, garbled circuits GC1,b, . . . , GCN,b, circuit Cb

(to be evaluated) and performs the following operations:
• It first runs the final decryption procedure of OneMHE⊥ to obtain the
wire labels corresponding to all the garbled circuits GC1,b, . . . , GCN,b.
• It then evaluates all the garbled circuits to obtain the OneMHEb partial
decryption values.
• Using the OneMHEb partial decryption values, compute the final decryp-
tion procedure of OneMHEb to obtain Cb(x1, . . . , xN ).

Full-Fledged Tree-Based Approach. We can generalize the above approach
to construct a pMHE scheme for any circuit class and that handles any poly-
nomially many queries. If s is the maximum size of the circuit in the class of
circuits, we consider a binary tree of depth s.

– Every edge in the tree is labeled. If an edge e is incident from the parent to
its left child then label it with 0 and if e is incident from the parent to its
right child then label it with 1.

– Every node in the tree is labeled. The label is the concatenation of all the
edge labels on the path from the root to the node.

– Every leaf is associated with a circuit of size s.

With each node v, associate with v a new instantiation of a one-time pMHE
scheme, that we denote by OneMHEl(v), where l(v) is the label associated with
node v. If v is the root node l(v) = ⊥.

Informally, the encryption algorithm of pMHE generates OneMHE⊥ encryp-
tion of xi under the ith secret key. During the evaluation procedure, on input C,
each party generates s garbled circuits, one for every node on the path from the
root to the leaf labeled with C. The role of these garbled circuits is to delegate
the computation of the partial decrypted values to the final decryption phase. In
more detail, the garbled circuit associated with the node v computes the partial
decrypted values associated with OneMHEl(v). The partial decryption values will
be generated by homomorphically evaluating the following circuit: (i) the wire
labels, associated with OneMHElv||0 encryptions of x1, . . . , xN , of all the N gar-
bled circuits associated with the node v||0 and, (ii) the wire labels, associated
with OneMHElv||1 encryptions of x1, . . . , xN , of all the N garbled circuits asso-
ciated with the node v||1. Note that the homomorphic evaluation is performed
inside the garbled circuit.
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During the final decryption, starting from the root node, each garbled circuit
(of every party) is evaluated to obtain wire labels of the garbled circuit associated
with the child node on the path from the root to the leaf labelled with C. Finally,
the garbled circuit associated with the leaf labelled with C is then evaluated to
obtain the OneMHEC partial decrypted values. These partial decrypted values
are then decoded to recover the final output C(x1, . . . , xN ).

We give an overview of the final decryption process in Fig. 2.

GC1,0

(performs evaluation
of OneMHE0)

GCn,0

(performs evaluation
of OneMHE0)

· · ·

1st party’s
partial de-
cryptions

w.r.t. OneMHE0

nth party’s
partial de-
cryptions

w.r.t. OneMHE0

+

· · ·

· · ·

{GCi,00}i∈[n]
wire labels

for
(CTs of

OneMHE00)

{GCi,01}i∈[n]
wire labels

for
(CTs of

OneMHE01)

GC1,01

(performs evaluation
of OneMHE01)

GCn,01

(performs evaluation
of OneMHE01)

· · ·

Fig. 2. A glimpse of the final decryption process of the reusable pMHE scheme when
evaluated upon the circuit with the boolean representation C = 01 · · · . During the eval-
uation process, the ith party generates the garbled circuits GCi,0, GCi,01, · · · , GCi,C

as part of the partial decrypted values. The garbled circuit GCi,l(v), associated with
the prefix l(v) of C, computes the evaluation procedure of OneMHEl(v). The output of
final decryption of OneMHEl(v) are (i) the wire labels of GCi,l(v)||0, for every i ∈ [n],
of the encryptions of all the inputs of the parties, x1, . . . , xN generated with respect to
OneMHEl(v)||0 and, (ii) the wire labels of GCi,l(v)||1, for every i ∈ [n], for the encryptions
of all the inputs of the parties, x1, . . . , xN generated with respect to OneMHEl(v)||1.

Efficiency Challenges. To argue that the above scheme is a pMHE scheme, we
should at the very least argue that the encryption, evaluation and final decryp-
tion algorithms can be executed in polynomial time. Let us first argue that all
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the garbled circuits can be computed in polynomial time by the ith party. The
time to compute the garbled circuit associated with the root node is polynomial
in the time to compute OneMHE0 and OneMHE1 ciphertexts. Even if the time
to compute OneMHE0 and OneMHE1 ciphertexts only grows proportional to the
depth of the circuits being evaluated, the recursion would already blow up the
size of the first garbled circuit to be exponential in s! This suggests that we
need to define a suitable succinctness property on OneMHE in order to make the
above transformation work.

Identifying the Necessary Efficiency for Recursion. To make the above
recursion idea work, we impose a stringent efficiency constraint on the encryption
complexity of OneMHE. In particular, we require two properties to hold:

1. The size of the encryption circuit is a polynomial in the security parameter
λ, the number of parties, the input length, and the depth of the circuit.

2. The depth of the encryption circuit OneMHE grows polynomially in λ, the
number of parties and and the input length.

Put together, we refer to the above efficiency properties as ciphertext succinct-
ness. It turns out that if we have an OneMHE scheme with ciphertext succinct-
ness, then the resulting reusable pMHE scheme has polynomial efficiency and
moreover, the ciphertext sizes in the resulting scheme are polynomial in the
security parameter alone.4

Removing the CRS. Note that if we start with OneMHE in the CRS model,
we end up with reusable pMHE scheme still in the CRS model. However, our
goal was to construct a pMHE in the plain model. To fix this, we revisit the
tree-based approach to construct pMHE and make two important changes.

The first change is the following: Instead of instantiating the root node with
a OneMHE scheme satisfying ciphertext succinctness, we instantiate it by a
OneMHE scheme that need not satisfy any succinctness property (and thus can
be instantiated by any semi-malicious MPC in the plain model); if we work
out the recursion analysis carefully it turns out that its not necessary that the
OneMHE scheme associated with the root node satisfy ciphertext succinctness.
The intermediate nodes, however, still need to satisfy ciphertext succinctness
and thus need to be instantiated using OneMHE in the CRS model.

Since the intermediate nodes still require a CRS, we make the parent node
generate the CRS for its children. That is, upon evaluating the partial decryp-
tion values output by a garbled circuit associated with node v (see Fig. 2 for
reference), we obtain: (i) wire labels for crslv||0 and the OneMHEl(v)||0 cipher-
texts computed with respect to the common reference string crsl(v)||0 and, (ii)

4 An informed reader may wish to draw an analogy to recent works that devise recur-
sive strategies to build indistinguishability obfuscation from functional encryption
[6,10,28]. These works show that a functional encryption scheme with a sufficiently
compact encryption procedure (roughly, where the complexity of encryption is sub-
linear in the size of the circuit) can be used to build an indistinguishability obfusca-
tion scheme. In a similar vein, ciphertext succinctness can be seen as the necessary
efficiency notion for driving the recursion in our setting without blowing up efficiency.
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wire labels for crslv||1 and OneMHEl(v)||1 ciphertexts computed with respect to
the common reference string crsl(v)||1. That is, the circuit being homomorphi-
cally evaluated by OneMHEl(v) first generates crsl(v)||0, crsl(v)||1, then generates
the OneMHEl(v)||0,OneMHEl(v)||1 ciphertexts followed by generating wire labels
for these ciphertexts. This is the reason why we require the root node to be
associated with a OneMHE scheme in the plain model; if not, its unclear how we
would be able to generate the CRS for the root node.

2.2 From pMHE to Multi-key FHE

Once we obtain a reusable pMHE in the plain model, our main result follows from
a simple bootstrapping procedure. Our transformation lifts a multi-key FHE
scheme in the plain model with “complex” (i.e. not one-round) decryption to a
multi-key FHE in the plain model with one-round decryption, by additionally
assuming the existence of a reusable pMHE. Plugging the scheme from [29] into
our compiler yields our main result.

The high-level idea of our transformation is to use the pMHE scheme to
securely evaluate the decryption circuit (no matter how complex is) of input the
multi-key FHE. This allows us to combine the compactness of the multi-key FHE
and the one-round decryption of the pMHE into a single scheme that inherits
the best of both worlds. More concretely, our compiled scheme looks as follows.

– Key Generation: The i-th party runs the key generation algorithm of the
underlying multi-key FHE to obtain a key pair (pki, ski), then computes the
pMHE encryption of ski to obtain a ciphertext c̃ti and an secret evaluation
key s̃ki. The public key is set to (pki, c̃ti).

– Encryption: To encrypt a message mi, the i-th party simply runs the encryp-
tion algorithm of the multi-key FHE scheme to obtain a ciphertext cti.

– Evaluation: On input the ciphertexts ct1, . . . , ctN and a circuit C, the i-th
party runs the (deterministic) multi-key evaluation algorithm to obtain an
evaluated ciphertext ct. Then each party runs the evaluation algorithm of the
pMHE scheme for the circuit

Γ (sk1, . . . , skN ) = Dec((ski, . . . , skN ), ct)

over the pMHE ciphertexts c̃t1, . . . , c̃tN , where the value ct is hardwired in
the circuit. The i-th party returns the corresponding output pi.

– Final Decryption: Given the description of the circuit Γ (which is known
to all parties) and the decryption shares (p1, . . . , pN ), reconstruct the output
using the final decryption algorithm of pMHE.

We stress that, in order to achieve the functionality of a multi-key FHE scheme,
it is imperative that the underlying pMHE scheme has reusable ciphertexts,
which was indeed the main challenge for our construction. It is important to
observe that even thought the pMHE scheme does not have a compact decryption
algorithm, this does not affect the compactness of the complied scheme. This is
because the size of the circuit Γ is independent of the size of the evaluated circuit
C, by the compactness of the underlying multi-key FHE scheme.
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2.3 From pMHE to MHE

Equipped with pMHE, we discuss how to construct a full-fledged MHE scheme.
There are two hurdles we need to cross to obtain this application. The first being
the fact that pMHE only supports private evaluation and the second being that
pMHE only satisfies ciphertext succinctness and in particular, could have large
partial decryption values.

We address the second problem by applying a compiler that generically trans-
forms a pMHE scheme with large partial decryption values into a scheme with
succinct partial decryption values; that is, one that only grows proportional to
the input, output lengths and the depth of the circuit being evaluated. Such
compilers, that we refer to as low communication compilers were recently stud-
ied in the context of two-round secure MPC protocols [3,33] and we adapt them
to our setting. Once we apply such a compiler, we achieve our desired pMHE
scheme that satisfies the required efficiency property.

To achieve an MHE scheme with public evaluation, we use a (single-key)
leveled FHE scheme. Each party encrypts its secret key using FHE, that is, the
ith party generates an FHE key pair (pki, ski) and encrypts the ith secret key of
pMHE under pki; we denote the resulting ciphertext as FHE.cti. The ith party
ciphertext of the MHE scheme (MHE.cti) now consists of the ith party cipher-
text of the pMHE scheme (pMHE.cti) along with FHE.cti. The public evaluation
of MHE now consists of homomorphically evaluating the pMHE private eval-
uation circuit, with (C, pMHE.ct1, . . . , pMHE.ctN ) hardwired, on the ciphertext
FHE.cti. Since this is performed for each party, there are N resulting FHE cipher-
texts ( ̂FHE.ct1, . . . , ̂FHE.ctN ). During the partial decryption phase, the ith party
decrypts ̂FHE.cti using ski to obtain the partial decryption value corresponds
to the pMHE scheme. The final decryption of MHE is the same as the final
decryption of pMHE.

2.4 Instantiating One-Time pMHE in the CRS Model

So far we have shown that one-time pMHE suffices to achieve both of our results.
All that remains is to instantiate the one-time pMHE in the CRS model. We
instantiate this using the multi-key FHE scheme with one-round decryption in
the CRS model. A sequence of works [16,17,31] have presented a construction
of such a scheme based on the LWE problem.

3 Preliminaries

We denote the security parameter by λ. We focus only on boolean circuits
in this work. For any circuit C, let C.in, C.out, C.depth be the input length,
output length and depth of the circuit C, respectively. Denote C.params =
(C.in, C.out, C.depth).

For any totally ordered sets S1, S2, . . . , Sn, and any tuple (i∗1, i
∗
2, . . . , i

∗
n) ∈

S1×S2×· · ·×Sn, we use the notation (i∗1, i
∗
2, . . . , i

∗
n)+1 (resp. (i∗1, i

∗
2, . . . , i

∗
n)−1)
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to denote the lexicographical smallest (resp. biggest) element in S1×S2×· · ·×Sn

that is lexicographical greater (resp. less) than (i∗1, i
∗
2, . . . , i

∗
n).

Pseudorandom Generators. We recall the definition of pseudorandom gen-
erators. A function PRGλ : {0, 1}PRG.inλ → {0, 1}PRG.outλ is a pseduorandom
generator, if for any PPT distinguisher D, there exits a negligible function ν(λ)
such that

∣
∣
∣
∣
Pr

[

s ← {0, 1}PRG.inλ : D(1λ,PRGλ(s)) = 1
] −

Pr
[

u ← {0, 1}PRG.outλ : D(1λ, u) = 1
]
∣
∣
∣
∣
< ν(λ).

Learning with Errors. We recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For a positive integer dimension n and
modulo q, the LWE distribution As,χ is obtained by sampling a ← Z

n
q , and an

error e ← χ, then outputting (a, b = sT · a + e) ∈ Z

n
q × Zq.

Definition 2 (LWE problem). The decisional LWEn,m,q,χ problem is to dis-
tinguish the uniform distribution from the distribution As,χ, where s ← Z

n
q , and

the distinguisher is given m samples.

Standard instantiation of LWE takes χ to be a discrete Gaussian distribution.

Definition 3 (LWE assumption). Let n = n(λ),m = m(λ), q = q(λ) and
χ = χ(λ). The Learning with Error (LWE) assumption states that for any PPT
distinguisher D, there exits a negligible function ν(λ) such that

|Pr[D(1λ, (A, sT A + e)) = 1] − Pr[D(1λ, (A,u)) = 1]| < ν(λ)

where A ← Z

n×m
q , s ← Z

n
q ,u ← Z

m
q , e ← χm.

3.1 Garbling Schemes

A garbling scheme [34] is a tuple of algorithms (GC.Garble,GC.Eval) defined as
follows.

GC.Garble(1λ, C, lab) On input the security parameter, a circuit C, and a set of
labels lab = {labi,b}i∈[C.in],b∈{0,1}, where labi,b ∈ {0, 1}λ, it outputs a garbled
circuit C̃.

GC.Eval(C̃, lab) On input a garbled circuit C̃ and a set of labels lab =
{labi}i∈[C.in], it outputs a value y.

We require the garbling scheme to satisfy the following properties.

Correctness. For any circuit C, and any input x ∈ {0, 1}C.in,

Pr
[

lab={labi,b}(i,b)∈[C.in]×{0,1}←{0,1}2λC.in,
˜C←GC.Garble(1λ,C,lab),y←GC.Eval( ˜C,(labi,xi

)i∈[C.in])
: y = C(x)

]

= 1.
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Simulation Security. There exits a simulator Sim = (Sim1,Sim2) such that,
for any input x, any circuit C, and any non-uniform PPT distinguisher D,
we have

∣
∣
∣
∣
Pr

[

lab ← {0, 1}2λC.in, C̃ ← GC.Garble(1λ, C, lab) : D(1λ, labx, C̃) = 1
]

−

Pr
[

(stS , l̃ab) ← Sim1(1
λ, C.params), C̃ ← Sim2(stS , C(x)) : D(1λ, l̃ab, C̃) = 1

]
∣
∣
∣
∣
< ν(λ).

Theorem 4 ([34]). There exists a garbling scheme for all poly-sized circuits
from one-way functions.

Remark 1. For the ease of representation, for any labels lab= {labi,b}i∈[n],b∈{0,1},
and any input x ∈ {0, 1}n, we denote labx = {labi,xi

}i∈[n].

3.2 Laconic Function Evaluation

A laconic function evaluation (LFE) scheme [33] for a class of poly-sized circuits
consists of four PPT algorithms crsGen,Compress,Enc,Dec described below.

crsGen(1λ, params) It takes as input the security parameter λ, circuit parameters
params and outputs a uniformly random common string crs.

Compress(crs, C) It takes as input the common random string crs, poly-sized
circuit C and outputs a digest digestC . This is a deterministic algorithm.

Enc(crs, digestC , x) It takes as input the common random string crs, a digest
digestC , a message x and outputs a ciphertext ct.

Dec(crs, C, ct) It takes as input the common random string crs, circuit C, cipher-
text ct and outputs a message y.

Correctness. We require the following to hold:

Pr

[
crs←crsGen(1λ,params)

digestC←Compress(crs,C)
ct←Enc(crs,digestC ,x)

y←Dec(crs,C,ct)

: y = C(x)

]

= 1.

Efficiency. The size of CRS should be polynomial in λ, the input, output lengths
and the depth of C. The size of digest, namely digestC , should be polynomial
in λ, the input, output lengths and the depth of C. The size of the output of
Enc(crs, digestC) should be polynomial in λ, the input, output lengths and the
depth of C.

Security. For every PPT adversary A, input x, circuit C, there exists a PPT
simulator Sim such that for every PPT distinguisher D, there exists a negligible
function ν(λ) such that
∣
∣
∣ Pr

crs←crsGen(1λ,params)
digestC←Compress(crs,C)

[

1 ← D (

1λ, crs, digestC ,Enc(crs, digestC , x)
)] −

Pr
crs←crsGen(1λ,params)

digestC←Compress(crs,C)

[

1 ← D (

1λ, crs, digestC ,Sim(crs, digestC , C(x))
)]

∣
∣
∣ < ν(λ).
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Remark 2. A strong version of security, termed as adaptive security, was defined
in [33]; for our construction, selective security suffices.

Theorem 5 ([33]). Assuming the hardness of learning with errors, there exists
a laconic function evaluation protocol.

4 Multi-key Fully Homomorphic Encryption

A multi-key FHE [29] allows one to compute functions over ciphertexts encrypted
under different and independently sampled keys. One can then decrypt the result
of the computation by gathering together the corresponding secret keys and run a
decryption algorithm. In this work we explicitly distinguish between two families
of schemes, depending on structural properties of the decryption algorithm.

– One-Round Decryption: The decryption algorithm consists of two sub-
routines (i) a local phase (PartDec) where each party computes a decryption
share of the ciphertext based only on its secret key and (ii) a public phase
(FinDec) where the plaintext can be publicly reconstructed from the decryp-
tion shares. This variant is the focus of our work.

– Unstructured Decryption: The decryption is a (possibly interactive) pro-
tocol that takes as input a ciphertext and all secret keys and returns the
underlying plaintext. No special structural requirements are imposed.

In this work we are interested in constructing the former. However, the latter is
going to be a useful building block in our transformation. More formally, a multi-
key FHE is a tuple of algorithms MKFHE = (KeyGen,Enc,Eval,Dec) defined as
follows.

KeyGen(1λ, i) On input the security parameter λ, and an index i ∈ [N ], it outputs
a public-key secret-key pair (pki, ski) for the i-th party.

Enc(pki, xi) On input a public key pki of the i-th party, and a message xi, it
outputs a ciphertext cti.

Eval(C, (ctj)j∈[N ]) On input the circuit C of size polynomial in λ and the cipher-
texts (ctj)j∈[N ], it outputs the evaluated ciphertext ĉt.

Dec((skj)j∈[N ], ĉt) On input a set of keys sk1, . . . , skN and the evaluated cipher-
text ĉt, it outputs a value y ∈ {0, 1}C.out. We say that a multi-key FHE has
a one-round decryption if the decryption protocol consists of the algorithms
PartDec and FinDec with the following syntax.
PartDec(ski, i, ĉt) On input the secret key ski of ith party, the index i, and

the evaluated ciphertext ĉt, it outputs the partial decryption pi of the ith

party.
FinDec(C, (pj)j∈[N ]) On input all the partial decryptions (pj)j∈[N ], it outputs

a value y ∈ {0, 1}C.out.
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We say that the scheme is fully homomorphic if it is homomorphic for P/poly.

Trusted Setup. We also consider multi-key FHE schemes in the presence of a
trusted setup, in which case we also include an algorithm Setup that, on input
the security parameter 1λ, outputs a common reference string crs that is given
as input to all algorithms.

Correctness. We define correctness for multi-key FHE with one-round decryp-
tion, the more general notion can be obtained by modifying our definition in a
natural way. Note that we only define correctness for a single application (single-
hop) of the homomorphic evaluation procedure. It is well known that (multi-key)
FHE schemes can be generically converted to satisfy the more general notion of
multi-hop correctness [22].

Definition 4 (Correctness). A scheme MKFHE = (KeyGen,Enc,Eval,
PartDec,FinDec) is said to satisfy the correctness of an MHE scheme if for any
inputs (xi)i∈[N ], and circuit C, the following holds:

Pr

⎡

⎢
⎣

∀i∈[N ],(pki,ski)←KeyGen(1λ,i)
cti←Enc(pki,xi)

̂ct←Eval(C,(ctj)j∈[N])

pi←PartDec(ski,i,̂ct)
y←FinDec((pj)j∈[N])

: y = C(x1, . . . , xN )

⎤

⎥
⎦ = 1.

Compactness. We say that a scheme is compact if the size of the evaluated
ciphertexts does not depend on the size of the circuit C and only grows with
the security parameter (and possibly the number of keys N). Furthermore, we
require that the runtime of the decryption algorithm (and of its subroutines
PartDec and FinDec) is independent of the size of the circuit C.

Reusable Semi-malicious Security. We define the notion of reusable security
for multi-key FHE with one-round decryption. Intuitively, this notion says that
the decryption share do not reveal anything beyond the plaintext that they
reconstruct to. In this work we present a unified notion that combines semantic
security and computational indistingushability of partial decryption shares. This
is a weakening of the definition given in [31], where the simulated decryption
shares were required to be statistically close to the honestly compute ones. To
the best of our knowledge, this weaker notion is sufficient for all applications of
multi-key FHE. Note that by default we consider a semi-malicious adversary,
that is allowed to choose the random coins of the corrupted parties arbitrarily.

We define security in the real/ideal world framework. The experiments are
parameterized by adversary A = (A1,A2), a PPT simulator Sim implemented as
algorithms (Sim1,Sim2), the subset of honest parties H ⊆ [N ], and their input
(xi)i∈H . For the simplicity, we denote H̄ = [N ] \ H.
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RealA(1λ, H, (xi)i∈H)

for i ∈ H,

(pki, ski) ← KeyGen(1λ, i)

cti ← Enc(pki, xi)

endfor

(stA, (xi, ri, r
′
i)i∈H̄) ← A1(1λ, (pki, cti)i∈H)

for i ∈ H̄,

(pki, ski) = KeyGen(1λ, i; ri)

cti = Enc(pki, xi; r′
i)

endfor

AO(1λ,·)
2 (stA)

return ViewA

O(1λ, C)

̂ct ← Eval(C, (ctj)j∈[N ])

for i ∈ H, pi ← PartDec(ski, i, ̂ct)

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (pki, cti)i∈H) ← Sim1(1λ, H)

(stA, (xi, ri, r
′
i)i∈H̄) ← A1(1λ, (pki, cti)i∈H)

AO′(1λ,·)
2 (stA)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N ]), (xi, ri, r
′
i)i∈H̄)

Update stS = st′S
return (pi)i∈H

Definition 5. A scheme MKFHE = (KeyGen,Enc,Eval,PartDec,FinDec) is said
to satisfy the reusable semi-malicious security if the following holds: there exists
a simulator Sim = (Sim1,Sim2) such that for any PPT adversary A, for any set
of honest parties H ⊆ [N ], any n.u. PPT distinguisher D, and any messages
(xi)i∈H , there exists a negligible function ν(λ) such that

∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈H)
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈H)
)

= 1
]
∣
∣
∣
∣
< ν(λ).

5 Multiparty Homomorphic Encryption

We define the notion of multiparty homomorphic encryption (MHE) in this
section. As mentioned earlier, this notion can be seen as a variant of multi-
key FHE [17,31]; unlike multi-key FHE, this notion does not require a trusted
setup, however, the final decryption phase needs to take as input the circuit
being evaluated as input.

5.1 Definition

A multiparty homomorphic encryption is a tuple of algorithms MHE = (KeyGen,
Enc,Eval,PartDec,FinDec), which are defined as follows.

KeyGen(1λ, i) On input the security parameter λ, and an index i ∈ [N ], it outputs
a public-key secret-key pair (pki, ski) for the i-th party.
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Enc(pki, xi) On input a public key pki of the i-th party, and a message xi, it
outputs a ciphertext cti.

Eval(C, (ctj)j∈[N ]) On input the circuit C of size polynomial in λ and the cipher-
texts (ctj)j∈[N ], it outputs the evaluated ciphertext ĉt.

PartDec(ski, i, ĉt) On input the secret key ski of ith party, the index i, and the
evaluated ciphertext ĉt, it outputs the partial decryption pi of the ith party.

FinDec(C, (pj)j∈[N ]) On input the circuit C, and all the partial decryptions
(pj)j∈[N ], it outputs a value y ∈ {0, 1}C.out.

We require that a MHE scheme satisfies the properties of correctness, succinct-
ness and reusable simulation security.

Correctness. We require the following definition to hold.

Definition 6 (Correctness). A scheme MHE = (KeyGen,Enc,Eval,PartDec,
FinDec) is said to satisfy the correctness of an MHE scheme if for any inputs
(xi)i∈[N ], and circuit C, the following holds:

Pr

⎡

⎢
⎣

∀i∈[N ],(pki,ski)←KeyGen(1λ,i)
cti←Enc(pki,xi)

̂ct←Eval(C,(ctj)j∈[N])

pi←PartDec(ski,i,̂ct)
y←FinDec(C,(pj)j∈[N])

: y = C(x1, . . . , xN )

⎤

⎥
⎦ = 1.

Succinctness. We require that the size of the ciphertexts and the partial
decrypted values to be independent of the size of the circuit being evaluated.
More formally,

Definition 7 (Succinctness). A scheme MHE = (KeyGen,Enc,Eval,PartDec,
FinDec) is said to satisfy the succinctness property of an MHE scheme if for any
inputs (xi)i∈[N ], and circuit C, the following holds: for any inputs (xi)i∈[N ], and
circuit C,

– Succinctness of Ciphertext: for j ∈ [N ], |ctj | = poly(λ, |xj |).
– Succinctness of Partial Decryptions: for j ∈ [N ], |pj | = poly(λ,N,C.in, C.out,

C.depth), where N is the number of parties, C.in is the input length of the
circuit being evaluated, C.out is the output length and C.depth is the depth of
the circuit.

where, for every i ∈ [N ], (i) (pki, ski) ← KeyGen(1λ, i), (ii) cti ← Enc(pki, xi),
(iii) ĉt ← Eval(C, (ctj)j∈[N ]) and, (iv) pi ← PartDec(ski, i, ĉt).

Remark 3. En route to constructing MHE schemes satisfying the above suc-
cinctness properties, we also consider MHE schemes that satisfy the correctness
and security (stated next) properties but fail to satisfy the above succinctness
definition. We refer to such schemes as non-succinct MHE schemes.
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5.2 Security

We define the security of MHE by real world-ideal world paradigm. We only
consider the semi-honest security notion.

In the real world, the adversary is given the public key pki and ciphertext
cti for the honest parties, and also the uniform randomness coins ri, r

′
i for the

dishonest parties, where ri is used for the key generation, and r′
i is used for

the encryption. In addition, the adversary is given access to an oracle O. Each
time, the adversary can query O with a circuit C. The oracle O firstly evaluates
C homomorphically over the ciphertexts (cti)i∈[N ], and obtains an evaluated
ciphertext ĉt. Then it outputs the partial decryption of ĉt of the honest parties.

In the ideal world, a simulator Sim1 generates the pki and cti of honest
parties, and also the random coins (ri, r

′
i)i∈H̄ of dishonest parties, and sends

them the the adversary. Then, the adversary is given access to an oracle O′.
For each query C made by the adversary, the oracle O′ executes the stateful
simulator Sim2 to obtain the simulating partial decryption messages (pi)i∈H of
honest parties. Then the oracle O′ outputs (pi)i∈H .

Reusable Semi-honest Security. We define the real and ideal experiments
below. The experiments are parameterized by adversary A, a PPT simulator Sim
implemented as algorithms (Sim1,Sim2), the subset of honest parties H ⊆ [N ],
and the input (xi)i∈[N ]. For the simplicity, we denote H̄ = [N ] \ H.

RealA(1λ, H, (xi)i∈H)

for i ∈ [N ],

ri, r
′
i ← {0, 1}∗

(pki, ski) = KeyGen(1λ, i; ri)

cti = Enc(pki, xi; r′
i)

endfor

AO(1λ,·)(1λ, (pki, cti)i∈H , (ri, r
′
i)i∈H̄)

return ViewA

O(1λ, C)

̂ct ← Eval(C, (ctj)j∈[N ])

for i ∈ H, pi ← PartDec(ski, i, ̂ct)

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (pki, cti)i∈H , (ri, r
′
i)i∈H̄) ← Sim1(1λ, H, (xi)i∈H̄)

AO′(1λ,·)
2 (1λ, (pki, cti)i∈H , (ri, r

′
i)i∈H̄)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N ]))

Update stS = st′S
return (pi)i∈H

Definition 8. A scheme (MHE.KeyGen, MHE.Enc, MHE.Eval, MHE.PartDec,
MHE.FinDec) is said to satisfy the reusable semi-honest security if the following
holds: there exists a simulator MHE.Sim = (MHE.Sim1,MHE.Sim2) such that for
any PPT adversary A, for any set of honest parties H ⊆ [N ], any n.u. PPT
distinguisher D, and any messages (xi)i∈[H], there exists a negligible function
ν(λ) such that
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∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈[N ])
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈[N ])
)

= 1
]
∣
∣
∣
∣
< ν(λ).

Remark. Definition 8 directly captures the reusability property implied by the
definition of [31]. However, our definition is somewhat incomparable to [31] due to
the following reasons: [31] give a one-time (semi-malicious) statistical simulation
security definition for threshold decryption, which implies multi-use security
via a standard hybrid argument. In contrast, Definition 8, which guarantees
(semi-honest) computational security, is given directly for the multi-use setting.
Second, [31] define security of threshold decryption only for n − 1 corruptions5

whereas our definition captures any dishonest majority.

6 Intermediate Notion: MHE with Private Evaluation
(pMHE)

Towards achieving MHE, we first consider a relaxation of the notion of MHE
where we allow the evaluation algorithm to be a private-key procedure. We call
this notion MHE with private evaluation, denoted by pMHE.

A multiparty homomorphic encryption with private evaluation (pMHE) is a
tuple of algorithms (Enc,PrivEval,FinDec), which are defined as follows.

Enc(1λ, C.params, i, xi) On input the security parameter λ, the parameters of a
circuit C, C.params = (C.in, C.out, C.depth), an index i, and an input xi, it
outputs a ciphertext cti, and a partial decryption key ski.

PrivEval(ski, C, (ctj)j∈[N ])6 On input the partial decryption key ski, a circuit C,
and the ciphertexts (ctj)j∈[N ], it outputs a partial decryption message pi.

FinDec(C, (pj)j∈[N ]) On input the circuit C and the partial decryptions (pj)j∈[N ],
it outputs y ∈ {0, 1}C.out.

Correctness. For any input (xi)i∈[N ], and any circuit C, we have

Pr
[∀i (cti,ski)←Enc(1λ,C.params,i,xi)

∀i pi←PrivEval(ski,C,(ctj)j∈[N])

y←FinDec(C,(pj)j∈[N])
: y = C((xi)i∈[N ])

]

= 1.

Reusable Semi-malicious Security. The experiments are parameterized by
the adversary A = (A1,A2), the subset of honest parties H ⊆ [N ], the inputs
(xi)i∈H , and the PPT simulator Sim implemented as algorithms (Sim1,Sim2).
Denote H̄ = [N ] \ H.
5 As such, counter-intuitively, additional work is required when using it in applications

such as MPC, when less than n − 1 parties may be corrupted. We refer the reader
to [31] for details.

6 In fact, PrivEval is a combination of private evaluation and partial decryption.
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RealA(1λ, H, (xi)i∈H)

for i ∈ H, (cti, ski) ← Enc(1λ, C.params, i, xi)

(stA, (xi, ri)i∈H̄) ← A1(1λ, (cti)i∈H)

for i ∈ H̄, (cti, ski) = Enc(1λ, C.params, i, xi; ri)

AO(1λ,·)
2 (stA)

return ViewA

O(1λ, C)

for i ∈ H, pi ← PrivEval(ski, C, (ctj)j∈[N ])

return (pi)i∈H

IdealA(1λ, H, (xi)i∈H)

(stS , (cti)i∈H) ← Sim1(1λ, H,C.params)

(stA, (xi, ri)i∈H̄) ← A1(1λ, (cti)i∈H)

AO′(1λ,·)
2 (stA)

return ViewA

O′(1λ, C)

(st′S , (pi)i∈H) ← Sim2(stS , C, C((xi)i∈[N ]), (xi, ri)i∈H̄)

Update stS = st′S
return (pi)i∈H

Definition 9. A scheme pMHE = (Enc,PrivEval,FinDec) is said to satisfy the
reusable semi-malicious security if the following holds: there exists a simulator
Sim = (Sim1,Sim2) such that for any PPT adversary A, for any set of honest
parties H ⊆ [N ], PPT distinguisher D, and any messages (xi)i∈H , there exists
a negligible function ν(λ) such that

∣
∣
∣
∣
Pr

[

D
(

1λ,RealA(1λ,H, (xi)i∈H)
)

= 1
]

−

Pr
[

D
(

1λ, IdealA(1λ,H, (xi)i∈H)
)

= 1
]
∣
∣
∣
∣
< ν(λ).

6.1 CRS Model

A pMHE in the common random/reference string model is a tuple of algo-
rithms pMHE = (Setup,Enc,PrivEval,FinDec), where the PrivEval,FinDec works
the same way as in the plain model, while Setup,Enc are defined as follows.

Setup(1λ) On input the security parameter, it outputs a common reference string
crs.

Enc(crs, C.params, i, xi) On input the common reference string crs, the parame-
ters of C, an index i, and an input xi, it output a ciphertext cti, and a partial
decryption key ski.

6.2 One-Time pMHE

We consider a weak version of pMHE scheme called one-time pMHE.

Definition 10. A pMHE scheme is a one-time pMHE scheme, if the security
holds for all n.u. PPT adversary A that only query the oracle O at most once.

We will use a one-time pMHE scheme as a starting point in the reusability
transformation.
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Remark 4. In this setting, without loss of generality, we assume that the pri-
vate evaluation algorithm PrivEval is deterministic, and the secret key is the
randomness used by Enc.

6.3 Ciphertext Succinctness

We define the notion of ciphertext succinctness associated with a pMHE scheme.
Roughly, we require the size of the encryption circuit to only grow with the depth
of the circuits being homomorphically evaluated. We additionally require the
depth of the encryption circuit to be only poly-logarithmically in the depth. We
allow the depth of the encryption circuit to, however, grow polynomially in the
number of parties and input lengths. We impose similar efficiency requirements
on the setup procedure as well.

Note that this is an incomparable to the traditional succinctness property we
defined for an MHE scheme; on one hand, ciphertext succinctness imposes an
additional requirement on the encryption circuit whereas it doesn’t say anything
about the size of the partial decryption values. The succinctness property of
MHE is about the size of the ciphertexts whereas the ciphertext succinctness
property is about the complexity of the encryption circuit.

Definition 11 (Ciphertext Succinctness). A pMHE scheme with a setup
pMHE = (Setup,Enc,PrivEval,FinDec) is said to satisfy strong ciphertext suc-
cinctness property if it satisfies the correctness, strong semi-honest security, and
in addition, satisfies the following properties:

– The size of the Setup circuit is poly(λ,N,C.depth).
– The depth of the Setup circuit is poly(λ,N, log(C.depth)).
– The size of the Enc circuit is poly(λ,N,C.in, C.depth).
– The depth of the Enc circuit is poly(λ,N,C.in, log(C.depth)).

where N is the number of parties, and (C.in, C.out, C.depth) are the parameters
associated with the circuits being evaluated.

Remark 5. The ciphertext succinctness property is incomparable with the suc-
cinctness property of an MHE scheme; while there is no requirement on the size
of the partial decryptions in the above definitions, there is a strict requirement
on the complexity of the encryption procedure in the above definition as against
a requirement on just the size of the ciphertexts as specified in the succinctness
definition of MHE.

6.4 Instantiation

We can instantiate any one-time pMHE scheme satisfying ciphertext sucinctness
in the CRS model from any multi-key FHE in the CRS model. Thus, have the
following:

Theorem 6 (Ciphertext-Succinct One-Time pMHE with CRS from
LWE). Assuming learning with errors, there exists a one-time pMHE scheme
in the CRS model satisfying ciphertext succinctness property.

We defer the proof to the full version.
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7 Main Step: One-Time pMHE in CRS =⇒ Reusable
pMHE

In this section, we show how to bootstrap from a one-time pMHE with ciphertext
succinctness property into a (possibly non-succinct) reusable pMHE scheme.

Lemma 1 (Bootstrap from One-Time Ciphertext Succinctness Sch-
eme to Reusable Scheme). From the following primitives,

– pMHE′ = (pMHE′.Setup, pMHE′.Enc, pMHE′.PrivEval, pMHE′.FinDec): a one-
time ciphertext succinct pMHE scheme in the CRS model.

– pMHE0 = (pMHE0.Enc, pMHE0.PrivEval, pMHE0.FinDec): a one-time delayed-
function semi-malicious pMHE scheme without setup. (Note: this pMHE
scheme need not satisfy any succinctness property)

– PRG : {0, 1}PRG.in → {0, 1}PRG.out, a pseduorandom generator, where PRG.out
= poly(PRG.in) for some large polynomial poly. Moreover, we require the
depth of PRG to be poly(λ, log(PRG.out)) for some fixed poly independent
of PRG.out.

we can build a reusable semi-malicious pMHE scheme pMHE = (pMHE.Enc,
pMHE.PrivEval, pMHE.FinDec) without the trusted setup.

Construction. We present the construction below.
In our construction, each party generates a PRG seed ki, then in on the t-th

level of the tree, the i-th party uses ki to generate a pseudorandom string, which
is divided into the following 5 parts.

1. (labi,t+1,b)b∈{0,1} is used as the labels of the children nodes.
2. (kt+1

i,b )b∈{0,1} are the PRG seeds for the children nodes.
3. (rt+1

i,1,b)b∈{0,1} is the randomness used to generate the two new ciphertexts for
the children nodes.

4. (rt+1
i,2,b)b∈{0,1} is the randomness used to generate the garbled circuits for the

children nodes.
5. (rt+1

i,3,b)b∈{0,1} is the randomness used to generate the CRS of the children
nodes. We will xor the ri,3,b for all the parties to achieve semi-malicious
security.

pMHE.Enc(1λ, C.params, i, xi):
– Randomly sample ki ← {0, 1}PRG.in, and random coins ri.
– (ct′i, sk

′
i) ← pMHE0.Enc(1λ,NewEnc1.params, i, (xi, ki)), where NewEnc1

is defined in Fig. 3.
– Let cti = ct′i and ski = (sk′

i, (ki, ri)).
Output (cti, ski).

pMHE.PrivEval(ski, C, (ctj)j∈[N ]):
– Parse ski as (sk′

i, (ki, ri)).
– Let id be the binary representation of the circuit C. Denote n = |id|.
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NewEnct (xj , kj)j∈[N ]
)

– For any j ∈ [N ], parse PRG(kj) as (labj,t,b, kt
j,b, r

t
j,1,b, r

t
j,2,b, r

t
j,3,b)b∈{0,1}.

– For any b ∈ {0, 1}, crsb = pMHE′.Setup(1λ;
⊕

j∈[N ] r
t
j,3,b)

– For any j ∈ [N ], b ∈ {0, 1},

(ctj,b, skj,b) = pMHE′.Enc(crsb,NewEnct+1.params, j, (xj , k
t
j,b); r

t
j,1,b)

– For any b ∈ {0, 1}, let ctb = (ctj,b)j∈[N ].
– Output (labi,t,0

ct0 , labi,t,1
ct1 )i∈[N ].

Fig. 3. Description of NewEnct, for t ∈ [n].

– For t ∈ [n], Boott is defined as follows.
Boott[skt

i]
(ctt)

• Let pt
i = pMHE′.PrivEval(skt

i,NewEnc
t+1, ctt), where NewEnc is

defined in Figs. 3 and 4.
• Output pt

i.

– Let p0i = pMHE′.PrivEval(sk′
i,NewEnc

1, (ctj)j∈[N ]; ri), k0
i = ki.

– For each t = 1, 2, . . . , n,
Let b = id[t]. Parse PRG(kt−1

i ) as (labi,t,b′
, kt

i,b′ , rt
i,1,b′ , rt

i,2,b′ , rt
i,3,b′)b′∈{0,1}

Let skt
i = rt

i,1,b,
˜Bootti ← GC.Garble(1λ,Boott[skt

i]
, labi,t,b; rt

i,2,b).
Let kt

i = kt
i,b.

– Let pi = (p0i , (
˜Bootti)t∈[n], cti).

– Output pi.

NewEncn+1 (xj , kj)j∈[N ]
)

– Let y = C((xj)j∈[N ]).
– Output y.

Fig. 4. Description of NewEncn+1.
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pMHE.FinDec(C, (pi)i∈[N ]):

– Let id be the binary representation of C. Parse pi as (p0i , (
˜Bootti)t∈[n], cti).

– For each t = 1, 2, . . . , n,
Let b = id[t].
If t = 1, (lab′i,t,0, lab′i,t,1)i∈[N ] ← pMHE0.FinDec(NewEnc

t, (pt−1
i )i∈[N ]).

Otherwise, (lab′i,t,0, lab′i,t,1)i∈[N ] ← pMHE′.FinDec(NewEnct, (pt−1
i )i∈[N ]).

For each i ∈ [N ], execute pt
i ← GC.Eval(1λ, ˜Bootti, lab

′i,t,b).
– Let y ← pMHE′.FinDec(NewEncn+1, (pn

i )i∈[N ]).
– Output y.

7.1 Correctness

Lemma 2 (Correctness). The construction of pMHE is correct.

We defer the proof to the full version.

7.2 Security

Lemma 3 (Reusable Semi-malicious Security). The construction of
pMHE is reusable semi-malicious secure.

We defer the proof to the full version.

7.3 Instantiation

We can instantiate pMHE0 based on any two-round semi-malicious MPC in the
plain model and this in turn can be based on any two-round semi-malicious
oblivious transfer (OT); we crucially use the fact that pMHE0 need not satisfy
any succinctness property for this implication. Furthermore, we can instantiate
the two-round semi-malicious OT from learning with errors [13]. Similarly, we can
also instantiate one-time pMHE in the CRS model with ciphertext succcintness
from learning with errors (Theorem 6) and finally, the pseudorandom generator
mentioned above any pseudorandom function which in turn can be based on
one-way functions. Thus, we have the following theorem.

Theorem 7. Assuming LWE, there exists a (non-succinct) reusable pMHE
scheme in the plain model.

8 Result #1: Construction of Multi-key FHE

In the following we show how to combine a multi-key FHE with unstructured
decryption with a reusable pMHE without trusted setup to obtain a multi-key
FHE scheme in the plain model with one-round decryption.
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Theorem 8 (Multi-key FHE in the Plain Model). If there exists a seman-
tically secure multi-key FHE scheme MKFHE′ = (MKFHE′.KeyGen,MKFHE′.Enc,
MKFHE′.Eval,MKFHE′.Dec) without trusted setup and with unstructured decryp-
tion, and a reusable semi-malicious pMHE scheme pMHE = (pMHE.Enc,
pMHE.PrivEval, pMHE.FinDec) without trusted setup, then there exists a semi-
malicious multi-key FHE scheme MKFHE = (MKFHE.KeyGen,MKFHE.Enc,
MKFHE.Eval,MKFHE.PartDec,MKFHE.FinDec) without trusted setup.

Construction. Let Γ.params be the input, output size, and depth of the decryp-
tion circuit of the multi-key FHE scheme MKFHE′. The construction is described
below.

MKFHE.KeyGen(1λ, i):
Let (MKFHE′.pki,MKFHE′.ski) ← MKFHE′.KeyGen(1λ, i).
Let (pMHE.cti, pMHE.ski) ← pMHE.Enc(1λ, Γ.params, i,MKFHE′.ski)
Let pki = (MKFHE′.pki, pMHE.cti), and ski = (MKFHE′.ski, pMHE.ski).
Output (pki, ski).

MKFHE.Enc(pki, xi):
Parse pki as (MKFHE′.pki, pMHE.cti).
Let MKFHE′.cti ← MKFHE′.Enc(MKFHE′.pki, xi).
Let cti = (MKFHE′.cti, pMHE.cti).
Output cti.

MKFHE.Eval(C, (ctj)j∈[N ]):
For all j ∈ [N ] parse ctj as (MKFHE′.ctj , pMHE.ctj).
Compute MKFHE′.ĉt ← MKFHE′.Eval(C, (ctj)j∈[N ]).
Let ĉt = (MKFHE′.ĉt, (pMHE.ctj)j∈[N ]).
Output ĉt.

MKFHE.PartDec(ski, i, ĉt):
Parse ĉt as (MKFHE′.ĉt, (pMHE.ctj)j∈[N ]).
Parse ski as (MKFHE′.ski, pMHE.ski).
Define Γ ((sj)j∈[N ]) = MKFHE′.Dec((sj)j∈[N ], ĉt).
Let pMHE.pi ← pMHE.PrivEval(pMHE.ski, Γ, (pMHE.ctj)j∈[N ]).
Let pi = (pMHE.pi, ĉt)
Output pi.

MKFHE.FinDec((pj)j∈[N ]):
For all j ∈ [N ] parse pj as (pMHE.pj , ĉt).
Define Γ ((sj)j∈[N ]) = MKFHE′.Dec((sj)j∈[N ], ĉt).
Let y ← pMHE.FinDec(Γ, (pMHE.pj)j∈[N ]).
Output y.

We defer the proof to the full version.
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8.1 Instantiation

By Theorem 7 we can instantiate the reusable semi-malicious pMHE scheme from
the LWE problem (with sub-exponential modulus-to-noise ratio). For the multi-
key FHE with unstructured decryption, we can use the scheme from [29], which
is shown semantically secure against the Ring LWE and the DSPR problem.
Thus we obtain the following implication.

Theorem 9. Assuming LWE, Ring LWE, and DSPR, there exists a multi-key
FHE scheme with one-round decryption in the plain model.

9 Result #2: Construction of MHE

We now show how to construct an MHE scheme. In Sect. 7, we constructed
a pMHE scheme satisfying ciphertext succinctness. To obtain an MHE scheme
from pMHE with ciphertext succinctness, we perform the following two steps:
(1) first, we transform the above pMHE scheme into another scheme satisfying
succinctness (recall that succinctness is incomparable to ciphertext succinctness)
and, (2) secondly, we show how to achieve public evaluation generically to obtain
the MHE scheme.

9.1 Non-Succinct pMHE to Succinct pMHE

We now show how to generically transform a non-succinct pMHE scheme into
a succinct pMHE scheme. Furthermore, the transformation preserves the num-
ber of queries the adversary can make to the decryption oracle. That is, if the
underlying pMHE scheme is reusable, then so is the resulting scheme.

Theorem 10. Assuming LWE, there exists a generic transformation from any
non-succinct (Remark 3) semi-honest pMHE to a succinct (Definition 7) semi-
honest pMHE scheme.

We defer the proof to the full version.

9.2 pMHE to MHE: Private to Public Evaluation

We show how to construct an MHE scheme from pMHE and a leveled fully
homomorphic encryption scheme.

Theorem 11 (From pMHE to MHE). If there exits a reusable semi-
honest secure pMHE scheme pMHE with succinctness property, and a (lev-
eled) fully homomorphic encryption scheme FHE = (FHE.KeyGen,FHE.Enc,
FHE.Dec,FHE.Eval), then there exits a reusable semi-honest secure MHE scheme
MHE with succinctness property.

We defer the proof to the full version.
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Abstract. Non-committing encryption (NCE) is a type of public key
encryption which comes with the ability to equivocate ciphertexts to
encryptions of arbitrary messages, i.e., it allows one to find coins for
key generation and encryption which “explain” a given ciphertext as an
encryption of any message. NCE is the cornerstone to construct adap-
tively secure multiparty computation [Canetti et al. STOC’96] and can
be seen as the quintessential notion of security for public key encryption
to realize ideal communication channels.

A large body of literature investigates what is the best message-to-
ciphertext ratio (i.e., the rate) that one can hope to achieve for NCE.
In this work we propose a near complete resolution to this question and
we show how to construct NCE with constant rate in the plain model
from a variety of assumptions, such as the hardness of the learning with
errors (LWE), the decisional Diffie-Hellman (DDH), or the quadratic
residuosity (QR) problem. Prior to our work, constructing NCE with
constant rate required a trusted setup and indistinguishability obfusca-
tion [Canetti et al. ASIACRYPT’17].

1 Introduction

Multiparty computation (MPC) considers the problem of mutually distrustful
parties computing a function over their inputs, while revealing no information
beyond the output of the function [13,22]. Traditionally, the security of MPC
protocols is analyzed considering two different adversarial models: In the static
settings, the adversary is required to announce the set of parties that he wants
to corrupt prior to the execution of the protocol. On the other hand, in the
c© International Association for Cryptologic Research 2020
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adaptive settings, the adversary can corrupt parties at any point in time of
the execution, possibly depending on previously exchanged messages. Adaptive
security is widely believed to be the correct notion of security to consider when
analyzing the security of cryptographic protocols as we do not have any real-
life justification for the static model (except that adaptive security is in general
harder to achieve).

Non-Committing Encryption (NCE) was presented in [4] as the cornerstone
to construct adaptively-secure MPC, both in the stand-alone model [4] and in
the UC settings [5]. Loosely speaking, NCE incarnates the notion of an ideal
private channel, which retains the security of its messages, even if it is corrupted
at a later point in time. NCE is a public-key encryption (PKE) scheme for
which there exists a simulator that is able to create a pair of public key pk and
ciphertext ct, indistinguishable from a real pair public key/ciphertext. Given any
message M at any later point in time, the simulator can craft random coins that
explain the transcript (pk, ct) for M . A central efficiency measure for PKE is the
rate of encryption, i.e., the asymptotic ratio between the size of the message and
the size of the ciphertext. While we know how to construct high-rate PKE1 from
numerous hardness assumptions, the situation is less cheerful for NCE. The most
efficient schemes from the literature in the plain model have ciphertext-rate poly-
logarithmic in the security parameter [16,23], whereas (asymptotically) matching
the efficiency of PKE currently requires a trusted setup and indistinguishability
obfuscation [6]. Motivated by the current state of affairs, we ask the following
question:

Can we build NCE with ciphertext rate O(1) from standard assumptions?

1.1 Our Results

We present a nearly complete resolution of this question by constructing the
first NCE schemes with constant ciphertext-rate from a new abstraction, which
we call Packed Encryption with Partial Equivocality (PEPE). Then we show
how to instantiate PEPE from several standard problems, such as learning with
errors (LWE), decisional Diffie-Hellman (DDH), and quadratic residuosity (QR).
Specifically, we prove the following main theorem.

Theorem 1 (Informal). Assuming the hardness of the {LWE, DDH, QR}
problem, there exists a non-committing encryption scheme with ciphertext rate
O(1).

We note that our PEPE schemes achieve rate 1. The rate of our NCE schemes is a
small constant which is mostly determined by an information-theoretic technique
in the construction of NCE from PEPE.

As a contribution of independent interest, we present a novel ciphertext-
compression technique for packed ElGamal encryption schemes which preserves
correctness perfectly. As a direct corollary, we obtain a linearly-homomorphic
encryption scheme with rate 1 from the DDH assumption.
1 Rate-1 PKE can be easily constructed using hybrid encryption.
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Theorem 2 (Informal). Assuming the hardness of the DDH problem, there
exists a linearly homomorphic encryption scheme with rate 1.

This result generalizes and improves the recent work of Döttling et al. [10],
where they obtained a rate-1 oblivious transfer from DDH (trivially implied
by rate-1 linearly-homomorphic encryption) with inverse polynomial correctness
error. Their scheme could be lifted to achieve negligible decryption error at
the cost of introducing error-correcting codes, thus losing the additive homo-
morphism. Among other things, our scheme implies simpler and more direct
constructions of rate-1 private information retrieval and rate-1 lossy trapdoor
functions (using the same compilers as described in [10]) from the DDH assump-
tion, without error correcting codes.

1.2 Related Work

The study of the rate of NCE has been the subject of a large body of literature.
In the following we briefly review prior progress on improving the rate of NCE.
We only consider NCE schemes with optimal round complexity, i.e., two-round
protocols. The first instantiation of NCE is due to Canetti et al. [4] and achieved
quadratic ciphertext-rate O(λ2) under the RSA or the Computational Diffie-
Hellman (CDH) assumption. Some three-round protocols were proposed after
that [1,8] (both achieving linear rate), but the only improvement in the two-
round settings was only made several years later in [7], where an NCE with
ciphertext-rate O(λ) was presented, assuming the hardness of factoring Blum
integers.

The rate question for NCE has recently received renewed interest: In [17], a
scheme based on the φ-hiding assumption and achieving polylogarithmic (in the
length of the message) ciphertext-rate was presented. This result was improved
in a subsequent work [16], where a scheme with polylogarithmic (in the security
parameter) ciphertext-rate and based on the LWE assumption with superpolyno-
mial modulus-to-noise ratio was proposed. Finally, a scheme with quasi-optimal
(i.e., logarithmic) ciphertext-rate was presented in [23], assuming the hardness
of the DDH problem. We also mention the work of Canetti et al. [6], which
constructs NCE with optimal rate (i.e., 1 − o(1)) but at the cost of assuming
indistinguishability obfuscation (iO) and a trusted setup. A comparison with
our results is presented in Table 1.

1.3 Discussion and Open Problems

We stress that, as done in (most of) prior works improving the rate of NCE
(e.g. [17,23]), we do not take the size of the public key into account when mea-
suring the rate of the scheme. This is justified by the fact that (i) the public
keys do not depend on the encrypted messages: In some scenarios it might be
acceptable to have a more expensive “offline” communication while optimizing
for an efficient “online” (i.e. message-dependent) phase. Furthermore, (ii) one
can encrypt multiple messages under the same public key. That is, the size of
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Table 1. Comparison with previous work. We focus only on constructions which have
two rounds of communication. λ denotes the security parameter and � denotes the
length of the message to be encrypted.

Ciphertext

rate

Hardness

assumption
Setup

[4] O(λ2) RSA, CDH –

[7] O(λ) Factoring Blum integers –

[20] O(λ)
DDH, LWE,

Factoring Blum integers
–

[17] poly(log �) φ-hiding
Oblivious sampling

of RSA modulus

[16] poly(log λ) LWE –

[6] 1 − o(1) iO CRS

[23] O(log λ) DDH –

Our result O(1) LWE, DDH, QR –

the public key grows linearly with the number of equivocable ciphertexts, as
opposed to all ciphertexts.

Finally, our work still leaves open the question about the true rate of NCE: Is
(round-optimal) NCE with (asymptotic) rate 1 possible from standard assump-
tions and in the plain model, or is a small constant rate, as achieved in this
work, the best we can hope for?

2 Technical Overview

Before delving in the presentation of our scheme, we briefly recall the NCE
scheme of [16], which is based on LWE with superpolynomial modulus-to-noise
ratio. Let M ∈ {0, 1}� be a (long) message we want to encrypt. The public key
of this scheme is essentially a packed Regev key, that is it consists of a matrix
A and vectors v1, . . . ,v�. The matrix A ∈ Z

k × n
q is chosen uniformly random

(where k, n are two polynomials in the security parameter λ) whereas the vectors
vi are chosen in two different modes. Let IR ⊆ [�] be a set of indices of size �/8
chosen at random by the key generator. We think of this set as part of the secret
key.

– For all i ∈ IR the component public key vi is computed by vi = siA + ei

where s ←$Z
k
q is the corresponding component secret key and ei ←$ χn is a

noise term, chosen from an appropriate LWE error distribution χ.
– For all i /∈ IR the component keys vi ←$Z

n
q are chosen uniformly random.
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To encrypt a message M , it is first encoded into a binary string y ∈ {0, 1}� using
a suitable error-correcting code (ECC), the choice of which is rather delicate2.
The encrypter then chooses a random subset IS ⊆ [�], also of size �/8. For
all indices i ∈ IS , we replace the i-th component of the string y by uniformly
random bits.

The (modified) string y is then encrypted using a noisy version of the packed
Regev scheme [21] in its gaussian variant. More precisely, one first samples a
vector r from a suitable discrete gaussian over Z

n and computes

c1 = ArT

∀i ∈ [�] : wi = virT + e∗
i + yi · q/2,

where the masking noise terms e∗
i are chosen from an appropriate discrete gaus-

sian. To decrypt a ciphertext (c1, w1, . . . , w�) one proceeds as follows. For all
indices i ∈ IR, the decrypter is in possession of a component secret key si which
allows him to recover yi by computing wi − sic1 ≈ yi · q/2 and rounding. All
components with indices outside of IR are effectively erased from the view of the
receiver. However, by the above choice of parameters the receiver will be able to
recover the message M with high probability using the efficient decoder of ECC.
This establishes correctness of the scheme.

We will briefly discuss how we can equivocate messages if the system is set
up in simulation mode. Instead of running honest key generation, the simulator
chooses a set Ib ⊆ [�] of size �/4. We call Ib the set of bad indices. Now, the
simulator chooses the matrix A jointly with the vi for i ∈ Ib via a lattice
trapdoor sampler. I.e., the simulator generates a matrix B ∈ Z

(k+�/4)× n
q with

a lattice trapdoor tdB, then sets A to be the first k rows of B and uses the
remaining �/4 rows for the vectors vi with indices i ∈ Ib. The remaining vi with
indices in the good set Ig = [�] \ Ib will be chosen as LWE samples, i.e. for these
components the simulator will know a corresponding secret key si.

To simulate a ciphertext, the simulator chooses a uniformly random bit string
y′ and encrypts it as before via noisy Regev encryption. We will briefly sketch the
main ideas of how ciphertexts are equivoked. Given a message M , the simulator
needs to compute random coins rG which explain the public key pk and rE which
explain the ciphertext ct. Now, M is encoded into a binary string y ∈ {0, 1}� via
ECC. Now, note since the string y′ was chosen at random, it will agree with y
in approximately 50% of the indices. For the remaining 50% of indices on which
y′ and y disagree, the simulator has two strategies at its disposal.

– For all indices i ∈ Ib it will be able to resample the gaussian r via a gaus-
sian sampler that uses the lattice trapdoor tdB. This effectively allows the
simulator to reprogram all ciphertext components wi with index i ∈ Ib as
encryptions of yi (instead of y′

i). This resampling procedure is the reason the
masking noise terms e∗

i are needed. The resampling procedure creates small

2 We need a code ECC which can efficiently decode from a 1/2− δ fraction of random
errors.



Constant Ciphertext-Rate Non-committing Encryption 63

artifacts in the ciphertext components with indices i ∈ Ig, and the masking
noise terms are used to statistically drown these artifacts.

– For the remaining indices, it will claim they were in the set IS by choosing
this set appropriately.

A good deal of care has to be taken when opening the sets IR and IS in order to
ensure that they have the right statistics. In order to ensure this, the simulator
will make use of the fact that any component key in the set Ig can be claimed
to be either from the set IR or [�] \ IR.

2.1 Packed Encryption with Equivocality

Our first contribution is an abstraction of the above framework into a generic
construction of NCE using a novel primitive that we call Packed Encryption with
Partial Equivocality (PEPE).3 A PEPE is a cryptographic primitive that allows
one to encrypt a message M ∈ {0, 1}� into a ciphertext ct, using random coins
rE . Later, we can find random coins r′

E such that the encryption of M ′ �= M is
exactly ct, conditioned on the fact that M ′ and M differ only on some predefined
positions. More precisely, a PEPE consists of the following algorithms.

– Key Generation: Given a subset I ⊂ [�] and a bit b, it outputs a pair
of public and secret keys (pk, sk) ← KG(b, I; rG) on either the real mode (if
b = 0) or on the ideal mode (if b = 1), created using random coins rG. Public
keys created in different modes should be indistinguishable. A pair of keys
created in the ideal mode will allow for equivocation of some of the positions
of an encrypted message.

– Encryption: Given a message M ∈ {0, 1}� and a public key pk, it outputs a
ciphertext ct ← E(pk,M ; rE) encrypted using random coins rE .

– Decryption: Given a secret key sk corresponding to the subset I, it outputs
Mi for i ∈ I.

Additionally, a PEPE scheme is equipped with the algorithms EquivPK and
EquivCT defined as follows.

– Equivocation of public key randomness: Given a subset I ′ ⊂ I and the
pair (pk, sk) ← KG(b, I; rG), this algorithm outputs r′

G such that (pk, sk′) =
KG(0, I ′; r′

G).
– Equivocation of ciphertext randomness. Given a message M ′ (that dif-

fers from M only in the indexes not in I) and random coins rE , this algorithm
outputs random coins r′

E such that E(pk,M ; rE) = E(pk,M ′; r′
E).

As security requirement, the random coins outputted by the algorithms described
above should be indistinguishable from real random coins.
3 A somewhat similar notion is the one of Somewhere Equivocal Encryption [15].

However, Somewhere Equivocal Encryption is a purely symmetric-key primitive and
equivocation is performed by finding a new secret key. On the other hand, PEPE is
a public-key primitive and equivocation is achieved by finding new random coins for
the key generation and encryption algorithms.
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NCE from PEPE. Our construction of NCE from PEPE closely follows the
outline [16] as explained above, where we replace packed Regev encryption with
a PEPE scheme. In the real mode, we also setup the PEPE scheme in real
mode. In simulation mode, we setup keys in the appropriate simulation mode.
The ciphertext randomness equivocation property of the PEPE scheme serves as
a drop-in replacement for the gaussian sampling property of the packed Regev
scheme in [16]. The remaining aspects are essentially identical to the [16] such
as the use of error correcting codes and set partitions.

Assuming that we have a PEPE scheme which achieves constant rate, then
the rate of this NCE construction is dominated by the rate penalty of the error
correcting code ECC. Consequently, given that ECC has constant rate, this
transformation results in an NCE scheme with constant rate.

In the remainder of this outline we briefly discuss constructing rate-1 PEPE
schemes from LWE, DDH, and QR.

2.2 Construction from LWE

Before presenting our construction for PEPE from the LWE assumption, we
recall a compression technique for Regev’s scheme, recently introduced in [3].
Recall that in packed Regev encryption, a ciphertext is of the form

ct = (c1, (w1, . . . , w�)) ∈ Z
n
q × Z

�
q

where c1 is a ciphertext header and w1, . . . , w� are the ciphertext payload com-
ponents. As explained above, given a component secret key si a component wi

can be decrypted by computing wi − si · c1 and rounding the result to either 0
or q/2. Given that the modulus q is sufficiently large, we can compress such a
ciphertext by choosing an offset z such that for all indices i

wi + z /∈ [q/4 − B, q/4 + B] ∪ [−q/4 − B,−q/4 + B] ,

where B is a bound on the decryption noise. Given that the modulus q is large
enough, we can ensure that such an offset z always exists and can be found
efficiently. Note that z is computed from the ciphertext only, i.e. without the
knowledge of the corresponding plaintexts. Given such a z, we can compress the
wi into single bits by computing ci = 
wi + z�2. The new compressed ciphertext
is composed by (c1, {ci}i∈[�], z). To decrypt such a compressed ciphertext, we
compute ci −
sic1 + z�2. A routine calculation shows that, given that z satisfies
the constraints above, decryption is always correct.

PEPE from LWE. Recasting the construction of [16] in terms of PEPE, immedi-
ately gives us a PEPE scheme of polylogarithmic rate. Since the scheme obtained
in this way is a packed Regev scheme, it is naturally compatible with the cipher-
text compression technique provided above.

To see that the resulting scheme still supports public key and ciphertext
equivocation, note first that we leave the public key unmodified. On the other
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hand, note that ciphertext compression is merely a public post-processing oper-
ation on a ciphertext. Consequently, to equivocate a compressed ciphertext, all
we have to do is to equivocate the underlying uncompressed ciphertext. Thus,
given that the message length � is sufficiently large, we obtain a PEPE scheme
with rate 1 under the same assumptions as above.

2.3 Construction from DDH

We will now outline our DDH-based construction, which follows the same
blueprint as the LWE-based construction. We first construct a PEPE scheme
with poor rate (O(λ)), and then combine it with a public ciphertext compres-
sion technique.

We will first explain our novel ciphertext compression technique for the dis-
crete logarithm settings. This algorithm, can be seen as the computational analog
of the one described above and it is inspired by recent techniques developed in
the domain of homomorphic secret sharing [2]. The scheme is perfectly correct,
however the caveat is that the compression algorithm will run in expected poly-
nomial time (or, alternatively, will introduce a decryption error with negligible
probability). Let G be a prime order group with generator g and let

(h1 = gs1 , . . . , h� = gs�)

be a set of public keys. The ciphertexts that we want to compress are of the
form

(gr, (hr
i g

M1 , . . . , hr
i g

M�)) = (c1, (w1, . . . , w�)) ∈ G
�+1

where r ←$Zp and M ∈ {0, 1}�, which is an extended version of the El-Gamal
scheme. Decryption is performed component-wise by computing wi/csi

1 and
checking if the result is equal to 1 (in which case, Mi = 0) or g (Mi = 1).

Let T be a polynomial in the security parameter. Our compression algorithm
uses a pseudorandom function PRF : {0, 1}λ × G → {0, 1}τ . On input a cipher-
text (c1, (w1, . . . , w�)), the compression algorithm samples a random key K for
the PRF until the following two conditions are simultaneously satisfied: For all
i ∈ [�] it holds that

(1) PRF(K,wi/g) �= 0.
(2) There exists a δi ∈ [T − 1] such that PRF(K,wi · gδi) = 0.

The compressed ciphertext ct is composed by ct = (K, c1, δ1 mod 2, . . . , δ�

mod 2) ∈ {0, 1}λ × G × {0, 1}� where δi is the smallest integer that satisfies
condition (2). In order to decrypt, one needs to find, for every i ∈ [�], the small-
est γi such that PRF(K, csi

1 · gγi) = 0 by exhaustive search. Finally it outputs
Mi = δi⊕LSB(γi), where LSB denotes the least significant bit of an integer. Note
that the scheme is correct with probability 1, since condition (1) ensures that
there is no ambiguity in the decoding of the bit Mi. By setting the parameters
appropriately, we can guarantee that K can always be found in polynomial time,
except with negligible probability.
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PEPE from DDH. We will now outline our uncompressed DDH-based PEPE
construction, which shares some ideas with the LWE based construction above.
Assume that the underlying group G supports oblivious sampling, i.e. we can
sample uniformly random group elements without knowledge of any discrete
logarithm relation. For a vector a ∈ Z

n
p we will use the notation [a] to denote

ga (i.e. the component-wise exponentiation). In real mode, the public key pk =
([a], {[v]}) of our DDH-based PEPE is chosen as follows. Choose the vector [a]
and all [vi] for i ∈ [�] \ I obliviously. For all indices i ∈ I choose a uniformly
random si ←$Zp and set [vi] = si · [a] = [si · a] (where we write exponentiation
multiplicatively). The secret key consists of the component keys {si}i∈I .

To encrypt a message M ∈ {0, 1}�, first choose a uniformly random r ←$Z
n
p

and compute [c1] = [a] · r = [a · r] and for all i ∈ [�] [wi] = [vi] · r + [Mi]. The
vector r ∈ Z

n
p constitute the random coins for encryption. To decrypt the i-th

ciphertext component, compute [wi] − si · [c1], output 0 if this equals 1 and 1 if
it equals g = [1].

We will now briefly outline how ciphertext equivocation works for this
scheme. In the ideal mode, all elements of the public key are computed non-
obliviously with respect to a single generator g = [1]. That is, we sample [a] by
choosing a uniformly random a′ ←$Z

n
p and setting [a] = a′ · [1]. For all i ∈ I

we choose a random si ←$Zp and set [vi] = si · a′ · [1]. For all i ∈ [�] \ I we
choose a uniformly random v′

i ←$Z
n
p and set [vi] = v′

i · [1]. The simulator will
keep all non-obliviously sampled ring elements as equivocation trapdoor. Notice
that obliviously sampled public keys and non-obliviously sampled public keys
are identically distributed.

We will finally describe how ciphertexts are equivoked. For a given a cipher-
text ct = ([c1], [w1], . . . , [w�]) encrypting a message M ∈ {0, 1}�, the simulator
knows the random coins r that were used to generate this ciphertext. I.e. it
knows (in Zp) that

c1 = a · r
w1 = v1 · r + M1

...
w� = v� · r + M�

Now, given a message M ′ ∈ {0, 1}� which agrees with M on the index set I we
can equivoke the ciphertext ct as an encryption of M ′ by by uniformly choosing
a solution r̄ ∈ Z

n
p for the linear equation system

c1 = a · r̄
w1 = vi1 · r̄ + M ′

i1

...
wik

= vik
· r̄ + M ′

ik

where [�] \ I = {i1, . . . , ik}. Notice that since for i ∈ [�] \ I the vi are chosen
uniformly at random, given that k + 1 ≤ n this system has full rank with
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overwhelming probability. Consequently, we can sample a uniform solution r̄
via basic linear algebra. Finally, note that since for i ∈ I the vi are of the form
si · a, it also holds that wi = vi · r̄ + M ′

i , as ar = c1 = ar̄1 and Mi = M ′
i . Thus

this scheme has perfect ciphertext equivocality.
Finally, applying the oblivious ciphertext compression algorithm described

above yields a PEPE scheme of rate 1.

2.4 Construction from QR

We conclude our overview by briefly sketching how to adapt the above developed
techniques to construct PEPE from the QR assumption.4 Similarly to the DDH
case, the public is composed by

pk =
(
[a], {[vi]}i∈[�

)

where [a] ←$QR
n
N and [vi] = si[a] for i ∈ I and [vi] ←$QR

n
N . To encrypt a

message M ∈ {0, 1}�, we compute

c̃t = ([arT ], ((−1)M1 · [v1rT ], . . . , (−1)M� · [v�rT ]) ∈ QRN
n × G

�

with a uniformly chosen r ←$Z
n
(N−1)/2, and compress it into ct =

([arT ], (b1, . . . , b�)) ∈ QR
n
N × {0, 1}� via the compressing procedure of [10].

When generating a public key in the equivocal mode, the simulator keeps a
and the vectors vi, for i /∈ I, to himself. The vectors a and vi will allow him to
equivocate by solving a linear system of equations in a similar fashion as in the
DDH case.

3 Preliminaries

Throughout this work, λ denotes the natural security parameter. By negl[λ], we
denote a negligible function in λ, that is, a function that vanishes faster than
any polynomial in λ.

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. If A is an algorithm, we
denote by y ← A(x) the output y after running A on input x. If S is a (finite)
set, we denote by x ←$ S the experiment of sampling uniformly at random an
element x from S. If D is a distribution over S, we denote by x ←$ D the element
x sampled from S according to D. We say that D is B-bounded if for every
x ←$ D, we have ‖x‖ < B, except with negligible probability, and where ‖x‖
is the usual �2 norm. We will usually use bold upper-case letters (e.g., M) to
denote matrices and lower-case letters (e.g., v) to denote vectors, unless explicitly
state otherwise. Let q ∈ N. We define the rounding function 
·�2 : Zq → Z2 as

x�2 = 
x · 2/q� mod 2.

We say that two distributions are computationally indistinguishable if no
probabilistic polynomial-time (PPT) adversary can distinguish them.

The following lemma will be useful and provides a tail bound for the hyper-
geometric distribution.
4 The QR-based construction is presented in the full version of this paper.
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Lemma 3. Let H(a, b, n) be a hypergeometric distribution, with a = αn and
b = βn, and let X be a random variable sampled from H(a, b, n). Then

Pr [X ≤ (αβ − ε)n] ≤ negl[n]

for some constant 0 < ε < 1.

3.1 Coding Theory

We present some basic coding theory definitions and results that will be useful
for our work.

Definition 4 (Error-Correcting Code). A (binary) Error-Correnting Code
(ECC) consists of a pair of algorithms ECCN,n = (Encode,Decode) such that:

– c ← Encode(M ∈ {0, 1}n) takes as input a message M ∈ {0, 1}n to be
encoded. It outputs a codeword c ∈ {0, 1}N .

– M ← Decode(c′) takes as input a corrupted codeword c′ ∈ {0, 1}N . It outputs
M if c′ and c ← Decode(M) differ in at most t positions.

Let ECCN,n be a ECC. We call R = n/N the rate of a code C. The error rate
is defined as E = t/N . A list-decoding ECC [14] is a ECC such that the Decode
algorithm outputs a list S of polynomial size (in the security parameter), one
of which is the correct original encoded message. Constructions for list-decoding
ECC with constant rate and that correct a large amount of errors (say, 1/2 − ζ
for any constant ζ > 0) are known to exist [14].

Lemma 5 [18]. Let C be a list-decoding ECC with rate R and error rate E.
Then, there exists a unique-decoding error correction code with rate R and error
rate E given that One-Way Functions exist.

In particular, there exists a code with constant rate R and error rate of 1/2−ζ,
for any constant ζ > 0, given that One-Way Functions exist.

3.2 Hardness Assumptions

In the following, we present the hardness assumptions that we use in this work.

Learning with Errors. The Learning with Errors (LWE) problem was firstly
presented in [21]. We now present the decisional version of the problem. In the
following, let Dσ be a discrete Gaussian distribution with parameter σ.

Definition 6 (Learning with Errors). Let k, q ∈ Z and let Dσ be an error
distribution. The LWE assumption holds if for any PPT adversary

|Pr [1 ← A(A, sA + e)] − Pr [1 ← A(A,u)]| ≤ negl[λ]

for all n ∈ Z, where A ←$Z
k × n
q , s ←$Z

k
q , e ←$ Dn

σ and u ←$Z
n
q .
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In this work, we assume the hardness of the LWE with superpolynomial
modulus-to-noise ratio. That is, we assume that the problem remains hard even
when B/q = negl[λ] where the error e comes from a B-bounded distribution.

The following lemma states that we can drown (i.e., statistically hide) an
error vector with a much wider distribution.

Lemma 7. Let q, B, σ such that q = λω(1) and σ/B = λω(1). Then the distribu-
tions Dσ and Dσ +e are statistically close, where e is sampled from a B-bounded
distribution.

The following lemma states that there are matrices statistically close to uni-
form and for which we can sample low-norm pre-images with the help of a
trapdoor [12,19].

Lemma 8 [19]. There exists a pair of algorithms (TrapGen,SampleD) such that:

– (B, td) ← TrapGen(1λ, k, n, q) takes as input the security parameter λ and
n, k, q ∈ Z. It outputs a matrix B ∈ Z

k × n
q and a trapdoor td. The matrix B

is 2−k close to uniform.
– r ← SampleD(td,B,y, σ) takes as input a trapdoor td, a matrix B and a

vector y ∈ Z
k
q . It outputs r ∈ Z

n
q such that r ←$ DΛ⊥

y (B),σ, where DΛ⊥
y (B),σ is

the discrete Gaussian distribution with standard deviation σ over the lattice
Λ⊥
y (B) = {r ∈ Z

n
q : ArT = y}.

Decisional Diffie-Hellman. A (prime-order) group generator is an algorithm
G that takes as an input a security parameter 1λ and outputs (G, p, g), where
G is the description of a multiplicative cyclic group, p is the order of the group
which is always a prime number unless differently specified, and g is a generator
of the group. In the following we state the decisional version of the Diffie-Hellman
(DDH) assumption [9].

Definition 9 (Decisional Diffie-Hellman Assumption). A group generator
algorithm G satisfies the DDH assumption (or is DDH-hard) if for any PPT
adversary A
∣
∣Pr[1 ← A((G, p, g), (ga, gb, gab))] − Pr[1 ← A((G, p, g), (ga, gb, gc))]

∣
∣ ≤ negl[λ]

where (G, p, g) ←$ G(1λ) and (a, b, c) ←$Zp.

In this work, we use the matrix version of the DDH assumption, called the
Matrix Decisional Diffie-Hellman Assumption (MDDH), which generalizes the
DDH assumption (and other number-theoretic assumptions). Let g ∈ G and let
M ∈ Z

k × n
p . We denote by [M] ∈ G

k × n the matrix

gM =

⎛

⎜
⎝

gM1,1 . . . gM1,n

...
. . .

...
gMk,1 . . . gMk,n

⎞

⎟
⎠.
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Definition 10 (Matrix Decisional Diffie-Hellman Assumption [11]). A
group generator algorithm G satisfies the MDDH if for any PPT algorithm A
such that

|Pr [1 ← A((G, p, g), ([A], [wA]))] − Pr [1 ← A((G, p, g), ([A], [u]))]| ≤ negl[λ]

where (G, p, g) ←$ G(1λ), k < n, A ←$Z
k × n
p , w ←$Z

k
p and u ←$Z

n
p .

Observe that anyone can compute s[A] = [sA], w[A] = [wA] or [A]vT =
[AvT ] knowing [A], s, w and v, for any A ∈ Z

k × n
q , s ∈ Zq, w ∈ Z

k
q and v ∈ Z

n
q .

Quadratic Residuosity. In this version, we omit the QR assumption descrip-
tion due to space restrictions.

3.3 Non-committing Encryption

The formal definition of Non-Committing Encryption, as well as its security
requirements, are presented below.

Definition 11 (Non-committing Encryption). A Non-Committing Encryp-
tion (NCE) scheme is composed by a tuple of algorithms (Gen,Enc,Dec,Sim1,
Sim2) such that:

– (pk, sk) ← Gen(1λ, rG) takes as input a security parameter λ and some ran-
domness rG. It outputs a pair of public and secret keys (pk, sk).

– c ← Enc(pk,M, rE) takes as input a public key pk, a message M and ran-
domness rE. It outputs a ciphertext c.

– M/ ⊥← Dec(sk, c) takes as input a secret key sk and a ciphertext c. It outputs
either a message M or an error message ⊥.

– (pk, c, st) ← Sim1(1λ) takes as input a security parameter λ. It outputs a
simulated public key pk, a ciphertext c and an internal state st.

– (rG, rE) ← Sim2(M, st) takes as input a message M and an internal state
st. It outputs a pair of randomness for key generation and for encryption
(rG, rE).

A NCE scheme should have the following properties:

– Correctness. A NCE scheme is said to be correct if

Pr
[
M ← Dec(sk, c) : (pk, sk) ← Gen(1λ)

c ← Enc(pk,M)

]
≥ 1 − negl[λ].

– Simulatability. Let A be any PPT adversary. A NCE scheme is said to be
simulatable if the distributions IDEAL and REAL are computationally indis-
tinguishable to A, where

IDEAL =

⎧
⎨

⎩
(M, pk, c, rG, rE) :

(pk, c, st) ← Sim1(1λ)
M ← A(pk)

(rG, rE) ← Sim2(M, st)

⎫
⎬

⎭
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and

REAL =

⎧
⎨

⎩
(M, pk, c, rG, rE) :

(pk, sk) ← Gen(1λ, rG)
M ← A(pk)

c ← Enc(pk,M, rE)

⎫
⎬

⎭
.

4 Ciphertext Shrinking Algorithms

In this section we discuss how we can shrink the ciphertext of certain cryptosys-
tems based on LWE, DDH or QR. Every procedure presented in this section is
a post-processing operation that is applied to a ciphertext in order to reduce its
size.

4.1 Ciphertext Shrinking Algorithm for LWE-Based Encryption
Schemes

The following technique to shrink ciphertexts of LWE-based PKE schemes was
firstly introduced in [3]. This is a post-processing technique that can be applied
to every decrypt-and-multiply PKE scheme (see [3] for details). In particular, it
can be applied to the usual Regev’s scheme [21] which we use to construct our
NCE scheme.

Construction 1. Consider a PKE scheme with ciphertexts of the form (c1,
(w2,1, . . . , w2,�)) ∈ Z

n
q × Z

�
q, secret key S ∈ Z

� × n
q and where decryption is com-

puted by multiplying 
(w2,1, . . . , w2,�) − ScT
1 �2 = 
M + e�2 where e is sampled

from a B-bounded distribution. We describe the shrinking algorithms in detail:

Shrink(pk, (c1, (w2,1, . . . , w2,�))):

– Choose z ←$Zq \ U where

U =
�⋃

i=1

([
−q

4
− w2,i − B,−q

4
− w2,i + B

]
∪
[q

4
− w2,i − B,

q

4
− w2,i + B

])
.

– Compute c2,i = 
w2,i + z�2 ∈ Z2 for every i ∈ [�].
– Output ct = (c1, (c2,1, . . . , c2,�), z).

ShrinkDec(sk = S, ct) :

– Parse ct as (c1, (c2,1, . . . , c2,�), z).
– Compute Mi ← (

c2,i − 
sicT
1 + z�2

)
mod 2 where si is the i-th row of S.

– Output M = (M1, . . . , M�).

Note that each bit of M is independently recovered from the other ones.
Hence, we can relax the definition of ShrinkDec in order to output only a partial
decryption of M . More precisely, if a subset I ⊆ [�] is given as input to ShrinkDec,
then it outputs {Mi}i∈I .

The following lemma guarantees the correctness of the shrinking procedure
presented above.

Lemma 12 [3]. Let B = B(λ) and q > 4�B. Then the shrinking algorithm
described in Construction 1 is correct up to noise B.
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4.2 Ciphertext Shrinking Algorithm for DDH-Based Encryption
Schemes

Before presenting the shrinking procedure compatible with DDH-based encryp-
tion schemes, recall the definition of Pseudorandom Functions (PRF).

Definition 13 (Pseudorandom Function). Let α = α(λ) and β = β(λ). A
Pseudorandom Function (PRF) is defined by a keyed function PRF : {0, 1}λ ×
{0, 1}α → {0, 1}β such that, for any adversary A

|Pr [1 ← A(y, x) : y ← PRF(K,x)] − Pr [1 ← A(y, x) : y ← f(x)]| ≤ negl[λ]

for any x ∈ {0, 1}α, where f : {0, 1}α → {0, 1}β is a uniformly chosen random
function and the key K is sampled uniformly at random from {0, 1}λ.

We now explain how one can compress ciphertexts of ElGamal-based encryp-
tion schemes. The following technique is a variant of the compression technique
introduced in [2,10]. However, in this variant we achieve perfect correctness.

Construction 2. Below we show our DDH-based scheme, with message space
Z

�
q, for some polynomials q = q(λ) and � = �(λ). The scheme is parametrized

by two polynomials τ = τ(λ) and T = T (λ) that influence the runtime of the
evaluation algorithm, whose exact value will be fixed later. The scheme assumes
the existence of a pseudorandom function PRF : {0, 1}λ × G → {0, 1}τ . We
also assume that we have ciphertexts of the form (c1, (w2,1, . . . , w2,�)) ∈ G × G

�

and that the secret key is of the form (x1, . . . x�) ∈ Z
�
p. Decryption is done by

computing w2,i/cxi
1 = gMi and recovering Mi ∈ Zq, for each i ∈ [�].

Shrink(pk, (c1, (w2,1, . . . , w2,�))):

– Set d0 = c1 and di = w2,i, for all i = 1, . . . , �.
– Sample a uniform key K ←$ {0, 1}λ such that the following conditions are

simultaneously satisfied:
(1) For all i = 1, . . . , � and for all k = 1, . . . , (q − 1) it holds that

PRF(K, di/gk) �= 0τ .

(2) For all i = 1, . . . , � there exists some k = 0, . . . , (T − 1) such that
PRF(K, di · gk) = 0τ .

– For all i = 1, . . . , � let δi be the smallest non-negative integer such that
PRF(K, di · gδi) = 0τ .

– Return ct = (K, d0, δ1 mod q, . . . , δ� mod q).

ShrinkDec(sk, ct) :

– Parse sk as (x1, . . . , x�) and ct as (K, d0, δ1 mod q, . . . , δ� mod q).
– Compute for all i = 1, . . . , � the smallest non-negative integer γi such that

PRF(K, dxi
0 · gγi) = 0τ

– Set Mi = δi − γi mod q.
– Return M = (M1, . . . , M�).

Again, note that each element Mi can be independently decrypted. Thus, if
the ShrinkDec algorithm receives as input a subset I ⊆ [�], it outputs {Mi} for
i ∈ I.
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Analysis. The more interesting aspects of this scheme concern its correctness
and the runtime of the subroutines.

Lemma 14. The scheme as described in Construction 2 is perfectly correct.

Proof. We assume without loss of generality that the decryption algorithm takes
as input an evaluated ciphertext ct = (K, d0, δ1, . . . , δ�). Recall that d0 = c1 = gr

for a random r ←$Zp. Furthermore, for all i = 1, . . . , � the term δi is defined to
be the smallest non-negative integer (mod q) such that PRF(K, di · gδi) = 0τ ,
where

di = hr
i g

Mi = gxirigMi = dxi
0 gMi

Recall that γi is defined to be the smallest non-negative integer such that
PRF(K, dxi

0 · gγi) = 0τ . Note that the pair (δi, γi) is always well defined by
condition (2). We claim that

di · gδi = dxi
0 · gγi

with probability 1. Assume that this is not the case, then we have that Mi +δi �=
γi. We distinguish two cases:

(a) Mi + δi < γi: This case cannot happen since we assumed that γi was the
smallest non-negative integer such that PRF(K, dxi

0 · gγi) = 0τ .
(b) Mi+δi > γi: This case implies that γi < q since Mi ≤ q and δi is the smallest

non-negative integer such that PRF(K, di ·gδi) = PRF(K, dxi
0 ·gMi ·gδi) = 0τ .

Consequently we have that PRF(K, di/gγi) = 0τ where γi < q, which violates
condition (2).

Therefore we have that
Mi = γi − δi mod q

for all i = 1, . . . , �. This concludes our proof.

By condition (2), the values of γi always lie within T − 1 steps from dxi
0 and

therefore ShrinkDec runs in strict polynomial time. What is left to be shown is
that Shrink runs in expected polynomial time.

Lemma 15. Let PRF be a pseudorandom function, let τ = log2(2(q − 1)�) and
let T = 2τλ loge(�) + (q − 1)�. Then Shrink terminates within λ iterations except
with negligible probability.

Proof. Observe that all the subroutines of Shrink run in strict polynomial time,
except for the sampling of K. It therefore suffices to bound the probability that
some K satisfies conditions (1) and (2) simultaneously. Throughout the following
analysis we treat PRF(K, ·) as a truly random function (indexed by K) and the
same analysis holds true, up to a negligible amount, for the case that PRF(K, ·)
is a pseudorandom function by a standard argument.
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We first bound from below the probability that a uniform K ←$ {0, 1}λ sat-
isfies condition (1), that is,

Pr
[∀i ∈ [�],∀k ∈ [q − 1] : PRF(K, di/gk) �= 0τ

] ≥
(

1 − 1
2τ

)(q−1)�

≥ 1 − (q − 1)�
2τ

= 1 − (q − 1)�
2(q − 1)�

=
1
2

∗ where the probability is taken over the random choice of K. The first
inequality comes from the fact that we assume that all points di/gk are distinct
(since it minimizes the probability) and therefore the outputs of PRF(K, ·) are
uniformly and independently distributed over {0, 1}τ . The second inequality is
from Bernoulli. We now bound from above the probability that condition (2) is
not satisfied, conditioned on the fact that condition (1) is met. Let us denote by
S ⊆ {0, 1}λ the set of all keys K that satisfy condition (1). Then we have

Pr
[∃i ∈ [�] s.t. ∀k = 0, . . . , (T − 1) : PRF(K, di · gk) �= 0τ

∣
∣K ∈ S

]

≤
�∑

i=1

Pr
[∀k = 0, . . . , (T − 1) : PRF(K, di · gk) �= 0τ

∣
∣K ∈ S

]

≤
�∑

i=1

(
1 − 1

2τ

)T−(q−1)�

≤
�∑

i=1

e− T −(q−1)�
2τ =

�∑

i=1

e−λ loge(�) = e−λ

where the probability is taken over the random choice of K. The first inequality
comes from a union bound whereas the second inequality is derived by observing
that the constraint K ∈ S fixes the value of PRF(K, ·) on at most (q−1)� points.

To conclude, the probability that condition (1) is not satisfied after λ uniform
choices of K is at most 2−λ and the probability that condition (2) is not satisfied
constrained on meeting condition (1) is e−λ. By a union bound, the probability
that Shrink does not terminate after λ iterations is at most 2−λ + e−λ.

Rate-1 Linearly Homomorphic Encryption from DDH. An interesting conse-
quence of our algorithm is that it yields a linearly homomorphic encryption
scheme with rate approaching 1 from the DDH assumption. To see why this
is the case, we recall the packed version of ElGamal encryption: The public
key of the scheme consists of the tuple (g, h1, . . . , h�) = (g, gx1 , . . . , gx�), and a
ciphertext for a message (M1, . . . , M�) is of the form

(gr, hr
1 · gM1 , . . . , hr

� · gM�)

for some uniformly chosen r ←$Zp. This scheme can be shown secure by � invoca-
tions of the DDH assumption and satisfies the structural requirements to apply
our shrinking algorithm as described above. Furthermore note that the scheme
supports the homomorphic evaluation of linear functions f : Z

�
q → Zq. One

caveat of this scheme is that the runtime of the shrinking algorithm is polyno-
mial q and therefore the function f has a polynomial-size range (we stress that q
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is a bound on the output size and not the order of the DDH-hard group p). Yet
these homomorphic capabilities suffice for many interesting applications, such as
constructing rate-1 oblivious transfer, or semi-compact homomorphic encryption
for branching programs [10].

4.3 Ciphertext Shrinking Algorithm for QR-Based Encryption
Schemes

The ciphertext shrinking algorithm for QR-based encryption schemes is the one
presented in [10]. We omit it here due to space restrictions.

5 Packed Encryption with Partial Equivocality

We begin this section by presenting the formal definition of PEPE as well as its
security properties. We then show how to construct this primitive under several
hardness assumptions. Then, we present constructions of PEPE from LWE, DDH
and QR assumptions.

Definition 16. A Packed Encryption with Partial Equivocality (PEPE) scheme
that encrypts messages in {0, 1}� is composed by a tuple of algorithms (KG,E,D,
EquivPK,EquivCT) where:

– (pk, sk) ← KG(1λ, b ∈ {0, 1}, I, r) takes as input a security parameter λ, a bit
b, a set of indexes I ∈ [�] and random coins r.5 It outputs a pair of public
and secret keys (pk, sk). When b = 0 we say that the keys were generated in
the real mode. Otherwise, if b = 1, we say that the keys were generated in the
ideal mode.

– ct ← E(pk,M ∈ {0, 1}�, r) takes as input a public key pk, a message M and
random coins r, and outputs a ciphertext ct.

– (Mi)i∈I ← D(sk, ct) takes as input a secret key sk and a ciphertext ct. It
outputs bits Mi, for i ∈ I.

– r′ ← EquivPK(sk, b, (I, r), I ′) takes as input a secret key sk, a bit b, subsets
I, I ′ ⊆ [�] and randomness r. It outputs randomness r′.

– r′ ← EquivCT(sk, (M, r), {M ′
i}i/∈I) takes as input a secret key sk, a pair of

message and randomness (M, r) and some bits {M ′
i}i/∈I together with a subset

I ⊆ [�]. It outputs random coins r′.

A PEPE scheme should fulfill correctness for decryption and for equivocality.
Also, the random coins used in the key generation and encryption algorithms
should be indistinguishable from random coins outputted by the equivocality
algorithms.

5 When the random coins r are omitted, it means they are chosen uniformly at random
during the execution of the algorithm. In this case, the algorithm also outputs r.
The same happens for algorithm E.
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– Correctness. For any message M ∈ {0, 1}� and any subset I ⊂ [�], we have
that

Pr

⎡

⎣{Mi}i∈I = {M ′
i}i∈I :

(pk, sk) ← KG(1λ, 0, I, rG)
ct ← E(pk,M, rE)

{M ′
i}i∈I ← D(sk, ct)

⎤

⎦ ≥ 1 − negl[λ].

– Public key randomness indistinguishability. The random coins out-
putted by the algorithm EquivPK should be computationally indistinguish-
able from true random coins. That is, the distributions IDEALpk and REALpk
should be computationally indistinguishable, where

IDEALpkb
=
{

rG : (pk, sk) ← KG(1λ, b, I ′, r′
G)

rG ← EquivPK(sk, b, (I ′, r′
G), I)

}

and
REALpk =

{
rG : (pk, sk) ← KG(1λ, 0, I, rG)

}

for any subsets I, I ′ ⊂ [�] such that I ⊂ I ′ and any b ∈ {0, 1}.
Note that this also ensures that no adversary can distinguish public keys
created in the ideal mode or in the real mode as the distribution of both keys
are indistinguishable.

– Ciphertext randomness indistinguishability. The random coins out-
putted by the algorithm EquivCT should be statistically close to true random
coins. That is, for any subset I ⊂ [�] and any message M ′ ∈ {0, 1}�, the
distributions IDEALct and REALct should be statistically close, where

IDEALct =

⎧
⎪⎪⎨

⎪⎪⎩
(pk,M, rE) :

(pk, sk) ← KG(1λ, 1, I, r′
G)

ct ← E(pk,M ′, r′
E)

M ← A(pk)
rE ← EquivCT(sk, (M ′, r′

E), {Mi}i/∈I)

⎫
⎪⎪⎬

⎪⎪⎭

and

REALct =

⎧
⎨

⎩
(pk,M, rE) :

(pk, sk) ← KG(1λ, 0, I, r′
G)

M ← A(pk)
ct ← E(pk,M, rE)

⎫
⎬

⎭

where A is an unbounded adversary which outputs a message M such that
Mi = M ′

i for i ∈ I.

5.1 Packed Encryption with Partial Equivocality from LWE

We now present a PEPE scheme from the LWE assumption. The construction
is similar to the one in [16], except that we use the compression technique intro-
duced in [3] to achieve better rate.

Construction 3. Let (TrapGen,SampleD) be the pair of algorithms described in
Lemma 8, let (Shrink,ShrinkDec) the pair of algorithms described in Construction
1 and let σ, σ′ ∈ R such that σ/σ′ = negl[λ].
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KG(1λ, b ∈ {0, 1}, I, rG):

– If b = 0, do the following:
• Choose A ←$Z

k × n
q

• For i ∈ I, set vi = siA + ei where si ←$Z
k
q and ei ←$ Dn

σ .
• For i /∈ I, set vi ←$Z

n
q .

• Set pk = (A, {vi}i∈[�]) and sk = (I, {si}i∈I)
• Set the random coins rG = {ei}i∈I .

– Else if b = 1, do the following:

• Run (B, tdB) ← TrapGen(1λ, k + � − |I|, n, q) and parse B as
(
A
V

)
∈

Z
(k+�−|I|)× n
q .

• For i ∈ I, set
vi = siA + ei

where si ←$Z
k
q and ei ←$ Dn

σ .
• For i /∈ I, set vi = Vi, where Vi is the i-th row of V.
• Set pk = (A, {vi}i∈[�]) and sk = (I, {si}i∈I , tdB).
• Set the random coins rG = {ei}i∈I .

– Output (pk, sk)

E(pk,M ∈ {0, 1}�, rE):

– Parse pk = (A, {vi}i∈[�]).
– Sample r ←$ Dn

σ .
– Compute c1 ← ArT and w2,i = virT + ei + 
q/2� · Mi ∈ Zq, for every i ∈ [�],

where ei ←$ Dσ′ .
– Compress (c1, (w2,1, . . . , w2,�)) into

(c1, (c2,1, . . . , c2,�), z) ← Shrink(c1, (w2,1, . . . , w2,�)).

– Set the random coins rE to be (r, {ei}i∈[�]).
– Output ct = (c1, (c2,1, . . . , c2,�), z).

D(sk, ct):

– Parse sk as (I, {si}i∈I) and ct as (c1, (c2,1, . . . , c2,�), z).
– Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).
– Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

– If I ′ �⊆ I, then abort the protocol. Else, continue.
– Parse r as {ei}i∈I .
– If b = 0, parse sk as (I, {si}i∈I). Else, parse sk = (I, {si}i∈I , tdB).
– Set r′ = {ei}i∈I′ and sk = (I ′, {si}i∈I′)
– Output (sk′, r′)

EquivCT((sk, rG), (M, r), (M ′
i)i/∈I):

– Parse sk as (I, {si}i∈I , tdB) and rG = {ei}i∈I . Set ct = (c1, (c2,1, . . . , c2,�), z)
← E(pk,M, r) where r = (r, {e∗

i }i∈[�]).
– Sample e′

i ←$ Dσ′ for i /∈ I, and r̄ ← SampleD(tdB,B,y, σ) where y =
(c1, {w2,i − 
q/2�Mi − e′

i}i/∈I)
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– For i ∈ I, set e′
i = e∗

i + ei(r − r̄)T .
– Output r′ = (r̄, {e′

i}i∈[�]).

Analysis. Correctness for decryption follows from the correctness of the usual
Regev’s scheme and from Lemma 12.

Lemma 17 (Public-key randomness indistinguishability). The scheme in
Construction 3 is public key randomness indistinguishable given that the LWE
assumption holds.

Proof. Assume that b = 1 in the experiment IDEALpk (the case where b = 0 is
just a particular case of this one). The proof follows from the following sequence
of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an
adversary A:

– (pk, sk) ← KG(1λ, 1, I ′, r′
G) where pk = (A, {vi}i∈[�]) and sk =

(I ′, {si}i∈I′ , tdB).
– Run rG ← EquivPK(sk, 1, (I ′, r′

G), I).
– b ← A(rG).

Hybrid H1. In this hybrid, we replace the matrix A and the vectors vi, when
i /∈ I ′, for uniform ones.

– C chooses A ← Z
k × n
q and vi ←$Z

n
q for i /∈ I ′. For i ∈ I ′, it computes

vi ← siA + ei. For I ⊂ I ′, set rG = {(si, ei)}i∈I . It sends rG to A.
– b ← A(rG).

Claim. |Pr [1 ← A : A plays H0] − Pr [1 ← A : A plays H1]| ≤ negl[λ].
By Lemma 8, A is statistically close to a uniform matrix. Using the same

lemma, each vi, for i /∈ I ′, is also statistically close to a uniform vector. The
claim follows.

Hybrid H2. In this hybrid, we replace each vi for i ∈ I ′ \ I by a uniform vector.

– C chooses A ← Z
k × n
q and vi ←$Z

n
q for i /∈ I ′ and for i ∈ I ′ \ I. For i ∈ I, it

computes vi ← siA + ei. For I ⊂ I ′, it sets rG = {si, ei}i∈I . It sends rG to
A.

– b ← A(rG).

Claim. Assume that the LWE assumption holds. Then

|Pr [1 ← A : A plays H1] − Pr [1 ← A : A plays H2]| ≤ negl[λ].

It is straightforward to build an algorithm that decides the LWE assumption
given an adversary that is able to distinguish hybrids H1 and H2. The claim
follows.

Finally, note that hybrid H2 is exactly the experiment REALpk. Hence, the dis-
tributions are computationally indistinguishability given that the LWE assump-
tion holds.
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Lemma 18 (Ciphertext randomness indistinguishability). The scheme
in Construction 3 is ciphertext randomness indistinguishable.

Proof. Let ct = (c1, (c2,1, . . . , c2,�)) ← E(pk,M, rE) for (pk, sk) ← KG(1λ, 1, I,
rG) where pk = (A, {vi}i∈[�]), sk = (I, {si}i∈I , tdB), and rE = (r, {ei}i∈[�]) is
the randomness used in E to encrypt the message M = (M1, . . . , M�). Now let
M ′ = (M ′

1, . . . , M
′
�) such that Mi = M ′

i , for all i ∈ I, and Mi �= M ′
i otherwise.

After running EquivCT(sk, (M, rE), (M ′
i)i/∈I) we obtain

r′
E = (r̄, {e′

i}i/∈I).

Let ct′ = (c′
1, (c

′
2,1, . . . , c

′
2,�)) ← E(pk,M ′, r′

E). First, note that by definition of
the algorithm SampleD (Lemma 8) we have that ArT = Ar̄T . Hence c1 = c′

1.
For i ∈ I, we have that

virT + e∗
i +

⌊q

2

⌉
Mi = vir̄T + e′

i +
⌊q

2

⌉
Mi,

hence the rounded values are the same.
Finally, for i /∈ I, by definition of SampleD, we have that

vir + ei +
⌊q

2

⌉
Mi = vir̄ + e′

i + 
q/2�M ′
i .

Hence,

c2,i = 
vir + ei + 
q/2�Mi + z�2 = 
vir̄ + e′
i + 
q/2�M ′

i + z�2 = c′
2,i.

We conclude that ct = ct′.
By Lemma 7, we have that e′

i ←$ Dσ′ + ei(r − r̄)T and e∗
i ←$ Dσ′ are statis-

tically close.

5.2 Packed Encryption with Partial Equivocality from DDH

The DDH-based construction for PEPE is presented below as well as the corre-
sponding security proofs.

Construction 4. Let (G, p, g) ← G(1λ), n ∈ N and (Shrink,ShrinkDec) be the
algorithms from Construction 2. The DDH-based PEPE scheme is defined as
follows:

KG(1λ, b ∈ {0, 1}, I, rG):

– If b = 0, do the following:

• Choose [a] = ga where a ←$Z
n
p , (here [a] is chosen obliviously).

• For i ∈ I, set [vi] = si[a] where si ←$Zp.
• For i /∈ I, set [vi] ←$G

n.
• Set pk = ([a], {[vi]}i∈[�]) and sk = (I, {si}i∈I).
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– Else if b = 1, do the following:

• Choose a ←$Z
n
p and compute [a] = ga.

• For i ∈ I, set [vi] = si[a] where si ←$Z
k
p.

• For i /∈ I, set [vi] ←$G
n

• Set pk = ([a], {[vi]}i∈[�]) and sk = (I,a, {si}i∈I , {vi}i/∈I).

– Output (pk, sk)

E(pk,M ∈ {0, 1}�, rE):

– Parse pk = ([a], {[vi]}i∈[�]).
– Choose r ←$Z

n
p .

– Compute [c1] = [arT ] and w2,i = [virT ] · gMi for every i ∈ [�].
– Compress ([c1], (w2,1, . . . , w2,�)) into

(K, [c1], (c2,1, . . . , c2,�)) ← Shrink([c1], (w2,1, . . . , w2,�))

where (c2,1, . . . , c2,�) = (δ1 mod 2, . . . , δ� mod 2).
– Set the random coins rE to be r.
– Output ct = (K, [c1], (c2,1, . . . , c2,�)).

D(sk, ct):

– Parse sk as (I, {si}i∈I) and ct as (K, [c1], (c2,1, . . . , c2,�)).
– Compute {Mi}i∈I ← ShrinkDec(sk, ct, I).
– Output {Mi}i∈I .

EquivPK(sk, b, (I, r), I ′):

– If I ′ �⊆ I, then abort the protocol. Else, continue.
– If b = 0, parse sk as (I, {si}i∈I). Else, parse sk as (I,a, {si}i∈I , {vi}i/∈I).
– Set sk′ = (I ′, {si}i∈I′)
– Output sk′

EquivCT(sk, (M, r), {M ′
i}i/∈I):

– Parse sk as (I,a, {si}i∈I , {vi}i/∈I) and r = r ∈ Z
n
p . Let {i1, . . . , iα} = [�] \ I

– Sample uniformly at random a solution r̄ ∈ Z
n
p for

⎛

⎜
⎜
⎜
⎝

a 0
vi1 M ′

i1
...

...
viα

M ′
iα

⎞

⎟
⎟
⎟
⎠

(
r̄T

1

)
=

⎛

⎜
⎜
⎜
⎝

arT

vi1r
T + Mi1

...
viα

rT + Miα

⎞

⎟
⎟
⎟
⎠

.

– Output rE = r̄.
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Analysis. We now proceed to the analysis of the construction above.

Lemma 19. The scheme in Construction 4 is correct.

Correctness for decryption follows from the correctness of the matrix version
of the El Gamal scheme and from Lemma 14.

Lemma 20 (Public-key randomness indistinguishability). The scheme in
Construction 4 is public key randomness indistinguishable given that the MDDH
assumption holds.

Proof. The proof follows from the following sequence of hybrids:

Hybrid H0. This is the experiment IDEALpk between a challenger C and an
adversary A:

– (pk, sk) ← KG(1λ, 1, I ′, r′
G) where pk = (a, {[vi]}i∈[�]) and sk = (I ′, {si}i∈I′).

– Run rG ← EquivPK(sk, 1, (I ′, r′
G), I).

– b ← A(rG).

Hybrid H1. In this hybrid, we replace the vectors vi, when i ∈ I ′ \I, for uniform
ones.

– C chooses a ← Z
n
p and vi ←$Z

n
p for i /∈ I ′ and for i ∈ I ′ \ I. For i ∈ I, it

computes [vi] ← si[a]. For I ⊂ I ′, set rG = {si}i∈I . It sends rG to A.
– b ← A(rG).

Claim. |Pr [1 ← A : A plays H0] − Pr [1 ← A : A plays H1]| ≤ negl[λ].
It is straightforward to build a distinguisher for the MDDH assumption if we

are given an algorithm A that can distinguish both hybrids.
Finally, note that hybrid H1 is exactly the experiment REALpk. Hence, the

distributions are computationally indistinguishability given that the MDDH
assumption holds.

Lemma 21 (Ciphertext randomness indistinguishability). The scheme
in Construction 4 is ciphertext randomness indistinguishable, if 1 + α ≤ n.

Proof. Let M,M ′ ∈ {0, 1}� be any two messages such that Mi = M ′
i , for i ∈ I,

and Mi �= M ′
i otherwise. We prove that, if 1 + α ≤ n, then the equation

⎛

⎜
⎜
⎜
⎝

a 0
vi1 M ′

i1
...

...
viα

M ′
iα

⎞

⎟
⎟
⎟
⎠

(
r̄T

1

)
=

⎛

⎜
⎜
⎜
⎝

arT

v1rT + Mi1
...

viα
rT + Miα

⎞

⎟
⎟
⎟
⎠

(1)

has a solution r̄ ∈ Z
n
p , except with negligible probability.
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First, note that the equation in 1 is equivalent to
⎛

⎜
⎜
⎜
⎝

a
vi1
...

viα

⎞

⎟
⎟
⎟
⎠

(
r̄T
)

=

⎛

⎜
⎜
⎜
⎝

arT

v1rT + Mi1 − M ′
i1

...
viα

rT + Miα
− M ′

iα

⎞

⎟
⎟
⎟
⎠

We now prove that the rank β of the matrix on the left side is maximal, that
is, β = 1+α. Note that, every row of this matrix is uniformly chosen at random.

By a simple counting argument, we have that the rank of the matrix on the
left side is maximal, except with probability 1/|G|. Since |G| ∈ O(2ω(log λ)), then

Pr [β = 1 + α] ≥ 1 − 1
|G| ≥ 1 − negl[λ].

If the rank of the matrix is equal to the rank of the augmented matrix, then
the system of equations has solutions. Hence, we can find a solution r̄ for Eq. 1,
except with negligible probability.

We now prove that, given r̄ satisfying Eq. 1, ct = ct′, where ct =
(K, [c1], (c2,1, . . . , c2,�)) ← E(pk,M, rE) and ct′ = (K, [c′

1], (c
′
2,1, . . . , c

′
2,�)) ←

E(pk,M ′, r′
E) where M ′ is such that M ′

i = Mi for i ∈ I and rE = r, r′
E = r̄.

First, note that by Eq. 1 we have that arT = ar̄T . Hence,
[
arT

]
=
[
ar̄T

] ⇔ [c1] = [c′
1] . (2)

A direct consequence of Eq. 2 is that

siarT + Mi = siar̄T + Mi ⇔ c2i
= c′

2,i

for i ∈ I. It remains to show that c2,i = c′
2,i for i /∈ I. Observe that

virT + Mi = vir̄T + M ′
i

for i /∈ I, from Eq. 1. Hence, c2,i = c′
2,i for i /∈ I.

Finally, the random coins rE used in the encryption algorithm E (in the
real mode) and the random coins r′

E outputted by the equivocation algorithm
EquivCT have exactly the same distribution.

5.3 Packed Encryption with Partial Equivocality from QR

The construction of PEPE from QR is follows the same blueprint as the DDH
construction. We omit the construction in this version.
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6 From PEPE to Constant Ciphertext-Rate NCE

Finally, we present the generic construction for NCE from PEPE, which gener-
alizes the construction of [16]. Then, we analyze the security and efficiency of
the construction.

The following lemma is adapted from [16] and will help us to prove security
for the construction.

Lemma 22 [16]. Let ECC�,�′ = (ECC.Encode,ECC.Decode) be an error-correct-
ing code and let PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.Equiv) be a PEPE
scheme. There exists an algorithm Fid such that

(IR, IS , z′) ← Fid(Ig,y, z)

where IR, IS , Ig are subsets of [�] and y, z, z′ ∈ {0, 1}�. Moreover, the distribu-
tions IDEALsets and REALsets are computationally indistinguishable given that the
underlying PEPE scheme is public key randomness indistinguishable, where

IDEALsets =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(IR, IS , z′) :

Ig ←$ Wg

(pk, sk) ← PEPE.KG(1λ, 1, Ig, rG)
z ←$ {0, 1}�

M ← A(pk)
y ← ECC.Encode(M)

(IR, IS , z′) ← Fid(Ig,y, z)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

and

REALsets =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(IR, IS , z′) :

IR ←$ W
(pk, sk) ← PEPE.KG(1λ, 0, IR, rG)

M ← A(pk)
y ← ECC.Encode(M)

IS ←$ W
z′ ← f(y, IS)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

for any message M , where Wg = {I ⊂ [�] : |I| = 3�/4}, W = {I ⊂ [�] :
|I| = �/8}, IR ⊂ Ig, y = (y1, . . . , y�) and f is a function such that if z′ =
(z′

1, . . . , z
′
�) ← f(y, IS) then

z′
i =

{
yi, if i ∈ IS

z′
i ←$ {0, 1}, otherwise

.

Construction 5. Let ECC�,�′ = (ECC.Encode,ECC.Decode) be a suitable
error-correcting code with constant rate O(1) (Lemma 5) and PEPE =
(PEPE.KG,PEPE.E, PEPE.D,PEPE.EquivPK,PEPE.EquivCT) be a PEPE scheme
with message space {0, 1}�′

. Fid is the algorithm of Lemma 22. We describe the
NCE construction in full detail:
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KeyGen(1λ):

– Choose a random subset IR ⊂ [�] such that |IR| = �/8.
– Compute (pkpepe, skpepe) ← PEPE.KG(1λ, 0, IR, rG,pepe), where rG,pepe are the

random coins.
– Output pk = pkpepe, sk = (skpepe, IR) and rG = (rG,pepe, IR).

Enc(pk,M):

– Parse pk as pkpepe.
– Encode the message by computing y = (y1, . . . , y�) ← ECC.Encode(M).
– Choose a random subset IS ⊂ [�] such that |IS | = �/8. For every i ∈ [�], set

zi =

{
yi, if i ∈ IS

z′
i ←$ {0, 1}, otherwise

for every i ∈ [�] and z = (z1, . . . , z�).
– Compute ct ← PEPE.E(pkpepe, z, rE,pepe) where rE,pepe are random coins
– Output ct and rE = (z, rE,pepe, IS).

Dec(sk, ct):

– Parse sk as (skpepe, IR).
– Compute {zi}i∈IR

← PEPE.D(skpepe, ct).
– For i /∈ IR, set zi ←$ {0, 1}.
– Output M ← ECC.Decode(z) where z = (z1, . . . , z�).

Sim1(1λ):

– Choose a random subset Ig ⊂ [�] such that |Ig| = 3�/4.
– Compute (pkpepe, skpepe) ← PEPE.KG(1λ, 1, Ig, rG,pepe), where rG,pepe are the

random coins.
– Choose a random encoding z ←$ {0, 1}� and encrypt it

ct ← PEPE.E(pkpepe, z, rE,pepe).

– Output pk = pkpepe, ct and st = (Ig, z, rG,pepe, rE,pepe).

Sim2(M, st):

– Parse st = (pkpepe, ct, skpepe, Ig, z, rG,pepe, rE,pepe).
– Encode the message M into y ← ECC.Encode(M).
– Compute (IR, IS , z′) ← Fid(Ig,y, z).
– Set r′

G,pepe ← PEPE.EquivPK(skpepe, 1, (Ig, rG,pepe), IR) to be the randomness
according to IR.

– Let J = {i ∈ [�] \ Ig : zi �= z′
i}. Compute

r′
E,pepe ← PEPE.EquivCT(skpepe, (z, rE,pepe), {zi}i∈J).

– Set rG = (r′
G,pepe, IR) and rE = (z′, r′

E,pepe, IS). Output (rG, rE).
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Analysis. We now proceed to the analysis of the scheme described above.

Theorem 23 (Correctness). Let ECC�,�′ = (ECC.Encode,ECC.Decode) be
an ECC with error-rate 1/2 − δ for some constant δ > 0 (Lemma 5)
and PEPE = (PEPE.KG,PEPE.E, PEPE.D,PEPE.EquivPK,PEPE.EquivCT) be a
PEPE scheme. Then the scheme described in Construction 5 is correct.

Proof. The proof of correctness follows the proof of correctness presented in [16].
Let z = (z1, . . . , z�) be the codeword obtained after running Dec. The key obser-
vation is that |IR ∩ IS | = ξ follows a hypergeometric distribution H(1/8, 1/8, �).
Thus, we can bound the maximum value of ξ, using Lemma 3, except with neg-
ligible probability. On the other hand, all other positions of z are correct with
probability 1/2. Thus, we can estimate the number of errors γ of z:

γ ≤
(

1
2

+ ε

)
(� − ξ) ≤ �

(
1
2

+ ε

)(
1 + ε − 1

16�2

)
≤ �

(
1
2

− δ

)

where the second inequality follows from Lemma 3, and the third one follows
from considering an appropriate value for the constant ε > 0.

Theorem 24 (Simulatability). Let PEPE be a PEPE scheme. Then the
scheme in Construction 5 is simulatable.

The proof of the theorem above is presented in the full version of this paper.

Ciphertext-Rate of the NCE Scheme. Let R = �′/� be the rate of the code used
in Construction 5 and M ∈ {0, 1}�′

. We now analyze the ciphertext-rate of the
scheme for the LWE case when instantiated with the PEPE constructions of
Sect. 5. The analysis for the DDH case follows the same reasoning.

The ciphertext is composed by ct = (c1, (c2,1, . . . , c2,�), z) ∈ Z
n
q × {0, 1}� ×

Zq. Then, the ciphertext-rate is

(n + 1) log q + �

�′ =
(n + 1) log q

�′ + R−1.

The ciphertext-rate is equal to R−1 when �′ tends to infinity. When we use a
code as in Lemma 5, then R = O(1), therefore the whole rate of the NCE scheme
is O(1).
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Abstract. Substantial work on trapdoor functions (TDFs) has led to
many powerful notions and applications. However, despite tremendous
work and progress, all known constructions have prohibitively large pub-
lic keys.

In this work, we introduce new techniques for realizing so-called range-
trapdoor hash functions with short public keys. This notion, introduced
by Döttling et al. [Crypto 2019], allows for encoding a range of indices
into a public key in a way that the public key leaks no information about
the range, yet an associated trapdoor enables recovery of the correspond-
ing input part.

We give constructions of range-trapdoor hash functions, where for a
given range I the public key consists of O(n) group elements, improv-
ing upon O(n|I|) achieved by Döttling et al. Moreover, by designing our
evaluation algorithm in a special way involving Toeplitz matrix mul-
tiplication and by showing how to perform fast-Fourier transforms in
the exponent, we arrive at O(n log n) group operations for evaluation,
improving upon O(n2), required of previous constructions. Our construc-
tions rely on power-DDH assumptions in pairing-free groups.

As applications of our results we obtain

1. The first construction of (rate-1) lossy TDFs with public keys con-
sisting of a linear number of group elements (without pairings).

2. Rate-1 string OT with receiver communication complexity of O(n)
group elements, where n is the sender’s message size, improving upon
O(n2) [Crypto 2019].

3. Two-round private-information retrieval protocols for one-bit
records, where for a server of N bits, the client’s message consists of
O(λ)polylog(N) group elements, improving upon O(λ2)polylog(N).
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4. Semi-compact homomorphic encryption for branching programs: A
construction of homomorphic encryption for branching programs,
with ciphertexts consisting of O(λnd2) group elements, improving
upon O(λ2nd3). Here λ denotes the security parameter, n the input
size and d the depth of the program.

1 Introduction

Trapdoor cryptosystems are at the heart of modern cryptography. What is com-
mon among all these cryptosystems is the notion of a trapdoor key, which allows
a certain computation to be inverted. The exact formulation of what inversion
means specifies the strength of the notion.

For example, trapdoor functions (TDFs) extend the functionality of public-
key encryption (PKE) by requiring the inversion algorithm to recover the entire
input. This extension makes the notion relatively versatile, enabling applications
(from variants of TDFs) including CCA2-secure PKE, selective-opening secu-
rity and designated-verifier non-interactive (NIZK) [PW08,BFOR08,BHY09,
LQR+19], which are currently out of reach of the basic PKE primitives.

Perhaps not surprisingly, trapdoor systems that demand a richer functional-
ity are harder to realize, and in cases this is possible, the resulting realizations
come with poor efficiency. For instance, while for PKE we have a plethora of
instantiations with close to optimal public-key, secret-key and ciphertext sizes,
the situation for TDFs is much different. Concretely, the public keys of all DDH-
based TDFs consist of O(n2) group elements, where n is the input size, lagging
behind their PKE counterparts, which consist of a constant number of group ele-
ments. Although recent works [GH18,GGH19,DGI+19,DGH+19] showed how
to make the image size of TDFs almost the same as the input size, they too are
stuck with the O(n2) group elements overhead for the public key. As we will
see later, this is due to a lack of batching techniques for TDF keys. Our goal,
in this work, is to develop techniques that help us mitigate this issue. We will
do this in a way general enough to be applicable not just to TDFs, but also
to more advanced primitives, such as lossy TDFs [PW08] and trapdoor hash
functions [DGI+19].

Trapdoor Hash (TDH) Functions. Recently, Döttling, Garg, Ishai, Mala-
volta, Mour and Ostrovsky introduced a primitive, called trapdoor hash func-
tions [DGI+19], and showed extensive applications of this notion, including
lossy TDFs, rate-1 oblivious transfer (OT), private information retrieval (PIR)
with low communication complexity and more. In its simplest form, a TDH
scheme comes with a length-compressing hash function Hhk : {0, 1}n → {0, 1}λ

and an evaluation algorithm E. The scheme allows one to generate an evalua-
tion/trapdoor key (iki, tki) for any particular index i ∈ [n] in such a way that
(1) the output of E(iki, x) is a single bit, (2) using tki, one may retrieve the value
of xi from H(hk, x) ∈ {0, 1}λ and E(iki, x) ∈ {0, 1} and (3) iki hides the index i.
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Usefulness of Trapdoor Hash. To show the utility of this notion, let us sketch
a construction of lossy TDFs using this primitive, given by [DGI+19]. Con-
sider a sequence of TDH-evaluation keys ik1, . . . , ikn/2 generated for the range

of indices [1, n/2] and suppose we additionally include a message x∗ $←− {0, 1}n/2

as part of the public key. Assume the input x to the lossy TDF has n/2
bits. To evaluate x, form a bigger string x′ := (x||x∗) ∈ {0, 1}n and return
(H(hk, x′),E(ik1, x′), . . . ,E(ikn/2, x

′)).1 Using the trapdoor keys of ik1, . . . , ikn/2,
we may recover x. Now if we switch the evaluation keys to ikn/2+1, . . . , ikn cor-
responding to the second-half range of indices, then we will statistically lose
information about x. The reason is that n/2 − λ bits of information are lost
about x.

Rate-1 Two-Round Oblivious Transfer (OT): Another important application
of trapdoor hash is in realizing rate-1 two-round OT protocols [DGI+19]. We
say that an OT protocol achieves rate-1 if the ratio |m0|/|ots| asymptotically
approaches one, where ots is the sender’s protocol message on a pair of inputs
(m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) and on the corresponding message otr of the
receiver. As shown by Ishai and Paskin [IP07], rate-1 OT leads to construc-
tions of semi-compact homomorphic encryption for branching programs (where
the ciphertext size grows only with the depth as opposed to the size of the
program) as well as communication-efficient private-information retrieval (PIR)
protocols. All these applications rely on the rate-1 property of the OT in a
crucial way, allowing one to sequentially pass ots as an input to a new OT-
sender’s message and pass the resulting ots to the next sender’s message and
so on; this can continue for a polynomial number of times without having an
exponential-size blowup. Trapdoor hash schemes provide an elegant way for real-
izing rate-1 OT [DGI+19]. Specifically, if the size of each message of the sender
is n, the receiver on an input bit b sends n evaluations key ek1, . . . , ekn corre-
sponding to either indices in [1, n] or [n + 1, . . . , 2n]. The sender then returns
(H(hk,m0||m1)),E(ek1,m0||m1), . . . ,E(ekn,m0||m1). The receiver may then use
his trapdoors to recover the corresponding message.2 We have |ots| = n+poly(λ),
where poly is a fixed function, and hence the protocol has rate-1 (asymptotically).
Döttling et al. [DGI+19] used the above protocol to get the first constructions
of rate-1 OT from DDH, OR and LWE.

Lack of Batching Techniques for Evaluation Keys. In the examples above,
the public key of the lossy TDF or the receiver’s message in the OT proto-
col each consists of O(n) TDH-evaluation keys. Under DDH instantiations of
1 Here for simplicity we assume that E is deterministic and that each trapdoor enables

perfect recovery of the underlying indexed bit. Under the actual definition, the func-
tion E should be randomized, so as to provide the desired privacy guarantees, needed
by OT, etc applications. This issue can be handled by using a fixed randomness for
the sketched construction.

2 Again, we are giving an over-simplified construction, by assuming that decryption
has perfect correctness. Moreover, in the actual construction, the function H should
be randomized, so to provide sender privacy.
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TDH [DGI+19], an evaluation key for any given index has O(n) group elements,
resulting in O(n2) group elements for the whole range, an overhead alluded to
earlier. Moreover, lack of batching methods affects similarly the other applica-
tions: the ciphertext size in the case of homomorphic encryption for branching
programs, and the client’s message size in the case of PIR. While bilinear maps
may open up venues for batching-style tricks [BW10,DGI+19], it is not clear
how to do so without pairings. (See Sect. 1.3 for more details.)

Obtaining Linear-Sized Public Keys Asymptotically. We note that if one’s
goal is solely to obtain TDFs with public-key size linear in input size,
that is easy to do by making the input larger; e.g., TDF(ik, x1|| . . . ||xn) =
TDF(ik, x1)|| · · · ||TDF(ikn, xn). Similarly, one may make the size of the receiver’s
message otr in an OT protocol almost the same as that of the sender’s input, by
making each of the sender’s input consist of (sufficiently) many blocks of mes-
sages and re-using otr across each opposite pair of them. These results are only
for the asymptotic case, falling short in concrete cases. For example, increas-
ing the size of the sender’s input messages (so to make the size of otr close to
that of the sender’s message) translates into larger homomorphically-evaluated
ciphertexts for branching programs.

1.1 Our Results

In this work, we will mitigate the above-mentioned issue, through efficient real-
izations of a new notion of range-trapdoor hash, which we introduce next.

Range-Trapdoor Hash. We introduce a notion called range-trapdoor hash func-
tions, which is an immediate generalization of TDH schemes for index functions.
In particular, under range-trapdoor hash, one would issue evaluation keys ekI

(based on a public parameter) for a range of indices I = [i+1, ..., i+s], in such a
way that given ekI ’s trapdoor key, one can recover x[I] := (xi+1, . . . , xi+s) from
H(hk, x) and E(ekI , x). We require that ekI should hide I (except for |I|) and
that |E(ekI , x)| = |I|. Under Diffie-Hellman type assumptions, we seek realiza-
tions where ekI consists only of O(n) group elements, as opposed to O(n|I|).

Our Construction. We give constructions of range-trapdoor hash schemes, where
on inputs of length n, an encoding key for a given range I ⊆ [n] consists of O(n)
group elements, irrespective of |I|. Our construction relies on the 2n-power DDH
assumption—namely, that the distribution (g, ga, ga2

, . . . , ga2n

) should be pseu-
dorandom, where g is a random generator of the group and a is a uniformly-
random exponent. This notion has been used in some previous works, e.g.,
[BB04,DY05,CNs07,AHI11,BMZ19], but for different purposes.

In addition to obtaining a smaller ekI , we obtain efficiency improvements in
the computation time of the evaluation algorithm. Specifically, while the eval-
uation algorithm of [DGI+19] requires O(n|I|) group operations (among some
other private-key operations), the number of public-key operations in our con-
struction is only O(n log |I|). At a high level, we achieve this by designing our
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range-trapdoor hash scheme in a structured way, so that the evaluation involves
multiplying a Toeplitz matrix (given in the exponent) with an input vector
xT . Since Toeplitz matrices are closely related to circulant matrices which are
amenable to the fast-Fourier transform, we show how to do this matrix multi-
plication in a fast way using (inverse) discrete Fourier transform (IDFT/DFT)
modulo Zp in the exponent.

Applications: Rate-1 Two-Message String OT and More. Our techniques yield
a construction of string OT with rate-1 from the power-DDH assumption with
improved communication and computation. Specifically, in our two round pro-
tocol the communication from receiver to sender consists of a linear (in sender’s
message size) number of group elements. The previous work of [DGI+19] required
a quadratic number of group elements by relying on DDH. Additionally, our
construction also improves the computational cost of the sender—namely, our
construction improves the computational effort of the sender from quadratic to
quasi-linear. This allows us to obtain the following new results:

1. Lossy Trapdoor Functions: We obtain the first construction of lossy trap-
door functions [PW08], where on inputs of size n, the public key consists of
O(n) group elements. All previous (even non-lossy) TDF constructions from
pairing-free groups had public keys with O(n2) group elements.

2. Semi-Compact Homomorphic Encryption for Branching Programs: A con-
struction of public-key homomorphic encryption for branching programs,
with ciphertexts consisting of O(λnd2) group elements, improving upon
O(λ2nd3) [DGI+19], where d denotes the depth of the program. We achieve
this by plugging our rate-1 OT scheme into the homomorphic encryption
construction of [IP07]. See Table 1.

3. Private Information Retrieval : For a database of N bits, we get a two-message
PIR protocol with total communication complexity that grows only polylog-
arithmically with the database size, and with a client’s message consisting
of O(λ)polylog(N) group elements, improving upon O(λ2)polylog(N), given
by [DGI+19]. See Table 2.

Table 1. Bit complexity for branching programs. The size of public keys, secret keys
and homomorphically-evaluated ciphertexts in both schemes are the same. Here p =
Θ(2λ) is the group order, n is the input size of the program and d is the depth of the
branching program.

Work Assumption Ciphertext size

Ours O(λd)-power DDH λnd2 log p

[DGI+19] DDH λ2nd3 log p



Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 93

Table 2. Bit complexity: p = Θ(2λ) is the order of the group and n is the bit size of
each of the sender’s message (in the case of OT) and N is the database size (in the
case of PIR).

Work Assumption Primitive Receiver message Sender message

Ours 2n-power DDH OT Θ(n log p) n + log p

[DGI+19] DDH OT Θ(n2 log p) n + log p

Ours Power-DDH PIR Θ(λ2)polylog(N) log(N) log p

[DGI+19] DDH PIR Θ(λ3)polylog(N) log(N) log p

1.2 Related Work and Open Problems

As mentioned above, Döttling et al. [DGI+19] introduced the notion of trapdoor
hash, and used it to build several new primitives. Among others, they obtained
the first DDH-based and QR-based constructions of PIR for one-bit records
with a total communication complexity that grows polylogarithmically with the
database size; i.e., it is p(λ)polylog(N)) for a fixed function p, where N is the
database size and λ is the security parameter. Previously, such protocols were
only known under DCR, LWE and Φ-hiding assumptions [CMS99,Cha04,Lip05,
OS07].

A recent result by Brakerski, Koppula and Mour [BKM20] shows how to
build correlation-intractable hash functions for constant-degree functions from
trapdoor hash schemes. This result is used in conjunction with appropriate com-
mitment schemes (which can in turn be built from LPN) in order to instantiate
the Fiat-Shamir paradigm for obtaining NIZK for all NP.

The notion of trapdoor hash builds on tools that were developed in the con-
text of trapdoor function constructions [GH18,GGH19], as well as those devel-
oped in the context of identity-based encryption (IBE) [DG17b,DG17a,BLSV18,
DGHM18].

Variants of TDFs are typically used as CCA-enhancing tools [PW08,RS09,
GH18,GGH19]. Koppula and Waters [KW19] showed that for CCA applica-
tions, full randomness recovery, a feature provided by TDF-based tools, is not
necessary. They gave a generic transformation from CPA to CCA for PKE
and attribute-based encryption (ABE) using hinting pseudorandom generators
(PRGs). The notion of hinting PRGs was later used in subsequent works in
contexts such as designated-verifier NIZK [LQR+19] and CCA key-dependent-
message (KDM) security [KMT19]. Boyen and Waters show that in the bilin-
ear setting one may shorten the public key of lossy-TDF construction from a
quadratic number of group elements to linear [BW10].

Concurrent Work. In independent and concurrent work, Goyal, Vusirikala and
Waters [GVW19] give constructions of primitives such as hinting PRGs [KW19]
and one-way function with encryption (OWFE) [GH18] with short public-
parameter and ciphertext sizes. In terms of Diffie-Hellman related assumptions,
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they give (1) a construction of hinting PRGs from power-DDH-related assump-
tions (without pairings) with public parameters of O(n) group elements and (2)
a construction of OWFE from pairing-based power-DDH-related assumptions
with public parameters of O(n) group elements and ciphertexts of one group
element. Specifically, their result (2) also leads to a construction of TDFs (and
deterministic encryption) with public keys of O(n) group elements and images of
O(n) bits. In contrast, in our work we do not use pairings, but focus primitives
such as lossy TDFs and range-trapdoor hash schemes, which have applications
in constructing OT and PIR.

Open Problems. The main open problem is to achieve the same results from
DDH, LWE or QR. Also, it would be interesting to see if one can strengthen
DDH (along the generalization of power-DDH from plain-DDH) which would
allow one to build trapdoor-hash schemes beyond constant-degree polynomials
(even without the range-compactness property).

1.3 Technical Overview

It will be instructive to give an overview of our results in the context of lossy
TDFs and then to adapt them to the trapdoor-hash setting. Let us review an
optimized version of the DDH-based lossy TDF of [PW08], given by [FGK+10].
Recall that in a group with a generator g, if we have an encoding [M] = gM of an
invertible matrix M of exponents, we may encode any column vector X of bits
by computing M · X in the exponent. One may invert using M−1. Lossiness is
argued by making the matrix M rank one. The downside of this scheme is that a
public key and an image point consist of, respectively, n2 and n group elements,
which is rather large. Recent works [GH18,GGH19], which in turn inspired the
notion of TDH, showed how to make the image size linear in input size, but they
still leave us with public keys of O(n2) group elements.

Parallels from Ideal Lattices? To make the public keys smaller, one may be
tempted to draw inspirations from ideal lattices [LPR10,LPR13], and espe-
cially the way ring-LWE is used to shorten public keys. Sample a vector
v := (g1, . . . , gn) and expand v into a “circulant-like” matrix

M :=

⎛
⎜⎜⎜⎝

g1 g2 . . . gn−1 gn

g2 g3 . . . gn g1
...

...
...

...
...

gn g1 . . . gn−2 gn−1

⎞
⎟⎟⎟⎠, (1)

and use M as the public key of the TDF given above. The problem with this
approach is that we do not know how to prove one-wayness. Even if there is a
clever way to prove one-wayness, this approach does not appear to scale to give
us more advanced schemes such as lossy TDFs, (range) trapdoor hash schemes,
or TDFs with linear-sized outputs.
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Circulant Structure Using Power DDH. We show how to work out the above
intuition by relying on the power DDH assumption. Specifically, we give a way
of expanding two vectors (v ∈ G

n,w ∈ G
2n−1) into an (n + 1) × n matrix, and

two indistinguishable distributions over (v,w), where under one distribution we
can invert, while under the other, we will lose information.

Given two vectors v = (v1, . . . , vn) ∈ G
n and w = (w1, . . . , w2n−1) ∈ G

2n−1,
we expand them into an (n + 1) × n matrix M = Expand(v,w) as follows:

M :=

⎛
⎜⎜⎜⎝

m1

m2

...
mn+1

⎞
⎟⎟⎟⎠ :=

⎛
⎜⎜⎜⎜⎜⎝

v1 v2 . . . vn

wn wn+1 . . . w2n−1

wn−1 wn . . . w2n−2

...
... . . .

...
w1 w2 . . . wn

⎞
⎟⎟⎟⎟⎟⎠

∈ G
(n+1)×n (2)

To evaluate an input x ∈ {0, 1}n using M, return (x · m1, . . . , x · mn+1), where
x · v :=

∏n
i=1 vxi

i . Define the lossy distribution lossy as

lossy v := (gα, gα2
, . . . , gαn

)

w := (grα, grα2
, . . . , grα2n−1

).

If (v,w) $←− lossy, then M := Expand(v,w) will be of rank one, statistically
losing information about x. We set the real (i.e., injective) distribution by putting
a bump g on the nth element of w:

real v := (gα, gα2
, . . . , gαn

) (3)

w := (grα, grα2
, . . . , grαn−1

, ggrαn

, grαn+1
, . . . , grα2n−1

). (4)

To see how to invert in injective mode, notice that the matrix M := Expand(v,w)
is

M :=

⎛
⎜⎜⎜⎝

m1

m2

...
mn+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

gα gα2
. . . gαn−1

gαn

ggrαn

grαn+1
. . . grα2n−2

grα2n−1

grαn−1
ggrαn

. . . grα2n−3
grα2n−2

...
...

...
...

...
grα2

grα3
. . . ggrαn

grαn+1

grα grα2
. . . grαn−1

ggrαn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ G
(n+1)×n, (5)

where the bump g propagates as indicated. Using the trapdoor values α and r,
we show how to recover the ith bit of x from the image u := (gh, g1, . . . , gn) :=
(x · m1, . . . , x · mn+1). To do this, notice that the bump that affects the ith bit
of x occurs in row i + 1 of matrix M, which is off the first row by an exponent
rαn−i (excluding the bump). Thus, we may compute gxi ∈ {g0, g1} as

gxi =
gi

grαn−i

h

∈ {g0, g1}. (6)
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Finally, the indistinguishability between lossy and real follows from (2n − 1)-
power DDH, which implies that the distribution ((gα, gα2

, . . . , gα2n−1
), (grα, grα2

,

. . . , grα2n−1
)) is pseudorandom: the pseudorandom of the first vector comes from

2n − 1-power DDH and the pseudorandomness of the second one is implied by
the fact that t-power (for t ≥ 3) implies DDH (Lemma 1).

Source of Computational Efficiency. Excluding the first row of matrix M, the
rest of the matrix is Toeplitz-like, which, if given in the clear as opposed to
in the exponent, can be multiplied with any given vector in time O(n log n)
using discrete FFT techniques. We observe that this computation may in fact
be carried out in the exponent, enabling a relatively fast way of O(n log n) group
exponentiations for evaluating an input. See Sect. 4 for more details.

Making the Image Shorter. The public key of the above lossy TDF has O(n)
group elements, a goal we had set before. The image, however, is quite large,
consisting of n + 1 group elements. We now show how to use image-shrinking
techniques of Garg, Gay and Hajiabadi [GGH19] (later improved by Döttling et
al. [DGI+19]) in order to make the image size linear in input size. Looking ahead,
this will allow us to make |E(ekI , x)| = |I|, where ekI is the TDH-evaluation key
for a range I. For concreteness, let us focus on how to recover the first bit x1 from
a succinct output. If the corresponding (long) image of x is u := (gh, g1, . . . , gn),
then for recovering x1 we have to look at gh and g1: we either have g1 = grαn−1

h ,
in which case xn = 0, or g1 = ggrαn−1

h , in which case xn = 1 (or informally, xn

has hit the bump). Now instead of outputting one whole group element g1, we
output a single bit, corresponding to the output of a hint function Φk : G →
{0, 1} on g1. This function guarantees that for any g∗ ∈ G, the probability that
Φk(g∗) = Φk(g∗g) (a.k.a., the hung probability) is very small, where k is chosen
at random (and included in the public key). The inverter will then match Φk(g1),
comes as part of the image, against Φk(gr

h) and Φk(gr
hg), hence decoding x1.

Garg, Gay and Hajiabadi [GGH19] gave a function Φ which outputs a constant
c number of bits (instead of a single bit) with hung probability being 1

2c . Later,
Döttling et al. [DGI+19] substantially improved this by making Φ output a single
bit with hung probability being at most 1

nc , for any desired constant c. They
achieved this by using a PRF-based distance-function technique from [BGI16].
Finally, since the inversion algorithm may fail (i.e., be hung) for some indices,
we pre-process the TDF input using erasure-correcting codes, making the task
of decoding easier.

Adaptation to the Trapdoor Hash Setting. The lossy TDF sketched above (with-
out erasure-correcting codes) lends itself naturally into the range TDH setting.
Recall that for range trapdoor hash, we encode an index range I = [s + 1, s + t]
into an encoding key ek in such a way that (1) ek only reveals |I| and (2) Using
the associated trapdoors, one can recover each bit of x[I] with high probability
from H(hk, x) and E(ek, x) ∈ {0, 1}|I|. Moreover, ek should only contain O(n)
group elements (as opposed to O(n|I|)).
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We achieve range-trapdoor hash by carefully placing the bump in a coor-
dinate which enables recovery of exactly x[I], but nothing more. First, let
hk := v := (gα, gα2

, . . . , gαn

) and define H(hk, x) = x·v. Assuming I = [s+1, s+t]
and noting that |I| = t, set ek := (w, t), where

w := (grα, grα2
, . . . , grαs+t−1

, ggrαs+t

, grαs+t+1
, . . . , grα2n−1

), (7)

obtained from hk by raising every element to the power of r and putting the
bump g in the (s+ t)’th coordinate. Now to evaluate x on ek := (w, t+1), return

(x · w[t, n + t − 1], x · w[t − 1, n + t − 2], . . . , x · w[1, n]) ∈ G
n,

where w[i, j] denotes the elements of w which are in the range {i, i + 1, . . . , j}.
Given α and r we may recover all the bits x[s, s + t]. The only remaining thing
is that the output of E consists of t group elements, as opposed to t bits. We
make it consist of t bits by using image-shrinking techniques described above.

2 Preliminaries

Notation. We use λ for the security parameter. We use , to denote computa-
tional indistinguishability and use ≡ to denote two distributions are identical.
For a distribution S we use x

$←− S to mean x is sampled according to S and
use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a distribu-

tion. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+ s] := {i, i+1, . . . , i+ s}. For
a vector v = (v1, . . . , vn) we define v[i, i + s] := (vi, vi+1, . . . , vi+s).

2.1 Standard Definitions and Lemmas

Definition 1 (Trapdoor functions (TDFs)). Let n = n(λ) be a polynomial.
A family of trapdoor functions TDF with domain {0, 1}n consists of three PPT
algorithms TDF.KG, TDF.F and TDF.F−1 with the following syntax and security
properties.

– TDF.KG(1λ): Takes 1λ as input, and outputs a pair (ik, tk) of index/trapdoor
keys.

– TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and
deterministically outputs an image element u.

– TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs
a value x ∈ {0, 1}n ∪ {⊥}.
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We require the following properties.

– Correctness: Pr[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) �= x] = negl(λ),

where the probability is taken over (ik, tk) $←− TDF.KG(1λ).
– One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where

(ik, tk) $←− TDF.KG(1λ), x $←− {0, 1}n and u := TDF.F(ik, x).

Definition 2 (Lossy TDFs [PW08,PW11]). An (n, k)-lossy TDF ((n, k)-
LTDF) is given by four PPT algorithms TDF.KG, TDF.KGls, TDF.F, TDF.F−1,
where TDF.KGls(1λ) only outputs a single key (as opposed to a pair of keys), and
where the following properties hold:

– Correctness in real mode. The TDF (TDF.KG,TDF.F,TDF.F−1) satisfies
correctness in the sense of Definition 1.

– k-Lossiness. For all but negligible probability over the choice of ikls
$←−

TDF.KGls(1λ), we have |TDF.F(ikls, {0, 1}n)| ≤ 2k, where we use
TDF.F(ikls, {0, 1}n) to denote the set of all images of TDF.F(ikls, ·).

– Indistinguishability of real and lossy modes. We have ik, ikls, where
(ik, ∗) $←− TDF.KG(1λ) and ikls

$←− TDF.KGls(1λ).

Lossiness Rate. In the definition above, we refer to the fraction 1 − k/n as
the lossiness rate, describing the fraction of the bits lost. Ideally, we want this
fraction to be as close to 1 as possible, e.g., 1 − o(1).

Expansion Rate. In the definition above, we refer to n/|u| as the expansion rate,
and say the scheme has rate 1 if this fraction approaches one asymptotically.

2.2 Computational Assumptions

We review the power DDH assumption, used in our constructions. This notion
is a variant of the t-Diffie-Hellman Inversion (t-DHI) problem [BB04]: given
(g, gα, . . . , gαt

) the adversary should distinguish g1/α from random. Under our
variant, we require the whole distribution (g1/α, g, gα, . . . , gαt

) to be pseudoran-
dom. We present this version, called power-DDH [CNs07], below.

Definition 3 (t-power DDH assumption [CNs07,AHI11]). Let G be a group-
generator scheme, which on input 1λ outputs (G, p, g), where G is the description
of a group, p is the order of the group which is always a prime number and g
is a generator for the group. Let t := t(λ). We say that G is t-DDH-hard if

the distribution (g, gα, . . . , gαt

) is pseudorandom, where (G, p, g) $←− G(1λ) and

α
$←− Zp.

Boneh and Boyen [BB04] show that t-DHI implies the so-called (t + 1)-
generalized Diffie-Hellman ((t + 1)-generalized DH): given (g, ga1 , . . . , gat) and
an oracle that for any given proper subset S ⊂ [t] returns gΠi∈Sai , the adversary
should distinguish ga1...at from random. The following lemma gives an adapta-
tion of this lemma to the power-DDH setting for a very simple case: namely that
power-DDH hadrness implies DDH hardness.
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Lemma 1. Let G be t-power DDH hard. Then (g1, gα
1 , . . . , gαt

1 ) is pseudoran-

dom, where (G, p, g) $←− G(1λ), g1
$←− G and α

$←− Zp.3 Also, for any t ≥ 3, if a
group is t-power DDH hard, it is also DDH-hard.

Proof. The first part of the lemma follows straightforwardly using random self
reducibility. The second part follows immediately from techniques of [BB04], but
we give the proof for completeness. Notice that if a group is t + 1-power DDH
hard, then it is also t-power DDH hard. Thus, it suffices to show that 3-power
DDH hardness implies DDH hardness. Suppose for a group G there is a DDH
adversary A that can distinguish (g, ga, gb, gab) from random. We want to use
A to distinguish (g, gα, gα2

, gα3
) from random, hence breaking 3-power DDH

hardness. The problem is that A is only guaranteed to work as long as the two
exponents a and b are chosen uniformly at random—while in the 3-power DDH
case the two exponents α and α2 are correlated.

To fix the above problem, we use the random-self reducibility of DDH [NR97].

That is, letting (g, g1, g2, g3) be the challenge tuple, we sample r1, r2
$←− Zp and

call A on (g, gr1
1 , gr2

2 , gr1r2
3 ).

It is easy to see that the above transformation converts a 3-power DDH tuple
into a random DDH tuple, and converts a random tuple into another random
tuple. ��

2.3 Standard Lemmas

Lemma 2 (Chernoff inequality). Let X be binomially distributed with
parameters n ∈ N and p ∈ [0, 1]. Assuming p′ > p:

Pr[X > 2p′n] < e−p′n/3.

In some of our proofs, we need to use a version of Chernoff bounds involving
Bernoulli variables which are not necessarily independent, but where each of
them has a bounded probability of success, conditioned on any fixed sequence of
outcomes of the others. We give such a version of the Chernoff inequality below,
and prove it by relying on Lemma 2.

Lemma 3 (Chernoff inequality with bounded dependence). Let
X1, . . . , Xn be Bernoulli variables (not necessarily independent), where for all
i, and for all values b1, . . . , bi−1, bi+1, . . . , bn:

Pr[Xi = 1 | X1 = b1, . . . , Xi−1 = bi−1,Xi+1 = bi+1, . . . , Xn = bn] ≤ p. (8)

Assuming p′ > p:
Pr[

∑
i∈[n]

Xi > 2p′n] < e−p′n/3.

3 Notice that the only difference between this version and the standard t-power DDH
assumption is that the element g1 is now also chosen uniformly at random—as
opposed to it being g, the fixed group generator.
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Proof. We will define n random variables X ′
1, . . . , X

′
n and also n independent

i.i.d. boolean random variables Y1, . . . , Yn, where Pr[Y1] = p, and where

1. (X ′
1, . . . , X

′
n) is identically distributed as (X1, . . . , Xn); and

2. for all i ∈ [n], X ′
i ≤ Yi.

Thus

Pr
(X1,...,Xn)

[
∑

i∈[n]

Xi > 2p′n] = Pr
(X′

1,...,X′
n)

[
∑

i∈[n]

X ′
i > 2p′n] ≤ Pr[

∑

i∈[n]

Yi > 2p′n] < e−p′n/3,

where the last inequality comes from Lemma 2.
To define Yi, let Ui for i ∈ [n] be i.i.d. real-valued random variables, each

uniformly distributed over [0, 1]. For i ∈ [n] let Yi be the Bernouli random
variable where Yi = 1 iff Ui ≤ p.

For b1, . . . , bi−1 ∈ {0, 1} define Z = Pr[X1] and

Z(b1, . . . , bi−1) = Pr[Xi = 1|X1 = b1, . . . , Xi−1 = bi−1].

We may now represent the joint distribution (X1, . . . , Xn) as

(X ′
1, . . . , X

′
n) := (U1 ≤ Z, U2 ≤ Z(X1), . . . , Un ≤ Z(X1, . . . , Xn−1)), (9)

where A ≤ B is the Bernoulli random variable which is one if and only if A ≤ B.
We now show that whenever Ui ≤ Z(X1, . . . , Xi−1), we have Yi = 1, as

desired. To see this, recall that by Eq. 8 Z(X1, . . . , Xi−1) ≤ p. Thus, whenever
Ui ≤ Z(X1, . . . , Xi−1), we have Ui ≤ p, which means Yi = 1. The proof is now
complete. ��

2.4 Error Correcting Codes

Definition 4 ((n,m, s)2-Codes). We recall the notion of (n,m, s)2 erasure-
correcting codes. Such a code is given by efficiently computable functions
(Encode,Decode), where Encode : {0, 1}n → {0, 1}m, and where

1. Minimum distance. For any two distinct x1, x2 ∈ {0, 1}n, Hdst(Encode(x1),
Encode(x2)) ≥ s, where Hdst denotes the Hamming distance.

2. Erasure correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any
string z′ ∈ {0, 1,⊥}m, which has at most s − 1 ⊥ symbols, and whose all
non-⊥ symbols agree with z, we have Decode(z′) = x.

We are interested in rate-1 codes (that is, n/m approaches 1 asymptotically)
with fast encoding and decoding algorithms. If we are willing to settle for a
constant rate (as opposed to rate 1), there are binary concatenated codes which
are linear time for both encoding and decoding; see, e.g., [GI05], Theorem 6. For
rate-1 binary codes, we use the following code from [CDD+16].

Theorem 1 ([CDD+16], Theorem 6). Fix a finite field F of constant size.
There exists a constant υ > 0 and a family of F-linear codes C = {Cs}s with
codeword length O(s2), rate 1 − 1

sυ and minimum distance at least s. Moreover,
C admits a linear-time computable encoding algorithm Encode.
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3 Lossy TDFs with Short Public Keys from Power DDH

As a warm-up to our range-trapdoor hash construction, we first give a construc-
tion of rate-1 lossy TDFs from the O(n)-power DDH assumption, wherein a
public key has only O(n) group elements.

For our construction, we need a function Φ : G → {0, 1} which has the prop-
erty that for any group element h, Φ(h) �= Φ(hg) with high probability. The work
of Boyle, Gilboa and Ishai [BGI16] gives such a function. Below we review an
adaptation of this function to the binary output space, as done by [DGI+19]. In
what follows, we use LSB(i) to denote the least significant bit of i.

Distance Function DistG,g(h, δ,M, f) [BGI16]. Given a group G with a generator
g, a group element h, a value 0 < δ < 1, integer M ≥ 1 and a function f : G →
{0, 1}log(2M/δ), we define a function Dist as follows:

1. Let T := [2M loge(2/δ)]/δ and set i := 0.
2. While i ≤ T :

(a) if f(hgi) = 0log(2M/δ), then output LSB(i), otherwise set i = i + 1.
3. Output LSB(i).

T -Close/Far Group Elements. For an integer T , we say two group elements
g1 and g2 are T -close with respect to g if g2 ∈ {g1, g1g, . . . , g1g

T } or g1 ∈
{g2, g2g, . . . , g2g

T }. We say g1 and g2 are at least (T + 1)-far with respect to g
if g1 and g2 are not T -close with respect to g. When g is clear from the context,
we simply say g1 and g2 are T -far/T -close.

The following lemma is from [BGI16], giving a distance function, defined
based on a randomly chosen function f , which serves a hint bit in our construc-
tion (i.e., the function Φ described above). We will later replace such a random
function with a PRF.

Lemma 4 (Proposition 3.2 in [BGI16]). Let G be a group of prime order p,
g ∈ G, M ∈ N, δ > 0 and assume [2M loge (2/δ)]/δ < p. Let RF be the set of all
functions f : G → {0, 1}�log(2M/δ)�. Then for any integer x ≤ M and h ∈ G

Pr
f

$←−RF

[DistG,g(h, δ,M, f) = LSB(x) − DistG,g(hgx, δ,M, f)] ≥ 1 − δ. (10)

Moreover, for any set of group elements h1, . . . , hm which are mutually at least
(T + 2)-far, the events Success1, . . . ,Successm are independent, where Successi
is the event that DistG,g(hi, δ,M, f) = 1 − DistG,g(hig, δ,M, f).

Proof. The first part of the lemma was proved in [BGI16]. The second part
follows because (1) f is chosen at random and (2) for any group element h, the
outputs of DistG,g(h, δ,M, f) and DistG,g(hg, δ,M, f) only depend on the outputs
of f on {h, hg, hg2, . . . , hgT+1}. ��

Notation. For x ∈ {0, 1}n and v := (g1, . . . , gn) ∈ G
n we define x ·v :=

∏n
i=1 gxi

i .
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Construction 2 (Doubly-Linear lossy TDF). Let G be a group scheme and
let (Encode,Decode) for Encode : {0, 1}n → {0, 1}m be an ECC code. Let � :=
log(2/δ) and let PRF : G → {0, 1}� be a PRF with key space {0, 1}λ. We will
instantiate the value of δ later.

– TDF.KG(1λ):

1. Sample (G, p, g) $←− G(1λ). Sample α, r
$←− Zp and set

v := (gα, gα2
, . . . , gαm

) (11)

w := (grα, grα2
, . . . , grαm−1

, ggrαm

, grαm+1
, . . . , grα2m−1

). (12)

2. Sample a key K
$←− {0, 1}λ for PRF.

3. Set ik := (K, g, v,w) and tk := (K, g, α, r). Return (ik, tk).
– TDF.KGls(1λ): Return ikls := (g, v,w′), where g, v are as above, and

w′ := (grα, grα2
, . . . , grα2m−1

). (13)

– TDF.F(ik, x ∈ {0, 1}n): Parse ik := (g, v,w) and z := Encode(x). For 1 ≤ i ≤
m
1. Let w′

i = w[m + 1 − i, 2m − i].
2. Let gi = z · w′

i.
3. Let bi := DistG,g(gi, δ, 1,PRFK).

Let gc := z · v and return

u := (gc, b1, . . . , bm). (14)

– TDF.F−1(tk, u): Parse u := (gc, b1, . . . , bm). Recover z bit-by-bit as follows.
For i ∈ [m]:
1. Let gi,0 = grαm−i

c and gi,1 = gi,0g.
2. If

(a) DistG,g(gi,0, δ, 1,PRFK) = DistG,g(gi,1, δ, 1,PRFK), then set zi = ⊥;
(b) Else, let b the bit for which DistG,g(gi,b, δ, 1,PRFK) = bi, and set

zi = b.
Return Decode(z).

We now prove all the required properties of the scheme.

Lemma 5 (Mode indistinguishability). We have ik, ikls, where ik
$←−

TDF.KG(1λ) and ikls
$←− TDF.KGls.

Proof. Follows immediately from (2m − 1)-power DDH (Lemma 1). ��
Lemma 6 (Lossiness). Assuming p is the oder of the group, for any ikls ∈
TDF.KGls(1λ),

|TDF.F(ikls, {0, 1}n)| ≤ p.
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Proof. Parse ikls := (g, v,w′), where v is sampled as in Eq. 11 and w′ is sam-
pled as in Eq. 13. We claim the following: for any x′, x′ ∈ {0, 1}n, letting z :=
Encode(x) and z′ := Encode(x′), if z·v = z′·v, then TDF.F(ikls, x) = TDF.F(ikls, x).
Assuming the claim holds, the lemma follows immediately. This is because, under
the lossy key ikls, once the first component gc of the image u := (gc, . . . ) is deter-
mined, the rest of the output is uniquely determined. To prove the claim, suppose
gc = z·v = z′ ·v. Notice that the group element gi computed in Line 2 of TDF.F is
equal to the fixed element grαm−i

c , irrespective of whether the underlying input
is x or x′. This follows from the way w′ is formed (Eq. 13). The proof is now
complete. ��
Lemma 7 (Correctness). Let (Encode,Decode) be an (n,m, s)2 code, where
n = λ+ω(log λ). Assuming δ ≤ s−1

2m and T := [2 loge(2/δ)]/δ = poly(λ), for any
input x:

β(λ) := Pr
(ik,tk)

[TDF.F−1(tk,TDF.F(ik, x)) �= x] ≤ 1

e
s−1
6

+ negl(λ), (15)

where the probability is taken over (ik, tk) $←− TDF.KG(1λ). In particular, by
setting n = λ + ω(log λ), s ∈ ω(log λ) and δ ≤ s−1

2m , we will have a negligible
inversion error.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). Consider a variant of Con-
struction 2, in which we replace the PRF PRFK with a truly random function
f : G

$←− {0, 1}�. (Recall that � = log(2/δ).) That is, in this variant, calls of
the form DistG,g(gi, δ, 1,K) are replaced with DistG,g(gi, δ, 1, f). Let β′ be the
probability that TDF.F−1(tk,TDF.F(ik, x)) �= x in this experiment. We will show
β′ ≤ 1

e
s−1
6

+ negl(λ). By PRF security we have β ≤ β′ + negl(λ), and thus Eq. 15

will follow. The reason that we can use PRF security here (despite the fact that
K is given in the clear in ik) is that the procedure Dist may efficiently be com-
puted via only blackbox access to PRFK (resp., f alternatively) and that we
evaluate PRFK on inputs generated independently of K.

For an index i ∈ [m], let gi = z ·w′
i be the group element computed in Line 2

of TDF.F, and let gi,0 = grαm−i

c and gi,1 = gi,0g be the two corresponding group
elements computed during inversion. Notice that gi = gi,zi

.
For i ∈ [m], let the indicator variable

Faili = 1 ⇔ DistG,g(gi,0, δ, 1, f) = DistG,g(gi,1, δ, 1, f).

Notice that Faili = 1 iff we fail to recover zi. For all i, by setting M = 1 in
Lemma 4, Pr[Faili] < δ, and hence Pr[Faili] < p′, where p′ = s−1

2m .
Let Fail =

∑
i∈[m] Faili. Inversion fails if Fail > s−1. We may now be tempted

to use Lemma 2 to bound the probability that Fail > s − 1. The problem is that
the events Faili’s may not be independent. Thus, we define an event Bad which
captures all the dependencies, and then we will argue that conditioned on Bad,
the events {Faili}i∈[m] are independent.
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– Bad: there are two distinct indices i, j ∈ [m] such that gi,0 and gj,0 are (T +1)-
close, where T := [2 loge(2/δ)]/δ.

By Lemma 4 we know that conditioned on Bad, the events Faili’s are inde-
pendent. Below we will show Pr[Bad] = negl(λ), but assuming this for now:

Pr[Fail > s − 1] ≤ Pr[Bad] + Pr[Fail > 2p′m | Bad] <∗ negl(λ) +
1

ep′m/3
= negl(λ) +

1

e
s−1
6

,

where the inequality marked with * follows from Lemma 2, noting that condi-
tioned on Bad, the events {Faili}i∈[m] are independent.

We are now left to prove Pr[Bad] = negl(λ). Recall that (g1,0, . . . , gm,0) =
(grαm−1

c , . . . , grα0

c ). Notice that gc �= 1 except with negligible probability, and
thus gr

c is statistically close to a uniformly random group element. By Lemma 1

(g1,0, . . . , gm,0) = (grαm−1

c , . . . , grα0

c ), (g′
1, . . . , g

′
m),

where g′
i’s are random group elements. When replacing {gi,0}i∈[m] with

{g′
i}i∈[m] the probability of the event Bad becomes negligible. (This is because

T = poly(λ)). Thus, the event Bad with gi,0’s should also be negligible. ��

3.1 Running Time of Our Lossy TDFs

We count the number of public-key operations (i.e., group operations) involved
in the computation of TDF.F. (The other operations involved in TDF.F are either
private-key, i.e., PRF evaluations, or information theoretic; i.e., error correcting
codes).4 For TDF.F, in Line 2, one may compute the group elements gi = z · w′

i

one at a time, by using m group multiplications for each of them, hence O(m2)
group multiplications in total. We observe that the computations of all gi’s
together may be thought of as multiplying a Toeplitz matrix gM ∈ G

m×m, given
in the exponent, with a given vector zT of bits. It is known that one can compute
M × zT (mod p) in O(m log m) time using (inverse) discrete Fourier transform
(IDFT/DFT) modulo p. In Sect. 4 we show how to carry out this computation
in the exponent, at the cost of O(m log m) group exponentiations.

Comparison with the Trivial Approach. As mentioned above, the trivial com-
putation takes O(m2) group multiplications. Our FFT-based approach takes
O(m log m) group exponentiations, which translate into O(mλ log m) multiplica-
tions, assuming |G| = 2λ. Thus, we obtain improvements when λ log m ∈ ω(m).
We also note that the reason that the trivial approach takes O(m log m) multi-
plications (as opposed to exponentiations) is that we multiply with a bit vector,
translating into multiplications. In applications where the entries of the given
vector are integers modulo p, the trivial approach will take O(m2) exponenti-
ations, while our FFT-based approach still takes O(m log m) exponentiations.
This observation may be useful in future work.
4 We only focus on TDF.F, because TDF.F−1 may be done using n group exponentia-

tions, which seems hard to improve.
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4 Fast Fourier Transform in the Exponent

In this section we show how to perform FFT in the exponent in order to have a
fast algorithm for multiplying a circulant or a Toeplitz matrix, given in the expo-
nent, with a vector of integers, with the result being computed in the exponent.
We begin with some basic background.

For a vector u of integers and a group element g we use gu to mean element-
wise exponentiation.

Lemma 8 (Primitive nth root of unity mod p). We say w ∈ Zp is a
primitive nth root of unity mod p if wn ≡ 1 (mod p) and for all i ∈ [n − 1],
wi �≡ 1 (mod p). If p is prime, then Zp has a primitive nth root of unity if and
only if p ≡ 1 (mod n).

(Inverse) Discrete Fourier Modulo Zp. Let w ∈ Zp be a primitive nth
root of unity modulo p (Lemma 8). The discrete fourier transform (DFT) of
(y0, . . . , yn−1) ∈ Z

n
p , denoted DFT(y0, . . . , yn−1), is (d0, . . . , dn−1) ∈ Z

n
p , where

for k ∈ {0} ∪ [n − 1]:

dk =
n−1∑
j=0

yjw
−jk (mod p). (16)

The inverse discrete Fourier transform (IDFT) inverts the above process. For
(d0, . . . , dn−1) ∈ Z

n
p , IDFT(d0, . . . , dn−1) is defined to be (y0, . . . , yn−1), where

for k ∈ {0} ∪ [n − 1]

yk = n−1
n−1∑
j=0

djw
jk (mod p). (17)

For all (y0, . . . , yn−1) ∈ Z
n
p , IDFT(DFT(y0, . . . , yn−1)) = (y0, . . . , yn−1).

A major step in performing fast circulant matrix multiplication involves com-
puting DFT and IDFT in a fast way.

Computing (I)DFT in the Exponent. For y := (y0, . . . , yn−1) ∈ Z
n
p , we would

like to compute DFT(y) in the exponent; i.e., to compute gDFT(Y) from gy. Since
DFT(y) is a linear function in the entries of y and w is a fixed integer, we may
compute each component of DFT(y) using n exponentiations, resulting in a total
of O(n2) exponentiations. There is, however, a faster, recursive way of doing this
using O(n log n) exponentiations.

Let f = w−1, and note that f is also a primitive nth root of unity. Computing
DFT(y) amounts to evaluating a degree n − 1 polynomial p(x) =

∑n−1
j=0 yjx

j

at (p(1), p(f), . . . , p(fn−1)). We may now evaluate these n invocations in time
O(n log n) using divide-and-conquer. Specifically, letting n = 2t, we can find two
degree t − 1 = n/2 − 1 polynomials peven and podd such that

(a) p(f2k) = peven(f2k) for k ∈ {0} ∪ [t − 1]; and
(b) p(f2k+1) = podd(f2k) for k ∈ {0} ∪ [t − 1].
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Now since f2 is a primitive t’th root of unity and since the degree of each of
peven and podd is t − 1, we can recursively continue this process. We now explain
how to find peven and podd.

Specifically, peven(x) :=
∑t−1

j=0 αjx
j and podd(x) :=

∑t−1
j=0 βjx

j , where

αj := yj + yj+t βj := (yj − yj+t)f j . (18)

We now show why peven and podd satisfy Items (a) and (b) above.

p(f
2k

) =

t−1∑

j=0

yjf
2kj

+

n−1∑

j=t

yjf
2kj

=

t−1∑

j=0

(yjf
2kj

+ yj+tf
2k(j+t)

) =

t−1∑

j=0

(yjf
2kj

+ yj+tf
2kj

f
kn

)

=

t−1∑

j=0

(yj + yj+t)f
2kj

= peven(f
2k

). (19)

p(f2k+1) =

t−1∑

j=0

(yjf
(2k+1)j + yj+tf

(2k+1)(j+t)) =

t−1∑

j=0

(yjf
j)f2kj + (yj+tf

j)f2kjfkn+t

=∗
t−1∑

j=0

(yjf
j)f2kj + (yj+tf

j)f2kj(−1) =

t−1∑

j=0

(yj − yj+t)f
(2k+1)j = podd(f

2k), (20)

where the equation marked with * follows from the fact that f t = fn/2 = −1.
Finally, notice that given y := (y0, . . . , yn−1) in the exponent (i.e., given gy),
the coefficients of peven and podd (Eq. 18) can also be computed in the exponent.
Thus, we have the following lemma.

Lemma 9 (DFT/IDFT in the exponent). Let n be a power of two, let p be
a prime number satisfying p ≡ 1 (mod n) and let G be group of order p with a
generator g. Let w ∈ Zp be a primitive nth root of unity modulo p (which exists
by Lemma 8). For any y ∈ Z

n
p we may compute gDFT(y) from gy using O(n log n)

group exponentiations. The same holds for computing gIDFT(y).

Circulant Matrices. Let v = (v0, . . . , vn−1) be a vector of dimension n. The
circulant matrix of v, denoted Rot(v), is

Rot(v) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 vn−1 vn−2 . . . v3 v2 v1
v1 v0 vn−1 . . . v4 v3 v2
v2 v1 v0 . . . v5 v4 v3
...

...
... . . .

...
...

...
vn−1 vn−2 vn−3 . . . v0 vn−1 vn−2

vn−2 vn−3 vn−4 . . . v1 v0 vn−1

vn−1 vn−2 vn−3 . . . v2 v1 v0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

Lemma 10 (Circulant matrix multiplication in the exponent). Let n,
p, G and w be as in Lemma 9. Let u := (u0, . . . , un−1) ∈ Z

n
p and v :=

(v0, . . . , vn−1) ∈ Z
n
p and M := Rot(v). Then we can compute gMuT from gv

and u via O(n log n) group exponentiations.
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Proof. Throughout the proof, we may use negative indices, with the understand-
ing the index is taken modulo n. For example, we may write u−1 for un−1. Given
gv and u, for k ∈ {0} ∪ [n − 1] we need to compute ghk , where

hk =
n−1∑
i=0

vjuk−j . (22)

Let (a0, . . . , an−1) and (b0, . . . , bn−1) be the discrete fourier transform of
the two sequences (v0, . . . , vk−1) and (u0, . . . , uk−1), respectively. That is, for
k ∈ {0, . . . , n − 1}

ak =
n−1∑
j=0

vjw
−jk (mod p) bk =

n−1∑
j=0

ujw
−jk (mod p).

It is well-known that the inverse fourier transform of (a0b0, . . . , an−1bn−1)
gives us the values (h0, . . . , hn−1). That is, for k ∈ {0} ∪ [n − 1]

(h0, . . . , hn−1) = IDFT(a0b0, . . . , an−1bn−1). (23)

By Lemma 9 we can perform all the above steps via O(n log n) exponentiations.
��

Fast Toeplitz Matrix Multiplication. We now show how to perform fast Topelitz
matrix multiplication in the exponent, via a well-known conversion to circulant
matrices. See [BDD+00] for further conversions. For x := (x1, . . . , x2n−1) ∈
Z
2n−1
p we define

Toep(x) :=

⎛
⎜⎜⎜⎝

xn xn−1 . . . x1

xn+1 xn . . . x2

...
... . . .

...
x2n−1 x2n−2 . . . xn

⎞
⎟⎟⎟⎠ . (24)

Let M := Toep(x) and y ∈ Z
n
p . We show how to compute gMy from gM and y.

Toward this, define

S :=

⎛
⎜⎜⎜⎜⎜⎝

0 x1 x2 . . . xn−1

x2n−1 0 x1 . . . xn−2

x2n−2 x2n−1 0 . . . xn−3

...
... . . .

...
xn+1 xn+2 xn+3 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

∈ Z
n×n
p . (25)

Let T :=
(
M S
S M

)
∈ Z

2n×2n
p . Note that T is a circulant matrix. We have

M

(
y

0n×1

)
=

(
Ty
Sy

)
. Thus, we may compute My in the exponent via O(n log n)

group exponentiations. Thus, we have the following lemma.
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Lemma 11 (Toeplitz matrix multiplication in the exponent). Let n,
p, G and w be as in Lemma 9. Let u := (u0, . . . , un−1) ∈ Z

n
p and v :=

(v0, . . . , vn−1) ∈ Z
n
p and M := Toep(v). Then we can compute gMuT from gM

and u using O(n log n) group exponentiations.

5 Range-Trapdoor Hash Functions

In this section we define the notion of range-trapdoor hash functions and give
a construction of this notion with short evaluation keys. This notion generalizes
the notion of trapdoor hash functions for index keys [DGI+19]. We say that an
index set I is a range set if I = {s + 1, . . . , s + t} for some integers s and t.
We now give the definition of range-trapdoor hash for the special case where we
output a single-bit hint for every index in the range set.

Definition 5 (Range Trapdoor Hash). An n-bit input, range-trapdoor hash
is a tuple of PPT algorithms H = (S,KG,H,E,D) with the following syntax,
correctness and security properties.

– S(1λ, n): Takes the security parameter 1λ and input length n, and outputs a
hashing key hk and a trapdoor key thk.

– KG(hk, I): Takes hk and a range of indices I = [s + 1, . . . , s + t] ⊆ [n] as
input, and outputs an evaluation key ek and a trapdoor key tk. We assume ek
contains |I|; i.e., ek := (|I|, . . . ), and also assume tk := (I, . . . ).

– H(hk, x; ρ): Takes hk, a message x ∈ {0, 1}n and randomness ρ as input, and
outputs a hash value h.

– E(ek, x; ρ): Takes an evaluation key ek, message x and randomness ρ as input,
and outputs a hint value e ∈ {0, 1}|I|.

– D(thk, tk, h, e): Takes as input a hash-trapdoor key thk, a trapdoor key tk :=
(I, . . . ), a hash value h and a hint value e, and deterministically outputs |I|
pairs of 0/1-encodings (ei,0, ei,1) ∈ {0, 1} × {0, 1}, for i ∈ [|I|].

We require the following properties.

– Correctness: For 0 ≤ ε < 1 we say H is 1 − ε correct (or has ε decryption
error) if for any n, any range set I := [s + 1, s + t] ⊆ [n], both the following
conditions hold:
1. For any i ∈ [t] and for any input x ∈ {0, 1}n, Pr[ei = ei,x[s+i]] = 1; and
2. For any input x ∈ {0, 1}n, any i ∈ [t] and any bj ∈ {0, 1} for j ∈ [t] \ {i}:

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ ε + negl(λ), (26)

where for i ∈ [t], Faili is an indicator variable, defined as Faili = 1 if
ei = ei,1−x[s+i],

where (hk, thk) $←− S(1λ, n), (ek, tk) $←− KG(hk, I), ρ
$←− {0, 1}∗, h :=

H(hk, x; ρ), e := E(ek, x; ρ), (ei,0, ei,1)i∈[t] := D(thk, tk, h, e).
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– Range privacy: For any n and any two range sets I, I ′ ⊆ [n] satisfying

|I| = |I ′|, (hk, ek), (hk′, ek′), where (hk, ∗) $←− S(1λ, n), (ek, ∗) $←− KG(hk, I)

and (ek′, ∗) $←− KG(hk, I ′).
– Input privacy: Fix polynomial n := n(λ). For any two inputs x, x′ ∈ {0, 1}n,

(hk, h), (hk, h′), where (hk, ∗) $←− S(1λ, n), h $←− H(hk, x) and h′ $←− H(hk, x′).
– Compactness: There exists a polynomial poly(λ) such that for all n := n(λ),

|H(hk, x)| ≤ poly(λ), where (hk, ∗) $←− S(1λ, n) and x ∈ {0, 1}n.

We note the following remark.

Remark 3. For decryption we also require a trapdoor key thk associated with
hk. This will be required in our construction. In contrast, the notion of trapdoor
hash as defined in [DGI+19] does not require a trapdoor for the hash function
in order to perform decryption. Nonetheless, all applications stated in [DGI+19]
still hold with respect to our definition.

Implicit in the work of [DGI+19] is the following construction of range-
trapdoor hash.

Lemma 12 (Theorem 4.3 of [DGI+19]). Assuming DDH, there exists a
range-trapdoor hash scheme where for inputs of length n, an evaluation key for
a range set I consists of O(n|I|) group elements.

We give the following corollary, which helps one in bounding the number of
Faili’s in situations where, e.g., we need to do error correction, such as the rate-1
OT application. We say ε > negl(λ) if ε is not a negligible function.

Lemma 13. Assuming a trapdoor hash scheme H = (S,KG,H,E,D) has decryp-
tion error ε, and that ε > negl(λ), then for any constant c > 1:

Pr[Fail > 2cε|I|] < e−cε|I|/3,

where Fail :=
∑|I|

i=1 Faili and Faili is defined in the correctness condition of Def-
inition 5.

Proof. The proof follows immediately from the bounded-dependence version of
the Chernoff bound (Lemma 3). ��

We now show how to adapt our batching technique from Sect. 3 to obtain
range-trapdoor hash schemes, where the evaluation key consists of O(n) group
elements, as opposed to O(n|I|) group elements given by [DGI+19]. As we will
see in Sect. 6, this size reduction results in a shorter receiver’s message in rate-1
OT protocols and shorter ciphertexts in homomorphic encryption for branching
programs.
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5.1 Range-Trapdoor Hash with Linear-Sized Evaluation Keys

Construction 4. Let ε ∈ [0, 1) be the decryption error we are wiling to tolerate.
Let � := log(2/ε), G be a group scheme and PRF : G → {0, 1}� a PRF with key
space {0, 1}λ.

– S(1λ, n): and (G, p, g) $←− G(1λ). Sample α
$←− Zp, set thk := α and hk :=

(G, p, g, v), where v := (gα, gα2
, . . . , gα2n

). Return (hk, thk).

– KG(hk, I): Sample a key K
$←− {0, 1}λ for PRF. Let I = [s + 1, s + t]. Parse

hk := (G, p, g, v), where v := (g1, . . . , g2n). Sample r
$←− Zp and let

w := (gr
1, g

r
2, . . . , g

r
s+t−1, ggr

s+t, g
r
s+t+1, . . . , g

r
2n).

Set ek := (t,w,K) and tk := (I, r,K).
– H(hk, x; ρ): Parse hk := (G, p, g, v), where v := (g1, . . . , g2n). Let v′ :=

(g1, . . . , gn), and return (x · v′)gρ
1 .

– E(ek, x; ρ): Parse ek := (t,w,K), where t ∈ N and w ∈ G
2n. Parse w :=

(w1, . . . , w2n). For i ∈ [t]:
1. let w′

i = (w1+t−i, . . . , wn+t−i) ∈ G
n;

2. let g′
i := (x · w′

i)w
ρ
1+t−i;

3. let bi := DistG,g(g′
i, ε, 1,PRFK).

Return (bt, . . . , b1).
– D(thk, tk, h, e): Parse thk := α, tk := (I, r,K) and I := [s+1, s+t]. For i ∈ [t],

set ei,0 := DistG,g(hrαt−i

, ε, 1,PRFK) and ei,1 := DistG,g(ghrαt−i

, ε, 1,PRFK).
Return ((e1,0, e1,1), . . . , (et,0, et,1)).

The compactness of the scheme is clear. Range privacy follows from 2n-power
DDH. We now prove the input privacy and correctness of the scheme.

Lemma 14 (Input privacy). The scheme provides perfect input privacy: for

any two inputs x, x′ ∈ {0, 1}n, (hk, h) ≡ (hk, h′), where (hk, ∗) $←− S(1λ, n), h $←−
H(hk, x) and h′ $←− H(hk, x).

Proof. We need to show (v, (x · v)gαρ) is independent of x, where v :=

(gα, gα2
, . . . , gα2n

) and ρ
$←− Zp. This immediately follows from the presence

of the masking exponent ρ. ��
Lemma 15 (Correctness). Assuming T := [2 loge (2/ε)]/ε = poly(λ) (which
is satisfied if ε is an inverse polynomial), the range TDH scheme provides (1−ε)
correctness.

Proof. Fix n, I, x ∈ {0, 1}n and suppose I = [s + 1, s + t]. We need to prove
Conditions 1 and 2 of the correctness definition. For i ∈ [t] let g′

i be computed
as in E (Line 2 of E’s procedure) and let gi,0 = hrαt−i

and gi,1 = ghrαt−i

.



Efficient Range-Trapdoor Functions and Applications: Rate-1 OT and More 111

First, we claim g′
i = gi,x[s+i], which proves Condition 1 of the correctness

definition. To see why this claim holds, recall that

v′ = (gα, gα2
, . . . , gαn

)

w1+t−i = grα1+t−i

w′
i = (grα1+t−i

, . . . , grαs+t−1
, ggrαs+t

︸ ︷︷ ︸
coordinate:s+i

, grαs+t+1
, . . . , grαn+t−i

),

and that h = (x · v′)gαρ, g′
i := (x · w′

i)w
ρ
1+t−i. Letting b = x[s + i]:

gi,x[s+i] = gbhrαt−i

= gb((x · v′)gαρ)rαt−i

= gb(x · v′)rαt−i

(grαt−i+1
)ρ

= gb(x · v′)rαt−i

wρ
1+t−i = (x · w′

i)w
ρ
1+t−i = g′

i, (27)

as desired.
We now prove Condition 2 of the correctness definition. Fix x ∈ {0, 1}n,

i ∈ [t] and bj ∈ {0, 1} for j ∈ [t] \ {i}, and let

β := Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}]. (28)

Consider a variant of Construction 4, in which we replace the PRF PRFK with a
truly random function f : G $←− {0, 1}�. That is, in this variant, calls of the form
DistG,g(gi, ε, 1,K) are replaced with DistG,g(gi, ε, 1, f). Let β′ be the probability
that

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] (29)

in the experiment where we replace PRFK with a random f . We will show
β′ ≤ ε+negl(λ). By PRF security we have β ≤ β′ +negl(λ), and thus Eq. 28 will
follow. The reason that we can use PRF security here (despite the fact that K is
given in the clear in ik) is that the procedure Dist may efficiently be computed
via only blackbox access to PRFK (resp., f alternatively) and that we evaluate
PRFK on inputs generated independently of K.

To bound the probability in Eq. 29 we first define an event Bad which captures
all the dependencies. Then we will argue that conditioned on Bad, the events
{Failj}j∈[t] are independent. To give some intuition, first notice that Failj holds
iff

DistG,g(gj,0, ε, 1, f) = DistG,g(gj,0g, ε, 1, f), (30)

where recall that gj,0 = hrαt−j

. Also, by definition of Dist, the outputs of the two
distance functions of Eq. 30 are only dependent on the outputs of f on group
elements {gj,0, gj,0g, . . . , gj,0g

T+1}, where T := [2 loge(2/ε)]/ε. Since f is chosen
at random, we will have dependencies across Failj ’s only when the following event
Bad holds:

– Bad: there are two distinct indices j, h ∈ [t] such that gj,0 and gh,0 are (T +1)-
close, where T := [2 loge(2/ε)]/ε.



112 S. Garg et al.

By Lemma 4

Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = Pr[Faili = 1] ≤ ε. (31)

Below we will show Pr[Bad] = negl(λ), and this will allow us to conclude

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ Pr[Bad] + Pr[Faili = 1 ∧ Bad | Failj = bj for j ∈ [t]/{i}]
≤ negl(λ) + Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = ε + negl(λ), (32)

as desired. It only remains to show Pr[Bad] = negl(λ). Recall that
(g1,0, g2,0, . . . , gt,0) = (hr, hrα . . . , hrαt−1

). Notice that h �= 1 except with neg-
ligible probability, and thus hr is statistically close to a uniformly random group
element. By Lemma 1

(g1,0, g2,0, . . . , gt,0) = (hrαt−1
, hrαt−2

, . . . , hr), (g′
1, g

′
2, . . . , g

′
t),

where g′
i’s are random group elements. When replacing {gi,0}i∈[t] with

{g′
i}i∈[t], the probability of the event Bad becomes negligible. (This is because

T = poly(λ).) Thus, the event Bad with gj,0’s should also be negligible. ��
Running Time: We specify the running time for tolerated error ε = 1

nc . For E,
we can compute all the values x ·w′

i altogether with total O(n log |I|) exponen-
tiations by Lemma 11. Also, we spend |I| exponentiations for computing wρ

i for
i ∈ [I]. Thus, the total number of group operations is O(n log |I|) exponentia-
tions.

6 Applications of Range-Trapdoor Hash

In this section we review the applications of our range-trapdoor hash scheme.
A two-round OT protocol consists of three PPT algorithms (OT1,OT2,OT3),

where (OT1,OT3) are the two-stage algorithms run by the receiver, and OT2 is
run by the sender. We will be concerned with honest-but-curious security (for
both parties), and the corresponding definitions of security are standard. We use
otr and ots to denote the receiver’s and sender’s message, respectively.

For an OT protocol OT where the size of each message of the sender is
n, we call |n|

|ots| the download rate of the protocol. We say OT is rate-1 if |n|
|ots|

asymptotically approaches one.
As shown in [IP07], a rate-1 OT implies homomorphic encryption for branch-

ing programs with semi-compactness: the size of ciphertexts only grows with the
depth of the program, as opposed to the size.

Let us first present the implication of our results with respect to rate-1 OTs.
Implicit in the work of [DGI+19] is a construction of rate-1 OT from range
trapdoor-hash schemes; see Constructions 5.1 and 5.2 of [DGI+19]. This result
of [DGI+19], combined with Lemma 4, gives us the following.

Corollary 1 (Rate-1 OT with short receiver’s message). Let G be a group
scheme, where the size of a group element is O(λ). Fix a message-size function
t(λ) ∈ ω(λ). Assuming 2t-power DDH, there is a rate-1 two-round honest-but-
curios OT protocol with sender’s input (m0,m1) ∈ ({0, 1}t, {0, 1}t) and receiver’s
input b ∈ {0, 1}, where the receiver’s message otr consists of O(t) group elements.
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Comparison to [DGI+19]. The work of [DGI+19] gives a DDH-based rate-1
OT, where in the parameter regime of Lemma 1, otr consists of O(t2) group
elements. Our efficiency improvement stems from shorter evaluation keys: for
a range set I, our scheme’s evaluation key contains O(n) group elements, as
opposed to O(n|I|) group elements given by [DGI+19]. See Lemma 12.

Improving Upload Rate. As noted in [DGI+19], asymptotically speaking, one
may make the length of |otr| as close as possible to |m0| (i.e., achieving upload
rate 1, defined as |m0|/|otr|) by re-using otr and making the input size of the
sender larger. For example, assuming |m0| = |m1| = O(λ2), one may give a
two-round OT based on DDH with both download and upload rates being 1.
However, in concrete applications (e.g., homomorphic encryption for branching
programs), the OT ends up being applied on sender’s messages of much smaller
asymptotic size, and thus improving the efficiency for this smaller regime leads
to efficiency improvements in those applications.

Homomorphic Encryption for Branching Programs with Shorter Ciphertexts.
Ishai and Paskin [IP07] show how to build semi-compact homomorphic encryp-
tion for bounded-depth branching programs from rate-1 OT. Semi-compact
means that the size of a ciphertexts grows only with the depth and the input
size, and is independent of the program size otherwise. For the OT protocol, let
sizer(λ, n) denote the size of otr when the length of each of sender’s message is
n. Assuming the input size is n and the depth of the branching program is at
most d, the size of a ciphertext is nd × sizer(λ, t), where t ∈ O(λd). The result of
[DGI+19] gives a DDH-based semi-compact encryption for branching programs
with ciphertexts consisting of O(λ2nd3) group elements. Applying Corollary 1,
our ciphertexts will contain O(λnd2) group elements.

Corollary 2. Assuming t-power DDH, there exists a PKE scheme for branching
programs of depth d and input size n, where a ciphertext consists of O(λnd) group
elements.

Private Information Retrieval (PIR) with Improved Communication. A PIR pro-
tocol involves a server, holding N = 2d blocks (m1, . . . ,mN ), each of length β,
and a client, holding an index i ∈ [N ]. The goal is to allow the client to retrieve
mi while keeping i hidden from the server. We would like to achieve this while
minimizing communication complexity. Ishai and Paskin [IP07] gives a two-round
block single-server PIR (one message from each side), achieving download rate 1,
from rate-1 OT. The download rate of a PIR is defined as the ratio between the
server’s message and β. The size of the client’s message is O(sizer(λ, β) log N),
where β ∈ O(λ log N), and recall that sizer denotes the size parameter of the
receiver’s message in the underlying OT protocol. Thus, under DDH, the rate-
1 OT of [DGI+19] gives rise to a PIR, where the client’s message consists of
O(λ2polylog(N)) group elements. Using Corollary 1 and under the power DDH
assumption, the client’s message will have O(λpolylog(N)) group elements.
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Abstract. The celebrated work of Gorbunov, Vaikuntanathan and Wee
[GVW13] provided the first key policy attribute based encryption scheme
(ABE) for circuits from the Learning With Errors (LWE) assump-
tion. However, the arguably more natural ciphertext policy variant has
remained elusive, and is a central primitive not yet known from LWE.

In this work, we construct the first symmetric key ciphertext policy
attribute based encryption scheme (CP-ABE) for all polynomial sized
circuits from the learning with errors (LWE) assumption. In more detail,
the ciphertext for a message m is labelled with an access control policy
f , secret keys are labelled with public attributes x from the domain of
f and decryption succeeds to yield the hidden message m if and only
if f(x) = 1. The size of our public and secret key do not depend on
the size of the circuits supported by the scheme – this enables our con-
struction to support circuits of unbounded size (but bounded depth).
Our construction is secure against collusions of unbounded size. We
note that current best CP-ABE schemes [BSW07,Wat11,LOS+10,OT10,
LW12,RW13,Att14,Wee14,AHY15,CGW15,AC17,KW19] rely on pair-
ings and only support circuits in the class NC1 (albeit in the public key
setting).

We adapt our construction to the public key setting for the case of
bounded size circuits. The size of the ciphertext and secret key as well
as running time of encryption, key generation and decryption satisfy
the efficiency properties desired from CP-ABE, assuming that all algo-
rithms have RAM access to the public key. However, the running time
of the setup algorithm and size of the public key depends on the circuit
size bound, restricting the construction to support circuits of a-priori
bounded size. We remark that the inefficiency of setup is somewhat mit-
igated by the fact that setup must only be run once.

We generalize our construction to consider attribute and function hid-
ing. The compiler of lockable obfuscation upgrades any attribute based
encryption scheme to predicate encryption, i.e. with attribute hiding
[GKW17,WZ17]. Since lockable obfuscation can be constructed from
LWE, we achieve ciphertext policy predicate encryption immediately. For
function privacy, we show that the most natural notion of function hid-
ing ABE for circuits, even in the symmetric key setting, is sufficient to

c© International Association for Cryptologic Research 2020
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imply indistinguishability obfuscation. We define a suitable weakening
of function hiding to sidestep the implication and provide a construction
to achieve this notion for both the key policy and ciphertext policy case.
Previously, the largest function class for which function private pred-
icate encryption (supporting unbounded keys) could be achieved was
inner product zero testing, by Shen, Shi and Waters [SSW09].

1 Introduction

Attribute based encryption (ABE) [SW05] is a generalization of public key
encryption that enables fine grained access control on encrypted data. In
attribute based encryption, a message m is encrypted so that decryption succeeds
if and only if the secret key holder is authorized to learn the message. Here, autho-
rization is enforced via an access control policy modelled as a Boolean circuit f ,
which is computed over some public attributes x associated with the data/user.
The access control policy may be embedded either in the key or the ciphertext,
yielding key-policy (KP-ABE) or ciphertext-policy (CP-ABE) respectively.

In more detail, in a CP-ABE scheme, a ciphertext for a message m is labelled
with an access control policy f , and secret keys are labelled with public attributes
x from the domain of f . Decryption succeeds to yield the hidden message m if
and only if the attribute satisfies the function, namely f(x) = 1. In a KP-ABE,
the placement of f and x are swapped.

Ciphertext Policy ABE for Circuits. Both KP-ABE [SW05,GPSW06,BW07,
KSW08,LOS+10,OT10,OT12,CW14,AFV11,LW11,LW12,Wat12,GVW13,
Wee14,Att14,BGG+14,GVW15,GV15,BV16,AF18] and CP-ABE schemes have
received a lot of attention [BSW07,Wat11,LOS+10,OT10,LW12,RW13,Att14,
Wee14,AHY15,CGW15,AC17,KW19] in the literature. While KP-ABE for the
richest class of functions rely on the Learning With Errors (LWE) assumption
and can support all polynomial sized circuits, the most general CP-ABE rely on
pairings and can only support circuits in NC1 [BSW07,Wat11,LOS+10,OT10,
LW12,RW13,Att14,Wee14,AHY15,CGW15,AC17,KW19].

Recently, Tsabary [Tsa19] provided a construction of (public key) CP-ABE
from Learning With Errors (LWE) for the very restricted class of t-CNF formulae,
where t is constant. However, for all polynomial sized circuits, any construction
from standard assumptions1 has remained elusive despite substantial research
effort. Very recently, Brakerski and Vaikuntanathan do provide a construction of
(public key) CP-ABE using lattice based techniques [BV20], but their construc-
tion lacks a security proof. Their work further highlights the technical barriers
to providing a construction from LWE. Indeed, constructing CP-ABE for even

1 We note that from strong assumptions such as the the existence of multilinear
maps [GGH13a], witness encryption [GTKP+13a] or indistinguishability obfusca-
tion [BGI+01,GGH+13b], attribute based encryption (indeed, even its generaliza-
tion functional encryption) has been constructed for all circuits, but these are not
considered standard assumptions.
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NC1 from LWE is widely acknowledged as a central problem in lattice based
cryptography and would be considered a major breakthrough.

Function Hiding. An ABE scheme encodes an attribute vector x and a Boolean
circuit f . Hiding the attribute in these constructions, à la Predicate Encryp-
tion (PE) has met with fantastic success – the celebrated work of Gorbunov,
Vaikuntanathan and Wee [GVW15] constructed a predicate encryption system
for all circuits from LWE. More recently, Goyal, Koppula and Waters [GKW17]
as well as Wichs and Zirdelis [WZ17] provided a powerful compiler for upgrad-
ing any ABE to PE by assuming LWE. However, much less is known about
function hiding for ABE. For restricted functionalities such as identity based
encryption and subspace membership testing, function hiding has received atten-
tion [BRS13a,BRS13b] in the public key setting, but serious technical barriers
present themselves for more general function classes. We refer the reader to
[BRS13a,BRS13b] for a detailed discussion.

In the symmetric key setting, function hiding for the stronger notion of func-
tional encryption has been studied extensively [GTKP+13b,BS15] – however,
since functional encryption is known to imply indistinguishability obfuscation
[AJ15,BV15,BNPW16,KNT18] even without function hiding, there is limited
optimism about achieving this notion for all circuits from standard assumptions,
given current state of art. On the other hand, for the restricted inner product
functionality, function hiding functional encryption can be achieved from stan-
dard assumptions [BJK15,KLM+16]. For the related (but distinct) functionality
of inner product zero testing, Shen, Shi and Waters [SSW09] provided a construc-
tion of function hiding, symmetric key predicate encryption from bilinear maps.

The above state of affairs is dissatisfying and reveals several gaps in our under-
standing. Concretely, for general circuits and from standard assumptions, can we
achieve function hiding in the symmetric key setting? Note that while attribute
based encryption [GVW13,BGG+14] and predicate encryption [GVW15] are
achievable from standard assumptions for all circuits, the richest functionality
for which function hiding predicate encryption has been achieved is the inner
product zero testing functionality [SSW09]. We emphasize that this question
is not just of theoretical interest – as noted by Shen et al. [SSW09], function
private predicate encryption in the symmetric key setting has many compelling
applications. As an example [SSW09], a user may wish to store encrypted files
on an untrusted server, and later retrieve only files that satisfy a given predicate.
It is a natural security requirement that the server must learn nothing more
about the predicate than minimum possible. We refer the reader to [SSW09] for
a detailed discussion.

1.1 Our Results

In this work, we make substantial progress on both questions discussed above.
Our results are summarized as follows:

1. We construct the first symmetric key ciphertext policy attribute based encryp-
tion scheme (CP-ABE) for all polynomial sized circuits from the learning
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with errors (LWE) assumption. The sizes of our public and secret key do not
depend on the size of the circuits supported by the scheme – this enables
our construction to support circuits of unbounded size (but bounded depth).
Our construction is secure against collusions of unbounded size in the multi-
challenge ciphertext setting.2

This is the first construction of CP-ABE for polynomial circuits of unbounded
size, supporting unbounded collusions, from standard assumptions.

2. We adapt our construction to the public key setting for the case of bounded
size circuits. The size of the ciphertext and secret key as well as the runtime
of encryption, key generation and decryption satisfy the efficiency properties
desired from CP-ABE. However, the running time of the setup algorithm
and the size of the public key depend on the circuit size bound, restricting
the construction to support circuits of a-priori bounded size. We remark that
this inefficiency is mitigated by the fact that setup must only run once. We
summarize our results in Table 1.

Table 1. |fmax| denotes the worst case size bound on circuit size, and |f | denotes the
input circuit size. All the entries hide poly(λ) and logarithmic factors in |fmax|. Due to
space constraints, we include only the most recent pairings based cpABE in the table.

Scheme Assumption PK/SK Setup

Time

|PK| Enc

Time

|CT| KeyGen

Time

|SK| Dec

Time

Circuit

Class

Ideal Standard PK 1 1 |f | |f | |x| |x| |f | P

Naive (using

[BGG+14])

LWE PK |fmax| |fmax| |fmax| |fmax| |fmax| 1 |fmax| P

Naive

([BGG+14]

& [BV16])a

LWE PK 1 1 |fmax| |fmax| |fmax| 1 |fmax| P

Sect. 3 LWE SK 1 1 |f | |f | |x| |x| |f | P

Sect. 4 LWE PK |fmax| |fmax| |f | |f | |x| |x| |f | P

[KW19] Pairings PK 1 1 |f | |f | |x| |x| |f | NC1

This construction can be further improved by combining this with the “powers of 2” trick where we run

parallel instances of the scheme that can deal with circuits with size at most 2i for i = 1, 2, . . . log |fmax|
and use appropriate instance when encrypting a message depending on the size of the circuit. As a result,

the encryption time, the ciphertext size, and the (RAM efficiency of the) decryption algorithm can be

reduced to be |f | from |fmax|.

3. We study the notion of function hiding attribute based encryption for circuits,
in the symmetric key setting. In Sect. 5.3, we show that the most natural
notion of function hiding ABE, even in the symmetric key setting is sufficient
to imply indistinguishability obfuscation. We define a suitable weakening of
function hiding to sidestep the implication and provide a construction in
Sect. 5 to achieve this notion for both key policy and ciphertext policy pred-
icate encryption. We instantiate our compiler with known constructions of
PE to obtain the following theorems:

2 In the symmetric key setting, single-challenge ciphertext security and multi-challenge
ciphertext security are not equivalent. In our paper, we adopt the latter as the default
security notion for symmetric key ABE, since it is stronger and more natural.
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Theorem 1.1 (Informal). Assuming subexponential LWE, we have function
hiding, semi-adaptively secure predicate encryption for all polynomial circuits.

Theorem 1.2 (Informal). Assuming subexponential LWE and DLIN, we have
function hiding, adaptively secure predicate encryption for NC1 circuits.

Please see Sect. 5.1 for details.

1.2 Our Techniques

In this section, we provide an overview of our techniques.

CP-ABE for Circuits. For this construction, we leverage techniques devel-
oped recently by Agrawal, Maitra and Yamada [AMY19] to handle inputs of
unbounded size in the context of ABE for finite automata. We notice that
these techniques are quite a bit more general than discussed in that work and
can be adapted to the setting of ciphertext policy ABE supporting unbounded
collusions.

Folklore Approach. We begin with a folklore transformation of KP-ABE to CP-
ABE – namely, via the universal circuit. In more detail, let U(·, ·) be the universal
circuit such that f(x) = U(x, f). Next, let U [x] be the universal circuit with
the input x hard-wired. Then, we may construct a CP-ABE scheme, denoted
by cpABE using a KP-ABE scheme, denoted by kpABE as follows: the cpABE
encryptor, given a message m and circuit f may compute kpABE ciphertext
for (m, f) where f is viewed as a bit string representing kpABE attributes. The
cpABE key generator, given an attribute string x, may compute a kpABE function
key for the circuit U [x]. Decryption is straightforward using kpABE decryption
as U [x](f) = U(x, f) = f(x).

The above generic compiler has the drawback that the input of circuit U [x]
is the circuit f . This limits the construction to only support circuits of a-priori
bounded size |fmax| (say) and forces the size of the public key, ciphertext as
well as runtime of setup, key generation, encryption and decryption to grow
with |fmax| (please see Table 1). We emphasize that even the encryption and
decryption algorithms, which must take time proportional to circuit size, now
degrade with the worst case bound |fmax|, rather than with input circuit |f |.
The hit taken by key generation is significantly worse3.

Re-distributing Computation. Note that the only algorithms which are allowed
to depend on the size of the circuit length are the encryption and decryption
algorithms. Hence, inspired by [AMY19], we re-distribute the computation of
kpABE.KeyGen(U [x]) between the key generator and the encryptor to ensure
that each algorithm satisfies the efficiency requirements of CP-ABE.

In more detail, the key generator may depend on the size of x but not on
the size of f , while the encryptor and decryptor may depend on the size of f . In
3 Although using the scheme by [BGG+14] allows for a small function key size.
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order to redistribute computation, we rely on single-key functional encryption
(FE), which can be constructed based on the LWE assumption [GKP+13]. Now,
the ciphertext of cpABE is kpABE.CT(f,m) where f is treated as the attribute
string. Additionally, the ciphertext contains FE.KeyGen(C) where the circuit
C(·) = kpABE.KeyGen(U(·)). The secret key of cpABE is FE.Enc(x). Decryp-
tion in the cpABE scheme proceeds by first computing FE decryption to obtain
kpABE.SK(U [x]) and then computing kpABE decryption with kpABE.CT(f,m)
to obtain m iff f(x) = 1. Care must be taken that single key security of the
underlying FE scheme is not violated. For this, we ensure that the function key
is generated for the same circuit C(·) = kpABE.KeyGen(U(·)) and using the same
randomness (as specified in the master secret key), across all invocations of FE
key generation.

In order to argue that the key generation algorithm does not depend on |f |,
we rely on special properties of the FE scheme. Recall that the FE scheme of
Goldwasser et al. is succinct which means that the running time of the encryption
algorithm depends on the depth and output length of the circuits supported by
the scheme but is independent of their size. The depth of the circuits supported
by our construction is bounded by assumption and the depth of the kpABE key
generation circuit is at most a polynomial factor larger than the depth of the
circuit it supports. Hence, it remains to argue that the output length may be
similarly bounded. To see this, note that in our construction, the function key is
generated for circuit C(·) = kpABE.KeyGen(U(·)), whose output length depends
on the size of the underlying kpABE function key. Fortunately, by using the
kpABE scheme of Boneh et al. [BGG+14], we may bound the size of the kpABE
scheme by a fixed polynomial.

Supporting Circuits of Unbounded Size. A detail brushed under the carpet in
the above description is that the kpABE scheme which is used to encrypt f as an
attribute string must be initialized with the length of f during the setup phase.
Moreover, this input length is passed to all other kpABE algorithms, notably the
key generation algorithm. Since we wish to support f of unbounded size, this
poses a dilemma. An immediate question that arises is which algorithm of cpABE
should invoke the setup algorithm of kpABE? Evidently, the setup of cpABE does
not have the size of f , so it must be the encrypt algorithm. Hence, the cpABE
encrypt algorithm samples the kpABE scheme and provides an FE secret key for
the circuit kpABE.KeyGen(U(·)). A subtlety is that the kpABE key generation
algorithm must depend on the length of f as discussed above. Then, if f is of
varying size across different ciphertexts, the description of kpABE.KeyGen(U(·))
and hence FE.SK varies with the size of f . This is problematic – since FE only
satisfies single key security!

We resolve the above conundrum by running λ+1 instances of FE and kpABE
in parallel – each to support f of length 2i where i ∈ [0, λ]. The circuit size is
padded to the next power of two – a trick used in many works, beginning with
[GTKP+13a] – so that we only need to deal with λ + 1 possible FE, each of
which supports the issuing of a single secret key, which will compute the kpABE
key generation circuit for inputs of length 2i. The cpABE key generator does not
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know which instance of FE it must encrypt with, so it encrypts with all of them.
For details, please see Sect. 3.

Security. Our cpABE scheme achieves selective, indistinguishability based secu-
rity. At a high level, security relies on the security of the instances of the
single key FE schemes and kpABE schemes. Similarly to [AMY19], we begin
by showing that by security of FE adversary cannot get anything beyond
{FE.Dec(FE.ski,FE.cti) = kpABE.ski} for i ∈ [0, λ]. Next, we rely on the security
of kpABE to argue that the message bit is not revealed. As discussed above, we
need to ensure that only single FE secret key is revealed to the adversary for
each instance of FE. Fortunately, this can be guaranteed by the fact that for a
given instance of FE, we must only release a secret key (of the FE) for the key
generation algorithm of the corresponding kpABE.

Public Key Setting. Next, we construct a public key ciphertext policy ABE
scheme for bounded sized circuits, where |fmax| is set as an upper bound on
circuit size. In our construction, the size of the secret key and ciphertext satisfy
the efficiency properties desired from CP-ABE (Definition 2.4). Additionally, the
running time of the keygen, encrypt and decrypt algorithms depend only on the
size of the input circuit f and not on the worst case circuit size |fmax|, assuming
that they have RAM access to the public key. However, the running time of the
setup algorithm and the size of PK grows with the size |fmax| of the circuits
supported by the scheme. We note that this inefficiency is mitigated since it
must be only run once.

The construction is similar to the secret key cpABE provided in Sect. 3 but
has some important differences. Let us try to adapt the secret key construction
of Sect. 3 to the public key setting. Since the construction makes modular use of
single key succinct FE [GKP+13] and key policy ABE [BGG+14], and both these
schemes can be instantiated in the public key setting from LWE, a first attempt
would be to use public key versions of these building blocks and compile a public
key version of the secret key cpABE scheme. However this naive approach runs
into multiple difficulties. For the key generation algorithm to be independent of
the circuit size, it may not compute the circuit U [x] – indeed, this would render
the role of FE useless and collapse back into the naive transformation of a kpABE
to cpABE scheme via universal circuits. To avoid the dependence of keygen on
circuit size, it is necessary for the encrypt algorithm to compute the FE secret
key for the kpABE key generation algorithm, which in turn requires that the
encrypt algorithm possess the master secret key FE.msk.

However, a crucial and useful property of the construction is that it only uses
FE for a single fixed circuit – hence, to remove the dependence of Enc on FE.msk,
an idea is to let setup compute the FE function key itself and provide it as part
of the public key. The cpABE public key can contain the public keys of FE as
well as kpABE, along with the FE function key for the kpABE key generation
algorithm. Now, the encryptor, given input circuit f and message μ, can use the
kpABE public key to compute a kpABE ciphertext for (f, μ). The key generator
can compute the FE ciphertext for x and the decryptor can decrypt as before, by
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performing FE decryption to recover the kpABE function key, followed by kpABE
decryption.

An immediate drawback is that this approach forces the circuit size to be
fixed at setup time. Additionally, even if we assume an upper bound |fmax| on
the size of supported circuits, this approach has the significant disadvantage that
the runtime of encryption and decryption as well as the size of the ciphertext
to depend on the upper bound |fmax| rather than the actual size of the circuit.
When the input circuit is much smaller, this is a significant price to pay in terms
of both communication and computation. Another disadvantage is that the size
of the public key now grows with the upper bound |fmax|. To see this, note that
the kpABE public key in general depends on the size of the inputs supported by
the scheme, which in this case can be as large as |fmax|. There do exist clever
ideas to make the size of the kpABE public key independent of the input size
[BV16,GKW16], but they do so, unfortunately, at the expense of making the
function key depend linearly on input size |fmax|. But if the kpABE function key
is large, then the size of the FE ciphertext would degrade to support this, making
the cpABE function key large, which is precisely what we are trying to avoid!

These issues may be overcome if we assume that every algorithm has RAM
access to cpABE.mpk. For simplicity, let us assume that circuit sizes come in
powers of 2 – this assumption can be easily removed by padding circuits appro-
priately. In this case, we run η := �log |fmax|� instances of kpABE in parallel,
and let the ith instance handle inputs of length 2i, for i ∈ [η]. Now, we have η
public keys for kpABE, each of length 2i, which together (along with FE.mpki

and FE.ski) comprise the final public key. If every algorithm has RAM access to
this public key, then it may choose the component according to the actual input
length of the circuit, namely it may choose i∗ such that |f | = 2i∗

and access
only the i∗th component of the public key. Then, the runtime of the encrypt and
decrypt algorithm depend on |f | rather than |fmax|. For more details, please see
Sect. 4.

Function Hiding Predicate Encryption. Next, we generalize our construc-
tion to consider attribute and function hiding. The compiler of lockable obfus-
cation upgrades any attribute based encryption scheme to predicate encryption,
i.e. with attribute hiding [GKW17,WZ17]. Since lockable obfuscation can be
constructed from LWE, we achieve ciphertext policy predicate encryption imme-
diately. We then turn to the question of function hiding predicate encryption
for circuits. Here, we show that the natural notion of function hiding predicate
encryption, i.e. that considered by [SSW09], when applied to all polynomial sized
circuits, is strong enough to imply indistinguishability obfuscation.

Consider a function private ciphertext-policy attribute based encryption
scheme cpABE4. The ciphertext is associated with a circuit f and a message
m and the key is associated with an attribute vector x. Intuitively, since the
scheme is function hiding, x is hidden. Note that the attribute f is not hid-
den, since this an ABE scheme. A natural game of function hiding would allow
4 Note that we are starting with a weaker object – this only strengthens our result.
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an adversary to output challenge key queries (x0i,x1i) and ciphertext queries
(fj , μj) so that fj(x0i) = fj(x1i) for all i, j. The challenger responds by choosing
a random bit b and returning the corresponding secret keys for xbi, along with
ciphertexts for (fj , μj). The adversary wins if she guesses the bit correctly5.

We now show a reduction from secret key functional encryption (FE) to func-
tion hiding cpABE. Recall that in functional encryption, the ciphertext is associ-
ated with a vector x, the secret key is associated with a circuit f and decryption
enables the decryptor to recover f(x). In the security game, the adversary must
distinguish between encryptions of x0 and x1 given an arbitrary number of secret
keys for circuits fi where fi(x0) = fi(x1). In our reduction, if cpABE supports
unbounded ciphertext queries, then FE supports unbounded key queries. Such a
functional encryption scheme is known to imply indistinguishability obfuscation
(iO) [AJ15,BV15,BNPW16,KNT18].

It remains to outline the reduction. The reduction is remarkably simple: sup-
pose that FE.Enc(x,msk) = cpABE.KeyGen(x,msk) and that FE.KeyGen(f,msk)
= (m, cpABE.Enc(f,m,msk)) where m is a random bit. FE.Dec computes
cpABE.Dec and outputs 1 if it recovers m correctly. Now, when the FE adversary
outputs x0,x1 as challenge messages, the reduction outputs outputs x0,x1 as
challenge keys and obtains the cpABE key for xb. When the FE adversary makes
a key request for fi, the reduction obtains the cpABE ciphertext for (fi,mi)
where mi is randomly chosen, and uses these to respond to the FE adversary.
It is evident that if the FE adversary is legitimate, then so is the cpABE func-
tion hiding adversary. Also, clearly if the cpABE adversary wins the game, this
translates to a win for the FE adversary.

To avoid the implication to FE, we weaken the function hiding definition. We
provide a restricted definition of function hiding (Definition 2.14), in which the
adversary is disallowed from making queries for vectors x0,x1 such that fi(x0) =
fi(x1) = 1 for any requested fi. The definition insists that fi(x0) = fi(x1) = 0
for all requests. Note that an admissible FE adversary may request keys for any
circuits fi as long as fi(x0) = fi(x1), regardless of whether this value is 0 or
1. However, with the restriction on the function hiding definition, the above
reduction fails and we fall back into “one sided security” that characterizes PE
and is known to be achievable from standard assumptions. Please see Sect. 5.3
for the detailed argument.

In Sect. 5, we provide a construction of predicate encryption for circuits which
achieves the above notion of function hiding. Our compiler is analogous to the
compiler of Goldwasser et al. [GKP+13], which converts succinct functional
encryption to reusable garbled circuits. In more detail, we construct function
hiding PE from PE and a symmetric key encryption scheme SKE. For simplicity,
we consider the key-policy setting, we show how to extend the argument to the
ciphertext-policy setting in Sect. 5.

Since we are in the symmetric key setting, the SKE secret key SK (say)
is known both to the key generation and the encrypt algorithms. Now, the

5 Note that (fj , μj) are ciphertext queries, not challenge ciphertexts, so the adversary
is allowed to have decrypting keys for these in a function hiding game.
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encryptor uses PE to encrypt its message with attribute (SK,x). The key gener-
ator, given input circuit f , computes the SKE encryption f̂ of f provides a key
for an augmented circuit Uf̂ (·), which given input (SK,x), first decrypts f̂ to
obtain f and then computes f(x). Intuitively, since PE is attribute hiding, SK
remains hidden, and since the key only reveals the encryption f̂ , the circuit f
remains hidden. The formal argument is provided in Sect. 5.

1.3 Perspective and Open Problems

CP-ABE from LWE, for all polynomial sized circuits (or even NC1) is a long
standing open problem. Our work settles the question in the symmetric key
case, and makes significant progress in the public key case. Our constructions
use prior constructions of KP-ABE [BGG+14] and FE [GTKP+13a] as building
blocks and combine them carefully to obtain the desired efficiency for CP-ABE.
These building blocks satisfy certain special properties such as succinctness of
ciphertext [GTKP+13a] and short secret key [BGG+14]. By noticing that the
efficiency properties of these schemes compose in a fortuitous way, we achieve the
required efficiency of CP-ABE by doing very little work6! Similar tricks were used
by [AMY19] in the context of constructing ABE for finite automata – indeed,
our constructions are simpler than theirs.

An obvious open problem is to close the “efficiency” gap in setup time that
remains open in our public key construction. The chief hurdle in doing so is
that the computation of the FE secret key is a secret key operation but the
only algorithms in the construction that are allowed the time required by this
computation, namely encrypt and decrypt, are public key algorithms. An app-
roach may be to delegate the FE secret key generation using garbled circuits,
as in [DG17] but a natural implementation of this idea turns out to be insecure.
We conjecture that new techniques may be required to overcome this hurdle. In
the context of function privacy, we obtain the first attribute based encryption
schemes for circuits with function hiding, in the symmetric key setting. A natural
open question is to provide constructions in the public key setting. However, as
observed by [BRS13a], function privacy in the public key setting is significantly
more challenging, with even the right definition being unclear. We conjecture
that this problem may require significantly new ideas to resolve.

2 Preliminaries

Notation. We begin by defining the notation that we will use throughout the
paper. We use bold letters to denote vectors and the notation [a, b] to denote
the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to denote the set [1, n].
Concatenation is denoted by the symbol ‖. Vectors will be column vectors unless
stated otherwise.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we
use negl(n) to denote a negligible function of n. We say f(n) is polynomial if it
6 Beyond what is already done by the “heavy hammers” of [BGG+14,GTKP+13b].
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is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial
function of n. We use the abbreviation PPT for probabilistic polynomial-time.
We say an event occurs with overwhelming probability if its probability is 1 −
negl(n). The function log x is the base 2 logarithm of x. For any finite set S we
denote P(S) to be the power set of S. For a circuit C : {0, 1}�1+�2 → {0, 1} and
a string x ∈ {0, 1}�1 , C[x] : {0, 1}�2 → {0, 1} denotes a circuit that takes y and
outputs C(x,y). We construct C[x] in the following specified way. Namely, C[x]
is the circuit that takes as input y and sets

zi =

{
y1 ∧ ¬y1 if xi = 0
y1 ∨ ¬y1 if xi = 1

and then computes C(z,y), where xi, yi, and zi are the i-th bit of x, y, and z,
respectively. In the above, it is clear that zi = xi and we have C(z,y) = C(x,y).
Furthermore, it is also easy to see that depth(C[x]) ≤ depth(C) + O(1) holds.

Circuit Classes of Interest. For λ ∈ N, let Cinp,d,s denote a family of circuits with
inp bit inputs, bounded depth d, bounded size s and binary output. When the
size s is unspecified, it means that the circuit family Cinp,d can have unbounded
size.

2.1 Attribute Based Encryption for Circuits

Attribute based encryption comes in two flavours: key policy or ciphertext policy,
depending on where the policy (represented as a Boolean circuit) is embedded.
We define these next.

Ciphertext Policy Attribute Based Encryption for Circuits. Let C =
{Cinp(λ),d(λ)}λ∈N. A ciphertext policy attribute-based encryption (ABE) scheme
cpABE for C over a message space M = {Mλ}λ∈N consists of four algorithms:

– cpABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary repre-
sentation of the security parameter, the length inp = inp(λ) of the input, the
depth d = d(λ) of the circuit family C to be supported. It outputs the master
public key and the master secret key (cpABE.mpk, cpABE.msk).

– cpABE.Enc(cpABE.mpk, C,m) is a PPT algorithm that takes as input the
master public key cpABE.mpk, circuit C ∈ Cinp(λ),d(λ) and a message m ∈ M.
It outputs a ciphertext cpABE.ct.

– cpABE.KeyGen(cpABE.mpk, cpABE.msk,x) is a PPT algorithm that takes as
input the master public key cpABE.mpk, the master secret key cpABE.msk,
and a a string x ∈ {0, 1}inp and outputs a corresponding secret key cpABE.skx.
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– cpABE.Dec(cpABE.mpk, cpABE.skx,x, cpABE.ct, C) is a deterministic algo-
rithm that takes as input the secret key cpABE.skx, its associated attribute
string x, a ciphertext cpABE.ct, and its associated circuit C and outputs
either a message m′ or ⊥.

Definition 2.1 (Correctness). A ciphertext policy ABE scheme for circuits
cpABE is correct if for all λ ∈ N, polynomially bounded inp and d, all circuits
C ∈ Cinp(λ),d(λ), all x ∈ {0, 1}inp such that C(x) = 1 and for all messages
m ∈ M,

Pr

⎡
⎢⎢⎢⎣

(cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ, 1inp, 1d),
cpABE.skx ← cpABE.KeyGen(cpABE.mpk, cpABE.msk,x),
cpABE.ct ← cpABE.Enc(cpABE.mpk, C,m) :
cpABE.Dec

(
cpABE.mpk, cpABE.skx,x, cpABE.ct, C

)
�= m

⎤
⎥⎥⎥⎦ = negl(λ)

where the probability is taken over the coins of cpABE.Setup, cpABE.KeyGen, and
cpABE.Enc.

Definition 2.2. [Selective Security for cpABE] The ABE scheme cpABE for
a circuit family C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said
to satisfy selective security if for any stateful PPT adversary A, there exists a
negligible function negl(·) such that

AdvcpABE,A(1λ) =
∣∣∣Pr[Exp(0)cpABE,A(1λ) = 1] − Pr[Exp(1)cpABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the exper-
iment Exp

(b)
cpABE,A, modeled as a game between adversary A and a challenger, is

defined as follows:

1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target circuit set
ChalC ⊂ Cinp(λ),d(λ) (of possibly varying sizes), to the challenger. The chal-
lenger samples (cpABE.mpk, cpABE.msk) ← cpABE.Setup(1λ, 1inp, 1d) and
replies to A with cpABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order and unbounded many times.

(a) Key Queries: A chooses an attribute string x ∈ {0, 1}inp that satisfies
C(x) = 0 for all C ∈ ChalC. For each such query, the challenger replies
with cpABE.skx ← cpABE.KeyGen(cpABE.mpk, cpABE.msk,x).

(b) Challenge Queries: A submits a circuit C ∈ ChalC and a pair of equal
length messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies
to A with cpABE.ct ← cpABE.Enc(cpABE.mpk, C,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.3. The above definition allows an adversary to make challenge queries
multiple times. A more standard (equivalent) notion of the security for an ABE
restricts the adversary to make only single challenge query. As in [AMY19], we
adopt the above definition since it is convenient for our purpose.
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Symmetric Key Setting. In the symmetric key setting, the encryption algo-
rithm additionally takes the master secret key as input and the adversary is
permitted to make encryption queries in the security game. As for the security
definition, we modify the above game so that the adversary is allowed to make
the following type of queries in the query phase:

(c) Encryption Queries: A submits a circuit C ∈ Cinp(λ),d(λ) and a pair of
equal length messages m ∈ M to the challenger. The challenger replies to A
with cpABE.ct ← cpABE.Enc(cpABE.msk, C,m).

Unlike challenge queries, there is no restriction on C and the returned cipher-
text may be decryptable by the adversary. Note that we did not have to con-
sider above type of queries in the public key setting since the adversary can
encrypt any message by itself. We also note that in the symmetric key setting,
single-challenge ciphertext security and multi-challenge ciphertext security are
not equivalent. We adopt the latter definition as the default security notion since
it is stronger and more natural.

Definition 2.4 (Efficiency). For λ ∈ N, let Cinp,d denote a family of circuits
with inp bit inputs, bounded depth d and binary output. Let C = {Cinp(λ),d(λ)}λ∈N.
We say a ciphertext policy attribute based encryption scheme cpABE for circuit
class C is efficient if:

1. Setup. The runtime of the setup algorithm, and the size of the public key
depends only on the input length inp and depth bound d of the supported
circuits.

2. Key Generation. For an attribute x, the runtime of the key generation and
size of SK depends on the attribute size |x| and (possibly) on circuit depth d.

3. Encryption and Decryption. The runtime of the encrypt and decrypt
algorithms, as well as the size of ciphertext depend on the size of the given
input circuit |C|.

Our scheme presented in Sect. 3 supports unbounded circuits with the above
efficiency properties.

Relaxation for Bounded Circuits. We also define a relaxed variant of efficiency
for circuits of bounded size. In more detail, for λ ∈ N, let Cinp,d,s denote a family
of circuits with inp bit inputs, bounded depth d, bounded size s and binary
output. Let C = {Cinp(λ),d(λ),s}λ∈N. Then cpABE for circuit class C allows the
setup algorithm to take circuit size bound 1s as input and its runtime depends
on this. However, the runtime of the key generation and size of SK depends
on the attribute size |x| and (possibly) on circuit depth d but not circuit size
bound s. Similarly, the runtime of the encrypt and decrypt algorithms, as well as
the size of ciphertext depend on the size of the given input circuit |C|, and not
on worst case size bound s. Our scheme presented in Sect. 4 supports bounded
circuits with the aforementioned relaxation in the efficiency properties.
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Key Policy Attribute Based Encryption for Circuits. The definition of
key policy attribute based encryption (kpABE) is exactly as above, with the role
of the circuit C and the attribute x switched. For completeness, we provide this
definition below.

For λ ∈ N, let Cinp,d denote a family of circuits with inp bit inputs, an
a-priori bounded depth d, and binary output and C = {Cinp(λ),d(λ)}λ∈N. An
attribute-based encryption (ABE) scheme kpABE for C over a message space
M = {Mλ}λ∈N consists of four algorithms:

– kpABE.Setup(1λ, 1inp, 1d) is a PPT algorithm takes as input the unary repre-
sentation of the security parameter, the length inp = inp(λ) of the input and
the depth d = d(λ) of the circuit family Cinp(λ),d(λ) to be supported. It outputs
the master public key and the master secret key (kpABE.mpk, kpABE.msk).

– kpABE.Enc(kpABE.mpk,x,m) is a PPT algorithm that takes as input the
master public key kpABE.mpk, a string x ∈ {0, 1}inp and a message m ∈ M.
It outputs a ciphertext kpABE.ct.

– kpABE.KeyGen(kpABE.mpk, kpABE.msk, C) is a PPT algorithm that takes as
input the master secret key kpABE.msk and a circuit C ∈ Cinp(λ),d(λ) and
outputs a corresponding secret key kpABE.skC .

– kpABE.Dec(kpABE.mpk, kpABE.skC , C, kpABE.ct,x) is a deterministic algo-
rithm that takes as input the secret key kpABE.skC , its associated circuit
C, a ciphertext kpABE.ct, and its associated string x and outputs either a
message m′ or ⊥.

Definition 2.5 (Correctness). An ABE scheme for circuits kpABE is correct
if for all λ ∈ N, polynomially bounded inp and d, all circuits C ∈ Cinp(λ),d(λ), all
x ∈ {0, 1}inp such that C(x) = 1 and for all messages m ∈ M,

Pr

⎡
⎢⎢⎢⎣

(kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ, 1inp, 1d),
kpABE.skC ← kpABE.KeyGen(kpABE.mpk, kpABE.msk, C),
kpABE.ct ← kpABE.Enc(kpABE.mpk,x,m) :
kpABE.Dec

(
kpABE.mpk, kpABE.skC , C, kpABE.ct,x

)
�= m

⎤
⎥⎥⎥⎦ = negl(λ)

where the probability is taken over the coins of kpABE.Setup, kpABE.KeyGen,
and kpABE.Enc.

Definition 2.6 (Selective Security for kpABE). The ABE scheme kpABE
for a circuit family C = {Cinp(λ),d(λ)}λ∈N and a message space {Mλ}λ∈N is said
to satisfy selective security if for any stateful PPT adversary A, there exists a
negligible function negl(·) such that

AdvkpABE,A(1λ) =
∣∣∣Pr[Exp(0)kpABE,A(1λ) = 1] − Pr[Exp(1)kpABE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N, the exper-
iment Exp

(b)
kpABE,A, modeled as a game between adversary A and a challenger, is

defined as follows:
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1. Setup phase: On input 1λ,A submits (1inp, 1d) and the target X ⊂ {0, 1}inp,
which is a set of binary strings of length inp, to the challenger. The challenger
samples (kpABE.mpk, kpABE.msk) ← kpABE.Setup(1λ, 1inp, 1d) and replies to
A with kpABE.mpk.

2. Query phase: During the game, A adaptively makes the following queries,
in an arbitrary order and unbounded many times.
(a) Key Queries: A chooses a circuit C ∈ Cinp,d that satisfies C(x) = 0 for

all x ∈ X. For each such query, the challenger replies with kpABE.skC ←
kpABE.KeyGen(kpABE.mpk, kpABE.msk, C).

(b) Challenge Queries: A submits a string x ∈ X and a pair of equal length
messages (m0,m1) ∈ (M)2 to the challenger. The challenger replies to
A with kpABE.ct ← kpABE.Enc(kpABE.mpk,x,mb).

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

Remark 2.7. The above definition allows an adversary to make challenge queries
multiple times. More standard notion of the security for an ABE restricts the
adversary to make only a single challenge query. It is well-known that they are
actually equivalent, which is shown by a simple hybrid argument. We adopt the
above definition since it is convenient for our purpose.

Boneh et al. [BGG+14] provided a construction of kpABE which we will
use in our construction of cpABE. The following theorem, provided in [AMY19]
summarizes the efficiency properties of their construction.

Theorem 2.8 (Adapted from [BGG+14]). There exists a selectively secure
ABE scheme kpABE = (kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec)
with the following properties under the LWE assumption.

1. The circuit kpABE.Setup(·, ·, ·; ·), which takes as input 1λ, 1inp, 1d, and a ran-
domness r and outputs kpABE.msk = kpABE.Setup(1λ, 1inp, 1d; r), can be
implemented with depth poly(λ, d). In particular, the depth of the circuit is
independent of inp and the length of the randomness r.

2. We have |kpABE.skC | ≤ poly(λ, d) for any C ∈ Cinp,d, where (kpABE.mpk,
kpABE.msk) ← kpABE.Setup(1λ, 1inp, 1d) and kpABE.skC ← kpABE.KeyGen
(kpABE.mpk, kpABE.msk, C). In particular, the length of the secret key is inde-
pendent of the input length inp and the size of the circuit C.

3. Let C : {0, 1}inp+� → {0, 1} be a circuit such that we have C[v] ∈ Cinp,d for any
v ∈ {0, 1}�. Then, the circuit kpABE.KeyGen(·, ·, C[·]; ·), that takes as input
kpABE.mpk, kpABE.msk, v, and randomness R̂ and outputs kpABE.KeyGen(
kpABE.mpk, kpABE.msk, C[v]; R̂), can be implemented with depth depth(C) ·
poly(λ, d).

2.2 Key Policy Functional Encryption for Circuits

For λ ∈ N, let Cinp,d,out denote a family of circuits with inp bit inputs, depth d,
and output length out and C = {Cinp(λ),d(λ),out(λ)}λ∈N. A functional encryption
(FE) scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for C consists of four
algorithms:
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– FE.Setup(1λ, 1inp, 1d, 1out) is a PPT algorithm takes as input the unary rep-
resentation of the security parameter, the length inp = inp(λ) of the input,
depth d = d(λ), and the length of the output out = out(λ) of the circuit fam-
ily Cinp(λ),d(λ),out(λ) to be supported. It outputs the master public key FE.mpk
and the master secret key FE.msk.

– FE.KeyGen(FE.mpk,FE.msk, C) is a PPT algorithm that takes as input the
master public key FE.mpk, master secret key FE.msk, and a circuit C ∈
Cinp(λ),d(λ),out(λ) and outputs a corresponding secret key FE.skC . We assume
that FE.skC contains C and FE.mpk.

– FE.Enc(FE.mpk,x) is a PPT algorithm that takes as input the master public
key FE.mpk and an input message x ∈ {0, 1}inp(λ) and outputs a ciphertext
FE.ct.

– FE.Dec(FE.mpk,FE.skC ,FE.ct) is a deterministic algorithm that takes as input
the master public key FE.mpk, a secret key FE.skC and a ciphertext FE.ct and
outputs C(x).

Definition 2.9 (Correctness). A functional encryption scheme FE is correct
if for all C ∈ Cinp(λ),d(λ),out(λ) and all x ∈ {0, 1}inp(λ),

Pr

⎡
⎢⎣

(FE.mpk,FE.msk) ← FE.Setup(1λ, 1inp(λ), 1d(λ), 1out(λ));
ct ← FE.Enc(FE.mpk,x);
FE.Dec

(
FE.mpk,FE.KeyGen(FE.mpk,FE.msk, C), ct

)
�= C(x)

⎤
⎥⎦ = negl(λ)

where the probability is taken over the coins of FE.Setup, FE.KeyGen, FE.Enc
and, FE.Dec).

We then define full simulation based security for single key FE as in [GKP+13,
Defn 2.13].

Definition 2.10 (FULL-SIM Security). Let FE be a functional encryption
scheme for a circuits. For a stateful PPT adversary A and a stateless PPT
simulator Sim, consider the following two experiments:

ExprealFE,A(1λ): ExpidealFE,Sim(1λ):

1: (1inp, 1d, 1out) ← A(1λ)
2: (FE.mpk,FE.msk)

← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC

← FE.KeyGen(FE.mpk,FE.msk, C)
5: α ← AFE.Enc(FE.mpk,·)(FE.mpk,FE.skC)

1: (1inp, 1d, 1out) ← A(1λ)
2: (FE.mpk,FE.msk)

← FE.Setup(1λ, 1inp, 1d, 1out)
3: C ← A(FE.mpk)
4: FE.skC

← FE.KeyGen(FE.mpk,FE.msk, C)
5: α ← AO(·)(FE.mpk,FE.skC)
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Here, O(·) is an oracle that on input x from A, runs Sim with inputs
(FE.mpk, skC , C, C(x), 1inp) to obtain a ciphertext FE.ct and returns it to the
adversary A.

The functional encryption scheme FE is then said to be single query
FULL-SIM secure if there exists a PPT simulator Sim such that for
every PPT adversary A, the following two distributions are computationally
indistinguishable: {

ExprealFE,A(1λ)
}

λ∈N

c≈
{
ExpidealFE,Sim(1λ)

}
λ∈N

Remark 2.11. Our definition of FULL-SIM security game for FE differs from
[GKP+13] in that we allow the adversary to access challenge oracle (either O(·)
or FE.Enc(FE.mpk, ·)) as many times as it wants whereas they only allow one-
time access. However, it can be seen that these definitions are equivalent by a
simple hybrid argument because the simulation of FE.Enc(·) and O(·) does not
require any secret information.

Gorbunov et al. [GKP+13] provided a construction of single key functional
encryption from the learning with errors assumption. The following theorem sum-
marizes the efficiency properties of their construction.

Theorem 2.12 ([GKP+13]). There exists an FE scheme FE = (FE.Setup,FE.
KeyGen,FE.Enc,FE.Dec) with the following properties.

1. For any polynomially bounded inp(λ), d(λ), out(λ), all the algorithms in FE
run in polynomial time. Namely, the running time of FE.Setup and FE.Enc
do not depend on the size of circuit description to be supported by the scheme.

2. Assuming the subexponential hardness of the LWE problem, the scheme sat-
isfies full-simulation-based security.

We note that the first property above is called succinctness or semi-compactness
of FE. A stronger version of the efficiency property called compactness requires
the running time of the encryption algorithm to be dependent only on the length of
input message x. An FE with compactness is known to imply indistinguishability
obfuscation [AJ15,BV15].

IND Based Security for Unbounded Keys. A functional encryption
scheme FE for a function family C is secure in the adaptive indistinguishability
game, denoted as ind secure, if for all probabilistic polynomial-time adversaries
Adv, the advantage of Adv in the following experiment is negligible in the security
parameter λ:

1. Public Key. Challenger Ch returns FE.mpk to Adv.
2. Pre-Challenge Key Queries. Adv may adaptively request keys for any

circuits C1, . . . , C� ∈ C. In response, Adv is given the corresponding keys
FE.skCi

.
3. Challenge. Adv outputs the challenges (x0,x1) to the challenger, subject to

the restriction that Ci(x0) = Ci(x1) for all i ∈ [�]. The challenger chooses a
random bit b, and returns the ciphertext CTxb

.
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4. Post-Challenge Key Queries. The adversary may continue to request keys
for additional functions Ci, subject to the restriction that Ci(x0) = Ci(x1) for
all i. In response, Adv is given the corresponding keys FE.skCi

.
5. Guess. Adv outputs a bit b′, and succeeds if b′ = b.

The advantage of Adv is the absolute value of the difference between its success
probability and 1/2. In the selective game, the adversary must announce the
challenge in the first step, before receiving the public key. Note that without loss
of generality, in the selective game, the challenge ciphertext can be returned along
with the public key. In the semi-adaptive game, the adversary must announce the
challenge after seeing the public key but before making any key requests.

Symmetric Key Variant. The symmetric key variant of the above definition
follows naturally by removing the public key FE.mpk from all the algorithms, and
providing the encryptor the master secret key FE.msk. In the security definition,
the adversary may request encryption queries in addition to the key queries.

2.3 Predicate Encryption for Circuits

A (Key-Policy) Predicate Encryption scheme PE for an attribute universe X , a
predicate universe C, and a message space M, consists of four algorithms
(PE.Setup,PE.Enc,PE.KeyGen,PE.Dec):

PE.Setup(1λ,X , C,M) → (PE.mpk,PE.msk). The setup algorithm gets as
input the security parameter λ and a description of (X , C,M) and outputs
the public parameter PE.mpk, and the master key PE.msk.
PE.Enc(PE.mpk,x, μ) → CT. The encryption algorithm gets as input PE.mpk,
an attribute x ∈ X and a message μ ∈ M. It outputs a ciphertext CT.
PE.KeyGen(PE.msk, C) → SKC . The key generation algorithm gets as input
PE.msk and a predicate C ∈ C. It outputs a secret key SKC .
PE.Dec((SKC , C),CT) → μ ∨ ⊥. The decryption algorithm gets as input the
secret key SKC , a predicate C, and a ciphertext CT. It outputs a message
μ ∈ M or ⊥.

Correctness. We require that for all (PE.mpk,PE.msk) ← PE.Setup(1λ,X , C,M),
for all (x, C) ∈ X × C and for all μ ∈ M,

– For 1-queries, namely C(x) = 1,
[
PE.Dec

(
(SKC , C),CT

)
= μ

]
≥ 1 − negl(λ)

– For 0-queries, namely C(x) = 0,
[
PE.Dec

(
(SKC , C),CT

)
= ⊥

]
≥ 1 − negl(λ)

Semi-Adaptive Simulation Security. Below, we define the SA-SIM security
experiment for predicate encryption (PE) similarly to Gorbunov et al. [GVW15].

Definition 2.13 (SA-SIM Security). Let PE be a predicate encryption scheme
for a circuit family C. For every stateful p.p.t. adversary Adv and a stateful p.p.t.
simulator Sim, consider the following two experiments:
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ExprealPE,Adv(1
λ): ExpidealPE,Sim(1λ):

1: (PE.mpk,PE.msk) ← PE.Setup(1λ)
2: x ← Adv(PE.mpk)
3: μ ← AdvPE.KeyGen(PE.msk,·)(PE.mpk)
4: CT ← PE.Enc

(
PE.mpk,x, μ

)
5: α ←AdvPE.KeyGen(PE.msk,·)(CT)
6: Output (x, μ, α)

1: PE.mpk ← Sim(1λ)
2: x ← Adv(PE.mpk)
3: μ ← AdvSim(PE.mpk)
4: CT ← Sim (PE.mpk, 1|x|, 1|μ|)
5: α ←AdvSim(CT)
6: Output (x, μ, α)

We say an adversary Adv is admissible if for all queries C that it makes, it
holds that C(x) = 0.

The predicate encryption scheme PE is said to be SA-SIM-attribute hiding if
there exists a p.p.t. simulator Sim such that for every admissible p.p.t. adversary
Adv, the following two distributions are computationally indistinguishable:{

ExprealPE,Adv(1
λ)

}
λ∈N

c≈
{
ExpidealPE,Sim(1λ)

}
λ∈N

Symmetric Key Variant. The symmetric key variant of the above definition
follows naturally by removing the public key PE.mpk from all the algorithms, and
providing the encryptor the master secret key PE.msk. In the security definition,
the adversary is given access to the encryption oracle in addition to the key
generation oracle.

Ciphertext Policy Variant. The ciphertext policy variant of the above definition
reverses the role of the ciphertext and key. In more detail, the ciphertext encodes
the circuit C along with message μ, and the secret key contains the attribute
x. We require that the running time of the key generation algorithm does not
depend on the size of the circuit |C| (but may depend on its depth).

2.4 Function Hiding Symmetric Key Predicate Encryption

A Function Hiding Symmetric Key Predicate Encryption scheme FHPE for an
attribute universe X , a predicate universe C, and a message space M, consists
of four algorithms (FHPE.Setup,FHPE.Enc,FHPE.KeyGen,FHPE.Dec):

FHPE.Setup(1λ,X , C,M) → FHPE.msk. The setup algorithm gets as input the
security parameter λ and a description of (X , C,M) and outputs the master
key FHPE.msk.

FHPE.Enc(FHPE.msk,x, μ) → CT. The encryption algorithm gets as input
FHPE.msk, an attribute x ∈ X and a message μ ∈ M. It outputs a ciphertext
CT.

FHPE.KeyGen(FHPE.msk, C) → SKC . The key generation algorithm gets as
input FHPE.msk and a predicate C ∈ C. It outputs a secret key SKC .

FHPE.Dec(SKC ,CT) → μ∨⊥. The decryption algorithm gets as input the secret
key SKC and a ciphertext CT. It outputs a message μ ∈ M or ⊥.
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Correctness. We require that for all (FHPE.msk) ← FHPE.Setup(1λ,X , C,M),
for all (x, C) ∈ X × C and for all μ ∈ M,

– For 1-queries, namely C(x) = 1, Pr
[
PE.Dec

(
SKC ,CT

)
= μ

]
≥ 1 − negl(λ)

– For 0-queries, namely C(x) = 0, Pr
[
PE.Dec

(
SKC ,CT

)
= ⊥

]
≥ 1 − negl(λ)

Function Hiding IND Security. The standard function hiding indistinguisha-
bility game for secret key predicate encryption may be defined as follows.

Definition 2.14 (Function hiding IND Security). A symmetric key predi-
cate encryption scheme PE is function-hiding, if every admissible PPT adversary
Adv has negligible advantage in the following game:

1. Key Generation. The challenger Ch samples msk ← FHPE.Setup(1λ).
2. The challenger Ch chooses a random bit b and repeats the following with Adv

for an arbitrary number of times determined by Adv:
– Function Queries. Upon Adv choosing a pair of functions (C0, C1), Ch

sends Adv a function key SK ← FHPE.KeyGen(msk, Cb).
– Message Queries. Upon Adv choosing a pair of attribute vectors (x0,x1)

and a message μ, Ch sends Adv a ciphertext CT ← FHPE.Enc(msk,xb, μ).
3. The adversary outputs a guess b′ for the bit b and wins if b = b′.

We say an adversary is admissible if for all function and message queries, it holds
that C0(x0) = C1(x1) = 0.

On Ciphertext Queries. A natural game would also allow the adversary to
request ciphertexts for attribute vectors x0,x1 and message μ0 = μ1 = μ such
that C0(x0) = C1(x1) = 1, enabling the adversary to recover μ. However, as
we show in Sect. 5.3, such a game renders the primitive strong enough to imply
symmetric key functional encryption, which in turn is sufficient to imply iO
[BNPW16].

Function Hiding SIM Security. Below, we define attribute and function
hiding SA-SIM security for predicate encryption (FHPE).

Definition 2.15 (Function Hiding SA-SIM Security). Let FHPE be a func-
tion hiding, symmetric key predicate encryption scheme for a circuit family C.
For every stateful p.p.t. adversary Adv and a stateful p.p.t. simulator Sim, con-
sider the following two experiments:

ExprealPE,Adv(1
λ): ExpidealPE,Sim(1λ):

1: FHPE.msk ← FHPE.Setup(1λ)
2: {x∗

i }i∈poly ← Adv(1λ)
3: {μ∗

i }i∈poly, {C∗
i }i∈poly ← AdvO(msk,·)

4: {CTi ← FHPE.Enc
(
msk,xi, μ

∗
i

)}i

5: {SKC∗
i

← FHPE.KeyGen(msk, C∗
i )}i

6: α ←AdvO(msk,·)({CT}i, {SKC∗
i
}i)

7: Output ({x∗
i , μ

∗
i }i, {C∗

i }i, α)

1: {x∗
i }i∈poly ← Adv(1λ)

2: {μ∗
i }i∈poly, {C∗

i }i∈poly ← AdvSim

3: {CT}i, {SKC∗
i
}i

← Sim ({1|x∗
i |, 1|μ∗

i |}i, {1|C∗
i |}i)

4: α ←AdvSim({CTi}i, {SKC∗
i
}i)

5: Output ({x∗
i , μi}i, {C∗

i }i, α)
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Above, O is an oracle that upon receiving attribute and circuit queries
from the adversary, returns ciphertexts and keys by running FHPE.Enc and
FHPE.KeyGen respectively.

We say an adversary Adv is admissible if for all circuit queries Ci and chal-
lenge circuits C∗

i , and for all attribute queries xj and challenge attributes x∗
j , it

holds that Ci(xj) = C∗
i (xj) = Ci(x∗

j ) = C∗
i (x∗

j ) = 0.
The symmetric key predicate encryption scheme PE is said to be SA-SIM

secure with attribute and function hiding if there exists a p.p.t. simulator Sim
such that for every admissible p.p.t. adversary Adv, the following two distribu-
tions are computationally indistinguishable:{

ExprealPE,Adv(1
λ)

}
λ∈N

c≈
{
ExpidealPE,Sim(1λ)

}
λ∈N

Adaptive Variant of Security. We can consider stronger variant of the above
security definition where the adversary interleaves the challenge queries x∗

i and
C∗

i in an arbitrary order instead of submitting them at the beginning of the
game. We call this security notion adaptive simulation function hiding security.

On Ciphertext Queries. We note that the above definition restricts the adver-
sary in its encryption queries. A more natural game would allow an adversary to
request a key for a circuit C and encryption for pair (x, μ) such that C(x) = 1.
This enables the adversary to recover μ but intuitively does not violate secu-
rity since μ was picked by the adversary. However, as discussed in the case of
IND based function hiding, such a game renders the primitive strong enough to
imply symmetric key functional encryption, which in turn is sufficient to imply
iO [BNPW16].

3 Secret Key CP-ABE for Unbounded Circuits

We construct a secret key ciphertext policy ABE scheme for a family of
circuits Cn,d with n bit inputs, an a-priori bounded depth d, and binary
output. Our scheme is denoted by cpABE = (cpABE.Setup, cpABE.KeyGen,
cpABE.Enc, cpABE.Dec) and is constructed using the following ingredients:

1. PRF = (PRF.Setup,PRF.Eval): a pseudorandom function, where a PRF key
K ← PRF.Setup(1λ) defines a function PRF.Eval(K, ·) : {0, 1}λ → {0, 1}. We
denote the length of K by |K|.

2. FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec): a functional encryption scheme
for circuit with the efficiency property described in Item 1 of Theo-
rem 2.12. We can instantiate FE with the scheme proposed by Goldwasser
et al. [GKP+13].

3. kpABE = (kpABE.Setup, kpABE.KeyGen, kpABE.Enc, kpABE.Dec): An ABE
scheme that satisfies the efficiency properties described in Theorem 2.8. We
can instantiate kpABE with the scheme proposed by Boneh et al. [BGG+14].
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4. U(·, ·): a universal circuit [CH85] that takes as input a circuit C of fixed
depth and size and an input x to the circuit and outputs C(x). We will
denote by Uy(·, ·) the above circuit when the size of the first input C is y.
We denote by Uy[x](·) = U(·,x) the above circuit with the second input x
being hardwired. By the construction of universal circuit [CH85], we have
depth(U) ≤ O(depth(C)).

Below we provide our construction for secret key CP-ABE for circuits.
Below, we overload notation and denote the randomness used in a PPT algo-
rithm by a key K of a pseudorandom function PRF. Namely, for a PPT
algorithm (or circuit) A that takes as input x and a randomness r ∈
{0, 1}� and outputs y, A(x;K) denotes an algorithm that computes r :=
PRF.Eval(K, 1)‖PRF.Eval(K, 2)‖ · · · ‖PRF.Eval(K, �) and runs A(x; r).

cpABE.Setup(1λ, 1n, 1d): On input the security parameter 1λ and the input length
n and depth d of the circuit family, do the following:
1. For all j ∈ [0, λ], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).
2. For all j ∈ [0, λ], sample (FE.mpkj ,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1out(λ),

1d(λ)).
Here, we generate λ + 1 instances of FE. Note that all instances support
a circuit class with input length inp(λ) = n + 2|K|, output length out(λ),
and depth d(λ), where out(λ) and d(λ) are polynomials in the security
parameter that will be specified later.

3. Output cpABE.msk = ({K̂j ,Rj ,FE.mpkj ,FE.mskj}j∈[0,λ]).

cpABE.Enc(cpABE.msk, C,m): On input the master secret key cpABE.msk, a
circuit C ∈ Cn,d, and a message m ∈ M, do the following:
1. Parse the master secret key as cpABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.

mskj}j∈[0,λ]).
2. Pad the circuit length to the next power of two: Let � = |C| and i = �log ��.

Set Ĉ = C‖⊥2i−�.
3. Sample a fresh kpABE scheme to support inputs of size |Ĉ|: Compute a

kpABE key pair

(kpABE.mpki, kpABE.mski) = kpABE.Setup(1λ, 12
i

, 1d̂; K̂i)

Here K̂i is the randomness and d̂ is a parameter chosen later.
4. Compute kpABE.ct ← kpABE.Enc(kpABE.mpki, Ĉ,m) as an kpABE cipher-

text for the message m under attribute Ĉ.
5. Obtain FE.ski = FE.KeyGen(FE.mpki,FE.mski, Fn,2i ;Ri), where Fn,2i is a

circuit described in Fig. 1.
6. Output cpABE.ct = (FE.ski, kpABE.mpki, kpABE.ct).
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Fig. 1. The definition of Fn,2i

cpABE.KeyGen(cpABE.msk,x): On input the master secret key cpABE.msk and
the attribute vector x, do the following:

1. Parse the master secret key as cpABE.msk→ ({K̂j ,Rj ,FE.mpkj ,FE.
mskj}j∈[0,λ]).

2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, λ].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (x, K̂j , R̂j)) for all j ∈ [0, λ].
4. Output cpABE.skx = {FE.ctj}j∈[0,λ].

cpABE.Dec(cpABE.skx,x, cpABE.ct, C): On input a secret key for attribute vec-
tor x and a ciphertext encoded for circuit C, do the following:

1. Parse the secret key as cpABE.skx = {FE.ctj}j∈[0,λ] and the ciphertext as
cpABE.ct = (FE.ski, kpABE.mpki, kpABE.ct).

2. Set � = |C| and choose FE.cti from cpABE.skx = {FE.ctj}j∈[0,λ] such that
i = �log �� < λ.

3. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
4. Compute and output z = kpABE.Dec(kpABE.mpki, y, U2i [x], kpABE.cti,

Ĉ), where we interpret y as an ABE secret key and Ĉ = C‖⊥2i−�.

Efficiency. The following theorem asserts that our scheme is efficient.

Theorem 3.1. For appropriately chosen d̂(λ), out(λ), and d(λ), each algorithm
of our scheme cpABE runs in polynomial time of input length.

Correctness. Intuitively, correctness follows directly from the correctness of
kpABE and FE. The following theorem shows that our scheme is correct.

Theorem 3.2. For appropriately chosen d̂(λ), out(λ), and d(λ), our scheme
cpABE is correct for any polynomially bounded n(λ).

Security. We can prove that if FE and kpABE are secure then so is the cpABE
defined above. Formally, we have the following theorem.

Theorem 3.3. Assume that FE satisfies full simulation based security, kpABE
is selectively secure, and that PRF is a secure pseudorandom function. Then,
cpABE satisfies selective security.

The proof of the above theorems will appear in the full version.
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4 Public Key CP-ABE for Bounded Circuits

In this section, we construct a public key ciphertext policy ABE scheme for
bounded sized circuits Cn,d,s, where n is the input length, d is the depth and s is
the upper bound of the size . In our construction, the size of the secret key and
ciphertext satisfy the efficiency properties desired from CP-ABE (Definition 2.4).
Additionally, the running time of the encrypt and decrypt algorithms depend
only on the size of the circuit C and not on the worst case circuit size s. However,
the running time of the setup algorithm grows with the size s of the circuits
supported by the scheme. We note that the inefficiency of setup is mitigated
since it is only run once.

We provide the construction next.

cpABE.Setup(1λ, 1n, 1d, 1s): On input the security parameter λ and the input
length n, depth d and the upper bound of the size s of the circuit family, set
η := �log s� and do the following:

1. For all j ∈ [0, η], sample PRF keys K̂j ,Rj ← PRF.Setup(1λ).
2. For all j ∈ [0, η], sample (kpABE.mpkj , kpABE.mskj) = kpABE.Setup

(1λ, 12
j

, 1d̂; K̂j). Here, d̂ is the depth of the universal circuit U(·, ·) for
circuits of size s ≥ 2j and depth d.

3. For all j ∈ [0, η], sample (FE.mpkj ,FE.mskj) ← FE.Setup(1λ, 1inp(λ), 1out(λ),
1d(λ)). Here, input length inp = n + 2|K|, output length out is the length
of the kpABE secret key, and depth d̃ is the depth of the kpABE.KeyGen
algorithm.

4. For all j ∈ [0, η], obtain FE.skj = FE.KeyGen(FE.mpkj ,FE.mskj , Fn,2j ;Rj),
where Fn,2j is a circuit described in Fig. 2.

5. Output cpABE.mpk = ({FE.mpkj , kpABE.mpkj ,FE.skj}j∈[0,η]) and cpABE.

msk = ({K̂j}j∈[0,η]).

cpABE.Enc(cpABE.mpk, C,m): On input the master public key cpABE.mpk, a
circuit C of size |C| = �, and a message m ∈ M, do the following:

1. Parse the master public key as cpABE.mpk → ({FE.mpkj , kpABE.mpkj ,
FE.skj}j∈[0,η]).

2. Pad the circuit length to the next power of two: Set i = �log �� and Ĉ =
C‖⊥2i−�.

3. Compute kpABE.ct ← kpABE.Enc(kpABE.mpki, Ĉ,m) as an kpABE cipher-
text for the message m under attribute Ĉ.

4. Output cpABE.ct = kpABE.ct.
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Fig. 2. The definition of Fn,2i

cpABE.KeyGen(cpABE.mpk, cpABE.msk,x): On input the master secret key
cpABE.msk and the attribute vector x, do the following:

1. Parse the master public key as cpABE.mpk → ({FE.mpkj , kpABE.mpkj ,

FE.skj}j∈[0,η]) and the master secret key as cpABE.msk → ({K̂j}j∈[0,η]).
2. Sample R̂j ← PRF.Setup(1λ) for all j ∈ [0, η].
3. Compute FE.ctj = FE.Enc(FE.mpkj , (x, K̂j , R̂j)) for all j ∈ [0, η].
4. Output cpABE.skx = {FE.ctj}j∈[0,η].

cpABE.Dec(cpABE.mpk, cpABE.skx,x, cpABE.ct, C): On input a secret key for
attribute vector x and a ciphertext encoded for circuit C, do the following:

1. Parse the secret key as cpABE.skx = {FE.ctj}j∈[0,λ] and the ciphertext as
cpABE.ct = kpABE.ct.

2. Compute y = FE.Dec(FE.mpki,FE.ski,FE.cti).
3. Compute and output z = kpABE.Dec(kpABE.mpki, y, U2i [x], kpABE.ct, C),

where we interpret y as an ABE secret key.

Correctness and Efficiency. Correctness is evident from correctness of FE and
kpABE. By correctness of FE, we get that y = kpABE.skU2i [x]

. By correctness of
kpABE we get that z = m iff U2i [x](C) = C(x) = 1.

Next, we discuss the efficiency of the above scheme. We assume that each
algorithm has RAM access to cpABE.mpk. Note that the encryption algorithm
runs in time that depends only on the size of the input circuit |C| and not on
s. The key generation algorithm runs in polynomial time in |x| and λ, and the
decryption algorithm runs in polynomial time in |C|, |x|, and λ. Thus, the above
scheme satisfies the relaxed efficiency of Definition 2.4. Note that this efficiency
property does not hold if we remove the assumption that each algorithm has
RAM access to cpABE.mpk, since the length of cpABE.mpk, which is input to
these algorithms, is polynomially dependent on s.

Security. The proof of security directly follows from the secret key case (Sect. 3).
In more detail, we have the following theorem. The proof of the theorem will
appear in the full version.
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Theorem 4.1. Assume that FE satisfies full simulation based security (Defini-
tion 2.10), kpABE satisfies selectively security (Definition 2.6), and that PRF is
a secure pseudorandom function. Then, the public key cpABE described above
satisfies selective security (Definition 2.2).

5 Function Hiding Predicate Encryption for Circuits

In this section, we provide a construction for function hiding predicate encryption
in the symmetric key setting. Let the attribute universe be X , the predicate
universe be C, the message space be M. Then, we construct the algorithms
(FHPE.Setup,FHPE.Enc,FHPE.KeyGen,FHPE.Dec) as follows:

FHPE.Setup(1λ,X , C,M): The setup algorithm gets as input the security param-
eter λ and a description of (X , C,M) and does the following:

1. Sample a symmetric key encryption scheme SKE. Let SKE.SK ←
SKE.Setup(1λ).

2. Sample a symmetric key predicate encryption scheme PE without function
hiding. Let PE.msk ← PE.Setup(1λ).

3. Output FHPE.msk = (PE.msk,SKE.SK).

FHPE.Enc(FHPE.msk,x, μ): The encryption algorithm gets as input FHPE.msk,
an attribute x ∈ X , a message μ ∈ M, and does the following:

1. Interpret FHPE.msk = (PE.msk,SKE.SK).
2. Define a = (x,SKE.SK) and compute CT ← PE.Enc(PE.msk,a, μ).
3. Output CT.

FHPE.KeyGen(FHPE.msk, C): The key generation algorithm gets as input
FHPE.msk, a predicate C ∈ C and does the following:

1. Let Ĉ = SKE.Enc(SKE.SK, C).
2. Define the circuit UĈ(·) as in Fig. 3.
3. Compute SKC = PE.KeyGen(PE.msk, UĈ) and output it.

Fig. 3. The definition of UĈ

FHPE.Dec(SKC ,CT): The decryption algorithm gets as input the secret key SKC

and a ciphertext CT, runs PE.Dec(SKC ,CT) and outputs it.
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Correctness. Correctness follows directly from the correctness of PE and SKE.
Note that, by correctness of PE we have that PE.Dec(SKC ,CT) = UĈ(x,SKE.SK).
Next, by correctness of SKE we have SKE.Dec(Ĉ,SKE.SK) = C. Hence decryp-
tion outputs μ if and only if UĈ(x,SKE.SK) = C(x) = 1.

Security. Next, we prove that the above construction satisfies function hiding
as defined in Sect. 2.4. In more detail, we have:

Theorem 5.1. Suppose that PE is a symmetric key predicate encryption scheme
satisfying SA-SIM7 attribute hiding (Definition 2.13) and SKE is a semantically
secure symmetric key encryption scheme. Then the function hiding predicate
encryption scheme FHPE described above satisfies SA-SIM attribute and function
hiding (Definition 2.15).

The proof of the theorem will appear in the full version.

5.1 Instantiating Function Hiding PE from Concrete Assumptions

In this section, we provide instantiations of function hiding predicate encryption
from concrete assumptions.

Semi-adaptively Secure Constructions for Circuits from LWE. Here, we explain
that we can construct adaptively secure function hiding PE scheme for circuits
from LWE. To do so, we start with semi-adaptively secure ABE for circuits
[BV16,GKW16]. This construction can be upgraded to be PE by using lock-
able obfuscation [GKW17,WZ17]. Plugging the obtained PE scheme into our
construction, we obtain the following theorem:

Theorem 5.2. Assuming LWE, we have function hiding SA-SIM secure predi-
cate encryption for all polynomial sized circuits.

Adaptive Simulation Secure Constructions for NC1 Circuits from Bilinear Maps
and LWE. The above construction only achieves selective security. Here, we
explain that we can construct adaptive simulation secure function hiding PE
scheme for NC1 circuits by additionally using bilinear maps. To do so, we start
with adaptively secure KP-ABE scheme for NC1 circuits [CGW15,KW19] from
the decisional linear (DLIN) assumption on bilinear groups. By applying the
ABE-to-PE conversion using lockable obfuscation [GKW17,WZ17], we obtain
an adaptively secure (key-policy) PE scheme for NC1 circuits from the DLIN
assumption and the LWE assumption. We can further upgrade its security to
adaptive simulation security by the conversion shown by [GKW17, Appendix
F]. We then instantiate our construction with this PE scheme. To do so, we
need that UĈ is implementable by an NC1 circuit. It suffices to show that we
can implement Step 2a and 2c of UĈ by an NC1 circuit. The former is possible
by instantiating the underlying SKE scheme with the secret key version of the
7 We note that for PE, IND based security can be bootstrapped into SIM based

security as shown by [GKW17, Appendix F].
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Regev encryption scheme [Reg09], which has NC1 decryption circuit. The latter
is also possible by using the depth-preserving universal circuit [CH85] that takes
as input C and x and outputs C(x) and whose depth is only constant time deeper
than the depth of C. Summarizing the above discussion, we have the following
theorem.

Theorem 5.3. Assuming LWE assumption and DLIN, we have function hiding
adaptive simulation secure predicate encryption for NC1 circuits.

5.2 Ciphertext Policy Predicate Encryption with Function Hiding

Above, we presented a construction for function hiding predicate encryption in
the key policy setting. Now, we leverage this to provide a construction for func-
tion hiding predicate encryption in the ciphertext policy setting. Note that the
construction for cpABE presented in Sect. 3 constructions uses a single key func-
tional encryption scheme (FE) along with a key policy attribute based encryption
scheme (kpABE) in a modular way. We claim that if we replace the kpABE scheme
with a function hiding predicate encryption scheme constructed above, then the
resultant scheme achieves attribute and function hiding as well. We refer the
reader to the full version for more details.

5.3 Strong Function Hiding Implies iO

The function hiding predicate encryption scheme we constructed above achieves
the weaker notion of security of Definition 2.14. As discussed in Sect. 1, if we
have a scheme that satisfies a stronger, more natural version of the security, we
can construct an iO from this scheme. We refer the reader to the full version for
more details.
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Abstract. Broadcast Encryption with optimal parameters was a long-
standing problem, whose first solution was provided in an elegant work
by Boneh, Waters and Zhandry [BWZ14]. However, this work relied on
multilinear maps of logarithmic degree, which is not considered a stan-
dard assumption. Recently, Agrawal and Yamada [AY20] improved this
state of affairs by providing the first construction of optimal broadcast
encryption from Bilinear Maps and Learning With Errors (LWE). How-
ever, their proof of security was in the generic bilinear group model. In
this work, we improve upon their result by providing a new construction
and proof in the standard model. In more detail, we rely on the Learning
With Errors (LWE) assumption and the Knowledge of OrthogonALity
Assumption (KOALA) [BW19] on bilinear groups.

Our construction combines three building blocks: a (computational)
nearly linear secret sharing scheme with compact shares which we con-
struct from LWE, an inner-product functional encryption scheme with
special properties which is constructed from the bilinear Matrix Decision
Diffie Hellman (MDDH) assumption, and a certain form of hyperplane
obfuscation, which is constructed using the KOALA assumption. While
similar to that of Agrawal and Yamada, our construction provides a new
understanding of how to decompose the construction into simpler, modu-
lar building blocks with concrete and easy-to-understand security require-
ments for each one. We believe this sheds new light on the requirements
for optimal broadcast encryption, which may lead to new constructions
in the future.

1 Introduction

Broadcast encryption [FN94] (BE) is a novel form of encryption that enables a
sender to transmit a single ciphertext over a broadcast channel so that only an
authorized subset S of total N users can decrypt and recover the message. Secu-
rity requires that no collusion of unauthorized users can learn anything about the
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encrypted message with non-negligible advantage. Evidently, broadcast encryp-
tion is implied by public key encryption if no restriction is placed on the size
of the ciphertext. However, the size of the ciphertext in broadcast encryption
is of paramount importance, and is quantified in terms of ciphertext overhead,
namely, the size of the ciphertext not counting the description of the recipient
set S. Thus, in an optimal solution, the ciphertext overhead would be of size
proportional to a symmetric encryption of the plaintext message (upto constant
factors), aside from the description of S which is provided in the clear.

In a celebrated work, Boneh, Gentry and Waters [BGW05] provided the first
construction of broadcast encryption which achieved both optimal (constant)
ciphertext overhead and short secret keys, but suffered from large public parame-
ters, namely, linear in the number of users N . A series of elegant works provided
improvements to this scheme [GW09,DPP07,Del07,SF,AL10,HWL+16,BZ17]
achieving many interesting new features such as anonymity, adaptive security
and such others, but failed to improve the size of the public parameters. In 2014,
Boneh, Waters and Zhandry [BWZ14] provided the first solution to the long
standing problem of BE with optimal parameters, but their construction relied
on the existence of multilinear maps of degree log N , which is not considered
a standard assumption. Recently, Agrawal and Yamada [AY20] improved the
state of affairs by achieving the same parameters from the learning with errors
assumption (LWE) along with assumptions on bilinear maps. However, this con-
struction [AY20] could only be proven secure in the generic bilinear group model.
Independently, Brakerski and Vaikuntanathan [BV20] also provided a construc-
tion of BE with optimal parameters from new assumptions on lattices, but they
were unable to provide a proof of security for their scheme.

While encouraging, this state of affairs nevertheless leaves much to be desired.
It is evident that for a primitive as important as broadcast encryption, we would
like to have a proof from well-studied standard assumptions, and in the standard
model. However, so far such a construction has been elusive.

Our Results. In this work, we make further progress towards this goal and
provide the first construction for broadcast encryption with optimal parameters,
from Learning with Errors (LWE) [Reg09] and the Knowledge of OrthogonALity
Assumption (KOALA) [BW19] in the standard model. While similar to that of
Agrawal and Yamada, our construction provides a new understanding of how to
decompose the construction into simpler, modular building blocks with concrete
and easy-to-understand security requirements for each one. We believe this sheds
new light on the requirements for optimal broadcast encryption, which may lead
to new constructions in the future.

In more detail, as in [AY20], we provide a construction for ciphertext-policy
attribute based encryption (cpABE) for NC1 circuits, such that its ciphertext
size, secret key size, and public key size are all independent of the size of the
circuits supported by the scheme, and depend only on their input length and
depth. Recall that in a cpABE scheme, a ciphertext for a message m is associated
with a function (policy) f , and secret keys are associated with public attributes
x from the domain of f . Decryption succeeds to yield the hidden message m if
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and only if the attribute satisfies the policy, namely f(x) = 1. To see BE as a
special case of cpABE, note that the circuit embedded in the ciphertext (FS , say)
can check for membership of a given user index in a set of authorised recipients
S, and the attributes x may encode a user’s index in the set N . Thus, a user i
holds a secret key for attributes i and can decrypt a ciphertext associated with
S if and only if i is a member of S. As observed in [AY20], the depth and input
length of the circuit FS are logarithmic in N , so it suffices to construct cpABE
with parameters independent of the width of FS , which is linear in N .

Building upon the construction of [AY20], we provide a new cpABE for NC1

from the Learning with Errors (LWE) [Reg09] and the Knowledge of Orthogo-
nALity Assumption (KOALA) [BW19]. The LWE assumption introduced in the
seminal work of Regev [Reg09] enjoys worst case to average case hardness guar-
antees and is widely considered a standard assumption in the literature. The
KOALA assumption introduced by Beullens and Wee [BW19] (also implicitly
present in prior work such as [CRV10]) may be viewed as a decisional analogue
of the algebraic group model [FKL18], which posits that the only way an adver-
sary can compute a new group element is to take a linear combination of group
elements already provided. More specifically, the KOALA assumption asserts
that any adversary that can distinguish gMr from gv for some matrix M and
random vectors r,v, must know some nontrivial vector z �= 0 such that z M = 0.
Beullens and Wee provided a proof of the KOALA assumption in the generic
group model. While KOALA is a “knowledge assumption” and therefore not con-
sidered a standard assumption, we believe it is a significant improvement over
[AY20] to rely on the hardness of a specific assumption in the standard model,
than to rely on the the generic group model for the security of the entire scheme.

Technical Overview. We proceed to outline the main ideas of our construc-
tion. As discussed above, we construct a ciphertext-policy attribute-based encryp-
tion (cpABE) for NC1 circuits. The cpABE is compact, meaning that the size
of the ciphertexts and keys are all small, proportional only to the length of
the inputs and the depth of the supported circuits, but independent of the cir-
cuit size. Our construction combines three building blocks: a (computational)
nearly linear secret sharing scheme with compact shares, which we construct
from Learning With Errors (LWE), a certain form of inner-product functional
encryption (IPFE) [ABCP15,ALS16,LV16,Lin17,LL20], constructed from the
bilinear Matrix Decision Diffie Hellman (MDDH) assumption, and a certain form
of hyperplane obfuscation [CRV10], constructed using the KOALA assumption.
Next, we describe each of these primitives individually and outline how they are
combined to construct our cpABE.

Nearly Linear Secret Sharing. Our main building block is a new type of secret
sharing scheme. Given a message μ ∈ {0, 1} and a circuit C with �-bit input,
the scheme outputs 2� shares {sharei,b}i∈[�],b∈{0,1}. Each sharei,b is a vector over
Zp. For any x ∈ {0, 1}�, let sharex = {sharei,xi

}, which we think of as a long
vector produced by concatenating of all the component shares. If C(x) = 0
then sharex computationally hides the message μ, and moreover, sharex is even
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indistinguishable from a uniformly random vector. On the other hand, if C(x) =
1 then there is an efficient method to reconstruct the message μ from sharex.
Moreover, this reconstruction procedure is “nearly linear” in the sense that given
C, x, one can efficiently determine some linear function f such that f(sharex) =
μ · �p/2� + e, where |e| � p/2 is some small polynomially bounded error.

We use LWE to construct this type of nearly linear secret sharing for all NC1

circuits, where the size of the shares only depends on the security parameter and
the depth of the circuit, but is independent of the circuit size. The construction
closely follows the ideas behind the ABE scheme of [BGG+14] and the laconic
function evaluation of [QWW18]. As in [AY20], we are restricted to NC1 because
we require the magnitude of the error e to be polynomially bounded. The con-
struction additionally relies on some uniformly random public parameters pp,
which we will ignore throughout the introduction.

Towards cpABE from Secret Sharing. In our cpABE construction, to encrypt
a message μ under a given policy specified by an NC1 circuit C, the encryp-
tor creates a “nearly linear secret sharing” of the message resulting in shares
{sharei,b}i∈[�],b∈{0,1}. At a high level, the encryptor then encrypts these shares
using some form of functional encryption (FE) and outputs the FE ciphertext.
Let us examine what kind of functional encryption would be helpful in this
setting.

As a starting point, assume the shares are encrypted via an FE scheme such
that a decryptor with a secret key for x only learns the subset sharex = {sharei,xi

}.
Such an FE scheme is easy to construct by encrypting each of the 2� shares under
a different public key of a standard public-key encryption scheme and giving the
decryptor the � secret keys corresponding to the choice of x [SS10]. This would
already provide security in the non-colluding setting – if the adversary has a
secret key for a single value x such that C(x) = 0, then she cannot learn anything
about the message by getting sharex. However, if the adversary has secret keys
for even just two different values x0, x1, such that C(x0) = C(x1) = 0, all bets
are off; indeed, with our scheme, she could easily recover the message.

To fix the above problem, we rely on a more restricted form of FE where
the decryptor with a secret key for a value x would not learn sharex in full, but
rather only a hyperplane obfuscation of the vector sharex. A hyperplane obfus-
cation [CRV10] of a vector v allows one to test whether various affine functions
h evaluate to h(v) = 0, but should not reveal anything else about the obfus-
cated vector beyond having black-box access to such tests. When C(x) = 1, a
hyperplane obfuscation of sharex is sufficient to decrypt the message μ, since
we have a linear function f such that f(sharex) = μ · �p/2� + e and therefore,
by testing whether f(sharex) − e′ = 0 for all values e′ in the polynomial range
that e comes from, we can determine whether μ = 0 or μ = 1. For security,
consider an adversary has secret keys for some q inputs x(1), . . . , x(q) such that
C(x(i)) = 0 and learns the corresponding hyperplane obfuscations of the vectors
sharex(i) . We know that each of the vectors sharex(i) is individually computation-
ally indistinguishable from uniform, but mutually the vectors have non-trivial
correlations and can be used to recover μ. We wish to conclude that the hyper-
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plane obfuscations of sharex(i) are mutually indistinguishable from obfuscations
of random and independent vectors. Indeed, this follows if we had a composable
[CD08,BC10] virtual-black-box (VBB) hyperplane obfuscator since, given black
box access to each of these vectors, an adversary will never be able to find an
affine function evaluates to 0 on any of them. To make this approach work, we
therefore need to instantiate an appropriate hyperplane obfuscator together with
a matching FE scheme that outputs a hyperplane obfuscations of sharex.

Hyperplane Obfuscation. We rely on the extremely simple hyperplane obfuscator
of [CRV10]. Let G be a cyclic group of order p with a generator g. To obfuscate a
vector v ∈ Z

n
p , we choose a random γ ← Zp and output gγ , gγ·v . This allows one

to test if an affine function h evaluates to h(v) = 0 by computing γ · h(v) in the
exponent. The work of [CRV10] shows that this is a VBB hyperplane obfuscator
under a new assumption that they proposed, which can in retrospect be seen as a
variant of the KOALA assumption restricted to spaces of dimension 1. However,
they did not prove that the obfuscator is composable. In our work, we do not
directly prove that this obfuscator satisfies composable VBB security, but rather
prove that it satisfies a specialized property that suffices for us. Namely, we show
that under the KOALA assumption the following holds: for any set of vectors that
are individually indistinguishable from uniform but can be mutually correlated,
one cannot distinguish between being given the hyperplane obfuscations of all
the vectors in the set versus hyperplane obfuscations of uniformly random and
independent vectors.

Functional Encryption for Inner Products. As the last step, we need to pro-
vide an appropriate (public-key) functional encryption (FE) scheme. Such an
FE should allow us to encrypt a set of shares {sharei,b}i∈[�],b∈{0,1}, and give out
secret keys for value x ∈ {0, 1}�, so that such a ciphertext/key pair (only) reveals
a fresh hyperplane obfuscation of sharex and nothing else. We can simplify this
problem by relying on a simpler “component” FE scheme and then combining
the component FEs to get what we need. The component FE should allow us to
encrypt a scalar s ∈ Zp and give out secret keys for values gγ , so that such a
ciphertext/key pair only reveals gγ·s and nothing else. We want to component FE
to satisfy unbounded-collusion simulation-based security. Given such a compo-
nent FE scheme, we can instantiate a separate copy of it for each i ∈ [�], b ∈ {0, 1}
and each position in the share vector. The encryptor then encrypts each position
of each share vector sharei,b under the appropriate copy of the component scheme.
To create a secret key for x ∈ {0, 1}� we choose a fresh random γ ← Zp and give
out a secret key for gγ for each of the component schemes in locations (i, xi).
This would ensure that, given an encryption of {sharei,b}i∈[�],b∈{0,1}, a secret key
for a value x ∈ {0, 1}� only allows one to recover the hyperplane obfuscation of
sharex given by (gγ , gγ·sharex).

The above almost works, up to one subtlety. When we instantiate the com-
ponent FE scheme, we do so using bilinear groups (G1,G2,GT ) of order p with
corresponding generators (g1, g2, gT ) and a bilinear map e : G1 × G2 → GT .
We can create an encryption of a scalar s ∈ Zp and give out a secret key for
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gγ
2 ∈ G2 so that the decryption of the ciphertext with the secret key reveals gγ·s

T .
However, we can only guarantee simulation based security when the simulator
is given gγ·s

2 . In other words, there is a discrepancy between correctness (where
the honest users decrypt the product in the exponent of gT ) and security (where
the simulator needs to know the product in the exponent of g2). It turns out
that this suffices for us. For correctness, the decryptor gets a hyperplane obfus-
cation over GT , which suffices to recover the message. For security, we need to
rely on the hyerplane obfuscation being secure even when given over G2, which
just requires us to assume that KOALA holds over G2. We instantiate the above
type of component FE in a black-box way using the recent primitive of “Slotted
Inner Product Functional Encryption” [LV16,Lin17,LL20].1

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We use bold letters to denote vectors. We treat a vector as a row vector
by default. The notation [a, b] denotes the set of integers {k ∈ N | a ≤ k ≤ b}.
We use [n] to denote the set [1, n]. Throughout the paper, we use λ to denote
the security parameter. We say a function f(λ) is negligible if it is O(λ−c) for all
c > 0, and we use negl(λ) to denote a negligible function of λ. We say f(λ) is
polynomial if it is O(λc) for some constant c > 0, and we use poly(λ) to denote
a polynomial function of λ. Throughout the paper, we consider non-uniform
adversaries that are modeled as polynomial-size circuits A = {Aλ}λ indexed by
the security parameter. We often drop the subscript when it is clear from the
context.

2.1 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group
model following Baltico et al. [BCFG17], who specializes the framework by
Barthe [BFF+14] for defining generic k-linear groups to the bilinear group set-
tings. The definition closely follows that of Maurer [Mau05], which is equivalent
to the alternative formulation by Shoup [Sho97].

Notation on Bilinear Maps. A bilinear group generator GroupGen takes as
input 1λ and outputs a group description G = (p,G1,G2,GT , e, g1, g2), where p is
a prime of Θ(λ) bits, G1, G2, and GT are cyclic groups of order p, e : G1 ×G2 →
GT is a non-degenerate bilinear map, and g1 and g2 are generators of G1 and
G2, respectively. We require that the group operations in G1, G2, and GT as
well as the bilinear map e can be efficiently computed. We employ the implicit

1 In the technical sections we use IPFE directly rather than first showing that it pro-
vides an FE scheme with the above discrepancy between correctness and security
and then relying on such an FE. This is purely to avoid proliferation of additional
definitions/abstractions.
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representation of group elements: for a matrix A over Zp, we define [A]1 := gA1 ,
[A]2 := gA2 , [A]T := gAT , where exponentiation is carried out component-wise.
We will use similar notation for vectors.

Generic Bilinear Group Model. Let G = (p,G1,G2,GT , e, g1, g2) be a bilin-
ear group setting, L1, L2, and LT be lists of group elements in G1, G2, and GT

respectively, and let D be a distribution over L1, L2, and LT . The generic group
model for a bilinear group setting G and a distribution D is described in Fig. 1.
In this model, the challenger first initializes the lists L1, L2, and LT by sampling
the group elements according to D, and the adversary receives handles for the
elements in the lists. For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list
Ls. The handle to this element is simply the pair (s, h). An adversary running in
the generic bilinear group model can apply group operations and bilinear maps
to the elements in the lists. To do this, the adversary has to call the appropriate
oracle specifying handles for the input elements. The challenger computes the
result of a query, stores it in the corresponding list, and returns to the adversary
its (newly created) handle. Handles are not unique (i.e., the same group element
may appear more than once in a list under different handles).

We remark that we slightly simplify the generic group model of Baltico
et al. [BCFG17]. Whereas they allow the adversary to access the equality test ora-
cle, which is given two handles (s, h1) and (s, h2) and returns 1 if Ls[h1] = Ls[h2]
and 0 otherwise for all s ∈ {1, 2, T}, we replace this oracle with the zero-test
oracle, which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0 otherwise
only for the case of s = T . We claim that even with this modification, the model
is equivalent to the original one. This is because we can perform the equality test
for (s, h1) and (s, h2) using our restricted oracles as follows. Let us first consider
the case of s = T . In this case, we can get the handle (T, h′) corresponding to
LT [h1]−LT [h2] by calling negT (see Fig. 1). We then make a zero-test query for
(T, h′). Clearly, we get 1 if Ls[h1] = Ls[h2] and 0 otherwise. We next consider
the case of s ∈ {1, 2}. This case can be reduced to the case of s = T by lifting
the group elements corresponding to h1 and h2 to the group elements in GT by
taking bilinear maps with an arbitrary non-unit group element in G3−s, which
is possible by calling mape.

Symbolic Group Model. The symbolic group model for a bilinear group set-
ting G and a distribution DP gives to the adversary the same interface as the
corresponding generic group model, except that internally the challenger stores
lists of elements in the field Zp[X1, . . . , Xn] instead of lists of group elements.
The oracles adds, negs, map, and zt computes addition, negation, multiplication,
and equality in the field.

2.2 Slotted Inner Product Functional Encryption

We need slotted Inner Product Functional Encryption (IPFE) due to Lin and
Vaikuntanathan [LV16,Lin17,LL20]. Slotted IPFE is a hybrid between a secret-
key function-hiding IPFE and a public-key IPFE. In this scheme, a vector u ∈ Z

n
p

is divided into a public and private part respectively u = (upub,upriv) such that
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State: Lists L1, L2, LT over G1, G2, GT respectively.
Initializations: Lists L1, L2, LT sampled according to distribution D.
Oracles: The oracles provide black-box access to the group operations, the bilinear

map, and equalities.
• For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and

returns its handle (s, |Ls|).
• For all s ∈ {1, 2, T}: negs(h1, h2) appends Ls[h1]−Ls[h2] to Ls and returns

its handle (s, |Ls|).
• mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle
(T, |LT |).

• ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.
All oracles return ⊥ when given invalid indices.

Fig. 1. Generic group model for bilinear group setting G = (p,G1,G2,GT , e, g1, g2) and
distribution D.

given the master secret key, the encryption algorithm can encrypt any vector u
of its choice, but given only the public key, it can encrypt only to the public slot,
i.e. upriv = 0. Slotted IPFE can guarantee function hiding only with respect to
the private slot. We provide the definitions from [LL20].

Let GroupGen be a group generator that outputs bilinear group G =
(p,G1,G2,GT , e, [1]1, [1]2). A slotted inner-product functional encryption (IPFE)
scheme based on G consists of 5 efficient algorithms:

Setup(1λ, spub, spri) → (mpk,msk): The setup algorithm takes as input two dis-
joint index sets, the public slot spub and the private slot spri, and outputs a
pair of master public key and master secret key (mpk,msk). The whole index
set s is spub ∪ spri.

KeyGen(msk, [v]2) → skv: The key generation algorithm takes as input the mas-
ter secret key and an encoding of a function vector [v]2, and outputs a secret
key skv for v ∈ Z

s
p.

Enc(msk, [u]1) → ctu: The encrypt algorithm takes input the master secret key
and an encoding of a message vector [u]1 and outputs a ciphertext ctu for
u ∈ Z

s
p.

Dec(skv, ctu) → T ∨ ⊥: The decrypt algorithm takes as input a secret key skv
and a ciphertext ctu, and outputs an element T ∈ GT or ⊥.

SlotEnc(mpk, [upub]1) → ctu: The slot encryption algorithm takes as input the
master public key and a vector upub ∈ Z

spub
p , sets u = (upub,0) ∈ Z

s
p and

outputs a ciphertext ctu.

Correctness. We say the slotted inner-product functional encryption scheme
satisfies decryption correctness if for all λ ∈ N, all index sets s and all vectors
u,v ∈ Z

s
p,
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Pr

⎡
⎢⎣Dec(skv, ctu) = 〈u, v〉

∣∣∣∣∣∣∣

msk ← Setup(spub, spri)
skv ← KeyGen(msk, [v]2)
ctu ← Enc(msk, [u]1)

⎤
⎥⎦ = 1.

We say the slotted inner-product functional encryption scheme satisfies slot-
mode correctness if for all λ ∈ N, all disjoint index sets spub, spri and all vectors
u ∈ Z

spub
p , the following two distributions should be identical:

{
(mpk,msk, ct)

∣∣∣∣
(mpk,msk) ← Setup(1λ, spub, spri)

ctu ← Enc(msk, [u‖0]1)

}

and {
(mpk,msk, ct)

∣∣∣∣∣
(mpk,msk) ← Setup(1λ, spub, spri)

ctu ← SlotEnc(msk, [u]1)

}

Slotted IPFE generalizes both secret-key and public-key IPFEs: we may obtain
the former by setting s = spri and the latter by setting s = spub.

Next, we define the adaptive function hiding property.

Definition 2.1 (Function Hiding Slotted IPFE). Let (Setup,KeyGen,Enc,
Dec,SlotEnc) be a slotted IPFE scheme as defined above. The scheme is function
hiding if Exp0FH is indistinguishable from Exp1FH for all efficient adversary A =
{Aλ}λ where Expb

FH for b ∈ {0, 1} is defined as follows:

1. Setup: Run the adversary Aλ and obtain the disjoint index sets spub, spri
from Aλ. Let s = spub ∪ spri. Let (mpk,msk) ← Setup(1λ, spub, spri) and return
mpk to Aλ.

2. Challenge: Repeat the following for arbitrarily many rounds determined by
Aλ: In each round, Aλ has 2 options:
– Aλ chooses v0

j ,v
1
j ∈ Z

s
p and submits [v0

j ]2, [v
1
j ]2 for a secret key. Upon

receiving this, compute skj ← KeyGen(msk, [vb
j ]2) and return this to Aλ.

– Aλ chooses u0
i ,u

1
i ∈ Z

s
p and submits [u0

i ]1, [u
1
i ]1 for a ciphertext. Upon

receiving this, compute cti ← Enc(msk, [ub
i ]1) and return this to Aλ.

3. Guess: Aλ outputs its guess b′.

The outcome of the experiment is defined as b′ if all the public components of
the key queries are equal, i.e. v0

j |spub = v1
j |spub for all j and 〈u0

i , v0
j 〉 = 〈u1

i , v1
j 〉

for all i, j.
We will also require the following lemma by [ALS16,Wee17,LV16,Lin17,

LL20]:

Lemma 2.2. Let GroupGen be a group generator that outputs bilinear group
G = (p,G1,G2,GT , e, [1]1, [1]2) and k ≥ 1 an integer constant. If MDDHk holds
in both G1 and G2, then there is an (adaptively) function-hiding slotted IPFE
scheme on GroupGen.
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Note that the MDDHk assumption on Gs (s ∈ {1, 2}) says that a random group
element [r]s is indistinguishable from [sA]s given [A], where A ← Z

k×(k+1)
p , r ∈

Z
k+1
p , and s ∈ Z

k
p. The assumption is implied by the standard k-LIN assumption,

which becomes progressively weaker as k becomes larger.

2.3 Attribute Based Encryption

Let R = {Rλ : Aλ × Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote
“ciphertext attribute” and “key attribute” spaces. An attribute-based encryption
(ABE) scheme for R is defined by the following PPT algorithms:

Setup(1λ) → (mpk,msk): The setup algorithm takes as input the unary repre-
sentation of the security parameter λ and outputs a master public key mpk
and a master secret key msk.

Enc(mpk,X, μ) → ct: The encryption algorithm takes as input a master public
key mpk, a ciphertext attribute X ∈ Aλ, and a message bit μ. It outputs a
ciphertext ct.

KeyGen(mpk,msk, Y ) → skY : The key generation algorithm takes as input the
master public key mpk, the master secret key msk, and a key attribute Y ∈ Bλ.
It outputs a private key skY .

Dec(mpk, ct,X, skY , Y ) → μ or ⊥: The decryption algorithm takes as input the
master public key mpk, a ciphertext ct, ciphertext attribute X ∈ Aλ, a private
key skY , and private key attribute Y ∈ Bλ. It outputs the message μ or ⊥
which represents that the ciphertext is not in a valid form.

Definition 2.3 (Correctness). An ABE scheme for relation family R is cor-
rect if for all λ ∈ N, X ∈ Aλ, Y ∈ Bλ such that R(X,Y ) = 1, and for all
messages μ ∈ M,

Pr

[
(mpk,msk) ← Setup(1λ), skY ← KeyGen(mpk,msk, Y ),
ct ← Enc(mpk,X, μ) : Dec

(
mpk, skY , Y, ct,X

)
�= μ

]
= negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.4 (Sel-IND security for ABE). For an ABE scheme ABE =
{Setup,Enc,KeyGen,Dec} for a relation family R = {Rλ : Aλ × Bλ → {0, 1}}λ

and a message space {Mλ}λ∈N and an efficient adversary A = {Aλ}λ, let us
define Sel-IND security game as follows.

1. Choosing the Target: At the beginning of the game, Aλ chooses its target
X� ∈ Aλ and sends to the challenger.

2. Setup phase: On input 1λ, the challenger samples (mpk,msk) ← Setup(1λ)
and gives mpk to Aλ.

3. Query phase: During the game, Aλ adaptively makes the following queries,
in an arbitrary order. Aλ can make unbounded many key queries, but can
make only single challenge query.
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(a) Key Queries: Aλ chooses an input Y ∈ Bλ. For each such query, the
challenger replies with skY ← KeyGen(mpk,msk, Y ).

(b) Challenge Query: At some point, Aλ submits a pair of equal length
messages (μ0, μ1) ∈ (M)2 to the challenger. The challenger samples a
random bit β ← {0, 1} and replies to Aλ with ct ← Enc(mpk,X�, μβ).

We require that R(X�, Y ) = 0 holds for any Y such that Aλ makes a key
query for Y in order to avoid trivial attacks.

4. Output phase: Aλ outputs a guess bit β′ as the output of the experiment.

We define the advantage AdvSel-IND
ABE,A (1λ) of A in the above game as

AdvSel-IND
ABE,A (1λ) := |Pr[A outputs 1|β = 0] − Pr[Aoutputs1|β = 1]| .

The ABE scheme ABE is said to satisfy Sel-IND security (or simply selective
security) if for any efficient and stateful adversary A = {Aλ}λ, there exists a
negligible function negl(·) such that AdvSel-IND

ABE,A (1λ) �= negl(λ).

We can consider the following stronger version of the security where we
require the ciphertext to be pseudorandom.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security
game similarly to Sel-IND security game except that the adversary A chooses
single message μ instead of (μ0, μ1) at the challenge phase and the challenger
returns ct ← Enc(mpk,X�, μ) if β = 0 and a random ciphertext ct ← CT from
a ciphertext space CT if β = 1. We define the advantage AdvSel-INDr

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies Sel-INDr security if
the quantity is negligible.

We also consider (weaker) version of the above notions, where A specifies the
set Y of attributes for which it makes key queries along with X� at the beginning
of the game.

Definition 2.6 (VerSel-IND security for ABE). We define VerSel-IND secu-
rity game as Sel-IND security game with the exception that the adversary A has
to choose the set Y ⊆ Bλ for which it makes key queries along with the challenge
ciphertext attribute X� before the setup phase but the choice of (μ0, μ1) can still
be adaptive. After that, Aλ can make key queries for Y1, Y2, . . . adaptively, but
we need Yi ∈ Y for all queries. We define the advantage AdvVerSel-IND

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies VerSel-IND security
(or simply very selective security) if the quantity is negligible.

In the following, we define standard notions of ciphertext-policy attribute-
based encryption (CP-ABE) and broadcast encryption (BE) by specifying the
relation R.

CP-ABE for Circuits. We define CP-ABE for circuit class {Cλ}λ by specifying
the relation. Here, Cλ is a set of circuits with input length �(λ) and binary output.
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We define ACP
λ = Cλ and BCP

λ = {0, 1}�. Furthermore, we define the relation RCP
λ

as RCP
λ (C,x) = ¬C(x).2

BE. To define BE, we define ABE
λ = 2[N(λ)] and BBE

λ = [N(λ)], where N(λ) =
poly(λ) is the number of users in the system and 2[N(λ)] denotes all subsets of
[N ]. We also define RBE

λ : ABE
λ × BBE

λ → {0, 1} as RBE
λ (S, i) = 1 when i ∈ S

and RBE
λ (S, i) = 0 otherwise. For BE, we typically require that the ciphertext

size should be o(N) ·poly(λ), since otherwise we have a trivial construction from
plain public key encryption.

Remark 2.7. We note that very selective security and selective security are in
fact equivalent in the case of BE since one can convert selective adversary into
very selective adversary as follows. Namely, if the selective adversary chooses
its target S ⊆ [N ], the very selective adversary chooses the same target S and
specifies the set of user indices for which it makes key queries as [N ]\S. Then,
the very selective adversary can simulate the game for the selective adversary
using the secret keys given by the challenger.

3 Computational Secret Sharing Scheme with Short
Shares

We will use secret sharing scheme with special properties that we are going to
define here. Let C = {Cλ}λ be a circuit class. A secret sharing scheme for the
circuit class C is defined by the following PPT algorithms:

SS.Setup(1λ, p) → pp: The setup algorithm takes as input the unary represen-
tation of the security parameter λ and the modulus p and outputs public
parameter pp.

SS.Share(pp, C, μ): The sharing algorithm takes as input the public parameter
pp, a circuit C ∈ Cλ that specifies access policy, and a message μ ∈ {0, 1} to
be shared and outputs a set of shares {sharei,b ∈ Z

m
p }i∈[�],b∈{0,1}, where � is

the input length of C and m is a parameter specified by λ and p.
SS.Recon(pp, C, x, {sharei,xi

}i∈[�]) → μ or ⊥: The reconstruction algorithm takes
as input the public parameter pp, a circuit C, an input x ∈ {0, 1}� to the
circuit, and shares {sharei,xi

}i∈[�] and outputs message μ or ⊥.

We require correctness and security for the secret sharing scheme as defined
in the following.

Definition 3.1 (Correctness). We say that a secret sharing scheme SS =
(SS.Setup,SS.Share,SS.Recon) for circuit class C has correctness if there exists a
function p0(λ) specified by the circuit class C such that for any p > p0(λ), C ∈ C
with input length �, x ∈ {0, 1}� satisfying C(x) = 1, and μ ∈ {0, 1}, we have

Pr

⎡
⎢⎣
pp ← SS.Setup(1λ, p),
{sharei,b}i∈[�],b∈{0,1} ← SS.Share(pp, C, μ),
SS.Recon

(
pp, {sharei,xi

}i∈[�]

)
= μ

⎤
⎥⎦ = 1

2 Here, we follow the standard convention in lattice-based cryptography where the
decryption succeeds when C(x) = 0 rather than C(x) = 1.
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Definition 3.2 (Security). We say that a secret sharing scheme SS =
(SS.Setup,SS.Share,SS.Recon) for circuit class C = {Cλ}λ is secure if for any
C ∈ Cλ with input length � = �(λ), x ∈ {0, 1}� satisfying C(x) = 0, μ ∈ {0, 1},
p ∈ N, and for any efficient adversary A = {Aλ}, we have

∣∣∣∣Pr
[
Aλ

(
pp, C, x,
{sharei,xi

}i∈[�]

)
→ 1

]
− Pr

[
Aλ

(
pp, C, x,
{vi}i∈[�]

)
→ 1

]∣∣∣∣ = negl(λ)

where the probability is taken over the choice of pp ← SS.Setup(1λ, p),
{sharei,b}i,b ← SS.Share(pp, C, μ), vi ← Z

m
p for i ∈ [�], and the internal coin

of Aλ.

We note that in the above, we not only require that the shares do not reveal μ
if C(x) = 0, but also require that they look random.

We furthermore require following structural properties for the construction.
First, we require that pp is a random string.

Definition 3.3 (Random Public Parameters). We require that pp output
by SS.Setup(1λ, p) is statistically close to uniformly random, where the length of
the string is deterministically determined by p.

Looking ahead, the above property is crucial when we prove the security of our
ABE scheme. If the public parameter of the secret sharing scheme was chosen
from a structured distribution, we would have to rely on the bilinear KOALA
assumption (Definition 4.1) with auxiliary input chosen from the same distribu-
tion. However, we cannot hope the assumption to hold for auxiliary input with
general distribution as we will discuss in Remark 4.3.

We also require that the reconstruction algorithm is structured as two steps:
a function evaluation step that computes the circuit on the shares to yield the
message along with noise, followed by a rounding step that removes the noise. We
require that the first step is linear. We refer to such a reconstruction algorithm
as being “almost linear”, and define it formally next.

Definition 3.4 (Almost Linear Reconstruction). We say that a secret
sharing scheme SS = (SS.Setup,SS.Share,SS.Recon) has almost linear recon-
struction if the reconstruction algorithm is divided into two steps:

– Step 1 takes as input the public parameter pp, the circuit C, and the input x.
It outputs a set of coefficients {ai,j ∈ Zp}i∈[�],j∈[m]. We denote this step as
an algorithm SS.FindCoef(pp, C, x).

– Step 2 takes as input the set of shares {sharei,xi
}i∈[�] that corresponds to x

and a set of linear coefficients {ai,j}i∈[�],j∈[m] and computes

d :=
∑

i∈[�],j∈[m]

ai,jsharei,xi,j mod p

where sharei,xi,j ∈ Zp is the j-th entry of the vector sharei,xi
. It then outputs

1 if d is closer to p/2 and 0 otherwise.
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We require the following property, which implies the correctness: For any
x ∈ {0, 1}� and C ∈ C satisfying C(x) = 1 and p > p0, if we have:

pp ← SS.Setup(1λ, p), {sharei,b}i∈[�] ← SS.Share(pp, C, μ),
{ai,j}i,j ← SS.FindCoef(pp, C, x),

where i ∈ [�], j ∈ [m], then there exists e ∈ [−B,B] such that
∑

i∈[�],j∈[m]

ai,jsharei,xi,j = μ · �p/2� + e mod p

where B(λ) is an integer specified by C.

The following theorem asserts that we can construct a secret sharing scheme
with the desired properties under the LWE assumption.

Theorem 3.5. For circuit class C�,d = {Cλ,�(λ),d(λ)}λ∈N consisting of circuits
whose input length is �(λ) = poly(λ) and depth d(λ) = O(log λ), we have secret
sharing scheme that satisfies almost linear reconstruction (Definition 3.4) for
p0 = poly(λ, 2d, �) and has random public parameters (Definition 3.3). We can
prove the security of the scheme (Definition 3.2) under the LWE assumption
with approximation factor pε ·poly(λ) for some constant ε < 1. Furthermore, the
size of the parameters in the construction is as follows:

|pp|, |sharei,b| ≤ poly(λ, d, �), B(λ) ≤ poly(λ, 2d). (3.1)

In particular, B(λ) is bounded by a polynomial in λ since d = O(log λ).

Proof. The construction is based on the ABE scheme for circuit class {C�,d} by
[GV15]. Here, we first show a construction that almost works but has a problem.
We then fix the problem by slightly modifying the construction. In our first
construction, we put the master public key and a secret key for circuit C of the
ABE scheme into pp, where the former consists of set of random matrices A and
{Bi,b}i,b along with a random vector u. To generate {sharei,b}i,b, we generate
LWE samples using corresponding matrices in {Bi,b}i,b with respect to the same
secret, so that {sharei,xi

}i constitutes a valid ABE ciphertext for attribute x
and message μ to be shared.3 Most of the properties we require for the secret
sharing scheme are directly implied by the corresponding properties of the ABE
scheme. The correctness (Definition 3.1) and the security (Definition 3.2) of the
secret sharing scheme are implied by the corresponding properties of the ABE
scheme, where for the latter we use Sel-INDr security of the ABE scheme. The
size requirements for the parameters (Eq. (3.1)) are satisfied by the efficiency of
the ABE scheme. The almost linear reconstruction property (Definition 3.4) is
also satisfied by the structure of the decryption algorithm of the ABE scheme.
3 In fact, the ABE ciphertext also has to include the LWE samples with respect to

the matrix A and the vector u, where the latter will be used to mask the message.
These LWE samples are put into both of share1,0 and share1,1.
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However, the above construction does not have the property of random public
parameters (Definition 3.3) and we have to change it slightly. In particular, in
the above, pp is chosen as follows: We first sample random matrices A and
{Bi,b}i,b and a random vector u, where A is chosen along with a trapdoor. We
then compute a matrix BC corresponding to the circuit C from the matrices
{Bi,b}i,b and then generate a vector r from a Gaussian distribution over the
integer lattice with the restriction

[A|BC ]r = u mod q

using the trapdoor. We then set pp = (A,B,u, r). Because of the above relation
between r and u, pp is not random.

To address this issue, we first remove u from pp. We now have that the dis-
tribution of r is statistically close to the Gaussian distribution over the integer
lattice (without the restriction), since for a vector r chosen from (sufficiently
wide) Gaussian distribution over the integer lattice, u defined as u = [A|BC ]r
mod q is statistically close to uniform. Now, such r can be chosen from random-
ness of fixed polynomial length, in particular, without a trapdoor. We then put
the randomness R used for sampling r into pp instead of r itself. We now have
that pp is statistically close to random as desired.

It is easy to see that this change does not affect the properties that we want
from the secret sharing scheme. In particular, the correctness is not lost since u
can be recovered from r. We note that for the security to be preserved, we need
an efficient reverse sampling algorithm that is given r and samples randomness
R conditioned that the Gaussian sampler outputs r on input R. The reason
why we need this property is that the reduction algorithm that breaks the ABE
scheme using the adversary against the secret sharing scheme should simulate
the randomness R for sampling r only given r, which is the secret key of the
ABE scheme.

This property is satisfied by efficient Gaussian samplers such as [GPV08].
To see this, let us recall the procedure of sampling Gaussian on integer lattice
in [GPV08] (See Lemma 4.3 in the paper). Without loss of generality, we can
consider one-dimensional case since multi-dimensional case can be handled by
running the algorithm for one-dimensional case in parallel. The sampling algo-
rithm by [GPV08] was based on rejection sampling. The algorithm first samples
a candidate for the output uniformly at random and outputs it with certain
probability. This step is repeated until it outputs something or the number of
times it repeats the procedure exceeds predetermined number. The idea for the
reverse sampling is to first run the algorithm until it outputs something and then
replace the randomness that was used for the output with that which leads to
the intended output. The former step can be done straightforwardly since it is
exactly the same as the original sampling algorithm. The purpose of performing
this step is to simulate the failure. The latter step can be performed efficiently as
well, since the randomness that leads to the output consists of the output value
itself along with the randomness that allows the sampler to accept and output
the value (rather than to reject). It is easy to see that this algorithm indeed
works. This completes the proof of Theorem 3.5.
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The complete description of the secret sharing scheme will appear in the full
version.

4 Our Security Assumptions

In this section, we will introduce the bilinear knowledge of orthogonality
(KOALA) assumption, which is an analogue of the KOALA assumption intro-
duced in [BW19]. Looking ahead, the assumption will be used to prove the secu-
rity of our ABE scheme in Sect. 5.1. We then introduce weak KOALA assump-
tion (wKOALA) and show that it is implied by the bilinear KOALA assumption.
While the former assumption is implied by the latter, the former is handier to
use and would be of independent interest.

4.1 Bilinear KOALA Assumption

Here, we introduce bilinear KOALA assumption, which is an analogue of the
KOALA assumption introduced in [BW19].

Definition 4.1 (Bilinear KOALA Assumption). Let Samp = {Sampλ}λ

be an efficient sampling algorithm that takes as input an integer p and a string
aux and outputs a matrix V ∈ Z

�1×�2
p with �1 < �2. For an efficient adversary

A = {Aλ}, let us define

AdvBKOALA,dist
A,G,Samp (λ) := |Pr[Aλ(G, aux, [sV]2) → 1] − Pr[Aλ(G, aux, [r]2) → 1]|.

where the probabilities are taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), V ← Samp(p, aux), s ← Z

�1
p , r ←

Z
�2
p , and the coin of Aλ.

Furthermore, for an efficient adversary B = {Bλ}λ, we also define

AdvBKOALA,find
B,G,Samp (λ) := Pr[Bλ(G, aux) → x ∧ xV� = 0 ∧ x �= 0]

where the probability is taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), V ← Sampλ(p, aux), and the coin
of Bλ.

We say that the bilinear KOALA assumption holds with respect to GroupGen
if for any efficient adversary A and efficient sampler Samp, there exists another
efficient adversary B and a polynomial function Q(λ) such that

AdvBKOALA,find
B,G,Samp (λ) ≥ AdvBKOALA,dist

A,G,Samp (λ)/Q(λ) − negl(λ).

Remark 4.2. Our definition of the bilinear KOALA assumption differs from the
original KOALA assumption defined by Beullens and Wee [BW19] in several
points. First, we consider the assumption in groups equipped with bilinear maps
whereas they consider the assumption in groups without bilinear maps.

Second, in our assumption, the adversary is given an auxiliary input aux
and V is chosen from a distribution specified by Samp whereas there is no any
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auxiliary information and V is fixed in [BW19]. This change is necessary to
prove the security of our ABE scheme in Sect. 5, since we will use an adversary
B that is obtained from A to break a computational assumption, where we put
the problem instance of the assumption into aux.

Remark 4.3. One could consider simpler and stronger variant of the above
assumption where Samp chooses aux along with V instead of letting aux to
be a random string that is not controlled by Samp. However, we cannot hope
this variant of the assumption to hold for all efficient samplers. For example, let
us consider a sampler that outputs random V along with auxiliary information
aux = O(CV), which is an obfuscation of circuit CV that takes as input group
description G and elements [v]2 and returns whether v is in the space spanned
by the rows of V or not. Using O(CV), one can easily distinguish [sV]2 from
[r]2 with high probability. However, an efficient adversary may not be able to
find a vector x �= 0 that satisfies xV = 0 even given O(CV), if we use suf-
ficiently strong obfuscator to obfuscate the circuit CV. Our assumption above
excludes this kind of attack by making aux to be public randomness that is
not touched by the sampler. Our definition is inspired by that of public coin
differing input obfuscation [IPS15], where the authors exclude similar kind of
attacks [GGHW14] in the context of differing input obfuscations by restricting
the distribution of auxiliary input to be random.

The following theorem justifies the bilinear KOALA assumption on the bilinear
generic group model. The proof is almost the same as that for the KOALA
assumption in [BW19], but we have to adjust it into the setting where the groups
are equipped with bilinear maps and the adversary is given auxiliary input.

Theorem 4.4. The bilinear KOALA assumption holds under the bilinear
generic group model, where A has access to the generic group oracles but Samp
does not.

Proof. Let us fix PPT sampler Samp and an adversary A. We also let Qzt(λ)
be the upper bound on the number of zero test queries that A makes. To prove
the theorem, we consider following sequence of games. Let us denote the event
that A outputs 1 at the end of Gamex as Ex.

Game1: In this game, Samp takes as input the order of groups p and a random
string aux and outputs V ∈ Z

�1×�2
p . By assumption, Samp does not have access

to the generic group oracles. Then, the adversary A is given aux, handles
corresponding to the group elements [r]2, where r = (r1, . . . , r�2) ← Z

�2
p , and

access to the oracles in generic group model and outputs a bit at the end of
the game.

Game2: In this game, we switch to symbolic group model and replace
r1, . . . , r�2 ∈ Zp with formal variables R1, . . . , R�2 . Note that all handles given
to A during the game refer to a group element that is represented as

x0 +
∑

j∈[�2]

xjRj ∈ Zp[R1, . . . , R�2 ]
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where the challenger computes coefficients {xj ∈ Zp}j∈[0,�2] by keeping track
of the group operations performed by A.
We observe that this game differs from the previous game only when A makes
a zero test query for x0 +

∑
j∈[�2]

xjRj such that x0 +
∑

j∈[�2]
xjRj �= 0 but

x0 +
∑

j∈[�2]
xjrj . However, this occurs with probability at most 1/p since r

is chosen uniformly at random independently from anything else. Therefore,
we have

|Pr[E2] − Pr[E1]| = negl(λ).

Game3: In this game, we replace the formal variable Rj with
∑

i∈[�1]

vi,jSi

for all j ∈ [�2], where vi,j is the (i, j)-th entry of V and S1, . . . , S�1 are set of
formal variables.

Game4: In this game, we switch back to the generic group model (rather than
the symbolic group model) and provide the adversary with handles for [sV]2
as input.
By the same reason as the game hop from Game1 to Game2, we have

|Pr[E4] − Pr[E3]| = negl(λ).

By the definition of the games, we have |Pr[E4] − Pr[E1]| = AdvBKOALA,dist
A,G,Samp (λ).

Let us define ε := |Pr[E2] − Pr[E3]|. By triangular inequality, we have

ε ≥ |Pr[E4] − Pr[E1]| − |Pr[E1] − Pr[E2]| − |Pr[E3] − Pr[E4]|
≥ AdvBKOALA,dist

A,G,Samp (λ) − negl(λ).

Therefore, it suffices to prove the following lemma to finish the proof of Theo-
rem 4.4.

Lemma 4.5. There exists an efficient adversary B that has access to the bilinear
generic group oracles and AdvBKOALA,find

B,G,Samp (λ) ≥ ε/Qzt.

Proof. We first observe that the oracle response to A in Game2 and Game3
differs only when A makes a zero-test query for a handle that corresponds to
x0 +

∑
j∈[�2]

xjRj such that x0 +
∑

j∈[�2]
xjRj �= 0 over Zp[R1, . . . , R�2 ] and

x0 +
∑

j∈[�2]

xj

⎛
⎝∑

i∈[�1]

vi,jSi

⎞
⎠ = x0 +

∑
i∈[�1]

⎛
⎝∑

j∈[�2]

xjvi,j

⎞
⎠Si = 0

over Zp[S1, . . . , S�1 ]. We call such a query bad query. We can see that A makes
a bad query with probability at least ε in Game2. We observe that for a bad
query, we have x0 = 0, xV� = 0, and x �= 0 for x = (x1, . . . , x�2).

To prove the theorem, we further consider the following sequence of games.
In the following, let us denote Fx the event that A makes a bad query and the
challenger does not output ⊥ in Game2,x.
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Game2,1: This is the same as Game2. Without loss of generality, we assume
that the challenger simulates the generic group oracles for A. By definition,
we have

Pr[F1] ≥ ε.

Game2,2: In this game, we change the previous game so that the challenger picks
a random guess k∗ for the first bad query as k∗ ← [Qzt] at the beginning of
the game. Furthermore, we change the game so that the challenger outputs ⊥
at the end of the game if the k∗-th zero-test query is not the first bad query.
Since k∗ is chosen uniformly at random and independent from the view of A,
the guess is correct with probability 1/Qzt conditioned on F1. Therefore, we
have

Pr[F2] ≥ Pr[F1]/Qzt.

Game2.3: This game is the same as the previous game except that the challenger
aborts the game and outputs ⊥ immediately after A makes the k∗-th zero-test
query. Since whether F2 occurs or not is irrelevant to how the game proceeds
after the k∗-th zero-test query is made by A, we clearly have

Pr[F3] = Pr[F2].

We then construct B, which acts as the challenger in Game2,3 for A as follows.
B takes aux as input and then chooses random k∗ ← [Qzt]. It then runs A

on input aux and handles for symbols R1, . . . , R�2 . B then answers generic oracle
queries made by A honestly until the k∗-th zero test query. When A makes the
k∗-th zero test query, B extracts (x0, x1, . . . , x�2) such that the query corresponds
to the handle of x0+

∑
j∈[�2]

xjRj . This is possible by keeping track of A’s group
operations while simulating the generic group oracles. If x0 �= 0, B aborts and
outputs ⊥. Otherwise, it outputs the vector x = (x1, . . . , x�2).

Since B perfectly simulates Game2,3 and thus the probability that B outputs
x such that xV� = 0 and x �= 0 is Pr[F3] = ε/Qzt. This completes the proof of
Lemma 4.5.

This completes the proof of Theorem 4.4.

4.2 Our New Assumption wKOALA

Here, we introduce our new assumption that we call wKOALA (for “weak”
KOALA) that will be used to prove the security of our ABE scheme in Sect. 5.
The assumption essentially says that for a sampler that outputs a set of vectors
such that the vectors are individually pseudorandom but mutually correlated, it
holds that the vectors appear mutually pseudorandom when they are lifted to
the exponent and randomized by vector-wise randomness. We require that this
hold even in the presence of random auxiliary input as is assumed for the case
of the bilinear KOALA assumption.
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Definition 4.6. Let Samp = {Sampλ}λ be an efficient sampling algorithm that
takes as input an integer p and a string aux and outputs a set of vectors {u(j) ∈
Z

m
p }j∈[t]. For an efficient adversary A = {Aλ}λ and i := i(λ) ∈ N, let us define

AdvwKOALA,single
A,G,Samp,i (λ) := |Pr[Aλ(G, aux,u(i)) → 1] − Pr[Aλ(G, aux,v) → 1]|,

(4.1)

where the probabilities are taken over the choice of uniformly random aux, G =
(p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), , {u(j)}j∈[t] ← Sampλ(p, aux), v ←
Z

m
p , and the coin of Aλ. In the above, we set u(i) := v if i > t. Furthermore, for

an efficient adversary B = {Bλ}, we define

AdvwKOALA,multi
B,G,Samp (λ) :=

∣
∣
∣
∣
∣
Pr

[

Bλ

(
G, aux,

{

[γ(j)]2, [γ
(j)u(j)]2

}

j∈[t]

)

→ 1

]

− Pr

[

Bλ

(
G, aux,

{

[γ(j)]2, [v
(j)]2

}

j∈[t]

)

→ 1

]∣
∣
∣
∣
∣
,

(4.2)

where the probabilities are taken over the choice of uniformly random aux, G,
{u(j)}j∈[t] ← Sampλ(p, aux), γ(j) ← Zp, v(j) ← Z

m
p for j ∈ [t], and the coin

of Bλ. We say that wKOALA holds with respect to GroupGen if for any efficient
sampler Samp such that AdvwKOALA,single

A,G,Samp,i (λ) is negligible for any efficient adver-
sary A and i(λ), AdvwKOALA,multi

B,G,Samp (λ) is also negligible for any efficient adversary
B.

The following theorem shows that wKOALA is in fact implied by the bilinear
KOALA assumption.

Theorem 4.7. If the bilinear KOALA assumption holds with respect to
GroupGen, so does wKOALA.

Proof. For the sake of contradiction, let us assume that wKOALA does not
hold with respect to GroupGen, but the bilinear KOALA assumption holds with
respect to GroupGen. The former assumption implies that there exists an effi-
cient sampler Samp such that AdvwKOALA,single

A,G,Samp,i (λ) is negligible for any efficient
adversary A and i = i(λ), but there exists an efficient adversary B such that
ε(λ) := AdvwKOALA,multi

B,G,Samp (λ) is non-negligible.
We then consider another sampler Samp′ that takes as input p and aux and

outputs matrix V defined as

V =

⎡
⎢⎢⎢⎣

1 u(1)

1 u(2)

. . .
1 u(t)

⎤
⎥⎥⎥⎦ ∈ Z

t×(1+m)t
p ,

where {u(j)}j∈[t] ← Samp(p, aux). For this sampler Samp′, we have

AdvBKOALA,dist
B,G,Samp′ (λ) = AdvwKOALA,multi

B,G,Samp (λ) = ε(λ),
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which follows from the definition of AdvBKOALA,dist
B,G,Samp′ (λ) (See Definition 4.1). This

further implies that there exists another adversary B′ and polynomial function
Q(λ) such that

AdvBKOALA,find
B′,G,Samp′ (λ) ≥ ε(λ)/Q(λ) − negl(λ)

from the bilinear KOALA assumption. By the definition, B′ takes as input aux

and G and outputs a vector x ∈ Z
(1+m)t
p such that xV� = 0 and x �= 0 with

probability ε′(λ);= ε(λ)/Q(λ) − negl(λ). Let us denote

x = (x(1),x(1), x(2),x(2), . . . , x(t),x(t))

where x(i) ∈ Zp and x(i) ∈ Z
m
p for i ∈ [t]. Then, for such vector x, we have

x(i) + 〈x(i),u(i)〉 = 0 mod p and (x(i),x(i)) �= 0 mod p

for some i ∈ [t] by the structure of V. This further implies that there exists
fixed i∗ = i∗(λ) such that x(i∗) + 〈x(i∗),u(i∗)〉 = 0 mod p and (x(i∗),x(i∗)) �= 0
mod p hold with probability at least ε′/t.

We then use B′ to construct an adversary A such that AdvwKOALA,single
A,G,Samp,i∗ (λ) is

non-negliglble, which contradicts our assumption. A takes as input the group
description G, auxiliary information aux and a vector v, which is either v ← Z

m
p

or v = u(i∗) with {u(j)}j∈[t] ← Samp(p, aux). Then, A runs B′ on input aux and
G. If B′ outputs something outside of Zm

p , A outputs 0. Otherwise, let x ∈ Z
m
p be

the output by B′. If (x(i∗),x(i∗)) = 0, A outputs 0. Otherwise, A checks whether

x(i∗) + 〈x(i∗),v〉 ?= 0. (4.3)

It outputs 1 if it holds and 0 otherwise.

We evaluate the probability that A outputs 1. There are two cases to consider.

– If v = u(i∗), B′ outputs non-zero vector (x(i∗),x(i∗)) satisfying Eq. (4.3) with
probability at least ε′/t. A outputs 1 with the same probability.

– If v is chosen uniformly at random from Z
m
p , Eq. (4.3) holds for (x(i∗),x(i∗))

output by B′ with probability at most 1/p unless (x(i∗),x(i∗)) = 0 mod p,
since v is information theoretically hidden from B′. Since A outputs 1 only
when (x(i∗),x(i∗)) �= 0 and Eq. (4.3) holds, the probability that A outputs 1
is at most 1/p.

We finally observe that

AdvwKOALA,single
A,G,Samp,i∗ (λ) = |Pr[A(G, aux,u(i∗)) → 1] − Pr[A(G, aux,v) → 1]|

≥ ε′/t − 1/p

≥ ε/tQ − negl,

where the probabilities are taken over the choice of G ← GroupGen(1λ), v ← Z
n
p ,

random aux, {u(j)}j∈[t] ← Samp(p, aux) and the internal coin of A. Since ε/tQ−
negl is non-negligible, this contradicts our initial assumption. This completes the
proof of Theorem 4.2.
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5 Our CP-ABE Scheme

In this section, we provide our construction of CP-ABE scheme for NC1 whose
sizes of the parameters are independent from the size of the circuits supported
by the scheme and only dependent on the input length and depth of the circuits.
This efficiency property is not satisfied by most of the existing schemes except for
[AY20,BV20]. Unlike [AY20,BV20], we provide the security proof in the standard
model. We then show that the CP-ABE scheme can be used to construct BE
with optimal efficiency. This provides the first optimal BE scheme whose security
is proven in the standard model.

5.1 Construction

Here, we provide our construction of CP-ABE scheme that supports the circuit
class C�,d = {Cλ,�(λ),d(λ)}λ, which is a set of all circuits with input length �(λ)
and depth at most d(λ) with arbitrary �(λ) = poly(λ) and d(λ) = O(log λ).
For our construction, we will use public key slotted IPFE scheme IPFE =
(IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.SlotEnc, IPFE.Dec), which is proposed
by Lin and Luo [LL20], which is secure under the MDDH assumption, and a
secret sharing scheme SS = (SS.Setup,SS.Share,SS.Recon) for C�(λ),d(λ) that is
provided in Sect. 3.

ABE.Setup(1λ): On input 1λ, the setup algorithm proceeds as follows.

1. Run G = (p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ). Note that p and λ
specify the parameter m := m(λ) (See syntax of secret sharing scheme in
Sect. 3).

2. Run pp ← SS.Setup(1λ, p).
3. Run (IPFE.mpki,b,j , IPFE.mski,b,j) ← IPFE.Setup(1λ, {1}, {2}) for i ∈ [�],

b ∈ {0, 1}, and j ∈ [m]. Note that here we generate slotted IPFE instances
whose the first entry is for public slot and the second entry is for private
slot.

4. Output ABE.mpk = (G, pp, {IPFE.mpki,b,j}i∈[�],b∈{0,1},j∈[m]) and ABE.msk
= {IPFE.mski,b,j}i∈[�],b∈{0,1},j∈[m].

ABE.KeyGen(ABE.mpk,ABE.msk, x): The key generation algorithm takes as
input the master public key ABE.mpk, the master secret key ABE.msk, and
an attribute x ∈ {0, 1}� and proceeds as follows.

1. Let x1 · · · x� ∈ {0, 1}� be the binary representation of x ∈ {0, 1}�.
2. Pick γ ← Zp and compute [γ]T .
3. Sample IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ, 0)]2) for all i ∈ [�]

and j ∈ [m].
4. Output ABE.sk = ([γ]T , {IPFE.ski,xi,j}i∈[�],j∈[m]).

ABE.Enc(ABE.mpk, C, μ): The encryption algorithm takes as input the master
public key ABE.mpk, a circuit C, and the message μ and proceeds as follows.

1. Run {sharei,b}i∈[�],b∈{0,1} ← SS.Share(pp, C, μ).
2. Parse each sharei,b as sharei,b = {sharei,b,j ∈ Zp}j∈[m].
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3. Run IPFE.cti,b,j ← IPFE.SlotEnc(IPFE.mpki,b,j , [sharei,b,j ]1) for i ∈ [�], b ∈
{0, 1}, j ∈ [m].

4. Output ABE.ct = {IPFE.cti,b,j}i∈[�],b∈{0,1},j∈[m].

ABE.Dec(ABE.mpk,ABE.sk, x,ABE.ct, C): The decryption algorithm takes as
input the master public key ABE.mpk, the secret key ABE.sk along with x,
the ciphertext ABE.ct along with C and does the following:

1. Parse the ciphertext as ABE.ct → {IPFE.cti,b,j}i∈[�],b∈{0,1},j∈[m] and the
secret key as ABE.sk → ([γ]T , {IPFE.ski,xi,j}i∈[�],j∈[m]).

2. Run IPFE.Dec(IPFE.ski,xi,j , IPFE.cti,xi,j) → [di,j ]T for i ∈ [�] and j ∈ [m].
3. Run SS.FindCoef(pp, C, x) → {ai,j ∈ Zp}i∈[�],j∈[m].
4. Compute [d′]T = [

∑
i∈[�],j∈[m] ai,jdi,j ]T from {[di,j ]T }i,j and {ai,j}i,j .

5. Find e ∈ [−B,B] and μ ∈ {0, 1} such that [d′]T = [γ(μ�p/2� + e)]T by
Brute-force search using [γ]T . If such a pair does not exist, output ⊥.
Otherwise, output μ.

Correctness. To show correctness of the scheme, we first observe that
di,j = γ · sharei,xi,j by the correctness of IPFE. We then observe that d′ =∑

i∈[�],j∈[m] γai,jsharei,xi,j = γ(μ · �p/2�+ e) for some e ∈ [−B,B] by the almost
linear reconstruction property (Definition 3.4) of ABE. Since B is polynomially
bounded by Theorem 3.5, the last step in the decryption algorithm works in
polynomial time and recovers the message μ.

Efficiency. The master public key of the ABE consists of O(�m) master public
keys of the IPFE and the public parameter pp of the secret sharing scheme.
The ciphertext and secret key of the ABE contain O(�m) ciphertexts and secret
keys of the IPFE, respectively. By the efficiency of the secret sharing scheme,
m and the size of pp are bounded by poly(λ). Furthermore, each instance of
IPFE only deals with constant dimension of vectors, which means that sizes of
all the parameters of each instance of the IPFE scheme are bounded by poly(λ).
Therefore, we can see that sizes of all the parameters in the ABE scheme are
bounded by poly(λ, �).

5.2 Security Proof

Here, we prove the security of our ABE scheme in Sect. 5.1. Before doing so, we
prove the following lemma.

Lemma 5.1. Let C ∈ Cλ,�(λ),d(λ) be a circuit and X ⊆ {0, 1}�(λ) be
a set of strings that satisfies C(x) = 0 for all x ∈ X, and SS =
(SS.Setup,SS.Share,SS.Recon) be a secure secret sharing scheme for this circuit
class as per Definition 3.2. Then, for any efficient adversary A = {Aλ}, we have

Pr
[
Aλ

(
G, pp,{

[γ(x)]2, {[γ(x)sharei,xi
]2}i∈[�]

}
x∈X

)
→ 1

]

− Pr

[
Aλ

(
G, pp,{

[γ(x)]2, {[γ(x)w(x)
i ]2}i∈[�]

}
x∈X

)
→ 1

]
= negl(λ), (5.1)
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under the bilinear KOALA assumption, where the probabilities are taken over
the choice of G = (p,G1,G2,GT , e, [1]1, [1]2) ← GroupGen(1λ), γ(x) ← Zp and
w(x)

i ← Z
m
p for x ∈ X, pp ← SS.Setup(1λ, p), and {sharei,b}i∈[�],b∈{0,1} ←

SS.Share(pp, C, μ).

Proof. To prove the theorem, we set Samp to be an algorithm that takes as input
an integer p and a random string aux, sets pp := aux, runs {sharei,b}i∈[�],b∈{0,1} ←
SS.Share(pp, C, μ), and outputs

{
{sharei,xi

}i∈[�]

}
x∈X

.

Then, we argue that AdvwKOALA,single
A,G,Samp,i (λ) defined in Eq. (4.1) is negligible for any

i and any efficient adversary A. To show this, we first fix i and A and observe
that the quantity is negligible if we replace aux that is input to A with pp out-
put by SS.Setup(1λ, p), which follows from the security of SS (Definition 3.2)
and from the fact that C(x) = 0 holds for all x ∈ X. We then observe that
the adversary will not notice even if we replace pp with aux since the distribu-
tions of them are statistically close by the random public parameter property
(Definition 3.3) of SS. We therefore have AdvwKOALA,single

A,G,Samp,i (λ) = negl(λ). This
implies that AdvwKOALA,multi

B,G,Samp (λ) defined in Eq. (4.2) is negligible for any efficient
adversary B by wKOALA, which is implied by the bilinear KOALA assumption.
Finally, by replacing aux with pp output by SS.Setup(1λ, p) in Eq. (4.2), we have
that Eq. (5.1) is negligible for any efficient adversary as desired.

The next theorem establishes the security of our ABE scheme.

Theorem 5.2. Our ABE scheme satisfies very selective security under the
MDDH assumption, the bilinear KOALA assumption, and the LWE assumption.

Proof. To prove the theorem, we fix a PPT adversary A = {Aλ}. Without loss
of generality, we make some simplifying assumptions on A. First, we assume that
A always chooses (μ0, μ1) = (0, 1) as its target message at the challenge phase.
This can be assumed without loss of generality since our scheme is a single-
bit scheme. Second, we assume that the adversary does not make key queries
for the same attribute x twice. The adversary that makes key queries for the
same attribute more than once can be dealt with by making the key generation
algorithm deterministic by changing the scheme so that it derives randomness
using a PRF, which can be instantiated from any one-way functions. Third, we
assume that the adversary chooses fixed challenge attribute C = {Cλ} and key
queries X = {Xλ}. This can be assumed without loss of generality because they
are chosen by the adversary at the beginning of the game only depending on the
security parameter and we can derandomize A by choosing the best randomness
that maximizes the advantage of A.

In order to prove the security, we consider following sequence of games. Let
us denote the event that A outputs correct guess for b at the end of Gamex as
Ex.
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Game1: This is the real very selective security game. To fix the notation and for
the sake of concreteness, we briefly describe the game here. At the beginning of
the game, the adversary chooses C and X ⊆ {0, 1}�. Then, the challenger first
chooses the master public key ABE.mpk and the master secret key ABE.msk
of the ABE scheme. It then generates the challenge ciphertext as follows.
It first chooses the message β ← {0, 1} and runs {sharei,b}i∈[�],b∈{0,1} ←
SS.Share(pp, C, β). It then runs

IPFE.cti,b,j ← IPFE.SlotEnc(IPFE.mpki,b,j , [sharei,b,j ]1)

for i ∈ [�], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to be ABE.ct =
{IPFE.cti,b,j}i∈[�],b∈{0,1},j∈[m]. It also generates secret key ABE.skx for all x ∈
X as follows. It first generates γ(x) ← Zp and

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), 0)]2)

for all i∈ [�] and j ∈ [m]. It then sets ABE.skx = ([γ]T , {IPFE.ski,xi,j}i∈[�],j∈[m]).
Finally, the challenger returns ABE.mpk, ABE.ct, and {ABE.skx}x∈X to A,
which then outputs a bit β̂ as a guess for β. By definition, the advantage of
A against the scheme is ∣∣∣∣Pr[E1] − 1

2

∣∣∣∣ .

Game2: In this game, we change the game so that the challenger generates the
challenge ciphertext as follows. It first chooses the message β ← {0, 1} and
runs {sharei,b}i∈[�],b∈{0,1} ← SS.Share(pp, C, β). It then generates

IPFE.cti,b,j ← IPFE.Enc(IPFE.mski,b,j , [(sharei,b,j , 0)]1)

for i ∈ [�], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to be ABE.ct =
{IPFE.cti,b,j}i∈[�],b∈{0,1},j∈[m]. By the slot-mode correctness of the IPFE, we
have

Pr[E1] = Pr[E2].

Game3: In this game, we change the way the challenge ciphertext and the
secret keys are generated. In this game, the challenger generates the chal-
lenge ciphertext as follows. It first chooses the message β ← {0, 1} and runs
{sharei,b}i∈[�],b∈{0,1} ← SS.Share(pp, C, β). However, it ignores theses values
and generates

IPFE.cti,b,j ← IPFE.Enc(IPFE.mski,b,j , [(0, 1)]1)

for i ∈ [�], b ∈ {0, 1}, j ∈ [m] and sets the challenge ciphertext to be
ABE.ct = {IPFE.cti,b,j}i∈[�],b∈{0,1},j∈[m]. We also change the way the chal-
lenger generates the secret keys as follows. For x ∈ X, it first generates
γ(x) ← Zp and

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), γ(x)sharei,xi,j)]2)
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for all i ∈ [�] and j ∈ [m], where we use sharei,xi,j that is gener-
ated when creating the challenge ciphertext. It then sets ABE.skx =
([γ(x)]T , {IPFE.ski,xi,j}i∈[�],j∈[m]).
We can observe that for each instance of IPFE, the inner products between
the vector that is encoded in the ciphertext and the vectors encoded in the
secret keys are unchanged. Furthermore, the values in the public slots of the
vectors encoded in the secret keys are unchanged. Therefore, this game is
indistinguishable from the previous game for A by the security of the IPFE,
which follows from the MDDH assumption. We therefore have

|Pr[E2] − Pr[E3]| = negl(λ).

Game4: In this game, we further change the way the secret keys are generated
as follows. The challenger first generates γ(x) ← Zp and chooses w(x)

i ← Z
m
p

for i ∈ [�]. It then generates

IPFE.ski,xi,j ← IPFE.KeyGen(IPFE.mski,xi,j , [(γ
(x), w

(x)
i,j )]2)

for all i ∈ [�] and j ∈ [m], where w
(x)
i,j is the j-th entry of the vector w(x)

i , and
sets ABE.skx = ([γ]T , {IPFE.ski,xi,j}i∈[�],j∈[m]).

We claim that this game is indistinguishable from the above game. To
see this, let us assume that A distinguishes the games with non-negligible
advantage for the sake of contradiction. Then, for C = {Cλ} and X = {Xλ}
chosen by A, we can construct another adversary B = {Bλ} that distinguishes
two distributions in Eq. (5.1) with non-negligible advantage as follows.

B takes as input G, pp,
{

[γ(x)]2, {[w(x)
i ]2}i∈[�]

}
x∈X

, where w(x)
i is either

random or w(x)
i = γ(x)sharei,xi

. It chooses (IPFE.mpki,b,j , IPFE.mski,b,j) ←
IPFE.Setup(1λ, {1}, {2}) for all i, b, and j and sets the ABE.mpk and ABE.msk
accordingly. It generates the challenge ciphertext using ABE.msk. It also gener-
ates a secret key for x using [γ(x)]2, {[w(x)

i ]2}i∈[�] and ABE.msk. In particular,
the syntax of the slotted IPFE allows us to generate the secret key for the
vector [(γ(x), w

(x)
i,j )]2 without knowing the corresponding discrete logarithm,

which B does not know. B then inputs ABE.mpk, ABE.ct, and {ABE.skx} to
A and outputs what A outputs.

Clearly, B simulates Game3 for A if w(x)
i = γ(x)sharei,xi

and Game4 if
w(x)

i is random. Thus, B can distinguish the two distributions with the same
advantage as A. This contradicts the bilinear KOALA assumption and the
security of the secret sharing scheme by Lemma 5.1, where the latter follows
from the LWE assumption by Theorem 3.5. Therefore, we have

|Pr[E3] − Pr[E4]| = negl(λ).

We can easily observe that the view of A in Game4 is independent from β and
Pr[E4] = 1/2. Therefore, we have
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∣∣∣∣Pr[E1] − 1
2

∣∣∣∣ ≤
∑
i∈[3]

|Pr[Ei] − Pr[Ei+1]| +
∣∣∣∣Pr[E4] − 1

2

∣∣∣∣ ≤ negl(λ)

as desired. This completes the proof of Theorem 5.2.

5.3 Implication to Broadcast Encryption

Here, we show that our CP-ABE scheme implies BE by restricting the circuit
class of the scheme to be some specific one as was observed in [AY20,BV20]. Let
us consider the following circuit class FBE:

FBE =
{

FS : {0, 1}�log N� → {0, 1}
}

S⊆[N ]
where FS(i) =

{
1 if i ∈ S

0 if i �∈ S
.

Here, we identify a user index i ∈ [N ] and elements in S with binary strings in
{0, 1}�log N� by a natural bijection map between {0, 1}�log N� and [2�log N�] ⊇ [N ].
Since the depth of FS affects the efficiency of the DBE scheme, we want FS to
be as shallow as possible. For this purpose, we compute FS by first computing
bj := (i ?= j) for all j ∈ S in parallel and then computing ∨j∈Sbj . The first
step can be implemented with depth O(log log N) and the second step with
O(log N). This allows us to implement FS with depth O(log |S|) ≤ O(log N).
Therefore, our CP-ABE scheme indeed supports this circuit class. Furthermore,
by the definition of FS , one can see that this CP-ABE scheme implements the
functionality of BE. The obtained BE scheme has optimal efficiency in the sense
that the size of the master public key, secret key, and the ciphertext is bounded
by poly(λ, �, d) = poly(log N,λ) = poly(λ), which is independent of the number
of users N in the system. The scheme satisfies very selective security since so
is the underlying CP-ABE. We note that our scheme indeed satisfies selective
security since very selective security is equivalent to selective security in the
setting of BE (See Remark 2.7).
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Abstract. Program watermarking enables users to embed an arbitrary
string called a mark into a program while preserving the functionality
of the program. Adversaries cannot remove the mark without destroying
the functionality. Although there exist generic constructions of water-
marking schemes for public-key cryptographic (PKC) primitives, those
schemes are constructed from scratch and not efficient.

In this work, we present a general framework to equip a broad class
of PKC primitives with an efficient watermarking scheme. The class
consists of PKC primitives that have a canonical all-but-one (ABO)
reduction. Canonical ABO reductions are standard techniques to prove
selective security of PKC primitives, where adversaries must commit a
target attribute at the beginning of the security game. Thus, we can
obtain watermarking schemes for many existing efficient PKC schemes
from standard cryptographic assumptions via our framework. Most well-
known selectively secure PKC schemes have canonical ABO reduc-
tions. Notably, we can achieve watermarking for public-key encryption
whose ciphertexts and secret-keys are constant-size, and that is chosen-
ciphertext secure.

Our approach accommodates the canonical ABO reduction technique
to the puncturable pseudorandom function (PRF) technique, which is
used to achieve watermarkable PRFs. We find that canonical ABO reduc-
tions are compatible with such puncturable PRF-based watermarking
schemes.

Keywords: Watermarking · Public-key cryptography · All-but-one
reduction

1 Introduction

1.1 Background

Watermarking. Watermarking enables us to embed an arbitrary string called a
“mark” into a digital object such as images, videos, programs. While an embed-
ded mark is extractable, a watermarked object should be almost functionally
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equivalent to the original one. Watermarking ensures that no one can remove
an embedded mark without destroying the original functionality. Watermarking
has two main applications. One is identifying ownership of an object. We can
verify who is the original creator of objects by extracting an embedded mark that
includes a unique identifier. The other is tracing malicious users that illegally
copy objects. Therefore, watermarking deters unauthorized distribution.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang initiated
the study of program watermarking and gave rigorous definitions of crypto-
graphic watermarking for programs [8]. They proved that program watermark-
ing with perfect functionality-preserving property does not exist if there exists
indistinguishability obfuscation (IO) [8]. Hopper, Molnar, and Wagner gave more
definitions of cryptographic watermarking for perceptual objects and studied the
relationships among them [28].

Earlier works presented watermarking schemes for specific classes of crypto-
graphic functionalities [35,36,45]. However, those schemes are secure in restricted
models where we limit adversary’s strategies due to the impossibility results
by Barak et al. [8]. That is, earlier works [35,36,45] do not consider arbitrary
removal strategies. Cohen, Holmgren, Nishimaki, Vaikuntanathan, and Wichs
presented the first watermarking scheme for pseudorandom functions (PRFs)
against arbitrary removal strategies by introducing a relaxed functionality-
preserving property [19]. In addition, they observed two facts: even if we relax
the functionality-preserving property, (1) we need to pick a target circuit from a
distribution with high min-entropy to avoid trivial attacks in the security game.
(2) learnable circuit families are not watermarkable [19]. These two facts are the
reasons why most studies on cryptographic watermarking [12,19,22,32,33,38,44]
focus on cryptographic primitives rather than arbitrary circuits.

We focus on achieving secure watermarking for public-key cryptographic prim-
itives against arbitrary removal strategies in this study since public-key primi-
tives are more versatile than secret-key ones.

Why Watermarking Public-Key Primitives?: An Application. Cohen et al. [19]
presented an application of watermarked PRFs to electronic locks for cars. A
car contains a PRF F and can only be opened by running a typical challenge-
response identification protocol. A car owner has a software key (e.g., a smart-
phone application) that includes a marked PRF. We can embed some identifying
information to PRFs. No one can remove the owner’s information without losing
the ability to unlock the car. Therefore, we can identify the car owner even if
the software key is copied and the car is stolen (license plates can be forged).
However, an automobile manufacturer can know user keys in this scenario since
they are hard-coded in cars.1

If we can independently generate a key pair (public and secret-keys) of
a public-key primitive from the watermarking setup, then an automobile

1 If a car owner can directly install a PRF key into a car, and a watermarking scheme
is public marking type, then watermarkable PRFs work in this scenario. However,
this situation is not preferable.
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manufacturer installs the public key to a car and need not know the secret-key.
Therefore, we can run a typical challenge-response protocol by watermarkable
public-key encryption (PKE) or signature without revealing secret-keys to man-
ufacturers.2

Watermarking from Scratch or Retrofit. Goyal, Kim, Manohar, Waters, and
Wu [22] presented the first feasibility result of watermarkable public-key crypto-
graphic primitives from standard assumptions. This is an excellent work on gen-
eral constructions of watermarkable public-key cryptographic primitives. How-
ever, their constructions of cryptographic primitives are built from scratch. Many
efficient public-key cryptographic schemes (without watermarking functionali-
ties) have been already proposed. One natural question is whether we can equip
existing public-key cryptographic schemes with watermarking functionalities. If
it is possible, we can obtain many efficient watermarkable cryptographic primi-
tives. Our main question in this study is as follows.

Is there any general framework to equip public-key cryptographic schemes with
watermarking functionalities?

We affirmatively answer to this question in this paper.

1.2 Our Contribution

We present a general framework to equip a broad class of public-key primitives
with watermarking functionalities. The features of our watermarking schemes
are as follows. Our watermarking schemes:

– almost preserve the efficiency of the original public-key primitives.
– apply to various primitives such as signature, PKE, key encapsulation mech-

anism (KEM), identity-based encryption (IBE), attribute-based encryption
(ABE), inner-product encryption (IPE), predicate encryption (PE).

– are secure under the same assumptions as ones used in the original public-
key primitives (i.e., CDH, decisional linear (DLIN), DBDH, short integer
solution (SIS), LWE assumptions, and more).

– are independent of the original public-key primitives. (We do not need water-
marking parameters to setup public-key primitives.)

– use simulation algorithms in security reductions of the original primitives.

More details of our watermarking schemes are explained in Sect. 1.4. We will
explain our technique in Sect. 1.3.

Our primary advantages are: (1) semi-general applicability, that is, we can
use many existing public-key schemes almost as they are. We do not need to
construct watermarkable public-key schemes from scratch. (2) achieving CCA
security for PKE. (3) efficiency based on concrete cryptographic assumptions.
(See the comparison in Table 1.) Those are obtained from our framework using
simulation algorithms.
2 If a watermarking scheme is secret marking type, then we run a secure two-party

computation between a user and a manufacturer.
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Using Proof Techniques as Real Algorithms. Our construction technique signif-
icantly deviates from those of previous works. The most notable feature of our
result is that we present a general method to use simulation algorithms that
appear in reduction-based proofs as real cryptographic algorithms. Although
our study is not the first study that uses simulation algorithms to achieve new
cryptographic functionalities [29,30,36],3 we present the first systematic app-
roach using simulation algorithms in real schemes. We abstract a commonly
used proof technique and show that if a public-key cryptographic scheme is
proven to be secure via the proof technique, we can use simulation algorithms in
the reduction as watermarked cryptographic functionalities. See Sect. 1.3 for the
detail. This approach enables us to equip existing schemes with watermarking
functionalities.

Terminology. Before we give a technical overview, we more formally explain
watermarking. A watermarking scheme consists of three algorithms called setup,
marking, and extraction algorithms. A setup algorithm Setup generates a mark-
ing key wmk and extraction key wxk. A marking algorithm Mark takes as input
wmk, a circuit C, and a message ω, and outputs a marked circuit ˜C. Here, ˜C
should output the same output by C for most inputs. An extraction algorithm
Extract takes as input wxk and circuit C ′, and outputs a string ω or special
message unmarked. This type of watermarking is called message-embedding. If
Mark does not take ω as input and Extract outputs marked or unmarked, then
we call message-less watermarking. The basic security notion is unremovability,
which means no adversary can construct a circuit C∗ such that the functionality
of C∗ is almost equivalent to that of ˜C, but Extract(wxk, C∗) outputs ω∗ �= ω.
If we can/not publish wmk and wxk, then we call public/secret marking and
public/secret extraction, respectively.

1.3 Technical Overview

We present how to equip public-key primitives that have canonical all-but-one
reductions4 with watermarking functionalities. All-but-one (ABO) reductions
are standard proof techniques to prove selective security of public-key prim-
itives [1,3,9,10,20,21,25,31,40]. Although our technique is not fully general,
that is, we cannot apply our technique to all selectively secure public-key primi-
tives, many well-known schemes fall into the class of canonical ABO reductions,
where our technique applies. Roughly speaking, our watermarked cryptographic
functionalities are simulation algorithms in ABO reductions. This technique is
of independent interest because we can use simulators in security reductions as
real algorithms for achieving new functionalities.

Our watermarking schemes based on canonical ABO reductions are message-
less. To achieve message-embedding watermarking, we need to extend (canoni-
cal) ABO reductions to (canonical) all-but-N (ABN) reductions. However, ABO
3 Katsumata et al. [29,30] use simulation algorithms of ABE schemes to achieve homo-

morphic signatures.
4 See Sect. 4.2 for the formal definition and the meaning of “canonical”.
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reductions are simpler to explain and it is easy to upgrade ABO reductions
to ABN reductions for pairing-based schemes.5 Thus, we first explain ABO
reductions.

All-but-one Reduction. An ABO reduction is a polynomial-time algorithm that
solves a problem instance π of a hard problem Π by using an adversary A
that breaks selective security of a cryptographic primitive Σ. To explain ABO
reductions and selective security, we introduce oracles in security games.

Adversaries have access to oracles that receives queries from adversaries and
returns answers in some security games. Adversaries also declare a target to
attack Σ at some point in the security game of Σ. We prohibit adversaries from
sending a special query (or queries) that satisfies some conditions related to the
target to prevent trivial attacks. We call such a special query “query on the
target”. In selective security games, adversaries must declare the target at the
very beginning of the game.6

When we prove that if Π is hard, then Σ is selectively secure, we construct
the following reduction R. After an adversary declares a target at the beginning
of a selective security game, R simulates a public parameter by using a problem
instance of Π and the target and sends the public parameter to the adversary.
Then, R simulates answers to all queries from the adversary except the queries on
the target by using the problem instance (and the target). Note that R completes
the simulation without (master) secret-keys of Σ. This type of reduction is called
all-but-one reductions due to the simulation manner. In other words, if there
exists an ABO reduction, then there exists an oracle simulation algorithm that
works for all queries except the target.

We give an example. In the selective security game of signature, an adver-
sary A declares a target message m∗ at the beginning of the game. Then a
challenger sends a public verification-key VK to A. After that, A can send poly-
nomially many queries (i.e., messages) and receives signatures corresponding to
the queried messages (except m∗). At some point, A sends a challenge (m∗, σ∗).

A typical example of ABO reductions is the security reduction of the Boneh-
Boyen signature scheme [9]. The reduction (or called simulator) R is given a
CDH instance π = (G,Gx, Gy) where G is a generator of a group G. When the
adversary A declares a target m∗, R simulates VK by using π and m∗ (embedding
π and m∗ into VK). Next, R simulates signatures σm for queried message m from
A except m∗. Here, R implicitly embeds Gxy into the signing key by setting
parameters carefully (note that R does not have Gxy). Thus, if we assume A
breaks the signature scheme, then R can extract Gxy from the forged signature
σ∗ output by A.

Although R embeds m∗ in VK, the distribution of VK by R is perfectly the
same as the original distribution. In addition, R can perfectly simulate signatures

5 There is no general conversion from ABO to ABN reductions, but upgrading is
possible for many concrete schemes by using programmable hash. See Sect. 4.5 for
more detail.

6 In adaptive security games, adversaries can select the target at any time.
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for messages except for the target message m∗ due to the embedding of m∗. For
notational convention, we separate this signature simulation algorithm part as
SimSign �=m∗ . That is, we can construct an algorithm SimSign �=m∗ from π and
m∗ that outputs σm for input m except m∗. This is not necessarily possible for
all selectively secure schemes since R might use oracle answers for simulation.
Thus, we say a reduction is “canonical” if SimSign �=m∗ does not rely on oracle
answers and is described as a stateless randomized algorithm. This proof style
is sometimes called puncturing proof technique [39] since m∗ is like a hole in
the message space and the reduction has no way to generate σm∗ for m∗. The
graphical explanation is described in Fig. 1.

Although the case of encryption is slightly different from that of signatures,
we can consider similar simulation strategies for encryption. In the PKE case,
there is no “attribute”, but we can use a part of a ciphertext (sometimes called
tag) as an attribute (in particular, in the CCA setting).

Fig. 1. Illustration of ABO reduc-
tion from the selective security of
signature to Π. Solid lines denote
outputs by the adversary A of sig-
nature. Dashed lines denote simula-
tion by the reduction R. The grayed
circle is the hole. Value sol denotes a
solution to π.

Fig. 2. Illustration of reduction from the
security of watermarking to π. Solid lines
denote outputs by the adversary W of
watermarking. Dashed lines denote simula-
tion by reduction R′. The grayed circle is
the hole. Value sol denotes a solution to π.

A Hole is to Watermark. We move to explain our unified framework to
achieve watermarkable public-key primitives by using canonical ABO reduc-
tions. Roughly speaking, a punctured hole in an ABO reduction works as a
watermark because adversaries cannot fill the hole. More concretely, we can con-
sider the oracle simulation part SimSign �=m∗ of the canonical reduction R as
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a watermarked signature generation circuit in the signature case. In addition,
no adversary can recover the ability to generate σm∗ from SimSign �=m∗ because
otherwise, the adversary can break the security of the signature scheme. (The
message m∗ is the target.)

The ABO oracle simulation algorithm SimSign �=m∗ preserves the functionality
of the signature generation circuit except for an input m∗. To detect whether a
circuit is watermarked or not, we check whether the circuit generates a correct
output for the punctured input.7 We can check whether a signature is valid for an
message or not by using its verification algorithm. If a circuit does not generate
a valid output for the punctured input (i.e., the hole), then we consider it as
watermarked. In almost all ABO reductions, we have efficient algorithms that
check the validity of answers from oracles.

The unremovability holds as follows. We construct a reduction R′ that solves
a problem instance π by using a watermarking adversary W. R′ can give
SimSign �=m∗ to W since R′ has π and m∗.8 Assume that W can remove the
watermark. That is, we assume W is given SimSign �=m∗ and generates a circuit
Sign=m∗ that can generate a signature for the target m∗ (i.e., filling the hole).
Then, R′ can break the security of signature. This is because Sign=m∗ yields a
forgery σ∗ for the target m∗. We can extract the solution for π from σ∗ as the
ABO reduction for Boneh-Boyen signature scheme.

Put it differently, the canonical ABO reduction R(π) works as well even if we
replace the adversary A of a cryptographic scheme Σ with the adversary W for
watermarking, which removes the watermark. The modified reduction R′(π) can
solve π because the power of removing the watermark by W leads to breaking
the security of Σ. Therefore, the watermarking scheme is secure if the underlying
problem is hard. The graphical explanation is described as in Fig. 2.

There are a few issues in the overview above. One issue is giving the descrip-
tion of SimSign �=m∗ to the adversary since it has only black-box access to the
signature generation oracle in the security game. This issue is the reason why
we use “canonical” ABO reductions. If ABO reductions satisfy the canonical
property, then SimSign �=m∗ does not need oracle answers from the hard problem
Π to simulate the signature generation oracle and can be described as a stateless
randomized algorithm.

Another issue is how to prepare a problem instance and randomness for
simulating VK in an ABO reduction. To create an ABO reduction in the real
world, we need a problem instance π. However, what we have in the real world
is not a problem instance but a secret signing-key. It is easy to find that we can
perfectly simulate a problem instance and randomness for reductions by using
a secret key in the real world for most ABO reductions. In addition, although
SimSign �=m∗ includes randomness for simulating VK, this is not an issue thanks
to the randomness of the problem instance π (i.e., secret-key in the real world).
See Sects. 4 to 6 for details.

7 A useless circuit that outputs ⊥ for all inputs is watermarked by this detection. To
prevent this, we test the functionalities of circuits. See Sect. 6 for details.

8 We do not explain how to determine m∗ here since it is not essential in this overview.
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Although we gave only intuitions in this section, we formalize properties of
canonical ABO reductions in Sect. 4 and prove that we can achieve watermarking
from canonical ABO reductions in Sects. 5 and 6.

Extension to all-but-N Reduction. The watermarking based on ABO reductions
above is message-less watermarking. To embed an arbitrary N -bit string, we
need all-but-N reduction, which can simulate oracle answers except queries on
N targets. Here, N is an a-priori bounded polynomial in the security parameter.
We can easily extend known cryptographic primitives that have ABO reductions
to ones that have all-but-N reductions by using the technique of programmable
hash functions [27] for pairing-based cryptography. We also use the fully key-
homomorphic technique [10] in the lattice setting or dynamic q-type assump-
tions [5] for the Boneh-Boyen IBE. See Sect. 4.4 for the detail.

First, we explain a reasonable but faulty idea to achieve message-embedding
watermarking based on all-but-N reductions since it helps to understand our
idea. We prepare N pairs of strings {t∗i,b}i∈[N ],b∈{0,1} as the public parameter
of watermarking. To embed a message ω = (ω1, . . . , ωN ) ∈ {0, 1}N , we consider
an oracle simulation algorithm that can generate answers for queries except N
points in P := {t∗1,ω1

, . . . , t∗N,ωN
}. Concretely, in the case of signature, a signature

oracle simulation algorithm SimSign/∈P outputs a signature σm for a message m
such that m /∈ P .9 To extract an embedded message from a circuit C ′, we run
the answer checking algorithm as in the message-less scheme for each i ∈ [N ]
and b ∈ {0, 1}. If C ′ outputs a valid σt∗

i,1
for input t∗i,1 and does not output a

valid σt∗
i,0

for input t∗i,0, then we set the i-th bit of a message to 0 and vice versa.
This construction achieves the functionality of message-embedding water-

marking. However, it is not secure because the adversary knows which points
should not be punctured. That is, the points in P := {t∗1,1−ω1

, . . . , t∗N,1−ωN
} (and

P ) are publicly available information. We call P the negation of punctured points
P in this section. As already observed in some watermarkable PRFs [19,32,38],
public punctured points could hurt watermarking security. In our case, adver-
sary can easily destroy the functionality of cryptographic primitive at any point.
More concretely, the adversary can easily modify a watermarked circuit where
t∗i,ωi

is punctured but t∗i,1−ωi
is not punctured into a circuit that does not work

for point t∗i,1−ωi
too. Then, the extraction algorithm above outputs ⊥ for the

malformed circuit since the circuit outputs ⊥ both for t∗i,0 and t∗i,1.
To solve the issue, we generate punctured points P and its negation P

by using PRFs and hide them instead of using publicly known punctured
points and its negation. This technique is commonly used in watermarkable
PRFs [19,32,38]. We pseudo-randomly determine punctured points and its nega-
tion based on an embedded mark and the public parameter of the target mas-
ter secret-key to be watermarked. Then, the adversary has no idea about the

9 All-but-N reductions should be able to generate N simulated challenge ciphertexts
in the encryption case. This simulation is easy to achieve by using random self-
reducibility of underlying hard problems for the discrete-logarithm-based case. In
the LWE case, polynomially many (so, N) problem instances can be given.
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negation of punctured points P (and P ). Therefore, it is hard for the adver-
sary to intentionally modify a watermarked circuit into a circuit that does
not work for points in P . In fact, we must prepare many punctured points
pi := (t(1)i,ωi

, . . . , t
(T )
i,ωi

) and its negation pi := (t(1)i,1−ωi
, . . . , t

(T )
i,1−ωi

) for each bit
position i and check all points to extract i-th bit of an embedded message,
where T is a polynomial in the security parameter. If a circuit output ⊥ for all
points in pi and a correct value for at least one point in pi, we extract ωi as the
i-th bit. To change the i-th bit of the embedded message without recovering the
original functionality, adversaries must destroy the functionality of a circuit for
all points in pi. Advesaries can indiscriminately destroy the functionality with-
out knowing points (pi, pi). However, if the adversary makes a circuit that does
not work for a 1/2 plus a non-negligible fraction of inputs, then we can check
that the circuit is not functionally similar to the original watermarked circuit.
To make a circuit that is functionally similar to the watermarked circuit, but the
extraction algorithm does not output ωi from, all the adversary can do is recov-
ering the functionality of the watermarked circuit at punctured points P (pi).
This event contradicts to all-but-N reductions as the case of the message-less
scheme. Thus, we can achieve unremovability.

Although the message-embedding scheme above is secret marking and secret
extraction, it is secure even if the adversary has the oracle access to the marking
and extraction oracles. See Sect. 6 for the detail.

1.4 Comparison and Related Work

In this section, we review previous works on watermarking.10 First, we compare
our watermarking schemes with the schemes by Goyal et al. [22].

Efficient Direct Constructions and Generic Constructions. Goyal et al. [22] con-
structed a secret marking and secret extraction watermarking scheme for ABE
(GKM+ABE) from mixed functional encryption (FE) and delegatable ABE,
which can be instantiated only by the LWE assumption. They also constructed a
public marking and public extraction watermarking scheme for PE (GKM+PE)
from (bounded collusion-resistant) hierarchical FE, which can be instantiated
by any PKE. Although the LWE assumption instantiates the schemes, the con-
structions are inefficient since they rely on heavy tools like mixed FE and hier-
archical FE even for watermarkable PKE. In particular, in their watermark-
able encryption schemes, not only the public key length but also the ciphertext
length depend on the length of embedded massages (and the number of collu-
sions in the GKM+PE case). The ciphertext size of GKM+ABE and GKM+PE
is huge (See Table 1). They constructed a public marking and public extrac-
tion watermarking scheme for signature (GKM+SIG) from a prefix-constrained
signature, which is instantiated with OWFs. GKM+SIG scheme is relatively effi-
cient if it is instantiated with a signature scheme based on the symmetric external

10 We do not consider constructions from strong assumptions such as IO in this study.
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Table 1. Efficiency Comparison of Message-Embedding Watermarking (Advanced)
Public-Key Encryption and Signature. We ignore MPK part in MSK. In “Assumption”
column, we put references for concrete instantiations. Parameters λ and � are the
security parameter and the length of marks, respectively. In general, |G| = cλ and
|GT | = cT λ for some small constant c and cT (depends on pairing groups). We do not
put Ours2 in this table since it is message-less type.

|MPK| |MSK| |SK| or |σ| |CT| Assumption

GKM+ABE poly(λ, �) poly(λ) poly(λ) poly(λ, �)c LWE [23]

GKM+PE Q · poly(λ, �) Q · poly(λ, �) poly(λ, �) Q · poly(λ, �)d PKE

Ours1 PKEa (2�λ + 5)|G| (2�λ + 2)|Zp| N/A 6|G| DLIN [31]

Ours1 KEMb (�λ + 4)|G| + |hk| (�λ + 3)|Zp| N/A 2|G| + |r| DBDH [13]

Ours1 KEMb 4|G| + |hk| 3|Zp| N/A 2|G| + |r| q-type [5]

Ours1 IBE (�λ + 4)|G| (�λ + 3)|Zp| 2|G| 2|G| + |GT | DBDH [9]

Ours1 IBE 4|G| 3|Zp| 2|G| 2|G| + |GT | q-type [5]

Ours1 IBE �poly(λ) poly(λ) poly(λ) poly(λ)e LWE [10]

GKM+SIG (� + 3)|G| |Zp| (� + 7)|G| N/A CDH [42]

GKM+SIG 8|G| + |GT | 8|Zp| 16|G| + |GT | N/A SXDH [16]

Ours3 SIG (�λ + 4)|G| (�λ + 3)|Zp| 2|G| N/A CDH [9]

Ours3 SIG 4|G| 3|Zp| 2|G| N/A q-type [5]

Ours3 SIG �poly(λ) poly(λ) poly(λ) N/A LWE [10]
aTag-based encryption.
bValue hk and r are a hash key and randomness of a chameleon hash function.
cAt least �7λ7.
dAt least �2λ2 if instantiated with FE by Ananth and Vaikuntanathan [4].
eAt most O(λ3 log2 λ).

Diffie-Hellman (SXDH) assumption [16] since the transformation does not incur
significant overhead.11

Our watermarking schemes can generally equip public-key primitives with
watermarking functionalities if the primitives satisfy some conditions. The equip-
ping procedure incurs only a little overhead. Although we need to modify public-
key schemes so that they have O(�λ)-size master public parameters to achieve
message-embedding watermarking where � is the mark length and λ is the secu-
rity parameter, the size of signatures/secret-keys/ciphertexts does not change.
The signatures/secret-keys/ciphertexts consist of only a few group elements if
we use group-based schemes. In addition, if we use a q-type assumption, we
can use the original Boneh-Boyen scheme as it is (even the master public key
is constant-size). Thus, our watermarkable public-key primitives are as efficient
as known efficient public-key primitives such as Boneh-Boyen IBE scheme [9].
Therefore, in the case of encryption, our schemes are more efficient than those of
Goyal et al. in the asymptotic sense. See Table 1 for the efficiency comparison.

11 We focus on constructions in the standard model in this paper. If we instantiate
a signature scheme with Schnorr signature scheme [41], GKM+SIG would be more
efficient.
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Functionalities of Watermarking. In GKM+PE, GKM+SIG, and our schemes,
the watermarking setup algorithms are completely separated from the key gen-
eration algorithm of public-key primitives. However, in GKM+ABE, we need
the public parameter of the watermarking scheme to generate keys of public-key
primitives.

Although our message-embedding scheme is secret marking and secret extrac-
tion, it is secure even if adversaries have access to marking and extraction ora-
cles, which answer a marked circuit and an embedded mark for queried circuits,
respectively. GKM+ABE is also secret marking and secret extraction and secure
under the marking and extraction oracles, but the number of extraction queries
is a-priori bounded. On the other hand, GKM+PE and GKM+SIG are public
marking and public extraction.

Our schemes for signature/TBE/KEM/IBE and all GKM+ schemes are
message-embedding watermarking, but our schemes for ABE/PE are message-
less watermarking.

Watermarking User Secret-Keys v.s. Master Secret-Keys. In GKM+ABE and
GKM+PE, we can watermark user secret-keys such as secret-keys for identities
(resp. policies) in IBE (resp. ABE). On the other hand, in our schemes, we can
watermark master secret-keys of tag-based encryption (TBE), KEM, IBE, ABE,
and PE. TBE is a variant of PKE. For signature/KEM/PKE cases, there is no
difference since master secret-keys are user secret-keys in these cases.

Security Level. There are several security measures. (1) Ours for TBE/KEM
achieves CCA-security, but GKM+ABE and GKM+PE for PKE do not. (2)
GKM+PE and GKM+SIG are adaptively secure, but GKM+ABE and ours
are selectively secure in terms of public-key primitives. In terms of embedded
messages, GKM+ schemes are adaptively secure, but ours are selectively secure.
See Sect. 3 for selective security of watermarking. (3) All schemes are secure
even if the authority of watermarking setup is corrupted. (4) Regarding the
parameter on how much adversaries should preserve functionalities to succeed
attacks, GKM+ schemes are better than ours. (GKM+ is 1/poly(λ) while ours
is 1/2 + 1/poly(λ).) (5) We can consider three types of collusion-resistance in
this study.

Collusion-resistance w.r.t. cryptographic primitives: In security games
of cryptographic primitives, adversaries are often allowed to send queries to
master secret-key based oracles that gives additional information such as sig-
natures in the signature case and secret-keys for identities in the IBE case.
We say collusion-resistant w.r.t. cryptographic primitives if cryptographic
schemes are secure even in such a setting. Both GKM+SIG and our water-
marking schemes for signatures are collusion-resistant w.r.t. cryptographic
primitives. GKM+ABE and our watermarking schemes for encryption (IBE,
ABE, and PE) are collusion-resistant w.r.t. cryptographic primitives. On the
other hand, GKM+PE is bounded collusion-resistant w.r.t. cryptographic
primitives, where the number of queries is a-priori bounded.
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Collusion-resistance w.r.t. watermarkable cryptographic primitives:
We say that a watermarking scheme is collusion-resistant w.r.t. watermark-
able cryptographic primitives if it is unremovable even if adversaries have
access to the master secret-key based oracle explained above in security
games of watermarking for public-key primitives. Both GKM+SIG and our
schemes for signature are collusion-resistant w.r.t. watermarkable crypto-
graphic primitives. Our watermarking schemes for encryption (IBE, ABE,
and PE) are collusion-resistant w.r.t. watermarkable cryptographic primi-
tives, but GKM+ABE and GKM+PE schemes are not.

Collusion-resistance w.r.t. watermarking: We say that a watermarking
scheme is collusion-resistant w.r.t. watermarking (collusion-resistant water-
marking) if it is unremovable even if adversaries are given many watermarked
keys for the same original key. GKM+ABE, GKM+PE, and GKM+SIG are
collusion-resistant watermarking, but ours are not.
We emphasize that even if watermarking schemes do not satisfy collusion-
resistance w.r.t. watermarking, they have an application to ownership iden-
tification. This is because each user can use different keys in some settings,
as we can see in the application to electronic car-lock in Sect. 1.1. More-
over, collusion-resistant watermarkable encryption is essentially the same
as traitor tracing (the definition by Goyal [22] for PKE implies traitor
tracing).12 In some scenarios (ownership identification), traitor tracing
(and collusion-resistant watermarking) is over-engineered. Thus, watermark-
ing without collusion-resistance w.r.t. watermarking is meaningful enough.
Moreover, if we would like to use collusion-resistant watermarkable PKE,
we already have traitor tracing schemes [14,24]. If we want to trace users
in public-key primitives, we can directly consider traceable primitives rather
than collusion-resistant watermarkable public-key primitives.
The construction technique by Goyal et al. relies on that of traitor trac-
ing [17,37] to achieve collusion-resistance w.r.t. watermarking.

Summary of Comparison. We summarize watermarkable public-key primitives
by Goyal et al. [22] and ours in Tables 1 and 2. PE and ABE include PKE/IBE/
IPE as special cases. Notably, ours achieves CCA security for PKE. In addition,
our message-embedding scheme (Ours1 in Table 2) is much more efficient than
GKM+ABE and GKM+PE as we see in Table 1. In particular, the size of secret-
keys and ciphertexts in our scheme does not depend on �. If we use q-type
assumption, then even the size of master public key does not depend on �.

The disadvantages of Ours1 and Ours3 are (1) not collusion-resistant (2)
secret marking/extraction (3) selective security (4) watermarking for master
secret-keys (this is not a disadvantage for PKE and signature) (5) not supporting
functionalities beyond IBE. We do not have a useful application of watermarking
for master secret-keys in IBE/ABE/PE cases. On the other hand, all GKM+
constructions achieve collusion-resistance, watermarking for user secret keys, and

12 Collusion-resistant watermarkable signatures may have an application to group sig-
natures. However, the application is non-trivial since we should be able to trace users
from signatures (not from signing keys) in the group signature setting.
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Table 2. Comparison of Watermarking (Advanced) Public-Key Encryption. WM, CR,
prim., auth., MO, and XO stands for watermarking (or watermarkable), collusion-
resistance, primitive, authority, marking oracle, and extraction oracle, respectively.

GKM+ABE Ours1 Ours2 GKM+PE GKM+SIG Ours3

Primitive ABE PKEa/IBE ABE/IPE/PE PE SIG SIG

Assumption LWE DBDH/DLIN/LWE PKE OWF CDH/SIS

Message-embedding � � × � � �
Public mark × × � � � ×
Against MO attack � � � � � �
Public extraction × × � � � ×
Against XO attack bounded � � � � �
Separated setup × � � � � �
Marking MSK × � � × N/A N/A

Marking SK � × × � � �
CCA-secure PKE × �a �a × N/A N/A

CR w.r.t. prim. � � � bounded � �
CR w.r.t. WM prim. × � � × � �
CR w.r.t. WM � × N/A bounded � ×
Selective/Adaptive selective selective selective adaptive adaptive selective

Sec. against auth. � � � � � �
aTBE and KEM.

support functionalities beyond IBE. GKM+PE and GKM+SIG achieve adaptive
security. Although Ours2 is public marking/extraction and supports functionali-
ties beyond IBE, it is message-less type and watermarking for master secret-keys.
Therefore, GKM+ constructions and ours are incomparable.

More on Related Work. Cohen et al. gave the first positive result on pro-
gram watermarking by introducing the statistical functionality-preserving prop-
erty [19]. They presented public extraction message-embedding watermarkable
PRFs based on IO. Subsequently, Kim and Wu [32,33] (KW17 and KW19) and
Quach, Wichs, and Zirdelis [38] (QWZ18) presented secret extraction message-
embedding watermarkable PRFs based on the LWE assumption. The KW19
and QWZ18 schemes are secure against extraction oracle attacks. In addition,
QWZ18 scheme is public marking. Regarding message-embedding watermark-
able PRFs, KW17, KW19, and QWZ18 schemes are relatively efficient since
they are based on the LWE assumption.

Baldimtsi, Kiayias, and Samari presented watermarking schemes for public-
key primitives in a relaxed model, where a trusted watermarking authority gen-
erates not only watermarked keys but also unmarked keys and algorithms are
stateful [7]. We do not compare their scheme because this is a weaker model.

Goyal et al. presented not only constructions but also rigorous definitions
of watermarkable public-key primitives and a relaxed functionality-preserving
property for watermarkable public-key primitives [22].13

13 Cohen et al. [18] considered watermarkable public-key primitives before Goyal et al.,
but even if a scheme satisfies their definitions, there exists simple attacks as observed
by Goyal et al. [22].
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Organization. In Sect. 2, we provide basic notions. Section 3 introduces the syn-
tax and security definitions of watermarking. Section 4 defines canonical ABO
reductions and gives examples of them. In Sect. 5, we present our message-less
watermarking scheme. In Sect. 6, we present our message-embedding watermark-
ing scheme and prove its security. Due to space limitations, we omitted many
contents.

2 Preliminaries

We define some notations and introduce cryptographic notions in this section.

Notations and Basic Concepts. If X (b) = {X
(b)
λ }λ∈N for b ∈ {0, 1} are two

ensembles of random variables indexed by λ ∈ N, we say that X (0) and X (1) are
computationally indistinguishable if for any PPT distinguisher D, there exists a
negligible function negl(λ), such that

Δ := |Pr[D(X(0)
λ ) = 1] − Pr[D(X(1)

λ ) = 1]| ≤ negl(λ).

We write X (0) c≈ X (1) to denote that the advantage Δ is negligible.
The statistical distance between X (0) and X (1) over a countable set S is

defined as Δs(X (0),X (1)) := 1
2

∑

α∈S |Pr[X(0)
λ = α] − Pr[X(1)

λ = α]|. We say
that X (0) and X (1) are statistically/perfectly indistinguishable (denoted by
X (0) s≈ X (1)/X (0)

p
≈ X (1)) if Δs(X (0),X (1)) ≤ negl(λ) and Δs(X (0),X (1)) = 0,

respectively. We also say that X (0) is ε-close to X (1) if Δs(X (0),X (1)) = ε.

Definition 2.1 (Circuit similarity). Let C be a circuit class whose input space
is {0, 1}�. For two circuits C,C ′ ∈ C and a non-decreasing function ε : N → N,
we say that C is ε-close to C ′ if it holds that

Pr[C(x) �= C ′(x) | x ← {0, 1}�] ≤ ε. (denoted by C ∼=ε C ′)

Similarly, we say that C is ε-far to C ′ if it holds that

Pr[C(x) �= C ′(x) | x ← {0, 1}�] > ε. (denoted by C �∼=ε C ′)

3 Definitions of Watermarking for Cryptographic
Primitives

In this section, we introduce the definitions of watermarking for cryptographic
primitives. Although our definitions basically follow those of Goyal et al. [22],
there are several differences.

We focus on cryptographic primitives that have a master parameter gener-
ation algorithm PGen and a master secret-key based algorithm MSKAlg in this
study. For example, in IBE/ABE/IPE, PGen is a setup algorithm Setup and
MSKAlg is a key generation algorithm for identity/attribute/policy KeyGen. In
TBE/KEM/signature, PGen is a key generation algorithm Gen and MSKAlg is
a decryption/signing algorithm Dec/Sign. Hereafter, we do not explicitly treat
KEM, but it is easy to adapt all definitions to the KEM setting. We formalize
the notion of master secret-key based cryptographic schemes as follows.
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Definition 3.1 (Master secret-key based cryptographic scheme). A
master secret-key based cryptographic scheme Σ with spaces (T ,Q,P,Rmka) has
at least two algorithms PGen and MSKAlg.

Master parameter generation: PGen(1λ) takes as input the security param-
eter and outputs a master public parameter PP ∈ PP and a master secret
key MSK ∈ MSK. We often omit spaces PP and MSK from Σ.

Master secret-key based algorithm: MSKAlg(MSK,X) takes MSK and an
input X ∈ Q and outputs Y ∈ P. The randomness space of MSKAlg is Rmka.

We assume that MSK includes PP. Σ = (PGen,MSKAlg, . . .) has additional
algorithm other than PGen and MSKAlg. The space T is used in the security
game defined later (Definition 4.2).14

Remark 3.1. In Definition 3.1, an output by MSKAlg is typically a secret key for
an identity/policy X, signature for a message X. In the TBE case, X consists of a
tag and ciphertext, and Y is a plaintext. We can consider encryption, decryption,
and verification algorithms as additional algorithms. Definition 3.1 captures most
popular cryptographic schemes such as PKE, TBE, IBE, ABE, IPE, PE, FE,
signature, constrained signature.

Table 3. Concrete spaces and algorithms of master secret-key based cryptographic
scheme.

tag-based PKE IBE SIG

T tag space T AG identity space ID message space MSG
Q tag and ciphertext space T AG × CT ID MSG
P plaintext space PT ∪ {⊥} secret key space SK signature space SIG
MSKAlg(MSK, ·) Dec(sk, ·) KeyGen(MSK, ·) Sign(sk, ·)

Definition 3.2 (Validity check algorithm for master secret-key based
cryptographic scheme). A master secret-key based cryptographic scheme Σ
with spaces (T ,Q,P,Rmka) can have an optional algorithm Valid-Out that takes
as inputs PP, X ∈ Q, and Y ∈ P and outputs 
/⊥. For all (PP,MSK) ←
PGen(1λ) and all X ∈ Q, Valid-Out(PP,X, Y ) outputs 
 if and only if Y ←
MSKAlg(MSK,X).

Remark 3.2. Although we do not explicitly consider validity check algorithms in
signature and advanced encryption schemes, we can implement validity check
algorithms in most schemes (and all schemes in this paper). See examples
in Sects. 4.3 and 4.5. Note that Y is not necessarily unique since MSKAlg might
be a randomized algorithm.

14 Jumping ahead, T is a space where adversaries select targets at the beginning of
security games.
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Definition 3.3 (Watermarkable Public-Key Scheme). A watermarking
scheme with mark space Mw for master secret-key based cryptographic scheme
Σ with spaces (T ,Q,P,Rmka) is a tuple of algorithms (WMSetup,Mark,Extract)
with the following properties:

Setup: WMSetup(1λ) takes as input the security parameter and outputs a water-
marking public parameter wpp, a marking key wmk, and an extraction key
wxk.

Mark: Mark(wpp,wmk,MSK, ω) takes as input wpp, wmk, the master secret key
MSK ∈ MSK of Σ, and a mark ω ∈ Mw and outputs a deterministic circuit
˜C : Q × Rmka → P. Note that ˜C explicitly takes the randomness of MSKAlg.

Extract: Extract(wpp,wxk,PP, C ′) takes as input wpp, wxk, the public param-
eter PP ∈ PP of Σ, and a circuit C ′ : Q × Rmka → P and outputs a mark
ω′ ∈ Mw or a special symbol unmarked.

Remark 3.3. We can separately treat watermarking schemes and cryptographic
primitives in our definition while in the definition of Goyal et al. [22], key gen-
eration algorithms of cryptographic primitives need public parameters of water-
marking. The separated definition is preferable and the same definition as that
of Cohen et al. [19].

Hereafter, we set wsk := wmk = wxk since we consider only two cases. One is
the public marking and extraction case (wmk = wxk = ⊥) and the other is the
secret marking and extraction case (wsk = wmk = wxk) in this paper.

Hereafter, we focus on advanced encryption (IBE, IPE, ABE, PE) rather
than TBE and signature for readability. Due to space limitations, we omit the
definitions for TBE and signature.

Definition 3.4 (Correctness (Advanced encryption)). Let WMΣ =
(WMSetup,Mark,Extract) be a watermarking scheme for advanced encryption
scheme Σ = (Setup,KeyGen,Enc,Dec) with spaces (T ,Q,P,Rmka). In this case,
T = AT T , Q = POL, P = SK, where AT T and POL is an attribute and policy
space, respectively. We say that WMΣ is correct if it satisfies the following.

Extraction correctness: For all (wpp,wsk) ← WMSetup(1λ), all marks ω ∈
Mw,

Pr
[

Extract(wpp,wsk,PP, ˜C) �= ω

∣

∣

∣

∣

(PP,MSK) ← Setup(1λ)
˜C ← Mark(wpp,wsk,MSK, ω)

]

≤ negl(λ).

Meaningfulness: There are two variants of meaningfulness.
Strong meaningfulness. For all fixed circuits C : POL × Rmka → SK,

Pr

[
Extract(wpp,wsk,PP, C)

= unmarked

∣∣∣∣ (wpp,wsk) ← WMSetup(1λ)

(PP,MSK) ← Setup(1λ)

]
> 1 − negl(λ).

Weak meaningfulness. For all (wpp,wsk) ← WMSetup(1λ),

Pr

[
Extract(wpp,wsk,PP,KeyGen(MSK, ·))

= unmarked

∣∣∣(PP,MSK) ← Setup(1λ)

]
> 1 − negl(λ).
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Functionality-preserving: For all (wpp,wsk) ← WMSetup(1λ), for all
(PP,MSK) ← Setup(1λ), all marks ω ∈ Mw, there exists PS ⊂ AT T such
that N := |PS| ≤ poly(λ), for all ρmka ∈ Rmka, all attributes x ∈ AT T \ PS
and all policy P ∈ POL such that P(x) = 
, we have that

Pr[C̃(P, ρmka)
p
≈ KeyGen(MSK,P) | C̃ ← Mark(wpp,wsk,MSK, ω)] > 1 − negl(λ).

Here, PS stands for a “punctured set” since ˜C does not work for policy P
such that x ∈ PS and P(x) = ⊥.

Condition P(x) = ⊥ means attribute x is not qualified to policy P.

In the IBE case, T = Q = ID (identity space), P = idi, x = id, and P(x) = ⊥
means idi �= id.

Remark 3.4. Although our definition has a few differences from the standard
functionality preserving in the cryptographic watermarking context [19,32] on
the surface, ours is basically the same as the standard one. We select the defi-
nition above to emphasize that there exists a punctured set PS, and the set is
explicitly used in the security definition.

In addition, this functionality-preserving is stronger than that by
Goyal et al. [22] since the output distribution of marked circuits is perfectly
the same as that of the original circuit on almost all inputs.

Definition 3.5 (Selective-Mark ε-Unremovability for Advanced Enc-
ryption). For every PPT A, we have

Pr[Expurmv-enc
A,WMΣ

(λ, ε) = 1] ≤ negl(λ),

where ε is a parameter of the scheme called the approximation factor and
Expurmv-enc

A,WMΣ
(λ, ε) is the game defined as follows.

1. The adversary A declares a target mark ω∗ ∈ Mw.
2. The challenger generates (PP,MSK) ← Setup(1λ), (wpp,wsk) ←

WMSetup(1λ), and ˜C ← Mark(wpp,wsk,MSK, ω∗), and gives (PP,wpp, ˜C)
to A. At this point, a set PS ⊂ T such that |PS| = poly(λ) is uniquely
determined by (wpp,wsk,PP, ω∗).

3. A has oracle access to the key generation oracle KO. If KO is queried with
a policy P ∈ POL such that P(t∗i ) = ⊥ for all t∗i ∈ PS, then KO answers
with KeyGen(MSK,P). Otherwise, it answers ⊥. Condition P(x) = ⊥ means
attribute x is not qualified to policy P.

4. A has oracle access to the marking oracle MO. If MO is queried with a mas-
ter secret key MSK′ ∈ MSK and a mark ω′ ∈ Mw, then does the following.
If the corresponding master public parameter PP′ is equal to PP, then outputs
⊥. Otherwise, answers with Mark(wpp,wsk,MSK′, ω′).

5. A has oracle access to the extraction oracle XO. If XO is queried with a PP′

and circuit C ′, then XO answers with Extract(wpp,wsk,PP′, C ′).
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6. Finally, A outputs a circuit C∗. If A is admissible (defined below) and
Extract(wpp,wsk,PP, C∗) �= ω∗ then the experiment outputs 1, otherwise 0.

We say that A is ε-admissible if C∗ output by A in the experiment above satisfies

Pr
[

Valid-Out(PP,P, C∗(P, ρmka)) = 

∣

∣

∣

∣

P ← POL
ρmka ← Rmka

]

≥ ε.

See Definition 3.2 for Valid-Out.

The admissibility requires the adversary to output C∗ that agrees on an
ε fraction of inputs with C. This formalizes that C∗ should be similar to the
original circuit C.

Remark 3.5. Our definition is the same as that of Goyal et al. [22] except for
that

1. A must declare the target mark ω at the beginning of the game.
2. A does not receives answers for inputs in PS from the key generation oracle.
3. we do not consider collusion-resistance w.r.t. watermarking. That is, A is

given only one target circuit ˜C.
4. we consider the oracles KO in the unremovability game while Goyal et al. do

not.
5. we consider watermarking for master secret-keys. Thus, the admissible con-

dition for advanced encryption (i.e., beyond PKE or TBE) is in terms of
Valid-Out.

Unforgeability. We can consider another security notion for watermarking, called
unforgeability [12,19,32], in the secret marking setting. Unforgeability says that
adversaries cannot generate a marked circuit with sufficiently different function-
ality from that of given marked circuits without a marking key.

We do not formally define unforgeability in this work as Goyal et al. did
not. However, we can achieve unforgeability by embedding not only a mark but
also a signature for the embedded mark and master public key as Goyal et al.
observed [22].15

On Security Against Malicious Authority. Our watermarkable public-key prim-
itives are trivially secure against authorities of watermarking schemes if the
underlying public-key primitives are secure since parameter generation algo-
rithms PGen are independent of watermarking setup algorithms WMSetup. Thus,
we omit the definition of security against malicious authority.

4 All-But-One Reductions

In this section, we formalize a class of security reductions, called canonical all-
but-one (ABO) reductions. Canonical ABO reductions are often used to prove
the hardness of breaking many cryptographic primitives. A typical example is the
security reduction of Boneh-Boyen IBE based on the decisional bilinear Diffie-
Hellman assumption [9].
15 ePrint archive report 2019/628, Section 3.4 and C.4 (version 20190908).
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4.1 Assumptions and Security Games

We need to define cryptographic assumptions and security games before we for-
malize canonical ABO reductions. The types of reductions depend on whether
security games and underlying cryptographic assumptions are computational or
decisional. Therefore, we consider two types of assumptions and games. How-
ever, we focus on the decisional case in the main body for readability. See the
full version for the computational case.

Definition 4.1 (Decisional assumption). A decisional assumption DA for
problem Π is formalized by a game between the challenger E and the adversary
A. The problem Π consists of an efficient problem sampling algorithm PSampleb

for b ∈ {0, 1}. The game ExptDAΠ,E↔A(λ, b) is formalized as follows.

– On input security parameter λ, E samples a problem instance πb ←
PSampleb(1λ).

– E sends πb to A and may interact with A(1λ, πb).
– At some point, A outputs a guess coin∗ and the game outputs coin∗.

We say a decisional assumption holds (or problem Π is hard) if it holds

AdvDAΠ,E↔A(λ) := | Pr[ExptDAΠ,E↔A(λ, 0) = 1] − Pr[ExptDAΠ,E↔A(λ, 1) = 1]| ≤ negl(λ).

This definition captures the well-known DDH, DBDH, k-Lin, matrix-DDH,
quadratic residuosity, LWE, decisional q-type assumptions (and more). Note
that the assumption above also captures interactive oracle assumptions since A
may interact with the challenger that plays the role of oracles.

Definition 4.2 (Selective Security Game (Decisional Case)). We define
selective security games (decisional case) between a challenger C and an adver-
sary A for a master secret-key based scheme Σ with spaces (T ,Q,P,Rmka) asso-
ciated with challenge space H, challenge answer space I, and admissible condi-
tion Adml. (See Table 4 for concrete examples.) The admissible condition Adml
outputs 
 or ⊥ depending on whether a query is allowed or not.

We define the experiment Expd-goal-atkA,Σ (λ, coin) between an adversary A and
a challenger as follows.

1. A submits a target t∗ ∈ T to the challenger.
2. The challenger runs (PP,MSK) ← PGen(1λ), and gives PP to A.
3. A sends a query query ∈ Q to the challenger. If Adml(t∗, query) = 
, the

challenger sends an answer answer ← MSKAlg(MSK, query) to A. On the
other hand, if Adml(t∗, query) = ⊥, the challenger outputs ⊥. (A can send
polynomially many queries.)

4. At some point, A sends a challenge challenge ∈ H to the challenger. The
challenger generates a challenge answer c-ans∗ ∈ I by using (t∗,PP, challenge,
coin) (denoted by Ca(t∗,PP, challenge, coin)) and sends c-ans∗ to A.

5. Again, A is allowed to query (polynomially many) query ∈ Q such that
Adml(t∗, query) = 
.

6. A outputs a guess coin∗ for coin. The experiment outputs coin∗.
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We say that Σ is secure if for all A, it holds that

Advd-goal-atkA,Σ (λ) := | Pr[Expd-goal-atkA,Σ (λ, 0) = 1] − Pr[Expd-goal-atkA,Σ (λ, 1) = 1]| ≤ negl(λ).

We say an adversary is successful if the advantage is non-negligible. We can
consider the multi-challenge case, where the targets are t∗ ∈ T N instead of the
single t∗.

A concrete example of Adml(t∗, query) is Adml(t∗, query) = 
 if and only if t∗ �= t
where query = t in the signature/TBE/IBE cases (t is a message/tag/identity).

Although we can consider a stronger variant, called adaptive security games,
we consider only selective security games since ABO reductions are basically
applicable in the selective setting.

4.2 Abstraction of All-But-One Reductions for Decisional Case

Now, we are ready to define ABO reductions for the decisional case. We put red
underlines on the parts related to “canonical” parts.

First, we present a simplified definition that does not capture the TBE/KEM
case for readability.

Definition 4.3 (Canonical All-But-One Reduction for Decisional Case
(Simplified)). Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with challenge space H, challenge answer space I, and admissible con-
dition Adml. (See Table 4 for concrete examples.) A security reduction algorithm
R from Σ to a hard problem Π is a canonical all-but-one reduction (or Σ has a
canonical all-but-one reduction to Π) if it satisfies the following properties.

Oracle access: A has oracle access to OMSK : Q → P in the security game
Expd-goal-atkA,Σ . This oracle receives a query query ∈ Q and does the following. If
Adml(t∗, query) = 
, where t∗ is defined below, it sends an answer answer ←
MSKAlg(MSK, query) to A. On the other hand, if Adml(t∗, query) = ⊥, it
outputs ⊥.

Selective reduction: R simulates the security game Expd-goal-atkA,Σ of Σ between
the challenger C and the adversary A to win the game ExptDAΠ,E↔R. That is,
R plays the role of the challenger C in Expd-goal-atkA,Σ and that of the adversary
in ExptDAΠ,E↔R.
1. A declares an arbitrary string t∗ ∈ T at the very begining of the game and

send t∗ to R. (We can allow R to determine t∗ in some security games.)
2. R is given a problem instance π of the hard problem Π.
3. R simulates public parameters PP of Σ by using π and t∗ and sends PP

to A.
4. R simulates an oracle OMSK of the security game of Σ when A sends

oracle queries. That is, when A sends a query query ∈ Q, R simulates
the value OMSK(query) and returns a simulated value answer ∈ P to A. If
Adml(t∗, query) = ⊥, then R outputs ⊥.
At the oracle simulation phase, R never interacts with E.
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5. At some point, A sends a challenge query challenge ∈ H to R.
6. R chooses coin ← {0, 1} and simulates a challenge answer c-ans∗ ∈ I of

Ca(PP, t∗, challenge, b) by using (π,PP, t∗, challenge, coin). It sends c-ans∗

to A. R is allowed to interact with E at this phase.
7. We can allow A to send queries to OMSK again. At some point, A outputs

coin∗.
8. Finally, R outputs a bit sol := 0 if coin = coin∗. Otherwise (coin �= coin∗),

outputs sol := 1.
R consists of three algorithms (PSim,OSim,CSim) introduced below.

All-but-one oracle simulation: R can perfectly simulate the public parameter
of Σ and the oracle OMSK. That is, there exist parameter and oracle simula-
tion algorithms PSim and OSim such that for all (PP,MSK) ← PGen(1λ), b ∈
{0, 1}, π ← PSampleb(1λ), t∗ ∈ T , and query ∈ Q where Adml(t∗, query) = 
,
it holds that

PSim(π, t∗; ρ)
p
≈ PP,

OSim(π, ρ, t∗, query)
p
≈ OMSK(query),

where ρ is the randomness of PSim. Note that a query query such that
Adml(t∗, query) = ⊥ is not allowed in the selective security game of Σ.
In particular, OSim

– is described as a stateless randomized algorithm.
– does not have any oracle access.

Challenge simulation Let ρ be the randomness used by PSim. R does all the
steps from (1) to (5) in the selective reduction above and can simulate the
challenge answer for the challenge query from A. That is, there exists a
challenge simulation algorithm CSim such that in the selective game above,
if π0 ← PSample0(1λ), then R perfectly simulates Expd-goal-atkA,Σ (λ, coin) and it
holds that

CSim(π0, ρ, t∗, challenge, coin)
p
≈ Ca(PP, t∗, challenge, coin).

In addition, if π1 ←PSample1(1λ), then the output of CSim(π1, ρ, t∗, challenge,
coin) is a valid challenge answer, but independent of coin and Pr[coin =
coin∗] = 1

2 . This property immediately implies

AdvDAΠ,E↔R(λ) ≥ 1
2
Advd-goal-atkA,Σ (λ).

Due to space limitations, we omit the proof.
Answer checkability: There exists an efficient validity check algorithm Valid

for Q such that for all (PP,MSK) ← PGen(1λ), query ← Q, answer ←
OMSK(query),

Pr[Valid(PP, query, answer) = 
] = 1 − negl(λ).

On the other hand, for all b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , PP ←
PSim(π, t∗; ρ), query such that Adml(t∗, query) = ⊥,

Pr[Valid(PP, query,OSim(π, ρ, t∗, query)) = 
] ≤ negl(λ).
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Attack substitution: R can solve a problem π if we have a valid answer
answer∗ ∈ P for query∗ ∈ Q such that Adml(t∗, query∗) = ⊥ (i.e., inad-
missible query) instead of a successful adversary A in the selective reduc-
tion. That is, there exists an efficient algorithm Solve such that for all
b ∈ {0, 1}, π ← PSampleb(1λ), t∗ ∈ T , query∗ ∈ Q, answer∗ ∈ P such
that Valid(PP, query∗, answer∗) = 
 and Adml(t∗, query∗) = ⊥, we have that
Solve(π, ρ, t∗, query∗, answer∗) outputs sol for π and

AdvDAΠ,E↔R(λ) > negl(λ),

where ρ is the randomnesses to sample PP in the selective reduction.
Problem instance simulation: We can perfectly simulate a problem instance

and randomness used to generate PP in PSim if we have a master secret key
of Σ. That is, there exists an efficient algorithm MSKtoP such that for all
(PP,MSK) ← PGen(1λ), π ← PSample0(1λ), all ρ ← RPSim, and all t∗ ∈ T ,

(π′, ρ′,PP)
p
≈ (π, ρ,PP′),

where (π′, ρ′) ← MSKtoP(1λ,MSK, t∗), PP′ = PSim(π, t∗; ρ), ρ′ is a random-
ness to simulate PP via PSim, and RPSim is the randomness space of PSim.
We can relax this condition to statistical indistinguishability for uniformly
random t∗ (instead of all t∗ ∈ T ).

On Canonical Property. As we can see in concrete examples (not only)
in Sects. 4.3 and 4.5 (but also in many works), well-known selectively secure
schemes have canonical ABO reductions. If a scheme has a reduction that must
interact with the challenger in an assumption to simulate OMSK, then the reduc-
tion is not canonical. Interestingly, even if a reduction is allowed to interact with
the challenger, the reduction could be canonical as long as the reduction does not
need the interaction for simulating OMSK. More specifically, a canonical reduc-
tion is allowed to interact with the challenger in the assumption to simulate a
challenge answer. See the full version for such an example.

Due to space limitations, we omit the general definition of canonical ABO
reductions that also captures the TBE case.

Table 4 shows concrete example of spaces and oracles for various crypto-
graphic primitives.

On Validity Check Algorithm. The validity check algorithm in Definition 4.3
verifies that a value in P is a correct value for input query ∈ Q. Let ρmka ← Rmka

and answer = C(query, ρmka). Then, Valid is described as follows.

Valid(PP, query, ρq, answer) :=Valid-Out(PP, str, C(str, ρmka)) SIG/IBE/ABE

4.3 Concrete Examples

First, we list the references of well-known schemes that fall into the class of
canonical ABO reductions [2,3,6,9–11,13,15,20,21,25,31,34,40,43]. Note that
this is not the exhaustive list.
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Table 4. Concrete sets, oracle, and admissible condition of ABO reductions for
encryption.

ABO reduction tag-based PKE IBE KP-ABE

T tag space T AG identity space ID attribute space AT T
Q tag space T AG identity space ID policy space POL
P plaintext space PT ∪ {⊥} secret key space SK secret key space SK
H plaintext space PT 2 plaintext space PT 2 plaintext space PT 2

I T AG × CT CT CT
OMSK dec oracle Dec(dk, ·) key oracle KeyGen(MSK, ·) key oracle KeyGen(MSK, ·)
Adml(·, ·) = 
 t∗ �= t t∗ �= id P(t∗) = ⊥

Next, we present concrete examples by picking up well-known selectively
secure schemes. We often omit parameters if it is clear from the context.

Example 4.1 (Boneh-Boyen IBE). The Boneh-Boyen IBE scheme BB consists of
the following algorithms.

Setup(1λ) :
– Generate params := (p,G,GT , e,G) ← Gbmp(1λ).
– Choose x, y ← Zp and h ← Zp and set G1 := Gx, G2 := Gy,H := Gh.
– Output MPK := (params, G,G1, G2,H) and MSK := (MPK, x, y, h).

KeyGen(MSK, id) :
– For id ∈ Zp, choose r ← Zp and output SKid := (Gx

2(Gid
1 · H)r, Gr).

Enc(MPK,m) :
– For M ∈ GT , choose s ← Zp and output CT := (e(G1, G2)s · M,Gs, (Gid

1 ·
H)s).

Dec(SKid,CT) :
– Parse skid = (D1,D2) and CT = (C0, C1, C2), output C0 · e(C2,D2) ·

e(C1,D1)−1.

The reduction algorithm R of BB IBE scheme consists of three algorithms
(PSim,OSim,CSim). Below, we let π := (G,Gx, Gy, Gz, T ), t∗ := id∗, query := idi,
query := ⊥, ρq := ⊥, challenge := (M0,M1), be a DBDH instance, the target
identity, a query to the key generation oracle, a sub-query, the randomness to
sample query ∈ Qaux, the challenge messages, respectively.

PSim(π, t∗): This algorithm is given a DBDH instance π and a target identity
t∗ = id∗ and simulate MPK. It chooses β ← Zp, sets G1 := Gx, G2 := Gy,
and H := G−id∗

1 · Gβ , and outputs MPK := (G,G1, G2,H). The randomness
ρ of this algorithm is ρ := β

OSim(π, ρ, t∗, query): This algorithms simulate secret keys for identity query =
idi ∈ Zp such that idi �= id∗ = t∗. It parses ρ = β, chooses r ← Zp and
outputs SKidi

= (D1,D2) where

D1 := G
−β

idi−id∗
2 (Gidi

1 H)r,D2 := G
−1

idi−id∗
2 Gr.

The randomness ρo of this algorithm is ρo = r.
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CSim(π, ρ, t∗, challenge, coin): This algorithms simulate a challenge ciphertext for
challenge = (M0,M1) under identity t∗ = id∗. It parses ρ = β and outputs

CT∗ := (Mcoin · T,Gz, (Gz)β).

The auxiliary ABO reduction algorithms of BB IBE scheme consists of three
algorithms (Valid,Solve,MSKtoP).

Valid(MPK, query, ρq, answer): This algorithm parses MPK = (G,G1, G2,H),
query = (id,⊥), ρq = ⊥, and answer = (D1,D2) (this is secret key SKid

for identity id) and checks

e(G,D1) = e(G1, G2) · e(Gid
1 H,D2). (1)

If it holds, then output 
. Otherwise, outputs ⊥.
Solve(π, ρ, t∗, query∗, ρq, answer

∗): First, this algorithm parses id∗ = t∗, query∗ =
(id∗,⊥), ρ = β, and ρq = ⊥. It chooses M0,M1 and coin ← {0, 1} and
computes

CT∗ := (Mcoin · T,Gz, (Gz)β).

(this is the same as the output of CSim(π, ρ, t∗, challenge, coin)). Then,
it parses answer∗ = (Gx

2(Gid∗
1 H)r, Gr) and decrypts CT∗ by using

(Gx
2(Gid∗

1 H)r, Gr). If it obtains Mcoin, then outputs 0, otherwise 1.
MSKtoP(1λ,MSK, t∗): First, this algorithms parses MSK = (MPK, x, y, h),

chooses z ← Zp, and computes β := x · id∗ + h. Then, it outputs π :=
(G,Gx, Gy, Gz, e(G,G)xyz) and ρ′ := β = x · id∗ + h.

Theorem 4.1. Boneh-Boyen IBE scheme has a canocanil ABO reduction to the
DBDH problem.

Due to space limitations, we omit the proof.

4.4 All-But-N Reductions

We can extend canonical ABO reductions to canonical all-but-N (ABN) reduc-
tions. Here, N is an a-priori bounded/unbounded polynomial of the security
parameter. Roughly speaking, a canonical ABN reduction punctures N points
t∗ = (t∗1, . . . , t

∗
N ) ∈ T N in a master secret-key based algorithm MSKAlg instead

of a single point t∗.
We omit the definition due to space limitations. Basically, we simply replace

a single point t∗ with N points t∗ = (t∗1, . . . , t
∗
N ) and require Adml(t∗i , query) = 


for all i ∈ [N ] for admissible queries. See the full version for details.

4.5 Concrete Examples of Canonical ABN Reductions

It is easy to extend ABO reductions to ABN reductions for pairing-based schemes
by using (weak) programmable hash functions [26,27]. Due to space limitations,
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we omit details. We can obtain the modified Boneh-Boyen IBE scheme, which
has a canonical all-but-N reduction, by using programmable hash Hw(X) :=
∏n

i=0 HXi

i where the hash key is (H0,H1, . . . , HN ) instead of the Boneh-Boyen
hash function HBB(X) := GX

1 H where the hash key is (G1,H).
The rough idea is as follows. The ABN reduction is given a DBDH instance

π = (G,Gx, Gy, Gz, T ) and target identities t∗ = id∗ = (id∗
1, . . . , id

∗
N ), and

simulates MPK. It chooses id∗
0 ← Zp and (β0, . . . , βN ) ← Z

N+1
p , and com-

putes (α0, . . . , αN ) such that
∑N

i=0 αi · ti =
∏N

i=0(t − id∗
i ) ∈ Zp[t]. Then,

it sets G1 := Gx, G2 := Gy, and Hi := Gαi
1 · Gβi , and outputs MPK :=

(G,Gx, G2,H0, . . . , HN ). By this parameter setting, we can implement canonical
ABN reductions in a similar way to the ABO reduction of Boneh-Boyen IBE.
See the full version for detail.

5 Message-Less Watermarking via Canonical
ABO-reductions

In this section, we present a message-less watermarking scheme from all-but-one
reductions. We focus on using canonical ABO reductions for the decisional case.
It is easy to adapt that for the computational case, so we omit it.

First, we present our watermarking scheme WMΣ = (WMSetup,Mark,
Extract) for Σ. Let MSK be a master secret-key generated by the setup algo-
rithm of Σ. WMΣ is a public mark and public extraction scheme. Thus, we do
not need watermarking secret-key wsk.

WMSetup(1λ):
– Choose t∗ ← T and output wpp := t∗.

Mark(wpp,MSK):
– Read MSK and generate (π′, ρ′) ← MSKtoP(1λ,MSK, t∗).
– Generate a circuit ˜fΣ [π′, ρ′, t∗] described in Fig. 3.

Extract(wpp,PP, C ′):
– Choose query ← Q such that Adml(t∗, query) = 
.
– Sample ρo ← Rmka and compute answer ← C ′(query, ρo).
– Check Valid(PP, query, answer) ?= 
. If the equation holds, then output
unmarked. Otherwise, marked.

Fig. 3. The description of f̃Σ
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Remark 5.1. Even a useless circuit that outputs ⊥ for all inputs is marked in the
watermarking scheme above since Valid(PP, query, ρq,⊥) = ⊥ for any PP, query,
and ρq. To prevent this trivial watermarking, we need to check whether a circuit
is similar to a master secret-key based algorithm whose corresponding master
public parameter is PP. Although we omit this checking procedure for simplicity
here (our final goal is achieving message-embedding schemes), we present test
algorithms for this check in Sect. 6.

Theorem 5.1. Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with sub-query space Qt, aux-query space Qaux, challenge space H,
challenge answer space I, and admissible condition Adml. If Σ has a canoni-
cal all-but-one reduction to a hard problem Π, then there exists a message-less
watermarking scheme WMΣ for master secret-keys of Σ and WM satisfies Def-
inition 3.5 with parameter ε = 1/poly(λ) under the assumption that Π is hard.

The intuition of security is that adversaries cannot recover the functionality
of MSKAlg(MSK, ·) for input t∗ from the oracle simulation algorithm OSim since
OSim is punctured at t∗ (explained in Sect. 1.3). Due to space limitations, we
omit the proof.

6 Message-Embedding Watermarking via Canonical
ABN-reductions

In this section, we present a message-embedding watermarking scheme from
canonical all-but-N reductions.

6.1 How to Test Circuit Similarity

Before we describe our message-embedding watermarking scheme, we present
how to test a circuit is similar to the original circuit to be watermarked.

Test Circuits by Master Public Parameters. We define test algorithms Test
described in Fig. 4 to verify that a circuit C ′ is close to a master secret-key based
algorithm whose master secret key is MSK that corresponds to a master public
parameter PP. We have two versions of Test since there are a few differences
between one for signature/IBE/ABE/IPE/PE and one for TBE. However, we
omit that of TBE due to space limitations. We set parameters 0 < ε1 < ε2 < 1/2
where ε2 − ε1 > 1/poly(λ).

Theorem 6.1. Assume that 0 < ε1 < ε2 < 1/2 where ε2 − ε1 > 1/poly(λ). For
all (PP,MSK) ← PGen(1λ),

– For all C ′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·), Pr[Test(PP, C ′) = 
] ≥ 1 − negl(λ).
– For all C ′(·, ·) �∼=ε2 MSKAlg(MSK, ·; ·), Pr[Test(PP, C ′) = 
] ≤ negl(λ).

We omit the proof due to space limitations.
By the theorem, we can verify whether C ′(·, ·) ∼=ε1 MSKAlg(MSK, ·; ·) or not

if ε1 = 1/2 − 1/poly(λ). That is, if the adversary A in ε-unremovability game is
ε-admissible where ε = 1/2 + 1/poly(λ), then the circuit C∗ output by A passes
the test.
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Fig. 4. Test algorithm Test for IBE or signature

6.2 Message-Embedding Scheme

We present our message-embedding watermarking scheme msWMΣ =
(WMSetup,Mark,Extract) for Σ. We consider none of ABE, IPE, and PE for
the message-embedding scheme since we do not have (canonical) ABN reduc-
tions of them. Thus, T = Qt in the rest of this section. Note that we implicitly
assume that the master secret key MSK of Σ includes the corresponding public
parameter PP. We use a PRF (PRF.Gen,PRF.Eval) such that PRF.Eval(K, ·) :
{0, 1}|PP| × [�] × {0, 1} → T T . We show only for the decisional case, but it is
easy to adapt to the computational case.

WMSetup(1λ):
– Let T := λ.
– Generate K ← PRF.Gen(1λ) and set wpp := ⊥ and wsk := K. We omit
wpp hereafter since it is ⊥.

Mark(wsk,MSK, ω):
– Compute ti = (t(1)i , . . . , t

(T )
i ) ← PRF.Eval(K, (PP, i, ωi)) for i ∈ [�] and set

tω := {ti}i∈[�].
– Read MSK and generate (π′, ρ′) ← MSKtoP(1λ,MSK, tω).
– Generate a circuit ˜fΣ [π′, ρ′, tω] described in Fig. 5.

Extract(wsk,PP, C ′):
– Compute bPP ← Test(PP, C ′). If bPP = ⊥, then output Invalid-Key and

halt. Otherwise, do the following steps.
– Compute ˜ti,b = (˜t(1)i,b , . . . ,˜t

(T )
i,b ) ← PRF.Eval(K, (PP, i, b)) for i ∈ [�] and

b ∈ {0, 1}.
– For i ∈ [�], b ∈ {0, 1}, set query

(j)
i,b := ˜t

(j)
i,b , compute answer

(j)
i,b ←

C ′(query(j)i,b , ρo,j). Let ̂Ni,b be the number of indices j ∈ [T ] such that

Valid(PP, query
(j)
i,b , answer

(j)
i,b ) = ⊥.

• If there exists an index i ∈ [�] where ̂Ni,0, ̂Ni,1 < T or ̂Ni,0 = ̂Ni,1 = T ,
then output ⊥.

• Otherwise, for each i ∈ [�], let ω′
i ∈ {0, 1} be the unique bit where

̂Ni,ω′
i
= T ∧ ̂Ni,1−ω′

i
< T and output ω′ := ω′

1 . . . ω′
�.
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Fig. 5. The description of f̃Σ

Theorem 6.2. Let Σ be a master secret-key based scheme with (T ,Q,P,Rmka)
associated with challenge space H, challenge answer space I, and admissible
condition Adml. If Σ has a canonical all-but-N reduction to a hard problem
Π and PRF is a PRF where N = �λ, then there exists a message-embedding
watermarking scheme msWMΣ for master secret keys of Σ and msWMΣ satis-
fies Definition 3.5 with parameter ε = 1/2+1/poly(λ) under the assumption that
Π is hard.

Due to space limitations, we omit the proof.
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Abstract. We present simple and improved constructions of public-key func-
tional encryption (FE) schemes for quadratic functions. Our main results are:

– an FE scheme for quadratic functions with constant-size keys as well as
shorter ciphertexts than all prior schemes based on static assumptions;

– a public-key partially-hiding FE that supports NC1 computation on public
attributes and quadratic computation on the private message, with ciphertext
size independent of the length of the public attribute.

Both constructions achieve selective, simulation-based security against unboun-
ded collusions, and rely on the (bilateral) k-linear assumption in prime-order
bilinear groups. At the core of these constructions is a new reduction from FE
for quadratic functions to FE for linear functions.

1 Introduction

In this work, we study functional encryption for quadratic functions. That is, we would
like to encrypt a message z to produce a ciphertext ct, and generate secret keys skf for
quadratic functions f , so that decrypting ct with skf returns f(z) while leaking no addi-
tional information about z. In addition, we want (i) short ciphertexts that grow linearly
with the length of z, as well as (ii) simulation-based security against collusions, so that
an adversary holding ct and secret keys for different functions f1, f2, . . . learns nothing
about z beyond the outputs of these functions. Functional encryption for quadratic func-
tions have a number of applications, including traitor-tracing schemes whose ciphertext
size is sublinear in the total number of users [5,6,8,11,16]; obfuscation from simple
assumptions [4,13,18,19]; as well as privacy-preserving machine learning for neural
networks with quadratic activation functions [21].

1.1 Our Results

We present new pairing-based public-key functional encryption (FE) schemes for
quadratic functions, improving upon the recent constructions in [5,12,19,20]. Our main
results are:

– A FE scheme for quadratic functions with constant-size keys, whose ciphertext size
is shorter than those of all prior public-key schemes based on static assumptions
[5,12]; moreover, when instantiated over the BLS12-381 curve where |G2| = 2|G1|,

c© International Association for Cryptologic Research 2020
R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 210–228, 2020.
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Fig. 1. Comparison with prior public-key functional encryption schemes for quadratic functions
f : Zn1

p × Z
n2
p → Zp, as well as a concurrent work [14]. Note that |sk| ignores the contribution

from the function f , which is “public”. Here, SXDH = 1-Lin, and bi-k-Lin (bilateral k-Lin) is a
strengthening of k-Lin. 3-PDDH asserts that [abc]2 is pseudorandom given [a]1, [b]2, [c]1, [c]2.
In bilinear groups where |G|2 = 2|G1|, we achieve |ct| = (2n1 + 4n2 + 2)|G1| under SXDH,
bi 2-Lin, almost matching |ct| = (2n1 + 4n2 + 1)|G1| in RDGBP19.

our ciphertext size basically matches that of the most efficient scheme in the generic
group model [21] (see Fig. 1).

– A partially-hiding FE that supports NC1 computation on public attributes x and
quadratic computation on the private message z; moreover, the ciphertext size grows
linearly with z and independent of x. The previous constructions in [13,19] have
ciphertext sizes that grow linearly with both z and x.

Both constructions achieve selective1, simulation-based security against unbounded
collusions, and rely on the bilateral k-linear assumption in prime-order bilinear groups.

At the core of these constructions is a new reduction from public-key FE for
quadratic functions to that for linear functions. The reduction relies on the (bilateral)
k-Lin assumption, and blows up the input size by a factor k. Note that the trivial reduc-
tion blows up the input size by |z|. Our reduction is simpler and more direct than the
previous reductions due to Lin [20] and Gay [12]: (i) we do not require function-hiding
FE for linear functions, and (ii) our reduction works directly in the public-key setting.
Thanks to (i), we can also decrease the secret key size from linear to constant.

1.2 Technical Overview

We proceed to provide an overview of our constructions. We rely on an asymmet-
ric bilinear group (G1,G2,GT , e) of prime order p where e : G1 × G2 → GT .
We use [·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups
G1,G2,GT [10]. We use bold-face lower case to denote row vectors. The k-Lin
assumption in Gb asserts that

([A]b, [sA]b) ≈c ([A]b, [u]b), s ← Z
k
p,A ← Z

k×�
p ,u ← Z

�
p, � > k

The bilateral k-Lin assumption is a strengthening of k-Lin, and asserts that

([A]1, [sA]1, [A]2, [sA]2) ≈c ([A]1, [u]1, [A]2, [u]2)

1 We actually achieve semi-adaptive security [9], a slight strengthening of selective security.
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Note that bilateral 1-Lin is false, for the same reason DDH is false in symmetric bilinear
groups.

FE for Quadratic Functions. Consider the class of quadratic functions over Zn
p ×Z

n
p

given by
(z1, z2) �→ (z1 ⊗ z2)f�

where f ∈ Z
n2

p is the coefficient vector. We will first mask z1, z2 in the ciphertext using:

[s1A1 + z1]1, [s2A2 + z2]2

where the matrices
[A1]1, [A2]2,A1,A2 ← Z

k×n
p

are specified in the master public key. Next, observe that

((s1A1 + z1) ⊗ (s2A2 + z2)) · f� = (z1 ⊗ z2)f� + cross terms (1)

Following [12,20], we will express the cross terms as a linear function evaluated on
inputs of length O(kn); the key difference in this work is that the linear function can be
derived from the master public key and f .

More precisely, we write

(s1A1 + z1
︸ ︷︷ ︸

y1

) ⊗ (s2A2 + z2
︸ ︷︷ ︸

y2

) = (z1 ⊗ z2) + s1A1 ⊗ z2 + y1 ⊗ s2A2

= (z1 ⊗ z2) + (s1 ⊗ z2) · (A1 ⊗ In) + (y1 ⊗ s2) · (In ⊗ A2)

= (z1 ⊗ z2) + (s1 ⊗ z2‖y1 ⊗ s2)
(A1⊗In
In⊗A2

)

where the second equality uses the mixed-product property of the tensor product, which
tells us that (M1 ⊗ M2)(M3 ⊗ M4) = (M1M3) ⊗ (M2M4), and ‖ denotes row
vector concatenation. Multiplying both sides on the right by f� and rearranging the
terms yields:

(z1 ⊗ z2)f� = (y1 ⊗ y2)f� − (s1 ⊗ z2‖y1 ⊗ s2)Mf� (2)

where M :=
(
A1⊗In

In⊗A2

)
. As we mentioned earlier, the boxed term (= cross terms in (1))

(s1 ⊗ z2‖y1 ⊗ s2) · Mf� (3)

corresponds to a linear computation where

– the input (s1 ⊗ z2‖y1 ⊗ s2) has length O(kn);
– the linear function Mf� can be computed given f and the matrices A1,A2 in the

public key.

The latter property pertaining to Mf� is what allows us to significantly simplify the
previous reductions in [12,20], since there is nothing “secret” about the linear function
Mf�. In the prior works, the linear function leaks information about the master secret
key beyond what can be computed from the master public key.
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In particular, we can use a public-key FE for linear functions (linear FE for short)
[1,3,22] to compute (3). That is, we encrypt [s1 ⊗ z2‖y1 ⊗ s2]1, and generate a secret
key for [Mf�]2. The linear FE schemes in [3,22] extend readily to this setting where
both the input and function are specified “in the exponent”; moreover, these schemes
achieve selective, simulation-based security under the k-Lin assumption, with constant-
size secret keys. The linear FE ciphertext would lie in G1, whereas both M and the
secret key would lie in G2. Note that in order to compute [M]2, we would also publish
[A1]2 in the public key. We present a self-contained description of our quadratic FE in
Sect. A.

Security Overview. Security, intuitively, is fairly straight-forward:

– First, observe that [y1]1, [y2] leaks no information about z1, z2, thanks to the k-Lin
assumption;

– Next, we can simulate the ciphertext and secret key for the linear FE given (s1 ⊗
z2‖y1 ⊗ s2)Mf�, which we can rewrite as (z1 ⊗ z2)f� − (y1 ⊗ y2)f�. We can
in turn compute the latter given just y1,y2 and the output of the ideal functionality
and therefore the linear FE ciphertext-key pair leaks no additional information about
z1, z2.

In the reduction, we would need to compute [y1 ⊗ y2]2 in order to simulate the secret
key for the linear FE. This is something we can compute given either y1, [y2]2 or
[y1]2,y2. The latter along with publishing [A1]2 in the public key is why we require
the bilateral k-Lin assumption. For the most efficient concrete instantiation, we will
use the bilateral 2-Lin assumption together with SXDH (i.e., 1-Lin), where we sample
A1 ← Z

2×n
p ,A2 ← Z

1×n
p . We leave the question of basing quadratic FE solely on the

standard k-Lin assumption as an open problem.

Extension to Partially Hiding FE. Our approach extends readily to partially hiding
FE (PHFE) for the class

(
public
︷︸︸︷
x ,

private
︷ ︸︸ ︷
(z1, z2)) �→ (z1 ⊗ z2)f(x)�

where f captures NC1 –more generally, any arithmetic branching program– computa-
tion on the public attribute x and outputs a vector in Z

n2

p . Note that FE for quadratic
functions corresponds to the special case where f is a constant function (independent
of x). The idea behind the extension to PHFE is to replace f� in (2) with f(x) (the
decryptor can compute f(x) since x is public), which yields:

(z1 ⊗ z2)f(x)� = (y1 ⊗ y2)f(x)� − (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)�

To compute the new boxed term, we will rely on the partially-hiding linear FE scheme
in [2] for the class

(
public
︷︸︸︷
x ,

private
︷︸︸︷
z ) �→ zf(x)�
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We can augment the construction to take into account the matrix M; some care is
needed as the decryption algorithm only gets [M]2 and not M. In the ensuing scheme
as with [2], the ciphertext size grows linearly with the message and independent of x,
which we then inherit in our partially-hiding quadratic FE.

2 Preliminaries

Notations. We denote by s ← S the fact that s is picked uniformly at random from a
finite set S. We use ≈s to denote two distributions being statistically indistinguishable,
and ≈c to denote two distributions being computationally indistinguishable. We use
lower case boldface to denote row vectors and upper case boldcase to denote matrices.
We use ei to denote the i’th elementary row vector (with 1 at the i’th position and 0
elsewhere, and the total length of the vector specified by the context). For any positive
integer N , we use [N ] to denote {1, 2, . . . , N}.

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z
�×m, B ∈

Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

Arithmetic Branching Programs. A branching program is defined by a directed
acyclic graph (V,E), two special vertices v0, v1 ∈ V and a labeling function φ.
An arithmetic branching program (ABP), where p is a prime, computes a function
f : Z

n
p → Zp. Here, φ assigns to each edge in E an affine function in some input

variable or a constant, and f(x) is the sum over all v0-v1 paths of the product of all the
values along the path. We refer to |V | + |E| as the size of f . The definition extends in
a coordinate-wise manner to functions f : Zn

p → Z
n′
p . Henceforth, we use FABP,n,n′ to

denote the class of ABP f : Zn
p → Z

n′
p .

We note that there is a linear-time algorithm that converts any boolean formula,
boolean branching program or arithmetic formula to an arithmetic branching program
with a constant blow-up in the representation size. Thus, ABPs can be viewed as a
stronger computational model than all of the above. Recall also that branching pro-
grams and boolean formulas correspond to the complexity classes LOGSPACE and
NC1 respectively.

2.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter 1λ and outputs a description G :=
(p,G1,G2,GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic groups
of order p, and e : G1×G2 → GT is a non-degenerate bilinear map. We require that the
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group operations in G1, G2, GT and the bilinear map e are computable in deterministic
polynomial time in λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix M
over Zp, we define [M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation
is carried out component-wise. Also, given [A]1, [B]2, we let e([A]1, [B]2) = [AB]T .
We recall the matrix Diffie-Hellman (MDDH) assumption on G1 [10]:

Assumption 1 (MDDHd
k,k′ Assumption). Let k, �, d ∈ N. We say that the MDDHd

k,�

assumption holds if for all PPT adversaries A, the following advantage function is
negligible in λ.

Adv
MDDHd

k,�

A (λ) :=
∣
∣ Pr[A(G, [M]1, [MS]1 ) = 1] − Pr[A(G, [M]1, [U]1 ) = 1]

∣
∣

where G := (p,G1,G2,GT , e) ← G(1λ), M ← Z
�×k
p , S ← Z

k×d
p and U ← Z

�×d
p .

The MDDH assumption on G2 can be defined in an analogous way. Escala et al. [10]
showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHd

k,� ∀ k, d ≥ 1, � > k

with a tight security reduction. (In the setting where � ≤ k, the MDDHd
k,� assumption

holds unconditionally.)
The bilateral MDDH assumption is defined analogously with the advantage func-

tion:
∣
∣Pr[A(G, [M]1, [MS]1 , [M]2, [MS]1 ) = 2]−Pr[A(G, [M]1, [U]1 , [M]2, [U]2 ) = 1]

∣
∣

2.2 Partially-Hiding Functional Encryption (PHFE)

We recall the notion of partially-hiding functional encryption [4,7,15,22] for the func-
tion class

(x, z) ∈ Z
n
p × Z

n′
p �→ h(z)f(x)�

where h : Zn′
p → Z

n′′
p is fixed and f ∈ FABP,n,n′′ is specified by the secret key. We

will be primarily interested in the settings h(z) = z and h(z1, z2) = z1 ⊗ z2, which
generalize FE for linear functions and quadratic functions respectively.

Syntax. A partially-hiding functional encryption scheme (PHFE) consists of four algo-
rithms:

Setup(1λ, 1n, 1n′
, h) : The setup algorithm gets as input the security parameter 1λ and

function parameters 1n, 1n′
and h : Zn′

p → Z
n′′
p . It outputs the master public key

mpk and the master secret key msk.
Enc(mpk,x, z) : The encryption algorithm gets as input mpk and message x, z ∈ Z

n
p ×

Z
n′
p . It outputs a ciphertext ct(x,z) with x being public.

KeyGen(msk, f) : The key generation algorithm gets as input msk and a function f ∈
FABP,n,n′′ . It outputs a secret key skf with f being public.

Dec((skf , f), (ct(x,z),x) : The decryption algorithm gets as input skf and ct(x,z) along
with f and x. It outputs a value in Zp.



216 H. Wee

Correctness. For all (x, z) ∈ Z
n
p × Z

n′
p and f ∈ FABP,n,n′′ , we require

Pr

⎡

⎢

⎣Dec((ct(x,z),x, (skf , f)) = h(z)f(x)� :

(mpk,msk) ← Setup(1λ, 1n, 1n′
, h)

skf ← KeyGen(msk, f)

ct(x,z) ← Enc(mpk,x, z)

⎤

⎥

⎦ = 1.

Remark 1 (Relaxation of correctness.). Our scheme only achieves a relaxation of cor-
rectness where the decryption algorithm takes an additional bound 1B (and runs in time
polynomial in B) and outputs h(z)f(x)� if the value is bounded by B. This limitation
is also present in prior works on (IP)FE from DDH and bilinear groups [1,3,5,20], due
to the reliance on brute-force discrete log to recover the answer “from the exponent”.
We stress that the relaxation only refers to functionality and does not affect security.

Security Definition. We consider semi-adaptive [9] (strengthening of selective),
simulation-based security, which stipulates that there exists a randomized simulator
(Setup∗,Enc∗, KeyGen∗) such that for every efficient stateful adversary A,

⎡

⎢

⎢

⎢

⎣

(mpk,msk) ← Setup(1λ, 1n, 1n′
, h);

(x∗, z∗) ← A(mpk);

ct∗ ← Enc(mpk, (x∗, z∗);
output AKeyGen(msk,·)(mpk, ct∗)

⎤

⎥

⎥

⎥

⎦

≈c

⎡

⎢

⎢

⎢

⎣

(mpk,msk∗) ← Setup∗(1λ, 1n, 1n′
, h);

(x∗, z∗) ← A(mpk);

ct∗ ← Enc∗(msk∗,x∗);
output AKeyGen∗(msk∗,x∗,·,·)(mpk, ct∗)

⎤

⎥

⎥

⎥

⎦

such that whenever A makes a query f to KeyGen, the simulator KeyGen∗ gets f along
with h(z∗)f(x∗)�. We use AdvFE

A (λ) to denote the advantage in distinguishing the real
and ideal games.

3 Main Construction

In this section, we present our PHFE scheme for the class

(
public
︷︸︸︷
x ,

private
︷ ︸︸ ︷
(z1, z2)) ∈ Z

n
p × Z

n′
1+n′

2
p �→ (z1 ⊗ z2)f(x)�, f ∈ FABP,n,n′

1n′
2

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k′-Lin
assumption in G1,G2 (for the most efficient concrete instantiation, we set k = 2, k′ =
1). In our scheme, decryption actually computes [(z1 ⊗ z2)f(x)�]T , whereas the sim-
ulator only needs to get [(z1 ⊗ z2)f(x)�]2. Note that FE for quadratic functions is a
special case of our PHFE (where f has the quadratic function hard-wired into it). We
present a self-contained description of our quadratic FE in Sect. A.

As a building block, we rely on a SA-SIM-secure PHFE scheme
(Setup0,Enc0,KeyGen0,Dec0) for the class

(
public
︷︸︸︷
x ,

private
︷︸︸︷
z ) ∈ Z

n
p × Z

k′n′
1+kn′

2
p �→ [zMf(x)�]T , f ∈ FABP,n,n′

1n′
2

parameterized by a matrix [M]2 ∈ G
(k′n′

1+kn′
2)×n′

1n′
2

1 , where encryption gets [z]1 and
the simulator gets [zMf(x)�]2. We instantiate the building block in Sect. 4.
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3.1 Our Scheme

– Setup(p, 1n, 1n′
1 , 1n′

2): Run G = (G1,G2,GT , e) ← G(p). Sample

A1 ← Z
k×n′

1
p ,A2 ← Z

k′×n′
2

p , (mpk0,msk0) ← Setup0(p, 1n, 1k′n′
1+kn′

2 , [M]2)

where

M :=
(
A1 ⊗ In′

2

In′
1
⊗ A2

)
∈ Z

(k′n′
1+kn′

2)×n′
1n′

2
p

and output

mpk =
(
G, [A1]1, [A1]2, [A2]2, mpk0

)
and msk = msk0

Observe that given mpk, we can compute [M]2.
– Enc(mpk,x, (z1, z2)): Sample

s1 ← Z
k
p, s0, s2 ← Z

k′
p , ct0 ← Enc0

(
mpk0,x, [s1 ⊗ z2‖(s1A1 + z1︸ ︷︷ ︸

y1

) ⊗ s2]1
)

and output
ct =

(
[s1A1 + z1︸ ︷︷ ︸

y1

]1, [s2A2 + z2︸ ︷︷ ︸
y2

]2, ct0
)

– KeyGen(msk, f): Output

skf ← KeyGen0(msk0, f)

– Dec(skf , f, ct,x): Output

[(y1 ⊗ y2) · f(x)�]T ·
(

Dec0(skf , (f, [M]2), ct0,x)

)−1

Correctness. First, observe that we have

(s1A1 + z1
︸ ︷︷ ︸

y1

) ⊗ (s2A2 + z2
︸ ︷︷ ︸

y2

) = (z1 ⊗ z2) + s1A1 ⊗ z2 + y1 ⊗ s2A2

= (z1 ⊗ z2) + (s1 ⊗ z2) · (A1 ⊗ In′
2
) + (y1 ⊗ s2) · (In′

1
⊗ A2)

= (z1 ⊗ z2) + (s1 ⊗ z2‖y1 ⊗ s2)M

(4)

where the second equality uses the mixed-product property of the tensor product. Mul-
tiplying both sides of (4) by f(x)� and rearranging the terms yields:

(z1 ⊗ z2)f(x)� = (y1 ⊗ y2)f(x)� − (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)� (5)

Next, correctness of the underlying scheme tells us that

Dec0(skf , (f, [M]2), ct0,x) = (s1 ⊗ z2‖y1 ⊗ s2)Mf(x)�

Correctness then follows readily.
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3.2 Simulator

We start by describing the simulator.

– Setup∗(p, 1n, 1n′
1 , 1n′

2): Run G = (G1,G2,GT , e) ← G(p). Sample

A1 ← Z
k×n′

1
p ,A2 ← Z

k′×n′
2

p , (mpk∗
0,msk∗

0) ← Setup∗
0(p, 1n, 1k′n1+kn2)

and output

mpk∗ =
(
G, [A1]1, [A1]2, [A2]2, mpk∗

0

)
and msk∗ = msk∗

0

– Enc∗(msk∗
0,x

∗): Sample

y1 ← Z
n′
1

p , y2 ← Z
n′
2

p , ct∗0 ← Enc∗
0(msk∗

0,x
∗)

and output
ct∗ =

(
[y1]1, [y2]1, ct∗0

)

– KeyGen∗(msk∗,x∗, f, [μ]2): Output

skf ← KeyGen∗
0(msk∗

0,x
∗, f, [(y1 ⊗ y2)f(x∗)]T · [μ]−1

2 )

3.3 Proof of Security

We proceed via a series of games and we use Advi to denote the advantage of A in
Game i. Let x∗, (z∗

1, z
∗
2) denote the semi-adaptive challenge.

Game 0. Real game.

Game 1. Replace (Setup0,Enc0,KeyGen0) in Game0 with (Setup∗
0,Enc

∗
0,KeyGen

∗
0)

where

ct∗ = ([y1]1, [y2]2,Enc0(msk∗,x∗)), y1 = s1A1 + z∗
1,y2 = s2A2 + z∗

2

skf ← KeyGen∗
0(msk∗

0,x
∗, f, [(s1 ⊗ z∗

2‖y1 ⊗ s2)Mf(x∗)�]2 )

We have Game1 ≈c Game0, by security of the underlying PHFE scheme. The reduction
samples

A1 ← Z
k×n′

1
p ,A2 ← Z

k′×n′
2

p , s1 ← Z
k
p, s0, s2 ← Z

k′
p ,

and upon receiving x∗, (z∗
1, z

∗
2) from A, sends

x∗, s1 ⊗ z∗
2‖(s1A1 + z∗

1) ⊗ s2

as the semi-adaptive challenge.

Game 2. Replace skf in Game 1 with

skf ← KeyGen∗
0(msk∗

0,x
∗, f, [(y1 ⊗ y2)f(x∗)�]2 · [(z∗

1 ⊗ z∗
2)f(x∗)�]−1

2 )
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Here, we have Game2 ≡ Game1, thanks to (5), which tells us that

[(y1 ⊗ y2)f(x∗)�]2 · [(z∗
1 ⊗ z∗

2)f(x∗)�]−1
2 = [(s1 ⊗ z∗

2‖y1 ⊗ s2)Mf(x∗)�]2

Game 3. We replace [s1A1 + z∗
1]1 in ct∗ in Game2 with [y1]1 where y1 ← Z

n′
1

q .
Then, we have Game3 ≈c Game2 via the bi-lateral k-Lin assumption. The assumption
tells us that for all z∗

1,

([A1]1, [A1]2, [s�A1 + z∗
1]1, [s

�A1 + z∗
1]2) ≈c ([A1]1, [A1]2, [y1]1, [y1]2)

where s ← Z
k
p,y1 ← Z

n′
1

p . Note that this holds even if z∗
1 is adaptively chosen after

seeing [A1]1, [A1]2. The reduction then samples

A2 ← Z
k′×n′

2
p , s2 ← Z

k′
p , (mpk∗

0,msk∗
0) ← Setup∗

0(p, 1n, 1k′n1+kn2)

sets y2 := s2A2 + z∗
2, and uses the fact that in Games 2 and 3,

– it can compute mpk∗, ct∗ given [A1]1, [A1]2, [y1]1 respectively;
– it can sample skf by using [y1]2,y2 to compute [y1 ⊗ y2]2.

Game 4. We replace [s2A2 + z∗
2]1 in ct∗ in Game3 with [y2]1 where y2 ← Z

n′
2

q .

Then, we have Game4 ≈c Game3 via the k′-Lin assumption in G2. Here, we use the
fact that we can sample skf in Games 3 and 4 using y1, [y2]2 to compute [y1 ⊗ y2]2.

Finally, note that Game4 is exactly the output of the simulator.

4 Partially-Hiding FE for Linear Functions

In this section, we present our PHFE scheme for the class

(
public
︷︸︸︷
x ,

private
︷︸︸︷
z ) �→ [zMf(x)�]T

parameterized by a matrix [M]2, where encryption gets [z]1, and the simulator gets
[zMf(x)�]2. In fact, we present a scheme for a more general setting where the matrix
[M]2 is specified by the function corresponding to the secret key (that is, we allow a
different [M]2 for each secret key, rather than the same matrix for all keys). The scheme
is a somewhat straight-forward modification of that in [2]; some care is needed as the
decryption algorithm only gets [M]2 and not M. This scheme achieves simulation-
based semi-adaptive security under k-Lin. Most of the text in this section is copied
verbatim from [2], with minor adaptations to account for M.
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4.1 Partial Garbling Scheme

The partial garbling scheme [2,17,22] for zf(x)� with f ∈ FABP,n,n′ is a randomized
algorithm that on input f outputs an affine function in x, z of the form:

pf,x,z =
(
z − t‖t(L1(x� ⊗ Im) + L0)

)

where L0 ∈ Z
t×mn
p ,L1 ∈ Z

t×m
p depends only on f ; t ← Z

t
p is the random coin and t

consists of the last n′ entries in t, such that given (pf,x,z, f,x), we can recover zf(x)�,
while learning nothing else about z.

Lemma 1 (partial garbling [2,17,22]). There exists four efficient algorithms
(lgen, pgb, rec, pgb∗) with the following properties:

– syntax: on input f ∈ FABP,n,n′ , lgen(f) outputs L0 ∈ Z
t×mn
p ,L1 ∈ Z

t×m
p , and

pgb(f,x, z; t) =
(
z − t, t(L1(x� ⊗ Im) + L0)

)

pgb∗(f,x, μ; t) =
( −t, t(L1(x� ⊗ Im) + L0) + μ · e1

)

where t ∈ Z
t
p and t consists of the last n′ entries in t and m, t are linear in the size

of f .
– reconstruction: rec(f,x) outputs d�

f,x ∈ Z
n′+m
p such that for all f,x, z, t, we have

pf,x,zd�
f,x = zf(x)� where pf,x,z = pgb(f,x, z; t).

– privacy: for all f,x, z, we have pgb(f,x, z; t) ≈s pgb∗(f,x, zf(x)�; t) where the
randomness is over t ← Z

t
p.

4.2 Construction

Our scheme Π is similar to Πone in [2], with the modifications marked using boxed
terms. We rely on partial garbling to compute pgb(f,x, zM ; t) instead of pgb(f,x,
z; t) “in the exponent” over GT ; applying the reconstruction algorithm (which requires
knowing f,x but not M) then returns [ zM f(x)�]T .

– Setup(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
k×(k+1)
p and W ← Z

(k+1)×n′
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

and output

mpk =
(
G, [A]1, [AW]1, [AU]1, [AV]1

)
and msk =

(
W, U, V

)
.

– Enc(mpk, (x, z)): Sample s ← Z
k
p and output

ctx,z =
(
[sA]1, [z + sAW]1, [sAU(x� ⊗ Ik) + sAV]1

)
and x.

Note that it is sufficient for Enc to get [z]1.
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– KeyGen(msk, (f, [M]2)): Run (L1,L0) ← lgen(f) where L1 ∈ Z
t×mn
p ,L0 ∈

Z
t×m
p (cf. Sect. 4.1). Sample T ← Z

(k+1)×t
p and R ← Z

k×m
p and output

skf,M =
(

[T+ WM ]2, [TL1+U(In ⊗R)]2, [TL0+VR]2, [R]2
)

and (f, [M]2).

where T refers to the matrix composed of the right most n′ columns of T.
– Dec((skf,M, (f, [M]2)), (ctx,z,x)): On input key:

skf,M =
(
[K1]2, [K2]2, [K3]2, [R]2

)
and (f, [M]2)

and ciphertext:
ctx,z =

(
[c0]1, [c1]1, [c2]1

)
and x

the decryption works as follows:
1. compute

[p1]T = e([c1]1, [M]2 ) · e([c0]1, [−K1]2) (6)

2. compute

[p2]T = e([c0]1, [K2(x� ⊗ Im) + K3]2) · e([−c2]1, [R]2) (7)

3. run df,x ← rec(f,x) (cf. Sect. 4.1), compute

[D]T = [(p1‖p2)d�
f,x]T (8)

Correctness. For ctx,z and skf,M, we have

p1 = zM − sAT (9)

p2 = sATL1(x� ⊗ Im) + sATL0 (10)

(p1‖p2)d�
f,x = zMf(x) (11)

Here (11) follows from the fact that

(p1‖p2) = pgb(f,x, zM; (sAT)) and df,x = rec(f,x)

and reconstruction of the partial garbling in (6); the remaining two equalities follow
from:

(9) z − sAT = (z+ sAW) · In′ − sA · (T+W)

(10) sATL1(x� ⊗ Im) + sATL0 = sA · (

(TL1 +U(In ⊗ R))(x� ⊗ Im) + (TL0 +VR)
)

−(

sAU(x� ⊗ Ik) + sAV
) · R

in which we use the equality (In ⊗ R)(x� ⊗ Im) = (x� ⊗ Ik)R. This readily proves
the correctness.
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Simulator. We describe the simulator. We defer the analysis to Sect. B.

– Setup∗(1λ, 1n, 1n′
): Run G = (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
(k+1)×k
p and W ← Z

(k+1)×n′
p , U ← Z

(k+1)×kn
p , V ← Z

(k+1)×k
p

c ← Z
k+1
p w̃ ← Z

n′
p , ṽ ← Z

k
p

and output

mpk =
(
G, [A�]1, [A�W]1, [A�U]1, [A�V]1

)

msk∗ =
(
W, U, V, w̃, ṽ, c,C⊥,A,a⊥ )

where (A|c)�(C⊥|a⊥) = Ik+1. Here we assume that (A|c) has full rank, which
happens with probability 1 − 1/p.

– Enc∗(msk∗,x∗): Output

ct∗ =
(
[c�]1, [w̃]1, [ṽ]1

)
and x∗.

– KeyGen∗(msk∗,x∗, (f, [M]2), [μ]2): Run

(L1,L0) ← lgen(f) and ([p∗
1]2, [p

∗
2]2) ← pgb∗(f,x∗, [μ]2).

Sample T ← Z
(k+1)×t
p , û ← Z

nm
p and R ← Z

k×m
p and output

sk∗
f =

(
C⊥ · sk∗

f [1] + a⊥ · sk∗
f [2], [R]2

)
and f (12)

where

sk∗
f [1] =

(

[A�T+A�WM]2, [A
�TL1 +A�U(In ⊗ R)]2, [A

�TL0 +A�VR]2
)

sk∗
f [2] =

(

[−(p∗
1)

� + w̃M]2, [û
�]2, [(p

∗
2)

� − û�(x∗ ⊗ Im) + ṽR]2
)

Here T refers to the matrix composed of the right most n′ columns of T. That is,

sk∗
f =

⎛

⎝

[C⊥(A�T+A�WM) +a⊥(−(p∗
1)

� + w̃M)]2,
[C⊥(A�TL1 +A�U(In ⊗ R)) +a⊥(û�)]2 , [R]2
[C⊥(A�TL0 +A�VR) +a⊥(

(p ∗
2)

� − û�(x∗ ⊗ Im) + ṽR
)

]2

⎞

⎠

A Concrete Scheme for Quadratic Functions

We present a self-contained description of our functional encryption scheme for
quadratic functions specified by f ∈ Z

n1×n2
p where

z1, z2 �→ (z1 ⊗ z2)f�

The scheme is SA-SIM-secure under the bilateral k-Lin assumption and the k′-Lin
assumption in G1,G2. For the most efficient concrete instantiation (cf. Fig. 1), we set
k = 2, k′ = 1.
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– Setup(p, 1n1 , 1n2): Run G = (G1,G2,GT , e) ← G(p). Sample

A1 ← Z
k×n1
p ,A2 ← Z

k′×n2
p ,A0 ← Z

k′×(k′+1)
p ,W ← Z

(k′+1)×(k′n1+kn2)
p ,

and output

mpk =
(
G, [A0]1, [A0W]1, [A1]1, [A1]2, [A2]2

)
and msk = W

– Enc(mpk, (z1, z2)): Sample s1 ← Z
k
p, s0, s2 ← Z

k′
p and output

ct =
(
[s1A1 + z1︸ ︷︷ ︸

y1

]1, [s2A2 + z2︸ ︷︷ ︸
y2

]2, [s0A0︸ ︷︷ ︸
c0

]1, [s0A0W + (s1 ⊗ z2 | y1 ⊗ s2)︸ ︷︷ ︸
y0

]1
)

∈ G
n1
1 × G

n2
2 × G

k′+1
1 × G

k′n1+kn2
1

– KeyGen(msk, f): Output

skf =

[

W ·
(

(A1 ⊗ In2)f
�

(In1 ⊗ A2)f�

)]

2

∈ G
(k′+1)×1
2

– Dec(skf , f , ct): Parse skf = [k�]2 and output the discrete log of

[(y1 ⊗ y2) · f�]T · e([c0]1, [k�]2) · e

(

[y0]1,

[(
(A1 ⊗ In2)f

�

(In1 ⊗ A2)f�

)]

2

)−1

B Security Proof for Sect. 4

We complete the security proof for the scheme Π in Sect. 4.2.

Theorem 1. For all A, there exist B1 and B2 with Time(B1),Time(B2) ≈ Time(A)
such that

AdvΠ
A(λ) ≤ Adv

MDDH1
k,k+1

B1
(λ) + Adv

MDDHn
k,mQ

B2
(λ) + 1/p

where n is length of public input x∗ in the challenge, m is the parameter depending on
size of function f and Q is the number of key queries.

Note that this yields a tight security reduction to the k-Lin assumption.

Game Sequence. We use (x∗, z∗) to denote the semi-adaptive challenge and for nota-
tional simplicity, assume that all key queries fj share the same parameters t and m. We
prove Theorem 1 via a series of games.

Game0: Real game.



224 H. Wee

Game1: Identical to Game0 except that ct∗ for (x∗, z∗) is given by

ct∗ =
(
[ c� ]1, [(z∗)� + c� W]1, [ c� U((x∗)� ⊗ Ik) + c� V]1

)

where c ← Z
k+1
p . We claim that Game0 ≈c Game1. This follows from

MDDH1
k,k+1 assumption:

[A�]1, [s�A�]1 ≈c [A�]1, [c�]1 .

In the reduction, we sample W,U,V honestly and use them to simulate mpk and
KeyGen(msk, ·) along with [A�]1; the challenge ciphertext ct∗ is generated using
the challenge term given above.

Game2: Identical to Game1 except that the j-th query fj to KeyGen(msk, ·) is answered
with

skfj
=

(
C⊥ · skfj

[1] + a⊥ · skfj
[2], [Rj ]2

)

with

skfj
[1] =

(

[A�Tj +A�WMj ]2, [A
�TjL1,j +A�U(In ⊗ Rj)]2, [A

�TjL0,j +A� ˜VRj ]2
)

skfj
[2] =

(

[c�Tj + c�WMj ]2, [c
�TjL1,j + c�U(In ⊗ Rj)]2, [c

�TjL0,j + c�VRj ]2
)

where (L1,j ,L0,j) ← lgen(fj), Tj ← Z
(k+1)×t
p , Rj ← Z

k×m
p , c is the randomness

in ct∗ and C⊥ is defined such that (A|c)�(C⊥|a⊥) = Ik+1 (cf. Setup∗ in Sect. 4.2).
By basic linear algebra, we have Game1 = Game2.

Game3: Identical to Game2 except that we replace Setup,Enc with Setup∗,Enc∗ where
ct∗ is given by

ct∗ =
(
[c�]1, [w̃�]1, [ṽ�]1

)

and replace KeyGen(msk, ·) with KeyGen∗
3(msk∗, ·), which works as KeyGen

(msk, ·) in Game2 except that, for the j-th query fj , we compute

skfj
[2] =

⎛

⎝
[t̃

�
j − (z∗)�Mj + w̃�Mj ]2 , [ t̃�j L1,j + ũ� (In ⊗ Rj)]2,

[ t̃�j L0,j −ũ�(In ⊗ Rj)((x∗)� ⊗ Im) + ṽ�Rj ]2

⎞

⎠

where w̃, ṽ are given in msk∗ (output by Setup∗) and ũ ← Z
kn
p , tj ← Z

t
p,Rj ←

Z
k×m
p . We claim that Game2 ≈s Game3. This follows from the following state-

ment: for any full-rank (A|c), we have

(A�U, c�U, A�W, c�W, A�V, c�V, A�Tj , c�Tj)

≡ (A�U, ũ� , A�W, w̃� − (z∗)� , A�V, ṽ� − ũ�(x∗ ⊗ Ik) , A�Tj , t̃�j )

Game4: Identical to Game3 except that we replace KeyGen∗
3 with KeyGen∗

4 which works
as KeyGen∗

3 except that, for the j-th query fj , we compute

skfj
[2] =

(

[t̃
�
j −(z∗)�Mj+w̃�Mj ]2, [t̃

�
j L1,j+ û�

j ]2, [t̃
�
j L0,j− û�

j ((x∗)�⊗Im)+ṽ�Rj ]2
)
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where ûj ← Z
nm
p and Rj ← Z

k×m
p . We claim that Game3 ≈c Game4. This follows

from MDDHn
k,mQ assumption which tells us that

{
[ũ�(In ⊗ Rj)]2, [Rj ]2

}
j∈[Q]

≈c

{
[û�

j ]2 , [Rj ]2
}

j∈[Q]

where Q is the number of key queries.

Game5: Identical to Game4 except that we replace KeyGen∗
4 with KeyGen∗; this is the

ideal game. We claim that Game4 ≈s Game5. This follows from the privacy of
partial garbling scheme in Sect. 4.1.

We use AdvxxA(λ) to denote the advantage of adversary A in Gamexx. We prove the
following lemmas showing the indistinguishability of adjacent games listed above.

Lemma 2 (Game0 ≈c Game1). For all A, there exists B1 with Time(B1) ≈ Time(A)
such that

|Adv1
A(λ) − Adv0

A(λ)| ≤ Adv
MDDH1

k,k+1
B1

(λ).

Lemma 3 (Game2 ≈c Game3). For all A, we have Adv3
A(λ) ≈ Adv2

A(λ).

The proof is the same as before, except we replace cW , z∗ − w̃ in skfj
[2] with

cWMj , z∗Mj − w̃Mj

Proof (of Lemma 3). Recall that the difference between the two games lies in ct∗ and
skfj

[2]: instead of computing

ct∗ =
(

[c�]1, [(z∗)� + c�W]1 , [c�U((x∗)� ⊗ Ik) + c�V]1
)

skfj
[2] =

(

[c�Tj + c�WMj ]2 , [ c�Tj L1,j + c�U (In ⊗Rj)]2, [ c
�Tj L0,j + c�VRj ]2

)

in Game2, we compute
ct∗ =

(
[c�]1, [w̃�]1, [ṽ�]1

)

skfj
[2] =

(
[t̃

�
j − (z∗)�Mj + w̃�Mj ]2 , [ t̃�j L1,j + ũ� (In ⊗ Rj)]2,

[ t̃�j L0,j −ũ�(In ⊗ Rj)((x∗)� ⊗ Im) + ṽ�Rj ]2
)

in Game3.
This follows readily from the following statement: for all x∗, z∗,

(A�U, c�U , A�W, c�W , A�V, c�V , A�Tj , c�Tj )

≡ (A�U, ũ� , A�W, w̃� − (z∗)� , A�V, ṽ� − ũ�(x∗ ⊗ Ik) , A�Tj , t̃�j )

where U,W,V, w̃, ṽ are sampled as in Setup∗ and ũ ← Z
kn
p ,Tj ← Z

(k+1)×t
p , tj ←

Z
t
p. We clarify that in the semi-adaptive security game, (x∗, z∗) are chosen after seeing
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A�U,A�W,A�V. Since the two distributions are identically distributed, the distin-
guishing advantage remains 0 even for adaptive choices of x∗, z∗ via a random guessing
argument.

Finally, note that A�U,A�W,A�V,A�Tj are used to simulate mpk, skfj
[1],

whereas the boxed/gray terms are used to simulate skfj
[2]. This readily proves the

lemma. ��
Lemma 4 (Game3 ≈c Game4). For all A, there exists B2 with Time(B2) ≈ Time(A)
such that

|Adv4
A(λ) − Adv3

A(λ)| ≤ Adv
MDDHn

k,mQ

B2
(λ)

where n is length of public input x in the challenge, m is the maximum size of function
f and Q is the number of key queries.

Lemma 5 (Game4 ≈s Game5). For all A, we have Adv5
A(λ) ≈ Adv4

A(λ).

The proof is the same as before except we replace z∗ in skfj
[2], pgb, pgb∗ with

z∗Mj and w̃ in skfj
[2] with w̃Mj .

Proof. Recall that the difference between the two games lies in skfj
[2]: instead of com-

puting

skfj
[2] =

(

[ t̃
�
j − (z∗)�Mj + w̃Mj ]2, [ t̃

�
j L1,j + û�

j ]2, [ t̃
�
j L0,j − û�(x∗ ⊗ Im) + ṽ�R]2

)

in KeyGen∗
4 (i.e., Game4), we compute

skfj
[2] =

(
[ t̃�j + w̃Mj ]2, [ û�

j ]2, [ t̃�j (L1,j(x∗ ⊗ Im) + L0,j) + e1 · z∗Mjfj(x∗)� − û�
j (x∗ ⊗ Im) + ṽ

�
R]2

)

in KeyGen∗ (i.e., Game5). By change of variable û�
j �→ û�

j − t̃�jL1,j for all j ∈ [Q] in
Game4, we can rewrite in the form:

skfj
[2] =

(
[−p�

j,1 + w̃Mj ]2, [û�
j ]2, [p�

j,2 − û�
j (x

∗ ⊗ Im) + ṽ�R]2
)

where

(pj,1‖pj,2) ←
⎧
⎨

⎩
pgb(fj ,x∗, z∗Mj ; t̃j) in Game4

pgb∗(fj ,x∗, z∗Mjfj(x∗)�; t̃j) in Game5

Then the lemma immediately follows from the privacy of underlying partial garbling
scheme which means pgb(fj ,x∗, z∗Mj) ≈s pgb∗(fj ,x∗, z∗Mjfj(x∗)�). ��
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Abstract. In a lockable obfuscation scheme [28,39] a party takes as
input a program P , a lock value α, a message msg and produces an
obfuscated program P̃ . The obfuscated program can be evaluated on an
input x to learn the message msg if P (x) = α. The security of such
schemes states that if α is randomly chosen (independent of P and msg),
then one cannot distinguish an obfuscation of P from a “dummy” obfus-
cation. Existing constructions of lockable obfuscation achieve provable
security under the Learning with Errors assumption. One limitation of
these constructions is that they achieve only statistical correctness and
allow for a possible one sided error where the obfuscated program could
output the msg on some value x where P (x) �= α.

In this work we motivate the problem of studying perfect correctness
in lockable obfuscation for the case where the party performing the obfus-
cation might wish to inject a backdoor or hole in correctness. We begin
by studying the existing constructions and identify two components that
are susceptible to imperfect correctness. The first is in the LWE-based
pseudo random generators (PRGs) that are non-injective, while the sec-
ond is in the last level testing procedure of the core constructions.

We address each in turn. First, we build upon previous work to design
injective PRGs that are provably secure from the LWE assumption. Next,
we design an alternative last level testing procedure that has additional
structure to prevent correctness errors. We then provide a surgical proof
of security (to avoid redundancy) that connects our construction to the
construction by Goyal, Koppula, andWaters (GKW) [28]. Specifically, we
show how for a random value α an obfuscation under our new construc-
tion is indistinguishable from an obfuscation under the existing GKW
construction.
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1 Introduction

In cryptographic program obfuscation a user wants to take a program P and
publish an obfuscated program ˜P . The obfuscated program should maintain the
same functionality of the original while intuitively hiding anything about the
structure of P beyond what can be determined by querying its input/output
functionality.

One issue in defining semantics is whether we demand that ˜P always match
the functionality exactly on all inputs or we relax correctness to allow for some
deviation with negligible probability. At first blush such differences in seman-
tics might appear to be very minor. With a negligible correctness error it is
straightforward for the obfsucator to parameterize an obfuscation such that the
probability of a correctness error is some minuscule value such as 2−300 which
would be much less than say the probability of dying from an asteroid strike (1
in 74 million).

The idea that statistical correctness is always good enough, however, rests
on the presumption that the obfuscator itself wants to avoid errors. Consider
for example, a party that is tasked with building a program that screens images
from a video feed and raises an alert if any suspicious activity is detected. The
party could first create a program P to perform this function and then release
an obfuscated version ˜P that could hide features of the proprietary vision recog-
nition algorithm about how the program was built. But what if the party wants
to abuse their role? For instance, they might want to publish a program ˜P that
unfairly flags a certain group or individual. Or perhaps is programmed with a
backdoor to let a certain image pass.

In an obfuscation scheme with perfect correctness, it might be possible to
audit such behavior. For example, an auditor could require that the obfuscating
party produce their original program P along with the random coins used in
obfuscating it. Then the auditor could check that the original program P meets
certain requirements as well as seeing that ˜P is indeed an obfuscation of P .1

(We emphasize that if one does not want to reveal P to an auditor that such
a proof can be done in zero knowledge or by attaching a non-interactive zero
knowledge proof to the program. This proof will certify that the program meets
some specification or has some properties; e.g. “there are at most three inputs
that result in the output ‘010’.”) However, for such a process to work it is
imperative that the obfuscation algorithm be perfectly correct. Otherwise, a
malicious obfuscator could potentially start with a perfectly legitimate program
P , but purposefully choose coins that would flip the output of a program at a
particular input point.

Another important context where perfect correctness matters is when a
primitive serves as a component or building block in a larger cryptosystem.
We present a few examples where a difference in perfect versus imperfect

1 The above argument relies on the ability of one being able to test the original program
meets a certain template or is otherwise well-formed. Our work does not address
under which circumstances this is possible.
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correctness in a primitive can manifest into fundamentally impacting security
when complied into a larger system.

1. Dwork, Naor and Reingold [25] showed that the classical transformations
of IND-CPA to IND-CCA transformations via NIZKs [22,33] may not work
when the IND-CPA scheme is not perfectly correct. They addressed this by
amplifying standard imperfect correctness to what they called almost-all-keys
correctness.

2. Bitansky, Khurana, and Paneth [10] constructed zero knowledge arguments
with low round complexity. For their work, they required lockable obfuscation
with one-sided perfect correctness.2

3. Recently, [4,11] constructed constant-round post-quantum secure constant-
round ZK arguments. These protocols use lockable obfuscation as a means to
commit a message with pefect-binding property. Without both-sided perfect
correctness, the commitment scheme and thereby the ZK argument scheme
fails to be secure.

In this paper we study perfect correctness in lockable obfuscation, which is
arguably the most powerful form of obfuscation which is provably secure under a
standard assumption. Recall that a lockable obfuscation [28,39] scheme takes as
input a program P , a message msg, a lock value α and produces an obfuscated
program ˜P . The semantics of evaluation are such that on input x the evalua-
tion of the program outputs msg if and only if P (x) = α. Lockable obfuscation
security requires that the obfuscation of any program P with a randomly (and
independently of P and msg) chosen value α will be indistinguishable from a
“dummy” obfuscated program that is created without any knowledge of P and
msg other than their sizes. While the power of lockable obfuscation does not
reach that of indistinguishability obfuscation [8,26,37], it has been shown to
be sufficient for many applications such as obfuscating conjunction and affine
testers, upgrading public key encryption, identity-based encryption [14,20,38]
and attribute-based encryption [36] to their anonymous versions and giving ran-
dom oracle uninstantiatability and circular security separation results, and most
recently, building efficient traitor tracing systems [15,18].

The works of Goyal, Koppula, and Waters [28] and Wichs and Zirdelis [39]
introduced and gave constructions of lockable obfuscation provably secure under
the Learning with Errors [35] assumption. A limitation of both constructions
(inherited from the bit-encryption cycle testers of [30]) is that they provide only
statistical correctness. In particular, there exists a one-sided error in which it
is possible that there exists an input x such that P (x) �= α yet the obfuscated
program outputs msg on input x.

Our Results. With this motivation in mind we seek to create a lockable obfus-
cation scheme that is perfectly correct and retains the provable security under

2 In this particular example perfect correctness [28,39] was already present for the
side they needed.
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the LWE assumption. We begin by examining the GKW lockable obfuscation
for branching programs and identify two points in the construction that are sus-
ceptible to correctness errors. The first is in the use of an LWE-based pseudo
random generator that could be non-injective. The second is in the “last level
testing procedure” comprised in the core construction. We address each one in
turn. First, we build over the previous work to design and prove a new PRG con-
struction that is both injective and probably secure from the LWE assumption.
(We also create an injective PRG from the learning parity with noise (LPN)
assumption as an added bonus.) Then we look to surgically modify the GKW
construction to change the last level testing procedure to avoid the correctness
pitfall. We accomplish this by adding more structure to a final level of matrices
to avoid false matches, but doing so makes the new construction incompatible
with the existing security proof. Instead of re-deriving the entire proof of secu-
rity, we carefully show how an obfuscation under our new construction with a
random lock value is indistinguishable from an obfuscation under the previous
construction. Security then follows.

While the focus of this work has been on constructing lockable obfuscation
schemes with perfect correctness building upon the schemes of [28,39], we believe
our techniques can also be applied to the recent obfuscation scheme by Chen,
Vaikuntanathan, and Wee [19].

1.1 Technical Overview

We first present a short overview of the statistically correct lockable obfuscation
scheme by Goyal, Koppula and Waters [29, Appendix D], (henceforth referred to
as the GKW scheme), and discuss the barriers to achieving perfect correctness.
Next, we discuss how to overcome each of these barriers in order to achieve
perfect correctness.

Overview of the GKW Scheme. The GKW scheme can be broken down into
three parts: (i) constructing a lockable obfuscation scheme for NC1 circuits and
1-bit messages, (ii) bootstrapping to lockable obfuscation for poly-depth circuits,
and (iii) extending to multi-bit message space. It turns out that steps (ii) and
(iii) preserve the correctness properties of the underlying lockable obfuscation
scheme, thus in order to build a perfectly correct lockable obfuscation scheme
for poly-depth circuits and multi-bit messages, we only need to build a perfectly
correct lockable obfuscation scheme for NC1 and 1-bit messages.3 We start by
giving a brief overview of the lockable obfuscation scheme for NC1, and then
move to highlight the barriers to achieving perfect correctness.

One of the key ingredients in the GKW construction is a family of log-depth
(statistically injective) PRGs with polynomial stretch (mapping � bits to �PRG

bits for an appropriately chosen polynomial �PRG). Consider a log-depth cir-
cuit C that takes as input �in-bits and outputs �-bits. To obfuscate circuit C

3 Strictly speaking, [29, Appendix C] shows how to extend the message space for semi-
statistically correct lockable obfuscation schemes. However, the same transformation
also works for perfectly correct schemes.
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with lock value α ∈ {0, 1}� and message msg, the GKW scheme first chooses
PRG from the family and computes an “expanded” lock value β = PRG(α). It
then takes the circuit ̂C = PRG(C(·)) that takes as input �in-bits and outputs
�PRG-bits, and generates the permutation branching program representation of
̂C. Let BP(i) denote the branching program that computes ith output bit of ̂C.
Since C and PRG are both log-depth circuits, we know (due to Barrington’s
theorem [9]) that BP(i) is of some polynomial length L and width 5.4 The obfus-
cator continues by sampling 5�PRG matrices, for each level except the last one,
using lattice trapdoor samplers such that all the matrices at any particular level
share a common trapdoor. Let B(i)

j,k denote the matrix corresponding to level
j, state k of the ith branching program BP(i). Next, it chooses the top level
matrices

{

B(i)
L,1, . . . ,B

(i)
L,5

}

for each i ∈ [�PRG] uniformly at random subject to
the following “sum-constraint”:

∑

i: βi=0

B(i)

L,rej(i) +
∑

i: βi=1

B(i)

L,acc(i) =

{

0n×m if msg = 0,
√

q ·
[

In ||0n×(m−n)
]

if msg = 1.

Looking ahead, sampling the top level matrices in such a way helps to encode
the expanded lock value β such that an evaluator can test for this relation if it
has an input x such that C(x) = α.

Next step in the obfuscation procedure is to encode the branching programs
using the matrices and trapdoors sampled above. The idea is to choose a set of
�PRG · L “transition matrices” {C(i,0)

j ,C(i,1)
j }i,j such that each matrix C(i,b)

j is
short and can be used to evaluate its corresponding state transition permutation
σ
(i)
j,b. The obfuscation of C is set to be the �PRG base-level matrices {B(i)

0,1}i and

�PRG · L transition matrices {C(i,0)
j ,C(i,1)

j }i,j .
Evaluating the obfuscated program on input x ∈ {0, 1}�in is analogous to

evaluating the �PRG branching programs on x. For each i ∈ [�PRG], the evalua-
tion algorithm first computes Mi = B(i)

0,1 · ∏L
j=1 C

(i,xinp(j))

j and then sums them
together as M =

∑

i Mi. To compute the final output, it looks at the entries
of matrix M, if all the entries are small (say less than q1/4) it outputs 0, else if
they are close to

√
q it outputs 1, otherwise it outputs ⊥.

To argue correctness, they first show that the matrix M computed by the
evaluator is close to Γ · ∑i B

(i)

L,st(i) where Γ is some low-norm matrix and st(i)

denotes the final state of BP(i).5 It is easy to verify that if C(x) = α, then
̂C(x) = β, and therefore

4 Recall, a permutation branching program of length L and width w can be represented
using w states, 2L permutations σj,b over states for each level j ≤ L, an input-selector
function inp(·) which determines the input read at each level, and an accepting and
rejecting state. The program execution starts at state st = 1 of level 0, and iteratively
carried out as st = σi,b(st) (where b is the input bit read at level i). Depending upon
the final state (i.e., at level L), the program either accepts or rejects.

5 That is, st(i) = acc(i) if ̂C(x)i = 0 and rej(i) otherwise.
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M ≈ Γ ·
∑

i

B(i)

L,st(i) =

{

0n×m if msg = 0,
√

q ·
[

Γ ||0n×(m−n)
]

if msg = 1.

As a result, if C(x) = α, then the evaluation is correct. However, it turns out
that even when C(x) �= α the evaluation algorithm could still output 0/1 (recall
that if C(x) �= α, then the evaluation algorithm must output ⊥). There are two
sources of errors here.

Non-Injective PRGs. First, it is possible that the PRG chosen is not injective.
In this event (which happens with negligible probability if PRG is chosen
honestly), there exist two inputs y �= y′ such that PRG(y) = PRG(y′). As a
result, if there exist two inputs x, x′ ∈ {0, 1}�in such that C(x) = y, C(x′) =
y′, then the obfuscation of C with lock y and message msg, when evaluated on
x′, outputs msg instead of ⊥. Note that this source of error can be eliminated
if we use a perfectly injective PRG family instead of a statistically injective
PRG family.

Sum-Constraints. The second source of error is due to the way we encode the
lock value in the top-level matrices. Let x �= x′ be two distinct inputs, and
let α = C(x), α′ = C(x′), β = PRG(α) and β′ = PRG(α′). Suppose we
obfuscate C with lock value α. Recall that the obfuscator samples the top-
level matrices uniformly at random with the only constraint that the top-
level matrices corresponding to the expanded lock value β either sum to 0 (if
msg = 0), else they sum to certain medium-ranged matrix (i.e., entries ≈ √

q).
Now this corresponds to sampling all but one top-level matrix uniformly
at random (and without any constraint), and that one special matrix such
that the constraint is satisfied. Therefore, it is possible (although with small
probability) that summing together the top-level matrices for string β′ is
close to the top-level matrix sum for string β. That is,

∑

i: βi=0

B(i)

L,rej(i) +
∑

i: βi=1

B(i)

L,acc(i) ≈
∑

i: β′
i=0

B(i)

L,rej(i) +
∑

i: β′
i=1

B(i)

L,acc(i) .

As a result, if we obfuscate C with lock α and message msg, and evaluate this
on input x′, then it could also output msg instead of ⊥. This type of error is
trickier to remove as it is crucial for security in the GKW construction that
these matrices look completely random if one doesn’t know the lock value α.
To get around this issue, we provide an alternate top-level matrix sampling
procedure that guarantees perfect correctness.

We next present our solutions to remove the above sources of imperfectness.
First, we construct a perfectly injective PRG family that is secure under the
LWE assumption. This resolves the first problem. Thereafter, we discuss our
modifications to the GKW construction for resolving the sum-constraint error.
Later we also briefly talk about our perfectly injective PRG family that is secure
under the LPN assumption.
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Perfectly Injective PRG Family. We will first show a perfectly injective PRG
family based on the LWE assumption. The construction is a low-depth PRG
family with unbounded (polynomial) stretch. The security of this construction
relies on the Learning with Rounding (LWR) assumption, introduced by Baner-
jee, Peikert and Rosen. [7], which in turn can be reduced to LWE (with subex-
ponential modulus/error ratio). First, let us recall the LWR assumption. This
assumption is associated with two moduli p, q where p < q. The modulus q is the
modulus of computation, and p is the rounding modulus. Let �·�p denote a map-
ping from Zq to Zp which maps integers based on their higher order bits. The
LWR assumption states that for a uniformly random secret vector s ∈ Z

n
q and

uniformly random matrix A ∈ Z
n×m
q , �sT · A�p looks like a uniformly random

vector in Z
m
p , even when given A. We will work with a ‘binary secrets’ version

where the secret vector s is a binary vector.
Let us start by reviewing the PRG construction provided by Banerjee et

al. [7]. In their scheme, the setup algorithm first chooses two moduli p < q and
outputs a uniformly random n × m matrix A with elements from Zq. The PRG
evaluation takes as input an n bit string s and outputs �sT · A�p, where �x�p

essentially outputs the higher order bits of x. Assuming m is sufficiently larger
than n and moduli p, q are appropriately chosen, for a uniformly random matrix
A ← Z

n×m
q , the function �sT · A�p is injective with high probability (over the

choice of A). In order to achieve perfect injectivity, we sample the public matrix
A in a special way.

In our scheme, the setup algorithm chooses a uniformly random matrix B
and a low norm matrix C. It sets D to be a diagonal matrix with medium-value
entries (D is a fixed deterministic matrix). It sets A = [B | B · C + D] and
outputs it as part of the public parameters, together with the LWR moduli p, q.
To evaluate the PRG on input s ∈ {0, 1}n, one outputs y = �sT ·A�p. Intuitively,
the D matrix acts as a error correcting code, and if s1 �= s2, then there is at
least one coordinate such that �sT

1 · D�p and �sT
2 · D�p are far apart.

Suppose s1 and s2 are two bitstrings such that �sT
1 · A�p = �sT

2 · A�p. Then
�sT

1 · B�p = �sT
2 · B�p, and as a result, �sT

1 · B · C�p and �sT
2 · B · C�p have close

enough entries as C has small entries. However, this implies that �sT
1 · D�p and

�sT
2 · D�p also have close enough entries, which implies that s1 = s2.
Pseudorandomness follows from the observation that A looks like a uniformly

random matrix. Once we replace [B | B · C + D] with a uniformly random
matrix A, we can use the binary secrets version of LWR to argue that sT · A is
indistinguishable from a uniformly random vector. This is discussed in detail in
Sect. 3.

Relation to the Perfectly Binding Commitment Scheme of [27]: The perfectly
injective PRG family outlined above builds upon some core ideas from the per-
fectly binding commitments schemes in [27]. Below, we will describe the con-
structions from [27], and discuss the main differences in our PRG schemes.

In the LWE based commitment scheme, the sender first chooses a modulus
q, matrices B,C,D and E of dimensions n × n, where B is a uniformly random
matrix, entries in C, E are drawn from the low norm noise distribution, and D
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is some fixed diagonal matrix with medium-value entries. It sets A = [B ||B ·
C + D + E]. Next, it chooses a vector s from the noise distribution, vector w
uniformly at random, vector e from the noise distribution and f from the noise
distribution. To commit to a bit b, it sets y = AT ·s+e, z = wT ·s+f+b(q/2), and
the commitment is (A,w,y, z). The opening simply consists of the randomness
used for constructing the commitment.

The main differences between our PRG construction and their commitment
scheme are as follows: (i) we need to separate out their initial commitment step
into PRG setup and evaluation phase, (ii) since the PRG evaluation is deter-
ministic, we cannot add noise (unlike in the case of commitments). Therefore,
we need to use Learning with Rounding. Finally, we need to carefully choose the
rounding modulus p as we want to ensure that the rounding operation does not
round off the contribution from the special matrix D while still allowing us to
reduce to the LWR assumption.

Sum-Constraint on the Top-Level Matrices. We will now discuss how the top-
level matrices can be sampled to ensure perfect correctness. In order to do
so, let us first consider the following simplified problem which captures the
essence of the issue. Given a string β ∈ {0, 1}�, we wish to sample 2� matri-
ces {Mi,b}i∈[�],b∈{0,1} such that they satisfy the following three constraints:

1.
∑

i Mi,βi
has ‘small’ entries (say < q1/4).

2. For all β′ �= β,
∑

i Mi,β′
i

has ‘large’ entries (say greater than q1/2).
3. For a uniformly random choice of string β, the set of 2� matrices {Mi,b}i,b

‘look’ like random matrices.

In the GKW construction, the authors use a simple sampler that the sam-
pled matrices satisfy the first constraint, and by applying the Leftover Hash
Lemma (LHL) they also show that the corresponding matrices satisfy the third
constraint. However, to achieve perfect correctness, we need to build a matrix
sampler such that its output always satisfy all the three constraints. To this end,
we show that by carefully embedding LWE samples inside the output matrices
we can achieve the second constraint as well. We discuss our approach in detail
below.

We now define a sampler Samp that takes an �-bit string β as input, and
outputs 2� matrices satisfying all the above constraints, assuming the Learn-
ing with Errors assumption (in addition to relying on LHL). The sampler first
chooses 2� uniformly random square matrices {Ai,b}i∈[�],b∈{0,1} subject to the
constraint that

∑

i Ai,βi
= 0n×n. This can be achieved by simply sampling

2� − 1 uniformly random n × n matrices, and setting A�,β�
= −∑

i<� Ai,βi
. Let

D = q3/4
[

In ||0n×(m−2n)
]

be a n×(m−n) matrix with a few ‘large’ entries. The
sampler then chooses a low norm n×(m−n) matrix S and low-norm n×(m−n)
error matrices {Ei,b}i∈[�],b∈{0,1}. It sets the 2� output matrices as

Mi,b =

{

[Ai,b ||Ai,b · S + Ei,b] if b = βi

[Ai,b ||Ai,b · S + Ei,b + D] if b = 1 − βi
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In short, our sampler samples the first n columns of the output matrix in a similar
way to GKW scheme, whereas the remaining (m − n) columns are sampled in
a special way such that if we sum up the matrices corresponding to string β
then the last (m−n) columns of the summed matrix have small entries, whereas
summing up matrices corresponding to any other string β′ �= β, the last (m−n)
columns of the summed matrix have distinguishably large entries. Below we
briefly argue why our sampler satisfies the three properties specified initially.

1. (First property): Note that
∑

i Ai,βi
= 0n×n, therefore we have that

Mβ =
∑

i

Mi,βi
=

[

0n×n ||0n×n · S +
∑

i

Ei,βi

]

=

[

0n×n ||
∑

i

Ei,βi

]

.

Since the error matrices are drawn from a low-norm distribution, the entries
of Mβ are ‘small’.

2. (Second property): We need to check that Mβ′ =
∑

i Mi,β′
i
has ‘large’ entries

for β′ �= β. Suppose β and β′ differ at t positions (t > 0). Then

∑

i

Mi,β′
i
=

[

∑

i

Aβ′ ||Aβ′ · S + Eβ′ + t · D
]

,

where Aβ′ =
∑

i Ai,β′
i

and Eβ′ =
∑

i Ei,β′
i
. If Aβ′ has large entries (greater

than q1/2), then we are done. On the other hand, if Aβ′ has small entries
(less than q1/2), then we can argue that Aβ′ · S + Eβ′ also has entries less
than q3/4, and therefore Aβ′ · S + Eβ′ + t · D has large entries. This implies
that Mβ′ has large entries, and hence the second constraint is also satisfied.

3. (Third property): To argue about the third property, we use the LWE assump-
tion in conjunction with LHL. First, we can argue that the {Ai,b} matrices
look like uniformly random matrices (using the leftover hash lemma). Next,
using the LWE assumption, we can show that {[Ai,b ||Ai,b · S + Ei,b]}i,b are
indistinguishable from 2� uniformly random matrices, and hence the third
property is also satisfied.

We can also modify the above sampler slightly such that
∑

i Mi,βi
has ‘medium’

entries (that is, entries within the range [q1/4, q1/2)). The sampler chooses ran-
dom matrices {Ai,b}i,b subject to the constraint that

∑

i Ai,βi
= q1/4In, and

the remaining steps are same as above. Let Sampmed be the sampler for this
‘medium-entries’ variant.

We observe that if we plug in these samplers into the GKW scheme for
sampling their top-level matrices, then that leads to a perfectly correct lockable
obfuscation scheme. Specifically, let α be the lock used, PRG chosen from a
perfectly injective PRG family, and β = PRG(α) be the expanded lock value. The
obfuscation scheme chooses matrices {Mi,b}i,b using either Samp or Sampmed

depending on the message msg. That is, if msg = 0, it chooses {Mi,b}i,b ←
Samp(β), else it chooses {Mi,b}i,b ← Sampmed(β). It then sets B(i)

L,acc(i) = Mi,1
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and B(i)

L,rej(i) = Mi,0 for each i ∈ [�PRG]. From the properties of Samp/Sampmed,
it follows that

Mβ =
∑

i

Mi,βi
=

∑

i: βi=0

B(i)

L,rej(i) +
∑

i: βi=1

B(i)

L,acc(i) ,

which has ‘low’ or ‘medium’ norm depending on msg bit. The remaining top
level matrices are chosen uniformly at random. Everything else stays the same
as in the GKW scheme.

For completeness, we now check that this scheme indeed satisfies perfect
correctness. Consider an obfuscation of circuit C with lock α and message msg. If
this obfuscation is evaluated on input x such that C(x) = α, then the evaluation
outputs msg as expected. If C(x) = α′ �= α, then PRG(C(x)) = β′ �= β (since
the PRG is injective). This means the top level sum is

∑

i: β′
i=0

B(i)

L,rej(i) +
∑

i: β′
i=1

B(i)

L,acc(i) =
∑

i

Mi,β′
i
,

Using the second property of Samp/Sampmed, we know that this sum has ‘large’
entries, and therefore the evaluation outputs ⊥. This completes our perfect cor-
rectness argument. Now for proving that our modification still give a secure
lockable obfuscation, we do not re-derive a completely new security proof but
instead we show that no PPT attacker can distinguish an obfuscated program
generated using our scheme from the one generated by using the GKW scheme.
Now combining this claim with the fact that the GKW scheme is secure under
LWE assumption, we get that our scheme is also secure. Very briefly, the idea
behind indistinguishability of these two schemes is that since the lock α is chosen
uniformly at random, then PRG(α) is computationally indistinguishable from
a uniformly random string β, and thus these top level matrices also look like
uniformly random matrices for uniformly random β (using the third property of
Samp/Sampmed). Now to complete argument we show the same hold for GKW
scheme as well, thereby completing the proof. More details on this are provided
in the main body.

Perfectly Injective PRGs from the LPN Assumption. Finally, we also build a
family of perfectly injective PRGs based on the Learning Parity with Noise
assumption. While the focus of this work has been getting an end-to-end LWE
solution for perfectly correct lockable obfuscation, we also build perfectly injec-
tive PRGs based on the LPN assumption, which could be of independent inter-
est. Recently, there has been a surge of interest towards new constructions of
cryptographic primitives based on LPN [16,17,23,40–42], and we feel that our
perfectly injective PRGs fit this theme. Our LPN solution uses a low-noise vari-
ant (β �

1√
n
) of the LPN assumption that has been used in previous public key

encryption schemes [1]. Below we briefly sketch the main ideas behind our PRG
construction.

To build perfectly injective PRGs from LPN, we take a similar approach to
one taken in the LWE case. The starting idea is to use the PRG seed (as before)
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as the secret vector s and compute the PRG evaluation as BT s) but now, unlike
the LWE case, we do not have any rounding equivalent for LPN, that is we do
not know how to avoid generating the error vector e during PRG evaluation.
Therefore, to execute the idea we provide an (efficient) injective sampler for
error vectors which takes as input a bit string and outputs an error vector e of
appropriate dimension. (The injectivity property here states that the mapping
between bit strings and the error vectors is injective.) So now in our PRG evalu-
ation the input string is first divided in two disjoint components where the first
component is directly interpreted as the secret vector s and second component
is used to sample the error vector e using our injective sampler.

Although at first it might seem that building an injective sampler might not
be hard, however it turns out there are a couple of subtle issues that we have
taken care of while proving security as well as perfect injectivity. Concretely,
for self-composability of our PRG (i.e., building PRGs which take as input bit
strings of fixed length instead having a special domain sampling algorithm),
we require that the size of support of distribution of error vectors e used is a
‘perfect power of two’. As otherwise we can not hope to build a perfectly injective
(error vector) sampler which takes as input a fixed length bit string and outputs
the corresponding error vector. Now we know that the size of support of noise
distribution in the LPN assumption might not be a perfect power of two, thus
we might not be able to injectively sample error vectors from the fixed length
bit strings. To resolve this issue, we define an alternate assumption which we
call the ‘restricted-exact-LPN’ assumption and show that (a) it is as hard as
standard LPN, (b) sufficient for our proof to go through, and (c) has an efficiently
enumerable noise distribution whose support size is a perfect power of two (i.e.,
we can define an efficient injective error sampler for its noise distribution). More
details are provided later in Sect. 5.

1.2 Related Works on Perfect Correctness

In this section, we discuss some related work and approaches for achieving perfect
correctness for lockable obfuscation and its applications. First, a recent concur-
rent and independent work by Asharov et al. [6] also addresses the question of
perfect correctness for obfuscation. They show how to generically achieve perfect
correctness for any indistinguishability obfuscation scheme, assuming hardness
of LWE. Below, we discuss other related prior works.

Perfect Correctness via Derandomization. Bitansky and Vaikuntanathan [13]
showed how to transform any obfuscation scheme (and a large class of cryptosys-
tems) to remove correctness errors using Nisan-Wigderson (NW) PRGs [34]. In
their scheme, the obfuscator runs the erroneous obfuscation algorithm sufficiently
many times, and for each execution of the obfuscator, the randomness used is
derived pseudorandomly (by adding the randomness derived from the NW PRGs
and the randomness from a standard cryptographic PRG). As the authors show,
such a transformation leads to a perfectly correct scheme as long as certain
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circuit lower bound assumptions hold (in particular, they require that the NW-
PRGs can fool certain bounded-size circuits). Our solution, on the other hand,
does not rely on additional assumptions as well as it is as efficient as existing
(imperfect) lockable obfuscation constructions [28,39].

Using a Random Oracle for Generating Randomness. A heuristic approach to
prevent the obfuscator from using malicious randomness is to generate the ran-
dom coins using a hash function H applied on the circuit. Such a heuristic might
suffice for some applications such as the public auditing example discussed pre-
viously, but it does not seem to provide provable security in others. Note that
our construction with perfect correctness is proven secure in the standard model,
and does not need rely on ROs or a CRS.

Lastly, we want to point out that in earlier works by Bitansky and Vaikun-
tanathan [12], and Ananth, Jain and Sahai [3], it was shown how to transform
any obfuscation scheme that has statistical correctness on (1/2 + ε) fraction
of inputs (for some non-negligible ε) into a scheme that has statistical correct-
ness for all inputs. However, this does not achieve perfect correctness. It is an
interesting question whether their approach could be extended to achieve per-
fect correctness. Similar correctness amplification issues were also addressed by
Ananth et al. [2].

2 Preliminaries

In this section, we review the notions of injective pseudorandom generators with
setup and Lockable Obfuscation [28,39]. Due to space constraints, we review
fundamentals of lattices and homomorphic encryption in the full version of the
paper.

2.1 Injective Pseudorandom Generators with Setup

We will be considering PRGs with an additional setup algorithm that outputs
public parameters. The setup algorithm will be important for achieving injec-
tivity in our constructions. While this is weaker than the usual notion of PRGs
(without setup), it turns out that for many of the applications that require
injectivity of PRG, the setup phase is not an issue.

Setup(1λ): The setup algorithm takes as input the security parameter λ and
outputs public parameters pp, domain D and co-domain R of the PRG. Let
params denote (pp,D,R).

PRG(params, s ∈ D) : The PRG evaluation algorithm takes as input the public
parameters and the PRG seed s ∈ D, and outputs y ∈ R.

Perfect Injectivity. A pseudorandom generator with setup (Setup,PRG) is said
to have perfect injectivity if for all (pp,D,R) ← Setup(1λ), for all s1 �= s2 ∈ D,
PRG(params, s1) �= PRG(params, s2).
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Pseudorandomness. A pseudorandom generator with setup (Setup,PRG) is said
to be secure if for any PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N,

Pr

⎡

⎣A(params, tb) = b :
params ← Setup(1λ)

s ← D, t0 ← R, b ← {0, 1}
t1 = PRG(params, s)

⎤

⎦ ≤ 1
2

+ negl(λ).

2.2 Lockable Obfuscation

In this section, we recall the notion of lockable obfuscation defined by Goyal et
al. [28]. Let n,m, d be polynomials, and Cn,m,d(λ) be the class of depth d(λ)
circuits with n(λ) bit input and m(λ) bit output. Let M be the message space.
A lockable obfuscator for Cn,m,d consists of algorithms Obf and Eval with the
following syntax.

– Obf(1λ, P,msg, α) → ˜P . The obfuscation algorithm is a randomized algorithm
that takes as input the security parameter λ, a program P ∈ Cn,m,d, message
msg ∈ M and ‘lock string’ α ∈ {0, 1}m(λ). It outputs a program ˜P .

– Eval( ˜P , x) → y ∈ M ∪ {⊥}. The evaluator is a deterministic algorithm that
takes as input a program ˜P and a string x∈ {0, 1}n(λ). It outputs y ∈M∪{⊥}.

Correctness. For correctness, we require that if P (x) = α, then the obfuscated
program ˜P ← Obf(1λ, P,msg, α), evaluated on input x, outputs msg, and if
P (x) �= α, then ˜P outputs ⊥ on input x. Formally,

Definition 1 (Perfect Correctness). Let n,m, d be polynomials. A lockable
obfuscation scheme for Cn,m,d and message space M is said to be perfectly correct
if it satisfies the following properties:

1. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and
messages msg ∈ M, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

2. For all security parameters λ, inputs x ∈ {0, 1}n(λ), programs P ∈ Cn,m,d and
messages msg ∈ M, if P (x) �= α, then

Eval(Obf(1λ, P,msg, α), x) = ⊥ .

Remark 1 (Weaker notions of correctness). We would like to point out that
GKW additionally defined two weaker notions of correctness - statistical and
semi-statistical correctness. They say that lockable obfuscation satisfies statisti-
cal correctness if for any triple (P,msg, α), the probability that there exists an x
s.t. P (x) �= α and the obfuscated program outputs msg on input x is negligible
in security parameter. The notion of semi-statistical correctness is even weaker
where each obfuscated program could potentially always output message msg
for some input x s.t. P (x) �= α, but if one fixes the input x before obfuscation,
then the probability of the obfuscated program outputting msg on input x is
negligible.



242 R. Goyal et al.

Security. We now present the simulation based security definition for Lockable
Obfuscation.

Definition 2. Let n,m, d be polynomials. A lockable obfuscation scheme (Obf,
Eval) for Cn,m,d and message space M is said to be secure if there exists a PPT
simulator Sim such that for all PPT adversaries A = (A0,A1), there exists a
negligible function negl(·) such that the following function is bounded by negl(·):

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

A1(P̃b, st) = b :

(P ∈ Cn,m,d,msg ∈ M, st) ← A0(1λ)
b ← {0, 1}, α ← {0, 1}m(λ)

P̃0 ← Obf(1λ, P,msg, α)
P̃1 ← Sim(1λ, 1|P |, 1|msg|)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

3 Perfectly Injective PRGs from LWR

In this construction, we will present a construction based on the Learning With
Rounding (LWR) assumption. At a high level, the construction works as follows:
the setup algorithm chooses a uniformly random matrix A ∈ Z

n×2m
q , where m

is much greater than n. The PRG evaluation outputs �xT ·A�p, where p = 2�out .
Note that this already gives us a PRG with statistical injectivity. However, to
achieve perfect injectivity, we need to ensure that the matrix A is full rank, and
that injectivity is preserved even after rounding. In order to achieve this, we
need to make some modifications to the setup algorithm.

The new setup algorithm chooses a uniformly random matrix B, a random
matrix R with ±1 entries. Let D be a fixed full rank matrix with ‘medium sized’
entries. It then outputs A = [B | BR + D]. The PRG evaluation is same as
described above.

We will now describe the algorithms formally.

Setup(1λ) The setup algorithm first sets the parameters n,m, q, �out, ρ in terms
of the security parameter. These parameters must satisfy the following con-
straints.

– n = poly(λ)
– q ≤ 2nε

– m > 2n log q
– p = 2�out

– n < m · �out
– (q/p)m < ρ < q

One particular setting of parameters which satisfies the constraints above is
as follows: set n = poly(λ), q = 2nε

, p =
√

q, m = n2 and ρ = q/4.
Next, it chooses a matrix B ← Z

n×m
q , matrix R ← {+1,−1}m×m. Let D =

ρ · [In | 0n×(m−n)] and A = [B | B · R + D]. The setup algorithm outputs
A as the public parameters. It sets the domain D = {0, 1}n and co-domain
R = {0, 1}m·�out .

PRG(A, s): The PRG evaluation algorithm takes as input the matrix A and the
seed s ∈ {0, 1}n. It computes y = sT · A. Finally, it outputs �y�p ∈ Z

m
p as a

bit string of length 2m · �out.
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Depth of PRG Evaluation Circuit and PRG Stretch. First, note that the the PRG
evaluation circuit only needs to perform a single matrix-vector multiplication
followed by discarding the log2 q/p� least significant bits of each element. Clearly
such a circuit can be implemented in TC0, the class of constant-depth, poly-
sized circuits with unbounded fan-in and threshold gates (which is a subset of
NC1). Additionally, the stretch provided by the above PRG could be arbitrarily
set during setup. Thus, the above construction gives a PRG that provides a
polynomial stretch with a TC0 evaluation circuit.
We now prove the following theorem where we show that our PRG construc-
tion satisfies perfect injectivity property. Due to space constraints, we argue the
pseudorandomness property of the construction in the full version of the paper.

Theorem 1. If the LWR assumption with parameters n,m, p and q holds, then
the above construction is a perfectly injective PRG.

Due to space constraints, we prove the Theorem in the full version of the paper.

4 Lockable Obfuscation with Perfect Correctness

4.1 Construction

In this section, we present our perfectly correct lockable obfuscation scheme.
We note that the construction is similar to the statistically correct lockable
obfuscation scheme described in Goyal et al. [28]. A part of the description
has been taken verbatim from [28]. For any polynomials �in, �out, d such that
�out = ω(log λ), we construct a lockable obfuscation scheme O = (Obf,Eval) for
the circuit class C�in,�out,d. The message space for our construction will be {0, 1},
although one can trivially extend it to {0, 1}�(λ) for any polynomial � [28].

The tools required for our construction are as follows:

– A compact leveled homomorphic bit encryption scheme (LHE.Setup, LHE.Enc,
LHE.Eval, LHE.Dec) with decryption circuit of depth dDec(λ) and ciphertexts
of length �ct(λ).

– A perfectly injective pseudorandom generator scheme (PRG.Setup,PRG.
Eval), where PRG.Eval has depth dPRG(λ), input length �out(λ) and output
length �PRG(λ).

For notational convenience, let �in = �in(λ), �out = �out(λ), �PRG = �PRG(λ),
dDec = dDec(λ), dPRG = dPRG(λ) and d = d(λ).

Fix any ε < 1/2. Let χ be a B-bounded discrete Gaussian distribution with
parameter σ such that B =

√
m · σ. Let n,m, �, σ, q,Bd be parameters with the

following constraints:

– n = poly(λ) and q ≤ 2nε

(for LWE security)
– m ≥ c̃ · n · log q for some universal constant c̃ (for SamplePre)
– σ = ω(

√
n · log q · log m) (for Preimage Well Distributedness)

– �PRG = n ·m · log q+ω(log n) (for applying Leftover Hash Lemma)
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– �PRG · (L + 1) · (m2 · σ)L+1 < q1/8 (where L = �out · �ct · 4dDec+dPRG) (for
correctness of scheme)

It is important that L = λc for some constant c and �PRG · (L + 1) · (m2 ·
σ)L+1 < q1/8. This crucially relies on the fact that the LHE scheme is compact
(so that �ct and �PRG are bounded by a polynomial independent of the size of
the circuits supported by the scheme, and that the LHE decryption and PRG
computation can be performed by a log depth circuit (i.e, have poly length
branching programs). The constant c depends on the LHE scheme and PRG.

One possible setting of parameters is as follows: n = λ4c/ε, m = n1+2ε,
q = 2nε

, σ = n and �PRG = n3ε+3.
We will now describe the obfuscation and evaluation algorithms.

– Obf(1λ, P,msg, α): The obfuscation algorithm takes as input a program P ∈
C�in,�out,d, message msg ∈ {0, 1} and α ∈ {0, 1}�out . The obfuscator proceeds
as follows:
1. It chooses the LHE key pair as (lhe.sk, lhe.ek) ← LHE.Setup(1λ, 1d log d).6
2. Next, it encrypts the program P . It sets ct ← LHE.Enc(lhe.sk, P ).7
3. It runs pp ← PRG.Setup(1λ), and assigns β = PRG.Eval(pp, α).
4. Next, consider the following circuit Q which takes as input �out · �ct

bits of input and outputs �PRG bits. Q takes as input �out LHE cipher-
texts {cti}i≤�out

, has LHE secret key lhe.sk hardwired and computes
the following — (1) it decrypts each input ciphertext cti (in parallel)
to get string x of length �out bits, (2) it applies the PRG on x and
outputs PRG.Eval(pp, x). Concretely, Q(ct1, . . . , ct�out) = PRG.Eval

(

pp,

LHE.Dec(lhe.sk, ct1) || · · · || LHE.Dec(lhe.sk, ct�out)
)

.
For i ≤ �PRG, we use BP(i) to denote the fixed-input selector permutation
branching program that outputs the ith bit of output of circuit Q. Note
that Q has depth dtot = dDec + dPRG. In the full version of the paper, we
show that each branching program BP(i) has length L = �out · �ct · 4dtot

and width 5.
5. The obfuscator creates matrix components which enable the evaluator to

compute msg if it has an input strings (ciphertexts) ct1, . . . , ct�out such
that Q(ct1, . . . , ct�out) = β. Concretely, it runs the (randomized) routine
Comp-Gen (defined in Figs. 1, 2). This routine takes as input the circuit Q

in the form of �PRG branching programs {BP(i)}i, string β and message

msg. Let
(

{

B(i)
0,1

}

i
,
{

C(i,0)
j ,C(i,1)

j

}

i,j

)

← Comp-Gen({BP(i)}i, β,msg).

6 We set the LHE depth bound to be d log d, where the extra log factor is to account
for the constant blowup involved in using a universal circuit. In particular, we can
set the LHE depth bound to be c · d where c is some fixed constant depending on
the universal circuit.

7 Note that LHE scheme supports bit encryption. Therefore, to encrypt P , a multi-bit
message, the FHE.Enc algorithm will be run independently on each bit of P . However,
for notational convenience throughout this section we overload the notation and
use FHE.Enc and FHE.Dec algorithms to encrypt and decrypt multi-bit messages
respectively.
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Fig. 1. Routine Comp-Gen
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Fig. 2. Routine Comp-Gen Continued

6. The final obfuscated program consists of the LHE evaluation key ek =
lhe.ek, LHE ciphertexts ct, together with the components

({

B(i)
0,1

}

i
,

{

(C(i,0)
j ,C(i,1)

j )
}

i,j

)

.

– Eval(P̃ , x): The evaluation algorithm takes as input P̃ =
(

ek, ct,
{

B(i)
0,1

}

i
,

{

(C(i,0)
j ,C(i,1)

j )
}

i,j

)

and input x ∈ {0, 1}�in . It performs the following steps.

1. The evaluator first constructs a universal circuit Ux(·) with x hardwired
as input. This universal circuit takes a circuit C as input and outputs
Ux(C) = C(x). Using the universal circuit of Cook and Hoover [21], it
follows that Ux(·) has depth O(d).

2. Next, it performs homomorphic evaluation on ct using circuit Ux(·). It
computes ˜ct = LHE.Eval(ek, Ux(·), ct). Note that �ct · �out denotes the
length of ˜ct (as a bitstring), and let ˜cti denote the ith bit of ˜ct.

3. The evaluator then obliviously evaluates the �PRG branching programs
on input ˜ct using the matrix components. It calls the component eval-
uation algorithm Comp-Eval (defined in Fig. 3). Let y = Comp-Eval

(

˜ct,
(

{

B(i)
0,1

}

i
,
{

(C(i,0)
j ,C(i,1)

j )
}

i,j

)

)

. The evaluator outputs y.
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Fig. 3. Routine Comp-Eval

4.2 Correctness

We will prove that the lockable obfuscation scheme described above satisfies the
perfect correctness property (see Definition 1). To prove this, we need to prove
that if P (x) = α, then the evaluation algorithm always outputs the message,
and if P (x) �= α, then it always outputs ⊥.

First, we will prove the following lemma about the Comp-Gen and Comp-Eval
routines. For any z ∈ {0, 1}�in(λ), let BP(z) = BP(1)(z) || . . . ||BP(�PRG)(z). Intu-
itively, this lemma states that for all fixed input branching programs {BP(i)}i,
strings β, input z, and messagesmsg, if BP(z) = β, then the component evaluator
outputs msg.

Lemma 1. For any set of branching programs {BP(i)}i≤�PRG ,
string β ∈ {0, 1}�PRG , message msg ∈ {0, 1} and input z,

1. if BP(z) = β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = msg.

2. if BP(z) �= β, then Comp-Eval(z,Comp-Gen({BP(i)}i, β,msg)) = ⊥ .

Proof. Recall that the component generation algorithm chooses matrices B(i)
j

for each i ≤ �PRG, j ≤ L, S(0)
j ,S(1)

j for each j ≤ L and E(i,0)
j ,E(i,1)

j for each

i ≤ �PRG, j ≤ L. Note that the S(b)
j and E(i,b)

j matrices have l∞ norm bounded
by σ · m3/2 since they are chosen from truncated Gaussian distribution with
parameter σ.

We start by introducing some notations for this proof.

– st
(i)
j : the state of BP(i) after j steps when evaluated on z

– Sj = S
(zinp(j))

j , E(i)
j = E

(i,zinp(j))

j , C(i)
j = C

(i,zinp(j))

j for all j ≤ L
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– Γj∗ =
∏j∗

j=1 Sj for all j∗ ≤ L

– Δ(i)
j∗ = B(i)

0,1 ·
(

∏j∗

j=1 C(i)
j

)

, ˜Δ
(i)

j∗ = Γj∗ · B(i)

j∗,st
(i)
j∗

, Err(i)j∗ = Δ(i)
j∗ − ˜Δ

(i)

j∗

for all j∗ ≤ L

– For any string x ∈ {0, 1}�PRG ,Ax =
∑

i:xi=0 A(i)

L,rej(i) +
∑

i:xi=1 A(i)

L,acc(i)

– Similarly, Bx =
∑

i:xi=0 B(i)

L,rej(i) +
∑

i:xi=1 B(i)

L,acc(i) & Fx =
∑

i:xi=0 F(i)

L,rej(i)

+
∑

i:xi=1 F(i)

L,acc(i) & Ex =
∑

i:xi=0 E(i)

L,rej(i) +
∑

i:xi=1 E(i)

L,acc(i) .

Observe that the Comp-Eval algorithm computes matrix M =
∑�PRG

i=1 Δ(i)
L .

First, we show that for all i ≤ �PRG, j∗ ≤ L, Err(i)j∗ is small and bounded. This

would help us in arguing that matrices M =
∑�PRG

i=1 Δ(i)
L and ˜M =

∑�PRG
i=1

˜Δ
(i)

L

are very close to each other. We then prove the below bounds on M by proving
the corresponding bounds on ˜M in each of the cases.

‖M‖∞

⎧

⎨

⎩

< q1/8 when BP(z) = β and msg = 0
∈ (q1/8, q1/2) when BP(z) = β and msg = 1
> q1/2 when BP(z) �= β

First, we show that Err(i)j∗ is bounded with the help of the following claim.

Claim 1. ([28, Claim 4.1]) ∀ i ∈ {1, . . . , �PRG} , j∗ ∈ {1, . . . , L} ,
∥

∥

∥Err(i)j∗

∥

∥

∥

∞
≤ j∗ · (m2 · σ

)j∗
.

The remaining proof of the lemma will have two parts, (1) when BP(z) = β
and (2) when BP(z) �= β. Recall that the Comp-Eval algorithm computes matrix

M =
∑�PRG

i=1 Δ(i)
L . Let ˜M =

∑�PRG
i=1

˜Δ
(i)

L and Err =
∑�PRG

i=1 Err(i)L . Also, we

parse these matrices as M =
[

M(1) ||M(2)
]

, ˜M =
[

˜M
(1) ||˜M(2)

]

and Err =
[

Err(1) ||Err(2)
]

, where M(1),˜M
(1)

and Err(1) are n × n (square) matrices.

First, note that M = ˜M + Err. Using Claim 1, we can write that

‖Err‖∞ =

∥

∥

∥

∥

∥

�PRG
∑

i=1

(

Δ
(i)
L − ˜Δ

(i)

L

)

∥

∥

∥

∥

∥

∞
≤

�PRG
∑

i=1

∥

∥

∥Δ
(i)
L − ˜Δ

(i)

L

∥

∥

∥

∞
≤ �PRG ·L ·(m2 · σ

)L
= Bd.

(1)
Next, consider the following scenarios.

Part 1: BP(z) = β. First, recall that the top level matrices always satisfy the
following constraints during honest obfuscation:

�PRG
∑

i=1

B
(i)

L,st
(i)
L

= Bβ = [Aβ ||Aβ · S + Eβ ] =

{[

0n×n ||Eβ

]

if msg = 0
[

q1/4 · In || q1/4 · S + Eβ

]

if msg = 1
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Note that

˜M =

�PRG
∑

i=1

˜Δ
(i)

L =

�PRG
∑

i=1

ΓL · B(i)

L,st
(i)
L

= ΓL ·
�PRG
∑

i=1

B
(i)

L,st
(i)
L

=

{[

0n×n ||ΓL · Eβ

]

if msg = 0

ΓL ·
[

q1/4 · In || q1/4 · S + Eβ

]

if msg = 1.

Next, we consider the following two cases dependending upon the message being
obfuscated — (1) msg = 0, (2) msg = 1.

Case 1 (msg = 0). In this case, we bound the l∞ norm of the output matrix
M (computed during evaluation) by q1/8. We do this by bounding the norm
of ˜M and using the error bound in Eq. 1. Recall that when msg = 0, ˜M =
[

0n×n ||ΓL · Eβ

]

. First, we bound the norms of ΓL and Eβ as follows.

‖Eβ‖∞ =

∥

∥

∥

∥

∥

∥

∑

i:βi=0

E(i)

L,rej(i) +
∑

i:βi=1

E(i)

L,acc(i)

∥

∥

∥

∥

∥

∥

∞

≤
∑

i:βi=0

∥

∥

∥E(i)

L,rej(i)

∥

∥

∥

∞
+

∑

i:βi=1

∥

∥

∥E(i)

L,acc(i)

∥

∥

∥

∞
≤ �PRG · σ · m3/2

< �PRG · σ · m2.

(2)

The last inequality follows from the fact that the matrices E(i)

L,acc(i) ,E
(i)

L,rej(i) are
sampled from truncated gaussian distribution. We can also write that,

‖ΓL‖∞ =

∥

∥

∥

∥

∥

∥

L
∏

j=1

Sj

∥

∥

∥

∥

∥

∥

∞

≤
L
∏

j=1

‖Sj‖∞ ≤ (σ · n · √m)L < (σ · m2)L. (3)

This implies,
∥

∥

∥

˜M
∥

∥

∥

∞
= ‖ΓL · Eβ‖∞ ≤ ‖ΓL‖∞ ·‖Eβ‖∞ < (σ ·m2)L ·�PRG ·σ ·m2 = �PRG ·(σ ·m2)L+1.

Now we bound the l∞ norm of M. Recall that, ‖Err‖∞ ≤ �PRG · L · (σ · m2)L.
Therefore,

‖M‖∞ =
∥
∥
∥M̃ + Err

∥
∥
∥

∞
≤

∥
∥
∥M̃

∥
∥
∥

∞
+ ‖Err‖∞ < �PRG · L · (σ · m2)L+1 + �PRG · L · (σ · m2)L

< �PRG · (L + 1) · (σ · m2)L+1 < q1/8.

The last inequality follows from the constraints described in the construction.
Thus, matrix M (computed during evaluation) always satisfies the condition that
‖M‖∞ < q1/8 if msg = 0.
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Case 2 (msg = 1). In this case, we prove that the l∞ norm of the output
matrix M (computed during evaluation) lies in (q1/8, q1/2). We do this by first
computing upper and lower bounds on

∥

∥

∥

˜M
∥

∥

∥

∞
and using the bound on Err from

Eq. 1. Recall that when msg = 1, ˜M =
[

q1/4 · ΓL || q1/4 · ΓL · S + ΓL · Eβ

]

. To

prove a bound on
∥

∥

∥

˜M
∥

∥

∥

∞
, we first prove bounds on individual components of ˜M

: ΓL,S,Eβ .
By Eq. 3, we have ‖ΓL‖∞ < (σ·m2)L. Note that during obfuscation we sample

secret matricesS(b)
level (for each level and bit b) such that they are short and always

invertible. Therefore, matrix ΓL (which is product of L secret matrices) is also
invertible. Thus, we can write that ‖ΓL‖∞ ≥ 1. The lower bound of 1 follows
from the fact that ΓL is non-singular (and integral) matrix. By Eq. 2, we know
that ‖Eβ‖∞ < �PRG · σ · m2. Also, ‖S‖∞ ≤ σ · n · √

m < σ · m2 as S is sampled
from truncated gaussian distribution.

We finally prove bounds on
∥

∥

∥

˜M
∥

∥

∥

∞
. We know that ˜M

(1)
= q1/4 · ΓL and

˜M
(2)

= q1/4 · ΓL · S + ΓL · Eβ .

∥

∥

∥

˜M
∥

∥

∥

∞
≥

∥

∥

∥

∥

˜M
(1)

∥

∥

∥

∥

∞
= q1/4 · ‖ΓL‖∞ ≥ q1/4

∥

∥

∥

∥

˜M
(1)

∥

∥

∥

∥

∞
≤ q1/4 · ‖ΓL‖∞ < q1/4 · (σ · m2)L

∥

∥

∥

∥

˜M
(2)

∥

∥

∥

∥

∞
≤ q1/4 · ‖ΓL‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Eβ‖∞

< q1/4 · (σ · m2)L+1 + �PRG · (σ · m2)L+1

< q1/4 · (�PRG + 1) · (σ · m2)L+1

This implies,
∥

∥

∥

˜M
∥

∥

∥

∞
≤

∥

∥

∥

˜M
(1)

∥

∥

∥

∞
+

∥

∥

∥

˜M
(2)

∥

∥

∥

∞
< q1/4 · (σ · m2)L + q1/4 · (�PRG + 1) · (σ · m2)L+1

< q1/4 · (�PRG + 2) · (σ · m2)L+1 < q1/4 · q1/8 < q3/8

The last inequality follows from the constraints described in the construction.
Next, we show that matrix M(1) has large entries. In other words, matrix M has
high l∞ norm. Concretely,

‖M‖∞ =
∥

∥

∥

˜M + Err
∥

∥

∥

∞
≤

∥

∥

∥

˜M
∥

∥

∥

∞
+ ‖Err‖∞ = q3/8 + Bd < q3/8 + q1/8 < q1/2.

‖M‖∞ =
∥

∥

∥

˜M + Err
∥

∥

∥

∞
≥

∥

∥

∥

˜M
∥

∥

∥

∞
− ‖Err‖∞ ≥

∥

∥

∥

∥

˜M
(1)

∥

∥

∥

∥

∞
− ‖Err‖∞

≥ q1/4 − Bd > q1/4 − q1/8 > q1/8.

Hence if msg = 1, ‖M‖∞ ∈ (q1/8, q1/2) and the evaluation always outputs 1.
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Part 2: BP(z) �= β. In this case, we prove that the l∞ norm of output matrix
M is at least q1/2. Let x = BP(z) and δx be the edit distance between x

and β, which is clearly greater than 0 if x �= β. By construction, ˜M =
ΓL · [Ax ||Ax · S + Ex + δx · D] and M = ˜M + Err. We now split this case into
two subcases: 1)

∥

∥

∥M(1)
∥

∥

∥

∞
> q1/2 and 2)

∥

∥

∥M(1)
∥

∥

∥

∞
≤ q1/2.

Case 1.
∥

∥

∥M(1)
∥

∥

∥

∞
> q1/2. In this case, ‖M‖∞ > q1/2 and the evaluator always

outputs ⊥.
Case 2.

∥

∥

∥M(1)
∥

∥

∥

∞
≤ q1/2. In this case, we prove that M(2) has high l∞ norm.

Recall that ‖S‖∞ ≤ σ · n · √
m < σ · m2 as S is sampled from truncated gaus-

sian distribution and ‖Ex‖∞ ≤ �PRG · σ · m2 by an analysis similar to Eq. 2.
Also, ‖ΓL‖∞ < (σ · m2)L by Eq. 3. We now prove an upper bound on norm of
ΓL · [Ax · S + Ex].

‖ΓL · Ax‖∞ ≤
∥

∥

∥M
(1)

∥

∥

∥

∞
+

∥

∥

∥Err(1)
∥

∥

∥

∞
≤ q1/2 + Bd

‖ΓL · Ax · S + ΓL · Ex‖∞ ≤ ‖ΓL · Ax‖∞ · ‖S‖∞ + ‖ΓL‖∞ · ‖Ex‖∞

≤ (q1/2 + Bd) · σ · m2 + �PRG · (σ · m2)L+1

≤ q1/2 · σ · m2 + �PRG · L · (σ · m2)L+1 + �PRG · (σ · m2)L+1

< q1/2 · σ · m2 + �PRG · (L + 1) · (σ · m2)L+1

< q1/2 · q1/8 + q1/8 < 1/2 · q3/4

(4)
The last 2 inequalities follow from the constraints described in the construction.
As ΓL · D =

[

q3/4 · ΓL ||0n×(m−2·n)
]

, we know that ‖ΓL · D‖∞ = q3/4 · ‖ΓL‖∞,

which lies in [q3/4, q3/4 · (σ · m2)L] as discussed earlier. This along with Eq. 4

implies the following upper bound on
∥

∥

∥

∥

˜M
(2)

∥

∥

∥

∥

∞
.

∥

∥

∥

∥

˜M
(2)

∥

∥

∥

∥

∞
= ‖ΓL · [Ax · S + Ex + δx · D]‖∞

≤ ‖ΓL · Ax · S + ΓL · Ex‖∞ + δx · ‖ΓL · D‖∞
< 1/2 · q3/4 + �PRG · ‖ΓL · D‖∞ ≤ 1/2 · q3/4 + q3/4 · �PRG · (σ · m2)L

< q3/4 · q1/8 = q7/8

The last inequality follows from the constraints described in the construction.

We can also prove the following lower bound on
∥

∥

∥

∥

˜M
(2)

∥

∥

∥

∥

∞
.

∥
∥
∥
∥
M̃

(2)
∥
∥
∥
∥

∞
= ‖ΓL · [Ax · S + Ex + δx · D]‖∞

≥ − ‖ΓL · Ax · S + ΓL · Ex‖∞ + ‖ΓL · D‖∞ > −1/2 · q3/4 + q3/4 = 1/2 · q3/4

Now, we prove upper and lower bounds on M(2) = ˜M
(2)

+ Err(2).

q1/2 < 1/2 · q3/4 − q1/8 < 1/2 · q3/4 − Bd ≤
∥

∥

∥M
(2)

∥

∥

∥

∞
≤ q7/8 + Bd < q7/8 + q1/8 < q/2
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This implies,
∥

∥

∥M(2)
∥

∥

∥

∞
> q1/2 in this case. Therefore, ‖M‖∞ > q1/2 and the

evaluator always outputs ⊥.
Using the above lemma, we can now argue the correctness of our scheme.

First, we need to show correctness for the case when P (x) = α.

Claim 2. For any security parameter λ ∈ N, any input x ∈ {0, 1}�in , any pro-
gram P ∈ C�in,�out,d and any message msg ∈ {0, 1}, if P (x) = α, then

Eval(Obf(1λ, P,msg, α), x) = msg.

Proof. First, the obfuscator encrypts the program P using an LHE secret key
lhe.sk, and sets ct ← LHE.Enc(lhe.sk, P ). The evaluator evaluates the LHE cipher-
text on universal circuit Ux(·), which results in an evaluated ciphertext ˜ct. Now,
by the correctness of the LHE scheme, decryption of ˜ct using lhe.sk outputs α.
Therefore, PRG.Eval(pp, LHE.Dec(lhe.sk, ˜ct)) = β, where pp ← PRG.Setup(1λ).8

Then, using Lemma 1, we can argue that Comp-Eval outputs msg, and thus Eval
outputs msg.

Claim 3. For all security parameters λ, inputs x ∈ {0, 1}�in , programs P ∈
C�in,�out,d, α ∈ {0, 1}�out such that P (x) �= α and msg ∈ {0, 1},

Eval(Obf(1λ, P,msg, α), x) = ⊥

Proof. Fix any security parameter λ, program P , α, x such that P (x) �= α and
message msg. The evaluator evaluates the LHE ciphertext on universal circuit
Ux(·), which results in an evaluated ciphertext ˜ct. Now, by the correctness of
the LHE scheme, decryption of ˜ct using lhe.sk does not output α. Therefore,
by the perfect injectivity of PRG scheme, for all pp ← PRG.Setup(1λ), we have
PRG.Eval(pp, LHE.Dec(lhe.sk, ˜ct)) �= β. Then, using Lemma 1, we can argue that
Comp-Eval outputs ⊥, and thus Eval outputs ⊥.

4.3 Security

In this subsection, we prove the security of the above construction. Concretely,
we prove the following theorem.

Theorem 2. Assuming that LHE is a secure leveled homomorphic encryption
scheme, and PRG is a secure perfectly injective pseudorandom generator, lattice
trapdoors are secure and (n, 2n ·�PRG,m−n, q, χ)-LWE-ss, (n, 5m ·�PRG, n, q, χ)-
LWE-ss assumptions hold, the lockable obfuscation construction described in
Sect. 4.1 is secure as per Definition 2.

Proof. We prove the above theorem by proving that our construction is com-
putationally indistinguishable from the construction provided in [28, Appendix
D] that uses perfectly injective PRGs. Note that Goyal et al. [28] construct a

8 As before, we are overloading the notation and using LHE.Dec to decrypt multiple
ciphertexts.
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simulator Sim(1λ, 1|P |, 1|α|) and prove that their construction is computation-
ally indstinguishable from the simulator. By a standard hybrid argument, this
implies that our construction is computationally indstinguishable from the sim-
ulator. Formally, we prove the following theorem.

Theorem 3. Assuming that PRG is a secure perfectly injective pseudorandom
generator and (n, 2n · �PRG,m − n, q, χ)-LWE-ss assumption holds, the lockable
obfuscation construction described in Sect. 4.1 is computationally indistinguish-
able9 from [28, Appendix D] construction that uses perfectly injective PRGs.

We prove the theorem using the following sequence of hybrids. The first hybrid
corresponds to the security game in which the challenger uses our lockable obfus-
cation scheme (Sect. 4.1) for obfuscating the challenge program. The last hybrid
corresponds to the security game in which the challenger uses lockable obfusca-
tion scheme provided in [28]. We note that some portions of the proof are similar
to those used in [28].

Game 0. This game correponds to the challenger using our lockable obfuscation
scheme for obfuscating the challenge program.

1. The adversary sends a program P and message msg to the challenger.
2. The challenger first chooses the LWE parameters n, m, q, σ, χ and �PRG.

Recall L denotes the length of the branching programs.
3. The challenger then chooses (sk, ek) ← LHE.Setup(1λ, 1d log d) and sets ct ←

LHE.Enc(sk, P ).
4. Next, it chooses a uniformly random string α ← {0, 1}�out , runs pp ←

PRG.Setup(1λ) and sets β = PRG.Eval(pp, α).
5. Next, consider the following program Q. It takes as input an LHE ciphertext

ct, has sk hardwired and does the following: it decrypts the input ciphertext
ct to get string x and outputs PRG.Eval(pp, x). For i ≤ �PRG(λ), let BP(i)

denote the branching program that outputs the ith bit of PRG.Eval(pp, x).
6. For i = 1 to �PRG and j = 0 to L − 1, it chooses (B(i)

j , T
(i)
j ) ←

TrapGen(15n, 1m, q).
7. Let D = q3/4 ·

[

In ||0n×(m−2·n)
]

.

(a) For the top level, it first chooses the matrices A(i)
L,k (of dimension n × n)

for each i ≤ �PRG, k ≤ 5, uniformly at random, subject to the following
constraints:

∑

i:βi=0

A(i)

L,rej(i) +
∑

i:βi=1

A(i)

L,acc(i) = 0n×n if msg = 0.

∑

i:βi=0

A(i)

L,rej(i) +
∑

i:βi=1

A(i)

L,acc(i) = q1/4 · In if msg = 1.

9 Consider a game in which the adversary sends a program P and message msg to the
challenger, which either obfuscates (P,msg) using [28] construction or our construc-
tion and sends back the obfuscated program. No PPT adversary can distinguish the
two scenarios with non-negligible advantage.
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(b) It then samples a matrix S ← χn×(m−n), and matrices E(i)

L,rej(i) ←
χn×(m−n),E(i)

L,acc(i) ← χn×(m−n) for each i ≤ �PRG. Next, it chooses

matrices F(i)
L,k as follows

F(i)

L,acc(i) = A(i)

L,acc(i) · S + E(i)

L,acc(i) + (1 − βi) · D
F(i)

L,rej(i) = A(i)

L,rej(i) · S + E(i)

L,rej(i) + βi · D
F(i)

L,k ← Z
n×(m−n)
q if k /∈ {acc(i), rej(i)}

(c) The top level matrices B(i)
L,k for each i ≤ �PRG, k ≤ 5 are set to B(i)

L,k =
[

A(i)
L,k ||F(i)

L,k

]

.
8. Next, it generates the components for each level. For each i ∈ [1, �PRG] and

each level level ∈ [1, L], do the following:
(a) Choose matrices S(0)

level,S
(1)
level ← χn×n and E(i,0)

level ,E
(i,1)
level ← χ5n×m for i ≤

�PRG. If either S(0)
level or S(1)

level has determinant zero, then set it to be In.
(b) For b ∈ {0, 1}, set matrix D(i,b)

level as a permutation of the matrix blocks of
B(i)

level according to the permutation σ
(i)
level,b(·).

(c) Set M(i,b)
level =

(

I5 ⊗ S(b)
level

)

· D(i,b)
level + E(i,b)

level for i ≤ �PRG.

(d) Compute C(i,b)
level ← SamplePre(B(i)

level−1, T
(i)
level−1, σ,M(i,b)

level )
9. The challenger sends the final obfuscated program which consists of the

LHE evaluation key ek, LHE encryption ct, together with the components
(

{

B(i)
0,1

}

i
,
{

(C(i,0)
j ,C(i,1)

j )
}

i,j

)

to the adversary.

10. The adversary outputs a bit b′.

Game 1: In this hybrid, the string β is chosen uniformly at random.

4. Next, it chooses a uniformly random string β ← {0, 1}�PRG .

Game 2: In this hybrid, the matrices A(i)
L,k are chosen uniformly at random

without any constraints.

7. (a) For the top level, it first chooses the matrices A(i)
L,k (of dimension n × n)

for each i ≤ �PRG, k ≤ 5, uniformly at random without any constraints.

Game 3: In this hybrid, all the matrices F(i)
L,k are chosen uniformly at random.

7. (b) It then samples matrices R(i)

L,rej(i) ← Z
n×(m−n)
q ,R(i)

L,acc(i) ← Z
n×(m−n)
q for

each i ≤ �PRG. Next, it chooses matrices F(i)
L,k as follows.

F(i)

L,acc(i) = R(i)

L,acc(i) + (1 − βi) · D, F(i)

L,rej(i) = R(i)

L,rej(i) + βi · D
F(i)

L,k ← Z
n×(m−n)
q if k /∈ {acc(i), rej(i)}
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Game 4: In this hybrid, all the top level matrices B(i)
L,k are chosen uniformly at

random.

7. For the top level, for each i ≤ �PRG and k ≤ 5, it chooses the matrices B(i)
L,k

uniformly at random from Z
n×m
q .

Game 5: In this hybrid, the top level matrices B(i)
L,k are chosen according to

GKW17 construction.

7. For the top level, for each i ≤ �PRG and k ≤ 5, it chooses the matrices B(i)
L,k

uniformly at random from Z
n×m
q subject to the following constraints.

∑

i : βi=0

B(i)

L,rej(i) +
∑

i : βi=1

B(i)

L,acc(i) =

{

0 if msg = 0.
√

q ·
[

In ||0n×(m−n)
]

if msg = 1.

Game 6: This hybrid corresponds to challenger using GKW17 lockable obfusca-
tion scheme for obfuscating the challenge program.

7. Next, it chooses a uniformly random string α ← {0, 1}�out , runs pp ←
PRG.Setup(1λ) and sets β = PRG.Eval(pp, α).

Due to space constraints, we prove that Game 0 is indistinguishable from
Game 6 in the full version of the paper.

5 Perfectly Injective PRGs from LPN

In this section, we give our construction of (perfectly) injective PRGs (with
Setup) from the Learning Parity with Noise assumption.10

Overview. Let the input length of PRG be n + �. We parse input x ∈ {0, 1}n+�

as x = y || z, where |y| = n and |z| = �. Now, string y is parsed as s, and z will
be used to sample the error vector e. Note that for injectivity argument to go
through, it is important that the mapping between input y, z and vectors s, e is
also injective. Now both y and s are already of length n, thus we only need to
make sure that our error vector sampling procedure is injective. Before describing
our sampling procedure, we would like to point out that, in the PRG security
game, the PRG seed is sampled uniformly at random, thus the distribution over
error vectors will be a uniform distribution as well. This suggests that for basing
pseudorandomness security we can’t rely on the standard LPN assumption as
the noise distribution is not Bernoulli, but uniform. However, we could instead
10 Our PRG construction bears some resemblance to the IND-CCA secure encryption

schemes provided by Döttling et al. [24] and Kiltz et al. [31], but requires new ideas.
We point that if we try to build PRGs using the techniques from [24,31], then that
only gives ‘statistically injective’ PRGs, whereas in this paper our goal is to get
perfectly injective PRGs.
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rely on the exact-LPN assumption (or xLPN) which is polynomially related to
standard LPN assumption, and in which the noise distribution is uniform as the
error vectors are sampled such that they have fixed hamming weight.

Next, we observe that the size of support of noise distribution in the xLPN
assumption need not be a perfect power of two, thus we might not be able to
injectively sample error vectors from the fixed length binary string z. To resolve
this issue, we simply truncate the noise distribution to contain only lexically
smallest error vectors such that the size of truncated set is equal to the nearest
power of two. However, with this modification we need to rely on an alternate
assumption which we call the restricted-exact-LPN assumption (or rxLPN). It
turns out that the sample-preserving reduction of [5] also holds for rxLPN. This
suggests that rxLPN and LPN assumptions are (polynomially) equivalent, there-
fore we could still reduce the security to the LPN assumption. Now to injectively
map vectors with a fixed hamming weight to bitstrings, we employ a simple
combinatorial trick to give a total ordering over vectors with efficient recursive
sampling procedure. First, note that a total ordering over vectors can be trivially
defined by denoting each vector with its corresponding integer representation.
Now, our sampling procedure works as follows—let x ∈ {0, 1}� and we want to
sample vector v ∈ Z

m
2 such that HW(v) = k. The sampling algorithm first checks

whether int(x) > m−1Ck (where int(x) is the integer corresponding to string x).
If the check succeeds, then it sets the first position in v to be 1, else it sets it 0,
and continues. Also, if the check succeeds, then it updates x = x − m−1Ck. In
other words, each vector v ∈ Z

m
2 with HW(v) = k is uniquely ranked from 0 to

mCk −1, and the sample algorithm outputs vector v with rank int(x). For exam-
ple, 0m−k1k has rank 0 and 1k0m−k has rank mCk − 1. The sampling procedure
has been formally described later in the full version of the paper.

Finally, to sample matrix B as a generator matrix of some good but random
code, we employ ideas similar to that used in our LWE solution. To sample B
in this special way, we simply choose a uniformly random matrix A, a matrix
C with low hamming weight rows and set B = [A | AC + G], where G is the
generator matrix of an error correcting code. Here the role of G is similar to the
role of D in the previous solution, that is to map any non-zero vector to a high
hamming weight vector. A crucial point here is that the rows of C must have low
hamming weight. This is because if AT s has low hamming weight, then so does
CT AT s, and later this will be crucial in arguing that B is a generator matrix of
a good code. Finally, for pseudorandomness of our construction, we want that
B should look like a random matrix to any computationally bounded adversary.
To this end, we use the Knapsack LPN assumption which was also shown to be
(polynomially) equivalent to LPN assumption [32].11 Due to space constraints,
we defer the formal description of the construction to the full version of the
paper.

11 The Knapsack LPN assumption states that for a uniformly random matrix A and
a matrix E such that each entry is 1 with probability p and A has fewer rows than
columns, then (A,AE) look like uniformly random matrices.
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Abstract. Blockchains are gaining traction and acceptance, not just for
cryptocurrencies, but increasingly as an architecture for distributed com-
puting. In this work we seek solutions that allow a public blockchain to
act as a trusted long-term repository of secret information: Our goal is to
deposit a secret with the blockchain, specify how it is to be used (e.g., the
conditions under which it is released), and have the blockchain keep the
secret and use it only in the specified manner (e.g., release only it once
the conditions are met). This simple functionality enables many powerful
applications, including signing statements on behalf of the blockchain,
using it as the control plane for a storage system, performing decentral-
ized program-obfuscation-as-a-service, and many more.

Using proactive secret sharing techniques, we present a scalable solu-
tion for implementing this functionality on a public blockchain, in the
presence of a mobile adversary controlling a small minority of the partic-
ipants. The main challenge is that, on the one hand, scalability requires
that we use small committees to represent the entire system, but, on
the other hand, a mobile adversary may be able to corrupt the entire
committee if it is small. For this reason, existing proactive secret sharing
solutions are either non-scalable or insecure in our setting.

We approach this challenge via “player replaceability”, which ensures
the committee is anonymous until after it performs its actions. Our main
technical contribution is a system that allows sharing and re-sharing of
secrets among the members of small dynamic committees, without know-
ing who they are until after they perform their actions and erase their
secrets. Our solution handles a fully mobile adversary corrupting roughly
1/4 of the participants at any time, and is scalable in terms of both the
number of parties and the number of time intervals.
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1 Introduction

Imagine publishing a puzzle and handing over the solution to a public blockchain,
to keep secret for a while and reveal it if no one solves the puzzle within a week.
More generally, consider using the blockchain as a secure storage solution, allow-
ing applications and clients to deposit secret data and specify the permissible use
of that data. A blockchain providing such secret storage can enable a host of novel
applications (Sect. 1.3). For example, the secret can be a signature key, enabling
the blockchain to sign on behalf of some client or on behalf of the blockchain
itself. Alternatively, the secret can provide a root of trust for key-management
and certification solutions, allowing users and programs to enforce policies spec-
ifying how their private data can be used. Or the secret can be a decryption
key for a fully homomorphic encryption scheme, enabling, in a sense, program-
obfuscation-as-a-service via encrypted computation and consensus-enforced con-
ditional decryption.

In this work we investigate the functionality of keeping a secret on a public
blockchain. We seek a scalable solution, whose complexity is bounded by a fixed
polynomial in the security parameter, regardless of how long the secret must be
kept for or how many nodes participate in the blockchain. To achieve scalability,
the work of maintaining the secret must be handled by a small committee. At
the same time, the solution must remain secure even against a mobile adversary
that can corrupt different participants at different times, as long as it corrupts no
more than a small fraction of the participants at any given time.1 Thus, the small
size of the committee presents a challenge for security. An adversary would have
enough “corruption budget” to corrupt all of the members of the committee;
even if the committee is dynamic, the mobile adversary could corrupt it as soon
as its known.

A beautiful approach for addressing the vulnerability of working with small
committees is player replaceability, introduced by Chen and Micali [14] in the
setting of reaching consensus in the Algorand blockchain. In such systems, com-
mittees are selected to do some work (such as agreeing on a block), but each
committee member is charged with sending a single message. Most importantly,
the member remains completely anonymous until it sends that message. The
attacker, not knowing the identities of the selected members, cannot target them
for corruption until after they complete their job. For example, the committee
can be chosen by having parties self-select by locally solving moderately hard
puzzles, or using “cryptographic sortition” [14] based on verifiable random func-
tions (VRFs) [42].

Using this approach for our purpose is far from simple. How can one share
a secret among the members of an unknown committee? In some contexts, one
can devise solutions using the cryptographic sledgehammer of witness encryp-
tion [23], as sketched in [26]: In systems such as proof-of-stake blockchains, the
statement “the committee votes to open the secret” can be expressed as an NP-

1 This could mean a small fraction of the stake in a proof-of-stake blockchain, or of
the computing power in a proof-of-work blockchain.
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statement, and so one can use witness-encryption relative to that statement.
While this approach shows polynomial-time feasibility, we are interested in solu-
tions that can plausibly be used in practice, and therefore explore approaches
that do not require obfuscation-like tools. Moreover, it is not clear how to extend
this solution to systems such as proof-or-work blockchains, where it is unknown
how to encode committee membership as an NP statement (because committee
membership depends on statements such as “longest chain” or “first player to
present a solution to the puzzle”).

1.1 Using Proactive Secret Sharing

Our solution relies on proactive secret sharing (PSS) techniques [13,34,44], using
well-coordinated messages and erasures to deal with mobile adversaries. Early
work on proactive secret sharing assumed a fixed committee (say of size N),
where parties are occasionally corrupted by the adversary and later recover and
re-join the honest set. A drawback of these protocols in our context is that
they require all the members to participate in every handover protocol, and
are therefore not sufficiently scalable. Proactive secret sharing with dynamic
committees (DPSS) was addressed in a number of previous works (e.g., [2,41,
45]).

Crucial to our solution is a new variant of proactive secret-sharing, that we
call evolving-committee PSS (ECPSS). This variant is similar to DPSS, but with
one important difference: DPSS schemes treat the committee membership as
external input to the protocol, and rely on the promise that all these committees
have honest majority. In contrast, in ECPSS the committee-selection is part of
the construction itself, and it is up to protocol to ensure that the committees
that are chosen maintain honest majority.

We show how to implement ECPSS using the approach of player replaceabil-
ity. Our solution ensures that the committee members remain anonymous, until
after they hand over fresh shares to a new committee and erase their own. This
requires a method of selecting the members of the next committee and sending
messages to them, without the senders knowing who the recipients are. More-
over, communication in our model must be strictly one way, since the adversary
learns a node’s identity once it sends a message. Committee members are not
even allowed to know the identities of their peers (since some of them may be
adversarial), so interactive protocols among the current members are also not
allowed. Designing a solution in this challenging context is the main contribution
of this work.

1.2 Overview of Our Solution

As common in PSS, the timeline of the system is partitioned into epochs, with
a handover protocol at the beginning of each one. In each epoch i, the secret
is shared among members of an epoch-i committee, and the committee changes
from one epoch to the next, erasing its secret state once it passed the secret
to the next committee. The committee in every epoch is small, consisting of
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ci = O(λ) members out of the entire universe of N users. This lets us reduce the
complexity of the handover protocol from Ω(N) to O(ci) broadcast messages.
Our proactive solution is based on Shamir’s secret sharing scheme [47], and uses
the following components:

– We use the blockchain itself to provide synchrony, authenticated broadcast,
and PKI. See Sect. 2.1.

– We use cryptographic sortition for choosing random but verifiable commit-
tees. See Sect. 2.3.2

– We use two public-key encryption (PKE) schemes, one for long-term keys and
the other for ephemeral committee-specific keys. The long-term PKE needs to
be anonymous [3]: namely, ciphertexts must not disclose the public keys that
were used to generate them. Both anonymity and secrecy for these schemes
must hold even under receiver-selected-opening attacks, see Sect. 2.4. (We
note that these tools also require erasures.)

– We use non-interactive zero-knowledge (NIZK) proofs for statements about
encrypted values lying on a low-degree polynomial (under the ephemeral
scheme). The number of encrypted values in each one of these statements
is small, essentially the size ci of the committees from above.

Our solution uses anonymous public-key encryption to establish a communi-
cation mechanism that allow anyone to post a message to an unknown receiver.
We refer to this communication mechanism as “target-anonymous channels.”
Once target-anonymous channels to the next-epoch committee are established,
the current-epoch committee can use them to re-share the secret to the next-
epoch committee.

Establishing target-anonymous channels to the next-epoch committee with-
out revealing the committee to the adversary is a difficult problem. We solve it
by using special-purpose committees, separate from the ones holding the secret.
Namely, we have two types of committees:

– A holding committee that holds shares of the secret.
– A nominating committee whose role is to establish the target-anonymous

channels, thereby “nominating” the members of the next holding committee.

Crucially, the nominating committee does not hold shares, and hence its mem-
bers can self-select (because no channels to them need to be established). The
self-selection can be accomplished, for example, by using cryptographic sortition.
Once self-selected, each nominator chooses one member of the next holding com-
mittee, and publishes on the blockchain information that lets the current holding
committee send messages to that member, without revealing its identity.

In more detail, after randomly choosing its nominee for the future holding
committee, the nominator chooses and posts to the blockchain a new ephemeral
public key, along with an encryption of the corresponding ephemeral secret key
under the nominee’s long-term public key. We use anonymous encryption to
2 An alternative realization in the context of proof-of-work blockchains could use solv-

ing moderately-hard puzzles for that purpose.
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ensure that the ephemeral keys and ciphertexts do not betray the identities (or
long-term keys) of the nominees. Note that the ephemeral keys themselves may
use a different encryption scheme, that need not be anonymous.

Once the ephemeral keys of the next committee are posted, everyone knows
the size of that committee (call it ci+1). Each member of the current holding
committee re-shares its share using a t-of-ci+1 Shamir secret sharing (with t ≈
ci+1/2), uses the j-th ephemeral key to encrypt the j-th share, and broadcasts
all these encrypted shares along with a proof that the sharing was done properly.

Members of the next holding committee recover their ephemeral secret keys
by decrypting the posted ciphertexts with their long-term keys. Each member
then collects all the shares that were encrypted under its ephemeral key and uses
them to compute its share of the global secret in the new committee. Note that all
these ciphertexts are publicly known, so they can serve also as a commitment to
the share, enabling the holding committee members to prove correct re-sharing
in the next iteration of the protocol.3

An important feature of this solution is that it does not require the nominating
committee members to prove anything about how they chose their nominees or
how the ephemeral keys were generated. Note that proving the selection would
be of limited value, since even if we force corrupted members of the nominating
committee to abide by the protocol, they can corrupt their nominees as soon as
those are chosen. Moreover, asking the nominating committee to prove anything
about their choice while maintaining anonymity would require that they prove
size-N statements (i.e. proving that the receiver is one of the N parties in the
system).4

In contrast, holding-committee members must prove that they re-share their
shares properly. But the statements being proven (and their witnesses) are all
short: Their size depends only on the committee size, and does not grow with
the total number of parties or the history of the blockchain. Hence the NIZK
complexity in our solution is just polynomial in the security parameter, even if
we were to use the most naive NIZKs.

The lack of proofs by the nominating committee comes at a price, as it
allows the adversary to double dip: An adversary controlling an f fraction of the
parties will have roughly an f fraction of the nominating committee members (all
of which can choose to nominate corrupted parties to the holding committee),
and another f fraction of the holding committee members nominated by honest
parties. Hence, our solution can only tolerate adversaries that control less than
29% of the total population. (In the appendix of the long version [6] we mention
a variant of the protocol that does require proofs and is resilient to a higher
percentage of adversarial parties, but in a weaker adversary model.)

We also comment that members of the holding committee must replace the
secret key for their long-term keys and erase the old secret key before they

3 If the ephemeral PKE scheme is also linearly-homomorphic, it may be possible to
compress this commitment to a single ciphertext encrypting the share of that party.

4 The communication can still be kept small using SNARKs, but the computation
would have to be at least linear in N .
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post their message in the protocol. Otherwise the adversary can corrupt them
(because they will reveal themselves when posting messages) and use the old
secret key to decrypt everything that was sent to them (in particular the shares
that they received). This means that the term of “long-term keys” is also limited:
these keys are used once and then discarded.

Aside: Anonymous PKE and Selective-Opening. In our setting, the
anonymous PKE needs to provide security against selective-opening attacks (see
discussion in Sect. 2.4). While it is well understood that semantic-security does
not imply secrecy against selective-opening, the same is not true of anonymity.
In Sect. 5 we show strong evidence that anonymity is preserved under selective-
opening attacks. However, we do not fully resolve this question, and it remains
an interesting problem for future work.

Aside: Parties vs. Stake or Computing Power. The description so far
glossed over the question of what exactly is a party in the context of blockchains.
Throughout this manuscript we mostly ignore this issue and think of parties as
discrete entities, even though reality may be more complex. In a proof-of-stake
(PoS) blockchain, parties are weighted by the amount of stake that they hold,
with rich parties having more power than poor ones. Hence the sortition-based
solution above must also be weighted accordingly, giving the rich more seats
on the various committees. Similarly, in proof-of-work (PoW) blockchains, the
parties with more computing power should get more seats on the committees. See
Sect. 4 for more discussion about using stake to represent parties, and about the
effect of parties sending tokens to each other (and hence changing their stake).

1.3 Applications

The solutions in this work can form the basis of many applications, both in
blockchain-specific contexts and for traditional uses of threshold cryptography.
Perhaps the most natural application is for signing global blockchain state, mak-
ing it easy to verify without having to inspect the entire blockchain history. This
is useful both for fast catch-up (when a new party joins the blockchain) and for
a cross-blockchain token bridge (when one blockchain needs to verify statements
about the state of another).

The secrets held by committee can more generally be used for “threshold
cryptography as a service”: for example, a threshold signature scheme deployed
to support certification authorities, or authentication of credentials, or notariza-
tion services, etc. Another application is a verifiable randomness beacon, e.g.,
as used in [1,30]. Yet another versatile primitive is threshold Oblivious PRF,
which can be used to implement a variety of secure storage systems, such as
password-authenticated secrets (e.g., custodial services) [36], cloud key man-
agement [37], private information retrieval and search on encrypted data [20],
oblivious pseudonyms [39], password managers [48], and more.
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Even more generally, we can implement generic secure computation, letting
the current committee pass to the next one the sum/product of two secrets rather
than just passing the individual secrets themselves. (As it happens, our han-
dover protocol is similar in many ways to the information-theoretic multiplica-
tion protocol from [24], making it rather easy to extend to secure computation.)
A particularly powerful form of MPC-as-a-service is using threshold decryption
of homomorphic encryption [10], which would enable applications akin to pro-
gram obfuscation: Clients can encrypt their programs, anyone could apply these
encrypted programs to arbitrary inputs, and the blockchain could decrypt the
result (when accompanied by appropriate proofs). More limited in scope but with
more practical implementations, threshold decryption of linearly-homomorphic
encryption enables varied applications such as private set intersection [21], asset
management and fraud prevention [29], and many more.

1.4 Related Work

Secret sharing was introduced in the works of Shamir [47] and Blakley [7]. The
proactive setting stems from the mobile adversary model of Ostrovsky and Yung
[44] followed by works of Canetti-Herzberg and Herzberg et al. in the static-
committee setting [13,33,34]. The dynamic setting where the set of shareholders
changes over time was contemplated in several works, such as [2,17,18,46]. We
refer the reader to Maram et al. [41] for a detailed comparison of these works
(in particular, see their Sect. 8 and Table 4).

Several works also deal with dynamic shareholder sets in the context of
blockchain. The Ekiden design [15] provides privacy in smart contracts using a
trusted execution environment (TEE). They also use threshold PRFs to derive
periodic contract-specific symmetric keys for encrypting smart-contracts. Their
scheme is described using a static committee but they suggest the use of proac-
tive secret sharing and rotating committees for increased security. Calypso [38]
uses blockchain and threshold encryption to build an auditable access control
system for the management of keys and confidential data, and contemplates
the possibility of shareholder committees changing periodically. Helix [1] selects
per-block committees who agree on the next block in the chain using a PBFT
protocol, and use threshold decryption with a fixed static committee to recover
the transactions only after the block is finalized (and also to implement a veri-
fiable source of randomness). Dfinity [30] also uses threshold cryptography (sig-
natures in their case) and dynamic shareholder committees for implementing a
randomness beacon, but the shared secret changes with each new committee.

Closest to our work are the works of Maram et al. (CHURP) [41] and Goyal
et al. [27] that build proactive secret sharing over dynamic groups in a blockchain
environment. The crucial difference between these works and ours is that they
assume a bound of t corrupted committee members, without regard to how to
ensure that such a bound holds. In fact their techniques are inapplicable in our
setting, as they crucially build on active participation of the receiving committee
in the handover protocol. As a result, in the mobile adversary model that we
consider, their protocol is either non-scalable (requiring participation of all the
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stakeholders) or insecure (if using small committees). In contrast, our main goal
is to maintain absolute secrecy of the new committee members during handover,
to enable the use of small committees.

A concurrent independent work of Choudhuri et al. [16] deals with MPC
in a “fluid” model where parties come and go and cannot be counted on to
maintain state from one step to the next. This model share some commonalities
with ours, but the solutions are very different. In particular their solution only
provides security with abort, which is not enough for our purposes (as we need
assurance of reconstruction). Their solution uses DPSS, where the composition
of the committees is treated as input (under the promise that they are mostly
honest), whereas a crucial part of our solution is choosing the committees.

Finally, our techniques are somewhat reminiscent of the protocol of Garay
et al. [22] for MPC with sublinear communication (and indeed the resilience
constant 1 − √

0.5 from Sect. 3.2 appears in their work as well).

2 Background and Definitions

2.1 Synchrony, Broadcast, PKI, and Adversary

We use the blockchain as a synchronization mechanism, an authenticated broad-
cast channel, and a PKI. For synchrony, we assume that all parties know what is
the current block number on the blockchain. For communication, any party can
broadcast a message to the blockchain at round i, and be assured that everyone
will receive it no later than round i + δ (where δ is a known bound). Moreover,
a party that received a message on the blockchain in round i is assured of its
sender, and can also trust that all other parties received the same message at
the same round.

This (authenticated) broadcast channel is the only communication mecha-
nism in our model, and it is fully public. This means that anyone (including the
adversary) can see who posts messages on it. We stress that we do not assume or
use sender-anonymous channels, such channels may make the problem of keep-
ing a secret on the blockchain much easier, but establishing them is notoriously
hard, (if not impossible).

The same broadcast channel is also used for PKI, each party in our system
periodically broadcasts a public key on the authenticated broadcast channel,
hence letting everyone else know about that key.

Finally, we consider a mobile adversary that sees the messages on the broad-
cast channel and can corrupt any sender of any message at will. The power of the
adversary is measured by its “corruption budget,” which is defined as follows:
The lifetime of the system is partitioned into epochs, and we assume that the
PKI system have each party broadcasts a new key at least once per epoch. After
corrupting a party, the adversary may decide to leave that party alone. If that
happens then this party will broadcast a new key in the next epoch, and then
it will no longer be under the adversary’s control. In other words, the adversary
controls a party from the time that it decides to corrupt it, until that party—
after being left alone—broadcasts a new key (and have that key appears on the



268 F. Benhamouda et al.

broadcast channel). The adversary’s “corruption budget” is the largest percent-
age of parties that it controls at any point during the lifetime of the system. Our
solutions in this work ensure security only against attackers whose corruption
budget stays below some fraction f∗ of the overall population. Specifically our
main solution in Sect. 3 has f∗ = 1 − √

0.5 ≈ 0.29. (We sketch in the appendix
of the long version [6] a variant with resilience 3−√

5
2 ≈ 0.38, but under a weaker

adversary model.)
Importantly, our model assumes that parties can security erase their state,

this requirement is inherent in all proactive protocols.

2.2 Evolving-Committee Proactive Secret Sharing

A t-of-n secret-sharing scheme [7,47] consists of sharing and reconstruction pro-
cedures, where a secret σ is shared among n parties, in a way that lets any t (or
more) of them reconstruct the secret from their shares. In its simplest form, we
only require the following secrecy and reconstruction properties against efficient
adversaries that corrupt up to t − 1 parties:

Definition 1 (Secret Sharing). A t-of-n secret-sharing scheme must provide
the following two properties.

Semantic security: An efficient adversary chooses two secrets σ0, σ1, then the
sharing procedure is run and the adversary can see the shares held by all
that parties that it corrupts. The adversary must have at most a negligible
advantage in guessing if the value shared was σ0 or σ1.

Reconstruction: After receiving their shares from an honest dealer, the recon-
struction protocol run by ≥ t honest parties will output the correct secret σ
(except for negligible probability).

In this work we use Shamir secret sharing [47], where the secret σ is shared
among the n parties by choosing a random degree-(t − 1) polynomial F whose
free term is σ (over some field F of size at least n+1), associating publicly with
each party i a distinct point αi ∈ F , then giving that party the value σi = F (αi).
Thereafter, collection of t parties or more can interpolate and recover the free
term of F .

Robust secret sharing. In addition to the basic secrecy and reconstruction prop-
erties above, many applications of secret-sharing requires also robust reconstruc-
tion, namely that reconstruction succeeds in outputting the right secret whenever
there are t or more correct shares, even if it is given some additional corrupted
shares.

Definition 2. A t-of-n secret-sharing scheme has robust reconstruction if
polynomial-time adversaries can only win the following game with negligible prob-
ability (in n):
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– The adversary specifies a secret σ, which is shared among the share holders;
– Later the adversary specifies a reconstruction set R of parties, consisting of

at least t honest parties (and as many corrupted parties as it wants). The
reconstruction procedure is run on the shares of the honest parties in R, as
well as shares chosen by the adversary for the corrupted parties in R.

The adversary wins if the reconstruction procedure fails to output the original
secret σ.

Proactive secret sharing (PSS). A PSS scheme [13,34,44] is a method of main-
taining a shared secret in the presence of a mobile adversary. The adversary
model is that of Ostrovsky and Yung [44], with parties that are occasionally
corrupted by the adversary and can later recover and re-join the honest set.
PSS includes share-refresh protocol, which is run periodically in such a way that
shares from different periods cannot be combined to recover the secret.

A PSS scheme provides the same secrecy and (robust) reconstruction prop-
erties from Definitions 1 and 2, and the power of the adversary is measured by
the number of parties that it can corrupt between two runs of the share-refresh
protocol. Typically, the requirement is that over an epoch from the beginning
of one refresh operation until the end of the next one, the adversary controls at
most t − 1 of the n parties.

Dynamic PSS (DPSS). DPSS is a proactive scheme where the set of n secret
holders may change from one epoch to the next. The share-refresh protocol is
replaced by a share-handover protocol run between two (possibly overlapping)
sets of n parties each, allowing the old set of holders to transfer the secret to
the new set. DPSS still provides the same secrecy and (robust) reconstruction
properties from Definitions 1 and 2 against a mobile adversary, this time under
the assumption that the adversary controls at most t−1 of the n parties in each
set.

Evolving-Committee PSS (ECPSS). Prior work on DPSS ignored the question
of how these committee are formed. In all prior work the composition of the
committee was treated as external input, and the restriction of ≤ t−1 corrupted
parties in each committee was a promise. In this work we take the next step,
incorporating the committee-selection into the protocol itself, and proving that
at most t − 1 parties are corrupted whp (in our adversary model). We call this
augmented notion Evolving-Committee PSS (ECPSS),

Definition 3. An evolving-committee proactive secret sharing scheme (with
parameters t ≤ n < N) consists of the following procedures:

Trusted Setup (optional). Provide initial state for a universe of N parties;
Sharing. Shares a secret 2σ among an initial holding committee of size n;
Committee-selection. Select the next n-party holding committee, this protocol

runs among all N parties;
Handover. An n-party protocol, takes the output of committee-selection and the

current shares, and re-shares them among the next holding committee;
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Reconstruction. Takes t or more shares from the current holding committee
and reconstructs the secret σ (or outputs ⊥ on failure.)

An ECPSS protocol is scalable if the messages sent during committee-selection
and handover are bounded in total size by some fixed poly(n, λ), regardless of N .

A run of the ECPSS scheme consists of initial (setup and) sharing, followed
by periodic runs of committee-selection and handover, and concludes with recon-
struction. Note that some variations are possible, for example n, t may vary from
one committee to the next and even N could change over time.

In terms of security, we require that ECPSS provides the same secrecy and
(robust) reconstruction properties from Definitions 1 and 2, within whatever
adversary model that is considered. The main difference with DPSS is that
ECPSS no longer enjoys the DPSS “promise” of mostly-honest committees,
instead we have to prove that committees can keep a secret (i.e. that they are
mostly honest) within the given adversary model. In our case, this is a tradi-
tional mobile-adversary model that only assumes some limit on the adversary’s
corruption power in the overall universe (as in Sect. 2.1 above).

An important feature of scalable ECPSS is that most parties neither send
messages during committee-selection nor take part in the handover protocol. In
our mobile-adversary model, this begs the question of how can such “passive”
parties recover from compromise. Our EPSS must therefore rely on some external
mechanism to let passive parties recover, a mechanism which is not part of the
ECPSS protocol itself. In our setting we rely on the PKI component from Sect.
2.1 above, where each party broadcasts a new public key at least once per epoch,
letting it recover from an exposure of its old secret key. When proving ECPSS
security, however, we need not worry about this mechanism, we simply assume
that such mechanism exists, and consider a party “magically recovered” if it is
left alone by the adversary for a full epoch.

Finally, while it is convenient to consider the same epochs for both the ECPSS
protocol and the underlying adversary model (and indeed we assume so in Sect.
3), it is not really required. The refresh protocol can run more often than the
PKI-induced epochs. In our context such frequent secret-refresh may be required,
indeed the secret must be refreshed every time that it is used by a higher-level
application, since any use lets the adversary learn who was holding the secret.
Such frequent refresh operations make it even more important to use efficient
protocols, and in particular motivate our insistence on scalability.

2.3 Verifiable Random Functions and Cryptographic Sortition

A verifiable random function (VRF) [42] is a pseudorandom function that enables
the key holder to prove (input, output) pairs. We refer the reader to [42] for
the formal definition.5 Constructions of VRFs are known under various number

5 A convenient way of thinking about VRFs is as a hash of the signature in a unique-
signature scheme.
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theoretic assumptions (such as RSA, DDH, or hardness in paring groups), with
or without the random-oracle heuristic.

VRFs can be used to implement cryptographic sortition, which is essentially
a verifiable lottery [14] that the parties can use to self-select themselves to com-
mittees. Each party has a VRF key pair, the parties all know each other’s public
keys, and there is a publicly known input value that they all agree on. Each party
computes the VRF on the public input using its secret key, thereby obtaining
a random value that it can use to determine whether or not it was selected to
the committee. Moreover the party can prove its self-selection to everyone by
exhibiting the random value with the VRF proof.

In many settings (including ours) the adversary has some influence over the
public input. In such settings, the VRF implementation sketched above falls
short of implementing a “perfect” lottery, since the adversary can try many
inputs until it finds one that it likes. We therefore consider a sortition func-
tionality with initial phase where the adversary can reset the lottery, each time
getting the lottery choices corresponding to the parties that it controls. Eventu-
ally the adversary decides that it is happy with its choices, and then the lottery
functionality is activated for everyone. This functionality is described in Fig. 1.

Cryptographic Sortition
Parameters are probability p ∈ (0, 1) and a set of N parties P1, . . . , PN .

1. Initialization. For each i = 1, . . . , N choose a random independent bit bi with
Pr[bi = 1] = p. The adversary can repeatedly request to see all the bits for the
corrupted parties, and can ask that all the bits will be chosen afresh. Once it is
happy with its bits, the adversary can end this phase and move to Phase 2.

2a. Lottery. Once initialization ends, every party Pi can ask for its state, getting
the bit bi.

2b. Verification. All parties begin in private mode, and any party can ask at any
time for its mode to be changed to public mode. A party Pi can ask for the state
of any other party Pj , getting ⊥ if Pj is still in private mode or the bit bj if Pj

is in public mode.

Fig. 1. The cryptographic sortition functionality.

2.4 Selective-Opening Security of Public-Key Encryption

Our solution relies crucially on implementing “target-anonymous” secure chan-
nels by broadcasting encrypted messages. In the mobile-adversary model, this
means that the adversary gets to see public keys and encrypted messages, then
decide on the nodes that it wants to corrupt, exposing their secret keys. This
attack is known as the receiver selective-opening attack (cf. [4,5,11,19,32]), and
it poses many challenges. In particular, it is known that secrecy under receiver
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selective-opening attack does not follow from semantic security [4,5,25,35], and
implementing schemes that provably maintain secrecy in this setting is challeng-
ing. In our setting, we need schemes that provide both secrecy and anonymity
in this model, and these two aspects seem to behave very differently. We begin
with the secrecy aspect, which was researched more in the literature and is better
understood.

Secrecy Under Selective Opening Attacks. We follow Hazay et al.’s defini-
tions of indistinguishability-based receiver-selective-opening security (RIND-SO)
[32], which build on [4,19]. In the RIND-SO security game, the adversary sees a
vector of ciphertexts, encrypting messages that are drawn from some distribution
D. It obtains the opening of a selected subset of them (by obtaining secret keys),
then receives from the challenger either the actual remaining plaintexts, or fake
remaining plaintexts that are drawn afresh from D conditioned on the opened
plaintexts. (This game requires that D be efficiently resamplable [9], namely it
should be feasible to draw from D conditioned on the opened plaintexts.) RIND-
SO security require that the adversary only has negligible advantage in telling
these cases apart, see [32] for a formal definition.

While not following from standard semantic security (even for semi-adaptive
adversaries), selective-opening security can be obtained from exponentially CPA-
secure encryption via complexity leveraging. Encryption schemes with selective-
opening security can also be built from receiver-non-committing encryption
(RNCE) [11], but Nielsen [43] showed that an RNCE scheme must have secret-
key at least as long as the total size of plaintexts that are encrypted to it.
However, Hazay et al. [32] showed that RIND-SO security can be obtained from
a weaker “tweaked” notion of RNCE, and that a construction due to Canetti
et al. [12] achieves the desired notion under the Decision-Composite-residuosity
(DCR) assumption.

Anonymity Under Selective Opening Attacks. Bellare et al. defined in [3]
anonymity for static adversaries via indistinguishability between two keys, but in
our setting we need anonymity also against selective opening. We are not aware
of previous work that examined anonymity in this setting, and even defining
what it means takes some care. In our setting it makes sense to require that the
adversary’s decision to open a key (i.e. corrupt its holder) is not significantly
impacted by whether or not that key was used to encrypt a ciphertext. We
consider adversary that can see public keys and ciphertexts and can open some
fraction f of the public keys and learn the corresponding secret keys. We require
that the adversary cannot learn the secret keys of much more than an f fraction
of the keys that are actually used to encrypt the ciphertexts. This is defined
via the following game between the adversary and a challenger, with parameters
ε,m, t, n such that ε > 0 is a constant and λ ≤ m, t ≤ n(1 − ε):

1. The challenger runs the key generation n times to get (pki, ski) ← Gen(1λ, $)
for i = 1, . . . , n, and sends pk1, . . . , pkn to the adversary;
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2. The adversary chooses m plaintext messages x1, . . . , xm;
3. The challenger chooses m distinct random indexes A = {i1, . . . , im} ⊂ [n],

uses pkij to encrypt xj , and sends to the adversary the ciphertexts ctj ←
Encpkij (xj) (j = 1, . . . , m).

4. The adversary adaptively chooses indexes k1, k2, . . . , kt one at a times, and
for each kj it receives from the challenger the secret key skkj

.

The adversary wins this game if it opens more than t/n + ε fraction of the
ciphertext-encrypting keys indexed by A.

Definition 4 (Adaptive Anonymous PKE). A PKE scheme E = (Gen,Enc,
Dec) is anonymous against selective-opening, if for every constant ε > 0 and
λ ≤ m, t ≤ n(1 − ε), no feasible adversary can win the above game with non-
negligible probability (in λ).

In the long version [6] we recall the static-adversary definition of Bellare et al. [3]
and discuss its relations to our selective-opening notion. We show some evidence
that our notion is implied by the definition from [3], hence we make the following
conjecture:

Conjecture 1. An anonymous PKE against static adversaries is also selective-
opening anonymous as per Definition 4.

2.5 Non-interactive Zero-Knowledge Proofs

We use the standard definition of NIZK [8] using a common reference string.

2.6 Instantiating the Building Blocks for Our Solution

As we sketched in the introduction, our solution uses two PKE schemes, external
one for the long-term keys and internal one for the ephemeral keys. Denote these
schemes by E1 (external) and E2 (internal), and denote their combination by
E3 = E1 ◦E2. Namely, E3 uses long-term keys from E1, and encrypts a message by
choosing an ephemeral key pair for E2, encrypting the ephemeral secret key by
the long-term public key, and encrypting the message by the ephemeral public
key. The properties of these schemes that we need are:

– E1 is anonymous under selective-opening, as per Definition 4.
– The combination E3 = E1 ◦ E2 is RIND-SO secure as in [32].

In addition we would like the internal scheme E2 to be “secret-sharing friendly”,
in the sense that it allow efficient NIZK proofs that multiple values encrypted
under multiple keys lie on a low-degree polynomial.6 Below we sketch some
plausible instantiations.

6 The witness for such proof consists of the secret key for one of the keys and the
encryption randomness for all the others.
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Achieving Anonymity for E1. Since our solution does not require proving any-
thing about the external scheme, we can use random-oracle-based instantiations,
which makes it easier to deal with selective opening attacks. Moreover, under
our Conjecture 1 it is enough to ensure static anonymity against static adver-
saries to get also anonymity under selective-opening. It is well known that most
DL-based schemes and most LWE-based schemes are statically anonymous, and
there are many variations of factoring-based schemes that are also anonymous.

Achieving Secrecy for E3. To get RIND-SO security for E3 we need both E1 and
E2 to provide secrecy under selective opening. For E1 we may use random-oracle-
based hybrid constructions, but for E2 we need efficient NIZK proofs and hence
prefer not to use random oracles.

DCR-based instantiation. To get RIND-SO security for E2, we can use the
“tweaked” receiver-noncommitting encryption from [32]. This method can be
instantiated based on the decision-composite-residuosity (DCR) assumption.
We begin with the DCR-based RNCE scheme of Canetti et al. [12], and apply
the usual anonymization methods for factoring-based scheme to make it also
anonymous (e.g., add a random multiple of n, see [31]).
This instantiation is also reasonably sharing-friendly, we can have a secret
holder provide a Pedersen commitment to its secret, and prove that the
encrypted shares are consistent with the commitment. A detailed description
of such a scheme including the necessary zero-knowledge proofs can be found
in [40, Sec. 6.2.4], and can be made non-interactive using the Fiat-Shamir
heuristic.

DDH-based instantiation. A variation of the above can also be instantiated
under DDH. In this variant, we roughly replace Shamir secret sharing with a
Shamir-in-the-exponent sharing (hence the secret is a random group element
gs). This means that the share holders can recover gs, but not s itself. This
supports applications that recover an individual secret but may not suffice for
more complex threshold functions. We can then use the DDH-based RCNE
scheme from [12], and since we do not expect to recover s itself then we do
not have the limitation from [12] of only encrypting short messages. This
DDH-based scheme can be easily made anonymous, and also allow simple
NIZK proofs via the Fiat-Shamir heuristic.
(We note that this approach does not work for the external E1, since there
we need to recover the actual plaintext.)
It is likely that one could also exhibit plausible instantiations based on LWE,
but we have not worked out the details of such instantiations.

3 Our Evolving-Committee PSS Scheme

Below let N denote the total number of parties in the system, and let C, t be
two parameters denoting the expected size of the holding committee and the
threshold, to be determined later (roughly t ≈ C/2 = O(λ)). In the description
below we assume that these parameters are fixed, but it is easy to adjust the
protocol to a more dynamic setting.
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We assume the model from Sect. 2.1, including the availability of a broadcast
channel (with all parties having access to the entire broadcast history). We also
assume access to one instance of the sortition functionality per epoch, a CRS
known to all (fir the NIZK), and the PKI. For PKI we assume that every party
has a “long-term”7 public key for an anonymous PKE.

3.1 The Construction

Initial Setup and Sharing. For setup, we assume that all parties are given
access to a common reference string for the NIZK, as well as the broadcast
channel and the PKI. We also assume that the dealer is honest, and for simplicity
we assume that sharing is run during initial setup.

1. On secret σ, the dealer chooses a random degree-(t − 1) polynomial F0 with
F0(0) = σ.

2. The dealer also choose a random size-C committee C0 ⊂ [N ], associates with
each party j in the first committee C0 an evaluation point αj , and give that
party αj and the share F0(αj). (To save a bit on notations, we identify each
index j with a point αj in the secret-sharing field and write Fi(j) rather than
Fi(αj).)

3. Finally, the dealer also broadcast the α’s and commitments to all the shares,
and give each party in C0 the decommitment string for its share.

We remark that an alternative sharing procedure can instead just use the same
mechanism as the handover protocol below (with the honest dealer playing all
the roles in the protocol).

Thereafter, we assume that at the end of every epoch i we have an ci-member
holding committee Ci holding a Shamir sharing of the global secret σ, and it needs
to pass that secret to the next holding committee Ci+1. We also assume that the
broadcast channel includes commitments to all the shares, and that each party
in Ci can open the commitment of its share.

Committee-Selection. Run by every party in the system p ∈ [N ]:

1. Use the sortition functionality with HEAD probability C/N to draw a ver-
ifiable bit bp. If bp = 0 go to step 5. (We say that a party with bp = 1 has
a seat on the nominating committee, and note that the expected number of
seats is C.)

2. Choose at random a nominee q ∈ [N ] and get from the PKI its “long-term”
public key pkq for the anonymous PKE E1.

3. Generates a new ephemeral key pair (esk, epk) ← E2.Keygen($), and use pkq

to encrypt the ephemeral secret key, ct ← E1.Encpkq (esk).
4. Erase esk, set your sortition state to public, and broadcast (epk, ct).

7 “Long-term” in quote since it is replaced at least once per epoch, we use the name
to distinguish these keys from the “ephemeral” keys of E2 that are only used once
in the protocol.
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5. Watch the broadcast channel, let (epk1, ct1), . . . , (epkci+1
, ctci+1) be those

broadcast pairs that were sent by parties with public sortition bits bp′ = 1,
ordered lexicographically by the public key values epk�. (Note that all hon-
est parties have a consistent view of this list and in particular agree on the
value ci+1.)

6. For each such pair (epkj , ctj), try to decrypt ct with your long-term secret key
skp and see if the result is the secret key eskj corresponding to epkj . If so then
store eskj locally, it represents the j’th seat on the holding committee Ci+1.

We note that each (epk, ct) establishes a “target-anonymous communication
channel” to some party q. We also note that as part of the implementation
of sortition, setting the sortition state to public would involve broadcasting the
sortition proof together with (epk, ct).

The Handover Protocol. We use a technique similar to [24] to re-share the
secret among the seats on the holding committee Ci+1.

Previous-epoch holding committee members. By induction, the shares held by Ci

define a degree-(t − 1) polynomial Fi with Fi(0) = σ, where each seat j holds a
share σj = Fi(j). Let I = {1, 2, . . . , ci+1} be the non-zero evaluation points used
for a t-of-ci+1 Shamir secret-sharing scheme. A party q holding seat j does the
following:

1. Choose a random degree-(t − 1) polynomial Gj with Gj(0) = σj .
2. For each k ∈ I Set σj,k = Gj(k) and use the k’th ephemeral public key to

encrypt it, setting ctj,k = Encepkk(σj,k).
3. Let comj be the commitment from the previous round to the share σj . Gen-

erates a NIZK proof for the statement that (comj , ctj,1, . . . , ctj,ci+1) are com-
mitment/encryptions of values on a degree-(t−1) polynomial w.r.t evaluation
points (0, 1, . . . , ci+1) (and public keys epk1, . . . , epkci+1

) respectively.8 Denote
this proof by πj .

4. Choose a new long-term key-pair, (sk′
q, pk

′
q) ← E1.Keygen($), and erase the

previous skq as well as all the protocol secrets (including all shares and
ephemeral secret keys).

5. Broadcast a message that includes pk′
q (for the PKI) and

(
ctj,1, . . . , ctj,ci+1 , πj

)
.

Next-epoch holding committee members. Let (ct1, π1), . . . , (ctci , πci) be the mes-
sages boradcast by prior-epoch committee members that include valid NIZK
proofs, ordered lexicographically. Note again that all honest parties will agree on
these messages and their respective prior-epoch evaluation points j1, . . . , jci . Let
λj1 , . . . , λjt be the Lagrange coefficients for the first t points j1, . . . , jt. Namely
F (0) =

∑t
k=1 λjk · F (jk) holds for every polynomial F of degree (t − 1).

8 The witness for this NIZK proof consists of the ephemeral secret key eskj that was
used to decrypt comj , and the randomness that was used to encrypt the ctj,k’s.
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Each party p with seat k on the holding committee Ci+1 does the following:

1. Choose the first t ciphertext vectors ct1, . . . , ctt, and extract the k’th cipher-
text from each ct1,k, . . . , ctt,k.

2. Use the ephemeral secret key eskk to decrypt them to get the values σj1,k =
Gj1(k) through σjt,k = Gjt(k).

3. Compute the share of the global secret corresponding to seat k as
∑

j∈{j1,...,jt}
λj · σj,k.

Moreover, the ciphertexts ctj1,k, . . . , ctjt,k are kept and used as the commitment
value to this share (with the decommitment information being the ephemeral
secret key eskk).

Handover Correctness. To see that the values computed by the holding commit-
tee members in the handover protocols are indeed shares of the global secret, let
us define the polynomial

Fi+1 =
∑

j∈{j1,...,jt}
λj · Gj ,

where Gj is the polynomial chosen by the (holder of) the j’th seat on the holding-
committee of period i. Since the Gj ’s all have degree-(t − 1), then so is Fi+1,
and moreover we have

Fi+1(0) =
∑

j∈{j1,...,jt}
λj · Gj(0) =

∑

j∈{j1,...,jt}
λj · Fi(j) = Fi(0) = σ.

On the other hand, for each seat k on the holding committee of period (i + 1),
we have ∑

j∈{j1,...,jt}
λj · σj,k =

∑

j∈{j1,...,jt}
λj · Gj(k) = Fi+1(k).

Reconstruction. We use Shamir reconstruction, after checking validity rela-
tive to the commitments in the broadcast channel. Specifically, each party in
the reconstruction set R provides its evaluation point and share of the global
secret, as well as an NP-witness showing that this share is consistent with the
relevant ciphertexts from the broadcast channel.9 The procedure takes the first
t evaluation points that have valid proofs, and uses interpolation to recover the
secret from the corresponding shares.

9 These NP witness is just the secret key of the ephemeral key that was used to send
the shares to it.which need not be hidden anymore now that the secret is revealed.
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3.2 The Parameters C And t

Below we analyze the parameters of our scheme vs. the fraction of corrupted par-
ties that it can withstand. Jumping ahead, our scheme can withstand a fraction
f of corrupted parties strictly below f∗ = 1 − √

0.5 ≈ 0.29, the committee-size
parameter needs to be C = Ω

(
λ

f(1−f)(f∗−f)2

)
, and the threshold can be set as

t ≈ C/2. The process that we analyze is not very different from the one in [22,
Thm 3] (and indeed we can tolerate the same fraction f∗ = 1 − √

0.5 as there).
The main difference is that in our case the adversary can reset the sortition
choice many times, which gives it some additional power but does not change
the asymptotic behavior.

Our analysis uses tail bounds for the binomial distribution, so we begin by
stating some properties of these bounds in the regime of interest. Let p ∈ (0, 1)
and let k, n be integers with pn < k ≤ n, Our analysis is concerned with a
setting where p = o(1) (in the scheme we have p = C/N), and we use following
Chernoff bounds:

Pr [Bin(n, p) > pn(1 + ε)] < exp(−npε2/(2 + ε)), and
Pr [Bin(n, p) < pn(1 − ε)] < exp(−npε2/2). (1)

In this analysis we ignore computational issues and assume that the adver-
sary selects the keys to open without any information about membership in the
nominating- and holding-committees. Our computational assumptions in Sect.
3.3 ensure that poly-time adversaries cannot do much better even if they do see
the various keys and ciphertexts. In this information-theoretic analysis we can
make the following simplifying assumptions:

– The adversary is computationally unbounded, but still can only reset the
sortition functionality from Fig. 1 a bounded number of times, and it is subject
to a budget of corrupting at most fN parties.

– Corrupted members of the nominating committee choose only corrupted
members for the holding committee, and

– The adversary corrupts all the fN parties at the beginning of the handover
protocol and these remain unchanged throughout.

To see why we can make the last assumption (in this information-theoretic set-
ting), observe that any change in the number of corrupted seats that happens
because the adversary make later choice of whom to corrupt implies in particular
that the adversary gained information about the not-yet-corrupted members of
the holding committee.

If we let c denote the number of seats on the holding committee, φ denote the
number of corrupted seats, and t denote the threshold, then we need φ < t (for
secrecy) and c−φ ≥ t (for liveness). We show below how to set the parameter C
(that determines the expected committee size) and the threshold t so as to get
secrecy and liveness with high probability.

Recalling that our model of sortition from Sect. 2.3 allows the adversary to
reset its choice many times, the process that we want to analyze is as follows:
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1. The adversary corrupts f · N parties;
2. The adversary resets the sortition functionality a polynomial number of times,

until it is happy that enough of its corrupted parties are selected to the
nominating committee;

3. With the sortition so chosen, the honest (and corrupt) parties are selected to
the nominating committee;

4. Each member of the nominating committee selects a holding-committee mem-
ber, with the honest ones selecting at random (and corrupted members always
selecting other corrupted members).

Let k1, k2, k3 be three security parameters for the analysis, as follows. We
will assume the adversary can reset the sortition functionality in the process
above at most 2k1 times.10 We want to ensure secrecy except with probability
2−k2 and liveness except with probability 2−k3 . We will use parameters ε1, ε2, ε3,
whose values we will fix later.

Let B1 = fC(1 + ε1); B1 represents the maximum tolerable number of cor-
rupted members in the nominating committee (note that the expected number
is fC). Let B2 = f(1 − f)C(1 + ε2); B2 represents the number of additional
corrupted members in the holding committee (note that the expected number is
f(1−f)C). We will set the threshold at t = B1 +B2 +1. Thus, ε1 and ε2 control
the probability that secrecy fails. The parameter ε3, discussed below, will control
the probability that liveness fails. We will now discuss how to set C, ε1, ε2, ε3 to
satisfy the following two conditions:

– Secrecy: Pr[φ ≥ t] ≤ 2−k2 ;
– Liveness: Pr[c − φ < t] ≤ 2−k3 .

The Parameter ε1. As described above, the adversary corrupts fN parties,
and then resets the sortition functionality at most 2k1 times to try to get as many
of these parties selected to the nominating committee as it can. The number of
corrupted parties in the nominating committee for each of these 2k1 tries is a
binomial random variable Bin(n = fN, p = C

N ). We can set the parameters C
and ε1 so as to ensure that

Pr
[
Bin(fN, C

N ) > B1

]
< 2−k1−k2−1,

in which case the union bound implies that

Pr [∃ try with more than B1 corrupted parties selected] < 2−k2−1.

Using Eq. 1, a sufficient condition for ensuring the bound above is to set ε1 and
C large enough so as to get exp

(
−fN · C

N · ε1
2

2+ε1

)
< 2−k1−k2−1, or equivalently

C >
(k1 + k2 + 1)(2 + ε1) ln 2

fε12
. (2)

10 Since in practice the adversary has very limited time in which to reset the sortition
(e.g. less than 5 s in the Algorand network), it may be sufficient to use k1 = 64.
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The Parameter ε2. We next bound the number of additional corrupted parties
in the holding committee due to Step 4 above. Here we have a total of (1 − f)N
honest parties, each one is selected to the nominating committee with probability
C/N and then each selected honest party chooses a corrupted party to the
holding committee with probability f . Hence the number of additional corrupted
party is a binomial random variable with n = (1 − f)N and p = fC/N (and,
unlike in the analysis of ε1, this time the adversary gets only one attempt—there
is no resetting, because the adversary cannot predict how sortition will select
honest parties). The expected number of additional corrupted parties is therefore
f(1 − f)C, and we get a high-probability bound on it by setting C and ε2 so as
to get

Pr
[
Bin((1 − f)N,

fC

N
) > B2

]
< 2−k2−1.

Here too, we get a sufficient condition by applying Eq. 1. For this we need to
set ε2 and C large enough to get exp

(
−(1 − f)N · fC

N ) · ε2
2

2+ε2

)
< 2−k2−1, or

equivalently

C >
(k2 + 1)(2 + ε2) ln 2

f(1 − f)ε22
. (3)

The Parameter ε3 and the liveness condition. The conditions from Eqs. (2) and
(3) ensure the secrecy condition except with probability 2−k2 . It remains to set ε3
and C to ensure liveness. Recall that the liveness condition holds as long as the
number of honest members (c−φ) on the holding committee is at least t. Honest
members come to the holding committee as follows: an honest party (out of (1−
f)N total) gets chosen to the nominating committee (with probability C/N), and
then chooses an honest party (with probability 1− f) to the holding committee.
Thus, the number of honest members is a binomial random variable with n =
(1 − f)N and p = (1 − f)C/N . (Again, the adversary gets only one attempt,
because the adversary cannot predict how sortition will select honest parties,
so resetting doesn’t help.) Since the expected value of this random variable is
(1 − f)2C, it is sufficient to ensure that t ≤ (1 − f)2C(1 − ε3) for some ε3 > 0
such that

Pr[Bin((1 − f)N, (1 − f)C/N) < (1 − f)2C(1 − ε3)] < 2−k3 .

By Eq. 1, this holds when exp
(− (1− f)N · (1− f)C/N · ε32/2

)
< 2−k3, i.e.,

C >
2k3 ln 2

(ε3(1 − f))2
. (4)

Recalling that our threshold was set to

t = B1 + B2 + 1 = fC(1 + ε1) + f(1 − f)C(1 + ε2) + 1 (5)
= C · (

(2 + ε1 + ε2)f − (1 + ε2)f2
)

+ 1,

the condition t ≤ (1 − f)2C(1 − ε3) is equivalent to:

ε3 ≤ 1 − (4 + ε1 + ε2)f + (2 + ε2)f2 − 1
C

(1 − f)2
. (6)
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Putting it all together. Given the fraction f of corrupted parties and the secu-
rity parameters k1, k2, k3, we need to find some positive values for the other
parameters C, ε1, ε2, ε3, t that satisfy the bounds in Eqs. (2) to (6).

Clearly such positive values that satisfy Eq. (6) only exist when 1− 4f +2f2

is bounded away from zero, which means that f must be strictly smaller than
f∗ = 1 − √

0.5 ≈ 0.29. When f is bounded below f∗, we can satisfy Eq. (6) by
setting the ε’s to (f∗ − f)/c for some moderate constant c, and then by Eqs. (2)
to (4) we get C = Θ((k1 + k2 + k3)/f(1 − f)(f∗ − f)2).

For example, the following table lists values of C and t that work for security
parameters k1 = 64 and k2 = k3 = 128 and different values of f (along with the
ε’s that were used to obtain these C and t values).

f 5% 10% 15% 20% 25% 30%

C 889 1556 3068 7759 38557 Impossible

t 425 788 1590 4028 19727

ε1 4.3835 1.8099 0.9216 0.46059 0.173688

ε2 3.3734 1.4936 0.8001 0.41728 0.163585

ε3 0.4703 0.3752 0.2829 0.18904 0.090453

3.3 Analysis

Complexity. It is easy to see that the communication complexity of all the pro-
tocols in our construction (sharing, committee-selection, handover, and recon-
struction) is some fixed polynomial in the security parameter, regardless of the
number of epochs or the total number or parties N . Indeed there are only some
c = O(λ) parties in every committee, and each of them sends a single message
including at most encryption nd proofs about size-O(c) vectors.

Regarding computation, the only parts of the protocol that involve O(N)
objects are random selection of keys from a size-N public table (provided by
the PKI). Every other operation involves at most size-O(c) objects. Hence in
a RAM model also the computation performed by each party depends only
logarithmically on N .

Security. Below we denote by E3 = E1◦E2 the combination of the PKE schemes
E1, E2 as in our scheme: E3 uses the keys from E1 and encrypts a message by
choosing a fresh key pair for E2, encrypting the E2 secret key by the E1 public
key, and encrypting the message by the E2 public key.

Theorem 1. Let f < 1 − √
0.5 be a constant, and consider the parameters

C = C(λ), t = t(λ) satisfying Eqs. 2 through 6.
Let E1, E2 be two public-key encryption schemes, E1 is anonymous as per

Definition 4 and the combination E3 = E1 ◦ E2 is RIND-SO secure. Also let Π be
a NIZK argument system and assume the sortition functionality from Fig. 1.
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Then the construction in Sect. 3.1 with parameters C, t is a scalable ECPSS
scheme satisfying secrecy and robust reconstruction (Definitions 1 and 2), in a
model with erasures and the broadcast channel and PKI from Sect. 2.1, against
polynomial-time mobile adversaries with corruption budget bounded by f · N .

Proof Sketch. Below we only sketch the secrecy argument, which includes in par-
ticular a proof that the committees are mostly-honest. The robust-reconstruction
argument is similar (but simpler).

Consider an adversary that specifies two secrets σ0, σ1 and then interacts
with our ECPSS scheme, and we need to argue that it only has a negligible
advantage in guessing which of σ0, σ1 was shared. As usual, the proof involves a
game between the adversary and a challenger, and a sequence of hybrids that are
proven indistinguishable via reductions to the secrecy of the various components.
Below we tag each of these hybrids with the security property that is used to
prove their indistinguishability from the previous hybrid in the sequence.

H0 (The real protocol). This is a game where the challenger plays the role of
all the honest parties, and in particular knows the global secret and all the
shares.

H1 (NIZK Soundness). In the next hybrid, the challenger aborts if at any
point the honest parties accept a proof from the adversary even though the
encrypted quantities in question do not lie on a degree-t polynomial. The
challenger can detect this because it knows all the shares and it sees every-
thing that the honest parties see. It follows from the NIZK soundness that
the challenger only aborts with negligible probability.

H2 (Zero-knowledge). Next the challenger uses the NIZK simulator to gener-
ate the honest-party proofs. Since it is zero-knowledge, the adversary cannot
detect the difference.

H3 (Anonymous PKE). In this hybrid the challenger aborts if the holding
committee contains t or more corrupted seats, or fewer than t honest seats.
We use the anonymity property of the long-term PKE to argue that this
happens only with a negligible probability.
For this argument, first note that the set of corrupter nominators depends
only on the sortition “ideal functionality,” hence the bound B1 from Sect.
3.2 holds for it. Next let S be the set of holding-committee members that
were nominated by honest nominators. (More specifically, nominators that
were honest at the time they broadcast their nomination message.) In Sect.
3.2 we bounded whp the number of corrupted members from S by the bound
B2 in an information-theoretic model, but now the adversary’s view contains
information about the set S (since the ephemeral keys are encrypted under
their long-term public keys). Nonetheless, due to the anonymity of the PKE
scheme E1, with overwhelming probability the adversary only corrupts B2(1+
o(1)) members of this set.

H4 (PKE secrecy). In this hybrid honest parties switch to encrypting
a randomly chosen secret σ$ rather than the right one σb. We argue
that the adversary cannot distinguish these hybrids by reduction to the
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hiding property of the combined PKE scheme E1 ◦ E2. Note that in this
hybrid we already know that the adversary corrupts less than t members of
each holding committees, so we can re-sample the shares of the honest parties
conditioned on those of the corrupted ones.

Finally we can undo the changes in these hybrids, arriving at a game where the
adversary gets σ1−b rather than σb.

4 Parties vs. Stake

In this paper we described the protocol in terms of individual parties, and the
adversary’s power in terms of corruption a fixed fraction of these parties. Our
main application domain, however, is public proof-of-stake blockchains where the
adversary’s corruption budget is measured in stake. In this world every actual
party holds some number of tokens, and the corruption budget of the adversary
is expressed in tokens rather than in parties.

The easiest way of defining the adversary model and protocol actions in this
world is to have a party with x tokens play the role of x parties in the protocol,
and leave everything else as-is. If the party-to-stake mapping was static, then
the stake-based adversary model would have been a weakening of the standard
adversary, and hence every protocol that was secure in the party model against
some f -fraction of corrupted parties would remains secure also in the stake model
against f -fraction of corrupted stake. To see that, note that if a party owns x
tokens and the adversary corrupts it, then the adversary is forced to corrupt all
the x tokens at once, reducing its ability to corrupt different parties.

The thing that makes the stake model harder is that the stake assignment
is not static, parties can move the stake among them dynamically. (This can
be formulated using a UC-like environment that provides parties with tokens
and move those tokens between them.) In this environment, it is not a priory
clear that the proactive model makes sense at all: This model stipulates that
corrupted parties can recover and join the ranks of honest parties. But when the
adversary corrupts a party holding some stake, can’t it just “take the money and
run”? That is, can’t the adversary simply transfer all the stake of a corrupted
party into the adversary’s own coffers, thereafter forever controlling it?

Making sense of party’s recovery in the stake model hinges on the distinc-
tion between keys that control tokens (called spending/withdrawal keys) and
keys that are used in the consensus (called participation/validation keys): PoS
blockchain usually assume that stake-controlling keys are kept highly secure (e.g.,
offline, in a hardware device, or using some secret-sharing mechanism), and are
only accessed infrequently. The cryptographic keys used for the protocol, on the
other hand, must be accessed frequently and kept online. This model therefore
assumes that the token-controlling keys are (almost) never compromised, but
the consensus keys are easier to corrupt. In that model a corrupted party is one
whose protocol key was compromised, but it can later recover by (cleaning up
the node and) using the token-controlling key to choose and broadcast a new
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protocol key. It is instructive to consider the type of corruptions we are likely to
confront in a PoS blockchain and their characteristics.

– Mostly static adversarial base. There may be a set of token keys that are
held by the adversary, and hence their consensus keys remain adversarial
throughout. While that set (and the stake that it holds) is not completely
static, it changes rather slowly.

– Somewhat dynamic node corruptions. A second type of adversarial parties
represent nodes where the stake key is held by honest participants but the
consensus keys are subject to compromise due to security breaches. These
tend to be more dynamic from the first set, but corruptions still require
significant effort on the part of the attacker. It may be reasonable to assume
that corruption of new nodes usually takes significant time.

– Fully dynamic fail-stop. A third set of “adversarial” nodes are fail-stop nodes,
that are just knocked off due to denial-of-service (DoS) attacks. It seems
reasonable to assume that the adversary can mount a DoS attack almost
instantaneously and keep it going for a while.

Hence realistic protocols in PoS blockchains must be resilient to very dynamic
DoS attacks, but can perhaps assume a mobile-but-slow-moving adversary when
it comes to malicious corruptions. The next section sketches a protocol that can
tolerate higher corrupted fraction in the face of such slow-moving adversary.

5 Static vs. Adaptive Anonymous PKE

Recall the definition of Bellare et al. for anonymous PKE against static adver-
saries:

Definition 5 (Anonymity [3]). A PKE scheme E = (Gen,Enc,Dec) is anony-
mous if polynomial-time adversaries have at most a negligible advantage in the
following game with a challenger:

1. The challenger runs the key generation twice to get (pki, ski) ← Gen(1λ, $)
for i = 0, 1, and sends pk0, pk1 to the adversary.

2. The adversary responds with a plaintext message m.11

3. The challenger chooses a secret bit b, encrypts m relative to pkb to get ct ←
Encpkb(m), and sends ct to the adversary.

4. The adversary outputs a guess b′ for the bit b.

The advantage of the adversary is 2 · |Pr[b = b′] − 1
2 |.

We would like to prove Conjecture 1, that every PKE that satisfies Defini-
tion 5 also satisfies Definition 4. While we were not able to prove this conjec-
ture, below we prove a special case of it for restricted class of adversaries that

11 This message need not be in the plaintext space relative to these keys. Note that
in that case the anonymity property implies that the scheme could also “encrypt”
things outside of its plaintext space (although the result may not be decryptable).
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“open” all the keys at once. That is, given the n public keys and m ciphertexts
(λ ≤ m < n), the adversary outputs a set D of � = f · n keys that it wants to
open, and it gets all the secret keys for it at once. Note that this “semi-adaptive”
adversary already exhibits all the problems with selective opening in the context
of secrecy. In particular the examples showing that semantic security does not
imply security under selective opening, apply also to these restricted adversaries.

Lemma 1. Fix a constant ε > 0. If there is an efficient semi-adaptive adversary
that opens at most � = fn keys but is able to open t∗ = (1 + ε)fm keys in A
with a noticeable probability α = α(λ), then the PKE in use does not satisfy
Definition 5.

Proof. Fix an adversary A, denote by A the set of public keys under which
messages were encrypted and by D the set of keys that A opens, and let pi be
the probability of |D ∩ A| = i for that adversary (for all i = 0, 1, . . . ,m). The
premise of the lemma is that

∑
i≥t∗ pi = α = 1/poly(m).

We describe a reduction that uses this adversary in the anonymous-PKE
game from Definition 5. The reduction has a parameter τ ≤ m − 1, and it gets
two keys pk0, pk1 and a ciphertext ct encrypted under one of them. It chooses
n − 2 more keys, selects a random subset A′ ⊂ [n] of size m − 1, and encrypts
messages under the keys in A′. The reduction then gives the adversary the n keys
and m ciphertexts (in random order), and gets from the adversary the set D of
� keys to open. If |A′ ∩D| ≥ τ and in addition pk1 is opened but pk0 is not, then
the reduction outputs 1. Otherwise the reduction outputs 0.

Let x denote the key under which the message is encrypted and y denote the
other key. The crux of the proof is showing that when the probability distribution
(p0, p1, . . . , pm) is far from an (n,m, �)-hypergeometric distribution, there must
exist some τ for which

δτ
def= Pr[reductionτ outputs 1|x = pk1] − Pr[reductionτ outputs 1|x = pk0]

is non-negligible (in m). Recall that the (n,m, �)-hypergeometric distribution is
(p∗

0, p
∗
1, . . . , p

∗
m) such that p∗

i
def=

(
i
m

)(
�−i

n−m

)
/
(
n
�

)
.

Observe that when x = pk1, the reduction with τ outputs 1 if |D∩A| ≥ τ +1
(i.e., ≥ τ for A′ and one more for pk1), and in addition x = pk1 ∈ D and
y = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk1] =
m∑

i=τ+1

pi · i

m
· (

1 − � − i

n − m

)
. (7)

On the other hand when x = pk0, the reduction with τ outputs 1 if |D ∩A| ≥ τ ,
and in addition y = pk1 ∈ D and x = pk0 /∈ D. Hence

Pr[reductionτ outputs 1|x = pk0] =
m∑

i=τ

pi · (
1 − i

m

) · � − i

n − m
. (8)
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Let us denote ui = i
m · (1− �−i

n−m ) and vi = (1− i
m ) · �−i

n−m . From Eqs. 7 and 8
we have

δτ = −pτvτ +
m∑

i=τ+1

pi(ui−vi) =

(

−pτ

(
1 − τ

m

)
+

m∑

i=τ+1

pi

( i

m
− �

n

)
)

· m

n − m
,

(9)
where the last equality follows because

ui − vi =
i

m
· n − m − � + i

n − m
− m − i

m
· � − i

n − m
=

( i

m
− �

n

) · m

n − m
.

Equation 9 yields a set of linear equations for expressing δ = (δ0, δ1,
. . . , δm−1) in terms of p = (p0, p1, . . . pm). Let B be the m × (m + 1) matrix
representing these equations, namely δ = p · B. While it is not hard to show
that the (n,m, �)-hypergeometric distribution is the only one yielding p∗B = 0,
we still need to show that whenever p is noticeably far from p∗ then δ is notice-
ably away from zero. To that end, we look again at Eq. 9 and give a name to
the sum at the right-hand side. For every τ we denote:

γτ
def=

m∑

i=τ

pi

( i

m
− �

n

)
=

m∑

i=τ

pi

( i

m
− f

)
and similarly γ∗

τ
def=

m∑

i=τ

p∗
i

( i

m
− f

)
.

Equation 9 can now be written as δτ = m
n−m (γτ+1 − pτ (1 − τ

m )), and of course
by definition we have γτ = pτ ( τ

m − f) + γτ+1. We similarly have γ∗
τ = p∗

τ ( τ
m −

f) + γ∗
τ+1, but here γ∗

τ+1 − p∗
τ (1 − τ

m ) = 0. Note also that for τ ≥ fm the term
τ
m − f is non-negative. We next use the following two facts:

– By Chernoff bound, γ∗
t∗ <

∑
i≥t∗ p∗

i is exponentially small in εf · m = Θ(m).
– By our assumption on the adversary γt∗ is non-negligible since

γt∗ =
∑

i≥t∗
pi

( i

m
− f

) ≥
∑

i≥t∗
pi

( t∗

m
− f

)
= εf

∑

i≥t∗
pi = εfα.

This means that γt∗ is exponentially (in m) larger than γ∗
t∗ , i.e. there exists some

constant η > 0 such that γt∗ ≥ (1 + η)mγ∗
t∗ .

By the Claim 5 below, we either have pt∗−1 ≥ (1 + η)m(1 − η
2 )p∗

t∗−1, or else
δt∗−1 > ηm

2(n−m)γt∗ , which is non-negligible (in m). In the former case (of large
pt∗−1) we get

γt∗−1 = pt∗−1(
t∗ − 1

m
− f) + γt∗ ≥ (1 + η)m(1 − η

2
)p∗

t∗−1(
t∗ − 1

m
− f

︸ ︷︷ ︸

>0

) + (1 + η)mγ∗
t∗

> (1 + η)m(1 − η

2
)(p∗

t∗−1(
t∗ − 1

m
− f) + γ∗

t∗) = (1 + η)m(1 − η

2
)γ∗

t∗−1.

In that case we can apply Claim 5 again to conclude that either pt∗−2 > (1 +
η)m(1− η

2 )2p∗
t∗−2 or else δt∗−2 is non-negligible. Repeating this process, we show
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by induction that either at least one of δt∗−1, δt∗−2, . . . , δfm is non-negligible
(in m), or else we have

∀i ∈ [fm, t∗ − 1], pi > (1 + η)m(1 − η

2
)t∗−i.

But the last case cannot happen, since it means that the pi’s sum up to more
than one. That is so because the hypergeometric distribution has probability at
least 1/4 of exceeding the expected value [28],12 i.e.,

∑
i≥fm p∗

i ≥ 1/4, and so

m∑

i=0

pi ≥
t∗−1∑

i=fm

pi +
m∑

i=t∗
pi ≥

t∗
∑

i=fm

(1 + η)m(1 − η/2)t∗−ip∗
i + (1 + η)m

m∑

i=t∗
p∗

i

> (1 + η)m(1 − η/2)m
∑

i≥fm

p∗
i >

(
1 + η/4

)m · 1
4

> 1.

��
Claim. For any τ ≥ fm, denote the ratio Rτ+1

def= γτ+1/γ∗
τ+1 and let η > 0 be

an arbitrary constant. Then either pτ > Rτ+1(1− η
2 )p∗

τ , or else δτ ≥ ηm
2(n−m)γτ+1.

Proof. Recall that for the hypergeometric distribution we have γ∗
τ+1 = p∗

τ (1 −
τ
m ), and by definition of Rτ+1’s we have γτ+1 = Rτ+1γ

∗
τ+1. Assume that pτ ≤

Rτ+1(1 − η
2 )p∗

τ , and we need to show that δτ ≥ ηm
2(n−m)γτ+1. By Eq. 9 we have

δτ · n − m

m
= γτ+1 − pτ (1 − τ

m
) ≥ Rτ+1γ

∗
τ+1 − Rτ+1(1 − η

2
)p∗

τ (1 − τ

m
)

= Rτ+1

(

γ∗
τ+1 − p∗

τ (1 − τ

m
)

︸ ︷︷ ︸

=0

)

+
η

2
· Rτ+1 · p∗

τ (1 − τ

m
) =

η

2
· Rτ+1γ

∗
τ+1 =

η

2
· γτ+1.

Hence δτ ≥ ηm
2(n−m)γτ+1, as needed.
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Abstract. The formalization of concrete, non-idealized hash function
properties sufficient to prove the security of Bitcoin and related protocols
has been elusive, as all previous security analyses of blockchain proto-
cols have been performed in the random oracle model. In this paper we
identify three such properties, and then construct a blockchain protocol
whose security can be reduced to them in the standard model assuming
a common reference string (CRS).

The three properties are: collision resistance, computational random-
ness extraction and iterated hardness. While the first two properties have
been extensively studied, iterated hardness has been empirically stress-
tested since the rise of Bitcoin; in fact, as we demonstrate in this paper,
any attack against it (assuming the other two properties hold) results in
an attack against Bitcoin.

In addition, iterated hardness puts forth a new class of search prob-
lems which we term iterated search problems (ISP). ISPs enable the con-
cise and modular specification of blockchain protocols, and may be of
independent interest.

1 Introduction

Blockchain protocols, introduced by Nakamoto [46], are seen as a prominent
application of the “proof of work” (PoW) concept to the area of consensus pro-
tocol design. PoWs were initially introduced in the work of Dwork and Naor
[27] as a spam protection mechanism, and subsequently found applications in
other domains such as Sybil attack resilience [26] and denial of service protec-
tion [4,41], prior to their application to the domain of distributed consensus
hinted at early on by Aspnes et al. [3].
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A PoW scheme is typified by a proving algorithm, that produces a solution
given an input instance, as well as a verification algorithm that verifies the
correctness of the witness with respect to the input. The fundamental property
of a PoW scheme is that the proving algorithm allows for no significant shortcuts,
i.e., it is hard to significantly make it more expedient, and hence any verified
solution implies an investment of computational effort on behalf of the prover.
Nevertheless, this “moderate hardness” property alone has been found to be
insufficient for the utilization of PoWs in the context of various applications
and other properties have been put forth to complement it. These include: (i)
amortization resistance, which guarantees that the adversary cannot speed up
the computation when solving multiple PoW instances together, and (ii) fast
verification, which suggests a significant gap between the complexities of the
proving and verification algorithms.

Despite the evolution of our understanding of the PoW primitive, as exem-
plified in recent works (e.g., [1,6,13,36]), there has been no definitive analysis
of the primitive in the context of blockchain protocol security in the standard
model. Intuitively, PoWs are useful in the consensus setting because they make
message passing (moderately) hard and hence generate stochastic opportunities
for the parties running the protocol to unify their view of the current state of
the system. This fundamentally relies on an assumption about the aggregate
computational power of the honest parties, but not on their actual number,
in relation to the computational power of the parties that may deviate from
the protocol (the “Byzantine” parties)—a hallmark of the peer-to-peer setting
Bitcoin is designed for. Despite the fact that the Bitcoin blockchain has been
analyzed formally [5,31,33,49], the required PoW properties have not been fully
identified and most of the existing analysis has been carried out in the random
oracle (RO) model [10]. The same is true for a wide variety of other protocols
in the space, including [2,34,42].

We stress that despite the fact that the RO model has been widely used in
the security analysis of practical protocols and primitives, it has also received
significant criticism. For example, Canetti et al. [20] showed that there exist
implementations of signatures and encryption schemes that are secure in the RO
model but insecure for any implementation of the RO in the standard model;
Nielsen [47] proved that efficient non-committing encryption has no instantiation
in the standard model but a straightforward implementation in the RO model,
while Goldwasser and Kalai [40] showed that the Fiat-Shamir heuristic [29] does
not necessarily imply a secure digital signature, which is in contrast with the
result by Pointcheval and Stern [50] in the RO model.

It follows that it is critical to discover security arguments for blockchain
protocols that do not rely on the RO model. Note that we are looking for argu-
ments as opposed to proofs since it is easy to observe that some computational
assumption would still be needed for deriving the security of a blockchain proto-
col (recall that blockchain security cannot be inferred information theoretically
as it fundamentally requires at minimum the collision resistance of the under-
lying hash function). In fact, the formalization of non-idealized, concrete hash
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function assumptions sufficient to prove security of Bitcoin and related protocols
has been identified as a “fascinating open question” [18].

Following the above, the main question that motivates the present work is
the following:

Is it possible to prove the security of blockchain protocols in the standard
model under non-idealized assumptions about the underlying hash func-
tion?

Our Results. In this paper we answer the above question in the positive, by
identifying three properties of a hash function family {Hk(·)}k and then con-
structing a blockchain protocol whose security can be reduced to these properties
(together with NIZKs; see below) in the standard model.

The first property is collision resistance. Specifically, it should be hard for an
adversary given a random key k, to find two distinct messages m,m′ for which
it holds Hk(m) = Hk(m′). This property is useful in the blockchain context,
since intuitively collision resistance ensures that the hash-chain maintained by
the parties ensures the chronologically correct encoding of information.

The second property of the underlying hash function family is that it should
be computational randomness extracting (CRE). Specifically, there is a way to
isolate a finite subset of the domain of the hash function family so that for any
given key k, the function Hk is a (weak) computational randomness extractor.
This property is useful in a few different ways in blockchain security. Firstly, it
will help for symmetry breaking, making sure that parties work concurrently on
independent instances of the underlying problem. Secondly, it will ensure that the
problem instances generated by honest parties (in the form of new blocks), will be
sufficiently unpredictable in the eyes of the adversary. Regarding the plausibility
of a CRE hash function, note that pseudorandom functions (PRFs) are known
to imply weak computational randomness extractors [22], and assuming that a
hash function implies a PRF is a fairly standard assumption [7,25,43].

The third property asks for the iterative hardness of the underlying hash
function as multiple pre-images with near-zero hashes are stringed together in
the form of a chain. This assumption is implicit in the context of the Bitcoin
protocol. In fact, as we show, an attack against iterative hardness would result
in an attack against the protocol (assuming a CRE hash function). This implies
that there is (monetary) incentive to break this assumption, which coupled with
the fact that no significant attacks have been demonstrated in the context of the
Bitcoin protocol, establishes iterated hardness of the underlying hash (in this
case SHA-256) as a plausible assumption.1

Armed with the above, we show a novel blockchain protocol whose security
can be reduced to the collision resistance, computational randomness extrac-
tion and iterative hardness of the underlying hash function. Our design adopts
Bitcoin’s hash-based blockchain structure, as well as the longest-chain selection
rule. However, contrary to previous analyses of this type of protocols [5,31,49]

1 Refer to Sect. 3 for further discussion on this assumption.
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in the RO model, iterative hardness provides no guarantee that blocks are “non-
malleable,” in the sense that it may be easy to mine multiple blocks on the
same height of the chain once you have mined the first one. Our solution is to
instead construct a PoW that is malleable, and leverage it to show a reduction
that breaks the underlying iterated hardness assumption given a common-prefix
attack to the blockchain protocol. In order to achieve this, we also have to hide
the block witnesses by taking advantage of NIZK proofs with efficient simulation,
thus managing to efficiently extract a sequence of iterated witnesses despite the
fact that the attacker may not produce consecutive blocks.

In order to describe and analyze the protocol modularly, we put forth a
new class of search problems, which we call iterated search problems (ISP). Tak-
ing advantage of ISPs one can produce concise and modular specifications of
blockchain protocols, as evidenced by the description of our protocol (Sect. 4.3);
as such, ISPs can be of independent interest.

In a nutshell, an ISP instance is defined by a problem statement set X, a
witness set W and a relation R that determines when a witness satisfies the
problem statement. The ISP is also equipped with a successor algorithm S that
given a statement x and a witness w, can produce a successor problem statement
x′; a solving algorithm M which given an initial problem statement x can find
a sequence of witnesses; and a verification algorithm V that takes a problem
statement x and witness w and outputs 1 if (x,w) ∈ R, and 0 otherwise. Each
witness corresponds to the next statement defined by algorithm S on input the
previous statement and witness, starting from x. The iterated hardness property
of the ISP asks that if the solving algorithm takes t steps to solve k instances
iteratively, no alternative algorithm can substantially speed this process up and
produce k iterative solutions with non-negligible probability.

We perform our analysis in the static-adversary setting with synchronous
rounds as in [31], and prove that our protocol can thwart adversaries and envi-
ronments that roughly take less than half the computational steps the honest
parties collectively are allowed per round. To our knowledge this is the first
work that achieves such a result in the permissionless setting without idealized
assumptions and no PKI2. In principle we can extend our results to the Δ-
synchronous setting of [49], following the techniques found in Section 7 of [32];
we leave the details to the full version of the paper. Further, we leave as an open
question the extension of our results to the dynamic setting of [33], as well as
matching the (less than) 50% threshold on adversarial computational power of
the Bitcoin blockchain which can be shown in the RO model.

Related Work. A related but distinct notion of hardness is sequential (i.e.,
non-parallelizable) iterated hardness. This notion has been considered as early
as [51], mainly in the domains of timed-release cryptography [15] and protocol
fairness [37], and recently formalized in [14] under the term iterated sequential
functions (ISF) in the context of Verifiable Delay Functions (VDFs). In addition,
a number of candidate hard problems have been proposed, including squaring

2 See [30] for an extensive discussion on known results in the peer-to-peer/diffusion
setting.
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a group element of composite-modulus groups [51], hashing, and computing the
modular square root of an element on a prime order group [44]. Nevertheless,
we observe that if we base the Bitcoin protocol on an ISF (or VDF for that
matter) it will be insecure. The fundamental issue is that it does not allow
for parallelization, which is crucial for proving the security of any (Bitcoin-like)
blockchain protocol. Indeed, an attacker with a single processor whose sequential
speed is slightly faster than that of honest parties, can outperform potentially
hundreds of them and mine longer chains first.

Another notion related to iterative hardness is the notion of “correlation
intractability” (CI) [18]. The difference is that while CI only bounds the success
probability in solving a single challenge, ISP fundamentally requires multiple
instances. Further, while CI talks about any sparse relation, the iterative hard-
ness definition is concerned with a specific non-sparse relation.

Finally, another related work focusing on sufficient conditions for the consen-
sus problem in the permissionless setting (and no PKI, while matching the less
than 50% threshold on adversarial computational power) is [36], which intro-
duced the concept of signatures of work (SoW) as the basic underlying assump-
tion. The only known implementation of SoWs however is in the RO model,
hence it is unknown (and an interesting open question) whether SoWs can be
realized under non-idealized hash function assumptions like the ones we consider
here.

Due to space limitations, most of the proofs are presented in the full ver-
sion [35] of the paper.

2 Preliminaries

In this section we present basic notation and definitions that we will use in the
rest of the paper.

For k ∈ N
+, [k] denotes the set {1, . . . , k}. For strings x, z, x||z is the con-

catenation of x and z, and |x| denotes the length of x. We denote sequences
by (ai)i∈I , where I is the index set which will always be countable. For a
set X, x ← X denotes sampling a uniform element from X. For a distribu-
tion U over a set X, x ← U denotes sampling an element of X according to
U . By Um we denote the uniform distribution over {0, 1}m. For random vari-
able X, we denote by H∞(X) the min-entropy of X. We denote the statis-
tical distance between two random variables X,Z with range U by Δ[X,Z],
i.e., Δ[X,Z] = 1

2

∑
v∈U |Pr[X = v] − Pr[Z = v]|. A random variable ensem-

ble (Xi)i∈I , is a sequence of random variables indexed by I. By (Xi)i ≈ (Zi)i

(resp.
c≈) we denote that two ensembles are statistical (resp. computational)

indistinguishable. We let λ denote the security parameter.

Protocol Execution and Security Model. In this paper we will follow a more
concrete approach [8,11,12,37] to security evaluation. We will use functions t, ε,
whose range is N,R, respectively, and have possibly many different arguments,
to denote concrete bounds on the running time (number of steps) and probabil-
ity of adversarial success of an algorithm in some given computational model,
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respectively. When we speak about running time this will include the execution
time plus the length of the code (cf. [12]; note also that we will be considering
uniform machines). We will always assume that t is a polynomial in the security
parameter λ, although we will sometimes omit this dependency for brevity.

Instead of using interactive Turing machines (ITMs) as the underlying model
of distributed computation, we will use (interactive) RAMs. The reason is that we
need a model where subroutine access and simulation do not incur a significant
overhead. ITMs are not suitable for this purpose, since one needs to account
for the additional steps to go back-and-forth all the way to the place where the
subroutine is stored. A similar choice was made by Garay et al. [37]; refer to [37]
for details on using interactive RAMs in a UC-like framework. Given a RAM
M , we will denote by StepsM (1λ, x) the random variable that corresponds to
the number of steps taken by M given input 1λ and x. We will say that M is
t-bounded if it holds that Pr[StepsM (1λ, x) ≤ t(λ)] = 1.

Finally, we remark that in our analyses there will be asymptotic terms of
the form negl(λ) and concrete terms; throughout the paper, we will assume that
λ is large enough to render the asymptotic terms insignificant compared to the
concrete terms.

The Bitcoin Backbone Model. In this section, we give an overview of the
security model that we are going to use throughout this work, introduced in [36].
This model is a variant of the synchronous model presented in [31] for the analysis
of the Bitcoin backbone protocol, extended to accommodate a standard-model
analysis of PoW-based blockchain protocols. In turn the model of [31] is based
on Canetti’s formulation of “real world” execution for multi-party cryptographic
protocols [16,17].

An execution of some protocol Π is defined with respect to an “environ-
ment” program Z, a “control” program C, and an “adversary” program A. At a
high level, Z is responsible for providing inputs to and obtaining outputs from
different instances of Π, C is responsible for supervising the spawning and com-
munication of all these programs, and A aims to disrupt the goals set by the
protocol. The programs in question can be thought of as “interactive RAMs”
communicating through registers in a well-defined manner.

We consider executions where the set of of parties {P1, ..., Pn} running Π is
fixed and hardcoded to C. Moreover, we consider a “hybrid” model of computa-
tion [19], where the adversary A as well as all parties in the execution can access
a number of “ideal” functionalities as subroutines; the functionalities are also
modeled as RAMs and are presented later in detail. Initially Z is activated. Z
can make special requests that result in the spawning of different parties and A.
In turn, A can corrupt different parties by sending messages of the form (Cor-
rupt, Pi) to C, with the limitation that the total number of parties corrupted
should be at most t; t is a parameter of the execution. We assume an active
static adversary.

We are working in the synchronous model of computation, where the current
round is known to all parties, and messages sent at one round are received at the
beginning of the next one. The influence of the adversary in the network is going
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to be actively malicious following standard cryptographic practice. While we
assume the adversary to be rushing and communication not to be authenticated,
messages sent by honest parties are guaranteed to reach their destination.

All the above concerns are captured by the diffusion functionality Fdiff . The
functionality maintains a Receive string defined for each party Pi. A party is
allowed at any moment to fetch the messages sent to it at the previous round that
are contained in its personal Receive string. Moreover, when the functionality
receives an instruction to diffuse a message m from party Pi, it marks the party
as complete for the current round, and forwards the message to the adversary;
note that m is allowed to be empty. At any moment, the adversary A is allowed
to specify the contents of the Receive string for each party Pi. The adversary
has to specify when it is complete for the current round. When all parties are
complete for the current round, the functionality inspects the contents of all
Receive tapes and includes any messages that were diffused by the parties in
the current round but not contributed by the adversary to the Receive tapes.
The variable round is then incremented. In the protocol description, we will use
Diffuse as the message transmission command.

In addition, we assume the existence of a common reference string (CRS)
functionality that samples the CRS in a trusted manner from a known efficiently
samplable distribution, and is available for all parties to fetch at the start of the
execution. Note, that from our modeling it is implicit that the adversary and
the honest parties get access to the CRS at the same round.

Based on the above, we denote by {viewP,t,n
Π,A,Z(z)}z∈{0,1}∗ the random vari-

able ensemble that corresponds to the view of party P at the end of an execution
where Z takes z as input. We will consider stand-alone executions, hence z will
always be of the form 1λ, for λ ∈ N. For simplicity, to denote this random
variable ensemble we will use viewP,t,n

Π,A,Z . By viewt,n
Π,A,Z we denote the concate-

nation of the views of all parties. The probability space where these variables are
defined depends on the coins of all honest parties, A, Z and the CRS generation
procedure.

Furthermore, we are going to define a predicate on executions and prove our
properties in disjunction with this predicate, i.e., either the property holds or
the execution is not good.

Definition 1. Let (tA, θ)-good be a predicate defined on executions in the hybrid
setting described above. Then E is (tA, θ)-good, where E is one such execution,
if

– the total number of steps taken by A and Z per round is no more than tA;3
– the adversary sends at most θ messages per round.

Definition 2. Given a predicate Q and bounds tA, θ, t, n ∈ N, with t < n, we
say that protocol Π satisfies property Q for n parties assuming the number of
corruptions is bounded by t, provided that for all PPT Z,A, the probability that
Q(viewt,n

Π,A,Z) is false and the execution is (tA, θ)-good is negligible in λ.

3 The adversary cannot use the running time of honest parties that it has corrupted;
it is activated instead of them during their turn.
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Cryptographic Primitives and Building Blocks. We will make use of the
following cryptographic primitives: Cryptographic hash functions, (computa-
tional) randomness extractors [22,48] and robust non-interactive zero-knowledge
(NIZK) [52]. Refer to Appendix A for the corresponding security definitions.

Robust Public Transaction Ledgers. Our work is concerned with necessary
and sufficient conditions to implement a public transaction ledger. Next, we give
the transaction ledger definition introduced in [31], with the liveness property
slightly strengthened, as in [49].

A public transaction ledger is defined with respect to a set of valid ledgers L
and a set of valid transactions T , each one possessing an efficient membership
test. A ledger x ∈ L is a vector of sequences of transactions tx ∈ T . Ledgers
correspond to chains of blocks in the Bitcoin protocol. It is possible for the
adversary to create two transactions that are conflicting; valid ledgers must not
contain conflicting transactions. Moreover, it is assumed that in the protocol
execution there also exists an oracle Txgen that generates valid transactions,
and is unambiguous, i.e., the adversary cannot create transactions that come in
‘conflict’ with the transactions generated by the oracle. A transaction is called
neutral if there does not exist any transactions that come in conflict with it. Any
ledger that contains neutral or non-conflicting transactions is considered to be
valid.

Definition 3. A protocol Π implements a robust public transaction ledger if
it organizes the ledger as a chain of blocks of transactions and it satisfies the
following two properties:

– Consistency (parameterized by the “depth” parameter k ∈ N): If in a certain
round an honest player reports a ledger that contains a transaction tx in a
block more than k blocks away from the end of the ledger, where k ∈ N is
the “depth” parameter (such transactions are called stable), then tx will be
reported as stable and in the same position in the ledger by any honest player
from this round on.

– Liveness (parameterized by k, u ∈ N—the “depth” and “wait time” param-
eters, resp.): For every u consecutive rounds, there exists a round and an
honest party, such that the transactions given as input to that party at this
round that are either (i) issued by Txgen or (ii) neutral, will be reported by
all honest parties as stable at the end of this round interval.

3 Hash Functions Properties for Blockchain Security

In this section we describe the three falsifiable assumptions about hash func-
tions which the security of our protocol is going to be based on. Two of these
properties, namely, collision resistance [23] and weak computational randomness
extraction [22], have been extensively studied in the hash function literature.
The third one is new, and has to do with the moderate hardness of computing
sequences of small hashes. We proceed to discuss each of the properties in detail.
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We start with collision resistance. Most known blockchain protocols make
use of a collision-resistant hash function in order to establish basic structural
properties, e.g., that the adversary cannot create a blockchain that contains a
cycle. That is exactly the way we are going to use this property here. We will
use the following security definition [39].4

Definition 4. Let H = {{Hk : {0, 1}∗ → {0, 1}λ}k∈K(λ)}λ∈N be a hash-function
family, and A be a PPT adversary. Then H is collision resistant if and only
if for any λ ∈ N and corresponding {Hk}k∈K in H,

Pr
k←K

[(m,m′) ← A(1λ, k) : (m �= m′) ∧ (Hk(m) = Hk(m′))] ≤ negl(λ).

Our second security assumption has to do with the existence of a fixed-length-
input hash function family that is a weak computational randomness extractor.
As explained in [22], this assumption is weaker than assuming a fixed-length-
input pseudorandom function family (FI-PRF), a common assumption in the
hash function literature [7,25,43]. We adapt the definition of a weak computa-
tional randomness extractor to the context of a hash function family.

Definition 5. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N,
d > 1, be a fixed-length input hash-function family. H is a computational
randomness extracting (CRE) hash function family if for some c ∈ N

+, c < d,
the function family E = {Eλ : {0, 1}(c+1)λ × {0, 1}(d−c−1)λ → {0, 1}λ}λ, where
Eλ(x, i) def= Hk(x||i), is a weak (cλ)-computational extractor, for any k ∈ K(λ).

This property will be useful in our protocol for two reasons. First, to ensure
that the distributions of blocks generated by honest parties are identical and
independent. Second, to establish that the blocks generated by honest parties,
and which the adversary has the choice to mine on, look sufficiently random and
hence the moderate hardness of the underlying problem is preserved.

Our third assumption about hash functions has to do with the hardness of
finding sequences of small hashes in the hash-based (SHA-256) PoW construction
proposed for Bitcoin. In more detail, given the hash x of some block, comput-
ing a valid PoW for this construction consists of finding witnesses w1, w2 such
that Hk(Hk(x||w1)||w2) < T . In turn, our hardness property requires that any
adversary should take a number of steps proportional to the number of PoWs
computed, when these PoWs form a sequence starting from a uniformly random
string x. The property is parameterized by t, the number of steps the adversary
takes to generate each PoW on average.

Definition 6. Let H = {{Hk : {0, 1}dλ → {0, 1}λ}k∈K(λ)}λ∈N, for some d ∈ N,
d > 1, be a fixed-length input hash-function family, and let T be some hardness
parameter. H is t-iteratively hard iff there exists a polynomial k0(·), such that
for any PPT RAM (A1,A2), λ ∈ N, and k ≥ k0(λ), it holds that:
4 Throughout our exposition for simplicity we will assume that H takes one step to

be evaluated. We note that our results can be generalized to the case where H takes
more time.
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Pr
σ←K(λ);
x0←[0,T ]

⎡

⎢
⎣

st ← A1(1λ, σ); (wi, w
′
i)i∈[k] ← A2(1λ, st, x0) :

∀i ∈ [k] : xi := Hσ(Hσ(xi−1||wi)||w′
i) < T

∧ StepsA2
(st, x0) < k · t

⎤

⎥
⎦ ≤ negl(λ)

Our choice to base the security of our protocol on the iterated hardness
of Bitcoin’s PoW construction is not accidental. The fact that any attack on
iterated hardness implies an attack on Bitcoin, as we show in Appendix B, as
well as the fact that no attacks have been publicly disclosed in the last ten years
that this construction has been actively used in Bitcoin, constitute empirical
evidence in its favor. Note that this would not necessarily be the case if we
based security on a stronger hardness property that was not necessary to prove
Bitcoin secure, as it would then be possible that an attack against the property
is known and the adversary does not have any incentive to reveal/deploy it, as
it does not affect the security of the protocol in any way.5

We note that to prove the security of our protocol both properties in Defi-
nitions 5 and 6 should hold for the same hash function and for suitable param-
eters 6, which we discuss in the next section; collision resistance may hold for
a different hash function. As argued above, SHA-256 is a natural candidate for
these assumptions. Finally, in our protocol analysis we will also make use of a
number of other standard assumptions, such as the existence of a NIZK-PoK
scheme and that the honest parties control the majority of the computational
power. The theorem we prove is as follows:

Theorem 3 (Informal). Assume the existence of collision-resistant hash func-
tions, a hash function family that is CRE and iteratively hard for appropriate
parameters, a one-way trapdoor permutation and a dense cryptosystem (for the
NIZK), and that tA is (roughly) less than half the total running time of honest
parties per round. Then there exists a protocol that implements a robust public
transaction ledger.

Finally, Gentry and Wichs [38] define as falsifiable the cryptographic assump-
tions that can be expressed as a game between an efficient challenger and an
adversary. All cryptographic assumptions of Theorem 3 are falsifiable in this
sense, with two caveats: First, due to the concrete security approach our work
takes, the challenger should take as input the number of steps of the adversary.
Second, in the computational randomness extraction property we quantify over
all keys of the hash and all efficiently samplable distributions with sufficient min-
entropy, which is not immediate to express in the framework of [38]. Instead, we
could choose the key randomly, and expresses the extraction property w.r.t. a
single family of source distributions that the adversary can influence. To simplify

5 The profitability of an attack may also work as a counterincentive to revealing it.
Nevertheless, there is merit in our argument if we take into consideration “white hat”
actors who have tried breaking Bitcoin.

6 Intuitively, the adversary should not be able to compute small hashes much faster
than the rate at which honest parties generate blocks that is guaranteed by the
computational extractor property.
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our presentation we adopt the former version of the definition. However, we note
that the proof techniques we use can be adapted to handle the latter.

4 Blockchains from Non-idealized Hash Functions

In this section we present and prove secure a protocol that implements a transac-
tion ledger and is based on a hash function that satisfies the properties described
in Sect. 3. We modularize our presentation and analysis by first introducing the
concept of iterated search problems (ISP) in Sect. 4.1, and then presenting a
technical overview in Sect. 4.2, followed by an ISP-based blockchain protocol
in Sect. 4.3. Then, in Sect. 4.4, we introduce a “blockchain friendly” ISP secu-
rity definition, that we show in Sect. 4.5 to be sufficient to prove our protocol
secure. Finally, in Sect. 4.6 we construct a secure ISP based on the hash prop-
erties defined in Sect. 3, which in combination with our protocol can be shown
to satisfy Theorem 3.

The choice of modularizing the protocol analysis has multiple benefits. In
particular, it first allows us to formally capture all required properties that the
moderately hard problem our protocol is built on should satisfy for the analysis
to go through. We hope that this will motivate building other constructions in
the future. Secondly, it makes it easier to take advantage of previous efforts to
analyze relevant protocols [31,36,49]. While we adapt some of the proof tech-
niques presented there, an important contribution of our work is that the ISP
notion which we built on is considerably weaker and can be instantiated in the
standard model from fairly simple assumptions.

4.1 Iterated Search Problems

In this section we introduce a class of problems inspired by Bitcoin’s underlying
computational problem. The straightforward properties that this class should
have, are the ability to find a witness for a problem statement and to verify that
the witness is correct, matching Bitcoin’s block mining and block verification
procedures, respectively. In addition, the notion models the ability to generate a
new problem statement from a valid statement/witness pair. This captures the
fact that in Bitcoin the problem that a miner solves depends on a previous block
(i.e., a statement/witness pair). This concept has appeared before in the study of
iterated sequential functions [14], whose name we draw from. Syntactically, the
key difference here is that in each iteration we are not evaluating a function, but
instead we are solving a search problem with possibly many witnesses. Moreover,
as we already commented in Sect. 1 iterated sequential functions are not the
correct abstractions for Bitcoin’s underlying computational problem, as they
allow for an attack against the protocol. We proceed to give a formal definition
of ISPs.

Definition 7 (Iterated Search Problem). An iterated search problem
(ISP) I specifies a collection (Iλ)λ∈N of distributions.7 For every value of the
7 Here we follow the notation used in [21] to define subset membership problems. We

remark that no other connection exists between the two papers.
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security parameter λ ≥ 0, Iλ is a probability distribution of instance descrip-
tions. An instance description Λ specifies

1. finite, non-empty sets X,W , and
2. a binary relation R ⊂ X × W .
We write Λ[X,W,R] to indicate that the instance Λ specifies X,W and R as
above.

An ISP also provides several algorithms. For this purpose, we require that
the instance descriptions, as well as the elements of the sets X and W , can be
uniquely encoded as bit strings of length polynomial in λ, and that both X and
(Iλ)λ∈N have polynomial-time samplers. The ISP algorithms are as follows, all
parameterized by Λ[X,W,R]:

– Verification algorithm VΛ(x,w): A deterministic algorithm that takes as input
a problem statement x and a witness w and outputs 1 if (x,w) ∈ R and 0
otherwise.

– Successor algorithm SΛ(x,w): A deterministic algorithm that takes as input
a problem statement8 x and a valid witness w and outputs a new instance
x′ ∈ X.

– Solving algorithm MΛ(x, k): A probabilistic algorithm that takes as input a
problem statement x and a number k ∈ N

+ and outputs a sequence of k
witnesses (wi)i∈[k].

In the sequel, we will omit writing Λ as a parameter of V, S,M when it is clear
from the context. In order to ease the presentation, we recursively extend the
definitions of S and R to sequences of witnesses as follows: Let S(x, ∅) := x and
for any k > 1, S(x, (wi)i∈[k]) := S(S(x, (wi)i∈[k−1]), wk) and (x, (wi)i∈[k]) ∈ R

iff
∧k

i=1(S(x, (wj)j∈[i−1]), wi) ∈ R. Further, we assume that M is correct, i.e.,
for (wi)i∈[k] ← M(x, k), it holds that (x, (wi)i∈[k]) ∈ R.

Example. Next, we present as an example Bitcoin’s underlying computational
problem captured as an ISP.

Construction 1. Let T be a protocol parameter representing how hard it is to
solve a problem instance.9 Then:

– Iλ is the uniform distribution over functions H : {0, 1}∗ → {0, 1}λ in some
family of hash functions H, i.e., Λ = {H};

– X = {x|x < T ∧ x ∈ {0, 1}λ} and W = {0, 1}∗ × {0, 1}λ;
– R = {(x,w)|H(H(x||m)||ctr) < T, for w = m||ctr};
– V (x,w) checks whether H(H(x||m)||ctr) < T , for w = m||ctr;
8 We could formalize S more generally, to take as input a sequence of problem state-

ments. However, for our exposition the current formulation suffices. Note, that a
more general definition would be needed for the variable difficulty case [33], which
we do not study here, where the next block’s difficulty depends on the whole chain.

9 For simplicity, in our exposition the hardness parameter for each ISP is fixed, and
we do not capture it explicitly.
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– S(x,w) = H(H(x||m)||ctr), and
– M(x, 1) tests whether V (x, (m, ctr)) is true, for different (m, ctr) pairs, until

it finds a solution. M(x, k) is defined inductively, by running successively
M(x, k − 1) and M(x′, 1), for x′ := S(x,M(x, k − 1)). The output consists of
the witnesses output by the two programs.

4.2 Technical Overview

Next, we give a complete overview of the technical results of this section regard-
ing the implementation of a transaction ledger based on non-idealized hash
functions.

First, we describe our ISP-based protocol in Sect. 4.3. The main challenge to
overcome is that while the protocol’s security is going to be based on iterated
hardness (Definition 6), it operates in a setting where the adversary can also take
advantage of the work of honest parties. This includes the adversary being able
to see the information leaked by the honestly produced blocks, as well as honest
parties directly working on the chain it is extending. In contrast, the iterated
hardness experiment does not provide any guarantees about these cases, as the
adversary does not receive any externally computed witnesses.

Towards this end, blocks in our protocol, instead of exposing the relevant
computed witness, contain a proof of knowledge (PoK) of such a valid witness
through a non-interactive zero-knowledge (NIZK) proof. At first, the fact that
we use NIZK proofs for a language that is moderately hard may seem counterin-
tuitive, due to the fact that a trivial simulator and extractor would exist for the
zero-knowledge and soundness properties, since computing a new witness for a
given statement takes polynomial time. Instead, following our general approach,
we make concrete assumptions regarding the efficiency of both the simulator and
the extractor. Informally, we require that the time it takes to simulate a proof
or extract a witness is a lot smaller than the time it takes for honest parties to
compute a witness (see Assumption 2). Note that in practice this can be achieved
by making the underlying problem hard enough, which on the flip side will affect
the performance of the resulting ledger being implemented.

Regarding chain selection, we adopt the longest-chain rule of the Bitcoin
protocol. As we will see later, this will allow our protocol to operate even if the
witnesses of the ISP are malleable. To make our analysis cleaner, the hash-chain
structure of blocks is decoupled from the underlying computational problem.

As an intermediate step, in Sect. 4.4, we present a set of ISP properties suf-
ficient to prove our protocol secure. First, an ISP is iteratively hard iff the ISP
solving algorithm takes t steps to solve k instances iteratively, and no alterna-
tive algorithm can substantially speed up this process and produce k iterative
solutions with non-negligible probability. Next, an ISP is (t, α)-successful when
the number of steps of the solving algorithm is below t with probability at least
α. The ISP is next-problem simulatable if the output of the successor algorithm
applied on a witness w corresponding to an instance x can be simulated indepen-
dently of x and the same is the case for the running time of the solver. Finally,
an ISP is witness-malleable if, given a witness w for a problem instance x, it is
possible to sample an alternative witness whose resulting distribution via the
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successor algorithm is computationally indistinguishable with the output of the
successor over a random witness produced by the solving algorithm.

Armed with the above definitions we prove in Sect. 4.5 that our novel
blockchain protocol implements a transaction ledger. We note that the main
technical difficulty of our blockchain security proof is to construct a reduction
that breaks the underlying iterated hardness assumption given a common-prefix
attack to the blockchain protocol. The reduction takes advantage of the fact that
the ISP is witness malleable and next-problem simulatable to cheaply simulate
honest parties’ work, as well as amenable to zero-knowledge proof simulation
and extraction to extract a sequence of iterated witnesses despite the fact that
the attacker may not produce consecutive blocks. After some more work, we are
able to prove the following theorem:

Theorem 3 (Informal). Assume the existence of collision-resistant hash func-
tions, a one-way trapdoor permutation and a dense cryptosystem (for the NIZK)
and a secure ISP problem with appropriate parameters, and that tA is (roughly)
less than half the total running time of honest parties per round. Then there
exists a protocol that implements a robust public transaction ledger.

Finally, in Sect. 4.6, we present a secure ISP problem assuming the existence
of a hash function that satisfies both the computational extraction and iterated
hardness properties presented in Sect. 3. The main characteristic of this new ISP
(Construction 2) is that, similarly to the Bitcoin ISP (Construction 1), it uses
a double hash, but, in contrast, it requires the inner hash value to be below the
target threshold, as opposed to the outer value. In more detail, given a problem
statement x and witnesses w1, w2, while the next problem is defined exactly as
in Bitcoin, i.e., H(H(x||w1)||w2), the witnesses are valid if H(x||w1) < T holds,
compared to H(H(x||w1)||w2) < T . This swap allows the randomness of the
outer hash witness to be freely selected by a uniform distribution. In turn, this
gives us the ability to argue that (i) due to the randomness extraction property of
the hash, the inner hash value is computationally indistinguishable from uniform
and hence the solving run-time of the ISP can be simulated independently of
the problem statement; (ii) again due to the randomness extraction property,
the outer hash value is computationally indistinguishable from uniform, and
(iii) witness malleability can be shown in a straightforward manner by choosing
another witness for the outer hash at random. Moreover, regarding the hard-
ISP property, we can take advantage of the iterative hardness of Bitcoin’s ISP
construction and the fact that Construction 2 is closely related to it. The main
idea is that if there exists an attacker against our construction, then we can
use it to break the iterative hardness property (Definition 6) by using the inner
hash witnesses in Construction 2 as an outer hash witnesses in Construction 1.
Putting everything together results in the following:

Lemmas 5 and 6 (Informal). Assume the existence of a hash function family
that is CRE and iteratively hard for appropriate parameters. Then, there exists
a secure ISP problem.

Finally, using the above results we are able to obtain Theorem 3.
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4.3 Blockchain Protocol Description

Next, we are going to describe our new protocol. Our protocol, Πnew
PL , uses

as building blocks three cryptographic primitives: An ISP I = (M,V, S), a
collision-resistant hash function family H, and a robust NIZK protocol ΠNIZK =
(q,P,V,S = (S1,S2),E) for the language10

L = {(Λ[X,W,R], x, x′)|∃w ∈ W : (x,w) ∈ R ∧ S(x,w) == x′}

where Λ[X,W,R] is an ISP instance of I. ΠNIZK also supports labels, which
we denote as a superscript on P and V. The initialization of these primitives
happens through the CRS all parties share at the start of the execution, which
contains: An instance description Λ[X,W,R], a statement xGen, the description
of a hash function H : {0, 1}∗ → {0, 1}λ and the NIZK reference string Ω, each
randomly sampled from Iλ,X,H, {0, 1}q(λ), respectively. Moreover, as in [31],
our protocol is parameterized by the chain validation predicate V(·), the chain
reading function R(·), and the input contribution function I(·) to capture higher-
level applications, e.g., Bitcoin.

Next, we introduce some notation used in the description of our protocol.
We use the terms block and chain to refer to tuples of the form 〈s,m, x, π〉 ∈
{0, 1}λ × {0, 1}∗ × X × {0, 1}poly(λ), and sequences of such tuples, respectively.
The rightmost (resp., leftmost) block of chain C is denoted by head(C) (resp.,
tail(C)). Each block contains the hash of the previous block s, a message m,
the next problem x to be solved, and a NIZK proof π. We denote by BGen =
〈0λ, 0λ, xGen, 0λ〉 a special block called the genesis block ; note that xGen is part
of the CRS. A chain C = (〈si,mi, xi, πi〉)i∈[k] is valid if: (i) The first block
of C is equal to BGen; (ii) the contents of the chain mC = (m1, . . . , mk) are
valid according to the chain validation predicate V, i.e., V(mC) is true; (iii)
si+1 = H(si||mi||xi||i)11 for all i ∈ [k], and (iv) Vsi+1((Λ, xi−1, xi), πi) is true
for all i ∈ [k]\{1}; see Algorithm 1. We call H(si||mi||xi||i) the hash of block Bi

and denote it by H(Bi), and define H(C) Δ= H(head(C)). We will consider two
valid blocks or chains as equal, if all their parts match, except possibly for the
NIZK proofs.

We proceed to describe the main function of the protocol, presented in Algo-
rithm 4. At each round, each party chooses the longest valid chain among the
ones it has received (Algorithm 2) and tries to extend it by computing a new wit-
ness. If it succeeds, it diffuses the new block to the network. In more detail, each
party will run the solver M on the problem x defined in the last block 〈s,m, x, π〉
of the chosen chain C. If it succeeds on finding a witness w, it will then compute a
NIZK proof that it knows a witness w such that (x,w) ∈ R and S(x,w) = x′, for
some x′ ∈ X. The proof should also have a label H(H(head(C))||m′||x′||(|C|+1)),
where m′ is the output of the input contribution function I(·), i.e., the message
encoded in the block; see Algorithm 3. Then, the party diffuses the extended
10 We assume that both V and S are efficiently computable. Hence, L ∈ NP.
11 We include a fixed length (λ-bit) encoding of the height of the block in the hash on

purpose. This way, the contents of the hash chain form a suffix-free code [9], which
in turn implies collision resistance. See Lemma 1.
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Algorithm 1. The validate procedure, parameterized by BGen, the hash function
H(·), the chain validation predicate V (·), and the verification algorithm V of
ΠNIZK. The input is C.

1: function validate(C)
2: b ← V(mC) ∧ (tail(C) = BGen) � mC describes the contents of chain C.
3: if b = True then � The chain is non-empty and meaningful w.r.t. V (·)
4: s′ ← H(BGen) � Compute the hash of the genesis block.
5: x′ ← xGen

6: C ← C1� � Remove the genesis from C
7: while (C �= ε ∧ b = True) do
8: 〈s, m, x, π〉 ← tail(C)
9: s′′ ← H(tail(C))

10: if (s = s′ ∧ Vs′′
(Ω, (Λ, x′, x), π)) then

11: s′ ← s′′ � Retain hash value
12: x′ ← x
13: C ← C1� � Remove the tail from C
14: else
15: b ← False
16: return (b)

chain to the network. Finally, if the party is queried by the environment, it out-
puts R(C), where C is the chain selected by the party; the chain reading function
R(·) interprets C differently depending on the higher-level application running
on top of the Bitcoin backbone protocol. We assume that all honest parties take
the same number of steps tH per round.

Algorithm 2. The function that finds the “best” chain, parameterized by func-
tion max(·). The input is {C1, . . . , Ck}.

1: function maxvalid(C1, . . . , Ck)
2: temp ← ε
3: for i = 1 to k do
4: if validate(Ci) then
5: temp ← max(C, temp)

6: return temp

In order to turn the above protocol into a protocol realizing a public transac-
tion ledger, we define functions V(·),R(·), I(·) exactly as in [31]. For completeness
we give these definitions in Table 1. We denote the new public ledger protocol
by Πnew

PL .

4.4 ISP Security Properties

Next, we present a set of ISP properties sufficient to prove our protocol secure.
Later in Sect. 4.6 we show how to instantiate them.
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Algorithm 3. The proof of work function is parameterized by the hash function
H(·), and the proving algorithm P of ΠNIZK. The input is (m′, C).

1: function pow(m′, C)
2: 〈s, m, x, π〉 ← head(C)
3: w ← M(x) � Run the honest solving algorithm of the ISP.
4: if w �= ⊥ then
5: x′ ← S(x, w) � Compute the next problem to be solved.
6: s′ ← H(s||m||x|||C|) � Compute the hash of the last block.
7: s′′ ← H(s′||m′||x′|||C| + 1) � Compute the hash of the new block.
8: π′ ← Ps′′

(Ω, (Λ, x, x′), w) � Compute the NIZK proof.
9: B ← 〈s′, m′, x′, π′〉

10: C ← CB � Extend chain
11: return C

Algorithm 4. The Bitcoin backbone protocol, parameterized by the input con-
tribution function I(·) and the chain reading function R(·).
1: C ← BGen � Initialize C to the genesis block.
2: st ← ε
3: round ← 0
4: while True do
5: C̃ ← maxvalid(C, any chain C′ found in Receive())
6: 〈st, m〉 ← I(st, C̃, round, Input(),Receive()) � Determine the m-value.
7: Cnew ← pow(m, C̃)
8: if C �= Cnew then
9: C ← Cnew

10: Diffuse(C)

11: round ← round + 1
12: if Input() contains Read then
13: write R(mC) to Output()

In the same spirit as in Boneh et al. [14]’s definition of an iterated sequen-
tial function, we can define the notion of a hard iterated search problem. Our
definition is parameterized by t, δ and k0, all functions of λ which we omit for
brevity. Unlike the former definition, we take in account the total number of
steps instead of only the sequential ones, and we require the error probability to
be negligible after at least k0 witnesses have been found instead of one. In that
sense, our notion relaxes the strict convergence criterion of [14]. Finally, note
that the adversary is allowed some precomputation time.

Definition 8. An ISP I = (V,M, S) is (t, δ, k0)-hard iff it holds that

– For λ ∈ N and for all polynomially large k ≥ k0:

Pr
Λ[X,W,R]←Iλ;

x←X

[
(wi)i∈[k] ← M(x, k) : (x, (wi)i) ∈ R

∧ StepsM (x, k) ≤ k · t

]

≥ 1 − negl(λ), and
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Table 1. The instantiation of functions V(·), R(·), I(·) for protocol Πnew
PL (I).

Content validation pre-dicate V(·) V(·) is true if its input 〈m1, . . . , m�〉 is a valid
ledger, i.e., it is in L

Chain reading function R(·) R(·) returns the contents of the chain if they
constitute a valid ledger, otherwise it is
undefined

Input contribution function I(·) I(·) returns the largest subsequence of
transactions in the input and receive registers
that constitute a valid ledger, with respect to
the contents of the chain C the party already
has, preceded by a neutral random
transaction

– for any PPT RAM A = (A1,A2), λ ∈ N, and all polynomially large k ≥ k0,
it holds that

Pr
Λ[X,W,R]←Iλ;

x←X

[
st ← A1(1λ, Λ); (wi)i∈[k] ← A2(1λ, st, x) :
(x, (wi)i) ∈ R ∧ StepsA2(st, x) < (1 − δ)k · t

]

≤ negl(λ).

The next property, has to do with establishing an upper bound t on the the
running time of the verification algorithm V . Intuitively, the product θ · t should
be a lot smaller than the number of steps tH per round available to honest
parties, to avoid resource depletion attacks.

Definition 9. An ISP I = (V,M, S) is t-verifiable iff algorithm V takes time
at most t (on all inputs).

In general, attacking an honest solver amounts to finding a certain set of
inputs over which the honest solving algorithm fails to produce witnesses suffi-
ciently fast. In order to combat this attack, we introduce the following property:
We say that an ISP I is (t, α)-successful when the probability that M12 computes
a witness in t steps is at least α.

Definition 10. An ISP I = (V,M, S) is (t, α)-successful iff for λ ∈ N,
Λ[X,W,R] ∈ Iλ, and for all x ∈ X it holds that: Pr[StepsM (x) < t] ≥ α.

The iterated hardness property (Definition 8) does not give any guarantees
regarding composition. For blockchain protocols, however, this is necessary as
many parties concurrently try to solve the same ISP. To address this issue, we
introduce the next property that ensures that learning how long it took for a wit-
ness to be computed or what the next problem defined by such witness is, does
not leak any information that could help the adversary find a witness himself.
More formally, there exists an efficient simulator whose output is computation-
ally indistinguishable from the distribution of the time it takes to compute a
witness w for some statement x and the next statement S(x,w). Note that,
crucially, the simulator does not depend on the instance description Λ or the
problem statement x, and that we consider a non-uniform distinguisher.
12 For brevity, we use M(x) instead of M(x, 1) in this section.
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Definition 11. An ISP I = (V,M, S) is t-next-problem simulatable iff there
exists a t-bounded RAM Ψ such that for any PPT RAM D, any λ ∈ N, any
z ∈ {0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any x ∈ X, it holds that

|Pr[D(1λ, z, Λ, x, (S(x, M(x)), StepsM (x))) = 1] − Pr[D(1λ, z, Λ, x, Ψ(1λ)) = 1]| ≤ negl(λ).

The next property has to do with a party’s ability to “cheaply” compute
witnesses for a statement, if it already knows one. This will be important to
ensure that even if the adversary has external help to produce some of the
witnesses needed by the hard ISP experiment, as is the case for blockchain
protocols, still the overall process remains hard with respect to the number of
consecutive blocks the adversary actually produced. We call this ISP property
witness malleability.

Definition 12. An ISP I = (V,M, S) is t-witness malleable iff there exists
a t-bounded RAM Φ such that for any PPT RAM D, any λ ∈ N, any
z ∈ {0, 1}poly(λ), any Λ[X,W,R] ∈ Iλ, and any (x,w) ∈ R, it holds that
(x, Φ(x,w)) ∈ R, and

|Pr[D(1λ, z, Λ, x, w, S(x, Φ(x, w))) = 1] − Pr[D(1λ, z, Λ, x, w, S(x, M(x))) = 1]| ≤ negl(λ).

Finally, we call an ISP that satisfies all the above properties secure.

Definition 13. An ISP I = (V,M, S) is (tver, tsucc, α, tnps, tmal, thard, δhard, khard)-
secure iff it is tver-verifiable, (tsucc, α)-successful, tnps-next-problem simulatable,
tmal-witness malleable, and (thard, δhard, khard)-hard.

An ISP scheme with trivial parameters is of limited use in a distributed
environment; for example, if δhard � 1 or thard � tver. Hence, next we describe
the parameters’ ranges that make for a non-trivial secure ISP. First off, and
ignoring negligible terms, one can show that α ≤ tsucc

(1−δhard)thard
(see Lemma 4).

On the other hand, the successful property always holds for α = 0. Therefore,
for a non-trivial ISP scheme it should hold that α is close to tsucc

(1−δhard)thard
. To

avoid denial of service attacks, θ · tver must be sufficiently small compared to
thard, the running time of the solving algorithm M . Furthermore, tmal should
be a lot smaller than thard, otherwise M can be used as a trivial simulator. We
note, that the security of the protocol that we presented earlier relies on the fact
that a secure ISP scheme with favorable parameters exists, mainly reflected in
Assumption 2 (Sect.4.5).

4.5 Security of the ISP-based Blockchain Protocol

In this subsection we prove that Πnew
PL implements a robust public transaction

ledger (cf. Definition 3), assuming the underlying ISP I is secure.

Security Proof of the ISP-based Protocol. We proceed to the main part
of the protocol analysis. The first assumption we are going to make is that the
underlying ISP I is secure, and that the runtimes of the procedures of the NIZK
system are upper bounded.
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Table 2. The parameters in our analysis: λ, n, t, tH, tA, t′
H, t′

A, θ, khard are in N,
α, f, γ, β, δ, δSteps, δISP are in R.

λ : security parameter
n : number of parties
t : number of parties corrupted
tH : number of steps per round per honest party
tA : total number of adversarial steps per round
t′H : lower bound on number of steps running M per round per honest party
t′A : round simulation cost, excluding honest calls to M

θ : upper bound on the number of messages sent by the adversary per round
β : upper bound on the rate at which the adversary computes witnesses per step
α : probability that M outputs a witness after t′H steps
f : probability that at least one party computes a block in a round
γ : probability that exactly one party computes a block in a round
δ : upper bound on the total block generation rate
δSteps :honest parties’ advantage on number of steps
δISP : adversary’s advantage on ISP witnesses computation rate
khard : convergence parameter of ISP hardness

Assumption 1 (ISP Assumption). For parameters tver, t
′
H, α, tnps, tmal, thard,

δhard, khard, tP, tV, tS, and tE we assume that:

– ISP I is (tver, t′H, α, tnps, tmal, thard, δhard, khard)-secure;13
– running the prover (resp., verifier, simulator, extractor) of ΠNIZK takes tP

(resp. tV, tS, tE) steps.

Next, we introduce some additional notation necessary to formalize our sec-
ond assumption that has to do with the computational power of the honest
parties and the adversary. For brevity, and to better connect our analysis to pre-
vious work [31,36,49], we denote by β = ((1−δhard)·thard)−1, the upper bound on
the rate at which the adversary can compute witnesses in the iterated hardness
game. We introduce two variables, t′H and t′A, that have to do with the effective-
ness of honest parties and the adversary in producing witnesses for I. t′H is a
lower bound on the number of steps each honest party takes per round running
M . It holds that in any round at least n − t parties will run M for at least t′H
steps. t′A denotes the maximum time needed by a RAM machine to simulate the
adversary, the environment and the honest parties in one round of the protocol
execution, without taking into account calls made to M by the latter, and with
the addition of one invocation of the NIZK extractor. They amount to:

t′A = tA + θ · tV + tE + n(tbb + tnps + tmal + tS) and t′H = tH − tbb − θtV − tP,

where tbb (bb for backbone) is an upper bound on the number of steps needed
to run the code of an honest party in one round besides the calls to M,P,V
(Table 2).
13 t′

H is related to our model and we formally define it in the next paragraph.
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We are now ready to state our main computational assumption regarding
the honest parties and the adversary. Besides assuming that the total number of
steps the honest parties take per round exceed those of the adversary, and that
the total block generation rate is bounded, we have to additionally assume that
the efficiency of the solving algorithm M used by honest parties is comparable to
that of the adversary; i.e, as explained earlier, α should be comparable to βt′H,
otherwise the adversary will be able to compute long chains of blocks fast and
break the security of the protocol. The observation we just made, corresponds
to the first condition in our formalization, which we present next. To avoid
confusion, we cast most of our analysis based on the δ parameter. Furthermore,
note that under optimal conditions – i.e., δISP close to 0 and tP, tV, tE, tS, tnps, tmal

a lot smaller than tH – our assumption allows for an adversary that controls up
to 1/3 of the total computational power available (vs. 1/2 in the RO model).

Assumption 2. There exist δISP, δSteps and δ ∈ (0, 1), such that for sufficiently
large λ ∈ N:

– α ≥ (1 − δISP)βt′H > negl(λ) (ISP generation gap)
– (n − t)t′H(1 − δSteps) ≥ 2 · t′A (steps gap)
– δSteps−δISP

2 ≥ δ > β(t′A + ntH) (bounded block generation rate)

Next, we focus on structural properties of blockchains in our protocol. We
follow a similar approach to [36] based on a collisions resistant hash function.
Observe that the hash structure of any blockchain in our protocol is similar to
the Merkle-Damgard transform [24], defined as:

MD(IV, (xi)i∈[m]) : z = IV ; for i = 1 to m do z = H(z||xi); return z,

where H is the hash function described in the CRS, and IV is set to BGen.
Based on this observation, as in [36], we can show that no efficient adversary can
find distinct chains with the same hash value, as this would result to finding a
collision on the underlying hash function. Due to space limitations we point to
the full version of the paper for the proof.

Lemma 1. Let H be a collision-resistant hash function family. The probability
that any PPT RAM A, given BGen, can find two distinct valid chains C1, C2 such
that H(C1) = H(C2), is negligible in λ.

Lemma 1 implies that insertion and copy properties14 of [31], that have to do
with the way blocks are connected, do not occur with overwhelming probability
in λ.

Definition 14. An insertion occurs when, given a chain C with two consecutive
blocks B and B0, a block B∗ created after B0 is such that B,B∗, B0 form three
consecutive blocks of a valid chain. A copy occurs if the same block exists in two
different positions.
14 A third property, called “prediction,” also introduced in [31], is not needed in our

proof as it is captured by the fact that the ISP is hard even in the presence of
adversarial precomputation.
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Corollary 1. Let H be a collision-resistant hash function family. Then, for any
PPT A,Z no insertions or copies occur in viewt,n

Πnew
PL ,A,Z with probability 1 −

negl(λ).

We proceed to the main part of the analysis. First, we introduce some useful
notation. For each round j, we define the Boolean random variables Xj and Yj

as follows. Let Xj = 1 if and only if j was a successful round, i.e., at least one
honest party computed a witness at round j, and let Yj = 1 if and only if j was
a uniquely successful round, i.e., exactly one honest party computed a witness at
round j. With respect to a set of rounds R, let X(R) =

∑
j∈R Xj and define

Y (R) similarly.
Moreover, with respect to some block B computed by an honest party P at

some round r, let ZP
r (R) denote the maximum number of distinct blocks diffused

by the adversary during R that have B as their ancestor and lie on the same
chain; note that honest parties compute at most one block per round. If P is
corrupted or did not compute any block at r, let ZP

r (R) = 0. We extend the
definition of random variable X(R) to XP

r (R) similarly.
An important part of our analysis will be to establish lower and upper bounds

for these random variables. First, in Lemma 3 we will show that the rate at which
the adversary produces witnesses is upper bounded by β · t′A. Then, in Lemma 4
we prove that the expected rate of successful and uniquely successful rounds is
lower bounded by f and γ, respectively, both defined below:

f = 1 − (1 − α)n−t and γ = (n − t) · α · (1 − βtH)n−1

Finally, for our analysis to go through, γ should be twice as big as β · t′A. As we
demonstrate next, this follows from the fact that in Assumption 2 the honest
parties take at least double the steps the adversary takes per round.

Lemma 2. Assume an ISP that complies with Assumptions 1 and 2. It holds
that γ ≥ 2(1 + δ)βt′A.

Proof. For γ it holds that:

γ =(n − t) · α · (1 − βtH)n−1 ≥ (n − t) · α · (1 − βtHn)

≥(n − t) · (1 − δISP) · βt′H · (1 − δ) ≥ (1 − δISP)(1 − δ)
(1 − δSteps)

· 2 · βt′A ≥ 2(1 + δ)βt′A

where we have first used Bernouli’s inequality, and then the three conditions
from Assumption 2. The last inequality follows from the fact that δSteps−δISP

2 ≥ δ.
��

As promised, we prove next that the adversary cannot mine blocks extending
a single chain, with rate and probability better than that of breaking the iterative
hardness property. Due to space limitations we only give a proof sketch, and point
to the full version of the paper for the proof.

Lemma 3. For any set of consecutive rounds R, where |R| ≥ khard/βt′A, for any
party P , and any round i ∈ R, the probability that ZP

i (R) ≥ βt′A|R| is negl(λ).
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(Proof Sketch.). W.l.o.g., let i be the first round of R = {i′|i ≤ i′ < i + s}, and
let E be the event where in viewt,n

Πnew
PL ,A,Z party P at round i mined a block B,

and the adversary mined at least βt′As blocks until round i+s that extend B and
are part of a single chain. For the sake of contradiction, assume that the lemma
does not hold, and thus Pr[E] is non-negligible. Using A, we will construct an
adversary A′ = (A′

1,A′
2) that breaks the iterative hardness (Definition 8) of I

with non-negligible probability.
A′ is going to run internally A and Z, while at the same time simulating

the work honest parties do using the NIZK proof simulator. Moreover, A′ is
also going to use the witness malleability property, to trick A to produce blocks
in a sequence, instead of interleaved adversarial and (simulated) honest blocks.
Finally, using the NIZK extractor, A′ is going to extract the witnesses from the
adversarial blocks, and win the iterative hardness game. By a hybrid argument,
we can show that the view of A,Z is indistinguishable both in the real and the
simulated run, and thus the probability that E happens will be the same in both
cases, i.e., non-negligible.

We can do exactly the same reduction without simulating honest parties’
work. Then, the total running time of the second stage of A′ is s · (t′A + nt′H)-
bounded. Hence, we can derive the following bound on the longest chain that
can be produced by both honest and malicious parties during a certain number
of rounds.

Corollary 2. For any set of consecutive rounds R, where |R| ≥ khard/β(t′A +
nt′H), for any party P , and any round i ∈ R, the probability that ZP

i (R) +
XP

i (R) ≥ β(t′A + nt′H) · |R| is negl(λ).

Next, we prove lower bounds on the rate of successful and uniquely successful
rounds. In our proof we are going to take advantage of the next-problem simulat-
able property of I and the zero-knowledge property of the robust NIZK we are
using. The main idea is to first use these two properties and similar arguments
as in Lemma 3 to construct an “ideal” execution where: (i) honest parties’ behav-
ior is efficiently simulated using Ψ , and (ii) is computationally indistinguishable
from the “real” execution. Then, since the outputs of different invocations of
the runtime simulator Ψ(1λ) are independent, it will be much easier to estab-
lish lower bounds for X(·) and Y (·) in the ideal execution. Finally, due to the
fact that the two executions are computationally indistinguishable, and the exe-
cution properties we examine can be efficiently checked, it will follow that the
same bounds should also hold for the real execution with negligible difference in
probability. Due to space limitations we point to the full version of the paper for
the proof.

Lemma 4. For any set of consecutive rounds R, with |R| ≥ λ/γδ2, the following
two events occur with negligible probability in λ:

– the number of uniquely successful rounds in R is less or equal to (1− δ
4 )γ · |R|;

– the number of successful rounds in R is less or equal to (1 − δ
4 )f · |R|.
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Following the strategy of [31], we are now ready to define the set of typical
executions for this setting.

Definition 15 (Typical execution). An execution is typical if and only if
λ ≥ 9/δ and for any set R of consecutive rounds with |R| ≥ max{4khard, λ}/γδ2,
the following hold:

1. Y (R) > (1 − δ
4 )γ|R| and X(R) > (1 − δ

4 )f |R|;
2. for any party P , any round i ∈ R: ZP

i (R) < γ
2(1+δ) ·|R| and ZP

i (R)+XP
i (R) <

β(t′A + nt′H) · |R| ; and
3. no insertions and no copies occurred.

Theorem 1. An execution is typical with probability 1 − negl(λ).

Having established that typical rounds happen with overwhelming probability,
the rest of the proof follows closely that of [31]. The only difference is that to
prove the corresponding common-prefix lemma, although we can match blocks
mined in uniquely successful rounds to adversarial blocks in one of the two chains
that constitute the fork, the typicality of the execution only provides a bound on
the maximum number of blocks in a single chain. Hence, only half of the blocks
matched must outnumber the uniquely successful rounds in this interval, which
is also the reason why our proof only works with an adversary controlling up to
1/3 of the parties. Due to space limitations we point to the full version of the
paper for the details.

Next, we state our theorem. Note that both Consistency and Liveness depend
on the convergence parameter khard of I.

Theorem 2. Assuming the existence of a collision-resistant hash function fam-
ily, a one-way trapdoor permutation and a dense cryptosystem (for the NIZK),
and a secure ISP problem I that comply with Assumptions 1 and 2, proto-
col Πnew

PL implements a robust public transaction ledger with parameters k =
max{4khard, λ}/γδ and u = 2k/(1 − δ

4 )f , except with negligible probability in λ.

4.6 Realizing ISPs from Non-idealized Hash Functions

Next, we present a secure ISP problem assuming the existence of a hash function
that satisfies both the computational extraction and iterated hardness properties
presented in Sect. 3.

Construction 2. Let H be a hash function family as in Definitions 5 and 6. Let
T ∈ {0, 1}λ be a hardness parameter. An instance of a secure ISP is as follows:

– Iλ is the uniform distribution over K(λ), i.e., Λ = {k};
– X = {0, 1}λ,W = {0, 1}2(d−1)λ;
– R = {(x,w)|Hk(x||w1) < T for w = w1||w2};
– M(x, 1) iteratively samples w1 from U(d−1)λ, and tests whether Hk(x||w1) <

T , until it finds a solution. It then samples a uniformly random w2 from
U(d−1)λ, and outputs w1||w2.

– S(x,w) = Hk(Hk(x||w1)||w2), for w = w1||w2.
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Construction 2 is similar to Bitcoin’s ISP construction (see Sect. 4.1, Con-
struction 1), with the following differences:

1. In our construction Hk(x||w1) is required to be smaller than the hardness
parameter T , while in Bitcoin Hk(Hk(x||w1)||w2) is expected to be small,
where w1 is the hash of some message. This change allows a party who already
knows a witness (w1, w2) for some statement, to produce a new one by chang-
ing w2 arbitrarily.

2. Each time M tests a new possible witness, w1 is sampled randomly, instead
of just being increased by one, as in Bitcoin. This will help us later on to
argue that each test succeeds with probability proportional to T .

Obviously, if used in “native” Bitcoin this construction is totally insecure, as
by the time an honest party publishes a block, anyone can compute another valid
block with minimal effort. However, it is good enough for our new protocol, where
the witnesses are not exposed, and thus only a party who knows a witness can
generate new witnesses for free. Next, we argue the security of the construction.

Assuming H is a computational randomness extractor is sufficient for the
security properties that make up a secure ISP, besides hardness, to be satisfied.
First, the fact that Hk(x||w1) is computationally indistinguishable from uniform,
for any x ∈ X, implies that the runtime and the output of M are computation-
ally indistinguishable from a process that sampled repeatedly a uniform value
from {0, 1}λ until it finds one that is smaller than T . This in turn implies that
the runtime distribution of M is indistinguishable from the geometric distri-
bution with parameter T/2λ, and thus the successful ISP property is satisfied.
Further, since w2 is also chosen uniformly at random, we can show that a sim-
ulator that samples a random value from Uλ and the geometric distribution,
satisfies the next-problem simulatability property. Finally, by resampling a new
w2 uniformly at random, an admissible witness is produced, and the witness
malleability property follows. Thus, we are able to state the following lemma.
Due to space limitations we point to the full version of the paper for the proof.

Lemma 5. If H is a CRE hash family (Definition 5), then Construction 2
is O(λ)-next-problem simulatable, O(λ)-witness malleable, and (t, CT/2λ(O(t)))-
successful for any t ∈ poly(λ), where CT/2λ is the cumulative geometric distribu-
tion with parameter T/2λ.

Regarding the hard-ISP property, we are going to take advantage of the iter-
ative hardness of Bitcoin’s ISP construction and the fact that Construction 2 is
closely related to it. The main idea is that if there exists an attacker against our
construction, then we can use it to break the iterative hardness property (Def-
inition 6). In more detail, given as input a statement x, the iterated hardness
attacker runs the attacker of our construction with input H(x||w), where w is
sampled at random. It is easy to see that if ((w1, w

′
1), . . . , (wm, w′

m)) are the wit-
nesses it is going to produce, then ((w,w1), (w′

1, w2), . . . , (w′
m−1, wm)) are valid

witnesses for Construction 1, and also against the iterative hardness property.
The following lemma highlights this relation. Due to space limitations we point
to the full version of the paper for the proof.
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Lemma 6. Assume Construction 2 is based on a hash family H that is CRE
and t-iteratively hard. Then, for some polynomial k0(·), any σ ∈ (0, 1) and t′ =

2λ

(1−σ)T , Construction 2 is (t′, 1 − t′/t, k0)-hard.

Due to Theorem 2 and the previous two lemmas, we can implement a ledger
assuming the existence of a robust NIZK, a hash family that is collision-resistant,
another hash function family that is both CRE and iteratively hard for appro-
priate parameters, and that the adversary controls less than a third of the total
computational power. The following theorem holds.15 Due to space limitations
we point to the full version of the paper for the proof.

Theorem 3. Assuming the existence of collision-resistant hash functions, a
hash function family that is CRE and thard-iteratively hard, a one-way trap-
door permutation and a dense cryptosystem (for the NIZK), and that for
some δSteps ∈ (0, 1), sufficiently large λ ∈ N, and T equal to �2λ ·
min{ ln((1−δ2

Steps/4)−1)

t′
H

,
δSteps/4

(t′
A+nt′

H)(1+δSteps/2)}� it holds that :

– thard ≥ (1 + δSteps/2)−1 · 2λ

T ; and
– 2 · t′A ≤ (1 − δSteps) · (n − t)t′H

protocol Πnew
PL based on Construction 2 implements a robust public transaction

ledger, except with negligible probability in λ.

A Cryptographic Primitives and Building Blocks

In this section we provide formal definitions for additional cryptographic primi-
tives used throughout the paper.

Randomness Extractors. We make use of the notion of weak computational
randomness extractors, as formalized in [22].

Definition 16. An extractor is a family of functions Ext = {Extλ : {0, 1}n(λ) ×
{0, 1}d(λ) → {0, 1}m(λ)}λ∈N, where n(·), d(·) and m(·) are polynomials. The
extractor is called weak k(·)-computational if Extλ is PPT, and for all efficiently
samplable probability ensembles {Xλ}λ with min-entropy k(λ):

(Extλ(Xλ, Ud(λ)))λ∈N

c≈ (Um(λ))λ∈N

where computational indistinguishability is defined w.r.t. a non-uniform distin-
guisher.

Robust Non-interactive Zero-Knowledge. We make use of the following
composable notion of non-interactive zero-knowledge, introduced in [52].
15 For simplicity, we assume that the cost in computational steps of evaluating H, and

the hidden constant in the successful property of Lemma 5 are both 1. The theorem
can be easily generalized for arbitrary costs.
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Definition 17. Given an NP relation R, let L = {x : ∃w s.t. R(x,w) = 1}.
Π = (q,P,V,S = (S1,S2),E) is a robust NIZK argument for L, if P,V,S,E ∈
PPT and q(·) is a polynomial such that the following conditions hold:

1. Completeness. For all x ∈ L of length λ, all w such that R(x,w) = 1, and all
Ω ∈ {0, 1}q(λ), V(Ω, x,P(Ω,w, x))] = 1.

2. Multi-theorem zero-knowledge. For all PPT adversaries A, we have that
Real(λ) ≈ Sim(λ), where

Real(λ) = {Ω ← {0, 1}q(λ); out ← AP(Ω,·,·)(Ω);Output out},

Sim(λ) = {(Ω, tk) ← S1(1λ); out ← AS′
2(Ω,·,·,tk)(Ω);Output out},

and S′
2(Ω, x,w, tk)

def
= S2(Ω, x, tk) if (x,w) ∈ R, and outputs failure if

(x,w) �∈ R.
3. Extractability. There exists a PPT algorithm E such that, for all PPT A,

Pr

[
(Ω, tk) ← S1(1

λ); (x, π) ← AS2(Ω,·,tk)(Ω); w ← E(Ω, (x, π), tk) :

R(x, w) �= 1 ∧ (x, π) �∈ Q ∧ V(Ω, x, π) = 1

]
≤ negl(λ)

where Q contains the successful pairs (xi, πi) that A has queried to S2.

As in [28], we also require that the proof system supports labels. That is, algo-
rithms P,V,S,E take as input a label φ, and the completeness, zero-knowledge
and extractability properties are updated accordingly. This can be achieved by
adding the label φ to the statement x. In particular, we write Pφ(Ω, x,w) and
Vφ(Ω, x, π) for the prover and the verifier, and Sφ

2 (Ω, x, tk) and Eφ(Ω, (x, π), tk)
for the simulator and the extractor.

Theorem 4. ([52]). Assuming trapdoor permutations and a dense cryptosystem
exist, robust NIZK arguments exist for all languages in NP.

B Iterated Hardness is Necessary

In this section, we demonstrate that an attack against iterated hardness implies
an attack against the Bitcoin protocol, assuming the underlying hash function
is collision-resistant and CRE (Definition 5). We phrase our attack against an
abstraction of the Bitcoin protocol which appeared in [31], from which it is
straightforward to extract a version of the protocol for our model. The main
idea of the attack, is that if the hash function is CRE and not iteratively hard
for appropriate parameters, then while honest parties’ chains will grow at a fixed
rate due to the CRE property, Bitcoin protocol’s adversary can use the iterated
hardness adversary to quickly produce a longer chain and break consistency. Due
to space limitations we point to the full version of the paper for the proof.

Theorem 5. Let n, t, tH, tA such that tA = c · (n − t)tH, for some c ∈ (0, 1).
If H is collision-resistant and CRE, and the Bitcoin protocol from [31] satisfies
Consistency with parameter k, then H is c

2 · (n−t)tH
(1−T/2λ)(n−t)tH -iteratively hard, for

any polynomial k.



318 J. A. Garay et al.

As expected, as the computational power of the adversary decreases, the
iteratively hard hash function needs to be less secure.
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Abstract. Blockchain protocols based on variations of the longest-
chain rule—whether following the proof-of-work paradigm or one of its
alternatives—suffer from a fundamental latency barrier. This arises from
the need to collect a sufficient number of blocks on top of a transaction-
bearing block to guarantee the transaction’s stability while limiting
the rate at which blocks can be created in order to prevent security-
threatening forks. Our main result is a black-box security-amplifying
combiner based on parallel composition of m blockchains that achieves
Θ(m)-fold security amplification for conflict-free transactions or, equiv-
alently, Θ(m)-fold reduction in latency. Our construction breaks the
latency barrier to achieve, for the first time, a ledger based purely
on Nakamoto longest-chain consensus guaranteeing worst-case constant-
time settlement for conflict-free transactions: settlement can be acceler-
ated to a constant multiple of block propagation time with negligible
error.

Operationally, our construction shows how to view any family of
blockchains as a unified, virtual ledger without requiring any coordi-
nation among the chains or any new protocol metadata. Users of the
system have the option to inject a transaction into a single constituent
blockchain or—if they desire accelerated settlement—all of the con-
stituent blockchains. Our presentation and proofs introduce a new formal-
ism for reasoning about blockchains, the dynamic ledger, and articulate
our constructions as transformations of dynamic ledgers that amplify
security. We also illustrate the versatility of this formalism by presenting
robust-combiner constructions for blockchains that can protect against
complete adversarial control of a minority of a family of blockchains.

1 Introduction

Since the appearance of Bitcoin [33] in 2009, dozens of projects from both
academia and industry have proposed protocols for maintaining decentralized,
robust transaction ledgers in a permissionless setting. The prominent design
paradigm in this space comes from the Bitcoin protocol itself, often referred to
as “Nakamoto-style” ledger consensus. This approach adopts the blockchain—a
linearly ordered sequence of blocks, each of which commits to the previous history
and may contain new transactions—as the fundamental data structure for main-
taining the ledger. The core consensus algorithm then calls for eligible protocol
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participants to create transaction-bearing blocks, append them to the longest
chain they observe, and broadcast the result; this implicitly declares a “vote”
for a unique ordered sequence of past transactions—the ledger. As a result, the
immutability of a particular portion of the ledger is not immediate, but rather
grows gradually with the number of blocks (representing votes) amassed on top
of it in the blockchain. This paradigm has been featured in both theoretical pro-
posals as well as deployed systems and can be instantiated with a wide variety
of Sybil-resistant mechanisms such as proof of work (Bitcoin, Ethereum [7] and
a vast majority of deployed blockchains), proof of stake [2,3,11,12,24], proof of
space [10,34], and others.

In terms of performance, one of the key measures of interest for any dis-
tributed ledger protocol is latency, also called settlement time. Roughly speaking,
this is the time elapsed between the moment a signed transaction is injected into
the protocol and the time it becomes universally recognized as immutable. While
Nakamoto-style consensus protocols have attracted attention both for their sim-
plicity and for various desirable security features,1 they appear to face a funda-
mental barrier when it comes to latency. Informally, for a transaction to become
accepted as stable, a sufficient number of blocks (representing an agreement over
a representative fraction of the parties, weighted according to the Sybil-resistant
mechanism in place) must be collected on top of the block containing this trans-
action. However, blocks can only be created at a limited rate dictated by the
delays introduced by the underlying communication network: if blocks are rou-
tinely created by participants that have not yet received recent previous blocks,
forks in the blockchain appear even without adversarial interference. These forks
then result in a division of the honest majority and represent a threat to the
protocol’s security. This relationship is now quite well understood [35].

One way to address this disadvantage without giving up on the Nakamoto
paradigm (and its advantages) is to carefully design overlay structures on top
of the plain Nakamoto-style blockchain. Several such proposals exist, and can
be roughly split into two categories. The first group of proposals (e.g., [27,36,
38]) still produces a full ledger of all settled transactions, but relies on stronger
assumptions for their latency improvement, such as a higher threshold of honest
participants. The second category are so-called layer-2 designs implementing
payment [14,41] or state [15] channels that only need limited interaction with
the slow blockchain; however, they divert from the original goal of maintaining a
distributed ledger of all executed transactions. Hence, the following fundamental
question remains:

What is the fastest achievable settlement time forNakamoto-style consensus?

This question has also been recently addressed by elegant concurrent work on
the Prism protocol [5], albeit with somewhat different goals; we give a detailed
comparison between our work and [5] in Sect. 1.2.

1 For example, they can provide security in the Byzantine setting with simple honest
majority [9,36,38], and resilience against fluctuating participation [2,37].



324 M. Fitzi et al.

1.1 Our Contributions

We approach the challenge of designing low-latency ledgers by introducing a
black-box technique for “combining” a family of existing ledgers into a new, vir-
tual ledger that provides amplified security properties. Our technique results in
a system with striking simplicity: The construction gives a deterministic rule
for interpreting an arbitrary family of m constituent ledgers as a single virtual
ledger. Participants of the system maintain their current view of each constituent
ledger and, via this interpretation, a view of the master combined ledger. Users
simply inject their transactions into the constituent ledgers as usual. We show
that when users inject transactions into a single constituent ledger they are pro-
vided with settlement guarantees (in the virtual ledger) roughly consistent with
those offered by the constituent ledgers. On the other hand, when a conflict-free
transaction is injected into all of the constituent ledgers, it enjoys a 1/Θ(m)
multiplicative improvement in settlement time. Of course, settlement time can-
not be reduced beyond the time required for a block to be transmitted across
the network; however, our results adapt smoothly to this limit; in particular,
by taking m to scale with the security parameter of the system, we obtain O(1)
settlement time for conflict-free transactions (except with negligible probability).
We remark that in cryptocurrency ledgers, such as Bitcoin, transaction issuers
always have the option to submit conflict-free transactions so that the assump-
tion is not a limitation. While the results do not require any specific coordination
among the ledgers, they naturally require a measure of stochastic independence;
we discuss this in detail below.

We present our results by formulating an abstract notion which we call a
dynamic ledger. Our constructions transform a family of such dynamic ledgers
into an associated dynamic ledger (as indicated above) in a way that amplifies
the security properties. Typical blockchain algorithms are direct instantiations
of this abstraction: our techniques can thus be applied in wide generality to
existing blockchains such Bitcoin, Ethereum, Ouroboros, etc.

Such a transformation is a “combiner” in the classical cryptographic sense of
the word: an operator for cryptographic primitives that acts in a black-box man-
ner on a number of underlying implementations of a primitive with the objective
of realizing a strengthened implementation of the same primitive. This folklore
idea in cryptography first received an explicit treatment by Herzberg [23]. One of
the objectives for developing combiners—especially prominent in the context of
hash functions—was the concept of robustness. In particular, a robust combiner
maintains the security of the combined implementation despite the security fail-
ure of any number (up to a threshold) of the underlying input implementations.
Another objective for developing combiners is amplification: In an amplification
combiner, the goal is to improve a certain security property of the combined
implementation to a level that goes significantly beyond the security offered by
the underlying input implementations. The combiner discussed above is of the
amplification variety; later in the paper, we also show how to achieve robustness
in our setting.

With this summary behind us, we describe our contributions in more detail.
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A Model for Abstract Ledgers. We provide a new mathematical abstraction
of a distributed ledger that can be used to reflect an arbitrary ledger protocol,
but is particularly well-suited for describing Nakamoto-style blockchains with
eventual-consensus behavior (regardless of their underlying Sybil-resistant elec-
tion mechanism). Its main design goals are generality and simplicity, so as to
allow for a clean study of generic constructions with such ledgers that is unen-
cumbered by the execution details of the underlying protocols.

Roughly speaking, our abstraction—called a dynamic ledger—determines at
every point in time (i) a set of transactions that are contained in the ledger;
and (ii) a mapping that assigns to each transaction a real value called its rank.
The rank plays several roles: it is used to order the transactions in the ledger,
describe their stability, and maintain a loose connection to actual time; the most
natural example of a rank is the timestamp of the transaction’s block in Bitcoin.
(In fact, a simple monotonicity transform is necessary; see Sect. 4.2.)

A dynamic ledger satisfies three fundamental properties: liveness, absolute
persistence, and relative persistence. The former two properties are direct ana-
logues of the well-established notions of persistence and liveness introduced by
previous formalizations of blockchain protocols; the notion of relative persistence
is novel. In a nutshell, it is a weakening of absolute persistence that guarantees
that the rank of a transaction cannot significantly change in the future; in par-
ticular the relative order of the transaction with respect to sufficiently distant
transactions is determined. This is particularly useful for reasoning about trans-
action settlement in the typical setting of interest: when transaction validity
depends only on its ordering with respect to conflicting transactions. Looking
ahead, relative persistence is exactly the notion that allows us to achieve the full
benefits of our amplification combiner; it appears to be of independent interest
as well, as it also arises naturally in our robust combiner.

A Combiner for Consistency Amplification and Latency Reduction;
the Combined Rank Function. Our main technical contribution, discussed
briefly above, is an amplification combiner for latency reduction of abstract
ledgers. This combiner builds a “combined ledger” (or virtual ledger) as a deter-
ministic function of m underlying dynamic ledgers. Participants insert their
transaction into any number of the underlying ledgers, depending on the desired
settlement-time guarantees.

The major challenge is the definition and analysis of the combiner rank func-
tion. Rank is an abstract notion of position in the ledger that is tethered to
absolute time by the security guarantees: for example, in a ledger at time T the
probability that a transaction appearing at rank r is later disrupted is a func-
tion of T − r; the standard case, where the underlying ledgers provide “linear
consistency,” guarantees consistency error exp(−Ω(T − r)). Note that, in gen-
eral, there is no guarantee that transactions will appear in all underlying ledgers
so the combined rank function must somehow assign rank in a fashion that
appropriately reflects both deep transactions appearing in a single ledger and
shallower transactions appearing in many ledgers. This state of affairs introduces
two conflicting goals: in order to achieve linear amplification we insist that when
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a transaction appears in all m ledgers, our constructed ledger yields settlement
error exp(−Ω(m(T − r)))—note the factor of m in the exponent; on the other
hand, a transaction appearing in a single ledger will be assigned some finite
rank and thus for large values of T we cannot hope to beat exp(−Ω(T − r)),
the consistency guarantee of a single ledger. To realize this, our construction
(and combined rank function) is determined by a parameter L which, intuitively,
determines the transition between these two regimes. One should think of L pro-
portional to the security parameter of the system, so that 2−Θ(L) is an acceptable
bound for undesirable events; thus, injecting a transaction into all the ledgers
achieves this 2−Θ(L) security bound Θ(m) times faster than transactions submit-
ted to a single ledger.

It is a rather remarkable fact that the behavior we demand is provided by
the exponential weighting functions that arise naturally in the theory of regret
minimization (e.g., the multiplicative weights algorithm [1]). The actual form of
our combined rank function is

exp(−combinedRank(tx)/L) =
1
m

m∑

i=1

exp(−ranki(tx)/L).

The (log scale) consistency error achieved by this rank function, when coupled
with underlying ledgers that offer linear consistency, is informally illustrated by
the blue line in the figure below. The solid black line is the consistency error
offered by the underlying ledgers; one can clearly see the region of rapid growth
(prior to L) followed by the region where the slope stabilizes to that of the
single ledger bounds, as it must. The dotted line has slope exactly m times that
of the “single ledger” line, corresponding intuitively to “perfect amplification.”
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We analyze two extreme scenarios and show that
while insertion of a transaction into a single ledger
leads to a settlement time comparable to the one
provided by the underlying ledgers, inserting the
transaction into all m ledgers results in a speed-
up by a linear factor Θ(m). In the natural setting
where there is a cost associated with including a
transaction in each ledger, we emphasize that the
construction yields a trade-off between transaction
fee and settlement time: transactions appearing in
more chains settle faster. The choice can be made on a per-transaction basis by
its sender. Moreover, by considering a sufficient number of parallel chains m, this
allows us to achieve relative settlement in constant time except with negligible
error.

Clearly, amplification-type results can only be obtained under some sort of
independence assumption on the underlying ledgers. We characterize a generic
(black-box) assumption, called subindependence, which is weaker than full inde-
pendence of the ledgers and sufficient for our results. We also show how subinde-
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pendence can be naturally achieved by existing techniques in both proof-of-work
and proof-of-stake settings; details appear in Sect. 4.1.

Our construction does not require any coordination between the underlying
ledgers, it can be deployed on top of existing blockchains without direct coop-
eration from parties maintaining the ledgers, so long as these ledgers maintain
their persistence and liveness guarantees, are sufficiently independent, and allow
for inclusion of a sufficiently general class of transaction data.

Finally, we show how our construction can be applied to the most familiar
setting of proof-of-work (PoW) blockchains. Specifically, applying our combiner
to m = λ PoW blockchains yields a construction C providing constant-time rela-
tive settlement except with probability negligible in λ, articulated in Theorem 1
below. For concreteness, we work in the synchronous (p, q)-flat PoW model that
assumes the existence of n parties, each of which is allowed to issue q PoW
queries per round that independently succeed with probability p (see, e.g., [20]
for details).

Theorem 1 (Informal). Let ε > 0 and let λ denote the security parameter.
There exists a construction C that, if executed in the synchronous (p, q)-flat PoW
model with n parties out of which at least a (1/2+ε)-fraction is honest, achieves
relative settlement in time O(1) except with an error probability negligible in λ.

Hidden in the asymptotic description above is the dependence of p, q, and n
on the security parameter λ which must in fact satisfy some natural conditions.
We give a formal statement corresponding to Theorem 1, together with a precise
description of the construction C, as Corollary 7 in Sect. 4.3.

A simplified illustration of the settlement speed-up provided by our construc-
tion is given in the Appendix of the full paper [17].

A Robust Ledger Combiner. As our final contribution, we describe a class of
constructions of robust ledger combiners: a black-box construction on top of m
ledgers that maintains relative persistence and liveness guarantees even if the con-
tents of a δ-fraction of these ledgers (chosen adaptively) are arbitrarily corrupted,
for δ up to 1/2. The individual constructions in this class are parametrized by
the choice of an estimator function that is a part of the combiner’s rank function;
we show that the concrete choice of this estimator represents a trade-off between
δ and the stability of the combiner, a metric of how much the ranks of individual
transactions in the combiner change as a result of a corruption respecting the
δ-threshold. This construction serves as an additional illustration of the gener-
ality of our ledger abstraction. We refer the reader to the full paper [17] for the
details.

1.2 Related Work

The formal modeling of robust transaction ledgers and blockchain protocols goes
back to the property-based analysis of Bitcoin due to Garay et al. [20] and Pass
et al. [35]. These works identified the central properties of common prefix, chain
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growth, and chain quality and demonstrated how they imply the desired persis-
tence and liveness of the resulting ledger. A composable analysis of a blockchain
protocol (namely Bitcoin) in the UC framework [8] along with the realized ledger
functionality first appeared in [4] and, later, essentially the same functionality
was shown to be realized by proof-of-stake protocols in [2,3].

The notion of combiners was formally proposed in [23]. Robust combiners for
hash functions were further studied in [6,40] and also applied to other primitives
such as oblivious transfer [22]. Amplification combiners were introduced by [16]
who also observed that classical results in security amplification can be seen
as such combiners. Indistinguishability amplification for random functions and
permutations achieved by certain combiners from a class of so-called neutralizing
constructions was studied both in the information-theoretic [21,28–30,43] and
computational [13,26,31,32,39] settings.

Various approaches are known to reduce settlement times of Nakamoto-style
blockchains. One approach is to deviate from the single-chain structure, arrang-
ing blocks in a directed acyclic graph (DAG) as first suggested by Lerner [25].
Sompolinsky et al. [42] gave a DAG-based construction that substantially reduces
settlement times at the expense of giving up on a total order on all transactions
in the ledger. Another approach explores “hybrid” protocols where committee-
based consensus reduces latency in the optimistic case [36,38]. In context of
proof-of-stake, Algorand [9] reduces settlement times over eventual-consensus
proof-of-stake protocols by finalizing each block via a Byzantine Agreement sub-
protocol before moving to the next one. However, Algorand cannot tolerate fluc-
tuating participation or adversarial stake ratio up to 1/2. Moreover, its constant-
time settlement guarantees are only provided in expectation, in contrast to our
worst-case guarantees.

Concurrent work on the Prism protocol [5] also addressed the efficiency of
Nakamoto consensus. (We remark that a preliminary version of this paper [18]
was published as an IACR eprint in 2018.) Prism is a concrete, PoW-based ledger
protocol optimizing both throughput and latency compared to Bitcoin. Prism
similarly approaches the problem by introducing “parallel blockchains,” though
in a different form. Our approach has some notable advantages in comparison
with Prism: (i) our construction is generic and can be deployed on top of existing
ledgers with arbitrary Sybil-resistant mechanisms; (ii) we provide worst-case
constant-time settlement except with a negligible error probability while Prism
(similarly to Algorand) only provides expected constant-time settlement; (iii) we
base our results on the generic subindependence assumption that is weaker than
full independence, which is assumed in Prism (though not achieved by their
PoW mechanism). On the other hand, Prism has an important feature which
clearly sets it apart from our work: it explicitly models and optimizes throughput.
A more detailed comparison between our work and Prism is given in our full
paper.
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2 The Ledger Abstraction

In this section we define abstract ledgers which describe the functionality pro-
vided by distributed ledger protocols such as Bitcoin. Our goal here is to capture
this behavior in an abstract, high-level manner, which allows us to express our
composition results unencumbered by the details of the individual protocols.

2.1 Ledgers and Dynamic Ledgers

We start by defining an abstraction of an individual snapshot of the state of a
ledger protocol, which we call a ledger. A ledger reflects a collection of transac-
tions which are given a linear order by way of a general function called rank. As
a basis for intuition about our definitions and proofs, we mention that, roughly
speaking, Bitcoin realizes such a ledger where the rank function is given by the
timestamp corresponding to the block containing the transaction; we give a more
detailed discussion in Sect. 4.2.

Our ledger will operate over a transaction space which we define first.

Definition 1 (Transaction space). A transaction space is a pair (T ,≺T ),
where T is a set of “transactions” and ≺T is a linear order on T . A conflict
relation C on a transaction space T is a symmetric binary relation on T ; if
(tx1, tx2) ∈ C for two transactions tx1, tx2 ∈ T , we say that tx1 conflicts with
tx2, we write conflict(tx) ⊆ T for the set of transactions conflicting with tx.

The linear order ≺T on the ambient transaction space T is largely incidental;
it is only used in our setting to break ties among transactions with a common
rank. Thus, in practice this linear order can be instantiated with a simple “syn-
tactic” property—such as a lexicographic ordering—rather than an ordering that
reflects any semantics about the transactions.

In contrast, if a transaction space is equipped with a conflict relation, this
is intended to carry semantic value; in a conventional UTXO transaction model
(such as that of many deployed blockchains) two transactions conflict if they
share UTXO inputs. As we discuss below, a conflict structure permits a more
flexible notion of settlement that is only required to provide strong guarantees
for non-conflicting transactions.

Definition 2 (Ledger). A ledger L for a transaction space (T ,≺T ) is a pair
(T, rank) where: T ⊆ T is a subset of transactions and rank : T → R

+ ∪ {∞}
is a function taking finite values precisely on the set T ; that is, T = {tx ∈ T |
rank(tx) �= ∞}. The value rank(tx) is referred to as the rank of the transaction
tx. Notationally, if L is a ledger we routinely overload the symbol L to stand for
its set of transactions (the above set T ).

The linear order ≺T and the rank function rank(·) induce a linear order ≺L

on the ledger by the rule

x ≺L y :⇔ (rank(x) < rank(y) ∨ (rank(x) = rank(y) ∧ x ≺T y)) .
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(Thus the underlying total order ≺T is only used to “break ties.”)
For a ledger L = (T, rank) and a threshold r, we let L �r def= (T ′, rank′)

denote the ledger consisting of transactions T ′ def= {tx ∈ T | rank(tx) ≤ r} with
the inherited rank function: rank′(tx) = rank(tx) for all tx ∈ T ′ and equal to
∞ otherwise. Similarly, for a transaction tx ∈ L, let L �tx denote the ledger
{tx′ | tx′ �L tx} with the inherited rank function.

The above notion of a ledger captures a static state; we extend it to describe
evolution in time as follows.

Definition 3 (Dynamic ledger). Consider the sequence of time slots t ∈
N and any sequence of sets of transactions A(0), A(1), . . . (each a subset of a
common transaction space T ) denoting the transactions that arrive at each time
slot. A dynamic ledger is a sequence of random variables D def= L(0),L(1), . . ., that
satisfy the following properties parametrized by security functions p+

R : (R+)2 →
[0, 1] and p−

R,pA, l : R+ → [0, 1]:

Liveness. For every r ≥ 0, t0 ≥ 0, and t ≥ t0 + r,

Pr [Lr,t0,t]
def= Pr

[
A(t0) �⊆ L(t) �t0 + r

]
≤ l(r) .

Absolute Persistence. For each rank r ≥ 0, time t0 ≥ 0, and t ≥ t0, we have
L(t0) �t0 − r = L(t) �t0 − r except with small failure probability. Specifically,
for all r, t0 ≥ 0,

Pr [Pr,t0 ]
def= Pr

[
∃t ≥ t0,L(t0) �t0 − r �= L(t) �t0 − r

]
≤ pA(r) .

Relative Persistence. For each r+, r− ≥ 0, time t0 ≥ 0, and t ≥ t0, we
have L(t0) �t0 − r− − r+ ⊆ L(t) �t0 − r− ⊆ L(t0) except with small failure
probability. Specifically, for each r−, r+, t0 ≥ 0:

Pr
[
∃t ≥ t0,L(t0)

⌈
t0 − r− − r+

⌉
�⊆ L(t)

⌈
t0 − r−⌉] ≤ p+

R(r−, r+) ,

Pr
[
∃t ≥ t0,L(t)

⌈
t0 − r−⌉ �⊆ L(t0)

]
≤ p−

R(r−) .

As indicated, we let Pr,t0 and Lr,t0,t denote the absolute-persistence failure event
with parameters (r, t0) and the liveness failure event with parameters (r, t0, t),
respectively.

The above definition deserves a detailed discussion. A dynamic ledger is a
sequence of ledgers—one for each time slot t—which reflects the current state
of the ledger structure L(t) at that time. Throughout the paper, we will use the
superscript notation ·(t) to denote the time coordinate.

Absolute persistence and liveness capture the standard design features of
distributed ledger protocols: absolute persistence mandates that at time t0, the
state of the ledger up to rank t0−r is fixed for all future times, except with error
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pA(r). Liveness, on the other hand, guarantees that any transaction appearing in
A(t0) will be a part of a (later) ledger at time t ≥ t0+r with a rank at most t0+r,
except with error at most l(r). Note that the liveness guarantee only pertains to
transactions tx appearing in the sets A(t0), which may not necessarily “explain”
all of the transactions in the ledger; in particular, we do not always insist that
L(t) ⊆

⋃
s≤t A(s). This extra flexibility permits us to simultaneously study dif-

fering liveness guarantees for various subclasses of transactions processed by a
particular ledger (see Sect. 3.2).

The remaining property, relative persistence, is more complex: It is a weaken-
ing of absolute persistence by not requiring future stability for the prefix of the
currently seen ledger L(t0) up to rank t0 − r− − r+; it merely asks that no trans-
action tx currently contained in it will rise to a rank exceeding t0 − r−; likewise,
it insists that no transaction tx′ currently absent in the ledger will ever achieve a
rank below t0−r−, potentially overtaking tx. This property bears a direct connec-
tion to the notion of transaction settlement as we discuss in Sect. 2.3. Looking
ahead, we note that relative persistence provides sufficient guarantees for set-
tling transactions that are only invalidated by “conflicting” transactions, and
our combiner will achieve stronger relative-persistence than absolute-persistence
guarantees, allowing for our latency-reduction results in Sect. 3.

Note that absolute persistence for some r clearly implies relative persistence
with r+ = 0 and r− = r. A natural parametrization that makes our notions mean-
ingful is where each f ∈

{
pA,p−

R, l
}

is monotonically decreasing and satisfies
f(0) ≥ 1 (similarly, p+

R should be monotonically decreasing in each coordinate
and p+

R(r−, r+) ≥ 1 whenever 0 ∈ {r−, r+}). Of course each of these functions
represents a probability upper-bound, though we entertain values above 1 purely
to simplify notation. A persistence or liveness function is exponential if it has the
form f(x) = exp(−αx + β) for some α > 0 and β ≥ 0; ledgers with exponential
security will be our main focus.

Finally, our intention is to use dynamic ledgers to model blockchain consensus
protocols. In this case, the chain held by each (honest) party P ∈ P is modeled
as a dynamic ledger DP = L(0)

P ,L(1)
P , . . ., satisfying the properties of persistence

and liveness from Definition 3. Of course, this by itself does not capture all the
desired goals of blockchain protocols, as it does not reflect consensus properties
across parties; how to reflect this in our model is discussed in the full paper [17].

2.2 Composition of Dynamic Ledgers

In the sequel, we will be interested in combining several dynamic ledgers to
form a new “virtual” ledger. This notion of combining makes no assumptions on
the ledgers to be combined other than a common transaction space. Moreover,
it requires no explicit coordination among the ledgers or maintenance of special
metadata: in fact, the “subledgers” involved in the construction do not even need
to “know” that they are being viewed as a part of a combined ledger. Concretely,
a virtual ledger construction is a deterministic, stateless rule for interpreting a
family of m individual ledgers as a single ledger. This is formally captured in
the following definition.
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Definition 4 (Virtual Ledger Constructions). A virtual ledger construc-
tion C[·] is a mapping that takes a tuple of dynamic ledgers (D1, . . . ,Dm) over
the same transaction space T and returns a dynamic ledger C[D1, . . . ,Dm] =
L(0),L(1), . . . over T determined by three functions (aC, tC, rC) as described below.
We write Di = L(0)

i ,L(1)
i , . . . with arriving transaction sets denoted A

(0)
i , A

(1)
i , . . .

and the rank function of each L(t)
i being rank

(t)
i . Then

(i) the arriving transaction sets are given by A(t) = aC(A(t)
1 , . . . , A

(t)
m );

(ii) the ledger contents are given by L(t) = tC(L(t)
1 , . . . ,L(t)

m ); and
(iii) the rank is given by rank(t)(tx) = rC(rank(t)1 (tx), . . . , rank(t)m (tx)).

Since the above requirements are formulated independently for each t, it is well-
defined to treat C[·] as operating on ledgers rather than dynamic ledgers; we
sometimes overload the notation in this sense.

Looking ahead, our amplification combiner will consider tC(L(t)
1 , . . . ,L(t)

m ) =⋃
i L

(t)
i along with two related definitions of aC given by

⋃
i A

(t)
i and

⋂
i A

(t)
i ; see

Sect. 3. The robust combiner will adopt a more sophisticated notion of tC.
In each of these cases, the important structural properties of the construction

are captured by the rank function rC.

2.3 Transaction Validity and Settlement

In the discussion below, we assume a general notion of transaction validity that
can be decided inductively: given a ledger L, the validity of a transaction tx ∈ L
is determined by the transactions in the state L �tx of L up to tx and their
ordering. Intuitively, only valid transactions are then accounted for when inter-
preting the state of the ledger on the application level. The canonical example
of such a validity predicate in the case of so-called UTXO transactions is formal-
ized in the full version of this paper [17]. Note that protocols such as Bitcoin
allow only valid transactions to enter the ledger; as the Bitcoin ledger is repre-
sented by a simple chain it is possible to evaluate the validity predicate upon
block creation for each included transaction. This may not be the case for more
general ledgers, such as the result of applying one of our combiners or various
DAG-based constructions.

While we focus our analysis on persistence and liveness as given in Defini-
tion 3, our broader goal is to study settlement. Intuitively, settlement is the delay
necessary to ensure that a transaction included in some A(t) enters the dynamic
ledger and, furthermore, that its validity stabilizes for all future times.

Definition 5 (Absolute settlement). For a dynamic ledger D def= L(0),L(1),
... we say that a transaction tx ∈ A(τ) ∩ L(t) (for τ ≤ t) is (absolutely) settled
at time t if for all � ≥ t we have: (i) L(t) �tx ⊆ L(�), (ii) the linear orders ≺L(t)

and ≺L(�) agree on L(t) �tx, and (iii) for any tx′ ∈ L(�) such that tx′ ≺L(�) tx
we have tx′ ∈ L(t) �tx.
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Note that for any absolutely settled transaction, its validity is determined
and it is guaranteed to remain unchanged in the future.

It will be useful to also consider a weaker notion of relative settlement of a
transaction: Intuitively, tx is relatively settled at time t if we have the guarantee
that no (conflicting) transaction tx′ that is not part of the ledger at time t can
possibly eventually precede tx in the ledger ordering.

Definition 6 (Relative settlement). Let T be a transaction space with a
conflict relation. For a dynamic ledger D def= L(0),L(1), . . ., over T we say that
a transaction tx ∈ A(τ) is relatively settled at time t ≥ τ if for any � ≥ t
we have: (i) tx ∈ L(�); (ii) for any transaction tx′ such that tx′ ≺L(�) tx and
tx′ ∈ conflict(tx) we have tx′ ∈ L(t).

We define an analogous notion when T is not equipped with a conflict relation,
by replacing (ii) with the stronger condition that applies to all transactions: for
any transaction tx′ such that tx′ ≺L(�) tx we have tx′ ∈ L(t).

We illustrate the usefulness of relative settlement on the example of the well-
known UTXO transactions. If a UTXO-transaction tx satisfies that: (i) all its
inputs appear as outputs of a preceding valid, absolutely settled transaction, (ii)
tx itself is relatively settled, and finally, (iii) no conflicting transaction (using
the same inputs) is currently part of the ledger; then the validity of tx can be
reliably decided and is guaranteed not to change in the future.

In a dynamic ledger with liveness, absolute and relative persistence described
by l, pA and (p+

R,p−
R) respectively, there is a clear direct relationship of both

types of settlement to these properties. Namely, a transaction tx ∈ A(τ) is abso-
lutely (resp. relatively) settled in time τ + rl + rp (resp. τ + rl + r+ + r−) except
with error pA(rp) + l(rl) (resp. l(rl) + p+

R(r−, r+) + p−
R(r−)).

While the time τ when the transaction tx entered the system is not necessar-
ily observable by inspecting the ledger, settlement itself is an observable event:
tx is absolutely (resp. relatively) settled at time T if it is seen as part of the
ledger L(T )�T − rp (resp. L(T )�T − r+ − r−), except with error pA(rp) (resp.
p+

R(r−, r+) + p−
R(r−)).

For ledgers that provide better guarantees for relative persistence than for
absolute persistence, relative settlement can occur faster than absolute settle-
ment.

3 The Security-Amplifying Combiner for Latency
Reduction

We describe a general combiner which transforms m underlying ledgers to a
virtual ledger in which transactions settle more quickly. As discussed previously,
by logging a transaction in all of the underlying ledgers, users can be promised a
Θ(m) (multiplicative) reduction in settlement time; on the other hand, by logging
a transaction in a single one of the underlying ledgers, the promised settlement
time is roughly consistent with the underlying ledger settlement time.
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3.1 The Subindependence Assumption

Given m dynamic ledgers D = (D1, . . . ,Dm), informally, we say that the
dynamic ledgers satisfy ε-subindependence if, for any collection of events
F1, . . . , Fm capturing either persistence or liveness failures—with the understand-
ing that Fi refers solely to properties of Li—we have Pr [

∧
i Fi] ≤

∏
i Pr[Fi]

conditioned on some event occurring with probability at least 1 − ε.

Definition 7 (Subindependence). Let D = (D1, . . . ,Dm) be a collection of
m dynamic ledgers. Ledgers D satisfy ε-persistence subindependence if for any
subset I ⊆ {1, . . . ,m} and any collection of persistence failure events {P

(i)
ri,ti

|
i ∈ I}, where the event P

(i)
� refers to Di, there is an event E with Pr[E] ≥ 1− ε

such that we have Pr
[∧

i P
(i)
ri,ti

∣∣ E
]

≤
∏

i p(i)
A (ri). We similarly define ε-liveness

subindependence.
Throughout our proofs, we treat ε as negligible quantity and, for purposes of

a clean exposition, do not include the additive error terms related to ε in our
concluding error bounds. (See Sect. 4.1 for further discussion, including how to
interpret the notion of “negligible” in this context.) Consistent with this treat-
ment, we leave ε implicit in our notation, and simply say that the dynamic
ledgers D possess subindependence if they possess both persistence and liveness
subindependence.

As we discuss in Sect. 4.1, in situations such as those that arise in blockchains
one cannot hope for exact independence among persistence failure events for the
simple reason that an adaptive adversary may decide—as a result of the success
of her attacks on some subset of the ledgers—to cease attacking the others; this
creates a (harmless) negative correlation between failure events. Intuitively, the
subindependence conditions express the inability of an attacker to outperform
the simple setting where she aggressively attacks each of the ledgers in isolation
of the others. We discuss how subindependence can be naturally achieved in
both PoW and PoS settings in Sect. 4.1.

3.2 The Parallel Ledger Construction

We consider m dynamic ledgers D def= (D1, . . . ,Dm) over the same transac-
tion space T and sequence of time slots t ∈ {0, 1, . . .}, where each dynamic
ledger Di = L(0)

i ,L(1)
i , . . . and its sequence of arriving transactions is denoted as

A
(0)
i , A

(1)
i , . . ..

Definition 8 (Construction P[D]). Our main construction P[D1, . . . ,Dm]
(which we also write P[D] when convenient) is defined by

aC(A(t)
1 , . . . , A(t)

m ) =
⋃

i

A
(t)
i , tC(L(t)

1 , . . . ,L(t)
m ) =

⋃

i

L(t)
i ,
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and the rank function rank
(t)

L defined as follows: For a tuple r = (r1, . . . , rm) ∈
(R ∪ {∞})m and a constant L, define

rankL(r) def= −L ln

⎛

⎝ 1
m

∑

ri ≤ θ(r)

exp(−ri/L)

⎞

⎠ , (1)

where θ(r) = mini ri + L ln m, and exp(−∞/L) is defined to be 0. We overload
the notation to apply to transactions, so that the resulting rank function can serve
the purposes of a virtual ledger construction: Let tx be a transaction appearing
with rank ri in ledger L(t)

i for some fixed t; then define rank
(t)

L (tx) = rankL(r).

The definition (1) can be rephrased into an alternate, and somewhat more
intuitive, equation: if Iθ

def= {i | ri ≤ θ(r)} then

1
m

∑

i∈Iθ

exp(−ri/L) = exp(−rankL(r)/L). (2)

In particular the notion is a simple average if rank is interpreted under an
exponential functional: exp(−rank(·)/L). Note, additionally, that for any r =
(r1, . . . , rm), we have mini∈[m] ri ≤ rankL(r) ≤

(
mini∈[m] ri

)
+ L ln m and, fur-

thermore, the inequality can be naturally interpreted if some or all of the ri are
∞. The first inequality is tight when all ri are equal.

A final remark about truncation by the threshold θ(r): While the “large-scale”
features of the parallel ledger—including relative persistence and liveness—do
not depend on truncation, absolute persistence depends on eventual stability of
the rank function. The truncation operation guarantees this, ensuring that only
a bounded portion of the ledger is relevant for determining the final rank of a
transaction.

Preemptive Rank Function. When the dynamic ledgers D are defined over a
transaction space with a conflict relation, we consistently work with a slightly
different notion of preemptive rank for the amplification construction above.
Specifically, we say that a transaction tx is dominant in a ledger L if it appears
in the ledger and no earlier transaction conflicts with tx (that is tx ∈ L and
tx′ ≺L tx ⇒ tx′ �∈ conflict(tx)). Let ρi be the rank of tx in ledger Li and define
ri = ρi if tx is dominant in Li, and ri = ∞ otherwise. Then the preemptive rank
rank

∗
L(tx) of tx is defined to be rankL(r1, . . . , rm).

Fast and Slow Submission. We consider two ways of submitting tx to P[D]:

The “fast” mechanism: A transaction tx is simultaneously submitted to all
of the underlying dynamic ledgers {Di}m

i=1, appearing in
⋂

i∈[m] A
(t)
i .

The “slow” mechanism: A transaction tx is submitted to (at least) one of
the dynamic ledgers Di, appearing in

⋃
i∈[m] A

(t)
i .
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An important feature of our protocol is that a single deployment supports both
of these mechanisms and their use can be decided by transaction producers on
a per-transaction basis. As we will see, these two mechanisms exhibit markedly
different liveness guarantees: Participants desiring fast liveness and settlement2

can adopt the fast mechanism by submitting their transactions to all m of the
ledgers; participants with less urgency can adopt the slow mechanism, simply
submitting their transactions to a single ledger.

To formally capture this in a clean way, we will introduce a slight variant,
PF [D], which allows us to specifically study the improved liveness properties of
transactions when they happen to be submitted for insertion into all of the con-
stituent ledgers Di at the same time. Specifically, PF [D] has precisely the same
definition as P[D] with the exception that aC(A(t)

1 , . . . , A
(t)
m ) =

⋂
i A

(t)
i . Thus,

note that the two virtual ledgers P[D] and PF [D] contain exactly the same ele-
ments with exactly the same ranks. They differ only in the sets of transactions
(determined by aC) for which they provide liveness guarantees: “slow” liveness
guarantees for

⋃
i A

(t)
i correspond to bounds on P[D] while “fast” liveness guar-

antees for transactions in
⋂

i A
(t)
i correspond to liveness guarantees for PF [D].

This bookkeeping slight of hand is merely a way to use a single abstraction
to express both a general liveness guarantee and an accelerated guarantee for
transaction submitted to all ledgers Di.

We remark that fast settlement guarantees are provided anytime a trans-
action has been submitted to all of the underlying ledgers: the proof does not
require that they be submitted at exactly the same time. In terms of the def-
initions above, the proof would apply even if we defined A

(t)

i
def=

⋃
s≤t A

(s)
i ,

F (t) def=
⋂

i A
(t)

i , and A(t) (the set for which fast settlement is guaranteed) to
be F (t) \ F (t−1). Thus a transaction would be guaranteed fast settlement as
soon as it has been submitted to all relevant ledgers. We work with the simple
formulation (

⋂
i A

(t)
i ) merely as a matter of convenience.

3.3 Main Result and Proof Outline

Our main result follows, formulated for exponentially secure ledgers as defined
in Sect. 2.1.

Theorem 2. Let D = (D1, . . . ,Dm) be a family of m subindependent dynamic
ledgers defined over a common transaction space T with a conflict relation, each
possessing exponential liveness l(r) = exp(−αlr + βl) and absolute persistence
p(r) = exp(−αpr+βp). Consider the combined dynamic ledgers PF [D] and P[D]
with the (preemptive) rank function rank

∗
L for a parameter L ≥ m. Then for

PF [D], there is a constant C > 1 so that if L ≥ Cm ln m, we have

Pr
[
∃tx ∈ A(t0) not relatively settled at time t0 + 2r

]

≤ exp(−rΩ(m) + O(m)) + exp (−Ω(r) − Ω(L ln(m))) .
(3)

2 Recall the difference between liveness and settlement in our terminology (cf.
Sect. 2.3).
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At the same time, for P[D] we have

Pr
[
∃tx ∈ A(t0) not absolutely settled at t0 + 2r

]
≤ m exp(−Ω(r) + O(L ln m)).

The constants hidden in the Ω() and O() notation depend on αp, αl, βp, βl, but
they are independent of m, L, and r.

Note that in (3), the first term vanishes with the desired m-fold speedup, and
dominates the total error as long as roughly rm < L. Beyond that, the second
term is dominant and the error vanishes at the pace of a single constituent
ledger. This is essential for enabling both slow and fast settlement, as discussed
in Sect. 1.1. Note that as L can be chosen to scale with the security parameter
so that exp(−Θ(L)) is an acceptable error probability, the region rm < L is thus
exactly where the settlement speedup is desired.

On a high level, the proof for PF [D] goes as follows. For a transaction tx ∈
A(t0), we can expect that: (1) At time t0 + 2r, tx appears in at least 4m/5 of
the m ledgers with rank at most t0 + r. (2) At most m/5 of these 4m/5 ledgers
will exhibit an absolute persistence failure allowing a change of their state up to
rank t0 + r after time t0 + 2r, affecting the rank of tx. Based on the above two
events, at any time after t0 + 2r there can be at most 2m/5 ledgers that do not
contain tx with rank at most t0 + r. Then: (3) For any competing transaction
tx′ ∈ conflict(tx) not present at time t0 + 2r, these 2m/5 ledgers will never
contribute enough to the rank of tx′ to overtake tx in PF [D]. More precisely,
each of the three above events is shown to fail with at most the error probability
in the theorem statement.

The result for P[D] is proven along the following lines. Assume a trans-
action tx inserted to (at least) one of the ledgers Li at time t0. For any
t ≥ t0 + r − L ln m, we have tx ∈ L(t)

i �t0 + r − L ln m except for probability
l(r − L ln m), and, by the properties of the rank function, also tx ∈ L(t)�t0 + r.
Let T ≥ t = t0 + 2r and assume tx ∈ L(t)�t0 + r as by the above liveness guar-
antee. As L(T )�t0 + r is fully determined by the ledgers L(T )

j �t0 + r + L ln m,
a persistence failure L(T )�t0 + r �= L(t)�t0 + r implies a persistence failure of
some L(t)

j �t0 + r + L ln m, which has a probability at most m pA(−r + L ln m).
The bound for PF [D] in particular gives us the following corollary.

Corollary 1. In the setting of Theorem 2, if the number of chains m scales with
the security parameter then PF [D] achieves constant-time settlement except with
an error probability negligible in the security parameter.

In the rest of this section, we establish the above results in full detail. In
Sect. 3.4 we study the central part of our combiner—its rank function; and based
on it, Sect. 3.5 obtains our persistence and liveness bounds in their most general
form. Section 3.6 specializes them to the setting of interest with exponentially-
secure underlying ledgers; and finally Sect. 3.7 concludes the derivation of Theo-
rem 2 and Corollary 1.
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3.4 Properties of rank

Before discussing the persistence and liveness guarantees of our construction, we
derive some general properties of its rank function.

Lemma 1. Let r = (r1, . . . , rm) ∈ (R ∪ {∞})m and T ≥ mini ri. Let IT = {i |
ri ≤ T} and, for each i ∈ IT , define di = T − ri. Writing D = T − rankL(r),

∑

i∈IT

di ≥ D + L ln
(

m − m − 1
exp(D/L)

)
.

We note the following weaker, but convenient, bound: when D ≥ 0, the sum∑
i∈IT

di is no more than D + L ln ((mD + L)/(D + L)).

Proof. Let Iθ = {i | ri ≤ θ(r)}. Writing R = −rankL(r)/L, from Eq. (2) we have

m exp(T/L) exp(R) = exp(T/L)
∑

i∈Iθ

exp(−ri/L) ≤
∑

i∈Iθ\IT

1 +
∑

i∈IT ∩Iθ

exp(di/L)

(∗)
≤ (|Iθ| − 1) + exp

(
∑

i∈IT

di/L

)
≤ (m − 1) + exp

(
∑

i∈IT

di/L

)

(4)

where the inequality
(∗)
≤ above follows from the fact that for any ai ≥ 0 we have∑�

i=1 exp(ai) ≤ (� − 1) + exp(
∑�

i=1 ai), and di ≥ 0 for all i ∈ IT . (This follows
by expanding the power series of ex and noting that

∑
ak

i ≤ (
∑

ai)k for positive
ai.) Inequality (4) then yields

∑

i∈IT

di

L
≥ ln

[
m exp

[
T

L
+ R

]
− (m − 1)

]
=
[
T

L
+ R

]
+ ln

[
m − m − 1

exp(T/L + R)

]

and hence
∑

i∈IT

di ≥ (T − rankL(r)) + L ln
(

m − m − 1
exp([T − rankL(r)]/L)

)
,

completing the proof. The second lower bound indicated in the theorem follows
from the fact that exp(1 + x) ≥ 1 + x for x ≥ 0. ��

We note a corollary of this, which also reflects the number of contributing
terms in the sum defining rank.

Corollary 2. Let r = (r1, . . . , rm) ∈ (R ∪ {∞})m and T ≥ mini ri. Let

IT = {i | ri ≤ T}, Iθ = {i | ri ≤ θ(r)}, m′ = |Iθ|,

and, for each i ∈ IT , define di = T − ri. Then

∑

i∈IT

di ≥
[
T − rankL(r)

]
+ L ln

(
m − m′ − 1

exp([T − rankL(r)]/L)

)
.
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Proof. This follows from the proof of Lemma1 by working with the version of
Eq. (4) that retains dependence on |Iθ|. ��

For two rank tuples r = (r1, . . . , rm) and s = (s1, . . . , sm) in (R ∪ {∞})m, we
define r ∨ s to be the tuple (min(r1, s1), . . . ,min(rm, sm)).

Lemma 2. (Rank addition). Consider two rank tuples r = (r1, . . . , rm) and
s = (s1, . . . , sm) in (R ∪ {∞})m. Then

exp(−rank(r ∨ s)/L) ≤ exp(−rank(r)/L) + exp(−rank(s)/L); (5)

and moreover, for any α ∈ (0, 1),

rank(r) ≥ rank(r∨s)+ln(1/α)L =⇒ rank(s) ≤ rank(r∨s)+ln(1/(1−α))L. (6)

Proof. The validity of Eq. (5) can be observed by simply expanding the rank
function according to its definition. For the implication (6), note that if rank(r) ≥
rank(r ∨ s) + ln(1/α)L then (5) gives us

exp
(
−rank(r ∨ s)/L

)
≤ α · exp

(
−rank(r ∨ s)/L

)
+ exp

(
−rank(s)/L

)

and hence exp
(
−rank(s)/L

)
≥ (1−α)·exp

(
−rank(r ∨ s)/L

)
, implying rank(s) ≤

rank(r ∨ s) + ln(1/(1 − α))L as desired. ��

3.5 Persistence and Liveness of the Parallel Ledgers

We begin with a lemma that establishes relative persistence guarantees under
general circumstances: it requires only a super-additive persistence function and
does not require that the transaction space have a conflict relation.

Definition 9 (Super-additive functions). Recall that a function f : R → R

is convex if, for any x1, . . . , xn and λ1, . . . , λn for which λi ≥ 0 and
∑

i λi = 1,
we have f(

∑
i λixi) ≤

∑
i λif(xi). A persistence function p is super-additive if

log p is convex. It follows that p satisfies the inequality

m∏

i=1

p(ri) ≤ p

(
1
m

∑

i

ri

)m

. (7)

Note that any exponential persistence function (as defined in Sect. 2.1) is super-
additive.

Lemma 3 (Relative persistence of P[D]). Consider P[D], the parallel com-
position of m subindependent ledgers, each with super-additive absolute persis-
tence pA(·). For any δ > 0 and time T , the probability that an adversary can
inject a transaction tx that does not appear in any of the ledgers so as to achieve
rankL(tx) ≤ T − D is at most

i(D; δ, L) def=
(

D + L ln m

δ

)m

· pA

(
1
m

(
D + L ln

(
mD + L

D + L

))
− δ

)m

.
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Moreover, the ledger P[D] satisfies the following relative persistence guarantees:
for any t0, r ≥ 0,

Pr
[
∃t ≥ t0,L(t) �t0 − r �⊆ L(t0)

]
≤ p−

R(r;L) def= i(r; δ, L)

and, for the constant r∗ = ln(2)L,

Pr
[
∃t ≥ t0,L(t0) �t0 − (r + r∗) �⊆ L(t) �t0 − r

]
≤ p+

R(r, r∗;L) def= i(r; δ, L).

Proof. In light of Lemma 1, in order for a transaction tx to be injected into the
m ledgers so as to achieve rankL(tx) ≤ T − D, it must appear with a rank tuple
(T − d1, . . . , T − dm) for which

∑

i

di ≥ D + L ln
(

mD + L

D + L

)
.

In preparation for applying a union bound, we identify a finite family of
tuples R so that for any tuple of positive reals x = (x1, . . . , xm) with

∑
xi ≥ Λ

there is a “bounding” tuple r ∈ R so that r ≤ x and
∑

i ri ≈ Λ. (Here the ≤
indicates that ri ≤ xi for all i.) For two real numbers x and δ > 0, define �x�δ to
be the largest integer multiple of δ that is less than or equal to x; that is, �x�δ

def=
max{k ∈ δZ | k ≤ x}. Observe that for any tuple x = (x1, . . . , xm) for which
∑

i xi ≥ Λ, the tuple �x�δ
def= (�x1�δ, . . . , �xm�δ) contains only integer multiples

of δ, is coordinate-wise no larger than x, and satisfies Λ−δm ≤
∑

i�xi�δ ≤ Λ. For
Λ ≥ 0, let R(Λ, δ) = {r = (r1, . . . , rm) | ri ∈ δZ, ri ≥ 0, Λ − δm ≤

∑
i ri ≤ Λ}.

With this in place, it follows that if tx appears with ranks (T − d1, . . . , T − dm)
and T − rankL(tx) ≥ D then there is a tuple

r ∈ R def= R
(

D + L ln
[
mD + L

D + L

]
, δ

)

for which r ≤ d and hence (T − d1, . . . , T − dm) ≤ (T − r1, . . . , T − rm).
For a tuple r = (r1, . . . , rm) consider the event, denoted Er, that the adver-

sary can inject a transaction so that it appears with rank no more than T − ri

in ledger i. By subindependence and the convexity of log pA(·),

Pr[Er] ≤
m∏

i=1

pA(ri) ≤ pA

(
1
m

m∑

i=1

ri

)m

,

from inequality (7) above. Then we have

Pr
[
tx injected so that rankL(tx) ≤ T − D

]
≤ |R| · max

r∈R
Pr[Er].

To conclude the argument, invoking the upper bound |R| ≤ ((D + L ln m)/δ)m

we see that the probability Pr[tx injected so that rankL(tx) ≤ T −D] is bounded
above by

(
D + L ln m

δ

)m

· pA

(
1
m

(
D + L ln

[
mD + L

D + L

])
− δ

)m

.

The bound on p−
R(r) follows immediately.
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As for p+
R(r, ln(2)L;L), consider a transaction tx with rank T − (r + ln(2)L).

In order for such a transaction to rise to rank T −r, some subset S of appearances
of the transaction must be removed with sufficient rank to permit the resulting
rank to rise to T − r. In light of Lemma 2, this removal must involve rewriting
the underlying blockchains at ranks corresponding to rank at least T − (r +
ln(2)L)+ ln(2)L = T −r, as desired. (This corresponds to the setting α = 1/2 in
Lemma 2). ��

We state a corollary of the above result which pertains to the problem of
injecting a transaction into a particular subset of the ledgers. This relies directly
on Corollary 2, and will be a critical component of the Θ(m)-amplification results
below.

Corollary 3 (Relative persistence of P[D] (with targeted insertion).
Consider P[D], the parallel composition of m subindependent ledgers, each with
super-additive absolute persistence pA(·). Let I denote a subset of m′ of the
ledgers and let D satisfy exp(D/L) > (m′ − 1)/(m− 1). Then for any δ > 0 and
time T , the probability that an adversary can inject a transaction tx that does
not appear in any of the ledgers so as to appear only in ledgers I and achieve
rankL(tx) ≤ T − D is no more than

i(D,m′; δ, L)def=
(

D + L ln m

δ

)m′

·pA

(
1
m′

(
D + L ln

(
m − m′ − 1

exp(D/L)

))
− δ

)m′

.

Proof. This follows from the proof of Lemma 3 by suitably adjusting the bound
on |R| to the restricted set of chains and applying the bound from Corollary 2.

��
We return to the general setting to formulate a bound on absolute persistence.

Lemma 4 (Absolute persistence of P[D]). Consider P[D], the parallel com-
position of m subindependent ledgers, each with absolute persistence pA(·). Then
the parallel ledger P[D] has absolute persistence pA(r) ≤ m pA(r − L ln m).

Proof. As above, we let P[D1, . . . ,Dm] = L(0),L(1), . . .. Consider a time t0 and
r ≥ L ln m. We observe that for any time t ≥ t0, L(t)�t0 − r is completely
determined by the ledgers L(t)

i �t0−r+L ln m. To see this, consider a transaction
tx in the general ledger L(t) of rank s ≤ t0 − r. Letting si denote the rank of tx
in the constituent ledgers L(t)

i , recall that mini si ≤ s ≤ t0 − r and, furthermore,
that s = rank(tx) depends only on those si for which

si ≤ θ(s) = min
i

si + L ln m ≤ s + L ln m ≤ t0 − r + L ln m;

in particular rank(tx) is determined only by the ledgers L(t)
i �t0 − r + L ln m.

To conclude, a persistence failure in L(t)�t0 − r implies a persistence failure
in some L(t)

i �t0 − r + L ln m and thus pA(r) ≤ m pA(r − L ln m), as desired. ��
As the ledger PF [D] is identical to P[D] aside from the definition of aC, it
possesses the persistence guarantees described in Lemma 3, Corollary 3, and
Lemma 4.
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Liveness. We now direct our attention to liveness. We separately consider two
distinct ways of submitting a transaction to the parallel ledger, the “fast” and
the “slow” mechanisms as defined in Sect. 3.2. Recall that formally, the “fast”
case corresponds to the liveness function of the virtual ledger PF [D], while the
“slow” case corresponds to the liveness of the virtual ledger P[D]. We study these
liveness functions next.

Definition 10 (Census). Consider P[D], and let tx ∈ T be a transaction. The
(r, T )-census of tx, denoted by C

(T )
r (tx), is the number of ledgers for which tx ∈

L(T )
i �r. When T can be inferred from context, we shorten this to the r-census

Cr(tx).

Lemma 5 (Liveness of PF [D]). Consider PF [D], the parallel composition of
m subindependent ledgers, each with liveness l(·). Then, for any t0 and t for
which t ≥ t0 + r and any γ ∈ [0, 1],

Pr[∃tx ∈
⋂

A
(t0)
i with (t0 + r, t)-census ≤ (1 − γ)m] ≤

(
m

γm

)
l(r)γm.

It follows that for any γ ∈ (0, 1) the ledger PF [D] has liveness

l
PF (r) =

(
m

γm

)
l
(

r − L ln
(

1
1 − γ

))mγ

.

Proof. Consider times t ≥ t0 and a delay r ≥ 0. For a parameter γ ∈ (0, 1)
we consider the (census) event that the transactions in

⋂
i A

(t0)
i appear in at

least (1 − γ)m of the ledgers L(t)
i �t0 + r. In this case, any transaction tx ∈ At0

has rank rank(tx) ≤ t0 + r + L ln (1/(1 − γ)) in the ledger L(t). It follows that
the probability that there exists a transaction in A(t0) that does not appear in
L(t)�t0 + r + L ln(1/(1 − γ)) is no more than

(
m
γm

)
l(r)γm. Reparametrizing this

(by setting r′ = r + L ln(1/γ)) yields the statement of the lemma. ��

Lemma 6 (Liveness of P[D]). Consider P[D], the parallel composition of
m ledgers, each with liveness l(·). Then the parallel ledger P[D] has liveness
l
P
(r) = l(r − L ln m).

Proof. Consider times t ≥ t0 and a delay r ≥ 0. Observe that if a transaction tx
appears in any L(t)

i �t0 + r then it appears in L(t)�t0 + r + L ln m. This yields
the statement of the lemma. ��

3.6 Ledgers with Exponential Security

To achieve guarantees with more immediate interpretability and prepare for our
main amplification results, we consider the most interesting case for persistence
and liveness functions: r �→ exp(−αr + β) for α, β ≥ 0. Note that such a func-
tion is superadditive according to Definition 9. The following statements follow
directly from Corollary 3 with δ = 1, and from Lemmas 4–6.
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Corollary 4 (Relative persistence with targeted insertion). Consider
P[D] or PF [D], the parallel composition of m ledgers, each with absolute per-
sistence pA(r) = exp(−αpr +βp). Let I denote a subset of m′ of the ledgers and
let D satisfy exp(D/L) > (m′ − 1)/(m− 1). Then for any δ > 0 and time T , the
probability that an adversary can inject a transaction tx that does not appear in
any of the ledgers so as to appear only in ledgers I and achieve rankL(tx) ≤ T −D
is no more than

(D + L ln m)m′
· exp

(
−αp

[
D + L ln

(
m − m′ − 1

exp(D/L)

)]
+ (αp + βp)m′

)
.

Corollary 5 (Absolute persistence). Consider P[D] or PF [D], the parallel
composition of m ledgers with absolute persistence pA(r) = exp(−αpr + βp).
Then the ledgers P[D] and PF [D] both have absolute persistence pA(r) ≤
mαpL+1 exp(−αpr + βp).

Corollary 6 (Liveness). Consider P[D] and PF [D], constructed with m ledgers
D that each possess liveness l(r) = exp(−αlr + βl). Then, for any γ ∈ (0, 1) and
times t0 and t for which t0 + r ≤ t,

Pr[∃tx ∈ A(t0) with (t0 + r, t)-census ≤ (1 − γ)m] ≤
(

m

γm

)
exp(−γm(αlr − βl))

and the liveness function l
PF (·) of PF [D] satisfies

l
PF (r) =

(
m

γm

)
exp

(
−αlγm

(
r − L ln

(
1

1 − γ

))
+ βlγm

)
.

The liveness function l
P
(·) of P[D] satisfies l

P
(r) = mαL exp(−αlr + βl).

Theorem 3 (Restatement of Theorem 2 for P[D]). Consider P[D] for
a family of m subindependent ledgers D = (D1, . . . ,Dm), each possessing
exponential liveness l(r) = exp(−αlr + βl) and (absolute) persistence p(r) =
exp(−αpr + βp). We assume all ledgers are defined over a common transaction
space T with a conflict relation and the general ledger is defined over the (pre-
emptive) rank function rank

∗
L for a parameter L ≥ m. Then

Pr
[
∃tx ∈ A(t0) not absolutely
settled at time t0 + 2r

]
≤ m exp(−Ω(r) + O(L ln m)).

The constants hidden in the Ω() and O() notation depend on αp, αl, βp, βl, but
they are independent of m, L, and r.

Proof. Assume a transaction tx inserted to (at least) one of the ledgers Li at time
t0. By Corollary 6, at any point in time t ≥ t0 +r, we have that tx ∈ L(t)�t0 +r
except for probability l(r) ≤ exp(−Ω(r) + O(L ln m)). Let T ≥ t = t0 + 2r.
By Corollary 5, L(T )�t0 + r = L(t)�t0 + r remains persistent except for error
pA(r) ≤ m exp(−Ω(r) + O(L ln m)). The stated bound now follows by union
bound over the errors l(r) and pA(r). ��
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3.7 Fast Settlement with Preemption: Achieving Linear
Amplification and Constant Settlement Time

We show how to achieve Θ(m) amplification for liveness and settlement time.
This construction applies to transaction spaces with a conflict relation, and
focuses on the setting of ledgers with exponential security, as discussed in the
section above.

The Settlement Function. To contrast the constructions against the underlying
ledgers, it is convenient to introduce a settlement function s(r), which provides
an error bound for the event that a transaction submitted at a time t0 has not
(relatively) settled by time t0 + r. Assuming that the underlying ledgers provide
exponential liveness and persistence yields settlement

s(r) ≤ pA(r/2) + l(r/2) = exp(−Θ(r)) (settlement of underlying ledgersDi).

Our goal is to demonstrate that the fast ledger PF [D] provides linear amplifica-
tion, yielding settlement function s of the form

sPF
(r) ≤ exp(−Θ(mr)) + exp(−Θ̃(r + L)) (settlement of fast ledgerPF [D]).

(Here the Θ̃() notation neglects an additive term linear in m but logarithmic in
L and r.) Note that this scales as exp(−Θ(rm)) so long as rm ≤ L.

As discussed earlier, participants are free to use the “slow” logging mechanism
(that is, simply logging their transaction in a single of the underlying ledgers),
in which case they will achieve

sP(r) ≤ exp(−Θ(r) + O(L ln m)) (settlement of slow ledgerP[D]).

Thus parameter L determines the transition between fast and slow settlement.
For r ≈ L/m, one achieves fast settlement; for r ≈ L log m, the system provides
settlement guarantees asymptotically consistent with those of the underlying
ledgers themselves.

Theorem 4 (Restatement of Theorem 2 for PF [D]). Let D = (D1, . . . ,Dm)
be a family of m subindependent dynamic ledgers defined over a common trans-
action space T with a conflict relation, each possessing exponential liveness
l(r) = exp(−αlr + βl) and absolute persistence p(r) = exp(−αpr + βp). Con-
sider the combined dynamic ledger PF [D] with the (preemptive) rank function
rank

∗
L for a parameter L ≥ m. We have

Pr

[∃tx ∈ A(t0) not rela-
tively settled at time t0+
2r

]
≤ exp(−rΩ(m) + O(m))+

exp (−Ω(r) − Ω(L ln(m)) + O(m ln(L + r))),

thus there is a constant C > 1 so that if L ≥ Cm ln m this probability is

exp(−rΩ(m) + O(m)) + exp (−Ω(r) − Ω(L ln(m))) .

The constants hidden in the Ω() and O() notation depend on αp, αl, βp, βl (and
constants selected during the proof), but they are independent of m, L, and r.
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Proof. Consider the set of transactions A(t0). In light of Corollary 6, at time
T = t0 + 2r these transactions will appear in at least (1 − γ)m of the ledgers
with rank t0 + r except with probability

(
m

γm

)
exp(−αlr + βl)mγ ≤ exp(−γm[αlr − βl − ln(e/γ)]).

Specifically the (t0 + r, r0 + 2r)-census of these transactions is at least (1 − γ)m.
Observe that so long as r exceeds a constant determined by α, β, and γ, this
has the desired scaling.

We now consider the possibility that a transaction from A(t0+2r) (or later)
that conflicts with some transaction in A(t0) can achieve rank less than those
in A(t0). We observe that almost all of the (1 − γ)m ledgers guaranteed above
(that contain the transactions of A(t0) at rank at most t0 + r) are fixed for all
future times up to this rank. Specifically, the probability that more than γm of
these ledgers are not persistent through rank t0 + r (in the view of future times
T ≥ t0 + 2r) is at most

(
m

γm

)
exp(−αpr + βp)γm ≤ exp(−γm[αpr − βp − ln(e/γ)]).

As above, for a constant r that depends only on αp, βp, and γ, we achieve the
desired scaling.

Observe that—except with this small error probability exp(−Ω(mr))—all
transactions in A(t0) have rank

∗
L no more than t0 + r + ln(1/(1 − 2γ))L at all

future times.
In order for a transaction appearing after t0 + 2r to compete with a transac-

tion in A(t0), then, it must achieve a rank
∗
L of t0 + r +ln(1/(1− 2γ))L using only

2γm of the ledgers. At time T = t0 + 2r, we apply Corollary 4 with the setting
of D = r − ln(1/(1 − 2γ))L; further assuming that γ < 1/4, this event can occur
with probability no more than

(r + L ln m)2γm·

exp
(

−αp

[
r − L ln

(
1

1 − 2γ

)
+ L ln

(
m − 2γm

1 − 2γ

)]
+ (αp + βp)2γm

)
.

As we assume m ≤ L, this is no more than

(r + L2)2γm exp
(

−αpr − αpL

[
ln
(

m
1 − 4γ

1 − 2γ

)
− 1

]
+ (αp + βp)2γm

)

= exp (−αpr − αpL [ln(m) + O(1)] + O(m ln(L + r)) .

By choosing L = Cm log m for large enough C, we obtain the form recorded in
the statement of the theorem. ��

Remark 1. By setting γ = 1/5 in the proof above, we obtain a version that
reflects the leading constants in the exponent. The three contributing terms are:
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exp(−(m/5)[αlr − (βl + 3)]) Failure of A(t0) to achieve (t0+r, t0+2r)-census
≥ 4m/5;

exp(−(m/5)[αpr − (βp + 3)]) Persistence failure exceeding m/5 of these trans-
actions at rank t0 + r;

exp(−αpr − αpL[ln( m
3e )] + m

5 (2βp + 4 ln(r + L))
Persistence failure of remain-
ing rank by insertion into
2m/5 chains.

3.7.1 Worst-Case Constant-Time Settlement
In the setting where we have the luxury to select m so that it scales with the
security parameter of the system, the construction above provides constant time
settlement. Specifically, examining the statement (and following remarks with
explicit bounds) of Theorem2 above, by merely taking r large enough to ensure
that αlr ≥ βl + 4 and αpr ≥ βp + 4 the first two failure terms above both decay
exponentially in m. Likewise, by suitably adjusting L so that

L ≥ m + (m/5)(2βp + 4 ln(r + L))
αp ln(m/3e)

the third term also falls off exponentially in m. (This is always possible with
L = O(m log m).) Thus this achieves settlement in constant time except with
probability negligible in the security parameter, establishing the following corol-
lary stated earlier.

Corollary 1 (restated). In the setting of Theorem2, if the number of chains m
scales with the security parameter then PF [D] achieves constant-time settlement
except with an error probability negligible in the security parameter.

In the full paper [17] we additionally explore the amplification problem in
a stronger setting, called the coordinated model, assuming that any transaction
attempted to be included into any of the ledgers is also immediately attempted
to be included into all of the remaining ledgers. This allows to adopt a simpler
rank function and achieve simpler results.

4 Implementation Considerations

4.1 Achieving Subindependence

Proof of Stake. Subindependence is easier to achieve in the proof-of-stake
setting. In PoS, block creation rights are attributed to protocol participants via
a stake-based lottery governed by randomness that is derived as a part of the
protocol. Hence, a straightforward solution for obtaining (sub)independence in
a setup with m PoS blockchains is to derive independent lottery randomness for
selecting block creators for each of the chains (even in situations where these are
sampled from the same stake distribution). This approach has been proposed
before, e.g., in [19], and hence we omit the details.
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Proof of Work. Blockchain subindependence in the proof-of-work setting can
be achieved by generalizing the 2-for-1-PoW idea from [20] where two indepen-
dent PoW-oracle queries are obtained from a single invocation of the random
oracle. Similarly to [5], we propose a construction for an m-for-1-PoW to achieve
m PoW-queries (one for each chain) by invocation of one single random oracle
query—however, introducing some dependence between the m resulting queries.
Still, the construction is sufficient to serve as a common PoW to maintain m
subindependent ledgers.

The Construction. Given a hash function H : {0, 1}∗ → {0, 1}κ modeled as a
random oracle, we partition a hash output Y = H(X) into two bit-segments
Y = (Y1, Y2) of size κ/2 each. The first segment decides whether the query is
successful (by the test Y1 < T for some threshold T with p

def= T/2κ/2), the
second segment assigns the invocation to a particular PoW instance i ∈ [m] (by
computing i = 1+(Y2 mod m)). The single invocation H(X) is then defined to be
successful for instance i if it is both successful and is assigned to instance i (i.e.,
Y1 < T and i = 1+(Y2 mod m)). Formally, we write PoWm

p (X) def= (S1, . . . , Sm)

where Si
def= (Y1 < T ∧i = 1+(Y2 mod m)) ∈ {0, 1} for the bit vector of successes

of the query X with respect to all instances. Note that the random variables Si

are fully determined by X and the internal randomness of the random oracle.

Analysis. We compare PoWm
p (X) to an “ideal” oracle IPoWm

p′ (X) that for each

new query X samples a fresh response IPoWm
p′ (X) def= (S̃1, . . . , S̃m) such that each

binary random variable S̃i takes value 1 with probability p′ and all S̃i are inde-
pendent; repeated queries are answered consistently. Responses to new queries
IPoWm

p′ (X) hence also depend only on the input and the internal randomness
of IPoWm

p′ . Let δ(·, ·) denote the standard notion of statistical distance (some-
times called the total variation distance) of random variables. Then we have the
following simple observation.

Lemma 7. For any x ∈ {0, 1}∗ and p ∈ (0, 1), we have

δ
(
PoWm

p (x), IPoWm
p/m(x)

)
≤ p2 .

The above lemma already justifies the use of PoWm
p for achieving subinde-

pendence in practical scenarios. To observe this, note that the use of IPoWm
p/m

would lead to full independence of the individual PoW lotteries, and by Lemma 7
the real execution with PoWm

p will only differ from this ideal behavior with prob-
ability at most Q ·p2, where Q is the total number of PoW-queries. With current
values of p ≈ 10−22 in, e.g., Bitcoin,3 and the block creation time adjusting to
10 minutes, this difference would manifest on expectation in about 1018 years.
Note that any future increase of the total mining difficulty while maintaining
the block creation time would only increase this period. Nonetheless, in the full
paper [17], we prove the following, fully-parameterized result.
3 https://btc.com/stats/diff.

https://btc.com/stats/diff


348 M. Fitzi et al.

Lemma 8. Consider the collection of m dynamic ledgers D = (D1, . . . ,Dm)
produced by a parallel m-fold execution of Bitcoin using PoWm

p as the joint PoW
oracle as described above, with n parties, each making q queries to PoWm

p per
round. Let λ denote a security parameter and assume throughout that q ≥ λ5,
m ≤ λ, pq ≤ λ, and the honest parties dominate the adversarial parties suffi-
ciently to invoke existing analysis yielding exponential persistence and liveness
bounds for an individual chain. Then the ledgers D satisfy ε-subindependence
with ε = poly(λ) · exp(−Ω(λ)).

4.2 Realizing Rank via Timestamped Blockchains

An important consideration when deploying our virtual ledger construction over
existing blockchains is how to realize the notion of rank. We note that typi-
cal Nakamoto-style PoS blockchains (e.g., the Ouroboros family, Snow White)
assume a common notion of time among the participants and explicitly label
blocks with slot numbers with a direct correspondence to absolute time. These
slot numbers (or, preferably, a notion of common time associated with each slot
number) directly afford a notion of rank that provides the desired persistence
and liveness guarantees. To formalize this property, we introduce the notion of
a timestamped blockchain.

Definition 11. A timestamped blockchain is one satisfying the following con-
ventions:

– Block timestamps. Every block contains a declared timestamp.
– Monotonicity. In order for a block to be considered valid, its timestamp can be

no less than the timestamps of all prior blocks in the blockchain. (Thus valid
blockchains consist of blocks in monotonically increasing order.)

Informally, we say that an algorithm is a timestamped blockchain algorithm
if it calls for participants to broadcast timestamped blockchains and to “respect
timestamps.” More specifically, the algorithm satisfies the following:

– Faithful honest timestamping. Honest participants always post blocks with
timestamps determined by their local clocks.

– Ignore future blocks. Honest participants ignore blocks that contain a times-
tamp which is greater than their local time by more than a fixed constant.
(These blocks might be considered later when the local clock of the participant
“catches up” with the timestamp.)

As mentioned above, typical Nakamoto-style PoS blockchains are times-
tamped by design. For PoW blockchains the situation varies case by case. For
instance, Bitcoin provides block timestamps, but these follow a more complex
convention which guarantees that the timestamp associated with each block
exceeds the median timestamp of the previous 11 blocks. Note, then, that one
can assign a “logical timestamp” to block Bt equal to the maximum timestamp
on the blocks {Bi : i ≤ t}; these logical timestamps are then monotonically non-
decreasing. Ignoring future blocks is also a part of the Bitcoin protocol.
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For blockchains that do not provide timestamps satisfying the above notion
natively, the full paper [17] describes a straightforward transformation that mod-
ifies any longest-chain rule blockchain algorithm into a timestamped blockchain,
and demonstrates security of the transformation.

Timestamped Blockchains as Dynamic Ledgers. Timestamped block-
chains can be interpreted as dynamic ledgers in the natural way: for a fixed
party P and time t, the ledger L(t)—corresponding to the index t in the dynamic
ledger—consists of all the transactions present in the blocks constituting the
blockchain BP,t held by P at time t that have a timestamp not greater than t.
The rank of each transaction tx ∈ L(t) is then defined to be the timestamp of the
earliest block in BP,t containing it. Observe that standard exponentially vanish-
ing error bounds on the persistence and liveness of such blockchains then trans-
late to exponential failure bounds for the respective properties of the dynamic
ledger.

4.3 A Proof-of-Work Instantiation

In this section we summarize the implications of our results for the proof-of-work
setting by proving Corollary 7, which is a more detailed version of Theorem 1.
Recall the definition of the (p, q)-flat PoW model from Theorem 1.

Corollary 7. Let ε > 0 and let λ denote the security parameter. Let D =
(D1, . . . ,Dm) be a family of m = λ dynamic ledgers induced from m PoW-
based blockchains using PoWm

p as their joint PoW oracle, having a common
transaction space with a conflict relation, and run by a combined population of
n = poly(λ) parties in the synchronous (p, q)-flat PoW model, out of which at
least a (1/2 + ε)-fraction is honest. Let the assumptions of Lemma 8 be satisfied,
i.e., q ≥ λ5, pq ≤ λ.

Consider the combined dynamic ledger PF [D] with the (preemptive) rank func-
tion rank

∗
L. Then for PF [D], there is a constant C > 1 so that if L = Cm ln m,

PF [D] achieves constant-time relative settlement except with an error probability
negligible in the security parameter λ. (Observe that with such choice of L the
system still provides meaningful single-chain settlement guarantees.)

Proof (sketch). The statement is an instantiation of Corollary 1 (which is itself
based on Theorem 2) to the case of m = λ PoW-based ledgers using a joint
PoWm

p oracle. The required subindependence of this mining mechanism follows
from Lemma 8. ��
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15. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Lie,
D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 949–966. ACM
Press, October 2018

16. Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant
hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–
243. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 13
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Abstract. Understanding the communication complexity of Byzantine
agreement (BA) is a fundamental problem in distributed computing. In
particular, for protocols involving a large number of parties (as in, e.g.,
the context of blockchain protocols), it is important to understand the
dependence of the communication on the number of parties n. Although
adaptively secure BA protocols with o(n2) communication are known in
the synchronous and partially synchronous settings, no such protocols
are known in the fully asynchronous case.

We show asynchronous BA protocols with (expected) subquadratic
communication complexity tolerating an adaptive adversary who can cor-
rupt f < (1 − ε)n/3 of the parties (for any ε > 0). One protocol assumes
initial setup done by a trusted dealer, after which an unbounded number
of BA executions can be run; alternately, we can achieve subquadratic
amortized communication with no prior setup. We also show that some
form of setup is needed for (non-amortized) subquadratic BA tolerating
Θ(n) corrupted parties.

As a contribution of independent interest, we show a secure-
computation protocol in the same threat model that has o(n2) com-
munication when computing no-input functionalities with short output
(e.g., coin tossing).

1 Introduction

Byzantine agreement (BA) [31] is a fundamental problem in distributed comput-
ing. In this context, n parties wish to agree on a common output even when f
of those parties might be adaptively corrupted. Although BA is a well-studied
problem, it has recently received increased attention due to its application to
blockchain (aka state machine replication) protocols. Such applications typically
involve a large number of parties, and it is therefore critical to understand how
the communication complexity of BA scales with n. While protocols with adap-
tive security and o(n2) communication complexity have been obtained in both
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the synchronous [29] and partially synchronous [1] settings, there are currently
no such solutions for the asynchronous model.1 This leads us to ask:

Is it possible to design an asynchronous BA protocol with subquadratic
communication complexity that tolerates Θ(n) adaptive corruptions?

We give both positive and negative answers to this question.

Positive Results. We show asynchronous BA protocols with (expected) sub-
quadratic communication complexity that can tolerate adaptive corruption of
any f < (1 − ε)n/3 of the parties, for arbitrary ε > 0. (This corruption thresh-
old is almost optimal, as it is known [7] that asynchronous BA is impossible
altogether for f ≥ n/3, even assuming prior setup and static corruptions.) Our
solutions rely on two building blocks, each of independent interest:

1. We show a BA protocol ΠBA tolerating f adaptive corruptions and having
subquadratic communication complexity. This protocol assumes prior setup
by a trusted dealer for each BA execution, but the size of the setup is inde-
pendent of n.

2. We construct a secure-computation protocol ΠMPC tolerating f adaptive cor-
ruptions, and relying on a subquadratic BA protocol as a subroutine. For the
special case of no-input functionalities, the number of BA executions depends
only on the security parameter, and the communication complexity is sub-
quadratic when the output length is independent of n.

We can combine these results to give an affirmative answer to the original ques-
tion. Specifically, using a trusted dealer, we can achieve an unbounded number
of BA executions with o(n2) communication per execution. The idea is as fol-
lows. Let L be the number of BA executions required by ΠMPC for computing a
no-input functionality. The dealer provides the parties with the setup needed for
L + 1 executions of ΠBA; the total size of this setup is linear in L but indepen-
dent of n. Then, each time the parties wish to carry out Byzantine agreement,
they will use one instance of their setup to run ΠBA, and use the remaining L
instances to refresh their initial setup by running ΠMPC to simulate the dealer.
Since the size of the setup for ΠBA is independent of n, the total communication
complexity is subquadratic in n.

Alternately, we can avoid a trusted dealer (though we do still need to assume
a PKI) by having the parties run an arbitrary adaptively secure protocol to gen-
erate the initial setup. This protocol may not have subquadratic communication
complexity; however, once it is finished the parties can revert to the solution
above which has subquadratic communication per BA execution. Overall, this
gives BA with amortized subquadratic communication.

Impossibility Result. We justify our reliance on a trusted dealer by showing
that some form of setup is necessary for (non-amortized) subquadratic BA tol-
erating Θ(n) corrupted parties. Moreover, this holds even when secret channels
and erasures are available.
1 Tolerating f < n/3 static corruptions is easy; see Sect. 1.1.
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1.1 Related Work

The problem of BA was introduced by Lamport, Shostak and Pease [31]. Without
some form of setup, BA is impossible (even in a synchronous network) when
f ≥ n/3. Fischer, Lynch, and Patterson [23] ruled out deterministic protocols
for asynchronous BA even when f = 1. Starting with the work of Rabin [38],
randomized protocols for asynchronous BA have been studied in both the setup-
free setting [14,34] as well as the setting with a PKI and a trusted dealer [11].

Dolev and Reischuk [21] show that any BA protocol achieving subquadratic
communication complexity (even in the synchronous setting) must be random-
ized. BA with subquadratic communication complexity was first studied in
the synchronous model by King et al., who gave setup-free almost-everywhere
BA protocols with polylogarithmic communication complexity for the case of
f < (1− ε)n/3 static corruptions [30] and BA with O(n1.5) communication com-
plexity for the same number of adaptive corruptions [29]. Subsequently, several
works [1,26,32,33,35] gave improved protocols with subquadratic communica-
tion complexity (in the synchronous model with an adaptive adversary) using the
“player replaceability paradigm,” which requires setup in the form of verifiable
random functions.

Abraham et al. [1] show a BA protocol with adaptive security and sub-
quadratic communication complexity in the partially synchronous model. They
also give a version of the Dolev-Reischuk bound that rules out subquadratic BA
(even with setup, and even in the synchronous communication model) against
a strong adversary who is allowed to remove messages sent by honest parties
from the network after those parties have been adaptively corrupted. Our lower
bound adapts their ideas to the standard asynchronous model where honest par-
ties’ messages can be arbitrarily delayed, but cannot deleted once they are sent.
(We refer to the work of Garay et al. [24] for further discussion of these two mod-
els.) In concurrent work, Rambaud [39] proves an impossibility result similar to
our own; we refer to Sect. 7 for further discussion.

Cohen et al. [19] show an adaptively secure asynchronous BA protocol with
o(n2) communication. However, they consider a non-standard asynchronous
model in which the adversary cannot arbitrarily schedule delivery of messages. In
particular, the adversary in their model cannot reorder messages sent by honest
parties in the same protocol step. We work in the standard asynchronous model.
On the other hand, our work requires stronger computational assumptions and
a trusted dealer (unless we settle for amortized subquadratic communication
complexity).

We remark for completeness that asynchronous BA with subquadratic com-
munication complexity for a static adversary corrupting f < n/3 of the parties
is trivial using a committee-based approach, assuming a trusted dealer. Roughly,
the dealer chooses a random committee of Θ(κ) parties (where κ is a security
parameter) who then run BA on behalf of everyone. Achieving subquadratic BA
without any setup in the static-corruption model is an interesting open question.

Asynchronous secure multi-party computation (MPC) was first studied by
Ben-Or, Canetti and Goldreich [4]. Since then, improved protocols have been



356 E. Blum et al.

proposed with both unconditional [36,37,40] and computational [16,17,27,28]
security. These protocols achieve optimal output quality, and incur a total com-
munication complexity of at least Θ(n3κ) assuming the output has length κ.
Our MPC protocol gives a trade-off between the communication complexity and
the output quality. In particular, we achieve subquadratic communication com-
plexity when the desired output quality is sublinear (as in the case of no-input,
randomized functions).

1.2 Overview of the Paper

In Sect. 2 we discuss our model and recall some standard definitions. We show
how to achieve asynchronous reliable consensus and reliable broadcast with sub-
quadratic communication in Sect. 3. In Sect. 4 we present an asynchronous BA
protocol with subquadratic communication complexity, assuming prior setup by
a trusted dealer for each execution. In Sect. 5 we show a communication-efficient
asynchronous protocol for secure multi-party computation (MPC). We describe
how these components can be combined to give our main results in Sect. 6. We
conclude with our lower bound in Sect. 7.

2 Preliminaries and Definitions

We denote the security parameter by κ, and assume κ < n = poly(κ). In
all our protocols, we implicitly assume parties take 1κ as input; in our defi-
nitions, we implicitly allow properties to fail with probability negligible in κ.
We let ppt stand for probabilistic polynomial time. We use standard digital
signatures, where a signature on a message m using secret key sk is computed
as σ ← Signsk(m); a signature is verified relative to public key pk by calling
Vrfypk(m,σ). For simplicity, we assume in our proofs that the adversary cannot
forge valid signatures on behalf of honest parties. When replacing the signatures
with real-world instantiations, our theorems follow except with an additive neg-
ligible failure probability.

Model. We consider a setting where n parties P1, . . . , Pn run a distributed pro-
tocol over a network in which all parties are connected via pairwise authenticated
channels. We work in the asynchronous model, meaning the adversary can arbi-
trarily schedule the delivery of all messages, so long as all messages are eventually
delivered. We consider an adaptive adversary that can corrupt some bounded
number f of the parties at any point during the execution of some protocol,
and cause them to deviate arbitrarily from the protocol specification. However,
we assume the “atomic send” model, which means that (1) if at some point in
the protocol an honest party is instructed to send several messages (possibly
to different parties) simultaneously, then the adversary can corrupt that party
either before or after it sends all those messages, but not in the midst of sending
those messages; and (2) once an honest party sends a message, that message is
guaranteed to be delivered eventually even if that party is later corrupted. In
addition, we assume secure erasure.
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In many cases we assume an incorruptible dealer who can initialize the parties
with setup information in advance of any protocol execution. Such setup may
include both public information given to all parties, as well as private information
given to specific parties; when we refer to the size of a setup, we include the total
private information given to all parties but count the public information only
once. A public key infrastructure (PKI) is one particular setup, in which all
parties hold the same vector of public keys (pk1, . . . , pkn) and each honest party
Pi holds the honestly generated secret key ski corresponding to pki.

Byzantine Agreement. We include here the standard definition of Byzantine
agreement. Definitions of other primitives are given in the relevant sections.

Definition 1 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and parties terminate upon
generating output. Π is an f -secure Byzantine agreement protocol if the following
hold when at most f parties are corrupted:

– Validity: if every honest party has the same input value v, then every honest
party outputs v.

– Consistency: all honest parties output the same value.

3 Building Blocks

In this section we show asynchronous protocols with subquadratic communica-
tion for reliable consensus, reliable broadcast, graded consensus, and coin flip-
ping.

3.1 Reliable Consensus

Reliable consensus is a weaker version of Byzantine agreement where termination
is not required. The definition follows.

Definition 2 (Reliable consensus). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and parties terminate upon
generating output. Π is an f -secure reliable consensus protocol if the following
hold when at most f parties are corrupted:

– Validity: if every honest party has the same input value v, then every honest
party outputs v.

– Consistency: either no honest party terminates, or all honest parties output
the same value.

We show a reliable consensus protocol ΠRC with subquadratic communica-
tion. The protocol can be viewed as a variant of Bracha’s reliable broadcast
protocol [7,8] for the case where every party has input. The protocol assumes
prior setup initialized by a trusted dealer. The trusted setup has expected
size O(κ2) and takes the following form. First, the dealer selects two secret
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committees C1, C2 by independently placing each party in C1 (resp., C2) with
probability κ/n. Then, for each party Pi in C1 (resp., C2), the dealer generates
a public/private key pair (pk1,i, sk1,i) (resp., (pk2,i, sk2,i)) for a digital signature
scheme and gives the associated private key to Pi; the public keys (but not the
identities of the members of the committees) are given to all parties.

The protocol itself is described in Fig. 1. It begins by having each party
in C1 send its signed input to all the parties. The parties in C2 then send a
signed ready message on a value v the first time they either (1) receive v from
κ − t parties in C1 or (2) receive ready messages on v from t + 1 parties in C2.
All parties terminate upon receiving ready messages on the same value from
κ − t parties in C2. Each committee has expected size O(κ), and each member
of a committee sends a single message to all parties; thus, O(κn) messages are
sent (in expectation) during the protocol.

Security relies on the fact that an adversary cannot corrupt too many mem-
bers of C1 (resp., C2) “until it is too late,” except with negligible probability.
For a static adversary this is immediate. For an adaptive adversary this follows
from the fact that each member of a committee sends only a single message and
erases its signing key after sending that message; thus, once the attacker learns
that some party is in a committee, adaptively corrupting that party is useless.

Protocol ΠRC

We describe the protocol from the point of view of a party Pi with input vi,
assuming the setup described in the text. Set t = (1 − ε) · κ/3.

1. If Pi ∈ C1: Compute σi ← Signsk1,i(vi), erase sk1,i, and send
(echo, (i, vi, σi)) to all parties.

2. If Pi ∈ C2: As long as no ready message has yet been sent, do: upon
receiving (echo, (j, v, σj)) with Vrfypk1,j (v, σj) = 1 on the same value
v from at least κ − t distinct parties, or receiving (ready, (j, v, σj))
with Vrfypk2,j (v, σj) = 1 on the same value v from strictly more than
t distinct parties, compute σi ← Signsk2,i(v), erase sk2,i, and send
(ready, (i, v, σi)) to all parties.

3. Upon receiving (ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same
value v from at least κ− t distinct parties and, output v and terminate.

Fig. 1. A reliable consensus protocol, parameterized by ε.

Theorem 1. Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠRC is an f-
secure reliable consensus protocol with expected setup size O(κ2) and expected
communication complexity O((κ + I) · κn), where I is the size of each party’s
input.

Proof. Recall that t = (1 − ε) · κ/3. Say a party is 1-honest if it is in C1 and
is not corrupted when executing step 1 of the protocol, and 1-corrupted if it is
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in C1 but corrupted when executing step 1 of the protocol. Define 2-honest and
2-corrupted analogously. Lemma 11 shows that with overwhelming probability
C1 (resp., C2) contains fewer than (1 + ε) · κ parties; there are more than κ − t
parties who are 1-honest (resp., 2-honest); and there are fewer than t < κ − t
parties who are 1-corrupted (resp., 2-corrupted). For the rest of the proof we
assume these hold. We also use the fact that once a 1-honest (resp., 2-honest)
party P sends a message, that message is the only such message that will be
accepted by honest parties on behalf of P (even if P is adaptively corrupted
after sending that message).

We first prove that ΠRC is f -valid. Assume all honest parties start with the
same input v. Each of the parties that is 1-honest sends an echo message on
v to all other parties, and so every honest party eventually receives valid echo
messages on v from more than κ − t distinct parties. Since there are fewer than
κ − t parties that are 1-corrupted, no honest party receives valid echo messages
on v′ �= v from κ− t or more distinct parties. It follows that every 2-honest party
sends a ready message on v to all other parties. A similar argument then shows
that all honest parties output v and terminate.

Toward showing consistency, we first argue that if honest Pi, Pj send ready
messages on vi, vj , respectively, then vi = vj . Assume this is not the case, and let
Pi, Pj be the first honest parties to send ready messages on distinct values vi, vj .
Then Pi (resp., Pj) must have received at least κ− t valid ready messages on vi

(resp., vj). But then at least

(κ − t) + (κ − t) = (1 + ε) · κ + t

valid ready messages were received by Pi, Pj overall. But this is impossible,
since the maximum number of such messages is at most |C2| plus the number of
2-corrupted parties (because 2-honest parties send at most one ready message),
which is strictly less than (1 + ε) · κ + t.

Now, assume an honest party Pi outputs v. Then Pi must have received valid
ready messages on v from at least κ−t distinct parties in C2, more than κ−2t > t
of whom are 2-honest. As a consequence, all 2-honest parties eventually receive
valid ready messages on v from more than t parties, and so all 2-honest parties
eventually send a ready message on v. Thus, all honest parties eventually receive
valid ready messages on v from at least κ − t parties, and so output v also.

3.2 Reliable Broadcast

Reliable broadcast allows a sender to consistently distribute a message to a
set of parties. In contrast to full-fledged broadcast (and by analogy to reliable
consensus), reliable broadcast does not require termination.

Definition 3 (Reliable broadcast). Let Π be a protocol executed by parties
P1, . . . , Pn, where a designated sender P ∗ initially holds input v∗, and parties
terminate upon generating output. Π is an f -secure reliable broadcast protocol if
the following hold when at most f parties are corrupted:
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– Validity: if P ∗ is honest at the start of the protocol, then every honest party
outputs v∗.

– Consistency: either no honest party terminates, or all honest parties output
the same value.

It is easy to obtain a reliable broadcast protocol ΠRBC (cf. Fig. 2) from reliable
consensus: the sender P ∗ simply signs its message and sends it to all parties, who
then run reliable consensus on what they received. In addition to the setup for the
underlying reliable consensus protocol, ΠRBC assumes P ∗ has a public/private
key pair (pk∗, sk∗) with pk∗ known to all other parties.

Protocol ΠRBC

1. P ∗ does: compute σ∗ ← Signsk∗(v∗), erase sk∗, and send (v∗, σ∗) to all
parties.

2. Upon receiving (v∗, σ∗) with Vrfypk∗(v, σ) = 1, input v to ΠRC (with
parameter ε).

3. Upon receiving output v from ΠRC, output v and terminate.

Fig. 2. A reliable broadcast protocol, implicitly parameterized by ε.

Theorem 2. Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠRBC is an f-
secure reliable broadcast protocol with expected setup size O(κ2) and expected
communication complexity O((κ + I) · κn), where I is the size of the sender’s
input.

Proof. Consistency follows from consistency of ΠRC. As for validity, if P ∗ is
honest at the outset of the protocol then P ∗ sends (v∗, σ∗) to all parties in
step 1; even if P ∗ is subsequently corrupted, that is the only valid message from
P ∗ that other parties will receive. As a result, every honest party runs ΠRC using
input v, and validity of ΠRC implies validity of ΠRBC.

3.3 Graded Consensus

Graded consensus [22] can be viewed as a weaker form of consensus where parties
output a grade along with a value, and agreement is required to hold only if some
honest party outputs a grade of 1. Our definition does not require termination
upon generating output.

Definition 4 (Graded consensus). Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and is supposed to output
a value wi along with a grade gi ∈ {0, 1}. Π is an f -secure graded-consensus
protocol if the following hold when at most f parties are corrupted:

– Graded validity: if every honest party has the same input value v, then
every honest party outputs (v, 1).
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– Graded consistency: if some honest party outputs (w, 1), then every honest
party Pi outputs (w, gi).

We formally describe a graded-consensus protocol ΠGC inspired by the graded
consensus protocol of Canetti and Rabin [14], and prove the following theorem
in the full version of the paper.

Theorem 3. Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠGC is an f-
secure graded-consensus protocol with expected setup size O(κ3) and expected
communication complexity O((κ + I) · κ2n), where I is the size of each party’s
input.

3.4 A Coin-Flip Protocol

We describe here a protocol that allows parties to generate a sequence of random
bits (coins) Coin1, . . . ,CoinT for a pre-determined parameter T . We denote the
sub-protocol to generate the ith coin by CoinFlip(i). Roughly speaking, the pro-
tocol guarantees that (1) when all honest parties invoke CoinFlip(i), all honest
parties output the same value Coini and (2) until the first honest party invokes
CoinFlip(i), the value of Coini is uniform.

Our coin-flip protocol assumes setup provided by a trusted dealer that takes
the following form: For each iteration 1, . . . , T , the dealer chooses uniform Coini ∈
{0, 1}; chooses a random subset Ei of the parties by including each party in Ei

with probability κ/n; and then gives authenticated secret shares of Coini (using
a perfectly secret �κ/3�-out-of-|Ei| secret-sharing scheme) to the members of Ei.
(Authentication is done by having the dealer sign the shares.) Since each share
(including the signature) has size O(κ), the size of the setup is O(κ2T ).

The coin-flip protocol itself simply involves having the parties in the relevant
subset send their shares to everyone else. The communication complexity is thus
O(κ2n) per iteration.

Lemma 1. Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then as long as at most f
parties are corrupted, CoinFlip(i) satisfies the following:

1. all honest parties obtain the same value Coini,
2. until the first honest party invokes CoinFlip(i), the value of Coini is uniform

from the adversary’s perspective.

Proof. Lemma 11 implies that, except with negligible probability, Ei contains
more than �κ/3� honest parties and fewer than (1 − ε) · κ/3 corrupted parties.
The stated properties follow.

4 (Single-Shot) BA with Subquadratic Communication

In this section we describe a BA protocol ΠBA with subquadratic communica-
tion complexity. (See Fig. 3.) ΠBA assumes setup that is then used for a single
execution of the protocol. The setup for ΠBA corresponds to the setup required
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Protocol ΠBA

We describe the protocol from the point of view of a party with input
v ∈ {0, 1}.

Set b := v and ready := false. Then for k = 1 to κ + 1 do:

1. Run ΠGC on input b, and let (b, g) denote the output.
2. Invoke CoinFlip(k) to obtain Coink.
3. If g = 0 then set b := Coink.
4. Run ΠGC on input b, and let (b, g) denote the output.
5. If g = 1 and ready = false, then set ready := true and run ΠRC on input

b.
6. Set k := k + 1 and goto step 1.

Termination: If ΠRC ever terminates with output b′, output b′ and termi-
nate.

Fig. 3. A Byzantine agreement protocol, implicitly parameterized by ε.

for O(κ) executions of graded consensus, O(κ) iterations of the coin-flip sub-
protocol, and a single execution of reliable consensus. Using the protocols from
the previous section, ΠBA thus requires setup of size O(κ4) overall.

Following ideas by Mostéfaoui et al. [34], our protocol consists of a sequence
of Θ(κ) iterations, where each iteration invokes a graded-consensus subprotocol
and a coin-flip subprotocol. In each iteration there is a constant probability that
honest parties reach agreement; once agreement is reached, it cannot be undone
in later iterations. The coin-flip protocol allows parties to adopt the value of a
common coin if agreement has not yet been reached (or, at least, if parties are
unaware that agreement has been reached). Reliable consensus is used so parties
know when to terminate.

We prove security via a sequence of lemmas. Throughout the following, we
fix some value 0 < ε < 1/3 and let f ≤ (1 − 2ε)n/3 be a bound on the number
of corrupted parties.

Lemma 2. If at most f parties are corrupted during an execution of ΠBA, then
with all but negligible probability some honest party sets ready = true within the
first κ iterations.

Proof. Consider an iteration k of ΠBA such that no honest party set ready = true
in any previous iteration. (This is trivially true in the first iteration). We begin
by showing that some honest party sets ready = true in that iteration with
probability at least 1/2. Consider two cases:

– If some honest party outputs (b, 1) in the first execution of ΠGC during iter-
ation k, then graded consistency of ΠGC guarantees that every other honest
party outputs (b, 1) or (b, 0) in that execution. The value b is independent of
Coink, because b is determined prior to the point when the first honest party
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invokes CoinFlip(i); thus, Coink = b with probability 1/2. If that occurs, then
all honest parties input b to the second execution of ΠGC and, by graded
validity, every honest party outputs (g, 1) in the second execution of ΠGC and
sets ready = true.

– Say no honest party outputs grade 1 in the first execution of ΠGC during
iteration k. Then all honest parties input Coink to the second execution of
ΠGC and, by graded validity, every honest party outputs (g, 1) in the second
execution of ΠGC and sets ready = true.

Thus, in each iteration where no honest party has yet set ready = true, some
honest party sets ready = true in that iteration with probability at least 1/2. We
conclude that the probability that no honest party has set ready = true after κ
iterations is negligible.

Lemma 3. Assume at most f parties are corrupted during execution of ΠBA.
If some honest party executes ΠRC using input b in iteration k, then (1) honest
parties who execute ΠGC in any iteration k′ > k use input b, and (2) honest
parties who execute ΠRC in any iteration k′ ≥ k use input b.

Proof. Consider the first iteration k in which some honest party P sets ready =
true, and let b denote P ’s input to ΠRC. P must have received (b, 1) from the
second execution of ΠGC in iteration k. By graded consistency, all other honest
parties must receive (b, 0) or (b, 1) from that execution of ΠGC as well. Thus,
any honest parties who execute ΠRC in iteration k use input b, and any honest
parties who run2 the first execution of ΠGC in iteration k + 1 will use input b as
well. Graded validity ensures that any honest party who receives output from
that execution of ΠGC will receive (b, 1), causing them to use input b to the next
execution of ΠGC as well as ΠRC (if they execute those protocols), and so on.

Lemma 4. Assume at most f parties are corrupted during an execution of ΠBA.
If some honest party sets ready = true within the first κ iterations and executes
ΠRC using input b, then all honest parties terminate with output b.

Proof. Let k ≤ κ be the first iteration in which some honest party sets ready =
true and executes ΠRC using input b. By Lemma 3, any other honest party who
executes ΠRC must also use input b, and furthermore all honest parties who
execute ΠGC in any subsequent iteration use input b there as well. We now
consider two cases:

– If no honest party terminates before all honest parties receive output from
the second execution of ΠGC in iteration k + 1, then graded validity of ΠGC

ensures that all honest parties receive (b, 1) as output from that execution,
and thus all parties execute ΠRC using input b at this point if they have not
done so already. Validity of ΠRC then ensures that all honest parties output
b and terminate.

2 Note that some honest parties may terminate before others, and in particular it may
be the case that not all honest parties run some execution of ΠGC.
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– If some honest party P has terminated before all honest parties receive output
from the second execution of ΠGC in iteration k + 1, validity of ΠRC implies
that P must have output b. In that case, consistency of ΠRC guarantees that
all parties will eventually output b and terminate.

This completes the proof.

Theorem 4. Let 0 < ε < 1/3 and f ≤ (1 − 2ε) · n/3. Then ΠBA is an f-
secure BA protocol with expected setup size O(κ4) and expected communication
complexity O(κ4n).

Proof. By Lemma 2, with overwhelming probability some honest party sets
ready = true within the first κ iterations and thus executes ΠRC using some
input b. It follows from Lemma 4 that all honest parties eventually output b and
terminate. This proves consistency.

Assume all honest parties have the same input v. Unless some honest party
terminates before all honest parties have concluded the first iteration, one can
verify (using graded validity of ΠGC) that in the first iteration all honest parties
output (v, 1) from the first execution of ΠGC; use input v to the second execution
of ΠGC; output (v, 1) from the second execution of ΠGC; and execute ΠRC using
input v. But the only way some honest party could terminate before all honest
parties have concluded the first iteration is if that party executes ΠRC using
input v. Either way, Lemma 4 shows that all honest parties will terminate with
output v, proving validity.

5 MPC with Subquadratic Communication

In this section we give a protocol for asynchronous secure multiparty computa-
tion (MPC). Our protocol uses a Byzantine agreement protocol as a subroutine;
importantly, the number of executions of Byzantine agreement is independent of
the number of parties as well as the output length, as long as the desired input
quality is low enough. Our MPC protocol also relies on a sub-protocol for (a
variant of the) asynchronous common subset problem; we give a definition, and
a protocol with subquadratic communication complexity, in the next section.

5.1 Validated ACS with Subquadratic Communication

A protocol for the asynchronous common subset (ACS) problem [5,12] allows
n parties to agree on a subset of their initial inputs of some minimum size. We
consider a validated version of ACS (VACS), where it is additionally ensured
that all values in the output multiset satisfy a given predicate Q [10,15].

Definition 5. Let Q be a predicate, and let Π be a protocol executed by parties
P1, . . . , Pn, where each party outputs a multiset of size at most n, and terminates
upon generating output. Π is an f-secure Q-validated ACS protocol with
�-output quality if the following hold when at most f parties are corrupted and
every honest party’s input satisfies Q:
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– Q-Validity: if an honest party outputs S, then each v ∈ S satisfies Q(v) = 1.
– Consistency: every honest party outputs the same multiset.
– �-Output quality: all honest parties output a multiset of size at least � that

contains inputs from at least � − f parties who were honest at the start of the
protocol.

Our VACS protocol Π�,Q
VACS (see Fig. 4) is inspired by the protocol of Ben-Or

et al. [5]. During the setup phase, a secret committee C is chosen by indepen-
dently placing each party in C with probability s/n, where s = 3

2+ε� and � is
the desired output quality. Each party in the committee acts as a sender in a
reliable-broadcast protocol, and then the parties run |C| instances of Byzantine
agreement to agree on the set of reliable-broadcast executions that terminated.
The expected communication complexity and setup size for Π�,Q

VACS are thus (in
expectation) a factor of O(�) larger than those for reliable broadcast and Byzan-
tine agreement.

Protocol Π�,Q
VACS

We describe the protocol from the point of view of a party P with input v.
We assume prior setup in which a committee C is chosen (see text).

1. Execute |C| instances of reliable broadcast, denoted RBC1, . . . ,RBC|C|.
If P is the ith member of C, then P executes the ith instance of ΠRBC

as the sender using input v.
2. On output vi from RBCi with Q(vi) = 1, if P has not yet begun ex-

ecuting the ith instance BAi of Byzantine agreement, then begin that
execution using input 1.

3. When P has output 1 in � instances of Byzantine agreement, then begin
executing any other instances of Byzantine agreement that have not yet
begun using input 0.

4. Once P has terminated in all instances of Byzantine agreement, let
CoreSet be the indices of those instances that resulted in output 1.
After receiving output vi from RBCi for all i ∈ CoreSet, output the
multiset {vi}i∈CoreSet.

Fig. 4. A VACS protocol (implicitly parameterized by ε) with �-output quality and
predicate Q.

Using the protocols from the previous sections, we thus obtain:

Theorem 5. Let 0 < ε < 1/3, f ≤ (1 − 2ε) · n/3, and � ≤ (1 + ε/2) · 2n/3.
Then Π�,Q

VACS is an f-secure Q-validated ACS protocol with �-output quality. It
has expected setup size O(�κ4) and expected communication complexity O(� ·(I +
κ3) · κn), where I is the size of each party’s input, and uses O(�) invocations of
Byzantine agreement in expectation.

Proof. Say v is in the multiset output by some honest party, where v was output
by RBCi. BAi must have resulted in output 1, which (by validity of BA) can only
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occur if some honest party used input 1 when executing BAi. But then Q(v) = 1.
This proves Q-validity of Π�,Q

VACS.
By consistency of BA, all honest parties agree on CoreSet. If i ∈ CoreSet,

then BAi must have resulted in output 1 which means that some honest party P
must have used input 1 to BAi. (Validity or BAi ensures that if all honest parties
used input 0, the output of BA must be 0). But then P must have terminated
in RBCi; consistency of RBCi then implies that all honest parties eventually
terminate RBCi with the same output vi. Consistency of Π�,Q

VACS follows.
Lemma 11 shows that with overwhelming probability there are more than

2+ε
3 · 3

2+ε� = � honest parties in C at step 1 of the protocol. Validity of RBC implies
that in the corresponding instances of RBC, all honest parties terminate with an
output satisfying Q. If every honest party begins executing all the corresponding
instances of BA, those � instances will all yield output 1. The only way all honest
parties might not begin executing all those instances of BA is if some honest party
outputs 1 in some (other) � instances of BA, but then consistency of BA implies
that all honest parties output 1 in those same � instances. We conclude that
every honest party outputs 1 in at least � instances of BA, and so outputs a
multiset S of size at least �. Since each instance of RBC (and so each corrupted
party) contributes at most one value to S, this proves �-output quality.

5.2 Secure Multiparty Computation

We begin by reviewing the definition of asynchronous MPC by Canetti [13]. Let
g be an n-input function, possibly randomized, where if the inputs of the parties
are x = (x1, . . . , xn) then all parties should learn y ← g(x1, . . . , xn). In the real-
world execution of a protocol Π computing g, each party Pi initially holds 1κ

and an input xi, and an adversary A has input 1κ and auxiliary input z. The
parties execute Π, and may be adaptively corrupted by A during execution of the
protocol. At the end of the execution, each honest party outputs its local output
(as dictated by the protocol), and A outputs its view. We let realΠ,A(κ,x, z)
denote the distribution over the resulting vector of outputs as well as the set of
corrupted parties.

Security of Π is defined relative to an ideal-world evaluation of g by a trusted
party. The parties hold inputs as above, and we now denote the adversary by S.
The ideal execution proceeds as follows:

– Initial corruption. S may adaptively corrupt parties and learn their inputs.
– Computation with �-output quality. S sends a set CoreSet ⊆

{P1, . . . , Pn} of size at least � to the trusted party. In addition, S sends to
the trusted party an input x′

i for each corrupted Pi ∈ CoreSet.
For Pi �∈ CoreSet, let x′

i =⊥; if Pi ∈ CoreSet is honest, then let x′
i = xi.

The trusted party computes y ← g(x′
1, . . . , x

′
n) and sends (y,CoreSet) to each

party.
– Additional corruption. S may corrupt additional parties.3

3 S learns nothing additional, because we assume secure erasure (in both the ideal-
and real-world executions).
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– Output stage. Each honest party outputs (y,CoreSet).
– Post-execution corruption. S may corrupt additional parties, and then

outputs an arbitrary function of its view.

We let ideal�
g,S(κ,x, z) be the distribution over the vector of outputs and the

set of corrupted parties following an ideal-world execution as above.

Definition 6. Π f -securely computes g with �-output quality if for any ppt
adversary A corrupting up to f parties, there is a ppt adversary S such that:

{ideal�
g,S(κ,x, z)}κ∈N;x,z∈{0,1}∗ ≈c {realΠ,A(κ,x, z)}κ∈N;x,z∈{0,1}∗ .

We construct an MPC protocol Π�
MPC that offers a tradeoff between com-

munication complexity and output quality; in particular, it has subquadratic
communication complexity when the output quality and the output length of
the functionality being computed are sublinear in the number of parties. We
provide a high-level overview of our protocol next, with a full description in
Fig. 5.

Let t = (1 − ε) · κ/3. Our protocol assumes trusted setup as follows:

1. A random committee C is selected by including each party in C indepen-
dently with probability κ/n. This is done in the usual way by giving each
member of the committee a secret key for a signature scheme, and giving the
corresponding public keys to all parties. In addition:
(a) We assume a threshold fully homomorphic encryption (TFHE) scheme [2,

6] TFHE = (KGen,Enc,Dec,Eval) with non-interactive decryption whose
secret key is shared in a t-out-of-|C| manner among the parties in C. (We
refer to AppendixB.1 for appropriate definitions of TFHE.)
Specifically, we assume a TFHE public key ek is given to all parties, while
a share dki of the corresponding secret key is given to the ith party in C.

(b) The setup for Π�
MPC includes setup for |C| instances of ΠRBC (with the

ith party in C the sender for the ith instance of ΠRBC), as well as one
instance of ΠRC.

2. All parties are given a list of |C| commitments to each of the TFHE shares dki;
the randomness ωi for the ith commitment is given to the ith member of C.

3. All parties are given the TFHE encryption of a random κ-bit value r. We
denote the resulting ciphertext by crand ← Encek(r).

4. Parties are given the setup for one instance of VACS protocol Π�,Q
VACS. We

further assume that each party in the committee that is chosen as part of the
setup for that protocol is given a secret key for a signature scheme, and all
parties are given the corresponding public keys.

5. All parties are given a common reference string (CRS) for a universally com-
posable non-interactive zero-knowledge (UC-NIZK) proof [20] (see below).

The overall expected size of the setup is O((� + κ) · poly(κ)).
Fix a (possibly randomized) functionality g the parties wish to compute.

We assume without loss of generality that g uses exactly κ random bits (one
can always use a PRG to ensure this). To compute g, each party Pi begins by
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encrypting its input xi using the TFHE scheme, and signing the result; it also
computes an NIZK proof of correctness for the resulting ciphertext. The parties
then use VACS (with �-output quality) to agree on a set S containing at least
� of those ciphertexts. Following this, parties carry out a local computation in
which they evaluate g homomorphically using the set of ciphertexts in S as the
inputs and the ciphertext crand (included in the setup) as the randomness. This
results in a ciphertext c∗ containing the encrypted result, held by all parties.
Parties in C enable decryption of c∗ by using reliable broadcast to distribute
shares of the decrypted value (along with a proof of correctness). Finally, the
parties use reliable consensus to agree on when to terminate.

In the description above, we have omitted some details. In particular, the
protocol ensures adaptive security by having parties erase certain information
once it is no longer needed. This means, in particular, that we do not need to
rely on equivocal TFHE [18].

In our protocol, parties generate UC-NIZK proofs for different statements.
(Note that UC-NIZK proofs are proofs of knowledge; they are also non-
malleable.) In particular, we define the following languages, parameterized by
values (given to all parties) contained in the setup:

1. (i, ci) ∈ L1 if there exist xi, ri such that ci = Encek(xi; ri).
2. (i, c∗, di) ∈ L2 if di = Decdki

(c∗) and comi = Com(dki;ωi). (Here, comi is the
commitment to dki included in the setup.)

We prove the following theorem in the full version of the paper.

Protocol Π�
MPC

Let t = (1 − ε) · κ/3. We describe the protocol from the point of view of a
party Pi with input xi, assuming the setup described in the text.

1. Compute ci ← Encek(xi) along with a UC-NIZK proof πi that (i, ci) ∈
L1. Erase xi and the randomness used to generate c1 and πi.
Execute Π�,Q

VACS using input (i, Signski(ci), ci, πi), where Q(i, σ, c, π) = 1
iff Vrfypki(c, σ) = 1 and π is a correct proof for (i, c). Let S′ denote the
multiset output by Π�,Q

VACS. Let S ⊆ S′ be the set obtained by including,
for all i, only the lexicographically first tuple (i, �, �, �) in S′. Let I =
{i | ∃ (i, �, �, �) ∈ S}.

2. Define the circuit Cg taking |I| + 1 inputs, where Cg({xi}i∈I , r) =
g({xi}i∈I , {⊥}i�∈I ; r). Compute c∗ := Evalek(Cg, {ci}i∈I , crand).
If Pi ∈ C, compute di := Decdki(c

∗) and a UC-NIZK proof π′
i that

(i, c∗, di) ∈ L2. Erase dki, ωi, and the randomness used to generate π′
i.

Execute |C| instances of ΠRBC. If Pi is the ith member of C, it executes
the ith instance of ΠRBC as the sender using input (i, di, π

′
i).

3. Upon receiving t outputs {(j, dj , π
′
j)} from the ΠRBC instances, with

valid proofs and distinct j, compute yi := Rec({dj}) and execute ΠRC

with input yi. When ΠRC terminates with output y, output (y, I) and
terminate.

Fig. 5. An MPC protocol with �-output quality, parameterized by ε.



Asynchronous Byzantine Agreement with Subquadratic Communication 369

Theorem 6. Let 0 < ε < 1/3, f ≤ (1 − 2ε) · n/3, and � ≤ (1 + ε/2) · 2n/3.
Assuming appropriate security of the NIZK proofs and TFHE, protocol Π�

MPC f-
securely computes g with �-output quality. Π�

MPC requires setup of expected size
O((� + κ) · poly(κ)), has expected communication complexity O((� + κ) · (I + O) ·
poly(κ) · n), where I is the size of each party’s input and O is the size of the
output, and invokes Byzantine agreement O(�) times in expectation.

6 Putting it All Together

The BA protocol ΠBA from Sect. 4 requires prior setup by a trusted dealer
that can be used only for a single BA execution. Using multiple, independent
instances of the setup it is, of course, possible to support any bounded number
of BA executions. But a new idea is needed to support an unbounded number of
executions.

In this section we discuss how to use the MPC protocol from Sect. 5 to achieve
this goal. The key idea is to use that protocol to refresh the setup each time a BA
execution is done. We first describe how to modify our MPC protocol to make
it suitable for our setting, and then discuss how to put everything together to
obtain the desired result.

6.1 Securely Simulating a Trusted Dealer

As just noted, the key idea is for the parties to use the MPC protocol from
Sect. 5 to simulate a trusted dealer. In that case the parties are evaluating a
no-input (randomized) functionality, and so do not need any output quality; let
ΠMPC = Π0

MPC. Importantly, ΠMPC has communication complexity subquadratic
in n.

Using ΠMPC to simulate a dealer, however, requires us to address several
technicalities. As described, ΠMPC evaluates a functionality for which all parties
receive the same output. But simulating a dealer requires the parties to compute
a functionality where parties receive different outputs. The standard approach
for adapting MPC protocols to provide parties with different outputs does not
work in our context: specifically, using symmetric-key encryption to encrypt the
output of each party Pi using a key that Pi provides as part of its input does
not work since ΠMPC has no output quality (and even Π�

MPC only guarantees
�-output quality for � < n). Assuming a PKI, we can fix this by using public-key
encryption instead (in the same way); this works since the public keys of the par-
ties can be incorporated into the functionality being computed—since they are
common knowledge—rather than being provided as inputs to the computation.

Even when using public-key encryption as just described, however, additional
issues remain. ΠMPC has (expected) subquadratic communication complexity
only when the output length O of the functionality being computed is sublinear
in the number of parties. Even if the dealer algorithm generates output whose
length is independent of n, naively encrypting output for every party (encrypting
a “null” value of the appropriate length for parties whose output is empty) would
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result in output of total length linear in n. Encrypting the output only for parties
with non-empty output does not work either since, in general, this might reveal
which parties get output, which in our case would defeat the purpose of the
setup!

We can address this difficulty by using anonymous public-key encryption [3].
Roughly, an anonymous public-key encryption (APKE) scheme has the property
that a ciphertext leaks no information about the public key pk used for encryp-
tion, except to the party holding the corresponding secret key sk (who is able to
decrypt the ciphertext using that key). Using APKE to encrypt the output for
each party who obtains non-empty output, and then randomly permuting the
resulting ciphertexts, allows us to compute a functionality with sublinear out-
put length while hiding which parties receive output. This incurs—at worst—an
additional multiplicative factor of κ in the output length.

Summarizing, we can simulate an arbitrary dealer algorithm in the following
way. View the output of the dealer algorithm as pub, {(i, si)}, where pub rep-
resents the public output that all parties should learn, and each si is a private
output that only Pi should learn. Assume the existence of a PKI, and let pki

denote a public key for an APKE scheme, where the corresponding secret key
is held by Pi. Then use ΠMPC to compute pub, {Encpki

(si)}, where the cipher-
texts are randomly permuted. As long as the length of the dealer’s output is
independent of n, the output of this functionality is also independent of n.

6.2 Unbounded Byzantine Agreement with Subquadratic
Communication

We now show how to use the ideas from the previous section to achieve an
unbounded number of BA executions with subquadratic communication. We
describe two solutions: one involving a trusted dealer who initializes the par-
ties with a one-time setup, and another that does not require a dealer (but
does assume a PKI) and achieves expected subquadratic communication in an
amortized sense.

For the first solution, we assume a trusted dealer who initializes the parties
with the setup for one instance of ΠBA and one instance of ΠMPC. (We also
assume a PKI, which could be provided by the dealer as well; however, when we
refer to the setup for ΠMPC we do not include the PKI since it does not need
to be refreshed.) Importantly, the setup for ΠMPC allows the parties to compute
any no-input functionality; the size of the setup is fixed, independent of the size
of the circuit for the functionality being computed or its output length. For an
execution of Byzantine agreement, the parties run ΠBA using their inputs and
then use ΠMPC to refresh their setup by simulating the dealer algorithm. (We
stress that the parties refresh the setup for both ΠBA and ΠMPC.) The expected
communication complexity per execution of Byzantine agreement is the sum of
the communication complexities of ΠBA and ΠMPC. The former is subquadratic;
the latter is subquadratic if we follow the approach described in the previous
section. Thus, the parties can run an unbounded number of subquadratic BA
executions while only involving a trusted dealer once.
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Alternately, we can avoid a trusted dealer by having the parties simulate the
dealer using an arbitrary adaptively secure MPC protocol. (We still assume a
PKI.) The communication complexity of the initial MPC protocol may be arbi-
trarily high, but all subsequent BA executions will have subquadratic (expected)
communication complexity as above. In this way we achieve an unbounded num-
ber of BA executions with amortized (expected) subquadratic communication
complexity.

7 A Lower Bound for Asynchronous Byzantine
Agreement

We show that some form of setup is necessary for adaptively secure asynchronous
BA with (non-amortized) subquadratic communication complexity. Our bound
holds even if we allow secure erasure, and even if we allow secret channels between
all the parties. (However, we assume an attacker can tell when a message is sent
from one party to another.)

A related impossibility result was shown by Abraham et al. [1, Theorem
4]; their result holds even with prior setup and in the synchronous model of
communication. However, their result relies strongly on an adversary who can
delete messages sent by honest parties after those parties have been adaptively
corrupted. In contrast, our bound applies to the standard communication model
where honest parties’ messages cannot be deleted once they are sent.

In concurrent work [39], Rambaud shows a bound that is slightly stronger
than ours: His result holds even in the partially synchronous model, and rules
out subquadratic communication complexity even with a PKI. We note, however,
that his analysis treats signatures in an idealized manner, and thus it does not
apply, e.g., to protocols using unique signatures for coin flipping.

We provide an outline of our proof that omits several technical details, but
conveys the main ideas. Let Π be a setup-free protocol for asynchronous BA with
subquadratic communication complexity. We show an efficient attacker A who
succeeds in violating the security of Π. The attacker exploits the fact that with
high probability, a uniform (honest) party P will communicate with only o(n)
other parties during an execution of Π. The adversary A can use this to “isolate”
P from the remaining honest parties in the network and cause an inconsistency.
In more detail, consider an execution in which P holds input 1, and the remaining
honest parties S′ all hold input 0. A tricks P into thinking that it is running
in an alternate (simulated) execution of Π in which all parties are honest and
hold input 1, while fooling the parties in S′ into believing they are running an
execution in which all honest parties hold 0 and at most f (corrupted) parties
abort. By validity, P will output 1 and the honest parties in S′ will output 0,
but this contradicts consistency.

To “isolate” P as described, A runs two simulated executions of Π alongside
the real execution of the protocol. (Here, it is crucial that Π is setup-free, so
A can run the simulated executions on behalf of all parties.) A delays messages
sent by honest parties to P in the real execution indefinitely; this is easy to do
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in the asynchronous setting. When a party Q ∈ S′ sends a message to P in the
simulated execution, A corrupts Q in the real execution and then sends that
message on Q’s behalf. Analogously, when P sends a message to some honest
party Q ∈ S′ in the real execution, A “intercepts” that message and forwards it
to the corresponding party in the simulation. (A subtlety here is that messages
sent between two honest parties cannot be observed via eavesdropping, because
we allow secret channels, and can not necessarily be observed by adaptively
corrupting the recipient Q after it receives the message, since we allow erasure.
Instead, A must corrupt Q before it receives the message sent by P .) It only
remains to argue that, in carrying out this strategy, A does not exceed the
corruption bound.

A BA protocol is (f, δ)-secure if the properties of Definition 1 simultaneously
hold with probability at least δ when f parties are corrupted.

Theorem 7. Let 2
3 < δ < 1 and f ≥ 2. Let Π be a setup-free BA protocol

that is (f, δ)-secure in an asynchronous network. Then the expected number of
messages that honest parties send in Π is at least (3δ−2

8δ )2 · (f − 1)2.

Proof. If f ≥ n/3 the theorem is trivially true (as asynchronous BA is impossi-
ble); thus, we assume f < n/3 in what follows. We present the proof assuming
f is even and show that in this case, the expected number of messages is at
least c2f2. The case of odd f can be reduced to the case of even f since any
(f, δ)-secure protocol is also an (f − 1, δ)-secure protocol.

Let c = 3δ−2
8δ . Fix an (f, δ)-secure protocol Π whose expected number of

messages is less than c2f2. Fix a subset S ⊂ [n] with |S| = f
2 . Let S′ denote the

remaining parties. Consider an execution (Ex1) of Π that proceeds as follows:
At the start of the execution, an adversary corrupts all parties in S and they
immediately abort. The parties in S′ remain honest and run Π using input 0.
By δ-security of Π we have:

Lemma 5. In Ex1 all parties in S′ output 0 with probability at least δ.

Now consider an execution (Ex2) of Π involving an adversary A. (As
explained in the proof intuition, A’s goal is to make P believe it is running
in an execution in which all parties are honest and have input 1, and to make
the honest parties in S′ believe they are running in Ex1.) At the start of the
execution, A chooses a uniform P ∈ S and corrupts all parties in S except for P .
All parties in S′ are initially honest and hold input 0, while P holds input 1.
A maintains two simulated executions that we label red and blue. (See Fig. 6.)
In the blue execution, A plays the role of all parties other than P ; all these
virtual parties run Π honestly with input 1. In the red execution, A simulates
an execution in which all parties in S immediately abort, and all parties in S′

run Π honestly with input 0. A uses these two simulations to determine how to
interact with the honest parties in the real execution. Specifically, it schedules
delivery of messages as follows:

– S′ to P , real execution. Messages sent by honest parties in S′ to P in the
real execution are delayed, and delivered only after all honest parties have
generated output.
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– P to S′, real execution. When P sends a message to an honest party
Q ∈ S′ in the real execution, A delays the message and then corrupts Q.
Once Q is corrupted, A delivers the message to Q in the real execution (and
can then read the message). A also delivers that same message to Q in the
blue simulation.

– S′ to P , blue execution. When a party Q ∈ S′ sends a message m to P in
the blue execution, A corrupts Q in the real execution (if Q was not already
corrupted), and then sends m to P (on behalf of Q) in the real execution.
(Messages that Q may have sent previously to P in the real execution continue
to be delayed.)

– S to P , blue execution. When a party Q ∈ S sends a message m to P in
the blue execution, Q sends m to P in the real execution (recall that parties
in S \ {P} are corrupted in Ex2).

– S′ to S′, real execution. Messages sent by honest parties in S′ to other
parties in S′ in the real execution are delivered normally. If the receiver is
corrupted, the message is relayed to A, who simulates this same message in
the red execution.

– S′ to S \ {P}, real execution. Messages sent by honest parties in S′ to the
(corrupted) parties in S \ {P} in the real execution are ignored.

– S′ to S′, red execution. If a party Q ∈ S′ is corrupted in the real execution,
then whenever a message m is sent by a party Q to another party in S′ in
the red execution, Q sends m in the real execution.

If A would ever need to corrupt more than f parties in total, then it simply
aborts. (However, the real execution continues without any further interference
from A.)

Lemma 6. In Ex2, the distribution of the joint view of all parties in S′ who
remain uncorrupted is identical to the distribution of their joint view in Ex1.
In particular, with probability at least δ in Ex2 all parties in S′ who remain
uncorrupted output 0.

Proof. The only messages received by the parties in S′ in either Ex1 or Ex2 are
those that arise from an honest execution of Π among the parties in S′, all of
whom hold input 0. Moreover, in Ex2 the decision as to whether or not a party
in S′ is corrupted is independent of the joint view of all uncorrupted parties
in S′. The final statement follows from Lemma 5.

We also show that with positive probability, A does not abort.

Lemma 7. In Ex2, A does not abort with probability at least 1 − 4c.

Proof. A aborts if it would exceed the corruption bound. Initially, only the f/2
parties in S are corrupted. Let M denote the total number of messages sent
either by the parties in S′ to the parties in S or by parties in S to parties in S′

in the blue execution. By assumption, Exp[M ] < c2f2. Let X be the event that
M ≤ c

2f2. Lemma 9 implies that

Pr[X] ≥ Pr
[
M ≤ Exp[M ]

2c

]
≥ 1 − 2c.
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Ex 1
(Input 0)

delivered normally

relayed to/from A

delayed

Key

honest

corrupt

S′

S

Ex 3
(Input 1)

S′

S

S′

S

P

Adversary Real Execution

P

Fig. 6. Adversarial strategy in Ex2. In the real execution (shown at right) corrupted
parties in S interact with P as if they are honest with input 1, and ignore honest
parties in S′. Corrupted parties in S′ interact with P as if they are honest with input 1,
and interact with S′ as if they are honest with input 0. All messages between P and
honest parties in S′ are delayed indefinitely. The adversary maintains two simulated
executions (shown at left) to determine which messages corrupted parties will send in
the real execution. (Color figure online)

Let Y be the event that, among the first cf2/2 messages sent by parties in S′ to
parties in S or vice versa, a uniformly chosen P ∈ S sends and/or receives at most
f/2 of those messages. By the pigeonhole principle, at most cf parties in S can
receive and/or send f/2 or more of those messages, and so Pr[Y ] ≥ 1− cf/|S| =
1−2c.4 Thus, Pr[X ∧Y ] = Pr[X]+Pr[Y ]−Pr[X ∪Y ] ≥ (1−2c)+(1−2c)−1 =
1 − 4c. The lemma follows by observing that when X and Y occur, at most f/2
parties in S′ are corrupted.

Finally, consider an execution (Ex3) in which a uniform P ∈ S is chosen and
then Π is run honestly with all parties holding input 1.

Lemma 8. In Ex2, conditioned on the event that A does not abort, the view of
P is distributed identically to the view of P in Ex3. In particular, with probability
at least δ in Ex2, P outputs 1.

4 It is convenient to view the communication between S and S′ as an undirected,
bipartite multi-graph in which each node represents a party and an edge (U, V )
represents a message sent between parties U ∈ S and V ∈ S′. As the number of
edges in this graph is at most cf2/2, there can not be more than cf nodes in S
whose total degree is at least f/2.
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Proof. In Ex2, the view of P is determined by the virtual execution in which
all parties run Π honestly using input 1. The final statement follows because in
Ex3, (f, δ)-security of Π implies that P outputs 1 with probability at least δ.

We now complete the proof of the theorem. In execution Ex2, let Z1 be the
event that A does not abort; by Lemma 7, Pr[Z1] ≥ 1 − 4c. Let Z2 be the event
that P does not output 0 in Ex2; using Lemma8 we have

Pr[Z2] ≥ Pr[Z2 | Z1] · Pr[Z1] ≥ δ · (1 − 4c).

Let Z3 be the event that all uncorrupted parties in S′ output 0 in Ex2. By
Lemma 6, Pr[Z3] ≥ δ. Recalling that 2/3 < δ < 1, we see that

Pr[Z2 ∧ Z3] = Pr[Z2] + Pr[Z3] − Pr[Z2 ∪ Z3] ≥ 2δ − 4cδ − 1 =
δ

2
>

1
3

> 1 − δ,

contradicting (f, δ)-security of Π.

A Concentration Inequalities

We briefly recall the following standard concentration bounds.

Lemma 9 (Markov bound). Let X be a non-negative random variable. Then
for a > 0,

Pr[X ≥ a] ≤ E[X]
a

.

Lemma 10 (Chernoff bound). Let X1, ...,Xn be independent Bernoulli ran-
dom variables with parameter p. Let X :=

∑
i Xi, so μ := E[X] = p · n. Then,

for δ ∈ [0, 1]

– Pr[X ≤ (1 − δ) · μ] ≤ e−δ2μ/2.
– Pr[X ≥ (1 + δ) · μ] ≤ e−δ2μ/(2+δ).

Let χs,n denote the distribution that samples a subset of the n parties, where
each party is included independently with probability s/n. The following lemma
will be useful in our analysis.

Lemma 11. Fix s ≤ n and 0 < ε < 1/3, and let f ≤ (1 − 2ε) · n/3 be a bound
on the number of corrupted parties. If C ← χs,n, then:

1. C contains fewer than (1 + ε) · s parties except with probability e− ε2s
2+ε .

2. C contains more than (1 + ε/2) · 2s/3 honest parties except with probability
at most e−ε2s/12·(1+ε).

3. C contains fewer than (1− ε) · s/3 corrupted parties except with probability at
most e−ε2s/(6−9ε).
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Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli
random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =

∑
j Pj ,

Z2 :=
∑

j∈H Xj , and Z3 :=
∑

j �∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ε in Lemma 10 yields

Pr [Z1 ≥ (1 + ε) · s] ≤ e−ε2s/(2+ε).

2. Since E[Z2] ≥ (n − f) · s/n ≥ (1 + ε) · 2s/3, setting δ = ε
2+2ε in Lemma 10

yields

Pr
[
Z2 ≤ (1 + ε/2) · 2s

3

]
≤ e−ε2s/12·(1+ε).

3. Since E[Z3] ≤ f · s/n ≤ (1 − 2ε) · s/3, setting δ = ε
1−2ε in Lemma 10 yields

Pr
[
Z3 ≥ (1 − ε) · s

3

]
≤ e−ε2s/(6−9ε).

B Additional Definitions

B.1 Threshold Fully Homomorphic Encryption

For our protocol we require a threshold (compact) fully homomorphic encryption
(TFHE) scheme. Our definitions follow prior work [2,6,9,25,41].

Definition 7. A threshold fully homomorphic encryption (TFHE) scheme con-
sists of the following algorithms:

– The key-generation algorithm KGen takes as input the security parameter
along with integers t,N . It outputs an encryption key ek and decryption
keys dk1, . . . , dkN .

– The encryption algorithm Enc takes as input the encryption key ek and a
message m. It outputs a ciphertext c.

– The (deterministic) homomorphic evaluation algorithm Eval takes as input
the encryption key ek, an n-input circuit C, and n ciphertexts c1, . . . , cn; it
outputs a ciphertext c.

– The (deterministic) partial decryption algorithm Dec takes as input a decryp-
tion key dki and a ciphertext c. It outputs a decryption share di.

– The reconstruction algorithm Rec takes as input decryption shares {di} and
outputs a message m.

We require:

Correctness: For any integers n, t,N , messages {mi}i∈[n], n-input circuit C,
and set I ⊆ [N ] with |I| = t, if we run (ek, {dki}i∈[N ]) ← KGen(1κ, 1t, 1N )
followed by

c := Evalek(C,Encek(m1), . . . ,Encek(mn)),

then Rec({Decdki
(c)}i∈I) = C(m1, . . . ,mn).



Asynchronous Byzantine Agreement with Subquadratic Communication 377

Compactness: There is a polynomial p such that for all (ek, dk) output by
KGen(1κ, 1t, 1N ) and all {mi}, the length of

Evalek(C,Encek(m1), . . . ,Encek(mn))

is at most p(|C(m1, . . . ,mn)|, κ).

For our application, it is easiest to define security in terms of simulation.

Definition 8. We say a TFHE scheme is simulation secure if there is a proba-
bilistic polynomial-time simulator Sim such that for any probabilistic polynomial-
time adversary A, the following experiments are computationally indistinguish-
able:

realA,C(1κ, 1t, 1N ) :

1. Compute (ek, {dki}N
i=1) ← KGen(1κ, 1t, 1N ) and give ek to A.

2. A adaptively chooses a subset S ⊂ [N ] with |S| < t as well as mes-
sages m1, . . . ,mn and a circuit C. In return, A is given {dki}i∈S and
{ci ← Encek(mi)}n

i=1.
3. A outputs {(m′

i, r
′
i)}i∈S. Define c′

i := Encek(m′
i; r

′
i) for i ∈ S.

4. Let c∗ := Evalek({ci}n
i=1, {c′

i}i∈S) and give {Decdki
(c∗)}i�∈S to A.

idealA,C(1κ, 1t, 1N ) :

1. Compute ek ← Sim(1κ, 1t, 1N ) and give ek to A.
2. A adaptively chooses a subset S of parties with |S| < t as well as messages

m1, . . . ,mn and a circuit C. In return, Sim(1n) is run to compute {dki}i∈S

and {ci}n
i=1 that are given to A.

3. A outputs {(m′
i, r

′
i)}i∈S.

4. Let y = C({mi}n
i=1, {m′

i}i∈S). Compute {di}i�∈S ← Sim(y) and give the result
to A.

B.2 Anonymous Public-Key Encryption

We recall the definition of anonymous public-key encryption from [3].

Definition 9. A CPA-secure public-key encryption scheme PE = (KGen,Enc,
Dec) is anonymous if the following is negligible for any ppt adversary A:

∣∣∣∣Pr
[

(pk0, sk0) ← KGen(1κ); (pk1, sk1) ← KGen(1κ);
m ← A(pk0, pk1); b ← {0, 1}; c ← Encpkb

(m) : A(c) = b

]
− 1

2

∣∣∣∣ .
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2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

4. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: 25th
ACM STOC, pp. 52–61. ACM Press, May 1993

5. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Anderson, J., Toueg, S. (eds.) 13th ACM
PODC, pp. 183–192. ACM, August 1994

6. Boneh, D., et al.: Threshold cryptosystems from threshold fully homomorphic
encryption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS,
vol. 10991, pp. 565–596. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96884-1 19

7. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75, 130–
143 (1987)

8. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
32(4), 824–840 (1985)

9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106. IEEE Computer
Society Press, October 2011

10. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

11. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical
asynchronous Byzantine agreement using cryptography (extended abstract). In:
Neiger, G. (ed.) 19th ACM PODC, pp. 123–132. ACM, July 2000

12. Canetti, R.: Studies in secure multiparty computation and applications. Ph.D.
thesis, Weizmann Institute of Science (1996)

13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

14. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal
resilience. In: 25th ACM STOC, pp. 42–51. ACM Press, May 1993

15. Choudhury, A., Hirt, M., Patra, A.: Unconditionally secure asynchronous mul-
tiparty computation with linear communication complexity. Cryptology ePrint
Archive, Report 2012/517 (2012). http://eprint.iacr.org/2012/517

16. Choudhury, A., Patra, A.: Optimally resilient asynchronous MPC with linear com-
munication complexity. In: Proceedings of the International Conference on Dis-
tributed Computing and Networking (ICDCN), pp. 1–10 (2015)

17. Cohen, R.: Asynchronous secure multiparty computation in constant time. In:
Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part
II. LNCS, vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49387-8 8

18. Cohen, R., Shelat, A., Wichs, D.: Adaptively secure MPC with sublinear commu-
nication complexity. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part
II. LNCS, vol. 11693, pp. 30–60. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26951-7 2

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/978-3-319-96884-1_19
https://doi.org/10.1007/3-540-44647-8_31
http://eprint.iacr.org/2012/517
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-662-49387-8_8
https://doi.org/10.1007/978-3-030-26951-7_2
https://doi.org/10.1007/978-3-030-26951-7_2


Asynchronous Byzantine Agreement with Subquadratic Communication 379

19. Cohen, S., Keidar, I., Spiegelman, A.: Sub-quadratic asynchronous Byzantine
agreement WHP, Not a COINcidence (2020). https://arxiv.org/abs/2002.06545

20. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 33

21. Dolev, D., Reischuk, R.: Bounds on information exchange for Byzantine agreement.
J. ACM 32(1), 191–204 (1985)

22. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th ACM
STOC, pp. 148–161. ACM Press, May 1988

23. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

24. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.-S.: Adaptively secure broadcast,
revisited. In: Gavoille, C., Fraigniaud, P (eds.) 30th ACM PODC, pp. 179–186.
ACM, June 2011

25. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

26. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp.
499–529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

27. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 19

28. Hirt, M., Nielsen, J.B., Przydatek, B.: Asynchronous multi-party computation with
quadratic communication. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
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Abstract. Byzantine Broadcast (BB) is a central question in dis-
tributed systems, and an important challenge is to understand its round
complexity. Under the honest majority setting, it is long known that
there exist randomized protocols that can achieve BB in expected con-
stant rounds, regardless of the number of nodes n. However, whether we
can match the expected constant round complexity in the corrupt major-
ity setting—or more precisely, when f ≥ n/2+ω(1)—remains unknown,
where f denotes the number of corrupt nodes. In this paper, we are the
first to resolve this long-standing question. We show how to achieve BB
in expected O((n/(n − f))2) rounds. Our results hold under a weakly
adaptive adversary who cannot perform “after-the-fact removal” of mes-
sages already sent by a node before it becomes corrupt. We also assume
trusted setup and the Decision Linear (DLIN) assumption in bilinear
groups.

1 Introduction

Byzantine Agreement (BA) is one of the most fundamental problems in fault
tolerant distributed computing [4,8,27] and of increasing interest given recent
advances in cryptocurrencies [3,14,23]. In this paper, we consider the “broad-
cast” formulation of Byzantine Agreement, henceforth also called Byzantine
Broadcast (BB): imagine that there are n nodes among which there is a des-
ignated sender. The sender is given an input bit b ∈ {0, 1} and wants to send
this bit to every other node. Although up to f < n − 1 nodes can be corrupted
and deviate arbitrarily from the prescribed protocol, we would like to nonethe-
less ensure two key properties: 1) consistency requires that all honest nodes must
output the same bit (even when the sender is corrupt); and 2) validity requires
that all honest nodes output the sender’s input bit if the sender is honest1.
1 An alternative formulation is the “agreement” version where every node receives an

input bit b, and validity requires that if all honest nodes receive the same input bit
b, then honest nodes must output b. However, this agreement notion is known to be
impossible under corrupt majority.
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An important question to understand is the round complexity of Byzantine
Broadcast. Dolev and Strong [12] showed that assuming (idealized) digital sig-
natures, there is a deterministic protocol achieving f + 1 rounds; and moreover,
f +1 rounds is the best one can hope for in any deterministic protocol. It is also
widely understood that randomization can help overcome the (f +1)-round bar-
rier in the honest majority setting. Specifically, many elegant works have shown
expected constant-round protocols assuming honest majority [2,15,16,26].

For a long while, the community was perplexed about the following natural
question: can we achieve sublinear-round Byzantine Broadcast under dishonest
majority? The ingenious work by Garay et al. [19] was the first to demonstrate a
positive result although their construction achieves sublinear round complexity
only under a narrow parameter regime: specifically, they constructed an expected
Θ((f −n/2)2)-round protocol, and the subsequent work of Fitzi and Nielsen [18]
improved it to Θ(f − n/2) rounds. In other words, these constructions achieve
sublinear number of rounds only if f ≤ n/2+o(n). This is somewhat unsatisfying
since even for f = 0.51n, their results would be inapplicable.

Very recently, the frontier of our understanding was again pushed forward due
to Chan, Pass, and Shi [9]. Assuming trusted setup and standard cryptographic
assumptions, their protocol achieves Byzantine Broadcast with probability 1− δ
for any f ≤ (1 − ε) · n in poly log(1/ε, 1/δ) rounds (both in expectation and
worst-case), where ε, δ ∈ (0, 1) are two parameters that the protocol takes as
input. Although their work represents exciting progress on a long stagnant front,
it fails to match the asymptotic (expected) round complexity of known honest
majority protocols—for honest majority, it is long known how to achieve expected
constant round complexity [2,26]. We thus ask the following question: can we
achieve Byzantine Broadcast in expected constant rounds in the corrupt majority
setting?

1.1 Our Contributions

We present a Byzantine Broadcast protocol that achieves expected O(( n
n−f )2)

rounds. This means that for f = (1 − ε)n where ε ∈ (0, 1) may be an arbitrarily
small constant, our protocol achieves expected constant rounds. Our protocol
works even under an adaptive adversary, assuming a trusted setup and standard
cryptographic assumptions in an algebraic structure called bilinear groups. In
this paper, we assume that when the adaptive adversary corrupts a node v in
some round r, it cannot erase the message v has already sent in round r but
it can make the now-corrupt v inject additional messages into round r—such a
model is also referred to as weakly adaptive in earlier works.

To the best of our knowledge, our work is the first to achieve an expected
constant-round BB protocol for any f ≥ n/2 + ω(1). Previously, no result was
known even for the static corruption setting, and even under any setup assump-
tions. We compare our results with the state-of-art results in Table 1 and sum-
marize our results in Theorem 1.
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Table 1. A comparison between our results and previous work under dishonest
majority.

Garay et al. [19] Fitzi et al. [18] Chan et al. [9] This paper

Expected round

complexity

Θ((2f − n)2) Θ(2f − n) Same as worst-case Θ(( n
n−f

)2)

Worst-case round

complexity with 1 − δ

failure probability

Θ(log( 1
δ
) + (2f − n)2) Θ(log( 1

δ
) + (2f − n)) Θ(log( 1

δ
) · n

n−f
) Θ(

log(1/δ)
log(n/f) · n

n−f
)

Theorem 1 (Expected constant round BB under adaptive corruption).
Assume trusted setup and that the decisional linear assumption holds in suitable
bilinear groups2 Then, there exists a BB protocol with expected O(( n

n−f )2) round
complexity for any non-uniform p.p.t . adversary that can adaptively corrupt f <
n − 1 nodes.

Throughout the paper, we assume a synchronous network, i.e., honest nodes
can deliver messages to each other within a single round. This assumption is
necessary since without it, Byzantine Broadcast is long known to be impossible
under more than n/3 corruptions [13].

1.2 Interpreting Our Result

Below we situate our result in context to help the reader understand how tight
the bound is as well as the assumptions we make.

On the Tightness of the Bound and the Resilience Parameter. Theo-
rem 1 says that if the number of honest nodes is an arbitrarily small constant
fraction (e.g., 0.01%), we can achieve expected constant rounds. The restriction
on the number of honest nodes is necessary in light of an elegant lower bound
proven by Garay et al. [19]: they showed that even randomized protocols can-
not achieve BB in less than Θ(n/(n − f)) number of rounds, even assuming
static corruption and allowing reasonable setup assumptions. Note that their
lower bound says that when almost all nodes can be corrupt except O(1) nodes
who remain honest, then even randomized protocols must incur linear number
of rounds. Comparing their lower bound and our upper bound side by side, one
can see that for the (narrow) regime n − f = o(n), there is still an asymptotical
gap between our upper bound and their lower bound. Whether we can construct
an upper bound that matches their lower bound in this regime remains open,
even under static corruptions and allowing any reasonable setup assumptions.

On the Weakly Adaptive Model. Our result holds in the weakly adaptive
model [1,21,31]. In this model, the adversary can adaptively corrupt a node; and
if some node u becomes newly corrupt in round r, the adversary can inject new
messages on behalf of u in the same round r; however, the adversary cannot erase

2 We formally define the decisional linear assumption in the online full version. The
reader can also refer to Groth et al. [24] for the definition.
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the messages u already sent in round r prior to becoming corrupt. The weakly
adaptive model is akin to the atomic message model first introduced by Garay et
al. [20] as a way to overcome a lower bound pertaining to a particular adaptive,
simulation-based notion of security proven by Hirt and Zikas [25]. The only slight
difference is that in the atomic message model, not only is the adversary unable
to perform “after-the-fact” message removal, it also must wait for one network
delay after a node i becomes corrupt, before it is able to inject messages on
behalf of i. In this sense, the weakly adaptive model is a slightly weaker model
than the atomic model by Garay et al. (and this makes our upper bound slightly
stronger).

In comparison, the classical consensus literature often considered a strongly
adaptive model [12,16,19]—this was also the widely accepted model in the early
distributed systems and multi-party protocols literature (see also Definition 1
in Feldman’s thesis [17] and Fig. 4, page 176 of Canetti’s excellent work [7]). In
the strongly adaptive model, the adversary is allowed to perform “after-the-fact”
message removal, i.e., if the adversary adaptively corrupts a node u in round r, it
can erase all messages u had sent in round r prior to becoming corrupt. Thus, a
strongly adaptive adversary has strictly more power than a weakly adaptive one.
The weakly adaptive model was inspired by the line of work on blockchains and
sublinear-communication, large-scale consensus protocols. Many famous proto-
cols including Nakamoto’s consensus [30,34], and other subsequent blockchain
protocols [1,10,11,32,33,35] were proven secure in the weakly adaptive model,
and it is widely known that their security fails to hold in the strongly adap-
tive model. The recent work by Abraham et al. [1] showed that this is not a
coincidence—in the strongly adaptive model, no consensus protocol can achieve
sublinear communication overhead!

We adopt the weakly adaptive model inspired by the blockchain line of work.
The techniques in this paper do not easily extend to the strongly adaptive model;
there is an attack that breaks our protocol under the strongly adaptive model.

It remains an open question whether in the strongly adaptive model, expected
constant round BB is possible under even 51% corruption. In fact, in the strongly
adaptive model under 51% corruption, even sublinear-round protocols were not
known. In a companion work [36], we show that assuming trusted setup, the exis-
tence of time-lock puzzles and other reasonable cryptographic assumptions, one
can construct BB with polylogarithmic round complexity in the strongly adap-
tive model. It is interesting to note that the techniques used in that work [36]
depart completely from the ones in this paper. In light of our companion
paper [36], it remains open 1) whether any sublinear-round BB is possible under
51% strongly adaptive corruption, without time lock puzzles; and 2) whether
expected constant round BB is possible under 51% strongly adaptive corruption
and any reasonable assumptions. New upper- or lower-bounds in these directions
would be exciting.

On the Necessity of Trusted Setup. We assume a trusted setup to get our
weakly adaptive BB. Due to the famous lower bound by Lamport et al. [28], some
setup assumption is necessary to get consensus under at least n/3 (even static)
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corruptions. We do not understand if our trusted setup can be weakened, and
we leave it as another exciting open question. We stress, however, that expected
constant-round BB under 51% corruption is an open question whose answer
has eluded the community for more than three decades, under any assumption,
allowing any (reasonable) setup, and even under static corruption. We therefore
believe that despite our trusted setup and weakly adaptive restrictions, our result
is an important step forward in this line of work.

2 Technical Overview

2.1 Preliminaries

Problem Definition. The problem of Byzantine Broadcast has been widely
explored. Suppose there are n nodes (sometimes also called parties) in a dis-
tributed system, indexed from 1 to n, respectively. The communication within
the system is modeled by a synchronous network, where a message sent by an
honest node in some round r is guaranteed to be delivered to an honest recipient
at the beginning of the next round r + 1. Among the n nodes in the system,
there is a designated sender whose identity is common knowledge. Before the
protocol begins, the sender receives an input bit b. All nodes then engage in
interactions where the sender aims to send the bit b to everyone. At the end
of the protocol, each node u outputs a bit bu. Henceforth, we assume that the
protocol is parameterized with a security parameter λ. We say that a protocol
achieves Byzantine Broadcast if it satisfies the following guarantees except with
negligibly small in λ probability.

– Consistency: for any two honest nodes u and v, bu = bv.
– Validity: if the designated sender is honest, for any honest node u, bu = b.

Although our main definition is for agreeing on a single bit, our approach easily
extends to multi-valued BB too.

Adversary Model. At any point of time during the protocol’s execution a
node can either be honest or corrupt. Honest nodes correctly follow the protocol,
while corrupt nodes are controlled by an adversary and can deviate from the
prescribed protocol arbitrarily. We allow the adversary to be rushing, i.e., it can
observe the messages honest nodes want to send in round r before deciding what
messages corrupt nodes send in the same round r.

We consider an adaptive adversary in our paper. In any round r, it can
adaptively corrupt honest nodes after observing the messages they want to send
in round r, as long as the total number of corrupted nodes does not exceed
an upper bound f . If a node v ∈ [n] becomes newly corrupt in round r, the
adversary can make it inject new messages of its choice in the present round r;
however, the adversary cannot perform “after-the-fact removal”, i.e., erase the
messages v sent in round r before it became corrupt.
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Modeling Setup. We will allow setup assumptions as well as standard cryp-
tography. Our protocol makes use of a public-key infrastructure and digital sig-
natures, and for simplicity in this paper we assume that the signature scheme is
ideal. We adopt a standard idealized signature model, i.e., imagine that there is
a trusted functionality that keeps track of all messages nodes have signed and
answers verification queries by looking up this trusted table. Under such an ide-
alized signature model, no signature forgery is possible. When we replace the
ideal signature with a real-world instantiation that satisfies the standard notion
of “unforgeability under chosen-message attack”, all of our theorems and lemmas
will follow accounting for an additive, negligibly small failure probability due to
the failure of the signature scheme—this approach has been commonly adopted
in prior works too and is well-known to be cryptographically sound (even against
adaptive adversaries).

For other cryptographic primitives we adopt, e.g., verifiable random func-
tions, we do not assume idealized primitives since the computationally sound
reasoning for these primitives is known to have subtleties.

2.2 Technical Roadmap

Byzantine Broadcast under dishonest majority is challenging even under static
corruption because the standard random committee election technique fails to
work. More concretely, in the honest majority setting and assuming static cor-
ruption, a well-known random committee election technique can allow us to
compile any polynomial-round BB to a poly-logarithmic round BB protocol.
However, as already pointed out by Chan et al. [9], this technique is inapplicable
to the corrupt majority setting even under a static adversary.3 Similarly, we also
know of no way to extend the recent techniques of Chan et al. [9] to obtain our
result. Instead, we devise novel techniques that redesign the consensus protocol
from the ground up.

Trust Graph Maintenance (Section 3). First, we devise a new method for
nodes to maintain a trust graph over time. While previous work [5,22] also used
consistency graph in multiparty protocols and secret sharing, our trust graph is
of a different nature from prior work. We are the first to tie the round complexity
of distributed consensus with the diameter of a trust graph, and upper bound
the diameter.

The vertices in the trust graph represent nodes in the BB protocol; and an
edge between u and v indicates that u and v mutually trust each other. Initially,
every node’s trust graph is the complete graph; however, during the protocol,
if some nodes misbehave, they may get removed completely or get disconnected
from other nodes in honest nodes’ trust graphs. On the other hand, honest nodes
will forever remain direct neighbors to each other in their respective trust graphs.

3 As Chan et al. [9] point out, the random committee election approach fails to work
for corrupt majority (even for static corruption), because members outside the com-
mittee cannot rely on a majority voting mechanism to learn the outcome.
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There are a few challenges we need to cope with in designing the trust graph
mechanism. First, if a node v misbehaves in a way that leaves a cryptographic
evidence implicating itself (e.g., double-signing equivocating votes), then honest
nodes can distribute this evidence and remove v from their trust graphs. Some-
times, however, v may misbehave in a way that does not leave cryptographic
evidence: for example, v can fail to send a message it is supposed to send to u,
and in this case u cannot produce an evidence to implicate v. In our trust graph
mechanism, we allow u to complain about v without providing an evidence, and
a receiver of this complaint can be convinced that at least one node among u
and v is corrupt (but it may not be able to tell which one is corrupt). In any
case, the receiver of this complaint may remove the edge (u, v) from its trust
graph. We do not allow a node u to express distrust about an edge (v, w) that
does not involve itself—in this way a corrupt node cannot cause honest nodes
to get disconnected in their trust graphs.

A second challenge we are faced with is that honest nodes may not have
agreement for their respective trust graphs at any point of time—in fact, reaching
agreement on their trust graphs may be as hard as the BB problem we are trying
to solve in the first place. However, if honest nodes always share their knowledge
to others, we can devise a mechanism that satisfies the following monotonicity
condition: any honest node’s trust graph in round t > r is a subgraph of any
honest node’s trust graph in round r. In our protocol we will have to work with
this slightly imperfect condition rather than complete agreement.

Finally, although an honest node is convinced that besides their direct neigh-
bors in its own trust graph, no one else can be honest, it still must wait to hear
what nodes multiple hops away say during the protocol. This is because their
direct neighbors may still trust their own neighbors, and the neighbors’ neigh-
bors may care about their own neighbors, etc. For information to flow from a
node v that is r hops away from u in u’s trust graph may take up to r rounds,
and this explains why the diameter of the trust graph is critical to the round
complexity of our protocol. We will devise algorithms for ensuring that honest
nodes’ trust graphs have small diameter. To maintain small diameter, we devise
a mechanism for nodes to post-process their trust graphs: for example, although
a node u may not have direct evidence against v, if many nodes complain about
v, u can be indirectly convinced that v is indeed corrupt and remove v.

The TrustCast Building Block (Section 4). A common technique in the con-
sensus literature is to bootstrap full consensus from weaker primitives, often
called “reliable broadcast” or “gradecast” depending on the concrete defini-
tions [6,16,26]. Typically, these weaker primitives aim to achieve consistency
whether the sender is honest or not; but they may not achieve liveness if the
sender is corrupt [6,16,26]. Based on a weaker primitive such as “reliable broad-
cast” or “gradecast”, existing works would additionally rely on random leader
election to bootstrap full consensus. Roughly speaking, every epoch a random
leader is chosen, and if the leader is honest, liveness will ensue. Additionally,
relying on the consistency property of this weaker primitive, with enough care
we can devise mechanisms for ensuring consistency within the same epoch and
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across epochs—in other words, honest nodes must make the same decision no
matter whether they make decisions in the same epoch or different epochs.

In our work we devise a TrustCast building block which is also a weakening
of full consensus and we would like to bootstrap consensus from this weaker
primitive. Our definition of TrustCast, however, is tied to the trust graph and
departs significantly from prior works. Specifically, TrustCast allows a sender
s ∈ [n] to send a message to everyone: if s wants to continue to remain in an
honest node u’s trust graph, u must receive some valid message from s at the
end of the protocol, although different honest nodes may receive inconsistent
messages from s if s is corrupt. At a high level, the sender s has three choices:

1. it can either send the same valid message to all honest nodes;
2. (*technical challenge) or it can fail to send a valid message to some honest

node, say u,—in this case u will remove s from its trust graph immediately
and in the next round all honest nodes will remove s from their trust graphs;

3. or u can send equivocating messages to different honest nodes, but in the next
round honest nodes will have compared notes and discovered the equivocation,
and thus they remove s from their trust graphs.

The first case will directly lead to progress in our protocol. In the second and
third cases, s will be removed from honest nodes’ trust graphs; we also make
progress in the sense that s can no longer hamper liveness in the future.

An important technical challenge for designing the TrustCast protocol lies in
the second case above: in this case, u may not have a cryptographic evidence to
implicate s and thus u cannot directly convince others to remove s. However, in
this case, it turns out that u can be convinced that some of its direct neighbors
must be corrupt, and it will instead convince others to remove the edge (u, v)
for every direct neighbor v that it believes to be corrupt. Once these edges are
removed, s will land in a “remote” part of the graph such that honest nodes can
be convinced that it is corrupt and remove it altogether.

3 Trust Graph Maintenance

3.1 Overview of Trust Graph Maintenance and Invariants

At a very high level, the novelty of our approach lies in the way parties maintain
and make use of an undirected trust graph over time. In a trust graph, the
vertices correspond to all or a subset of the parties participating in the consensus
protocol. An edge (u, v) in the trust graph intuitively means that the nodes u ∈
[n] and v ∈ [n] mutually trust each other. Since a node in the graph corresponds
to a party in the system, to avoid switching between the words “node” and
“party”, we will just use the word “node”.

Initially, every honest node’s trust graph is the complete graph over the set
[n], i.e., everyone mutually trusts everyone else. However, over the course of the
protocol, a node may discover misbehavior of other nodes and remove nodes or
edges from its own trust graph accordingly. We will assume that at any point
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of time, an honest node u’s trust graph must be a single connected component
containing u—effectively u would always discard any node disconnected from
itself from its own trust graph.

Notations. Throughout the paper, we will use Gr
u to denote the node u’s

updated trust graph in round r (after processing the graph-messages received in
round r and updating the trust graph). More precisely, Gr

u is the trust graph
exported by u’s trust graph module to u’s consensus module. Sometimes, if the
round we refer to is clear, we may also write Gu omitting the round r. We also
use N(v,G) to denote the set of neighbors of v in the graph G. In cases where
the graph G we refer to is clear, we just abbreviate it to N(v). For convenience,
we always assume that a node is a neighbor of itself. Therefore, v ∈ N(v) holds.

Finally, we follow the notations in Sect. 2.1 where n is the number of nodes in
the system, f is the upper bound for the number of corrupt nodes and h = n−f
is the lower bound for the number of honest nodes.

Important Invariants of the Trust Graph. A very natural requirement is
that corrupt nodes can never cause honest nodes to suspect each other; in fact,
we want the following invariant:

Honest clique invariant: at any time, in any honest node’s trust graph, all
honest nodes form a clique. This implies that all honest nodes must forever
remain direct neighbors to each other in their trust graphs.

The round complexity of our protocol is directly related to the diameter of
honest nodes’ trust graphs and thus we want to make sure that honest nodes’
trust graphs have small diameter. To understand this more intuitively, we can
consider an example in which three nodes, u, v, and s execute Byzantine Broad-
cast with s being the sender. All three nodes behave honestly except that s drops
all messages to u. In this case, although u is convinced that s is corrupt and thus
removes the edge (u, s) from its trust graph, it cannot prove s’s misbehavior to
v. Since v still has reasons to believe that s might be honest, v will seek to reach
agreement with s. Now, if u tries to reach agreement with v, it has to care about
what s says. But since s drops all messages to u, any information propagation
from s to u must incur 2 rounds with v acting as the relay.

This example can generalize over multiple hops: although an honest node
u ∈ [n] knows that except for its direct neighbors in its trust graph, everyone
else must be corrupt; it must nonetheless wait for information to propagate from
nodes multiple hops away in its trust graph. For a node w that is r hops away
from u in u’s trust graph, information from w may take r rounds to reach u.
Summarizing, for our protocol to be round efficient, we would like to maintain
the following invariant:

Small diameter invariant: at any point of time, every honest node u’s trust
graph must have small diameter.



390 J. Wan et al.

Finally, we stress that a difficult challenge we are faced with, is the fact that
honest nodes may never be in full agreement w.r.t. their trust graphs at any
snapshot of time—in fact, attempting to make honest nodes agree on their trust
graphs could be as difficult as solving the Byzantine Broadcast problem itself.
However, from a technical perspective, what will turn out to be very helpful to
us, is the following monotonicity invariant:

Monotonicity invariant: an honest node u’s trust graph in round t > r
must be a subset of an honest node v’s trust graph in round r. Here, we say
that an undirected graph G = (V,E) is a subset of another undirected graph
G′ = (V ′, E′) iff V ⊆ V ′ and E ⊆ E′.

The above trust graph monotonicity invariant can be maintained because of
the following intuition: whatever messages an honest node v ∈ [n] sees in round
r, v can relay them such that all other honest nodes must have seen them by
round r + 1—in this way the honest node u would perform the same edge/node
removal in round r + 1 as what v performed in round r.

3.2 Conventions and Common Assumptions

Throughout our paper, we assume that message echoing among honest nodes is
implicit (and our protocol will not repeatedly state the echoing):

Implicit echoing assumption: All honest nodes echo every fresh message
they have heard from the network, i.e., as soon as an honest node u receives
a message m at the beginning of some round r, if this message is well-formed
and has not been received before, u relays it to everyone.

Each node has a consensus module (see Sects. 4 and 5) and a trust graph
module which will be described in this section. Messages generated by the trust
graph module and the consensus module will have different formats. Henceforth,
we may call messages generated by the trust graph module graph messages;
and we may call all other messages consensus messages. Below, we state some
assumptions about the modules and their interfaces. We assume that all messages
generated by the consensus module are of the following format:

Message format of the consensus module: All protocol messages gen-
erated by the consensus module are of the form (T, e, payload) along with
a signature from the sender, where T is a string that denotes the type of
the message, e ∈ N denotes the epoch number (the meaning of this will be
clear later in Sect. 5), and payload is a string denoting an arbitrary payload.
Each type of message may additionally require its payload to satisfy some
wellformedness requirements.

For example, (vote, e, b) and (comm, e, E) represent vote messages and commit
messages, respectively, in our Byzantine Broadcast protocol (see Sect. 5), where
vote and comm denote the type of the message, e denotes the epoch number, and
the remainder of the message is some payload.
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In our consensus module, nodes can misbehave in different ways, and some
types of misbehaviors can generate cryptographic evidence to implicate the
offending node. We define equivocation evidence below.

Equivocation evidence. In our consensus module, honest nodes are not
supposed to double-sign two different messages with the same type and epoch
number—if any node does so, it is said to have equivocated. Any node that
has equivocated must be malicious. The collection of two messages signed by
the same node u ∈ [n], with the same type and epoch but different payloads,
is called an equivocation evidence for u.

3.3 Trust Graph Maintenance Mechanism

Note that if the trust graph always remains the complete graph, obviously it
would satisfy the aforementioned three invariants. However, keep in mind that
the goal for trust graph maintenance is to make sure that corrupt nodes do not
hamper liveness. In our protocol, once a node starts to misbehave in certain
ways, each honest node would remove them from its trust graph such that they
would no longer care about reaching agreement with them. In our scheme, every
node maintains its trust graph in the following manner:

Trust graph maintenance mechanism

– Node removal upon equivocation evidence. First, upon receiving an equiv-
ocation evidence implicating some node v ∈ [n], a node removes v from
its trust graph as well as all v’s incident edges. After the removal, call the
post-processing mechanism described below to update the trust graph.

– Pairwise distrust messages and edge removal. Sometimes, the consensus
module of node u can observe that a direct neighbor v in its trust graph
has not followed the honest protocol (e.g., u is expecting some message
from v but v did not send it); however, u may not have a cryptographic
evidence to prove v’s misbehavior to others. In this case, u’s consensus
module calls the Distrust(v) operation.

• When u’s trust graph module receives a Distrust(v) call, it signs and
echoes a distrust message (distrust, (u, v)).

• When a node w ∈ [n] receives a message of the form
(distrust, (u, v)) signed by u (w and u might be the same user),
w removes the edge (u, v) from its own trust grapha and calls the
post-processing procedure.

– Post-processing for maintaining O(n/h) diameter. The diameter of the
trust graph can grow as nodes and edges are being removed. To maintain
the property that honest nodes’ trust graphs have small diameter, each
node performs the following post-processing every time it removes a node
or an edge from its trust graph (recall that h denotes the number of
honest nodes and N(v) represents the set of v’s neighbors in a graph):
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• Repeat: find an edge (v, w) in the trust graph such that |N(v) ∩
N(w)| < h, and remove the edge; until no such edge can be found.
Afterwards, remove all nodes disconnected from u in u’s trust graph.

• Until no such node or edge exists.
• u then removes any node that is disconnected from u in u’s trust

graph.

a Since each node will receive its own messages at the beginning of the next
round, when a node u calls Distrust(v), the edge (u, v) will be removed from
its own trust graph at the beginning of the next round.

Remark 1. Note that a (distrust, (u, v)) message is only valid if it is signed by
u, i.e., the first node in the pair of nodes—this makes sure that corrupt nodes
cannot misuse distrust messages to cause an edge between two honest nodes to
be removed (in any honest node’s trust graph).

Suppose that an honest node never declares Distrust on another honest
node—note that this is a condition that our protocol must respect and it will be
proved in Theorem 4 of Sect. 4. We first show that the honest clique invariant is
satisfied. An edge is removed from the trust graph iff (1) a Distrust is declared
on the edge or (2) the edge is removed during post processing. Since an honest
node never declares Distrust on another honest node, we only need to show that
we never remove edges between honest nodes during post processing.

Lemma 1. The post processing does not remove any edge between honest nodes.

Proof. We will prove by contradiction. Let us consider post-processing on a node
u’s trust graph Gu. Suppose the edge (v, w) is removed during post-processing
where v and w are both honest nodes. W.l.o.g., we can assume that this is the
first time any edge between honest nodes is removed during post processing.
This means that before post processing, all honest nodes are fully connected
in Gu, i.e., all honest nodes are the neighbors of both v and w. Thus, we have
|N(v,Gu) ∩ N(w,Gu)| ≥ h. This violates our assumption that (v, w) is removed
during post processing, because (v, w) is removed iff |N(v,Gu)∩N(w,Gu)| < h.

The monotonicity invariant is not as apparent. We need to show that if an
honest node u removes an edge during post-processing, another honest node v
would remove this edge as well in the next round. The observation is that the
post-processing algorithm does not change the subgraph relationship—if G is a
subgraph of H and we apply post-processing on both G and H to get G′ and
H ′, then G′ would still be a subgraph of H ′. Since an edge can only be removed
by calling Distrust and post processing, we can prove the monotonicity invariant
using induction. Due to the page limit, we skip the proof for the monotonicity
lemma. The detailed proof for Lemma2 can be found in the online version [37].
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Lemma 2. The trust graph maintenance mechanism satisfies the monotonicity
invariant, i.e., for any honest node u, v and any round number r, Gr+1

v is a
subgraph of Gr

u.

Finally, the most challenging part is to prove that the post-processing mech-
anism will output a graph with diameter at most O(n/h). To prove this, we will
show that if the graph’s diameter is larger than 2n/h, there must exist an edge
(v, w) such that |N(v)∩N(w)| < h—henceforth, we call such an edge a fictitious
edge. At a very high level, observe that if the graph’s diameter is greater than
2n/h, there must exist a path from some u to some u′ whose length is greater
than 2n/h. Now, we can divide nodes into layers based on their distance from
u, where Si denotes all nodes at distance i from u. Since there must be more
than 2n/h layers, we can show that there must exist two adjacent layers Si and
Si+1 such that the union of the two contains fewer than h nodes. Therefore, any
edge between the two layers is a fictitious edge. This is the high level intuition
and might be inaccurate in the boundary condition. Through a more involved
argument (see our online version [37] for detail), we can provide a tight upper
bound and show that after the post-processing, the graph’s diameter is at most
d = �n/h� + 	n/h
 − 1.

Lemma 3. The post-processing guarantees that the diameter of the trust graph
is upper bounded by d = �n/h� + 	n/h
 − 1.

The following theorem follows directly from Lemma 1, 2 and 3.

Theorem 2 (Efficient trust graph mechanism). Suppose that an honest
node never declares Distrust on another honest node (which is proven to be
true in Sect. 4). Then, the efficient trust graph maintenance mechanism satisfies
the honest clique invariant, the monotonicity invariant, and moreover, at any
point of time, any honest node’s trust graph has diameter at most d = �n/h� +
	n/h
 − 1.

Finally, observe that the trust graph module’s communication (including
implicit echoing of graph messages) is upper bounded by ˜O(n4) (the ˜O hides the
log n terms needed to encode a node’s identifier). This is because there are at
most O(n2) number of effective distrust messages and everyone will echo each
such message seen to all nodes.

4 New Building Block: The TrustCast Protocol

Starting from this section, we will be describing the consensus module. In this
section, we first describe an important building block called TrustCast which will
play a critical role in our BB protocol. Before describing the consensus module,
we first clarify the order in which the trust module and consensus module are
invoked within a single round:
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1. At the beginning of the round, a node u receives all incoming messages.
2. Next, u’s trust graph module processes all the graph-messages and updates

its local trust graph:
– Process all the freshly seen Distrust messages and remove the correspond-

ing edges from its trust graph.
– Check for new equivocation evidence: if any equivocation evidence is seen

implicating any v ∈ [n], remove v and all edges incident to v from the
node’s own trust graph.

Recall also that every time an edge or node is removed from a node’s trust
graph, a post-processing procedure is called to make sure that the trust graph
still has O(n/h) diameter (see Sect. 3.3).

3. Now, u’s consensus module processes the incoming consensus messages, and
computes a set of messages denoted M to send in this round. The rules for
computing the next messages M are specified by our Byzantine Broadcast
protocol (Sect. 5) which calls the TrustCast protocol (this section) as a building
block. The protocol is allowed to query the node’s current trust graph (i.e.,
the state after the update in the previous step).

4. Finally, u sends M to everyone; additionally, for every fresh message first
received in this round, u relays it to everyone.

Henceforth, in our consensus module description, whenever we say “at the
beginning of round r”, we actually mean in round r after Step (2), i.e., after the
trust graph module makes updates and yields control to the consensus module.

4.1 The TrustCast Protocol

Motivation and Intuition. We introduce a TrustCast protocol that will be
used as a building block in our Byzantine Broadcast protocol. In the TrustCast
protocol, a sender s ∈ [n] has a message m and wants to share m with other
parties. At the end of the TrustCast protocol, any honest node either receives a
message from s or removes s from its trust graph. The TrustCast protocol does
not guarantee consistency: if the sender is corrupt, different honest parties may
output different messages from the sender. However, if the sender is indeed hon-
est, then all honest parties will output the message that the sender sends. Very
remotely, the TrustCast protocol resembles the notion of a “reliable broadcast” [6]
or a “gradecast” [16,26] which is a weakening of Byzantine Broadcast—many
existing works in the consensus literature bootstrap full consensus (or broad-
cast) from either reliable broadcast or gradecast. Similarly, we will bootstrap
Byzantine Broadcast from TrustCast; however, we stress that our definition of
the TrustCast abstraction is novel, especially in the way the abstraction is tied
to the trust graph.

Abstraction and Notations. A TrustCast protocol instance must specify a
sender denoted s ∈ [n]; furthermore, it must also specify a verification function
Vf for receiving nodes to check the validity of the received message. Therefore,
we will use the notation TrustCastVf,s to specify the verification function and the
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sender of a TrustCast instance. Given a node u ∈ [n] and a message m, we also
use the following convention

u.Vf(m) = true in round r

to mean that message m passes the verification of Vf w.r.t. node u in round r.
In our Byzantine Broadcast protocol, whenever a sender s calls TrustCastVf,s

to propagate a message m, the verification function Vf and the message m must
respect the following two conditions—only if these conditions are satisfied can
we guarantee that honest nodes never distrust each other (see Theorem 4).

– Validity at origin. Assuming that the leader s is honest, it must be that
s.Vf(m) = true in round 0, i.e., at the beginning of the TrustCastVf,s protocol.

– Monotonicity condition. We say that Vf satisfies the monotonicity condition
if and only if the following holds. Let r < t and suppose that u, v ∈ [n] are
honest. Then, if u.Vf(m) = true in round r, it must hold that v.Vf(m) = true
in round t as well. Note that in the above, u and v could be the same or
different parties.

The first condition guarantees that an honest sender always verifies the mes-
sage it sends. The second condition, i.e., the Monotonicity condition, guarantees
that if an honest node successfully verifies a message, then that message would
pass verification of all other honest nodes in future rounds. Together, the two
conditions imply that the honest sender’s message would pass verification of all
honest nodes.

TrustCast Protocol. We describe the TrustCastVf,s(m) protocol below where a
sender s ∈ [n] wants to propagate a message of the form m = (T, e, payload)
whose validity can be ascertained by the verification function Vf. Recall that by
our common assumptions (see Sect. 3.2), honest nodes echo every fresh message
seen. Moreover, if an honest node u ∈ [n] sees the sender’s signatures on two
messages with the same (T, e) but different payloads, then u removes the sender s
from its trust graph. For brevity, these implicit assumptions will not be repeated
in the protocol description below.

Protocol TrustCastVf,s(m)
Input: The sender s receives an input message m and wants to propagate
the message m to everyone.

Protocol: In round 0, the sender s sends the message m along with a
signature on m to everyone.

Let d = �n/h� + 	n/h
 − 1, for each round 1 ≤ r ≤ d, every node u ∈ [n]
does the following:

(�) If no message m signed by s has been received such that u.Vf(m) = true
in round r, then for any v that is a direct neighbor of u in u’s trust
graph: if v is at distance less than r from the sender s, call Distrust(v).
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Outputs: At the beginning of round d + 1, if (1) the sender s is still in u’s
trust graph and (2) u has received a message m such that u.Vf(m) = true,
then u outputs m.

To better understand the protocol, consider the example where the sender s
is a direct neighbor of an honest node u in u’s trust graph. This means that u
“trusts” s, i.e., u thinks that s is an honest node. Therefore, u expects to receive
s’s message in the first round of the TrustCast protocol. If u has not received from
s in the first round, it knows that s must be corrupted. It would thus remove
the edge (u, s) from u’s trust graph.

Similarly, if s is at distance r from u in u’s trust graph, then u should expect
to receive a valid message signed by s in at most r rounds. In case it does not,
then u can be convinced that all of its direct neighbors that are at distance r−1 or
smaller from s in its trust graph must be malicious—therefore u calls Distrust to
declare distrust in all such neighbors. Note that the distrust messages generated
in round r will be processed at the beginning of round r + 1. We now utilize
the above intuition to prove that the TrustCast protocol satisfies the following
properties:

– At the end of the TrustCast protocol, any honest node either receives a message
from s or removes s from its trust graph (Theorem 3).

– In the TrustCast protocol, we never remove edges between two honest nodes
in any honest node’s trust graph (Theorem4).

In the rest of the paper, we always use the variable d to represent �n/h� +
	n/h
 − 1.

Theorem 3. Let u ∈ [n] be an honest node. At the beginning of round d + 1,
either the sender s is removed from u’s trust graph or u must have received a
message m signed by s such that u.Vf(m) = true in some round r.

Proof. By the definition of the TrustCastVf,s protocol, if in round r, the node u
has not received a message m signed by s such that u.Vf(m) = true in round
r, then u will call Distrust(v) for each of its neighbors v that is within distance
r −1 from s. The Distrust(v) operation generates a distrust message that will be
processed at the beginning of round r + 1, causing u to remove the edge (u, v)
from its trust graph. After removing the edge (u, v), the trust graph module will
also perform some post-processing which may further remove additional edges
and nodes. After this procedure, s must be at distance at least r + 1 from u or
removed from u’s trust graph.

By setting the round number r to d, we can conclude that at the beginning of
round d + 1, if u has not received a message m such that u.Vf(m) = true, then s
must be either at distance at least d+1 from u or removed from u’s trust graph.
Yet, u’s trust graph must contain a single connected component containing u,
with diameter at most d. So s must be removed from u’s trust graph.

Theorem 4. If the validity at origin and the monotonicity conditions are
respected, then an honest node u will never call Distrust(v) where v is also honest.
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Proof. We can prove by contradiction: suppose that in round r ∈ [1, d], an honest
node u calls Distrust(v) where v ∈ [n] is also honest. This means that in round
r, u has not received a message m signed by s such that u.Vf(m) = true in
round r. Due to the implicit echoing and the monotonicity condition of Vf, it
means that in round r−1, v has not received a message m signed by s such that
v.Vf(m) = true in round r − 1. We may now consider two cases:

– Case 1: suppose r − 1 = 0. If the validity at origin condition holds, then
v cannot be the sender s. In this case u cannot call Distrust(v) in round 0
because v is at distance at least 1 from the sender s.

– Case 2: suppose r − 1 > 0. By definition of the TrustCastVf,s protocol, in
round r − 1, v would send Distrust(w) for any w within distance r − 2 from s
in Gr−1

v . Suppose v sends distrust messages on w1, · · · , wl and we denote the
graph G′ ← Gr−1

v /{(v, w1), · · · , (v, wl)}. Then, in G′, the distance between v
and s should be at least r. Let us now consider node u and u’s trust graph.
By trust graph monotonicity and Lemma2, u’s trust graph at the beginning
of round r, i.e., Gr

u, should be a subset of Gr−1
v . Further, u would receive v’s

distrust messages on w1, · · · , wl in round r. Thus,

Gr
u ⊆ Gr−1

v /{(v, w1), · · · , (v, wl)}.

This implies that the distance between v and s in Gr
u should be at least r,

contradicting our assumption that the distance between v and s is r − 1.

In either case, we have reached a contradiction.

In this section, we provided a TrustCast protocol with nice properties (The-
orem 3 and 4) related to the trust graph. In the next section, we will show how
to bootstrap full consensus from the TrustCast protocol.

Remark 2. Later, when TrustCast is invoked by a parent protocol, it could be
invoked in an arbitrary round rinit of the parent protocol; moreover, at invoca-
tion, honest nodes’ trust graphs need not be complete graphs. In this section,
our presentation assumed that the initial round is renamed to round 0 (and
all the subsequent rounds are renamed correspondingly). We say that a sender
s trustcasts message m with verification function Vf if s calls TrustCastVf,s on
message m. If the verification function Vf is clear in the context, we just say s
trustcasts a message m.

5 Byzantine Broadcast Under an Adaptive Adversary

In this section, we present a Byzantine Broadcast (BB) protocol that achieves
security under a weakly adaptive adversary.

Leader Election. One common trick used in existing Byzantine Broadcast
protocols is to select a leader in each epoch and let the leader broadcast its
proposal. However, ideal leader election is hard to implement under an adaptive
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adversary. This is because the adaptive adversary will learn the leader’s identity
upon receiving the leader’s proposal. It can then corrupt the leader and generate
an equivocating proposal. At the high level, we want an honest leader to fulfill
its duty before its identity is known to the adversary. To achieve this, we need to
use verifiable random functions (VRFs) and a new building block called AckCast,
which is a simple extension of TrustCast.

Commit Evidence. In our Byzantine Broadcast protocol, each node uses the
TrustCast protocol to send messages until it becomes confident as to which bit
to commit on. Afterwards, it needs to convince other nodes to also commit on
this bit using what we call a commit evidence. In other words, once a node
generates a valid commit evidence, all other nodes that receive it will commit
on the corresponding bit. We want the commit evidence to satisfy that.

– It is impossible for two nodes to generate valid commit evidences on different
bits.

– If the leader in this epoch is honest, at least one honest node should be able
to generate a commit evidence on the leader’s proposed bit.

The first property guarantees consistency while the second property guarantees
liveness. We first show what we define to be a commit evidence in our protocol.
After we describe our protocol in Sect. 5.3, we will prove that this definition
satisfies the two properties above.

Fix an epoch e and a bit b ∈ {0, 1}. We say that a collection E containing
signed messages of the form (vote, e, b) is an epoch-e commit evidence for b
w.r.t. Gr

u iff for every v ∈ Gr
u, E contains a signed message (vote, e, b) from v.

Recall that Gr
u is u’s trust graph at the beginning of round r (after processing

graph-messages).
Fix u ∈ [n] and the round r. We say that a commit evidence for (e, b) w.r.t.

Gr
u is fresher than a commit evidence for (e′, b′) w.r.t. Gr

u iff e′ > e. Henceforth,
we will assume that ⊥ is a valid epoch-0 commit evidence for either bit.

Remark 3. In our protocol description, if we say that “node u ∈ [n] sees a commit
evidence for (e, b) in round r”, this means that at the beginning of the round r,
after having processed graph-messages, node u has in its view a commit evidence
for (e, b) w.r.t. Gr

u.

Lemma 4 (Commit evidence monotonicity lemma). Let u, v ∈ [n] be
honest nodes. A commit evidence for (e, b) w.r.t. Gr

u must be a commit evidence
for (e, b) w.r.t. Gt

v for any t > r. Note that in the above, u and v can be the
same or different node(s).

Proof. Due to the trust graph monotonicity lemma, we have Gt
u ⊆ Gr

v since
t > r. The lemma then follows directly.

Protocol Intuition. Our protocol proceeds in incrementing epochs where each
epoch consists of three phases, called Propose, Vote, and Commit, respec-
tively. Each phase has O(d) (d = �n/h� + 	n/h
 − 1) rounds. Intuitively, each
phase aims to achieve the following objectives:
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– Propose: the leader uses the TrustCast protocol to share the freshest commit
evidence it has seen.

– Vote: each node uses the TrustCast protocol to relay the leader’s proposal it
receives in the propose phase. At the end of the vote phase, each node checks
whether it can construct a commit evidence.

– Commit: nodes use the TrustCast protocol to share their commit evidence.

Besides the three phases, there is also a termination procedure (with the entry
point Terminate) that runs in the background and constantly checks whether
the node should terminate. Also, to apply the TrustCast protocol, we need to
define the corresponding verification functions such that the monotonicity con-
dition and the validity at origin condition (defined in Sect. 4.1) are satisfied.

In this section, we first review VRFs [29] in Sect. 5.1. We will apply VRF as
a cryptographic primitive in the leader election step. In Sect. 5.2, we introduce
our AckCast protocol. Finally, in Sect. 5.3, we introduce our Byzantine Broadcast
protocol under an adaptive adversary, followed by its proof of correctness.

5.1 Preliminary: Verifiable Random Functions

In this section, we review the definition and notations of VRFs in [29]. A VRF
includes the following (possibly randomized) algorithms:

– (pp, {pku, sku}u∈[n]) ← Gen(1λ): takes in a security parameter λ and generates
public parameters pp, and a public and secret key pair (pku, sku) for each
node u ∈ [n]; each sku is of the form sku := (su, ρu) where su is said to be
the evaluation key and ρu is said to be the proof key for u.

– (y, π) ← Eval(pp, sku, x): we shall assume that Eval := (E,P ) has two
sub-routines E and P where Eval.E is deterministic and Eval.P is pos-
sibly randomized. Given the public parameters pp, the secret key sku =
(su, ρu), and input x ∈ {0, 1}|x|, compute y := Eval.E(pp, su, x) and π :=
Eval.P (pp, su, ρu, x), and output (y, π).

– {0, 1} ← Ver(pp, pku, x, y, π): receives the public parameters pp, a public key
pku, an input x, a purported outcome y, and a proof π, outputs either 0
indicating rejection or 1 indicating acceptance.

For a VRF scheme to satisfy correctness, we require that for any v ∈ [n] and
any input x, the following holds with probability 1: let (pp, {pku, sku}u∈[n]) ←
Gen(1λ), and let (y, π) ← Eval(pp, skv, x), then Ver(pp, pkv, x, y, π) = 1.

Suppose the adversary can request to create new VRF instances, query exist-
ing instances with specified inputs, selectively corrupt instances and obtain the
secret keys of these instances.

– We say that a VRF scheme satisfies pseudorandomness under selective
opening iff the adversary is unable to distinguish the VRF’s evaluation out-
comes on any future message from randomly generated values.

– We say that a VRF scheme satisfies unforgeability, if the adversary cannot
forge the VRF outcome and proof on behalf of any honest node on a point
that has not been queried.
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Due to the page limit, we are unable to review the full definition of VRF. The
detailed definition and the cryptographic games are included in the online version
[37]. Abraham et al. [1] proved the following theorem where the bilinear group
assumptions needed are the same as those adopted by Groth et al. [24].

Theorem 5 (Existence of adaptively secure VRFs [1]). Assuming stan-
dard bilinear group assumptions and a trusted setup, we can construct a VRF
scheme satisfying pseudorandomness under selective opening and unforgeability.

VRF Technical Lemma. Abraham et al. [1] showed the following theorem
regarding VRFs that satisfy pseudorandomness under selective opening attacks.
To describe the theorem, we need to first describe the following experiments:

– Ideal experiment. In the ideal experiment, an adversary A interacts with an
idealized oracle F . The execution continues in epochs. At the beginning of
each epoch e, F picks a random answer for every query of the form (u, e)
for u ∈ [n], and returns all n answers to A. When A calls F .Corrupt(u), F
records that u has been corrupted.

– Real experiment. In the real experiment, an adversary A interacts with an
oracle F ′. First, F ′ calls VRF.Gen(1λ) and gives the resulting pp, pk1, . . . , pkn

to A, but keeps sk1, . . . , skn to itself.
At the beginning of every epoch e, F ′ computes for every u ∈ [n] a tuple
(yu, πu) := VRF.Eval(pp, sku, e) and returns (yu, πu) to A. Whenever A calls
F ′.Corrupt(u), F ′ records that u has been corrupted but also discloses sku to
A as well as all the randomness used by Eval earlier pertaining to u.

Now, let bad be any polynomial-time computable function defined over the
following variables:

1. the sequence of answers (not including the proof part for the real experiment)
to all (u, e) queries sorted by lexicographical ordering of the queries, and

2. the nodes corrupted by A and the epoch in which they become corrupt.

Lemma 5 (Technical lemma regarding VRF [1]). Suppose that the VRF
satisfies pseudorandomness under selective opening. Then, if there exists a non-
uniform p.p.t . adversary A that can cause the bad event bad to take place in the
real experiment with probability p, there must exist a non-uniform p.p.t . adver-
sary A′ that can cause bad to happen in the ideal experiment with probability at
least p − negl(λ).

5.2 New Building Block: AckCast Protocol

We describe an additional helpful building block called AckCast that is a simple
extension of the previous TrustCast. In AckCast, a sender s ∈ [n] trustcasts
a message and then every node acknowledges (ACK) the message (also using
TrustCast). If a node receives ACKs on different messages, which must contain
equivocating signatures from the sender, then the sender must be corrupted and
can be removed from the trust graph. At the end of the AckCast protocol, we
guarantee that for any honest node u, either
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– s is no longer in u’s trust graph, or
– u has received a unique and valid message from s; moreover, u has heard an

ACK for the same message from every node in u’s trust graph.

AckCastVf,s :
1. The sender s ∈ [n] trustcasts the message m with TrustCastVf,s;
2. For every honest node u ∈ [n],

– if the previous TrustCastVf,s outputs a message m signed by s such
that u.Vf(m) = true, then set m′ ← (ack, s,m).

– else, set m′ ← (ack, s,⊥).
u trustcasts the message m′ with TrustCastVf

′,u, where v.Vf′(ack, s,m) =
true in round r iff
(a) either s is no longer in Gr

v or m must agree with what s has trustcast
(in v’s view); and

(b) either m = ⊥ or v.Vf(m) = true in round r.

It can be observed that if Vf satisfies the monotonicity condition, then Vf′

also satisfies the monotonicity condition. Further, Vf′ also satisfies the valid-
ity at origin condition by the property of the first TrustCastVf,s. We list these
observations in Lemmas 6 and fct:validitymulticastack. Due to the page limit,
the detailed proof is omitted and can be found in our online version [37].

Lemma 6. If Vf satisfies the monotonicity condition, then Vf′ also satisfies
the monotonicity condition.

Lemma 7. Vf′ satisfies the validity at origin property, i.e., when an honest node
u trustcasts (ack, s,m) with TrustCastVf

′,u in some round r during AckCastVf,s,
it must be that u.Vf′(ack, s,m) = true in round r.

Given Lemmas 6 and 7, we can show that AckCast satisfies what we want.

Lemma 8. Assume that Vf satisfies the monotonicity condition and that the
message m input to s satisfies the validity at origin condition. Then, at the end
of the AckCast protocol, for any honest node u, either

1. s is no longer in u’s trust graph or
2. u has heard s trustcast a unique message m such that u.Vf(m) = true at

the end of the protocol; moreover, u must have received an ACK of the form
(ack, s,m) from every node in its trust graph.

Proof. Since Vf satisfies the monotonicity condition and the validity at origin
condition, by Lemmas 6 and 7, Vf′ also satisfies the monotonicity condition and
the validity at origin condition. Thus, by Theorem3, for any two honest nodes u

and v, u must have received a valid ACK from v that passes Vf′ in TrustCastVf
′,v.

In other words, by the end of the AckCast protocol, any honest node u must have
received valid ACKs that passes Vf′ from all nodes in its trust graph.
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Now, we want to show that the ACKs u receives match what s trustcasts. If
s is still in u’s trust graph by the end of AckCast, by Theorem 3, u must have
received a valid message from s. By the definition of Vf′, each ACK message
received by u must agree with what s has trustcast. This completes our proof.

5.3 Protocol

Strawman Attempt. We first discuss a strawman attempt using a VRF that
achieves security against an adaptive adversary. In every epoch, every node u
computes (yu, πu) := VRF(pp, sku, e). yu is said to be u’s charisma and we define
the leader to be the node with the maximum charisma. The issue with this app-
roach is that the adversary, upon observing that u has the maximum charisma
and is the leader, can immediately corrupt u, and make u send an equivocat-
ing proposal. Such an attack will not affect consistency, however, it will hamper
liveness due to the following: every honest node, upon seeing u’s equivocating
proposal, removes u from its trust graph; and now they would vote for ⊥ in the
Vote phase. An adversary with a corruption budget of f can continue this attack
for f epochs in which an honest node becomes the leader, and thus liveness can
take as long as Ω(f) epochs to ensue.

To defeat the aforementioned attack, we are inspired by techniques from
the standard Byzantine Broadcast literature [2,26] but it is not trivial to adapt
these techniques to our setting. At a high level, during the Propose phase of each
epoch, everyone multicasts a proposal using AckCast pretending that they might
be the elected leader. Because AckCast rather than TrustCast is used, effectively
everyone would also trustcast an ACK for everyone’s proposal. Note that at
this time, the VRF outcomes have not been revealed and the adversary cannot
effectively single out and target the leader.

Our key idea is to require that a valid proposal must contain everyone’s
ACK message. In this way, when nodes reveal their VRF outcomes (i.e., their
charisma), the adversary may immediately corrupt the leader, but it is already
too late for the now-corrupt leader to insert a new equivocating proposal, because
there is no time for this new equivocating proposal to acquire ACKs from every-
one. To integrate this idea into our protocol invovles further technicalities, but
with this intuition in mind, we can now present our protocol formally.

Protocol. Our protocol is described below.

Setup. Run (pp, {pku, sku}u∈[n]) ← VRF.Gen(1λ). Publish (pp, pk1, . . . ,
pkn) and give sku to each u ∈ [n].

Assumption. For the initial sender s ∈ [n] in epoch 1, we redefine the
outcome of VRF.Eval(pp, sks, 1) to be (∞,⊥), and we assume that VRF.Ver
(pp, pks, 1,∞,⊥) = 1. This makes sure that the initial sender s has the
maximum charisma in epoch e = 1. We shall also assume that by construc-
tion, the function VRF will append to the outcome y the unique identifier
of the node u. In this way, the evaluation outcomes for two different nodes
must be distinct.



Expected Constant Round Byzantine Broadcast Under Dishonest Majority 403

Main Protocol. For each epoch e = 1, 2, . . .:
1. Propose: (O(d) rounds) Every node u ∈ [n] performs the following:

– Choose a bit to propose and an evidence as follows:
• If e = 1 and u is the initial sender, u chooses P := (b,⊥) where

b is its input bit.
• Else if a non-⊥ commit evidence (for some bit) has been seen,

let E(e, b) denote the freshest such commit evidence and let P :=
(b, E(e, b)).

• Else, u chooses a random bit b and let P := (b,⊥).
– u ackcasts the proposal (prop, e, P ) by calling AckCastVfprop,u where

v.Vfprop(prop, e, (b, E)) = true in round r iff

(a) E is a valid commit evidence vouching for the bit b proposed; and
(b) for every w ∈ Gr

v, E is at least as fresh as any commit evidence
trustcast by w in the Commit phase of all previous epochs e′ <
e—recall that ⊥ is a commit evidence for epoch 0.

2. Elect: (1 round) Every node u computes (y, π) := VRF.Eval(pp, sku, e),
and sends the signed tuple (elect, e, y, π) to everyone.

3. Prepare: (O(d) rounds) Every node u ∈ [n] does the following:
– Let S ⊆ [n] be the set of nodes v satisfying the following:a

(a) u has received from v a signed tuple of the form (elect, e, yv, πv)
where VRF.Ver(pp, pkv, e, yv, πv) = 1—henceforth, yv is said to
be v’s charisma;

(b) u has received from v a signed proposal of the form
(prop, e, (b, )). Moreover, everyone that remains in u’s trust
graph has ACKed this proposal in AckCastVfprop,v earlier.

– Find the node L ∈ S whose charisma yL is maximized based on
lexicographical ordering.

– Trustcast the tuple (prep, e, b, L, yL, πL) by calling TrustCastVfprep,u

where

v.Vfprep(prep, e, b, L, y, π) = true in round r iff

(a) Everyone in Gr
v has ACKed a proposal of the form (prop, e, (b, ))

by the end of the AckCastVfprop,L instance; and
(b) VRF.Ver(pp, pkL, e, y, π) = 1.

Henceforth, given a prepare message of the form (prep, e, b, L, y, π), y
is said to be the charisma of the prepare message.

4. Vote: (O(d) rounds) Every node u ∈ [n] performs the following:
– Compare the (prep, e, , , , ) messages that have been trustcast by

all nodes v that still remain in u’s trust graph, and pick the one
(prep, e, b∗, L∗, y∗, π∗) whose charisma value y∗ is the maximum.
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– Trustcast a vote of the form (vote, e, (b∗, L∗, y∗, π∗)) by calling
TrustCastVfvote,u where

v.Vfvote(vote, e, (b, L, y, π)) = true in round r iff

(a) Everyone in Gr
v has ACKed a proposal for b signed by L by the

end of the AckCastVfprop,L;
(b) VRF.Ver(pp, pkL, e, y, π) = 1;
(c) For everyone w ∈ Gr

v, y must be at least as large as the charisma
of the prepare message trustcast to v by w.

5. Commit: (O(d) rounds) Every node u ∈ [n] performs the following:
– If everyone still in u’s trust graph voted for the same bit b ∈ {0, 1}

(as defined by the outputs of the TrustCastVfvote,u protocols during
the Vote phase), then output the bit b, and trustcast a commit
message (comm, e, E) by calling TrustCastVfcomm,u, where E contains a
signed vote message of the form (vote, e, (b, )) from everyone in u’s
trust graph.

– Else, use TrustCastVfcomm,u to trustcast the message (comm, e,⊥).
We define the verification function Vfcomm below. v.Vfcomm(comm, e, E) =
true in round r iff:
(a) either v has seen a tuple (elect, e, y, π) signed by some w /∈ Gr

v

such that (1) VRF.Ver(pp, pkw, e, y, π) = 1, and (2) for everyone
w′ ∈ Gr

v ∪ S, y is greater than the charisma of the prepare message
trustcast by w′.

(b) or E must be a valid epoch-e commit evidence.
Terminate: In every round r, every node u checks the following: if there
is some (e, b) such that u has seen, from everyone in Gr

u, a signed message
of the form (comm, e, E) where E is a valid commit evidence for (e, b), then
terminate (recall that by our implicit assumptions, the node u will echo
these messages to everyone before terminating).

a We want to make sure that as long as a node remains honest in the propose
phase, it will be in the set S of any honest node u.

5.4 Consistency, Liveness and Validity Proof

To apply the properties of the TrustCast protocol, we must show that our verifi-
cation functions respect the monotonicity condition and validity at origin. The
monotonicity condition follows from the trust graph’s monotonicity invariant
and our implicit echoing assumption. The validity at origin property can be
verified mechanically. We defer the detailed proofs to the online version [37].

Given that the verification functions respect the monotonicity condition and
validity at origin, we first prove that our Byzantine Broadcast protocol achieves
consistency, i.e., honest nodes always output the same bit. We divide the proof
into two parts. First, we show that within the same epoch, two honest nodes
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cannot commit on different bits. Secondly, we show that even across different
epochs, consistency is still guaranteed.

Lemma 9 (Consistency within the same epoch). If an honest node u ∈ [n]
sees an epoch-e commit evidence for the bit b ∈ {0, 1} in some round r, and an
honest node v ∈ [n] sees an epoch-e commit evidence for the bit b′ ∈ {0, 1} in
some round t, it must be that b = b′.

Proof. Let E be the epoch-e commit evidence seen by u in round r and let E ′

be the epoch-e commit evidence seen by v in round t. Due to the honest clique
invariant of the trust graph, E must contain signatures on (vote, e, b) from every
honest node, and E ′ must contain signatures on (vote, e,˜b) from every honest
node. However, each honest node will only vote for a single bit in any given
epoch e. It holds that b = b′.

Lemma 10 (Consistency across epochs). If an honest node u ∈ [n] outputs
the bit b in some epoch e, then in every epoch e′ > e, no honest node v ∈ [n] can
ever see a commit evidence for (e′, 1 − b).

Proof. We will use induction to show that honest nodes will never receive commit
evidence for the bit 1 − b in any epoch after e. By the protocol definition, for
u to output b in epoch e, it must have seen a commit evidence for (e, b) at the
beginning of the Commit phase in epoch e. We have already shown in Lemma9
that any two nodes cannot commit on different bits within the same epoch.
Therefore, there cannot exist any commit evidence for 1 − b in epoch e. Thus,
we have shown the base case of our induction.

Suppose no honest node has seen any commit evidence for 1 − b between
epoch e and e′ (e′ ≥ e), we will show that no commit evidence will be seen for
1− b in epoch e′ +1 as well. Note that in epoch e, u will use TrustCastVfcomm,u to
trustcast its commit evidence for (e, b), and all honest nodes will receive it by the
end of epoch e. Since no commit evidence for 1− b has been seen afterwards, for
any honest node, the freshest commit evidence it has seen is on b. Now, during
epoch e′ + 1, every honest node will reject Le′+1’s proposal (where reject means
not passing the Vfprop function) unless it is for the same bit b; and if they do
reject Le′+1’s proposal, they will vote on ⊥. Therefore, in epoch e′ +1, no honest
node will vote for 1 − b, and no honest node will ever see a commit evidence for
(e′ + 1, 1 − b). This completes our induction proof.

Theorem 6 (Consistency). If honest nodes u and v output b and b′, respec-
tively, it must be that b = b′.

Proof. For an honest node to output b in epoch e, it must observe a commit
evidence for (e, b) in epoch e. Consider the earliest epoch e in which an honest
node, say, u′, outputs a bit b. By definition, every other honest node will output
in epoch e or greater. By Lemma 9, no honest node will output 1 − b in epoch e.
By Lemma 10, no honest node will output 1 − b in epoch e′ > e.
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Next, we show that our protocol achieves liveness and terminates in expected
constant rounds. Observe that if an honest node terminates, then all other honest
nodes would terminate in the next round.

Lemma 11. If some honest node terminates in round r, then all honest nodes
will have terminated by the end of round r + 1.

Proof. If an honest node terminates in round r, it must have received consistent
commit evidence from every node in its trust graph. By the implicit echoing
assumption, it would forward those commit evidences to all other honest nodes
before round r + 1. By the trust graph monotonicity invariant and the commit
evidence monotonicity lemma (Lemma 4), all other honest nodes would gather
enough commit evidence in round r + 1 and terminate as well.

During the execution, even before nodes reveal their charisma for some epoch e,
we can already define a node u’s epoch-e charisma as the honestly computed VRF
outcome VRF.Eval(pp, sku, e). This definition is well-formed no matter whether
the node is honest or corrupt.

Definition 1 (Lucky epoch). Henceforth, we say that epoch e is lucky iff the
node with the maximum epoch-e charisma has not been corrupted until it has
sent a signed (elect, e, , ) message.

Lemma 12. Suppose that the VRF satisfies unforgeability. Except with negli-
gible probability, the following holds: if e is a lucky epoch, then one round after
the end of epoch e, all honest nodes will terminate.

Proof. By Lemma 11, if any honest node terminates during epoch e, all honest
nodes will terminate in the next round. Therefore, it suffices to prove the lemma
assuming that no honest node has terminated by the end of epoch e, i.e., we
may assume that all honest nodes will participate in all the TrustCast protocols
till the end of epoch e. Thus, we can safely use the properties of TrustCast.

Suppose epoch e is a lucky epoch. This means that the node L with the max-
imum epoch-e charisma has not been corrupted until it has sent the signed elect
message (elect, e, y, π). Since the adaptive adversary cannot remove messages
already sent, all honest nodes will receive the elect message. Every honest node
will then trustcast (prep, e, b, L, y, π) where b is L’s proposed bit in the Pro-
pose phase of epoch e. Since L remains honest throughout the propose phase,
all nodes have consistent views on L’s proposed bit and they can only Ack b.
After the propose phase, honest nodes no longer Ack any new proposal. Thus,
even if L becomes corrupt immediately after sending the elect message, it cannot
gather Ack messages from honest nodes on the bit 1 − b.

By Theorem 3, after the Vote phase, for any two honest nodes u and v, u
must have received a vote from v that passes Vfvote. Due to condition (c) of the
Vfvote check, the vote from v must vote for the same bit b that L proposes. Thus,
at the end of the Vote phase, any honest node would receive votes on b from
every node in its trust graph, which forms a commit evidence for b.
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Again, by Theorem 3, after the Commit phase, for any two honest nodes
u and v, u must have received a commit message from v that passes Vfcomm.
Recall that a ⊥ commit message passes Vfcomm w.r.t. node u iff there exists
a node not in u’s trust graph, whose charisma is greater than all the prepare
messages u has received. However, since epoch e is a lucky epoch, all honest
nodes generate their prepare message from L, who has the largest charisma in
epoch e. Therefore, all the commit messages received must be non-⊥ commit
messages. And since all honest nodes vote on b in the Vote phase, the commit
message must be on b. In conclusion, unless the adversary can successfully forge
a VRF result which happens with negligible probability, any honest node will
receive commit messages from every node in its trust graph on b. This satisfies
the termination condition and all honest nodes will terminate.

Lemma 13. Suppose that the VRF satisfies pseudorandomness under selective
opening. Then, let Rlucky be a random variable denoting the first lucky epoch. It
must be that there is a negligible function negl(·) such that for every R,

Pr[Rlucky ≥ R] ≤ Pr[Geom(h/n) ≥ R] + negl(λ)

where Geom(h/n) denotes a geometric random variable with probability h/n.

Proof. We can consider an ideal-world protocol defined just like the real-
world protocol except for the following: whenever a node needs to compute
VRF.Eval(pp, pku, e), it will instead call an ideal functionality F .Eval(u, e). Upon
receiving this call, F picks y, at random if this is the first time Eval(u, e) is
queried, and records the tuple (u, e, y). Now F returns the answer y that has
been recorded for the query (u, e), and the tuple (y,⊥) will be used in place
of the outcome of the VRF evaluation. Similarly, whenever a node needs to
call VRF.Ver(pp, pku, e, y, π), the call is replaced with a call to F .Ver(u, e, y),
which simply checks if the tuple (u, e, y) has been recorded—if so, return 1; else
return 0.

In this ideal world protocol, since leaders are elected completely randomly,
it is not hard to see that Pr[Rlucky ≥ R] = Pr[Geom(h/n) ≥ R].

By the VRF technical lemma (Lemma 5), it is impossible to distinguish
between the results of VRFs (the real-world protocol) and a uniformly random
distribution (the ideal world protocol) for any polynomially bounded adversary.
It thus follows that in the real-world protocol,

Pr[Rlucky ≥ R] ≤ Pr[Geom(h/n) ≥ R] + negl(λ)

as long as the adversary is polynomially bounded.

Theorem 7 (Liveness). Assume that the VRF adopted satisfies pseudoran-
domness under selective opening and unforgeability. Then, the protocol described
in Sect. 5.3 achieves liveness in O((n/h)2) number of rounds.

Proof. Follows directly from Lemma 12 and Lemma 13.
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Finally, we show that the protocol also achieves validity. Note that the def-
inition of validity needs to be slightly adjusted under the adaptive adversary
model. Since an adaptive adversary can corrupt arbitrary nodes at any time, the
validity requirement only makes sense when the initial sender remains honest
throughout the entire protocol.

Theorem 8 (Validity). Assume that the VRF adopted satisfies unforgeability.
For the protocol described in Sect. 5.3, the following holds except with negligible
probability: if the designated sender s is (forever) honest, then everyone will
output the sender’s input bit.

Proof. Recall that by our construction, s is guaranteed to have the maximum
charisma in epoch 1. The proof of Lemma 12 implies that if s is (forever) honest,
at most one round after epoch e = 1, all honest nodes will have terminated with
an output that agrees with s’s proposal.

5.5 Round Complexity Analysis

Finally, we analyze the round complexity and communication complexity of the
protocol, showing that the protocol terminates in expected O((n/h)2) rounds
and has ˜O(n4) communication complexity.

In Theorem 7, we proved that as soon as some epoch has an honest leader,
all honest nodes will terminate at most 1 round after the epoch’s end. Each
epoch has O(d) = O(n/h) number of rounds, and with random leader election,
in expectation we need O(n/h) number of rounds till we encounter an honest
leader. Thus, the expected round complexity is O((n/h)2). We can also show that
with probability 1−δ, the round complexity is bounded by log(1δ )· n

h/ log( 1
1−h/n ).

The total number of consensus messages generated by honest nodes in each
epoch (not counting implicit echoing) is at most O(n). Each message is at most
˜O(n) in size (the ˜O hides the log n terms needed to encode a node’s identifier).
Each such consensus message will be delivered to O(n) nodes and each node
will echo every fresh message to everyone. Therefore, the total amount of com-
munication pertaining to the consensus module (including implicit echoing of
consensus messages) is ˜O(n4).

On top of this, honest nodes also need to echo messages sent by corrupt
nodes and there can be (unbounded) polynomially many such messages. How-
ever, we can easily make the following optimization: for consensus messages with
the same type and same epoch, every honest node echoes at most two messages
originating from the same node (note that this is sufficient to form an equivo-
cation evidence to implicate the sender). With this optimization, the per-epoch
total communication for sending consensus messages is upper bounded by ˜O(n4).
As mentioned earlier in Sect. 3, the total amount of communication for the trust
graph module is also upper bounded by ˜O(n4). Thus, the total communication
is upper bounded by ˜O(n4 · E) where E denotes the number of epochs till ter-
mination. Note that in expectation E = n/h; moreover, with probability 1 − δ,
E is upper bounded by log(1δ )/ log( 1

1−h/n ).
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6 Conclusion and Future Work

Our paper presents a Byzantine Broadcast protocol with amortized O(1) round
complexity that works even under dishonest majority. The round complexity is
constant and the communication complexity is ˜O(n4) (for the entire system).
We believe this is the first protocol that gives constant round complexity for
Byzantine Broadcast under dishonest majority.

It has been shown by Garay et al. [19] that no randomized protocols can
achieve BB in less than O(n/(n − f)) number of rounds, even assuming static
corruption and allowing standard setup assumptions. Therefore, for the (narrow)
regime n−f = o(n), there is still an asymptotical gap between our upper bound
and their lower bound. Bridging this gap is an exciting direction for future work.
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Abstract. The round complexity of Byzantine Broadcast (BB) has been
a central question in distributed systems and cryptography. In the hon-
est majority setting, expected constant round protocols have been known
for decades even in the presence of a strongly adaptive adversary. In the
corrupt majority setting, however, no protocol with sublinear round com-
plexity is known, even when the adversary is allowed to strongly adap-
tively corrupt only 51% of the players, and even under reasonable setup
or cryptographic assumptions. Recall that a strongly adaptive adversary
can examine what original message an honest player would have wanted
to send in some round, adaptively corrupt the player in the same round
and make it send a completely different message instead.

In this paper, we are the first to construct a BB protocol with sublinear
round complexity in the corrupt majority setting. Specifically, assuming
the existence of time-lock puzzles with suitable hardness parameters and
that the decisional linear assumption holds in suitable bilinear groups,
we show how to achieve BB in ( n

n−f
)2 ·poly log λ rounds with 1−negl(λ)

probability, where n denotes the total number of players, f denotes the
maximum number of corrupt players, and λ is the security parameter.
Our protocol completes in polylogarithmically many rounds even when
99% of the players can be corrupt.

1 Introduction

Byzantine Broadcast (BB), first defined by Lamport et al. [LSP82], is a founda-
tional abstraction in distributed systems and cryptography, and has been studied
for more than three decades. In Byzantine Broadcast, a designated sender wants
to send a bit b ∈ {0, 1} to n nodes, and we would like to guarantee consistency,
i.e., all honest nodes output the same bit; and validity, i.e., if the designated
sender is honest, all honest nodes must output the sender’s input. In BB, an
important performance metric is the protocol’s round complexity. Due to the
elegant work of Dolev and Strong [DS83], it is long known that any determinis-
tic BB protocol must incur at least Ω(n) number of rounds, and indeed Dolev
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and Strong [DS83] also demonstrate a round-optimal deterministic protocol with
Θ(n) rounds. It is also well-known that with randomization, expected constant-
round BB protocols exist in the honest-majority setting [FM97,KK09,ADD+19].
On the other hand, for quite a long time, no sublinear (randomized) protocol
was known for the corrupt majority setting. In 2007, after progress had been
stagnant for a long while, Garay et al. [GKKO07] first showed a glimpse of
hope for the corrupt majority setting, by constructing a protocol that achieved
O((2f − n)2) round complexity where f denotes the number of corrupt nodes.
Subsequently, Fitzi et al. [FN09] improved their result to O(2f − n) rounds.
Both Garay et al. [GKKO07] and Fitzi et al. [FN09], however, were somewhat
unsatisfying, since the regime under which they give sublinear round complexity
is rather narrow: even the latter work [FN09] requires f/n − 1

2 to be o(1) frac-
tion to achieve sublinear round complexity. Even when f = 51% · n, both these
works would incur at least linear number of rounds. Progress became somewhat
stagnant again until very recently, Chan et al. [CPS20] made some long-awaited
progress, demonstrating a new BB protocol that achieved O( n

n−f ) · poly log λ
number of rounds even in the corrupt majority setting, where the protocol’s fail-
ure probability is guaranteed to be negligibly small in the security parameter λ.
Interestingly, their result is also optimal up to a poly-logarithmic factor due to
an Ω( n

n−f ) lower bound by Garay et al. [GKKO07] even for randomized proto-
cols and even assuming static corruptions. Subsequently, a companion work by
Wan et al. [WXSD20] showed how to construct expected O(( n

n−f )2)-round BB
under corrupt majority; and this result can be viewed as a further improvement
of Chan et al. [CPS20] for a broad range of parameters, e.g., when 1% (or any
arbitrarily small constant fraction) of the nodes are honest.

Nonetheless, the constructions by Chan et al. [CPS20] and Wan et
al. [WXSD20] remain somewhat unsatisfying, since to achieve their result,
the two works [CPS20,WXSD20] had to significantly weaken the adversary’s
capabilities relative to the prior results in this space. All aforementioned
works [DS83,GKKO07,FN09] prior to Chan et al. [CPS20] secured against a
strongly adaptive adversary, i.e., the adversary can observe the messages in flight
from honest nodes in a round, adaptively corrupt a subset of nodes and erase
an arbitrary subset of their messages in flight, and moreover, make the newly
corrupt nodes send additional messages in the same round. In fact, the strongly
adaptive model is the well-accepted model in the early days of distributed con-
sensus and multi-party protocols (see also Definition 1 in Feldman’s thesis [Fel88]
and Figure 4, page 176 of Canetti’s excellent work [Can00]). By contrast, the
approaches of Chan et al. [CPS20] and Wan et al. [WXSD20] defend only against
a weakly adaptive adversary—such an adversary can observe the messages hon-
est nodes want to send in a round, adaptively corrupt a subset of the nodes,
and make the newly corrupt nodes send additional messages in the same round;
however, the adversary cannot perform “after-the-fact-removal”, i.e., it cannot
retroactively erase the messages any node had sent before it became corrupt
in the same round. The weakly adaptive model is akin to the atomic mes-
sage model first introduced by Garay et al. [GKKZ11] as a way to overcome
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a lower bound pertaining to a particular adaptive, simulation-based notion of
security proven by Hirt and Zikas [HZ10]. The only slight difference is that in
the atomic message model, not only is the adversary unable to perform “after-
the-fact” message removal, it also must wait for one network delay after a node i
becomes corrupt, before it is able to inject messages on behalf of i. More recently,
a line of works inspired by blockchains [GKL15,PSS17,PS17c,PS17d,DPS16,
ACD+19,CPS19a] also adopted the weakly adaptive model to get bandwidth-
efficient protocols—it turns out that the weakly adaptive relaxation is necessary
for constructing Byzantine Agreement with sublinear communication complex-
ity [ACD+19].

In some settings, however, the weakly adaptive model may be unsatisfactory,
e.g., if the adversary can control intermediate routers in the network, it indeed
can examine the honest messages in flight, then corrupt a subset of the nodes
and fail to deliver any subset of their messages already in flight. Thus, the state
of the art begs the following natural question,

Are there (randomized) BB protocols with sublinear round complexity, and
secure in the presence of a strongly adaptive adversary that is allowed to
corrupt a majority of the nodes?

1.1 Our Results and Contributions

Main Result. We give the first affirmative answer to the above question, and
to achieve this we rely on the existence of a trusted setup, the decisional linear
assumption in suitable bilinear groups, as well as the existence of time-lock
puzzles with suitable hardness parameters. Our main result is stated in the
following theorem.

Theorem 1.1 (Main result). Assuming the existence of a trusted setup, the
decisional linear assumption in suitable bilinear groups (see AppendixA.1), as
well as the existence of time-lock puzzles [RSW96] with hardness parameter ξ,
there exists a protocol that achieves BB in ( n

n−f )2 · poly log λ
ξ number of rounds

with probability 1 − negl(λ) where negl(·) is a suitable negligible function (of the
security parameter λ).

More concretely, a time-lock puzzle with hardness parameter ξ ensures that
the puzzle solution remains hidden from any machine running in time that is at
most ξ fraction of the honest evaluation time, even when the machine has access
to unbounded polynomial parallelism. As a typical example, consider the case
when ξ ∈ (0, 1) is a constant just like what prior works have assumed [RSW96,
BBBF18], and moreover, suppose that n

n−f is also a constant (e.g., 99% may be
corrupt)—in this case, our protocol’s round complexity is simply poly log λ.

To the best of our knowledge, no prior work can achieve sublinear-round BB
in the strongly adaptive setting under any reasonable setup assumption, and
even for only 51% corruption. In this sense our result significantly improves our
understanding of the round complexity of BB.
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Interpreting the Result. Our result currently requires a trusted setup. We do
not know if the trusted setup is necessary, but some form of setup is necessary:
without any setup, Byzantine Broadcast is impossible under 1/3 or more corrup-
tions due to an elegant lower bound by Lamport et al. [LSP82]. Besides trusted
setup, we also assume the existence of time-lock puzzles; therefore, another open
question is to understand whether time-lock puzzles are necessary. In fact, with-
out time-lock puzzles, even sublinear-round BB under 51% strongly adaptive
corruption remains open. New upper- or lower-bounds along this direction would
be very exciting and seem very challenging.

Another natural question is whether we can improve the round complexity
to expected constant. Due to the companion result of Wan et al. [WXSD20], we
know that expected constant round is possible with a weakly adaptive adver-
sary, and assuming trusted setup and the decisional linear assumption in suitable
bilinear groups. Naturally, it seems tempting to ask for the same in the strongly
adaptive setting. Unfortunately, with our techniques, we do not know how to go
beyond polylogarithmic number of rounds. In fact, even our underlying message
distribution primitive itself already takes polylogarithmically many rounds as
we explain in Sect. 2 and the subsequent technical sections. Therefore, whether
expected constant round BB is possible for 51% strongly adaptive corruption
remains an open question—constructing an upper bound seems challenging even
assuming static corruption, and allowing any reasonable setup assumptions; sim-
ilarly, whether there is possibly a lower bound also seems challenging.

1.2 Technical Highlights

We give a high-level overview of our main techniques.

Delayed-Exposure Message Distribution. One major new technique we
introduce is a delayed-exposure message distribution mechanism. Specifically,
we devise a novel poly-logarithmic round, randomized protocol that allows all
n honest nodes to each distribute a time-lock puzzle that embeds a message
they want to send; moreover, by the end of poly-logarithmically many rounds,
all honest nodes can obtain the solutions of all other honest nodes’ puzzles. On
the other hand, even if the adversary has unbounded parallelism, it cannot learn
any information about honest nodes’ messages encoded in the puzzles within one
round of time; and thus the adversary cannot make informed adaptive corrup-
tions based on the message contents.

To solve this problem, we need to overcome several technical challenges. First,
although we allow the adversary to have access to unbounded parallelism, it is
unrealistic to expect that honest machines are also equipped with up to n amount
of parallelism. Like in the standard distributed protocol literature, we assume
that the honest nodes are sequential RAM machines and thus they cannot solve
puzzles in parallel. However, if they solved all the puzzles sequentially it would
take linear number of rounds which is what we want to avoid in the first place.

Second, the honest nodes do not even have a consistent view of the puz-
zles being distributed which makes it difficult to coordinate who solves which
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puzzles. To overcome these challenges, we devise a novel age-based sampling tech-
nique where nodes sample puzzles to solve and the probability of sampling grows
exponentially w.r.t. how long ago the puzzle was first seen. We defer the detailed
construction and its analysis to later sections.

We stress that the delayed-exposure primitive can be of independent interest
in other protocol design contexts—in this sense, besides our new construction,
we also make a conceptual contribution in defining this new primitive and for-
mulating its security properties (see Sect. 4).

Applying the Delayed-Exposure Distribution Mechanism. Once we have
the delayed-exposure distribution mechanism, we can combine it with techniques
proposed in the recent work by Chan et al. [CPS20], and upgrade their weakly
adaptive protocol to a strongly adaptive one while still preserving a polyloga-
rithmic round complexity. For this upgrade, the most challenging aspect is how
to prove security. The most natural approach towards proving security is to
first prove that the real-world protocol securely emulates a natural ideal-world
counterpart, and then argue the security of the ideal-world protocol (which does
not use cryptography) using an information-theoretic argument. Unfortunately,
this approach fails partly because the time-lock puzzles only provide transient
secrecy of the messages they encode. Instead, we work around this issue by
devising a sequence of hybrids from the real-world execution to an ideal-world
execution without cryptography, and we show that for every adjacent pair of
hybrids, the probability of certain relevant bad events can only increase. Even-
tually, we upper bound the probability of bad events in the ideal world using an
information theoretic argument.

Soundness of Cryptography w.r.t. an Adaptive Adversary. Last but not
the least, in our construction and when arguing about the sequence of hybrids,
one technicality that arises is that the adversary is strongly adaptive, and there-
fore some of the cryptographic building blocks we use must be commensurate and
secure against selective opening attacks. This technicality will show up through-
out the paper in our definitions, constructions, and proofs.

1.3 Additional Related Work

Several other works [KY,CMS89] proved lower bounds on the worst-case round
complexity of randomized BA; and an online full version [CPS19b] of the
recent work by Chan et al. [CPS20] presented a complete version of these
proofs. Note that these lower bounds are incomparable to Garay et al.’s lower
bound [GKKO07]. Cohen et al. [CHM+19] prove lower bounds on the round
complexity of randomized Byzantine agreement (BA) protocols, bounding the
halting probability of such protocols after one and two rounds.

A line of works in the literature [HZ10,GKKZ11,CCGZ16] have focused on
a simulation-based notion of adaptive security for Byzantine Broadcast, where
the concern is that the adversary should not be able to observe what the sender
wants to broadcast, and then adaptively corrupt the sender to flip the bit. This
simulation-based notion is stronger than the property-based security definitions
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in this paper. To achieve this strong notion of security, Garay et al. [GKKZ11]
adopted the “atomic message model”. As mentioned earlier, the atomic message
model is almost the same as our weakly adaptive model, except that in the
atomic message model, when a node i becomes newly corrupt, the adversary
must wait for a network delay before it can inject corrupt messages on behalf
of i.

In this paper, we consider the “broadcast” version of consensus commonly
called Byzantine Broadcast. There is also another “agreement” version of the
formulation, commonly called Byzantine Agreement. In the agreement version,
each node has an input bit b and they all want to agree on a bit. The consistency
requirement is unchanged, and the validity requirement instead stipulates that if
all honest nodes have the same input bit b, then all honest nodes must output b. It
turns out that the agreement version of the formulation is only possible assuming
honest majority, and that is why our paper does not discuss this formulation.

A line of work has focused on a repeated consensus abstraction either
called State Machine Replication [Sch90,PS17b,PS17a,CL99,Lam98,GKL15] or
blockchains. Imprecisely speaking, a blockchain protocol must reach consensus
repeatedly over time whereas Byzantine Broadcast achieves single-shot consen-
sus. There are typically two approaches for constructing a blockchain protocol: 1)
through sequential/parallel composition of a single-shot abstraction (e.g., Byzan-
tine Broadcast); and 2) direct blockchain construction [CL99,Lam98,YMR+19,
CS20].

Finally, our paper is not the first that uses time-lock puzzles in the context
of distributed consensus. Prior works have used time-lock puzzles to construct
“proof-of-work” type of consensus protocols [KMS14,EFL17].

2 Technical Roadmap

For simplicity, in our informal technical roadmap, we may assume that the adver-
sary may adaptively corrupt an arbitrarily large constant fraction of the nodes.
In other words, we assume that f = (1 − ε)n in the remainder of this section
for an arbitrarily small constant ε ∈ (0, 1). Our full protocol in the subsequent
sections will be stated formally for more general parameters.

The most natural starting point appears to be the very recent work by Chan
et al. [CPS20] which achieves BB with polylogarithmic round complexity in a
weakly adaptive corruption model even in the presence of majority corruptions.
Unfortunately, their protocol needed the weakly adaptive restriction not just
in the proofs; in fact, their protocol is prone to an explicit attack that breaks
consistency assuming a strongly adaptive adversary.

2.1 Chan et al. Breaks Under a Strongly Adaptive Adversary

To aid understanding, we first describe Chan et al.’s approach [CPS20] at a
very high level. Their main idea is a new method of committee election relying
on an adaptively secure Verifiable Random Function (VRF) [MVR99,ACD+19]
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which they call “bit-specific” committee election. More concretely, during setup,
a VRF public- and secret-key pair denoted (pku, sku) is selected for every node
u ∈ [n] and the corresponding public keys pk1, . . . , pkn are published in the sky.
Recall that a designated sender wants to broadcast a bit to all other nodes.
Using the VRF, we can define two committees called the 0-committee and the
1-committee, each responsible for voting for the 0-bit and the 1-bit, respec-
tively. Specifically, the b-committee consists of all nodes whose VRF evaluation
outcome on the input b is smaller than an appropriate difficulty parameter.
The difficulty parameter is chosen such that each committee’s size is polyloga-
rithmic in expectation. Now, committee members for each bit b will engage in
poly-logarithmically many rounds of voting based on certain voting rules; more-
over, all nodes, including committee members and non-committee members, keep
relaying the votes they have seen. We will not go into the details of the voting
rules, but what is important here is that the security of their scheme critically
relies on the fact that the committee members remain secret until they actually
cast a vote for the corresponding bit b. More specifically, after the setup phase,
each node knows whether it is a member of the 0-committee (or the 1-committee
resp.) but this knowledge is kept secret until the node has cast a vote for the
bit 0 (or the bit 1 resp.). Further, when a vote for b is cast, the vote is attached
with a VRF proof that vouches for the fact that the voter is a member of the
b-committee.

In Chan et al.’s scheme [CPS20], if somehow the adversary could predict
who is in which committee, then security could be broken, since the adversary
would have enough budget to corrupt all members of the 0-committee (or the
1-committee resp.) before their vote gets propagated to everyone. However, since
the VRF scheme satisfies pseudorandomness under adaptive corruptions, essen-
tially the adversary cannot effectively guess which nodes are in either committee
until the nodes actually cast a vote for the corresponding bit b, divulging the
fact that they are in the b-committee. Even though upon observing a node u’s
vote for a bit b, the adversary can act instantly and corrupt the voter u (who
must be a member of the b-committee), it is already too late—u’s vote is guaran-
teed to propagate to all other nodes since a weakly adaptively adversary cannot
retroactively erase the vote u had already sent prior to corruption.

Now, if the adversary is actually strongly adaptive, then an explicit attack is
to wait till a node u casts a vote for b, act immediately and corrupt u in the same
round, and cause u’s vote to be delivered to a subset of the honest recipients
but not all of them—without going into details, such an attack would break the
consistency of Chan et al.’s protocol.

It might be tempting to try to fix the above problem with näıve solutions
along the following vein: have all honest nodes first commit to their messages
(which is either a valid vote or a dummy message), wait for a while, and then
open their messages to reveal whether it is a vote. However, such näıve attempts
do not fundamentally fix the problem, because a strongly adaptive adversary
can always immediately erase a vote as soon as it is opened.
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2.2 A Strawman Scheme

A first strawman idea is to use time-lock puzzles to transiently hide message con-
tents and thereby defeat the agility of the strongly adaptive adversary. Imagine
that in some round, some members of the b-committee want to cast a vote for b
(henceforth called voters), and other nodes do not want to cast votes (henceforth
called non-voters). Recall that the adversary cannot predict a-priori which nodes
are members of the b-committee, but if the votes are cast in the clear, then the
voter immediately reveals itself to be a b-committee member.

Our idea is 1) for voters to lock the votes temporarily in a time-lock puzzle
and send the resulting puzzle rather than the clear-text vote; and 2) for non-
voters to send chaff of the same length, also temporarily locked in puzzles. Even if
the adversary may have unbounded parallelism, it cannot distinguish within one
round of time which nodes are voters and which ones are non-voters. Although
the adversary can adaptively corrupt a subset of nodes and prevent their puz-
zles from being delivered, such adaptive corruption is basically performed in a
blindfolded manner. Finally, if a node is not corrupt in the round in which the
puzzle is sent, essentially the puzzle is let through and honest nodes can solve it
later given enough time and obtain the message locked inside it.

In the strawman scheme, each voting round is prolonged to the time needed
for a single node to solve all puzzles (plus one more round for sending the puz-
zles). If every honest node had n parallel processors, then it could solve all
puzzles in parallel consuming only a constant number of rounds. However, it is
quite unreasonable to assume that all honest nodes have so much parallelism—in
particular, note that the amount of parallelism must scale linearly with the num-
ber of nodes. Therefore, we would like a better solution where the honest nodes
may run on sequential machines, and yet the adversary is allowed unbounded
polynomial parallelism.

2.3 Our Approach

In our approach, all nodes propagate their own puzzle to everyone else in the
first round. If a node remains honest till the end of the first round, then its
puzzle is guaranteed to be received by all honest nodes—henceforth we call such
puzzles honest puzzles. Puzzles sent by nodes that are corrupt before the end of
the first round are said to be corrupt puzzles.

We now repeat logarithmically many iterations: in each iteration, all nodes
share the workload of solving the puzzles, and send solutions to each other.
After logarithmically many iterations, we will show that except with negligible
probability, all honest puzzles will have been solved and their solutions received
by all honest nodes (but we do not guarantee that corrupt puzzles are also
solved).

To make this idea work, however, is non-trivial, and we are faced with several
challenges. One difficulty arises from the fact that the honest nodes do not have
common knowledge of the set of puzzles at the start of the protocol, since corrupt
nodes can reveal their puzzles only to a subset of the honest nodes. Similarly,
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at the end of each iteration, honest nodes also do not have common knowledge
of which set of puzzles have been solved. Therefore, nodes must coordinate and
share the work-load of solving puzzles, regardless of their different views of what
the remaining puzzles are. Our idea is for nodes to randomly select a somewhat
small subset of puzzles to solve in every iteration but how to choose a random
subset is somewhat tricky.

Idealized Randomized Process Assuming Perfect Knowledge of Left-
over Honest Puzzles. Although we use randomness to overcome the inconsis-
tency in nodes’ views of the remaining puzzle set, it still helps to first think of
how a random strategy might work in a perfect, imaginary world where everyone
always knows which are the set of leftover honest puzzles at the beginning of
each iteration—here, a puzzle is said to be leftover if no so-far honest node has
solved it and propagated its solution. In such a perfect world, we could use the
following randomized strategy: in the first iteration, there are at most n honest
puzzles to start with. Now, everyone chooses each of the n puzzles with some
probability p1 such that the expected number of puzzles each node solves is p1 ·n.
Note that the adversary can examine which puzzles’ solutions each node is prop-
agating at the end of the first iteration, and then adaptively decide on a set of
nodes to corrupt, and make these nodes fail to propagate their puzzle solutions.
If all honest nodes that tried to solve a specific puzzle Z are corrupt, then Z will
be leftover. A smart adversary can try to pick a set of nodes to corrupt such that
the set of leftover honest puzzles is maximized. One can prove that as long as
p1 ·n is a sufficiently large constant, even if the adversary chooses the worst-case
set of size (1 − ε)n to corrupt, there cannot be more than n/2 leftover honest
puzzles except with negligible probability. In other words, the adversary cannot
simultaneously deny too many honest puzzles from being solved. Now, in the
second iteration, there at most n/2 honest puzzles left, and we can repeat the
same but setting p2 = 2p1, i.e., the probability of sampling each honest puzzle
doubles. Again, one can show that after two iterations, there cannot be more
than n/4 leftover honest puzzles except with negligible probability, and this goes
on for logarithmically many rounds at which point all honest puzzles are solved
except with negligible probability.

Working with Imperfect Knowledge and Corrupt Puzzles. Our actual
protocol needs to somehow “embed” the above idealized random process in a
world where there can be corrupt puzzles, and moreover, honest nodes do not
have a consistent view of which puzzles are solved. This turns out to be tricky—
for example, the simplest idea is for nodes to always pick puzzles from the set
of puzzles they have seen by the end of the first round (recall that during the
first round nodes propagate their own puzzles to each other). However, if in the
first round, the adversary discloses Θ(n) corrupt puzzles (henceforth denoted Q)
only to one honest node u, then no one else will be helping to solve these corrupt
puzzles Q; and if the probability p keeps doubling in each iteration, u will need
to solve Θ(n) puzzles in the last iteration. So we want u to be able to propagate
Q to others, so that when others receive them, they can start solving them too.
But this introduces a new issue: the adversary can suddenly disclose a new set
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of Θ(n) puzzles late in the protocol, i.e., when the probability p has doubled
logarithmically many times and is close to 1. In this case, the same node would
have to solve too many puzzles.

To overcome the above issues, our approach adjusts the sampling probability
based on the puzzle’s age. Roughly speaking, we define a puzzle’s age as how
many iterations ago the puzzle was first seen. Given a puzzle of age α, we will
sample it with probability p1 · 2α. In other words, the older the puzzle is, the
more likely it will get sampled, and the probability of being sampled doubles
with every iteration. Finally, if a node v is detected to have double-signed more
than one puzzle, all of v’s puzzles will henceforth be ignored.

We will prove later in the technical sections that except with negligible prob-
ability, in every iteration, the number of leftover puzzles of age α in the union of
the honest nodes’ views is upper bounded by n/2α−1, as long as each iteration is
long enough such that honest nodes can indeed solve all puzzles they have sam-
pled. Note that since puzzles of age α are each sampled with probability p1 · 2α,
the expected number of puzzles of age α that are chosen is Θ(np1) = Θ(1). By
the Chernoff bound, we can show that except with negl(λ) probability, no more
than poly log λ puzzles of each age α are chosen. Since the protocol runs for loga-
rithmically many iterations, there can be at most logarithmically many different
ages. Therefore, in each iteration, every node must solve only polylogarithmically
many puzzles (except with negligible probability).

Other Subtleties. So far, we have implicitly assumed that there is a way to
convince another node that some purported puzzle solution is indeed the cor-
rect solution, since otherwise the adversary can convince honest nodes to accept
wrong solutions. To make sure this is indeed the case, honest nodes sign the mes-
sage they want to distribute and then lock both the message and the signature
inside a puzzle. In this way, a valid solution for a correctly constructed puzzle
would be verifiable. However, this is not enough since the adversary can still
construct bad puzzles, and when honest nodes solve them, they cannot convince
others that the solution is valid. This issue can be fixed if we simply attach a
zero-knowledge proof to the puzzle vouching for the fact that it correctly encodes
a message and a signature from the purported sender.

Putting it All Together. In summary, to obtain Byzantine Broadcast, we first
construct a delayed-exposure message distribution mechanism called Distribute.
In a Distribute protocol, at the beginning every node u receives an input message
mu, and each node would like to distribute its input messages to others. If a node
u remains honest at the end of the first round of the protocol, we say its input
mu is an honest message.

The Distribute protocol guarantees the following: 1) liveness, i.e., all honest
messages must be delivered to every honest node at the end of the protocol;
and 2) momentary secrecy, i.e., by the end of the first round, no probabilis-
tic polynomial-time adversary, even when allowed unbounded parallelism, could
have learned any information about the honest messages (although eventually,
given sufficiently long polynomial time, the adversary could solve the puzzles
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and learn the input messages). The protocol works as follows (described below
for the special case when f = (1 − ε)n where ε ∈ (0, 1) is a constant):

• Round 1: Every node u ∈ [n] computes a signature σu on its input message
mu, and computes a puzzle Zu that encodes (mu, σu). Further, u computes
a non-interactive zero-knowledge proof denoted πu that the puzzle Zu indeed
encodes a pair where the second term is a valid signature on the first one
(w.r.t. u’s public key).
Node u now propagates (Zu, πu) to everyone along with a signature on the
pair.

• Repeat Θ(log n) iterations: Each iteration has duration Tsolve ·poly log λ+1
where Tsolve is the time it takes for a sequential machine to solve a single
puzzle. During each iteration, a node samples each puzzle of age α to solve
with independent probability min(p1 · 2α, 1), and once solved it propagates
the solution (m,σ) to others if σ is a valid signature for m from the purported
sender of m.
At any time, if a node v is detected to have double-signed two different puzzles,
all puzzles signed by v will henceforth be ignored.

• Output. Finally, for each node v ∈ [n], if a valid pair (m,σ) has been observed
where σ is a valid signature on m under v’s public key, then (m,σ) is output
as the message received from v; if no such valid pair has been seen, output ⊥
as the received message from v.

Intuitively, the security properties of Distribute ensure that honest messages
will indeed be delivered, and moreover, the adversary cannot base its corruption
decisions based on the contents of the messages, and must make corruptions
blindly. To get Byzantine Broadcast, we can now plug in the Distribute protocol
to distribute batches of votes in the protocol by Chan et al. [CPS20]. Just like
in the strawman scheme in Sect. 2.2, here, nodes who do not want to transmit
batches of votes must transmit chaff using the Distribute protocol. Through this
transformation, we effectively constrain a strongly adaptive adversary such that
its capability is roughly the same as a weakly adaptive adversary. We defer the
details of the Byzantine Broadcast (BB) protocol to the subsequent technical
sections.

Challenges in Proving Security. Although the intuition is clear, formally
reasoning the security of our BB protocol is actually rather subtle due to the
use of cryptography. Ideally, we would like to abstract the cryptography away
and reason about the core randomized process captured by the protocol in an
ideal-world execution. Unfortunately, the real-world protocol does not securely
emulate the most natural ideal-world protocol that captures the core randomized
process. For example, one concrete challenge is the following: we would like to
argue that the first-round messages of a Distribute protocol can be simulated
by a simulator without knowing the actual input messages of the honest nodes.
Unfortunately, the simulated messages can only fool the adversary for a small
amount of time, and the adversary could eventually discover that they were
being simulated.
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To tackle this challenge, our actual proof defines a sequence of hybrids from
the real-world experiment with cryptography, to an ideal-world experiment with-
out cryptography. Instead of arguing that the adversary’s view is computation-
ally indistinguishable in adjacent hybrids, we argue that the probability of cer-
tain bad events happening in the next hybrid is an upper bound of the probabil-
ity in the previous hybrid (ignoring negligible differences). This means that bad
events cannot happen with higher probability in the real-world than in the ideal-
world. Finally, since the ideal-world execution does not involve cryptography, we
can argue through a probabilistic argument that the probability of relevant bad
events is negligibly small.

Finally, another subtlety in both our construction and proofs is the fact
that the adversary is adaptive; and therefore we need to rely on cryptographic
primitives with suitable adaptive notions of security.

Remark 1 (On how general our Distributeprimitive is). One natural question
is whether our Distribute primitive can be used to upgrade any weakly adaptive
protocol to a strongly adaptive one preserving its security properties. Our result
does not imply such a general weakly to strongly adaptive compiler, partly due
to the technical challenges mentioned earlier, specifically, the fact that we cannot
prove that the real-world protocol emulates some natural ideal-world protocol.
As an exciting future direction, it would be great to understand how general our
Distribute primitive is, i.e., for which class of protocols it is applicable. Further,
another exciting question is whether we can get a general weakly to strongly
adaptive compiler (see also Sect. 7).

3 Preliminaries

3.1 Definitions

Protocol Execution Model. We assume a standard protocol execution model
with n nodes numbered 1, 2, . . . , n, respectively. An adversary denoted A can
adaptively corrupt nodes during the middle of the execution. The nodes that
have not been corrupted are called honest nodes. All corrupt nodes are under
the control of A, i.e., the messages they receive are forwarded to A, and A
controls what messages they will send once they become corrupt.

We assume a synchronous network model, i.e., honest nodes can send mes-
sages to each other within one round. More precisely, if an honest node u sends a
message to v during round r, as long as u and v are still honest at the beginning
of round r+1, then v would have received the message by the beginning of round
r +1. We assume that in each round, a node first reads incoming messages from
the network, then it performs some local computation and sends messages.

The adversary A is allowed to examine the messages honest nodes send during
a round r, and then decide who to corrupt in round r, and what messages corrupt
nodes send in round r. If a node u becomes newly corrupt in round r, any message
it wanted to send in round r can be erased by A; further, A can make the newly



424 J. Wan et al.

corrupt u send additional messages of its choice in the same round r. Recall that
such an adversary is said to be strongly adaptive.

We assume that the protocol’s execution may be parameterized by a security
parameter denoted λ ∈ N. We would like the protocol to ensure the desired secu-
rity properties with 1 − negl(λ) probability for some negligible function negl(·).
Modeling Honest and Adversarial Machines. We model honest nodes as
probablistic, sequential Random Access Machines (RAMs), and model the adver-
sary as a non-uniform probabilistic, parallel machine with unbounded polynomial
parallelism running in unbounded polynomial parallel time.

In constructing our protocol, we will leverage certain cryptographic primitives
whose security is only guaranteed against an adversary that is restricted to run
in a small, bounded number of parallel steps. Therefore, we define a T -bounded
adversary as follows:

Definition 3.1. We say that A is a T -bounded, non-uniform p.p.t . parallel
machine iff A is a non-uniform probabilistic parallel machine with unbounded
polynomial parallelism, but restricted to run in at most T parallel steps. Note
that here the usage of the term p.p.t . actually means polynomially bounded
in total work—since in the parallel algorithms literature, the terms “work” and
“sequential time” are used interchangeably to describe a PRAM algorithm’s
work, we preserve the familiar short-hand p.p.t ..

Note that although some of our underlying cryptographic primitives are
secure only against T -bounded adversaries, we need to prove our protocol secure
against an adversary running in unbounded parallel time. This is partly why our
proofs are non-trivial (see Sect. 6.2 for more details).

Duration of a Round. Finally, we discuss the duration of a round in our
execution model. The standard distributed systems and cryptography literature
implicitly assumes that a round is of polynomial duration and it is long enough
such that an honest node can perform the prescribed cryptographic operations,
e.g., verify signatures on all messages received, verify the zero-knowledge proofs
attached to the messages received, sign the messages it wants to send, and so
on. We make the same assumption in this paper, with the exception of the
Solve algorithm of our time-lock puzzle scheme. Specifically, we will later on
parametrize our time-lock puzzle such that a sequential machine (e.g., an honest
node’s machine) would take multiple rounds to solve a single puzzle.

Byzantine Broadcast. Recall that there are n nodes, and without loss of
generality, we call node 1 the designated sender. Prior to protocol start, the
designated sender receives an input b ∈ {0, 1} from A. At the end of the protocol,
every node u ∈ [n] outputs a bit bu. We would like to guarantee the following
security properties with 1 − negl(λ) probability over the randomized execution:

• Consistency: if a forever-honest node u outputs a bit bu and a forever-honest
node v outputs a bit bv, it must be that bu = bv;

• Validity: if the designated sender is forever-honest, it must be that every
forever-honest node outputs the sender’s input bit b.



Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 425

In the above, forever-honest means that the corresponding node remains
honest till the end of the protocol.

Notations. Throughout the paper, we use n to denote the total number of
nodes, f to denote the maximum number of corrupt nodes, and h = n − f
to denote the number of honest nodes. Since we care about the asymptotical
behavior of the round complexity w.r.t. n, without loss of generality, we may
assume n ≥ log2 λ where λ is the security parameter as mentioned.

3.2 Time-Lock Puzzles

We review the notion of time-lock puzzles [BGJ+16,RSW96,LPS17].

Definition 3.2 (Time-lock puzzles). Let S be a finite domain of size at most
2poly(λ). A time-lock puzzle (TLP) with solution space S is a tuple of algorithms
(Gen,Solve) as defined below:

• Z ← Gen(1λ, T , s): a probabilistic algorithm that takes a security parameter
λ, a time parameter T , and a solution s ∈ S, and outputs a puzzle Z.

• s ← Solve(Z): a deterministic algorithm that takes in a puzzle Z, and outputs
a solution s.

Correctness. We require that for every λ, every s ∈ S, every T ,
Solve(Gen(1λ, T , s)) outputs the correct solution s with probability 1.

Efficiency. We require that on a sequential Random-Access Machine,
Gen(1λ, T , s) runs in at most poly(λ, log T ) steps for any s ∈ S; and more-
over Solve(Z) runs in at most T number of steps for any Z in the support of
Gen(1λ, T , ·).
ξ-hardness. An TLP scheme (Gen,Solve) is said to be ξ-hard iff there exists a
polynomial ˜T such that for all polynomials T (·) ≥ ˜T (·) and every ξT -bounded,
non-uniform p.p.t . parallel machine A, there exists a negligible function negl(·),
such that for all λ ∈ N and for all s0, s1 ∈ S it holds that

∣

∣Pr
[

A(Gen(1λ, T , s0)) = 1
]

− Pr
[

A(Gen(1λ, T , s1)) = 1
]∣

∣ ≤ negl(λ).

3.3 Verifiable Random Functions

A verifiable random function (VRF) [MVR99] includes the following (possibly
randomized) algorithms:

• (crs, {pku, sku}u∈[n]) ← Gen(1λ): takes in a security parameter λ and gener-
ates public parameters crs, and a public and secret key pair (pku, sku) for
each node u ∈ [n]; each sku is of the form sku := (su, ρu) where su is said to
be the evaluation key and ρu is said to be the proof key for u.
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• (y, σ) ← Eval(crs, sku, x): we shall assume that Eval := (E,P ) has two
sub-routines E and P where Eval.E is deterministic and Eval.P is possi-
bly randomized. Given the public parameters crs, the secret key sku =
(su, ρu), and input x ∈ {0, 1}|x|, compute y := Eval.E(crs, su, x) and σ :=
Eval.P (crs, su, ρu, x), and output (y, σ).

• {0, 1} ← Vf(crs, pku, x, y, σ): receives the public parameters crs, a public key
pku, an input x, a purported outcome y, and a proof σ, outputs either 0
indicating rejection or 1 indicating acceptance.

For the VRF scheme to satisfy correctness, we require that for any
v ∈ [n], for any input x, the following holds with probability 1: let
(crs, {pku, sku}u∈[n]) ← Gen(1λ), and let (y, σ) ← Eval(crs, skv, x), then it must
be that Vf(crs, pkv, x, y, σ) = 1.

3.3.1 Pseudorandomness Under Selective Opening
To define pseudorandomness under selective opening, we shall consider two
games. The first game is intended to capture that the evaluation outcome, i.e.,
the y term output by Eval, is pseudorandom even when A can selectively cor-
rupt nodes and open the first component of the corrupted nodes’ secret keys.
The second game captures the notion that the proof σ does not reveal anything
additional even under an adaptive adversary.

First Game: Pseudorandomness of the Evaluation Outcome. We con-
sider a selective opening adversary A that interacts with a challenger denoted C
in the following experiment ExptAb (1λ) indexed by the bit b ∈ {0, 1}.

ExptAb (1λ):
• First, the challenger C runs the Gen(1λ) algorithm and remembers the

secret key components (s1, . . . , sn) for later use. Note that C need not
give public parameters to A.

• Next, the adversary A can adaptively make queries of the following
forms:

– Evaluate: A submits a query (u, x), now C computes y ←
Eval.E(crs, su, x) and gives y to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt, and C parses
sku := (su, ρu) and reveals su to A.

– Challenge: A specifies an index u∗ ∈ [n] and an input x. If b = 0,
the challenger returns a completely random string of appropriate
length. If b = 1, the challenger computes y ← Eval.E(crs, su∗ , x) and
returns y to the adversary.

We say that A is compliant iff with probability 1, every challenge tuple (u∗, x)
it submits satisfies the following: 1) A does not make a corruption query on u∗

throughout the game; and 2) A does not make any evaluation query on the tuple
(u∗, x).
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If no efficient and compliant adversary can effectively distinguish ExptA0 (1λ)
and ExptA1 (1λ), then we can be sure that the evaluation outcome of the VRF is
pseudorandom even with an adaptive adversary.

Second Game: Zero-Knowledge of the Proofs. We also need to make sure
that the proof part is zero-knowledge even w.r.t. an adaptive adversary. There-
fore, we define another game below where the adversary A tries to distinguish
whether it is playing in the real-world experiment or in the ideal-world experi-
ment:

• Real-world experiment Real: In the real-world experiment, the challenger runs
the Gen(1λ) algorithm and gives the public parameters crs and all public keys
pk1, . . . , pkn to A, but keeps sk1, . . . , skn to itself. Next, A can adaptively
make the following queries:

– Evaluate: A submits a query (u, x), now C computes (y, σ) ← Eval(crs,
sku, x) and gives (y, σ) to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt. C reveals not only
sku to A, but also all the randomness used in the Eval algorithm for any
earlier Evaluate query pertaining to u.

• Ideal-world experiment IdealS0,S1,S2,S3 : First, the challenger C runs a simu-
lated setup algorithm

(s1, . . . , sn) ← S0(1λ);

(crs, pk1, . . . , pkn, τ) ← S1(1λ);

it gives the public parameters crs and all public keys pk1, . . . , pkn to A, but
keeps the trapdoor τ to itself.

Next, A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), and now the simulator computes
y := Eval.E(crs, su, x), and σ ← S2(τ, pku, x, y) and gives y, σ to A.

– Corrupt: A specifies an index u ∈ [n] to corrupt. Let I denote the indices
of the earlier Evaluate queries that correspond to the node u ∈ [n]; and
moreover, for i ∈ I, let the i-th query be of the form (u, xi) and the result
be of the form (yi, σi).
The challenger C calls (ρu, {ψi}i∈I) ← S3(τ, pku, su, {xi, σi}i∈I), and
returns the secret key sku := (su, ρu) as well as {ψi}i∈I to A.

Definition 3.3 (Pseudorandomness under selective opening). We say that a
VRF scheme satisfies pseudorandomness under selective opening iff:

1. for any compliant non-uniform p.p.t . adversary A, its views in ExptA0 (1λ) and
ExptA1 (1λ) are computationally indistinguishable.

2. there exist p.p.t . simulators (S0,S1,S2,S3) such that the outcome of S0(1λ)
is identically distributed as the (s0, . . . , sn) components generated by the
real-world Gen(1λ) algorithm, and moreover, A’s views in the above Real and
IdealS0,S1,S2,S3 are computationally indistinguishable.
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3.3.2 Unforgeability
We say that a VRF scheme satisfies unforgeability, if there exists a negligible
function negl(·) such that no non-uniform p.p.t . adversary A can win the follow-
ing game with more than negl(λ) probability:

• First, the challenger C runs the Gen(1λ) algorithm and gives the public param-
eters crs and all public keys pk1, . . . , pkn to A, but keeps sk1, . . . , skn to itself.

• The adversary A can adaptively make the following queries:

– Evaluate: A submits a query (u, x), now C computes (y, σ) ← Eval(crs,
sku, x) and gives (y, σ) to A.

– Corrupt: A specifies an index u ∈ [n] and C reveals sku to A as well as
random coins used in earlier Evaluate queries pertaining to u.

• Finally, A outputs a tuple (u, x, y, σ). It is said to win the game if either
Vf(crs, pku, x, y, σ) = 1, but y �= y′ where (y′, ) := Eval(crs, sku, x); or if u
has not been corrupted before and A has not made any Evaluate query of
the form (u, x).

In other words, we want that except with negligible probability, A cannot
forge the VRF outcome and proof on behalf of any honest node on a point that
has not been queried; furthermore, even for corrupted nodes, A cannot forge an
VRF outcome and proof such that the evaluation outcome is different from the
honest evaluation outcome.

Abraham et al. [ACD+19] proved the following theorem where the bilin-
ear group assumptions needed are the same as those adopted by Groth et
al. [GOS12].

Theorem 3.4 (Existence of adaptively secure VRFs [ACD+19]). Assuming
standard bilinear group assumptions and a trusted setup, we can construct a
VRF scheme satisfying pseudorandomness under selective opening and unforge-
ability.

4 Delayed-Exposure Message Distribution

4.1 Definitions

4.1.1 Syntax
We first introduce the syntax of the Distribute(1λ,m1, . . . ,mn) protocol. At the
beginning of the protocol, every node u ∈ [n] is given a message mu ∈ {0, 1}�

of length �(λ, n) which is upper bounded by a fixed polynomial in λ and n. In
the Distribute protocol, every node makes an attempt to multicast its message
mu to everyone else. At the end of Rdistr number of rounds, everyone outputs
(m′

1, . . . ,m
′
n) where m′

u ∈ {0, 1}� ∪{⊥} denotes the message received from node
u ∈ [n], and ⊥ indicates that nothing has been received from u.

In the following we will allow setup assumptions for constructing our
Distribute protocol, specifically, we assume that the setup algorithm Gen(1λ)
outputs a common reference string denoted crs. Moreover, there is a public-key
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infrastructure (PKI) later used for digital signatures. We assume that during the
setup phase, we run the key generation algorithm of a digital signature scheme
which outputs a public- and secret-key pair for every node u ∈ [n], henceforth
denoted vku and ssku, respectively. We assume that the crs and the PKI consist-
ing of {vku, ssku}u∈[n] can be reused across multiple instances of the Distribute
protocol.

4.1.2 Security
At the beginning of the Distribute protocol, either everyone is honest, or a subset
of nodes have already been corrupted by the adversary A. During the Distribute
protocol, the adversary A can adaptively corrupt more nodes, and upon newly
corrupting a node u ∈ [n], the adversary A receives u’s internal state.

Liveness. Liveness requires the following: let ˜H denote the set of nodes that
remain honest till the beginning of the second round of the Distribute protocol;
except with negligible in λ probability, it holds that for every node u ∈ ˜H, all
forever-honest nodes1 output mu as the message received from u.

Momentary Secrecy. Roughly speaking, we want that even when the adver-
sary A may have unbounded polynomial parallelism, the honest nodes’ messages
remain secret to A till the beginning of the second round of Distribute. Formally,
we define the following Expt(1λ, {m∗

u}u∈[n]) experiment.

Experiment Expt(1λ, {m∗
u}u∈[n]): The experiment Expt(1λ, {m∗

u}u∈[n]) is
defined as follows:

• Setup. Run the honest setup algorithm which outputs a common reference
string denoted crs and a key pair (vku, ssku) for every u ∈ [n]. The crs and
the public verification keys {vku}u∈[n] are given to A;

• Query. The query phase runs for an arbitrary polynomial amount of time.
During this time, A may adaptively make the following queries where multiple
sessions of the Distribute protocol are allowed to be initiated concurrently:

– Session. A specifies a session identifier sid , as well as a set of input mes-
sages {mu}u∈H where H denotes the so-far honest nodes. Now, the so-
far honest nodes execute the honest Distribute protocol using the inputs
{mu}u∈H and session identifier sid , and interact with A.

– Corrupt. At any time, A specifies a new node u ∈ [n] to corrupt, and
at this moment ssku and all random coins used by node u so far in the
protocol are given to A;

• Challenge. Finally, A outputs challenge with a challenge session identifier
sid∗: it is required that sid∗ be a fresh one that has never been queried before.
Let H∗ denote the honest nodes at the moment. Now, compute the first-round
messages denoted M∗ that H∗ would send in the real-world Distribute protocol

1 Forever honest w.r.t. the Distribute protocol means that the node remains honest till
the end of the protocol.
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with the session identifier sid∗, and using the inputs {m∗
u}u∈H∗ . Output A’s

view2 in the experiment as well as M∗.

We say that the Distribute protocol satisfies momentary secrecy iff for any
non-uniform p.p.t . parallel machine A and any non-uniform p.p.t . 2T∅-bounded
parallel distinguisher D, there is a negligible function negl(·) for the following to
be true for any choice of λ, and any {m∗

u}u∈[n] and {m̃∗
u}u∈[n],

∣

∣Pr
[

D(1λ,Expt(1λ, {m∗
u}u∈[n])) = 1

]

− Pr
[

D(1λ,Expt(1λ, {m̃∗
u}u∈[n]))) = 1

]∣

∣

≤ negl(λ).

4.2 Construction

Assumptions. In the construction below, we assume that there is a public-key
infrastructure (PKI) available, and nodes sign all messages that they want to
send. Only messages attached with valid signatures from the purported senders
are considered valid, and all invalid messages are discarded. We also make an
implicit echoing assumption: we assume that every honest node will echo every
fresh message received to everyone, such that if a forever-honest node u ∈ [n]
observes some message at the beginning of round r, then every so-far honest
node will have received it by the beginning of round r + 1.

NP Language. We will make use of a non-interactive zero-knowledge proof
(NIZK) system that is secure against adaptive corruptions. The formal definition
of such a NIZK system is given in Sect. A.2. We now describe the NP language
used in our NIZK proofs. A statement is of the form stmt := (u,Z), and a witness
is of the form w := (m,σ, ρ). We assume that (λ, Tsolve, vk1, . . . , vkn) are global
parameters and do not repeat it in the statement. A statement stmt := (u,Z) is in
the language vouched for by a valid witness w := (m,σ, ρ) iff there exists (m,σ, ρ)
such that Z = TLP.Gen(1λ, Tsolve, (m,σ); ρ) and moreover Σ.Vf(vku,m, σ) = 1.

Protocol. Let TLP := (Gen,Solve) denote a time-lock puzzle with hardness
parameter ξ as defined in Sect. 3.2, and let T∅ denote the duration of one
synchronous round. Let NIZK := (Gen,P,V) denote a non-interactive zero-
knowledge proof system as defined in Sect. A.2. Let Σ := (Gen,Sign,Vf) denote
a digital signature scheme. The Distribute protocol is described below.

Input: Each node u ∈ [n] receives the input mu ∈ {0, 1}�. Without loss of
generality, henceforth we shall assume that the message mu itself is tagged
with the sender’s identifier u ∈ [n]. Below, we may assume that we always
prefix the message mu with the string inp.

Setup: Run crsnizk ← NIZK.Gen(1λ) and publish crsnizk. Recall that there
is a PKI and nodes sign all messages they send, henceforth we use vku and
ssku to denote the public- and secret-key of node u, respectively.

2 Here, A’s view may contain any output A has produced so far which might have
taken an arbitrary polynomial time to compute prior to the start of the challenge
phase.
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Protocol:
1. Initial round: every node u ∈ [n] does the following:

• let σ := Σ.Sign(ssku,mu); call Zu ← TLP.Gen(1λ, Tsolve, (mu, σ); ρ)
where Tsolve := 2T∅/ξ and ρ explicitly denotes the randomness con-
sumed by the TLP.Gen algorithm;

• call πu ← NIZK.P(crsnizk, (u,Zu), (mu, σ, ρ));
• sign and multicast the tuple (puz, Zu, πu) to everyone.

Henceforth, we assume that whenever an honest node receives a message
of the form (puz, Zu, πu) signed by u, it calls NIZK.V(crsnizk, (u,Zu), πu)
and if the verification fails, the message is discarded immediately without
being processed. If the verification succeeds, the puzzle Zu is considered
as received and we say that it belongs to u.

2. Solve phase: Henceforth, every Tepoch := Tsolve · 	 2n
h · ln(16n

h ) · log2 λ ·
(log n+3)
+1 rounds is called an epoch: round 1 is the beginning of the
first epoch; round Tepoch + 1 is the beginning of the second epoch, and
so on.
Repeat the following for a total of E = 	log2 n
 + 1 epochs.

• At the beginning of each epoch, let S denote the set of all puzzles
received so far and belonging to active nodes. For Z ∈ S, define the
puzzle’s age α(Z) as follows: α(Z) := 	 r−r′

Tepoch

 where r denotes the

beginning round of the epoch and r′ ≤ r denotes the first round in
which Z was observed.

• For each Z ∈ S sequentially, perform the following: flip
a random coin that comes up heads with probability p :=
min

(

2α(Z)·ln(16n/h)
h , 1

)

; if the coin comes up heads, then solve the
puzzle Z by calling (m,σ) ← TLP.Solve(Z). Once solved, multicast
the solution (m,σ) to everyonea.

Output: at any time, upon observing a tuple (m,σ) where σ is a valid
signature on m from the purported sender (henceforth denoted v ∈ [n]),
if no message from v has been output yet, output m as the message
received from v and mark v as inactive. At the end of the protocol, if no
message from some v ∈ [n] has been output, then we output a canonical
message ⊥ as the message from v.
Detect equivocation: at any time, if multiple puzzles have been
received from the same node v ∈ [n], mark v as inactiveb.

aWe may assume that if more than 2n
h

· ln( 16n
h

) · log2 λ · (log n + 3) number of
puzzles are chosen to be solved in some epoch, the node simply aborts outputting
failure — we will show in the proof of Lemma 4.3 later that this does not happen
except with negligible probability.
bBoth the Output and Equivocation entry points are processed at the beginning
of every round before all other actions of the round.
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Clearly, the total round complexity of the Distribute protocol is

(	log2 n
 + 1) · Tsolve

T∅
·
(

2n

h
· ln(

16n

h
) · log2 λ · (log n + 3)
 + 1

)

+ 1

Assume that n is polynomially bounded in λ, then the round complexity is upper
bounded by O( n

ξ·h ) · poly log λ.

4.3 Proofs: Liveness

Henceforth, we use the term “m is in honest view” to mean that some forever-
honest node has seen m.

Fact 4.1. If some forever-honest node observes a puzzle Z at the beginning of
epoch e, then all so-far honest nodes will have observed Z by the beginning of
epoch e + 1.

Proof. Follows directly from the implicit echoing assumption, i.e., honest nodes
echo every fresh message they see. ��

Fact 4.2. Assume that the NIZK scheme satisfies perfect knowledge extraction,
the TLP scheme satisfies correctness. Then, except with negligible probability, the
following must hold: if any forever-honest node solves a puzzle Z belonging to
v ∈ [n] by the beginning of the last round of epoch e, then no puzzle from v will
still be active in any so-far honest node’s view at the beginning of epoch e + 1.

Proof. If the NIZK satisfies perfect knowledge extraction, then it must be that
the solved solution is a (m,σ) pair such that σ is a valid signature from v on
m. Since an honest node has solved the puzzle and found the solution by the
beginning of the last round of epoch e, it will multicast (m,σ) to everyone in the
last round of epoch e, and by the beginning of epoch e + 1, every so-far honest
node will have observed (m,σ) and will have marked v as inactive. ��

Given Fact 4.1, we know that honest nodes’ perception of a puzzle’s age can
differ by at most 1. We say that a puzzle Z’s minimum age is α ≥ 0 in epoch e,
iff all forever-honest nodes have observed it by the beginning of epoch e−α, but
at least one forever-honest node has not observed it by the beginning of epoch
e − α − 1.

Henceforth, if at the beginning of some epoch e, a so-far honest has seen a
puzzle belonging to an active node, then the puzzle is said to be active. Due to
the equivocation detection rule, it must be that from each active node, at most
one active puzzle has been seen.

Lemma 4.3. Let α ≥ 0 and n ≥ log2 λ. Except with negligible in λ probability,
the following holds: at the beginning of every epoch, there can be at most n/2α−1

active puzzles belonging to distinct nodes, and with minimum age α, in honest
view.



Round-Efficient BB Under Strongly Adaptive and Majority Corruptions 433

Proof. We first state some simplifying assumptions that can be made without
loss of generality. We may assume that honest nodes use a puzzle’s minimum age
to determine the probability p with which a puzzle is selected to be solved. Note
that in the real-world protocol, a node does not necessarily know the minimum
age of the puzzle, but we may assume it for proving this lemma since making p
smaller will only increase the probability of the bad event stated in the lemma
that we care about bounding. Furthermore, let us first assume that any forever-
honest node has enough time to solve all puzzles it chooses to solve during any
epoch e, and not only so, they can be solved by the beginning of the last round of
the epoch e—later we will show that indeed this is the case except with negligible
probability.

For α = 0, the lemma trivially holds. Henceforth, we may assume that α ≥ 1.
Fix any epoch e, and let Sα−1 denote all active puzzles whose minimum age is
α−1 ≥ 0 at the beginning of epoch e. This means that all so-far honest nodes will
choose to solve any puzzle in Sα−1 with probability p = min(2

α−1·ln(16n/h)
h , 1) in

epoch e. We would like to upper bound the probability that at least n/2α puzzles
in Sα−1 are not selected by any forever-honest node in epoch e. Due to Fact 4.2,
if 2α−1·ln(16n/h)

h ≥ 1, then there cannot be any active puzzles of minimum age α
left in any honest node’s view at the beginning of the next epoch. Henceforth,
we may also assume that p = 2α−1·ln(16n/h)

h < 1.
Consider a fixed honest node u and an active puzzle from a fixed node v:

the probability that u does not select an active puzzle from v is at most 1 − p.
The probability that any fixed set of h forever-honest nodes (denoted W ) all do
not select an active puzzle from v is (1 − p)h. For any fixed set of n/2α−1 nodes
denoted Γ that has a puzzle of minimum age α − 1 in honest view in epoch e,
the probability that a fixed set of h forever-honest nodes’ puzzle choices do not
intersect with Γ is at most (1 − p)h·n/2α−1

.
The probability that there exists a choice for the set W (consisting of h

forever-honest nodes), and a set Γ ⊂ [n] of size n/2α−1 (who have a puzzle of
age α−1 in honest view in epoch e), such that W ’s puzzle choices do not intersect
with Γ is upper bounded by the following expression:

(1 − p)h·n/2α−1 ·
(

n

h

)

·
(

n

n/2α−1

)

≤
(

1 − 2α−1 · ln (16n/h)
h

)hn/2α−1

·
(

n

h

)

·
(

n

n/2α−1

)

=
(

1 − 2α−1 · ln (16n/h)
h

)
h

2α−1·ln(16n/h) ·ln( 16n
h )·n

·
(

n

h

)

·
(

n

n/2α−1

)

≤ exp
(

− ln
(

16n

h

)

· n

)

·
(

n

h

)

·
(

n

n/2α−1

)

=
(

h

16n

)n

·
(

n

h

)

·
(

n

n/2α−1

)

(∗)
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=
(

h

16n

)n

·
(

n

h

)

·
(

n

n − n/2α−1

)

≤
(

h

16n

)n

·
(en

h

)h

·
(

en

n(1 − 1/2α−1)

)n(1−1/2α−1)

≤
(

h

16n

)n

·
(en

h

)n

·
(

en

n(1 − 1/2α−1)

)n

=
(

h

16n
· en

h
· en

n(1 − 1/2α−1)

)n

≤ exp(−Θ(n))

In the above derivation, if α = 1, then the last term
(

n
n/2α−1

)

in the expression
(∗) is equal to 1. Therefore, in the derivation steps after the expression (∗), we
can simply assume that α > 1 which only makes the expression

(

n
n/2α−1

)

larger.
[To reviewer: We expanded the derivation to make it more detailed.]
So far, we have assumed that if a forever-honest node selects some puzzle to
solve in some epoch e, it will actually have enough time to solve the puzzle by
the beginning of the last round of epoch e. We now show that the allotted epoch
duration Tepoch := Tsolve · 	 2n

h · ln(16n
h ) · log2 λ · (log n + 3)
 + 1 is indeed long

enough to meet this requirement except with negligible probability. Basically,
if in epoch e, the number of puzzles of minimum age α left in honest view
is at most n/2α−1, and an honest node selects each puzzle with probability
p = min(2

α−1·ln(16n/h)
h , 1), we can bound the total number of puzzles of minimum

age α an honest node selects to solve with the following two cases:

• Case 1: if 2α−1·ln(16n/h)
h ≥ 1, then 2α−1 ≥ h/ ln(16n/h). The total number of

puzzles of minimum age α selected to solve is upper bounded by n/2α−1 ≤
n
h · ln(16n/h).

• Case 2: if 2α−1·ln(16n/h)
h < 1, then the expected number of puzzles of minimum

age α selected to solve is upper bounded by

n

2α−1
· 2α−1 · ln(16n/h)

h
=

n

h
· ln(16n/h).

By the Chernoff bound, the probability that the number of puzzles of mini-
mum age α selected to solve is more than

n

h
·ln(16n/h)+

√

n

h
· ln(16n/h)·log2 λ ≤ n

h
·ln(16n/h)·log2 λ (∗∗)

is upper bounded by exp(−Ω(log4 λ)).

Recall that the number of ages is upper bounded by the number of epochs,
that is 	log2 n
 + 1. Now, taking a union bound over all possible ages, except
with exp(−Ω(log4 λ)) probability, the total number of puzzles an honest node
chooses to solve in an epoch is upper bounded by

2n

h
· ln(

16n

h
) · log2 λ · 	log2 n
 ≤ 2n

h
· ln(

16n

h
) · log2 λ · (log n + 3)
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Finally, taking a union bound over the number of epochs which is polynomially
bounded in λ, we have that except with exp(−Ω(log4 λ)) probability, the above
bad event will never happen throughout all epochs.

[To reviewer: We added more steps of derivation in the above calculations.]
Thus, the allotted epoch duration Tepoch := Tsolve ·	 2n

h ·ln(16n
h )·log2 λ·(log n+

3)
 + 1 is sufficiently long such that except with negligible in λ probability, an
honest node has time to solve all puzzles it chooses in every epoch. ��

Remark 2. The expression (∗∗) is by no means the tightest possible bound;
but it is outside the scope of this paper to understand what the best possible
constant c is in the O(logc(λ, n)) round complexity bound. With our current
techniques, we only know how to achieve poly-logarithmic round complexity
in the strongly adaptive setting under corrupt majority. It is an exciting open
question whether we can improve the result to, say, expected constant rounds,
or prove impossibility.

[To reviewer: We added an explanation why we did not focus on calculating
the tightest expression.]

Theorem 4.4 (Liveness). Assume that n ≥ log2 λ, that the NIZK scheme satis-
fies soundness, the TLP scheme satisfies correctness, and the signature scheme Σ
satisfies existential unforgeability under chosen-message attack. Then, the above
Distribute protocol satisfies liveness.

Proof. Let ˜H denote the set of nodes that remain honest till the beginning of
the second round of the Distribute protocol. For every u ∈ ˜H, every so-far honest
node will have received an honestly generated puzzle Zu from u at the beginning
of the second round, i.e., the beginning of the first epoch of the Solve phase.
At the beginning of the next round after the final epoch E, Zu, if still active,
would have age E in every honest node’s view, i.e., its minimum age is E. Due
to Lemma 4.3, except with negligible probability, the number of active puzzles
from nodes in ˜H is then upper bounded by n/2E−1 < 1. Now, since honest nodes
do not double sign puzzles, except with negligible probability, it must be that
every forever-honest node has output a message for everyone in ˜H. ��

4.4 Proofs: Momentary Secrecy

Experiment Hyb(1λ, {m∗
u}u∈[n]). The hybrid experiment Hyb(1λ, {m∗

u}u∈[n]) is
defined almost identically as ExptA(1λ, {m∗

u}u∈[n]), except with the following
modifications:

• Run the simulated NIZK setup algorithm Gen0(1λ) which outputs a crs and
a trapdoor τ ;

• Whenever an honest node u is supposed to compute a NIZK proof by calling

πu ← NIZK.P(crsnizk, stmt = (u,Zu), w = (mu, σ, ρ); coins),
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now we instead call the simulated prover

πu ← NIZK.P0(crsnizk, τ, stmt = (u,Zu); coins).

Note that P0 uses the trapdoor τ but does not use the witness to output a
simulated proof;

• Whenever a node u newly becomes corrupt and the experiment needs to
explain the random coins used earlier by u, it calls the NIZK’s Explain algo-
rithm, that is,

NIZKcoins ← NIZK.Explain (crsnizk, τ, stmt = (u,Zu), w = (mu, σ, ρ); coins)

to output an explanation of the coins used in generating the earlier NIZK
proofs. These coins are returned to A along with all other random coins
consumed by the newly corrupted node u earlier.
[To reviewer: Indeed, there is no VRF here, the VRF was an editorial typo
due to historical reasons, since we changed our protocol completely at some
point. Thank you for spotting this. We also polished the entire paragraph to
make it more clear.]

For details of the NIZK syntax and security definitions (including the
NIZK.Explain algorithm which is part of the NIZK’s security definition), please
refer to AppendixA.2.

Claim 4.5. Assume that the NIZK scheme satisfies non-erasure computational
zero-knowledge. Then, the outputs of the experiments Expt(1λ, {m∗

u}u∈[n]) and
Hyb(1λ, {m∗

u}u∈[n]) are computationally indistinguishable.

Proof. Follows directly from the computational zero-knowledge of the NIZK
system. ��

Experiment Ideal(1λ). The ideal experiment Ideal(1λ) is almost identical to
Hyb(1λ, ), except with the following modification:

• At the beginning of the challenge phase, let H∗ denote the so-far honest
nodes. We compute the first-round message (puz, Zu, πu) for every u ∈ H∗

as below: call Zu ← TLP.Gen(1λ, Tsolve, (0, σ)) where σ ← Σ.Sign(ssku, 0).
Further, call the NIZK’s simulated prover ˜P which uses τ but not the witness
to generate a simulated proof πu.

Claim 4.6. Assume that the TLP scheme satisfies ξ-hardness. Then, for any
{m∗

u}u∈[n], no non-uniform parallel 2T∅-bounded distinguisher D can distinguish
the outputs of the experiments Ideal(1λ) and Hyb(1λ, {m∗

u}u∈[n]) except with neg-
ligible probability.

Proof. We can consider a sequence of hybrids for i ∈ [0, h], such that in the
i-th hybrid, during the challenge session, the first min(i, |H∗|) nodes in H∗ (by
lexicographical ordering) will use the input (0, σ) where σ ← Σ.Sign(ssku, 0)
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to compute a puzzle. If there exists a non-uniform parallel 2T∅-bounded dis-
tinguisher D that can distinguish the outputs of the experiments Ideal(1λ) and
Hyb(1λ, {m∗

u}u∈[n]) with more than negligible probability, by the hybrid argu-
ment, there must exist a pair of adjacent hybrids indexed j and j + 1 that D
can distinguish with non-negligible probability.

We can construct a non-uniform p.p.t . parallel machine B which breaks the
ξ-hardness of the TLP scheme. B simulates the experiment for A and let u be the
(j +1)-th node in H∗ at the beginning of the challenge session. At the beginning
of the challenge session, for every v that is among the first j nodes in H∗, B
computes their puzzles using the input (0, σ) where σ ← Σ.Sign(sskv, 0); and for
everyone else in H∗ that is not among the first j +1 nodes, B will compute their
puzzles using the input (m∗

v, σ′) where σ′ ← Σ.Sign(sskv,m∗
v).

After this computation is done, B now computes the first-round message for
the (j + 1)-th node in H∗. To do so, B interacts with a TLP challenger which
either returns a puzzle either for the string (0, σ) where σ ← Σ.Sign(ssku, 0), or
for the string (m∗

u, σ′) where σ′ ← Σ.Sign(ssku,m∗
u). This answer will be used as

the puzzle for the (j + 1)-th node in H∗.
At this moment, B gives the view of A, including all random coins consumed

by A and all outputs of A so far, as well as the first-round messages of H∗ in
the challenge session to the distinguisher D, and in at most 2T∅ time, it outputs
the same answer as D. ��

At this moment, by the hybrid argument, we have that no non-uniform
p.p.t . 2T∅-bounded parallel machine D can distinguish the outputs of ExptA(1λ,
{m∗

u}u∈[n]) and Ideal(1λ) with more than negligible probability. By a symmet-
ric argument, the same holds for ExptA(1λ, {m̃∗

u}u∈[n]) and Ideal(1λ). Thus, we
can conclude that no non-uniform p.p.t . 2T∅-bounded parallel machine D can
distinguish the outputs of ExptA(1λ, {m∗

u}u∈[n]) and ExptA(1λ, {m̃∗
u}u∈[n]) with

more than negligible probability.

5 Byzantine Broadcast Protocol

5.1 Protocol

Without loss of generality, we may assume that u = 1 is the designated sender
for the Byzantine Broadcast. Our protocol will make use of a VRF scheme which
is defined in Sect. 3.3, and will rely on the Distribute protocol that is defined and
constructed in Sect. 4.

Vote. A vote from a node u ∈ [n] for the bit b ∈ {0, 1} is a tuple of the form
(vote, b, u,D, σ) such that VRF.Vf(crsvrf , pku, b,D, σ) = 1, and moreover, it must
be that either D < Dp or u = 1. Here Dp denotes a difficulty parameter whose
choice will be specified shortly.

Batch of Votes. An r-batch of votes for a bit b ∈ {0, 1} is a collection of valid
votes from r distinct nodes, and moreover, it must be that one of these votes
comes from the designated sender.
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Protocol. Our Byzantine Broadcast protocol is described below. Recall that
h = n − f denotes the number of honest nodes.

Initially, every node u’s Extractedu set is set to ∅. The designated sender
u = 1 computes and records a vote for its input bit b by computing (D,σ) ←
VRF.Eval(crsvrf , sk1, b).

Parameters. Let � be the length of the first term of the VRF’s evalu-
ation outcome. The difficulty parameter Dp is set such that the proba-
bility that a random string of length � is less than Dp with probability
p ∈ ( log

2 λ
h , 3 log2 λ

h ) ∩ (0, 1). The number of phases R := 6 log2 λ · n
h .

Setup. We use two instances of the Distribute protocol, denoted Distribute0

and Distribute1 respectively, and each instance is used by nodes to dis-
tribute batches of votes for the bit 0 and 1, respectively. For b ∈ {0, 1},
call the setup of Distribute which outputs (crsbdistr, {vk

b
u, sskb

u}u∈[n]}). Call
(crsvrf , {pku, sku}u∈[n]) ← VRF.Gen(1λ). Now, publish the public parame-
ters (crs0distr, crs

1
distr, crsvrf) and give each node u the secret keys ssk0u, ssk1u,

and sku.

Phase r ∈ [1 . . . R]. Each phase consists of Rdistr + 1 rounds where Rdistr

denotes the round complexity of the Distribute protocol.

1. In the first round, every node u performs the following: for each bit
b ∈ {0, 1}, if node u has seen a valid r-batch of votes for b and b /∈
Extractedu , then it multicasts any such r-batch for b to everyone, and
sets Extractedu ← Extractedu ∪ {b}.

2. The next step lasts for Rdistr rounds. Each node u �= 1 does the following:
for each bit b ∈ {0, 1}, it invokes a new session of the Distributeb protocol
with a new session identifier r to distribute either an (r + 1)-batch of
votes or a dummy message:

• If it has recorded a valid r-batch of votes for b and node u has never
computed a vote for b before, then it attempts to vote for b by com-
puting (D,σ) ← VRF.Eval(crsvrf , sku, b). If D < Dp, then execute the
following:

– let Extractedu ← Extractedu ∪ {b};
– invoke Distributeb to distribute a valid (r + 1)-batch of votes for b,

possibly by adding its own vote (vote, b, u,D, σ).
• Else if the node did not decide to distribute an (r+1)-batch of votes for

b in the above, then invoke Distributeb to distribute a dummy message
⊥ which is encoded as a string of the same length as an (r + 1)-batch
of votes for b.

At any time, if any valid vote is received over the network or output by the
Distribute0 or Distribute1 protocols, the vote is then recorded by the node.

Output. At the end of the R phases, if |Extractedu| = 1 node u outputs
the unique bit in Extractedu; else output the default bit 0.
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Round Complexity. The total round complexity of the above protocol is upper
bounded by R ·Rdistr =

(

n
h

)2 · 1
ξ ·poly log λ. As a special case, in the case 99% or

any arbitrarily large constant fraction of nodes are corrupt, and assuming that
the hardness parameter ξ is a constant, the round complexity of the protocol is
poly log λ.

6 Proofs for Our Byzantine Broadcast Protocol

6.1 Additional Terminology

For convenience, we will use the following terminology.

• We say that an execution satisfies consistency for the bit b ∈ {0, 1}, iff the
following holds: if some forever-honest node u has b in its Extractedu set at the
end, then every forever-honest node v have b in its Extractedv set at the end,
too. To show consistency, we just have to prove that except with negligible
probability over the choice of the randomized execution, consistency holds for
b = 0 as well as b = 1.

• For convenience, we say that a node u mines a vote for b ∈ {0, 1} if it calls
(D,σ) ← VRF.Eval(crsvrf , sku, b) to attempt to compute a vote for b, and recall
that whether a mining attempt is successful depends on whether the outcome
D is less than the difficulty parameter Dp. All honest mining attempts are
made in the second round of some phase, i.e., the first round of the Distribute
protocol of that phase.

• We say that a node u ∈ [n] is in the 0-committee iff the first term in the output
of VRF.Eval(crsvrf , sku, 0) is smaller than Dp. Members of the 1-committee is
similarly defined.

We will consider two types of bad events. We will later prove that if, except
with negligible probability, neither type of bad event happens for both bits, then
consistency is respected except with negligible probability.

• Type A bad event for the bit b: In the second round of some phase r, all so-far
honest nodes have made attempts to mine a vote for b (in the second round
of some phase r′ ≤ r); and yet, the adversary A manages to corrupt every
member of the b-committee either before it even made a mining attempt for
b, or by the beginning of the third round of the phase in which it makes a
mining attempt for b.

• Type B bad event for the bit b: Either at least R nodes are members of the
b-committee, or no node is a member of the b-committee.

6.2 Proof Overview: Challenges and Intuition

We would like to use probablistic reasoning to argue that the above two types of
bad events do not happen except with negligible probability. The probabilistic
reasoning could be accomplished using standard measure concentration bounds if
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all the cryptography we employ were “ideal”. Unfortunately the cryptography we
employ is far from ideal. One problem we encounter is that our delayed-exposure
distribution primitive Distribute guarantees secrecy against only an adversary
who is restricted to run in a small number of parallel steps. An adversary who
can take more parallel steps can completely break the secrecy of Distribute by
solving the time-lock puzzles. For our final protocol, of course, we want to prove
security against any parallel p.p.t. adversary who is allowed to take an unbounded
number of parallel steps.

Partly due to this reason, the most natural proof strategy completely fails:
we are not able describe an ideal protocol (without cryptography), and show
that the real-world protocol securely emulates the ideal protocol by a standard,
simulation-based notion. What comes to the rescue is that we only need to prove
that certain security properties hold in the real-world protocol; and proving these
properties eventually boils down to showing that certain bad events (as defined
above) happen with negligible probability. Therefore, instead of proving that the
real-world protocol securely emulates some ideal protocol, our strategy is to prove
that the probability of bad events is not higher in the real-world protocol than
in the ideal protocol (barring negligible differences). To do this, we will define
a polynomially long sequence of hybrids, starting from the real-world protocol,
all the way to the ideal protocol which does not have any cryptography: we will
prove that for every pair of adjacent hybrids, the probability of bad events in
the former is not higher than the probability of bad events in the latter (barring
negligible differences).

We now elaborate on our blueprint—below in our proof overview, we mainly
focus on how we bound the probability of Type-A bad events since this is the
most technical part of the proof. First, we make several modifications to the real-
world protocol and obtain a hybrid called Hyb′

�. Hyb
′
� is no longer a consensus

protocol, it should simply be viewed as a game in which the adversary Ais trying
to cause Type-A bad events to happen. The modifications we made ensure that
the probability of Type-A bad events can only increase in Hyb′

� in comparison
with the real-world protocol. Importantly, in Hyb′

�, we introduce a final guessing
phase: if at the end of the protocol, A has corrupted f ′ < f number of nodes,
i.e., it has more corruption budget left, we give A an extra opportunity to guess
who, among the remaining honest nodes that have not made a mining attempt
for b, are members of the b-committee. If A can correctly guess all remaining
honest b-committee members in at most f −f ′ tries, we also declare that A wins,
i.e., a Type-A bad event has happened.

At this moment, it is not clear why we introduce the final guessing phase
yet. This will become clear in the next hybrid Hyb�. In Hyb�, we modify the
final guessing phase, such that the remaining honest nodes who have not made
a mining attempt for b yet would use true random coins rather than VRFs
to determine if they are a member of the b-committee. In this way, the game
becomes ideal (i.e., without cryptography) after the final guessing phase starts.
Partly relying on the security of VRF, one can show that any parallel p.p.t . A
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cannot cause Type-A bad events to happen more often in Hyb′
� than in Hyb�

(barring negligible differences).
Now, in the remainder of the proof, our idea is to start from the end of the

experiment, and make each phase “ideal” one by one. In other words, in each
hybrid, we will make the final guessing phase start one phase earlier, until at
the very end, the final guessing phase starts upfront and therefore the whole
game becomes ideal (i.e., no cryptography). In the process, we make sure that
A’s probability of causing bad events does not decrease (barring negligible dif-
ferences).

At this moment, it is a good time to revisit how we can overcome the afore-
mentioned problem where the overall adversary is a parallel machine running in
unbounded parallel steps but our Distribute primitive only gives secrecy against
an adversary who is restricted to run in a small number of parallel steps. With the
above proof strategy, informally speaking, at some point, we need to compare
the probability of Type-A bad event in the following two adjacent hybrids—
henceforth let r∗ be the phase immediately preceding the final guessing phase:

1. in the first hybrid, in phase r∗, honest nodes run the real Distribute protocol
using real inputs;

2. in the second hybrid, in phase r∗, honest nodes run the Distribute protocol
using input 0.

In both of these hybrids, the adversary A can win the game if it either wins in
the final guessing phase, or if A can guess, by the beginning of the third round of
phase r∗, which honest nodes successfully made mining attempts for b in phase
r∗. To succeed in the latter, A might try to gain some leverage by attacking the
Distribute protocol of phase r∗, but because of the short-fuse deadline A must
make the guess by, the Distribute protocol in phase r∗ is unhelpful to A due to
the momentary secrecy property. Even though after phase r∗, A may completely
break the secrecy of the Distribute protocol of phase r∗, recall that the games
becomes ideal immediately after phase r∗. Therefore, breaking the secrecy of the
phase-r∗ Distribute protocol no longer helps A after phase r∗.

Last but not the least, besides the aforementioned technicalities, yet another
is that A is adaptive, and we need to handle the adaptivity with particular care
in our proofs. Now, without further ado, we present our formal proofs.

6.3 Bounding the Probability of Type-A Bad Events

Let Real denote an execution of the real-world protocol in which the adversary
A’s goal is to cause a Type-A bad event to happen. In the remainder of this
section, we will consider a sequence of hybrid experiments starting with Real
such that for each pair of adjacent experiments, the probability of a Type-A bad
event in the latter is an upper bound of the probability of a Type-A bad event
in the former (ignoring negligible differences). In the end, we will upper bound
the probability of a Type-A bad event in the final experiment called Hyb1. Hyb1
essentially gets rid of the cryptography and therefore we can upper bound the



442 J. Wan et al.

probability of a Type-A bad event in Hyb1 with a simple information-theoretic,
probabilistic argument.

In the following we fix an arbitrary b ∈ {0, 1}, and we care about bounding
Type-A bad events for the bit b. Henceforth whenever we say Type-A bad event,
it means a Type-A bad event for the bit b. Also, recall that we use the notation
f = n − h to denote the maximum number of corruptions allowed.

6.3.1 Experiment Hyb′
�

Since we only care about bounding Type-A bad events for the bit b, we make
some simplifications to the protocol without decreasing the probability of a Type-
A bad event. We therefore define a hybrid experiment Hyb′

�:

1. At the beginning of the protocol, for each u ∈ [n], we compute (Du, σu) ←
VRF.Eval(crsvrf , sku, 1 − b) and disclose to A the pair (Du, σu) which is the
evaluation outcome and proof for the bit 1 − b. Of course, upon the new
corruption of some node v, we now need to explain to A the coins in the
above evaluation for v too.

2. During the protocol, in each phase, we only run the Distributeb protocol
but not the Distribute1−b protocol; similarly, we need not run the setup for
Distribute1−b either.

3. If some honest node u tried to call Distributeb to send a valid (r + 1)-batch
of votes for b in the second round of phase r and u remains honest till the
beginning of the third round of phase r, the experiment declares that A has
failed to cause a Type-A bad event, and simply aborts outputting adv-fail.

4. Immediately after the second round of phase R, for every honest node u who
has already made a mining attempt for b, we disclose its VRF secret key skb

to A even if u has not been corrupted by A (and note that these nodes do
not count towards the corruption budget).
Now, we allow A an extra final guessing phase, in which A can adaptively
specify nodes to corrupt one by one; all nodes specified must not have made
a mining attempt for b yet. Every time A specifies a new node u to corrupt,
it learns its VRF secret key sku. The experiment stops when A has made f
corruption queries in total. At this moment, if A has corrupted all members of
the b-committee who have not made a mining attempt for b at the beginning of
the final guessing phase, then declare that a Type-A bad event has happened.

Claim 6.1. If for some non-uniform p.p.t . parallel machine A, a Type-A bad
event happens with probability μ in the real-world experiment Real, then there
exists a non-uniform p.p.t . parallel machine A′ such that a Type-A bad event
happens with probability at least μ in Hyb′

�.

Proof. We can add these modifications one by one and in each step argue that
if there is a non-uniform p.p.t . parallel machine A in the previous experiment
that can cause a Type-A bad event to occur with probability μ, then there is
a non-uniform p.p.t . parallel machine A′ in the modified experiment that can
cause a Type-A bad event to occur with probability at least μ − negl(λ).
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First, we can add the modification 4. It is not hard to see that this phase
only gives the adversary more opportunities in causing a Type-A bad event. In
some sense, the final guessing phase is saying, at the end of the protocol, if not
so-far honest nodes have made mining attempts for b (in this case a Type-A bad
event cannot happen), we will pretend as if all of them made mining attempts
for b and give A another opportunity to guess who the b-committee members
are.

With modification 4, we can essentially imagine that all so-far honest nodes
will have made mining attempts for b by the end of the protocol. Therefore,
modification 3 is cosmetic, it basically checks for Type-A bad events constantly
in the background and does not change the probability of Type-A bad event.

Next, we can add modifications 1 and 2. It is not hard to see that if there
is a non-uniform p.p.t . parallel machine A in the previous experiment that can
cause a Type-A bad event to occur with probability μ, then we can construct
a non-uniform p.p.t . parallel machine A′ in the modified experiment that can
cause a Type-A bad event to occur with probability at least μ. Basically A′

simply simulates the Distribute1−b instances for A using its knowledge of all the
VRF evaluations and proofs for 1 − b. Whenever A corrupts some v, A′ learns
the explanation of the coins that contributed towards v’s VRF proofs for 1 − b,
in this way, A′ can provide the necessary explanation to A too. ��

6.3.2 Experiment Hyb�

Experiment Hyb� is almost the same as Hyb′
�, except that when the final guessing

phase starts, every so-far honest node who has not made a mining attempt for
b yet chooses a random D from an appropriate domain instead of using the
honest VRF outcome to determine whether it is a member of the b-committee.
Furthermore, during the final guessing phase, when A corrupts any node, we no
longer disclose the node’s VRF key to A.

Lemma 6.2. Assume that the VRF scheme satisfies pseudorandomness under
selective opening (see Definition 3.3). Then, suppose that there is a non-uniform
p.p.t . parallel machine A that can cause a Type-A bad event to happen in Hyb′

�

with probability μ, then there is a non-uniform p.p.t . parallel machine A′ that can
cause a Type-A bad event to happen in Hyb� with probability at least μ − negl(λ)
for some appropriate negligible function negl(·).

Proof. We prove this lemma through a sequence of intermediate hybrids
described below.

Hybrid ˜H�. The experiment ˜H� is defined in almost the same way as Hyb′
�

except with the following modifications:

• During the setup, we will replace the VRF’s setup with the simulated setup
algorithms S0 which generates the (s1, . . . , sn) part of the secret keys, and
S1 which generates (crs, pk1, . . . , pkn, τ). The adversary A is given the public
components crs, pk1, . . . , pkn.
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• Whenever an honest node u needs to evaluate the VRF on input b′, we com-
pute the VRF outcome y honestly using sku, but call S2(τ, pku, b′, y) instead
to compute a simulated proof using the trapdoor τ .

• Whenever an honest node u gets corrupted, we call the S3 algorithm which
returns ρu and all the randomness u used in earlier VRF evaluations. Now
return sku := (su, ρu) to A. If this is before the final guessing round, also
return the random coins output by S3 to A, as well as randomness the newly
corrupted node used in the Distribute protocol instances so far. Immediately
after the second round of phase R, call S3 for every honest node v who has
already made a mining attempt for b, and return su and the term ρv output
by S3 to A.

Claim 6.3. Assume that the VRF scheme satisfies pseudorandomness under
selective opening (see Definition 3.3). Then, A’s views in ˜H� and Hyb′

� are com-
putationally indistinguishable.

Proof. Follows directly from the second part of the definition of pseudorandom-
ness under selective opening. ��

Hybrid ˜Hf . The experiment ˜Hf is almost the same as ˜H� except with the
following modification: when the last node u becomes corrupt during the final
guessing phase, for u and all remaining honest nodes who have not made a mining
attempt for b, we choose a random number of appropriate length to determine
whether the node is in the b-committee. Moreover, for the last corruption u in
the final guessing stage, we do not disclose u’s secret key or coins to A.

Claim 6.4. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜H� with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event
to happen in ˜Hf with probability at least μ − negl(λ) for some negligible function
negl(·).

Proof. Whenever A makes the last corruption query during the final guessing
phase, whether a Type-A bad event has occurred is already determined no mat-
ter whether we disclose the secret key of the newly corrupt node to A. Therefore,
henceforth we simply assume that nothing is disclosed to A upon the last cor-
ruption during the final guessing phase.

Basically we define A′ to be the same as A and it runs A till it makes the
last corruption query during the final guessing phase. We show that if A can
cause a Type-A bad event to happen in ˜H� with more than negligibly higher
probability than A′ in experiment ˜Hf , we can construct a reduction B to break
the first game in the definition of pseudorandomness under selective opening.

Essentially B interacts with its challenger C as defined in the first game in the
definition of pseudorandomness under selective opening. Moreover, B simulates
the experiment ˜H� to A right till the moment A makes the last corruption query
in the final guessing phase.
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• During setup, B asks its challenger C to run the setup who generates
(s1, . . . , sn). B now runs S1 to generate crs, pk1, . . . , pkn, τ and it gives the
terms crs, pk1, . . . , pkn to A.

• Whenever the experiment needs to evaluate the first term of the VRF out-
come, B instead forwards the query to its challenger C, and then it simulates
the proof part by calling S2 just like in ˜H�.

• Whenever A corrupts an honest node u (except for the last corruption query
in the final guessing phase), B issues a corruption query to C, learns su, and
then calls the S3 algorithm which returns ρu and all the randomness u used
in earlier VRF evaluations. Now return sku := (su, ρu) to A, and if this is
before the final guessing round, also return the random coins output by S3

to A, as well as the coins u used in Distribute protocol instances so far.
• Immediately after the second round of phase R, for every honest node v who

has already made a mining attempt for b, B issues a corruption query to C
for v, learns the sv, and then calls S3 to obtain ρv. It returns the pair (sv, ρv)
to A.

• When A makes the last corruption query during the final guessing stage, B
sends multiple challenge queries on the input b to C to obtain the evaluation
outcomes for the last corrupted node, as well as all remaining honest nodes
who have not made a mining attempt for b.

Besides the above, B simulates the rest of the ˜H� faithfully.
These evaluation outcomes are used to determine whether a Type-A event

has happened at this moment. Note that if C returned random answers, the
experiment is the same as A′ interacting with ˜Hf ; otherwise it is the same as A
interacting with ˜H�.

We stress that in the above, we are using a multi-challenge version of the
first-game of the pseudorandomness under selective opening notion, where in
the challenge phase, the adversary can specify multiple challenge queries rather
than a single one. As argued in Chan et al. [ACD+19], the multi-challenge version
is equivalent to the single challenge version by a standard hybrid argument. ��

Hybrid ˜Hf−1. The experiment ˜Hf−1 is almost the same as ˜Hf except with the
following modification: when the second to last corruption query u is made in
the final guessing phase (or if fewer than 2 corruption queries are made in the
final guessing phase, then for all of them):

• we do not return anything to A upon the corruption query; and
• we use a random number for the node u as well as all remaining honest nodes

who have not made a mining attempt for b, to determine if the corresponding
node is a member of the b-committee.

Claim 6.5. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜Hf with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event to
happen in ˜Hf−1 with probability at least μ − negl(λ) for some negligible function
negl(·).
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Proof. Basically, A′ runs A till it makes the second to last corruption query u
in the final guessing phase. A′ also makes the same corruption query u as the
second to last query, but for the last corruption query, it just chooses to corrupt
an arbitrary honest node that has not made a mining attempt for b.

We can construct a reduction B in a similar way as in the proof of Claim6.4,
except that now B stops at the second to last corruption query (for the node
u) in the final guessing stage, and then B asks C for the evaluation outcome
on the input b for u as well as any remaining honest node who has not made
a mining attempt for b. The returned evaluation outcomes are used to decide
whether the corresponding node is a member of the b-committee. It is not hard
to see that if C returns random answers, the experiment above would have the
same probability of causing a Type-A bad event as in ˜Hf−1; else it has the same
probability of causing a Type-A bad event as in ˜Hf . ��

Hybrid ˜H1. We can define a sequence of hybrids ˜Hf , ˜Hf−1, . . ., ˜H1, until eventu-
ally we arrive at ˜H1, which is almost the same as Hyb� except that we are using
the simulated setup and simulated VRF proofs in ˜H1. Specifically, in experiment
˜Hi, when A is making the last but (f−i+1)-th corruption query in the final guess-
ing phase, we switch to using random outcomes for all remaining honest nodes
who have not made a mining attempt for b (including the one being corrupted
right now), to determine if the corresponding node is in the b-th committee; and
moreover at this moment we do not disclose anything more to A.

Claim 6.6. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, if there exists a non-uniform p.p.t . parallel machine A
that can cause a Type-A bad event to happen in ˜Hi with probability μ, then there
is a non-uniform p.p.t . parallel machine A′ that can cause a Type-A bad event to
happen in ˜Hi−1 with probability at least μ − negl(λ) for some negligible function
negl(·).

Proof. The proof is essentially identical to that of Claim6.5. ��

Claim 6.7. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, A’s views in ˜H1 and Hyb� are computationally indistin-
guishable.

Proof. Directly follows from the second part of the pseudorandomness under
selective opening notion. ��

With the above sequence of hybrid experiments, we have concluded the proof
of Lemma 6.2. ��

6.3.3 Experiments Hyb′
r and Hybr

We define a sequence of hybrids below {Hyb′
r,Hybr}r∈[1,R].

Experiment Hyb′
r. Experiment Hyb′

r is almost identical as Hyb� except the
following modifications:
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• In phase r of the protocol, we pretend instead that so-far honest nodes use the
inputs 0 for the phase-r Distributeb protocol, and compute their first-round
messages (denoted M) of the Distributeb protocol. We give M to A, and let it
run till the beginning of the third round of phase r (i.e., the second round of
the phase-r Distribute protocol). A outputs, among other terms, a set of new
nodes to corrupt by the beginning of the third round of phase R.

• At this moment, every remaining honest node who has not yet made a mining
attempt for b will use a random string of appropriate length to determine if
it is a member of the b-committee. We now let A engage in a final guessing
phase as defined before.

The definition of a Type-A bad event in Hybr is the same as in Hyb�.

Experiment Hybr. Experiment Hybr is almost the same as Hyb� except that
at the beginning of the second round of phase r, the experiment discloses all
honest nodes’ secret keys for the Distributeb instance to A. A now enters the
final guessing phase, in which all remaining honest nodes who have not yet
made mining attempts for b switch to using random coins to determine if they
are a member of the b-committee.

Claim 6.8. Assume that the Distribute protocol satisfies momentary secrecy.
Then, there exists a negligible function negl(·) such that the following holds: if
for some non-uniform p.p.t . A, Type-A bad events happen with probability μ in
Hyb�, then there must exist a non-uniform p.p.t . A′ such that Type-A bad events
happen with probability at least μ − negl(λ) in Hyb′

R.

Proof. Consider the following experiment Exptβ in which a reduction B interacts
with a challenger C as well as the adversary A.

• For the Distributeb instance, it will embed the public parameters passed to it
by C.

• Whenever B needs to play on behalf of honest nodes in Distributeb protocols
(not including in phase R), it forwards the query to C instead providing the
inputs of the so-far honest nodes, and acts as a relay between C and A for
messages of the Distributeb protocol.

• Whenever some honest node is corrupted by A, it forwards the corruption
query to C, and forwards the internal states returned by C to A; besides this,
B also gives A the secret keys and random coins pertaining to the VRF of
the newly corrupt node.

• Finally, during phase R, B invokes a challenge session with C. Depending on
the bit β, C will either use the honest nodes’ real inputs in the challenge
Distributeb protocol if β = 0; else if β = 1, it will use the vector 0 as honest
inputs to the challenge Distributeb protocol. Let Mβ be the first-round mes-
sages of the challenge Distributeb protocol computed by C. Let viewβ be the
joint view of A and B at this point.

• (�): Now, give Mβ to A, run it till the beginning of the next round, and A
outputs, among other terms, a set Kβ of nodes to corrupt.
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• At this moment, any remaining honest node who has not made a mining
attempt for b uses random coins to decide if it is a member of the b-committee,
and we let A engage in the final guessing phase.

Besides the above, B simply runs the experiment Hyb� faithfully. Observe
that if β = 0, the experiment is the same as Hyb� till the beginning of the third
round of phase R (i.e., second round of the phase-R Distribute protocol); else if
β = 1, the experiment is the same Hyb′

R till the beginning of the third round of
phase R.

Let X denote the total number of honest nodes who have not made a mining
attempt for b by the beginning of the third round of phase R, let Y denote the
total number of nodes corrupted by the beginning of the third round of phase
R, and let Z be a bit indicating whether at the beginning of the third round
of phase R, adv-fail has occurred—recall that if the set K does not contain all
honest b-committee members who made a mining attempt for b in phase R, then
adv-fail would occur.

Recall that after the beginning of the third round of phase R, the experiment
enters a final guessing phase in which all honest nodes who have not made a
mining attempt for b yet uses random coins to decide if they are members of the
b committee. To prove that the probability of Type-A bad events in Hyb′

R can
must be at least as high as in Hyb� barring negligible differences, it suffices to
show that for any x ∈ [n], 0 ≤ y ≤ x, and z ∈ {0, 1},

∣

∣

∣

∣

Pr
Expt0

[X = x, Y = y, Z = z] − Pr
Expt1

[X = x, Y = y, Z = z]
∣

∣

∣

∣

≤ negl(λ)

Suppose not. Then, there must exist x ∈ [n], 0 ≤ y ≤ x, and z ∈ {0, 1},
such that PrExpt0 [X = x, Y = y, Z = z] and PrExpt1 [X = x, Y = y, Z = z] differ
by a non-negligible amount. Now, we can construct a non-uniform p.p.t . parallel
2T∅-bounded distinguisher D that can distinguish (M0, view0) and (M1, view1)
with more than negligible probability. Basically D takes Mβ and viewβ , and
runs whatever A runs in the (�) step for exactly one round which is T∅ amount
of time. At this moment, among A’s output, there is an additional set K of
nodes to corrupt. Finally, D tallies the counts X, Y , and the bit Z; here the
tallying includes the set K. D outputs 1 if (X,Y,Z) = (x, y, z); else it outputs
0. The tallying can be computed in logarithmic in n parallel time. Due to our
assumption on the duration of an round, that is, an honest node must be able to
process all n received messages within a round (see Sect. 3.1), the tallying can
be computed in a single round, that is, at most T∅ time. Therefore, D runs in at
most 2T∅ time in total.

Remark 3. We stress that A’s views are NOT computationally indistinguish-
able in the two hybrids since A can run in unbounded parallel time. We are
merely arguing that the probability of Type-A bad events are not decreased by
switching the phase-R Distribute messages. It is NOT true that (M0, view0,K0)
and (M1, view1,K1) are computationally indistinguishable, because (M0,K0)
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and (M1,K1) can potentially be distinguished by an adversary running in suffi-
ciently long time. However, any property on (M0, view0,K0) or (M1, view1,K1)
that can be checked in small parallel runtime should happen with almost the same
probability regardless of the choice of β. ��

Claim 6.9. Assume that the VRF scheme satisfies pseudorandomness under
selective opening. Then, there exists a negligible function negl(·) such that the
following holds: if for some non-uniform p.p.t . A, Type-A bad events happen
with probability μ in Hyb′

R, then there must exist a non-uniform p.p.t . A′ such
that Type-A bad events happen with probability at least μ − negl(λ) in HybR.

Proof. First, disclosing all honest secret keys for the Distributeb protocol at the
beginning of the second round of phase R discloses strictly more information
to A than in the earlier Hyb′

R. Next, we can repeat the same argument as in
the proof of Lemma 6.2, that we can switch to using random coins to decide
whether the following nodes are members of the b-committee: the nodes that
remain honest at the beginning of the second round of phase R and have not yet
made any mining attempts for b. ��

Claim 6.10. Assume that the Distribute protocol satisfies momentary secrecy,
and that the VRF scheme satisfies pseudorandomness under selective opening.
Then, there exists a negligible function negl(·) such that the following holds: if
for some non-uniform p.p.t . A, Type-A bad events happen with probability μ in
Hyb�, then there must exist a non-uniform p.p.t . A′ such that Type-A bad events
happen with probability at least μ − negl(λ) in Hyb1.

Proof. The proof works through a sequence of hybrids from HybR to Hyb′
R−1, to

HybR−1, to Hyb′
R−2 and so on, where to argue each adjacent pair of hybrids we

use either the same proof as Claim 6.8 or the same proof as Claim 6.9. ��

Lemma 6.11. Let b be an arbitrary bit. For any non-uniform p.p.t . parallel
machine A, the probability of a Type-A bad event for b in Real is negligibly
small.

Proof. Notice that in Hyb1, even for an unbounded adversary making f = n−h
corruptions, the expected number of forever-honest nodes that belong to the b-
committee is Θ(log2 λ). By the Chernoff bound, the probability that A succeeds
in guessing and corrupting all members of the b-committee is upper bounded by
negl(λ).

Now, the earlier sequence of hybrids established that the probability of a
Type-A bad event for b in Real must be upper bounded by the probability of a
Type-A bad event in Hyb1 against an unbounded adversary plus negl(λ). ��

6.4 Consistency Proofs

The following lemma bounds the probability of a Type-B bad event for either
b = 0 or b = 1.



450 J. Wan et al.

Lemma 6.12. Fix an arbitrary b ∈ {0, 1}. Assume that the VRF scheme satis-
fies pseudorandomness under selective opening. Then, Type-B bad events do not
happen except with negligible probability.

Proof. If we used random coins to decide if each node is a member of the b-
committee, then the probability that at least R = 6 log2 λ · n

h nodes are members
of the b-committee is upper bounded by a negligible function in λ by the Chernoff
bound. Similarly, the probability that no node is a member of the b-committee
is also negligibly small in λ. Now, rather than true randomness, we are using the
VRF which gives pseudorandomness, and because the function that determines
how many nodes are in the b-committee is a polynomial function on the outcomes
of the VRF, it holds that the same holds when the true random coins are replaced
with pseudorandom ones. ��

So far, we have concluded that neither Type-A nor Type-B bad events happen
except with negligible probability, for either bit b ∈ {0, 1}. To prove consistency,
it suffices to show that if neither types of bad events happen for both bits except
with negligible probability, then consistency follows. This is stated and proven
in the following theorem.

Theorem 6.13 (Consistency). Assume that n ≥ log2 λ, that the VRF scheme
satisfies pseudorandomness under selective opening as well as unforgeability, and
that the Distribute protocol satisfies liveness and momentary secrecy. Then, the
Byzantine Broadcast protocol defined earlier in this section satisfies consistency.

Proof. Due to Lemmas 6.11 and 6.12, the liveness of the Distribute protocol, as
well as the unforgeability of the VRF, it suffices to prove that the following hold
in some execution, then the execution satisfies consistency.

1. for either b = 0 or b = 1, neither Type-A nor Type-B bad events happen for b;
2. the liveness property of Distribute is never broken;
3. for either b = 0 or b = 1, if any so-far honest node u has not made a mining

attempt for b, then there is no valid vote from u for b in any honest node’s
view.

Observe that an inconsistency can only take place if some forever-honest node
u includes a bit b in its Extractedu set but some other honest node v does not
include b in its Extractedv set. We now consider the following cases:

• Case 1: u first added the bit b to its Extractedu set in some phase r but not
in the first round of phase r. According to our protocol, in phase r, u must
have observed an r-batch of votes for b, made a successful mining attempt for
the bit b, and moreover, it must have tried to distribute an (r + 1)-batch of
votes for b. Since Type-B bad events do not happen and votes are not forged,
it must be that r < R.
Since u is forever honest, by the liveness property of Distribute, it must be
that by the end of the phase-r Distribute protocol, all forever-honest nodes
will have observed the (r+1)-batch of votes from u. Therefore, every forever-
honest node v will have added b to its Extractedv set in the first round of
phase r + 1 ≤ R.
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• Case 2: u first added the bit b to its Extractedu set in some phase r but in the
first round of phase r. This means that u has observed an r-batch of votes
for b in the first round of phase r. Since Type-B bad events do not happen
and votes are not forged, it must be that r < R.
Because u is forever honest, it must be that at the beginning of the second
round of phase r, all so-far nodes have observed the same r-batch of votes
for b that u saw. Now, all so-far honest nodes will make a mining attempt
for b if they have not done so already. Now, since Type-A and Type-B bad
events do not happen, there must exist a so-far honest node v that made a
successful mining attempt for the bit b in the second round of some phase
r′ ≤ r, and moreover, the adversary did not yet corrupt v at the beginning
of the third round of phase r′. Now, by liveness of the Distribute protocol, by
the beginning of phase r′ +1 ≤ R, all forever-honest nodes will have observed
the (r′ + 1) batch of votes for b that v tried to distribute in phase r′, and
therefore, by the end of the first round of phase r′ + 1, every forever-honest
node w will have added the bit b to its Extractedw set. ��

6.5 Validity Proofs

Theorem 6.14 (Validity). Suppose that n ≥ log2 λ, that the VRF scheme sat-
isfies pseudorandomness under selective opening as well as unforgeability, and
that the Distribute protocol satisfies liveness and momentary secrecy. Suppose
also that the designated sender is forever-honest and its input is b′ ∈ {0, 1}.
Then, except with negligible probability, if any forever-honest node outputs b at
the end of the protocol, it must be that b = b′.

Proof. If the designated sender u = 1 is forever-honest, let b be its input bit,
then node u = 1 must distribute a valid 1-batch of votes for b in the first round
of the first phase. Thus, by the beginning of the second round of the first phase,
all so-far honest nodes will have made a mining attempt for b. Because Type-A
and Type-B bad events do not happen except with negligible probability, it must
be that except with negligible probability, at least one node u successfully mines
a vote for b in phase 1 and the node u remains honest till at least the beginning
of the third round of the first phase. By the liveness property of Distribute, it
must be that except with negligible probability, by the beginning of the second
phase, every so-far honest node v will have observed a valid 2-batch of votes for
b, and will have added the bit b to its Extractedv set. Finally, validity follows by
observing that due to the unforgeability of the VRF, no valid batch of votes for
1 − b can appear in any honest node’s view except with negligible probability. ��

7 Conclusion and Open Questions

Our work is the first to show a sublinear-round Byzantine Broadcast protocol
secure in the presence of corrupt majority and strongly adaptive corruptions.

Our work leaves open several exciting directions for future work:
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• Recall that Garay et al. [GKKO07] show an Ω( n
n−f ) lower bound even

for randomized protocols and static corruptions. Our round complexity is
(

n
n−f

)2

poly log λ assuming that the puzzle’s hardness parameter ξ is a con-
stant. Although our round complexity is only polylogarithmic even with, say,
99% corruption, it is an intriguing question whether we can match the elegant
lower bound of Garay et al. [GKKO07].

• Another interesting and natural direction is whether we can get rid of cryp-
tographic assumptions such as time-lock puzzles.

• In the honest majority setting, it is long known how to construct expected
constant-round protocols even for strongly adaptive adversaries [FM97,KK09,
ADD+19]. Therefore, an interesting question is whether we can attain
expected constant-round protocols in the corrupt majority setting under
strongly adaptive corruptions.

• Finally, as mentioned earlier, it would be interesting to understand how gen-
eral our current Distribute primitive is, and whether one can devise a general
compiler that upgrades any weakly adaptive protocol to a strongly adaptive
one while preserving its security.
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A Additional Preliminaries

A.1 The Decisional Linear Assumption

Suppose that G(1λ) is a group generator that samples a bilinear group (G,GT )
of prime order p, along with a pairing operation e : G×G → GT , and a random
generator g ∈ G. The decisional linear assumption posits that the following two
probability ensembles are computationally indistinguishable:

1. Run G(1λ) to generate a bilinear group (G,GT ) of prime order p, along with
a pairing operation e : G×G → GT , and a random generator g ∈ G. Sample
random x, y, r, s at random from Zp. Output the tuple (g, gx, gy, gxr, gys, gr+s)
as well as the group description.

2. Run G(1λ) to generate a bilinear group (G,GT ) of prime order p, along with
a pairing operation e : G×G → GT , and a random generator g ∈ G. Sample
random x, y, r, s, d at random from Zp. Output the tuple (g, gx, gy, gxr, gys, gd)
as well as the group description.
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A.2 Adaptively Secure Non-interactive Zero-Knowledge Proofs

We use f(λ) ≈ g(λ) to mean that there exists a negligible function ν(λ) such
that |f(λ) − g(λ)| < ν(λ).

A non-interactive proof system henceforth denoted NIZK for an NP language
L consists of the following algorithms.

• crs ← Gen(1λ,L): Takes in a security parameter λ, a description of the lan-
guage L, and generates a common reference string crs.

• π ← P(crs, stmt, w): Takes in crs, a statement stmt, a witness w such that
(stmt, w) ∈ L, and produces a proof π.

• b ← V(crs, stmt, π): Takes in a crs, a statement stmt, and a proof π, and
outputs 0 (reject) or 1 (accept).

Perfect Completeness. A non-interactive proof system is said to be perfectly
complete, if an honest prover with a valid witness can always convince an honest
verifier. More formally, for any (stmt, w) ∈ L, we have that

Pr
[

crs ← Gen(1λ,L), π ← P(crs, stmt, w) : V(crs, stmt, π) = 1
]

= 1.

Non-erasure Computational Zero-Knowledge. Non-erasure zero-knowle-
dge requires that under a simulated CRS, there is a simulated prover that can
produce proofs without needing the witness. Further, upon obtaining a valid wit-
ness to a statement a-posteriori, the simulated prover can explain the simulated
NIZK with the correct witness.

We say that a proof system (Gen,P,V) satisfies non-erasure computa-
tional zero-knowledge iff there exist a probabilistic polynomial-time algorithms
(Gen0,P0,Explain) such that

Pr
[
crs ← Gen(1λ

), AReal(crs,·,·)
(crs) = 1

]
≈ Pr

[
(crs0, τ0) ← Gen0(1

λ
), AIdeal(crs0,τ0,·,·)

(crs0) = 1
]

,

where Real(crs, stmt, w) runs the honest prover P(crs, stmt, w) with randomness
r and obtains the proof π, and then outputs (π, r); Ideal(crs0, τ0, stmt, w) runs
the simulated prover π ← P0(crs0, τ0, stmt, ρ) with randomness ρ and without a
witness, and then runs r ← Explain(crs0, τ0, stmt, w, ρ) and outputs (π, r).

Perfect Knowledge Extraction. We say that a proof system (Gen,P,V) sat-
isfies perfect knowledge extraction, if there exists probabilistic polynomial-time
algorithms (Gen1,Extr), such that for all (even unbounded) adversary A,

Pr
[

crs ← Gen(1λ) : A(crs) = 1
]

= Pr
[

(crs1, τ1) ← Gen1(1λ) : A(crs1) = 1
]

,

and moreover,

Pr

[
(crs1, τ1) ← Gen1(1

λ
); (stmt, π) ← A(crs1);w ← Extr(crs1, τ1, stmt, π) :

V(crs1, stmt, π) = 1

but (stmt, w) /∈ L

]
= 0.

Theorem A.1 (Instantiation of NIZK [GOS12]). Assume that the decisional
linear assumption holds in suitable bilinear groups. Then, there exists a proof
system that satisfies perfect completeness, non-erasure computational zero-
knowledge, and perfect knowledge extraction.
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Abstract. We initiate a fine-grained study of the round complexity of
Oblivious RAM (ORAM). We prove that any one-round balls-in-bins
ORAM that does not duplicate balls must have either Ω(

√
N) band-

width or Ω(
√

N) client memory, where N is the number of memory slots
being simulated. This shows that such schemes are strictly weaker than
general (multi-round) ORAMs or those with server computation, and in
particular implies that a one-round version of the original square-root
ORAM of Goldreich and Ostrovksy (J. ACM 1996) is optimal. We prove
this bound via new techniques that differ from those of Goldreich and
Ostrovksy, and of Larsen and Nielsen (CRYPTO 2018), which achieved
an Ω(log N) bound for balls-in-bins and general multi-round ORAMs
respectively. Finally we give a weaker extension of our bound that allows
for limited duplication of balls, and also show that our bound extends to
multiple-round ORAMs of a restricted form that include the best known
constructions.

1 Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [11], is a
primitive for hiding access patterns to an array held by an untrusted party. It is of
interest in complexity theory, where one is concerned with the power of oblivious
RAM programs which access memory in a manner independent of their inputs,
and also for applications like outsourcing encrypted data and protecting secure
processors against untrusted memory. ORAM has been studied extensively, with
many variants which all in some form define an ORAM to be a stateful, secret-
keyed algorithm that provides a client-side interface for reading and writing to
an array. The algorithm does not have enough state to store the array itself, so
it is allowed to interact with a more powerful but untrusted party that can (e.g.
a larger physical memory, or a cloud server). For clarity, we refer to this party
as a server. Security requires that the addresses being read and written to are
hidden from the server.

This work concerns balls-in-bins ORAMs, which are a restricted form of
ORAM that is powerful enough to capture the best-known (optimal) construc-
tions. At a high level such ORAMs obey two constraints: (1) they interact with a
server that acts only as a passive array, accepting read and write requests to cells
of the array (below we call such servers array-only), and (2) the ORAM treats
c© International Association for Cryptologic Research 2020
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array values as abstract symbols, only moving them from one cell to another1.
In particular, we do not consider schemes where the server processes data, such
as by applying homomorphic encryption.

Intuitively, ORAMs with an array-only server simulate access to a “vir-
tual” array with N1 cells for the client by reading and writing to a “phys-
ical” array with N2 cells held at the server, for N2 usually larger than N1

(N2 = Θ(N1polylogN1) is typical). They typically work by translating one vir-
tual operation into several physical operations, inserting dummies and shuffling
real data to hide the intended addresses of the physical operations. The state
can be used to hold some values from the array.

ORAM constructions aim to minimize the (bandwidth) overhead, which is
defined to be the number of physical operations per virtual operation. A very
simple (stateless even) ORAM can work by simply storing the N1 cells in place
at the server, and simulating accesses by scanning the entire array at the server,
incurring overhead N1 (here N1 = N2). While it is not usually explicitly men-
tioned, another extreme ORAM can use a large state of N1 array cells to trivially
store the virtual array without any server interaction, achieving zero overhead.

Much research on ORAM has targeted more efficient overhead. In their
original work, Goldreich and Ostrovsky gave a more advanced construction
with O(log3 N1) overhead, and recent work gave a construction with overhead
O(log N1) [1,22], which is known to be optimal [18] for ORAMs with array-only
servers.

Round-Complexity of ORAMs. We initiate the detailed study of the round
complexity of balls-in-bins ORAMs. It has been observed several times that
many of the physical operations (i.e., those processed by the array-only server)
of ORAMs can be batched together in parallel rather than issued one-at-a-time,
as the ORAM is defined to issue those operations independent of their out-
comes. (To be more precise, one generalizes the notion of an array-only server
to accept batches of array operations; We fix the details later.) Reducing rounds
is desirable for efficiency and simplicity of implementation. But in all efficient
constructions there appears to be an inherent limit to this type of batching
optimization, as ORAMs adapt some of their physical operations based on the
outcome of prior physical operations.

The issue of rounds of general, non-balls-in-bins ORAM, has been considered
by Williams and Sion [26] and Garg, Mohassel, and Papamanthou [9], who con-
structed single-round ORAMs that used server computation (i.e. their server is
not array-only). The latter work also noted that both of the families of ORAM
schemes with poly-logarithmic bandwidth (hierarchical [1,12,14,17,19,22] and
tree-based [5,21,24,25]) had O(log N1) round complexity, where N1 is again the
number of cells in the virtual array to be simulated.

1 Most of our results require that the balls be moved to exactly one location rather
than copied, i.e. do not allow for duplication of balls.
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Our Contributions. This work proves an overhead lower bound for balls-
in-bins ORAMs that operate in a single round2. It then gives extensions of
this result to somewhat more general ORAMs that can store multiple copies of
each ball. Finally this work applies the one-round bound to obtain a bound on
multi-round balls-in-bins ORAMs of a restricted form that we call “partition-
restricted” that captures the best-known bounded-round constructions, showing
that they are optimal for ORAMs of this form.

Towards sketching our one-round bound, we observe first that the one-round
setting is particularly sensitive to the amount of ORAM state compared to multi-
round ORAM. If one is studying O(1)-rounds schemes, the state can always be
stashed at the server, at the cost of one round, as long as the state size is less
than the bandwidth overhead. But in the one-round case (or k-round, for fixed
k) we will see that the size of the state is crucially relevant.

Our first main result is an unconditional proof that any one-round balls-
in-bins ORAM which does not duplicate balls must either have Ω(

√
N1) state

or Ω(
√

N1) bandwidth overhead. This bound is tight up to logarithmic factors
for state, as an optimal construction is a one-round version of the square-root
ORAM [11] with O(

√
N1 log N1) state.

Our techniques differ from those of prior ORAM lower bounds, which fall into
two categories. The first date back to the original Goldreich and Ostrovsky work,
and give bounds on balls-in-bins ORAMs via counting arguments, showing that
any particular physical access sequence can only satisfy a bounded number of
virtual request sequences. The second comes from a recent line of work initiated
by Larsen and Nielsen [18], who proved bounds against general ORAMs via a
novel usage of information transfer arguments to show that many consecutive
operations must frequently overlap in order to be correct and oblivious.

Our bounds follow intuition similar to the techniques of Larsen and Nielsen,
but are for balls-in-bins schemes. At a high level, we show that a one-round
requirement and correctness force an ORAM to request overlapping sets of array
cells, unless it has Ω(

√
N1) client memory or bandwidth. This actually follows

from a simple attack but a subtle analysis. Below we first present a simplified
version of the bound for ORAM schemes that have almost no client memory
(and in particular are only allowed to maintain a program counter). This was
the simplest type of ORAM we could find that was non-trivial to bound, and
already encapsulates the main difficulties. We then extend our proof to schemes
with more client memory. Our version of balls-in-bins schemes does not allow
for multiple of copies of balls to be made, but we can give a weaker bound for
a bounded number of copies. This latter bound is tight for a constant number
of copies, but is loose for larger numbers of copies, becoming trivial if a ball is
copied N

1/4
1 time.

Finally, we sketch how prior ORAMs can be viewed in our formalism for
rounds, and show that the square-root ORAM matches our bound. We then

2 In this work, a “round” is interpreted to be a read request for several cells, followed
by a write request to several cells; We discuss the motivation for this below. Being
permissive on the notion of a round only makes our lower bounds stronger.
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observe that for any constant k, a natural “k-th root” version of that ORAM
gives a (k − 1)-round of a special form with O(kN

1/k
1 ) overhead and O(N1/k

1 )
state3. While we cannot prove anything non-trivial even for two-round ORAM,
we can show that these ORAMs fall into a class of “partition-restricted” ORAMs,
and are optimal for that class. The observation is simple: Since these ORAMs
predictably access only a relatively small region of memory in their first (k − 2)
rounds, we can view that region as state and collapse them to one-round schemes
to which our one-round bound applies.

In the full version, we additionally consider another restricted class of balls-
in-bins ORAM that we call static. These ORAMs can not move balls between
physical cells on the server after writing them, which seems to not have been
considered explicitly previously. Intuitively, such ORAMs can be thought of as
“balls-in-bins” PIR schemes, and it is possible that one could hope for a weak
type of protection (say, for a bounded number of operations, or with some non-
negligible security bound). We observe the counting argument of Goldreich and
Ostrovsky easily gives a strong bound for unbounded operation sequences, but
that our techniques give a sharper bound for concrete parameters and provide a
lower bound for bounded operation sequences. For instance, we show that even
if a static ORAM is only required to remain oblivious for N1 +Q+1 operations,
it must have overhead or state Ω(Q), for Q ≤ √

N1, which follows from proofs
similar to our main results. Additionally, we prove that to support an arbitrary
number of operations, the ORAM must have overhead or state Ω(N1).

Related Work. Goldreich and Ostrovsky were the first to define ORAM
and proved the first Ω(log n) lower bound for the bandwidth of balls-in-bins
ORAMs [11], without any restriction on the number of rounds. Boyle and
Naor [2] pointed out some key assumptions in the original proof and asked if
they could be overcome. Soon after, Larsen and Nielsen removed the assump-
tions and obtained the same Ω(log n) bound using novel information transfer
techniques [18]. After their result, the same bound has been extended with fewer
assumptions [15] and to other oblivious data structures [16].

Most of the lower bound work has been on amortized bandwidth and does not
consider any restrictions or bounds on round complexity. However, recent work
by Chan, Chung, and Shi [3] showed a round lower bound for Oblivious Parallel
RAM (OPRAM). Showing that any OPRAM must have Ω(log m) rounds, where
m is the number of processors. OPRAM bounds are distinct from non-parallel
ORAM bounds, as they concern the different issue of coordination amongst
processors.

Many ORAM constructions have been given in the literature that pay atten-
tion to rounds. In their work introducing ORAM, Goldreich and Ostrovsky define
a 2-round ORAM as a warm-up for their hierarchical construction [11]. More
recently, Goodrich et al. [13] presented a family of constant round ORAM con-
structions. Several works gave one-round ORAM constructions with server com-
putation [4–10,20,26]. This line of work allows the server holding the data to
3 One can also obtain a similar construction by modifying tree-based ORAMs [23,24]

to use (k − 1) levels of recursion.
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perform some computation as part of the protocol, rather than the server being
an array which can only read and write to requested cells. The previous lower
bounds for ORAM do not apply to this model, and neither do ours.

Organization. Section 2 gives definitions. Sections 3, 4, and 5 give our lower
bounds for counter-only, general one-round, and multiple-copy schemes respec-
tively. In Sect. 6 we recall the square root construction and its bounded-round
variants in our notation, and finally we conclude with a discussion of open prob-
lems in Sect. 7.

2 Preliminaries

ORAM Syntax. We give a definition of the ORAM primitive that tailored
to the single-round case, and then later extend it to some fixed number of
rounds. Our definition most closely follows that of Wang, Chan, and Shi [25],
with changes that we discuss below.

We start with an intuitive sketch of Definition 1 below, which is itself quite
short. It models a one-round ORAM simulating a virtual array with N1 cells,
with each cell storing a block from a set B1 (e.g. B1 = {0, 1}w1). An ORAM
scheme should accept read operations (which consist of an address a ∈ [N1])
and write operations (which consist of an address/block pair (a, d) ∈ [N1]×B1).
Correctness requires that in the course of processing a sequence of operations, the
last written block written at that address should be returned for read operations
(we will formalize this statement later), and obliviousness will require that the
addresses a in the sequence are hidden.

The scheme will interact with an array-only server holding a physical array
consisting of N2 cells, each storing a block from the set B2, which may or may
not equal B1 (parameters with subscripts 1 and 2 will correspond to the virtual
array and physical array respectively). The ORAM scheme interacts with the
server by sending read and write operations, this time with addresses in [N2]
and blocks in B2. The server is assumed to always respond correctly. We assume
an ORAM comes with associated sets StSp and RSp for the state space and
randomness space respectively. The state space is the set of all possible settings
for the data that the ORAM can hold between processing read/operations (so,
for example, if StSp = BN1

1 then the ORAM can hold the entire virtual array
and ignore the server entirely). The randomness space will not be restricted or
particularly relevant for quantitative bounds but making it explicit (rather than
declaring the ORAM has access to a random tape) fixes a sample space on which
every random variable is defined. We remark that secret keys can be sampled
(and persistently stored) in the randomness space in addition to any coins that
may be used.

Our results require a precise definition of rounds for an ORAM. Intuitively, a
round should consist of sending a tuple of read/write operations from the ORAM
to the server, which applies the writes and then responds with the results of the
read operations. Afterwards, the client updates its local state and continues,
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either with more rounds or by replying for the virtual operation (i.e. outputting
a block in B1 in the case of a read, or simply stopping in the case of a write).

We opt for a definition that is somewhat more permissive by defining a round
to consist of a tuple of read operations (below specified by Access) followed by
a tuple of write operations and a returned block (both below specified by Out;
these may depend on what is returned by the read operations). This version of
the definition simplifies the accounting for rounds without weakening our lower
bounds.

Definition 1. Let B1,B2,StSp,RSp be sets with ⊥ ∈ StSp,⊥ /∈ B1, and let
N1, N2 be positive integers. For j = 1, 2 define the sets

RdOpsj = [Nj ], WrOpsj = [Nj ] × Bj , and Opsj = RdOpsj ∪ WrOpsj .

A one-round ORAM scheme (with respect to B1,B2, N1, N2,StSp,RSp) is a pair
of functions O = (Access,Out),

Access : Ops1 × StSp × RSp → RdOps∗2
Out : B∗

2 × Ops1 × StSp × RSp → (B1 ∪ {⊥}) × WrOps∗2 × StSp.

This models the following usage: A sample from RSp (e.g. keys and a random
tape) is chosen and then kept private at the client, and the state is initialized
to a canonical value ⊥ ∈ StSp. The function Access takes as input a requested
virtual operation along with the current state and the randomness, and outputs
a list of physical read operations on the server memory. The function Out takes
the results of these operations (i.e. the blocks from read operations), the virtual
operation being requested, and the state and randomness. Its first output is
the result of the operation (either the block resulting from a read, or ⊥ for a
write). Its second output is a set of write operations that should be applied at
the server. When we use Out in the games defined in Fig. 1, we write elements
in WrOps∗2 as (wrts,dw), which denote the ordered sets of locations and data to
write respectively. Finally, Out also outputs an updated state, in preparation for
the next operation.

As mentioned before the definition, this syntax is actually somewhat stronger
than one-round, since the client is allowed defer its writes until after it sees the
results of the reads. The definition of Wang et al. makes a similar choice, where
the ORAM is allowed to “piggyback” its interaction with the server between
operations, receiving the next operation before being required to output the
result of the previous one [25]. Our bounds apply to either model but we found
ours simpler. Finally we remark that allowing Access to update the state is
unnecessary, as Out gets all of the information available to it.

ORAM Correctness and Obliviousness. We next define correctness and
obliviousness of an ORAM scheme. In both cases, every definition we are aware of
only explicitly considered non-adaptive definitions, where an adversary chooses
operations all at once. We give adaptive definitions, and note that standard
arguments can separate the adaptive and non-adaptive versions. Our bounds
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Fig. 1. Game Gcor
O for an ORAM scheme O = (Access,Out).

will ultimately only need a non-adaptive adversary and thus be stronger, but
practical constructions should likely aim for the stronger definition.

The correctness definition uses game Gcor
O (A) from Fig. 1, which we sketch

now. At a high level, it allows the adversary to adaptively request that virtual
operations be run, and gets to see the physical addresses touched. The adver-
sary wins if it ever catches the ORAM returning an incorrect block on a read
operation.

This game starts by choosing an element of randomness space, and initializes
two arrays: M1 with N1 cells, and M2 with N2 cells. The first array will model
the “ideal” virtual array that should be maintained in the course of operation,
and the second will hold the physical array that the server would maintain.
An initial state is fixed, and the adversary is given access to two oracles, and
attempts to trigger a “win” flag.

The first oracle accepts a virtual read operation a ∈ RdOps1, and the game
processes the query by running Access and Out on the appropriate inputs, updat-
ing M2 as a real server would. It also performs the “ideal” virtual read operation
on M1, and sets the win flag if the ideal output differs from what the ORAM
output. Finally it returns the addresses from the read and write operations,
simulating what a server would see.
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The second oracle is similar but processes write operations. It applies the
correct write to the ideal array M1, and also simulates the ORAM running with
physical array M2. It also returns the addresses of the physical operations.

Definition 2. Let O = (Access,Out) be a one-round ORAM scheme with respect
to B1,B2, N1, N2,StSp,RSp, and let A be an adversary. The correctness advan-
tage of A against O is defined to be

Advcor
O (A) = Pr[Gcor

O (A) = 1],

where Gcor
O is defined in Fig. 1. We say that O is perfectly correct if this advan-

tage is zero for any adversary A.

Game Gobl-b
O (A)

ω
$← RSp

M2 ← (⊥)N2

st ← ⊥
b′ ← ARd,Wr

Return b′

Oracle Rd(a0, a1)
rds ← Access(ab, st, ω)
dr ← M2[rds]
(dout, (wrts,dw), st) ← Out(dr, ab, st, ω)
M2[wrts] ← dw

Return (rds,wrts)

Oracle Wr((a0, d0), (a1, d1))
rds ← Access((ab, db), st, ω)
dr ← M2[rds]
(dout, (wrts,dw), st) ← Out(dr, (ab, db), st, ω)
M2[wrts] ← dw

Return (rds,wrts)

Fig. 2. Games Gobl-b
O , b = 0, 1, for an ORAM scheme O = (Access,Out).

The obliviousness definition uses games Gobl-b
O (A), b = 0, 1, from Fig. 2. These

are left-right indistinguishability games, where the adversary can now query
its oracles with two operations (either both read or both writes). The oracle
processes one of the operations, updating a physical array M2, and returns the
physical addresses touched, modeling what a curious server would see.

Definition 3. Let O = (Access,Out) be a one-round ORAM scheme with respect
to B1,B2, N1, N2,StSp,RSp, and let A be an adversary. The obliviousness advan-
tage of A against O is defined to be

Advobl
O (A) = Pr[Gobl-1

O (A) = 1] − Pr[Gobl-0
O (A) = 1].

We say that O is perfectly oblivious if this advantage is zero for any adversary A.
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In the obliviousness definition the data written to the physical array is not
revealed to the distinguishing adversary. Standard encryption can be applied to
upgrade a scheme to a model where data is also hidden. This definition also
reveals to the adversary if operations are reads or writes, and implicitly when
one operation ends and the next begins (see Hubácek et al. [15], which considered
models where this distinction is not revealed).

ORAM resource measures. We will be interested in the overhead and state
size of an ORAM. We will consider worst-case and amortized overhead.

Definition 4. Let O = (Access,Out) be a one-round ORAM with respect to
B1,B2, N1, N2,StSp,RSp. We say that O has worst-case overhead p if Access and
Out always output at most p operations. We say that O has amortized overhead
p if for every Q ≥ 0 and every adversary A issuing Q queries in Gcor

O , the total
the number of operations returned in oracle queries is at most pQ with probability
1.

We define the state size of O to be log |StSp|.
Balls-in-bins ORAM. Our results will only apply to a restricted class of
schemes that handle memory in a symbolic “balls-in-bins” manner. This was
originally informally defined by Goldreich and Ostrovsky, and we follow most
closely the definition of Boyle and Naor [2].

Definition 5. Let O = (Access,Out) be a one-round ORAM with respect to
B1,B2, N1, N2,StSp,RSp. We say that O is balls-in-bins if it is of the following
special form:

– B2 is the disjoint union of B1 and a set of bitstrings {0, 1}w2 . We call the
members of B1 balls.

– StSp has the form {0, 1}m × (B1 ∪ {⊥})r. That is, a state of O consists of m
bits along with an array of r balls/⊥ entries. For a state st = (σ, reg), the
entries in reg are called registers.

– The function Out satisfies the following:
If Out(dr, (a, d), st, ω) = (dout,wrts,dw, st′), where st = (σ, reg) and st′ =
(σ′, reg′), then

• reg′ and dw are formed by moving d and the balls from reg and dr, and
then populating their remaining entries with arbitrary non-ball values.
(Any ball may be moved to at most one place.)

• dout appears in dr or reg.

Intuitively, this definition requires that whenever the ORAM returns a block for
a read, the history of that block can be traced back to when it is written, as
at each step the ORAM can only move the balls between physical cells and/or
registers.

We note that this definition does not allow for copying a ball multiple times,
and our main bound does not hold if such copies are allowed. In Sect. 5 we give
a relaxed definition and prove a weaker bound in the presence of duplicate balls.

Our warm-up bound will consider even more restricted balls-in-bins ORAMs
that maintains almost no state. Restricting the scheme to no state at all is not
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interesting, as then it cannot even vary its requests as they are repeated. Thus we
define a counter only scheme to maintain only a program counter of the number
of operations performed.

Definition 6. We say that a one-round ORAM O is counter-only if it satisfies
all of the conditions for a balls-in-bins scheme, except that it has StSp = {0, 1}∗

(i.e. no registers), and its state at all times is a simple counter of the number
operations run (initialized to zero, and then incremented on each run of Out).

We remark that a counter-only scheme can still have a secret key (say a PRF key,
or even a random function), which is modeled in the randomness space. Giving
the ORAM a counter allows it to change its operations as time progresses, and
non-trivial constructions are possible. For us it has the advantage of forcing the
ORAM to behave in a simple combinatorial manner, as at each step the possible
physical cells accessed for each operation are fixed once the randomness is fixed.

3 Warm-Up: Lower Bound for Counter-Only Schemes

We first give a bound for the restricted case of counter-only schemes with perfect
correctness and perfect obliviousness, and in the next section remove all of these
restrictions.

Theorem 1. Let O = (Access,Out) be a counter-only one-round balls-in-bins
ORAM scheme with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1.
Suppose O is perfectly correct, perfectly oblivious, and has worst-case overhead
p. Then

p ≥ C
√

N1,

where C is an absolute constant.

Proof. For concreteness we prove the theorem with C = 0.1. Let O have the
syntax from the theorem, and assume it is perfectly correct and p < C

√
N1. We

construct a non-adaptive randomized adversary A and show that O cannot be
perfectly oblivious, i.e. that Advobl

O (A) > 0. The adversary works as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1 are arbitrary
distinct balls from B1. Ignore the responses.

2. Let T =
√

N1. Choose J
$← [N1]T , a sequence of T i.i.d. uniform virtual

addresses, and query

Rd(J [1], J [1]), . . . ,Rd(J [T ], J [T ]).

Let rds1, . . . , rdsT ⊆ [N2] be the physical addresses read for each query.
3. Choose t

$← [T ], set j∗
0 ← J [t], and j∗

1
$← [N1]. Query Rd(j∗

0 , j∗
1 ) and let rds∗

be the physical addresses read.
4. Output 0 if there exists an address a ∈ rds∗ that also appears in rdst but not

in any of rds1, . . . , rdst−1. Otherwise output 1.
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We claim that

Pr[Gobl-0
O (A) = 1] ≤ 0.2 (1)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.9 (2)

which together will prove the theorem.
We start with the latter inequality (2), which is intuitively simple; it follows

because the read operation for j∗
1 can only overlap in the required way (meaning

at a “fresh” physical address that was not previously touched) with p of the
previous reads, and the random variable t is chosen independently of these over-
laps. Formally, condition on ω, J and j∗

1 ; then t (which is still used in the final
step) remains uniform. The set rds∗ can overlap at a point a in the required way
with at most p of the sets rds1, . . . , rdsT . Thus the probability the adversary will
output 0 is bounded by p/T ≤ 0.1.

Proving (1) is more subtle. We sketch our approach before giving the formal
proof. Our plan is to focus on the starting physical position of the “test” ball
b∗ = bJ[t] after step 1 of the adversary, and argue that with good probability
this position will work as the address a in step 4, that is, it is accessed for the
first time at query t in step 2, and then again in step 3.

To argue that this position is touched for the first time at query t in step 2,
we use a counting argument. Since p < C

√
N1, at most p(t − 1) < CN1 balls in

total could have been touched in the t − 1 prior operations. Thus most balls are
untouched, remaining where they started. We are picking one at random and
thus have a good probability of accessing the starting position of b∗ for the first
time in the t-th query.

More difficult is arguing that the starting position of b∗ is touched again in
3. A counting argument no longer works for b∗, because now b∗ was previously
touched with probability 1 (it is no longer independent), and the ORAM has a
chance to move it. At this point perfect correctness and the assumption that O is
counter-only combine to come to the rescue. Note that since O is counter-only,
once ω and b∗ have been chosen, the locations read in step 3 are fixed, inde-
pendent of the “history” in step 2. The crucial observation is that the starting
location of b∗ must be read in step 3 if there is any history that would leave b∗

in its starting place. This is due to perfect correctness, since the ORAM must be
correct for that history, even if it is not the one that actually happened! All that
remains is to apply another counting argument showing that most balls have a
history in which they do not move, and the combine (via a union bound) with
the argument about step 2.

Now for the formal proof of (1). We will prove this holds conditioned on any
fixed ω, t, and J [1], . . . , J [t − 1]; The only remaining choices are J [t], . . . , J [T ],
which are still uniform. By our assumption that O is balls-in-bins and has no
registers, after the first stage of the adversary we have that every ball b1, . . . , bN1

lies in exactly one entry of M2; Let q1, . . . , qN1 ∈ [N2] be their respective indices.
We will show that with probability at least 0.8 in the conditional space, a = qJ[t]
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satisfies the conditions for outputting 0 in the final step of the adversary. This
establishes that 1 is output with probability at most 0.2 in this game.

We do this in two steps, following the sketch. We write q∗ = qJ[t] for the
index of b∗ index. We first show that

Pr[q∗ ∈ rdst \
t−1⋃

k=1

rdsk] ≥ 0.9 (3)

and then that

Pr[q∗ ∈ rds∗] ≥ 0.9. (4)

(In both cases, the probability is over J [t] ∈ [N1] only, the latter because the
construction is counter-only.) A union bound gives the claimed 0.8 probability.

We proceed with the first step. Since J [1], . . . , J [t − 1] and ω are fixed, the
sets rds1, . . . , rdst−1 are also fixed. We have

Pr[q∗ /∈
t−1⋃

k=1

rdsk] ≥ 1 − (t − 1)p
N1

≥ 0.9,

because J [t] is uniform in the conditional space and q∗ is thus uniform on a set
of size N1, while the union of the rdsk is of size at most (t − 1)p. By the perfect
correctness and balls-in-bin assumptions on O, we must have that q∗ ∈ rdst
whenever q∗ is not in any of rds1, . . . , rdst−1, because ball b∗ will still reside
at index q∗ of M2. Thus the event in the probability is actually equivalent to
q∗ ∈ rdst \ ⋃t−1

k=1 rdsk, and we have completed (3), the first step in proving (1).
We now prove the second step (4). The argument from the first step does

not apply, because the test ball is being read twice (once in the second stage,
and then again at the third stage of the adversary). Instead, here we will apply
the assumption that O is counter-only and one round (so far everything we
have proved would hold with small modifications even if O were an arbitrary
multi-round scheme).

The set rds∗ is computed by Access(J [t], st, ω) where st = N1 + T + 1 is the
counter. The key observation is that this set must contain q∗ if there exists any
value Ĵ ∈ [N1]T such that q∗ /∈ ⋃T

k=1 Access(Ĵ [k], N1+k, ω). This is true because
after these accesses ball b∗ would not be touched and hence still reside at index
q∗. Thus q∗ must be touched by Access(J [t], st, ω) (as O is perfectly correct) in
case it has not moved. (Note we have used that O is counter-only here; If it had
more state, then the set Access(J [t], st, ω) could change based on the “history”,
but it can not change when O is counter-only.)

Thus we only need to lower-bound the number of values of J [t] for which
there exists Ĵ ∈ [N1]T such that q∗ /∈ ⋃T

k=1 Access(Ĵ [k], k + N1, ω). This is easy:
Just take some arbitrary choice of Ĵ . The union of their access sets will have size
at most pT ≤ 0.1N1, so we get that there are 0.9N1 values for J [t] will work.
This establishes (4) and (1). ��
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4 Lower Bound for General Balls-in-Bins Schemes

We extend the previous theorem to general balls-in-bins schemes. The step form
the previous proof that falls apart is (4), which relied on the final “test” access
issued by the scheme to be independently of the request history. This no longer
holds when the scheme has state beyond a counter, and indeed state can enable
an ORAM to sometimes avoid the repeated test index.

The previous strategy can be made to work even with state. Intuitively, the
scheme will not be able to remember “too much” of the history, and so its
bounded state can only help avoid the test with a relatively small advantage.
We formalize this intuition by bounding, for any state, the number of histories
for which a particular state can be used to evade the attack, and ultimately
union bound over all possible states.

Theorem 2. Let O = (Access,Out) be a one-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 106. Suppose O
has worst-case overhead 1 ≤ p < C

√
N1 and state size s and for every adversary

A, Advcor
O (A) < 0.001 and Advobl

O (A) < 0.4. Then

ps ≥ CN1,

where C is an absolute constant.

Before giving the proof, we note that this bound is tight up to logarithmic
factors for constructions with p = O(

√
N1), with the matching construction

being a modification of the “square-root ORAM” that we recall in Sect. 6. We
leave open to determine the optimal state size for constructions with larger p.
We also note that StSp = {0, 1}m × (B1 ∪ {⊥})r for balls-in-bins ORAM, and
for the following proof, we need only assume m + r log N1 < 0.001N1/p for a
contradiction, which is slightly stronger than the stated result.

Proof. The proof proceeds as before, with the same adversary A, except we
have it issue T = 0.001N1/p queries in the second stage. We will show that, if
p < 0.001

√
N1 and s < 0.0001N1/p, then

Pr[Gobl-0
O (A) = 1] ≤ 0.55 (5)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.999. (6)

The bound (6) is proved exactly as before, so we only need to establish (5). We do
so via the same strategy, proving analogues of (3) and (4). Throughout the proof,
we assume StSp = {0, 1}m × (B1 ∪ {⊥})r because the ORAM is balls-in-bins.

Let rds1, . . . , rdsT and q∗ be defined as before. Then an analogue of (3) holds
via a very similar proof; In fact we have

Pr[q∗ ∈ rdst \
t−1⋃

k=1

rdsk] ≥ 0.997 (7)
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with our parameters now. The only modification to the argument is we must
subtract the correctness error 0.001 and also the probability that the test ball
is in one of the registers in StSp. By assumption, r ≤ 0.001N1, which gives the
bound above.

Thus, proving the theorem is reduced to proving an analogue of (4). Specifi-
cally, we prove that

Pr[q∗ ∈ rds∗] ≥ 0.5. (8)

Combining (7) and (8) via a union bound establishes (5), showing that O will
output 0 with at least probability 0.45.

We now prove (8). This requires analyzing how many balls the ORAM can
move from their starting positions while maintaining correctness, so we begin
with some definitions to quantify this. We define a function B(Ĵ , ω̂) which takes
as input a tuple Ĵ ∈ [N1]T and ω̂ ∈ RSp, and counts the number of balls in Ĵ
that will move during the second stage of the adversary (these are the “bad”
balls for our attack). Formally, B(Ĵ , ω̂) works as follows:

1. Run the game Gobl-0
O (A) with ω = ω̂, until the end of the first stage. At this

point, every ball is either in a unique position in M2, or in a register. Let
q1, . . . , qN1 be the indexes of the balls in M2 or ⊥ if the corresponding ball
is in a register.

2. Continue the game, now also using J = Ĵ until the end of the second stage
of the adversary. Let st be the state of O.

3. Output the number of j ∈ Ĵ such that qj /∈ Access(j, st, ω̂). (This includes j
for which qj = ⊥.)

We also define related functions:

– B(Ĵ , ω̂, ŝt) that is exactly the same as B, except it uses the input state ŝt in
step 3 instead of the state computed in step 2.

– Ball(Ĵ , ω̂) that is exactly the same as B, except for the last step, in which
case it outputs the count of j ∈ [N1] that satisfy the condition (and not just
the j ∈ Ĵ).

– Ball(Ĵ , ω̂, ŝt) that is Ball, except modified to use ŝt as the state in step 3. This
function does not depend on Ĵ , as it can be computed by running step 1, and
then skipping to step 3.

The latter three functions will be useful for counting the total number of balls
that move, not just those in Ĵ (in the case of Ball). The versions with a hard-
coded state ŝt will be useful for steps in the proof where we want to argue about
the existence of a good state.

It suffices to show that

Pr
J,ω

[B(J, ω) > 0.25T ] ≤ 1/5. (9)
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Assuming this, we have

Pr
J,ω,t

[q∗ ∈ rds∗] ≤ Pr
J,ω,t

[q∗ ∈ rds∗|B(J,w) ≤ 0.25T ]

+ Pr
J,ω,t

[q∗ ∈ rds∗ ∧ B(J,w) > 0.25T ]

≤ 1/4 + Pr
J,ω

[B(J,w) > 0.25T ] ≤ 1/4 + 1/5 < 1/2.

We now prove (9). Our strategy is to condition on whether or not Ball(J, ω) is
large and handle the cases separately. We have that Pr

J,ω
[B(J, ω) > 0.25T ] is at

most

Pr
J,ω

[Ball(J, ω) > 0.03N1] + Pr
J,ω

[B(J, ω) > 0.25T ∧ Ball(J, ω) ≤ 0.03N1]. (10)

The first term is bounded using Markov’s inequality. We assert that for any
fixed Ĵ ∈ [N1]T ,

Eω[Ball(Ĵ , ω)] ≤ r + pT + εN1 ≤ 0.003N1,

where ε = Advcor
O (A). This expectation is over ω only. This follows because B

will count at most r balls from registers, pT balls moved during the second stage,
and (in expectation) at most εN1 balls on which O errs with our adversary. Each
of these contribute at most 0.001N1 to the expectation. By Markov’s inequality,
we get that first term of (10) is at most 0.1.

We complete the proof by bounding the second term of (10). For this, we
are aiming to show that, that O is unlikely to enter a state where not too many
balls have been moved in total and yet many balls from J have been moved.
The challenge is that the state depends on J . We will show that any particular
state cannot be useful for too many J , and then take a union bound over all
states; It is (only) here that use the fact that O does not have a large state space.
Intuitively, without such a bound on the state space, the state st, which depends
on J , could be chosen so that Ball(J, ω) ≤ 0.03N1 and yet still B(J, ω) > 0.25T ,
because 0.25T � 0.03N1.

Formally, we bound the second term for every fixed ω̂. We observe that it is
at most

Pr
J

[∃ŝt ∈ StSp : B(J, ω̂, ŝt) > 0.25T ∧ Ball(J, ω̂, ŝt) ≤ 0.03N1],

where we have used the versions of B and Ball with a hard-coded state as input.
We then union bound over ŝt ∈ StSp, so this probability is at most

∑

ŝt∈StSp

Pr
J

[B(J, ω̂, ŝt) > 0.25T ∧ Ball(J, ω̂, ŝt) ≤ 0.03N1].

For a fixed ŝt, the probability is at most the chance that at least 0.25T of the
i.i.d. uniform entries of J land in a pre-determined set of size at most 0.03N1
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(since ω and st are fixed, Ball(J, ω, st) is fixed, counting this set, as it does not
depend on J). If we denote by X the number of such entries, we have

Pr[X > 0.25T ] ≤ Pr[X > 0.03(1 + 7.33)T ].

By a Chernoff bound this probability is at most
(

e7.33

(8.33)8.33

)0.03T

≤ 0.75T .

Summing over ŝt ∈ StSp gives

|StSp| · 0.75T ≤ 20.0001N1/p0.750.001N1/p < 0.1

for N1 ≥ 106, because p < 0.001
√

N1. This completes the bound of the second
term of (10). Combining with the bound on the first term completes the proof,
giving (9), as desired. ��

4.1 Bound for ORAMs with Amortized Overhead

Theorem 2 only applies to ORAMs with worse-cast overhead, but the ideas
extend easily to ORAMs with only amortized overhead. As-is, the attack from
the previous theorem cannot handle an amortized adversary; For example, the
final test read could have exceptionally high overhead, which would allow for the
test set to overlap with many of the previous sets. To work around this, our high-
level approach is to have the adversary repeat the reading stage of the attack
many times and then choose one at random to test for overlaps. An averaging
argument shows that with high probability over this random choice, the chosen
stage will not have too much overhead and thus the previous reasoning will apply.

Theorem 3. Let O = (Access,Out) be a one-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 30 · 106. Suppose
O has amortized overhead 1 ≤ p < C

√
N1, state size s, and for every adversary

A, Advcor
O (A) < 0.001 and Advobl

O (A) < 0.15. Then

ps ≥ CN1,

where C is an absolute constant.

Proof. We will take C = 0.001/30 so that most calculations remain similar to
the previous proof. Define an adversary A as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1 are arbitrary
distinct balls from B1. Ignore the responses.

2. Let T = CN/p. For k = 1, . . . , N1, repeat the following:
(a) Let Jk

$← [N1]T and query

Rd(Jk[1], Jk[1]), . . . ,Rd(Jk[T ], Jk[T ]).

Call the sets of physical cells accessed rdsk1 , . . . , rds
k
T .



A Lower Bound for One-Round Oblivious RAM 473

(b) Choose tk, t′k
$← [T ] and J ′

k
$← [N1]T . Query

Rd(J ′
k[1], J ′

k[1]), . . . ,Rd(Jk[tk], J ′
k[t′k]), . . . ,Rd(J ′

k[T ], J ′
k[T ]).

This is a sequence reading J ′
k (on both the left and right), except on one

random query, namely the t′k-th query. There, the attack is using a random
entry from Jk on the left as a test. We call the set of physical addresses
returned by this operation rds∗k.

3. Choose i
$← [N1]. Output 0 if there exists an address a ∈ rds∗i that also

appears in rdsit but not in any of rdsi1, . . . , rds
i
t−1. Otherwise output 1.

This adversary is based on the same idea as in the two previous proofs. The only
differences are that it copies the attack N1 times and only tests one at random.
Notice that this adversary always queries N1 + 2TN1 < 3TN1 queries. By the
definition of amortized overhead, this means less than 3pTN1 operations can be
returned across the entire sequence.

Throughout the proof, we use notation J, J ′, t, t′, rds1, . . . , rdsT , rds∗ for the
respective variables at the chosen “test window” i to avoid cluttered indices. The
rest of the proof will not need to refer to those values with other indices k = i.

From here we proceed as the previous proof. Assume p < C
√

N and s <
0.1CN1/p. We will prove

Pr[Gobl-0
O (A) = 1] ≤ 0.7 (11)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.85. (12)

We begin showing (12). Assume everything is fixed but i, t, t′. Then,

Pr
i,t,t′

[Gobl-1
O (A) = 0] ≤ Pr

i,t,t′
[|rds∗| ≥ 30p] + Pr

i,t,t′
[Gobl-1

O (A) = 0||rds∗| < 30p]

≤ 0.1 + 30p/T ≤ 0.15.

The final inequality comes because if Pri,t′ [|rds∗| ≥ 30p] > 0.1, then there are
0.1TN1 sets with size at least 30p, which means the total overhead is at least
3pTN1 > (2T + 1)pN1.

Now, we move on to prove (11). We will use the same technique to extend the
original proof. First, we will use the same notation defining q∗ as as the location
of the tested ball in the chosen internal i. Then, we will show

Pr[q∗ ∈ rdst \
t−1⋃

k=1

rdsk] ≥ 0.8. (13)
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This follows from a similar argument as before. Define ε = Advcor
O (A) < 0.001.

Pr[q∗ /∈ rdst \
t−1⋃

k=1

rdsk] ≤ Pr[q∗ ∈
t−1⋃

k=1

rdsk|
∣∣∣
∣∣

t−1⋃

k=1

rdsk

∣∣∣
∣∣
< 30Tp]

+ Pr[

∣∣∣∣∣

t−1⋃

k=1

rdsk

∣∣∣∣∣
≥ 30Tp] +

r

N1
+ εN1

≤ 30pT

N1
+ 0.1 + 0.001 + 0.001 ≤ 0.15.

Otherwise, at least 0.1N1 of the repeated attacks would access a total of 3N1Tp,
which gives a contradiction.

The final part of the previous proof which must be extended is

Pr[q∗ ∈ rds∗] ≥ 0.45.

We extend this claim by considering the expectation and probabilities over i in
the same way. We have to redefine and extend all the functions based on B(J, ω)
to follow the query pattern of our new adversary. The new functions also must
take new inputs i, t′, which specify where to stop running and count the balls,
exactly analogous to how the adversary chooses where to plant the repeated
read. The positions of the balls will now be marked at the beginning of each
attack and the functions will count using those positions given i.

The claims will still be true with these analogous definitions except, we must
show, for all fixed Ĵ ∈ [N1]2N1T , then with probability 0.9 over the uniformly
random choice of i,

Eω,t′ [Ball(Ĵ , ω, i, t′)] ≤ r + 30pT + εN1 ≤ 0.003N1.

As has been establish, with probability 0.9 at most 30pT balls accessed in any
attack interval. Assuming this, the expectation must be at most 0.003N1 or
else the ORAM will be incorrect with probability more than 0.001 against an
adversary in this interval.

Once this is established, we take all other probabilities assuming this expec-
tation use a union bound. This achieves the bound

Pr[B(J, ω, i, t′) > 0.25T ] ≤ 0.3,

which implies,
Pr[q∗ ∈ rds∗] ≤ 0.55.

This concludes the proof of (11), because we output 0 with probability at least
1 − 0.55 − 0.15 = 0.3. ��

5 Lower Bound for Balls-in-Bins Schemes with Duplicates

The techniques used for the previous proof can be extended to allow the ORAM
scheme to have up to D copies of any ball. We start by defining precisely how
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such an ORAM is allowed to copy balls, and then we extend our previous proof
idea to such ORAM schemes.

Current constructions do not make use of duplication. However, it could be
an avenue to achieve low overhead for constant round schemes in principle. We
prove a lower bound using our same techniques from the previous sections and
show for constant duplication, we achieve a similar bound for one-round ORAM.

Unfortunately, our techniques do not give tight bounds against high dupli-
cation. For example, our bound is trivial for ORAM copying a single ball N0.25

1

times. In our proof technique, we attempt to force the ORAM to overlap two
reads on a specific physical address in a special way. When a ball can be located
in many locations, the ORAM can often avoid this behavior by accessing the
locations of other copies.

Definition 7. Let O = (Access,Out) be a one-round balls-in-bins ORAM with
respect to B1,B2, N1, N2,StSp = {0, 1}m × (B1 ∪{⊥})r,RSp, except that we relax
the balls-in-bins restriction to allow Out to copy balls to multiple locations.

For a deterministic adversary A in Gobl-0
O , Gobl-1

O , or Gcor
O and for every

b ∈ B1, after A is finished querying its oracles, define

Qb(A) = {i | M2[i] = b}
and

Rb(A) = {i | reg[i] = b},

where M2 is the final server memory state in the game, and reg is the final
register state of O.

We say O is D-duplicate if for all adversaries A which query Wr N1 times
with N1 unique balls in Gobl-0

O , Gobl-1
O , or Gcor

O , and for all b ∈ B1

|Qb(A)| + |Rb(A)| ≤ D.

Theorem 4. Let O = (Access,Out) be a one-round D-duplicate balls-in-bins
ORAM scheme with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥
106 and 1 ≤ D < 0.5

√
N1. Suppose O has worst-case overhead 0 < p <

C
√

N/D2, state size s, and for every adversary A, Advcor
O (A) < 0.001/D and

Advobl
O (A) < 0.4. Then

ps ≥ CN1/D3,

where C is an absolute constant.

Proof. This proof proceeds in the same structure as before. Assume for a con-
tradiction that p < 0.001

√
N1/D2 and s < 0.0001N1/(D3p). We construct an

adversary A that works as follows:

1. For i = 1, . . . , N1, query Wr((i, bi), (i, bi)), where b1, . . . , bN1 are arbitrary
distinct balls from B1. Ignore the responses.

2. Let T = 0.001N1/(D2p) ≥ √
N1. Choose J

$← [N1]DT , a sequence of DT i.i.d.
uniform virtual addresses. For i = 1, . . . , D, choose ti

$← [(i−1)T +1, . . . , iT ].
Define j∗

0 = J [t1].
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3. For k = 1, . . . , DT , if k = ti for some i then query

Rd(j∗
0 , J [k]),

and otherwise query
Rd(J [k], J [k]).

Let rds1, . . . , rdsDT ⊆ [N2] be the physical addresses read for each query.
4. Let j∗

1
$← [N1] and tD+1 = TD + 1. Query Rd(j∗

0 , j∗
1 ) and let rdstD+1 be the

addresses read.
5. Output 0 if there exists a pair of indices i, j ∈ [D + 1] with i < j and an

address a ∈ rdstj that also appears in rdsti but not in any of rds1, . . . , rdsti−1.
Otherwise output 1.

This attack follows a similar structure as those outlined in previous sections.
However, it accesses the targeted ball D + 1 times total. Intuitively, we are
showing that each of these accesses must touch one of the D initial locations of
the balls. If that is true, then there is some pair which accesses the same location
by the pigeonhole principle. This pair is identified be the adversary with high
probability and that gives our advantage.

We claim that

Pr[Gobl-0
O (A) = 1] ≤ 0.55 (14)

and

Pr[Gobl-1
O (A) = 1] ≥ 0.999 (15)

which prove the theorem.
We prove similar claims to the previous proofs, but will need to make a

pigeonhole argument as well. For a fixed random string ω, by definition O is has
at most D duplicates of any ball and has no registers, after the first stage of the
adversary we have that every ball b1, . . . , bN1 lies in at most D entry of M2; Let
Q1, Q2, . . . , QN1 ⊆ [N2] be the sets of their respective indices, each with size at
most D.

We begin by proving (14). First, we show

Pr[|Qj∗
0

∩ rdst1 | ≥ 1] ≥ 0.997, (16)

which follows from arguments used in previous proofs. There are at most pT
accesses before t1, only r registers, and O can error on only ε fraction of the
inputs. Therefore, over the random choice of t1, which is independent from pre-
vious accesses. None of the at most D balls were touched prior to this access
with probability at most D(pT + r + εN1)/N1 ≤ 0.003.

We will prove that for every 2 ≤ i ≤ D + 1,

Pr[|Qj∗
0

∩ rdsti | ≥ 1] ≥ 1 − 0.5
D

(17)
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which together with (16) proves that there is some index q∗ that lies in two
different reads ti and tj with probability 0.497 using a union bound.

Then, given this q∗, i and j exists, we will prove, for the smallest pair i < j
with the desired overlap,

Pr[q∗ ∈ rdsti \
ti−1⋃

k=1

rdsk] ≥ 0.997, (18)

which finishes the proof for Eq. (14).
Now we shift our focus to prove Eq. (17) which requires the proof techniques

used in the previous extension. We redefine the function B(Ĵ , ω̂) for this new
setting, so it can take in a sequence of variable length Ĵ ∈ [N1]≤DT and ω̂ ∈ RSp.
Let Ĵ be length k, then B works as follows:

1. Run the game Gobl-0
O (A) with ω = ω̂, J = Ĵ × ⊥DT−k, until the end of

the first stage. At this point, every ball is in some set of indices in M2, or
in a register. Let Q1, . . . , QN1 be the sets of indices of the balls b1, . . . , bN1

respectively in M2.
2. Continue the game for another k queries (i.e. Ĵ is finished). Let st be the

state of O.
3. Output the number of j ∈ Ĵ such that |Qj ∩ Access(j, st, ω′)| = 0.

Similarly, we redefine B(Ĵ , ω̂, ŝt), Ball(Ĵ , ω̂), and Ball(Ĵ , ω̂, ŝt) with the updated
check condition at the end. Even with this redefinition, it suffices to show, for
every i ≥ 2,

Pr
J,ω

[B(J, ω) > 0.25ti] ≤ 0.2/D. (19)

Assuming this, we have for any fixed i ≥ 2,

Pr
J,ω,t

[|Qj∗
0

∩ rdsi| = 0] ≤ Pr
J,ω,t

[|Qj∗
0

∩ rdsi| = 0 ∧ B(J,w) ≤ 0.25ti]

+ Pr
J,ω,t

[|Qj∗
0

∩ rdsi| = 0 ∧ B(J,w) > 0.25ti]

≤ 0.25/D + Pr
J,ω

[B(J,w) > 0.25ti]

≤ 0.25/D + 0.2/D < 0.5/D.

In this probability, we note that J is taken according to the distribution that
A submits to to the left part of its oracles up to rdsti which is independently
random outside of the locations t1, . . . , ti−1.

First, we bound (19), by conditioning on the size of Ball(J, ω). We have that
PrJ,ω[B(J, ω) > 0.25ti] is at most

Pr
J,ω

[Ball(J, ω) > 0.03N1] + Pr
J,ω

[B(J, ω) > 0.25ti ∧ Ball(J, ω) ≤ 0.03N1]. (20)

The first term is bounded using Markov’s inequality. We assert that for any fixed
Ĵ ∈ [N1]≤DT ,

Eω[Ball(Ĵ , ω)] ≤ r + pDT + εN1 ≤ 0.003N1/D,
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where ε = Advcor
O (A). Just as before, this follows because B will count at

most r balls from registers, pDT balls moved during the second stage, and (in
expectation) at most εN1 balls on which O errs with our adversary. Each of these
contribute at most 0.001N1/D to expectation. By Markov’s inequality, we get
that first term of (20) is at most 0.1/D.

We complete the proof by bounding the second term of (20), in a similar way
to before. Intuitively, since the entries of J are distributed according to A, for
a set ŝt this is the probability that at least 0.25ti of its entries land in a pre-
determined set of size at most 0.03N1, or equivalently a tail bound on flipping
a biased coin ti − i times. We subtract i, because i − 1 values are the same. So,
long as 0.25 of the remaining values are covered by B(J, ω), then 0.25 of all the
values will be covered, giving us an upper bound. Formally, upper bound with an
existential quantifier over the state and union bound as in the previous section,
but we omit the details here.

Take the probability of heads to be 0.03, and let X be the total number of
heads seen after ti independent coin flips. Then, we have, for a fixed ω̂ and fixed
ŝt,

Pr
J

[B(J, ω̂, ŝt) > 0.25(ti − i)] ≤ Pr[X > 0.25(ti − D)]

≤ Pr[X > (1 + 7.33)0.03(ti − D)].

Using a Chernoff bound, this probability is at most

(
e7.33

(8.33)8.33

)0.03(ti−D)

≤ 0.75(ti−D) ≤ 0.75T−D.

Then, a union bound of all states gives us our final requirement,

|StSp| · 0.75(T−D) ≤ 20.0001N1/(D3p)0.750.001N1/(D2p)−D < 0.1

when D < 0.5
√

N1 and N1 ≥ 106. This concludes the proof of (17).
We show (18) next. Fix q∗, i and j as before. Then,

Pr[q∗ ∈ rdsti \
ti−1⋃

k=1

rdsk] ≥ 1 − ε − (p + r) · (ti − 1)
N1

≥ 0.997

because O can error on a most ε faction of the inputs, and there are at most
(p+r) ·(ti −1) balls touched before ti is read. Also, ti and thus q∗ is uniform and
independent from all other reads except for tk when k < i. However, if q∗ ∈ tk
from some k, then we would have taken tk and ti as the pair to fix instead.
Together with (17) this proves (14).

To prove (15), we condition on ω, J and j∗
1 , then the each of the sets rdstj

can overlap with at most p of the (j − 1)T previous sets in the desired way.
Summing over all possible endpoints shows the probability of outputting 0 is
bounded by Dp/T < 0.001, which proves 1 is output with probability at least
0.999, completing the proof of the theorem. ��
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6 Constant-Round ORAM

We define k-round ORAM in our notation and then review (within our formal-
ism) the “square-root construction” given in the original paper on Oblivious
RAM by Goldreich and Ostrovsky [11]. We will also present an O(kN

1/k
1 )-

overhead construction using k-rounds which can be seen as a middle ground
between the square-root and hierarchical constructions. A similar construction
was given by Goodreich et al. [13], which explores constant round ORAM as an
extension of the square root construction for all constants. However, the number
of rounds is less explicit than the construction we present.

We then prove a simple corollary of Theorem2, which shows the constant-
round O(kN

1−1/k
1 )-overhead constructions are optimal up to logarithmic factors

for a restricted class of ORAM we call “partition-restricted” ORAM. This restric-
tion requires that the reads of all rounds except the last fall into a relatively
small, pre-determined zone of physical memory. We then note that the given
constant-round constructions have this property, but that it does not extend to
logarithmic round constructions which do not respect this restriction. This corol-
lary suggests that to achieve better overhead performance for constant rounds,
would require new techniques in ORAM constructions.

Constant round ORAM definitions. The k-round definition we give is a
natural extension of the one-round definition. We aim for a simple and permissive
definition, so we allow the ORAM to issue a sequence of k reads. After each
read, the results are accumulated before the final round, which produces the
writes and the operation output. We note that allowing writes in the intervening
rounds would not strengthen the ORAM, as they can always be deferred without
increasing bandwidth in our model.

We remark that other definitions are not typically so permissive. In practice,
one would need to store the read results in the ORAM memory which often
needs to be small.

Definition 8. Let B1,B2,RSp,StSp be sets, and N1, N2 be positive integers. For
j = 1, 2 define the sets

RdOpsj = [Nj ], WrOpsj = [Nj ] × Bj , and Opsj = RdOpsj ∪ WrOpsj .

A k-round ORAM scheme (with respect to B1,B2, N1, N2,StSp,RSp) is a tuple
of functions O = (Access1, . . . ,Accessk,Out),

Accessi : B∗
2 × Ops1 × StSp × RSp → RdOps∗2 (i = 1, . . . , k)

Out : B∗
2 × Ops1 × StSp × RSp → (B1 ∪ {⊥}) × WrOps∗2 × StSp.

We next adapt the correctness and obliviousness definitions to constant-
round ORAM. We use the definitions and their associated games as-is, except
that in the games we redefine the notation Access to mean the following algo-
rithm, for op ∈ Ops1, st ∈ StSp, ω ∈ RSp:
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Access(op, st, ω)
dr ← ⊥
For i = 1, . . . , k:
rds ← rds ∪ Accessi(dr, op, st, ω)
dr ← M2[rds]

Return rds.

This models the accumulated reads mentioned above, where each Accessi gets to
see the output of reads for Access1, . . . ,Accessi−1. The games then provide Out
with all of the accumulated read results, exactly as specified in their code. The
rest of the games are exactly the same.

The state size of a k-round ORAM is measured exactly as before. For worst-
case and amortized overhead, we use the same definitions, but with the version
of Access defined above.

A version of the Square-Root ORAM. The square-root construction of
Goldreich and Ostrovsky is usually described as a multi-round ORAM with no
state. Here we show that it can be viewed as an amortized one-round scheme
with larger state that matches our lower bounds. Below we extend this to a
family of constant-round schemes. As the ideas are very standard in the ORAM
literature, we omit the full details.

The ORAM works with an arbitrary set of balls B1 and virtual memory
size N1, and with physical memory of N2 = N1 +

√
N1 cells with B2 = B1.

The randomness space is defined so that an unbounded sequence of random
permutations π on [N2] can be generated4. The state of the ORAM consists of
a counter st.c (initially 0, and always between 0 and

√
N1) and a tuple st.Cache

of at most
√

N1 virtual-address/ball pairs.
The ORAM maintains the physical array to hold the N1 balls at physical

addresses π(1), . . . , π(N1), with virtual address a stored at physical address π(a),
where π is the current random permutation. The physical addresses π(N1 +
1), . . . , π(N1+

√
N1) will be “dummies”, which are accessed to cover for when the

same virtual address been accesses multiple times. The ORAM stores in st.Cache
the virtual-address/ball pairs involved in the most recent

√
N1 operations. To

process a read operation, if the requested virtual address a is not in the cache,
then ORAM accesses the ball at physical address π(a). If on the other hand
a is stored in the cache, then the ORAM accesses the next dummy, namely
π(N1 + st.c). After retrieval, balls are held in the cache. After

√
N1 operations,

the cache may be full, so the ORAM downloads the entire physical memory,
samples a fresh π, and places the balls in the physical memory according to π.

This ORAM is perfectly oblivious: Independent of the addresses, the ORAM
will access random distinct physical addresses for at most

√
N1 reads (or no

addresses for writes), followed by a reads and writes to all N2 physical cells. It
4 To be totally rigorous in our formalism, one needs to give the ORAM the ability to

remember which permutation π in the sequence is being used, e.g. by providing an
unbounded counter that does not count as state.
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has amortized overhead p = (
√

N1 + (N1 +
√

N1))/N1 = O(
√

N1) and a state
with m = log N1 bits and r =

√
N1 registers, making it tight for Theorem 2

up to logarithmic factors.

kth-root ORAM Construction. The ideas in the square-root ORAM gen-
eralize to give a k − 1-round construction with amortized overhead O(kN

1/k
1 )

and state size O(N1/k
1 ). This construction is simply a re-parameterization of the

well-known hierarchical ORAM of Goldreich and Ostrovsky [11], adjusted to a
constant number of levels, so we only sketch the construction, assuming their
construction is familiar.

The ORAM holds in its state a cache containing at most N1/k virtual-
address/ball pairs. At the physical memory, it maintains k−1 “levels”, which are
regions of physical memory. Level i consists of O(log(1ε )N (i+1)/k

1 ) cells storing
a hash table capable of holding N

(i+1)/k
1 balls, except with probability ε, which

we consider an independent error parameter. Thus the final (k − 1)-th layer can
hold N1 balls.

An access happens over k−1 rounds. Initially it the ORAM checks the cache,
and remembers if the requested virtual address is found or not. Then in the i-th
round, the hash table on level i is to be accessed. If the ball has not yet been
found, then the table is accessed at the points determined by the hash function
for that level. If the ball has been found then a dummy is accessed. Eventually
the ball is found and added to the cache (and in the case of writes the ORAM
just add them directly).

Eventually the cache will overflow, so the ORAM periodically rebuilds the
hash tables according to a schedule that also ensures none of the levels overflow.
Namely, after N

i/k
1 operations, levels 1, . . . , i are downloaded and all of the balls

they contain are stored in a rebuilt table on level i. (In our setting we again
avoid the complexity of using oblivious sorts; We allow ORAMs to simply to
rebuild locally and upload the tables.)

This completes the sketch of the kth-root ORAM. It has state size O(N1/k
1 )

and overhead O(kN
1/k
1 ). We can calculate the overhead by observing that after

N
i/k
1 operations, the ORAM performs a rebuild requiring O(N (i+1)/k

1 ) opera-
tions. Thus after N1 operations, this type of rebuild will accumulate a total cost
of O(N1−i/k

1 · N
(i+1)/k
1 ) = O(N1+1/k

1 ) physical operations. This amortizes to
O(N1/k

1 ) overhead, and summing over k gives O(kN
1/k
1 ).

Bound for Restricted k-round ORAM. We now partially address the ques-
tion of whether the kth-root ORAMs are optimal. Our one-round bounds of
course do not apply, and adapting them appears to be non-trivial. Instead, we
observe that these ORAMs obey a simple restricted property, and then prove
that the kth-root ORAM is optimal amongst multi-round ORAMs with this
property.

We call this property partition-restricted. Intuitively, a multi-round ORAM is
�-partition-restricted if all of its rounds always access some predetermined regions
of � physical cells. For example, the kth-root ORAM is �-partition-restricted for
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� = O(N1−1/k
1 ), as the first k − 2 rounds will access tables of that size or less

(recall the kth-root ORAM has k − 1 rounds total).
For such ORAMs we make a simple observation: One can move the physical

memory of the first (k − 2) rounds into the state of the ORAM, and transform
it into a one-round ORAM to which our bound applies.

Definition 9. Let O = (Access,Out) be a k-round ORAM scheme with respect
to B1,B2, N1, N2,StSp = {0, 1}m×(B1∪{⊥})r,RSp We say that O is �-partition-
restricted if there exists a set P ⊆ [N2] of size at most � such that for every input
(dr, op, st, ω) and i = 1, . . . , k − 1 we have Accessi(dr, op, st, ω) ⊆ P .

We now show that �-partition-restricted multi-round ORAMs reduce to one-
round ORAMs.

Corollary 1. Let O = (Access,Out) be a k-round balls-in-bins ORAM scheme
with respect to B1,B2, N1, N2,StSp,RSp. Assume |B1| ≥ N1 ≥ 30 · 106 and B2 =
B1 ∪ {⊥}. Suppose O has amortized overhead 1 ≤ p < C

√
N1, state size s, O is

partition-restricted to � server cells, and for every adversary A, Advcor
O (A) <

0.001 and Advobl
O (A) < 0.15. Then

p(s + � log N1) ≥ CN1,

where C is an absolute constant.

This corollary proves that the kth-root is optimal up to logarithmic factors
for this restricted class of ORAM. It is notable that this bound is actually inde-
pendent of the number of rounds the ORAM uses. It only requires that all but
the final access are restricted. This means the registers of the client can be out-
sourced on the server and read as an additional round. So, we assume there are
no registers in StSp and achieve the same bound.

Proof. Assume for a contradiction that (s + � log N1) < CN1/p. Then, we can
construct a one-round ORAM O′ with state space StSp′ = StSp × (B1 ∪ {⊥})�.
Since O is partition-restricted to � server cells there is a set P which can capture
the first k − 1 access. The new ORAM O′ simulates O but whenever O reads or
writes to the set P , O′ simulates this by reading or writing to the � extra registers
in StSp′. Because the first k−1 accesses will always read from P , O′ only requires
accessing the server to simulate the final access, making it one-round.

Notice that maxA Advcor
O′ (A) ≤ maxA Advcor

O (A) and maxA Advobl
O′ (A) ≤

maxA Advobl
O (A). This follows because any adversary against O′ can ignore all

accesses before the final access and have the same advantage against O.
Since O′ is one-round, p(s + � log N1) < C · N1, and 1 ≤ p < C

√
N1 this

contradicts Theorem 3. ��

7 Conclusion and Open Problems

Lower bounds for ORAM schemes have been largely focused on bandwidth cost
for ORAM with an unrestricted number of rounds and constant client memory.
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However, there are still open questions when schemes are restricted to have a
fixed number of rounds.

We prove near-optimal results for one-round ORAM with large client memory
in this paper. However, it is possible that do not we have a tight bound for
one-round ORAM with constant client memory. It seems likely that one-round
ORAM with constant memory should require Ω(N1) overhead.

There is the problem of extending our work out of the balls-in-bins model.
Our techniques do not immediately give lower bounds in an information theo-
retic model for ORAM, but possibly could be extended with techniques similar
to those used by Larsen and Nielsen [18]. Many of the proof steps extend to
equivalent statements with compression arguments, however it is unclear how to
extend Eq. (8) to the information theoretic setting.

This issue is related to an issue which arose with bounded duplicate ORAM.
If we bound the duplication, the proof extends but gets weakens significantly.
We are unaware of any duplicate balls-in-bins ORAM constructions that match
our bound, and it seems likely the loss to duplicates is an artifact of the proof.

Extension beyond partition-restricted to two-round or even an arbitrary k-
round is still open. One might hope that the k-round construction from Sect. 6
is tight up to poly-log factors and that the true lower bound for k-round is
Ω(kN

1/k
1 ) with constant client memory.
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Abstract. In this work, we consider the construction of oblivious RAMs
(ORAM) in a setting with multiple servers and the adversary may cor-
rupt a subset of the servers. We present an Ω(log n) overhead lower
bound for any k-server ORAM that limits any PPT adversary to distin-
guishing advantage at most 1/4k when only one server is corrupted. In
other words, if one insists on negligible distinguishing advantage, then
multi-server ORAMs cannot be faster than single-server ORAMs even
with polynomially many servers of which only one unknown server is cor-
rupted. Our results apply to ORAMs that may err with probability at
most 1/128 as well as scenarios where the adversary corrupts larger sub-
sets of servers. We also extend our lower bounds to other important data
structures including oblivious stacks, queues, deques, priority queues and
search trees.

1 Introduction

With the ever increasing amount of data, it is becoming infeasible for users to
store their data on consumer machines such as phones or laptops. Therefore,
there has been significant movement to outsourcing data to larger cloud storage
providers. In this work, we focus on privacy-preserving storage protocols that
considers the setting where a client outsource the storages of data to a server
such as a cloud storage provider in a privacy-preserving manner. For privacy, the
client wishes to maintain privacy for the outsourced data from the adversarial
server as the outsourced data might be sensitive. In addition, the client wishes to
maintain the ability to perform operations over the outsourced data in an efficient
manner. As a first step, the client might consider encrypting the data locally and
only sending ciphertexts of the data to the server while storing the private key
exclusively in client memory. As a result, the server never sees the data in the
plaintext. However, the adversarial server will still observe the patterns of access
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performed by the client to the encrypted data. Several works in the past decade
(see [21,23,26,31] as some examples) have shown that access pattern leakage
can be used to compromise the privacy of the encrypted data. Therefore, it is
an important problem to also efficiently hide the patterns of access to encrypted
data to maintain privacy.

To solve the problem of hiding patterns of access to data, Goldreich and
Ostrovsky [17] introduced the oblivious RAM (ORAM) primitive. Oblivious
RAMs consider the problem of enabling a client to outsource an array with
n entries, each consisting of exactly r bits, to the server, while enabling the
client to both retrieve and perform update operations on any of the n array
entries. The server itself consists of a memory of cells, each storing w bits. The
client performs array update and retrieval operations by reading and writing to
the server memory cells in a manner that hides the underlying operation being
performed.

In terms of access pattern privacy, oblivious RAMs provide the guarantee
that the adversarial server will learn no information about the sequence of array
operations performed by the client except the total number of array operations
performed. In more detail, any adversary that is given two plaintext sequences of
array operations of equal length and observes the pattern of server cell accesses
incurred by an ORAM, cannot determine which of the two plaintext sequences
induced the observed ORAM access pattern.

The ORAM primitive is extremely powerful because it can be used in a
blackbox manner to convert any non-oblivious algorithm/data structure into an
oblivious version. In particular, every plaintext retrieval or update of memory
performed by the non-oblivious algorithm/data structure will be replaced with
an ORAM operation. Therefore, an important problem is constructing efficient
ORAMs that may be used to also construct efficient algorithms/data structures
for more complex tasks. For this reason, ORAM has been a well-studied topic
over the past decade.

Efficiency of ORAMs is typically measured in terms of the bandwidth over-
head. The bandwidth overhead is defined as the multiplicative factor of the extra
number of server cells that must be accessed to process a single ORAM oper-
ation, i.e. if the ORAM accesses t server cells on an ORAM operation, then
the bandwidth overhead is tr/w. Goldreich and Ostrovsky [17] presented the
first ORAM with poly-logarithmic amortized bandwidth overhead per operation.
A series of works [18,19,28,44,47,48] continued improving the efficiency until
recent works by Patel et al. [40] introduced an ORAM with O(log n log log n)
bandwidth overhead and Asharov et al. [1] presented an ORAM with O(log n)
bandwidth. Other variants of ORAM such as statistically-secure ORAMs [9,10],
parallel ORAMs [2,5,7] and garbled RAMs [14,15,38] have also been studied.
Additionally, there has been work for efficiently constructing other oblivious data
structures [49] including priority queues [25,46]. To summarize, there are opti-
mal Θ(log n) constructions for oblivious arrays (RAMs), stacks, queues, deques
and priority queues in the single-server setting.
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There has also been a lot of work proving lower bounds on the efficiency of
ORAMs. Goldreich and Ostrovsky [17] presented an Ω(log n) lower bound with
certain restrictions of statistical adversaries and a no-coding assumption using a
“balls-and-bins” model. Larsen and Nielsen [35] improve these lower bounds by
considering computational adversaries where ORAMs can encode memory in any
possible manner. Further works investigate the question of whether relaxations of
the original ORAM setting allow for more efficient constructions and prove that
the essentially same lower bound holds for other oblivious data structures [24,
34], weaker differentially private guarantees [43] and weaker adversaries [22].
A natural open question that remains is whether one can find a meaningful
relaxation that allows us to break the logarithmic barrier. In this work, we
investigate whether having access to multiple non-colluding servers can help us
achieve this goal.

The ability to construct asymptotically faster schemes using multiple non-
colluding servers has been exhibited previously in another privacy-preserving
data structure known as private information retrieval (PIR). PIR was intro-
duced by Chor et al. [8] for the information-theoretic setting with multiple non-
colluding servers and Kushilevitz and Ostrovsky [30] for the computationally-
secure setting with a single server. PIR and ORAM mainly differ in the capa-
bility of the client and server to hold state. PIR requires that both the client
and server are stateless (beyond the server being able to hold a static database).
In particular, clients are not even able to hold a private key that may be used
between multiple queries. In contrast, ORAM enables both the client and server
to be stateful and use information between multiple queries. For more infor-
mation comparing ORAM and PIR, we refer readers to Sect. 1.2 of [41]. In the
single-server variant of information-theoretic PIR, there are several proofs show-
ing at least linear Ω(n) bandwidth is required for each query [16,27]. These are
matched by the simplest construction of information-theoretic PIR where the
client downloads the entire database on each query. On the other hand, PIR in
the two non-colluding servers scenario may be constructed using sublinear band-
width. The original works by Chor et al. [8] showed that there existed two-server
statistically-secure PIR constructions with O(

√
n) and O(n1/3) bandwidth. In

more recent works, it has been shown that there exist PIR schemes in the two
non-colluding servers setting with sub-polynomial bandwidth [11].

As the multi-server setting considers weaker adversaries, the lower bounds
for the single-server setting [35,43] do not directly apply. Therefore, it seems
plausible that oblivious data structures can be constructed in this model with
faster efficiency than their single-server counterparts. While there have been sev-
eral works [4,6,12,20,29,37] that consider oblivious RAMs in the two (or more)
non-colluding servers model, all of them have an overhead of at least Ω(log n),
meaning that they are not asymptotically faster than single-server oblivious
RAMs and data structures. This leads to the natural question of whether it is
possible to construct o(log n) overhead oblivious RAMs and data structures in
the multiple non-colluding servers setting.
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Before presenting our results, we find it insightful to discuss two simple strate-
gies for implementing multi-server ORAMs. In a setup with k servers, one naive
approach is to pick a uniform random server and simply store the array there,
without any obfuscation. This gives a great overhead of O(1) (for r = Θ(w)),
but unfortunately security is very weak: A single adversarial server can distin-
guish two sequences of operations with probability 1/k. Another simple strategy
is to just ignore the first k − 1 servers and run an optimal single-server ORAM
on the last server. This gives an overhead of O(log n) but fails to exploit the
multi-server setting. Is there anything in between these two extremes?

Our main result is a surprising negative resolution to this question, that is, if
one insists on o(log n) overhead, then the only solution is to pick a random server
and store the array there without any obfuscation, resulting in 1/k distinguishing
probability for an adversarial server!

1.1 Our Results

Before we formally present our main contributions of this paper, we start by
briefly describing the setting for which our lower bounds will apply. Our sce-
nario consists of k ≥ 2 servers that a client may use to host storage of parts
of an oblivious RAM construction. We strictly consider weak, probabilistically
polynomial time adversaries that can corrupt exactly one server and see all the
probes performed by the ORAM on the corrupted server. As we are proving
lower bounds, our results also apply to stronger adversaries that may be able to
corrupt a large number of servers such as a constant fraction of all k servers. By
the same argument, our lower bound also applies to computationally unbounded
adversaries.

We note our ORAM lower bounds apply to the natural setting where opera-
tions arrive in an online manner. That is, the ORAM must complete one oper-
ation before receiving the next operation. Furthermore, the adversary is aware
of when the processing of one operation ends and the processing of another
operation begins.

Finally, we prove our lower bounds in the cell probe model of Yao [51]. In
this model, the memory of the k servers is viewed as cells of w bits. The only
measured cost is the number of probes performed to server cells. Computation,
accessing memory stored on the client, generating randomness and querying the
random oracle (if one exists) is completely free. Once again, since we are proving
lower bounds, our results also apply to more natural cost models where these
operations are charged appropriately.

We now present our main result:

Theorem 1 (Informal). Any online k-server ORAM with n blocks of mem-
ory, consisting of r ≥ 1 bits each, must have expected amortized overhead of
Ω(log(nr/m)) on sequences of Θ(n) operations where the client has m bits of
memory. This holds for probabilistically polynomial time adversaries that corrupt
exactly one server and have a distinguishing advantage of at most 1/4k for any
pair of length n sequences.
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For the natural setting where r ≤ m ≤ n1−ε for any constant ε > 0, the
above lower bound simplifies to Ω(log n). The above lower bound holds in the
random oracle model, for any number of servers k and for any cell size w.

Using the above result, we show that multi-server ORAMs cannot be asymp-
totically faster than single-server ORAMs for any reasonable number of servers.

Corollary 1 (Informal). For any k = poly(n), any k-server ORAM where
probabilistically polynomial time adversaries that corrupt one of the k servers
have negligible distinguishing advantage, must have Ω(log n) overhead, which is
asymptotically equivalent to the optimal single-server ORAM.

Finally, we note that our lower bounds may be extended to other important
data structures including stacks, queues, deques, priority queues and search trees.

Theorem 2 (Informal). Any online k-server oblivious stacks, queues, deques,
priority queues or search trees storing at most n elements, consisting of r ≥ 1
bits each, must have expected amortized overhead of Ω(log(nr/m)) on sequences
of n operations where the client has m bits of memory. This holds for probabilis-
tically polynomial time adversaries that corrupt exactly one server and have a
distinguishing advantage of at most 1/4k for any pair of length n sequences of
operations.

1.2 Our Techniques

In this section, we present an overview of the new techniques needed to prove
our lower bound. To do this, we briefly overview the previous lower bound for
ORAMs in the single-server setting by Larsen and Nielsen [35]. In addition, we
show why the original proof fails for the setting when there exists multiple servers
where the adversary may corrupt a single server. Larsen and Nielsen [35] used
the information transfer technique introduced by Patrascu and Demaine [45].
For a sequence of n ORAM operations, each either a read or a write into one
of n array entries, the information transfer tree is a complete binary tree with
exactly n leaf nodes where the first operation is assigned to the leftmost node,
the second operation is assigned to the second leftmost node and so forth. As we
consider the cell probe model, each operation consists of a series of cell probes.
Here a cell probe is simply an access to a server memory cell. For each probe p
to a cell c, we identify both the operation that incurred p as well as the most
recent, past operation that overwrote the contents of cell c. The cell probe p is
assigned to the lowest common ancestor of the two leaf nodes associated with
the operation performing p and the most recent, past operation that overwrote
the probed cell. If the probed cell was never overwritten previously, the probe
is not assigned to any node in the tree. Note that all cell probes are assigned to
at most one node in the tree. Therefore, a lower bound on the number of total
assigned probes results in a cell probe lower bound.

Consider any internal node v in the information transfer tree and the nd

left and right leaf nodes of the subtree rooted at v. Consider the sequence z of
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nd write operations associated with the left leaf nodes each consist of writing
uniformly at random chosen r-bit strings into nd unique indices. Furthermore,
suppose the operations in the right subtree of z perform nd read operations
that retrieve the nd different random bit strings written in the left subtree. If
most of the nd read operations in the right subtree return the right answer,
then a large portion of the r · nd bits of entropy generated in write operations
in the left subtree must be transferred to the answers of read operations in the
right subtree. Information may only be transferred between the left and right
subtree through client storage and the probes assigned to the root of the subtree
v. As client storage is typically small, this implies a large number of probes
must be assigned to v with high probability. Otherwise, one can construct an
impossible compression scheme of the r · nd random bits generated in the left
subtree. Suppose there exists another sequence y of n ORAM operations that
assigns significantly less probes to v. We can construct a simple and efficient
adversary that distinguishes the two sequences by simply counting the number
of probes assigned to v in polynomial time, which contradicts the obliviousness
assumption. The application of this argument to many nodes of the information
transfer tree suffices to prove the single-server ORAM lower bound.

Moving to the multi-server setting with k ≥ 2 servers, the adversary is able
to only see the probes performed to one server. For any multi-server ORAM
construction that performs most of its probes to a single server, we can extend
the adversary from the single-server setting by corrupting a server uniformly at
random. As a result, the adversary is able to distinguish with probability Ω(1/k)
unless y also assigns similarly large number of probes with high probability to
the corrupted server. However, there might exist intelligent schemes that evenly
distribute all probes across all k servers such that the adversary will only be able
to see a small number of probes. Even worse, the probes might be distributed
such that the probability any server sees even one probe is small when the
number of servers is large such as k = Ω(n2). Therefore, the challenge is proving
that sequence y must also assign a large number of probes to v even when the
adversary corrupts only a single server.

We now give intuition as to why these simpler counting adversaries do not
suffice to prove lower bounds for k-server ORAMs with the current techniques.
Going back to the proof framework of [35], we can consider an impossible
sequence y that assigns a small number of probes to v in expectation. We need to
show that the adversary can distinguish sequences y and z where z is the worst-
case sequence for node v that maximizes the number of probes assigned to node
v described in the previous paragraph. In the proof of [35], it was critically shown
that the number of probes assigned by z to v is large with very high probability.
This is a strong statement about the distribution of probes (as opposed to just
bounding the expected number of probes assigned to v) that showed the count-
ing adversary to distinguish with an impossible advantage. We note that this
argument heavily utilizes the fact that the contents of cells of probes assigned
to node v encode almost all the information generated in the left subtree of v.
Unfortunately, these techniques do not work for multi-server ORAM schemes
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that can arbitrarily distribute probes to different servers. There is no require-
ment or guarantee that by restricting to probes that are both assigned to node
v and all occur on a single server, the contents of these probed cells still encode
the r-bit random strings generated in the left subtree of v. For example, a multi-
server scheme might distribute the r-bit random strings across several servers
using an information-theoretic secret sharing scheme. Therefore, the necessary
guarantees needed for the simple counting adversary to successfully distinguish
sequences y and z might not be true in the multiple server setting.

The main idea of our proof technique is to consider a more sophisticated
adversary that groups the number of observable probe counts to the corrupted
server that are assigned to node v into geometrically increasing sets, [20, 21),
[21, 22), . . . , [2j ,∞) for sufficiently large j. The new adversary will attempt to
distinguish sequences y and z by finding a grouping of probe counts that are
more likely for sequence y instead of sequence z. If sequence z results in a probe
count in group [2i, 2i+1) with probability p, then sequence y must also result in a
probe count in that group with probability at least p− ε if the adversary should
not be able to distinguish the sequences y and z with probability greater than
ε. As a result, we can show that the expectation of the probe counts assigned to
v to each server by y must be similarly large as under z, completing the proof.

1.3 Related Works

There has been two previous works showing that proving lower bounds for certain
oblivious data structures in weaker settings will be difficult. Boyle and Naor [3]
show that proving lower bounds for offline ORAMs that receive all operations
ahead of time is as hard as proving sorting circuit lower bounds. Weiss and
Wichs [50] prove that lower bounds for read-only ORAMs would imply unknown
lower bounds in either sorting circuits and/or locally decodable codes.

There are also many works that have proved lower bounds in the cell probe
model for data structures without privacy guarantees. Yao [51] introduced the
cell probe model as a model for proving lower bounds. Fredman and Saks [13]
presented the chronogram technique to prove almost logarithmic lower bounds.
Patrascu and Demanie [45] introduced the information transfer technique to
prove logarithmic lower bounds. Panigrahy et al. [39] present the cell-sampling
technique to prove almost logarithmic lower bounds for static data structures.
Larsen [32,33] presented the first super-logarithmic lower bounds for data struc-
tures with Θ(log n)-bit outputs. The first super-logarithmic lower bounds for
decision data structures was proved in [36]. The above list only several examples
of the many works in cell probe lower bounds.

2 Formal Model

We prove our lower bounds in a variant of the oblivious cell probe model of
Larsen and Nielsen [35], adapted to a setting with k servers. In this model, an
ORAM consists of k servers S1, . . . , Sk, each with a server memory of w-bit



Lower Bounds for Multi-server Oblivious RAMs 493

cells, where each cell has an integer address in [K] for some K ≤ 2w. We also
assume k ≤ 2w such that a cell has enough bits to store the index of a server.
An ORAM is furthermore equipped with a client memory of m bits, which is
free to access. A multi-server ORAM processes read and write operations by
reading and writing to memory cells at the servers. For read operations, the
ORAM terminates by announcing the answer to the read based on what it has
probed.

We refer to the reading and writing of a memory cell simply as probing it -
also to distinguish reading and writing cells from read and write operations.
The running time is defined as the number of cells it probes when processing
read and write operations. Randomized ORAMs furthermore have access to an
arbitrarily long uniform random bit string R, which is referred to as the random
oracle bit string. The bit string R is drawn before any operations are performed
on the ORAM and is chosen independently of the future operations. We say that
a randomized ORAM has failure probability δ if for every sequence of operations
op1, . . . , opM , and for every query opi in that sequence, the probability that opi

is answered correctly is at least 1 − δ.
When processing read and write operations, the cells probed and the con-

tents written to cells in each step may be an arbitrary deterministic function
of the client memory, random oracle bit string and contents of all other cells
probed so far while processing the current operation. The ORAM is also allowed
to update the client memory in each step, again setting the contents to an arbi-
trary deterministic function of the current memory, random oracle bit string
and contents of cells probed so far. Allowing an arbitrary deterministic func-
tion abstracts away the instruction set of a normal RAM and allows arbitrary
computations free of charge.

To define the security requirements of a multi-server ORAM, let

y := (op1, . . . , opM )

denote a sequence of M read and write operations. Let

A(y) := (A(op1), . . . , A(opM ))

denote the corresponding probe sequence, where each A(opi) is the list of probes
made while processing opi. Note that A(y) is a deterministic function of the
random oracle bit string and the sequence y. Each probe in a list A(opi) is
described by a tuple (s, a), where s is the index of the server where the probe is
made and a is the address of the memory cell accessed at the server. For a server
Si, we let A|Si

(opj) denote the sub list of A(opj) containing only the probes
(s, a) with s = i. We similarly define A|Si

(y) = (A|Si
(op1), . . . , A|Si

(opM )) as
the probes seen by server Si. A multi-server ORAM is secure if it satisfies the
following security guarantee:

Definition 1 (Security). A multi-server ORAM is (ε, δ)-secure if the follow-
ing two properties hold:
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Indistinguishability: For any two sequences of operations y and z of the same
length n and for any server Si, their probe sequences A|Si

(y) and A|Si
(z)

cannot be distinguished with probability better than ε by an algorithm which
is polynomial time in n. Formally, if A|Si,n denotes the image of A|Si

on
sequences of length n and f : A|Si,n → {0, 1} denotes a polynomial time
computable function, then it must be the case that |Pr[f(A|Si

(y)) = 1] −
Pr[f(A|Si

(z)) = 1]| ≤ ε for any two sequences y and z of length n. Here the
probability is taken over the randomness R of the ORAM.

Correctness: The ORAM has failure probability at most δ.

3 Lower Bound

We use the information transfer technique by Patrascu and Demaine [45], mod-
ified to multiple servers. We consider various sequences of n read and write
operations to an ORAM O with memory size n. The read and write opera-
tions store and retrieve r-bit strings and the servers have cell size w bits. We
prove the following theorem

Theorem 3. Any ORAM with k servers that is (1/4k, 1/128)-secure, has server
cell size w bits, has client memory size m bits and that supports storing r-bit
values in n entries, must make an expected amortized Ω(r log(nr/m)/w) probes
per operation over sequences of n operations.

First we define the information transfer tree T . For any sequence of n oper-
ations x = op1, . . . , opn, we construct a binary tree T with the operations as
leaves. When processing the operations opi, we assign the probes in A(opi) to
the nodes of T . For each probe p = (s, a) ∈ A(opi), consider the last time the
cell (s, a) was probed during op1, . . . , opn. If opj with j ≤ i denotes the last
operation in which the cell was probed, we assign p to the lowest common ances-
tor of opi and opj in T . If p is the first probe to access (s, a) we do not assign it
to any node of T . For each node v of T , we let P (x, v) denote the set of probes
assigned to v while processing x (note the P (x, v) is a random variable due to
the randomness R of the ORAM).

Observe that any probe is assigned to at most one node of T .
We now consider a fixed “dummy” sequence of operations:

y := read(0),read(0),read(0), · · · ,read(0)

which always just reads the first ORAM memory cell. We say that the root of
T has depth 0 and the leaves have depth log n. For simplicity, we also assume
n is a power of two. For a node v ∈ T , we use d(v) to denote its depth. We will
prove the following:

Lemma 1. If O is (1/4k, 1/128)-secure and has client memory size m, then for
any node v ∈ T of depth d = d(v) ≤ log(nr/m)− 6, it holds that ER[|P (y, v)|] =
Ω(nr/(w2d)).
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Lemma 1 immediately gives our result, since by linearity of expectation we get
that the total number of probes T made by O satisfies:

E[T ] ≥
∑

v∈T
E[|P (y, v)|]

≥
log(nr/m)−6∑

d=0

∑

v∈T :d(v)=d

E[|P (y, v)|]

≥
log(nr/m)−6∑

d=0

2d · Ω(nr/(w2d))

= Ω(nr log(nr/m)/w).

Thus what remains is to prove Lemma 1. To do so, consider a node v ∈ T of
depth d(v) ≤ log(nr/m) − 6. We consider a distribution Dv over sequences of
n operations op1, . . . , opn. The distribution is as follows: For every opi that is
outside the subtree rooted at v, we let opi = read(0). We let the nd = n/2d+1

operations in v’s left subtree be write(1, r1), . . . ,write(nd, rnd
) where each ri

is a uniform random r-bit string. We let the nd operations in v’s right subtree be
read(1), . . . ,read(nd). As in previous ORAM lower bounds, we first argue that
under distribution Dv, there must be many probes assigned to v in expectation:

Lemma 2. Let z ∼ Dv be a sequence of n operations. If O is (1/4k, 1/128)-
secure and has client memory size m, then Prz,R[|P (z, v)| ≥ (1/12)nr/(w2d)] ≥
3/4.

We defer the proof of Lemma 2 to Sect. 3.1 as it follows previous proofs unevent-
fully.

We will now use the security guarantees of O and Lemma 2 to prove Lemma 1.
To do so, start by partitioning the set P (x, v) into k sets P|S1(x, v), . . . , P|Si

(x, v)
where P|Si

(x, v) contains all probes to a cell at server Si while processing a
sequence of operations x. Let z ∼ Dv. For each j ∈ {0, . . . , log(nr/(48w2d))}
define qi,j as

qi,j := Pr
z,R

[|P|Si
(z, v)| ∈ [2j , 2j+1)].

when j < log(nr/(48w2d)), and define

qi,log(nr/(48w2d)) := Pr
z,R

[|P|Si
(z, v)| ≥ nr/(48w2d)].

Similarly, define
q̂i,j := Pr

R
[|P|Si

(y, v)| ∈ [2j , 2j+1)].

and
q̂i,log(nr/(48w2d)) := Pr

R
[|P|Si

(y, v)| ≥ nr/(48w2d)].

We first observe that for all i, j, we must have q̂i,j ≥ qi,j − 1/4k. To see this,
observe that if q̂i,j < qi,j − 1/4k then for an x ∈ {y, z}, the server Si can
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distinguish whether x = y or x = z with probability greater than 1/4k as follows:
When seeing A|Si

(x), output 1 if |P|Si
(x, v)| ∈ [2j , 2j+1) and 0 otherwise. Notice

that this information can be computed from A|Si(x). As a technical caveat, note
that z is random and not a fixed sequence as in the definition of the security
guarantee. But if the adversary can distinguish the random z from y, then by
averaging, there must exist a fixed sequence in the support of z which can also
be distinguished from y with the same advantage. Hence q̂i,j ≥ qi,j − 1/4k for
all i, j.

We now split the proof in two cases. Assume first that
∑

i qi,log(nr/(48w2d)) ≥
1/2. In this case, we have

∑
i q̂i,log(nr/(48w2d)) ≥ 1/2 − k/4k = 1/4. By linearity

of expectation, this implies ER[|P (y, v)|] ≥ (1/4)(nr/48w2d) = Ω(nr/(w2d)) as
claimed. Next, assume that

∑
i qi,log(nr/(48w2d)) < 1/2. By Lemma 2, we have

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d)] ≥ 3/4.

Now let E denote the event that for all i, we have:

|P|Si
(z, v)| < nr/(48w2d).

Note that

Pr
z,R

[¬E] =
∑

i

Pr[|P|Si
(z, v)| ≥ nr/(48w2d)] =

∑

i

qi,log(nr/(48w2d)) < 1/2

where the last inequality is by the assumption made previously. Therefore,
Prz,R[E] > 1/2. We then have:

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) ∧ E] ≥ 1 − 1/4 − (1 − Pr
z,R

[E]) = Pr
z,R

[E] − 1/4

Therefore

Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) | E] = Pr
z,R

[|P (z, v)| ≥ (1/12)nr/(w2d) ∧ E]/ Pr
z,R

[E]

≥ (Pr
z,R

[E] − 1/4)/ Pr
z,R

[E]

= 1 − 1/(4 Pr
z,R

[E])

≥ 1/2.

This implies that

Ez,R[|P (z, v)| | E] ≥ (1/24)nr/(w2d).

We will show that this means that

ER[|P (y, v)|] = Ω(nr/(w2d)).

To see this, consider what happens if we modify the definition of P (z, v) such
that we set P (z, v) = ∅ if there is at least one server Si such that |P|Si

(z, v)| ≥
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nr/(48w2d). Let P ∗(z, v) denote this modified version of P (z, v) and let q∗
i,j

denote the corresponding versions of the qi,j ’s. We clearly have q∗
i,j ≤ qi,j for all

i, j. Moreover, conditioned on E, we have P (z, v) = P ∗(z, v). It follows that

Ez,R[|P ∗(z, v)|] = Pr
z,R

[E]Ez,R[|P (z, v)| | E] ≥ (1/48)nr/(w2d).

At the same time, we also have

Ez,R[|P ∗(z, v)|] ≤
k∑

i=1

log(nr/(48w2d))−1∑

j=0

q∗
i,j2

j+1

Using that q∗
i,j ≤ qi,j , this means that

k∑

i=1

log(nr/(48w2d))−1∑

j=0

qi,j2j+1 ≥ (1/48)nr/(w2d).

Now q̂i,j ≥ qi,j − 1/4k thus

k∑

i=1

log(nr/(48w2d))−1∑

j=0

q̂i,j2j+1 ≥ (1/48)nr/(w2d) −
k∑

i=1

log(nr/(48w2d))−1∑

j=0

2j+1/4k

= (1/48)nr/(w2d) −
k∑

i=1

2log(nr/(48w2d))+1/4k

= (1/48)nr/(w2d) − (1/96)nr/(w2d)
= (1/96)nr/(w2d).

But

ER[|P (y, v)|] ≥
k∑

i=1

log(nr/(48w2d))∑

j=0

q̂i,j2j

≥ (1/2)
k∑

i=1

log(nr/(48w2d))−1∑

j=0

q̂i,j2j+1

= Ω(nr/(w2d)).

This completes the proof of Lemma 1.

3.1 Proof of Lemma 2

We prove this via an encoding argument. An encoder Alice and a decoder Bob
share access to the random oracle bit string R used by O. Alice receives as input
the nd = n/2d+1 random bit strings r1, . . . , rnd

given as arguments to the write
operations in v’s left subtree and wants to transmit them to Bob. By Shannon’s
source coding theorem, if Alice sends a prefix free code, then the expected length
of the message must be at least ndr = nr/2d+1 bits. They proceed as follows:



498 K. G. Larsen et al.

Encoding. Alice constructs the sequence of operations z = op1, . . . , opn where
the write operations in v’s left subtree write the values r1, . . . , rnd

to entries
1, . . . , nd, and the read operations in v’s right subtree read the entries 1, . . . , nd.
All opi outside v’s subtree are simply read(0) operations. Thus z is distributed
according to Dv. Alice runs the sequence of operations on O and constructs
the set P (z, v) and also counts how many of the read operations in v’s right
subtree that fail to return the correct answer. Let f denote the number of read
operations that err. Her message to Bob is as follows:

1. If f ≥ nd/16 or |P (z, v)| ≥ (1/12)nr/(w2d), then Alice sends a 0-bit, followed
by ndr = nr/2d+1 bits giving a naive encoding of r1, . . . , rnd

. This costs
1 + nr/2d+1 bits.

2. Otherwise, Alice starts by sending a 1-bit. Alice encodes all f ≤ nd/16 erring
queries by encoding f using log(n) bits and the identity of the f queries using
log

(
nd

f

)
bits. The answer of the f erring queries are trivially encoded using fr

bits. For each probe p = (s, a), Alice sends s, a and the contents of the cell with
address a at server Ss as it was immediately after processing the operations
in v’s subtree. She also sends the contents of the client memory as it was
immediately after processing v’s left subtree. This costs 1 + |P (z, v)|(log k +
2w) + log(n) + log

(
nd

f

)
+ fr + m. Using Stirling’s approximation, we get that

the cost is at most 1 + |P (z, v)|(log k + 2w) + log(n) + f log(nde/f). This
is maximized when f = nd/16 meaning the encoding size is at most 1 +
|P (z, v)|(log k +2w)+ (1/16)nr/2d+1 +(1/16) log(16e)n/2d+1. As log(16e) <
6, we get the above is at most 1 + |P (z, v)|(log k + 2w) + (7/16)nr/2d+1.
Using the assumption on the size of |P (z, v)| and that k fits in a single word,
we get the encoding is at most 1 + 3w(1/12)nr/2d + (7/16)nr/2d+1 + m =
1+(15/16)nr/2d+1 +m. We required d ≤ log(nr/m)−6, hence m ≤ nr/2d+6

and it follows that the cost is no more than 1 + (31/32)nr/2d+1.

Decoding. Bob starts by checking the first bit of Alice’s message. If this is a
0-bit, Bob immediately recovers r1, . . . , rnd

from the remaining part of Alice’s
message. Otherwise, Bob identifies the f erring queries and naively decodes their
answers. Next, Bob reconstructs the set P (z, v) and the contents of those cells
as they were right after processing v’s left subtree. Bob now runs O using the
randomness R on the sequence z until just before v’s left subtree (this is solely
read(0) operations, so Bob knows these). He then skips over all operations in
the left subtree and continues running the read(1), . . . ,read(nd) in v’s right
subtree. While processing these operations, Bob checks each cell that is probed.
If the cell is in P (z, v), Bob knows the contents from Alice’s message. If it is
not in P (z, v), then Bob already knows the contents as they were not updates
during v’s left subtree by definition of P (z, v). Thus Bob can process all the
read operations and recovers r1, . . . , rnd

.

Analysis. Let α = Pr[|P (z, v)| < (1/12)nr/(w2d)]. Then the probability that
Alice sends a non-trivial encoding (step 2.) is at least 1−(1−α)−1/8 = α−1/8.
This follows by a union bound and Markov’s inequality since E[f ] = nd/128 due
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to O having error probability at most 1/128 implying that Pr[f > nd/16] ≤ 1/8.
The expected length of the encoding is hence at most

1 + (1 − α + 1/8)nr/2d+1 + (α − 1/8)(31/32)nr/2d+1.

This is less than ndr for any constant α > 1/8. We thus conclude that
Pr[|P (z, v)| ≥ (1/12)nr/(w2d)] ≥ 3/4.

4 Extension to Oblivious Data Structures

In this section, we show that the above lower bound may be extended to other
oblivious data structures including stacks, queues, deques, priority queues and
search trees using techniques by Jacob et al. [24]. We describe how to modify
the lower bound to handle stacks and queues. Since one can use deques, priority
queues and search trees to simulate a stack and/or queue, we only need to prove
a lower bound for oblivious stacks and queues.

For the “dummy” sequence of operations in the lower bound, we will use the
following sequence for both stacks and queues:

push(0̄),pop(),push(0̄),pop(), . . . ,push(0̄),pop()

where 0̄ is the all-zeroes bit string of length r. The lower bound also requires
designing a worst case sequence for each node v in the information transfer tree.
If we let nd be the number of operations in the left and right subtree of v, then
we make the operations of the leaf nodes of the subtree rooted at v be

push(r1), . . . ,push(rnd
),pop(), . . . ,pop()

where each ri is also a uniformly random r-bit string. Outside v’s subtree, we
make alternating push(0̄),pop() operations. This sequence has the desired prop-
erty (for both stacks and queues) that the queries to the right subtree of v have
to retrieve the random strings generated from the left subtree of v. The rest
of the lower bound proof proceeds identically using these new hard operational
sequences for stacks and queues.

Theorem 4. Any oblivious stack, queue, deque, priority queue or search tree
with k servers that is (1/4k, 1/128)-secure, has server cell size w bits, has client
memory size m bits and that supports storing up to n r-bit elements, must make
an expected amortized Ω(r log(nr/m)/w) probes per operation over sequences of
n operations.

5 Conclusions

In this work, we study oblivious data structures that enable performing oper-
ations without revealing information about these operations. There has been a
long line of work for oblivious data structures that has led to tight Θ(log n)
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constructions for many oblivious data structures. However, this means there is a
significant gap between plaintext and oblivious operations for many data struc-
tures such as arrays (RAMs). A natural next question is: are there any settings
where we can achieve meaningful privacy with smaller o(log n) overhead? This
question was investigated in [42,43] that considered weaker differentially private
access hiding only operational sequences that differ in very few operations. Addi-
tionally, [22] considered weaker adversaries that may not view the beginning and
ending of operations. In both cases, the weakening of the adversaries was not
sufficient to achieve o(log n) overhead. We continue along this line of research
by showing weaker adversaries that only corrupt one server in the multi-server
model does not suffice to achieve o(log n) overhead.
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Abstract. Information-theoretic private information retrieval (PIR)
schemes have attractive concrete efficiency features. However, in the stan-
dard PIR model, the computational complexity of the servers must scale
linearly with the database size.

We study the possibility of bypassing this limitation in the case where
the database is a truth table of a “simple” function, such as a union of
(multi-dimensional) intervals or convex shapes, a decision tree, or a DNF
formula. This question is motivated by the goal of obtaining lightweight
homomorphic secret sharing (HSS) schemes and secure multiparty com-
putation (MPC) protocols for the corresponding families.

We obtain both positive and negative results. For “first-generation”
PIR schemes based on Reed-Muller codes, we obtain computational
shortcuts for the above function families, with the exception of DNF
formulas for which we show a (conditional) hardness result. For “third-
generation” PIR schemes based on matching vectors, we obtain stronger
hardness results that apply to all of the above families. Our positive
results yield new information-theoretic HSS schemes and MPC proto-
cols with attractive efficiency features for simple but useful function fami-
lies. Our negative results establish new connections between information-
theoretic cryptography and fine-grained complexity.

1 Introduction

Secure multiparty computation (MPC) [15,27,49,61] allows two or more parties
to compute a function of their secret inputs while only revealing the output.
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Much of the large body of research on MPC is focused on minimizing com-
munication complexity, which often forms an efficiency bottleneck. In the set-
ting of computational security, fully homomorphic encryption (FHE) essen-
tially settles the main questions about asymptotic communication complexity
of MPC [23,24,46,47]. However, the information-theoretic (IT) analog of the
question, i.e., how communication-efficient IT MPC protocols can be, remains
wide open, with very limited negative results [2,5,35,37,38,45,53]. These imply
superlinear lower bounds only when the number of parties grows with the total
input length. Here we will mostly restrict our attention to the simple case of a
constant number of parties with security against a single, passively corrupted,
party.

On the upper bounds front, the communication complexity of classical IT
MPC protocols from [15,27] scales linearly with the circuit size of the function
f being computed. With few exceptions, the circuit size remains a barrier even
today. One kind of exceptions includes functions f whose (probabilistic) degree is
smaller than the number of parties [6,9]. Another exception includes protocols
that have access to a trusted source of correlated randomness [20,32,36,53].
Finally, a very broad class of exceptions that applies in the standard model
includes “complex” functions, whose circuit size is super-polynomial in the input
length. For instance, the minimal circuit size of most Boolean functions f :
{0, 1}n → {0, 1} is 2Ω̃(n). However, all such functions admit a 3-party IT MPC
protocol with only 2Õ(

√
n) bits of communication [10,43]. This means that for

most functions, communication is super-polynomially smaller than the circuit
size. Curiously, the computational complexity of such protocols is bigger than 2n

even if f has circuits of size 2o(n). These kind of gaps between communication
and computation will be in the center of the present work.

Beyond the theoretical interest in the asymptotic complexity of IT MPC
protocols, they also have appealing concrete efficiency features. Indeed, typical
implementations of IT MPC protocols in the honest-majority setting are faster
by orders of magnitude than those of similar computationally secure protocols
for the setting of dishonest majority.1 Even when considering communication
complexity alone, where powerful tools such as FHE asymptotically dominate
existing IT MPC techniques, the latter can still have better concrete communi-
cation costs when the inputs are relatively short. These potential advantages of
IT MPC techniques serve to further motivate this work.

1.1 Homomorphic Secret Sharing and Private Information Retrieval

We focus on low-communication MPC in a simple client-server setting, which is
captured by the notion of homomorphic secret sharing (HSS) [16,18,21]. HSS can
be viewed as a relaxation of FHE which, unlike FHE, exists in the IT setting. In
an HSS scheme, a client shares a secret input x ∈ {0, 1}n between k servers. The

1 It is often useful to combine an IT protocol with a lightweight use of symmetric
cryptography in order to reduce communication costs (see, e.g., [3,33,48]); we will
use such a hybrid approach in the context of optimizing concrete efficiency.
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servers, given a function f from some family F , can locally apply an evaluation
function on their input shares, and send the resulting output shares to the client.
Given the k output shares, the client should recover f(x). In the process, the
servers should learn nothing about x, as long as at most t of them collude.

As in the case of MPC, we assume by default that t = 1 and consider a con-
stant number of servers k ≥ 2. A crucial feature of HSS schemes is compactness
of output shares, typically requiring their size to scale linearly with the output
size of f and independently of the complexity of f . This makes HSS a good
building block for low-communication MPC. Indeed, HSS schemes can be con-
verted into MPC protocols with comparable efficiency by distributing the input
generation and output reconstruction [18].

An important special case of HSS is (multi-server) private information
retrieval (PIR) [29]. A PIR scheme allows a client to retrieve a single bit from
an N -bit database, which is replicated among k ≥ 2 servers, such that no server
(more generally, no t servers) learns the identity of the retrieved bit. A PIR
scheme with database size N = 2n can be seen as an HSS scheme for the family
F of all functions f : {0, 1}n → {0, 1}.

PIR in the IT setting has been the subject of a large body of work; see
[63] for a partial survey. Known IT PIR schemes can be roughly classified into
three generations. The first-generation schemes, originating from the work of
Chor et al. [29], are based on Reed-Muller codes. In these schemes the com-
munication complexity is N1/Θ(k). In the second-generation schemes [13], the
exponent vanishes super-linearly with k, but is still constant for any fixed k.
Finally, the third-generation schemes, originating the works of Yekhanin [62]
and Efremenko [43], have sub-polynomial communication complexity of No(1)

with only k = 3 servers or even k = 2 servers [41]. (An advantage of the 3-server
schemes is that the server answer size is constant.) These schemes are based on
a nontrivial combinatorial object called a matching vectors (MV) family.

As noted above, a PIR scheme with database size N = 2n can be viewed as an
HSS scheme for the family F of all functions f (in truth-table representation).
Our work is motivated by the goal of extending this to more expressive (and
succinct) function representations. While a lot of recent progress has been made
on the computational variant of the problem for functions represented by circuits
or branching programs [17,18,22,39,44,54], almost no progress has been made
for IT HSS. Known constructions are limited to the following restricted types: (1)
HSS for general truth tables, corresponding to PIR, and (2) HSS for low-degree
polynomials, which follow from the multiplicative property of Shamir’s secret-
sharing scheme [15,27,34,57]. Almost nothing is known about the existence of
non-trivial IT HSS schemes for other useful function families, which we aim to
explore in this work.

1.2 HSS via Computational Shortcuts for PIR

Viewing PIR as HSS for truth tables, HSS schemes for more succinct function
representations can be equivalently viewed as a computationally efficient PIR
schemes for structured databases, which encode the truth tables of succinctly
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described functions. While PIR schemes for general databases require linear
computation in N [14], there are no apparent barriers that prevent computa-
tional shortcuts for structured databases. In this work we study the possibility
of designing useful HSS schemes by applying such shortcuts to existing IT PIR
schemes. Namely, by exploiting the structure of truth tables that encode sim-
ple functions, the hope is that the servers can answer PIR queries with o(N)
computation.

We focus on the two main families of IT PIR constructions: (1) first-
generation “Reed-Muller based” schemes, or RM PIR for short; and (2) third-
generation “matching-vector based” schemes, or MV PIR for short. RM PIR
schemes are motivated by their simplicity and their good concrete communica-
tion complexity on small to medium size databases, whereas MV PIR schemes
are motivated by their superior asymptotic efficiency. Another advantage of RM
PIR schemes is that they naturally scale to bigger security thresholds t > 1,
increasing the number of servers by roughly a factor of t but maintaining the
per-server communication complexity. For MV PIR schemes, the comparable
t-private variants require at least 2t servers [7].

1.3 Our Contribution

We obtain the following main results. See Sect. 2 for a more detailed and more
technical overview.

Positive Results for RM PIR. We show that for some natural function
families, such as unions of multi-dimensional intervals or other convex shapes
(capturing, e.g., geographical databases), decision trees, and DNF formulas with
disjoint terms, RM PIR schemes do admit computational shortcuts. In some of
these cases the shortcut is essentially optimal, in the sense that the computa-
tional complexity of the servers is equal to the size of the PIR queries plus the
size of the function representation (up to polylogarithmic factors). In terms of
concrete efficiency, the resulting HSS schemes can in some cases be competitive
with alternative techniques from the literature, including lightweight computa-
tional HSS schemes based on symmetric cryptography [19], even for large domain
sizes such as N = 240. This may come at the cost of either using more servers
(k ≥ 3 or even k ≥ 4, compared to k = 2 in [19]) or alternatively applying
communication balancing techniques from [11,29,60] that are only efficient for
short outputs.

Negative Results for RM PIR. The above positive result may suggest that
“simple” functions admit shortcuts. We show that this can only be true to
a limited extent. Assuming the Strong Exponential Time Hypothesis (SETH)
assumption [26], a conjecture commonly used in fine-grained complexity [59], we
show that there is no computational shortcuts for general DNF formulas. More
broadly, there are no shortcuts for function families that contain hard counting
problems.

Negative Results for MV PIR. Somewhat unexpectedly, for MV PIR
schemes, the situation appears to be significantly worse. Here we can show
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conditional hardness results even for the all-1 database. Of course, one can triv-
ially realize an HSS scheme for the constant function f(x) = 1. However, our
results effectively rule out obtaining efficient HSS for richer function families via
the MV PIR route, even for the simple but useful families to which our positive
results for RM PIR apply. This shows a qualitative separation between RM PIR
and MV PIR.

Our negative results are obtained by exploiting a connection between short-
cuts in MV PIR and counting problems in graphs that we prove to be ETH-hard.
While this only rules out a specific type of HSS constructions, it can still be
viewed as a necessary step towards broader impossibility results. For instance,
proving that (computationally efficient) HSS for simple function families can-
not have No(1) share size inevitably requires proving computational hardness of
the counting problems we study, simply because if these problems were easy
then such HSS schemes would exist. We stress that good computational short-
cuts for MV PIR schemes, matching our shortcuts for RM PIR schemes, is a
desirable goal. From a theoretical perspective, they would give rise to better
information-theoretic HSS schemes for natural function classes. From an applied
perspective, they could give concretely efficient HSS schemes and secure com-
putation protocols (for the same natural classes) that outperform all competing
protocols on moderate-sized input domains. (See the full version for communica-
tion break-even points.) Unfortunately, our negative results give strong evidence
that, contrary to prior expectations, such shortcuts for MV PIR do not exist.

Positive Results for Tensored and Parallel MV PIR. Finally, we show
how to bypass our negative result for MV PIR via a “tensoring” operator and
parallel composition. The former allows us to obtain the same shortcuts we get
for RM PIR while maintaining the low communication cost of MV PIR, but
at the cost of increasing the number of servers. This is done by introducing
an exploitable structure similar to that in RM PIR through an operation that
we called tensoring. In fact, tensoring can be applied to any PIR schemes with
certain natural structural properties to obtain new PIR with shortcuts. The
parallel composition approach is restricted to specific function classes and has
a significant concrete overhead. Applying either transformation to an MV PIR
scheme yields schemes that no longer conform to the baseline template of MV
PIR, and thus the previous negative result does not apply.

2 Overview of Results and Techniques

Recall that the main objective of this work is to study the possibility of obtaining
non-trivial IT HSS schemes via computational shortcuts for IT PIR schemes. In
this section we give a more detailed overview of our positive and negative results
and the underlying techniques.

From here on, we let N = 2n be the size of the (possibly structured) database,
which in our case will be a truth table encoding a function f : {0, 1}n → {0, 1}
represented by a bit-string f̂ of length � = |f̂ | ≤ N . We are mostly interested in
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the case where � � N . We will sometimes use � to denote a natural size param-
eter which is upper bounded by |f̂ |. For instance, f̂ can be a DNF formula with
� terms over n input variables. We denote by F the function family associating
each f̂ with a function f and a size parameter �, where � = |f̂ | by default.

For both HSS and PIR, we consider the following efficiency measures:

– Input share size α(N): Number of bits that the client sends to each server.
– Output share size β(N): Number of bits that each server sends to the client.
– Evaluation time τ(N, �): Running time of server algorithm, mapping an input

share in {0, 1}α(N) and function representation f̂ ∈ {0, 1}� to output share in
{0, 1}β(N).

When considering PIR (rather than HSS) schemes, we may also refer to α(N) and
β(N) as query size and answer size respectively. The computational model we use
for measuring the running time τ(N, �) is the standard RAM model by default;
however, both our positive and negative results apply (up to polylogarithmic
factors) also to other standard complexity measures, such as circuit size.

Any PIR scheme PIR can be viewed as an HSS scheme for a truth-table
representation, where the PIR database is the truth-table f̂ of f . For this repre-
sentation, the corresponding evaluation time τ must grow linearly with N . If a
more expressive function family F supports faster evaluation time, we say that
PIR admits a computational shortcut for F . It will be useful to classify com-
putational shortcuts as strong or weak. A strong shortcut is one in which the
evaluation time is optimal up to polylogarithmic factors, namely τ = Õ(α+β+�).
(Note that α + β + � is the total length of input and output.) Weak shortcuts
have evaluation time of the form τ = O(� · Nδ), for some constant 0 < δ < 1. A
weak shortcut gives a meaningful speedup whenever � = No(1).

2.1 Shortcuts in Reed-Muller PIR

The first generation of PIR schemes, originating from the work of Chor et al. [29],
represent the database as a low-degree multivariate polynomial, which the servers
evaluate on each of the client’s queries. We refer to PIR schemes of this type as
Reed-Muller PIR (or RM PIR for short) since the answers to all possible queries
form a Reed-Muller encoding of the database. While there are several variations
of RM PIR in the literature, the results we describe next are insensitive to the
differences. In the following focus on a slight variation of the original k-server RM
PIR scheme from [29] (see [11]) that has answer size β = 1, which we denote by
PIRk

RM. For the purpose of this section we will mainly focus on the computation
performed by the servers, for the simplest case of k = 3 (PIR3

RM), as this is the
aspect we aim to optimize. For a full description of the more general case we
refer the reader to Sect. 4.

Let F = F4 be the Galois field of size 4. In the PIR3
RM scheme, the client views

its input i ∈ [N ] as a pair of indices i = (i1, i2) ∈ [
√

N ] × [
√

N ] and computes
two vectors qj

1, q
j
2 ∈ F

√
N for each server j ∈ {1, 2, 3}, such that {qj

1} depend on
i1 and {qj

2} depend on i2. Note that this implies that α(N) = O(
√

N). Next,
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each server j, which holds a description of a function f : [
√

N ] × [
√

N ] → {0, 1},
computes an answer aj =

∑
i′
1,i′

2∈[
√

N ] f(i′1, i
′
2)q

j
1[i

′
1]q

j
2[i

′
2] with arithmetic over F

and sends the client a single bit which depends on aj (so β(N) = 1). The client
reconstructs f(i1, i2) by taking the exclusive-or of the 3 answer bits.

Positive Results for RM PIR. The computation of each server j, aj =
∑

i′
1,i′

2∈[
√

N ] f(i′1, i
′
2)q

j
1[i

′
1]q

j
2[i

′
2], can be viewed as an evaluation of a multivariate

degree-2 polynomial, where {f(i′1, i
′
1)} are the coefficients, and the entries of

qj
1, q

j
2 are the variables. Therefore, to obtain a computational shortcut, one should

look for structured polynomials that can be evaluated in time o(N). A simple but
useful observation is that computational shortcuts exist for functions f which
are combinatorial rectangles, that is, f(i1, i2) = 1 if and only if i1 ∈ I1 and
i2 ∈ I2, where I1, I2 ⊆ [

√
N ]. Indeed, we may write

aj =
∑

i′
1,i′

2∈[
√

N ]

f(i′1, i
′
2)q

j
1[i

′
1]q

j
2[i

′
2] =

∑

(i′
1,i′

2)∈(I1,I2)

qj
1[i

′
1]q

j
2[i

′
2] (1)

=

⎛

⎝
∑

i′
1∈I1

qj
1[i

′
1]

⎞

⎠

⎛

⎝
∑

i′
2∈I2

qj
2[i

′
2]

⎞

⎠ . (2)

Note that if a server evaluates the expression using Eq. (1) the time is O(N),
but if it instead uses Eq. (2) the time is just O(

√
N) = O(α(N)). Following

this direction, we obtain non-trivial IT HSS schemes for some natural function
classes such as disjoint unions of intervals and decision trees.

Theorem 1 (Decision trees, formal version Theorem 9). PIRk
RM admits a

weak shortcut for decision trees (more generally, disjoint DNF formulas). Con-
cretely, for n variables and � leaves (or terms), we have τ(N, �) = O(�·N1/(k−1)),
where N = 2n.

Theorem 2 (Union of disjoint intervals, formal version Theorems 10
and 11). For every positive integers d ≥ 1 and k ≥ 3 such that d|k − 1,
PIRk

RM admits a strong shortcut for unions of � disjoint d-dimensional intervals
in

(
[N1/d]

)d
. Concretely, τ(N, �) = O(N1/(k−1) + �).

Better shortcuts running in Õ(N1/(k−1) + � · N1/3(k−1)) are also possible.
Moreover, by expressing (discretized) convex bodies as unions of intervals, we
generalize the result for interval functions to convex body membership functions.

Negative Results for RM PIR. All of the previous positive results apply to
function families F for which there is an efficient counting algorithm that given
f̂ ∈ F returns the number of satisfying assignments of f . We show that this is
not a coincidence: efficient counting can be reduced to finding a shortcut for f̂
in PIRk

RM. This implies that computational shortcuts are impossible for function
representations for which the counting problem is hard. Concretely, following
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a similar idea from [52], we show that a careful choice of PIR query can be
used to obtain the parity of all evaluations of f as the PIR answer. The latter
is hard to compute even for DNF formulas, let alone stronger representation
models, assuming standard conjectures from fine-grained complexity: either the
Strong Exponential Time Hypothesis (SETH) or, with weaker parameters, even
the standard Exponential Time Hypothesis (ETH) [25,26].

Theorem 3 (No shortcuts for DNF under ETH, formal version Corol-
laries 2 and 3). Assuming (standard) ETH, PIRk

RM does not admit a strong
shortcut for DNF formulas for sufficiently large k. Moreover, assuming SETH,
for any k ≥ 3, PIRk

RM does not admit a weak shortcut for DNF formulas.

2.2 Hardness of Shortcuts for Matching-Vector PIR

Recall that MV PIR schemes are the only known PIR schemes achieving sub-
polynomial communication (that is, No(1)) with a constant number of servers.
We give strong evidence for hardness of computational shortcuts for MV PIR.
We start with a brief technical overview of MV PIR.

We consider here a representative instance of MV PIR from [12,43], which
we denote by PIR3

MV,SC. This MV PIR scheme is based on two crucial combina-
torial ingredients: a family of matching vectors and a share conversion scheme,
respectively. We describe each of these ingredients separately.

A family of matching vectors MV consists of N pairs of vectors {ux, vx} such
that each matching inner product 〈ux, vx〉 is 0, and each non-matching inner
product 〈ux, vx′〉 is nonzero. More precisely, such a family is parameterized by
integers m,h,N and a subset S ⊂ Zm such that 0 �∈ S. A matching vector
family is defined by two sequences of N vectors {ux}x∈[N ] and {vx}x∈[N ], where
ux, vx ∈ Zh

m, such that for all x ∈ [N ] we have 〈ux, vx〉 = 0, and for all x, x′ ∈ [N ]
such that x �= x′ we have 〈ux, vx′〉 ∈ S. We refer to this as the S-matching
requirement. Typical choices of parameters are m = 6 or m = 511 (products of
two primes), |S| = 3 (taking the values (0, 1), (1, 0), (1, 1) in Chinese remainder
notation), and h = No(1) (corresponding to the PIR query length).

A share conversion scheme SC is a local mapping (without interaction) of
shares of a secret y to shares of a related secret y′, where y ∈ Zm and y′ is in
some other Abelian group G. Useful choices of G include F2

2 and F9
2 corresponding

to m = 6 and m = 511 respectively. The shares of y and y′ are distributed using
linear secret-sharing schemes L and L′ respectively, where L′ is typically additive
secret sharing over G. The relation between y and y′ that SC should comply with
is defined by S as follows: if y ∈ S then y′ = 0 and if y = 0 then y′ �= 0. More
concretely, if (y1, . . . , yk) are L-shares of y, then each server j can run the share
conversion scheme on (j, yj) and obtain y′

j = SC(j, yj) such that (y′
1, . . . , y

′
k) are

L′-shares of some y′ satisfying the above relation. What makes share conversion
nontrivial is the requirement that the relation between y and y′ hold regardless
of the randomness used by L for sharing y.

Suppose MV and SC are compatible in the sense that they share the same set
S. Moreover, suppose that SC applies to a 3-party linear secret-sharing scheme
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L over Zm. Then we can define a 3-server PIR scheme PIR3
MV,SC in the following

natural way. Let f : [N ] → {0, 1} be the servers’ database and x ∈ [N ] be the
client’s input. The queries are obtained by applying L to independently share
each entry of ux. Since L is linear, the servers can locally compute, for each
x′ ∈ [N ], L-shares of yx,x′ = 〈ux, vx′〉. Note that yx,x = 0 ∈ Zm and yx,x′ ∈ S
(hence yx,x′ �= 0) for x �= x′. Letting yj,x,x′ denote the share of yx,x′ known
to server j, each server can now apply share conversion to obtain a L′-share
y′

j,x,x′ = SC(j, yj,x,x′) of y′
x,x′ , where y′

x,x′ = 0 if x �= x′ and y′
x,x′ �= 0 if x = x′.

Finally, using the linearity of L′, the servers can locally compute L′-shares ỹj of
ỹ =

∑
x′∈[N ] f(x′)·y′

x,x′ , which they send as their answers to the client. Note that
ỹ = 0 if and only if f(x) = 0. Hence, the client can recover f(x) by applying the
reconstruction of L′ to the answers and comparing ỹ to 0. When L′ is additive
over G, each answer consists of a single element of G.

Shortcuts for MV PIR Imply Subgraph Counting. The question we ask
in this work is whether the server computation in the above scheme can be sped
up when f is a “simple” function, say one for which our positive results for
RM PIR apply. Somewhat unexpectedly, we obtain strong evidence against this
by establishing a connection between computational shortcuts for PIR3

MV,SC for
useful choices of (MV,SC) and the problem of counting induced subgraphs. Con-
cretely, computing a server’s answer on the all-1 database and query xj requires
computing the parity of the number of subgraphs with certain properties in a
graph defined by xj . By applying results and techniques from parameterized
complexity [28,42], we prove ETH-hardness of computational shortcuts for vari-
ants of the MV PIR schemes from [12,43]. In contrast to the case of RM PIR,
these hardness results apply even for functions as simple as the constant function
f(x) = 1.

The variants of MV PIR schemes to which our ETH-hardness results apply
differ from the original PIR schemes from [12,43] only in the parameters of the
matching vectors, which are worse asymptotically, but still achieve No(1) com-
munication complexity. The obstacle which prevents us from proving a similar
hardness result for the original schemes from [12,43] seems to be an artifact of
the proof, instead of an inherent limitation (more on this later). We therefore
formulate a clean hardness-of-counting conjecture that would imply a similar
hardness result for the original constructions from [12,43].

We now outline the ideas behind the negative results, deferring the technical
details to Sect. 5. Recall that the computation of each server j in PIR3

MV,SC takes
the form ∑

x′∈[N ]

f(x′) · SC(j, yj,x,x′),

where yj,x,x′ is the j-th share of 〈ux, vx′〉. Therefore, for the all-1 database (f =
1), for every S-matching vector family MV and share conversion scheme SC from
L to L′ we can define the (MV,SC)-counting problem #(MV,SC).

Definition 1 (Server computation problem). For a Matching Vector family
MV and share conversion SC, the problem #(MV,SC) is defined as follows.
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– Input: a valid L-share yj of some ux ∈ Zh
m (element-wise),

– Output:
∑

x′∈[N ] SC(j, yj,x,x′), where yj,x,x′ is the share of 〈ux, vx′〉.
Essentially, the server computes N inner products of the input and the matching
vectors using the homomorphic property of the linear sharing, maps the results
using the share conversion and adds the result to obtain the final output.

Let MVw
Grol be a matching vectors family due to Grolmusz [40,50], which is

used in all third-generation PIR schemes (see Sect. 5, Fact 1). For presentation,
we focus on the special case #(MVw

Grol,SCEfr), where SCEfr is a share conversion
due to Efremenko [43], which we present in Sect. 3.3. Note that all the results that
follow also hold for the share conversion of [12], denoted by SCBIKO. The family
we consider, MVw

Grol, is associated with the parameters r ∈ N and w : N → N,
such that the size of the matching vector family is

(
r

w(r)

)
, and the length of

each vector is h =
( r

≤Θ
(√

w(r)
))

. By choosing w(r) = Θ(
√

r) and r such that

N ≤ (
r

w(r)

)
, the communication complexity of PIRk

MVw
Grol,SCEfr

is h = 2O(
√

n log n),
where N = 2n, which is the best asymptotically among known PIR schemes.

Next, we relate #(MVw
Grol,SCEfr) to ⊕IndSub(Φ,w), the problem of deciding

the parity of the number of w-node subgraphs of a graph G that satisfy graph
property Φ. Here we consider the parameter w to be a function of the number
of nodes of G. We will be specifically interested in graph properties Φ = Φm,Δ

that include graphs whose number of edges modulo m is equal to Δ. Formally:

Definition 2 (Subgraph counting problem). For a graph property Φ
and parameter w : N → N (function of the number of nodes), the problem
⊕IndSub(Φ,w) is defined as follows.

– Input: Graph G with r nodes.
– Output: The parity of the number of induced subgraphs H of G such that:

(1) H has w(r) nodes; (2) H ∈ Φ.

We let Φm,Δ denote the set of graphs H such that |E(H)| ≡ Δ mod m.

The following main technical lemma for this section relates obtaining com-
putational shortcuts for PIRk

MV,SC to counting induced subgraphs.

Lemma 1 (From MV PIR to subgraph counting). If #(MVw
Grol,SCEfr)

can be computed in No(1)
(
= ro(w)

)
time, then ⊕IndSub(Φ511,0, w) can be

decided in ro(w) time, for any nondecreasing function w : N → N.

The Hardness of Subgraph Counting. The problem ⊕IndSub(Φ511,0, w)
is studied in parameterized complexity theory [42] and falls into the framework
of motif counting problems described as follows in [56]: Given a large structure
and a small pattern called the motif, compute the number of occurrences of the
motif in the structure. In particular, the following result can be derived from
Döfer et al. [42].
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Theorem 4. [42, Corollary of Theorem 22] ⊕IndSub(Φ511,0, w) cannot be
solved in time ro(w) unless ETH fails.

Theorem 4 is insufficient for our purposes since it essentially states that no
machine running in time ro(w) can successfully decide ⊕IndSub(Φ511,0, w) for
any pair (r, w). It other words, it implies hardness of counting for some weight
parameter w, while for our case, we have specific function w(r).

Fortunately, in [28] it was shown the counting of cliques, a very central motif,
is hard for cliques of any size as long as it is bounded from above by O(rc) for
an arbitrary constant c < 1 (

√
r, log r, log∗ r, etc.), assuming ETH. Indeed, after

borrowing results from [28] and via a more careful analysis of the proof of [42,
Theorem 22], we can prove the following stronger statement about its hardness.

Theorem 5. For some efficiently computable function w = Θ(log r/ log log r),
⊕IndSub(Φ511,0, w) cannot be solved in time ro(w), unless ETH fails.

Denote by MV∗ the family MVw
Grol with w(r) = Θ(log r/ log log r) as in The-

orem 5. Lemma 1 and Theorem 5 imply the impossibility result for strong short-
cuts for PIR schemes instantiated with MV∗. Note that such an instantiation of
MVw

Grol yields PIR schemes with subpolynomial communication 2O(n3/4polylog n).

Theorem 6. [No shortcuts in Efremenko MV PIR, formal version Theo-
rem15] #(MV∗,SCEfr) cannot be computed in No(1)

(
= ro(w)

)
time, unless ETH

fails. Consequently, there are no strong shortcuts for the all-1 database for
PIR3

MV∗,SCEfr
.

It is natural to ask whether hardness for other ranges of parameters such as
w = Θ(

√
r) holds for ⊕IndSub(Φ511,0, w) in the spirit of Theorem5. This is also

of practical concern because the best known MVw
Grol constructions fall within

such ranges. In particular, if we can show ⊕IndSub(Φ511,0, Θ(
√

r)) cannot be
decided in ro(

√
r) time, it will imply that PIRk

P,C for P = MV
Θ(

√
r)

Grol and C = SCEfr

does not admit strong shortcuts for the all-1 database, since α(n) = No(1) but
τ(n) = NΩ(1).

In fact, the problem ⊕IndSub(Φ511,0, w) is plausibly hard, and can be viewed
as a variant of the fine-grained-hard Exact-k-clique problem [59]. Consequently,
we make the following conjecture.

Conjecture 1 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,Δ, w)
cannot be decided in ro(w) time, for any integers m ≥ 2, 0 ≤ Δ < m, and
for every function w(r) = O(rc), 0 ≤ c < 1.

For the impossibility results in this paper, we are only concerned with w(r) =
Θ(

√
r), and (m,Δ) = (511, 0) or (m,Δ) = (6, 4).

2.3 HSS from Generic Compositions of PIRs

Our central technique for obtaining shortcuts in PIR schemes is by exploiting
the structure of the database. For certain PIR schemes where the structure is not
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exploitable, such as those based on matching vectors, we propose to introduce
exploitable structures artificially by composing several PIR schemes. Concretely,
we present two generic ways, tensoring and parallel PIR composition, to obtain
a PIR which admits shortcuts for some function families by composing PIRs
which satisfy certain natural properties. For details, we refer to the full version.

Tensoring. First we define a tensoring operation on PIR schemes, which generi-
cally yields PIRs with shortcuts, at the price of increasing the number of servers.

Theorem 7 (Tensoring, informal). Let PIR be a k-server PIR scheme satis-
fying some natural properties. Then there exists a kd-server PIR scheme PIR⊗d

with the same (per server) communication complexity that admits the same com-
putational shortcuts as PIRd+1

RM does.

When PIR is indeed instantiated with a matching-vector PIR, Theorem7
gives HSS schemes for disjoint DNF formulas or decision trees with the best
asymptotic efficiency out of the ones we considered.

Corollary 1 (Decision trees from tensoring, informal). There is a 3d-
server HSS for decision trees, or generally disjoint DNF formulas, with α(N) =
Õ

(
26

√
n log n

)
, β(N) = O(1) and τ(N, �) = Õ

(
N1/d+o(1) + � · N1/3d

)
, where n

is the number of variables and � is the number of leaves in the decision tree.

Parallel PIR Composition. For the special case of interval functions, we can
do even better with the second technique. We show that by making parallel
invocations to HSS for point functions, it is possible to obtain HSS for the class
of sparsely-supported DNF functions. In particular, this yields an HSS for union
of intervals with the best asymptotic complexity among our constructions. This
approach however does not generalize to better asymptotic results for decision
trees or DNF formulas due to known lower bounds for covering codes [30].

Theorem 8 (Intervals from parallel composition, informal). There is a
3-server HSS for unions of � d-dimensional intervals with α(N) = Õ

(
26

√
n log n

)
,

β(N) = O(log(1ε )) and τ(N, �) = Õ
(
log(1ε )� · 26

√
n log n

)
.

2.4 Concrete Efficiency

Motivated by a variety of real-world applications, the concrete efficiency of PIR
has been extensively studied in the applied cryptography and computer secu-
rity communities; see, e.g., [1,31,51,55,58] and references therein. Many of the
application scenarios of PIR can potentially benefit from the more general HSS
functionality we study in this work. To give a sense of the concrete efficiency
benefits we can get, consider following MPC task: The client holds a secret input
x and wishes to know if x falls in a union of a set of 2-dimensional intervals held
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by k servers, where at most t servers may collude (t = 1 by default). This can be
generalized to return a payload associated with the interval to which x belongs.
HSS for this “union of rectangles” function family can be useful for securely
querying a geographical database.

We focus here on HSS obtained from the PIRk
RM scheme, which admits strong

shortcuts for multi-dimensional intervals and at the same time offers attractive
concrete communication complexity. For the database sizes we consider, the
concrete communication and computation costs are much better than those of
(computational) single-server schemes based on fully homomorphic encryption.
Classical secure computation techniques are not suitable at all for our purposes,
since their communication cost would scale linearly with the number of intervals.
The closest competing solutions are obtained via symmetric-key-based function
secret sharing (FSS) schemes for intervals [17,19] (see full version for details).

We instantiate the FSS-based constructions with k = 2 servers, since the com-
munication complexity in this case is only O(λn2) for a security parameter λ [19].
For k ≥ 3 (and t = k − 1), the best known FSS schemes require O(λ

√
N) com-

munication [17]. Our comparison focuses on communication complexity which is
easier to measure analytically. Our shortcuts make the computational cost scale
linearly with the server input size, with small concrete constants. Below we give
a few data points to compare the IT-PIR and the FSS-based approaches.

For a 2-dimensional database of size 230 = 215 × 215 (which is sufficient to
encode a 300×300 km2 area with 10×10 m2 precision), the HSS based on PIRk

RM

with shortcuts requires 16.1, 1.3, and 0.6 KB of communication for k = 3, 4
and 5 respectively, whereas FSS with k = 2 requires roughly 28 KB. For these
parameters, we expect the concrete computational cost of the PIR-based HSS
to be smaller as well.

We note that in PIRk
RM the payload size contributes additively to the commu-

nication complexity. If the payload size is small (a few bits), it might be beneficial
to base the HSS on a “balanced” variant of PIRk

RM proposed by Woodruff and
Yekhanin [60]. Using the Baur-Strassen algorithm [8], we can get the same short-
cuts as for PIRk

RM with roughly half as many servers, at the cost of longer output
shares that have comparable size to the input shares. Such balanced schemes
are more attractive for short payloads than for long ones. For a 2-dimensional
database of size 230 = 215 × 215, the HSS based on balanced PIRk

RM with 1-bit
payload requires 1.5 and 0.2 KB communication for k = 2 and 3 respectively.

Our approach is even more competitive in the case of a higher corruption
threshold t ≥ 2, since (as discussed above) known FSS schemes perform more
poorly in this setting, whereas the cost of PIRk

RM scales linearly with t. Finally,
PIRk

RM is more “MPC-friendly” than the FSS-based alternative in the sense that
its share generation is non-cryptographic and thus is easier to distribute via an
MPC protocol.

3 Preliminaries

Let m,n ∈ N with m ≤ n. We use {0, 1}n to denote the set of bit strings of length
n, [n] to denote the set {1, . . . , n}, and [m,n] to denote the set {m,m+1, . . . , n}.
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The set of all finite-length bit strings is denoted by {0, 1}∗. Let v = (v1, . . . , vn)
be a vector. We denote by v[i] or vi the i-th entry v. Let S,X be sets with
S ⊆ X. The set membership indicator χS,X : X → {0, 1} is a function which
outputs 1 on input x ∈ S, and outputs 0 otherwise. When X is clear from the
context, we omit X from the subscript and simply write χS .

3.1 Function Families

To rigorously talk about a function and its description as separate objects, we
define function families in a fashion similar to that in [17].

Definition 3 (Function Families). A function family is a collection of tuples
F = {Fn = (Xn,Yn, Pn, En)}n∈N where Xn ⊆ {0, 1}∗ is a domain set, Yn ⊆
{0, 1}∗ is a range set, Pn ⊆ {0, 1}∗ is a collection of function descriptions, and
En : Pn × Xn → Yn is an algorithm, running in time O(|Xn|), defining the
function described by each f̂ ∈ Pn.

Concretely, each f̂ ∈ Pn describes a corresponding function f : Xn → Yn

defined by f(x) = En(f̂ , x). Unless specified, from now on we assume that Xn =
{0, 1}n and Yn = F2. When there is no risk of confusion, we will describe a
function family by Fn instead of F = {Fn}n∈N, write f instead of f̂ , and write
f ∈ Fn or f ∈ F instead of f̂ ∈ Pn.

Definition 4 (All Boolean Functions). The family of all Boolean functions
is a tuple ALLn = (Xn,Yn, Pn, En) where Pn is a set containing the truth table
f̂ of f for each f : Xn → Yn, and En is the selection algorithm such that
En(f̂ , x) = f̂ [x].

We next define combinatorial rectangle functions, each of which is parame-
terized with a combinatorial rectangle, and it outputs 1 whenever the input lies
in the rectangle. This family is central to the shortcuts that we obtain for the
Reed-Muller PIR and the PIRs obtained by tensoring.

Definition 5 (Combinatorial Rectangles). Let d ∈ N, X 1, . . . ,X d be sets
and cr : X 1 × · · · × X d → F2 be a function. We say that cr is a (d-dimensional)
combinatorial rectangle function if the truth table of cr forms a (d-dimensional)
combinatorial rectangle. In other words, for each i ∈ [d], there exist subsets
Si ⊆ X i such that cr(x1, . . . , xd) = 1 if and only if xi ∈ Si for all i ∈ [d]. A
combinatorial rectangle function cr can be described by ĉr = (S1, . . . ,Sd) of length
|ĉr| = O(n), and an evaluation algorithm ECR such that ECR(ĉr, x) = cr(x).

Definition 6 (Sum of Combinatorial Rectangles). Let �, d ∈ N. The family
of �-sum d-dimensional combinatorial rectangle functions is a tuple SUMCR�,d

n =
(Xn,Yn, Pn, En) where Xn = X 1

n × · · · × X d
n for some sets X 1

n , . . . ,X d
n , Pn =

{ĉr}ĉr=( ˆcr1,...,ĉr�) is the set of all �-tuples of descriptions of combinatorial rectangle
functions with domain Xn, and E(ĉr, x) =

∑�
i=1 ECR(ĉri, x) =

∑�
i=1 cri(x). That

is, SUMCR�,d
n defines all functions of the form f = cr1 + . . . + cr�.
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We next define natural special cases of combinatorial rectangle functions.
The first are interval functions which output 1 when the input falls into specified
intervals. The second are DNF formulas.

Definition 7 (Interval Functions). Let �, d ∈ N with d|n. The family of �-
sum d-dimensional interval functions is a tuple SUMINT�,d

n = (Xn,Yn, Pn, En)
where

– Xn =
({0, 1}n/d

)d
,

– Yn = F2,
– Pn =

{
(aj

i , b
j
i )i∈[�],j∈[d] : aj

i , b
j
i ∈ {0, 1}n/d

}
, and

– E
(
(aj

i , b
j
i )i∈[�],j∈[d], x

)
=

∑�
i=1 χ∏d

j=1[a
j
i ,bj

i ]
(x).

In a similar fashion we define INT�,d
n = (Xn,Yn, Pn, E′

n) to be the family of
�-union d-dimensional interval functions, where

E′
n

(
(aj

i , b
j
i )i∈[�],j∈[d], x

)
=

�∨

i=1

χ∏d
j=1[a

j
i ,bj

i ]
(x).

Moreover, let INT�,d
n = (Xn,Yn, P ′

n, E′
n) be the family of disjoint �-union d-

dimensional interval functions, where P ′
n ⊆ Pn is restricted to only include cases

such that at most a single indicator χ∏d
j=1[a

j
i ,bj

i ]
outputs 1 for a given x.

The function family SEG�
n := DINT�,1

n corresponds to a disjoint union of
one-dimensional intervals.

Next, we say that F�
n is a subfamily of G�

n if their domain and range sets, Xn

and Yn, match, and any function f ∈ F�
n can be expressed as a sum (over Yn)

of O(1) functions from G�
n.

Proposition 1 (Intervals are Rectangles). SUMINT�,d
n is a subfamily

of SUMCR�,d
n . In particular, any single interval function with description

{(ai, bi)}i∈[d] corresponds to the combinatorial rectangle with description {Si =
{ai, ai + 1, . . . , bi}}i∈[d].

Definition 8 (DNF Formulas). Let � ∈ N. The family of functions com-
puted by �-sum disjunctive terms is a tuple SUMDNF�

n = (Xn,Yn, Pn, En)
where Pn = {(c1, . . . , c�)}c1,...,c�

consists of all �-tuples of disjunctive terms
over n Boolean variables, and En is such that En((c1, . . . , c�), (x1, . . . , xn)) =
∑�

i=1 ci(x1, . . . , xn). c1, . . . , c� are called the terms of the DNF formula.
In a similar fashion, the family of functions computed by �-term

DNFs is a tuple DNF�
n = (Xn,Yn, Pn, E′

n) where En is such that
En((c1, . . . , c�), (x1, . . . , xn)) =

⋃�
i=1 ci(x1, . . . , xn).

Finally, the family of functions computed by �-term disjoint DNFs is a tuple
DDNF�

n = (Xn,Yn, P ′
n, E′

n) where P ′
n ⊆ Pn is restricted to only include cases

such that at most a single term ci outputs 1 for any given x.
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Functions computed by decision trees of � leaves can also be computed by
�-term disjoint DNF formulas. Therefore the shortcuts we obtain for (disjoint)
DNFs apply to decision trees as well.

While the dimension d is not part of the description of DNF formulas over n
boolean variables x1, . . . , xn, by introducing a intermediate “dimension” param-
eter d and partitioning the n variables into d parts, we can represent the DNF
formula as a d-dimensional truth table. More concretely, every dimension corre-
sponds to the evaluations of n

d variables. Through this way, we can embed the
function into combinatorial rectangles.

Proposition 2 (DNFs are Rectangles). For any dimension d ∈ [n], the
family SUMDNF�

n is a subfamily of SUMCR�,d
n .

Remark 1 (Disjoint union and general union). The ability to evaluate the sum
variants of DNF and INT implies the ability to evaluate the disjoint union
because disjoint union can be carried out as a summation. However, the general
operation of union is more tricky if the addition is over F2. It is possible to
perform union by (1) having summations over Zm for a large enough m such as
m > �, which blows up the input and output share size by a factor of O(log �); or
by (2) sacrificing perfect correctness for ε-correctness, using random linear com-
binations, thus multiplying the output share size by O(log(1/ε)). Note that this
only works for disjunctions and not for more complex predicates. For instance,
for depth-3 circuits we don’t have a similar technique.

3.2 Secret Sharing

A secret sharing scheme L = (Share,Dec) is a tuple of algorithms. Share allows
a secret message s ∈ K to be shared into n parts, s1, . . . , sn ∈ K ′ such that
they can be distributed among servers S1, . . . , Sn in a secure way. Typically, any
single share sj reveals no information about s in the information-theoretic sense.
Dec allows authorized server sets to recover s from their respective shares {sj}.

We only consider linear secret sharing schemes L : K → K ′ in which K and
K ′ are additive groups and the shares satisfy that {sj

L + s′j
L} is a valid sharing

of s + s′ under L. We will use linear secret sharing schemes over finite fields
and over rings of the form Zm. Another feature of these schemes that we will
require, is that the client’s reconstruction algorithm for s is a linear function
of (some of) the shares s1, . . . , sn. Linear secret sharing schemes can be viewed
as homomorphic secret sharing schemes, endowed with a linear homomorphism
Eval, which we will define more formally in Definition 9.

An additive secret-sharing scheme Ladd over an Abelian group splits a secret
into random group elements that add up to the secret. For other types of linear
secret-sharing, our results will mostly treat them abstractly and will not be
sensitive to the details of their implementation; see [12] for formal definitions of
the flavors of “Shamir’s scheme” and “CNF scheme” we will refer to.
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3.3 HSS and PIR

Definition 9 (Information-Theoretic HSS). An information-theoretic k-
server homomorphic secret sharing scheme for a function family Fn, or k-HSS
for short, is a tuple of algorithms (Share,Eval,Dec) with the following syntax:

– Share(x): On input x ∈ Xn, the sharing algorithm Share outputs k input
shares, (x1, . . . , xk), where xi ∈ {0, 1}α(N), and some decoding information
η.

– Eval(ρ, j, f̂ , xj): On input ρ ∈ {0, 1}γ(n), j ∈ [k], f̂ ∈ Pn, and the share xj,
the evaluation algorithm Eval outputs yj ∈ {0, 1}β(N), corresponding to server
j’s share of f(x). Here ρ are public random coins common to the servers and
j is the label of the server.

– Dec(η, y1, . . . , yk): On input the decoding information η and (y1, . . . , yk), the
decoding algorithm Dec computes a final output y ∈ Yn.

We require the tuple (Share,Eval,Dec) to satisfy correctness and security.

Correctness. Let 0 ≤ ε < 1. We say that the HSS scheme is ε-correct if for any
f ∈ Fn and x ∈ Xn

Pr

⎡

⎣Dec
(
η, y1, . . . , yk

)
= f(x) :

ρ ∈R {0, 1}γ(n)
(
x1, . . . , xk, η

) ← Share(x)
∀j ∈ [k] yj ← Eval(ρ, j, f̂ , xj)

⎤

⎦ ≥ 1 − ε.

If the HSS scheme is 0-correct, then we say the scheme is perfectly correct.

Security. Let x, x′ ∈ Xn be such that x �= x′. We require that for any j ∈ [k] the
following distributions are identical

{xj : (x1, . . . , xk, η) ← Share(x)} ≡ {x′j : (x′1, . . . , x′k, η′) ← Share(x′)}.

For perfectly correct HSS we may assume without loss of generality that Eval
uses no randomness and so γ(n) = 0. In general, we will omit the randomness
parameter ρ from Eval for perfectly correct HSS and PIR. Similarly, whenever
Dec does not depend on η we omit this parameter from Share and Dec as well.

An HSS is said to be additive [21] if Dec simply computes the sum of the
output shares over some additive group. This property is useful for composing
HSS for simple functions into one for more complex functions. We will also be
interested in the following weaker notion which we term quasiadditive HSS.

Definition 10 (Quasiadditive HSS). Let HSS = (Share,Eval,Dec) be an HSS
for a function family F such that Yn = F2. We say that HSS is quasiadditive
if there exists an Abelian group G such that Eval outputs elements of G, and
Dec(y1, . . . , yk) computes an addition ỹ = y1 + . . .+ yk ∈ G and outputs 1 if and
only if ỹ �= 0.
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Fig. 1. The scheme PIRk
RM.

Definition 11 (PIR). If the tuple HSS = (Share,Eval,Dec) is a perfectly correct
k-HSS for the function family ALLn, we say that HSS is a k-server private
information retrieval scheme, or k-PIR for short.

Finally, the local computation Eval is modelled by a RAM program.

Definition 12 (Computational shortcut in PIR). Let PIR = (Share,Eval,
Dec) be a PIR with share length α(N), and F be a function family. We say that
PIR admits a strong shortcut for F if there is an algorithm for Eval which runs
in quasilinear time τ(N, �) = Õ(α(N) + β(N) + �) for every function f ∈ F ,
where � = |f̂ | is the description length of f . In similar fashion, we say that PIR
admits a (weak) shortcut for F if there is an algorithm for Eval which runs in
time τ(N, �) = O(� · Nδ), for some constant 0 < δ < 1.

4 Shortcuts for Reed-Muller PIR

Let 3 ≤ k ∈ N and d = k − 1 be constants. The k-server Reed-Muller based PIR
scheme PIRk

RM = (ShareRM,EvalRM,DecRM) is presented in Fig. 1.
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We observe that, in k-server Reed-Muller PIR PIRk
RM, the sum of products

∑

(x′
1,...,x′

d)∈{0,1}n

f(x′
1, . . . , x

′
d)

d∏

i=1

(qj
i )[x

′
i]

can be written as a product of sums if f is a combinatorial rectangle function.
Consequently PIRk

RM admits a computational shortcut for d-dimensional combi-
natorial rectangles, which gives rise to shortcuts for intervals and DNFs as they
are special cases of combinatorial rectangles (Propositions 1 and 2).

Lemma 2. PIRk
RM admits a strong shortcut for the function family of sin-

gle d-dimensional combinatorial rectangle, i.e., SUMCR1,d
n . More concretely,

τ(N, �) = O(α(N)) = O(N1/d).

Proof. Naturally, the client and server associate x = (x1, . . . , xd) as the input to
the functions f from SUMCR1,d

n . Let f̂ = ĉr = {S1, . . . ,Sd} be the combinatorial
rectangle representing f . Given f̂ , the computation carried out by server j is

EvalRM(j, f̂ , xj = (qj
1, . . . , q

j
d)) = σ

⎛

⎝λj

∑

(x′
1,...,x′

d)∈S1×...×Sd

d∏

i=1

qj
i [x

′
i]

⎞

⎠ (3)

= σ

⎛

⎝λj

d∏

i=1

∑

x′
i∈Si

qj
i [x

′
i]

⎞

⎠ (4)

If the server evaluates the expression using Eq. (3) the time is O(N), but if it
instead uses Eq. (4) the time is O(d maxi{|Si|}) = O(2

n
d ) = O(α(N)).

Theorem 9. PIRk
RM admits a weak shortcut for the function family SUMCR�,d

N .
More concretely, τ(N, �) = O(�α(N)) = O(�N1/d). The same shortcut exists for
decision trees with � leaves, or, more generally, SUMDNF�

n and DDNF�
n.

Proof. This is implied by Lemma 2, by noting that f = cr1 + . . . cr� over the
common input x. In particular, the final Eval algorithm makes � calls to the
additive HSS given by Lemma2, so the running time is O(�α(N)) = O(�2

n
d ).

An algorithm, presented in the full version, improves the efficiency of Theorem9
for decision trees to Õ(α(n) + � · α(n)1/3).

4.1 Intervals and Convex Shapes

By Proposition 1, one obtains weak shortcuts for d-dimensional intervals. In fact,
one can obtain strong shortcuts by the standard technique of precomputing the
prefix sums in the summation Eq. (4).

Theorem 10. PIRk
RM admits a strong shortcut for the function family

SUMINT�,d
n . More concretely, τ(N, �) = O(α(N) + �) = O(N1/d + �). The same

shortcut applies to DINT�,d
n .
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Segments and Low-Dimensional Intervals. Every segment can be split
into at most (2d − 1) d-dimensional intervals. The splitting (deferred to the full
version) works by comparing the input x ∈ {0, 1}n with the endpoints a, b ∈
({0, 1}n/d)d in a block-wise manner.

Theorem 11. PIRk
RM admits a strong shortcut for the function families SEG�

n.
Generally, for every integer d′|d, PIRk

RM admits a strong shortcut for the function
families DINTd′,�

n (or SUMINTd′,�
n ). More concretely, τ(N, �) = O(N1/d + �).

Shortcut for Convex Shapes. At a high level, convex body functions are
functions whose preimage of 1 forms a convex body in the d-dimensional cube
Xn := ({0, 1}n/d)d. The following theorem follows from the fact that we can
efficiently split a d-dimensional convex body into O(N (d−1)/d) d-dimensional
intervals in a “Riemann-sum” style.

Theorem 12 (Convex bodies, Informal). There is a perfectly correct k-
server HSS for the function class of �-unions of convex shapes with α(n) =
O(N1/(k−1)), β(n) = 1 and τ(n) = O(�N (k−2)/(k−1)).

We show that the bound is essentially the best achievable by splitting the shape
into union of intervals. Finally, we show that on the other hand, for more regular
shapes like circles, strong shortcuts are possible if one settles for an approximated
answer. Detailed discussion of such results are deferred to the full version.

Theorem 13 (Circle approximation, Informal). There is a perfectly correct
k-server HSS for the function class of �-unions of ε-approximations of circles
with α(n) = O(N1/(k−1)), β(n) = 1 and τ(n) = O(α(n) + 1

ε �).

4.2 Compressing Input Shares

The scheme PIR3
RM described above can be strictly improved by using a more

dense encoding of the input. This results in a modified scheme PIR3
RM′ with

α′(N) =
√

2 · N1/2, a factor
√

2 improvement over PIR3
RM. This is the best

known 3-server PIR scheme with β = 1 (up to lower-order additive terms [11]).
In the full version, we show that with some extra effort, similar shortcuts apply
also to the optimized PIR3

RM′ .

4.3 Negative Results for RM PIR

Although we have shortcuts for disjoint DNF formulas, similar shortcut for more
expressive families with counting hardness is unlikely. The idea is similar in spirit
to [52, Claim 5.4]. The lower bounds for PIR3

RM also hold for PIR3
RM′ .

Theorem 14. Let F be a function family for which PIRk
RM admits a weak short-

cut with τ(N, �) = T . Then, there exists an algorithm Count2 : Pn → F2

running in time O(T +
∣
∣
∣f̂

∣
∣
∣), that when given f̂ ∈ Pn, computes the parity of

|{x ∈ Xn : f(x) = 1}|.
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Proof. Recall that the server computes the following expression in PIRk
RM:

σ

⎛

⎝λj

∑

(x′
1,...,x′

k−1)∈X n

f(x′
1, . . . , x

′
k−1)

k−1∏

i=1

(qj
i )[x

′
i]

⎞

⎠ .

To compute the required parity, instead of using e1, . . . , en in the original ShareRM
in step 3 (see Fig. 1), we use the vectors 1N1/d

, . . . , 1N1/d

, i.e., the all-one vectors.
After calling Eval on all the respective shares and decoding the output, one
obtains

∑

(x′
1,...,x′

k−1)∈{0,1}n

f(x′
1, . . . , x

′
k−1) = |{x ∈ Xn : f(x) = 1}| (mod 2).

The total time of the algorithm is O(T +
∣
∣
∣f̂

∣
∣
∣).

We recall the following conjecture commonly used in complexity theory.

Conjecture 2 (Strong Exponential Time Hypothesis (SETH)). SAT cannot be
decided with high probability in time O(2(1−ε)n) for any ε > 0.

By the isolation lemma from [25], SETH is known to imply that ⊕SAT, which
is similar to SAT except that one need to compute the parity of the number
of satisfying assignments, cannot by solved in time O(2(1−ε)n). The number of
satisfying assignments to a CNF formula equals 2n − r, where r is the number
of satisfying assignments to its negation. Since the negation of a CNF formula
is in DNF, ⊕DNF cannot be decided in O(2(1−ε)n) as well. Therefore we have
the following corollary.

Corollary 2. For any k, there exists a polynomially bounded � such that PIRk
RM

does not admit a weak shortcut for the function family DNF�
n, unless SETH fails.

Proof. By Theorem 14, if there is a weak shortcut for any polynomially bounded
�, i.e., an algorithm computing Eval for any function in DNF�

n in time O(N1−ε),
then one can decide ⊕DNF in time O(N1−ε).

Note that the hardness for DNF�
n is not contradictory to the fact that larger

field size or random linear combinations help evaluating general DNFs (see
Remark 1) because our proof heavily relies on the fact that we work over a
small field (which has several efficiency benefits) and that the shortcut is deter-
ministic.

Conjecture 3 (Exponential Time Hypothesis (ETH)). SAT requires time O(2δn),
for some δ > 0, to be decided with high probability.

In a similar fashion, assuming the ETH, we can obtain the weaker result that
strong shortcuts are impossible given k is large, namely when k > 1

δ .

Corollary 3. Assume ETH. For some large enough k and some polynomially
bounded �, PIRk

RM does not admit a strong shortcut for the function family DNF�
n.
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5 On Shortcuts for Matching Vector PIR

Matching vectors (MV) based PIR schemes in the literature can be cast into a
template due to [12]. As described in the introduction, this template has two
ingredients: (1) a matching vector family ; (2) a share conversion. A complete
specification is given in the full version.

We describe the server computation in more detail, in particular, we present
the structure of the matching vector family on which MV PIR is based. In
PIRk

MV,SC each server j is given as input xj ∈ Zh
m which is a secret share of ux.

Then, for every x′ ∈ [N ], the server j homomorphically obtains yj,x,x′ which is
the j-th share of 〈ux, vx′〉. Next, each server j computes a response

∑

x′∈[N ]

f(x′)SC(j, yj,x,x′).

Therefore, for the all-1 database (f(x) = 1), for every S-matching vector family
MV and share conversion scheme SC from L to L′ we can define the (MV,SC)-
counting problem, #(MV,SC), see Definition 1.

We consider #(MVw
Grol,SC), where MVw

Grol is a matching vectors family due
to Grolmusz [40], which is used in all third-generation PIR schemes, which we
present in Fact 1, and SC ∈ {SCEfr,SCBIKO}.

#(MV,SC) displays a summation of converted shares of inner products. The
actual computation carried out is determined by the structure of vx′ and hence
the instance of the MV used. Here we describe the graph-based matching vector
family, first given in [40].

Instantiation of Grolmusz’s Family. There is an explicitly constructable S-
Matching Vector family for m = p1p2 with α(N) = No(1) based on the inter-
secting set family in [50] for the canonical set S = Sm = {(0, 1), (1, 0), (1, 1)} ⊆
Zp1 ×Zp2 (in Chinese remainder notation). Here we give a more detailed descrip-
tion of their structure in the language of hypergraphs.

Fact 1 (The parameterized MVw
Grol, modified from [40]). Let m = p1p2

where p1 < p2 are distinct primes. For any integer r and parameter function
w(r), one can construct an S-matching vector family {ux, vx ∈ Zh

m}x∈[N ] where
N =

(
r

w(r)

)
and h =

(
r

≤d

)
for d ≤ p2

√
w(r). Moreover, the construction is

hypergraph-based in the following sense:
Let [r] be the set of vertices. Every index x ∈ [N ] corresponds to a set Tx ⊂ [r]

of w(r) nodes. The vector vx has entries in {0, 1} and its coordinates are labelled
with ζ ⊂ [r] which are hyperedges of size at most d nodes. Moreover, vx[ζ] = 1
iff the vertices of the hyperedge ζ are all inside Tx. Therefore the inner product
can be evaluated as

〈ux, vx′〉 =
∑

ζ⊆Tx′ ,|ζ|≤d

ux[ζ] =
∑

ζ⊆Tx,|ζ|≤d

ux′ [ζ] =
∑

ζ⊆Tx∩Tx′ ,|ζ|≤d

1.
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In other words, the inner product is carried out by a summation over all the
hyperedges lying within a given vertex subset Tx′ . Under this view, we will call
|Tx′ | = w(r) the clique size parameter.

By setting MVw
Grol with w = Θ(

√
r), we obtain from Fact 1 and the definition

of PIRk
MVw

Grol,SC
, a PIR scheme with α(N) = 2O(2p2

√
n log n), which is state of the

art in terms of asymptotic communication complexity. We prove Fact 1 in the
full version.

5.1 A Reduction from a Subgraph Counting Problem for SCEfr

In this section we relate the server computation to a subgraph counting problem.
For this we rely on the hypergraph-based structure of the matching vector fam-
ily, in combination with the share conversion SCEfr. More concretely, we relate
#(MVw

Grol,SCEfr) to the problem ⊕IndSub(Φ511,0, w), see Definition 2 and the
preceding discussion.

We prove the following which relates obtaining computational shortcuts for
PIRk

MV,SC to counting induced subgraphs.

Lemma 3 (Hardness of (MVw
Grol,SCEfr)-counting). If #(MVw

Grol,SCEfr) can
be computed in No(1)

(
= ro(w)

)
time, then ⊕IndSub(Φ511,0, w) can be decided in

ro(w) time, for any nondecreasing function w : N → N.

In particular, if we can show ⊕IndSub(Φ511,0, Θ(
√

r)) cannot be decided
in ro(

√
r) time under some complexity assumption, it will imply that

PIRk

MV
Θ(

√
r)

Grol ,SCEfr
does not admit strong shortcuts for the all-1 database under

the same assumption, as α(N) = No(1) holds and τ(N, �) = No(1) is impossible.

Proof (Proof of Lemma 3). Let m = 511. Recall that N =
(

r
w

)
and h =

(
r

≤d

)

where d ≤ p2
√

w. Suppose A is an algorithm solving #(MVw
Grol,SCEfr) with these

parameters that runs in time No(1) = ro(w). By definition of ShareEfr, the input
to A is a vector xj ∈ Zh

m. To homomorphically obtain a share of 〈ux, vx′〉, where
x is the client’s input, the server first computes 〈xj , vx′〉. For any instance G in
⊕IndSub(Φm,0, w) with |V (G)| = r, we define the following vector q ∈ Zh

m: for
every hyperedge ζ where |ζ| ≤ d,

q[ζ] =

{
0 if ζ /∈ E(G)
1 if ζ ∈ E(G).

(5)

Note that for any |ζ| �= 2 we have q[ζ] = 0. By Fact 1 and how q is constructed,
for every x′ ∈ [N ],

〈q, vx′〉 =
∑

ζ⊂Tx′ ,|ζ|≤d

q[ζ] =
∑

ζ⊂Tx′ ,ζ∈E(G)

1.



On Computational Shortcuts for Information-Theoretic PIR 527

Therefore the value of the inner product is the number of edges in the subgraph
induced by the nodes in Tx′ . For � = 1, . . . , (m−1), we feed �·q into the algorithm
A. The output will be

∑

x′∈[N ]

SCEfr(j, 〈� · q, vx′〉) =
∑

x′∈[N ]

ajγ
〈�·q,vx′ 〉 = aj

∑

x′∈[N ]

γ�〈q,vx′ 〉

= aj

∑

b∈{0,...,m−1}

∑

x′:〈q,vx′ 〉=b

γb�

= aj

∑

b∈{0,...,m−1}
cb(γ�)b,

where cb ∈ {0, 1} (recall that the field F29 has characteristic 2) is the parity
of the number of induced w-subgraphs, whose number of edges is congruent
to b modulo m. This is because cb counts the number of elements in the set
{x′ ∈ [N ] : 〈q, x′〉 = b} = {x′ ∈ [N ] :

∑
ζ⊂Tx′ ,ζ∈E(G) 1 = b}. Consequently,

the bit c0 is the answer bit to the problem ⊕IndSub(Φm,0, w). Note that after
each call to A, we obtain evaluation of the degree-(m − 1) polynomial Q(Γ ) =
aj

∑
b∈{0,...,m−1} cbΓ

b at Γ = γ�. Since the points {γ�}m−1
�=0 are distinct, we can

perform interpolation to recover cb for any b ∈ {0, . . . , m − 1}. In particular, we
can compute the desired bit c0. The overall running time is O(m2) + mro(w) =
ro(w).

In the full version, we show that a similar reduction holds for SCBIKO as well,
except that we consider the problem ⊕IndSub(Φ6,4, w).

5.2 Hardness of Subgraph Counting

As described in Sect. 2.2, we have the following plausible conjecture, and it turns
out that its hardness can be based on ETH for a suitable choice of parameter.

Conjecture 4 (Hardness of counting induced subgraphs). ⊕IndSub(Φm,Δ, w)
cannot be decided in ro(w) time, for any integers m ≥ 2, 0 ≤ Δ < m, and
for every function w(r) = O(rc), 0 ≤ c < 1.

Note that Conjecture 4 does not rule out weak shortcuts. However, it seems
that even weak shortcuts would be difficult to find when instantiated with match-
ing vectors from Fact 1. Indeed, for the related problem of hyperclique counting,
algorithms which are faster than the näıve one are known only for the special
case when hyperedges are edges (e.g. [4]).

Basing on ETH. Proving Conjecture 4 is difficult as it is a fine-grained lower
bound. However, by assuming ETH, we can prove Conjecture 4 partially, in the
sense that for a specific choice of w(r), the lower bound does hold.

Lemma 4. There is an efficiently computable function w(r) = Θ(log r/ log
log r), such that if ⊕IndSub(Φ511,0, w) or ⊕IndSub(Φ6,4, w) can be decided in
ro(w(r)) time, then ETH fails.
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Proof. This follows from ETH
Lemma 5≤ Clique(k(r))

Lemma 6≤ ⊕IndSub(Φ,w)
for Φ ∈ {Φ511,0, Φ6,4}.

Next, we sketch how to perform the steps of the reduction in the proof of
Lemma 4.

Reducing Clique Decision to ETH. Let Clique(k(r)) be the problem that, given
a graph G with r nodes, decide whether a clique of size k(r) exists in G. As a
direct corollary of [28, Theorem 5.7], we have the following lemma.

Lemma 5. There is an efficiently computable function k(r) = Θ(log r/ log
log r), such that if Clique(k(r)) can be solved in ro(k(r)) time, then ETH fails.

Reducing Induced Subgraph Counting to Clique Decision. By reproducing the
reduction in [42], we have the following (proofs deferred to the full version).

Lemma 6. Let k(r) = Θ(log r/ log log r) as in Lemma 5. Then, there is an
efficiently computable size parameter w(r) = Θ(log r/ log log r) such that if
⊕IndSub(Φ511,0, w) or ⊕IndSub(Φ6,4, w) can be decided in ro(w(r)) time, then
one can decide Clique(k(r)) in ro(k(r)) time.

While Lemma 5 could be proven to hold for k(r) = Θ(
√

r) as well, as discussed
in Sect. 2.2, by reproducing the reduction in [42], Lemma 6 only holds for k(r) =
o(log r).

Hardness of Subgraph Counting. Finally, our main theorem follows from Con-
jecture 4 and Lemmas 3 and 4. To this end, denote by MV∗ the family MVw

Grol

obtained by instantiating w(r) with this specific parameter.

Theorem 15. #(MV∗,SC) cannot be computed in No(1)
(
= ro(w)

)
time, unless

ETH fails. Moreover, assuming Conjecture 4, the same holds for MVw
Grol with

w = Θ(
√

r). Here SC is either SCEfr or SCBIKO.

6 Concrete Efficiency

While this paper deals with computational shortcuts, in this section we will
make comparisons exclusively with respect to communication. The main reason
we compare communication is that for our main positive results, computation
scales at most quasi-linearly with the size of the inputs, and thus is essentially the
best one can hope for. Moreover, it is hard to make exact “apples to apples” com-
parisons for computation (what are the units?) Perhaps most importantly, for
the problems to which our positive results apply (e.g., unions of convex shapes),
the (asymptotic and concrete) computational efficiency of our schemes dominate
those of competing approaches (FHE, brute-force PIR, garbled circuits, GMW-
style protocols). Due to the concrete inefficiency of HSS from generic composition
of PIRs, we will focus exclusively on HSS from shortcuts for PIRk

RM.
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Cryptographic Share Compression. In the full version we describe a simple
method [33] to compress the queries of PIRk

RM = (Share,Eval,Dec), at the cost of
making the scheme only computationally secure, utilizing share conversion from
Shamir secret sharing to CNF secret sharing (c.f. [12] for relevant definitions).

Communication Complexity. In Table 1 we compare the communication
complexity for unions of disjoint two dimensional intervals. For two dimensional
intervals, FSS requires queries of length O(λ(log N)2) [19].

Table 1. Total communication complexity for the task where the client holds a secret
index x in a grid [

√
N ]× [

√
N ] and it wishes to privately learn (with security threshold

t = 1) if it is contained in a collection of � two dimensional intervals held by k servers.
The computational cost for FSS and Reed-Muller is Õ(comm + �), where comm is the
communication complexity. The latter is obtained via our shortcuts. Note that for k = 4
the aforementioned computational cost is obtainable only when considering grids with
dimensions [N1/3]× [N2/3]. For grids with dimensions [

√
N ]× [

√
N ] the computational

cost becomes Õ(comm+�
√
comm). See [19, Corollary 3.20] for how the numbers in last

column were computed. Share compression was applied to Reed-Muller.

Domain size Reed-Muller
[29] (k = 3)

Reed-Muller
[29] (k = 4)

Reed-Muller
[29] (k = 5)

FSS [19]
(k = 2)

210 0.05 KB 0.05 KB 0.06 KB 3.1 KB

215 0.1 KB 0.1 KB 0.1 KB 7.0 KB

220 0.6 KB 0.2 KB 0.3 KB 12.5 KB

225 2.9 KB 0.5 KB 0.4 KB 19.5 KB

230 16.1 KB 1.3 KB 0.6 KB 28.1 KB

235 90.6 KB 3.7 KB 1.1 KB 38.3 KB

240 512.1 KB 11.5 KB 2.2 KB 50.0 KB

270 16.0 GB 11.3 MB 362.3 KB 153.1 KB

It is worth mentioning that private geographical queries were already con-
sidered in [58]. However, there the two dimensional plane is tessellated with
overlapping shapes of the same size, which reduces the problem to the task of
evaluating multipoint functions. Therefore, this approach can be seen as a simply
reducing the size of the problem. In contrast, here we allow for a better tradeoff
between precision and computation. Our solution is more expressive, as it allows
for shapes of high and low precision simultaneously.

Larger Security Threshold. In this section we consider the applicability of
our PIR-based HSS to security models with larger security threshold. Specifically,
we will consider the case where we allow at most two colluding servers. However,
lending to its PIR backbone, our HSS constructions scale well for higher security
thresholds.



530 M. M. Hong et al.

Indeed, there is an analogue of PIRk
RM with 2 security threshold, such that

for O(
√

N) and O(N1/3) total communication, the number of required servers
is 5 and 7, respectively. Moreover, this PIR scheme retains all the computa-
tional shortcuts of PIRk

RM and its shares can be compressed as well. Alterna-
tively, employing multiparty FSS [17] (for multipoint functions) requires only 3
servers. However, in stark contrast to two party FSS, multiparty FSS requires
O(λ

√
N) total communication. Moreover, it is not clear how to obtain an FSS

for one dimensional intervals in this setting, let alone two dimensional intervals.
We conclude our HSS wins by two orders of magnitude.

Another approach to increase the security threshold of FSS is via the generic
tensoring technique of [7], which preserves the communication complexity. Nev-
ertheless, this scales worse with larger security threshold t, requiring 2t servers,
compared to 2t + 1 servers via Reed-Muller PIR. Furthermore, this approach
is not computationally efficient, requiring O(N) computation. We provide a
description of the tensoring of [7] in the full version.

In Table 2 we compare the communication complexity of FSS with our HSS
for the simple task of PIR, as more expressive function families are unavailable
for higher security thresholds for FSS.

Table 2. Total communication complexity for the task where the client holds a secret
index x in [N ] and it wishes to privately learn (with security threshold t = 2) if its
contained in a collection of � points in [N ] held by k servers. The computational cost for
FSS and Reed-Muller is Õ(comm + �), where comm is the communication complexity.
Data for FSS was obtained from [17, Theorem 7]. Share compression was applied to
Reed-Muller.

Domain size Reed-Muller [29] (t = 2, k = 5) FSS [19] (t = 2, k = 3)

210 0.2 KB 3.0 KB

215 0.6 KB 17.0 KB

220 1.2 KB 96.0 KB

225 4.7 KB 543.1 KB

230 24.4 KB 3.0 MB

235 136.2 KB 17.0 MB

240 768.4 KB 96.0 MB

270 24.0 GB 3.0 TB

Other Settings. In the full version, we show how to make our schemes more
efficient whenever the payload size is small (a few bits), by basing our shortcuts
on a “balanced” variant of PIRk

RM, proposed by Woodruff and Yekhanin [60].
In addition, we discuss our schemes in the context of distributed share genera-
tion and argue that our schemes are more “MPC-friendly” than the FSS-based
alternative.
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Abstract. Randomness is typically thought to be essential for zero
knowledge protocols. Following this intuition, Goldreich and Oren (Jour-
nal of Cryptology 94) proved that auxiliary-input zero knowledge can-
not be achieved with a deterministic prover. On the other hand, positive
results are only known in the honest-verifier setting, or when the prover
is given at least a restricted source of entropy. We prove that remov-
ing (or just bounding) the verifier’s auxiliary input, deterministic-prover
zero knowledge becomes feasible:

– Assuming non-interactive witness-indistinguishable proofs and
subexponential indistinguishability obfuscation and one-way func-
tions, we construct deterministic-prover zero-knowledge arguments
for NP ∩ coNP against verifiers with bounded non-uniform auxiliary
input.

– Assuming also keyless hash functions that are collision-resistant
against bounded-auxiliary-input quasipolynomial-time attackers, we
construct similar arguments for all of NP.

Together with the result of Goldreich and Oren, this characterizes when
deterministic-prover zero knowledge is feasible. We also demonstrate the
necessity of strong assumptions, by showing that deterministic prover
zero knowledge arguments for a given language imply witness encryption
for that language. We further prove that such arguments can always be
collapsed to two messages and be made laconic. These implications rely
on a more general connection with the notion of predictable arguments
by Faonio, Nielsen, and Venturi (PKC 17).

1 Introduction

Goldwasser, Micali, and Rackoff [18] founded the concept of zero-knowledge
proofs on two main elements: interaction and randomness. While both inter-
action and verifier randomness are known to be essential for zero knowledge,
the answer as to whether the prover must also be randomized is not as definite.
Goldreich and Oren [16] showed that prover randomness is essential in order to
achieve auxiliary-input zero-knowledge for non-trivial languages. According to
this notion, motivated by composition [15], anything that a verifier can learn
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from the proof, on top of the auxiliary information z it already possesses, can
be efficiently simulated given the same auxiliary information z.

So when is deterministic-prover zero knowledge possible? So far, determinis-
tic prover zero knowledge have only been shown to exist in the honest-verifier
setting. Here Faonio, Nielsen, and Venturi [12] proved that any NP language
L that has a witness encryption scheme [13], also has a deterministic-prover
honest-verifier (perfect) zero-knowledge argument, or proof, if the language L
has a hash proof system [10]. A similar result was recently shown by Dahari
and Lindell [11]. In the same work, Dahari and Lindell also show a statisti-
cally sound honest-verifier zero knowledge protocol with an unbounded honest
prover for all of NP assuming doubly-enhanced injective one-way functions. In
the malicious verifier setting, they give a protocol satisfying a non-standard dis-
tributional notion of zero knowledge. In their definition, the prover has access to
a pair of witnesses sampled from a distribution, which satisfy a certain entropy
guarantee.

Whether zero knowledge with a truly deterministic prover is possible consid-
ering any meaningful form of malicious verifiers remains unknown.

1.1 This Work

We prove that deterministic-prover zero knowledge for non-trivial languages is
feasible for the class of malicious verifiers with bounded auxiliary input.

Theorem 1 (Informal). Assuming non-interactive witness-indistinguishable
proofs and subexponentially-secure indistinguishability obfuscation and one-way
functions, there exist two-message deterministic-prover arguments for NP∩ coNP
that are zero-knowledge against bounded-auxiliary-input verifiers.1

Theorem 2 (Informal). Assuming also keyless hash functions that are
collision-resistant against bounded-auxiliary-input quasipolynomial-time attack-
ers, there exist similar arguments for all of NP.

By zero knowledge against bounded-auxiliary-input verifiers we formally
mean that for any polynomial bound b, there exists a corresponding
deterministic-prover argument that is zero knowledge against (malicious) ver-
ifiers with non-uniform auxiliary input of size at most b. This, in particular,
includes the class of uniform verifiers, considered in the original zero-knowledge
definition of [18]. We stress that the running time of the verifier may be an
arbitrary polynomial, potentially larger than b. Also, indistinguishability of sim-
ulated and real proofs holds against non-uniform distinguishers of arbitrary poly-
nomial size. Same goes for soundness, which holds against non-uniform provers
of arbitrary polynomial size.
1 Indistinguishability obfuscation implies non-interactive witness indistinguishable

proofs, but with a randomized verifier [8], which is insufficient for our purpose. The
verifier can be derandomized under a worst-case Nisan-Wigderson [21] type deran-
domization assumption [9]. Non-interactive witness indistinguishable proofs with a
deterministic verifier are also known from standard assumptions on bilinear maps
[19].
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Together with the impossibility result of Goldreich and Oren for unbounded
auxiliary input, the above results give a complete picture of when exactly
deterministic-prover zero knowledge is feasible. We note that two-message zero
knowledge against unbounded auxiliary input is by itself known to be impossible.
Our result indeed circumvents this impossibility (for bounded auxiliary input),
but this was already known (with a randomized prover) [6].

On the Necessity of Strong Assumptions and Predictable Arguments. To demon-
strate the feasibility of deterministic-prover zero knowledge, we rely on hardness
assumptions that are arguably strong. We show that this is inherent. Specifi-
cally, we show that deterministic prover zero-knowledge arguments for NP imply
witness encryption for NP, which at this point is only known based on strong
assumptions, such as indistinguishability obfuscation.

The implication to witness encryption, in fact, follows from a more general
implication to predictable arguments. Predictable arguments, introduced by Fao-
nio, Nielsen, and Venturi [12], are arguments where the honest verifier’s (private)
random coins efficiently determine a unique accepting transcript—in order to
convince the verifier, the prover must be consistent with this transcript through-
out the entire protocol. We prove that any deterministic-prover zero-knowledge
argument against bounded-auxiliary-input verifiers can be turned into a pre-
dictable argument. The transformation, in fact, preserves the honest prover algo-
rithm, and in particular also zero knowledge.

Theorem 3 (Informal). Any deterministic-prover zero-knowledge argument
against bounded-auxiliary-input verifiers can be made predictable.

We also give a transformation that only requires honest-verifier zero knowl-
edge and works provided that the argument is expressive enough (e.g., for all
NP or even just NP ∩ coNP). The fact that deterministic-prover zero knowledge
arguments imply witness encryption, then follows from [12] where predictable
arguments are shown to imply witness encryption.

Corollary 1 (of Predictability). Any deterministic-prover zero-knowledge
argument against bounded-auxiliary-input verifiers for a language L implies a
witness encryption scheme for L.

We use additional known results regarding predictable arguments [12] to
deduce similar results for deterministic-prover zero knowledge:

Corollary 2 (of Predictability). Any deterministic-prover zero-knowledge
argument against bounded-auxiliary-input verifiers can be reduced to two mes-
sages and made laconic.

Here by laconic [12,17] we mean that the prover sends a single bit and the
soundness error is negligibly close to 1/2; or more generally, the prover sends �
bit in order to obtain a soundness error negligibly close to 2−�.
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Non-Black-Box Zero-Knowledge Simulation. The zero-knowledge simulator in
our constructed arguments makes non-black-box use of the verifier’s code. This
is known to be inherent—black-box simulation is impossible in the setting of two
(or even three) message zero knowledge against bounded-auxiliary-input verifiers
[6,15].

1.2 Technical Overview

We now give an overview of the main ideas and techniques behind our results.

The Deterministic-Prover Zero-Knowledge Protocol. Our starting point is the
protocol against honest verifiers based on witness encryption [12]. In their pro-
tocol, the verifier simply sends a witness encryption of a random message u with
respect to the statement x ∈ L to be proven, and expects to get u back from the
prover. Witness encryption guarantees that a prover that has a corresponding
witness w, can obtain u and convince the verifier. However, if the statement is
false, namely x /∈ L, u is hidden, and soundness is guaranteed.

While honest verifiers are easy to simulate in this scheme, it is not clear how
to simulate malicious verifiers. For this purpose, we aim to add to the protocol a
trapdoor way of obtaining u. A simulator that has the code of the verifier should
be able to extract the message u. In contrast, a malicious prover who doesn’t
have the code (specifically, the verifier’s randomness) should still fail to find u
when x /∈ L.

Explainable Verifiers. To explain the idea behind the protocol in its simplest
form, let us start by assuming that the first message v sent by verifier to the
prover is always explainable [7]. That is, there exist honest verifier coins r that
explain this message as an honest verifier message v = V(x; r). The difference
between this setting and the honest verifier setting is that the explaining coins
r may be distributed arbitrarily and also computationally hard to find.

Our basic idea is for the verifier to send the prover yet another witness
encryption of u where the witness is basically the malicious verifier code V∗.
Our realization of this idea is inspired by Barak’s uniform simulation technique
[1]. Let b be the given bound on the description size of the verifier including
its (bounded) auxiliary input hardwired. Then, the honest verifier samples a
long random string R ← {0, 1}b+2λ. Then in addition to the witness encryption
of u under the statement x ∈ L, it sends a witness encryption of u under the
statement:

“There exists a program Π of size b + λ (namely short) that outputs R.”

To argue that the protocol remains sound, we note that except with negligible
probability 2−λ over the choice of r, such a short program does not exist. In this
case, witness encryption will guarantee that u remains hidden and soundness is
preserved. Furthermore, a simulator in possession of the b-size code V∗ of the
malicious verifier can now use it to simulate. Specifically, let � be the amount of
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coins r∗ used by V∗, then the simulator will sample r∗ using a pseudorandom
generator that stretches a seed s∗ of length ≈ λ to a pseudorandom r∗ of length
�. Looking at the string R that V∗(x; r∗) outputs, the simulator now possesses
a size-(b + λ) program Π that computes R—the code of V∗ with the seed s∗

hardwired. This in turn leads to valid simulation.

Witness Encryption for Unbounded NP Relations and IO. One thing to notice
about the latter protocol is that in fact the existence of program Π that outputs
R is not an NP statement, unless we restrict the running time of Π to some spe-
cific polynomial. However, while the non-uniform description size (equivalently,
auxiliary input size) of the malicious verifier V∗ is a-priori bounded, its running
time is not bounded by any specific polynomial.

Accordingly, we need a strong notion of witness encryption for unbounded
non-deterministic relations. Specifically, encryption under a statement x should
take time polynomial in |x| (and the security parameter), and not depend on the
time required to verify a witness for x. In contrast, decrypting with a witness
w should take time proportional to the time required to verify w. Such wit-
ness encryption schemes directly follow from known indistinguishability obfus-
cation (IO) schemes for Turing Machines, which are in turn constructed from
subexponentially-secure IO for circuits [5,14,20].

Malicious Verifiers. Having constructed a protocol against explainable verifiers,
we use compilers from the literature to turn it into a protocol against arbitrary
verifiers. These compilers use non-interactive witness-indistinguishable proofs
(NIWIs) in order to enforce explainable behavior on the verifier’s side. Being
non-interactive verifying, these proofs require no randomness from the honest
zero-knowledge prover.

The first such compiler [7] works for NP ∩ coNP and requires no additional
hardness assumptions. The second compiler is taken from [3] (where it was used
in a different context) and relies in addition on keyless hash functions that are
collision resistant against attackers with bounded auxiliary input and quasipoly-
nomial running time, as well as subexponentially secure commitments (which
in turn follow from subexponentially secure IO and one-way functions). In the
body, we reanalyze these compilers to show that they can be used to enforce
robust explainability, which roughly means that the verifier’s messages are almost
always explainable on any efficiently samplable distribution on its coins, a prop-
erty required for our simulation strategy. See more details in Sect. 3.

From Deterministic-Prover Zero Knowledge to Predictable Arguments. We now
explain how deterministic-prover zero knowledge implies predictable arguments,
which in turn imply witness encryption (as well as the additional properties
stated in Corollary 2). We start with an oversimplified transformation that cap-
tures the main idea, but does not fully work, and then explain how to augment
it. This oversimplified transformation, in fact, starts from deterministic-prover
honest-verifier zero knowledge.
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Let (P,V) be our argument, and let Sim be the honest-verifier simulator. We
consider a new verifier V′ that works as follows. It applies the simulator Sim(x)
to obtain simulated randomness r̃ for the honest verifier along with simulated
prover messages p̃1, . . . , p̃k. The verifier V′ then certifies that the prover messages
lead to an accepting transcript with respect to the verifier coins r. If they do not
lead to an accepting transcript, V′ automatically rejects; otherwise, it interacts
with the prover, and rejects the moment it receives a message pi �= p̃i. The
described protocol is predictable by construction. Also, since we do not change
the honest prover, it is zero knowledge against the same class of verifiers as the
original protocol. We now turn to argue that the protocol is complete and sound.

To see that the protocol has almost perfect completeness, consider a dis-
tinguisher that has the witness w hardwired. Given a transcript p1, . . . , pk and
verifier coins r, it can perfectly emulate a conversation between the deterministic
prover P(x,w) and honest verifier V(x; r) and check whether the produced prover
messages are consistent with the input transcript p1, . . . , pk, and that the tran-
script is accepting. We deduce that with overwhelming probability the simulator
produces simulated messages p̃1, . . . , p̃k, and randomness r, such that the honest
prover would produce the same messages, and the transcript will be accepting.
To see soundness, notice that if the simulated coins r are pseudorandom and the
simulated prover messages p̃1, . . . , p̃k are accepting, then by the soundness of
the original protocol (P,V), it should be hard for an efficient prover to produce
messages consistent with p̃1, . . . , p̃k (or with any accepting transcript).

Above, when proving soundness we actually made the implicit assumption
that the honest verifier simulator Sim(x) produces pseudorandom verifier coins,
even when given a no instance x /∈ L. Indeed, with respect to random, or pseu-
dorandom, coins, we can argue that it is hard to find accepting transcripts.
While this is a natural property, it does not follow directly from honest veri-
fier zero knowledge. To circumvent this difficulty, we slightly augment the above
transformation, while relying on zero-knowledge against (not necessarily honest)
bounded-auxiliary-input verifiers.

Specifically, the verifier V′ uses a pseudorandom generator to sample coins r
for the honest verifier V, using a short seed s. It then applies the same proce-
dure as above, except that it runs the simulator Sim(Vs, x) for the deterministic
verifier Vs that first derives the coins r from the seed s, and then applies V.
By choosing an appropriate pseudorandom generator, we can guarantee that
the non-uniform description of Vs is short enough. This transformation guar-
antees that the simulated coins are pseudorandom, even for a no instance, and
allows the above proof to go through. The necessity of zero-knowledge to hold
even for verifiers that are not necessarily honest comes from the fact that our
description of Vs deviates from the honest verifier strategy. We give another
construction of predictable arguments from deterministic-prover arguments that
are only honest-verifier zero knowledge, provided that the arguments supports
expressive enough languages. See Sect. A for details.

A Word on Two-Message Laconic Arguments. As stated in Corollary 2, we use
the implication to predictable arguments to also derive that any deterministic-
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prover zero knowledge argument for bounded-auxiliary-input verifiers can be
made two message and laconic. This corollary is obtained by applying as is
general transformations on predictable arguments [12]. The only thing we need
to prove is that these transformations preserve zero knowledge. The only hurdle
here is that the mentioned transformations involve parallel repetition for the sake
of soundness amplification. We observe that (unlike many-round zero knowledge)
two-message zero knowledge against bounded-auxiliary-input verifiers is closed
under parallel repetition.

On Deterministic Prover Zero-Knowledge Proofs. While our results (in conjunc-
tion with prior works) provide a complete picture of deterministic zero-knowledge
arguments, our results do not have any bearing on deterministic zero-knowledge
proofs, where soundness is required to hold against unbounded provers. Com-
pleting the picture for proofs remains an interesting open problem.

2 Definitions

In this work, we will consider PPT machines with both, bounded and unbounded
non-uniform auxiliary input. For simplicity of notation, rather than consider-
ing explicit auxiliary input in our definitions, we consider two basic notions of
non-uniformity. The corresponding zero knowledge definition will in particular
capture the auxiliary input setting. See Remark 1.

1. non-uniform PPT: this is the standard notion of non-uniform PPT machines.
Formally, a non-uniform PPT M = {Mλ}λ is a family of probabilistic Turing
machines (one for each λ), where there exists a polynomial poly, such that the
description size |Mλ| and the running time of Mλ are bounded by poly(λ).

2. b-non-uniform PPT: These are PPT machines with non-uniform description
of size b(λ) and arbitrary polynomial running time (possibly larger than b(λ)).
Formally, a b-non-uniform PPT M = {Mλ}λ is a family of probabilistic Turing
machines (one for each λ), where |Mλ| ≤ b(λ) and there exists a polynomial
poly, such that the running time of Mλ is bounded by poly(λ).

In both of the above, we often omit from Mλ the subscript λ when it is clear
from the context. If we simply say a PPT machine, we mean a uniform one.

Throughout this work, we will talk about computational indistinguishability
with respect to non-uniform distinguishers.

Definition 1 (Computational Indistinguishability). Two ensembles X =
{Xα}α∈S and Y = {Yα}α∈S are said to be computationally indistinguishable,
denoted by X ≈c Y , if for every non-uniform PPT distinguisher D, every poly-
nomial p, all sufficiently large λ and every α ∈ {0, 1}poly(λ) ∩ S

∣
∣
∣ Pr

[D(1λ,Xα) = 1
] − Pr

[D(1λ, Yα) = 1
]
∣
∣
∣ <

1
p(λ)

,

where the probability are taken over the samples of Xα, Yα and coin tosses of D.
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We shall sometimes find it convenient to talk about the stronger notion of
statistical indistinguishability, defined below.

Definition 2 (Statistical Indistinguishability). Two ensembles X =
{Xα}α∈S and Y = {Yα}α∈S are said to be statistically indistinguishable, denoted
by X ≈s Y , if for every polynomial p, all sufficiently large λ and every α ∈
{0, 1}poly(λ) ∩ S

Δ(Xα, Yα) <
1

p(λ)
,

where Δ(Xα, Yα) corresponds to the statistical distance between Xα and Yα.

2.1 Deterministic-Prover Zero Knowledge Against
Bounded-Auxiliary-Input Verifiers

We define the notion of deterministic-prover zero-knowledge arguments
against verifiers with bounded auxiliary-input (DPZK). We shall denote by
OutA〈A(a), B(b)〉 the output of party A on execution of the protocol between A
with input a, and B with input b. By ViewA〈A(a), B(b)〉, we denote the view of
party A consisting of the protocol transcript along with its random tape.

Definition 3. An interactive protocol (P,V) between a deterministic polyno-
mial time prover P and PPT verifier V, for a language L is a deterministic
prover b-bounded-auxiliary-input zero knowledge argument if the following holds.

Completeness: For every x ∈ L,

Pr[OutV〈P(x,w),V(x)〉 = 1] = 1.

Soundness: For any non-uniform PPT P∗, there exists a negligible function
negl(·) such that for all λ ∈ N and x ∈ {0, 1}λ \ L,

Pr[OutV〈P∗,V(x)〉 = 1] ≤ negl(λ) .

Zero Knowledge: There exists a PPT simulator Sim, such that for every b-
non-uniform PPT verifier V∗ of running time at most t(λ),

{

ViewV∗〈P(x,w),V∗〉
}

λ∈N,

x∈L ∩ {0,1}λ,
w∈RL(x)

≈c

{

Sim(V∗, 1t, x)
}

λ∈N,

x∈L ∩ {0,1}λ,
w∈RL(x)

.

Remark 1 (Universal Simulation). In the above definition, there exists one uni-
versal simulator Sim that gets the code of the verifier as input. We note that
this definition is known [16] to imply the alternative definition of (bounded)
auxiliary-input zero knowledge that requires that any for any t-time V∗ there is a
PPT simulator SimV∗ such that given (bounded) auxiliary input z, SimV∗(x, z, 1t)
simulates V∗(z).
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2.2 Indistinguishability Obfuscation (IO)

We now give a definition of indistinguishability obfuscator for Turing Machines,
which can be constructed from indistinguishability obfuscators for circuits
[5,14,20].

Definition 4 (Indistinguishability Obfuscator for Turing Machines). A
succinct indistinguishability obfuscator for Turing machines consists of a PPT
machine iOM that works as follows:

– iOM takes as input the security parameter 1λ, the Turing machine M to obfus-
cate, an input length n, and time bound t.

– iOM outputs a Turing machine M̃ which is an obfuscation of M corresponding
to input length n and time bound t. M̃ takes as input x ∈ {0, 1}n.

The scheme should satisfy the following requirements:

–Correctness. For all λ ∈ N, for all M ∈ Mλ, for all inputs x ∈ {0, 1}n, time
bounds t′ such that t′ ≤ t, let y be the output of M(x) after at most t steps,
then

Pr
[

M̃ ← iOM(1λ, 1n, 1log t,M) : M̃(x) = y
]

= 1.

–Security. It holds that
{

iOM(1λ, 1n, 1log t,M0)
}

λ,t,n,
M0,M1

≈c

{

iOM(1λ, 1n, 1log t,M1)
}

λ,t,n,
M0,M1

,

where λ ∈ N, n ≤ t ≤ 2λ, and M0,M1 are any pair of machines of the same
size such that for any input x ∈ {0, 1}n both halt after the same number of
steps with the same output.

–Efficiency and Succinctness. We require that the running time of iOM and the
length of its output, namely the obfuscated machine M̃, is poly(|M|, log t, n, λ).
We also require that the running time t̃x of M̃(x) is poly(tx, |M|, n, λ), where
tx is the running time of M(x).

2.3 Witness Encryption

The following definition of witness encryption is taken from [13].

Definition 5. A witness encryption scheme for an NP language L, with cor-
responding witness relation RL, consists of the following two polynomial-time
algorithms:

Encryption. The probabilistic algorithm WE.Enc(1λ, x,m) takes as input a
security parameter 1λ, a string x ∈ {0, 1}∗, and a message m ∈ {0, 1}. It
outputs a ciphertext ct.

Decryption. The algorithm WE.Dec(ct, w) takes as input a ciphertext ct, a
string w ∈ {0, 1}∗. It outputs either a message m ∈ {0, 1}.
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The above algorithms satisfy the following conditions:

– Correctness. For any security parameter λ, for any m ∈ {0, 1}, and for any
(x,w) ∈ RL, we have that

Pr
[

ct ← WE.Enc(1λ, x,m) : WE.Dec(ct, w) = m
]

= 1.

– Security. For any non-uniform PPTadversary A, there exists a negligible
function negl(·) such that for any λ ∈ N, and any x /∈ L, we have that

{

WE.Enc(1λ, x, 0)
}

λ∈N,x/∈L ≈c

{

WE.Enc(1λ, x, 1)
}

λ∈N,x/∈L .

We note that the above scheme can be extended to encrypt strings, rather
than just bits, by encrypting each bit independently. Witness encryption for all
of NP can be constructed from IO for circuits [13].

2.4 Non-interactive Witness Indistinguishability (NIWI)

Definition 6 ([2]). A non-interactive witness-indistinguishable proof system
NIWI = (NIWI.Prov,NIWI.Ver) for an NP relation RL consists of two polynomial-
time algorithms:

– a probabilistic prover NIWI.Prov(x,w, 1λ) that given an instance x, witness
w, and security parameter 1λ, produces a proof π.

– a deterministic verifier NIWI.Ver(x, π) that verifies the proof.

We make the following requirements:

Completeness for every λ ∈ N, (x,w) ∈ RL,

Pr
[

π ← NIWI.Prov(x,w, 1λ) : NIWI.Ver(x, π) = 1
]

= 1

Soundness for every x /∈ L and π ∈ {0, 1}∗,

NIWI.Ver(x, π) = 0.

Witness Indistinguishability. It holds that
{

NIWI.Prov(x,w0, 1λ)
}

λ,x,
w0,w1

≈c

{

NIWI.Prov(x,w1, 1λ)
}

λ,x,
w0,w1

,

where λ ∈ N, x ∈ {0, 1}λ, w0, w1 ∈ RL(x).

2.5 Collision Resistance Against Bounded Non-uniform Adversaries

We describe here the notion of keyless collision resistance against quasi-
polynomial b-non-uniform adversaries, extending the definition in [3].
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Syntax. A keyless collision resistance hash function is associated with an input
function �(λ) > λ and a polynomial time algorithm H such that H(1λ,X) is a
deterministic algorithm that takes as input an X ∈ {0, 1}�(λ) and outputs a hash
Y ∈ {0, 1}λ.

Definition 7. We say that H is collision-resistant against quasi-polynomial
adversaries if for any b-non-uniform probabilistic 2poly(log λ)-time A, there exists
a negligible function negl, such that for any λ ∈ N,

Pr
[

(x1, x2) ← A(1λ) : x1 �= x2,H(1λ, x1) = H(1λ, x2)
] ≤ negl(λ) .

2.6 Non-interactive Commitment Schemes

We define below bit commitment schemes.

Definition 8 (Non-interactive Bit Commitment Schemes). A polynomial
time computable function: Com : {0, 1}×{0, 1}λ 
→ {0, 1}�(λ) is a bit commitment
if it satisfies the properties below:

Binding: For any r, r′ ∈ {0, 1}λ, b, b′ ∈ {0, 1}, if Com(b; r) = Com(b′; r′) then
b = b′.

Computational Hiding: The following holds:
{

Com(0) : r ←$ {0, 1}λ
}

≈c

{

Com(1; r) : r ←$ {0, 1}λ
}

.

where computational indistinguishability is with respect to arbitrary non-
uniform PPT distinguisher.

We note that the above scheme can be extended to commit to strings, rather
than just bits, by committing to each bit independently. Looking ahead, we
require that the underlying string that is committed can be extracted in quasi-
polynomial time. Such commitments can be constructed from subexponentiall-
secure injective one-way functions (which in turn can be constructed from subex-
ponential IO and one-way functions).

2.7 Explainable Verifiers

We define here the a variant of the notion of explainable verifiers [7] called
robustly-explainable verifiers. Roughly speaking, explainable verifiers are ones
whose messages almost always lie in the support of the honest verifier messages
(or are abort). Robustly-explainable verifiers are such where this occurs when
they use random coins sampled from an arbitrary efficient sampler (and not
necessarily the uniform distribution).

Definition 9 (Explainable Message). Let 〈P,V〉 be a two-message protocol.
We say that a given message m is explainable with respect to x, if there exist
honest verifier coins r such that m ∈ {V (x; r),⊥}.
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Definition 10 (Robustly-Explainable Verifier). Let 〈P,V〉 be a protocol. A
b-non-uniform PPT verifier V∗ using �(λ) random coins is robustly-explainable
if for any PPT sampler R on �(λ) bits, there exists a negligible negl(λ) such that
for any λ ∈ N and x ∈ λ,

Pr
[

r ← R(1λ),m = V∗(x; r) : m is explainable
] ≥ 1 − negl(λ) .

2.8 Pseudorandom Generators

Definition 11 (Psedudorandom Generators). A deterministic function
PRG : {0, 1}λ → {0, 1}p(λ) is called a pseudorandom generator (PRG) if:

1. (efficiency): PRG can be computed in polynomial time,
2. (expansion): p(λ) > λ,
3.

{

x ← {0, 1}λ : PRG(x)
} ≈c

{

Up(λ)

}

, where Up(λ) is the uniform distribution
over p(λ) bits.

3 A Deterministic-Prover Zero-Knowledge Protocol

In this section we present our deterministic prover zero knowledge (DPZK) pro-
tocol. As explained in the introduction, we start by describing the protocol for
robustly-explainable verifiers. We then show how to compile this protocol to one
that is secure against malicious verifiers.

3.1 DPZK for Robustly-Explainable Verifiers

We use the following components for the deterministic prover zero knowledge
(DPZK) protocol for an NP language L against b-non-uniform explainable veri-
fiers.

– A witness encryption scheme (WE.Enc,WE.Dec) for language L.
– An indistinguishability obfuscation (IO) scheme iOM for Turing Machines

(TM).

Additionally, we will use the machine described below that outputs the hard-
coded secret u given as input the description of a “short” Turing machine that
outputs a hardcoded public value R.

Machine: Prog

Hardcoded: R, u
Input: M ∈ {0, 1}ρ(λ)

if M outputs R
output u

else
output ⊥
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In what follows, let ρ(λ) = b(λ) + λ + ω(1), �(λ) = ρ(λ) + λ. The protocol is
described in Fig. 1. We prove the properties of the protocol below.

Fig. 1. Deterministic prover zero-knowledge for robustly-explainable verifiers.

Completeness. Completeness follows from the correctness of witness encryption.

Soundness. We now prove that the above protocol is sound against computa-
tionally bounded provers.

Proposition 1. Assuming security of the indistinguishability obfuscation
scheme and the witness encryption scheme, the protocol is sound.

Proof. We consider a sequence of hybrids transitioning from the real protocol to
an ideal protocol where the probability that the prover convinces the verifier of
accepting is clearly negligible.

Hyb0: This is the real protocol.
Hyb1: In this hybrid, we modify the program Prog to Prog′ that always output ⊥.
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By our choice of parameters and a union bound, the probability that there
exists a machine M ∈ {0, 1}ρ that outputs R is at most 2ρ−� = 2−λ. There-
fore, except with negligible probability Prog and Prog′ are functionally equiv-
alent. The indistinguishability of Hyb1 and Hyb0 then follows from the indis-
tinguishability of the IO scheme.

Hyb2: In this hybrid, we additionally change the ciphertext ct of the witness
encryption scheme to be the encryption of 0.
Since x /∈ L, the indistinguishability between Hyb2 and Hyb1 follows from
the security of the witness encryption scheme.

It is left to observe that in Hyb2 the prover obtains no information about u,
and thus convinces the verifier with probability at most 2−λ. ��

Zero Knowledge. We prove

Proposition 2. Assuming the existence of pseudorandom generators, the pro-
tocol is zero knowledge against b-non-uniform verifiers.

Proof. We describe the simulation strategy below. In what follows V∗ is a b-non-
uniform malicious verifier of polynomial running time at most t(λ). Additionally,
let k be the amount of random coins r∗ used by V∗. The simulator Sim will use
a PRG PRG : {0, 1}λ 
→ {0, 1}k.

Sim(V∗, 1t, x):

1. Construct verifier V∗
s that has the seed s hardwired. V∗

s computes PRG(s) and
uses it as random coins for V∗. Additionally, V∗

s truncates V∗’s output to R.
2. Initialize V∗ with random coins PRG(s).
3. Given P̃rog from V∗, use the description of V∗

s as input to P̃rog and obtain u.
4. u is then used as the simulated prover message, along with verifier randomness

PRG(s).

First, consider an execution between the prover and augmented verifier
〈P(x,w),V∗

s〉, and let v and p denote the verifier and prover messages in such an
execution. Then by pseudorandomness of PRG,

ViewV∗〈P(x,w),V∗〉 ≈c p,PRG(s).

Next, by the fact that V∗ is robustly explainable, we know that except with
negligible probability, v = (R, ct, P̃rog) is explainable; namely, has the structure
prescribed by the honest verifier algorithm. Noting that V∗

s is a program of length
b + λ + O(1) < ρ(λ) and running time at most t(λ) that outputs R. By the fact
that v is explainable, P̃rog(V∗

s) = WE.Dec(ct, x, w). It follows that

p,PRG(s) ≈s Sim(V∗, 1t, x),

and overall

ViewV∗〈P(x,w),V∗〉 ≈c Sim(V∗, 1t, x),

as required. ��
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3.2 From Explainable to Malicious Verifiers

In this section we give generic compilers going from robust-explainable to mali-
cious verifiers. These compilers were constructed in [7] where they were used
to enforce explainability and in [3] where they were used in a different con-
text. We prove that these compilers, in fact, enforce robust explainability. The
statements, and correspondingly the underlying assumptions, change based on
whether we want a DPZK for NP ∩ coNP, or for all of NP. We discuss the two
cases separately.

3.2.1 DPZK for NP ∩ coNP

We consider languages L ∈ NP ∩ coNP, which in turn means that in addition
to relation RL, there is also a NP-relation RL to certify that a statement x /∈ L.
We use the following primitives in our construction:

– A two-message deterministic-prover zero-knowledge (DPZK) protocol
(eP, eV) secure against robustly-explainable verifiers. Let the verifier and
prover messages be denoted by v and p, respectively.

– A non-interactive witness indistinguishable proof (NIWI) (NIWI.Prov,
NIWI.Ver) for the language

LNIWI =
{

(v, x)
∣
∣
∣ ∃(r, w̄) s.t. v = eV(x; r) OR RL(x, w̄) = 1

}

,

namely, either the verifier’s message is explainable, or the statement is not
in the language. Henceforth, we shall refer to the second half of the ‘OR’
statement, that the statement is not in the language, to be the trapdoor
statement.

The protocol is presented in Fig. 2.

Completeness. Completeness follows directly from the completeness of the
underlying protocol and the NIWI proof.

Zero Knowledge. We show how any b-non-uniform malicious verifier V∗ for the
above protocol can be converted to a robustly-explainable b+O(1)-non-uniform
verifier against the original protocol.

Claim 1. There exist an efficient simulator S and a verifier eV∗ such that

1. eV∗ is a robustly explainable verifier against 〈eP, eV〉.
2. eV∗ is (b + O(1))-non-uniform and efficiently constructable from eV∗.
3. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(VieweV∗〈eP(x,w), eV∗〉).
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Fig. 2. Deterministic-prover zero knowledge for L ∈ NP ∩ coNP.

Proof. We construct S, eV∗.

eV∗:

1. Emulates V∗ and obtains (v,wi).
2. If wi is not a valid proof for the statement (v, x), send eP the message ⊥.
3. Else, send eP v, and get p.
4. Complete emulation of V∗ with message p.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the ran-
domness of eV∗,

2. as well as the received prover message p (possibly ⊥).

The third property asserted in the claim follows by construction of S, eV∗

and the fact that the prover P checks on its own whether the verifier’s proof
is accepting. It is left to see that eV∗ is robustly explainable, (b + O(1))-non-
uniform, and efficiently constructable from V∗. Robust explainability follows
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directly by the (unconditional) soundness of the NIWI—eV∗ either outputs an
explainable message or ⊥. (b + O(1))-non-uniformity and efficient construction
follow from the fact that V∗ is b-non-uniform and eV∗ uses it as a black box and
described by the four code lines above. ��

Claim 1 directly gives rise to a zero knowledge Sim for the protocol (P,V). In
what follows, let eSim be the simulator of the underlying DPZK protocol against
robustly-explainable verifiers.

Sim(V∗, 1t, x):

1. Construct the explainable verifier eV∗.
2. Output S(eSim(eV∗, 1t, x).

The validity of the simulator Sim follows directly from that of eSim and
Claim 1.

Soundness. For soundness, we show that any cheating prover P∗ breaking the
soundness of the above protocol, can be converted into a prover eP∗ that breaks
the soundness of the underlying protocol. eP∗ will have the witness w̄ for x /∈ L
hardwired.

eP∗:

1. Obtain message v from eV.
2. Use w̄ as the witness to compute the NIWI proof wi.
3. Emulate P∗ with (v,wi) and obtain p.
4. Send p to the verifier eV.

First note that since L ∈ NP ∩ coNP, the statement x /∈ L has a witness
w̄ as required. The only difference in the views of P∗ and its emulated version
in eP∗ is in the NIWI proof. From the witness indistinguishability of the NIWI,
P∗’s success probability does not change by more than a negligible amount.

3.2.2 DPZK for All of NP

As mentioned to in the introduction, for the case of NP, we require stronger
primitives. Specifically, we use the following primitives for our construction:

– A two round deterministic prover zero knowledge (DPZK) protocol (eP, eV)
secure against robustly-explainable verifiers. Let the verifier and prover mes-
sages be denoted by v and p, respectively.

– A non-interactive commitment scheme Com with perfect binding and compu-
tational hiding. Additionally, as mentioned earlier, we require that the plain-
text underlying a commitment can be extracted in quasi-polynomial time.
Such commitments can be constructed from subexponentiall-secure injective
one-way functions (which in turn can be constructed from subexponential IO
and one-way functions).

– A keyless collision-resistant hash function H secure against (b + O(1))-non-
uniform quasi-polynomial time adversaries.
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– A non-interactive witness-indistinguishable proof (NIWI) (NIWI.Prov,
NIWI.Ver) for the language

LNIWI =
{

(v, x, c)
∣
∣
∣ ∃(r, rCom, x1, x2) s.t. v = eV(x; r) OR

(

c = Com((x1, x2); rCom) ∧ x1 �= x2 ∧ H(1λ, x1) = H(1λ, x2)
)}

,

namely, either the verifier’s message is explainable, or the commitment sent
by the verifier contains a collision in H. As before, we shall refer to the second
half of the ‘OR’ statement as the trapdoor statement.

The protocol is presented in Fig. 3.

Fig. 3. Deterministic prover zero-knowledge for L ∈ NP.

Completeness. Follows directly from the completeness of the underlying protocol
and the NIWI.
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Zero Knowledge. For zero knowledge, we follow the same strategy as in the
previous subsection and show how any b-non-uniform verifier V∗ for the above
protocol can be converted into a robustly-explainable (b + O(1))-non-uniform
verifier against the original protocol.

We argue that Claim 1 also holds for this protocol with the exact same S and
eV∗. The only difference is in the proof of robust explainability of the verifier
eV∗, which is based on complexity leveraging.

Robust Explainability of eV∗. Fix some PPT sampler R for coins for eV∗ and
assume toward contradiction that with noticeable probability it outputs a mes-
sage v that is not explainable when initialized with random coins sampled using
R. We show that there exists a (b + O(1))-non-uniform quasi-polynomial time
attacker that finds a collision in H. Recall the eV∗ only outputs a non-⊥ mes-
sage provided that the emulated V∗ produces a valid NIWI. By the unconditional
soundness of the NIWI, it follows that whenever eV∗ outputs a non-explainable
message, it must be that c is a valid commitment to a collision in H. This colli-
sion is then be extracted from the commitment in quasi-polynomial time. Note
that the corresponding collision finder can be described by eV∗ and R, which
have non-uniform description of size b + O(1). ��

Zero knowledge of (P,V) now follows from that of (eP, eV) and the existence
of S and eV∗, exactly as in the previous subsection.

Soundness. We show that any cheating prover P∗ breaking the soundness of the
above protocol, can be converted into a prover eP∗ that breaks the soundness
of the underlying robustly-explainable protocol. The reduction is similar to that
in the previous subsection with some required changed. eP∗ will have a collision
(x1, x2) as (part of the) witness for the trapdoor statement hardwired in its code.

eP∗:

1. Obtain message v from eV.
2. Compute c = Com(x1, x2; rCom).
3. Use (x1, x2, rCom) as the witness to compute the NIWI proof wi.
4. Emulate P∗ with (v,wi) and obtain p.
5. Send p to the verifier eV.

The difference in the views of P∗ and its emulated version in eP∗ is the
commitment to (x1, x2) rather than zero, and in the witness used for the NIWI
proof. Using the hiding of the commitment (against non-uniform PPT attackers)
and the witness indistinguishability of the NIWI, P∗’s success probability does
not change by more than a negligible amount.

Remark 2. We emphasize that for soundness, we require that all the underlying
primitives to are secure against non-uniform adversaries since our soundness
reduction is non-uniform.
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4 Predictable Arguments and DPZK

In this section, we show that any deterministic-prover zero-knowledge (DPZK)
argument against bounded-non-uniform verifier can be made predictable. The
notion of predictable arguments was introduced in [12], where it is in particular
shown to imply witness encryption. In the next section, we address additional
properties of DPZK that follow from this connection.

We start by recalling the definition of predictable arguments (PA) [12]. While
they also address predictable argument of knowledge, we restrict attention to
predictable arguments that are only sound.

Definition 12 (Predictable Argument). A ρ-round predictable argument is
an argument specified by a tuple of algorithms (Chal,Resp) as described below:

1. The verifier PA.V samples (c, b) ← Chal(1λ, x), where c := (c1, · · · , cρ) and
b := (b1, · · · , bρ).

2. For all i ∈ [ρ] in increasing sequence:
(a) PA.V sends ci to the PA.P;
(b) The prover PA.P computes ai := Resp(1λ, x, w, c1, · · · , ci) and sends ai to

PA.V.
(c) PA.V checks if ai = bi, and returns 0 otherwise.

3. If all challenges are answered correctly, PA.V returns 1.

The protocol is required to satisfy:

Correctness. There exists a negligible function negl(·) such that for all x ∈ L
such that RL(x,w) = 1, we have

Pr[OutPA.V〈PA.P(x,w),PA.V(x)〉 = 1] ≥ 1 − negl(λ) .

Soundness. For any non-uniform PPT prover P∗, there exists a negligible func-
tion negl(·) such that for all x /∈ L,

Pr[〈PA.P∗,PA.V(x)〉 = 1] ≤ negl(λ) .

A deterministic-prover zero-knowledge predictable argument (PA-
DPZK) is a deterministic-prover zero-knowledge argument that is also a pre-
dictable argument.

We prove the following:

Theorem 4. Let (P,V) be a deterministic-prover zero-knowledge argument for
L against bounded-non-uniform verifiers. There exists a verifier V′ such that
(P,V′) is a predictable argument.

Note that since we do not change the honest prover P it follows that (P,V′)
is also deterministic-prover zero knowledge against the same class of verifiers.

Relying on the following result by Faonio, Nielsen, and Venturi,

Theorem 5 ([12]). If there exists a Predictable Argument (PA) for a language
L, then there exists a witness encryption scheme for L.
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our theorem holds for all λΩ(1)-non-uniform verifiers, and we deduce

Corollary 3. If there exists a deterministic-prover zero-knowledge argument for
L against λΩ(1)-non-uniform verifiers, then there exists a witness encryption
scheme for L.

We now proceed with the proof.

Proof of Theorem 4. Let (P,V) be a ρ-round DPZK argument for L against b-
non-uniform verifiers, for b(λ) ≥ 2λ + ω(1). Let PRG : {0, 1}λ → {0, 1}� be a
pseudorandom generator, where �(λ) is the amount of coins used by V. For a
given seed s ∈ {0, 1}λ, we define the deterministic verifier Vs(x) that derives
coins r = PRG(s) for V then emulates V(x; r).

The transformed verifier V′ is presented in Fig. 4.

Fig. 4. The Verifier in the Predictable Protocol

First, note that the protocol satisfies the structural requirement of a predictable
argument. We now move to prove completeness and soundness with respect to
the new verifier V′.

Completeness. We show that (P,V′) is complete based on (a) the completeness
of (P,V′); (b) zero knowledge of (P,V′); and (c) pseudorandomness of PRG.

Fix any statement x ∈ L and corresponding prover witness w. We need to
show that in an interaction 〈P(x,w),V′(x)〉, V′ rejects with negligible probabil-
ity. First, by the completeness of (P,V) and the pseudorandomness of PRG, an
interaction 〈P(x,w),Vs(x))〉 is accepting except with negligible probability over
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the choice of s. Noting that Vs(x) is b-non-uniform, we can invoke zero knowl-
edge, to deduce that the simulated prover messages {p̃i}ρ

i=1 make Vs accept with
overwhelming probability over the choice of s.

We next argue that the deterministic prover P(x,w) produces messages
{pi = p̃i}ρ

i=1 with overwhelming probability (over the coins of Sim that sam-
pled them). This again follows from zero knowledge. Indeed, we can consider a
zero-knowledge distinguisher that has (x,w, s) hardwired, and given messages
pi emulates a conversation of the deterministic P(x,w) with Vs(x), and outputs
“real” if the corresponding prover messages coincide with pi, or “simulated”
otherwise. If the simulated messages p̃i are inconsistent with the real prover
messages pi, the distinguisher will tell them apart.

Soundness. We show that (P,V′) is sound based on (a) the pseudorandomness
of PRG; and (b) the soundness of (P,V).

First, note that by pseudorandomness the protocol (P,Vs) where s is chosen
at random is also sound, since otherwise a cheating prover can be directly used
to distinguish real verifier coins form pseudorandom ones. Next, note that any
cheating prover against V′ directly implies a cheating prover against Vs (for a
random s) by construction. Indeed, V′ emulates Vs and accepts only when the
prover is consistent with a simulated strategy p̃i that convinces Vs.2 Soundness
follows.

��

5 Round Reduction and Laconicity

Faonio, Nielsen, and Venturi [12] proved that the round complexity of any pre-
dictable argument can be collapsed to one (two messages overall) and that any
predictable argument can be made laconic—namely, the prover message is a sin-
gle bit (or more generally � bits to achieve soundness ≈ 2−�). In this section, we
review their transformations and show that they preserve zero knowledge against
bounded-non-uniform verifiers. As a corollary of this and the previous section, we
deduce that any deterministic-prover zero knowledge argument against bounded-
non-uniform verifiers can be collapsed to one round and made laconic.

5.1 Round Reduction

We start by recalling the round-collapsing transformation from [12]. In what fol-
lows, let (P′,V′) be a ρ-round predictable argument, the following transformation
provides a one round predictable argument (P,V) with a large soundness error
(to be dealt with later on). Roughly, the verifier randomly chooses a “cut-off”

2 Here we implicitly rely on the fact that the simulator produces an accepting tran-
script for the deterministic verifier Vs. The deterministic nature of the verifier ensures
that the simulator cannot manipulate the verifier’s randomness and therefore must
produce an accepting transcript is consistent with V(·;PRG(s)).
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point i∗ for the underlying protocol, and sends all the verifier messages up to,
and including, the i∗-th round verifier message to the prover. Being a predictable
argument, the verifier is able to do so without requiring the corresponding inter-
mediate prover messages. The prover then iteratively computes the response for
each round of the underlying protocol and send over all the prover messages
with the verifier accepting if and only if each prover messages corresponds to the
predicted prover message.

In [12], it is proven that this protocol has soundness error at most 1− ρ−1 +
negl(λ). The protocol is then repeated ω(ρ log λ) times to achieve negligible
soundness, using a parallel repetition theorem for one round arguments [4].

Fig. 5. Round collapsing transformation.

Proposition 3. The round collapsing transformation preserves zero knowledge
against b-non-uniform verifiers.

Proof. We prove the proposition in two steps. First, we show that the trans-
formation in Fig. 5 preserves zero-knowledge. Then we show that two-message
zero-knowledge against bounded-non-uniform adversaries is closed under parallel
repetition.

To prove the first part, let V∗ be a b-non-uniform verifier. We show the
following claim.
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Claim 2. There exist an efficient simulator S and a verifier V′∗ against 〈P′,V′〉
such that

1. V′∗ is (b + O(1))-non-uniform and efficiently constructable from V∗.
2. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉).

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′

of (P,V) on V′∗ and then invokes S.

Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulates V∗ and obtains (v1, . . . , vi∗).
2. At each round i ∈ [i∗], forward vi to P′.
3. Abort after round i∗.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the ran-
domness of V′∗),

2. as well as the received prover messages p1, . . . , pi∗ .

The second property asserted in the claim follows by construction of S,V′∗

and the construction of P from P′ in Fig. 5. It is left to see that V′∗ is (b+O(1))-
non-uniform and efficiently constructable from V∗. (b + O(1))-non-uniformity
and efficient construction follow from the fact that V∗ is b-non-uniform and V′∗

uses it as a black box and described by the three code lines above. ��
We now prove that closure under parallel repetition.

Claim 3. For any two-message zero knowledge system (P,V) against b-non-
uniform verifiers and a any polynomial �, the �-fold parallel repetition (P⊗�,V⊗�)
is zero knowledge against (b − O(log λ))-non-uniform verifiers.

Proof. In what follows, let Sim be the simulator for the original argument (P,V),
and let V∗

⊗� be any (b−λ−O(log λ))-non-uniform verifier of polynomial running
time t(λ). We now describe the simulator Sim⊗� for (P⊗�,V⊗�). The simulator
will use a pseudorandom generator PRG : {0, 1}λ → {0, 1}k, where k is the
amount of coins used by V∗

⊗�.
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Sim⊗�(V∗
⊗�, 1

t, x):

1. Sample a s ←$ {0, 1}λ.
2. For each i ∈ [�]:

(a) Construct the deterministic verifier V∗
s,i that first derives coins PRG(s),

uses them to emulate V∗
⊗�, obtains v1, . . . , v�, and outputs vi. Let t′ =

t + poly(λ) be a bound on its running time.
(b) Sample p̃i ←$Sim(V∗

s,i, 1
t′
, x).

3. Output p̃1, . . . , p̃�,PRG(s).

We now prove the validity of Sim⊗�. First, consider an execution between the
prover P(x,w) and verifier V∗

s = (V∗
s,1, . . . ,V

∗
s,�), and let p1, . . . , p� denote the

prover messages in such an execution. Then by pseudorandomness of PRG,

ViewV∗
⊗�

〈P(x,w),V∗
⊗�〉 ≈c p1, . . . , p�,PRG(s).

Noting that V∗
s,i is a program of length at most b and running time at most

t′(λ), we can invoke the simulation guarantee (P,V). Specifically, we can deduce
that

p1, . . . , p�,PRG(s) ≈c p̃1, . . . , p̃�,PRG(s).

This can be shown by a standard hybrid argument and follows from the fact
that pi ≈c p̃i = Sim(V∗

s,i, 1
t′
, x) and that the distinguisher can have (x,w, s)

hardwired in order to simulate any other pj or p̃i. Overall

ViewV∗
⊗�

〈P(x,w),V∗
⊗�〉 ≈c Sim⊗�(V∗

⊗�, 1
t, x).

��
This complete the proof of Proposition 3. ��

5.2 Laconic Prover Messages

As in the previous section, we start by recalling the laconic prover transformation
from [12]. In what follows, let (P′,V′) be a one round predictable argument, the
following transformation provides a laconic prover predictable argument (P,V)
with a soundness error negligibly close to 1/2, where the prover sends only a
single bit (Fig. 6). Roughly, the verifier samples a sufficiently large random string
γ and sends it to the prover along with the verifier message. The prover responds
with a single bit corresponding to the inner product of γ and its own response
to the verifier message, with the verifier accepting if only if the bit matches its
own computed inner product of γ with the predicted prover message.
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Fig. 6. Laconic prover transformation.

In [12], it is proven that this protocol has soundness error at most 1
2+negl(λ).

As we have seen in the previous subsection (Claim 3), the soundness can be
amplified in a manner that preserves zero knowledge. Specifically, � repetitions
yields a protocol with soundness error at most 2−� + negl(λ). Therefore, we
focus on proving that a single instance of the above transformation preserves
zero knowledge.

Proposition 4. The round collapsing transformation preserves zero knowledge
against b-non-uniform verifiers.

Proof. Let V∗ be a b-non-uniform verifier. We show the following claim.

Claim 4. There exist an efficient simulator S and a verifier V′∗ against 〈P′,V′〉
such that

1. V′∗ is (b + O(1))-non-uniform and efficiently constructable from V∗.
2. For every x ∈ L,

ViewV∗〈P(x,w),V∗〉 ≡ S(ViewV′∗〈P′(x,w),V′∗〉).

This claim gives rise to a simulator Sim for (P,V), which simply invokes Sim′

of (P′,V′) on V′∗ and then invokes S.
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Proof of Claim. We construct S,V′∗.

V′∗:

1. Emulate V∗ and obtains (v, γ).
2. Forward v to P′.

S:

1. Outputs the randomness of the emulated V∗ (can be derived from the ran-
domness of V′∗),

2. as well as 〈p, γ〉, where p is the received prover message and γ is derived from
the randomness of V∗.

The proof is similar to that of Claim 2 in the previous subsection. The second
property asserted in the claim follows by construction of S,V′∗ and the construc-
tion of P from P′. It is left to see that V′∗ is (b+O(1))-non-uniform and efficiently
constructable from V∗. (b + O(1))-non-uniformity and efficient construction fol-
low from the fact that V∗ is b-non-uniform and V′∗ uses it as a black box and
described by the two code lines above. ��

This completes the proof of Proposition 4. ��
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A Predictable Arguments from Honest-Verifier ZK

In Sect. 4, we showed how to transform any deterministic-prover zero-knowledge
(DPZK) protocol into one that is also a predictable argument (PA). In this
section, we show that if we start with a weaker notion of deterministic-prover
honest verifier zero-knowledge (DP-HVZK)3 and the existence of an appropri-
ate hard language, we can transform the DP-HVZK protocol into a predictable
argument. One caveat of this transformation is that the languages of the DP-
HVZK and PA in our transformation will be related, but not identical. As long
as the DP-HVZK we start from is for an expressive enough class of languages
(e.g. for NP ∩ coNP), we will get a PA for the same class.

3 Only zero-knowledge against honestly behaving verifiers.
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Definition 13. (Hard-on-Average Language). A language L is hard-on-
average if there exist two PPT samplers YL, NL where the support of the first
is L and of the second is {0, 1}∗ \ L such that

{

x : x ← YL(1λ)
}

λ∈N
≈c

{

x : x ← NL(1λ)
}

λ∈N
.

We establish the following theorem.

Theorem 6. If there exists a deterministic-prover honest-verifier zero-
knowledge argument (DP-HVZK) for L∨Lhard, where Lhard is a hard-on-average
language, then there exists a predictable argument (PA) for L.

By the fact that both NP and NP ∩ coNP are closed under OR, we deduce
the following corollaries.

Corollary 4. Assuming DP-HVZK for all of NP and hard-on-average languages
in NP, there is a witness encryption scheme for all of NP.

Corollary 5. Assuming DP-HVZK for all of NP∩ coNP and hard-on-average
languages in NP∩ coNP, there is a witness encryption scheme for all of
NP∩ coNP.

We note that hard-on-average languages in NP are known to follow from
one-way functions, and hard-on-average languages in NP ∩ coNP are known to
follow from one-way permutations.

We now proceed with the proof.

Proof of Theorem 6. To build a predictable argument for L, we use the following
primitives:

– A hard language Lhard given by samplers (YLhard
, NLhard

).
– A ρ-round DP-HVZK protocol 〈P′,V′〉 for the language LOR defined below,

where the verifier V′ sends messages vi in round i, and the prover P′ sends
message pi in round i. We denote by Sim′ the corresponding honest-verifier
simulator. The language LOR is defined below,

LOR =
{

(x, x̃)
∣
∣
∣ ∃(w, w̃) s.t. RL(x,w) = 1 OR RLhard

(x̃, w̃) = 1
}

,

namely, either the statement x is in L, or x̃ is in Lhard.

The transformation is presented in Fig. 7.
Before we proceed with the completeness and soundness, we note that the pro-
tocol structure follows that of a predictable argument.

Completeness. We show that (P,V) is complete based on the honest verifier
zero-knowledge property of (P′,V′).

Fix any x ∈ L and the corresponding witness w, a yes-instance x̃ ∈ Lhard,
and let x′ = (x, x̃). Let p̃1, . . . , p̃ρ denote the messages and r̃ denote the veri-
fier randomness simulated by Sim′(x′). We argue that the deterministic prover
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P(x,w) produces messages {pi = p̃i}ρ
i=1 with overwhelming probability (over the

coins of Sim′). This follows from zero knowledge. Consider a distinguisher that
has (x,w) hardwired, and given messages pi and verifier randomness r̃ emulates
a conversation of the deterministic P′(x,w) with V′(x; r̃), and outputs “real” if
the corresponding prover messages coincide with pi, or “simulated” otherwise.
If the simulated messages p̃i are inconsistent with the real prover messages pi,
the distinguisher will tell them apart.

Soundness. We show that (P,V) is sound based on the completeness, soundness
and zero knowledge of (P′,V′), as well as the hardness of Lhard.

Fix any x /∈ L and cheating prover P∗. We prove that P∗ fails to convince
V(x) of accepting, except with negligible probability. We consider several hybrid
experiments transitioning from a real interaction to an ideal interaction. We
will show that when moving from one hybrid to the next the prover’s chance of
convincing the verifier does not decrease by more than a negligible amount. Then
we will show that the chance that V(x) is convinced the final (ideal interaction)
hybrid is negligible.

Fig. 7. Transforming DP-HVZK to PA
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Hyb0: This is a real interaction between P∗ and V(x).
Hyb1: In this hybrid, once V samples a simulated transcript p̃1, . . . , p̃ρ, r̃

←$Sim(x′), it emulates an execution of V′(x′; r̃) with the simulated prover
messages and checks whether it is accepting. If it is not, V rejects immedi-
ately.
We argue that the probability that P∗ convinces V(x) to accept in this hybrid
is negligibly close to that in Hyb0. For this purpose, we argue that with over-
whelming probability Sim(x′) samples an accepting transcript. This is shown
based on completeness and zero knowledge of (P′,V′). Specifically, recall that
V(x) samples x̃ ∈ Lhard and thus x′ = (x, x̃) ∈ LOR. By the completeness of
(P′,V′), in an interaction between V′(x′) and P′(x′, w′) where w′ = (⊥, w̃)
and w̃ is a witness for x̃, the prover convince V′ with overwhelming proba-
bility. It then follows from zero knowledge of (P′,V′) that Sim(x′) also gen-
erates an accepting transcript with overwhelming probability; otherwise, we
can non-uniformly fix x̃, w̃ and construct a distinguisher that violates zero
knowledge.

Hyb2: In this hybrid, the verifier V does not insist that the prover P∗ is consistent
with the simulated messages p̃1, . . . , p̃ρ. Instead, it emulates V′(x′; r̃), and
accepts if the messages sent by P∗ convince V′.
The probability that V accepts in this hybrid is at least as large as the
probability it accepts in Hyb1. Indeed, any execution that would have been
accepted in the previous hybrid Hyb1 is in particular an execution in which
V′(x′; r̃) is convinced and thus is also accepted in the current Hyb2.

Hyb3: In this hybrid, the verifier V does not check that the simulated p̃1, . . . , p̃ρ, r̃
make V′(x′; r̃) accept. (In particular, the simulated prover messages p̃1, . . . , p̃ρ

are ignored altogether, and only the simulated coins r̃ are used).
The probability that V(x) accepts in this hybrid is at least as large as the
probability it accepts in the previous hybrid, as we have only removed a
verifier test.

Hyb4: In this hybrid, instead of sampling simulated coins r̃ using Sim′(x′), V
samples truly random coins r.
The probability that V(x) accepts in this hybrids is negligibly close to that
in the previous hybrid. This follows from zero knowledge of (P′,V′). Indeed,
since x′ ∈ LOR, the simulated honest verifier coins r̃ are pseudorandom.

Hyb5: In this hybrid, V(x) samples a no-instance x̃ ← NLhard
instead of a yes-

instance. By the indistinguishability of YLhard
and NLhard

, the probability that
P∗ convinces V(x) to accept in this hybrid is negligibly close to that in Hyb4.

We now argue that the probability that P∗ convinces V(x) to accept in Hyb5
is negligible. Note that in Hyb5 it holds that both x /∈ L and x̃ /∈ Lhard and thus
x′ = (x, x̃) /∈ LOR. For P∗ to convince V(x) of accepting in Hyb5, it must convince
V′(x′; r) of accepting, when V′ uses truly random coins. By the soundness of
(P′,V′) this occurs with negligible probability. Soundness follows. ��
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Abstract. We give a construction of a non-interactive zero-knowledge
(NIZK) argument for all NP languages based on a succinct non-
interactive argument (SNARG) for all NP languages and a one-way func-
tion. The succinctness requirement for the SNARG is rather mild: We
only require that the proof size be |π| = poly(λ)(|x| + |w|)c for some
constant c < 1/2, where |x| is the statement length, |w| is the witness
length, and λ is the security parameter. Especially, we do not require
anything about the efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG
to a zero-knowledge SNARG assuming the existence of CPA secure
public-key encryption. For this conversion, we require a SNARG to have
efficient verification, i.e., the computational complexity of the verification
algorithm is poly(λ)(|x| + |w|)o(1). Before this work, such a conversion
was only known if we additionally assume the existence of a NIZK.

Along the way of obtaining our result, we give a generic compiler to
upgrade a NIZK for all NP languages with non-adaptive zero-knowledge
to one with adaptive zero-knowledge. Though this can be shown by care-
fully combining known results, to the best of our knowledge, no explicit
proof of this generic conversion has been presented.

1 Introduction

A non-interactive zero-knowledge (NIZK) argument [7] is a non-interactive argu-
ment system that enables a prover to convince a verifier of the truth of an NP
statement without revealing any information about its witness. Since it is known
that a NIZK in the plain model where no setup is needed exists only for triv-
ial languages [32], NIZKs are typically constructed in the common reference
string (CRS) model where a trusted party generates a CRS and provides it to
both the prover and verifier. In the following, we refer to NIZKs in the CRS
model simply as NIZKs. Thus far, NIZKs for all NP languages have been con-
structed based on various standard assumptions including factoring [26], pairings
[14,36], and lattices [45]. Besides the theoretical importance on its own, NIZKs
have found numerous applications in cryptography including chosen-ciphertext
security [23,43], leakage- and tamper-resilient cryptography [21,22,40], advanced
types of digital signatures [2,16,47], multi-party computation [31], to name a few.
c© International Association for Cryptologic Research 2020
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A succinct non-interactive argument (SNARG) is another notion of a non-
interactive argument, which satisfies succinctness, i.e., the proof size is (asymp-
totically) smaller than the statement size and the witness size. Micali [42] gave
a construction of SNARGs for all NP languages in the random oracle model. On
the other hand, Gentry and Wichs [29] ruled out a black-box reduction prov-
ing the adaptive soundness of a SNARG from any falsifiable assumption in the
standard model. Since then, there have been proposed constructions of SNARGs
for all NP languages based on non-falsifiable assumptions on pairings [28,34,35],
lattices [9,10]1, or hash functions [4]. On the application side, SNARGs have
natural applications in the context of verifiable computation. They also have
been gaining a renewed attention in the context of blockchains (e.g., [3,8]).2

As mentioned above, there are constructions of NIZKs based on various stan-
dard assumptions while there is no known construction of SNARGs based on a
standard assumption and there is even a strong impossibility for that. Given this
situation, we may think that a SNARG is a stronger primitive than a NIZK. How-
ever, it is not known if a SNARG implies a NIZK, and they have been treated as
incomparable primitives. For example, Bitansky et al. [4] gave a generic conver-
sion from a SNARG to a zero-knowledge SNARG by additionally assuming the
existence of NIZKs. If a SNARG implies a NIZK, we could drop the additional
assumption of the NIZK. Besides, since both NIZKs and SNARGs are impor-
tant and fundamental primitives that have been well-studied, we believe that it
is interesting on its own if we find a new relationship between them.

1.1 Our Results

We give a construction of a NIZK for all NP languages based on a SNARG for
all NP languages and a one-way function (OWF). The succinctness requirement
for the SNARG is rather mild: We only require that its proof size be |π| =
poly(λ)(|x| + |w|)c for some constant c < 1/2, where |x| is the statement length,
|w| is the witness length, and λ is the security parameter. Especially, we do not
require anything about the efficiency of the verification.

Based on this result, we also give a generic conversion from a SNARG to
a zero-knowledge SNARG assuming the existence of CPA secure public-key
encryption. For this conversion, we require a SNARG to have efficient ver-
ification, i.e., the computational complexity of the verification algorithm is
poly(λ)(|x|+ |w|)o(1) (and thus the proof size is also |π| = poly(λ)(|x|+ |w|)o(1)).
Before this work, such a conversion was only known if we additionally assume
the existence of a NIZK [4].

Along the way of obtaining our result, we give a generic compiler to upgrade a
NIZK for all NP languages with non-adaptive zero-knowledge to one with adap-
tive zero-knowledge. Though this can be shown by carefully combining known
1 The lattice based constructions are in the designated verifier model where a desig-

nated party that holds a verification key can verify proofs.
2 Actually, what is often used in blockchains is a SNARK [4], which is a stronger

variant of a SNARG that satisfies extractability. We often refer to a SNARK as a
SNARG since we do not discuss extractability in this paper.
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results, to the best of our knowledge, no explicit proof of this generic conversion
has been presented.3,4

We note that we use the adaptive computational soundness as a default
notion of soundness for non-interactive arguments in this paper, and our results
are proven in this setting. We leave it as an interesting open problem to study
if similar implications hold for NIZKs and SNARGs with non-adaptive compu-
tational soundness.

To the best of our knowledge, all known constructions of a SNARG in the
CRS model satisfies the zero-knowledge property from the beginning. Therefore,
we do not obtain a concrete construction of a NIZK from an assumption that
was not known to imply NIZKs by using our result. Nonetheless, it is in general
important to study generic relationships between different primitives from a
theoretical point of view, and we believe that our results contribute to deepening
our understanding on the two important and fundamental primitives of NIZKs
and SNARGs.

1.2 Technical Overview

In this section, we give an overview of the construction of a NIZK from a SNARG.
Once this is done, it is straightforward to obtain a generic conversion from a
SNARG to a zero-knowledge SNARG by combining it with the result of [4].

First, we observe that the succinctness of a SNARG implies that a SNARG
proof at least “loses” some information about the witness though it may leak
some partial information. Based on this observation, our basic idea is to combine
a SNARG with a leakage-resilient primitive [1] whose security holds even if a
certain fraction of a secret key is leaked. If the SNARG proof size is small enough,
then we may be able to use the security of the leakage-resilient primitive to fully
hide the witness considering a SNARG proof as a leakage. For example, suppose
that we have a leakage-resilient secret-key encryption (LR-SKE) scheme whose
semantic security holds as long as the amount of leakage from the secret key is
at most a half of the secret key size. Then, a naive (failed) idea to construct
a NIZK is to let a NIZK proof consist of an encryption ct of the witness by
the LR-SKE scheme and a SNARG proof proving that there exists a secret key
of the LR-SKE scheme that decrypts ct to a valid witness. Soundness of this
construction is easy to reduce to the soundness of the SNARG. In addition, if
the SNARG is fully succinct, then we can show that the SNARG proof size is at
most a half of the secret key size if we set the secret key size of LR-SKE to be
sufficiently large. Then, it seems possible to argue that the information of the
witness is completely hidden by the security of LR-SKE. However, there is a flaw

3 Dwork and Naor [24] showed a similar compiler for a NIZK proof in the common
random string model. But their compiler does not work for a NIZK argument in the
common reference string model.

4 A recent work by Couteau, Katsumata, and Ursu [20] implicitly relies on a similar
observation. However, they do not state it in a general form, and they only analyze
their specific instantiations.
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in the above idea: The security of a LR-SKE scheme holds only if the leakage
does not depend on the challenge ciphertext. On the other hand, in the above
construction, the SNARG proof clearly depends on the challenge ciphertext ct,
and thus we cannot use the security of a LR-SKE scheme. Though the above
naive idea fails, this highlights a potential idea of combining a SNARG with a
leakage-resilient primitive to obtain a NIZK. Indeed, we implement this idea by
modifying the NIZK construction based on the hidden-bits paradigm [26].

NIZK via the Hidden-Bits Paradigm. First, we recall the construction of a NIZK
based on the hidden-bits paradigm [26] following the formalization by Quach,
Rothblum, and Wichs [46]. Readers familiar with their formalization can safely
skip this paragraph. The construction uses two building blocks: a NIZK in the
hidden-bit model (HBM-NIZK) and a hidden-bits generator (HBG).

In an HBM-NIZK, a trusted party picks a random string ρ ∈ {0, 1}k and
gives it to the prover. Then a prover, who holds a statement x and a witness
w, generates a proof π along with a subset I ⊆ [k], which specifies which bits
of ρ to be revealed to the verifier. Then, the verifier is given a statement x, a
proof π, a subset I, and a string ρI that is the substring of ρ on the positions
corresponding to I, and accepts or rejects. We require an HBM-NIZK to satisfy
two security requirements: soundness and zero-knowledge. Intuitively, soundness
requires that no cheating prover can convince the verifier of a false statement x
with non-negligible probability, and the zero-knowledge property requires that
the verifier learns nothing beyond that x is a true statement. Feige, Lapidot, and
Shamir [26] constructed an HBM-NIZK for all NP languages that satisfies these
security requirements (without relying on any assumption).

An HBG is a primitive introduced in [46], which consists of the following
algorithms:

– HBG.Setup(1λ, 1k) generates a CRS crs where k denotes the length of hidden-
bits to be generated.

– HBG.GenBits(crs) generates a succinct commitment com whose length is much
shorter than k, “hidden-bits” r ∈ {0, 1}k, and a tuple of proofs {πi}i∈[k].
Intuitively, each πi can be thought of a certificate of the i-th bit of r.

– HBG.Verify(crs, com, i, ri, πi) verifies the proof πi to ensure that the i-th
hidden-bit is ri.

We require an HBG to satisfy two security requirements: binding and hiding.
The binding property requires that for any fixed commitment com, there exist
“committed bits” r∗ ∈ {0, 1}k and no PPT adversary can generate a proof πi

such that HBG.Verify(crs, com, i, r̄∗
i , πi) accepts, where r̄∗

i denotes the negation of
r∗
i .5 Combined with the succinctness of com, this implies that there should be a

“sparse” set Vcrs ∈ {0, 1}k (dependent on crs) of size much smaller than 2k such
that no PPT adversary can generate a set of proofs {πi}i∈I for bits that are not
consistent with any element of Vcrs even if it can control the value of com. The

5 The original definition in [46] required a stronger requirement of statistical binding
where the property should hold against all computationally unbounded adversaries.
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hiding property requires that for any subset I ⊆ [k], no PPT adversary given
{(ri, πi)}i∈I can distinguish rĪ from a fresh random string r′

I

$← {0, 1}|I|, where
rI denotes the substring of r on the positions corresponding to I = [k] \ I.

Combining the above two primitives, Quach et al. [46] constructed a NIZK
as follows: The setup algorithm generates a CRS crs

$← HBG.Setup(1λ, 1k) of
the HBG and a random string s

$← {0, 1}k and outputs them as a CRS of the
NIZK where k = poly(λ) is a parameter that is set appropriately as explained
later. Then the prover generates (com, r, {πi}i∈[k])

$← HBG.GenBits(crs), sets
ρ := r ⊕ s, runs the prover of the underlying HBM-NIZK w.r.t. the hidden-bits
ρ to generate (I, πhbm), and outputs (I, πhbm, com, rI , {πi}i∈I) as a proof of the
NIZK. Then the verifier runs the verification of the underlying HBG to check
the validity of rI and the verification algorithm of the underlying HBM-NIZK
under the revealed hidden-bits ρI := rI ⊕ sI .

The security of the above NIZK is argued as follows: For each fixed r, any
cheating prover against the above NIZK can be easily converted into a cheating
prover against the underlying HBM-NIZK. Moreover, by the binding property of
the underlying HBG, the prover has to use r in the subset Vcrs to pass the veri-
fication. Then, by taking the union bound, the success probability of a cheating
prover against the above NIZK is at most |Vcrs| � 2k times larger than that of
a cheating prover against the underlying HBM-NIZK. Thus, by setting k to be
sufficiently large so that the success probability of a cheating prover against the
underlying HBM-NIZK is at most |Vcrs|−1negl(λ), we can prove the soundness.
Intuitively, the zero-knowledge property of the above NIZK is easy to reduce
to that of the underlying HBM-NIZK by observing that the hiding property of
the underlying HBG ensures that the verifier obtains no information about rI .
We note that this simple reduction works only for non-adaptive zero-knowledge
where an adversary declares a challenge statement before seeing a CRS. Roughly
speaking, this is because in the definition of the hiding property of a HBG, the
subset I is fixed before the CRS is chosen whereas an adversary against adaptive
zero-knowledge may choose I depending on the CRS. Quach et al. [46] showed
that adaptive zero-knowledge can be also proven assuming that the underlying
HBM-NIZK satisfies a stronger notion of zero-knowledge called special zero-
knowledge. We omit to explain the details since we will show a generic compiler
from non-adaptive to adaptive zero-knowledge.

HBG from a SNARG? Our first attempt is to construct an HBG from a SNARG
combined with a leakage-resilient weak pseudorandom function (LR-wPRF) [37].
A (one-bit-output) LR-wPRF is a function family F = {FK : {0, 1}m →
{0, 1}}K∈{0,1}κ such that (x∗, FK(x∗)) for x∗ $← {0, 1}m looks pseudorandom
from an adversary that is given an arbitrary polynomial number of input-output
pairs (x, FK(x)) for x

$← {0, 1}m and a leakage from K (that does not depend
on x∗) of at most �-bit for a certain leakage bound � < κ. Hazay et al. [37]
constructed an LR-wPRF for any polynomial � = poly(λ) based solely on the
existence of a OWF.
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Then, our first (failed) attempt for constructing an HBG from a SNARG and
an LR-wPRF is as follows:

– HBG.Setup(1λ, 1k) samples (x1, . . . , xk) ∈ {0, 1}m×k and outputs it as a CRS
crs.

– HBG.GenBits(crs) randomly picks a key K
$← {0, 1}κ of the LR-wPRF, and

outputs a commitment com of K by a statistically binding commitment
scheme, hidden-bits r := (FK(x1), . . . , FK(xk)), and proofs {πi}i∈[k] that are
generated by the SNARG to certify r.

– HBG.Verify(crs, com, i, ri, πi) verifies the proof πi by the verification algorithm
of the SNARG.

The binding property easily follows from the statistical binding property
of the underlying commitment scheme and the soundness of the underlying
SNARG. For the hiding property, we would like to rely on the security of the
underlying LR-wPRF by viewing the SNARG proofs as a leakage. However, there
are the following two problems:

1. An adversary against the hiding property can obtain all proofs {πi}i∈I cor-
responding to the subset I whose size may be linear in k. On the other hand,
for ensuring the succinctness of the commitment, we have to set k � κ. Thus,
the total size of {πi}i∈I may be larger than κ, in which case it is impossible
to rely on the security of the LR-wPRF.

2. Even if the above problem is resolved, we still cannot apply the security of
the LR-wPRF since com also depends on K and its size must be larger than
that of K.

To resolve these issues, our idea is to drop the commitment com from the output
of HBG.GenBits(crs), and generate a single SNARG proof π that proves that
“there exists K ∈ {0, 1}κ such that ri = FK(xi) for all i ∈ I” in one-shot instead
of generating πi for each i ∈ I separately. Then, the only leakage of K given to
an adversary against the hiding property is the SNARG proof π, whose size is
sublinear in |I| by the succinctness of the SNARG. Thus, it seems possible to
apply the security of the LR-wPRF if we set parameters appropriately. However,
this idea is not compatible with the syntax of an HBG. This is why we modify
the syntax of an HBG to introduce what we call an HBG with subset-dependent
proofs (SDP-HBG).

HBG with Subset-Dependent Proofs. Roughly speaking, an SDP-HBG is a
(weaker) variant of an HBG with the following modifications:

1. A proof is generated depending on a subset I, which specifies positions of bits
to be revealed. This is in contrast to the original definition of an HBG where
proofs are generated for each position i ∈ [k]. To formalize this, we introduce
the proving algorithm separated from the bits generation algorithm.

2. The bits generation algorithm does not output a commitment, and we require
a relaxed version of the binding property that we call the somewhat binding
property as explained later.
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More precisely, an SDP-HBG consists of the following algorithms:

– HBGsdp.Setup(1λ, 1k) generates a CRS crs.
– HBGsdp.GenBits(crs) generates “hidden-bits” r ∈ {0, 1}k and a state st.
– HBGsdp.Prove(st, I) generates a proof π that certifies the sub-string rI .
– HBGsdp.Verify(crs, I, rI , π) verifies the proof π to ensure that the substring of

r on the positions corresponding to the subset I is indeed rI .

We require an SDP-HBG to satisfy the somewhat binding property and the
hiding property. The somewhat binding property requires that there exists a
“sparse” subset Vcrs ∈ {0, 1}k (dependent on crs) of size much smaller than 2k

such that no PPT malicious prover can generate a proof for bits that are not
consistent with any element of Vcrs. As mentioned earlier, a similar property
easily follows by combining the succinctness of the commitment and the bind-
ing property in the original HBG, and this was the essential property to prove
soundness in the construction of a NIZK from an HBG. The hiding property is
similar to that for an HBG except that an adversary is given a single proof π
corresponding to the subset I instead of {πi}i∈I . Namely, it requires that for
any subset I ∈ [k], no PPT adversary given {ri}i∈I and π that certifies {ri}i∈I

can distinguish rI from a fresh random string r′
I

$← {0, 1}|I|, where rI denotes
the sub-string of r on the positions corresponding to I = [k] \ I.

To see that an SDP-HBG is a weaker primitive than an HBG, in Sect. 4.2,
we formally show that an original HBG indeed implies an SDP-HBG.

SDP-HBG from a SNARG and an LR-wPRF. Next, we construct an SDP-HBG
from a SNARG and an LR-wPRF. Since the idea is already explained, we directly
give the construction below:

– HBGsdp.Setup(1λ, 1k) samples (x1, . . . , xk) ∈ {0, 1}m×k and outputs it as a
CRS crs.

– HBGsdp.GenBits(crs) randomly picks a key K
$← {0, 1}κ of the LR-wPRF and

outputs hidden-bits r := (FK(x1), . . . , FK(xk)) and a state st := K.
– HBGsdp.Prove(st, I) outputs a SNARG proof π that proves that there exists

K ∈ {0, 1}κ such that ri = FK(xi) for all i ∈ I.
– HBGsdp.Verify(crs, I, rI , π) verifies the proof π by the verification algorithm of

the SNARG.

The somewhat binding property is easy to reduce to the soundness of the
underlying SNARG if κ � k. The hiding property is easy to reduce to the
security of the underlying LR-PRF if |π| ≤ � where � is the leakage bound by
noting that the proof π corresponding to the subset I does not depend on xI , and
thus we can think of xI as challenge inputs and π as a leakage. Therefore, what
remains is to show that we can appropriately set the parameters to satisfy these
two inequalities. Here, for simplicity we assume that the SNARG is fully succinct,
i.e., |π| = poly(λ) independently of the statement/witness size.6 Especially, |π|
6 Though the full succinctness just says |π| = poly(λ)(|x| + |w|)o(1), this implies |π| =
poly(λ) as long as we have |x| = poly(λ) and |w| = poly(λ).
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can be upper bounded by a polynomial in λ that does not depend on k. Then,
we first set � = poly(λ) so that |π| ≤ �. According to this choice of �, κ = poly(λ)
is determined. Here, we emphasize that κ does not depend on k. Thus, for
sufficiently large k = poly(λ), we have κ � k as desired.7 The crucial point is that
no matter how large k is, this does not affect |π| thanks to the full succinctness
of the SNARG. We note that we assume nothing about the leakage-rate (i.e.,
�/κ) of the LR-wPRF, and thus we can use the LR-wPRF based on a OWF in
[37], which achieves a relatively poor leakage-rate of O( log λ

λ ). For the case of
slightly-succinct SNARGs, a more careful analysis is needed, but we can extend
the above proof as long as |π| = poly(λ)(|x| + |w|)c holds for some constant
c < 1/2.

As seen above, the underlying SNARG in fact needs to prove only a statement
of an NP language with a specific form that is dependent on the LR-wPRF
(which is in turn based on a OWF). Thus, if the latter is determined beforehand,
the SNARG is required to support this particular language (and not all NP
languages).8

NIZK from an SDP-HBG. Then, we show that an SDP-HBG suffices for con-
structing a NIZK. In fact, the construction and security proof are essentially the
same as that from an HBG in [46]:

– The setup algorithm generates a CRS crs
$← HBGsdp.Setup(1λ, 1k) of the SDP-

HBG and a random string s
$← {0, 1}k, and outputs them as a CRS of the

NIZK;
– The prover generates (r, st) $← HBGsdp.GenBits(crs), sets ρ := r ⊕ s, runs

the prover of the underlying HBM-NIZK w.r.t. the hidden-bits ρ to gen-
erate (I ⊆ [k], πhbm), generates πbgen

$← HBGsdp.Prove(st, I), and outputs
(I, πhbm, rI , πbgen) as a proof of the NIZK;

– The verifier runs the verification of the underlying SDP-HBG to check the
validity of rI and the verification of the underlying HBM-NIZK under the
revealed hidden-bits ρI := rI ⊕ sI .

It is easy to see that essentially the same proofs as the NIZK from an HBG
work for soundness and non-adaptive zero-knowledge. However, it is not clear
how to prove the adaptive zero-knowledge for this construction. As mentioned
earlier, for the construction of a NIZK from an HBG, Quach et al. [46] proved
its adaptive zero-knowledge assuming that the underlying HBM-NIZK satisfies a
stronger notion of zero-knowledge called special zero-knowledge. However, their
proof does not extend to the proof of adaptive zero-knowledge for the above
NIZK from an SDP-HBG even if we rely on the special zero-knowledge for the
underlying HBM-NIZK. Roughly speaking, the problem comes from the fact that
the SDP-HBG enables us to generate a proof πbgen corresponding to a subset I

7 It suffices that we have this for sufficiently large k since we can take k = poly(λ)
arbitrarily largely in the construction of a NIZK.

8 A similar remark applies to the underlying NIZK with non-adaptive zero-knowledge
used in the non-adaptive-to-adaptive conversion for a NIZK.
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only after I is fixed. This is in contrast to an HBG where we can generate πi

that certifies the i-th hidden bit for each i ∈ [k] before I is fixed. Specifically,
the proof of adaptive zero-knowledge from an HBG in [46] crucially relies on the
fact that if I ⊆ I∗, then a set of proofs {πi}i∈I can be derived from {πi}i∈I∗ in
a trivial manner. On the other hand, we do not have a similar property in SDP-
HBG since it generates a proof for a subset I in one-shot instead of generating
a proof in a bit-by-bit manner. Thus, we have to come up with an alternative
way to achieve adaptive zero-knowledge.

Non-adaptive to Adaptive Zero-Knowledge. Based on existing works, we give
a generic compiler from non-adaptive to adaptive zero-knowledge. First, we
observe that we can construct an HBG by combining a commitment, a pseu-
dorandom generator (PRG), and a NIZK in a straightforward manner. We note
that essentially the same construction was already mentioned by Dwork and
Naor [24] where they constructed a verifiable PRG, which is a similar but slightly
different primitive from an HBG. Our crucial observation is that non-adaptive
zero-knowledge is sufficient for this construction of an HBG. Then, we can apply
the construction of [46] instantiated with the above HBG and an HBM-NIZK
with special zero-knowledge to obtain a NIZK with adaptive zero-knowledge.

1.3 Related Work

Known Constructions of NIZKs. Here, we review known constructions of a NIZK
for all NP languages. Below, we just write NIZK to mean NIZK for all NP lan-
guages for simplicity. In this paragraph, we omit a NIZK that is also a SNARG
since such schemes are mentioned in the next paragraph. Blum, Feldman, and
Micali [7] introduced the concept of NIZK and constructed a NIZK based on the
quadratic residuosity assumption. Feige, Lapidot, and Shamir [26] established
the hidden-bits paradigm and constructed a NIZK based on trapdoor permu-
tations. The requirements on trapdoor permutations for realizing a NIZK have
been revisited and refined in a series of works [15,30,33]. Canetti, Halevi, and
Katz [14] constructed a NIZK based on pairing by instantiating the hidden-
bits paradigm. Groth, Ostrovsky, and Sahai [36] constructed a pairing-based
NIZK based on a completely different approach, which yields the first NIZK
with perfect zero-knowledge. Sahai and Waters [48] constructed the first NIZK
with a deterministic proving algorithm and perfect zero-knowledge based on
indistinguishability obfuscation and a OWF. Recently, there has been a line of
researches [12,13,38] aiming at realizing the Fiat-Shamir transform [27] in the
standard model. Peikert and Shiehian [45] constructed a NIZK based on a stan-
dard lattice-based assumption following this approach. Very recently, Couteau,
Katsumata, and Ursu [20] constructed a NIZK based on a certain exponential
hardness assumption on pairing-free groups. We note that it still remains open to
construct a NIZK from polynomial hardness assumption on pairing-free groups.

We omit NIZKs in a different model than the CRS model including prepro-
cessing, designated prover, and designated verifier models since our focus in this
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paper is constructions in the CRS model. We refer to [39,41] for a survey on
NIZKs in these models.

Known Constructions of SNARGs. Here, we review known constructions of a
SNARG for all NP languages. Below, we just write SNARG to mean SNARG for
all NP languages. We note that some of the following constructions are actually
a SNARK, which satisfies a stronger notion of soundness called extractability,
but we just call them a SNARG since we do not discuss extractability in this
paper. Also, other than [18,42], here we only mention works that do not rely
on random oracles. For the recent advances on practical SNARGs (SNARKs)
including those in the random oracle model, see, e.g., the recent papers [11,17,
19,25] and references therein.

Micali [42] constructed a zero-knowledge SNARG in the random oracle
model. Chiesa, Manohar, and Spooner [18] proved that the Micali’s construc-
tion is also secure in the quantum random oracle model. Groth [34,35] and
Gennaro, Gentry, Perno, and Raykova [28] proposed zero-knowledge SNARGs
in the CRS model based on non-falsifiable assumptions on pairing groups. There
are several constructions of (zero-knowledge) SNARGs in the designated-verifier
model where verification can be done only by a designated verifier who possesses
a secret verification key. These include constructions based on an extractable
collision-resistant hash function [4], homomorphism-extractable encryption [5],
linear-only encryption [6,9,10], etc.

NIZKs/SNARGs and OWFs. Pass and shelat [44] showed that a NIZK for a
hard-on-average language implies the existence of (non-uniform) OWFs. On the
other hand, Wee [49] gave an evidence that a SNARG for a hard-on-average
language is unlikely to imply the existence of OWFs. Therefore, it is considered
reasonable to additionally assume the existence of OWFs for constructing a
NIZK from a SNARG.

2 Preliminaries

In this section, we review the basic notation and definitions of cryptographic
primitives.

Basic Notation. For a natural number n > 0, we define [n] := {1, . . . , n}. Fur-
thermore, for I ⊆ [n], we define I := [n] \ I.

For a string x, |x| denotes the bit-length of x. For bits b, b′ ∈ {0, 1}, (b′ ?= b)
is defined to be 1 if b′ = b holds and 0 otherwise.

For a set S, |S| denotes its size, and x
$← S denotes sampling x uniformly

at random from S. Furthermore, for natural numbers i, k such that i ∈ [k] and
a sequence z ∈ Sk, zi denotes the i-th entry in z. Also, for I ⊆ [k], we define
zI := (zi)i∈I , namely the subsequence of z in the positions I.

For a probabilistic (resp. deterministic) algorithm A, y
$← A(x) (resp. y ←

A(x)) denotes A on input x outputs y. If we need to specify a randomness r used
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in A, we write y ← A(x; r) (in which case the computation is deterministic). If
O is a function or an algorithm, then AO means that A has oracle access to O.

Throughout the paper, we use λ to denote the security parameter, and a
“PPT adversary” is a non-uniform PPT adversary (equivalently, a family of
polynomial-sized circuits). A function ε(λ) with range [0, 1] is said to be negligible
if ε(λ) = λ−ω(1), and negl(λ) denotes an unspecified negligible function of λ.
poly(λ) denotes an unspecified (constant-degree) polynomial of λ.

2.1 NIZK and SNARG

Here, we define several notions of a non-interactive argument for an NP language
L. Throughout this paper, for an NP language L, we denote by R ⊆ {0, 1}∗ ×
{0, 1}∗ the corresponding efficiently computable binary relation. For (x,w) ∈ R,
we call x a statement and w a witness.

Definition 2.1 (Non-interactive Arguments). A non-interactive argument
for an NP language L consists of the three PPT algorithms (Setup,Prove,Verify):

Setup(1λ) $→ crs: The setup algorithm takes the security parameter 1λ as input,
and outputs a CRS crs.

Prove(crs, x, w) $→ π: The prover’s algorithm takes a CRS crs, a statement x,
and a witness w as input, and outputs a proof π.

Verify(crs, x, π) → 
 or ⊥: The verifier’s algorithm takes a CRS crs, a statement
x, and a proof π as input, and outputs 
 to indicate acceptance of the proof
or ⊥ otherwise.

A non-interactive argument must satisfy the following requirements:

Completeness: For all pairs (x,w) ∈ R, we have

Pr

[
Verify(crs, x, π) = 
 :

crs
$← Setup(1λ);

π
$← Prove(crs, x, w)

]
= 1.

Soundness: We define the following four variants of soundness.
Adaptive Computational Soundness: For all PPT adversaries A, we

have

Pr

[
x �∈ L ∧ Verify(crs, x, π) = 
 :

crs
$← Setup(1λ);

(x, π) $← A(crs)

]
= negl(λ).

Adaptive Statistical Soundness: This is defined similarly to adaptive
computational soundness, except that A can be any computationally
unbounded adversary.

Non-adaptive Computational (resp. Statistical) Soundness: This is
defined similarly to adaptive computational (resp. statistical) soundness,
except that A must declare x /∈ L before it is given crs.
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If we only require completeness and soundness as defined above, a non-
interactive argument trivially exists for all NP languages, since a witness itself
can be used as a proof. Thus, we consider two other properties that make
non-interactive arguments non-trivial. First, we define non-interactive zero-
knowledge arguments (NIZKs).
Definition 2.2 (NIZK). A non-interactive argument (Setup,Prove,Verify) for
an NP language L is a non-interactive zero-knowledge argument (NIZK) if it
satisfies the following property in addition to completeness and soundness.

(Computational) Zero-Knowledge: We define the following four variants of
zero-knowledge property.
Adaptive Multi-theorem Zero-Knowledge: There exists a PPT simu-

lator S = (S1,S2) that satisfies the following. For all PPT adversaries A,
we have∣∣∣Pr[Exptazk-realA (λ) = 1] − Pr[Exptazk-simA,S (λ) = 1]

∣∣∣ = negl(λ),

where the experiments Exptazk-realA (λ) and Exptazk-simA,S (λ) are defined as fol-
lows, and in the experiments, A’s queries (x,w) must satisfy (x,w) ∈ R.

Exptazk-realA (λ) :
crs

$← Setup(1λ)
b′ $← AO0(·,·)(crs)

where O0(x,w) := Prove(crs, x, w)
Return b′.

Exptazk-simA,S (λ) :

(crs, st) $← S1(1λ)
b′ $← AO1(·,·)(crs)

where O1(x,w) := S2(st, x)
Return b′.

Though we treat adaptive multi-theorem zero-knowledge as defined above as
a default notion of zero-knowledge, we also define weaker notions of zero-
knowledge.
Adaptive Single-Theorem Zero-Knowledge: This is defined similarly

to adaptive multi-theorem zero-knowledge, except that A is allowed to
make only a single query.

Non-adaptive Multi-theorem Zero-Knowledge: There exists a PPT
simulator S that satisfies the following. For all PPT adversaries A =
(A1,A2) we have∣∣∣Pr[Exptnazk-realA (λ) = 1] − Pr[Exptnazk-simA,S (λ) = 1]

∣∣∣ = negl(λ),

where the experiments Exptnazk-realA (λ) and Exptnazk-simA,S (λ) are defined
below. In the experiments, � (the number of statement/witness pairs) is
arbitrarily chosen by A1, and A1’s output must satisfy (xi, wi) ∈ R for
all i ∈ [�].

Exptnazk-realA (λ) :
({(xi, wi)}i∈[�], st)

$← A1(1λ)
crs

$← Setup(1λ)
πi

$← Prove(crs, xi, wi) for i ∈ [�]
b′ $← A2(crs, {πi}i∈[�], st)
Return b′.

Exptnazk-simA,S (λ) :

({(xi, wi)}i∈[�], st)
$← A1(1λ)

(crs, {πi}i∈[�])
$← S(1λ, {xi}i∈[�])

b′ $← A2(crs, {πi}i∈[�], st)
Return b′.
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Non-adaptive Single-Theorem Zero-Knowledge: This is defined sim-
ilarly to non-adaptive multi-theorem zero-knowledge, except that � must
be 1.

It is well-known that a NIZK with adaptive single-theorem zero-knowledge
can be generically converted into a NIZK with adaptive multi-theorem zero-
knowledge using a PRG [26]. It is easy to see that the same construction works
in the non-adaptive setting. Thus, we have the following lemma.

Lemma 2.1. If there exist a OWF and a NIZK for all NP languages with
adaptive (resp. non-adaptive) single-theorem zero-knowledge, then there exists
a NIZK for all NP languages with adaptive (resp. non-adaptive) multi-theorem
zero-knowledge. The resulting NIZK satisfies the same notion of soundness
(which is either of adaptive/non-adaptive statistical/computational soundness)
as the building-block NIZK.

Remark 2.1. Pass and shelat [44] showed that a NIZK for a hard-on-average lan-
guage implies the existence of a (non-uniform) OWF. Therefore, we can weaken
the assumption of the existence of a OWF to the existence of a hard-on-average
NP language. We just assume the existence of a OWF for simplicity. A similar
remark also applies to Theorem 3.1 and Lemmas 3.1 and 3.2.

Next, we define SNARGs. The following definition is taken from [29] with a
minor modification in the definition of slight succinctness (see Remark 2.2).

Definition 2.3 ((Fully/Slightly Succinct) SNARG). A non-interactive
argument (Setup,Prove,Verify) for an NP language L is a fully (resp. δ-slightly)
succinct non-interactive argument (SNARG) if it satisfies full (resp. δ-slight)
succinctness defined as follows in addition to completeness and soundness.

Succinctness: We define the following two variants of succinctness.
Full Succinctness: For all (x,w) ∈ R, crs

$← Setup(1λ), and π
$←

Prove(crs, x, w), we have |π| = poly(λ)(|x| + |w|)o(1).
δ-SlightSuccinctness : For all (x,w) ∈ R, crs

$← Setup(1λ), and π
$←

Prove(crs, x, w), we have |π| = poly(λ)(|x| + |w|)δ.

Remark 2.2. The notion of δ-slight succinctness is meaningful only when δ < 1
since otherwise we can use a witness itself as a proof. We note that our definition
of δ-slight succinctness for any δ < 1 is stronger than slight succinctness defined
in [29] where they require |π| = poly(λ)(|x| + |w|)δ + o(|x| + |w|) for some δ < 1.
Namely, they allow the proof size to grow according to any function dominated by
|x|+ |w| asymptotically as long as that is independent of the security parameter
λ.

We define an additional property for SNARG.

Definition 2.4 (Efficient Verification of SNARG). A SNARG (Setup,
Prove,Verify) for an NP language L has efficient verification if the following
is satisfied.
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Efficient Verification: For all (x,w) ∈ R, crs
$← Setup(1λ), and π

$←
Prove(crs, x, w), the running time of Verify(crs, x, π) is poly(λ)(|x| + |w|)o(1).

Remark 2.3. The efficient verification property immediately implies full suc-
cinctness.

Remark 2.4. The efficient verification property is usually a default requirement
for SNARGs. On the other hand, we do not assume a SNARG to have efficient
verification unless otherwise mentioned. This is because efficient verification is
not needed for the construction of a NIZK in this paper.

2.2 NIZK in the Hidden-Bits Model

Here, we define a NIZK in the hidden-bits model introduced in [26]. The following
definition is taken from [46].

Definition 2.5 (NIZK in the Hidden-Bits Model). Let L be an NP lan-
guage and R be its associated relation. A non-interactive zero-knowledge proof in
the hidden-bits model (HBM-NIZK) for L consists of the pair of PPT algorithms
(NIZKhbm.Prove,NIZKhbm.Verify) and a polynomial k = k(λ, n), which specifies
the hidden-bits length.

NIZKhbm.Prove(1λ, ρ, x, w) $→ (I, π): The prover’s algorithm takes the security
parameter 1λ, a string ρ ∈ {0, 1}k(λ,n), a statement x ∈ {0, 1}n, and a witness
w as input, and outputs a subset of indices I ⊆ [k] and a proof π.

NIZKhbm.Verify(1λ, I, ρI , x, π) → 
 or ⊥: The verifier’s algorithm takes the secu-
rity parameter 1λ, a subset I ⊆ [k], a string ρI , a statement x, and a proof π
as input, and outputs 
 to indicate acceptance of the proof or ⊥ otherwise.

An HBM-NIZK must satisfy the following requirements.

Completeness: For all pairs (x,w) ∈ R, we have

Pr

[
NIZKhbm.Verify(1λ, I, ρI , x, π)

= 
 :
ρ

$← {0, 1}k(λ,|x|);
(I, π) $← NIZKhbm.Prove(1λ, ρ, x, w)

]

= 1.

ε-Soundness : For all polynomials n = n(λ) and computationally unbounded
adversaries A, we have

Pr

[
x ∈ {0, 1}n \ L
∧ NIZKhbm.Verify(1λ, I, ρI , x, π) = 
 :

ρ
$← {0, 1}k(λ,n);

(x, I, π) $← A(ρ)

]
≤ ε(λ).

Zero-Knowledge: There exists a PPT simulator NIZKhbm.Sim that satisfies the
following. For all computationally unbounded adversaries A = (A1,A2), we
have ∣∣∣Pr[Expthbmzk-real

A (λ) = 1] − Pr[Expthbmzk-sim
A,NIZKhbm.Sim(λ) = 1]

∣∣∣ = negl(λ),
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where the experiments Expthbmzk-real
A (λ) and Expthbmzk-sim

A,NIZKhbm.Sim(λ) are defined
as follows, and A1’s output must satisfy (x,w) ∈ R.

Expthbmzk-real
A (λ) :

(x,w, st) $← A1(1λ)
ρ

$← {0, 1}k(λ,|x|)

(I, π) $← NIZKhbm.Prove(1λ, ρ, x, w)
b′ $← A2(I, ρI , π, st)
Return b′.

Expthbmzk-sim
A,NIZKhbm.Sim(λ) :

(x,w, st) $← A1(1λ)
(I, ρI , π) $← NIZKhbm.Sim(1λ, x)

b′ $← A2(I, ρI , π, st)
Return b′.

Lemma 2.2 ([26]). For any NP language L, there exists an HBM-NIZK satis-
fying completeness, 2−Ω(k)-soundness, and zero-knowledge.

Remark 2.5. Though Quach et al. [46] also defined a stronger definition of zero-
knowledge called special zero-knowledge, we omit its definition since we do not
use it in security proofs given in this version. We note that we use an HBM-NIZK
with special zero-knowledge in a proof of Lemma 3.2, which is given in the full
version.

2.3 Leakage-Resilient Weak Pseudorandom Function

Here, we review the definition of a leakage-resilient weak pseudorandom function
(LR-wPRF) [37]. Though the definition is essentially the same as that in [37],
we make it more explicit that we can arbitrarily set the leakage bound � = �(λ)
instead of treating � as a fixed parameter hardwired in a scheme. 9 Specifically,
we define parameters of an LR-wPRF including the key length, input length,
and output length as polynomials of λ and �. This implicitly means that an
evaluation of an LR-wPRF also depends on � since it is given a key and an input
whose length depends on �.

Definition 2.6 (Leakage-Resilient Weak Pseudorandom Function). Let
κ = κ(λ, �), m = m(λ, �), and n = n(λ, �) be polynomials. A leakage-resilient
weak pseudorandom function (LR-wPRF) with the key length κ, input length m,
and output length n, is a family of efficiently computable functions F = {FK :
{0, 1}m → {0, 1}n}K∈{0,1}κ such that for all polynomials � = �(λ) and PPT
adversaries A = (A1,A2), we have∣∣∣Pr[ExptLRwPRF-0F,A (λ, �) = 1] − Pr[ExptLRwPRF-1F,A (λ, �) = 1]

∣∣∣ = negl(λ),

where the experiment ExptLRwPRF-bF,A (λ, �) (with b ∈ {0, 1}) is described in Fig. 1.

Hazay et al. [37] showed how to construct an LR-wPRF from a OWF. Their
result can be stated in the following form that is convenient for our purpose.
9 Syntactically, this treatment of the leakage bound � is similar to a cryptographic

primitive in the bounded retrieval model (BRM). Unlike the BRM, however, we do
not pose any efficiency requirement on the scheme regarding the dependency on the
given leakage bound �.



582 F. Kitagawa et al.

ExptLRwPRF-bF,A (λ, �) :
L ← 0
K

$← {0, 1}κ(λ,�)

st $← AFK($),Leak(·)
1 (1λ, 1�)

b′ $← AChal($)
2 (st)

Return b′.

FK($) :
x

$← {0, 1}m(λ,�)

Return (x, FK(x)).
Leak(f) :

L ← L + |f(K)|
If L > � then return ⊥.
Return f(K).

Chal($) :
x∗ $← {0, 1}m(λ,�){

y∗ := FK(x∗) if b = 0

y∗ $← {0, 1}n(λ,�) if b = 1
Return (x∗, y∗).

Fig. 1. The experiment for defining the leakage-resilience for a wPRF.

Theorem 2.1 ([37]). If there exists a OWF, then there exists an LR-wPRF
with the key length κ = � · poly(λ), input length m = � · poly(λ), and output
length n = 1.

Remark 2.6. Actually, Hazay et al. showed that we can set κ = O(�λ/ log λ),
m = O(�λ), and n to be any polynomial in λ. We state the theorem in the above
form since this is sufficient for our purpose.

3 Non-adaptive to Adaptive Zero-Knowledge for NIZK

In this section, we show the following theorem.

Theorem 3.1. If there exist a OWF and a NIZK for all NP languages that
satisfies adaptive computational (resp. statistical) soundness and non-adaptive
single-theorem zero-knowledge, then there exists a NIZK for all NP languages
that satisfies adaptive computational (resp. statistical) soundness and adaptive
multi-theorem zero-knowledge.

Remark 3.1. The theorem remains true even if we start from a NIZK with non-
adaptive statistical soundness since we can convert it into one with adaptive
statistical soundness while preserving the zero-knowledge property by a sim-
ple parallel repetition. On the other hand, we do not know whether the the-
orem remains true if we start from a NIZK with non-adaptive computational
soundness.

HBG from Non-adaptive NIZK. First, we show that we can construct an HBG
by combining a non-interactive commitment scheme, a PRG, and a NIZK in
a straightforward manner.10 We note that Dwork and Naor [24] already men-
tioned a similar construction.11 Our crucial observation is that non-adaptive
multi-theorem zero-knowledge is sufficient for this purpose. Moreover, as stated
in Lemma 2.1, we can generically upgrade non-adaptive single-theorem zero-
knowledge to non-adaptive multi-theorem zero-knowledge. Therefore, we obtain
the following lemma.
10 A formal definition of HBG can be found in the full version.
11 Dwork and Naor [24] constructed what they call a verifiable pseudorandom generator

from a NIZK, which is a similar primitive to an HBG.
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Lemma 3.1. If there exist a OWF and a NIZK for all NP languages that satis-
fies adaptive computational (resp. statistical) soundness and non-adaptive single-
theorem zero-knowledge, then there exists an HBG that satisfies succinct com-
mitment, computational (resp. statistical) binding, and computational hiding.

Since the construction and security proof are straightforward, we omit them here
and give them in the full version.

Adaptive NIZK from HBG. Quach et al. [46] gave a construction of a NIZK
with adaptive statistical soundness and adaptive multi-theorem zero-knowledge
based on an HBG with statistical binding and computational hiding. It is easy
to see that the same construction works for a computationally binding HBG
to construct an adaptively computationally sound NIZK. Namely, we have the
following lemma.

Lemma 3.2. If there exist a OWF and an HBG that satisfies succinct commit-
ment, computational (resp. statistical) binding, and computational hiding, then
there exists a NIZK for all NP languages that satisfies adaptive computational
(resp. statistical) soundness and adaptive multi-theorem zero-knowledge.

Since the construction and proof are essentially the same as those in [46], we
omit them here, and give them in the full version.

Theorem 3.1 can be obtained by combining Lemmata 3.1 and 3.2.

4 Hidden-Bits Generator with Subset-Dependent Proofs

In this section, we introduce a weaker variant of an HBG that we call an HBG
with subset-dependent proofs (SDP-HBG). We also give a construction of an
SDP-HBG from the combination of a SNARG and an LR-wPRF (and thus,
from a SNARG and a OWF).

4.1 Definition

Here, we define an SDP-HBG.

Definition 4.1 (SDP-HBG). A hidden-bits generator with subset depen-
dent proofs (SDP-HBG) consists of the four PPT algorithms (HBGsdp.Setup,
HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify):

HBGsdp.Setup(1λ, 1k) $→ crs: The setup algorithm takes the security parameter
1λ and the length parameter 1k as input, and outputs a CRS crs.

HBGsdp.GenBits(crs) $→ (r, st): The bits generation algorithm takes a CRS crs as
input, and outputs a string r ∈ {0, 1}k and a state st.

HBGsdp.Prove(st, I) $→ π: The proving algorithm takes a state st and a subset
I ⊆ [k] as input, and outputs a proof π.

HBGsdp.Verify(crs, I, rI , π) → 
 or ⊥: The verification algorithm takes a CRS
crs, a subset I ⊆ [k], a string rI ∈ {0, 1}|I|, and a proof π as input, and
outputs 
 indicating acceptance or ⊥ otherwise.
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We require an SDP-HBG to satisfy the following properties:

Correctness: For any natural number k and I ⊆ [k], we have

Pr

⎡
⎢⎣HBGsdp.Verify(crs, I, rI , π) = 
 :

crs
$← HBGsdp.Setup(1λ, 1k);

(r, st) $← HBGsdp.GenBits(crs);
π

$← HBGsdp.Prove(st, I)

⎤
⎥⎦ = 1.

Somewhat Computational Binding: There exists a constant γ < 1 such that
(1) for any polynomial k = k(λ) and crs generated by HBGsdp.Setup(1λ, 1k),
there exists a subset Vcrs ⊆ {0, 1}k such that |Vcrs| ≤ 2kγpoly(λ), and (2) for
any PPT adversary A, we have

Pr

[
rI /∈ Vcrs

I

∧ HBGsdp.Verify(crs, I, rI , π) = 
 :
crs

$← HBGsdp.Setup(1λ, 1k);
(I, rI , π) $← A(crs)

]

= negl(λ),

where Vcrs
I := {rI : r ∈ Vcrs}.

Computational Hiding: For any polynomial k = k(λ), I ⊆ [k], and PPT
adversary A, we have∣∣∣Pr[A(crs, I, rI , π, rI) = 1] − Pr[A(crs, I, rI , π, r′

I
) = 1]

∣∣∣ = negl(λ),

where we generate crs
$← HBGsdp.Setup(1λ, 1k),

(r, st) $← HBGsdp.GenBits(crs), π
$← HBGsdp.Prove(st, I), and r′ $← {0, 1}k.

An SDP-HBG can be seen as a weaker variant of an ordinary HBG, in the
sense that the former can be naturally constructed from the latter. A proof can
be found in the full version.

4.2 Construction

Here, we give a construction of an SDP-HBG from a SNARG and a OWF.

Theorem 4.1 If there exist a OWF and a δ-slightly succinct SNARG for all
NP languages for some δ < 1/2 that satisfies adaptive computational soundness,
then there exists an SDP-HBG that satisfies somewhat computational binding
and computational hiding.

Our construction of an SDP-HBG uses the following ingredients.

– An LR-wPRF F = {FK : {0, 1}m → {0, 1}}K∈{0,1}κ , built from a OWF
via Theorem 2.1, with the key length κ = κ(λ, �) = � · poly(λ), input length
m = m(λ, �) = � · poly(λ), and output length 1.

– A δ-slightly succinct SNARG (SNARG.Setup,SNARG.Prove,SNARG.Verify)
for some δ < 1/2 for the language L associated with the relation R defined
as follows:(

(k′, {xi}i∈[k′], {ri}i∈[k′]), K
)

∈ R ⇐⇒ ri = FK(xi) for all i ∈ [k′].
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In our construction of an SDP-HBG, the leakage bound � of the underlying
LR-wPRF is chosen depending on the length parameter k input to the setup
algorithm of the SDP-HBG, so that

(a) κ ≤ kγ · poly(λ) holds for some constant γ < 1, and
(b) for any k′ ≤ k, xi ∈ {0, 1}m for i ∈ [k′], ri ∈ {0, 1} for i ∈ [k′], and

K ∈ {0, 1}κ, if crssnarg
$← SNARG.Setup(1λ) and π

$← SNARG.Prove(crssnarg,
(k′, {xi}i∈[k′], {ri}i∈[k′]),K), then we have |π| ≤ �.

Below we explain how we choose such �.
Recall that the δ-slight succinctness of the SNARG ensures that the size

of a proof π generated from a statement/witness pair (x,w) ∈ R satisfies
|π| ≤ (|x| + |w|)δ · poly(λ). In our case, the bit-length of a statement x =
(k′, {xi}i∈[k′], {ri}i∈[k′]) is bounded by log k+k·(m+1) ≤ k·(m+2) = k�·poly(λ),
and the bit-length of a witness w = K is just κ = � · poly(λ). Hence, the size of
a proof π generated by SNARG.Prove for (x,w) is bounded by

|π| ≤ (k� · poly(λ) + � · poly(λ))δ · poly(λ) ≤ (k�)δ · p,

for some polynomial p = poly(λ) that is independent of k and �.
Then we set the leakage bound � = �(λ, k) as

� := k
δ

1−δ · p
1

1−δ .

Since we assume δ < 1/2, we have δ
1−δ < 1. Thus the property (a) is satisfied

with γ := δ
1−δ . Furthermore, we have

|π| ≤ (k�)δ · p = k
δ

1−δ p
1

1−δ = �.

Hence, the property (b) is also satisfied, as desired.
Using the above ingredients, our construction of an SDP-HBG (HBGsdp.Setup,

HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify) is described in Fig. 2. In the
description, xI is a short hand for {xi}i∈I .

It is easy to see that the construction satisfies correctness. The security prop-
erties of the SDP-HBG are guaranteed by the following theorem.

Theorem 4.2. The above SDP-HBG satisfies somewhat computational binding
and computational hiding.

Proof. We start by showing somewhat computational binding, then computa-
tional hiding.

Somewhat Computational Binding. For a CRS crs = (crssnarg, {xi}i∈[k]) out-
put from HBGsdp.Setup(1λ, 1k), we define Vcrs := {(FK(x1), . . . , FK(xk)) | K ∈
{0, 1}κ}. Then, since |K| = κ ≤ kγpoly(λ), we have |Vcrs| ≤ 2kγpoly(λ). Fur-
thermore, it is straightforward to see that by the soundness of the underlying
SNARG, no PPT adversary can generate a valid proof for (I, rI) that is inconsis-
tent with any element of V. More specifically, any PPT adversary that given crs =
(crssnarg, {xi}i∈[k]) outputs a tuple (I, rI , π) satisfying SNARG.Verify(crssnarg, (|I|,
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HBGsdp.Setup(1λ, 1k) :
crssnarg

$← SNARG.Setup(1λ)
∀i ∈ [k] : xi

$← {0, 1}m

Return crs = (crssnarg, {xi}i∈[k]).

HBGsdp.GenBits(crs) :
(crssnarg, {xi}i∈[k]) ← crs
K

$← {0, 1}κ

∀i ∈ [k] : ri ← FK(xi)
Return (r = {ri}i∈[k], st = (crs, K, r)).

HBGsdp.Prove(st, I) :
(crs, K, r) ← st
(crssnarg, {xi}i∈[k]) ← crs
X := (|I|, xI , rI)
π

$← SNARG.Prove(crssnarg, X, K)
Return π.

HBGsdp.Verify(crs, I, rI , π) :
(crssnarg, {xi}i∈[k]) ← crs
X := (|I|, xI , rI)
Return SNARG.Verify(crssnarg, X, π).

Fig. 2. The construction of an SDP-HBG based on an LR-wPRF and a SNARG.

xI , rI), π) = 
 and rI /∈ Vcrs
I , can be straightforwardly turned into a PPT

adversary that breaks the adaptive soundness of the underlying SNARG, since
rI /∈ Vcrs

I implies (|I|, xI , rI) /∈ L.

Computational Hiding. It is easy to reduce the computational hiding of our
SDP-HBG to the security of the underlying LR-wPRF in which the leakage
bound is �, by noting that the leakage from K is π whose size is at most �.
Formally, given any polynomial k = k(λ), I ⊆ [k], and PPT adversary A, con-
sider the following PPT adversary B = (B1,B2) that attacks the security of the
underlying LR-wPRF with the leakage bound �.

BFK($),Leak(·)
1 (1λ): (where K

$← {0, 1}κ) B1 makes |I| queries to the oracle FK($),
and regards the returned values from the oracle as {(xi, ri = FK(xi))}i∈[I].
Next, B1 computes crssnarg

$← SNARG.Setup(1λ), and defines the circuit f :
{0, 1}κ → {0, 1}� by f(·) := SNARG.Prove(crscrs, (|I|, xI , rI), ·). Then, B1

submits f(·) to the oracle Leak(·), and receives π. Finally, B1 sets stB as all
the information known to B1, and terminates with output stB.

BChal($)
2 (stB): B2 submits k − |I| queries to the challenge oracle Chal($), and

regards the returned values from the oracle as {(xi, ri)}i∈I . Note that ri =
FK(xi) if b = 0 and ri

$← {0, 1} if b = 1, where b is B’s challenge bit.
Now, B2 sets crs := (crssnarg, {xi}i∈[k]), and runs A(crs, I, rI , π, rI). When A
terminates with output b′, B2 outputs b′ and terminates.

Since |f(·)| = �, B complies with the rule of the LR-wPRF security exper-
iment with the leakage bound �. Furthermore, it is straightforward to see that
if b = 0, then the pairs {(xi, ri)}i∈I that B2 receives from the challenge oracle
satisfy FK(xi) = ri, and B simulates the computational hiding experiment in the
case rI is the real randomness generated by HBGsdp.GenBits(crs), perfectly for
A. On the other hand, if b = 1, then {ri}i∈I are random bits, and B2 simulates
the experiment of the opposite case (i.e. rI = {ri}i∈I is random) perfectly for
A. Hence, B’s advantage in breaking the security of the underlying LR-wPRF is
exactly the same as A’s advantage in breaking the computational hiding property
of our SDP-HBG. ��
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5 NIZK from SDP-HBG

In this section, we show the following theorem.

Theorem 5.1. If there exists an SDP-HBG, then there exists a NIZK for all
NP languages that satisfies adaptive computational soundness and non-adaptive
single-theorem zero-knowledge.

Combining Theorems 3.1, 4.1 and 5.1, we obtain the following theorem.

Theorem 5.2. If there exist a OWF and a δ-slightly succinct SNARG for all
NP languages for some δ < 1/2 that satisfies adaptive computational soundness,
then there exists a NIZK for all NP languages that satisfies adaptive soundness
and adaptive multi-theorem zero-knowledge.

In the following, we prove Theorem5.1. The construction of our NIZK is
almost the same as the scheme by Quach, Rothblum, and Wichs [46], except
that we use an SDP-HBG instead of an HBG.

Construction. Our NIZK uses the following ingredients:

– An SDP-HBG (HBGsdp.Setup,HBGsdp.GenBits,HBGsdp.Prove,HBGsdp.Verify).
– An HBM-NIZK (NIZKhbm.Prove,NIZKhbm.Verify) for an NP language L with

ε-soundness.

Let γ < 1 be the constant regarding the somewhat computational binding
of the SDP-HBG, which satisfies |Vcrsbgen | ≤ 2kγpoly(λ) for all crsbgen generated
by HBGsdp.Setup(1λ, 1k). When we use an HBM-NIZK with the random-string
length k, we can make ε = 2−Ω(k) as stated in Lemma 2.2. Therefore, we can
take k = k(λ) = poly(λ) so that |Vcrs| · ε = negl(λ) holds. We fix such k in the
following.

Then, our construction of a NIZK for L is described in Fig. 3.
It is easy to see that the construction satisfies completeness. The security

properties of the NIZK is guaranteed by the following theorem.

Theorem 5.3. The above NIZK satisfies adaptive computational soundness and
non-adaptive single-theorem zero-knowledge.

Proof. We start by showing soundness, and then zero-knowledge.

Adaptive Computational Soundness. Let A be any PPT adversary that
attacks the adaptive soundness of our NIZK. Let Win be the event that A
succeeds in breaking the adaptive soundness (i.e. NIZK.Verify(crs, x, π) = 

and x /∈ L). Suppose A on input crs = (crsbgen, s) outputs a pair (x, π =
(I, πhbm, rI , πbgen)). Let Vcrsbgen ⊆ {0, 1}k be the set with which the somewhat
computational binding of the underlying SDP-HBG is considered. We have

Pr[Win] = Pr[Win ∧ rI /∈ Vcrsbgen
I ] + Pr[Win ∧ rI ∈ Vcrsbgen

I ].

It is straightforward to see that Pr[Win ∧ rI /∈ Vcrsbgen
I ] = negl(λ) holds by the

somewhat computational binding of the underlying SDP-HBG.
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NIZK.Setup(1λ) :
crsbgen

$← HBGsdp.Setup(1λ, 1k)
s

$← {0, 1}k

Return crs := (crsbgen, s).

NIZK.Prove(crs, x, w) :
(crsbgen, s) ← crs
(r, st) $← HBGsdp.GenBits(crsbgen)
ρ ← s ⊕ r

(I, πhbm)
$← NIZKhbm.Prove(ρ, x, w)

πbgen
$← HBGsdp.Prove(st, I)

Return π := (I, πhbm, rI , πbgen).
NIZK.Verify(crs, x, π) :
(crsbgen, s) ← crs
(I, πhbm, rI , πbgen) ← π
ρI ← sI ⊕ rI

If (a) ∧ (b) then return � else return ⊥:
– (a) NIZKhbm.Verify(I, ρI , x, πhbm) = �
– (b) HBGsdp.Verify(crsbgen, I, rI , πbgen) = �

Fig. 3. The construction of a NIZK based on an SDP-HBG and an HBM-NIZK.

Hence, it remains to show P := Pr[Win ∧ rI ∈ Vcrsbgen
I ] = negl(λ). Fix crs∗bgen

in the image of HBGsdp.Setup(1λ, 1k) and A’s randomness r∗
A that maximize the

above probability P . Let V∗ := Vcrs∗bgen . Let F (·) be the function that on input
s ∈ {0, 1}k, computes (x, π = (I, πhbm, rI , πbgen)) ← A(crs = (crs∗bgen, s); r

∗
A), and

outputs (x, I, πhbm, rI). (Looking ahead, F is essentially an adversary against the
ε-soundness of the underlying HBM-NIZK.) Let P ′ be the following probability:

P ′ := Pr
[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = 

∧ rI ∈ V∗

I ∧ x /∈ L : s
$← {0, 1}k;

(x, I, πhbm, rI) ← F (s)

]
.

S(1λ, x) :
(I, ρI , πhbm)

$← NIZKhbm.Sim(x)
crsbgen

$← HBGsdp.Setup(1λ, 1k)
(r, st) $← HBGsdp.GenBits(crsbgen)
πbgen

$← HBGsdp.Prove(st, I)
sI := ρI ⊕ rI

sI

$← {0, 1}k−|I|

crs := (crsbgen, s)
π := (I, πhbm, rI , πbgen)
Return (crs, π).

Fig. 4. The simulator for showing non-adaptive single-theorem zero-knowledge in the
proof of Theorem 5.3.
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Clearly, we have P ≤ P ′. We also have

P ′ =
∑

r′∈V∗
Pr

[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = �
∧ rI = r′

I ∧ x /∈ L : s
$← {0, 1}k;

(x, I, πhbm, rI) ← F (s)

]

≤ |V∗| · max
r∗∈V∗ Pr

[
NIZKhbm.Verify(I, sI ⊕ rI , x, πhbm) = �
∧ rI = r∗

I ∧ x /∈ L : s
$← {0, 1}k;

(x, I, πhbm, rI) ← F (s)

]

= |V∗| · max
r∗∈V∗ Pr

[
NIZKhbm.Verify(I, ρI , x, πhbm) = �
∧ rI = r∗

I ∧ x /∈ L : ρ
$← {0, 1}k;

(x, I, πhbm, rI) ← F (ρ ⊕ r∗)

]

≤ |V∗| · max
r∗∈V∗ Pr

[
NIZKhbm.Verify(I, ρI , x, πhbm) = �
∧ x /∈ L : ρ

$← {0, 1}k;
(x, I, πhbm, rI) ← F (ρ ⊕ r∗)

]

≤ |V∗| · ε(k) = negl(λ),

where the last inequality uses the ε-soundness of the underlying HBM-NIZK
which we consider for the adversary B(ρ) that outputs F (ρ ⊕ r∗) other than rI ,
and the last equality is due to our choice of k. Hence, we have P = Pr[Win∧rI ∈
Vcrsbgen

I ] = negl(λ) as well.
Combined together, we have seen that A’s advantage in breaking the adaptive

soundness of our NIZK is negligible. This implies that our NIZK satisfies adaptive
soundness.

Non-adaptive Single-Theorem Zero-Knowledge. Let NIZKhbm.Sim be the
simulator that is guaranteed to exist by the zero-knowledge of the underlying
HBM-NIZK. Using NIZKhbm.Sim, we first give the description of the simulator
S in Fig. 4 for showing the non-adaptive single-theorem zero-knowledge of our
NIZK.

We prove the non-adaptive single-theorem zero-knowledge of the above NIZK
via a sequence of games argument using four games, among which the first
game Game1 (resp. the final game Game4) is exactly the real (resp. simulated)
experiment. Let A = (A1,A2) be any PPT adversary that attacks the non-
adaptive single-theorem zero-knowledge of the above NIZK. For j ∈ [4], let Tj

be the event that A2 finally outputs 1 in Gamej . The description of the games
is as follows.

Game1: This is exactly the real experiment Exptnazk-realA . We have Pr[T1] =
Pr[Exptnazk-realA (λ) = 1].

Game2: We change the ordering of the steps of Game1, and furthermore “pro-
gram” s by first choosing ρ

$← {0, 1}k and then setting s := ρ ⊕ r, without
changing the distribution of A’s view. Specifically, this game proceeds as
follows.
1. Run (x,w, stA) $← A1(1λ).
2. Pick ρ

$← {0, 1}k.
3. Compute (πhbm, I) $← NIZKhbm.Prove(ρ, x, w).
4. Compute crsbgen

$← HBGsdp.Setup(1λ, 1k).
5. Compute (r, st) $← HBGsdp.GenBits(crsbgen).
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6. Compute πbgen
$← HBGsdp.Prove(st, I).

7. Set sI := ρI ⊕ rI .
8. Set sI := ρI ⊕ rI .

12

9. Set crs := (crsbgen, s) and π := (I, πhbm, rI , πbgen).
10. Run b′ $← A2(crs, π, stA).
It is easy to see that the distribution of A’s view has not been changed from
Game1. Hence, we have Pr[T1] = Pr[T2].

Game3: This game is identical to the previous game, except that the 8th step
“sI := ρI ⊕ rI” is replaced with “sI

$← {0, 1}k−|I|”.
It is straightforward to see that |Pr[T2] − Pr[T3]| = negl(λ) holds by the
computational hiding of the underlying SDP-HBG.

Game4: This game is identical to the previous game, except that (ρ, πhbm, I) is
generated as (ρI , πhbm, I) $← NIZKhbm.Sim(x), instead of picking ρ

$← {0, 1}k

and then executing (πhbm, I) $← NIZKhbm.Prove(ρ, x, w).
It is immediate to see that |Pr[T3] − Pr[T4]| = negl(λ) holds by the zero-
knowledge of the underlying HBM-NIZK.
It is also straightforward to see that Game4 is identical to the simulated
experiment Exptnazk-simA,S . Hence, we have Pr[T4] = Pr[Exptnazk-simA,S (λ) = 1].

Combined together, A’s advantage against the non-adaptive single-theorem
zero-knowledge can be estimated as follows:∣∣∣Pr[Exptnazk-realA (λ) = 1] − Pr[Exptnazk-simA,S (λ) = 1]

∣∣∣ =
∣∣∣Pr[T1] − Pr[T4]

∣∣∣
≤

∑
j∈[3]

∣∣∣Pr[Tj ] − Pr[Tj+1]
∣∣∣ = negl(λ).

This proves that our NIZK is non-adaptive single-theorem zero-knowledge. ��
Remark 5.1. (On adaptive zero-knowledge.) One may think that we can prove
that the above construction satisfies adaptive single-theorem zero-knowledge by
relying on the special zero-knowledge property of the underlying HBM-NIZK,
since a similar statement is proven for the construction of a NIZK based on an
(ordinary) HBG in [46]. However, we believe that this is not possible. Roughly
speaking, the problem comes from the fact that the SDP-HBG enables us to
generate a proof πbgen corresponding to a subset I only after I is fixed. This is
in contrast to an HBG where we can generate πi that certifies the i-th hidden
bit for each i ∈ [k] before I is fixed. Specifically, the proof of adaptive zero-
knowledge from an HBG in [46] crucially relies on the fact that if I ⊆ I∗, then
a set of proofs {πi}i∈I can be derived from {πi}i∈I∗ in a trivial manner. On the
other hand, we do not have a similar property in SDP-HBG since it generates
a proof for a subset I in one-shot instead of generating a proof in a bit-by-bit
manner. We note that if SDP-HBG satisfies an adaptive version of computational
12 Splitting the step “s := ρ ⊕ r” into Steps 7 and 8 is to make it easier to describe the

change in the next game and also see the correspondence with the procedure of the
simulator S.
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hiding where an adversary can choose a subset I depending on a CRS crsbgen,
then we can prove the adaptive zero-knowledge of the above scheme relying
on special zero-knowledge of HBM-NIZK. However, such an adaptive version of
computational hiding cannot be proven by a similar proof to the one in Sect. 4.2
due to the fact that a leakage function cannot depend on a challenge input in the
security game of LR-wPRF. Therefore, instead of directly proving that the above
scheme satisfies adaptive zero-knowledge, we rely on the generic conversion from
non-adaptive to adaptive zero-knowledge as stated in Theorem 3.1.

6 Zero-Knowledge SNARG

In this section, we consider a zero-knowledge SNARG (zkSNARG) which is a
SNARG that also satisfies the zero-knowledge property.

Bitansky et al. [4] gave a construction of a zkSNARG in the designated verifier
model based on a SNARG (with efficient verification) in the designated verifier
model, a NIZK argument of knowledge, and a circuit-private FHE scheme. As
noted in [4], if we consider a publicly verifiable SNARG (which is the default
notion of a SNARG in this paper), then we need not rely on FHE. Moreover, a
NIZK argument of knowledge can be constructed by combining any NIZK and
CPA secure PKE. Thus, we obtain the following theorem:

Lemma 6.1. Assume that there exist a fully succinct SNARG for all NP lan-
guages with adaptive computational soundness and efficient verification, a NIZK
for all NP languages with adaptive computational soundness and adaptive multi-
theorem zero-knowledge, and a CPA secure PKE scheme. Then, there exists a
fully succinct SNARG for all NP languages with adaptive computational sound-
ness, adaptive multi-theorem zero-knowledge, and efficient verification.

Since this lemma follows from a straightforward extension of existing works,
we omit the proof here and give it in the full version.

Combining Lemma 6.1 and Theorem 5.2, we obtain the following theorem.

Theorem 6.1. If there exist a CPA secure PKE scheme and a fully succinct
SNARG for all NP languages with adaptive computational soundness and effi-
cient verification, then there exists a fully succinct SNARG for all NP languages
with adaptive computational soundness, adaptive multi-theorem zero-knowledge,
and efficient verification.

Remark 6.1. We cannot prove a similar statement for a SNARG without effi-
cient verification since efficient verification is essential in the construction of a
zkSNARG in Lemma 6.1.
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Abstract. A family of one-way functions is extractable if given a ran-
dom function in the family, an efficient adversary can only output an
element in the image of the function if it knows a corresponding preim-
age. This knowledge extraction guarantee is particularly powerful since
it does not require interaction. However, extractable one-way functions
(EFs) are subject to a strong barrier: assuming indistinguishability obfus-
cation, no EF can have a knowledge extractor that works against all
polynomial-size non-uniform adversaries. This holds even for non-black-
box extractors that use the adversary’s code.

Accordingly, the literature considers either EFs based on non-
falsifiable knowledge assumptions, where the extractor is not explicitly
given, but it is only assumed to exist, or EFs against a restricted class of
adversaries with a bounded non-uniform advice. This falls short of cryp-
tography’s gold standard of security that requires an explicit reduction
against non-uniform adversaries of arbitrary polynomial size.

Motivated by this gap, we put forward a new notion of weakly
extractable one-way functions (WEFs) that circumvents the known bar-
rier. We then prove that WEFs are inextricably connected to the long
standing question of three-message zero knowledge protocols. We show
that different flavors of WEFs are sufficient and necessary for three-
message zero knowledge to exist. The exact flavor depends on whether
the protocol is computational or statistical zero knowledge and whether
it is publicly or privately verifiable.

Combined with recent progress on constructing three message zero-
knowledge, we derive a new connection between keyless multi-collision
resistance and the notion of incompressibility and the feasibility of non-
interactive knowledge extraction. Another interesting corollary of our
result is that in order to construct three-message zero knowledge argu-
ments, it suffices to construct such arguments where the honest prover
strategy is unbounded.
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1 Introduction

An extractable one-way function is a family of functions {fk} that satisfies two
properties: One-wayness: Given an image y = fk(x) for random key k and input
x, it is hard to find a corresponding pre-image x′ ∈ f−1

k (y); and Extraction:
Given a random key k, it is hard to produce an image y obliviously, without
knowing a corresponding preimage x′. This is formalized by requiring that for
any efficient algorithm A that given k produces an image y, there is an efficient
extractor E (that depends on A) that given the same key k, extracts a preimage
x′.

While their extraction property is reminiscent of proofs of knowledge [FS89,
BG92], EFs are essentially different—they draw their power from the fact that
extraction can be done without interaction.

The Good. The non-interactive nature of EFs gives rise to killer applications
such as encryption with strong CCA security [Dam91,BP04], three-message zero
knowledge [HT98,CD08], and by extending one-wayness to collision-resistance,
also succinct non-interactive arguments of knowledge (SNARKs) [BCC+14].

The Bad. Constructing EFs has proven to be an elusive task. A first bar-
rier is that without interaction, traditional black-box extraction techniques,
like rewinding, (provably) do not work. Accordingly, extraction must use the
code of the adversary in a non-black-box way. Bitansky, Canetti, Paneth, and
Rosen [BCPR16], following Goldreich’s intuition [HT98], demonstrated an even
stronger barrier that holds for non-black-box extractors. Assuming indistin-
guishability obfuscation, they show that no efficient extractor can work against
all polynomial-size non-uniform adversaries; that is, even when the extractor is
given the adversary’s code.

The Ugly. One approach that avoids the above barriers is to simply assume the
existence of an extractor for every adversary, without giving an explicit extrac-
tion strategy. An EF with such non-explicit extractors follows, for example, from
the knowledge of exponent assumption [Dam91]. Such knowledge assumptions
translate in applications to security reductions that are, at least in part, non-
explicit. Knowledge assumptions are arguably unsatisfying, and in particular are
not falsifiable [Nao03].

Another way to circumvent known barriers is to restrict the class of adver-
saries. Bitansky et al. construct EFs with an explicit extractor against adversaries
with bounded non-uniform advice, under standard assumptions.1 The restric-
tion on the adversaries carries over to applications—they obtain three-message
zero-knowledge, but only against verifiers with bounded non-uniformity. This
of course falls short of the gold standard in cryptography of security against
non-uniform adversaries of arbitrary polynomial size.

Given this state of affairs, we ask:

Is there hope for explicit extraction from general non-uniform adversaries?
1 More accurately, they constructed generalized EFs under standard assumption and

(plain) EFs assuming publicly verifiable delegation, which by now is also known
based on standard assumptions [KPY19].
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1.1 This Work

We put forward a new definition of weakly extractable one-way functions (WEFs)
that circumvents the [BCPR16] extraction barrier. We then show that WEFs are
deeply connected to three-message zero knowledge protocols, establishing a loose
equivalence between the two notions.

The New Definition. Our notion of WEFs is inspired by simulation-based
definitions of multi-party computation. We relax the extraction requirement as
follows: instead of requiring that the extractor E , given a random key k and
the code of the adversary A, is able to find a preimage x′ ∈ f−1

k (y) for the
adversary’s image y = A(k), we allow the extractor to sample a simulated key ˜k

on its own together with an extracted preimage x′ ∈ f−1
˜k

(y) for y = A(˜k). The

simulated key ˜k must be indistinguishable from a randomly sampled key k.
For this relaxation to be meaningful we must also strengthen the one-wayness

requirement. Instead of one-wayness for a random key, we require that fk is
hard to invert on any key k. More generally, we can require hardness for any
key from some NP set of valid keys. In this case, we further require that the
extractor’s simulated keys be valid and thus extraction cannot simply sample
“easy to invert” keys. Rather, just as in standard EFs, the WEF extractor must
use the code of the adversary to extract a preimage or it could be used to break
one-wayness.

Our main motivation for studying WEFs is that they are weak enough to
circumvent the impossibility of [BCPR16] (see the technical overview for more
details) yet, appear to capture a natural and meaningful notion of extraction.
We confirm this intuition by showing that WEFs are sufficient for one of the
central applications of EFs: three-message zero knowledge arguments.

Theorem 1 (Informal). Assuming WEFs, two-message witness-indistin-
guishable arguments, and non-interactive commitments, there exist three-
message ZK arguments for NP.

The existence of three-message zero knowledge arguments (with negligible
soundness error) is one of the central questions in the area. The main barrier
to constructing such arguments is that they require non-black box simulation
[GK96]. In addition to constructions based on EFs, the only known construc-
tion secure against arbitrary polynomial size non-uniform adversaries was given
recently by Bitansky, Kalai and Paneth [BKP18] based on keyless multi-collision
resistant hash functions (and other, more standard, assumptions). A feature of
the WEF-based zero knowledge argument, which [BKP18] protocol lacks, is that
it is publicly verifiable. This means that the verifier’s decision can be inferred
from the message transcript alone.

A Tighter Connection. We continue to show a tighter connection between
the notions of WEF and three-message zero knowledge. We show that a slight
generalization of WEF is sufficient as well as necessary for three-message zero
knowledge. Our generalization follows Bitansky et al.’s [BCPR16] generalization



Weakly Extractable One-Way Functions 599

of EFs, allowing for a more general forms of hardness than one-wayness. They
consider a relation Rk(y, x′) on images y = fk(x) and solutions x′, and replace
one-wayness with the hardness of finding solutions. Likewise, the extractor only
has to find x′ that satisfies the relation Rk, rather than a preimage.2 We gener-
alize WEFs in an analogous way.

We establish the following equivalence between generalized WEFs (GWEFs)
and three-message zero knowledge arguments:

Theorem 2 (Informal). Assuming two-message witness- indistinguishable
and non interactive commitments arguments, GWEFs exist if and only if publicly
verifiable three-message zero knowledge arguments exist.

Finally, we ask if there is some natural notion of WEF that corresponds to three-
message ZK arguments that are privately verifiable, such as the argument of
[BKP18]. Again following [BCPR16], we consider a notion of privately verifiable
GWEFs where the hard relation Rk is not publicly verifiable—efficiently testing
whether (fk(x), x′) ∈ Rk requires the preimage x (see the technical overview for
a more details on privately verifiable GWEFs).

In the privately verifiable settings, we show the following loose equivalence:

Theorem 3 (Informal).

1. Assuming privately verifiable GWEFs and secure function evaluation, there
exist privately verifiable three-message computational zero-knowledge argu-
ments for NP.

2. Assuming privately verifiable three-message statistical zero-knowledge argu-
ments for NP and non-interactive commitments, there exist privately verifi-
able GWEFs.

Recently, building on [BKP18] and relying on the same assumptions, three-
message statistical zero-knowledge arguments were constructed in [BP19]. Thus,
as a corollary from Theorem 3 we obtain privately verifiable GWEFs from key-
less multi-collision resistant hashing (and other standard assumptions). This
connects between the notion of incompressibility, which stands behind keyless
multi-collision-resistance and the notion of knowledge extraction. We further
note that keyless collision-resistance is a falsifiable assumption, which should be
contrasted with the fact that standard EFs all crucially rely on non-falsifiable
assumptions such as the knowledge of exponent assumption.

On WEFs Candidates. As mentioned above, the negative result of Bitansky
et al. [BCPR16] does not extend to WEFs. Therefore, even assuming indis-
tinguishability obfuscation, existing candidate constructions, such as the one
based on the knowledge of exponent assumption, may be weakly extractable. In
the current work, however, we do not provide any evidence in support of that.

2 In this formulation, we think of the preimage x as the private randomness used
to sample y. Looking ahead, we will also discuss GWEFs with private verification,
where it will be useful to refer to the private randomness x explicitly.
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Demonstrating, under standard assumptions, a WEF with an explicit extrac-
tor against non-uniform adversaries is left as an open question. We view the
privately verifiable GWEFs from keyless multi-collision resistant hashing that
follows from Theorem 3 as a first step in this direction.

On Zero Knowledge with an Unbounded Honest Prover. Our GWEF
constructions from zero knowledge arguments, in fact, work even if the honest
prover is unbounded. Combined with our results in the reverse direction, this has
an interesting implication—to obtain three-message zero knowledge arguments
with an efficient honest prover, it suffices to obtain such argument with with an
unbounded honest prover.

1.2 Technical Overview

We now provide an overview of the main technical ideas behind our results. We
start by explaining how the definition of WEFs circumvents the [BCPR16] bar-
rier. We then discuss the equivalence between GWEFs and (publicly verifiable)
three-message zero knowledge. Finally, we discuss the case of private verification.

Circumventing the Impossibility. The [BCPR16] impossibility constructs a
distribution A over obfuscated adversaries, and shows that if the extractor works
given a random key k and adversary A sampled from A, then it must also work
when the adversary A is sampled after the key k from an alternative distribution
Ak over adversaries that have a random image fk(x) hardwired in their code.
This argument crucially relies on the fact that the extractor does not control the
key k.

GWEFs to Publicly Verifiable Zero Knowledge. The construction of pub-
licly verifiable zero knowledge from GWEFs is mostly similar to previous con-
structions (e.g., [CD08,BCC+14]). We sketch it here briefly, highlighting the
differences. To prove some NP statement ϕ ∈ L, the protocol follows the Feige-
Lapidot-Shamir trapdoor paradigm [FLS90]. The prover sends a random key k
for a GWEF, and the verifier responds with a random image y = fk(x). The
prover then provides a witness-indistinguishable proof of knowledge that either
the statement ϕ is true, or that (a) the chosen key k is valid (and thus hard),
and (b) it knows a solution x′ for y; namely, (y, x′) ∈ Rk.

The protocol is publicly verifiable, as it only requires verifying the witness
indistinguishable proof, which is publicly verifiable. Soundness follows from the
fact that for a valid key k and a random image fk(x), it is hard to find a
solution x′ satisfying Rk. For zero knowledge, the simulator uses the extractor
E(V ∗) to extract from the verifier a solution x′ together with a corresponding
simulated key k and an NP certificate for the key’s validity. It then uses x′ and
the certificate of validity as its witness in the witness-indistinguishable proof.
The protocol, as described, implicitly assumes that the malicious verifier’s mes-
sage y can indeed be explained as an image y = fk(x). We bridge this gap
using standard techniques, based on two-message witness-indistinguishability
and commitments, for compiling protocols against explainable verifiers to ones
against malicious verifiers [BKP19].
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Publicly Verifiable Zero Knowledge to GWEFs. The main idea behind
the construction of GWEFs from three-message zero knowledge is a natural
one—a key k for a function fk consists of the first zero knowledge message zk1
as well a statement ϕ ∈ L for some language L (to be specified), an image
under the function fk(x) is the honest verifier response y = zk2, when using
x as its randomness. The corresponding hard relation Rk(y, x′) accepts as a
solution x′ any message zk3 that convinces the verifier. Indeed, given that the
zero knowledge is publicly verifiable, this can be tested efficiently.

The set of valid keys (for which the relation is hard) consists of false state-
ments ϕ /∈ L. Indeed, finding a solution x′ = zk3 to a random image y = zk2
under a valid key k = (zk1, ϕ), amounts to producing an accepting proof for the
false statement ϕ, which is computationally hard due to the soundness of the
argument.

The extractor E(A) samples a false ϕ on its own, and runs the zero knowledge
simulator S(ϕ, VA) on the code of the verifier VA induced by the adversary A to
produce a simulated transcript (zk1, zk2, zk3). It then sets the simulated key to be
(zk1, ϕ) and the extracted preimage to be zk3. To argue that the extractor indeed
works we have to argue that the simulator produces an accepting transcript. We
note that had ϕ been a true statement, then this would have followed from the
zero knowledge and completeness of the underlying argument. Indeed, the honest
prover necessarily generates accepting transcripts due to completeness, and the
simulated transcript must be indistinguishable.

To establish faithful extraction, we choose the language L so to guarantee
indistinguishable distributions over true-statements and false-statements. Since
the simulator is efficient, and cannot tell them apart, it will also generate accept-
ing transcripts on false-statements like the one sampled by the extractor. We also
require that false-statements are taken from an NP set. The existence of a lan-
guage L satisfying these properties follow from non-interactive commitments.

Privately Verifiable GWEFs. We now move to discuss privately verifi-
able GWEFs and their connection to privately verifiable zero knowledge. Here
the hard relation Rk is not publicly verifiable—efficiently testing whether
(fk(x), x′) ∈ Rk requires the preimage x.

In the setting of privately verifiable GWEF, where testing a solution x′ for
y requires private information (a preimage), there are two knowledge-related
questions: (1) the usual one: must the adversary know a solution for the produced
image y? but also (2) can it even recognize such a solution? The definition we
consider essentially says that if the adversary can generate an image y, for which
it can verify solutions, then it must also know a solution. If it cannot even verify
a solution, we only require that the extractor generates x′ that the adversary
cannot distinguish from a solution.

Following this intuition, we further relax the previous extraction definition
as follows. The extractor E may sometime fail to extract. However, there is an
additional extractor ˜E that is guaranteed to always succeed and produce a key k
and candidate solution x′ that are indistinguishable from those generated by E .
The extractor ˜E is given the extra freedom to solve invalid keys (indeed invalid
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keys may be indistinguishable from valid keys, if the NP certificate of validity is
hidden). Note that in the publicly verifiable setting, or if the adversary generates
images y whose solutions it can recognize, the original extractor E must indeed
always succeed just like the alternative ˜E (otherwise, we can tell them apart).

Privately Verifiable GWEFs to Privately Verifiable Zero Knowledge.
The construction of privately verifiable zero knowledge from privately verifiable
GWEFs follows the construction of [BCPR16] from privately verifiable GEFs. In
a nutshell, in the case of privately verifiable GWEFs, the prover cannot directly
prove that it found a solution x′, as testing a solution requires the private ran-
domness x used to generate y = fk(x). Instead, the verifier and prover execute a
secure function evaluation protocol, which allows to perform this verification in
an “encrypted manner”. This results in privately verifiable zero knowledge due
to the private state of the verifier in the secure function evaluation protocol.

Soundness of the protocol is argued similarly to [BCPR16]. For zero knowl-
edge, we rely on the relaxed extraction guarantee described above. The simulator
uses E to generate a simulated key k along with an NP certificate of validity,
and extracted a solution x′. Only in the analysis, we switch to indistinguishably
generating the keys using the alternative extractor ˜E , and use the fact that it
successfully extracts.

Privately Verifiable Statistical Zero Knowledge to Privately Verifiable
GWEFs. The construction of GWEFs from Privately Verifiable Zero Knowl-
edge is essentially the same as that from publicly verifiable zero knowledge. We
address the difference in the analysis, explaining why statistical zero knowledge
is needed, and how the alternative extractor relaxation aids the construction.

Recall that in the GWEF construction from publicly verifiable zero knowl-
edge, to prove hardness it is crucial that a valid key corresponds to a false
statement ϕ. To show that the extractor faithfully extracts, we had to show that
the simulator faithfully generates an accepting transcript. We argued that in two
steps: (1) the simulator generates accepting transcripts on true statements, and
(2) even though the extractor generates false statements, the simulator would
still succeed as it cannot tell false statements from true ones.

In the private verification setting, (1) is not clear. Indeed, testing whether
a transcript is accepting cannot be done efficiently, and thus computational
zero knowledge is insufficient for arguing that the simulator would also generate
accepting transcripts. This is where we resort to statistical zero knowledge—
indeed, an unbounded distinguisher can generate verifier coins consistent with
the transcript and test acceptance. However, the second argument (2) should
also be treated with care. The fact that the simulator generates accepting tran-
scripts on true statements does not necessarily mean that it generates such tran-
scripts on false statements. Indeed these are inherently only computational indis-
tinguishable. However, this argument is sufficient for establishing our relaxed
extraction guarantee: the alternative extractor ˜E simply chooses true statements
rather than false statements. Since these are computationally indistinguishable,
and the extracted solution x′ is efficiently generated from the statement, we are
guaranteed that the two extractors are indeed indistinguishable.
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1.3 Open Questions

The notions of WEFs and GWEFs suggest a new avenue for dealing with knowl-
edge extraction in the non-interactive settings. We address a few of the open
questions that arise.

– Can we use our new notions of extraction to go beyond zero knowledge and
obtain results on the round complexity of secure computation? One concrete
approach is to construct (G)WEFs with a unique hard property. That is, a
GWEFs and a property π such that an image y uniquely determines the value
π(x′) for any solution x′ but given only y the value π(x′) is pseudo-random.
Indeed, this can be seen as a generalization of WEF that are injective and
will lead to extractable commitments in two messages.

– Can we construct any form of collision resistant (G)WEFs? Can these suf-
fice for applications such as succinct non-interactive arguments of knowledge
(SNARKs)?

– Is there an implication in the reverse direction from (G)WEF to keyless multi-
collision-resistance, or, more generally to some non-trivial notion of incom-
pressibility.

2 Preliminaries

We rely on the following standard computational concepts and notation:

– A PPT is a probabilistic polynomial-time algorithm.
– We follow the standard practice of modeling any efficient adversary strategy

as a family of polynomial size circuits. For an adversary A corresponding to
a family of polynomial-size circuits {An}n∈N

.
– A distinguisher algorithm is one that has a single output bit.
– We say that a function f : N → R is negligible if for all constants c > 0, there

exists N ∈ N such that for all n > N , f(n) < n−c. We sometimes denote
negligible functions by negl.

– We say that a function f : N → R is noticeable if there exist constants c > 0
and N ∈ N such that for all n > N , f(n) ≥ n−c.

– Two ensembles of random variables X = {Xi}n∈N,i∈In , Y = {Yi}n∈N,i∈In

over the same set of indices I =
⋃

n∈N
In are said to be computationally

indistinguishable, denoted by X ≈c Y, if for every polynomial-size distin-
guisher D = {Dn}n∈N

there exists a negligible function μ(·) such that for all
n ∈ N, i ∈ In,

ED(Xi) − ED(Yi) ≤ μ(n).

The ensembles are statistically indistinguishable if the above holds also for
unbounded (rather than polynomial-size distinguishers).

– For a finite set S, denote by x ← S the process of uniformly sampling x from
S.
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– For a distribution X, we denote by x ∈ X the fact that x is in the support
of X.

Let R = {(ϕ, ω)} be a relation. Denote by L(R) the corresponding language:

L(R) := {ϕ | ∃ω such that (ϕ, ω) ∈ R} .

For any ϕ, we denote by R(ϕ) the set of witnesses corresponding to ϕ:

R(ϕ) := {ω | (ϕ, ω) ∈ R} .

2.1 Hard on Average Relations

We define hard-on-average problems with solved instance and co-instance sam-
plers. Such a hard problem is given by two efficient samplers Y,N and corre-
sponding NP relations RY ,RN . Y outputs yes-instances along with a witness
and N outputs no-instances along with a witness. The two types of instances
are computationally indistinguishable.

Definition 1 (Hard on Average Problem). A hard-on-average problem
consists of PPT samplers Y,N supported on NP relations RY ,RN . We require
1. Disjointness: L(RY ) ∩ L(RN ) = ∅.
2. Indistinguishability:

{ϕ | (ϕ, ω) ← Y (1n)}n ≈c {ϕ̄ | (ϕ̄, ω̄) ← N(1n)}n .

The notion is, in fact, equivalent to non-interactive commitments, but will
be useful for presenting our constructions of generalized weakly extractable one-
way functions, in a conceptually clear manner. To see this equivalence, we can
consider the two NP languages corresponding to commitments of 0 and 1, and
consider their respective relations. Analogously, we can construct commitments,
where committing to 1 is done by sampling from Y , and committing to 0 is done
by sampling from N .

2.2 Non-interactive Commitments

Definition 2 (Non-interactive Commitment [Blu81]). A non-interactive
commitment scheme consists of a polynomial-time commitment algorithm
Com(x; r) that given a message x ∈ {0, 1}∗ and randomness r ∈ {0, 1}n out-
puts a commitment c. We make the following requirements:
1. Perfect Binding: For every security parameter n ∈ N, and string c ∈ {0, 1}∗

there exists at most a single x ∈ {0, 1}∗ such that c is a commitment to x:

∀n ∈ N, r0, r1 ∈ {0, 1}n if Com(w0; r0) = Com(w1; r1) then w0 = w1.

2. Computational Hiding: for any sequence I = {n ∈ N, w0, w1 ∈
{0, 1}poly(n)}:
{

c0 :
r ← {0, 1}n

c0 ← Com(w0; r)

}

(n,w0,w1)∈I
≈c

{

c1 :
r ← {0, 1}n

c1 ← Com(w1; r)

}

(n,w0,w1)∈I
.

Non-interactive commitments can be constructed from any injective one-way
function (or a certifiable collection thereof) [Blu81].
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2.3 Zero-Knowledge and Witness Indistinguishable Protocols

Throughout, for an interactive protocol between a prover P and verifier V (one
of which possibly malicious), we denote by 〈P (ω), V 〉(ϕ) the transcript of an
interaction with prover private input ω (possibly empty), and common input ϕ.
We denote by Acc/Rej out← 〈P (ω), V 〉(ϕ) the output of the (honest) verifier.

Definition 3 (Zero-Knowledge Arguments). We say that a pair of inter-
active PPT machines 〈P , V 〉 is a zero-knowledge argument system for a NP
relation R if the following holds:

1. Completeness: For every element ϕ ∈ L(R), and a witness ω ∈ R(ϕ):

Pr
[

Acc out← 〈P (ω), V 〉(ϕ)
]

= 1.

2. Soundness: For any family of polynomial-size circuits P ∗ = {P ∗
n}n, and

every ϕ ∈ {0, 1}n \ L:

Pr
[

Acc out← 〈P ∗
n, V 〉(ϕ)

]

≤ negl(n).

3. Zero Knowledge: There exists a PPT simulator S such that for any non-
uniform family of polynomial-size circuits V ∗ = {V ∗

n }n,

{〈P (ω), V ∗
n 〉(ϕ)}ϕ,ω ≈c {S(V ∗

n , ϕ)}ϕ,ω ,

where (ϕ, ω) ∈ R and |ϕ| = n.

The argument is statistical zero knowledge if the above indistinguishability
is statistical (rather than computational).

The protocol is publicly verifiable is the verifier’s decision can be determined
solely from the protocol’s transcript (without the private coins of the verifier).

Definition 4 (Argument of Knowledge). An argument system 〈P , V 〉 is an
argument of knowledge for a relation R if there exists a PPT extractor E such
that for any non-uniform family of polynomial-size circuits P ∗ = {P ∗

n}n∈N
, any

noticeable function ε(n), any n ∈ N, and any ϕ ∈ {0, 1}n:

if Pr
[

Acc out← 〈P ∗
n, V 〉(ϕ)

]

= ε(n)

then

Pr
[

ω ← EP ∗
n (11/ε(n), ϕ)

ω ∈ R(ϕ)

]

≥ ε(n) − negl(n) .
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2.4 Offline-Online Witness Indistinguishable Arguments

An offline-online interactive argument is a protocol 〈P , V 〉 that can be divided
into two phases: an offline phase independent of the proven statement, and an
online phase where the statement (and witness) become available and the proof
is completed. We define such witness-indistinguishable arguments (and argu-
ments of knowledge). Our formal definition follows that of [BP19]. Below, we
consider sub-protocols 〈offP, offV 〉(1n) where both prover and verifier may have
an output; we denote this by (OP , OV ) out← 〈offP, offV 〉(1n).

Definition 5 (Offline-Online Witness-Indistinguishable Arguments).
An interactive protocol 〈P , V 〉 is an offline-online witness-indistinguishable argu-
ment for an NP relation R if it consists of two sub-protocols P = (offP,
onP ), V = (offV, onV ), that satisfy:

1. Completeness: For any (ϕ, ω) ∈ R where |ϕ| = n:

Pr
[

〈Acc out← onP (stP , ω), onV (stV )〉(ϕ)
∣

∣

∣ (stP , stV ) out← 〈offP, offV 〉(1n)
]

= 1.

2. Adaptive Soundness: For any non-uniform family of polynomial-size cir-
cuits P ∗ = {offP ∗

n , onP ∗
n}n, and for all n ∈ N:

Pr
[

Acc out← 〈onP ∗
n(stP ), onV (stV )〉(ϕ)

∣

∣

∣ ((stP , ϕ), stV ) out← 〈offP ∗
n, offV 〉(1n)

]

≤ negl(n),

where ϕ /∈ L and |ϕ| = n.
3. Adaptive Witness-Indistinguishability For any non-uniform family of

polynomial size circuits V ∗ = {V ∗
n }n, all n ∈ N:

Pr
[

b
out← 〈onP (stP , ωb), onV ∗

n(stV )〉(ϕ)
∣

∣

∣

∣

(stP , (stV , ϕ, ω0, ω1))
out← 〈offP, offV ∗

n〉(1n),
b ← {0, 1}

]

≤ 1
2 + negl(n)

,

where (ϕ, ω0), (ϕ, ω1) ∈ R and |ϕ| = n.

Definition 6 (Adaptive Argument of Knowledge). We say that the sys-
tem is an Adaptive Argument of Knowledge if there exists a PPT extrac-
tor E such that for any non-uniform family of polynomial-size circuits P ∗ =
{offP ∗

n , onP ∗
n}n∈N

, and for all n ∈ N:

if Pr

[

Acc out← 〈onP ∗
n(stP ), onV (stV )〉(ϕ) |

((stP , ϕ), stV ) out← 〈offP ∗
n, offV 〉(1n)

]

= ε

then

Pr

⎡

⎣

Acc out← 〈onP ∗
n(stP ), onV (stV )〉(ϕ)

ω ← E(offP ∗
n ,onP ∗

n)(11/ε, ϕ, stP , stV )
ω ∈ R(ϕ)

∣

∣

∣

∣

∣

∣

((stP , ϕ), stV ) out← 〈offP ∗
n, offV 〉(1n)

]

≥ ε − negl(n)

,
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where |ϕ| = n. This further holds for randomized circuits offP ∗, onP ∗, provided
that the first prover message of offP is deterministic.3

Assuming non-interactive commitments, there exist three-message systems
as the one defined above that are adaptive arguments of knowledge, and have
two offline (prover and verifier) messages and a single online (prover) message
[FLS90].

Two-message systems (that are only sound) are known under a variety of
assumptions like trapdoor permutations, or concrete number-theoretic or lattice
assumptions (e.g. [DN00,GOS06,KKS18]).

2.5 Secure Function Evaluation

We define two-message secure function evaluation.

Definition 7 (Two-Message Secure Function Evaluation Scheme). A
secure function evaluation scheme consists of three algorithms (Enc,Dec,Eval),
where Enc,Eval are probabilistic and Dec is deterministic, satisfying:

1. Correctness: For any n ∈ N, x ∈ {0, 1}n and circuit C:

Pr
[

Decsk(̂ct) = C(x) | (sk, ct) ← Enc(x), ̂ct ← Eval(ct, C)
]

= 1.

2. Semantic Security:

{ct | (sk, ct) ← Enc(w0)}n,w0,w1
≈c {ct | (sk, ct) ← Enc(w1)}n,w0,w1

,

where n ∈ N, w0, w1 ∈ {0, 1}n.
3. Circuit Privacy:

{Eval(ct, C0)}n,C0,C1,ct ≈c {Eval(ct, C1)}n,C0,C1,ct ,

where n ∈ N, C0, C1 ∈ {0, 1}poly(n) compute the same function, and ct ∈
{0, 1}�(n), where �(n) is the size of encryptions of messages of length n.

Such secure function evaluation schemes are known from a variety of assumptions
such as DDH [NP01] and LWE [BD18].

3 Extractable-One Way Functions: A New Definition

In this section, we provide our new definition of extractable one-way functions
against adversaries with arbitrary polynomial-size non-uniform advice. We start
by recalling the concept of generalized extractable one-way functions (GEF)
[BCPR16], which considers general (hard) relations, rather than the specific
preimage relation. We then present our new definition of generalized weakly
extractable one-way functions (GWEF).
3 The requirement for randomized circuits is not essential, but simplifies the analysis.
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Definition 8 (GEF [BCPR16]). A polynomial-time computable family of func-
tions

F =
{

fk : {0, 1}�(n) → {0, 1}�′(n) | n ∈ N, k ∈ {0, 1}m(n)
}

,

associated with an efficient key sampler K, is a generalized extractable one-way
function with respect to a polynomial-time relation RF if the following holds:

1. RF-Hardness: For any non-uniform family of polynomial-size circuits A =
{An}n and every n ∈ N,

Pr
[

(fk(x), x′) ∈ RF
k | k ← K(1n), x ← {0, 1}�(n), x′ ← An(k, fk(x))

]

≤ negl(n).

2. RF-Extractability: There exists a PPT extractor E such that for any non-
uniform family of polynomial size circuits A = {An}n and every n ∈ N,

Pr

⎡

⎣

∃x : y = fk(x),
(y, x′) /∈ RF

k

∣

∣

∣

∣

∣

∣

k ← K(1n)
y ← An(k),
x′ ← E(k,An)

⎤

⎦ ≤ negl(n).

Definition 9 (Privately Verifiable GEF). A GEF is (only) privately ver-
ifiable if the relation RF

k is not necessarily polynomial-time, but there exists a
polynomial-time tester M such that for any (k, x, x′):

M(k, x, x′) = 1 iff (fk(x), x′) ∈ RF
k .

On the Amount of Non-uniformity. The definition of [BCPR16] also con-
siders PPT adversaries with bounded non-uniform advice. In contrast, the above
definition is formulated for non-uniform circuit adversaries of arbitrary polyno-
mial size, which is equivalent to considering PPT adversaries with arbitrary
polynomial-size non-uniform advice. As discussed in the introduction, while
security against such adversaries is the gold standard in cryptography, such
extractable functions are shown in [BCPR16] to be impossible assuming indis-
tinguishability obfuscation.

The New Definition for Arbitrary Non-uniformity. The main relaxation
we introduce in order to overcome the impossibility is to only require that extrac-
tion holds with respect to simulated keys, indistinguishable from real keys. That
is, we allow the extractor to also simulate the key, for which it may use the code
of the adversary.

Having relaxed extraction, we also strengthen the hardness requirement—we
ask that one-wayness holds with respect to any key from a predefined set of valid
keys L(K), certifiable by an NP relation K, rather than only when the key is
chosen at random by the (real) key sampler. (As noted in the introduction, with-
out this strengthening, extraction relative to extractor-simulated keys becomes
trivial, assuming trapdoor one-way functions. Indeed, this stronger form of one-
wayness will be crucial for the application of three-message zero-knowledge.) We
shall require that the simulated keys are also valid and are generated by the
extractor along with an NP certificate for their validity.
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Definition 10 (GWEF). An efficiently computable family of functions

F =
{

fk : {0, 1}�(n) → {0, 1}�′(n) | n ∈ N, fk ∈ {0, 1}m(n)
}

,

associated with an efficient key sampler K and NP relation K, is a generalized
weakly extractable one-way function with respect to a polynomial-time relation
RF if the following holds:

1. Worst-case RF-Hardness: For any non-uniform family of polynomial-size
circuits A = {An}n, every n ∈ N, and every k ∈ L(K) ∩ {0, 1}m(n),

Pr
[

(fk(x), x′) ∈ RF | x ← {0, 1}�(n), x′ ← An(k, fk(x))
]

≤ negl(n).

2. Weak RF-Extractability: There exists a PPT extractor E such that for any
non-uniform family of polynomial-size circuits A = {An}n, we have:
(a) Extraction: For all n ∈ N,

Pr
[∃x : y = fk(x),

(y, x′) /∈ RF
k

∣

∣

∣

∣

(k, v, x′) ← E(1n, An)
y ← An(k)

]

≤ negl(n) .

(b) Key Indistinguishability:

{k | k ← K(1n)}n ≈c {k | (k, v, x′) ← E(1n, An)}n .

(c) Validity: For all n ∈ N,

Pr
k,v,x′←E(1n,An)

[(k, v) ∈ K] ≥ 1 − negl(n).

Remark 1 (On Validity of Keys). We note that we do not insist that random
keys sampled by K are valid. Indeed, requiring this is typically not useful in
settings where keys are not necessarily generated by trusted parties. We note,
however, that due to key-indistinguishability, it is possible to add this additional
requirement generically, by having the K(1n) sample using E(1n, Cn), for any
fixed circuit Cn.

3.1 Privately Verifiable GWEF

We now turn to define private-verifiable GWEF. Here we relax the definition
even further, allowing that simulated keys generated by the extractor are not
necessarily valid. Rather, we require that there exists another extractor ˜E that
does output valid keys, and such that the key k and extracted w sampled by ˜E
are indistinguishable from those sampled by E . However, ˜E , may not necessarily
succeed in producing w that satisfies the relation RF

k .
We present the definition, and then further discuss the intuition behind it.
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Definition 11 (Privately Verifiable GWEF). A GWEF is (only) privately
verifiable if the relation RF

k is not necessarily polynomial-time, but there exists
a polynomial-time tester M(k, x, w) for (fk(x), w) ∈ RF

k as in Definition 9.
In addition, Weak RF -Extractability is augmented.

Weak RF-Extractability: There exist PPT extractors E , ˜E such that for any
non-uniform family of polynomial size circuits A = {An}n, we have:

1. Extraction: For all n ∈ N,

Pr
[∃x : y = fk(x),

(y, w) /∈ RF
k

∣

∣

∣

∣

(k,w) ← E(1n, An)
y ← An(k)

]

≤ negl(n) .

2. Key Indistinguishability:

{k | k ← K(1n)}n ≈c {k | (k,w) ← E(1n, An)}n .

3. ˜E-Validity: For all n ∈ N,

Pr
[

(k, v) ∈ K | (k, v, w) ← ˜E(1n, An)
]

≥ 1 − negl(n).

4. Extractor Indistinguishability:

{k,w | (k,w) ← E(1n, An)}n ≈c

{

k,w | (k, v, w) ← ˜E(1n, An)
}

n
.

More on the Definition. In the setting of privately verifiable GWEF, where
testing a solution w for y requires private information (a preimage), there are
two knowledge-related questions: (1) the usual one: must the adversary know
a solution for the produced image y? but also (2) can it even recognize such a
solution? The definition we consider essentially says that if the adversary can
generate an image y, for which it can verify solutions, then it must also know a
solution. If it cannot even verify a solution, we only require that the extractor
generates w that the adversary cannot distinguish from a solution.

4 From Three-Message ZK to GWEF

In this section, we present our constructions of generalized weakly extractable
one-way functions from three-message zero-knowledge arguments.

4.1 Publicly Verifiable GWEF

In this section, we construct publicly verifiable three-message zero-knowledge
protocols from GWEF.

Theorem 4. Assuming publicly verifiable three-message zero-knowledge argu-
ment system for NP and non-interactive commitments, there exists a GWEF.
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Ingredients and Notation:

– H = (Y,N,RY ,RN ), a hard-on-average problem with solved instances and
co-instances. (Recall that such problems follow from non-interactive commit-
ments.)

– 〈P , V 〉, a ZK argument system for RY . We denote the protocol’s messages
by zk1, zk2, zk3.

We now define our GWEF F with associated key sampler K, key-relation K,
and hard relation RF . These are given in Fig. 1.

Security Analysis. We now show that the described function family F (and
associated K,K,RF ) satisfy the requirements of a GWEF.

Hardness. We show hardness based on the soundness of the argument system
and disjointness property of H.

Proposition 1. F satisfies RF -hardness.

Proof. Assume toward contradiction there exists a family of polynomial-size cir-
cuits A = {An}n and a noticeable function ε(n), such that for infinitely many
n, there exists a valid key k = (ϕ̄, zk1) ∈ L(K), such that

Pr

⎡

⎣(y, x′) ∈ RF
k

∣

∣

∣

∣

∣

∣

x ← {0, 1}n

y = fk(x)
x′ = A(k, y)

⎤

⎦ ≥ ε(n).

Fig. 1. GWEF
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That is, parsing y = zk2, x
′ = zk3, the transcript (zk1, zk2, zk3) is accepting with

respect to statement ϕ̄.
We construct a corresponding prover P ∗ = {P ∗

n}n (Fig. 2) that convinces the
verifier of accepting the statement ϕ̄ with probability ε(n)−negl(n). Since k ∈ K,
it holds that ϕ̄ ∈ L(RN ). By the disjointness property of H, this means that
ϕ̄ /∈ L(RY ) and thus, P ∗ will violate the soundness of the underlying argument
system.

Fig. 2. ZK malicious prover GWEF

Note that the view of An when emulated by P ∗
n is identical to its view when

breaking the hardness of RF . Thus P ∗
n convinces the verifier of accepting the

false statement with probability ε(n) − negl(n).

Weak Extractability. We now prove weak extractability, based on the zero-
knowledge and completeness properties of the argument system and indistin-
guishability of H.

Proposition 2. F satisfies weak extractability.

Proof. We start by defining the extractors E , which is described in Fig. 3.

Fig. 3. GWEF extractor

We prove the three properties—extraction, key-indistinguishability and
validity—required by weak extractability (Definition 10). From hereon, fix a fam-
ily of polynomial size circuits A = {An}n.
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Claim (Extraction). For all n ∈ N,

Pr
[∃x : y = fk(x),

(y, x′) /∈ RF
k

∣

∣

∣

∣

(k, x′) ← E(1n, An)
y ← An(k)

]

≤ negl(n) .

Proof. We start by recalling that whenever y is in the image of fk, it is the case
that y = zk2, such that zk2 is the response of the honest verifier to zk1, using
some randomness r, where zk1 is given by the key k = (ϕ, zk1).

Our goal is to show that except with negligible probability, the extractor pro-
duces zk3, such that the simulated transcript (zk1, zk2, zk3) is accepting with
respect to statement ϕ̄. We show that this follows from the zero-knowledge and
completeness of the underlying argument, and the hardness of the language H.

To see this, consider an alternative experiment where (ϕ, ω) are sampled
from the yes-instances sampler Y . From the ZK guarantee of the simulator, the
generated transcript is computationally indistinguishable from the honest inter-
action. Note that by the (perfect) completeness of the zero-knowledge argument,
whenever An(k) outputs y = zk2 in the image of fk, the interaction results in
an accepting transcript. By the zero-knowledge property, it follows that except
with negligible probability, the simulator also generates accepting transcripts
whenever An outputs y in the image of fk.

It is left to note that from the indistinguishability of the hard samplers Y,N ,
the simulated transcripts of the experiment are indistinguishable from the ones
used by the extractor. Therefore they are accepting with the same probability,
and thus E successfully extracts x′ such that (y, x′) ∈ RF

k , as required.

Claim (Key Indistinguishability).

{k | k ← K(1n)}n ≈c {k | (k, v, x′) ← E(1n, An)}n .

Proof. Recall that k = (ϕ, zk1) where the statement ϕ is sampled from Y (1n)
in the key sampler, and from N(1n) in the simulated case. Consider the hybrid
experiment where ϕ is sampled from Y (1n) in the simulated case. The message
zk1 is then sampled from S(V0, ϕ), where V0 is the honest verifier with hardwired
randomness 0n, by the key sampler, and from S(V ∗, ϕ), where V ∗ is the verifier
constructed from An, by the hybrid extractor. Using zero-knowledge guarantee,
and the fact that the honest prover’s first message zk1 is independent of the
verifier, we have:

{zk1 | (zk1, zk2, zk3) ← S(V0, ϕ)} ≈c {zk1 | (zk1, zk2, zk3) ← 〈P , V 0〉(ϕ)} ≡
{zk1 | (zk1, zk2, zk3) ← 〈P , V ∗〉(ϕ)} ≈c {zk1 | (zk1, zk2, zk3) ← S(V ∗, ϕ)} ,

where throughout ϕ ← Y (1n).
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From the hardness of the samplers, Y -instances are indistinguishable from
N - instances, and therefore the simulated transcripts are distinguishable. The
extractor indistinguishability follows.

Claim (Validity). For all n ∈ N:

Pr [(k, v) ∈ K | (k, v, x′) ← E(1n, An)] ≥ 1 − negl(n).

Recall that E always samples (ϕ̄, ω̄) ← N(1n) and sets k = (ϕ̄, zk1) and
v = ω̄. Thus (k, v) ∈ K by definition.

4.2 Privately Verifiable GWEF

In this section, we construct privately verifiable GWEF from privately verifiable
three-message zero knowledge protocols.

Theorem 5. Assuming privately verifiable three-message statistical zero-
knowledge argument system for NP and non-interactive commitments, there
exists a privately verifiable GWEF.

Adjustments from GWEF. In this construction we use privately verifiable
ZK, rather than publicly verifiable one. Therefore, unlike the previous construc-
tion, the verifier’s randomness is required in order to efficiently decide whether
the transcript is accepting or not. To overcome it, SZK is needed. This will guar-
antee that the simulated transcripts are indeed accepting (and are not simply
hard to distinguish). Note that the definition of the privately GWEF extractor
is relaxed as well, allowing two different extractors. One of which will guarantee
extraction, and will use the ZK simulator on true statements, and the other
will guarantee validity, and will use false statements. From the hardness of the
problem H, both extractors will be indistinguishable, as required.

Ingredients and Notation:

– H = (Y,N,RY ,RN ), a hard-on-average problem with solved instances and
co-instances. (Recall that such problems follow from non-interactive commit-
ments.)

– 〈P , V 〉, an SZK argument system for RY . We denote the protocol’s messages
by zk1, zk2, zk3.

– Com, a non-interactive string commitment scheme.

We now define our privately verifiable GWEF F with associated key sampler
K, key-relation K, hard relation RF , and corresponding tester M. These are
given in Fig. 4.
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Fig. 4. Privately verifiable GWEF

Security Analysis We now show that the described function family F (and
associated K,K,RF ,M) satisfy the requirements of a GWEF.

Hardness. We show hardness based on the soundness of the argument system,
disjointness property of H, and hiding of the commitment scheme.

Proposition 3. F satisfies RF -hardness.

Proof. Assume toward contradiction there exists a family of polynomial-size cir-
cuits A = {An}n and a noticeable function ε(n), such that for infinitely many
n, there exists a valid key k = (ϕ̄, zk1) ∈ L(K), such that

Pr

⎡

⎣(y, x′) ∈ RF
k

∣

∣

∣

∣

∣

∣

x ← {0, 1}n×n

y = fk(x)
x′ = A(k, y)

⎤

⎦ ≥ ε(n).

That is, parsing y = (zk2, c), x = (r, r′), x′ = zk3, the verifier V accepts
(zk1, zk2, zk3) with respect to statement ϕ̄ and verifier randomness r.

We construct a corresponding prover P ∗ = {P ∗
n}n (Fig. 5) that convinces the

verifier of accepting the statement ϕ̄ with probability ε(n)−negl(n). Since k ∈ K,
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it holds that ϕ̄ ∈ L(RN ). By the disjointness property of H, this means that
ϕ̄ /∈ L(RY ) and thus, P ∗ will violate the soundness of the underlying argument
system.

Fig. 5. ZK malicious prover GWEF

We then consider a hybrid experiment in which the prover P ∗
n obtains a

commitment c to the verifier’s randomness r, rather than simulating the com-
mitment c as a commitment to 0n on its own. By the hiding of the commitment,
the prover in this hybrids experiment convinces the verifier of accepting with the
same probability as in a real interaction up to a negligible difference negl(n).

It is left to note that the view of An when emulated by P ∗
n in this hybrid

experiment is identical to its view, when breaking the hardness of RF . Thus in
the hybrids experiment, the verifier is convinces with probability ε(n).

It follows that in a real interaction P ∗
n convinces the verifier of accepting the

false statement with probability ε(n) − negl(n).

Weak Extractability. We now prove weak extractability, based on the sta-
tistical zero-knowledge and completeness properties of the argument system,
indistinguishability of H, and binding of the commitment Com.

Proposition 4. F satisfies weak extractability.

Proof. We start by defining the extractors E , ˜E . These are described in Fig. 6.

We now prove the four properties—extraction, key-indistinguishability, ˜E-
validity, and extractor-indistinguishability—required by weak extractability
(Definition 11). From hereon, fix a family of polynomial size circuits A = {An}n.
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Fig. 6. GWEF extractors

Claim (Extraction). For all n ∈ N,

Pr
[∃x : y = fk(x),

(y, x′) /∈ RF
k

∣

∣

∣

∣

(k, x′) ← E(1n, An)
y ← An(k)

]

≤ negl(n) .

Proof. We start by recalling that whenever y is in the image of fk, it is the case
that y = (zk2, c), such that:

– zk2 is the response to zk1 of the honest verifier, using some randomness r,
where zk1 is given by k = (ϕ, zk1).

– c is a commitment to the verifier randomness r.

Our goal is to show that except with negligible probability, whenever this occurs,
the extractor produces zk3, such that the honest verifier accepts the simulated
(zk1, zk2, zk3) with respect to statement ϕ and randomness r. We show that this
follows from the statistical zero-knowledge and completeness of the underlying
argument.

To see this, consider an alternative experiment where zk1, zk3 are generated
by the honest zero knowledge prover P (ϕ). Note that by the (perfect) com-
pleteness of the zero-knowledge argument, in this experiment, whenever An(k),
where k = (ϕ, zk1), outputs y = (zk2, c) in the image of fk, the prover outputs
a message zk3 such that the corresponding transcript (zk1, zk2, zk3) is accepting
with respect to the corresponding verifier randomness r, which by the binding
of Com is uniquely defined by the commitment c.

By statistical zero knowledge, it follows that except with negligible proba-
bility negl(n), the simulator also generates accepting transcripts whenever An
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outputs y in the image of fk. In this case, E successfully extracts x′ such that
(y, x′) ∈ RF

k , as required.

Claim (Key Indistinguishability).

{k | k ← K(1n)}n ≈c {k | (k, x′) ← E(1n, An)}n .

Proof. Recall that k = (ϕ, zk1) where the statement ϕ is sampled from Y (1n) in
both distributions. The message zk1 is sampled from S(V0, ϕ), where V0 is the
honest verifier with hardwired randomness 0n, by K, and from S(V ∗, ϕ), where
V ∗ is the verifier constructed from An, by E .

Using zero-knowledge guarantee, and the fact that the honest prover’s first
message zk1 is independent of the verifier, we have:

{zk1 | (zk1, zk2, zk3) ← S(V0, ϕ)} ≈s {zk1 | (zk1, zk2, zk3) ← 〈P , V 0〉(ϕ)} ≡
{zk1 | (zk1, zk2, zk3) ← 〈P , V ∗〉(ϕ)} ≈s {zk1 | (zk1, zk2, zk3) ← S(V ∗, ϕ)} ,

where throughout ϕ ← Y (1n).

Claim (˜E-Validity). For all n ∈ N:

Pr
[

(k, v) ∈ K | k, v, x′ ← ˜E(1n, An)
]

≥ 1 − negl(n).

Proof Recall that ˜E always samples (ϕ̄, ω̄) ← N(1n) and sets k = (ϕ̄, zk1) and
v = ω̄. Thus (k, v) ∈ K by definition with all but negligible probability.

Claim (Extractor Indistinguishability)

{k, x′ | (k, x′) ← E(1n, An)}n ≈c

{

k, x′ | (k, v, x′) ← ˜E(1n, An)
}

n
.

Proof Observe that the extractors E and ˜E generate (k, x′) efficiently from ϕ
sampled using Y (1n) and ϕ̄ sampled using N(1n), respectively. Thus, extractor
indistinguishability follows from the indistinguishability of Y -instances from N -
instances.

5 From GWEF to Three-Message ZK

In this section, we show that GWEF (with additional standard assumptions) are
sufficient for constructing three-message zero-knowledge arguments.

5.1 Publicly Verifiable ZK

In this section, we construct publicly verifiable three-message zero-knowledge
arguments from GWEFs. The construction itself is mostly similar to previous
constructions (e.g., [CD08,BCC+14]), but requires a new analysis, following the
weaker extractability guarantee.



Weakly Extractable One-Way Functions 619

Theorem 6. Assume there exist GWEF, non-interactive commitments, and
two-message witness indistinguishable arguments. Then there exists a publicly
verifiable three-message ZK argument.

Ingredients and Notation:

– F , a GWEF with associated key sampler K, valid key relation K, and a hard
relation RF .

– Com, a non-interactive string commitment scheme.
– 〈(offP, onP ), (offV, onV )〉 an offline-online WIAOK system for NP with two

offline messages and a single online message. (Recall that such systems follow
from non-interactive commitments. We denote its corresponding messages by
wi1,wi2,wi3)

– 〈onP ′, (offV ′, onV ′)〉 an offline-online WI system for NP with a single offline
(verifier) message and a single online (prover) message. We denote its corre-
sponding messages by wi′1,wi′2

The protocol is described in Fig. 7.

Security Analysis. The security analysis is omitted from this extended abstract
and can be found in the full version of the paper.

5.2 Privately Verifiable ZK

In this section, we construct privately verifiable three-message zero-knowledge
arguments from privately verifiable GWEFs. The construction is similar to that
of [BCPR16], but requires a new analysis, following the weaker extractability
guarantee.

Theorem 7. Assume there exist privately verifiable GWEF and secure function
evaluation. Then there exists a privately verifiable three-message ZK argument.

Adjustments from Public Verification. There are two main differences
between this construction and the publicly verifiable one. First, as member-
ship in R can no longer be tested efficiently given only (y, x′), it will be done
homomorphically over the verifier’s encrypted input. Second, as membership is
already tested homomorphically, the validity of the image can be tested in the
same circuit, thus sparing the two-message WI used in the public version.

Ingredients and Notation:

– F , a privately verifiable GWEF with associated a key sampler K, valid key
relation K, hard relation RF and an efficient tester M. We denote by Mk,y,x′

the augmented RF -tester that on input x returns 1 if either y �= fk(x) or
M(k, x, x′) = 1.

– (Enc,Dec,Eval), a secure function evaluation scheme.
– 〈(offP, onP ), (offV, onV )〉 an offline-online WIAOK system for NP with two

offline messages and a single online message. (Recall that such systems follow
from non-interactive commitments, which in turn follow from secure function
evaluation [LS19]).

The protocol is described in Fig. 8.
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Fig. 7. Privately verifiable three-message ZK protocol for R ∈ NP
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Fig. 8. Privately verifiable three-message ZK protocol for R ∈ NP

Security Analysis. The completeness of the protocol follows readily from the
completeness and correctness of the underlying primitives. We focus on proving
that the protocols is an argument of knowledge and that it is zero knowledge.

Proposition 5 (Argument of Knowledge). The protocol is an argument of
knowledge (and in particular, sound). Specifically, there exists a PPT extractor
ZK.E such that for any non-uniform family of polynomial-size circuits P ∗ =
{P ∗

n}n∈N
, any noticeable function ε(n), any n ∈ N, and any ϕ ∈ {0, 1}n:

if Pr
[

Acc out← 〈P ∗
n, V 〉(ϕ)

]

= ε(n)

then

Pr
[

ω ← ZK.EP ∗
n (11/ε(n), ϕ)

ω ∈ R(ϕ)

]

≥ ε(n) − negl(n) .

Proof. We define the extractor ZK.E in Fig. 9.
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Fig. 9. Argument of knowledge extractor for the three-message ZK protocol

We now prove the validity of the extractor. Let P ∗ = {P ∗
n}n∈N

be a non-
uniform family of polynomial-size circuits, and assume the for every n, there
exists ϕ such that P ∗

n convinces the verifier V of accepting ϕ with probability
ε(n). We prove that ZK.EP ∗

n (1ε, ϕ) outputs ω ∈ R(ϕ) with probability at least
ε(n) − negl(n).

First note that each execution of ZK.E perfectly emulates an interaction
〈P ∗

n , V 〉(ϕ).

Claim. Let ̂ct and Ψ be the evaluated cipher-text and statement induced by the
execution of ZK.E . Then, with probability at least ε(n) − negl(n), the extracted
witness ω satisfies Ψ and in addition Decsk(̂ct) = 1.

Proof. Since ZK.E perfectly emulates an interaction 〈P ∗
n , V 〉(ϕ), the verifier V

accepts in the induced interaction with probability ε(n). Whenever this occurs:

– The WI verifier (offV, onV ) accepts.
– It holds that Decsk(̂ct) = 1.

Noting that the prover (offP ∗
n , onP ∗

n) constructed by ZK.E has a deterministic
first message, it follows by the adaptive argument of knowledge guarantee of
the WI system that except with negligible probability negl(n), whenever the WI
verifier accepts, WI.E succeeds in extracting a witness for Ψ . The claim follows.

To complete the proof of Proposition 5, and conclude that the extracted ω is a
witness for Ψ1(ϕ) = (ϕ ∈ L), we prove:

Claim. Except with negligible probability negl(n), either the extracted witness
ω does not satisfy Ψ2(k, y, ct, ̂ct) or Decsk(̂ct) �= 1.
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Proof. Assume toward contradiction that for infinitely many n, the extracted
witness ω satisfies Ψ2 and Decsk(̂ct) = 1 with probability δ(n). That is, ω = (v, x′)
such that:

– (k, v) ∈ K, the key is valid.
– ̂ct ∈ Eval(ct,Mk,y,x′), the cipher-text ̂ct is a homomorphic evaluation of the

augmented RF -tester Mk,y,x′ .

The second condition implies that M(k, x, x′) = 1, and accordingly (y, x′) ∈ RF
k .

Indeed, recalling that (ct, sk) ∈ Enc(x) and that Decsk(̂ct) = 1, this follows from
the correctness of the SFE scheme.

We now construct a polynomial-size adversary A = {An}n that breaks the
RF -hardness of F with probability δ(n) − negl(n), relative to the valid key k
(deterministically defined by the first prover message) (Fig. 10).

Fig. 10. Adversary for the RF hardness

Claim. For infinitely many n,

Pr
[

x′ ← An(fk(x))
(fk(x), x′) ∈ RF

k

∣

∣

∣

∣

x ← {0, 1}�(n)

]

≥ δ(n) − negl(n).

Proof. To see this we first consider an alternative experiment, where An also
obtains an SFE encryption ct ← Enc(x) of x and uses it in the emulation of
ZK.E , instead of using ˜ct. We argue that in this alternative experiment, An

outputs x′ such that (fk(x), x′) ∈ RF
k with the same probability as in the original

experiment up to a negligible difference negl(n).
Indeed, this follows directly from the semantic security of SFE encryptions.

Any noticeable difference between the experiments directly leads to a distin-
guisher between encryptions of 0�(n) and x. (Note that given x, we can efficiently
test the condition (fk(x), x′) ∈ RF

k , using M(fk(x), x, x′)).
It is left to observe that in this alternative experiment the extractor ZK.E

is perfectly emulated, and thus by our assumption on ZK.E , An it outputs the
required x′ with probability at least δ(n) − negl(n).
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This complete the proof of Proposition 5.

Proposition 6 (Zero Knowledge). The protocol 〈P , V 〉 is zero knowledge.

Proof. We start by describing the simulator S in Fig. 11. In what follows, let
E , ˜E be the GWEF extractors guaranteed by Definition 11.

Fig. 11. Simulator for the three-message ZK protocol

We now prove the validity of the simulator S, using a sequence of hybrids.

H1: The transcript (zk1, zk2, zk3) is generated by S.

H2: Instead of generating wi3, using the witness (v, x′) for Ψ2, it is generated
using a witness ω for Ψ1 = (ϕ ∈ L). We note that by the ˜E-validity property of
the GWEF, v ∈ K(k) with overwhelming probability. Thus, like ω, (v, x′) is also
a valid witness for the statement Ψ . By the adaptive witness-indistinguishability
of the WI system, this hybrid is computationally indistinguishable from H1.

H3: Instead of generating k, x′ using ˜E , we generate it using E . By the extractor-
indistinguishability, this hybrid is computationally indistinguishable from H2.

H4: Instead of generating ̂ct ← Eval(ct,Mk,y,x′), we generate ̂ct ← Eval(ct,1).
By the extraction guarantee of E we have that the probability that y is in the
image of fk, but the extractor E fails to extract x′ ∈ RF

k (y), is negligible. We
observe that if it is the case that y is in the image and x′ ∈ RF

k (y), then by
definition Mk,y,x′ ≡ 1; indeed, for any preimage x of y, it returns 1, since
M(k, x, x′) = 1, and for any x that is not a preimage Mk,y,x′ ≡ 1 returns
1. Furthermore, if y is not in the image then no x is a preimage and again
Mk,y,x′ ≡ 1. Since the two circuits are of equal size and compute the same
function, the indistinguishability of the two hybrids follows by circuit privacy.
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H5: Here the transcript is generated as in a real interaction between P and V ∗.
The only difference between this hybrids and the previous ones is that in this
hybrid the GWEF key fk is sampled from K(1n) instead of by E . Indistinguisha-
bility of the hybrids follows by the key-indistinguishability property.
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Abstract. Witness hiding proofs require that the verifier cannot find
a witness after seeing a proof. The exact round complexity needed for
witness hiding proofs has so far remained an open question. In this work,
we provide compelling evidence that witness hiding proofs are achievable
non-interactively for wide classes of languages. We use non-interactive
witness indistinguishable proofs as the basis for all of our protocols. We
give four schemes in different settings under different assumptions:

– A universal non-interactive proof that is witness hiding as long as
any proof system, possibly an inefficient and/or non-uniform scheme,
is witness hiding, has a known bound on verifier runtime, and has
short proofs of soundness.

– A non-uniform non-interactive protocol justified under a worst-case
complexity assumption that is witness hiding and efficient, but may
not have short proofs of soundness.

– A new security analysis of the two-message argument of Pass [Crypto
2003], showing witness hiding for any non-uniformly hard distribu-
tion. We propose a heuristic approach to removing the first message,
yielding a non-interactive argument.

– A witness hiding non-interactive proof system for languages with
unique witnesses, assuming the non-existence of a weak form of wit-
ness encryption for any language in NP ∩ coNP.

Keywords: Witness hiding · Non-interactive proofs

1 Introduction

Zero knowledge proofs [23] prove that an NP statement is true without reveal-
ing anything except the truthfulness of the statement. Such proofs, however,
must depart from the usual mathematical notion of a proof by allowing multiple
rounds of interaction between the prover and verifier. In fact, such proofs require
at least three back-and-forth messages [5,21] between the prover and verifier—
and likely more if restricted to black-box constructions [25,29]—without an addi-
tional resource such as a common reference string or a random oracle.

Weaker Security Properties. In order to achieve fewer rounds, and in particular to
achieve the usual mathematical notion of a non-interactive proof, weaker security
guarantees are necessary. Many such notions have been proposed [5–7,14,15,33].
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R. Pass and K. Pietrzak (Eds.): TCC 2020, LNCS 12550, pp. 627–656, 2020.
https://doi.org/10.1007/978-3-030-64375-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64375-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-64375-1_22


628 B. Kuykendall and M. Zhandry

Perhaps the most prominent example is witness indistinguishability, which guar-
antees that the proofs generated using any two witnesses are computationally
indistinguishable. Non-interactive witness indistinguishable (NIWI) proofs are
known from standard assumptions such as bilinear maps.

However, for general languages, it is unclear what guarantee is provided by
witness indistinguishability. If the particular instance has a unique witness, then
witness indistinguishability is completely meaningless, and a NIWI proof could
simply be the witness itself. Even in settings with multiple witnesses, it is unclear
in general what the proof recipient may learn from the proof. For example,
perhaps some witness can be extracted from such a proof, even if the prover’s
own witness remains hidden.

For these reasons, NIWI proofs are typically applied to specially crafted
languages where witness indistinguishability yields stronger security properties.
As a result, NIWIs have been demonstrated to be useful as a building block
for higher-level cryptosystems. Yet, they remain of limited use for any given
language1.

This work will focus on a different relaxation of zero knowledge called witness
hiding [16]. Witness hiding guarantees that the verifier cannot learn any witness
for the NP statement, though they may potentially reveal more than just the
truthfulness of the statement. Unlike witness indistinguishability, witness hiding
provides a clear, intuitive guarantee for arbitrary statements, including the case
of unique witnesses.

Though the security guarantees of witness hiding proofs are apparently much
weaker than zero knowledge, it has been surprisingly difficult to actually con-
struct witness hiding proofs in fewer than three rounds. In fact, only recently have
constructions for two-message witness hiding for all of NP been given [9,13,28].
This state of affairs may be at least partially explained by black-box barriers to
witness hiding in few rounds [27]. On the other hand, certain restricted settings
are known to have non-interactive witness hiding proofs, such as NIWI proofs
in the special case when instances have two “independent” witnesses [6,16,26],
or for particular protocols [8,12].

Given the difficulty of even achieving two-message witness hiding and the
limited positive results for the non-interactive setting, the central question in
this paper is:

Is non-interactive witness hiding possible,
and if so, what is needed to construct it?

1 The situation is similar to that of obfuscation, which historically been used to pro-
tect intellectual property in software. Here, the ideal notion of Virtual Black Box
obfuscation is impossible in general [4], so we consider an indistinguishability notion
instead. This weaker notion sees use as a cryptographic building block, but has
limited to no meaning for obfuscating general programs, and as such provides no
guarantee for the original application to protecting intellectual property.
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1.1 Results

In this work, we give a number of positive results for witness hiding in one
or two messages. Our protocols work in different settings and rely on different
assumptions. Taken together, however, we believe they strongly suggest that
non-interactive witness hiding should be possible for all of NP.

In Sect. 3 we review the two-round proof system of [32] and provide a new
proof of soundess. While it was already known that the protocol is witness hiding
for quasipolynomially hard distributions, we analyze distributions with standard
albeit non-uniform hardness. To achieve this, we weaken the model on inter-
action, considering the delayed input setting where the verifier only gets the
instance x after sending its first message.

Theorem 1. Assume quasipolynomially hard one-way-functions and perfectly
sound NIWIs for NP. Then for any distribution of instances for which it is hard
for efficient non-uniform adversaries to find witnesses, the argument system of
[32] is witness hiding argument in the delayed input model.

In Sect. 4 we build a non-uniform scheme, meaning that for each distribution
and some choice of advice shared by the prover and verifier, the proof system is
witness hiding. The result uses super-polynomially secure primitives and relies on
a new complexity assumption that can be considered as a quantitative strength-
ening of MA �⊆ coNP. The choice of parameters is given in the body of the
paper.

Theorem 2. Assume some language in coNP, for all but finitely many input
lengths, lacks an MA-type proof system where the verifier is allowed some specified
super-polynomial runtime and witness size. Assume NIWIs for NP with some
specified super-polynomial security. Then for any distribution of instances for
which it is super-polynomially hard for efficient adversaries to find witnesses,
there exists a choice of advice such that our construction is witness hiding.

In Sect. 5 we build an explicit universal NIWH proof system parameterized
by a runtime. If any NIWH scheme exists with a verifier that runs within the
time bound and satisfies a provable soundness condition we define in the body,
then the universal scheme will be witness hiding. Even if the secure scheme
has an inefficient prover, the universal scheme will still be efficient. Even if the
secure scheme is non-uniform, the universal scheme will still be uniform; although
provable soundness must be defined differently in this setting, requiring short
proofs of soundness for each input length. We argue that this proof can be
extended to arbitrary falsifiable security properties other than witness hiding.
In this sense the construction is actually the “best possible” non-interactive proof.

Theorem 3. Take any distribution D. Assume there exists a non-interactive
proof system P, V with an unbounded prover but verifier runtime s. Assume
soundness of V is provable in some fixed logical proof system. If P, V is witness
hiding for D, then an explicit universal construction (independent of P, V and
D but depending on s) is witness hiding as well.



630 B. Kuykendall and M. Zhandry

In Sect. 6 we present a non-interactive proof system for any language with
unique witnesses. As part of the construction, a distribution E over instances
of an NP ∩ coNP problem is used. Security is as follows: a successful adver-
sary against witness hiding yields a weak form of witness encryption where the
instances are drawn from E. This alone is slightly hard to interpret as a posi-
tive result. But by combining with the best-possible proof system above, we can
avoid a concrete choice of E.

Theorem 4. Assume some language T ∈ NP ∩ coNP lacks a witness encryption
scheme with average case correctness relative to some ensemble E for all input
lengths large enough. Then the best possible proof system above, with a time
parameter calculated in the proof, is witness hiding for any distribution over
instances with unique witnesses which are hard for efficient adversaries to find.

1.2 Technical Details

To begin, we recall how non-interactive witness hiding proofs are used to con-
struct non-interactive zero knowledge (and hence witness hiding) proofs in the
common reference string model. The common reference string will consist of a
commitment to 0: CRS = Comm(0; r), where r are the random coins. To prove
an NP statement x using witness w, compute a NIWI proof π of the statement

x′ = x ∨ (∃r : CRS = Comm(1; r)).

Assuming the commitment Comm is perfectly binding, x′ is equivalent to x
since the second clause is false. Therefore, a proof of x′ also proves x. To show
zero knowledge, one switches to an experiment where CRS = Comm(1; r), which
is undetectable by the hiding property of the commitment. At this point, x′ can
be proven with witness r, and witness indistinguishability guarantees this proof
is indistinguishable from the honest one. But the new proof is independent of
the witness for x.

Witness Hiding Arguments in One and Two Messages (Sect. 3). Building on this
idea, we consider the following proof system which eschews the common reference
string. Let y be any false instance of an NP language. To prove a statement x,
compute a NIWI proof of the statement

x′ = x ∨ y

As before, this proof is sound because y is false. But what about witness hiding?
In the example above using commitments, we switch to a setting where we can
generate proofs without knowing a witness for x. In the case now, this would
seem to require switching y to be true. But if y is chosen by a single party, this
could compromise security. Indeed, a malicious prover could generate y to be
true and therefore use the satisfying assignment to generate an invalid proof.
Meanwhile, a malicious verifier could ensure that y is always false, preventing
us from switching to a true y to prove witness hiding. Addressing these two
concerns simultaneously is the goal of each of our constructions.
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The work of Pass in [32] presents a solution in two rounds. First, the verifier
chooses a true statement y, specifically in the form

yb = ∃r : f(r) = b

where f is a one-way function. Then the prover sends a NIWI2 of x ∨ yb along
with a perfectly binding commitment to a witness.

The proofs of soundness and witness hiding proceed through complexity lever-
aging : the reductions will inefficiently invert the one-way function and commit-
ment. To prove witness hiding, we simulate the proof by brute forcing r = f−1(b)
then run the witness hiding adversary on the simulated proof.3 To prove sound-
ness, we open the commitment by brute force, in turn breaking the one-way
function. In order for these attacks to yield contradictions, we need quasipolyno-
mial security guarantees: in particular, witness hiding is only guaranteed when
finding a witness is hard for quasipolynomial time adversaries.

We present a novel security analysis of the Pass construction that avoids com-
plexity leveraging by using non-uniformity instead. Unfortunately, this analysis
only works in the delayed input model where the verifier does not learn the
instance x until after their message is sent.

Previous works also achieve witness hiding proof in two messages. The work
of [28] is also only secure in the delayed input model, so their result is comparable.
The proof system of [9] is secure in the usual communication model; however, it
require strong primitives such as fully homomorphic encryption and compute-
and-compare obfuscation. The protocol presented here also allows the verifier’s
first message to be reused for an arbitrary number of proofs and for public
verification of protocol transcripts, unlike protocols in other works.

We observe that under slightly stronger conditions, we can make the verifier
use public coins. Suppose that f is in fact a one-way permutation; then the
verifier can sample b directly from the image. This will yield the same distribution
of first messages. Since r is not needed for verification, the protocol can still be
executed. Witness hiding and soundness follow from the exact same analysis as
before. Thus we get a public coin two-message witness hiding protocol under
general and plausible assumptions.

We next modify the proof to obtain a heuristic non-interactive protocol. We
simply have the public coin verifier’s first message be deterministically generated
from the security parameter, say setting b = H(1λ) for some hash function H.
Witness hiding still follows immediately from the analysis above. By fixing the
first message, we also eliminate the delayed-input limitation of the two-round
protocol. Further, computational soundness can be easily justified in the random
oracle model for H.

A random oracle model proof of soundness requires some discussion, as it
is well known that non-interactive zero knowledge exists in the random oracle
2 An appropriate two-message witness hiding proof or “zap” suffices for their work; we

stick with the NIWI for simplicity of explication.
3 This proof actually yields a stronger property called “quasipolynomial simulatabil-

ity”. But we are only interested in witness hiding here.
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model. However, we note that such a zero knowledge system inherently requires
the simulator to program random oracle outputs. In particular, zero knowledge
cannot hold in the standard model without assuming additional resources like a
common reference string. As the simulator is needed to prove witness hiding, this
means that proving witness hiding of such a protocol requires the full power of
programming the random oracle. In contrast, in our scheme witness hiding holds
in the standard model without any reliance on the random oracle. Instead, only
soundness requires the random oracle. Moreover, soundness requires only for r to
be unpredictable. But this follows simply from the hardness of inverting f and the
fact that the random oracle output is truly random. Thus, we obtain soundness
in a very mild version of the random oracle model. We note that while Lindell [31]
constructed NIZKs where zero knowledge similarly does not require the random
oracle, the construction also (inherently) requires a common reference string to
achieve zero knowledge hence witness hiding. Our non-interactive protocol does
not require a common reference string.

Beyond idealized models, the computational soundness of this scheme poses a
significant barrier to removing interaction. Any concrete choice of a hash function
that outputs true instances yields a non-uniform adversary against soundness.
By taking a witness to y = H(1λ) as advice, the adversary can generate a proof
of x ∨ y for any x.4 The same barrier applies to the derandomization techniques
that remove interaction from ZAPs; for instance, following [6] and taking y as
the output of a hitting set generator would require statistical soundness.

Lacking an explicit means to choose a value of y a priori, we turn to the non-
uniform setting. We keep the basic scheme the same, but simply let y ∈ unsat be
an advice string for both prover and verifier, guaranteeing soundness. It remains
to prove witness hiding.

On Non-uniform Witness Hiding (Sect. 4). We move to the non-uniform setting,
where both parties have access to a non-uniform advice string. We will set y to
be this advice string. We will also allow adversaries to be non-uniform. We now
ask: is there some y such that the protocol above is witness hiding? Suppose
to the contrary that the protocol is not witness hiding for any false y. Then
we observe that an adversarial verifier V ∗ that takes a proof π and extracts a
witness for x itself serves as a witness to the fact that y is false. Indeed, if y
were true, then no such V ∗ could exist by analogous arguments to above.

So if the protocol fails to be witness hiding for every false y, then we have
witnesses for a coNP-complete language. This suggests that failure to be witness
hiding for any y implies coNP ⊆ NP, a widely unexpected outcome. Unfortu-
nately, the verifier sketched above fails to be an NP verifier in three ways:

– It is probabilistic, running the randomized adversary on random inputs.
– It may not succeed for all input sizes, as breaking security only requires

successful adversaries for infinitely many input sizes.
4 The same barrier does not apply to soundness against uniform adversaries. In fact, a

closely related construction (described in [3], but analysed in a different setting) can
be used to achieve witness hiding proofs sound against uniform adversaries assuming
keyless collision-resistant hash functions.
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– It requires super-polynomial time and witness size, as adversaries can have
arbitrary polynomial size and run in arbitrary polynomial time.

Nonetheless, we can strengthen our assumptions to subsume these differences.
Define the complexity class ioMA(t), the analog of MA where the verifier is now
allowed to run in time t(n) and is only correct for infinitely many n. We formally
describe the verifier sketched above and conclude that either coNP ⊆ ioMA(t)
for any super-polynomial t—a surprising complexity result— or else for every n
there exists some false y such that the protocol above is witness hiding.

Unfortunately, we cannot use this protocol in a uniform setting as the y
needed to achieve witness hiding may be hard to compute. Furthermore, the
choice of y is not universal; it depends on the underlying distribution D from
which the statements are drawn. Thus the construction is not a single wit-
ness hiding proof system for NP, but rather a family of proof systems, one for
each hard distribution. Non-uniform protocols should be viewed as existential
results: unlike common reference string protocols, the non-uniform model does
not require the joint input to be sampleable.

Nevertheless, this result at least suggests a fundamental difficulty of rul-
ing out non-interactive witness hiding protocols. Indeed, ruling out such proto-
cols in the non-uniform setting would yield a surprising complexity implication,
coming close to showing that the polynomial hierarchy collapses. Given that
non-interactive witness hiding cannot be ruled out, we believe our result is also
strongly suggestive that it should be possible to actually find a non-interactive
witness hiding proof system, under plausible computational assumptions. Find-
ing an explicit procedure for generating appropriate y clearly would suffice to
make this scheme uniform; however, it is unclear how to do so.

Best-Possible Proofs (Sect. 5). As discussed above, our non-uniform construction
offers compelling evidence for the existence of non-interactive witness hiding
proofs, but gives little indication of how to go about constructing them. Here,
we partially close this gap, showing that an inexplicit construction satisfying the
right properties is sufficient to build an explicit witness hiding protocol.

More concretely, we seek a universal non-interactive proof system, which
guarantees witness hiding as long as some witness hiding protocol exists. Our
inspiration will be the notion of best-possible obfuscation, by Goldwasser and
Rothblum [24]. There, they showed that the indistinguishability notion of obfus-
cation is actually as good of an obfuscator as any other notion of obfuscation,
subject to certain minutia regarding program size.

Consider the following first attempt. On input a statement x, a proof will be
a NIWI proof of the statement

x′ := ∃V, π′ : V (x, π′)

Here, V is a verifier for an arbitrary sound proof system and π′ is a proof of
x relative to V . The intuition behind witness hiding is that if a witness hiding
non-interactive proof system (P, V ) exists, then V together with π′ = P (x,w) is
a witness for x′. Such a witness would of course be witness hiding by assumption
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and can be used to generate the NIWI proof of x′. However, we do not actually
need to know (P, V ) in order to generate the proof: we can use any sound proof
system to generate the NIWI proof of x′. For example, take (I, VL) to be the
standard NP proof system: I simply outputs the witness, and VL checks the NP
relation. Of course, this proof system does not hide the witness, but once we
use it to generate the NIWI proof of x′, witness indistinguishability kicks in and
implies that the resulting proof is “as good” as if it had been generated using
(P, V ). Thus, we obtain witness hiding regardless of the starting proof system.

While the above does indeed demonstrate witness hiding, the protocol is not
sound. The problem is that the statement x′ does not actually guarantee that V
is the verifier of a sound proof system (recall that although soundness is often
described as a property of a proof system, it is actually a property of the verifier
alone). A cheating prover could simply pick V to accept all inputs; then the
proof verifies for any choice of x′.

We need to augment the proof system to check that V is sound. For an
arbitrary Turing machine V , there is no way to actually this: the problem is
undecidable. Even restricting to circuits, making this determination efficiently
would imply a collapse of the polynomial hierarchy. Instead, we require that V
is accompanied by a proof attesting to its soundness. In more detail, consider a
sound logical system S that is powerful enough to reason about programs and
soundness. A witness (z, V, π) for x′ then consists of a witness z for x under V ,
the code of the verifier V , and an S-proof π that V is sound. In order for this
to be an NP relation, we need a polynomial bound on the length of the witness
(z, V, π). In particular, we need a bound s on the runtime of V .

Our resulting proof system is sound, assuming the soundness of S. It will
also be witness hiding, as long as some witness hiding proof system exists whose
verifier runs in time at most s and whose soundness can be proving using S.
The witness hiding proof system can even have inefficient provers, and our proof
system will inherit the witness hiding security and still be efficient. Thus, to
demonstrate witness hiding of our protocol, one only has to reason about the
existence of witness hiding proofs.

The discussion above extends to the case where V is a circuit instead of a
Turing machine; this allows us to base witness hiding off of the existence of a
non-uniform scheme. But in the non-uniform case, the proof of soundness may
be different for each input length. Thus the need for short proofs of soundness
becomes a significant obstacle. However, the best-possible proof system remains
uniform, even if a non-uniform scheme is used to prove security.

Given this extension to non-uniform schemes, one may hope to combine our
best-possible proof system with our non-uniform proof system from the previous
section, thereby obtaining a concrete witness hiding proof. Unfortunately, this
appears challenging. In order to use our best-possible proof system, we require
a proof of soundness in S. But such a proof would demonstrate that the advice
string y in the non-uniform proof system is a false statement. Such a proof would
be at odds with our justification for the soundness of the protocol. Recall that
our soundness proof assumes that a carefully constructed MA-type proof system
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Pnu rejects y. But a proof of soundness implies y has a short proof of satisfiability
in S, which in turn defines an NP proof system PS . Thus to find a choice of advice
that suffices for the non-uniform protocol and demonstrates provable soundness,
we would need to demonstrate a sequence of y that are rejected by Pnu but
accepted by PS . It is unclear if such instances exist.

Non-interactive Witness Hiding vs. Witness Encryption (Sect. 6). To alleviate
this difficulty, our next idea is to explicitly choose y with short proofs of unsat-
isfiability. Concretely, choose y from a distribution over non-instances of some
language T in NP ∩ coNP. Making this change means we can no longer rely on
the assumption coNP � MA to prove completeness; but an interesting connection
to witness encryption will yield another route to proving security.

We will have the prover sample y from some distribution E over false
instances and prove the statement x′ = x ∨ y as before. Since a malicious prover
could have chosen a true statement y, this protocol so far is not sound. However,
we augment the proof π by also including the witness z for the falseness of y.

Now certainly the protocol is sound, since z means that x′ is equivalent to
x. But why might this protocol be witness hiding? After all, by including z in
the proof, we seem to have again broken any arguments that work by switching
y to be true. It appears we are back at square one.

First, we limit ourselves to distributions D over x with unique witnesses.5
Now suppose we actually did not include z. Then we can easily prove witness
hiding by switching y to be a true instance and using the witness for y to generate
the proof. This implies that given π alone it is hard to find the witness for x.

Now suppose that the overall proof is not witness hiding. This means given
π alone, the witness w for x is hidden, but given both π and z it is possible to
recover w. If so, we can turn the protocol plus witness hiding adversary into a
type of witness encryption scheme for statements ¬y. Recall that witness encryp-
tion [19] allows for encrypting messages to NP statements; any witness for the
statement can recover the message, but messages encrypted to false statements
are computationally hidden.

Consider the following first attempt at a witness “key encapsulation” scheme:
to encrypt to an instance ¬y, sample a random (x,w) from D. Then construct
the proof π that x ∨ y using the witness w for x. The ciphertext is π and the
encapsulated key is w. If ¬y is false (meaning y is true), then we know that π
computationally hides w by the NIWI. Thus we get witness encryption security.
On the other hand, if ¬y is true and one knows a witness z for ¬y, one can run
the witness hiding adversary to recover w. Uniqueness of w guarantees that the
recovered w is the actual encapsulated key. Of course, w is not pseudorandom
as one can verify that w is a valid witness. Instead, we will extract a Goldreich-
Levin hardcore bit from w; this hardcore bit will then be used to mask the
message bit.

5 Recall that for languages with multiple independent witnesses, a NIWI proof is
already witness hiding, so the unique witness setting covers the other end of the
spectrum; we will leave it as an interesting open problem extending our results
below to “in between” languages with multiple dependent witnesses.
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Now, the above scheme fails to satisfy the definition of witness encryption
for two reasons:

– The witness hiding adversary might work with only non-negligible probability.
This yields a decryption algorithm that succeeds with only non-negligible
probability.

– Correctness is only guaranteed with respect to witnesses sampled according
to E, not truly arbitrary witnesses.

Nevertheless, such a witness encryption scheme has interesting consequences.
If, for distribution D, there is no language T and distribution E that make
our protocol witness hiding, then we get such a witness encryption scheme for
every language and distribution over instances in NP ∩ coNP. This would be
enough to build public key encryption, assuming any hard-on-average problem
in NP ∩ coNP. By hard-on-average, we mean that there is a second distribution
F over true instances (and valid witnesses) such that y sampled from E or F are
computationally indistinguishable. This gives public key encryption from tools
that are otherwise not known to imply public key encryption, namely NIWIs
and any hard-on-average problem in NP ∩ coNP. It is also enough to build
identity-based encryption from any unique signature scheme, following [19].

Another interesting consequence of our connection to witness encryption is
the following: general witness encryption is currently known only from very
strong and new mathematical tools [2,19]. While many in the community believe
witness encryption exists, the case is far from settled. We do not take a position
either way, but consider the plausible scenario that there is some language in
NP ∩ coNP and some distribution for which no witness encryption scheme exists
(in the sense obtained above).6

Under this assumed non-existence of witness encryption, for appropriate
choice of length parameters we immediately see that our best-possible proof
system is a non-interactive witness hiding proof system. In fact, it is possible to
use any choice of polynomial-length length parameters by re-scaling the security
parameters appropriately. Thus we obtain a fully concrete scheme with provable
security under plausible assumptions.

1.3 Discussion

We observe that our protocols are superficially related to the “proofs of igno-
rance” approach of Kalai and Deshpande [13]. In their work, they prove x by
6 It is worth noting that many problems in NP ∩ coNP do have witness encryption

schemes based on their own hardness: for example, the quadratic residuosity problem
gives rise to the Goldwasser-Micali pubic key encryption scheme [22], which can be
adapted to a witness encryption scheme for the language of quadratic non-residues.
However, hardness in NP ∩ coNP is not known to generically imply witness encryp-
tion or even public key encryption. For example, the presumed hard problems of
deciding who wins in a stochastic game [11] or determining whether a given knot is
the unknot [30] are both in NP ∩ coNP, but neither is known to yield public key
encryption.
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proving x∨y and supplying a “proof of ignorance” that the prover does not know
a witness for y. For example, the witness w for ¬y in our second construction
certainly demonstrates that the prover does not know a witness for y. On the
other hand, turning “proofs of ignorance,” as defined by [13], into witness hid-
ing, used a very strong KDM security assumption, which was demonstrated to
be false [18]. Our justifications for witness hiding proceed by entirely different
arguments.

Haitner, Rosen and Shaltiel provide a black-box barrier to witness hiding in
few rounds [27]. However, their barrier does not apply to our schemes. Their bar-
rier only applies to specific (but common) approaches to witness hiding by par-
allel repetition; our schemes do not use parallel repetition. Further, our schemes
are certainly non-black-box, using the adversary’s code itself to either violate a
complexity assumption or build another protocol. Some of our proofs are also
not by reduction to the original search problem, again avoiding the barrier.

2 Preliminaries

2.1 Basic Building Blocks

Let p.p.t. be the set of probabilistic polynomial time Turing machines. Let negl
be the set of negligible functions. We use the standard definition of NP.

Definition 1 (Conventions for NP languages). Note the verifier character-
izes the language: given a two-input machine V that runs in time polynomial in
the length of the first input, put LV = {x : ∃y V accepts (x,w)}.
Define the NP witness relation for L as RL = {(x,w) : V accepts (x,w)}.

Definition 2 (probability ensemble). A probability ensemble D is a map
from N to distributions over strings. All probability ensembles in this paper will
be of polynomial length, meaning there exists a polynomial p such that for all λ
and x ∈ Sup(D(λ)) we have |x| ≤ p(λ). They will also be poly-time sampleable.
Let Δ(S) be the set of probability ensembles with support contained in S.

Definition 3 (search hardness). Fix L ∈ NP, D ∈ Δ(RL). Say the search
problem over D is hard when ∀A ∈ p.p.t.

Pr
(x,w)∼D(λ)

[(x,A(x)) ∈ RL] = negl(λ).

Analogously, say the search problem over D is hard against non-uniform adver-
saries when the same condition holds ∀A ∈ p.p.t./poly.

Definition 4 (hard-on-average). Fix L ∈ NP, D0 ∈ Δ(L), D1 ∈ Δ(L). Say
L is hard-on-average when D0 and D1 are computationally indistinguishable.
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2.2 Proof Systems

The proof systems used in this paper differ in three aspects. First, they use
different number of messages. Second, they have different soundness guarantees.
Third, they have different guarantees on what information is revealed to the
verifier. We do not define a full taxonomy of proof systems but rather only what
we will use in the later parts of the paper.

Definition 5 (non-interactive argument system). Fix an NP relation RL.
We say a pair of p.p.t. algorithms P, V is a non-interactive argument system for
L when the following two properties hold:

Completeness: ∀(x,w) ∈ RL, Pr[V (x, P (x,w))] = 1.
Soundness: ∀ ˜P ∈ p.p.t., ∃μ ∈ negl, ∀x �∈ L, Pr[V (x, ˜P (x))] ≤ μ(|x|).

Definition 6 (non-interactive proof system). We say a non-interactive
argument system P, V is a non-interactive proof system for L when the following
stronger soundness property holds:

Soundness: ∃μ ∈ negl, ∀x �∈ L, ∀π, Pr[V (x, π)] ≤ μ(|x|).
In particular, we say a proof system has perfect soundness when the
soundness property holds with μ = 0. Analogously, a non-uniform non-
interactive proof system is a pair of p.p.t./poly algorithms for which the same
properties hold.

Next we define the delayed input model in the two-message case. We define
the steps of the verifier V by two algorithms V0, V1. First, V0 runs on input |x|
and outputs the first message m and some internal state q; second, the prover P
runs on input x,m and outputs the second message π; third, V1 runs on input
x, q, π and either accepts or rejects. We define completeness and soundness in
this model.

Definition 7 (delayed-input two-message argument system). Fix L ∈
NP. A triple of p.p.t. algorithms V0, P, V1 is a two-message argument system for
L when the following two properties hold:

Completeness: ∀(x,w) ∈ RL:

Pr[V1(x, q, P (x,w,m)) | (q,m) ← V0(|x|)] = 1.

Soundness: ∀ ˜P ∈ p.p.t., ∃μ ∈ negl, ∀x �∈ L

Pr[V1(x, q, ˜P (x,m)) | (q,m) ← V0(|x|)]] ≤ μ(|x|).

Definition 8 (witness indistinguishable [6,10]). Say the prover P is witness
indistinguishable for L ∈ NP when for any sequence I = {(x,w1, w2)} such that
(x,wi) ∈ RL, the ensembles Π1,Π2 are computationally indistinguishable, where:

Πi = {π ← P (x,wi)}(x,w1,w2)∈I .
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We assume NIWIs for arbitrary NP relations. Thus when RL is clear from
context, we say simply “a NIWI for x using witness w” to denote P (x,w) and
“verify that π is a valid proof of x” to denote V (x, π). Implicit is an encoding
scheme to write x as an instance of an NP-complete problem and w as the
corresponding witness.

Definition 9 (witness hiding). Fix L ∈ NP, D ∈ Δ(RL). Say the prover P
is witness hiding for D when ∀A ∈ p.p.t./poly

Pr
(x,w)∼D(λ)

[(x,A(x, P (x,w))) ∈ RL] = negl(λ).

Though this definition is used in prior work [13,28], it is weaker than the
original definition of witness hiding given by Feige and Shamir [17]. Their defi-
nition requires an explicit witness extractor M that, by making black-box calls
to the adversary A and the sampler for D, achieves Pr[(x,A(x, P (x,w))) ∈
RL]−Pr[(x,MA,D(x)) ∈ RL] ≤ negl(λ). The extractor definition entails explicit
black-box security reductions that are not achieved for all of our constructions.

2.3 Fine-Grained Notions

For Sect. 4 we define fine-grained notions of the above. To make these modifica-
tions, we change our notions of “efficient adversaries” and “negligible functions”
to concrete measures. Let SIZE(S) be the class of circuit families of size S(λ).

Definition 10 ((S, ε)-hardness of search problem). Fix L ∈ NP, D ∈
Δ(RL). Say the search problem over D is (S, ε)-hard when ∀λ ∈ N, ∀A ∈
SIZE(S)

Pr
(x,w)∼D(λ)

[(x,A(x)) ∈ RL] ≤ ε(λ).

In the standard definitions of proof systems, using the length of the input
to quantify the security suffices. But in the finer-grained model, we choose an
explicit security parameter λ and provide 1λ as input to the prover.

Definition 11 ((S, ε)-witness indistinguishable). Fix L ∈ NP. We say a
proof system (P, V ) is (S, ε)-witness indistinguishable for L when ∀λ, x,w1, w2
such that (x,wi) ∈ RL and ∀A ∈ SIZE(S)

∣

∣

∣

∣

Pr
π←P (x,w1,1λ)

[A(x, π)] − Pr
π←P (x,w2,1λ)

[A(x, π)]
∣

∣

∣

∣

≤ ε(λ).

Definition 12 ((S, ε)-witness hiding). Fix L ∈ NP, D ∈ Δ(RL). Say a
prover P is (S, ε)-witness hiding for D when ∀λ ∈ N, A ∈ SIZE(S)

Pr
(x,w)∼D(λ)

[(x,A(x, P (x,w, 1λ))) ∈ RL] = ε(λ).

We also say a proof system is (S, ε)-witness hiding for all λ large enough
when there exists λ0 such that for all λ > λ0 the condition holds.
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3 Witness Hiding Arguments in One and Two Messages

We review the two-message proof system of Pass from [32]. The referenced work
proves a property called quasipolynomial time simulatability. We repeat this
analysis, showing how it implies witness hiding for subexponentially hard dis-
tributions. The proof system takes the form of a NIWI of x ∨ y for a clause in
the form y = ∃r : f(r) = b where f is a one-way function. A perfectly binding
commitment to the witness is included for the proof of soundness. The choice of
b is made by the verifier. The analysis is completed using complexity leveraging.

We also present a new analysis in the delayed input model. This allows us to
replace complexity leveraging with non-uniform choices. This result is incompa-
rable to the original.

The introduction discusses several further properties of the protocol. The
protocol allows the verifier’s first message to be reused for an arbitrary num-
ber of proofs, and allows for public verification of transcripts. Further, if the
distribution of b is uniformly random, for example if f is chosen to be a per-
mutation, then the scheme is public coin. Finally, the scheme is amenable to a
heuristic implementation by a hash function: simply choose b = H(1λ). In the
(non-programmable) random oracle model this is secure.

3.1 Prerequisites

We require surjective one-way functions and commitment schemes with guaran-
tees amenable to complexity leveraging: this entails security against one class of
adversaries, but also requires that they can be inverted in some larger runtime.

Definition 13 (one-way function). Say a one-way function f is secure
against adversaries running in time T0 if ∀A ∈ SIZE(T ), Prx∼U [f(A(f(x))) =
f(x)]. We say f is invertible in time T1 if there exists a Turing machine B
running in time T1 such that ∀x, f(B(f(x))) = f(x).

Definition 14 (perfectly binding commitment). Say a commitment
scheme Comm is perfectly binding if ∀x1 �= x2, ∀r1,∀r2, Comm(x1, r1) �=
Comm(x2, r2). Say Comm is hiding if commitments to any pairs of sequences
of messages, one of each length, are computationally indistinguishable by non-
uniform adversaries. We say Comm is extractable in time T1 if there exists a
Turing machine B running in time T1 such that ∀x,∀r, B(Comm(x, r)) = x.

3.2 Construction from Pass 2003

Fix L ∈ NP and D ∈ Δ(RL). Consider the following scheme for a two-message
witness hiding argument in the delayed input model. Let f : {0, 1}k → {0, 1}� a
surjective one-way function and Comm a perfectly binding commitment scheme.

TwoMessage.V0(|x|): sample r ∼ {0, 1}k. Put b = f(r). Save and output b.
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TwoMessage.P(x,w, b): put c = Comm((0�, w)). Compute π a NIWI for

Sb,c := ∃r′, w′ : c = Comm((r′, w′)) ∧ (b = f(r′) ∨ (x,w′) ∈ RL)

using the witness (0�, w). Output τ = (c, π).

TwoMessage.V1(x, b, (c, π)): check that π is a valid proof of Sb,c.

3.3 Security from Complexity Leveraging

We sketch the proof of [32] for completeness.

Theorem 5. Assume the search problem over D is hard against adversaries
running in time Tsearch. Assume f is one-way against adversaries running in
time Towf but invertible in time Tinvert. Assume Comm is hiding against non-
uniform polynomial time adversaries and extractable in time Textract. Assume a
perfectly sound NIWI. If the following inequalities hold for all polynomials p:

Tsearch = O(Tinvert + p(n)),
Towf = O(Textract + p(n))

then TwoMessage is a perfectly complete witness hiding argument system against
adversaries running in time o(Tsearch).

In particular, if D, f , and the extraction algorithm for Comm are quasipoly-
nomially hard in their input lengths and security parameters, then input lengths
and security parameters can be set to satisfy the above inequalities as in the
original paper.

Proof. Completeness follows from the completeness of the underlying NIWI.
Witness hiding follows by considering π generated using an alternative witness.
Soundness is by reduction to the one-way function game.

Completeness: if (x,w) ∈ RL then (0n, w) is a valid witness for Sb,c. Thus by
the completeness of the NIWI system conclude that the verifier accepts.

Witness Hiding: let A be an attacker on witness hiding. We build B simulating
the prover in order to break the search problem against D as follows. Sample
x ∼ D and send it to A, which will reply with some value b. Invert the OWF to
find r such that f(r) = b. Then compute π′ a NIWI of Sb,c using witness (r, 0).
Let c = Comm((r, 0)). Send (c, b) to A. Interpret the output of A as a possible
witness for x.

Argue that AdvB = AdvA ±negl from the witness indistinguishability of the
NIWI and the hiding property of the commitment. Standard witness indistin-
guishability and hiding against non-uniform adversaries suffice (though we omit
the proof).

Soundness: fix x �∈ L and a possibly malicious prover A outputting (c, π) given
honest b. We construct a one-way function adversary B as follows. First, extract
the commitment c which yields (r′, w′) by binding. By the soundness of the NIWI
system we know that (r′, w′) is a witness for Sb,c. But since x �∈ L conclude that
(x,w′) �∈ RL. Thus it must be the case that f(r′) = b. Output r′.
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3.4 Security from Non-uniform Hardness

The witness hiding proof above can be adjusted to avoid the use of complex-
ity leveraging if we assume the D search problem is hard against non-uniform
adversaries and move to the delayed input model.

Theorem 6. Assume the search problem over D is hard against poly-size
circuits. Assume f is one-way against adversaries running in time Towf .
Assume Comm is hiding against non-uniform polynomial time adversaries and
extractable in time Textract. Assume a perfectly sound NIWI. If the following
inequality holds for all polynomials p:

Towf = O(Textract + p(n))

then TwoMessage is a perfectly complete witness hiding argument system against
efficient poly-size circuits.

Proof. Completeness and soundness follow identically. For witness hiding, we
build a non-uniform adversary, hard-coding the OWF pre-image.

Witness Hiding: let A be an attacker on witness hiding; it plays the role of
a malicious verifier and outputs w′ a witness for x ∈ L with probability AdvA.
Recall from the definition that A consists of two algorithms: first, A0 which takes
input |x| and outputs b and some internal state q; second, the honest prover P
runs on input x, b yielding c, π; third, A1 which takes (b, q), (c, π) and x and
outputs w.

Let r0 be the explicit choice of randomness by A0. Then we can break the
experiment that defines AdvA into two parts:

E
r0

[Pr[(x,A1(x, q, τ)) ∈ RL | (b, q) = A0(|x|, r0)]] = AdvA,

where τ = TwoMessage.P(x,w, b) and the inner probability is over choice of
x ∼ D, z′ ∼ {0, 1}n, internal randomness of the NIWI prover, and internal
randomness of A1. Now for each input size we can fix some (b, q) such that

Pr[(x,A1(x, q, τ)) ∈ RL] ≥ AdvA .

We define a non-uniform adversary B against the search problem over D. For
inputs size λ, the advice is a tuple (b, q, r) with b, q as chosen above and r such
that f(b) = r. On input x, set c = Comm((r, 0)) and compute a NIWI of Sb,c

using witness (r, 0). Run A on the new proof. The conclusion that AdvB =
AdvA ±negl follows as above.

4 Non-uniform Witness Hiding

We present a non-interactive non-uniform witness hiding proof system. By writ-
ing a proof of x as a NIWI of x ∨ y for a false statement y fixed non-uniformly,
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we easily guarantee completeness and soundness. To achieve witness hiding, we
give an MA-type verifier relative to which the code of an adversary is itself a
witness to the falseness of y.

We begin by quantifying how this proof system differs from the standard
complexity class MA. Then we state our construction formally and prove the
desired security properties. The construction is unfortunately existential: it is
unclear how to instantiate the scheme, even heuristically. However, it provides
strong barriers to ruling out non-interactive witness hiding protocols.

4.1 Assumption

Throughout, unsat denotes the language of unsatisfiable boolean formulae. An
arbitrary coNP-complete language can be used to yield the same result. Now
recall the standard definition of MA. (e.g. adapted from Def. 8.10 of [1]).

Definition 15 (MA). We say L has an MA proof system when some p.p.t.
Turing machine V has the following properties for some polynomial q:

Completeness: ∀x ∈ L, |x| = λ, ∃a ∈ {0, 1}q(λ), Pr[V (x, a)] ≥ 2/3,
Soundness: ∀x �∈ L, ∀a, Pr[V (x, a)] ≤ 1/3.

From this definition, we get the standard complexity assumption MA �⊆ coNP.
Unfortunately, this assumption does not appear sufficient for our NIWH system.

We need to make two changes. First, we allow the verifier to run in some
super-polynomial time T (λ) and use witnesses of size R(λ). Second, while stan-
dard assumptions only require that the verifier fail for some input length, we
want a proof system that works for all input lengths. Thus we require that any
proof system fails for all inputs large enough. Both changes are captured by the
following definition.

Definition 16 (ioMA(T,R)). Take any T , R. Say L has an ioMA(T,R) proof
system when some V running in time T (λ) has both of the following properties
for infinitely many values of λ:

Completeness: ∀x ∈ L, |x| = λ, ∃a ∈ {0, 1}R(λ), Pr[V (x, a)] ≥ 2/3,
Soundness: ∀x �∈ L, |x| = λ, ∀a Pr[V (x, a)] ≤ 1/3.

The complexity assumption coNP �⊆ ioMA(T,R) is simply a quantitative
strengthening of coNP �⊆ MA; we believe it to be justifiable under the same
motivation.

4.2 Construction

Fix L ∈ NP and D ∈ Δ(RL). We propose the following scheme for a non-
interactive witness-hiding proof. The scheme is parameterized by a sequence of
circuits (yλ)λ∈N with each yλ ∈ unsat and |yλ| = λ. The yλ serve as advice for
the prover and verifier.

NonUniform.Prove(x,w, 1λ; yλ): output a NIWI for x ∈ L ∨ yλ ∈ sat using
witness w and security parameter λ.
NonUniform.Verify(x, π; yλ): verify π is a valid proof of x ∈ L ∨ yλ ∈ sat.
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4.3 Security

Completeness and soundness follow directly from the completeness and sound-
ness of the underlying NIWI, for any choice of yλ ∈ unsat. To prove witness-
hiding we use the complexity assumption. The proof and the security of the
resulting NIWH proof system are parameterized by the strength of the complex-
ity assumption and the security of the NIWI.

Theorem 7. Fix a constant α > 0. Assume the search problem over D is
(S, ε)-hard. Assume a perfectly sound (SNIWI, εNIWI)-NIWI. Assume coNP �⊆
ioMA(T,R). Assume the following inequalities between parameters hold, for some
fixed q(λ) = poly(λ) and constant β chosen in the proof:

S(λ) ≥ SNIWI(λ) + q(λ),

T (λ) ≥ β((ε + εNIWI)−1α−2)(SNIWI(λ) + poly(λ)),
R(λ) ≥ SNIWI(λ).

Then there exists a sequence of yλ (depending on D) such that NonUniform is a
perfectly sound proof system with (SNIWI, (1 + α)(ε + εNIWI))-witness-hiding for
all λ large enough.

In particular: take SNIWI slightly super-polynomial in λ and εNIWI = negl(λ).
The required T,R, S will be fixed super-polynomial functions as given by the
inequalities in the theorem statement. Then under the appropriate assumptions
the theorem yields a standard NIWH system; that is, with witness hiding negl(λ)
against all poly(λ) adversaries.

Proof. We prove completeness, soundness, and witness hiding.

Completeness: if (x,w) ∈ RL then w is a witness for x ∈ L ∨ yλ ∈ sat.
By completeness of the NIWI system conclude that NonUniform.Verify accepts
(x, π).

Soundness: consider x �∈ L. Since yλ ∈ unsat, we know the statement x ∈
L ∨ yλ ∈ sat is false. Thus by the soundness of the NIWI system we conclude
NonUniform.Verify does not accept (x, π) for any value of π.

Witness-Hiding: we prove witness-hiding by constructing an ioMA(T,R)-type
protocol for unsat. We show the protocol is unconditionally sound and efficient.
We show the protocol is complete if and only if there is no choice of (yλ)λ∈N such
that NonUniform is witness-hiding. The verifier is parameterized by a choice of
α (in the theorem statement) and k (chosen below).

UnsatVerifier(t, A): Interpret A as a circuit. If |A| ≥ SNIWI reject. Sample k
tuples (xi, wi) ∼ D(|t|) and compute the sample probability

p =
1
k

∑

i∈[k]

1[(xi, A(xi,NonUniform.Prove(xi, wi; t)) ∈ RL].

Accept if and only p > (1 + α/2)(ε + εNIWI).
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Soundness of UnsatVerifier: fix (t, z) ∈ Rsat. Let π be a NIWI proof of x ∈
L ∨ t ∈ sat using witness z. If |A| < SNIWI then by witness indistinguishability
we know

Pr[(xi, A(xi,NonUniform.Prove(xi, wi; t))) ∈ RL] ≤ Pr[(xi, A(xi, π)) ∈ RL] + εNIWI.

Now note that (xi, A(xi, π)) ∈ RL is computed by a circuit of size at most
|A|, plus the size of the circuit that computes the NIWI, plus the size of the
verifier circuit for RL. Setting q accordingly, then it is bounded in particular by
S ≥ SNIWI + q(λ). Thus by the hardness of the D-search problem

Pr[(xi, A(xi, π)) ∈ RL] < ε.

Together the two inequalities yield

Pr[(xi, A(xi,NonUniform.Prove(xi, wi; t))) ∈ RL] ≤ ε + εNIWI.

This shows that E[p] ≤ ε + εNIWI. To bound the tail probability use a standard
Chernoff bound (e.g. Cor. A.15 in [1]).

Pr[|p − ε + εNIWI| ≥ α

2
(ε + εNIWI)] ≤ 2 exp(−α2Ω(k(ε + εNIWI))).

Thus choosing k = β((ε + εNIWI)−1α−2) for some constant β suffices for the
verifier to reject with probability 2/3.

Runtime of UnsatVerifier: from our choice of k and the size of A observe the
verifier runs in time

k(|A| + poly(λ)) = β((ε + εNIWI)−1α−2)(SNIWI + q).

Completeness of UnsatVerifier: fix r ∈ unsat, |r| = λ. Assume NonUniform
with advice r is not sufficiently witness hiding. Then there exists A with |A| <
SNIWI such that

Pr[(xi, A(xi,NonUniform.Prove(xi, wi; r))) ∈ RL] ≥ (1 + α)(ε + εNIWI).

Applying the same Chernoff bound shows that the verifier will accept with over-
whelming probability.

Conclude by using the assumption: since we know for all λ > λ0 that
UnsatVerifier cannot be complete, there must be some y ∈ unsat, |y| = λ such
that NonUniform with advice yλ is witness hiding.

5 Best-Possible Proofs

We present a construction for a non-interactive witness hiding proof system that
is secure as long as any such scheme is secure. In fact, assuming even the existence
a proof system with an inefficient prover, the scheme given in this section will be
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efficient and uniform as long as the original scheme is provably sound in a sense
made precise later. We discuss how a non-uniform notion of provable soundness
can be used to base the same construction off of the existence of a non-uniform
witness hiding proof system. We do not know if the scheme given in the previous
section meets this requirement.

This construction enjoys security properties beyond witness hiding. In fact,
assuming the existence of a provably sound non-interactive proof that achieves
any falsifiable security notion, this construction will have the property as well as
long as length parameters are picked appropriately. Thus the construction is in
fact the “best possible” non-interactive proof that can be achieved, in the same
sense as [24].

Unfortunately, this paper does not provide a NIWH for all NP that has
provable soundness. Thus, we are left in an odd state of affairs where we know a
universal construction but lack the existential proof needed to claim it is secure.

5.1 Prerequisites

Let S be a proof system for a language powerful enough to encode Turing
machines. Assume that S-proofs can be checked in time polynomial in their
length. Further assume that S is sound, meaning that any provable statement
in S is true in the metatheory (or, for the purposes of this work, simply true).
A concrete choice of S would be Peano arithmetic or any standard deductive
system for axiomatic set theory.

Fix some verifier V corresponding to the language LV ∈ NP. Let D be
another polynomial-time verifier. We want a proof that LV = LD inside of S.
This leads to the following definition.

Definition 17 (soundness for LV ). We say D is LV -sound if the following
statement holds

∀x ∈ {0, 1}∗ (∃y D(x, y) ⇒ ∃w V (x,w)).

We require that such a statement can be encoded in the language of S. We also
require that the there be a proof that V is LV -sound. This is a relatively mild
assumption, achievable by both concrete choices of proof systems proposed.

5.2 Construction

We begin by constructing V ′, another verifier for LV . Fix polynomials q, s, 
.

V ′(x,w′): Interpret (z,D, π) ← w′ where
z is a string of length q(|x|),
D is a Turing machine description of length s(|x|),
π is an S-proof of length 
(|x|).

Verify that π is a valid proof that D is LV -sound. If not, reject. Otherwise,
simulate D on input (x, z) for s steps and output the result.
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Theorem 8. V ′ is an NP verifier for LV for sufficiently large choices of q, s, 
.

Proof. Three things to show:

Polynomial time: the runtime is, as desired,

poly(q(|x|), s(|x|), 
(|x|)) = poly(|x|).
Completeness: for any x ∈ LV let wx be the shortest witness such that
V (x,w) accepts. Since V is an NP verifier, we know that maxx : |x|=n |wx| is
bounded by some polynomial; choose q larger. Further, the size of V as a
Turing machine description is some constant; choose s larger. The runtime of
V is bounded by some polynomial; choose s larger. The size of the proof πV

that V is LV -sound is some constant as well; choose 
 larger.
Then take any x ∈ L. By construction V ′(x, (wx, V, πV )) will accept.
Soundness: assume V ′(x, (z,D, π)) accepts. By the soundness of S, we know
that D must be LV -sound. Since D accepts (x, z), we know by the definition
of LV -soundness that there exists w such that V accepts (x,w). By the sound-
ness of V as an NP verifier, conclude that x ∈ L.

Our final proof will be a NIWI corresponding to V ′, constructed using the witness
given in the completeness proof above.

BestPossible.Prove(x,w): output a NIWI that ∃w′ such that V ′(x,w′) accepts
using witness (w, V, πV ) with V and πV as described above.
BestPossible.Verify(x, π): check π is a valid NIWI of the desired statement.

5.3 Security

Theorem 9. Let D ∈ Δ(RLV
). Assume the search problem over D is hard

for non-uniform adversaries. Assume there exists a non-interactive proof system
(NIWH.Prove,NIWH.Verify) with non-uniform witness hiding for D such that for
every x the following holds for some polynomials q, s, 
 and for all |x| large
enough:

the length of NIWH.Prove(x,w) is at most q(|x|),
the size of NIWH.Verify written as a Turing machine at most s(|x|),
the length of an S-proof of soundness is at most 
(|x|).

Assume the NIWI system used in the construction is perfectly sound. Then con-
clude BestPossible with parameters (q, s, 
) is a perfectly complete and sound
NIWH against non-uniform adversaries with an efficient prover.

Proof. We prove completeness, soundness, and witness hiding.

Completeness: follows from completeness of the NIWI system and the anal-
ysis of the witness (w, V|x|, πV,|x|) from the previous theorem.
Soundness: since the NIWI system is perfectly sound, we know that if
BestPossible.Verify accepts, then ∃w′ such that V ′(x,w′). From the previous
theorem, we know V ′ is an NP-verifier for LV . Thus conclude x ∈ LV .
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Witness Hiding: let A be an attacker (resp. non-uniform attacker) against
the witness hiding of BestPossible. We build B an adversary against the wit-
ness hiding of NIWH. First, for input size |x|, let D be the Turing machine
computing NIWH.Verify and π the S-proof that D is LV -sound. Then build
B as follows: on input (x, π), construct π′ a NIWI of ∃w′ such that V ′(x,w′)
accepts using witness (x, (π′,D, π)). Run A on π′ and output the result.
By witness indistinguishability, π′ as constructed by B is indistinguishable
from π = BestPossible.Prove(x,w). Thus we have

AdvB = Pr
(x,w)∼D(λ)

[(x,B(x, π))]

= Pr
(x,w)∼D(λ)

[(x,A(x, π′))]

= Pr
(x,w)∼D(λ)

[(x,A(x, π))] ± negl(λ)

= AdvA ±negl(λ).

5.4 Additional Properties

Note that non-uniformity is not required in the above proof as long as
NIWH.Verify is uniform and there exists an S-proof that it is sound for all input
sizes. In this setting, we get an analogue to the above theorem where the resulting
adversary is uniform.

Further note that we never run NIWH.Prove. In fact, the whole proof goes
through even if NIWH.Prove is inefficient. Regardless, BestPossible will be effi-
cient.

Finally, note that our use of witness hiding was minimal. Observe that wit-
ness hiding can be replaced with any falsifiable notion of security. In the sense
that this single construction (with appropriate parameters) achieves any desired
notion shows that it is the “best possible” non-interactive proof.

5.5 Basing Security on Non-uniform Proofs

In the above construction, consider replacing Turing machines with circuits of
size at most s. We replace the soundness condition with the following:

Definition 18 (soundness for inputs of length n). Say a circuit D is LV -
sound for inputs of length n if the following statement holds

∀x ∈ {0, 1}n (∃y D(x, y) ⇒ ∃w V (x,w)).

Assuming some non-uniform NIWH proof system exists and for each n the S-
proof of LV -soundness for inputs of length n is length at most 
(n), a slightly
modified version of BestPossible is secure. However, this modification is unnec-
essary because a non-uniform scheme with this soundness condition actually
implies NIWH scheme with an inefficient prover, and per the last section, this
suffices for the theorem.
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The construction is as follows: let P, V a non-uniform NIWH scheme with
advice an. Let πn an S-proof of soundness for inputs of length n. Define V ′:
on input (x, (π′, a, π)), check that π is an S-proof that V (·; a) is LV -sound for
inputs of length n. If not, reject. Otherwise run V (x, π′; a) and output the result.
The inefficient prover P ′ can simply use brute force to find an acceptable a and
π and output (P (x,w; a), a, π).

In the construction of Sect. 4 it is unclear if, for any choice of advice, that
soundness for inputs of length n has short proofs. Recall the basic steps of
Theorem 7: we showed the protocol was secure as long as the advice yλ ∈ unsat.
We constructed an MA-type verifier UnsatVerifier for the language unsat. We
concluded that the scheme is witness hiding as long as UnsatVerifier does not
accept yλ. Thus to achieve probable soundness, we need to prove the existence
of yλ that fulfills the following three conditions:

(a). yλ ∈ unsat,
(b). UnsatVerifier rejects yλ,
(c). ∃ a poly-size S-proof that yλ ∈ unsat.

By the soundness of S, we know that (c) implies (a). But it is still unclear how
to achieve (b) and (c) simultaneously. In general, NP �= coNP establishes that
proofs of unsatisfiability are long in the worst case. But this does not rule out
short proofs for some appropriate statement.

6 Witness Encryption vs. Non-interactive Witness
Hiding

Again, we present a non-interactive witness hiding proof system comprised of a
NIWI of x ∨ y; but in this scheme the prover picks y. To maintain soundness,
the prover also provides an NP proof that y is false. To prove witness hiding, we
restrict to the case where x has a unique witness. Then, an adversary against
witness hiding is an algorithm that, from the proof and a witness to ¬y, recovers
w. By using w to encode a bit, the adversary serves as the decryptor for a weak
witness encryption scheme.

We begin by defining witness encryption and a weakened notion of it. We
proceed to give the construction and finally prove the desired properties. Recall
that witness encryption is currently only known from extremely strong cryp-
tographic tools, namely multilinear maps and obfuscation. Thus it is plausible
that our weakened form of witness encryption does not exist for some language
in L ∈ NP ∩ coNP. But then this protocol would indeed be witness hiding. Fur-
ther, we avoid choosing L concretely by using our best-possible protocol from
the previous section.

6.1 Definitions

Consider the usual notion of witness encryption, as introduced by [19]. Fix a
language L ∈ NP with verifier V .
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Definition 19 (witness encryption). We say (Encrypt,Decrypt) is an wit-
ness encryption scheme for L when the following two properties hold.

Correctness: ∀λ ∈ N, ∀m ∈ {0, 1}, ∀(x,w) ∈ RL

Pr[Decrypt(x,w,Encrypt(x,m)) = m] = 1.

Soundness security: ∀A ∈ p.p.t., ∃μ ∈ negl, ∀x �∈ L,

Pr
m∼{0,1}

[A(Encrypt(x,m)) = m] =
1
2

+ negl(λ).

Consider a relaxed notion of correctness relative to some distribution T over
(x,w) such that V (x,w) is true.

Definition 20 (average case correctness for witness encryption).

Average case correctness: ∃f �∈ negl, ∀λ ∈ N, ∀m ∈ {0, 1},

Pr
(x,w)∼T

[Decrypt(x,w,Encrypt(x,m)) = m] = f(λ).

This definition is weaker in two ways. First, it only guarantees any notion of
correctness for infinitely many values of λ (as opposed to for all λ in the original
definition). Second, decryption can fail. Since the failure probability is over the
choice of instance, it may be the case that some instances always fail. Regardless,
even with these limitations, we feel this is a strong cryptographic primitive.

6.2 Construction

Fix L ∈ NP and D ∈ Δ(RL). Assume RL restricted to D has unique witnesses:
∀(x,w) ∈ sup D if (x,w′) ∈ RL accepts then w′ = w. We propose the following
scheme for a non-interactive witness hiding proof. Fix T ∈ NP ∩ coNP, or equiv-
alently RT , RT two NP relations and a probability ensemble E over (y, z) ∈ RT .

VsWE.Prove(x,w): sample (y, z) ∼ E. Compute π a NIWI for the statement
x ∈ L ∨ y �∈ T using the witness w. Output τ = (y, z, π).

VsWE.Verify(x, τ): parse (y, z, π) ← τ . Accept iff VT (y, z) accepts and π is a
valid proof of the statement x ∈ L ∨ y �∈ T .

6.3 Security

Completeness and soundness of the scheme follow easily from the properties of
the underlying NIWI. Then we argue that if the scheme is not witness hiding,
then an adversary yields a witness encryption scheme in the weak sense above.
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Theorem 10. Assume the search problem over D is hard against non-uniform
adversaries. Assume a perfectly sound NIWI. Then VsWE is a perfectly sound
proof system. Further, any adversary that breaks the witness hiding of VsWE with
non-negligible probability yields a witness encryption scheme for the language T
with average case correctness with respect to E and the usual sense of soundness
security for infinitely many lengths.

Proof. Completeness and soundness follow from the corresponding properties
of the NIWI. Witness hiding is justified by constructing a witness encryption
decryptor from a witness hiding adversary.

Completeness: if (x,w) ∈ RL, then w is a witness for x ∈ L ∨ y �∈ T . Thus by
completeness of the NIWI system conclude that π is valid. Further by construc-
tion VT (y, z) accepts for all (y, z) ∼ E. Conclude the verifier accepts.

Soundness: fix x �∈ L. Consider any (y, z, π). Two cases: (1) if y ∈ T then
x ∈ L ∨ y �∈ T is false. By NIWI soundness, π fails to verify; (2) if y �∈ T then
VT (y, z) cannot accept. In either case, the verifier rejects.

Witness Hiding: let A be an attacker that breaks witness hiding, meaning
that p = Pr[VL(x,A(x, y, z, π))] is non-negligible. Then we construct a one-bit
witness encryption scheme WEA for the language T as follows.

WEA.Encrypt(y,m): sample (x,w) ∼ D. Let π a NIWI for the statement
x ∈ L ∨ y �∈ T using the witness w. Sample r ∼ {0, 1}|w|. Output c =
(x, π, r, 〈w, r〉 ⊕ m).
WEA.Decrypt(y, z, c): parse (x, π, r, b) = c. Let w′ = A(x, y, z, π). If VL(x,w)
rejects then output ⊥. Otherwise output 〈w′, r〉 ⊕ b.

It remains to show that WEA is correct and secure.

Average Case Correctness of WEA: with probability p over choice of y and
(x,w), we have w′ a valid witness for x ∈ L. Then by the unique witness property
we have w′ = w. By construction this yields 〈w′, r〉 ⊕ b = m.

Soundness Security of WEA: Fix a p.p.t. adversary B and sequence of inputs
{yλ}λ∈N, yλ �∈ T . Consider the following quantity:

AdvB,Y (λ) := |Pr[B(WEA.Encrypt(yλ, 0))] − Pr[B(WEA.Encrypt(yλ, 1))]|.
Let zλ be a witness for yλ �∈ T . Such witnesses exist since T ∈ coNP. Proceed by
a series of games, parameterized by λ, for which the challengers are as follows.

G0: Sample (x,w) ∼ D(1λ). Let π a NIWI for the statement x ∈ L ∨ yλ �∈ T

using the witness w. Sample r ∼ {0, 1}|w|. Output c = (x, π, r, 〈w, r〉 ⊕ m)
with m = 0.
G1: Same as G0 but derive π using witness zλ.
G2: Same as G1 but output b ∼ {0, 1} instead of 〈w, r〉 ⊕ m.
G3: Same as G1 but with m = 1.
G4: Same as G0 but with m = 1.
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To show G0 ≈ G1. This follows from the witness indistinguishability of the
underlying NIWI proof system. Let A01 be a p.p.t. adversary that distinguishes
between games 0 and 1. Then we have

AdvA01(λ) = | Pr
c←G0

[A01(yλ, c)] − Pr
c←G1

[A01(yλ, c)]|.

Now for each λ choose (xλ, wλ) that achieve

AdvA01(λ) ≤
∣

∣

∣ Pr
c←G0

[A01(yλ, c)|(x,w) = (xλ, wλ)]

− Pr
c←G1

[A01(yλ, c)|(x,w) = (xλ, wλ)]
∣

∣

∣.

This allows us to define a sequence of NIWI games as follows:

I = {(xλ ∈ L ∨ yλ �∈ T,wλ, zλ)}λ∈N.

Then we give a non-uniform p.p.t. adversary ANIWI against the NIWI game on
sequence I. ANIWI takes yλ, xλ, wλ as an advice string. It receives a proof π as
input. It samples r ∼ {0, 1}|w| and outputs A01(yλ, (xλ, π, r, 〈wλ, r〉 ⊕ m)) with
m = 0.

Note that ANIWI simulates G0|(x,w) = (xλ, wλ) when the challenger uses witness
wλ and G0|(x,w) = (xλ, wλ) when it uses witness zλ. Thus AdvANIWI(λ) ≥
AdvA01(λ). Conclude by NIWI security that AdvA01 is negligible.

To show G1 ≈ G2. This follows from the fact that 〈w, r〉 is determined by
the Goldreich-Levin hardcore predicate associated with (x,w) �→ x. Let A12 be
a p.p.t. adversary that distinguishes between games 1 and 2 with

AdvA12(λ) =
∣

∣

∣

∣

Pr
c←G1

[A12(yλ, c)] − Pr
c←G2

[A12(yλ, c)]
∣

∣

∣

∣

.

We give a non-uniform p.p.t. adversary AHCP that guesses the hardcore pred-
icate. AHCP takes non-uniform input yλ, zλ. The challenger picks (x,w) ∼ D,
q ∼ {0, 1}|x|, r ∼ {0, 1}|w| and AHCP gets input (x, q, r). It derives π from
x, yλ, zλ. It picks b ∼ {0, 1} and computes a = A12(yλ, (x, π, r, b)). If a = 1 then
it outputs b ⊕ 〈x, q〉 ⊕ m with m = 0. Otherwise it outputs a random bit.

Let t = 〈w, r〉 ⊕ m. Considering the designs of G1 and G2 we have

Pr
c←G1

[A12(yλ, c)] = Pr[a = 1|b = t],

Pr
c←G2

[A12(yλ, c)] =
1
2
(Pr[a = 1|b = t] + Pr[a = 1|b �= t]).
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Now using these values we have

Pr[AHCP(x, q, r) = 〈(x,w), (r, q)〉] = Pr[a = 1|b = t] Pr[b = t] +
1
2

Pr[a = 0]

=
1
2
(1 + Pr

c←G1
[A12(yλ, c)] − Pr

c←G2
[A12(yλ, c)])

=
1
2

± AdvA12 .

However, since 〈(x,w), (r, q)〉 is the Goldreich-Levin hardcore predicate [20] of
the one-way function (x,w) �→ x, we know that

Pr[AHCP(x, q, r) = 〈(x,w), (r, q)〉] =
1
2

+ negl(λ).

Conclude that AdvA12 is negligible.

Conclude. By repeating the above arguments with m = 1, observe that G2 ≈ G3
and G3 ≈ G4. Then note that G0 and G4 are the honest soundness security game
with plaintexts m = 0 and m = 1 respectively. As G0 ≈ G4 conclude that AdvB,Y

is negligible.

6.4 Applicability for Best-Possible Proofs

We do not have a candidate for a specific language T ∈ NP ∩ coNP for which
witness encryption with average case correctness does not exist. However, even
lacking such a candidate, we argue that the construction of Sect. 5 is secure for
any choice of polynomial length parameters. In particular, it is witness hiding
for D with unique witnesses assuming any T exists.

Theorem 11. Let D as above. Assume some T ∈ NP ∩ coNP lacks a witness
encryption scheme with average case correctness relative to some ensemble E for
all input lengths large enough. Then the BestPossible with known length param-
eters, calculated below, is witness hiding for D.

Proof. Let t′(n,m) be the runtime of VsWE.Verify where n is the length of x and
m is the length of y encoded as an instance of a fixed NP-complete language;
note t′ = poly(n,m). We will run the best-possible proof with witness-length
parameter q = n, runtime parameter s = t′(n, n), and proof-length parameter n
and adjust the length of y appropriately.

Recall that T has an NP verifier VT . Let q′(λ) be the maximum over inputs
of length λ of the length of the shortest witness; note q′ = poly(λ). Let s′(λ) be
the size of VT as a Turing machine; note s′ = O(1). Writing y as an instance of
our NP-complete language we have m = poly(λ).

Now lift the proof of soundness from Theorem 10 into the deductive system S.
The size of this proof depends on the size of VT , but should still be 
′(λ) = O(1).

So we have s′ and 
′ constant; thus n > s′, 
′ for all n large enough. Further
we have that q′ is polynomial in λ. Choose λ(n) so that q′(λ) < n and m(λ) < n.
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Define the ensemble E′ such that E′(n) = E(λ(n)). Then use E′ to instantiate
VsWE.

Note that an average case correct witness encryption scheme relative to E′ for
infinitely many n immediately gives an average case correct witness encryption
scheme relative to E for infinitely many λ. Now apply Theorem 10. By construc-
tion, s, q, 
 are large enough for inputs large enough to describe the appropriate
witness, verifier, and soundness proof. Conclude BestPossible is witness hiding.
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Abstract. We present a novel tree-based technique that can convert
any designated-prover NIZK proof system (DP-NIZK) which maintains
zero-knowledge only for single statement, into one that allows to prove an
unlimited number of statements in ZK, while maintaining all parameters
succinct. Our transformation requires leveled fully-homomorphic encryp-
tion. We note that single-statement DP-NIZK can be constructed from
any one-way function. We also observe a two-way derivation between
DP-NIZK and attribute-based signatures (ABS), and as a result derive
now constructions of ABS and homomorphic signatures (HS).

Our construction improves upon the prior construction of lattice-
based DP-NIZK by Kim and Wu (Crypto 2018) since we only require
leveled FHE as opposed to HS (which also translates to improved LWE
parameters when instantiated). Alternatively, the recent construction of
NIZK without preprocessing from either circular-secure FHE (Canetti
et al. STOC 2019) or polynomial Learning with Errors (Peikert and
Shiehian, Crypto 2019) could be used to obtain a similar final state-
ment. Nevertheless, we note that our statement is formally incomparable
to these works (since leveled FHE is not known to imply circular secure
FHE or the hardness of LWE). We view this as evidence for the poten-
tial in our technique, which we hope can find additional applications in
future works.

1 Introduction

In non-interactive zero-knowledge proof systems for NP (NIZK) [BFM88], a
prover can provide a non-interactive proof of the validity of an NP statement
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(efficiently, using a witness), that convinces a verifier, without revealing any
information about the witness or anything other than the validity of the state-
ment. This is not possible to achieve in the plain model, and therefore usually
some common setup is considered, in particular it is often assumed that an hon-
estly generated common reference string (CRS) is accessible to both the prover
and the verifier [FLS90]. In this work we consider proof systems with statistical
soundness and computational zero-knowledge.

NIZK with Preprocessing. In some cases it suffices to consider a relaxed notion,
NIZK with preprocessing [SMP87], where the trusted party that generates the
CRS also produces additional secret information either for the prover or for the
verifier or for both. As pointed out by Kim and Wu [KW18], multi-theorem
preprocessing NIZK could replace plain NIZK in a number of applications, e.g.
for achieving MPC with low round complexity.

In the case of secret information for the prover, known as designated-prover
NIZK or DP-NIZK, the prover’s key should be kept secret in order to maintain
zero-knowledge. In the mirror case of designated-verifier NIZK (DV-NIZK), the
verifier’s secret is for the purposes of securing the soundness. In both cases, the
preprocessing might make the CRS non-reusable. That is, if the same secret
key of the prover (resp. verifier) is used in the proofs of multiple statements
then ZK (resp. soundness) might not hold for all of these statements. Therefore,
we make the distinction between single-theorem and multi-theorem NIZK in
the preprocessing model. We note that throughout this introduction, writing
DP/DV-NIZK refers by default to the multi-theorem version.

The seminal work of [FLS90] shows, among other things, how to trans-
form any single-statement NIZK proof system into a multi-statement NIZK.
[KNYY19] recently showed that a similar bootstrapping strategy works also in
the designated-verifier model. As pointed out by [KW18], the transformation
fails to work in the designated-prover model since it critically relies on the fact
that the prover algorithm is publicly computable. In this work we focus on multi-
statement DP-NIZK.

1.1 Our Results

We present a new technique for bootstrapping DP-NIZK from single-theorem to
multi-theorem, using leveled fully homomorphic encryption (FHE) as a build-
ing block. We recall that leveled FHE schemes are ones that allow to evaluate
depth d circuits, for any (polynomially bounded) d specified at key generation
time. We start by noticing that single-theorem DP-NIZK can be constructed
straightforwardly from any one-way function using garbled circuits and commit-
ment schemes (we did not find this simple construction in the literature). We
then apply a succinctness transformation similar to that proposed by Gentry
et al. [Gen09,GGI+15] to shrink the CRS size and make it independent of the
complexity of the statement that needs to be proven. This transformation uses
(leveled) FHE. Finally, as our main contribution, we present a tree based con-
struction which transforms single-theorem succinct DP-NIZK into multi-theorem
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(succinct) DP-NIZK, essentially by committing to an implicit tree of CRS val-
ues, each of which is used to prove the validity of its children. We provide more
information and a technical overview in Sect. 1.3 below.

In addition, in this work, we observe a two-way implication between DP-
NIZK and the notion of attribute-based signatures (ABS) [MPR11,BF14,BZ14,
BGI13], assuming one-way functions exist. Combining this new observation with
the known connection between ABS and HS [Tsa17], we get a construction
of homomorphic signatures from leveled FHE. We note the parameters of the
obtained HS scheme are fairly unfavorable, in particular the length of the signa-
ture grows with the size of the evaluated function. However, this schemes has the
so-called context-hiding property. Such HS schemes suffice for some applications
(not surprisingly, the [KW18] construction of DP-NIZK is an example of such
as application). See Sect. 1.4 below.

1.2 Our Parameters and Assumptions Compared to Prior Work

Comparison with DP-NIZK Constructions from LWE. [KW18] presented a
construction of DP-NIZK using homomorphic signatures for NC1 as building
block. Such HS schemes were constructed under the learning with errors (LWE)
assumption [Reg05] by Gorbunov, Vaikuntanathan and Wee [GVW15]. Compar-
ing our result with their work, we point out that our techniques are very different.
Succinctness and bootstrapping that play a central role in our construction, do
not appear to be a component of the [KW18] construction. In terms of assump-
tions, we require leveled FHE and they require homomorphic signatures. The
two assumptions are formally incomparable, but when instantiating concretely
with LWE, our construction is favorable in terms of the required assumption.
Leveled FHE can be constructed based on the hardness of LWE, with a fixed
polynomial modulus-to-noise ratio, and with parameters that grow moderately
with d [BV14]. The modulus-to-noise ratio (when measured as a function of the
dimension of the LWE problem) effectively determines the hardness of the LWE
instance at hand. The smaller the ratio is, the harder the problem becomes,
and the better approximation to worst-case lattice problems one will be able
to achieve if the assumption is broken. In terms of parameter growth, the only
parameter effected by d is the public key, which grows linearly with d. In contrast
to FHE, it is not known how to bootstrap homomorphic signatures. Bootstrap-
ping allows the modulus-to-noise ratio to be fixed, regardless of the evaluation
depth. Therefore, since [KW18] requires the use of HS rather than FHE, they
require modulus to noise ratio of poly(s), where s is the size of the verification
circuit for the NP relation for which proofs are provided. This is worse than the
parameters presented in this work.

We should also compare our construction to the recent constructions of
NIZK without preprocessing by Canetti et al. [CCH+19] and by Peikert and
Shiehian [PS19]. The former constructs NIZK from any circular secure FHE
scheme. That is, one that can securely encrypt its own secret key. This is not
known to be implied by LWE, but it is an assumption that is fairly common
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in the FHE literature. The latter constructs NIZK from LWE with fixed poly-
nomial modulus-to-noise ratio. Their construction uses LWE-based leveled FHE
as building block, but then uses specific properties of the LWE-based scheme
so their construction is not generic. Formally, none of these constructions are
implied by generic leveled FHE, which suggests that our techniques have a novel
aspect that hopefully can serve as stepping stone for future contributions.

Other DP-NIZK Constructions. Katsumata et al. [KNYY19] showed how to con-
struct DP-NIZK (with computational soundness) based on a (new) assumption
on groups with bilinear maps, however a later work by these authors [KNYY20]
subsumed that result and showed how to remove the preprocessing and remain
with essentially the same properties.

1.3 Technical Overview

As we outlined above, our construction has three components:

1. A single-theorem DP-NIZK construction from any one-way function via gar-
bled circuits and commitments.

2. A succinctness transformation from single-theorem DP-NIZK to succinct
single-theorem DP-NIZK. This is similar to the succinctness transformations
in [Gen09,GGI+15].

3. Tree-based bootstrapping from succinct single-theorem NIZK to (succinct)
multi-theorem DP-NIZK.

In what follows, we describe each of these components in more detail. We
consider an NP language L and we let V be the verifier for an NP relation of
L. That is, V is a polynomial time algorithm s.t. V (x,w) = 1 if and only if w is
a valid witness for x ∈ L. We slightly overload the notation and also use V to
denote the circuit that implements the algorithm V on instances x of length n,
where n is clear from the context.

Single-Theorem DP-NIZK from OWF. We create a DP-NIZK scheme for
instances of size n with respect to the language L. The DP-NIZK setup gen-
erates a common reference string crs and prover secret key kP as follows. We
start by generating a garbled circuit G of the circuit V . We then commit to each
of the labels of the garbled circuit, let ci,b be a commitment to the label �i,b. The
garbled circuit G and the committed labels are placed in crs, and the openings
of all commitments are provided as the secret kP . In order to prove that x ∈ L
for some instance x, a prover P with witness w simply opens the commitments
to the labels corresponding to (x,w). The verifier executes the garbled circuit
and verifies that the output is indeed 1. One minor subtlety is that the verifier
needs to be convinced that the prover indeed opened to the correct x, but needs
to know nothing about w. This is achieved by providing the labels corresponding
to x in the “correct” order, i.e. ci,0 followed by ci,1, but for the w labels ci,0 and
ci,1 will be randomly permuted.



FHE-Based Bootstrapping of Designated-Prover NIZK 661

Remark 1. As was pointed out to us by TCC 2020 reviewers, there is an alter-
native way to obtain single-theorem DP-NIZK from OWF by instantiating the
hidden-bit model [FLS90]. The hidden bit-model requires that the CRS consti-
tutes a commitment to a sequence of bits drawn (by a trusted party) from a
certain distribution, which can be opened by the prover. This can be instanti-
ated for designated prover straightforwardly by having in the CRS commitments
to the hidden bits, and giving the openings of the commitments to the prover.

This alternative has the advantage of not requiring use of garbled circuits,
but it has the drawback of being designated for a specific NP complete lan-
guage such as hamiltoniciy, or variants of SAT [KP95]. Although in a different
context, [Dam92] also considers the goal of constructing proofs directly for arbi-
trary circuits. In contrast, the garbled circuit approach can apply directly to any
witness relation and does not require an NP reduction to be used.

Succinctness Transformation. The idea here is to use (leveled) FHE as follows. In
the setup process, generate crs0, kP

0 for a non-compact scheme, and also generate
a key pair for the FHE scheme (hpk, hsk). Place hpk, crs0 and a commitment c
for hsk in the new CRS and hsk, kP

0 and the opening for the commitment c in
the new kP . Now, to prove that x ∈ L using w, encrypt w using the FHE, let ctw
be the encryption. Then consider the ciphertext ct which is the homomorphic
evaluation of V (x, ·) on the ciphertext ctw. The prover will use kP

0 to prove
that when decrypting ct with the hsk committed to by the commitment c, the
outcome is 1. The verifier will calculate ct locally using homomorphic evaluation,
and then will verify the proof using crs0. This guarantees that soundness holds,
up to subtleties like ensuring that any ciphertext ctw, even dishonestly generated,
corresponds to some encrypted value. We note that soundness for DP-NIZK is
easier to show than for NIZK without preprocessing as in [Gen09,GGI+15] since
the homomorphic encryption keys, and commitments thereof, are guaranteed to
be honestly generated.

In terms of succinctness, we only use the underlying scheme to prove state-
ments about the decryption circuit of the FHE scheme, which is independent of
the statement length n, and therefore we would hope that the complexity of V
does not play a role in the parameters of the new scheme. This is not entirely
correct since in leveled FHE, the length of hpk can depend on the depth of V.
However, we note that hpk is reusable, and we can generate many instances
of the proof system with the same hpk. Thus, the parameters contain a part
which may not be succinct but is reusable, and another part that is succinct but
possibly not reusable. This will suffice for our purposes as we see below.

Tree-Based Bootstrapping. The basic idea is to implicitly generate exponentially
many (in the security parameter) single-theorem (crs, kP ) values, so that the
prover can use a fresh value for each new theorem. Of course the verifier will
need a way to retrieve the correct crs and verify that it is indeed one of those
implicit crs values and not some value maliciously chosen by a dishonest prover.
To resolve this issue, we generate additional instances of the single-theorem
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DP-NIZK and use them to prove that the crs values were generated honestly
according to some predetrmined (pseudo)randomness that is given via a PRF.

In more detail, we consider a depth-λ binary tree, where each node is asso-
ciated with an independent instance of the single-theorem DP-NIZK, and all
of those instances are implicitly determined by a PRF seed that generates the
randomness for the DP-NIZK setup algorithm. Every intermediate node is used
in order to prove the (single) statement that the CRS of its two children were
generated honestly according to the PRF seed, and the CRS of the tree-root is
given as part of the CRS of the multi-theorem DP-NIZK. To prove a statement,
the prover randomly chooses one of the tree leaves and uses the corresponding
CRS to generate the proof for the statement. It then provides, in addition, all
of the proofs on the path from the tree root to this leaf, as an evidence that this
leaf indeed appears in the predetermined tree.

Note that the setup algorithm of any node is encoded into the NP relation
that is proved by its parent node, and a non-efficient setup might cause a blow-
up that is exponential with the tree depth. This is where we crucially use the
decomposability of the setup algorithm that was discussed when we described
the succinctness transformation. In the tree construction, we will generate the
reusable-but-not-succinct part of the single-statement CRS once for all of the
nodes in a given level of the tree, and then each node will be associated with a
new instance of the succinct-but-not-reusable part of the single-statement CRS.

The zero-knowledge comes from the zero-knowledge of the single-statement
DP-NIZK (as long as the prover does not choose the same leaf more than once)
and from the pseudorandomness of the PRF seed. In fact, we have to generate a
fresh PRF seed for every level of the tree, and to use the pseudorandomness of
the seed of the ith level to claim that the single-statement DP-NIZK instances of
the ith level are zero-knowledge. We then can claim that the zero-knowledge of
the ith level instances guarantees that the PRF seed of the i+1th level remains
secret since it is only used as a witness, and the proof proceed via 2λ similar
hybrids.

If we only cared about zero-knowledge, we could let the prover sample the
PRF seeds on its own (or even to use real randomness instead of PRF outputs).
But such scheme would not be sound, since the prover can possibly sample a
bad CRS of the single-statement DP-NIZK for which soundness does not hold.
To resolve this issue, during setup we sample a random string r along with the
PRF seeds for all of the tree levels, and publish r and commitments to the seeds.
The prover is then forced to use as “randomness” for the single-statement DP-
NIZK setup the PRF outputs XORed with the truly random string r, where
we enforce this as part of the NP relation that is verified. That is, we require
that the witnesses of all of the proofs along the tree will include the proper
decommitments to the PRF seeds. With this approach the PRF seeds remain
hidden from the verifier due to the hiding of the commitments, so we don’t
compromise zero-knowledge, and in addition the truly random string r restricts
the prover to use as “randomness” for the single-statement DP-NIZK setup only
strings which the marginal distribution of each of them independently is uniform.
We therefore need the underlying single-statement DP-NIZK to be sound for any
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set of 2λ CRS values that were sampled with “randomness” that is randomized
via the same uniform string r. To obtain this, we use the fact that the underlying
single-statement DP-NIZK is statistically sound and therefore its soundness can
be amplified via parallel repetition λ times.

1.4 DP-NIZK, Attribute-Based Signatures and Homomorphic
Signatures

An attribute-based signatures scheme (ABS, [MPR11,BGI13,BF14,BZ14]) is a
digital signature scheme that supports multiple keys with varying permissions,
where signatures do not reveal information about the permissions of the signing
key that was used. A homomorphic signature (HS, [CJL09,BFKW09,GKKR10,
BF11a,BF11b,GVW15]) is a digital signature that supports homomorphic eval-
uations over the signed message, where evaluated signatures should not reveal
information about the message associated with the pre-evaluated signature other
than the result of the function that was computed homomomorphically.

The relation between ABS, HS and NIZK was studied in various works.
[MPR11,BF14,SAH16,SKAH18] show reductions of the form “OWF+NIZK →
ABS”, [KW18] show that “HS → DPNIZK” and [Tsa17] shows that “ABS ↔
HS” for certain types of ABS and HS. Our new DPNIZK construction can be
translated to new ABS and HS constructions as follows.

Attribute-Based Signatures from OWF and DP-NIZK. While we believe that
some of the aforementioned constructions [MPR11,BF14,SAH16,SKAH18] of
ABS from OWF+NIZK can possibly be initialized from OWF+DPNIZK (and
in turn also imply HS from OWF+DPNIZK via [Tsa17]), to the best of our
knowledge a statement of the flavor “OWF+DPNIZK → ABS” does not explic-
itly appear in previous literature, so we briefly describe such a reduction now.

The ABS public key and master secret key are an instance of a standard
signature scheme. To generate an ABS key for a policy f , generate and instance
of DPNIZK and a commitment scheme. Commit to f and use the master secret
key to sign (with a standard signature) the DPNIZK CRS and the commitment
to f . To sign a message x with a constrained key, provide a DPNIZK proof
respective to the instance that appears in the key, proving that “there exists a
valid decommitment for some f such that f(x) = 1”. The commitments scheme
and standard signature schemes can be instantiated from one-way functions.

Attribute-Based Signatures from FHE. Applying the transformation which is
described above to our DPNIZK construction results in an ABS scheme with
the following characteristics:

– Efficiency. The size of public parameters and the master key is some poly(λ)
and in particular independent of the message and policy space, while keys
and signatures grow with the policy size.

– Unforgeability. The unforgeability is based on the statistical soundness of
DPNIZK, the (possibly statistical) binding of the commitment scheme and



664 Z. Brakerski et al.

the unforgeability of the standard signature scheme. Since any ABS is in
particular a standard signature scheme, this is the best possible unforgeability.

– Policy Privacy. The privacy is based on the hiding of the commitment and
on the zero-knowledge of DPNIZK, which in turn relies on the security of the
underlying FHE.

Homomorphic Signatures from FHE. We apply the “ABS → HS” transformation
of [Tsa17] and derive a single-hop HS scheme with the following characteristics:

– Efficiency. The size of public parameters and the master key is some poly(λ)
and in particular independent of the message and policy space. However,
both post-evaluation and pre-evaluation signatures grow with the function
to be computed. That is, when one signs a message they also commit to the
maximal size of functions to be homomorphically-computed over it.

– Unforgeability. Can be based on any OWF.
– Context-Hiding. Relies on the security of the FHE.

DP-NIZK from Attribute-Based Signatures. As mentioned above, the work of
[Tsa17,KW18] implies a derivation of the form “ABS → DPNIZK”. To simplify
and complete the picture, we now briefly describe a direct and simple transfor-
mation. In the setup of the DP-NIZK scheme, sample a symmetric key sk and
initialize the ABS scheme. If V (·, ·) is the verification circuit of the NP relation,
then consider the circuit V ′(·, ·) = V (·,Decsk(·)) and generate an ABS key for
the policy V ′. The secret prover key consists of sk and the ABS key for V ′. To
prove a statement x with a witness w, consider w′ the encryption of w under
key sk and provide an ABS signature for the message (x,w′).

2 Preliminaries

2.1 Notations

For n ∈ N we let [n] denote the ordered set {1, . . . , n}. For a bit-string m ∈
{0, 1}n we let Ud

m denote the universal circuit that takes as input a description
of a circuit f : {0, 1}n → {0, 1} of depth at most d, and outputs f(m). for a
bit-string m ∈ {0, 1}n we let mi denote the ith bit of m.

2.2 Pseudorandom Function (PRF)

Definition 1. A Pseudorandom Function (PRF) is a pair of polynomial-time
algorithms (Setup,Eval) where Setup is randomized and Eval is deterministic,
such that for any ppt adversary A it holds that

∣
∣
∣Pr

[

AEvalk(·)(1λ) = 1
]

− Pr
[

AO(·)(1λ) = 1
]∣
∣
∣ = negl(λ)

where the probability is over k ← Setup(1λ) and the coins of A, and O(·) is a
random function.
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2.3 Collision Resistant Hash Function (CRH)

Definition 2. An efficient function family ensemble H = {Hn,λ : {0, 1}n →
{0, 1}λ}n,λ∈N is a secure collision-resistant hash (CRH) function family if for
any ppt algorithm A and any n, for large enough λ it holds that

Pr
[

x �= y, H(x) = H(y) : H ← Hn,λ, (x, y) ← A(1λ+n,H)
]

= negl(λ).

2.4 Statistically Binding Equivocable Commitments

Definition 3. A commitment scheme (Gen,Commit,Ver) is a tuple of ppt algo-
rithms as follows.

– Gen(1λ, 1n) → crs takes as input a security parameter λ and message length
n, and outputs a common reference string crs.

– Commit(crs,m) → (c, d) takes as input a common reference string crs and a
message m ∈ {0, 1}n, and outputs a commitment c and decommitment d.

– Ver(crs, c,m, d) → {accept, reject} takes as input a common reference string
crs, a commitment c, a message m and a decommitment d, and either accepts
or rejects.

Correctness. A commitment scheme is correct if for every m ∈ {0, 1}n it holds
that

Ver(crs, c,m, d) = accept

where crs ← Gen(1λ, 1n) and (c, d) ← Commit(crs,m).

Statistical Binding. A commitment scheme is statistically binding if for any
sufficiently large λ and any n the following holds

Prcrs←Gen(1λ,1n)

⎡

⎣∃(r,m0,m1, d) :
c := Commit(crs,m0 ; r)
Ver(crs, c,m1, d) = accept

m0 �= m1

⎤

⎦ = negl(λ).

Hiding. A commitment scheme is hiding if for any sufficiently large λ and any
n, for any ppt adversary A and any pair of messages m0,m1 ∈ {0, 1}n it holds
that

|Pr [A(crs, c0) = 1] − Pr [A(crs, c1) = 1]| = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1} and the
probability is over the coins of Gen, Commit and A.

Equivocability. A commitment scheme is equivocable if there exists a ppt sim-
ulator S = (SA,SB) such that for any sufficiently large λ and any n, for any
ppt distinguisher Ψ , any pair of messages m0,m1 ∈ {0, 1}n and any b ∈ {0, 1}
it holds that

|Pr [Ψ(crs, cb, db) = 1] − Pr [Ψ(crs′, c′, d′
b) = 1]| = negl(λ)

where crs ← Gen(1λ, 1n), (cb, db) ← Commit(crs,mb) for b ∈ {0, 1},
(crs′, c′, tdc′) ← SA(1λ, 1n) and d′

b ← SB(crs′, c′, tdc′ ,mb) for b ∈ {0, 1}, and
the probability is over the coins of Gen, Commit, S and Ψ .
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2.5 Garbled Circuits

Definition 4. A garbling scheme for circuits is a tuple of ppt algorithms
(Garble,Eval) with the following syntax.

– Garble(1λ, C) → (C̃, {labi,b}i∈[n],b∈{0,1}) is a probabilistic algorithm that takes
as input a security parameter λ and a boolean circuit C : {0, 1}n → {0, 1},
and outputs a garbled circuit C̃ and 2n labels {labi,b}i∈[n],b∈{0,1}, where each
of the labels is of size λ = poly(λ) for some fixed polynomial poly.

– Eval(C̃, {labi}i∈[n]) → b is a deterministic algorithm that takes as input a
garbled circuit C̃ and n labels {labi}i∈[n], and outputs a bit b ∈ {0, 1}.

Correctness. The scheme is correct if for every circuit C : {0, 1}n → {0, 1},
every input x ∈ {0, 1}n and every

(

C̃, {labi,b}i∈[n],b∈{0,1}
)

← Garble(1λ, C), it
holds that

Eval
(

C̃, {labi,xi
}i∈[n]

)

= C(x).

Security. The scheme is secure if there exists a ppt simulator S such that for
every circuit C : {0, 1}n → {0, 1} and every input x ∈ {0, 1}n it holds that

(

C̃, {labi,xi
}i∈[n]

)

≡λ S
(

1λ, 1|C|, C(x)
)

,

where
(

C̃, {labi,b}i∈[n],b∈{0,1}
)

← Garble(1λ, C) and ≡λ denotes computational
indistinguishability with respect to the security parameter λ.

2.6 Homomorphic Encryption

Definition 5. A leveled fully homomorphicencryption scheme FHE is a tuple
of ppt algorithms (Keygen,Enc,Eval,Dec) with the following syntax.

– Keygen(1λ, 1d) → (pk, sk) is a probabilistic algorithm that takes as input a
security parameter λ and depth d, and outputs a public key pk and secret key
sk.

– Enc(pk,m) → ct is a probabilistic algorithm that takes as input a public key
pk and a message m ∈ {0, 1}∗, and outputs a ciphertext ct.

– Eval(ct, C) → ct′ is a deterministic algorithm that takes as input a cipher-
text ct and a boolean circuit C : {0, 1}∗ → {0, 1}, and outputs an evaluated
ciphertext ct′.

– Dec(sk, ct′) is a deterministic algorithm that takes as input a secret key sk
and an evaluated ciphertext ct′, and outputs a bit b ∈ {0, 1}.
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Correctness. The scheme is correct if for every n, d ∈ N, every message m ∈
{0, 1}n and every circuit C : {0, 1}n → {0, 1} of depth at most d, it hold that

Pr[ (pk, sk) ← Keygen(1λ, 1d),
ct ← Enc(pk,m),
ct′ ← Eval(ct, C),
Dec(sk, ct′) �= C(m) ] = negl(λ),

where the probability is over the coins of Keygen and Enc.

Security. The scheme is secure if for any ppt adversary A, any n ∈ N and any
pair of messages m0,m1 ∈ {0, 1}n, it holds that

|Pr [A (Enc(pk,m0)) = 1] − Pr [A (Enc(pk,m1)) = 1]| = negl(λ)

where pk ← Keygen(1λ, 1d) and the probability is over the coins of Keygen, Enc
and A.

Compactness. The scheme is compact if there exists a polynomial p = p(·) such
that for all security parameters λ and all n, d ∈ N, m ∈ {0, 1}n and C : {0, 1}n →
{0, 1} of depth at most d, for all (pk, sk) ← Keygen(1λ, 1d), the output length of
Eval(m̃, C) is at most p bits long where m̃ ← Enc (pk,m), and the size of sk is
at most p bits.

For our application we need an FHE scheme where the correctness also holds
for maliciously chosen ciphertexts. Formally,

Definition 6 (FHE with correctness for all ciphertexts). An FHE shceme
has correctness for all ciphertexts if for all n, d ∈ N, for every string ct ∈ {0, 1}p

and every circuit C : {0, 1}n → {0, 1} of depth at most d, it holds that

Pr[ (pk, sk) ← Keygen(1λ, 1d),
ct′C ← Eval(ct, C),
ct′I ← Eval(ct, I),
Dec(sk, ct′C) �= C (Dec(sk, ct′I)) ] = negl(λ),

where I is the identity circuit and the probability is over the coins of Keygen.

We now show that any FHE scheme with standard correctness implies a
scheme with correctness for all ciphertexts (which preserves the compactness
property).

Lemma 1. Let FHE = (Keygen,Enc,Eval,Dec) be an FHE scheme with stan-
dard correctness and let PKE = (Keygen,Enc,Dec) be a public-key encryption
scheme. hen there exists an FHE scheme FHE′ = (Keygen′,Enc′,Eval′,Dec′)
with correctness for all ciphertexts.
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Proof. Define FHE′ = (Keygen′,Enc′,Eval′,Dec′) as follows:

– Keygen′(1λ, 1d): Sample (hpk, hsk) ← FHE.Keygen(1λ, 1d′
) and (pk, sk) ←

PKE.Keygen(1λ), then compute s̃k ← FHE.Enc(hpk, sk) and output
(pk′, sk′) := ((hpk, pk, s̃k), hsk) where d′ = poly(d, λ) is the maximal depth
of C ′ as defined in Eval′ below.

– Enc′(pk′,m): Compute and output ct′ := m′ ← PKE.Enc(pk,m).
– Eval′(ct′, C): Define the circuit Cct′(◦) := C(PKE.Dec◦(ct′)). Compute and

output ct′′ := FHE.Eval(s̃k, Cct′).
– Dec′(sk′, ct′): Output FHE.Dec(hsk, ct′).

Fix n, d ∈ N, a string ct′ ∈ {0, 1}p and a circuit C : {0, 1}n → {0, 1} of depth
at most d. Consider (pk′, sk′) ← Keygen′(1λ, 1d), ct′′I ← Eval′(ct′, I) and ct′′C ←
Eval′(ct′, C), then it holds that

ct′′C = FHE.Eval(s̃k, Cct′)

ct′′I = FHE.Eval(s̃k, Ict′)

and therefore

Dec′(sk′, ct′′C) = FHE.Dec(hsk, ct′′C)

= FHE.Dec(hsk,FHE.Eval(s̃k, Cct′))
= Cct′(sk)
= C(PKE.Decsk(ct′))

and

C
(

Dec′(sk′, ct′′I )
)

= C (FHE.Dec(hsk, ct′′I ))

= C
(

FHE.Dec(hsk,FHE.Eval(s̃k, Ict′))
)

= C (Ict′(sk))
= C (PKE.Decsk(ct′)) .

3 Definitions of Designated-Prover NIZK

Definition 7 (DP-NIZK Proofs). A designated-prover non-interactive zero-
knowledge (DP-NIZK) proof ΠDPNIZK for an ensemble of NP languages C ⊆
{C : {0, 1}∗ × {0, 1}∗ → {0, 1}} (where C is a verification circuit and LC =
{x : ∃w C(x,w) = 1} is the NP language determined by C) is defined by a
tuple of ppt algorithms with the following syntax.

– Setup(1λ, params) → (crs, kP ) takes as input the security parameter λ and
possibly some parameters params of C (e.g. the maximal circuit depth), and
outputs a common reference string crs and a proving key kP .

– Provecrs(C, kP , x, w) → π takes as input a common reference string crs, a
circuit C ∈ C, a proving key kP , a statement x and a witness w. It outputs a
proof π.



FHE-Based Bootstrapping of Designated-Prover NIZK 669

– Verifycrs(C, x, π) → {0, 1} takes as input a common reference string crs, a
circuit C ∈ C, a statement x and a proof π, and either accepts (with output
1) or rejects (with output 0) the proof.

Moreover, ΠDPNIZK should satisfy the following properties:

(Perfect) Completeness. For all sufficiently large λ, for all circuits C ∈ C, for
all pairs (x,w) for which C(x,w) = 1 and for all (crs, kP ) ← Setup(1λ, params),
it holds that

Pr [Verifycrs (C, x,Provecrs(C, kP , x, w)) = 1] = 1.

(Statistical) Soundness. For all sufficiently large λ and for all C ∈ C it holds
that

Prcrs←Setup(1λ,params) [∃(x, π) : x /∈ LC ∧ Verifycrs(C, x, π) = 1] = negl(λ).

(Programmable CRS) Zero-Knowledge. For all ppt adversaries A there exists a
ppt simulator S = (S1,S2) such that

∣
∣
∣Pr

[

AProvecrs(·,kP ,·,·) (crs) = 1
]

− Pr
[

AO(·,crs′,τ,·,·) (crs′) = 1
]∣
∣
∣ = negl(λ),

where (crs, kP ) ← Setup(1λ, params), (crs′, τ) ← S1(1λ, params) and

O(C, crs′, τ, x, w) =
{S2(C, crs′, τ, x) C(x,w) = 1

⊥ o.w.
,

and the probability is over the coins of A,S,Setup,Prove. We also consider the a
relaxed notion of single-statement zero knowledge, in which the (programmable
CRS) zero-knowledge condition holds only for adversaries A that make at most
a single query to the oracle.

We sometimes require the following additional property.

Efficient Setup. A DP-NIZK proof system is efficient if for all λ there exists a
p = poly(λ) such that for all params, the complexity of Setup(1λ, params) is p
(and in particular does not depend on params).

3.1 Single-Statement Global-Setup DP-NIZK Proofs

Definition 8 (Single-Statement Global-Setup DP-NIZK Proofs). A
single-statement global-setup DP-NIZK proof Π1DPNIZK for an ensemble of NP
languages C ⊆ {C : {0, 1}∗ × {0, 1}∗ → {0, 1}} (where C is a verification circuit
and LC = {x : ∃w C(x,w) = 1} is the NP language determined by C) is
defined by a tuple of ppt algorithms with the following syntax.

– GlobalSetup(1λ, params) → (crs,msk) takes as input the security parameter λ
and possibly some parameters params of C (e.g. the maximal circuit depth),
and outputs a common reference string crs and a master secret key msk.
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– Setupcrs(msk) → (pk, kP ) takes as input a common reference string crs and a
master secret key msk, and outputs a public key pk and a proving key kP .

– Provecrs(C, (pk, kP ), x, w) → π takes as input a common reference string crs, a
circuit C ∈ C, a public key pk, a proving key kP , a statement x and a witness
w. It outputs a proof π.

– Verifycrs(C, pk, x, π) → {0, 1} takes as input a common reference string crs,
a circuit C ∈ C, a public key pk, a statement x and a proof π, and either
accepts (with output 1) or rejects (with output 0) the proof.

Moreover, Π1DPNIZK should satisfy the following properties:

(Perfect) Completeness. For all sufficiently large λ, for all C ∈ C and for all
pairs (x,w) for which C(x,w) = 1, it holds that

(crs,msk) ← GlobalSetup(1λ, params);
(pk, kP ) ← Setupcrs(msk);
π ← Provecrs(C, (pk, kP ), x, w);
Verifycrs (C, pk, x, π) = 1.

(Statistical) Soundness. For all sufficiently large λ, for all C ∈ C and for all
(crs,msk) ← GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) : x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

= negl(λ).

(Statistical) ε-Soundness. We also define a generalized notion of soundness
as follows. For all sufficiently large λ, for all C ∈ C for all (crs,msk) ←
GlobalSetup(1λ) it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) :
x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

= ε(λ).

(Programmable CRS) Single-Statement Zero-Knowledge. For all ppt adver-
saries A there exists a ppt simulator S = (S1,S2) such that

∣
∣
∣Pr

[

A{pki}←Setupcrs(msk) , Provecrs(·,pki,ki
P ,·,·) (crs) = 1

]

− Pr
[

A{pki}←O1 , O2(·,pki,·,·) (crs) = 1
] ∣
∣
∣ = negl(λ),

where
O1 = (pki, τ i) ← S1(crs); Output pki;

and

O2(C, pki, x, w) =
{S2(crs, C, pki, τ i, x) C ∈ C ∧ C(x,w) = 1

⊥ o.w.
,

the probability is over the coins of A,S,Setup,Prove and crs ←
GlobalSetup(1λ, params), and for every i the adversary A makes at most a single
query of the form Provecrs(·, pki, ki

P , ·, ·).
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Efficiency. For all λ there exists a p = poly(λ) such that for all params and all
(crs,msk) ← GlobalSetup(1λ, params), the complexity of Setupcrs(msk) is p (and
in particular does not depend on params).

Remark 2. A global-setup DP-NIZK can be viewed as a generalization of stan-
dard DP-NIZK in the following manner. When the algorithm GlobalSetup is
trivial (i.e. when it outputs crs = msk = 1λ), then the tuple of algorithms
(Setup,Prove,Verify) qualify as a DP-NIZK proof system with efficient setup
and single-statement zero-knowledge.

Remark 3. Every 1DPNIZK with standard statistical soundness can be amplified
to 1DPNIZK with statistical ε-soundness for any ε = 1

2poly(λ) via parallel compo-
sition of Setup,Prove,Verify for log

(
1
ε

)

= poly(λ) times. The single-statement
zero-knowledge simulator of the amplified proof system is derived via parallel
composition of the simulator of the underlying 1DPNIZK proof system.

4 Our Construction

4.1 Single-Statement Global-Setup DP-NIZK from FHE

Theorem 1. Assuming the existence of the following building blocks, for every
d ∈ N there exists a single-statement global-setup DP-NIZK proof system as in
Definition 8 for the ensemble Cd of NP relations that are verifiable by circuits
C of depth at most d.

1. A leveled fully-homomorphic scheme FHE = (Keygen,Enc,Eval,Dec) with
correctness for all ciphertexts as in Definitions 5 and 6. For every λ let
p = poly(λ) denote the size of FHE evaluated-ciphertexts and secret-keys
as described in the “compactness” section of Definition 5.

2. A garbing scheme GC = (Garble,Eval) as in Definition 4 where each label is
of size λ = poly(λ) bits.

3. A statistically-binding equivocable commitment scheme SBCS = (Gen,
Commit,Ver) as in Definition 3.

In the rest of this section we prove Theorem 1. We let params = d be the depth
bound of circuits in Cd.

Construction 9 (Single-Statement Global-Setup DP-NIZK).

– GlobalSetup(1λ, 1d):
1. Compute (hpk, hsk) ← FHE.Keygen(1λ, 1d).
2. Output crs := hpk and msk := hsk.

– Setupcrs(msk):
1. Parse msk = hsk and let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that

has hsk hard-wired in it, takes as input an FHE evaluated-ciphertext ct,
and decrypts ct with hsk. Compute

(

D̃hsk, {labi,b}i∈[p],b∈{0,1}
)

← GC.Garble
(

1λ,Dhsk

)

.
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2. For i ∈ [p] and b ∈ {0, 1} compute crsi,b ← SBCS.Setup(1λ, 1λ) and
(ci,b, di,b) ← SBCS.Commit(crsi,b, labi,b).

3. Output

pk :=
(
D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}

)
, kP := {labi,b, di,b}i∈[p],b∈{0,1} .

– Provecrs(C, (pk, kP ), x, w):
1. If C /∈ Cd or C(x,w) �= 1 then output ⊥.
2. Encrypt ctw ← FHE.Enchpk(w).
3. Let C ′

x be the circuit Cx(◦) := C(x, ◦) and compute homomorphically

ctb ← FHE.Evalhpk(ctw, Cx).

4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Output

π :=
(

ctw, {labi,˜bi
, di,˜bi

}i∈[p]

)

.

– Verifycrs(C, pk, x, π):
1. Parse crs = hpk, pk =

(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{labi, di}i∈[p]

)

.
2. Compute ctb ← FHE.Evalhpk(ctw, Cx) (where Cx is as defined above).
3. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb. Verify

the label decommitments: for i ∈ [p] compute

SBCS.Ver
(

crsi,˜bi
, ci,˜bi

, labi, di

)

,

if any of those verifications fail then output 0 (reject).
4. Compute and output GC.Eval

(

D̃sk, {labi}i∈[p]

)

.

Proof of Completeness. Fix λ, d, C, x, w where C ∈ Cd and C(x,w) = 1. Consider

(crs,msk) ← GlobalSetup(1λ, 1d),

(pk, kP ) ← Setupcrs(msk),

π ← Provecrs(C, (pk, kP ), x, w).

Parse crs = hpk, pk =
(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{labi, di}i∈[p]

)

.
Consider the execution of Verifycrs (C, pk, x, π). Since FHE.Eval is determin-

istic, the value ctb that is computed in Prove and in Verify is identical. Therefore
the correctness of SBCS implies that all of the decommitment verifications in
step (3) of Verify pass. Moreover, due to the correctness of FHE it holds that

FHE.Dechsk(ctb) = FHE.Dechsk (FHE.Evalhpk(ctw, Cx))
= FHE.Dechsk (FHE.Evalhpk(FHE.Enchpk(w), Cx))
= Cx(w) = C(x,w) = 1,

and the correctness of GC implies that the output in step (4) of Verify is
FHE.Dechsk(ctb) = 1. �
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Proof of Soundness. Fix λ, d ∈ N, C ∈ Cd and (crs,msk) ← GlobalSetup(1λ, 1d),
and consider the random variable pk ← Setupcrs(msk). Assume that there exist
(x, π) such that x /∈ LC and Verifycrs(C, pk, x, π) = 1.

Parse crs = hpk, pk =
(

D̃hsk, {crsi,b, ci,b}i∈[p],b∈{0,1}
)

and π = (ctw,

{lab′
i, d′

i}i∈[p]

)

, and recall that the values in the pk were computed as follows
(

D̃hsk, {labi,b}i∈[p],b∈{0,1}
)

← GC.Garble
(

1λ,Dhsk

)

and
∀i ∈ [p] : (ci,b, di,b) ← SBCS.Commit(crsi,b, labi,b).

Let ctb ← FHE.Evalhpk(ctw, Cx) be the value that is computed during Verify and
for i ∈ [p] let b̃i denote the ith bit of ctb.

Assume towards contradiction that for all i ∈ [p] it holds that lab′
i = labi,˜bi

,
then by the correctness of GC and FHE, and since Verify outputs 1, it holds that

1 = GC.Eval
(

D̃hsk, {lab′
i}i∈[p]

)

= GC.Eval
(

D̃hsk, {labi,˜bi
}i∈[p]

)

= FHE.Dechsk(ctb)
= FHE.Dechsk (FHE.Evalhpk(ctw, Cx))
= Cx (FHE.Dechsk(FHE.Evalhpk(ctw, I)))
= C (x,FHE.Dechsk(FHE.Evalhpk(ctw, I))) ,

and therefore the string w := FHE.Dechsk(FHE.Evalhpk(ctw, I)) satisfies
C(x,w) = 1, with contradiction to the assumption that x /∈ LC .

Therefore, it must be the case that there exists some j ∈ [p] for which lab′
j �=

labj,˜bj
. Since all of the verifications in step (3) of Verify pass successfully, it in

particular holds that

SBCS.Ver
(

crsj,˜bj
, cj,˜bj

, lab′
j , d

′
j

)

= 1.

Therefore, denoting crs∗ := crsj,˜bj
, m∗

0 := labj,˜bj
, m∗

1 := lab′
j and d∗ := d′

j , and
letting r∗ be the randomness used during pk ← Setupcrs(msk) when computing
cj,˜bj

← SBCS.Commit(crsj,˜bj
, labj,˜bj

; r∗), it holds that

Prpk←Setupcrs(msk)

[

∃(x, π) : x /∈ LC

Verifycrs(C, pk, x, π) = 1

]

≤

Prcrs∗←SBCS.Setup(1λ,1λ)

⎡

⎣∃(r∗,m∗
0,m

∗
1, d

∗) :
c∗ ← SBCS.Commit(crs∗,m∗

0 ; r∗)
m∗

0 �= m∗
1

SBCS.Verify (crs∗, c∗,m∗
1, d

∗) = 1

⎤

⎦

= negl(λ)

where the last equation is due to the binding of SBCS. �
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Proof of Single-Statement Zero-Knowledge. Let SBCS.S = (SBCS.SA,SBCS.SB)
be the equivocability simulator of SBCS and let GC.S be the simulator of the gar-
bling scheme. Define the single-statement zero-knowledge simulator S = (S1,S2)
as follows:

– S1(crs):
1. Set hsk := 0p , where p is the upper-bound on the size of FHE secret-keys

and evaluated ciphertexts, as in Definition 5.
2. Let Dhsk : {0, 1}p → {0, 1} be the boolean circuit that has hsk hard-wired

in it, takes as input an FHE evaluated-ciphertext ct, and decrypts ct with
hsk. Compute

(

D̃hsk, {labi}i∈[p]

)

← SGC

(

1λ, 1|Dhsk|, 1
)

.

3. For i ∈ [p] and b ∈ {0, 1} compute
(

crsi,b, ci,b, td
c
i,b

) ← SBCS.SA(1λ, 1λ).
4. Set

pk :=
(

D̃hsk, {ci,b}i∈[p],b∈{0,1}
)

, τ :=
({labi}i∈[p], {tdc

i,b}i∈[p],b∈{0,1}
)

.

– S2(crs, C, pk, τ, x):
1. Parse crs = hpk, pk =

(

D̃hsk, {ci,b}i∈[p],b∈{0,1}
)

and τ =
({labi}i∈[p],

{tdc
i,b}i∈[p],b∈{0,1}

)

.
2. Encrypt ctw ← FHE.Enchpk(0k), where k is the bit-length of witnesses as

determined by C.
3. Compute homomorphically ctb ← FHE.Evalhpk(ctw, Cx), where Cx is the

circuit Cx(◦) := C(x, ◦).
4. Note that ctb ∈ {0, 1}p. For i ∈ [p] let b̃i denote the ith bit of ctb and

compute
di ← SBCS.SB

(

crsi,˜bi
, ci,˜bi

, tdc
i,˜bi

, labi

)

5. Output
π :=

(

ctw, {labi, di}i∈[p]

)

.

We now prove indistinguishability via a sequence of hybrids:

Hybrid H0. The real Setup,Prove algorithms.

Hybrid H1. We change the way that the values {crsi,b, ci,b}i∈[p],b∈{0,1} and
{di,˜bi

}i∈[p] are computed in Setup and Prove respectively:

1. In Setup, for i ∈ [p] and b ∈ {0, 1} compute
(

crsi,b, ci,b, td
c
i,b

) ←
SBCS.SA(1λ, 1λ).

2. In Prove, for i ∈ [p] compute

di ← SBCS.SB
(

crsi,˜bi
, ci,˜bi

, tdc
i,˜bi

, labi,˜bi

)

.

Hybrids H1 and H0 are computationally indistinguishable due to the equivoca-
bility of SBCS.
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Hybrid H2. Note that in Hybrid H1 the values {labi,˜bi
}i∈[p] are only used during

Prove, and the other p GC labels are never used. In this hybrid we change the
way that the values D̃hsk and {labi,˜bi

}i∈[p] are computed in Setup and Prove
respectively:

1. In Setup, compute
(

D̃hsk, {labi}i∈[p]

)

← SGC

(

1λ, 1|Dhsk|, 1
)

.

2. In Prove, for i ∈ [p] set labi,˜bi
:= labi and proceed as in the previous hybrid.

Hybrids H2 and H1 are computationally indistinguishable due to the security of
GC.

Hybrid H3. Note that in Hybrid H2 the value hsk is only used when computing
the FHE ciphertext ctw in Prove. In this hybrids we change the way that ctw is
computed: Encrypt ctw ← FHE.Enchpk(0k), where k is the bit-length of witnesses
as determined by C. Hybrids H3 and H2 are computationally indistinguishable
due to the security of FHE.

Note that this hybrid is identical to the simulators S1,S2. �

Efficiency. Fix λ and note that by the compactness of FHE, there exists some
p = poly(λ) such that for all params = d and (hpk, hsk) ← FHE.Keygen(1λ, 1d),
the size of FHE evaluated-ciphertexts and hsk is at most p. Denote (crs,msk) =
(hpk, hsk) and note that the running time of Setupcrs(msk) is bounded by
some p′ = poly(p, λ) = poly(λ), i.e. for all params = d and all (crs,msk) ←
GlobalSetup(1λ, 1d), the complexity of Setupcrs(msk) is at most p′.

4.2 DP-NIZK from Single-Statement Global-Setup DP-NIZK

Theorem 2. Assuming the existence of the following building blocks, for every
d ∈ N there exists a DPNIZK proof system as in Definition 7 for the ensemble Cd

of NP relations that are verifiable by circuits C of depth at most d.

1. A pseudo-random function PRF = (Setup,Eval) where w.l.o.g. for every k ←
PRF.Setup(1λ) it holds that k ∈ {0, 1}λ.

2. A single-statement global-setup DPNIZK proof system 1DPNIZK =
(GlobalSetup,Setup,Prove,Verify) for {Cd}d, where w.l.o.g. for every
(crs,msk) ← 1DPNIZK.GlobalSetup(1λ, 1d) it holds that the randomness used
by 1DPNIZK.Setupcrs(msk) is of size � = poly(λ), the size of msk is some
p = poly(λ) and the scheme satisfies (2λ−�, λ)-soundness.

3. A statistically-binding commitment scheme SBCS = (Gen,Commit,Ver) as in
Definition refdef:comm.

In the rest of this section we prove Theorem 2.
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Construction 10 (DP-NIZK from 1-DP-NIZK).

– Setup(1λ, 1d):
1. For i = 0, . . . , λ compute (crs′i,msk′

i) ← 1DPNIZK.GlobalSetup(1λ, 1d′
i)

where d′
i is defined in the paragraph bellow.

2. Sample r
$← {0, 1}� and for i ∈ [λ] sample ki ← PRF.Setup(1λ).

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗
i , d

∗
i ) ←

SBCS.Commit(crs∗, (msk′
i, ki)).

4. Sample
(

pk∅, k∅
P

)

← 1DPNIZK.Setupcrs′0(msk′
0).

5. Output crs := ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r) and kP :=
({msk′

i}i=0,...,λ, {ki, d
∗
i }i∈[λ], k

∅
P

)

.
– Provecrs(C, kP , x, w):

1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r) and kP =
({msk′

i}i=0,...,λ, {ki, d
∗
i }i∈[λ], k

∅
P

)

.
2. Sample m

$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m
(i.e. mi = m1m2 . . . mi). In particular denote m0 = ∅ and mλ = m.

3. For i = 0, . . . , λ − 1 do:
(a) For b ∈ {0, 1} compute

rmi‖b := r ⊕ PRF.Evalki+1(m
i‖b)

and sample a 1-DPNIZK instance respective to (crs′i+1,msk′
i+1) with

rmi‖b as randomness:
(

pkmi‖b, k
mi‖b
P

)

:= 1DPNIZK.Setupcrs′i+1
(msk′

i+1 ; rmi‖b).

(b) Let C ′
i be the relation that takes as a statement a pair (◦0, ◦1) and as

a witness a 3-tuple (•0, •1, •2), and outputs 1 iff

SBCS.Ver
(

crs∗, c∗
i+1, (•0, •1), •2

)

= accept ∧
∀b ∈ {0, 1}, ◦b = 1DPNIZK.Setupcrs′i+1

(•0 ; r ⊕ PRF.Eval•1(m
i‖b)

)

.

Compute

πmi ← 1DPNIZK.Provecrs′i

(

C ′
i, (pk

mi

, kmi

P ),

(pkmi‖0, pkmi‖1), (msk′
i+1, ki+1, d

∗
i+1)

)

.

4. Compute

πm ← 1DPNIZK.Provecrs′λ (C, (pkm, km
P ), x, w) .

5. Output π :=
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.
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– Verifycrs(C, x, π):
1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and π =

(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.
2. For i = 0, . . . , λ − 1 compute

1DPNIZK.Verifycrs′i

(

C ′
i, pk

mi

, (pkmi‖0, pkmi‖1), πmi
)

and if it rejects (outputs 0) then reject (output 0).
3. Compute and output

1DPNIZK.Verifycrs′λ (C, pkm, x, πm) .

Choice of Parameters. Note that by the efficiency of 1DPNIZK there is
some fixed polynomial p = p(λ) such that for all λ, d and (crs′,msk′) ←
1DPNIZK.GlobalSetup(1λ, 1d) the complexity of 1DPNIZK.Setupcrs′(msk′) is p.
Therefore, there is some fixed polynomial p′ = poly(λ, p) = poly(λ) such that
for all λ, d and (crs, kP ) ← Setup(1λ, 1d), the complexity of {C ′

i}i (the circuits
defined in step (b) of Provecrs(·, kP , ·, ·)) is at most p′. It follows that there is also
some d′′ = poly(λ) such that for all λ, d and (crs, kP ) ← Setup(1λ, 1d), the depth
of {C ′

i}i is at most d
′′
. For i < λ we set d′

i := d
′′

and for i = λ we set d′
λ := d.

Proof of Completeness. Fix λ, d, C, x, w where C is of depth at most d and
C(x,w) = 1. Consider (crs, kP ) ← Setup(1λ, 1d) and π ← Provecrs(C, kP , x, w).
Parse

crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r),

π =
(

{pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

Consider the execution of Verifycrs (C, x, π). For i = 0, . . . , λ − 1 it holds that

C ′
i

(

(pkmi‖0, pkmi‖1), (msk′
i+1, ki+1, d

∗
i+1)

)

= 1

and therefore 1DPNIZK.Verifycrs′i

(

C ′
i, (pk

mi‖0, pkmi‖1), πmi
)

= 1.
Moreover, since C(x,w) = 1, it holds that 1DPNIZK.Verifycrs′λ

(C, x, πm) = 1. �
Proof of (Statistical) Soundness.
Notation. For any fixed pair (crs′,msk′) ← 1DPNIZK.Global.Setup(1λ, params) we
divide the space {0, 1}� into “good randomness” and “bad’ randomness”, where
a string s′ ∈ {0, 1}� is “bad randomness” respective to (crs′,msk′) if it breaks its
soundness, i.e. if

∃(C, x, π) : x /∈ LC ∧ 1DPNIZK.Verifycrs′(C, pk′, x, π) = 1

where pk′ ← 1DPNIZK.Setupcrs′(msk′ ; s′), and otherwise s′ is “good random-
ness”.

The following lemma follows immediately from the ε-soundness of 1DPNIZK
if ε(λ) = 2−λ · negl(λ):
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Lemma 2 For every pair (crs′,msk′) ← 1DPNIZK.Global.Setup(1λ, 1d) and
every set S ⊂ {0, 1}� of size at most 2λ,

Pr
r

$←{0,1}�
[∃s ∈ S, s ⊕ r is bad randomness respective to (crs′,msk′)] = negl(λ).

We now proceed with the proof of soundness. Fix λ, d and a circuit C ∈ Cd.
Consider the random variable crs ← Setup(1λ, 1d) and the corresponding circuits
{C ′

i}i=0,...,λ−1 as described in step (b) of Provecrs. Parse

crs = ({crs′i}i=0,...,λ, crs∗, {c∗
i }i∈[λ], pk

∅, r)

and recall that crs′i was computed as
(

crs′i,msk′
i

) ← 1DPNIZK.GlobalSetup

(1λ, 1d′
i) and r

$← {0, 1}�. Moreover, the values {c∗
i }i∈[λ] were compute as

(c∗
i , d

∗
i ) ← SBCS.Commit(crs∗, (msk′

i, ki))

where crs∗ ← SBCS.Gen(1λ, 1p+λ) and ki ← PRF.Setup(1λ).
For all i ∈ [λ] consider the set of strings Si := {PRF.Evalki

(mi)}mi∈{0,1}i .
Then due to Lemma 2, it holds that

Pr
r

$←{0,1}�
[∃s ∈ Si, s ⊕ r is bad randomness respective to (crs′i,msk′

i)] = negl(λ).

(1)

Assume that there exist (x, π) such that x /∈ LC and Verifycrs(C, x, π) = 1. Parse

π =
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

– Assume that there exists some j ∈ [λ] such that the value pkmj−1
(as appears

in π) was computed “honestly” and the value pkmj

(as appears in π) wasn’t
computed “honestly”, i.e. assume that

pkmj−1
=

{

1DPNIZK.Setupcrs′j−1
(msk′

j−1 ; r ⊕ PRF.Evalkj−1(m
j−1)) j − 1 > 0

1DPNIZK.Setupcrs′0(msk′
0 ; s

$← {0, 1}�) j − 1 = 0

and
pkmj �= 1DPNIZK.Setupcrs′j (msk′

j ; r ⊕ PRF.Evalkj
(mj)).

Due to soundness of 1DPNIZK respective to (crs′j−1,msk′
j−1) and

pkmj−1
(which holds with all but negl. prob due to Eq. (1)), and

since we assume that Verifycrs(C, x, π) = 1 and in particular that
1DPNIZK.Verifycrs′j−1

(

C ′
j−1, pk

mj−1
, (pkmj−1‖0, pkmj−1‖1), πmj−1

)

= 1, with
all but negl. prob, there exists a a string ŵj−1 such that

C ′
j−1

(

(pkmj−1‖0, pkmj−1‖1), ŵj−1

)

= 1. (2)
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Parse ŵj−1 = (m̂skj , k̂j , d̂
∗
j ), then Eq. (2) in particular means that

pkmj

= 1DPNIZK.Setupcrs′j (m̂skj ; r ⊕ PRF.Evalk̂j
(mj)).

Since we assume that pkmj

wasn’t generated honestly, i.e. that

pkmj �= 1DPNIZK.Setupcrs′j (msk′
j ; r ⊕ PRF.Evalkj

(mj)),

it follows that (m̂skj , k̂j) �= (msk′
j , kj). However, Eq. (2) also implies that

SBCS.Ver
(

crs∗, c∗
j , (m̂skj , k̂j), d̂∗

j

)

= accept,

and therefore the decommitment d̂∗
j breaks the soundness of SBCS respec-

tive to (crs∗, c∗
j ) and the pair of messages (msk′

j , kj) and (m̂skj , k̂j). Since the
soundness of SBCS respective to (crs∗, c∗

j ) holds with all but negligible prob-

ability, it follows that the probability that pkmj−1
was computed “honestly”

and pkmj

wasn’t computed “honestly” is negligible.

Since for j − 1 = 0 the value pkmj−1
is always generated honestly during Setup,

an inductive argument implies that with all but negligible probability all of the
values pk∅, pkm1

, . . . , pkmλ−1
, pkm ∈ π were generated honestly.

Lastly, the soundness of 1DPNIZK respective to (crs′λ,msk′
λ) and pkm implies

that with all but negligible probability there is no (x,C, πm) such that

x /∈ LC ∧ 1DPNIZK.Verifycrs′λ (C, pkm, x, πm) = 1.

�

Proof of (Programmable CRS) Zero-Knowledge. Let 1DPNIZK.S = (S1,S2) be
the single-statement zero-knowledge simulator of 1DPNIZK and define the zero-
knowledge simulator S = (S1,S2) as follows:

– S1(1λ):
1. For i = 0, . . . , λ compute (crs′i,msk′

i) ← 1DPNIZK.GlobalSetup(1λ, 1d′
i).

2. Sample r
$← {0, 1}�.

3. Compute crs∗ ← SBCS.Gen(1λ, 1p+λ) and for i ∈ [λ] sample (c∗
i , d

∗
i ) ←

SBCS.Commit(crs∗, 0p+λ).
4. Compute (pk∅, τ∅) ← 1DPNIZK.S1(crs′0).
5. Output crs := ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and τ := τ∅.

– S2(C, crs, τ, x):
1. Parse crs = ({crs′i}i=0,...,λ, crs∗, {c∗

i }i∈[λ], pk
∅, r) and τ = τ∅.

2. Compute m
$← {0, 1}λ and for i ∈ [λ] let mi denote length-i prefix of m

(i.e. mi = m1m2 . . . mi). In particular denote m0 = ∅ and mλ = m.
3. For i = 0, . . . , λ − 1 do:
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(a) For b ∈ {0, 1} compute

(pkmi‖b, τmi‖b) ← 1DPNIZK.S1(crs′i+1).

(b) Compute

πmi ← 1DPNIZK.S2

(

crs′i, C
′
i, pk

mi

, τmi

, (pkmi‖0, pkmi‖1)
)

.

4. Compute
πm ← 1DPNIZK.S2 (crs′λ, C, pkm, τm, x) .

5. Output π :=
(

m, {pkmi‖b}i=0,...,λ−1,b∈{0,1}, {πmi}i=0,...,λ

)

.

We now prove indistinguishability via a sequence of 2 + 3λ hybrids:

Hybrid H0. The real Setup,Prove algorithms.
For i = 0, . . . , λ − 1 we define the hybrids {Hi,j}j∈[3] and consider the

sequence

H0, (H0,1,H0,2,H0,3), (H1,1,H1,2,H1,3), . . . , (Hλ−1,1,Hλ−1,2,Hλ−1,3),Hλ.

Hybrid Hi,1. Note that in the previous hybrid, 1DPNIZK public-keys respective
to crs′i are sampled with real randomness, and msk′

i is not used elsewhere. We
therefore can simulate them and proofs respective to them. Formally, we change
the way that values of the form pkmi−1‖b and πmi

are generated:

– If i = 0, change the way that pk∅ is generated during Setup:

(pk∅, τ∅) ← 1DPNIZK.S1(crs′0).

If i > 0, change the way that pkmi−1‖b is generated during the (i − 1)th
iteration of Step (3) of Prove:

(pkmi−1‖b, τmi−1‖b) ← 1DPNIZK.S1(crs′i).

– Change the way that πmi

is generated during the ith iteration of Step (3) of
Prove:

πmi ← 1DPNIZK.S2

(

crs′i, C
′
i, pk

mi

, τmi

, (pkmi‖0, pkmi‖1)
)

.

Hybrids Hi−1,3 and Hi,1 are indistinguishable due to the single-statement zero-
knowledge of 1DPNIZK respective to crs′i.

Hybrid Hi,2. Note that in the previous hybrid, the value d∗
i+1 is never used. In

this hybrid we change the way that the commitment c∗
i+1 is computed:

(c∗
i+1, d

∗
i+1) ← SBCS.Commit(crs∗, 0p+λ).

Hybrids Hi,1 and Hi,2 are indistinguishable due to the hiding of SBCS.
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Hybrid Hi,3. Note that in the previous hybrid, the value ki+1 is only used when
computing

rmi‖b := r ⊕ PRF.Evalki+1(m
i‖b)

during Prove. In this hybrid we sample instead rmi‖b $← {0, 1}�. Hybrids Hi,2

and Hi,3 are indistinguishable due to the pseudorandomness of PRF.

Hybrid Hλ. Note that in the previous hybrid (Hλ−1,3), 1DPNIZK public-keys
respective to crs′λ are sampled with real randomness, and msk′

λ is not used else-
where.

Moreover, the values m which are used by the prover when answering proof
queries are sampled uniformly at random from {0, 1}λ. Since the adversary is
allowed to make at most a polynomial number of queries, with all but negligible
probability the prover does not sample the same m for two different proof queries.
In that case, for every pkm that is sampled respective to crs′λ, the prover generates
at most a single proof.

We therefore can simulate those proofs with the single-statement zero-
knowledge simulator of 1DPNIZK. Formally, we change the way that values of
the form pkm and πm are generated:

– Change the way that pkm is generated during the (λ − 1)th iteration of Step
(3) of Prove:

(pkm, τm) ← 1DPNIZK.S1(crs′λ).

– Change the way that πm is generated during Step (4) of Prove:

πm ← 1DPNIZK.S2 (crs′λ, C, pkm, τm, x) .

Hybrids Hλ−1,3 and Hλ are indistinguishable due to the single-statement zero-
knowledge of 1DPNIZK respective to crs′λ. This hybrid is identical to the simu-
lator, which completes the proof. �
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Abstract. We investigate the complexity of problems that admit perfect
zero-knowledge interactive protocols and establish new unconditional
upper bounds and oracle separation results. We establish our results by
investigating certain distribution testing problems: computational prob-
lems over high-dimensional distributions represented by succinct Boolean
circuits. A relatively less-investigated complexity class SBP emerged as
significant in this study. The main results we establish are:

(1) A unconditional inclusion that NIPZK ⊆ CoSBP.
(2) Construction of a relativized world in which there is a distribution

testing problem that lies in NIPZK but not in SBP, thus giving a
relativized separation of NIPZK (and hence PZK) from SBP.

(3) Construction of a relativized world in which there is a distribution
testing problem that lies in PZK but not in CoSBP, thus giving a
relativized separation of PZK from CoSBP.

Results (1) and (3) imply an oracle separating PZK from NIPZK. Our
results refine the landscape of perfect zero-knowledge classes in relation
to traditional complexity classes.

1 Introduction

The notion of zero-knowledge interactive proof was introduced in the semi-
nal work of Goldwasser, Micali, and Rackoff. Since their introduction, zero-
knowledge proofs have played a central role in the development of the foundations
of cryptography [18]. Informally, it is a protocol between two parties, a prover
and a verifier, where the prover wants to establish possession of certain knowl-
edge without revealing the knowledge itself. Goldwasser, Micali, and Rackoff
formalized this intuitive notion using the language of computational complexity
theory. It is formalized as follows. A language or a promise problem L admits
an interactive proof if there is a computationally unbounded prover P and a
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randomized polynomial-time verifier V such that for a positive instance x, V
after interacting with P accepts x with high probability. On the other hand, for
a negative instance x for any prover P ∗, the verifier V after interacting with P ∗

accepts x with low probability. The protocol is a statistical zero-knowledge pro-
tocol if for positive instances, the interaction between P and V can be simulated
by a randomized polynomial time simulator S so that the output distribution
of the simulator is statistically close to the distribution of the interaction. The
intuition is that the interaction itself can be simulated efficiently (in randomized
polynomial-time) and hence the verifier is not gaining any additional knowledge
other than what she can simulate by herself. The class of problems that admit
statistical zero-knowledge interactive proofs is denoted by SZK. An important
restriction is when the output distribution of the simulator is identical to the
distribution of the interaction. Such a protocol is called a perfect zero-knowledge
protocol, and the corresponding class of languages is denoted by PZK [17]. It is
also possible to envision a non-interactive situation where the only communica-
tion in the protocol is from the prover to the verifier. Indeed, Blum, Feldman
and Micali [6] and De Santis et al. [7] investigated such non-interactive zero-
knowledge proofs and introduced the class NISZK. The corresponding perfect
zero-knowledge class NIPZK was first investigated by Malka [21].

Zero-knowledge proofs and corresponding classes have played a key role in
bridging computational complexity theory and cryptography. Several computa-
tionally hard problems that are not known to be NP-complete, including Graph
Isomorphism, Quadratic Residuosity, and certain lattice problems, admit zero-
knowledge proofs (some non-interactive and some perfect zero-knowledge) [12–
14,23]. Also, several cryptosystems are based on the computational hardness of
some of these problems. While these problems are computationally hard in the
sense that they lack efficient algorithms, it is interesting that they are unlikely
to be NP-complete. Establishing the relationships among zero-knowledge classes
and proving traditional complexity class (such as PP and sub-classes of the Poly-
nomial Hierarchy) upper bounds for them continues to be a research focus in
complexity theory and cryptography [3,11,22,24]. While there are a few uncondi-
tional upper bound results, most of the results establish the hardness of proving
upper bounds in the form of oracle results. We briefly discuss them below.

Unconditional Upper Bounds: Two main early upper bound results are that
SZK is closed under complement [22,24] and SZK is upper bounded by AM ∩
coAM [3,11,22,24]. The latter result implies that NP-complete problems cannot
have statistical zero-knowledge proofs unless it contradicts the widely held belief
that the Polynomial Hierarchy is infinite [9]. The relationship between zero-
knowledge classes and traditional probabilistic complexity classes has also been
explored recently. In particular, Bouland et al. show that all problems with
perfect zero-knowledge proofs admit unbounded probabilistic polynomial-time
algorithms (that is, PZK ⊆ PP) [10].

Relativized Separations: Several significant upper bound questions, includ-
ing whether various zero-knowledge classes are closed under complement and
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whether statistical zero-knowledge classes equal the corresponding perfect zero
knowledge classes, turned out to be difficult to resolve and led to oracle sep-
aration results. Lovett and Zhang showed that the class NISZK is not closed
under complement in a relativized world [20]. Bouland et al., in the same paper
where they show PZK ⊆ PP, established a comprehensive set of oracle separa-
tion results. In particular, they showed that there are relativized worlds where
NISZK (and thus SZK) is not in PP, PZK does not equal SZK, and NIPZK and
PZK are not closed under complement.

Our Contributions
One of our main contributions is a new unconditional upper bound on the com-
plexity class NIPZK.

Theorem 1. NIPZK ⊆ CoSBP.

The class SBP (Small Bounded-error Probability) was introduced by Böhler,
Glaßer, and Meister [8] and is a bounded-error version of PP. Informally, a
language is in PP if there is a probabilistic polynomial-time machine for which
the ratio between the acceptance and the rejection probabilities is more than 1
for all the positive instances. We obtain the class SBP when we stipulate that
this ratio is bounded away from 1, i.e, (1 + ε) for a fixed constant ε > 0. This
restriction greatly reduces the power of the class. In particular, it is known that
SBP is a subset of AM and PP, and contains MA. This class has been studied in
other contexts as well, such as in circuit complexity and quantum computation [1,
2,5,19]. Even though the relationship between SBP and zero knowledge classes
has not been studied earlier, a curious connection exists between them. Watson
showed that a certain promise problem regarding the min-entropy of samplable
distributions is a complete problem for SBP [25]. Interestingly, the analogous
problem where entropy instead of min-entropy is considered was shown to be
complete for the class NISZK [16]. Our upper bound result improves the known
containments NIPZK ⊆ AM ∩ coAM to NIPZK ⊆ AM ∩ CoSBP and NIPZK ⊆
PP to NIPZK ⊆ CoSBP.

We consider the possibility of establishing other upper bounds for perfect
zero-knowledge classes. Since NIPZK is not known to be closed under comple-
ment, is it possible to show that NIPZK ⊆ SBP ∩ CoSBP? We also consider
whether we can show that PZK itself lies in CoSBP. For these two questions, we
prove the following relativized lower bound results.

Theorem 2. There is an oracle O such that NIPZKO (and thus PZKO) is not
in SBPO.

This result along with Theorem 1 implies that NIPZK is not closed under
complement in a relativized world, a result that was recently established by
Bouland et al. [10].

Theorem 3. There is an oracle O such that PZKO is not in CoSBPO.

As Theorem 1 relativizes with respect to any oracle, Theorems 1 and 3
together implies an oracle that separates PZK from NIPZK.
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Corollary 1. There is an oracle O such that NIPZKO
� PZKO.

Figure 1 summarizes the known relationships among perfect zero knowledge
classes and other complexity classes along with the results established in this
work.

NIPZK

PZK

SBP

AM

CoNIPZK

CoPZK

CoSBP

CoAMBPPpath

PP

Fig. 1. A → B indicates that A is a subset of B, A ��� B indicates that there is a
relativized world where A is not a subset of B. Red and Blue arrows indicate new
results. (Color figure online)

Complexity of Distribution Testing Problems. We establish our results by inves-
tigating certain distribution testing problems: computational problems over high-
dimensional distributions represented by succinct Boolean circuits. Interestingly,
it turns out that versions of distribution testing problems characterize various
zero-knowledge classes. The distribution testing problems are best formalized as
promise problems. A promise problem is a pair of sets Π = (ΠY es,ΠNo) such that
ΠY es ∩ ΠNo = ∅. ΠY es is called the set of ‘yes’ instances, and ΠNo is called the
set of ‘no’ instances. Given a Boolean circuit C mapping from m bits to n bits,
the distribution sampled by C is obtained by uniformly choosing x ∈ {0, 1}m

and evaluating C on x. We often use C itself to denote the distribution sampled
by the circuit C.

Statistical Difference (SD): Given two distributions sampled by Boolean
circuits C and D, ΠY es = {〈C,D〉 | dist(C,D) ≤ 1/n} and ΠNo =
{〈C,D〉 | dist(C,D) ≥ 1 − 1/n}.

Here dist denotes the statistical distance between the distributions. When
one of the distributions is the uniform distribution, the above problem is called
Statistical Difference to Uniform (SDU). The seminal work of Sahai and
Vadhan showed that SD is complete for the class SZK [24] and Goldreich, Sahai
and Vadhan showed that SDU is complete for NISZK [16].

Entropy Approximation (EA): Given a samplable distribution C and an
integer k, ΠY es = {〈C, k〉 | H(C) ≥ k + 1} and ΠNo = {〈C, k〉 | H(C) ≤ k − 1},
where H is the entropy function.
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Goldreich, Sahai and Vadhan showed that Entropy Approximation is
complete for NISZK. In the above problem, if the entropy function H is replaced
with the min-entropy function H∞, the corresponding problem is known as Min-
entropy Approximation (MEA). Watson showed that MEA is complete
for SBP [25]. It is interesting to note that while Entropy Approximation
is NISZK-complete, the analogous Min-entropy Approximation problem is
complete for SBP.

To establish our results, we study variants of the above distribution testing
problems. The following problem, known as Uniform, is defined by Malka and
was shown to be complete for NIPZK [21].

Uniform: Given a circuit D : {0, 1}m → {0, 1}n+1, let D[1 . . . n] denote the
distribution of the first n bits of D and let D[n + 1] denote the distribution of
the last bit of D. ΠY es = {〈D〉 | D[1 . . . n] = Un,Pr[D[n + 1] = 1] ≥ 2/3} and
ΠNo = {〈D〉 | |sup(D) ∩ {0, 1}n1| ≤ 2n/3}.

Here Un denotes the uniform distribution over n-bit strings and sup(D) is the
support of the distribution D. We obtain Theorem 1 by showing that Uniform
is in CoSBP.

Note that we can obtain relativized versions of the distribution testing prob-
lems by providing oracle access to the circuits involved. To obtain Theorem 2,
we consider a promise problem that is a variant of Uniform.

Uniform-Or-Small: Given a distribution D, ΠY es = {〈D〉 | D = U} and
ΠNo = {〈D〉 | |sup(D)| ≤ 2n/2}.

We show that a relativized version of this problem is not in SBP. For Theo-
rem 3, we consider a variant of SD called Disjoint-Or-Identical.

Disjoint-Or-Identical: Given two samplable distributions C and D, ΠY es =
{〈C,D〉 | sup(C)∩sup(D) = ∅} and ΠNo = {〈C,D〉 | C = D} (i.e, the distance
between C and D is either 1 or 0).

This problem can be shown to be in CoPZK. We construct an oracle relative
to which this problem is not in SBP. Theorems 2 and 3 show that there exist
relativized worlds where PZK is neither in SBP nor in CoSBP. This suggests
that we cannot hope to improve the containment PZK ⊆ PP to either SBP or
CoSBP using relativizable techniques.

2 Notation and Definitions

Distributions. All the distributions considered in this paper are over a sample
space of the form {0, 1}n for some integer n. Given a distribution D, we use
D(x) to denote the probability of x with respect to D. We use Un to denote
the uniform distribution over {0, 1}n. We consider distributions sampled by cir-
cuits. Given a circuit C mapping m-bit strings to n-bit strings, the distribution
encoded/sampled by the circuit C is the distribution C(Um). We often use C
to denote both the circuit and the distribution sampled by it. Note that given
access to the circuit, we can efficiently generate a sample of the distribution by
evaluating C on a uniformly chosen m-bit string. For this reason, we call such
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distributions efficiently samplable distributions or just samplable distributions.
We use sup(D) to denote the set of strings for which D(x) �= 0.

Given two distributions C and D over the same sample space S, the statistical
distance between them, denoted by dist(C,D), is defined as follows.

dist(C,D) = max
T⊆S

(C(T ) − D(T )) =
∑

C(x)>D(x)

(C(x) − D(x))

Complexity Classes. We refer the reader to the textbook by Arora and Barak [4]
for definitions of standard complexity classes. For a complexity class C, CoC
denotes the class of complement languages/promise problems from C. The class
SBP was introduced in [8] and is defined as follows.

Definition 1. A promise problem (ΠY es,ΠNo) is said to belong to the com-
plexity class SBP if there exists a constant ε > 0, a polynomial p(·), and a
probabilistic polynomial-time Turing Machine M such that

1. If x ∈ ΠY es then Pr[M accepts] ≥ 1+ε
2p(|x|)

2. If x ∈ ΠNo then Pr[M accepts] ≤ 1
2p(|x|) ,

SBP is sandwiched between MA and AM and is the largest known subclass
of AM that is in PP. In fact, it is known that SBP is contained in the class
BPPpath which is a subclass of PP.

Theorem 4 ([8]). MA ⊆ SBP ⊆ AM and SBP ⊆ BPPpath ⊆ PP.

Although we will not be using explicit definitions of zero-knowledge classes,
we give necessary definitions for completeness.

Definition 2 (Non-Interactive protocol). A non-interactive protocol is
a pair of functions 〈P, V 〉, the prover and verifier. On input x and random
strings rI , rP , P sends a message π = P (x, rP , rI) to V , and V computes
m = V (x, π, rI). V accepts x if m = 1, and rejects if m = 0. The transcript of
the interaction is the tuple 〈x, rI , π,m〉.

Note that the above definition implies that the random string rI is shared
between the prover and the verifier.

Definition 3 (NIPZK [16,21]). A promise problem 〈ΠY es,ΠNo〉 is in NIPZK
(Non-Interactive Perfect Zero Knowledge) if there is a non-interactive protocol
〈P, V 〉 where V runs in polynomial time, and a randomized, polynomial-time
computable simulator S, satisfying the following conditions:

– (Soundness:) For any function P ∗ and any x ∈ ΠNo, Pr[V accepts] ≤ 1/3
– (Completeness:) If x ∈ ΠY es,Pr[V accepts] ≥ 2/3
– (Zero Knowledge:) For any x ∈ ΠY es, the distribution of S(x) is identical to

the distribution of the transcript generated by 〈P, V 〉 on input x.
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The class NISZK (Non-Interactive Statistical Zero Knowledge) is defined
similarly [16], except that we only require that the statistical distance between
the distribution of S(x) and the distribution of the transcript generated by
〈P, V 〉(x) be less than 1/p(n) for every polynomial p(n). Malka [21] showed that
the promise problem Uniform is complete for the class NIPZK.

Theorem 5 ([21]). The promise problem Uniform is complete for NIPZK.

3 NIPZK ⊆ CoSBP

For a given distribution D, let CP(D) denote the collision probability:
Prx,y∼D(x = y). The following lemma is folklore. See [15] for a proof.

Lemma 1. For a given distribution D over {0, 1}n, if dist(D,Un) ≥ ε, then
CP(D) ≥ 1+ε2

2n

Theorem 1. NIPZK ⊆ CoSBP
We show the result by proving that the NIPZK-complete problem Uniform

is in CoSBP. We start with the following lemma.

Lemma 2. Let D be a distribution on n + 1 bits, and let T = {x ∈ {0, 1}n |
x1 ∈ sup(D)}. Suppose that |T | ≤ 2n/3 and Pr(D[n + 1] = 1) = 1

3 + ε for some
ε ≥ 0. Then dist(D[1 . . . n], Un) is at least ε.

Proof. Recall that dist(D[1 . . . n], Un) = maxS⊆{0,1}n

∣∣Prd∼D[1...n]

[d ∈ S] − Pru∼Un
[u ∈ S]|

max
S⊆{0,1}n

∣∣∣∣ Pr
d∼D[1...n]

[d ∈ S] − Pr
u∼Un

[u ∈ S]
∣∣∣∣ ≥

∣∣∣∣ Pr
d∼D[1...n]

[d ∈ T ] − Pr
u∼Un

[u ∈ T ]
∣∣∣∣

≥
∣∣∣∣
1
3

+ ε − Pr
u∼Un

[u ∈ T ]
∣∣∣∣

=
∣∣∣∣
1
3

+ ε − |T |
2n

∣∣∣∣

≥ 1
3

+ ε − 2n

3
/2n = ε

Now we prove Theorem 1 by giving a CoSBP algorithm for Uniform.

Proof. Recall the definition of Uniform: Given a circuit D : {0, 1}m →
{0, 1}n+1, ΠY es = {D : D[1 . . . n] = Un,Pr[D[n + 1] = 1] ≥ 2/3} and
ΠNo = {D : |sup(D) ∩ {0, 1}n1| ≤ 2n/3}.

Consider the following randomized algorithm: Given D as input, get two
samples d0 and d1 from D. If the first n bits of both d0 and d1 are the same,
then accept. Else, obtain k additional samples from D, and if the last bit of all
these samples is 0, then accept, otherwise reject.
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If D is a ‘yes’ instance of Uniform, then the probability of accepting at
the first step is 1

2n and the probability of accepting at the second step is at
most 1

3k , so the overall accept probability is ≤ 1
2n + 1

3k . Suppose that D is a
‘no’ instance of Uniform. By Lemma 2, either D[1 . . . n] is at least 1

6 away from
Un, or D[n + 1] is 1 with probability at most 1

2 . Suppose that D is at least
1/6 away from the uniform distribution, then by Lemma1, the probability that
the first n bits of d0 and d1 are the same is at least 37

36
1
2n . Thus the algorithm

accepts with probability at least 37
36

1
2n . Now suppose that D is less than 1/6

away from the uniform distribution. This implies that the last bit of D is 1 with
probability at most 1/2. Thus in this case the algorithm accepts with probability
≥ 1

2k . Thus, a no instance is accepted with probability ≥ min
{

37
36

1
2n , 1

2k

}
. Choose

k = n − log(37/36), so that a no instance is accepted with probability ≥ 37
36

1
2n

and a yes instance is accepted with probability ≤ 1
2n + 3log(37/36)

3n . For large enough
n, 37

36
1
2n ≥ (1 + 1

40 )( 1
2n + 3log(37/36)

3n ), so this is a CoSBP algorithm for Uniform.

4 Oracle Separations

In this section, we prove Theorems 2 and 3. We first prove a general approach that
can be used to construct relativized worlds where promise problems involving
circuits are not in SBP.

Lemma 3. Let Π = 〈ΠY ,ΠN 〉 be a promise problem whose instances are cir-
cuits. If there is an oracle circuit family {Cn}n≥0 and a constant c > 1 with the
following properties:

– Cn is a oracle circuit that maps n bits to n bits and makes oracle queries only
to strings of length cn.

– There exist families of sets {An}n≥0, {Bn}n≥0 ⊆ {0, 1}cn such that for all n,
CAn

n ∈ ΠY and CBn
n ∈ ΠN

– For every probabilistic polynomial-time Turing Machine M and infinitely
many n, for every Di ∈ {Ai, Bi, ∅}, 1 ≤ i < n

Pr[M (∪n−1
i=1 Di)∪An(C(∪n−1

i=1 Di)∪An
n )accepts]

Pr[M (∪n−1
i=1 Di)∪Bn(C(∪n−1

i=1 Di)∪Bn
n )accepts]

< 2,

then there exists an oracle O such that ΠO �∈ SBPO

Proof. We first note that in this definition of SBP, we can choose ε to be 1 by
using amplification techniques. Thus a promise problem is in SBP if there exists
a polynomial p(·) and a probabilistic polynomial-time machine M such that on
positive instances M accepts with probability at least 2/2p(n) and on negative
instances M accepts with probability at most 1/2p(n). We call p(·) the threshold
polynomial for M .

Let {Mi}i>0 be an enumeration of the probabilistic polynomial-time
machines. We consider an enumeration of tuples 〈Mi, j〉i>0,j>0. In this enu-
meration considering 〈Mi, j〉 corresponds to the possibility that Mi is a SBP



692 P. Dixon et al.

machine with threshold polynomial nj . We first start with an empty oracle. Let
Oi = O ∩{0, 1}ci. For each i, Oi will be one of ∅, Ai or Bi. Consider 〈Mi, j〉 and
let n be a length for which On is not yet defined and for which the inequality from
the lemma holds for the machine Mi. Suppose that Mi makes queries of length
≤ m. Note that by this, we have defined Oi for all i < cn, thus O ⊆ {0, 1}<cn

and for every i < n Oi is either ∅, Ai or Bi. Suppose that the acceptance prob-
ability of MO∪An

i (CAn) is less than 2/2nj

. We set O at length cn as An and
for all the lengths from cn + 1 to m the oracle O is set to be ∅. Now CAn

is a positive instance for which Mi cannot be a SBP machine with nj as the
threshold polynomial. Then we set O at length cn as An and move to the next
tuple in the enumeration. Suppose that MO∪An

i (CAn) accepts with probability
at least 2/2nj

. Now by the inequality from Lemma3, the acceptance probability
of MO∪Bn

i (CBn) is more than 1/2nj

. Note that CBn is a negative instance for
which Mi is not a SBP machine with threshold polynomial nj . Thus we make
the oracle O at length cn to be Bn. It is easy to see that ΠO is not in SBPO:
Suppose not, and there exists a probabilistic polynomial-time machine Mi with
threshold polynomial nj . When we considered the tuple 〈Mi, j〉, we ensured that
Mi does not have threshold polynomial nj on COcn .

4.1 Oracle Separation of NIPZK from SBP

In this section we show that Theorem 2 cannot be improved to show that NIPZK
is a subset of SBP using relativizable techniques. For this we show that the oracle
version of Uniform-Or-Small is not in SBP.

Theorem 6. There exists an oracle O relative to which Uniform-Or-Small
is not in SBPO.

Malka [21] showed that Uniform-Or-Small is in NIPZK, and this proof rel-
ativizes. Combining this with Theorem6, we obtain Theorem 2. To prove Theo-
rem 6, it suffices to exhibit sets An and Bn that satisfy the conditions of Lemma3.
We construct these sets via a probabilistic argument. We first provide a brief
overview of this construction.

Remark: There is a alternate proof of the oracle separation between NIPZK
from SBP which we describe here briefly. This was pointed out to us by one of
the reviewers of TCC 2020. The proof uses known facts about the well-studied
Permutation Testing Problem (PTP). PTP takes as input a truth table of a
function f : [N ] → [N ] promised to be either a permutation on [N ] or N/3
away in Hamming distance from any permutation on [N ]. The computational
goal is to distinguish these two cases. It is known that in the query-complexity
setting, there is a NIPZK protocol where the verifier uses public randomness to
pick a uniform random element x from [N ], which is viewed as an element from
the range of the function, and the prover is required to present a preimage of
x. Aaronson, in [1] (Theorem 13), gave the construction of an oracle separating
SZK from the Quantum version of SBP using degree arguments. The oracle is
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derived from the PTP problem where the author uses a SZK upper bound for
PTP. However, as noted above the upper bound of NIPZK holds for PTP and
hence it gives an oracle separation of NIPZK from SBP. Here we provide an
oracle separation using elementary arguments.

Overview of the Proof: Consider a non-relativized world with the following
restriction on how a probabilistic polynomial-time machine M can access the
input circuit C: At the beginning the machine gets to see a sequence S of k
independent samples from C. After this the machine ignores C. Note that in
this model the underlying machine cannot perform adaptive sampling from C,
nor can the machine generate samples that might be correlated. In this model it
is easy to see that if C encodes the uniform distribution, the probability that M
is presented with a specific sequence S of k samples is precisely 1/2nk. Thus the
probability that the machine M accepts is

∑
S

(
1

2nk Pr[M accepts S]
)
, summed

over all sequences of size k.
Now given a subset D of {0, 1}n of size 2n/2, let UD be the uniform distribu-

tion over D. Consider the following experiment. Randomly pick D and let CD be
a circuit that samples UD. Independently draw a sequence of k samples S from
UD and present them as input to M . (In a non-relativized setting, there may
not be a small circuit that uniformly samples D, but in the relativized worlds we
consider, this is not an issue.) We consider the acceptance probability of M over
random choices of D, S and internal coin tosses of M . By a careful analysis we
can show that this probability is very close to

∑
S

(
1

2nk Pr[M accepts S]
)
. Thus

the ratio between the acceptance probabilities of M when given samples from
the uniform distributions and samples drawn from UD (over a random choice of
D) is less than 1+ ε for any constant ε. By a probabilistic argument, there exists
a subset D such that the acceptance probability of M on a positive instance (U)
and a negative instance (UD) are the same. Thus M is not a SBP machine.

The crux of the above idea is that when the samples are generated inde-
pendently and nonadaptively, then it is possible to argue that a SBP machine
cannot distinguish between whether they came from the uniform distribution
or from a distribution with small support size. Now, we need to argue in
the more general model, where a probabilistic machine can do adaptive sam-
pling and generate samples that could be correlated to each other. A first
approach to construct the sets An and Bn is to encode the uniform distri-
bution in An and the distribution UD in Bn. The set An can be defined as
{〈i, j〉 | the ith bit of the jth string of Σnis1} (in the standard lexicographical
ordering). To define Bn given D, first consider the multiset D that contains 2n/2

copies of each elements of D. Thus the cardinality of D is 2n. Now, the set Bn can
be defined as tuples 〈�, j〉 where the �th bit of the jth string of D is 1. Consider
the oracle circuit C which is defined as follows:

Definition 4 (Oracle Circuit). Let CO be a fixed linear-size oracle circuit,
with n inputs and n outputs, defined as follows: On input j ∈ {1 . . . 2n}, CO(j)
outputs O(〈�, j〉) for all � between 1 and n. In other words, CO(j) outputs the
jth string of O.
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Notice that CAn is the uniform distribution and CBn is uniform on D and the
goal of the probabilistic machine is to distinguish between the distributions CAn

and CBn . However, if we allow correlated sampling, a probabilistic machine can
easily distinguish CAn and CBn by computing CO(j) and CO(j + 1) for appro-
priate inputs j and j +1 and comparing whether they are equal or not. To guard
against such behavior, we apply one more level of randomization - randomize the
underlying order of the strings. Thus the tuple 〈�, j〉 will encode the �th string in
an order that is not necessarily the standard lexicographic order. We argue that
when we randomly order {0, 1}n, then adaptive and correlated sampling does
not give significantly more information than independently generated samples.
Now, we proceed to give a formal proof.

Detailed Proof: From now on, we fix a length n. We use a probabilistic argument
to construct An and Bn. For An we consider 2n! sets Yi and define An to be
one of them (using a probabilistic argument), and similarly for Bn we consider
many sets NDi

and define Bn to be one of them.

Definition 5 (Oracle families). Let 1 ≤ i ≤ 2n! index the set of all 2n!
permutations of {0, 1}n.

Oracles for Yes instances: Yi = {〈�, j〉: the �th bit of the jth string of the ith

permutation of {0, 1}n is 1}.
Oracles for No instances: For each set D of size d = 2m (where m = n/2 ) let D

be the multiset that contains 2n−m copies of each element of D. Thus |D| = 2n,
and we define NDi

as: NDi
= {〈�, j〉: the �th bit of the jth string of the ith

permutation of D is 1}.
For the rest of this section, we will use Y to represent an arbitrary Yi oracle,

N to represent an arbitrary NDi
oracle, and O to represent an arbitrary Yi or

NDi
. Note that for every i, CYi is the uniform distribution and CNDi is the

uniform distribution on D and thus has small support.
We first prove the following lemma and show later how to build on it to arrive

at the conditions specified in Lemma3.

Lemma 4. If i is uniformly chosen from {1, . . . , 2n!} and D is uniformly cho-
sen from all size 2m subsets of {0, 1}n, then for any constant c > 1 and every
probabilistic polynomial-time algorithm A, for large enough n,

Pri,r[AYi accepts CYi ]
Pri,r,D[ANDi accepts CNDi ]

≤ c

where r is the random choice of A.

Without loss of generality we can assume that any oracle query that AO

makes can be replaced by evaluating the circuit CO, by modifying A in the
following way: whenever A queries the oracle O for the ith bit of the jth string,
it evaluates CO(j) and it extracts the ith bit. We refer to this as a circuit query.
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Let k be the number of circuit queries made by A, where k is bounded by a
polynomial. We will use q1, . . . qk to denote the circuit queries, and denote the
output CO(qi) by ui. We can assume without loss of generality that all qi are
distinct. We use S to denote a typical tuple of answers 〈u1, · · · , uk〉. We will use
AS to denote the computation of algorithm A when the answers to the circuit
queries are exactly S in that order. Notice that the AS does not involve any
oracle queries. Once A has received S, it can complete the computation without
any circuit queries. So, the output of AS is a random variable that depends only
on the internal randomness r of A.

Claim. Without loss of generality we can assume that along any random path,
A rejects whenever any ui = uj , i �= j.

Proof. In a Yes instance, CY is uniform. Since C has n inputs and n outputs,
CY is a 1-1 function. By the earlier assumption, ui will never match any other
uj . In a No instance, CN will have 2n−m inputs for any output. Rejecting any
time ui = uj will not affect Pr[A accepts a Yes instance], and it will reduce
Pr[A accepts a No instance]. Thus the ratio of the probability of accepting an
Yes instance and the probability of accepting a No instance only increases. We
will show that this higher ratio is < c.

We will use the following notation.

– “AO asks 〈q, i〉” is the event that “the ith circuit query made by A is CO(q).”
For simplicity, we write this event as “AO asks qi.”

– “AO gets 〈u, i〉” is the event that “CO(q) = u where q is the ith query”.
Again, for simplicity, we write this event as “AO gets ui.”

– For S = 〈u1, . . . uk〉, “AO gets S” is the event that “AO gets u1 and
AO gets u2 and . . . AO gets uk (in that order)”.

Lemma 5. For any probabilistic algorithm A and for any fixed S = 〈u1, . . . uk〉
where all ui are distinct,

Pr
i,r

[AYi gets S and accepts] = Pr
r

[AS accepts]
k−1∏

j=0

1
(2n − j)

Proof.

Pr
i,r

[AYi gets S and accepts] = Pr
i,r

[AYi gets S] × Pr
i,r

[AYi accepts |AYi gets S]

= Pr
i,r

[AYi gets S] × Pr
r

[AS accepts]

The last equality is because AS is independent of i as discussed before. We
will show that Pr

i,r
[AYi gets S] =

∏k−1
j=0

1
(2n−j) which will prove the lemma.

Pr
i,r

[AYi gets S] =
k−1∏

j=0

Pr
i,r

[AYi gets uj+1|AYi gets 〈u1, u2, . . . , uj〉]
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For any fixed j let Ej denote the event “AYi gets 〈u1, u2, . . . , uj〉”. Then,

Pr
i,r

[A
Yi gets uj+1|AYi gets 〈u1, u2, . . . , uj〉] = Pr

i,r
[A

Yi gets uj+1|Ej ]

=
∑

qj+1

Pr
i,r

[A
Yi asks qj+1|Ej ] × Pr

i,r
[C

Yi (qj+1) = uj+1|Ej ]

=
∑

qj+1

Pr
i,r

[A
Yi asks qj+1|Ej ] × Pr

i
[C

Yi (qj+1) = uj+1|Ej ]

=
∑

qj+1

Pr
i,r

[A
Yi asks qj+1|Ej ] × 1

(2n − j)

=
1

(2n − j)
×

∑

qj+1

Pr
i,r

[A
Yi asks qj+1|Ej ]

=
1

(2n − j)

The third equality is because the output of C is independent of r and the
fourth equality follows from the fact that for a random permutation of {0, 1}n,
once j elements are fixed, there are 2n − j equally likely possibilities for uj+1.
The lemma follows.

Lemma 6. For any algorithm A and any fixed S = 〈u1, . . . uk〉 where uis are
distinct,

Pr
i,r,D

[ANDi gets S and accepts] = Pr
r

[AS accepts] ×
k−1∏

j=0

(2m − j)2n−m

(2n − j)2

Proof. The argument is identical to the proof of Lemma 5 except for the proba-
bility calculations.

Pr
i,r,D

[A
NDi gets S and accepts] = Pr

i,r,D
[A

NDi gets S] × Pr
i,r,D

[A
NDi accepts |ANDi gets S]

= Pr
i,r,D

[A
NDi gets S] × Pr

r
[AS accepts]

The last equality is because AS is independent of i and D. We will show that
Pr

i,r,D
[ANDi gets S] =

∏k−1
j=0

(2m−j)2n−m

(2n−j)2 which will prove the lemma.

Pr
i,r,D

[ANDi gets S] =
k−1∏

j=0

Pr
i,r

[ANDi gets uj+1|ANDi gets 〈u1, u2, . . . , uj〉]

We will reuse the notation Ej for convenience. For any fixed j, let Ej denote
the event “ANDi gets 〈u1, u2, . . . , uj〉” Then,
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Pr
i,r,D

[A
NDi gets uj+1|ANDi gets 〈u1, u2, . . . , uj〉] = Pr

i,r,D
[A

NDi gets uj+1|Ej ]

=
∑

qj+1

Pr
i,r,D

[A
NDi asks qj+1|Ej ] × Pr

i,r,D
[C

NDi (qj+1) = uj+1|Ej ]

=
∑

qj+1

Pr
i,r,D

[A
NDi asks qj+1|Ej ] × Pr

i,D
[C

NDi (qj+1) = uj+1|Ej ]

We will show that for any q, Pr
i,D

[CYi(q) = uj+1|Ej ] = (2m−j)2n−m

(2n−j)2 .

Pr
i,D

[CNDi (q) = uj+1|Ej ] = Pr
i,D

[uj+1 ∈ D|Ej ] × Pr
i,D

[CNDi (q) = uj+1|uj+1 ∈ D,Ej ]

=

(
2n−j−1
2m−j−1

)
(
2n−j
2m−j

) × 2n−m

2n − j

=
2m − j

2n − j
× 2n−m

2n − j

=
(2m − j)2n−m

(2n − j)2

The second equality is because of the following reasoning. There are
(
2n−j
2m−j

)

choices of D where u1 . . . uj are included, and
(
2n−j−1
2m−j−1

)
that include uj+1 as

well. Given that u1, . . . uj+1 ∈ D, the probability that CNDi (qj+1) = uj+1 is
2n−m

2n−j (since there are 2n−m copies of uj+1 remaining, and 2n − j total things
remaining).

We need the following claim.

Claim. For any polynomial k = k(n) and any constant c > 1, for large enough
n,

k−1∏

j=0

2n − j

2n − 2n/2j
< c

Proof.

k−1∏

j=0

2n − j

2n − 2n/2j
≤

k−1∏

j=0

2n

2n − 2n/2j

=
k−1∏

j=0

2n/2

2n/2 − j

≤
(

2n/2

2n/2 − k

)k

=
(

1 +
k

2n/2 − k

)k

For any polynomial k = k(n), limn→∞(1 + k(n)
2n/2−k(n)

)k(n) = 1. Hence the
claim.
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We can now prove Lemma 4.

Proof (Proof of Lemma 4).
From Lemmas 5 and 6, we have

Pri,r [A
Yi accepts CYi ]

Pri,r,D [A
NDi accepts C

NDi ]
=

∑
S Pri,r [A

Yi gets S and accepts ]
∑

S Pri,r,D [A
NDi gets S and accepts ]

≤

∑
S distinct

Pri,r [A
Yi gets S and accepts ]

∑
S distinct

Pri,r,D [A
NDi gets S and accepts ]

=

∑
S distinct Prr [AS accepts] × ∏k−1

j=0
1

(2n−j)
∑

S distinct Prr [AS accepts] × ∏k−1
j=0

(2m−j)2n−m

(2n−j)2

(by lemmas 5 and 6)

=

k−1∏

j=0

2n − j

2n − 2n/2j
( substituting m = n/2)

< c (by Claim 4.1)

The second equality follows because when the oracle is Yi, S is always disjoint
(as we never ask the same query twice) and when the oracle is NDi

we assume
that the algorithm rejects when S is not distinct.

(Completing the proof of Theorem 6): We will construct an oracle so that condi-
tions of Lemma 3 are met. By a probabilistic argument, there exists an i∗ and
D∗ such that

Pr[AYi∗ accepts CYi∗ ]

Pr[AND∗
i∗ accepts C

ND∗
i∗

] < c

for every c > 1 (by Lemma 4). Now define An as Yi∗ and Bn as ND∗
i∗ . This

looks very close to the conditions of Lemma 3 except that we restricted the
oracles to be An and Bn, However, for Lemma 3, we require that oracles are
of the form (∪n−1

i=1 Di ∪ An) and (∪n−1
i=1 Di ∪ Bn). To establish this, we resort

to the standard techniques used in oracle constructions. Observe that the sets
An and Bn can be constructed in double exponential time. Let n1 = 2 and
nj = 22

nj−1 . We will satisfy the conditions of Lemma3 at lengths of the form
nj . For every i that is not of the form nj , we set both Ai and Bi to empty.

Now M∪nj−1
i=1 Di∪Anj (C

∪nj−1
i=1 Di∪Anj

nj ) can be simulated using MAnj (CAnj ). As
for queries whose length does not equal c · nj , the machine can find answers to
oracle queries without actually making the query.

4.2 Oracle Separation of PZK from CoSBP

In this section we construct an oracle that separates PZK from CoSBP, thus
proving Theorem3. For this we exhibit an oracle where the promise problem
Disjoint-Or-Identical is not in SBP. This problem is a generalization of
graph non-isomorphism (GNI) problem, in the sense that GNI reduces to this
problem. Let G1 and G2 be two graphs, and let Ci be the distribution obtained
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by randomly picking a permutation π and outputting π(Gi). Observe that if G1

and G2 are not isomorphic then the supports of C1 and C2 are disjoint, and if G1

is isomorphic to G2, then C1 = C2. Moreover the distributions C1 and C2 can be
sampled by polynomial-size circuits. The PZK protocol for graph isomorphism
can be adapted to show that Disjoint-Or-Identical is in CoPZK.

Theorem 7. Disjoint-Or-Identical is in CoPZK

Theorem 3 follows from the following theorem.

Theorem 8. There exists an oracle O relative to which Disjoint-or-
Identical is not in SBPO.

Input presentation: In the definition of Disjoint-Or-Identical, the input
instances are tuples consisting of two circuits. However, we will represent them
as just one circuit C in the following manner. Given a circuit C, let C0 denote
the circuit obtained by fixing the first input bit of C to be 0, and the circuit C1

denote the circuit obtained by fixing the first input bit of C to be 1. An input
to Disjoint-Or-Identical will be a circuit C and the goal is to distinguish
between the cases “the support of distributions C0 and C1 are disjoint” or “C0

and C1 are identical distributions”.
The proof structure of this result is similar to that of Theorem6 and as in

that case, the goal is to construct a circuit family Cn and families of sets An

and Bn that satisfy the conditions of Lemma3.

Definition 6 (Oracle families). Let i ∈ {1 . . .
(

2n

2n−1

)} index the partitions of
{0, 1}n into two sets S0

i and S1
i each of size 2n−1. Let j, k ∈ {1 . . . 2n−1!} index

the possible permutations of S0
i and S1

i , respectively.
Oracles for Yes instances: Yijk is an oracle for the set {〈0, �,m〉 : the �th bit of
the mth string in the jth permutation of S0

i = 1} ∪ {〈1, �,m〉 : the �th bit of the
mth string in the kth permutation of S1

i = 1}.
Oracles for No instances: We construct the No instances similarly, except both
0 and 1 cases query S0

i . That is, Nijk is an oracle for the set {〈0, �,m〉 : the �th

bit of the mth string in the jth permutation of S0
i = 1} ∪ {〈1, �,m〉 : the �th bit

of the mth string in the kth permutation of S0
i = 1}

An oracle of the above form will be denoted by O which is a disjoint union
of sets denoted by O0 and O1. Now we define the input circuits that sample the
two distributions.

Definition 7 (Oracle circuits). Let CO be a fixed linear-size oracle circuit,
with n + 1 inputs and n outputs, defined as follows: on input 〈0, j〉 where j ∈
{1 . . . 2n}, CO(j) outputs O0(〈�, j〉) for all � between 1 and n, and on input 〈1, j〉
where j ∈ {1 . . . 2n}, CO(j) outputs O1(〈�, j〉) for all � between 1 and n. In other
words, CO(〈0, j〉) outputs the jth string of O0 and CO(〈1, j〉) outputs the jth

string of O1.

We will establish the following lemma. Then the proof of Theorem8 follows
by arguments identical to that of the previous oracle construction.
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Lemma 7. If i, j, k are uniformly and independently chosen from {1 . . .
(

2n

2n−1

)},
{1 . . . 2n−1!}, {1 . . . 2n−1!} respectively, then for any probabilistic polynomial-time
algorithm A, for any constant c > 1, for large enough n,

Pri,j,k,r[AYijk accepts CYijk ]
Pri,j,k,r[ANi,j,k accepts CNi,j,k ]

≤ c

We use the same notation and make the most of same simplifications from
the previous construction, with the following differences. The first difference is:
let h be the (polynomial) maximum number of queries made by an algorithm
A for any random choice of i, j, k, r. We will allow A to make 2h queries, two
at a time, with the restriction that one must begin with 0 and the other must
begin with 1. Notationally, p1 . . . ph are the queries that begin with 0 and ui is
the result of query pi. q1 . . . qh are the queries that begin with 1 and vi is the
result of query qi. S is the ordered multiset 〈u1, v1, . . . uh, vh〉. Notice that this is
without loss of generality as A can simulate the original algorithm by ignoring
either qi or pi as appropriate. The second difference is that, instead of assuming
A rejects if any ui matches any uj , we assume A rejects if any ui matches any
vj .

Lemma 8. For any probabilistic algorithm A and for any fixed S =
〈u1, v1, . . . uh, vh〉 where all elements of S are distinct,

Pr
i,j,k,r

[AYijk gets S and accepts ] = Pr
r

[AS accepts] ×
h−1∏

�=0

1
(2n − 2�)(2n − 2� − 1)

Proof. Note that

Pr
i,j,k,r

[A
Yijk gets S and accepts ] = Pr

i,j,k,r
[A

Yijk gets S] × Pr
i,j,k,r

[A
Yijk accepts | A

Yijk gets S]

= Pr
i,j,k,r

[A
Yijk gets S] × Pr

r
[A

Yijk
S accepts]

Thus we need to prove that

Pr
i,j,k,r

[AYijk gets S] =
h−1∏

�=0

1
(2n − 2�)(2n − 2� − 1)

We use E� to denote the event AYijk gets 〈u1, v1, · · · u�, v�〉. Note that

Pr
i,j,k,r

[AYijk gets S] =
h−1∏

�=0

Pr
i,j,k,r

[AYijk gets u�+1, v�+1 | E�]
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and

Pr
i,j,k,r

[AYijk gets u�+1, v�+1 | E�] =
∑

p,q

Pr
i,j,k,r

[AYijk asks p�+1 and q�+1|E�]

× Pr
i,j,k,r

[CYijk(p) = u�+1 and CYijk(q) = v�+1 | AYijk asks p�+1 and q�+1, E�]

Pr[A gets u�+1, v�+1|A asks p�+1, q�+1|E�]

= Pr
i

[u�+1 ∈ S0
i , v�+1 ∈ S1

i |E�]

× Pr
j

[u�+1 is the pth
�+1 element of S0

i |E�]

× Pr
k

[v�+1 is the qth
�+1 element of Sh+1

i |E�]

=
(

2n − 2� − 2
2n−1 − � − 1

)/(
2n − 2�

2n−1 − �

)
1

2n−1 − �

1
2n−1 − �

=
1

(2n − 2�)(2n − 2� − 1)

Thus

Pr
i,j,k,r

[AYijk gets u�+1, v�+1 | E�] =
∑

p,q

Pr
i,j,k,r

[AYijk asks p�+1 and q�+1|E�]

× Pr
i,j,k,r

[CYijk(p) = u�+1 and CYijk(q) = v�+1 | AYijk asks p�+1 and q�+1, E�]

=
1

(2n − 2�)(2n − 2� − 1)

∑

p,q

Pr
i,j,k,r

[AYijk asks p�+1 and q�+1|E�]

=
1

(2n − 2�)(2n − 2� − 1)

Since Pr
i,j,k,r

[AYijk gets S] =
∏h−1

�=0 Pr
i,j,k,r

[AYijk gets u�+1, v�+1 | E�], using this

with the above derived equality we obtain that

Pr
i,j,k,r

[AYijk gets S] =
h−1∏

�=0

1
(2n − 2�)(2n − 2� − 1)

This completes the proof of the lemma.

Now we turn to the No instances.

Lemma 9. For any algorithm A, for any fixed S = {u1, v1, . . . uh, vh} that are
all distinct,

Pr
i,j,k,r

[A
Nijk gets S and accepts] = Pr

r
[AS accepts ] ×

h−1∏

�=0

(2n − 2�)(2n − 2� − 1)

(2n−1 − 2�)(2n−1 − 2� − 1)

1

(2n−1 − �)2
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Proof. As before,

Pr
i,j,k,r

[A
Nijk gets S and accepts ] = Pr

i,j,k,r
[A

Nijk gets S] × Pr
i,j,k,r

[A
Nijk accepts | A

Nijk gets S]

= Pr
i,j,k,r

[A
Nijk gets S] × Pr

r
[A

Nijk
S

accepts]

It suffices to show that

Pr
i,j,k,r

[ANijk gets S] =
h−1∏

�=0

(2n − 2�)(2n − 2� − 1)
(2n−1 − 2�)(2n−1 − 2� − 1)

1
(2n−1 − �)2

If E� denotes the event “ANijk gets 〈u1, v1, 〈, u�, v�〉”, then

Pr
i,j,k,r

[ANijk gets S] =
h−1∏

�=0

Pr
ijkr

[ANijk gets u�+1, v�+1 | E�]

Now,

Pr
ijkr

[ANijk gets u�+1, v�+1 | E�] =
∑

p,q

Pr
ijkr

[ANijk asks p�+1 and q�+1 | E�]

× Pr
ijkr

[CNijk(p) = u�+1 and CNijk(q) = v�+1 | E�, A
Nijk asks p�+1 and q�+1]

Consider the event “CNijk(p) = u�+1 and CNijk(q) = v�+1”, conditioned on
E� and “ANijk asks p�+1 and q�+1”. For this event to happen, it must be the
case that both u�+1 and v�+1 are in S0

i , and u�+1 is the pth
�+1 element of S0

i , and
v�+1 is the qth

�+1 element of S0
i . The probability that both u�+1 and v�+1 are in

S0
i given that E� and A asks p�+1 and q�+1 is

(
2n − 2� − 2

2n−1 − 2� − 2

)/(
2n − 2�

2n−1 − 2�

)
=

(2n−1 − 2�)(2n−1 − 2� − 1)
(2n − 2�)(2n − 2� − 1)

The probability that u�+1 is the pst
�+1 element given E� is 1/(2n−1 − �) and

similarly, the probability that v�+1 is the q�+1st element given E� is 1/(2n−1−�).
Thus

Pr
ijkr

[ANijkgetsu�+1, v�+1 | E�] =
(2n−1 − 2�)(2n−1 − 2� − 1)

(2n − 2�)(2n − 2� − 1)
1

(2n−1 − �)2
∑

p,q

Pr
ijkr

[ANijk asks p�+1 and q�+1 | E�]

=
(2n−1 − 2�)(2n−1 − 2� − 1)
(2n − 2�)(2n−1 − 2� − 1)

1
(2n − �)2

Thus

Pr
i,j,k,r

[ANijk gets S] =
h−1∏

�=0

(2n−1 − 2�)(2n−1 − 2� − 1)
(2n − 2�)(2n − 2� − 1)

1
(2n−1 − �)2

,

and the lemma follows.
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We need the following claim

Claim. For any polynomial h = h(n) and any constant c > 1, for large enough
n,

h−1∏

�=0

(2n−1 − �)2

(2n−1 − 2�)(2n−1 − 2� − 1)
< c

Proof.

h−1∏

�=0

(2n−1 − �)2

(2n−1 − 2�)(2n−1 − 2� − 1)
≤

h−1∏

�=0

(2n−1 − �)2

(2n−1 − 2� − 1)2

≤
h−1∏

�=0

(
1 +

� + 1
2n−1 − 2� − 1)

)2

For any polynomial h, the above expression tends to 1 for large enough n.

The rest of the proof of Lemma 7 and that of Theorem 8 is identical to the
proofs of Lemma 4 and Theorem 6.
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