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A Brief History of the Relationship 
Between Expertise and Artificial 

Intelligence

Jan Maarten Schraagen and Jurriaan van Diggelen

This chapter explores the role artificial intelligence (AI) plays in human 
expertise, for instance by either enhancing, changing, or degrading it. We 
also address how expertise can play a role in moderating, advancing, 
using, collaborating with, or exploiting AI. We should make clear that we 
will neither set up a simple dichotomy between experts and AI, nor will 
we investigate claims of people being surpassed in expertise by artificial 
general intelligence (AGI), or people becoming unemployable due to AI 
developments. However, we do not deny the partial validity of some of 
these claims. Rather, we view experts and AI systems as ‘joint cognitive 
systems’ that form a unit (Woods & Hollnagel, 2006). There are numer-
ous ways for humans, and experts in particular, to jointly collaborate with 
AI systems, and we discuss the empirical evidence for particular patterns 
of collaboration. Moving beyond a ‘joint cognitive systems’ approach, we 
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also discuss more recent ways in which AI has manifested itself as a 
networked and distributed phenomenon and has shown itself to either 
enhance or degrade human expertise. To achieve this, we first present a 
brief history of AI and expertise studies. Next, we provide examples of 
empirical research on experts working together with intelligent systems 
and emphasize the patterns that emerge from that research to shed light 
on the role of AI in expertise. Subsequently, we discuss a case study in 
radiology that illustrates how human experts and AI approach this topic. 
Finally, we conclude and provide some recommendations for future 
research.

The concepts of expertise, intelligence, and artificial intelligence are 
used frequently in this chapter. The distinction between expertise and 
intelligence is one between domain-specific and domain-generic knowl-
edge (Vergne, 2017). Typically, expertise is defined in terms of “reliably 
superior performance on representative tasks” (Ericsson, 2006, p.  13), 
although this definition is arguably more applicable to tasks that can be 
measured, standardized, or simulated easily (e.g., chess, music, typing, or 
playing tennis) rather than complex cognitive work where performance 
measurement is difficult or impossible (Ward et al., 2020). Intelligence, 
in contrast, may be defined as “a very general mental capability that, 
among other things, involves the ability to reason, plan, solve problems, 
think abstractly, comprehend complex ideas, learn quickly, and learn 
from experience” (Gottfredson, 1997, p. 13). Evidence shows that intel-
ligence is a reasonably good predictor of performance early in learning, 
but does not predict asymptotic levels of learning very well (Hunt, 2006). 
In a recent review, Hambrick, Burgoyne, and Oswald (2020) concluded 
that the evidence for the role of general cognitive ability in expertise is 
inconclusive and in the majority of studies the evidence was in fact absent. 
On the other hand, cognitive ability did play a role in job performance 
well beyond the initial training. The difference between expertise and job 
performance studies is that the former typically studies consistent map-
pings between stimulus and response (as in the routine execution of psy-
chomotor responses or the recognition of typical patterns of stimuli), 
whereas the latter involves acquiring new knowledge and skill, dealing 
with varied mappings between stimulus and response or the need to 
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develop mental models of a situation. Thus, general cognitive ability (of 
which intelligence is one construct) plays a role whenever the environ-
ment presents us with new or complex situations. Whenever the environ-
ment presents us with well-known, standardized situations, we draw 
upon domain-specific knowledge and call it ‘expertise’.

The European Union High-Level Expert Group on Artificial 
Intelligence recently provided an updated definition of AI, which we use 
in this chapter:

Artificial intelligence (AI) systems are software (and possibly also hard-
ware) systems designed by humans that, given a complex goal, act in the 
physical or digital dimension by perceiving their environment through 
data acquisition, interpreting the collected structured or unstructured data, 
reasoning on the knowledge, or processing the information, derived from 
this data and deciding the best action(s) to take to achieve the given goal. 
AI systems can either use symbolic rules or learn a numeric model, and 
they can also adapt their behavior by analyzing how the environment is 
affected by their previous actions. (European Commission, 2019, p. 6)

AI systems achieve intelligent, that is, rational behavior, by choosing the 
best action to take in order to achieve a certain goal. Current AI systems 
can be characterized as narrow AI systems which perform one or a few 
specific tasks and cannot deal well with any new or abnormal situation. 
These systems resemble our definition of expertise as “reliably superior 
performance on representative tasks” (which is not to say that narrow AI 
systems should be equated with human experts, as the latter also possess 
general cognitive ability that the narrow AI systems by definition do not).

Taking these definitions into account, discussing the role of AI in 
expertise can mean a number of things. Given that currently deployed AI 
systems are examples of narrow AI, the issue becomes one of how human 
experts, within their domain of expertise, work together with systems 
that can perform one or a few specific tasks within that domain of exper-
tise. In other words, experts work with AI as symbiotic partners to exploit 
what each party does best (Daugherty & Wilson, 2018).
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 History, Current Status, and Prospects 
of Artificial Intelligence

The history of AI is often divided into multiple phases that characterize 
the field as defined by a particular research interest, or technological suc-
cess. In this section, we briefly discuss these phases through the lens of 
understanding the role of AI in expertise. As a guideline, we follow the 
phases as distinguished by Nilsson (2009) and shown in Table 8.1. We 
finish the section with a phase describing our expectation for the future.

 Early Days (1956–1974)

The field of artificial intelligence was founded during the legendary 
Dartmouth workshop in 1956. In the years that followed, the workshop 
participants (among others) developed many of the core techniques and 
ideas in AI that would continue to exist today. The first important idea 
was that knowledge could be represented symbolically (at the time 
referred to as a semantic network by Quillian (1963)), and logic could be 
used to reason over it. Another important idea was that knowledge could 
also be represented using a connectionist approach in an artificial neural 
network (at the time referred to as perceptron), being loosely inspired by 
the working of the human brain. The wide range of possibilities and vari-
ous successful early prototypes, such as chess computers, and programs 
processing natural language led to high expectations of this new emerg-
ing field. Prominent researchers such as Herbert Simon and Marvin 

Table 8.1 Phases of artificial intelligence (AI)

Years Characterization of AI

1956–1974 Early days of symbolic reasoning
1974–1980 First AI winter
1980–1987 Expert systems
1987–1993 Second AI winter
1993–2011 Multi-agent systems and semantic web
2011–present Big data and deep learning
Future paradigm of AI
___________________

Hybrid AI
___________________________________________________
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Minsky predicted that AI would surpass human experts on selected tasks 
within a few decades.

However, progress was hampered by a number of problems. The first 
problem was the lack of computing power in early computers. The sec-
ond problem was the burden of manual work required to engineer all the 
facts and rules required for intelligent reasoning. It gradually became 
apparent that general search strategies (so-called weak methods) were 
insufficient for attaining high levels of performance, and that these strate-
gies needed to be complemented with a lot of domain knowledge. The 
third problem was that AI models turned out to be brittle, meaning that 
they only performed well on the limited scope they were designed for. 
The latter two problems were conceived as part of the research process: 
just as in other successful sciences like physics, basic principles should 
first be investigated using simplified models. Researchers focused on 
micro worlds (Minsky & Papert, 1972), which would be narrow at first, 
but could later be generalized to more realistic settings. This generaliz-
ability turned out to be problematic, hampering practical applications.

 First AI Winter (1974–1980)

These problems, coupled with the unrealistically high expectations, led to 
what is generally called the first AI winter. Research funding was cut, and 
the general expectations of AI were dramatically lowered. Researchers 
came to realize that the problem of modeling intelligence in a computer 
was to be much harder than they initially thought.

 Expert Systems (1980–1987)

Following the realization that weak methods were insufficient for realiz-
ing high levels of performance, researchers turned to ways of incorporat-
ing large amounts of domain knowledge into systems. These systems were 
called expert systems, as they were assumed to encapsulate the knowledge 
of experts in a particular domain. Expert systems were building on early 
insights in symbolic knowledge representation. Knowledge was 
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represented using production rules (usually handcrafted by human 
experts), and a reasoning engine was applied to derive consequences given 
a set of facts. Popular applications were the medical domain (e.g., Mycin) 
and law. The goal was to “incorporate the knowledge and expertise in com-
puter programs, making the knowledge and expertise easily replicated, readily 
distributed, and essentially immortal” (Davis, 1984, p. 18, our emphasis). 
Just as in the early days of AI, expectations were high (Bobrow, 1984).

Besides the progress in expert systems, significant advances were also 
made in the connectionist approach to AI due to the discovery of the 
multi-layer perceptron that solved one of the fundamental problems of 
the old perceptron model from the 1960s. However, these developments 
did not create as much enthusiasm as expert systems, and it was unclear 
how the two approaches could be combined. Additionally, the problems 
with expert systems were essentially the same as in the early days: brittle-
ness, and burden of manual work. The main strategy to counter these 
threats was to limit the application to a narrowly defined topic, avoiding 
the need to model common-sense knowledge in the system. Another 
strategy was to try to enable end users to model the expert system rules. 
Nevertheless, expert systems did not live up to their expectations, and 
rarely made it out of the lab to real life usage (Leith, 2016).

 Second AI Winter (1987–1993)

Similar to the first AI winter, the inability to live up to the high expecta-
tions caused a second AI winter. This led many researchers to look for a 
different paradigm. Some researchers argued for an entirely different 
approach, referring to the symbolic approach to AI as GOFAI (Good 
Old-Fashioned AI), which was perceived as fundamentally flawed 
(Brooks, 1990). Furthermore, the term expert system was replaced by 
decision support system to reflect a ‘downscaled’ ambition where the com-
puter serves as a helper of a human expert instead of being an expert itself.
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 Multi-agent Systems and the Semantic Web 
(1993–2011)

Renewed hope in artificial intelligence was raised by a new technology 
that would fundamentally transform computer science: the internet. One 
development was multi-agent systems (MAS), which is a paradigm for 
distributed artificial intelligence. A MAS comprises multiple active 
AI-entities and lacks a single point of control and can therefore be con-
sidered as more robust (potentially overcoming the brittleness problem). 
Furthermore, it allows multiple developers to work on a system with little 
or no coordination. This was believed to be a potential solution for reliev-
ing the burden of work. Another new development was the semantic 
web, which was viewed as a next step in the evolution of symbolic knowl-
edge representation. The novelty was that it was distributed. Ontologies 
serve as formal specifications of the conceptualizations that are shared 
between the knowledge sources (Gruber, 1993). Unfortunately, both 
MAS and the semantic web did not live up to their high expectations, 
and few practical applications resulted from it.

 Big Data and Deep Learning (2011–Present)

The difficulties of MAS and the semantic web did not result in another 
AI winter. Large amounts of data (also known as ‘big data’) were created 
as a result of increased computer memory, sensor technology, and (again) 
the internet. Big data turned out to be a missing ingredient required to 
make the connectionist approach work. The large availability of data and 
computing power made it possible to develop deep neural networks 
(DNN) with up to one hundred million parameters that automatically 
optimize using machine learning techniques (many of which had already 
been discovered decades ago). Deep learning turned out to be very suc-
cessful, leading to unprecedented outcomes such as superhuman perfor-
mance on image classification tasks, game-playing such as the board game 
Go, and major breakthroughs in voice recognition and automatic lan-
guage translation among many others. For the first time in history, AI 
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became a huge commercial success, giving rise to billion-dollar industries 
in highly automated driving and data-analytics.

Not surprisingly, these successes revived speculations about the glori-
ous future of AI, including the possible development of artificial general 
intelligence (AGI), and super intelligence (Bostrom, 2017). Many people 
believed that deep learning had finally solved the problem of brittleness 
and manual engineering, thus making all previous approaches in AI 
obsolete. With respect to the problems of brittleness and burden of man-
ual work, there has certainly been progress. Advocates of end-to-end 
DNNs point out that feature extraction (e.g., extracting phonemes in 
audio) is no longer required. The raw features (e.g., the waveform itself ) 
should be directly fed into the DNN, which should be trained to produce 
the output in one go. This bypasses the manual engineering of domain- 
specific feature extraction algorithms. Furthermore, it enhances perfor-
mance, hence reducing brittleness. However, there are two main problems 
with this approach, which indicates a fundamental shortcoming of end- 
to- end deep learning.

First, deep learning requires a lot of data. For an image classifier, requir-
ing one million training examples is common. The problem is that these 
images must be accompanied by a label. A label could, for example, state 
that a certain image qualifies as ‘a cat’ and another as ‘a dog’. Because 
deep learning is a supervised learning algorithm, it requires these labels to 
learn. To obtain a label, a dataset usually requires humans to point out 
the area and indicate which type of object resides there. Whereas manu-
ally engineering a dataset for highly automated cars may be considered 
worth the effort, for more rare and specialized applications this burden of 
manual labeling work is often too large or simply not feasible.

A second problem with end-to-end DNNs is that they are no longer 
understandable by humans. The network cannot explain why it has 
reached a certain conclusion, which is problematic when humans have to 
judge the trustworthiness of an AI algorithm’s outcome. Although much 
research is currently performed on explainable AI (Gunning & Aha, 
2019), this research is still in its infancy and most likely requires more 
than a DNN to be solvable. Performing calculations with tens of millions 
of parameters, the functioning of a deep learning network is inherently 
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incomprehensible to humans. This can lead to unexpected behaviors and 
errors. For example, researchers discovered that small perturbations in 
the input image (invisible to the human eye) could easily fool a neural 
image classifier (e.g., confusing a whale with a turtle) (Moosavi-Dezfooli, 
Fawzi, & Frossard, 2016). The network turned out to be brittle after all, 
but in a way that is totally unimaginable for humans and that could not 
be explained by the AI either.

 Hybrid AI (The Future Paradigm of AI)

Whereas deep learning undoubtedly has proven its usefulness in pattern 
recognition tasks, many believe that the approach is not extendable to 
more complex tasks (Marcus & Davis, 2019). For example, consider an 
AI algorithm that could predict whether a business strategy will be suc-
cessful or not. Imagine an end-to-end DNN that takes a description of a 
strategy and situation as input, and produces an output that labels the 
strategy as ‘good’ or ‘bad’. As attractive as such a solution may seem, the 
data to train such a network are simply not available in the right format 
and quantity. Furthermore, the output will probably never be that black 
and white, requiring the algorithm to explain its advice, something which 
DNNs are inherently poor at.

While no one can predict the future, we believe that a future AI era 
will go beyond deep learning (Peeters et al., 2020). In fact, its contours 
are already beginning to take shape. In this era, AI will evolve into a 
hybrid of multiple connectionist AI techniques, symbolic approaches, 
and humans. By merging symbolic and connectionist approaches (van 
Harmelen & Teije, 2019), a hybrid AI system can be developed, which 
combines human-understandability and high-level reasoning with pat-
tern recognition capabilities. Furthermore, humans will also become an 
essential part of the system fulfilling essential roles as bearers of responsi-
bility, handling unexpected situations that the AI is incapable of deriving, 
and discovering causal relationships that are not discoverable by observ-
ing data alone (Pearl & Mackenzie, 2018).
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 History of Expertise Studies

In the 1950s and 1960s, research on expertise, particularly in the United 
States, was relatively scarce. Woodworth and Schlosberg’s (1954) 
Experimental Psychology does not mention the topic at all. One of the few 
exceptions was the work on chess expertise by the Dutch psychologist 
Adriaan de Groot (1946, 1965). De Groot collected think-aloud proto-
cols of chess players of varying expertise between 1938 and 1943. 
Although many at the time thought there would be large differences in 
the number of moves considered or the depth of search between grand-
masters and amateurs, de Groot found no evidence for such differences. 
However, he did find differences in the speed with which complex board 
positions could be stored in memory and remembered correctly after 
being presented for only five  seconds. Chess masters could correctly 
reconstruct positions of more than 20 pieces after just five  seconds of 
study, whereas the amateurs could reconstruct only four or five pieces. 
Apparently, the chess masters were able to recognize meaningful patterns 
on the board, later called ‘chunks’, indicating that domain-specific chess 
knowledge was the determining factor in the observed difference between 
experts and beginners.

The work by de Groot turned out to be highly influential and founda-
tional once it was translated into English in 1965. Around this time, 
research in AI reached a dead end in that it had failed to construct com-
puter programs that could outperform humans (Feigenbaum, 1989; 
Glaser & Chi, 1988). The weak search methods implemented in these 
programs employed heuristics to prune exhaustive search trees, but to no 
avail. Although heuristics are knowledge, they are a form of general 
knowledge. Looking at this state of affairs with de Groot’s findings in 
mind, researchers became aware of the importance of domain-specific 
knowledge in expertise. Chess masters don’t differ from amateurs because 
of their efficient wielding of general search heuristics, but because of their 
large storage of knowledge of chess patterns and associated moves. Simon 
and Gilmartin (1973) estimated that masters have acquired on the order 
of 50,000 different chess patterns, that they can quickly recognize such 
patterns on a chessboard and that this ability is what underlies their supe-
rior performance in chess.
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The ‘classic expertise approach’ (for an overview see Gobet, 2020) 
started with the originating work by Chase and Simon (1973) on chess at 
Carnegie-Mellon University in the early 1970s. This approach is charac-
terized by detailed analyses of problem-solving processes by a relatively 
small number of participants, emphasis on content, and use of computer 
programs to express theories. Chase and Simon also introduced a varia-
tion on de Groot’s memory task, basically serving as a control condition: 
apart from presenting actual board configurations, participants were also 
given random board configurations. In the latter case, no differences were 
observed between experts and beginners (Chase & Simon, 1973). This 
showed that the results obtained with actual board configurations were 
not due to superior visual memory for isolated pieces, but rather depended 
critically upon the ‘meaning’ of the constellations of pieces (‘chunks’). 
This research spawned a flurry of experimental papers in the late 1970s 
and early 1980s that would be summarized by Anderson (1981) and Chi, 
Glaser, and Farr (1988). Not only was the skill effect in the memory recall 
task replicated in several domains, but it was also found that experts see 
and represent a problem in their domain at a deeper (more principled) 
level than novices (Chi, Feltovich, & Glaser, 1981).

In 1991, Holyoak asserted that “[t]heories of expertise have now passed 
through two generations” (p. 301). The first generation viewed expertise 
as essentially a problem-solving activity that employed general heuristic 
search methods (akin to the ‘weak methods’ discussed previously) to a 
broad range of domains. However, in the 1970s and early 1980s, it 
became clear that expertise depended crucially on extensive domain 
knowledge and was therefore limited in scope and did not transfer across 
domains (for an overview see Feltovich, Prietula, & Anders  Ericsson, 
2006). Interestingly, the field of AI had gone through a similar major 
shift in focus in the 1966–1976 period, essentially moving from a search 
paradigm to a knowledge-based one (Goldstein & Papert, 1977), culmi-
nating in the heyday of highly domain-specific expert systems 
(Feigenbaum, McCorduck, & Nii, 1988). It seemed clear from all of this 
research that “knowledge is power” (Feigenbaum, 1989), which captured 
the essence of the second generation of theories of expertise.

Yet, in 1991, Holyoak listed numerous empirical findings that were at 
odds with the second generation of expertise theories. He found that 
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experts were much more flexible than previously thought and summarized 
his findings by stating that “[i]n general, an expert will have succeeded in 
adapting to the inherent constraints of the task” (Holyoak, 1991, p. 309). 
In other words, rather than reliably attaining specific goals within a spe-
cific domain (the second-generation definition of ‘routine expertise’), 
expertise should be viewed as the ability to make an appropriate response 
to a situation that contains a degree of unpredictability. The latter defini-
tion of expertise was first advanced by Hatano and Inagaki (1986) and 
was called adaptive expertise. Holyoak (1991) went on to outline a con-
nectionist view of expertise. However, he did not convincingly demon-
strate that a symbolic connectionist approach could explain the empirical 
findings that were at odds with the second-generation theories of exper-
tise and this approach to expertise was not taken up widely (it may have 
been before its time). In fact, the classic expertise approach has remained 
one of the dominant approaches to expertise (Gobet, 2020) and has been 
extended to expert decision making in real-world situations in the field of 
Naturalistic Decision Making (see Schraagen, 2018, for how this field 
relates to the theoretical foundations laid by the classic approach to 
expertise). In the field of Human Resource Development, the classic 
expertise approach, with its focus on knowledge, experience, and prob-
lem solving, has been extended with subjective characteristics that are 
perceived by someone else as an indication of an expert’s knowledge, 
abilities, or skills, for instance, being motivated, self-confident, or having 
high interpersonal skills (Germain, 2006; Germain & Tejeda, 2012; 
Grenier & Germain, 2014).

Currently, there is no single overarching and commonly accepted defi-
nition of expertise. In the recent Oxford Handbook of Expertise, Ward et al. 
(2020) distinguish many communities of practice that all use the word 
expertise in different ways. Apart from the classic expertise approach, the 
Cognitive Systems Engineering community of practice offers perhaps the 
most distinctive alternative. It does not view expertise as an individual 
phenomenon or a particular stage of information processing, as the classic 
expertise approach, but rather as a coupling between an expert with a 
problem ecology through a representation. In this view, expertise is a mat-
ter of sensitivity to environmental constraints and opportunities.
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The pendulum on the generality-specificity dimension has therefore 
swung back to some extent, and many researchers now view expertise as 
“skilled adaptation to complexity and novelty” (Ward, Gore, Hutton, 
Conway, & Hoffman, 2018), therefore stressing generality somewhat 
more than specificity. Research has confirmed the importance of con-
scious, analytical reasoning (as an instance of skilled adaptation or flexi-
bility) in experts, but only when confronted with complex, atypical 
problems (Mamede et al., 2010; Moxley, Anders Ericsson, Charness, & 
Krampe, 2012). When having to solve simple problems, experts use a 
recognitional strategy, as predicted by the classic expertise approach, and 
the first option considered is usually the best (e.g., Johnson & Raab, 
2003; Klein, Wolf, Militello, & Zsambok, 1995). The importance of a 
flexible and adaptive skill capacity (e.g., flexible sensemaking and flexible 
action execution) will only increase as the societal and human- 
technological challenges ahead of us proliferate.

Interestingly, whereas flexibility and adaptation are prominent con-
cepts in current conceptualizations of expertise, current conceptualiza-
tions of AI still focus on attaining specific goals within a specific domain. 
Most AI systems of note have so far achieved world-class performance in 
specific domains such as the competitive games of chess (Campbell, 
Hoane Jr., & Hsu, 2002), Go (Silver et  al., 2017), Jeopardy (Chen, 
Elenee Argentinis, & Weber, 2016; Ferrucci, 2012), and Poker (Brown & 
Sandholm, 2018). Nevertheless, they are still far away from what is some-
times referred to as Artificial General Intelligence (AGI), meaning that it 
can perform any intellectual task that a human can. Having discussed the 
history of both AI and expertise studies, we will now turn to studies on 
‘joint cognitive systems’, in which experts and intelligent systems are 
viewed as pairs that work together to achieve particular goals.

 Empirical Research on Joint Cognitive Systems

An early example of an empirical study on the coupling of human intel-
ligence and machine power is the study by Roth, Bennett, and Woods 
(1987) on technicians diagnosing faults with the aid of an expert system. 
The expert system was developed according to what the authors refer to 
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as a prosthesis paradigm, which may be contrasted with a cognitive 
instrument paradigm. In the cognitive tool as a prosthesis paradigm, 
“[t]he machine expert guides all problem solving activities dictating what 
observations and actions the user is to take to solve the problem” (Roth 
et al., 1987, p. 480). The expert system is considered a prosthesis in the 
sense that it presumably compensates for human deficiencies in generat-
ing hypotheses and the human is relegated to the role of passive data 
gatherer and action implementer in order to serve the machine’s needs.

The study showed that those technicians who were actively involved in 
the troubleshooting process not only achieved faster and better solutions, 
but also coped better with unanticipated variability, monitored the 
machine’s behavior, recognized unproductive paths, and redirected the 
machine to more productive paths. Technicians who passively followed 
the machine’s instructions dwelled on unproductive paths and reached 
dead-ends more often. It turned out that one of the six problems pre-
sented to the technicians was unsolvable due to a bug in the expert sys-
tem’s knowledge base. Substantive interventions by the knowledge 
engineer were also required to point out input errors or redirect the diag-
nosis. Technicians varied widely in how they approached the problem 
and substantial deviations from the canonical path arose even when the 
problem was solved correctly. It turned out that technicians needed 
knowledge of the structure and function of the device in order to follow 
underspecified instructions by the expert system, to infer machine inten-
tions, to resolve impasses, and to recover from errors that led the expert 
system off-track (once off-track, it could not recover by itself and needed 
human help to be directed back to a more productive path). In brief, the 
expert system was not observable, predictable, and directable by the 
human expert.

The machine-as-prosthesis paradigm results in typical breakdowns in 
performance whenever humans are assigned the passive role of following 
instructions. Alternatively, cognitive tools can also be viewed as instru-
ments that support effective performance in any environment. This 
instrumental view of tools is very much in alignment with the view of 
expertise as skilled adaptation to complexity and novelty. Tools as instru-
ments should enhance a human problem solver’s adaptability to the 
unanticipated variability that inevitably arises in the pursuit of domain 
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goals. The problem solver is in charge, the AI tool functions more as a 
staff member providing knowledge resources.

This example of a joint cognitive system focused on a single human 
and a single system, even though it became clear during this particular 
research project that the scope had to be extended to include the knowl-
edge engineer and two observers who could help and guide the techni-
cian where necessary. Later research on joint cognitive systems extended 
to multiple experts cooperating with multiple intelligent systems. One 
typical domain would be automation in the airplane cockpit, where the 
cockpit crew needs to cooperate with numerous automated systems. Not 
all these systems qualify as artificial intelligence, as some of them hardly 
‘interpret information’ or ‘reason based on knowledge’, but that is beside 
the point here. The point that we want to make, and that has been stated 
repeatedly by the field of Cognitive Systems Engineering (e.g., Woods, 
Dekker, Cook, Johannesen, & Sarter, 2010; Woods & Hollnagel, 2006), 
is that a clumsy use of technology is about miscoordination between the 
human and machine portion of a single ensemble (Christoffersen & 
Woods, 2002). Automation and people have to coordinate as a joint sys-
tem, a single team (Klein, Woods, Bradshaw, Hoffman, & Feltovich, 
2004). Breakdown in this team’s coordination is an important path 
toward disaster, as can be seen vividly in the Air France Flight 447 disas-
ter (2009) or the Lion Air (2018) and Ethiopian Air (2019) crashes 
involving the Boeing 737 Max MCAS system.

In essence, what happens with many (cockpit) automation projects is 
that systems are designed to operate in a multitude of modes, and mode 
changes are not always communicated clearly to operators. Mode errors 
occur when an operator executes an intention that is appropriate for one 
mode, when in fact the system is in a different mode. For instance, when 
a pilot enters the correct digits for a planned descent (e.g., ‘33’, intending 
to mean an angle of descent of 3.3 degrees), this may be interpreted by 
the automation (being in a different descend mode than the pilot thinks) 
as a rate of descent of 3300 feet per minute. This particular mode error 
occurred with Air Inter Flight 148 in 1992 near Strasbourg, France, kill-
ing 87 of the 96 people on board. On a more day-to-day level, cruise 
control systems in cars provide opportunities for mode errors as well. For 
instance, one may manually override the speed set by the cruise control 
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by pressing the gas pedal for a while, then forgetting about the cruise 
control being engaged, only to be reminded of it when releasing the gas 
pedal and letting the car gradually slow down. If one’s intention was to 
slow down to zero mile per hour, the cruise control would suddenly kick 
in at the set speed, and one will experience an ‘automation surprise’ 
(Sarter & Woods, 1995), much like pilots in a cockpit. Drivers may also 
believe that the cruise control is engaged, when in fact it is only on. How 
the various modes are communicated to the driver is highly dependent 
on the particular cruise control interface, and different car manufacturers 
have different ways of resolving this issue.

Mode errors are only one example of where automation has not lived 
up to its promise. Other examples are clumsy automation (Wiener, 1989) 
where automation creates new coordination demands precisely at the 
very time when practitioners are most in need of true assistance, overreli-
ance on technology (Billings, 1991) where operators rely on systems 
when in fact those systems cannot cope, as they are outside their compe-
tence envelope, and deskilling (Bainbridge, 1983) where operators grad-
ually lose manual skills as they increasingly depend upon automation. 
Underlying these problems with automation are several misconceptions 
regarding the way tasks are to be distributed among people and technol-
ogy (Bradshaw, Hoffman, Johnson, & Woods, 2013):

 1. Compensation: machines have strong points that compensate for 
weak points of humans;

 2. Substitution: tasks can be automated without consequences; hence 
human tasks can be replaced with machine tasks;

 3. Automation: automation is autonomous;
 4. Allocation: tasks can be neatly divided into parts and assigned to 

either a human or a machine (not both at the same time); and
 5. Workload and productivity: more automation leads to fewer people, 

hence fewer errors, hence lower costs, but with higher productivity.

Many of the current discussions around AI can be framed as novel 
instantiations of the same discussions on automation: if one replaces 
‘machine’ or ‘automation’ with ‘AI’ in the misconceptions above, one 
would find themselves in the same position as cognitive engineers in the 
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1980s and 1990s. Many of the lessons learned then with automation still 
apply in the case of AI, even though the empirical evidence is still unavail-
able. The following arguments may be advanced in response to some of 
the misconceptions:

 1. Compensation: machines/AI are good at certain things and people are 
good at certain things, but that does not change the fundamental 
interdependence between the two. Team play with people and AI is 
critical to success. No matter how much information the AI processes, 
humans must trust the conclusions because they are ultimately respon-
sible. Therefore, AI needs to explain itself.

 2. Substitution: practice is transformed by automation and the roles of 
people change. This may not always be obvious from an outsider’s 
perspective, due to the Law of Fluency that states that ‘well’-adapted 
work occurs with a facility that belies the difficulty of the demands 
resolved and the dilemmas balanced (Woods & Hollnagel, 2006). In 
other words, when an outsider studies work that seems to be well- 
adapted, what remains hidden from view are the numerous ways in 
which humans have coped with complexity and the various trade-offs 
they had to make. As the constraints adapted to are hidden from view, 
the work may actually not be so ‘well’-adapted. Humans will adapt to 
changes in the tasks as a result of automation, but that adaptation 
comes at a price, for instance deskilling, increased monitoring, or 
increased coordination. These vulnerabilities will become apparent 
when situational demands increase, and surprise events occur.

 3. Automation: Machines are self-sufficient only up to a certain extent 
and only in particular circumstances. Surprise is continuous and 
 ever- present. There is always the need to close the gap between the 
demonstration and the real thing (Woods, 2016). This requires new 
methods to assess brittleness, for instance the turnaround test—how 
much work does it take to get a system ready to handle the next mis-
sion/case/environment, when the next is not a simple parametric vari-
ation of the previous demonstration (Woods, 2016)? As a second 
rebuttal, it has recently been claimed that “no AI is an island” (Johnson 
& Vera, 2019). According to Johnson and Vera (2019), AI will reach 
its full potential only if, as part of its intelligence, it also has enough 
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teaming intelligence to work well with people. Although seemingly 
counterintuitive, the more intelligent the technological system, the 
greater the need for collaborative skills.

 4. Allocation: reality shows that tasks are always interdependent, and 
humans and machines/AI always need to cooperate. When tasks are 
divided into parts, the interdependencies are frequently overlooked. 
The easiest subtask is then automated and the other subtasks are 
ignored. The moment the machine can no longer perform its subtask, 
as surprise is continuous, control is suddenly transferred to a human 
being who then experiences an ‘automation surprise’.

 5. Workload and productivity: according to the Law of Stretched Systems 
(Woods & Hollnagel, 2006), automation is always exploited fully, 
requiring people to do more, do it faster, or in more complex ways, 
thereby increasing rather than decreasing workload. Also, new types 
of cognitive work are being created, often at the wrong moments 
(‘clumsy automation’), which leads to new types of errors.

This discussion on research on joint cognitive systems has prepared us 
for a discussion of how AI could enhance (or degrade) human expertise 
in various settings. In this next section, we illustrate the general principles 
we have described through a case study.

 Case Study: Radiology

The modern work practice of radiology involves several healthcare profes-
sions working together as a team. A radiologist is a medical doctor who 
interprets medical images, communicates these findings to other physicians, 
and performs medical procedures using imaging. The radiographer pro-
duces medical images for the radiologist to interpret. The nurse is involved 
in patient care before and after imaging or procedures. It is clear that team-
work is vital, with a lot of interdependencies between various healthcare 
professions. Also, a variety of imaging techniques are used: radiographs 
(X-ray imaging), ultrasound, computed tomography, magnetic resonance 
imaging, and nuclear medicine. Each of these techniques requires specific 
expertise in terms of preconditions for use and sensitivity of data.
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Radiological expertise not only involves a substantial perceptual 
component, but also involves the integration of several distinct bodies of 
knowledge with separate organizing principles, including physiology, 
anatomy, medical theories of disease, and the projective geometry of 
radiography (Lesgold et  al., 1988). Lesgold and colleagues found that 
expert radiologists, when examining radiographs, would quickly (within 
two  seconds) invoke a diagnosis schema that has prerequisites or tests 
that must be satisfied before it can control the diagnosis and viewing. The 
patient’s anatomy is constructed as the schemata are applied. The expert 
works efficiently to reach the stage where an appropriate general schema 
is in control. When a schema does not fit the data, it is discarded quickly. 
On the other hand, schemata also drive perception by setting hypotheses 
on what to expect in an image. Each schema contains a set of processes 
that allows the viewer to reach a diagnosis and confirm it. The expert 
works both bottom-up, data-driven, as well as top-down, schema-driven, 
in a continuous cycle. This confirms the general picture of expertise we 
outlined, as it includes both recognitional decision making, based on a 
large and diverse memory for exemplars (Norman, Coblentz, Brooks, & 
Babcook, 1992), and being flexible and adaptive, but with more resource- 
intensive reasoning components, with the latter being employed in more 
difficult cases (Patel, Kaufman, & Kannampallil, 2020).

Over the last decade, modern AI technologies (particularly deep learn-
ing) have caused breakthrough successes in almost all areas of AI-assisted 
radiology. Examples include detecting and segmenting lung cancer 
tumors in radiographs, interpretation of MRI scans, and monitoring dis-
ease progress. For some of these tasks, AI achieved human level perfor-
mance or better (Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 
2018). Despite the wide range of opportunities, these systems have not 
yet been implemented in clinical radiology practice. The earliest applica-
tions can be expected in areas where abundant high-quality-labeled data 
are available and concern tasks that currently overload human experts 
(such as in the detection of tumors in radiographs).

It is becoming clear that the introduction of this type of AI automa-
tion will not replace humans, but rather will lead to new workflows and 
create new roles for humans, requiring different human expertise. We can 
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expect the following types of task-changes in an AI-assisted radiology 
workflow:

AI-replacement tasks that are completely taken over by the AI. These 
are subtasks in the radiology workflow at which the AI consistently per-
forms as well as or better than humans. Examples are the visual interpre-
tation of radiology images by deep learning image classifiers. This will 
result in deskilling of existing radiology personnel and relieve training 
requirements of new radiologists from having to acquire this skill.

AI-augmentation tasks where the AI system augments humans. These 
are tasks for which the AI (e.g., due to brittleness) sometimes makes mis-
takes that can be repaired by humans. An example of this is planning a 
patient’s treatment. Whereas AI can help in monitoring the effects of past 
treatments, it is highly unlikely that a treatment plan is finalized without 
any human oversight. For these tasks humans are needed to recognize 
and deal with abnormal and rare cases. This requires that humans main-
tain the expertise of this task and acquire additional expertise on how to 
use the AI support system. Also, the AI support system must be capable 
of explaining its advice to humans such that they can judge its 
trustworthiness.

AI-maintenance tasks are added to the radiology workflow that did not 
exist before. These have to do with maintaining the AI systems, and 
require a whole new set of skills. Examples of these are (re-)training the 
AI system, understanding the complications of introducing new hard-
ware on the AI performance, training human personnel to use the AI 
system, and so on.

Despite the fact that humans will not be fully replaced, the efficiency 
(in terms of human labor) of radiology practice will undoubtedly increase 
due to the introduction of AI. However, these efficiency gains may well 
be compensated by a higher standard of healthcare, such as requiring 
more frequent health checkups.

Summarizing the trends in radiology, we can see that the hybrid AI 
principle, where different forms of AI work together with experts is the 
most appropriate vision. These different forms of collaboration will 
require different skills. Daugherty and Wilson (2018) refer to these skills 
as fusion skills, as they draw on the fusion of human and machine talents 
within a business process to create better outcomes than working 
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independently. For instance, rehumanizing time is a fusion skill that 
allows people to skillfully redirect their time toward more human activi-
ties. Particularly in medicine, physicians could greatly benefit from AI 
taking over visual interpretation of radiology images, as it would give 
them more time to see their patients or coordinate with other physicians. 
Other fusion skills involve knowing how best to ask questions of AI to get 
the insights you need, the ability to develop robust mental models of AI 
agents to improve process outcomes, and the ability to decide a course of 
action when a machine is uncertain about what to do.

 Conclusion

Our review of the history of expertise studies with the history of AI has 
converged on a number of common themes. First, expertise is currently 
viewed as a skilled adaptation to complexity and novelty. This is not to 
diminish the importance of pattern-recognition capabilities amassed dur-
ing extensive periods of deliberate practice. Rather, it is recognized that 
adaptation to complexity and novelty can only be skilled as a result of 
extensive practice. Second, although the current interest in AI largely 
focuses on machine learning capabilities there are a number of problems 
associated with that approach. First, machine learning approaches using 
deep neural networks cannot explain themselves to humans. This is cru-
cial, particularly when experts need to work with these systems. Second, 
these approaches result in brittle systems that can easily be attacked or 
that do not work in unforeseen scenarios.

The history of joint cognitive systems has shown that viewing machines 
as prostheses results in breakdowns in performance, whereas viewing 
machines as tools or instruments aids in adapting to unanticipated vari-
ability. We have argued for a future of Hybrid AI in which expertise will 
be distributed across experts and AI in various ways. The example of 
radiology has shown that the introduction of AI capabilities may have 
various consequences, ranging from replacement, to augmentation, to 
maintenance of human expertise. It may well be the case that pattern 
recognition capabilities of AI systems will exceed human expertise (they 
already do so in restricted task domains). Yet, in order to be able to 
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effectively collaborate with human experts, AI will need collaborative 
skills, such as being able to explain itself to human experts. This is an area 
that is still being researched. Simultaneously, human flexibility and adap-
tation will increasingly be required to deal with unanticipated variability 
and surprise situations. Human expertise will be needed to close the gap 
between the demonstration and the real thing (Woods, 2016). This is in 
line with recent views on expertise that stress skilled adaptation to com-
plexity and novelty.

Finally, the introduction of AI will also result in a whole series of new 
skills that human experts need to develop in order to deal with AI. We 
have discussed a few of these fusion skills (Daugherty & Wilson, 2018), 
but there are likely to be many more that we cannot foresee. AI systems 
will hardly ever stand alone in a work process and will therefore need 
intricate tuning to human demands at various points in time. Such sys-
tems will need to be trained, validated, understood, explained, assisted, 
and overruled if experts want to accept them and be able to effectively 
work with them.

This chapter has shown that it is a gross oversimplification to consider 
AI systems and human expertise as two mutually exclusive entities, with 
one taking over the other without changing anything in the work process. 
Rather, we need to view this from a joint cognitive systems perspective, 
at a systems level and as dynamically changing over time. Only then will 
we be able to see the intricacies of the mutual dependencies between 
humans and AI, and the constantly evolving distribution of skill sets that 
are required from an organizational perspective. There is a bright future 
for experts working jointly and collaboratively with AI systems in 
organizations.
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