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Abstract. This paper describes our recent results in information theo-
retically secure homomorphic encryption. The main question that stands
in the basis of these works concerns the possibility of modifying encrypted
data obliviously. This possibility is useful for various applications, e.g.,
multiparty computation, outsourcing of computations, and quantum key
distribution (QKD).

The works presented here consider the scenario in which a user wishes
to outsource the storage and computation of confidential data to an
untrusted server. The first two works consider the approach of employ-
ing multiple servers and distributing secret shares of the data among
the servers. The first work introduces a method for evaluating quadratic
functions over a dynamic database, with no communication between the
servers. The second work allows communication and considers a method
for homomorphic evaluation of polynomials of arbitrary degree over non-
zero secret shares in a single round of communication. We present proto-
cols that enable the evaluation of multivariate polynomials over shares of
a non-zero secret without requiring a secret sharing phase invoked in an
offline preprocessing phase, and deal with possibly-zero secrets in several
ways.

The third work reviewed here considers the approach of employing a
single server. That work assumes that the user and server have quan-
tum capabilities, and attempts to enable the homomorphic evaluation
of encrypted classical data using quantum devices. The homomorphic
encryption scheme presented in that work is used to construct a QKD
scheme resilient against weak measurements. Weak measurement based
attacks over known QKD schemes are also introduced in the third work,
along with the innovative concept of securing entanglement.
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1 Background

Cloud services have become very common in recent years. Many computer com-
panies offer information storage and processing services for individuals, compa-
nies, and organizations. These services allow customers to enjoy an enormous
storage space, massive processing power, and cheap, convenient and efficient
management facilities. Many customers all over the world enjoy such services.
However, in many cases, the information that the customer wants to export to
the cloud is confidential. In such cases, there is a concern that the confidential-
ity of the information will be compromised due to hacking or even by the cloud
company’s employees. One possible way of maintaining privacy is to encrypt the
information by the user before sending it to the cloud (and keep the encryption
keys secretly). This way is suitable in cases where the customer is only interested
in storing the information. However, in many cases, the customer is also inter-
ested in processing the data by the cloud servers. In such cases, a question arises
– how (if at all) can we enjoy the cloud’s processing services while keeping the
confidentiality of the data? This problem is hereafter referred to as the secure
delegation problem. The works reviewed in this manuscript seek solutions for this
problem.

The secure delegation problem was first raised in 1978 by Rivest, Adelman,
and Dertouzos. In their seminal paper [34], they suggested to use ‘privacy homo-
morphisms,’ nowadays known as homomorphic encryption schemes, to encrypt
the data and enable oblivious processing of it by (honest-but-curious) remote
servers (possibly in the cloud). The data is typically represented by finite field ele-
ments. Encryption schemes are composed of algorithms for encryption, decryp-
tion, and key generation (typically denoted Enc, Dec, and Gen). To phrase the
problem mathematically, let m1,m2 be elements of a finite field (or a ring), and
c1, c2 their encryptions generated by an encryption system denoted π. Can c1, c2
be used to publicly generate cadd = Encπ

(
m1 + m2

)
or cmult = Encπ

(
m1 · m2

)
?

If it is possible to use c1, c2 to publicly generate cadd = Encπ

(
m1 +m2

)
(respec-

tively, cmult = Encπ

(
m1 · m2

)
), then π is additively homomorphic (respectively,

multiplicatively homomorphic). If both tasks can be carried out, then π is a fully
homomorphic encryption (FHE) system.

The search for fully homomorphic encryption schemes has been going on for
many years and was tagged as ‘the holy grail of cryptography’. The first signif-
icant breakthrough in the field occurred in 2009, when Craig Gentry proposed
the first (computationally secure) fully homomorphic encryption scheme [23].
Gentry’s scheme has been refined and additional FHE schemes have been pro-
posed [2,13,24,25,37–39]. Unfortunately, the time complexity of the currently
known FHE schemes is too high to make them practical [1,31].
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While FHE schemes can provide solutions to the secure delegation prob-
lem, they can achieve at most computational security, but not information-
theoretical (IT-) security. In IT-secure schemes, the security of the scheme is
derived purely from information theory and depends neither on the computing
power of the adversary nor on any computational hardness assumptions. The
security of cryptographic schemes that have computational security is based on
unproven assumptions regarding the non existence of efficient algorithms for
solving specific mathematical problems and the computing power of the pos-
sible adversary. FHE schemes cannot achieve IT-security since existences of an
IT-secure FHE scheme would contradict known theorems regarding private infor-
mation retrieval.

Solutions for the secure delegation problem can be divided into two categories
according to their overall approach. FHE schemes suggest solutions for the secure
delegation problem based on the centralized approach. This approach assumes
that the user delegates the data to be stored and processed by a single server.
The second approach to the secure delegation problem is the distributed approach,
in which the user distributes the secret information between several clouds. In
the distributed approach, the user typically uses a secret sharing scheme to
distribute shares of the data among the servers. In this case, the users’ privacy
is kept as long as no more than a predefined threshold of the servers collude
in an adversarial attempt to reveal the data. Unlike FHE scheme, distributed
solutions to the secure delegation problem often achieve IT-security. The first
work reviewed in this manuscript [8] presents a distributed approach solution
to the secure delegation problem that suggests an IT-secure delegation scheme.
This scheme supports homomorphic evaluation of quadratic functions and 2-
CNF circuits over a dynamic database of secrets with no communication between
the servers.

The distributed approach to the secure delegation problem is related to secure
multiparty computation (MPC). MPC is an active field of research in cryptog-
raphy [6,19–22,27,33,40]. This field discusses the following problem. Several
participants are holding secret inputs and wish to evaluate a multivariate func-
tion over their secret inputs while not revealing to each other any information
regarding their secret inputs (except for what may be deduced from the output).
MPC schemes differ in their security and efficiency levels and their assumptions
regarding the behavior of the parties and the communication setting. One of the
typically used ideas is to secret share inputs. Then, adding two secret shared
values can implement logical OR gate, multiplication of two secret-shared values
(and reducing the degree of the obtained polynomial) can implement a logi-
cal AND gate. Using these two gates, a general logical circuit can be blindly
computed.

More often than not, MPC schemes provide distributed solutions to the
secure delegation problem. In several cases, it also works the other way around.
Namely, some distributed solutions to the secure delegation problem can be used
to construct MPC schemes. The second work reviewed in this manuscript con-
siders a specific secret sharing scheme – the distributed random matrix (DRM)
scheme [10]. That secret sharing scheme is used to construct an efficient and



Homomorphic Operations Techniques 19

IT-secure preprocessing-MPC protocol and a distributed solution for the secure
delegation problem. These schemes support homomorphic evaluation of poly-
nomials over non-zero inputs with optimal round complexity. We present the
one-time secrets (OTS) protocols that enable the evaluation of multivariate poly-
nomials over shares of non-zero secrets without requiring a secret sharing phase
invoked in an offline preprocessing phase. In addition, [10] deals with the prob-
lem of handling possibly zero secrets in several ways. By enabling the servers to
communicate with each other, we manage to enable the homomorphic evaluation
of polynomials of an arbitrary degree. Recall that in [8], we were able to support
evaluation of polynomials of degree at most two with no communication between
the servers.

So far, we have described the secure delegation problem and possible solu-
tions for it assuming all participants are classic computers. An equally exciting
problem arises when it is assumed that some (or all) of the participants are quan-
tum computers. In the third work reviewed in this manuscript, [11], we take the
centralized approach, assume that the user and server are quantum computers,
and seek efficient and IT-secure solutions to the secure delegation problem. In
that paper, the homomorphic encryption system presented is used to construct
a quantum key distribution (QKD) protocol that is resistant to attacks based on
weak measurements (WM). We present new proposed WM-based attacks against
existing QKD schemes that cannot be applied against our system (Table 1).

Table 1. A comparison of the solutions presented here.

Work Approach Communication Supported functions

[8] Distributed Servers - user only Quadratic polynomials

[10] Distributed Servers - user, servers - servers Polynomials of arbitrary degree

[11] Centralized Server - user A family of quantum gates

In the rest of the paper, we review the works [8,10,11] in more detail– for
each work, we provide some additional background, examine the overall concept
and methods, and the main contributions.

2 Communication-Less Evaluation

In 1979, Adi Shamir [35] presented one of the two first (N, t)-secret sharing
schemes (see [12] for the other suggestion). Such a scheme allows a user to split
a piece of information (hereafter a secret) among a set of N participants in such
a way that only subsets of size at least t are able to recover the secret, while
smaller subsets will not be able to learn any information about the secret. Secret
sharing is a vital building block in MPC schemes and distributed solutions to
the secure delegation problem. In Shamir’s secret sharing scheme, the secret s
is an element of a finite field of order p, denoted by Fp, and is shared by a user
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among a set of N parties (where p > N) in the following way. Each party Pi,
1 ≤ i ≤ N , is assigned by the user with an arbitrary element αi of F×

p , where
the αi’s are distinct. Random elements aj of Fp, 1 ≤ j ≤ t − 1, are picked by
the user. Let f be the polynomial defined by f(x) = s +

∑t−1
j=1 ajx

j in the field
Fp. Each party Pi gets the value f(αi). Shamir proved that, in this way, every
group of t parties is able to reconstruct s, but no group of t − 1 parties gains
any information about s [35].

One prominent property of Shamir’s scheme is that it is additively homomor-
phic. This property is based on the fact that the sum of polynomials of degree
≤ t−1 is again a polynomial of degree ≤ t−1. Unfortunately, since the product
of two polynomials of degree ≤ t − 1 is in general of a higher degree, Shamir’s
scheme is not multiplicatively homomorphic. As the degree of the polynomial
gets larger, a larger coalition is required in order to extract the secret. One of the
main results obtained in [8] is a method for making Shamir’s scheme support one
homomorphic multiplication of secrets while, in some sense, not increasing the
degree of the polynomial that represents the secrets. This is our novel function
sieving method. This method provides a way of choosing the non-free coefficients
for two N − 1 degree polynomials, f1 and f2, such that, if f1(0) = s1 and
f2(0) = s2, then interpolating the N points

(
αi, f1(αi) · f2(αi)

)
(for 1 ≤ i ≤ N)

one obtains a polynomial whose value at zero is s1 · s2. Our method enables to
find the specific cases in which the polynomials f1 and f2 are such that, multi-
plying the shares of the corresponding secrets, one obtains N products of shares
that represent a polynomial of degree ≤ N − 1 that has the right value at 0. We
define a set of 2(N − 1)-tuples. Each tuple contains suitable non-free coefficients
for a pair of polynomials for which homorphic multiplication in Shamir’s scheme
works.

The Algorithm in a Nutshell. We now briefly sketch the outline of our
constructions in more detail. Assume that the field Fp, in which the secrets s1
and s2 reside, is such that p ≡ 1 (mod N). In that case, since F

×
p is cyclic,

it contains a primitive root of unity of order N . Let α be such a root. For
1 ≤ j ≤ N denote αj := αj , and assign to each party Pj the value αj . Let
ai, bi ∈ Fp, 1 ≤ i ≤ N −1, and consider the polynomials f1(x) = s1 +

∑N−1
i=1 aix

i

and f2(x) = s2 +
∑N−1

i=1 bix
i, in Fp[x]. Share the secrets s1, s2 among the parties

using f1, f2. Let yj = f1(αj) · f2(αj), 1 ≤ j ≤ N. The pairs (αj , yj) ∈ F
2
p are N

distinct points through which the polynomial (f1 · f2)(x) passes.
Since f := f1 · f2 is of degree ≤ 2N − 2, it is uniquely determined by 2N − 1

points. Since there are only N points (αj , yj), interpolation of them will certainly
not yield (f1 · f2)(x). Nevertheless, let g(x) be the interpolation polynomial for
the N points, (αj , yj). Obviously, g is of degree ≤ N − 1. Since f and g agree on
the roots of ψ, we have g(x) ≡ f(x) (mod ψ(x)), where ψ(x) =

∏N
j=1(x − αj).

Since the αj ’s are all the roots of unity of order N , we have ψ(x) = xn+1 − 1.
Hence, it is easy to compute g.

In fact, denote f(x) = s1s2 +
∑2N−2

i=1 cix
i. We have xN ≡ 1 (mod ψ(x)), and

therefore g(x) ≡ f(x) ≡ s1s2 + cN +
∑N−1

i=1 (ci + cN+i)xi (mod ψ(x)). This in
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turn implies that g(0) = s1s2 + cN . Thus, if we take f1 and f2 such that cN = 0,
we get g(0) = f(0). Now, cN =

∑N−1
i=1 aibN−i. Hence, instead of picking the

coefficients of f1 and f2 uniformly at random, we pick them in such a way that
cN = 0.

This is, in essence, the function sieving method. Instead of using Shamir’s
secret sharing scheme with random polynomials from Fp[x], we use it with poly-
nomials f1, f2, for which cN = 0, which compels g(0) = f(0). Such a pair (f1, f2)
is a 1-homomorphic multiplicative pair of polynomials.

This method enables a user to securely distribute a confidential database of
m elements to a set of N semi-trusted servers while enabling homomorphic eval-
uation of quadratic functions and 2-CNF circuits over the secrets efficiently, with
no communication between servers, IT-secure against coalitions of up to N − 2
semi-honest servers, with O(m2) ciphertext, and dynamically. A secure outsourc-
ing scheme is dynamic if it enables the user to add (or remove) new records to
the database with no need for storing and re-sharing existing secrets by the
dealer. The dynamic property is vital for a secure outsourcing scheme and may
have significant benefits in many practical applications. Whenever one wishes to
outsource the storage of a database to a set of semi-trusted servers, some pieces
of data may not be known at the moment of construction of the database and
are expected to be known in the future. A dynamic scheme resolves the need for
storing a copy of the entire database on the user’s computer. In [8], we review
existing communication-less schemes that enable similar homomorphic proper-
ties (e.g., Beaver’s multiplication technique [4], or other variants of Shamir’s
scheme) and show that these schemes are either non-dynamic or less secure.

3 Optimal-Round P-MPC

The search for solutions for the secure delegation problem often gives rise to
MPC protocols, as exemplified in [10]. MPC is an extensively studied field in
cryptography rooted in Yao’s millionaire problem from the early 80’s [40]. In their
seminal work from 1988, Ben-Or et al. [6] showed that, in the plain model, every
function of N inputs can be efficiently computed with perfect passive security
by N parties if and only if one assumes that the majority of the participant are
honest. One may enable multiparty computation of functions in the presence of
a dishonest majority by switching to the preprocessing model, first suggested in
[5]. The preprocessing model enables achieving perfect passive security against
dishonest majority by enabling the parties to engage in an offline preprocessing
phase before the secret inputs are known. At the end of that offline phase, the
parties obtain correlated randomness (CR) – random coins to be used in the
online phase of the protocol. Given a preprocessing MPC protocol (hereafter
P-MPC), the space complexity of the scheme indicates how the amount of CR
required for the scheme grows with respect to other parameters.

An important measure of efficiency of MPC schemes is their round complex-
ity. Two rounds of communication are now known to be optimal for MPC – in the
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plain or preprocessing model [15,32]. Ishai et al. suggested in [30] two-round P-
MPC protocols with perfect passive security against dishonest majority, followed
by several improvements [14,16]. There already exist MPC schemes with opti-
mal round complexity and dishonest majority. Nevertheless, all these schemes
require amounts of either time, memory or communication exponential in some
of the parameters: depth or size of the circuit, size of the domain, or number of
parties. The space complexity of known solutions is (believed to be inherently)
exponential in the size of the input and N .

In [10], we construct efficient N -party P-MPC schemes for polynomials over
non-zero inputs. There already exist schemes for efficient evaluation of polynomi-
als over non-zero inputs [26]. However, our schemes are the first not to require an
additional secret sharing round during the preprocessing stage. We also suggest
several ways of handling possibly-zero inputs. Each of these ways best suits dif-
ferent families of functions. These schemes are based on the DRM secret sharing
scheme, a novel homomorphic secret sharing scheme established in [10]. These
results were established based on our work [9], where we constructed efficient
schemes for secure outsourcing of stream computations.

The DRM secret sharing scheme, presented in [10], supports homomorphic
multiplications of secrets and, after a single round of communication, supports
homomorphic additions of secrets. We use the DRM secret sharing scheme to
construct the one-time secrets (OTS) protocols. These protocols enable the eval-
uation of multivariate polynomials over shares of non-zero secrets with the fol-
lowing properties: communication and space complexities linear in the num-
ber of monomials, optimal round complexity, perfect security against dishonest
majority. The main advantage of our scheme is that we achieve all these proper-
ties without requiring a secret sharing phase invoked in an offline preprocessing
phase. In addition, our paper suggests new techniques for handling possibly-zero
secrets in several ways.

The Algorithm in a Nutshell. We now review the main ideas behind our
method. First, we construct the Distributed Random Matrix (DRM) secret-
sharing scheme. In this scheme, a secret is randomly split to a sum of field
elements, and each of the addends is randomly split to a product of field elements.
The factors of these products are put in the rows of a matrix, and each column
of that matrix is considered a share of the secret. Namely, given an element
x of a finite field Fp, we split x to a sum of N random Fp elements γi, 1 ≤
i ≤ N . Then, each of the γi’s is split to a random product of Fp elements
mi,j , 1 ≤ j ≤ N . Denote by C the square matrix of order N whose entries are
the multiplicative shares mi,j of the additive shares γi. The mi,j are randomly
picked under the condition that C contains zeroes only on its main diagonal,
if any. The N columns of C are N DRM-shares of x. The double splitting of
each secret (additively splitting the secret and multiplicatively splitting each
addend) enables supporting both homomorphic multiplications and additions.
In [10] we prove that, the DRM secret sharing scheme supports homomorphic
multiplications with multiplicatively secret-shared F

×
p elements. Furthermore, a
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single round of communication enables the parties to switch to additive shares
of x.

Next, the DRM secret sharing scheme is used to construct a P-MPC scheme.
The outline of the scheme is as follows. In the preprocessing phase, each party
is supplied with a sufficient amount of CR in the form of DRM shares of 1 ∈ Fp

– one share for each monomial in the target polynomial. Recall that these DRM
shares support homomorphic multiplications. To evaluate the polynomial over
the secret inputs, for each monomial, each party multiplies the corresponding
DRM-share (a column vector) with a power of the secret as required by that
monomial, and obtains a new column vector. In the first communication round,
the entries of this column are split among the other servers. Next, each server
computes the products of the values obtained in the previous round (one product
for each monomial) and adds these products to obtain an additive share of the
output. Lastly, the parties distribute the additive shares of the output to each
other, and each party locally adds them to obtain the output. The main advan-
tage of our scheme is that it requires no secret sharing round in the preprocessing
phase.

Our results are also extended to the client-server model, providing an IT-
secure solution to the secure delegation problem. The DRM single-round client-
server scheme enables a set of users to securely outsource the storage of their
private inputs to a set of servers and have the servers evaluate polynomials over
the entire collection of users-inputs (non-zero). The users obtain the result after
a single round of communication between the servers.

To securely delegate non-zero secrets to the servers, the user distributes mul-
tiplicative shares of each secret among the servers. Then, to enable homomorphic
evaluation of polynomials of arbitrary degree over the secrets, the user sends a
query to the server containing a description of the polynomial and DRM-shares
of 1 ∈ Fp, one for each monomial, to be used as CR. Next, the servers use the
CR to evaluate the polynomial in a single round of communication and send the
shares of the result to the user.

The DRM client-server scheme is perfectly secure against coalitions of up to
N −1 honest-but-curious servers. The users do not communicate with each other
during the execution of the scheme. Each user distributes secret-shares of the
inputs to the servers and receives the output from the servers.

The innovative approach of the scheme enables handling high degree polyno-
mials without being concerned with the depth of the arithmetic circuit, which is
one of the main complexity bottlenecks in MPC. The communication and space
complexities of our schemes are independent of the degree of the polynomial,
and the required CR is independent of the function.

To emphasize the importance of round-efficiency, we note that, while pro-
cessing information becomes faster as technology improves, the time it takes
to transmit information between two distant places is strictly limited by the
speed of light. One may consider a future need to perform MPC over inputs held
by parties residing in distant places, perhaps in different continents or even in
space. Denote by T the time it takes to process the computations needed for the
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evaluation of some function f using our schemes. If sending a message between
parties takes more than T , then optimal-round schemes outperform any scheme
with non-optimal round complexity.

4 Quantum HE and Applications

Quantum computers may allow feasible solutions to problems that are currently
considered impractical to solve [7,18,28,36]. In view of this fact, it is natural
to wonder if quantum computers can be used to achieve an IT-secure FHE
scheme. In 2014, [41] showed that it is impossible to construct an efficient IT-
secure quantum FHE (QFHE) scheme. Efficient IT-secure (quantum or classical)
encryption schemes can support homomorphic evaluation of only a subset of all
possible functions.

In a search for a quantum encryption scheme of classical data, [11] suggested
the random basis encryption scheme – an efficient, IT-secure, perfectly correct,
non-interactive, and fully compact encryption scheme that supports homomor-
phic evaluation of several quantum gates. The scheme presented in [11] shares
some resemblance with the quantum one-time pad (QOTP) based encryption
scheme. In QOTP based schemes, Pauli gates are randomly applied to plaintext
qubits to obtain IT-secure encryption, while supporting homomorphic evaluation
of Pauli gates. QOTP was suggested by Ambainis et al. in [3].

The main difference between the random basis encryption scheme and the
QOTP-based schemes is that in [11], a plaintext bit is encrypted by a rotation of
the corresponding qubit in an angle chosen from an immense number of possibil-
ities, while in [3] there are only four possible different encodings for a plaintext
qubit. The random basis encryption scheme essentially implements a continuous
version of the (discrete) QOTP scheme. The difference between the continuous
and discrete versions becomes significant in several scenarios when considering
attacks based on weak measurements (WM).

Another advantage of our random basis encryption scheme over QOTP-
based schemes is that in contrast to the legacy quantum one-time pad based
HE scheme, that requires modifications of the keys by the user, our scheme is
computation agnostic. Namely, when delegating computations, the user is not
required to carry out such computations and key-adjustments and can remain
utterly oblivious to the implementation method chosen by the server/cloud.

Weak measurements enable accumulating information regarding the state of
a qubit while not collapsing the state, but only biasing it a little. In [11], it is
shown how WM can be used to attack quantum key distribution (QKD) schemes
that are based on QOTP. Namely, we demonstrate a WM attack on the [7] and
[17] schemes that enables an adversary to obtain a non-negligible advantage at
guessing a key-bit while reducing the risk of being caught.

Our WM attack works as follows. First, we weakly interact the subject qubit
with an ancillary qubit. Then, we (strongly) measure the ancillary qubit. The
outcome of the (strong) measurement of the ancillary qubit is the outcome of
the weak measurement of the subject qubit. This process enables imprecisely
measuring quantum states, outsmarting the uncertainty principle.
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To this end, we construct a two-qubit quantum gate that is very close to the
identity operator (not doing anything), but slightly tends towards the CNOT
quantum gate. The CNOT quantum gate enables copying computational basis
qubits ({|0〉 , |1〉}) without disturbing them. If the qubits are not in the com-
putational basis, the CNOT gate disturbs them1. Our two-qubit quantum gate
can be taken to be arbitrarily close to the identity operator, hence enabling a
tradeoff between information gain and state disturbance.

Explicitly, given ε > 0, let Wε =
√

ε · i · CNOT +
√

1 − ε · I a two-qubit
gate (I is the identity operator and i is the square root of −1). In our WM
attacks, Wε is used to weakly interact a target qubit with an ancillary qubit.
If the target qubit is in the computational basis, then measuring the ancillary
qubit provides some information regarding the target qubit. If the target qubit
is in the Hadamard basis, we obtain no information, but only slightly disturb
the state.

In addition, [11] presents the random basis CNOT QKD scheme – an IT-
secure QKD scheme that is resilient against weak measurement based attacks.
Another advantage of our QKD scheme compared to other schemes is that only
one side measures, and the other side can decide to blindly negate the state
without knowing the chosen random base.

The random basis encryption scheme is shown to be useful in another setting
– securing entanglement. Entanglement is an essential resource in many quan-
tum settings – teleportation, private communication, and distinguishing quan-
tum states [29]. The utilization of entanglement in communication, computation,
and other scenarios is a very active area of research. In practice, entanglement
is typically generated by direct interactions between subatomic particles. The
generation of entangled systems requires efforts and expenditures. In [11] it is
suggested that, once entanglement was generated, it should be secured in the
sense that only its rightful owners will be able to use it. We demonstrate a process
of securing entanglement using the random basis encryption scheme. Moreover,
we show that our method of securing entanglement provides safer implications
in the face of weak measurements compared to possible straightforward QOTP
based methods for the same task.

5 Conclusions

We believe that distributed computing can benefit much from using the tech-
niques reviewed above and in particular secure multiparty computation. The
classical methods of secure multiparty computation imply high communication
overhead. The reviewed works’ scope is to advance the research for reducing the
communication overhead in the scope of dynamic database, streaming compu-
tation, and quantum computers.

1 It is not possible to copy general qubits due to the no-cloning theorem.



26 D. Bitan and S. Dolev

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51(4), 1–35
(2018)

2. Akavia, A., Gentry, C., Halevi, S., Leibovich, M.: Setup-free secure search on
encrypted data: Faster and post-processing free. Technical report, Cryptology
ePrint Archive Report (2018)

3. Ambainis, A., Mosca, M., Tapp, A., de Wolf, R.: Private quantum channels. In:
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, pp.
547–553 (2000)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pp. 446–455. ACM (1997)

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

7. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. IEEE, New York (2020)

8. Berend, D., Bitan, D., Dolev, S.: Polynomials whose secret shares multiplication
preserves degree for 2-CNF circuits over a dynamic set of secrets. IACR Cryptol.
ePrint Arch. (2019)

9. Bitan, D., Dolev, S.: One-round secure multiparty computation of arithmetic
streams and functions. In: Dinur, I., Dolev, S., Lodha, S. (eds.) CSCML 2018.
LNCS, vol. 10879, pp. 255–273. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-94147-9 20

10. Bitan, D., Dolev, S.: Optimal-round preprocessing-mpc via polynomial represen-
tation and distributed random matrix (extended abstract). IACR Cryptol. ePrint
Arch. (2019)

11. Bitan, D., Dolev, S.: Randomly choose an angle from immense number of angles
to rotate qubits, compute and reverse. IACR Cryptol. ePrint Arch. (2019)

12. Blakley, G.R.: Safeguarding cryptographic keys. In: 1979 International Workshop
on Managing Requirements Knowledge (MARK), pp. 313–318. IEEE (1979)

13. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-
4 8

14. Couteau, G.: A note on the communication complexity of multiparty computation
in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3 17

15. Damg̊ard, I., Larsen, K.G., Nielsen, J.B.: Communication lower bounds for statis-
tically secure MPC, with or without preprocessing. IACR Cryptol. ePrint Arch.
2019, 220 (2019)

16. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for
2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63688-7 6

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-319-94147-9_20
https://doi.org/10.1007/978-3-319-94147-9_20
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-662-53018-4_8
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-030-17656-3_17
https://doi.org/10.1007/978-3-319-63688-7_6


Homomorphic Operations Techniques 27

17. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time
pad. Phys. Rev. A 69(5), 052319 (2004)

18. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc.
R. Soc. Lond. A 439(1907), 553–558 (1992)

19. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V., Yuditsky, Y.: Towards efficient
private distributed computation on unbounded input streams. J. Math. Cryptol.
9(2), 79–94 (2015)

20. Dolev, S., Garay, J.A., Gilboa, N., Kolesnikov, V., Kumaramangalam, M.V.: Peren-
nial secure multi-party computation of universal turing machine. Theor. Comput.
Sci. 769, 43–62 (2019)

21. Dolev, S., Gilboa, N., Li, X.: Accumulating automata and cascaded equations
automata for communicationless information theoretically secure multi-party com-
putation. In: Proceedings of the 3rd International Workshop on Security in Cloud
Computing, pp. 21–29. ACM (2015)

22. Dolev, S., Li, Y.: Secret shared random access machine. In: Karydis, I., Sioutas,
S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD 2015. LNCS, vol. 9511,
pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29919-8 2

23. Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog

overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

25. Gentry, C.B., Halevi, S., Smart, N.P.: Homomorphic evaluation including key
switching, modulus switching, and dynamic noise management. US Patent
9,281,941 (2016)

26. Ghodosi, H., Pieprzyk, J., Steinfeld, R.: Multi-party computation with conversion
of secret sharing. Des. Codes Cryptogr. 62(3), 259–272 (2012)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp.
218–229. ACM (1987)

28. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219. ACM (1996)

29. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entangle-
ment. Rev. Mod. Phys. 81(2), 865 (2009)

30. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

31. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124 (2011)

32. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
425–458. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 15

33. Rivest, R.: Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer. Unpublished manuscript (1999)

34. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/978-3-319-29919-8_2
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-319-96881-0_15


28 D. Bitan and S. Dolev

36. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, 1994
Proceedings, pp. 124–134. IEEE (1994)

37. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

38. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

39. Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.-Z.: Dynamic fully homo-
morphic encryption-based merkle tree for lightweight streaming authenticated data
structures. J. Netw. Comput. Appl. 107, 113–124 (2018)

40. Yao, A.C.-C.: Protocols for secure computations. In: FOCS, vol. 82, pp.160–164
(1982)
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