
k-Immediate Snapshot and x-Set
Agreement: How Are They Related?

Carole Delporte1, Hugues Fauconnier1, Sergio Rajsbaum2,
and Michel Raynal3,4(B)

1 IRIF, Université Paris Diderot, Paris, France
2 Instituto de Matemáticas, UNAM, México D.F 04510, Mexico

3 Univ Rennes IRISA, CNRS, INRIA, Rennes, France
raynal@irisa.fr

4 Polytechnic University Hong Kong, Kowloon, Hong Kong

Abstract. An immediate snapshot object is a high level communication
object, built on top of a read/write distributed system in which all except
one processes may crash. This object provides the processes with a single
operation, denoted write_snapshot(), which allows the invoking process
to write a value and obtain a set of pairs 〈process id, value〉 satisfying
some set containment properties, that represent a snapshot of the values
written to the object, occurring immediately after the write step.

Considering an n-process model in which up to t processes may crash,
this paper introduces first the k-resilient immediate snapshot object,
which is a natural generalization of the basic immediate snapshot (which
corresponds to the case k = t = n − 1). In addition to the set contain-
ment properties of the basic immediate snapshot, a k-resilient immediate
snapshot object requires that each set returned to a process contains at
least (n − k) pairs.

The paper first shows that, for k, t < n−1, k-resilient immediate snap-
shot is impossible in asynchronous read/write systems. Then it investi-
gates a model of computation where the processes communicate with
each other by accessing k-immediate snapshot objects, and shows that
this model is stronger than the t-crash model. Considering the space of
x-set agreement problems (which are impossible to solve in systems such
that x ≤ t), the paper shows then that x-set agreement can be solved
in read/write systems enriched with k-immediate snapshot objects for
x = max(1, t+k−(n−2)). It also shows that, in these systems, k-resilient
immediate snapshot and consensus are equivalent when 1 ≤ t < n/2 and
t ≤ k ≤ (n− 1)− t. Hence, the paper establishes strong relations linking
fundamental distributed computing objects (one related to communi-
cation, the other to agreement), which are impossible to solve in pure
read/write systems.

Keywords: Asynchronous system · Atomic read/write register ·
Computability · Distributed algorithm · Immediate snapshot ·
Impossibility · k-set agreement · Linearizability · Lower/upper
bounds · Process crash · Snapshot object · t-resilience

c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 97–112, 2020.
https://doi.org/10.1007/978-3-030-64348-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-64348-5_8

98 C. Delporte et al.

1 Introduction

Context. This article considers the t-crash model consisting of n asynchronous
processes, among which any subset of at most t processes may crash, and com-
municate through a shared memory composed of single writer/multi reader
(SWMR) atomic registers. The (n − 1)-crash model is also called wait-free
model [12]. We keep the term t-resilience for algorithms. This article focuses
on algorithms for distributed tasks in which every non-failed process has to pro-
duce an output value (wait-freedom progress condition1).

A task is defined in terms of (a) possible inputs to the processes, and (b)
valid outputs for each assignment of input values (tasks are precisely defined
in [6,15,17]). Of special importance is the family of x-set agreement tasks [8],
one for each integer value of x, 1 ≤ x ≤ n. Set agreement was introduced
to show a hierarchy of tasks whose solvability depends on t, the number of
processes that may crash. In the x-set agreement task, processes decide at most
x different values, out of their input assignments. When x = 1, x-set agreement
is the celebrated consensus (CONS) task. Consensus is impossible even in the
presence of a single process crash [19], and (n − 1)-set agreement is wait-free
impossible, namely, in the presence of n − 1 process crashes [3,17,23], a result
proved using algebraic topology. More generally, x-set agreement is solvable if
and only if t < x, as implied by the simulation in [6]. There are characterizations
of the solvability of any given task, in the t-crash model, and in others (for an
overview of results see [13]).

Immediate Snapshot Object. The immediate snapshot (IS) object was first used
in [4,23], and then further investigated as an “object” in [3]. This object is at
the heart of the iterated immediate snapshot (IIS) model [5,16], which consists
of n asynchronous wait-free processes, communicating through IS objects. In an
iterated model [21], the processes execute a sequence of asynchronous rounds,
and each round is provided with exactly one object, which allows the processes
to communicate only during this round. In the IIS model, for any r > 0, a
process accesses the rth immediate snapshot object only when it executes the
r-th round, and accesses it only once.

From an abstract point of view, an IS object IS , can be seen as an initially
empty set, which can then contain up to n pairs (one per process), each made up
of a process index and a value. This object provides each process with a single
operation denoted write_snapshot(), that it can invoke once. The invocation
IS .write_snapshot(v) by a process pi adds the pair 〈i, v〉 to IS and returns a set
of pairs belonging to IS such that the sets returned to the processes that invoke
write_snapshot() satisfy specific inclusion properties. It is important to notice
that, in the IIS model, the processes access the sequence of IS objects one after
the other, in the same order, and asynchronously. The power of the IIS model
with respect to task solvability is the same as the one of the classical read/write

1 Weaker progress conditions, such as obstruction-freedom [14] and non-blocking [18]
have been proposed for (n − 1)-resilient algorithms.

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 99

model, its interest lies in the fact that it provides a higher abstraction layer
than the read/write model; a survey including simulations between iterated and
classical models can be found in [15].

Contribution of the Paper. This work continues and generalizes the work started
in [9] where a preliminary result was presented. Roughly speaking, while [9]
considered the case k = t, the present article addresses the more general case
k ≤ t.

As previously said, the IS object was designed for the wait-free model (i.e.,
t = n−1). This paper considers it in the context of the t-crash n-process system
models where t < n − 1. To this end it generalizes the IS object by introducing
the notion of a k-immediate snapshot (k-IS) object. Such an object provides the
processes with a single operation denoted write_snapshotk() which, in addition
to the properties of an IS object, returns a set including at least (n − k) pairs.
Hence, for k < n−1, due to the implicit synchronization implied by the constraint
on the minimal size of the sets it returns, a k-IS object allows processes to obtain
more information from the whole set of processes than a simple IS object (which
may return sets containing less than (n − k) pairs).

The obvious question is then the implementability of a k-IS object in the
t-crash n-process asynchronous read/write model. The paper shows first that,
differently from the basic IS object which can be implemented in the wait-free
model, no k-IS object where k < n−1, can be implemented in a 1-crash n-process
read/write system.

This impossibility result is far from being the first impossibility result in
the presence of asynchrony and process crashes, e.g. see the monograph [2].
We already mentioned the impossibility of Consensus (CONS) in the presence
of even a single process crash and the impossibility of x-set agreement (x-SA)
when x ≤ t. These agreement objects are at the heart of the theory of fault-
tolerant distributed computing. Hence, a second natural question: Are there
relations linking the previous “impossible” objects, namely k-IS and x-SA, and
if the answer is “yes”, under which conditions? The paper provides the following
answers to this question2.

– Let 1 ≤ k ≤ t < n. It is possible to implement a k-IS object in a t-crash
n-process read/write system enriched with consensus objects.

– Let 1 ≤ t < n/2 and t ≤ k ≤ (n − 1) − t. k-IS and Consensus are equivalent
in a t-crash n-process read/write system. (A and B are equivalent if A can
be implemented in the t-crash n-process read/write system enriched with B,
and reciprocally.)

2 As already indicated, this work was initiated in [9]. Considering k-IS in a system in
which up to k processes may crash, this preliminary result showed that, somehow
surprisingly, while there is a deterministic (n − 1)-resilient algorithm implementing
an (n − 1)-IS object in an (n − 1)-crash read/write system, there is no t-resilient
algorithm that implements a t-IS object when 1 ≤ t < n − 1.

100 C. Delporte et al.

Table 1. From k-IS to x-SA for n = 11 and x = max(1, t+ k − (n − 2))

k → 1 2 3 n − 4 n − 3 n − 2 n − 1

t ↓ 1 2 3 4 5 6 7 8 9 10

1 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA
2 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA 3-SA
3 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA 3-SA 4-SA
4 1-SA 1-SA 1-SA 2-SA 3-SA 4-SA 5-SA

5 < n/2 1-SA 2-SA 3-SA 4-SA 5-SA 6-SA
6 ≥ n/2 3-SA 4-SA 5-SA 6-SA 7-SA
7 = n − 4 5-SA 6-SA 7-SA 8-SA
8 = n − 3 7-SA 8-SA 9-SA
9 = n − 2 9-SA 10-SA
10 = n − 1 11-SA

– Let (n−1)/2 ≤ k ≤ n−1 and (n−1)−k ≤ t ≤ k. It is possible to implement
an x-SA object, where x = t + k − (n − 2), in a t-crash n-process read/write
system enriched with k-IS objects.

An illustration of the results is presented in Table 1, which considers a system of
n = 11 processes. As an example, the entry 〈4, n−4〉 states that, in the presence
of up to t = 4 crashes, (n − 4)-IS allows to solve 2-SA.

Roadmap. The paper is made up of 7 sections. Section 2 presents the basic t-
crash n-process asynchronous read/write model, and the definitions of the IS,
x-SA, and k-IS objects. Section 3 proves the impossibility for the k-IS object
in the previous basic model. The other sections are on the power of k-IS with
respect to x-SA. Section 4 shows that x-SA can be built in the t-crash n-process
asynchronous read/write model enriched with k-IS objects, for x = max(1, t +
k − (n − 2)). Section 5 shows that t-IS and CONS are equivalent in the t-crash
n-process asynchronous read/write model when 1 ≤ t < n/2. Section 6 shows
that CONS is stronger than k-IS when n/2 ≤ t ≤ k < n − 1. Finally, Sect. 7
concludes the paper.

2 The Model and the Problems

2.1 Basic Read/Write System Model

Processes. The computing model is composed of a set of n ≥ 3 sequential pro-
cesses denoted p1, ..., pn. Each process is asynchronous which means that it
proceeds at its own speed, which can be arbitrary and remains always unknown
to the other processes.

A process may halt prematurely (crash failure), but executes correctly its
local algorithm until it possibly crashes. The model parameter t denotes the

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 101

maximal number of processes that may crash in a run. A process that crashes
in a run is said to be faulty. Otherwise, it is correct or non-faulty. Let us notice
that, as a faulty process behaves correctly until it crashes, no process knows if it
is correct or faulty. Moreover, due to process asynchrony, no process can know
if another process crashed or is very slow.

It is assumed that (a) t < n (at least one process does not crash), and (b)
any process, until it possibly crashes, executes correctly the algorithm assigned
to it. Moreover, each process is assumed to participate in the algorithm.

Communication Layer. The processes cooperate by reading and writing Single-
Writer Multi-Reader (SWMR) atomic read/write registers. This means that the
shared memory can be seen as a set of variables A[1..n] where, while A[i] can be
read by all processes, it can be written only by pi.

Notation. The previous model is denoted CARWn,t[∅] (which means “Crash
Asynchronous Read/Write with n processes, among which up to t may crash”).
A model constrained by a predicate on t (e.g. t < a) is denoted CARWn,t[t < a].
CARWn,t[t = n−1] is a synonym of CARWn,t[∅], which (as already indicated) is
called wait-free model. When considering t-crash models, CARWn,t[t < a] is less
constrained than CARWn,t[t < a − 1]. More generally, CARWn,t[P, T] denotes
the system model CARWn,t[∅] restricted by the predicate P , and enriched with
any number of shared objects of the type T (e.g., consensus objects).

Shared objects are denoted with capital letters. The local variables of a pro-
cess pi are denoted with lower case letters, sometimes suffixed by the process
index i.

2.2 Immediate Snapshot (IS)

The immediate snapshot (IS) object [3] was informally presented in the intro-
duction. Defined in the context of the wait-free model (i.e., t = n − 1), it can
be seen as a variant of the snapshot object introduced in [1]. While a snapshot
object provides the processes with two operations (write() and snapshot()) which
can be invoked separately by a process (usually a process invokes write() before
snapshot()), a one-shot immediate snapshot object provides the processes with
a single operation write_snapshot() (one-shot means that a process may invoke
write_snapshot() at most once).

Definition. Let IS be an IS object. It is a set, initially empty, that will contain
pairs made up of a process index and a value. Let us consider a process pi
that invokes IS .write_snapshot(v). This invocation adds the pair 〈i, v〉 to IS
(contribution of pi to IS), and returns to pi a set, called view and denoted viewi,
such that the sets returned to processes (that return from their invocation of
write_snapshot()) collectively satisfy the following properties.

– Termination. The invocation of write_snapshot() by a correct process termi-
nates.

102 C. Delporte et al.

– Self-inclusion. ∀ i : 〈i, v〉 ∈ viewi.
– Validity. ∀ i : (〈j, v〉 ∈ viewi) ⇒ pj invoked write_snapshot(v).
– Containment. ∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi).
– Immediacy. ∀ i, j : (〈i, v〉 ∈ viewj) ⇒ (viewi ⊆ viewj).3

Implementations of an IS object in the wait-free model CARWn,t[t = n − 1]
are described in [3,22]. While both a one-shot snapshot object and an IS object
satisfy the Self-inclusion, Validity and Containment properties, only an IS object
satisfies the Immediacy property. This additional property creates an important
difference, from which follows that, while a snapshot object is atomic (operations
on a snapshot object can be linearized [18]), an IS object is not atomic (its
operations cannot always be linearized). However, an IS object is set-linearizable
(set-linearizability allows several operations to be linearized at the same point
of the time line [7,20]).

The Iterated Immediate Snapshot (IIS) Model. This model (introduced in [5])
considers t = n − 1. Its shared memory is composed of a (possibly infinite)
sequence of IS objects: IS [1], IS [2], ..., which are accessed sequentially and asyn-
chronously by the processes according to the following round-based pattern exe-
cuted by each process pi. The variable ri is local to pi; it denotes its current
round number.

ri ← 0; �si ← initial local state of pi (including its input, if any);
repeat forever % asynchronous IS-based rounds

ri ← ri + 1;
viewi ← IS [ri].write_snapshot(�si);
computation of a new local state �si (which contains viewi)

end repeat.

As indicated in the Introduction, when considering distributed tasks (as formally
defined in [6,15,17]), the IIS model and CARWn,t[t = n − 1] have the same
computability power [5,11,15].

2.3 x-Set Agreement (x-SA)

x-Set agreement was introduced by S. Chaudhuri [8] to investigate the relation
linking the number x of different values that can be decided in an agreement
problem, and the maximal number of faulty processes t. It generalizes consensus
which corresponds to the instance x = 1.

An x-set agreement (x-SA) object is a one-shot object that provides the
processes with a single operation denoted proposex(). This operation allows the
invoking process pi to propose a value, which is called proposed value, and is
passed as an input parameter. It returns a value, called decided value. The object
is defined by the following set of properties.

3 An equivalent formulation of the Immediacy property is: ∀ i, j :
(
(〈i,−〉 ∈ viewj)∧

(〈j,−〉 ∈ viewi)
) ⇒ (viewi = viewj).

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 103

– Termination. The invocation of proposex() by a correct process terminates.
– Validity. A decided value is a proposed value.
– Agreement. No more than x different values are decided.

It is shown in [4,17,23] that (n − 1)-SA is impossible to implement in
CARWn,t[t = n − 1], and in [6] that x-SA is impossible to implement in
CARWn,t[x ≤ t].

2.4 k-Immediate Snapshot

Definition of k-Immediate Snapshot. A k-immediate snapshot (k-IS) object is
an immediate snapshot object with the following additional property.

– Output size. The set view obtained by a process is such that |view| ≥ n − k.

This means that in addition to the Self-inclusion, Validity, Containment, and
Immediacy properties, the set returned by a process contains at least (n − k)
pairs. The associated operation is denoted write_snapshotk().

k-Immediate Snapshot vs x-Set Agreement. When considering a k-IS object and
a x-SA object, we have the following differences.

– On concurrency. An x-SA object is atomic (linearizable), while a k-IS object
is not (it is only set-linearizable [7,20]). In other words, k-IS objects “accept”
concurrent accesses (this is captured by the Immediacy property), while x-SA
objects do not.

– On the values returned. When considering an x-SA object, each process
pi knows that each other process pj (which returns from its invocation of
proposex()) obtains a single value, but it does not know which one (uncer-
tainty); pi knows only that at most k values are decided by all processes
(certainty).
When considering a k-IS object, each process pi knows that each other process
pj (which returns from its invocation of write_snapshotk()) obtains a set of
pairs viewj that is included in, is equal to, or includes its own set of pairs
(certainty due to the containment property), but it does not know the size of
viewj (uncertainty).

A Property Associated with k-IS Objects. The next theorem (stated and proved
in [9]) characterizes the power of a k-IS object in term of its Output size and
Containment properties.

Theorem 1. Let us consider a k-IS object, and assume that all correct processes
invoke write_snapshotk(). If the size of the smallest view obtained by a process is
� (� ≥ n−k), there is a set S of processes such that |S| = � and each process of S
obtains the smallest view or crashes during its invocation of write_snapshotk().

Proof. It follows from the Output size property of the k-IS object that no view
contains less than � ≥ n − k pairs. Let min_view be the smallest view returned
by a process; hence � = |min_view|.

104 C. Delporte et al.

Let us consider a process pi such that (〈i,−〉 ∈ min_view), which returns
a view. Due to (a) the Immediacy property (namely (〈i,−〉 ∈ min_view) ⇒
(viewi ⊆ min_view)) and (b) the minimality of min_view, it follows that
viewi = min_view. As this is true for each process whose pair participates in
min_view, it follows that there is a set S of processes such that |S| = � ≥ n−k,
and each of these processes obtains min_view, or crashes during its invocation
of write_snapshotk(). Due to the Containment property, the others processes
crash or obtain views which are a superset of min_view. �Theorem 1

An Impossibility Result. The following theorem first stated and proved in [9]
establishes an important property of a k-IS object.

Theorem 2. A k-IS object cannot be implemented in CARWn,t[k < t].

Proof. To satisfy the output size property, the view obtained by a process pi
must contain pairs from (n − k) different processes. If t processes crash (e.g.,
initial crashes), a process can obtain at most (n−t) pairs. If t > k, we have n−t <
n−k. It follows that, after it has obtained pairs from (n− t) processes, a process
can remain blocked forever waiting for the (t − k) missing pairs. �Theorem 2

3 t-Resilience Impossibility of k-Immediate Snapshot

Theorem 3. It is impossible to implement a k-IS object in the model
CARWn,t[1 ≤ t ≤ k < n − 1].

Proof. The proof considers the case 1 = t ≤ k < n− 1 (this constraint explains
the model assumption n ≥ 3, Sect. 2.1). If, for k ≤ n − 1, there is no imple-
mentation of a k-IS object in CARWn,t[t = 1], there is no implementation
either for t ≥ 1. The proof is by contradiction, namely, assuming an implemen-
tation of a k-IS object, where k < n − 1, in CARWn,t[t = 1], we show that
it is possible to solve consensus in CARWn,t[t = 1, k-IS]. As consensus cannot
be solved in CARWn,t[t = 1], it follows that k-IS cannot be implemented in
CARWn,t[1 ≤ t ≤ k].

Let us recall the main property of k-IS (captured by Theorem 1). Let � be
the size of the smallest view (min_view) returned by a process. There is a set
S of � processes such that any process of S returns min_view or crashes, and
� ≥ n − k. As k < n − 1 (theorem assumption), we have � ≥ 2, which means
that at least two processes obtain min_view. It follows that, if a process obtains
the views returned by the k-IS object to (n − 1) processes, one of these views is
necessarily min_view. This constitutes Observation O.

Let us now consider Algorithm 1. In addition to a k-IS object denoted IS ,
the processes access an array VIEW [1..n] of SWMR atomic registers, initialized
to [⊥, · · · ,⊥]. The aim of VIEW [i] is to store the view obtained by pi from
the k-IS object IS . When it calls propose1(v), a process pi invokes first the k-IS
object, in which it deposits the pair 〈i, v〉 and obtains a view from it (line 1),
that it writes in VIEW [i] to make it publicly known (line 2). Then, it waits

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 105

operation propose1(v) is
(1) viewi ← IS .write_snapshotk(v);
(2) V IEW [i] ← viewi;
(3) wait(|{ j such that V IEW [j] = ⊥}| = n − t);
(4) let view be the smallest of the previous (n − t) views;
(5) return(smallest proposed value in view)
end operation.

Algorithm 1: Solving consensus in CARWn,t[t = 1, k-IS] (code for pi)

until it sees the views of at least (n − 1) processes (line 3). Finally, pi extracts
from these views the one with the smallest cardinality (line 4), and returns the
smallest value contained in this smallest view (line 5).

We show that this reduction algorithm solves consensus in CARWn,t[t =
1, k-IS]. As at least (n − 1) processes do not crash, and write in their entry of
the array VIEW [1..n], no correct process can block forever at line 2, proving the
Termination property of consensus.

As � ≥ n − k ≥ 2, it follows from Observation O that at least one of the
views obtained by a process at line 3 is necessarily min_view. It follows that
each process that executes line 3 obtains min_view and returns its smallest
value at line 4), proving the Agreement property of consensus.

The consensus Validity property follows directly from k-IS Validity property,
and the observation that any set view contains only proposed values line 4).
�Theorem 3

Remark. When considering Algorithm 1, let us observe that, as n − k ≤ n − t,
the array VIEW [1..n] can be replaced by a k-immediate snapshot object IS2.
We obtain then the following algorithm.

operation propose1(v) is
view1i ← IS .write_snapshotk(v);
view2i ← IS2.write_snapshotk(view1i);
let view be the smallest view in view2i;
return(smallest proposed value in view)

end operation.

4 From k-Immediate Snapshot to x-Set Agreement

This section proves the content of Table 1, namely x-SA can be implemented
in the system model CARWn,t[t ≤ k < n − 1], for x = max(1, t + k − (n − 2)).
Interestingly, the algorithm providing such an implementation is Algorithm 1,
whose operation name is now proposex() (instead of propose1(v)).

Theorem 4. Let x = max(1, k + t − (n − 2)). Algorithm 1 implements an x-SA
object in the system model CARWn,t[1 ≤ t ≤ k < n − 1, k-IS].

106 C. Delporte et al.

Proof. The x-SA Termination follows directly from the Termination property
of the underlying k-IS object IS , the fact that there are at least (n − t) correct
processes, and the assumption that all correct processes invoke proposex(). The
x-SA Validity property follows directly from the Validity property of the IS .

As far as the x-SA Agreement property is concerned, we have the following.
Due to Theorem 1, a set of � ≥ n − k processes obtain the smallest possible
view min_view, which is such that |min_view| = � ≥ n − k. It follows that,
at most k processes obtain a view different from min_view. In the worst case,
these k views are different. Consequently, there are at most k+1 different views,
namely min_view, V (1), ..., V (k), and due to their Containment property, we
have min_view ⊂ V (1) ⊂ · · · ⊂ V (k). The rest of the proof is a case analysis
according to the value of (n − t) with respect to k.

– n− t > k. In this case, a process obtains views from (n− t) processes (line 3),
and in the first case it obtains the views V (1), ..., V (k). But as n − t > k it
also obtains min_view from at least one process. It follows that, all processes
see min_view, and consequently decide the same value at line 5. Hence,
(n − t > k) ⇒ (x = 1).

– n − t = k. In this case, it is possible that some processes do not obtain
min_view at line 3. But, if this occurs, they necessarily obtain the views
from the n − t = k processes that deposited V (1), ..., V (k) in VIEW [1..n].
Hence, all these processes obtains V (1) at line 3, and decide consequently
the same value from V (1). As the decided values are decided from the views
min_view and V (1), we have (n − t = k) ⇒ (x = 2).

– n− t = k − 1. In this case, it is possible that, at line 3, some processes obtain
not only min_view, but also V (1) and decide the smallest value of V (2).
As the decided values are then decided from the views min_view, V (1), and
V (2), we have (n − t = k − 1) ⇒ (x = 3).

– Applying the same reasoning to the general case n − t = k − c, we obtain
(n − t = k − c) ⇒ (x = 2 + c).

Abstracting the previous case analysis, we obtain x = 1 (consensus) for n−t > k,
and x = k + t − (n − 2), i.e., when n − t = k − x + 2, from which follows that
x = max(1, k+ t−(n−2)), which completes the proof of the theorem. �Theorem 4

The next corollary is a re-statement of Theorem 4 for x = 1.

Corollary 1. Algorithm 1 implements a CONS object in the system model
CARWn,t[1 ≤ t < n/2, t ≤ k ≤ (n − 1) − t, k-IS].

5 An Equivalence Between k-Immediate Snapshot
and Consensus

This section shows first that consensus is strong enough to implement a k-IS
object when t ≤ k. Combining this result with the fact consensus can be imple-
mented from a k-IS object in CARWn,t[1 ≤ t < n/2, t ≤ k ≤ (n−1)− t] (Corol-
lary 1), we obtain that consensus and k-IS are equivalent in CARWn,t[1 ≤ t <
n/2, t ≤ k ≤ (n − 1) − t].

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 107

5.1 From CONS to k-IS in CARWn,t [t ≤ k ≤ n − 1]

Algorithm 2 describes a reduction of k-IS to consensus in CARWn,t[0 < t ≤
k ≤ n − 1]. This algorithm uses three shared data structures. The first is an
array REG [1..n] of SWMR atomic registers (where REG [i] is associated with
pi), the second is a consensus object denoted CS , and the third is an immediate
snapshot object denoted IS (let us recall that such an object can be implemented
in CARWn,t[t ≤ n − 1]).

operation write_snapshotk(vi) is
(1) REG[i] ← vi;
(2) wait

(|j such that REG[j] = ⊥}| ≥ n − k
)
;

(3) auxi ← {〈j,REG[j]〉 such that REG[j] = ⊥};
(4) viewi ← CS .propose1(auxi);
(5) if (〈i, vi〉 ∈ viewi)
(6) then return(viewi)
(7) else auxi ← IS .write_snapshot(vi);
(8) viewi ← viewi ∪ auxi;
(9) return(viewi)
(10) end if
end operation.

Algorithm 2: Building k-IS in CARWn,t[0 < t ≤ k ≤ n − 1,CONS] (code for pi)

The behavior of a process pi can be decomposed in three parts.

– When it invokes write_snapshotk(vi), pi first deposits its value vi in REG [i],
in order all processes to know it, and waits until at least (n − k) processes
have deposited their input value in REG [1..n] (lines 1–2).

– Then pi proposes to the underlying consensus object CS , the set of all the
pairs 〈j,REG [j]〉 such that REG [j] �= ⊥ (lines 3–4). Let us notice that this
set contains at least (n − k) pairs. Hence, the consensus object returns to pi
a view viewi, which contains at least (n − k) pairs.

– Finally, pi returns a view (of at least (n − k) pairs).
• If viewi contains its own pair 〈i, vi〉, pi returns viewi (line 6).
• If viewi does not contain 〈i, vi〉, pi proposes vi to the underlying immedi-

ate snapshot object from which it obtains a set of pairs auxi (line 7). Let
us notice that, due to the properties of the immediate snapshot object IS ,
auxi contains the pair 〈i, vi〉. Process pi then adds auxi to viewi (line 8)
and returns it (line 9).

Theorem 5. Algorithm 2 implements a k-IS object in the system model
CARWn,t[0 < t ≤ k ≤ n − 1,CONS].

Proof. Proof of k-IS Self-inclusion. If pi returns at line 6, self-inclusion follows
directly from the predicate of line 5. If this predicate is not satisfied, pi invokes

108 C. Delporte et al.

the underlying immediate snapshot object IS with the value vi it initially pro-
posed (line 7). It then follows from the self-inclusion property of IS that auxi

contains 〈i, vi〉, and due to line 8, the set viewi that is returned at line 9 contains
〈i, vi〉.

Proof of k-IS Validity. This property follows from (a) the fact that a process pi
assigns to REG [i] the value it wants to deposit in the k-IS object, (b) this atomic
variable is written at most once (line 1), and (c) the predicate REG [j] �= ⊥ is
used at line 3 to extract values from REG [1..n].

The Output size property follows from (a) the predicate of line 2, which
ensures that the set viewi obtained at line 4 from the underlying consensus
object contains at least n− t ≥ n− k pairs, and the fact that a set viewi cannot
decrease (line 3).

Proof of k-IS Containment. Let P6 (resp., P9) be the set of processes that
terminate at line 6 (resp., 9). Let view be the set of pairs decided by the underly-
ing consensus object CS (line 4). Hence, all the processes in P6 return view. Due
to line 8, the set viewi returned by a process that terminates at line 9 includes
view. It follows that ∀ pj ∈ P6, pi ∈ P9, we have viewj = view ⊂ viewi.

Let us now consider two processes pi and pj belonging to P9. It then follows
from the IS Containment property of the underlying IS object, that we have
auxi ⊆ auxj or auxj ⊆ auxi (where the value of auxi and auxj are the ones at
line 7). Consequently, at line 8 we have viewi ⊆ viewj or viewj ⊆ viewi, which
completes the proof of the k-IS Containment property.

Proof of k-IS Immediacy. Let pi and pj be two processes that return viewi

and viewj , respectively, such that 〈i, v〉 ∈ viewj . We have to show that viewi ⊆
viewj . Let us considering the sets P6 and P9 defined above. There are three
cases.

– Both pi and pj belong to P6. In this case, due to line 4, we have viewi = viewj .
– pi belongs to P6, while pj belong to P9. In this case, due to line 8, we have

viewi ⊂ viewj .
– Both pi and pj belong to P9. In this case, due to the IS Immediacy property

of IS we have (at line 8) 〈i,−〉 ∈ auxj ⇒ auxi ⊆ auxj (and 〈j,−〉 ∈ auxi

⇒ auxj ⊆ auxi). Let view the set of pairs returned by the consensus object
line 4. As, due to line 9, we have viewi ← view ∪ auxi and viewj ← view ∪
auxj , the k-IS Immediacy property follows.

Proof of k-IS Termination. Let p be the number of processes that deposit
a value in REG . As t ≤ k, we have n − k ≤ n − t ≤ p ≤ n. It follows that
no correct process can wait forever at line 2. The fact that no correct process
blocks forever at line 4 and line 7 follows from the termination property of the
underlying consensus and immediate snapshot objects. �Theorem 5

5.2 When Consensus and k-IS Are Equivalent

Let us consider the right triangular matrix defined by the entries are marked
“x-SA” in Table 1. Theorem 5 states that it is possible to implement k-IS from

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 109

CONS for any entry (t, k) belonging to this triangular matrix. Combined with
Corollary 1, we obtain the following theorem.

Theorem 6. CONS objects and and k-IS objects are equivalent in the system
model CARWn,t[0 < t < n/2, t ≤ k ≤ (n − 1) − t].

6 When Consensus Is Stronger Than k-Immediate
Snapshot

Section 4 investigated the power of k-IS to implement x-SA objects, namely
x-SA can be implemented in CARWn,t[1 ≤ t ≤ k < n − 1, k-IS] where x =
max(1, t + k − (n − 2)), see Theorem 4. As we have seen, considering the other
direction, Sect. 5 has shown that k-IS can be implemented in CARWn,t[1 ≤ t ≤
k < n − 1,CONS] (Theorem 5). The combination of these results showed that
Consensus and k-IS are equivalent in CARWn,t[0 < t = k < n/2] (Theorem 6).

This section shows an upper bound on the power of k-IS to implement x-SA
objects, namely, k-IS objects are not powerful enough to implement consensus
in the system model CARWn,t[n/2 ≤ t ≤ k < n − 1].

Preliminary: A Simple Lemma. Let us remark that, as immediate snapshot
objects, k-immediate snapshot objects are not linearizable. As a k-IS object
IS contains values from at least (n − k) processes, at least (n − k) processes
must have invoked the operation IS .write_snapshotk() for any invocation of
write_snapshotk() to be able to terminate. It follows that there is a time τ
at which n − k processes have invoked IS .write_snapshotk() and have not yet
returned. We then say that these (n − k) processes are “inside IS ”. Hence the
following lemma.

Lemma 1. If an invocation of write_snapshotk() on a k-immediate snapshot
object IS terminates, there is a time τ at which at least (n − k) processes are
inside IS .

Theorem 7. There is no algorithm implementing a CONS object in the system
model CARWn,t[n/2 ≤ t ≤ k < n − 1, k-IS].

Due to page limitation, the reader will find the proof of this theorem in [10].

7 Conclusion

The aim and content of the paper. The paper has first introduced the notion of a
k-immediate snapshot (k-IS) object, which generalizes the notion of immediate
snapshot (IS) objects to t-crash n-process systems (the IS object corresponds
to the case k = t = n − 1). It has then shown that k-IS objects cannot be
implemented in asynchronous read/write systems for k < n − 1.

The paper considered then the respective power of k-IS objects and x-set
agreement objects (x-SA) in t-crash-prone systems. As both these families of

110 C. Delporte et al.

objects are impossible to implement in read/write systems for t, k < n − 1 or
x ≤ t, respectively, the paper strove to establish which of k-IS and x-SA objects
are the most “impossible to solve”. The main results are the following where the
zones A, B, C, D, refer to Fig. 1.

1 (n − 2) (n − 1)

B

A

t > k
D

C

t = 1
t = 2

t < n/2
t ≥ n/2

t = n − 2
t = n − 1

k = k =
n/2 n/22

k =k = k < k ≥

Fig. 1. Summarizing the results

– Even if we have CONS objects, it is not possible to implement k-IS objects
in a t-crash system where t > k (Zone D).

– It is possible to implement x-SA objects, where x = max(1, t + k − (n − 2)),
from k-IS objects in systems where 1 ≤ t ≤ k < n − 1 (Zone A + B + C).

– It is possible to implement k-IS objects from 1-SA objects (CONS) in
read/write systems where 1 ≤ t ≤ k ≤ n − 1 (Zone A + B + C).

– 1-SA objects (CONS) and k-IS objects are equivalent in read/write systems
where 1 ≤ t < n/2 and t ≤ k ≤ (n − 1) − t (Zone A).

– It is not possible to implement 1-SA (consensus) from k-IS objects in
read/write systems when n/2 ≤ t ≤ k < n − 1 (Zone C).

Stated in a more operational way, these results exhibit the price of the syn-
chronization hidden in k-IS object (which requires that the view returned to a
process contains at least (n − k) pairs, (where a pair is made up of a value plus
the id of the process that deposited it in the k-IS object).

More generally, the previous results establish a computability map relating
important problems, which are impossible to solve in pure read/write systems.

k-Immediate Snapshot and x-Set Agreement: How Are They Related? 111

Open Problems. The following problems remain to be solved to obtain a finer
relation linking k-IS and x-SA, when t > 1.

– Direction “from k-IS to x-SA”. Is it possible to implement x-SA objects, with
1 ≤ x < t+k−(n−2) in t-crash n-process systems enriched with k-IS objects
(Zone B)? We conjecture that the answer to this question is no.

– Direction “from x-SA to k-IS”. Given an x-SA object, which k-IS objects can
be implemented from it? More generally, is there a “k-IS-like” communica-
tion object such that x-SA and this “k-IS-like” object are computationally
equivalent (by “k-IS-like” we mean an object possibly weaker than a k-IS
object)?

Acknowledgments. The authors want to thank the referees for their construc-
tive comments. This work has been partially supported by the French ANR project
DESCARTES (16-CE40-0023-03) devoted to layered and modular structures in dis-
tributed computing, and the UNAM-PAPIIT projects IN107714, IN106520.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Attiya, H., Ellen, F.: Impossibility Results for Distributed Computing. Synthe-
sis Lectures on Distributed Computing Theory. Morgan & Claypool, San Rafael
(2014). 162 p

3. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Pro-
ceedings of the 12th ACM Symposium on Principles of Distributed Computing
(PODC 1993), pp. 41–50. ACM Press (1993)

4. Borowsky, E., Gafni, E.: Generalized FLP impossibility results for t-resilient asyn-
chronous computations. In: 25th ACM Symposium on Theory of Computing, pp.
91–100. ACM Press (1993)

5. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-
free computations. In: Proceedings of the 16th ACM Symposium on Principles of
Distributed Computing (PODC 1997), pp. 189–198. ACM Press (D1997)

6. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simula-
tion algorithm. Distrib. Comput. 14, 127–146 (2001). https://doi.org/10.1007/
PL00008933

7. Castañeda, A., Rajsbaum, S., Raynal, M.: Unifying concurrent objects and dis-
tributed tasks: interval-linearizability. J. ACM 65(6), 42 (2018). Article 45

8. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

9. Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: t-resilient immediate snap-
shot is impossible. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp.
177–191. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_12

10. Delporte, C., Fauconnier, H., Rajsbaum, S., Raynal, M.: t-resilient k-
immediate snapshot and its relation with agreement problems. Technical report,
ArXiv:2010.00096, 15 p. (2020)

11. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C.,
Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_17

https://doi.org/10.1007/PL00008933
https://doi.org/10.1007/PL00008933
https://doi.org/10.1007/978-3-319-48314-6_12
http://arxiv.org/abs/2010.00096
https://doi.org/10.1007/978-3-642-17653-1_17

112 C. Delporte et al.

12. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

13. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann/Elsevier, Amsterdam (2014). 336 p. ISBN
9780124045781

14. Herlihy, M.P., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: Proceedings of the 23th International IEEE Con-
ference on Distributed Computing Systems (ICDCS 2003), pp. 522–529. IEEE
Press (2003)

15. Herlihy, M., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing
shared memory models. Theoret. Comput. Sci. 509, 3–24 (2013)

16. Herlihy, M.P., Shavit, N.: A simple constructive computability theorem for wait-
free computation. In: 26th ACM Symposium on Theory of Computing, pp. 243–252.
ACM Press (1994)

17. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

18. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

19. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

20. Neiger, G.: Set-linearizability. In: Brief Announcement in Proceedings of the 13th
ACM Symposium on Principles of Distributed Computing (PODC 1994), p. 396.
ACM Press (1994)

21. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN
2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12200-2_36

22. Raynal, M.: Concurrent Programming: Algorithms, Principles and Foundations.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32027-9. 515 p.
ISBN 978-3-642-32026-2

23. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-642-12200-2_36
https://doi.org/10.1007/978-3-642-32027-9

	k-Immediate Snapshot and x-Set Agreement: How Are They Related?
	1 Introduction
	2 The Model and the Problems
	2.1 Basic Read/Write System Model
	2.2 Immediate Snapshot (IS)
	2.3 x-Set Agreement (x-SA)
	2.4 k-Immediate Snapshot

	3 t-Resilience Impossibility of k-Immediate Snapshot
	4 From k-Immediate Snapshot to x-Set Agreement
	5 An Equivalence Between k-Immediate Snapshot and Consensus
	5.1 From CONS to k-IS in CARWn,t[tkn-1]
	5.2 When Consensus and k-IS Are Equivalent

	6 When Consensus Is Stronger Than k-Immediate Snapshot
	7 Conclusion
	References

