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Abstract. In this modern day and age, where the majority of our com-
munication occurs online, digital signatures are more important than ever
before. Of the utmost importance are the standardised signatures that
are deployed not only across the Internet, but also in everyday devices,
such as debit and credit cards. The development of these signatures
began in the 1990s and is still an ongoing process to this day. We will
focus on RSA-based hash-and-sign signatures, specifically deterministic
hash-and-sign signatures. We will give a survey of all standardised deter-
ministic RSA hash-and-signatures, where we explore the history of each
one, from inception, to attacks and finally proofs of security. As the secu-
rity proofs have also appeared over the span of two decades, their state-
ments are not always compatible with one another. To ensure this, we
will consider only deterministic standardised signature schemes included
in PKCS, ISO, and ANSI standards, as well as the non-standardised
Full-Domain Hash, to provide a complete picture.

Keywords: Digital signatures · Random Oracle Model · RSA · Full
Domain Hash · Lossy TrapDoor Permutation · PKCS · ANSI · ISO ·
Standards

1 Introduction

In the early days of the Internet, several practical signature schemes based on the
intractability of the RSA problem appeared, both as industry standards and in
academic literature. While there was a range of schemes, they were all based on
the “hash-and-sign” paradigm, where any message was converted into a “mes-
sage representative” in the group ZN with the use of a hash function(s) and
possibly some padding. This was first suggested by Denning [21] and indepen-
dently by Gordon [27]. The first scheme to follow this blueprint was an industry
standard, namely PKCS#1 v1 Signature Scheme with Appendix, which first
appeared at the NIST/OSI Implementors’ Workshop in 1991. This would later
appear publicly in 1998 as the PKCS#1 v1.5 Signature Scheme with Appendix
RSASSA-PKCS1-v1 5 [40]. This scheme did not initially have a security proof,
and indeed the PKCS#1 standard has seen many attacks, mainly in the form
of Bleichenbacher’s attacks [8]. In contrast to this, the first scheme proposed
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in academic circles was the Full Domain Hash scheme RSA-FDH of Bellare and
Rogaway [2], which had an accompanying security proof, albeit a non-tight one.

While initially disparate, academia and standards did eventually converge
with the first provably secure standard being the IEEE P1363-2000 Inter Fac-
torization Signature Scheme with Appendix IFSSA [43] and the ISO/IEC 14888-
2:2008 RSA Signature scheme (14888-2 RSA Signature) [31], which is a variant
of the Probabilistic Signature Scheme RSA-PSS by Bellare and Rogaway [3,4].
The standardised variant was proven secure by Jonnson [35], the proof itself
being based on the proof for the original scheme due to Coron [14]. Ideally,
RSASSA-PKCS1-v1 5 would have been replaced with IFSSA, or indeed another
provable secure scheme, however, this is not the case. There has been an attempt
to replace RSASSA-PKCS1-v1 5 with IFSSA(the scheme is called RSASSA-PSS in
the standard), but this has been slow going. IFSSA was suggested as an even-
tual replacement for RSASSA-PKCS1-v1 5 in PKCS#1 v2.1 [34] in 2003 and was
upgraded to a requirement for new applications in PKCS#1 v2.2 [49]. How-
ever, RSASSA-PKCS1-v1 5 still remains, primarily for the purpose of backwards
compatibility.

“Although no attacks are known against RSASSA-PKCS1-v1 5, in the inter-
est of increased robustness, RSASSA-PSS is REQUIRED in new applica-
tions. RSASSA-PKCS1-v1 5 is included only for compatibility with existing
applications.” [49, Sec. 8]

This is of course not the complete story. After the initial release of the
PKCS#1 standard, other standards bodies developed RSA based hash-and-sign
signature schemes, with mixed success. The International Organization for Stan-
dardization (ISO) developed their own RSA hash-and-sign schemes in the form
of the ISO/IEC 9796-2 standard in 1997 [29]. However, this scheme was promptly
broken by Coron, Naccache and Stern [16]. The standard was withdrawn and
then updated version appeared in 2002 [30], but this was also later broken by
Coron, et al. [17]. This standard was also withdrawn and it was then replaced in
2010 [32]. This version remains active and in use and to the best of our knowl-
edge is not vulnerable to known attacks. What is quite interesting is that the
vulnerabilities of the ISO/IEC 9796 signatures did not apply to the EMV stan-
dard for card payments. The EMV standard uses the ISO/IEC 9796 signatures
scheme, but with strictly formatted messages, which meant that the payment
ecosystem’s security was not affected by this attack.

In addition to the ISO/IEC 9796 signatures being used by EMV payment
cards, the American National Standards Institute (ANSI) developed the X9.31
Standard for use in the banking sector [1]. While parts of the X9.31 Standard
have been withdrawn, to the best of our knowledge the X9.31 rDSA signature
scheme is still valid. This scheme has also been studied in the cryptographic
literature, with a proof for the Rabin-Williams variant by Coron [15], as well as
appearing in a survey by Menezes [47]. Since this scheme does follow the con-
struction pattern of the other known standards, we include it in our comparison
for completeness.
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There have also been some strides made forward in the academic side, not
only limited to attacks. Coron presented improved proofs for RSA-FDH [12] and
the original RSA-PSS [14], as well as showing that these proofs are indeed opti-
mal. The optimality was revisited by Kakvi and Kiltz [38] and shown to hold
only when RSA is a Certified TrapDoor Permutation (CTDP) [5,6,25,39]. We
say a trapdoor permutation is certified, if there is a polynomial time algorithm
that verifies that the public evaluation parameters of the trapdoor permuta-
tion are well formed i.e. that they do indeed define a permutation. Kakvi and
Kiltz exploited the fact that for small prime RSA exponents e, the RSA func-
tion is actually a Lossy TrapDoor Permutation (LTDP) [50] under the Φ-Hiding
Assumption [9]. This technique laid the groundwork for future proofs of stan-
dardised RSA based hash-and-sign signature schemes.

There was also progress more closely related to the standards themselves.
Most notably, Coron presented security proofs for 9796-2 Scheme 1 as well as
RSASSA-PKCS1-v1 5 with the restriction that e = 2, i.e. the Rabin-Williams
variant [15]. The caveat is that the output size of the hash function needed to be
2/3 of the bit length of the modulus N . Much later, Jager, Kakvi and May [33]
showed a security proof for RSASSA-PKCS1-v1 5 with the restriction that e be a
small prime, using the techniques of Kakvi and Kiltz [38]. This proof also requires
a large hash function output, but Jager, Kakvi and May require only 1/2 of the
modulus size, compared to Coron’s 2/3. There is the additional requirement that
the modulus must effectively double in bit length and the modulus must have
(at least) 3 prime factors1. While not explicitly stated, it is clear the proof of
Jager, Kakvi and May [38] also applies to the ISO/IEC 9796-2 schemes.

These proofs all crucially consider only the schemes themselves in isolation,
and one must ask how close this is to reality. For reasons of economy and effi-
ciency, it is common practice for key material to be shared amongst algorithms.
Most notably the EMV standard uses the same RSA key for both signatures
and encryption, which was shown to be vulnerable to attack [20]. While strongly
suggested against in the PKCS#1 standard, it is common practice to use the
same key for both RSASSA-PKCS1-v1 5 and RSASSA-PSS. In contrast to the EMV
setting, this was shown to be secure by Kakvi [36], with the same caveats as that
of Jager, Kakvi and May [33].

Given that these schemes are widely used in practice and have such a storied
history, we feel that it is worth revisiting all the previous schemes and proofs and
unifying their notations and security concepts. This will allow for a fair and accu-
rate comparison of the schemes in question. Furthermore, taking a look back at
older schemes, their security and how it has developed gives us a good overview
of how standardised digital signatures, and the corresponding security proofs,
have evolved over the years. We will only look at the deterministic schemes,
as they are generally preferable due to the difficulty of generating randomness,
especially on constrained devices. Furthermore, there is only one RSA-based ran-

1 The proof is presented with 3 prime factors, but it works for any number co-prime to
the modulus where one can compute eth roots, but requires an additional assumption
similar to the 2v3PA.
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domised digital signature scheme, RSA-PSS, which requires two hash functions,
thus making it difficult to compare with the deterministic schemes that use only
one.

Finally, we will compare all the schemes in all aspects, namely modulus size,
exponent size, number of prime factors and of course security loss, allowing us
to give a more complete comparison of parameters. As a small sample, we show
the parameters required for each scheme and what the (approximate) effective
security is, which we show in Table 1. All the security proofs consider unforge-
ability in the Random Oracle Model, which we explain in Sect. 2.2 in Fig. 1. The
computational assumptions are detailed in Sect. 2.3.

To compute these values, we assume qh = 260 hash queries and qs = 230 signa-
ture queries. An effective RSA modulus of k bits means that forging a signature
is as hard as solving the corresponding problem for a k bit RSA modulus. The
equivalent modulus size is computed by first using the equations of Lenstra [44]
to calculate the estimated cost of the NFS for that security level. We then take
the cost of the NFS and then find the modulus size to the nearest 10 bits that
most closely matches it. To compensate for losses that are constants and for
losses caused by running time increases, we simply reduce the modulus size by
the binary logarithm of the loss factor. We only provide an approximate equiv-
alent key size as there are several factors, such as time-memory trade-offs, that
need to be considered for an exact figure and considering these would detract
from the main goal. We believe that these figures are accurate enough to illus-
trate the security of each scheme. We provide a more comprehensive comparison
in Tables 2, 3, 4, 5. We provide a comparison of all schemes in Tables 6.

Table 1. Parameter sizes and security for deterministic RSA based hash-and-sign
schemes with a 1024 bit modulus

Scheme Proof Assumption No. prime
factors

Exponent e |H()| Equiv.
modu-
lus

RSASSA-PKCS1-v1 5 [15] Factoring 2 2 � 623 ≈ 560

[33] RSA 3 Arbitrary � 512 ≈ 280

[33] Lossines 3 Prime � 2256 � 512 ≈ 511

9796-2 Scheme 1 [15] Factoring 2 2 � 623 ≈ 552

[33] RSA 3 Arbitrary � 512 ≈ 273

[33] Lossines 3 Prime � 2256 � 512 ≈ 504

X9.31 rDSA [15] Factoring 2 2 � 623 ≈ 544

[33] RSA 3 Arbitrary � 512 ≈ 265

[33] Lossines 3 Prime � 2256 � 512 ≈ 497

We now recall the definitions of signature schemes and the relevant compu-
tational assumptions. We then present a brief discussion of the known attacks.
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After that we present each scheme and recall the security theorem(s) for each
scheme. We conclude with an overview of all the schemes.

2 Preliminaries

2.1 Notations and Conventions

We denote our security parameter as λ ∈ N, which determines our key sizes.
For all n ∈ N, we denote by 1n the n-bit string of all ones and by 0n the n-
bit string of all zeroes. We denote the concatenation of two bitstrings x and y
as x||y. For any set S, we use x ∈

R
S to indicate that we choose x uniformly

random from S. All algorithms may be randomised. For any algorithm A, we
define x ←$ A(a1, . . . , an) as the execution of A with inputs a1, . . . , an and fresh
randomness and then assigning the output to x. For deterministic algorithms,
we drop the $ from the arrow. We denote the set of prime numbers by P and we
denote the subset of κ-bit primes as P[κ]. Similarly, we denote the set of κ-bit
integers as Z[κ]. We denote by Z

∗
N the multiplicative group modulo N ∈ N. For

any a, b ∈ Z, with a < b we denote the set {a, a + 1, . . . , b − 1, b} with �a, b�.
For any n ∈ N and for any a ∈ N[κ], with κ < n, we denote by 〈a〉n the binary
representation of a padded to n bits, i.e. 〈a〉n = 0n−κ||a. For any bit string x of
sufficient length, we denote by MSBs(x, n) the n most significant (leading) bits
of x and LSBs(x, n) the n least significant (trailing) bits of x.

2.2 Signature Schemes

We first recall the standard definition of a signature scheme, as well as its secu-
rity.

Definition 1. A digital signature scheme Sig with message space M and signa-
ture space S is defined as a triple of probabilistic polynomial time (PPT) algo-
rithms Sig = (KeyGen,Sign,Verify):

– KeyGen takes as an input the unary representation of our security parameter
1λ and outputs a signing key sk and verification key pk.

– Sign takes as input a signing key sk, message m ∈ M and outputs a signature
σ ∈ S.

– Verify is a deterministic algorithm, which on input of a public key and a
message-signature pair (m,σ) ∈ M × S outputs 1 (accept) or 0 (reject).

We say Sig is correct if for any λ ∈ N, all (pk, sk) ←$ KeyGen(1λ), all m ∈ M,
and all σ ←$ Sign(sk,m) we have that

Pr[Verify(pk,m, σ) = 1] = 1.

For signature security, we consider the standard notion of UnForgeability
under adaptive Chosen Message Attack [26] in the Random Oracle Model [2]
(UF-CMA(ROM)). The security experiment is presented in Fig. 1. It must be
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Game UF-CMA(ROM)
Initialize(1λ)
(pk, sk) ←$ Sig.KeyGen(1λ)
return pk

Hash(m)
if (m, ·) ∈ H

fetch (m, y) ∈ H
return y

else
y ∈R {0, 1}�;
H ← H ∪ {(m, y)}
return y

Sign(m)
M ← M ∪ {m}
return σ ←$ Sig.Sign(sk, m)

Finalize(m∗, σ∗)
if Sig.Verify(pk, m∗, σ∗) == 1 ∧ m∗ M∈�

return 1
else

return 0

Fig. 1. UF-CMA security game in the Random Oracle Model

noted that all hash function calls are replaced with a call to the random oracle. In
the case where we have multiple hash functions, we have multiple oracles. All the
security statements we discuss in this paper are with respect to UF-CMA(ROM).

We say that Sig is (t, ε, qh, qs)-UF-CMA(ROM) secure if for any forger F
running in time at most t, making at most qh hash queries and making at most
qs signature queries, we have:

AdvUF-CMA(ROM)
F,Sig = Pr

⎡
⎣

1 ← Finalize(m∗, σ∗);
(m∗, σ∗) ← FHash(·),Sign(·)(pk)

pk ←$ Initialize(1λ)

⎤
⎦ � ε

2.3 Computational Assumptions

We now recall the computation assumptions that were used in the proofs of the
security statements that we will discuss, namely the RSA Assumption k-RSA[λ],
ϕ-Hiding Assumption k-ΦHA[λ], the Factoring Assumption FACT[λ] and the 2 vs
3 Primes Assumption 2v3PA. Note that all assumptions have additional parame-
ters k, which is the number of prime factors in our modulus, and λ, which is the
bit-size of the modulus. The number of prime factors does play a role in some
of the proofs, so we include it in all the theorem statements for consistency.

We begin by presenting the RSA Assumption, which essentially states that
given a modulus N , and exponent e and a random y ∈ Z

∗
N , it is hard to com-
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pute an eth root of y modulo N , equivalently, it is hard to find x such that xe

mod N = y.

Definition 2 (RSA Assumption [51]). The RSA Assumption, denoted by
k-RSA[λ], states that given (N, e, xe) it is hard to compute x, where N is a
λ-bit number and is the product of k distinct random prime numbers pi ∈ P,
for i ∈ �1, k�, for k constant, e ∈ Z

∗
ϕ(N), and x ∈

R
ZN . k-RSA[λ] is said to be

(t, ε)-hard, if for all adversaries A running in time at most t, we have

Advk-RSA[λ]
A = Pr [x = A(N, e, xe mod N)] � ε.

Next, we discuss the ϕ-Hiding Assumption by Cachin et al. [9], which essen-
tially states that given a modulus N and a sufficiently small exponent e, it is hard
to decide if e|ϕ(N) or not. In this case sufficiently small means that e < N

1
4 , as

for larger exponents, Kakvi, Kiltz and May. [39] show how to decide this using
Coppersmith’s method [10]. Note that when gcd(elos, ϕ(N)) = elos, the RSA
function xelos mod N is exactly elos-to-1, i.e. it is said to be elos-regular lossy as
defined by Kakvi and Kiltz [38].

Definition 3 (The ϕ-Hiding Assumption. [9]). The ϕ-Hiding Assumption,
denoted by k-ΦHA[λ], states that it is hard to distinguish between (N, einj) and
(N, elos), where N is a λ-bit number and is the product of k distinct random
prime numbers pi ∈ P, for i ∈ �1, k�, for k constant, and einj , elos ∈ P and
and 3 < einj , elos,≤ N

1
4 , with gcd(einj , ϕ(N)) = 1 and gcd(elos, ϕ(N)) = elos,

where ϕ is the Euler Totient function. k-ΦHA[λ] is said to be (t, ε)-hard, if for
all distinguishers D running in time at most t, we have:

Advk-ΦHA[λ]
D = Pr [1 ← D(N, einj)] − Pr [1 ← D(N, elos)] � ε

Now we mention the strongest assumption we need, namely the Factoring
assumption Factoring. While both RSA and ΦHA imply Factoring, it is also con-
jectured that ΦHA is equivalent to Factoring. Additionally, the problem of finding
quadratic residues modulo N is known to be equivalent to Factoring.

Definition 4 (Factoring Assumption). The Factoring Assumption, denoted
by k-FACT[λ], states that given N , which is a λ-bit number and is the product
of k distinct random prime numbers pi ∈ P, for i ∈ �1, k�, for k constant, it is
hard to compute the factors of N , p1, . . . , pk. k-FACT[λ] is said to be (t, ε)-hard,
if for all adversaries A running in time at most t, we have

Advk-FACT[λ]
A = Pr [(p1, . . . , pk) = A(N)] � ε.

The final assumption that we need to recall is the 2 vs 3 primes assumption
2v3PA. This assumption essentially states that you cannot decide if a given
modulus has 2 or 3 prime factors. This assumption has never formally been
studied and is simply widely believed to hold. This is needed to bring any proof
that requires a 3 prime factor modulus to the standard case of a 2 prime factor
modulus.
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Definition 5 (2v3PA Assumption). The 2 vs. 3 Primes Assumption, denoted
by 2v3PA[λ], states that it is hard to distinguish between N2 and N3, where N2, N3

are λ-bit numbers, where N2 = p1p2 is the product of 2 distinct random prime
numbers p1, p2 ∈ P and N3 = q1q2q3 is the product of 3 distinct random prime
numbers q1, q2, q3 ∈ P. 2v3PA[λ] is said to be (t, ε)-hard, if for all distinguishers
D running in time at most t, we have:

AdvΦHA
D = Pr [1 ← D(N2)] − Pr [1 ← D(N3)] � ε

3 Attacks

Here we briefly discuss the known attacks on standardised RSA hash-and-sign
signatures. Even before the development of the standardised signatures, there
had been general cryptanalysis of the RSA primitive. One of the first general
RSA attacks was due to Davida [18], which was later generalised by Desmedt
and Odlyzko [22]. Indeed, the most general attacks on RSA-based system are
so-called “Coppersmiths attacks” as they are based on the initial results of Cop-
persmith [10] based on the LLL algorithm [45]. This has since been an active
research area and we refer the reader to May’s survey for further details [46].

Following this, attacks were found on more concrete settings by Gordon [27]
and DeJonge and Chaum [19]. The latter attacks were extended by Girault and
Misarsky [23,48]. For a more technical overview of the attacks, we refer the
reader to the invited survey of Misarsky [48].

Based on this, Denning [21] and Gordon [27] independently suggested what
would become the hash-and-sign paradigm. This knowledge was taken on board
during the design of the PKCS#1 signatures [42], as well as the ISO 9796 signa-
tures [28]. One would hope that this would result in secure and robust schemes.
This, however, proved not to be the case, as demonstrated by Bleichenbacher’s
“million message attack” for PKCS#1 v1.5 encryption [7], which used the mal-
leability of RSA to transform a valid ciphertext into a new (possibly invalid)
ciphertexts. These new ciphertexts were sent to the server, whose responses
could be used to eventually decrypt the original ciphertext. In some circum-
stances, the attack can also be extended to PKCS#1 v1.5 signatures. Also of
note are the attacks on ISO/IEC 9796 by Coron, Naccache and Stern [16] and
Coron et al. [17].

4 Full-Domain Hash

We start by looking at the RSA Full-Domain Hash signature scheme RSA-FDH.
While it is not included in any of the standards, it still bears investigation, as
the proof methodologies developed for it have led to proof methodologies for
all the other schemes. RSA-FDH was first introduced by Bellare and Rogaway [2]
and while they did have a security proof, it was a non-tight one. This was then
improved by Coron [12] who showed a better, but still non-tight proof. Coron’s
proof has a security loss that depends on the number of signing queries qs,
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as opposed to the number of hash queries qh, which is generally much larger.
Additionally, Coron showed that this proof was actually optimal by means of a
meta-reduction [12], removing any hope of a tight proof.

However, Kakvi and Kiltz [38] noticed that the meta-reduction crucially
requires that the RSA public key (N, e) be a CTDP [5,6]. We say a TDP is
certified, if there is a polynomial time algorithm that verifies that the public
evaluation parameters of the trapdoor permutation are well formed i.e. that they
do indeed define a permutation. This is not the case for RSA if the exponent e
is a small prime. In particular, if e � N1/4 then this defines an LTDP [50] under
the ϕ-Hiding Assumption [9]. Furthermore, Kakvi, Kiltz and May [39] showed
that for large prime exponents e, i.e. e � N1/4, one can check if an RSA key
does indeed define a permutation in polynomial time. Additionally, Goldberg et
al. showed an efficient non-interactive method to certify an RSA public key [25].
We recall the RSA-FDH scheme in Fig. 2 and then present the proofs.

Scheme RSA-FDH

KeyGen(1λ)
p, q ∈R P[λ/2]
N = pq
ϕ(N) = (p − 1)(q − 1)
e ∈R Z

∗
N , gcd(e, ϕ(N)) = 1

pick hash function H : {0, 1}∗ → {0, 1}λ

return (pk = (N, e, H), sk = (p, q))

Sign(sk, m)
y ← H(m)
return σ = y1/e mod N

Verify(pk, m, σ)
y′ = σe mod N
z = H(m)
if (z == y′)

return 1
else

return 0

Fig. 2. RSA Full-Domain Hash RSA-FDH

The original proof of Bellare and Rogaway [2] was simply to guess which
message would be forged and program the random oracle to give a solution to
the RSA problem. This is achieved by setting the hash value of the selected
message to be the RSA target value y. This works with probability 1/qh, where
qh is the number of hash function queries made by the adversary.
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Theorem 1 (Bellare-Rogaway [2]). Assume that 2-RSA[λ] is (t′, ε′)-hard.
Then for any (qh, qs), RSA-FDH is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε′ =
ε

qh
·

t′ = t + (qh + qs + 1) · O(λ3).

Coron [12] improved this by embedding the RSA target value y into multiple
hash values. The drawback to this was that the reduction cannot simulate a
signature for any message whose hash value had y embedded in it. Therefore,
the proportion must be chosen carefully. The analysis by Coron showed that an
optimal choice yielded a loss of qs, where qs is the number of signature queries.

Theorem 2 (Coron [12]). Assume that 2-RSA[λ] is (t′, ε′)-hard. Then for any
(qh, qs), RSA-FDH is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model,
where

ε′ =
ε

qs
·
(

1 − 1
qs + 1

)qs+1

≈ ε

qs

t′ = t + O(qh · λ3).

Kakvi and Kiltz [38] later revisited Coron’s optimality result and observed
that this only holds for the case when RSA is a CTDP [5,6]. This is only possible
for RSA if the exponent is a large prime (or a product thereof) [39], or if we
provide some additional information [25]. Kakvi and Kiltz leveraged the fact
that RSA is a lossy permutation for small prime e and were able to show a tight
proof in this case.

Theorem 3 (Kakvi-Kiltz [38]). Assume 2-ΦHA[λ] is (t′, ε′)-hard and gives an
η-regular lossy trapdoor function. Then, for any (qh, qs), we have that RSA-FDH
is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε =
(

2η − 1
η − 1

)
· ε′

t = t′ + O(qh · λ3)

We now compare these security statements and their effect on parameter
selection in Table 2, concretely for the case of 1024 bit moduli. We present these
in a similar manner to that of Table 1, but we drop some of the less relevant
parameters. Here we also provide the size of the modulus used in the reduction,
but this does not directly correspond to the security of the scheme, i.e. the
scheme is not necessarily as secure as the assumption. The scheme is as secure
as the assumption with a modulus of bit length given in the “Equiv. modulus”
column. To compute these values we have taken qh = 260, qs = 230. As with
Table 1, the key sizes are approximate due to the complexity of computing exact
key sizes.
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Table 2. Security of RSA-FDH with a 1024-bit modulus

Scheme Proof
methodology

Assumption Exponent e Equiv. modulus

RSA-FDH Bellare-Rogaway 2-RSA[1024] Arbitrary ≈ 250

Coron 2-RSA[1024] Arbitrary ≈ 560

Kakvi-Kiltz 2-ΦHA[1024] Prime � 2256 ≈ 1023

5 Public-Key Cryptography Standards #1

We will now look at the PKCS#1 signature scheme, which was one of the first
standardised hash-and-sign signature schemes. The PKCS#1 version 1 actually
predates Full-Domain Hash and hence the idea of a larger hash function was
not considered at first. The scheme was first made public with version 1.5 [40],
which is why the scheme is most commonly referred to as PKCS#1 v1.5. The
standard was updated to version 2.0 [41] in short order to include RSA-OAEP
as a replacement for the encryption algorithm due Bleichenbacher’s “million
message attack” [7].

While the signatures schemes were not affected by this, the consensus was
that RSASSA-PKCS1-v1 5 needed to be replaced with a secure signature scheme.
The natural candidate in RSASSA-PSS was added in version 2.1 [34]. However,
at this point it was a recommendation and not a requirement. This was fur-
ther changed in version 2.2 [49], where it was required for all new applications.
The main reason for this was that a large number of systems had implemented
RSASSA-PKCS1-v1 5 in hardware, in particular in middleware, which proved
problematic to upgrade2.

While no real attacks were found against RSASSA-PKCS1-v1 5, the lack of
security proof was of some concern. The only known proof was that of Coron [15],
but that was for the Rabin-Williams variant and required a larger hash function
output than the norm. This has since been improved somewhat by Jager, Kakvi
and May [33], who showed a proof for the small-exponent RSA case, but still
required a large hash function output, albeit smaller than that of Coron [15].
We now recall (a generalised variant of) RSASSA-PKCS1-v1 5 in Fig. 3 and then
we recall the security theorems.

The first statement of security was by Coron [15] for the Rabin-Williams
variant, i.e. with e = 2, which is secure based on the factoring assumption.
Coron’s theorem statements was quite general and in indeed it extended to the
ANSI X9.31 rDSA signatures directly. Coron considered signatures of the form
σ = (γ · H(m) + f(m))1/2, i.e. scheme with (potentially) message-dependent
padding. Coron gave the security of these schemes in Theorem 4.

Theorem 4 (Coron [15]). Assume that 2-FACT[λ] is (t′, ε′)-hard. Then for
any (qh, qs), any partial domain hash signature scheme i.e.,

2 cf. https://www.ietf.org/mail-archive/web/tls/current/msg19360.html.

https://www.ietf.org/mail-archive/web/tls/current/msg19360.html
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Fig. 3. RSA PKCS#1 v1.5 Signature RSASSA-PKCS1-v1 5

σ = (γ · H(m) + f(m))1/2, is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle
Model, where

ε′ =
ε − 32(qh + qs + 1)(
 − 2λ

3 )(γ · 2
3
13 (�− 2λ

3 ))
8qs

t′ = t + γ

(

 − 2λ

3

)
(qh + qs + 1) · O(λ3).

For RSASSA-PKCS1-v1 5 we can see that γ = 1 and f(m) = PAD × 2�. If we
set 
 = 2λ

3 + 1, we get the following Theorem.

Theorem 5 (Coron [15]). Assume that 2-FACT[λ] is (t′, ε′)-hard. Then for
any (qh, qs), RSASSA-PKCS1-v1 5 with e=2 is (t, ε, qh, qs)-UF-CMA secure in the
Random Oracle Model, where

ε′ =
ε − 32(qh + qs + 1)(2

3
13 )

8qs
≈ ε

8qs
− 4qh

qs

t′ = t + O(qh · λ3).

For many years, this remained the only known proof for RSASSA-PKCS1-v1 5,
or any variant thereof, until the proof of Jager, Kakvi and May [33]. The main
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technical hurdle was that the fixed padding and relatively small size of the hash
function meant that signatures could not be simulated in polynomial time. Jager,
Kakvi and May overcame this with their novel Encode algorithm to allow sim-
ulation of signatures in polynomial time. Using this, combined with the proof
techniques for RSA-FDH of Coron [12,13] and Kakvi and Kiltz [37,38], they pre-
sented theorems with similar bounds.

The drawback, however, is that the Encode algorithm requires the bit size of
the modulus to be doubled, by multiplying it with a prime of the same size. That
is to say, if we wish to reduce the security of 2-ΦHA[λ] or 2-RSA[λ], we need a
2λ-bit modulus in our key, with the additional λ-bits made up by a third prime
factor. Therefore they proved security for keys where N = pqr, i.e. is the product
of three primes. Under the assumption that 3-prime moduli are indistinguishable
from 2-prime moduli, these results can be brought back to the case N = pq. We
now present the results of Jager, Kakvi and May [33].

Theorem 6 (Jager-Kakvi-May [33]). Assume that 2-RSA[λ] is (t′, ε′)-hard.
Then for any (qh, qs), RSASSA-PKCS1-v1 5 is (t, ε, qh, qs)-UF-CMA secure in the
Random Oracle Model, where

ε′ =
ε

qs
·
(

1 − 1
qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t′ = t + O(qh · λ4).

Theorem 7 (Jager-Kakvi-May [33]). Assume 2-ΦHA[λ] is (t′, ε′)-hard and
gives an η-regular lossy trapdoor function. Then, for any (qh, qs),
RSASSA-PKCS1-v1 5 is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model,
where

ε =
(

2η − 1
η − 1

)
· ε′

t = t′ + O(qh · λ4)

We now compare these security statements and their effect on parameter
selection in Table 3, concretely for the case of 1024 bit moduli. We present
these in a similar manner to that of Table 1. Here we also provide the size of
the modulus used in the reduction, but this does not directly correspond to
the security of the scheme, i.e. the scheme is not necessarily as secure as the
assumption. The scheme is as secure as the assumption with a modulus of bit
length given in the “Equiv. modulus” column. To compute these values we have
taken qh = 260, qs = 230. As with Table 1, the key sizes are approximate due to
the complexity of computing exact key sizes.

6 International Organization for Standardization 9796-2

We will now look at the ISO/IEC 9796-2:2010 signature scheme, which is one of
the most widely deployed signature schemes. This scheme is used in the EMV
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Table 3. Parameter sizes and security for RSASSA-PKCS1-v1 5 with a 1024 bit modulus

Scheme Proof

methodology

Assumption No. prime

factors

Exponent e |H()| Equiv.

modulus

RSASSA-PKCS1-v1 5 Coron 2-FACT[1024] 2 2 � 623 ≈ 560

Jager-Kakvi-May 2-RSA[512] 3 Arbitrary � 512 ≈ 280

+ 2v3PA[1024] 2 Arbitrary � 512 ≈ 280

Jager-Kakvi-May 2-ΦHA[512] 3 Prime � 2256 � 512 ≈ 511

+ 2v3PA[1024] 2 Prime � 2256 � 512 ≈ 511

payment system for so-called “chip and pin” cards. According to EMVCo. There
are around 9,893,000,000 (9.8 billion) EMV cards in circulation as of Q4 2019,
making up 63.8% of cards issued globally3. Despite this huge usage, the sig-
natures are known to be vulnerable to some attacks and indeed the ISO/IEC
9796 standard has had several iterations of breaks and fixes. It is worth not-
ing that while the scheme has been broken, the EMV implementation is not
vulnerable. The reason for this is that the attacks require signatures on some
specially crafted messages, which exploit the multiplicative property of RSA, but
are incompatible with the EMV standard. Messages in the EMV standard have
a very fixed format and include some identifiers and serial numbers, as well as
the date. Thus, it is very unlikely that an honest EMV endpoint would sign the
messages required for the attack to be successful. An equivalent way of looking
at this would be to say that the attacks only work on larger message spaces than
the messages space used by the EMV protocol.

The very first version, the ISO/IEC 9796-1 was very quickly broken and is
no longer in use, so we will not discuss in great detail, but instead refer the
reader to the articles by Coppersmith, Halevi and Jutla [11] and Girault and
Misarsky [24] for further details. It is for this reason that the ISO/IEC 9796-1
standard was replaced by the first version of the ISO/IEC 9796-2 standard in
1997 [29]. This version was also vulnerable to attack, specifically the attacks due
to Coron, Naccache and Stern [16]. The standard was then further updated in
2002 to combat these attacks [30], but eventually would fall to the attacks of
Coron et al. [17]. Finally, the standard was updated to its current form, that
is the ISO/IEC 9796-2:2010 [32], which is what we will focus on, particularly
Scheme 1.

The ISO/IEC 9796-2 Scheme 1 is a deterministic scheme with message
recovery. In particular it has two modes, namely full message recovery, which
works for messages that are sufficiently small, and partially message recovery for
larger messages. When signing, the starting bits of the message representative
indicate if we are using full or partial recovery. For partial recovery, the message
representative begins with 0x6A, and for full message recovery it begins with
0x4A. This is then followed by the message portion that is recoverable, padded
up with zeros, if needed, which is followed by the hash of the complete message.
The signatures then end with 0xBC. We recall the (generalised) scheme with

3 cf. https://www.emvco.com/about/deployment-statistics.

https://www.emvco.com/about/deployment-statistics
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partial recovery 9796-2 Scheme 1(PR) in Fig. 4a and the (generalised) scheme
with full recovery 9796-2 Scheme 1(FR) in Fig. 4b.

Fig. 4. The two versions of the ISO/IEC 9796-2 Scheme 1

While the two schemes are distinct, the proofs work identically for both.
Therefore, we will simply present the theorems for the scheme as whole and
not for each case individually. We first present the Rabin-Williams proof by
Coron [15]. Recall that Theorem 4 was stated for schemes of the form σ =
(γ ·H(m)+f(m))1/2. Here we can see that for 9796-2 Scheme 1, we have γ = 28

and f(m) = PADL||MSBs(m, ν) × 2�+8 + PADR. If we set l = 2λ
3 + 1, we see that

we get the following Theorem.

Theorem 8 (Coron [15]). Assume that 2-FACT[λ] is (t′, ε′)-hard. Then for
any (qh, qs), 9796-2 Scheme 1 is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε′ =
ε − 32(qh + qs + 1) · 28 · 2

3
13

8qs
≈ ε

8qs
− 1024 · qh

qs

t′ = t + 28 · O(qh · λ3).

Although Jager, Kakvi and May did not explicitly prove the security of
9796-2 Scheme 1, the scheme fits almost perfectly into their setting. If we use
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the repeated Encode method of Kakvi [36], then we can adapt the proof accord-
ingly and we get similar bounds, with the similar 3-prime requirement as in
Theorems 6 and 7. We now present the Theorems for 9796-2 Scheme 1.

Theorem 9 (Jager-Kakvi-May [33]). Assume that 2-RSA[λ] is (t′, ε′)-hard.
Then for any (qh, qs), 9796-2 Scheme 1 is (t, ε, qh, qs)-UF-CMA secure in the
Random Oracle Model, where

ε′ =
ε

qs
·
(

1 − 1
qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t′ = t + 27 · O(qh · λ4).

Theorem 10 (Jager-Kakvi-May [33]). Assume 2-ΦHA[λ] is (t′, ε′)-hard and
gives an η-regular lossy trapdoor function. Then, for any (qh, qs), 9796-2 Scheme

1 is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε =
(

2η − 1
η − 1

)
· ε′

t = t′ + 27 · O(qh · λ4)

We now compare these security results and their effect on parameter selection
in Table 3, concretely for the case of 1024 bit moduli. We present these in a
similar manner to that of Table 1. Here we also provide the size of the modulus
used in the reduction, but this does not directly correspond to the security of the
scheme, i.e. the scheme is not necessarily as secure as the assumption. The scheme
is as secure as the assumption with a modulus of bit length given in the “Equiv.
modulus” column. To compute these values we have taken qh = 260, qs = 230. As
with Table 1, the key sizes are approximate due to the complexity of computing
exact key sizes.

Table 4. Parameter sizes and security for 9796-2 Scheme 1 with a 1024 bit modulus

Scheme Proof methodology Assumption No. prime
factors

Exponent e |H()| Equiv.
modulus

ISO 9769-2

Scheme 1

Coron 2-FACT[1024] 2 2 � 623 ≈ 552

Jager-Kakvi-May 2-RSA[512] 3 Arbitrary � 512 ≈ 273

+ 2v3PA[1024] 2 Arbitrary � 512 ≈ 273

Jager-Kakvi-May 2-ΦHA[512] 3 Prime � 2256 � 512 ≈ 504

+ 2v3PA[1024] 2 Prime � 2256 � 512 ≈ 504
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7 American National Standards Institute X9.31
Signatures

We now look at the final deterministic hash-and-sign signature on our list,
namely, the ANSI X9.31 signatures [1]. While these signatures were standard-
ised at a similar time to the others, and follows a similar construction philos-
ophy, there is scant mention of them in the academic literature. To the best
of our knowledge, the signature were only ever investigated by Coron [15] and
Menezes [47]. While parts of the standard have been withdrawn, specifically
those related to the generation of random numbers, to the best of our knowledge
the signature is still valid. We now recall the (generalised) scheme in Fig. 5.

Fig. 5. American National Standards Institute X9.31 rDSA

As we can see the scheme is very similar to RSASSA-PKCS1-v1 5, with two
small differences. Firstly, the padding string is 0x6B . . . BA and not 0x0F . . . F0,
but this makes no difference for the proofs, as they are for both for arbitrary
padding. Secondly, the (fixed-length) hash function identifier is after the hash
as opposed to before it. Although both proofs can deal with this, it does affect
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the security differently. In the case of Jager, Kakvi and May [33], if we adapt
the proof using the repeated Encode sampling method of Kakvi [36], we get this
loss appearing only in the runtime of our reduction. On the other hand, in the
proof of Coron [15] this factor only appears in the both the running time and
the success probability, as if we express X9.31 rDSA in terms of Theorem 4, we
have γ = 216 (and f(m) = PAD× 2�+16 + IDH). As in the previous proofs, we set

 = 2λ

3 + 1. We now present the theorems for the security of X9.31 rDSA.

Theorem 11 (Coron [15]). Assume that 2-FACT[λ] is (t′, ε′)-hard. Then for
any (qh, qs), X9.31 rDSA is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle
Model, where

ε′ =
ε − 32(qh + qs + 1) · 216 · 2

3
13

8qs
≈ ε

8qs
− 218 · qh

qs

t′ = t + 216 · O(qh · λ3).

Theorem 12 (Jager-Kakvi-May [33]). Assume that 2-RSA[λ] is (t′, ε′)-hard.
Then for any (qh, qs), X9.31 rDSA is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε′ =
ε

qs
·
(

1 − 1
qs + 1

)qs+1

≈ ε

qs
· exp(−1)

t′ = t + 215 · O(qh · λ4).

Theorem 13 (Jager-Kakvi-May [33]). Assume 2-ΦHA[λ] is (t′, ε′)-hard and
gives an η-regular lossy trapdoor function. Then, for any (qh, qs), X9.31 rDSA

is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε =
(

2η − 1
η − 1

)
· ε′

t = t′ + 215 · O(qh · λ4)

We now compare these proofs and their effect on parameter selection in
Table 5, concretely for the case of 1024 bit moduli. We present these in a similar
manner the that of Table 1. Here we also provide the size of the modulus used in
the reduction, but this does not directly correspond to the security of the scheme,
i.e. the scheme is not necessarily as secure as the assumption. The scheme is
as secure as the assumption with a modulus of bit length given in the “Equiv.
modulus” column. To compute these values we have taken qh = 260, qs = 230. As
with Table 1, the key sizes are approximate due to the complexity of computing
exact key sizes.

8 Comparison

Having now examined all the schemes, we now present a complete comparison.
Unlike in the case of Tables 2, 3, 4, 5, we do not take any concrete figures, but
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Table 5. Parameter sizes and security for X9.31 rDSA with a 1024 bit modulus

Scheme Proof Assumption No. prime Exponent e |H()| Equiv.

methodology factors modulus

X9.31 rDSA Coron 2-FACT[1024] 2 2 � 623 ≈ 544

Jager-Kakvi-May 2-RSA[512] 3 Arbitrary � 512 ≈ 265

+ 2v3PA[1024] 2 Arbitrary � 512 ≈ 265

Jager-Kakvi-May 2-ΦHA[512] 3 Prime � 2256 � 512 ≈ 497

+ 2v3PA[1024] 2 Prime � 2256 � 512 ≈ 497

Table 6. Comparison of the security of the RSA hash-and-sign signatures

Scheme Proof

methodology

Assumption No. prime

factors

Exponent e |H()| Security

loss

RSA-FDH Bellare-Rogaway 2-RSA[λ] 2 Arbitrary λ qh

Coron 2-RSA[λ] 2 Arbitrary λ qs

Kakvi-Kiltz 2-ΦHA[λ] 2 Prime � 2λ/4 λ o(1)

RSASSA-PKCS1-v1 5 Coron 2-FACT[λ] 2 2 � 2λ/3 qs

Jager-Kakvi-

May

2-RSA[λ/2] 3 Arbitrary � λ/2 qs

+ 2v3PA[λ] 2 Arbitrary � λ/2 qs

Jager-Kakvi-

May

2-ΦHA[λ/2] 3 Prime � 2λ/4 � λ/2 o(1)

+ 2v3PA[λ] 2 Prime � 2λ/4 � λ/2 o(1)

ISO 9769-2 Scheme 1 Coron 2-FACT[λ] 2 2 � 2λ/3 qs

Jager-Kakvi-

May

2-RSA[λ/2] 3 Arbitrary � λ/2 qs

+ 2v3PA[λ] 2 Arbitrary � λ/2 qs

Jager-Kakvi-

May

2-ΦHA[λ/2] 3 Prime � 2λ/4 � λ/2 o(1)

+ 2v3PA[λ] 2 Prime � 2λ/4 � λ/2 o(1)

X9.31 rDSA Coron 2-FACT[λ] 2 2 � 2λ/3 qs

Jager-Kakvi-

May

2-RSA[λ/2] 3 Arbitrary � λ/2 qs

+ 2v3PA[λ] 2 Arbitrary � λ/2 qs

Jager-Kakvi-

May

2-ΦHA[λ/2] 3 Prime � 2λ/4 � λ/2 o(1)

+ 2v3PA[λ] 2 Prime � 2λ/4 � λ/2 o(1)

we instead use the parameters, to allow for a more general comparison. We first
compare all our signatures in Table 6.

As we can see from the tables above, there is a wide variety of schemes
and proofs, each with advantages and disadvantages, with no clear best or worst
scheme. While it would be ideal to be able to state with certainty that one scheme
is superior to others, the variety of parameter choices mean that one would have
to select the scheme best suited for their purposes. This decision would be based
on the specific use case and the factors therein e.g. hardware or communication
constraints. For example, if we have a device with constrained storage, we would
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want to keep the key size as low as possible, which would mean we would have to
avoid any schemes proven using the Jager-Kakvi-May methodology. On the other
hand if storage is not an issue, but we have computational constraints, then one
might consider picking the scheme that requires the smallest hash function. In
which case, the schemes proven with the Jager-Kakvi-May methodology would
be good candidates. Furthermore, in a system where we do not expect a large
number of signatures, a loss of qs might lead to acceptable parameters. It remains
an open question to get a tight, parameter preserving proof for a deterministic
standardised signature.
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