
Brief Announcement: Local
Deal-Agreement Based Monotonic
Distributed Algorithms for Load
Balancing in General Graphs

Yefim Dinitz, Shlomi Dolev, and Manish Kumar(B)

Ben-Gurion University of the Negev, Be’er Sheva, Israel
{dinitz,dolev}@cs.bgu.ac.il, manishk@post.bgu.ac.il

Abstract. In computer networks, participants may cooperate in pro-
cessing tasks, balancing working loads among them. The distributed load
balancing problem is well-known. We present local algorithms solving
it based on a short deal-agreement communication. Unlike the previ-
ous algorithms, they converge monotonically, always providing a bet-
ter feasible state as the execution progresses. Our synchronous algo-
rithms achieve ε-Balanced state for the continuous setting in time
O(nD log(nK/ε)) and 1-Balanced state for the discrete setting in time
O(nD log(nK/D) + nD2), for general graphs in the worst case, where
n is the number of nodes, K is the initial discrepancy, and D is the
graph diameter. We also suggest an asynchronous load balancing algo-
rithm solving the problem in time O(nK2) for general graphs, and its
self-stabilizing version.

Keywords: Distributed algorithms · Deterministic · Load balancing ·
Self-stabilization · Monotonic

1 Introduction

The distributed load balancing problem is defined when there is an undirected
network (graph) of computers (nodes), each one assigned a non-negative working
load, and they like to balance their loads. If nodes u and v are connected by an
edge, then any part of the load of u may be transferred over that edge from u to
v, and similarly from v to u. The information at the nodes is local, and the only
way to get more knowledge on the graph is by communicating with its neighbors.
The application and scope include grid computing, clusters, and clouds.

The accepted global measure for the deviation of a current state from being
balanced is its discrepancy, defined as K = Lmax − Lmin, where Lmax (Lmin)

This research was (partially) funded by the Office of the Israel Innovation Authority
of the Israel Ministry of Economy under Genesis generic research project, the Rita
Altura trust chair in computer science, and by the Lynne and William Frankel Center
for Computer Science.

c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 113–117, 2020.
https://doi.org/10.1007/978-3-030-64348-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-64348-5_9


114 Y. Dinitz et al.

is the currently maximum (minimum) node load in the graph. An alternative,
local way to measure the deviation is the maximal difference of loads between
neighboring nodes: a state is ε-Balanced if that difference is at most ε. In the
discrete problem setting, all loads and thus also all transfer amounts should be
integers; in the continuous one, transfer amounts are arbitrary. In this paper,
we concentrate on deterministic algorithms solving the problem in a worst case
time polynomial in the global input size, that is in the number n of graph nodes
and in the logarithm of the maximal load (though we deviate from polynomiality
for the asynchronous model).

The research on the load balancing problem began from the papers of
Cybenko [4] and Boillat [3]. Both are based on the concept of diffusion: at any
synchronized round, every node divides its load equally among its neighbors and
itself. As a rule, the case of d-regular graphs is considered; only laconic remarks
on a possibility to generalize the results to the case of general graphs appear in
the literature. Markov chains and ergodic theory are used for deriving the rate of
convergence. In the discrete setting, diffusion methods require rounding of every
transferred amount, which makes the analysis harder; Rabani et al. [9] made
a substantial advancement in that direction; their the time bound for reaching
the discrepancy of ε in the worst case is O

(
ln(Kn2/ε)

(1−λ)

)
, where λ is the second

largest eigen-value of the diffusion matrix. The diffusion approach is popular
in the literature. The alternative methods are mathching (see, e.g., [10]) and
balancing circuits (see, e.g., [2,9]). For the discrete setting and the considered
computational model, all those approaches do not achieve neither a constant final
discrepancy, nor a constant-balanced state. Many suggested algorithms cannot
be stopped at any time, since intermediate solutions either might include neg-
ative node loads, or might be worse than previous ones. Almost all papers on
load balancing use the synchronous distributed model. The only theoretically
based approach suggested for asynchronous distributed setting is turning it to
synchronous by appropriately enlarging the time unit, see e.g., [1].

We suggest using the distributed computing approach based on short agree-
ment between neighboring nodes in load balancing. We develop local distributed
algorithms, with no global information collected at the nodes; the advantage
is that the actual time of an algorithm run can be quite small, if the problem
instance is lucky. We say that a load balancing algorithm is monotonic if the
maximal load value never increases and the minimal load value never decreases.
Such algorithms produce a not worse feasible state at each step of the execution,
and thus are anytime in the sense of [5,8]. Our main results on load balancing
are as follows, where D is the graph diameter, and ε is an arbitrary constant.

– In the continuous setting, the first synchronized deterministic algorithm for
general graphs, which is monotonic and works in time O(nD log(nK/ε)).

– In the discrete setting, the first deterministic algorithms for general graphs
achieving a 1-Balanced state in time depending on the initial discrepancy
logarithmically. It is monotonic and works in time O(nD log(nK/D)+nD2).

– The first asynchronous anytime algorithm, and its self-stabilizing version.

The full version of this paper can be found in arXiv [6].



Distributed Algorithms for Load Balancing 115

2 Monotonic Distributed Load Balancing Algorithms

Algorithm 1: Synchronous Single-Proposal Algorithm: Continuous
Input: An undirected graph G = (V, E, load)

1 Execute forever do
2 for every node u do
3 if u has at least one neighbor with a strictly smaller load then
4 find the neighbor, v, with the minimal load
5 u sends to v a transfer proposal of (load(u) − load(v))/2

6 for every node u do
7 if there is at least one transfer proposal to u then
8 find a neighbor, w, proposing to u the transfer of maximum value
9 node u makes a deal: increases its load by the value proposed by w

and informs node w on accepting its proposal

10 for every node u do
11 node u updates its load w.r.t. the deal made on its proposal, if accepted,

and sends the current value of load(u) to every its neighbor

Let us begin with the synchronous model. Algorithm 1 solves the continu-
ous load balancing problem. It is composed of three-phase rounds, one phase
upon the global clock tick, cyclically. At each round, each node sends a transfer
proposal to at most one of its neighbors. In reply, each node accepts a single
proposal among those sent to it, if any. (Each node may finally both send and
get load at same round.)

The analysis of Algorithm 1 is based on node potentials. Let Lavg be the
average value of load over V . We define potentials p(u) = (load(u) − Lavg)2 for
any node u, and p(G) =

∑
u∈V p(u) for entire G. Any transfer of load l from u

to v in our algorithms satisfies load(u)− load(v) ≥ 2l > 0. For any such transfer,
we prove that it decreases p(G) by at least 2l2. The central point of our analysis
is the following statement.

Lemma 1. If the discrepancy of G at the beginning of some round is K, the
potential of G decreases after that round by at least K2/2D.

Proof. Consider an arbitrary round. Let x and y be nodes with load Lmax

and Lmin, respectively, and let P be a shortest path from y to x, P =
(y = v0, v1, v2, . . . , vk = x). Note that k ≤ D. Consider the sequence of
edges (vi−1, vi) along P , and choose its sub-sequence S consisting of all
edges with δi = load(vi) − load(vi−1)>0. Let S = (e1 = (vi1−1, vi1), e2 =
(vi2−1, vi2), . . . , ek′ = (vik′−1, vik′ )), k′ ≤ k ≤D. Observe that by the defini-
tion of S, interval [Lmin, Lmax] on the load axis is covered by intervals
[load(vij−1), load(vij−1)], since load(vi1−1) = Lmin, load(vik′ ) = Lmax, and for



116 Y. Dinitz et al.

any 2 ≤ j ≤ k′, load(vij−1) ≥ load(vij−1). As a consequence, the sum of load

differences
∑k′

j=1 δij over S is at least Lmax − Lmin = K.
Since for every node vij , its neighbor vij−1 has a strictly lesser load, the

condition of the first if in Algorithm 1 is satisfied for each vij . Thus, each vij

proposes a transfer to its minimally loaded neighbor; denote that neighbor by
wj . Note that the transfer amount in that proposal is at least δij/2. Hence, the
sum of load proposals issued by the heads of edges in S is at least K/2. By the
algorithm, each node wi accepts the biggest proposal sent to it, which value is
at least δij/2. Consider the simple case when all nodes wj are different. Then,
the total decrease of the potential at the round, Δ, is at least

∑
j 2(δij/2)2.

By simple algebra, for a set of at most D numbers with a sum bounded by K,
the sum of numbers’ squares is minimal if there are exactly D equal numbers
summing to K. We obtain Δ ≥ D · 2(K/2D)2 = K2/2D, as required.

The rest of the proof reduces the general case to the simple case as above.

We prove that Algorithm 1 is monotonic, and that it arrives at the discrep-
ancy of at most ε in time O(nD log(nK/ε)).

The algorithm for the discrete setting differs by the rounding of proposal
values only. Its analysis up to the arrival at a discrepancy of at most 2D is
similar; the rest of its execution is analyzed separately. Also that algorithm is
monotonic, and it arrives at a 1-Balanced state in time O(nD log(nK/D)+nD2).

We believe that the running time bounds of deal-agreement distributed algo-
rithms for load balancing could be improved by future research. This is since the
current bounds are based on analyzing only a single path at each iteration.

Multiple-Proposal Load Balancing Algorithm. We suggest also the mono-
tonic synchronous deal-agreement algorithm based on multiple proposals. There,
each node may propose load transfers to several of its neighbors with smaller
load, aiming to equalize the loads in its neighborhood as much as possible. We
formalize this as follows. Consider node p and the part Vless(p) of its neighbors
with loads smaller than load(p). Node p proposes load transfers to some of the
nodes in Vless(p) in such a way that if all its proposals would be accepted, then
the resulting minimal load in the node set Vless(p)∪{p} will be maximal. (Com-
pare with the scenario, where we pour water into a basin with unequal heights at
its bottom: the flat water surface will cover the deepest pits.) Performing deals
in parallel with several neighbors has a potential to yield faster convergence in
practice, as compared with the single-proposal algorithm.

Asynchronous Load Balancing Algorithm. The asynchronous version of
the load balancing algorithm is based on repeated enquiries of the load of the
neighbors and whenever proposing a deal to a neighbor with a lower load, wait
for the acknowledgment of the proposal acceptance or rejection prior to reexam-
ination. In more detail, our asynchronous load balancing algorithm is based on
distributed proposals. There, each node may propose load transfers to several
of its neighbors by computing PV less(p), which is part of Vless(p). PV less(p)
is the resulting minimal loaded node set whose load is less than TentativeLoad
after all proposal gets accepted. While sending the proposal, each node sends the



Distributed Algorithms for Load Balancing 117

value of LoadToTransfer (load which can be transferred to neighboring node)
and TentativeLoad (load of the node after giving loads to its neighbors) with all
set of nodes in PV less(p). After receiving a proposal, the node sends an acknowl-
edgment to the sender node; the sender node waits for an acknowledgment from
all nodes of PV less(p). The asynchronous algorithm ensures that the local com-
putation between two nodes is assumed to be before the second communication
starts. Consider an example where a node q of PV less(p) receives a proposal and
the deal happens between node p and node q. In this case, TentativeLoad(p) is
always greater than the load of node q (when q responds to the deal) because
node p is waiting for acknowledgments from all nodes of PV less(p).

Self-stabilizing Load Balancing Algorithm. The self-stabilizing load bal-
ancing algorithm is based on the asynchronous version, where a self-stabilizing
data link algorithm is used to verify that eventually (after the stabilization of
the data-link) whenever a neighbor sends and acknowledge accepting a deal, the
invariant of load transfer, from a node with load higher than the load of the
acknowledging node, holds. This solution can be extended to act as a super-
stabilizing algorithm [7], gracefully, dealing with dynamic settings, where nodes
can join/leave the graph anytime, as well as handle received/dropped loads.

References

1. Aiello, W., Awerbuch, B., Maggs, B.M., Rao, S.: Approximate load balancing on
dynamic and asynchronous networks. In: 25th Annual ACM Symposium on Theory
of Computing (STOC), pp. 632–641 (1993)

2. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks and multi-processor coordi-
nation. In: 23rd Annual ACM Symposium on Theory of Computing (STOC), pp.
348–358 (1991)

3. Boillat, J.E.: Load balancing and Poisson equation in a graph. Concurrency Pract.
Experience 2(4), 289–314 (1990)

4. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput. 7(2), 279–301 (1989)

5. Dean, T.L., Boddy, M.S.: An analysis of time-dependent planning. In: 7th National
Conference on Artificial Intelligence, pp. 49–54 (1988)

6. Dinitz, Y., Dolev, S., Kumar, M.: Local deal-agreement based monotonic dis-
tributed algorithms for load balancing in general graphs. CoRR abs/2010.02486
(2020)

7. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chic. J. Theor. Comput. Sci. 1997, 3.1–3.15 (1997)

8. Horvitz, E.: Reasoning about beliefs and actions under computational resource
constraints. Int. J. Approx. Reason. 2(3), 337–338 (1988)

9. Rabani, Y., Sinclair, A., Wanka, R.: Local divergence of Markov chains and the
analysis of iterative load balancing schemes. In: 39th Annual Symposium on Foun-
dations of Computer Science, (FOCS), pp. 694–705 (1998)

10. Sauerwald, T., Sun, H.: Tight bounds for randomized load balancing on arbitrary
network topologies. In: 53rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 341–350 (2012)


	Brief Announcement: Local Deal-Agreement Based Monotonic Distributed Algorithms for Load Balancing in General Graphs
	1 Introduction
	2 Monotonic Distributed Load Balancing Algorithms
	References




