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Abstract. We consider K = (k+1)×(k+1) autonomous mobile robots
operating on an anonymous N = (n + 1) × (n + 1)-node grid, n =
k ·d, d ≥ 2, k ≥ 2, following Look-Compute-Move cycles under the classic
oblivious robots model. Starting from any initial configuration of robots
positioned on distinct grid nodes, we consider the uniform scattering
problem of repositioning them on the grid nodes so that each robot
reaches to a static configuration in which they cover uniformly the grid.
In this paper, we provide the first O(n) time, collision-free algorithm
for this problem in the asynchronous setting, given that the robots have
common orientation, knowledge of n and k, O(1)-bits of memory, and
visibility range of 2 · max{n/k, k}. The best previously known algorithm
for this problem on a grid has runtime O(n2/d) (or O(nk)) with the
same robot capabilities in the asynchronous setting except the visibility
range 2 · n/k. The proposed algorithm is asymptotically time-optimal
since there is a time lower bound of Ω(n).

1 Introduction

The well-studied model in distributed computing by a team of autonomous
mobile robots is the classic oblivious robots (COR) model [8] where the robots
in the team are points (do not occupy any space), autonomous (no external
control), anonymous (no unique identifiers), indistinguishable (no external iden-
tifiers), disoriented (no agreement on coordinate systems and units of distance
measures), oblivious (no memory of past computation), and silent (no direct
communication and actions are coordinated via only vision and mobility). The
robots operate on a plane and execute the same algorithm. The robots perform
their computation in Look-Compute-Move (LCM) cycles: an active robot first
gets a snapshot of its surroundings (Look), computes a destination point based
on the snapshot (Compute), and finally moves to the destination point (Move).

In this paper, we assume that robots operate on a grid G. We assume that
nodes and edges of G are unlabeled, i.e., robots cannot differentiate one node
(edge) from another. The robots reside at nodes of G and they can move from
one node to another following the edges of G. The non-neighbor nodes in G are
visited following the intermediate nodes of G. We assume that, if a robot at a
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Table 1. Results for Uniform Scattering on a grid.

Algorithm Model Visibility range Runtime Setting

Barriere et al. [2] Classic oblivious 2 · n/k O(nk) Asynchronous

Poudel and Sharma [18] Robots with lights 2 · n/k Θ(n) Fully Synchronous

Theorem 1 Classic oblivious 2 · max{n/k, k} Θ(n) Asynchronous

node computes a destination point (to move) in one LCM cycle, then that des-
tination point is the neighboring node of the node where that robot is currently
positioned.

We study the fundamental Uniform Scattering problem on an anonymous
(square) grid G of N = (n+1)× (n+1) nodes for a set of K = (k +1)× (k +1)
robots, which is defined as follows: Given any initial configuration of K robots
positioned on distinct nodes of G, the robots reposition to reach a configuration
in which each robot is on a distinct node of G and they uniformly cover G (see
Fig. 1).

Fig. 1. (a) Initial configuration;
(b) Uniform Scattering.

This problem has practical applications when
a team of randomly deployed robots in a region
have to cover the region uniformly to maxi-
mize the coverage for different purposes, such as
intruder detection. An essential requirement is
clearly that the robots will reach a state of static
equilibrium and that scattering is completed as
fast as possible. It is assumed that n = k · d,
d ≥ 2, k ≥ 2 to guarantee a final Uniform
Scattering configuration.

Barriere et al. [2] studied Uniform Scattering for the first time in the
COR model, providing a deterministic algorithm in the asynchronous setting
given that the robots have the following capabilities:

– common orientation – each robot has consistent notion of North-South and
West-East, e.g., as provided by a compass,

– knowledge of parameters n and k,
– a visibility range of 2 · �n/k� (i.e., a robot can see robots within distance

2 · �n/k�),
– O(1)-bits of memory in each robot to store the different states of the system.

Barriere et al. [2] did not formally analyze the runtime; however, it is easy to
show that their algorithm has runtime O(n2/d) (or O(nk)). Recently, Poudel and
Sharma [18] proposed a Θ(n)-time algorithm in the fully synchronous setting for
Uniform Scattering in the robots with lights (RWL) model [4], where robots
have an externally visible light that can assume a distinct color at a time from
a given constant sized set. In this paper, our goal is to design a faster algorithm
in the asynchronous setting for Uniform Scattering in the COR model (see
Table 1 for the comparison).
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Contributions. We consider the robots and problem setting on a grid as in
Barriere et al. [2], except the visibility range 2 · max{�n/k�, k}. Unobstructed
visibility is considered where a robot sees all other robots within its visibility
range. Asynchronous setting is considered where the robots perform their LCM
cycles at arbitrary times. Two robots cannot move to the same node in G. This
would constitute a collision. We prove:

Theorem 1. For any initial configuration of K = (k + 1) × (k + 1) robots
positioned on distinct nodes of an anonymous square grid G of N = (n + 1) ×
(n+1) nodes with each robot having the visibility range 2·max{n/k, k}, Uniform
Scattering can be solved in Θ(n) time in the asynchronous setting avoiding
collisions, when robots have common orientation, knowledge of n and k, and
O(1) bits of internal memory.

Theorem 1 improves significantly on the O(nk) (or O(n2/d)) runtime of Bar-
riere et al. [2] for the COR model under the same capabilities, except that our
algorithm has visibility range 2 · max{n/k, k} whereas Barriere et al. [2] has
2 · n/k. Interestingly when k ≤ √

n, our visibility range matches with the visi-
bility range of Barriere et al.

Techniques. The time lower bound can be established by showing the minimum
number of times some robot has to move to reach a Uniform Scattering
configuration. The time lower bound established in Poudel and Sharma [18]
immediately proves this lower bound. For the time upper bound, we provide a
deterministic algorithm that works in three phases, Phase 1 to Phase 3, executed
sequentially.

– Phase 1 (Gather): In this phase, all K robots are repositioned on the dis-
tinct nodes in the top-right part of G forming a square sub-grid G′ (which we
call the gathering configuration Cgather; formal definition in Sect. 2). Essen-
tially what happens in Cgather is that robots occupy the (k + 1) × (k + 1)
sub-grid G′, one robot on each node of G′. Cgather is obtained through two
kinds of moves: (i) Northeast moves and (ii) Balancing moves. A robot per-
forms Northeast moves to reach G′. The robot moves either vertically North
or horizontally East during Northeast moves. After reaching G′, the robot
switches to Balancing moves. In the Balancing moves, based on the configu-
ration of other robots, the robot may move North, East, South or West inside
G′, facilitating new incoming robots to be accommodated inside G′ fast. We
show that this process results Cgather in O(n) time.

– Phase 2 (Pre-scatter): The robots in Cgather move horizontally West to
occupy (k + 1) columns of G with distance between two subsequent columns
exactly d = n/k. In each such column, the k +1 robots occupy k +1 consecu-
tive positions from the top boundary line of G, which we call the pre-scatter
configuration Cpre−scatter. In this phase, when a robot sees at least one robot
on the same horizontal line in the East at distance less than d and the neigh-
boring node in the West is empty, it moves to the West. We show that this
phase finishes in O(n) time.
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– Phase 3 (Scatter): The k + 1 robots in each of the k + 1 columns move
vertically South maintaining a fixed distance d = n/k between consecutive
robots. There are k + 1 final positions on each line, and hence a Uniform
Scattering configuration is achieved when robots move to the final positions
on those lines. The algorithm then terminates. We will show that this phase
also finishes in O(n) time.

Therefore, the overall runtime of the algorithm becomes O(n), which is
asymptotically optimal given the time lower bound of Ω(n). Executing Phases
1–3 becomes relatively straightforward in the fully synchronous setting. The
challenge is on how to execute Phases 1–3 correctly in the asynchronous set-
ting. For simplicity in understanding, we present the synchronous case first and
extend it later to the asynchronous case.

Related Work. Uniform Scattering is the subject of extensive research in
several fields. The research literature is vast and we only discuss in brief the
aspects related to our work. In cooperative mobile swarm robotics, this question
has been studied in terms of scattering, coverage, and a special case of formation
[1,3,5,9,10,13,15,22]. Uniform Scattering has also been studied in terms of
self-deployment in mobile sensor networks and in networks of robotic sensors
[11,12,16,17,19,21].

The existing works differ on whether robots (sensors) operate on plane or on
graphs. They also differ on various parameters, e.g., (i) synchronization settings
(fully synchronous, semi-synchronous, or asynchronous), (ii) the robots are obliv-
ious or have persistent memory, (iii) unlimited or limited visibility range, (iv)
exact or approximate covering, (v) termination guarantees, (vi) knowledge of the
number of robots in the system, (vii) obstructed/unobstructed visibility, (viii)
knowledge of the global coordinate system/common orientation/chirality/one-
axis agreement, etc.

Our work is on graphs, particularly grids. The grid setting was heavily used
in self-deployment and covering problems. We build upon the only previous work
of Barriere et al. [2] in the COR model. Furthermore, scattering is considered in
[14] in the Euclidean plane under limited visibility and non-trivial time bounds
(lower and upper) were reported. Scattering on a ring is considered in [6,7,20].

Paper Organization. We discuss model and some preliminaries in Sect. 2.
The algorithm in the fully synchronous setting is presented in Sect. 3 and the
extension to the asynchronous setting is provided in Sect. 4. Finally, we conclude
in Sect. 5. Some proofs and pseudocodes are omitted due to space constraints.

2 Model and Preliminaries

Graph. Let G = (V,E) be a grid of N = (n + 1) × (n + 1) nodes, where
V = {v1, v2, . . .} denotes the node sets and E ⊆ V × V denotes the edge sets.
Each node vi represents a point location and each edge (vi, vj), i �= j, represents
a line connecting any two nodes vi and vj of V . We assume that the grid is
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anonymous, i.e., nodes and edges of G are unlabeled. We assume that each edge
of G is of unit distance length.

Robots. Let R = {r1, r2, . . . , rK} be a set of K = (k + 1) × (k + 1) robots
residing on the nodes of grid G. No robot can reside on the edges of G at any
time (except in motion). Moreover, no two robots can occupy the same node of
G. In the initial configuration, we assume that robots in R are at distinct nodes
of G and maintain this property throughout the execution of the algorithm.
In the algorithm description, we denote by ri the robot ri and vi the node
on which ri resides. The robots have the visibility range 2 · max{n/k, k}. We
assume unobstructed visibility, i.e., a robot sees all other robots within distance
2 · max{n/k, k} (even if the robots are collinear). Following Barriere et al. [2],
we assume that robots can detect the boundary lines of G when they are ≤
2 · max{n/k, k} distance away from the boundary of G.

Common Orientation. The common orientation means that each robot has
a consistent notion of “North-South” and “West-East”, e.g., as provided by a
compass [2]. For the common orientation, no access to any global localization
system is required, i.e., the robots do not need to know their own position on
the grid G. We assume that the edges of G are consistently labeled North (top),
South (bottom), West (left), and East (right), and edge labels are visible to
robots.

Look-Compute-Move. At any time, a robot ri ∈ R could be active or inactive.
When a robot ri becomes active, it performs the “Look-Compute-Move” cycle
as follows.

– Look: For each robot rj that is visible to it, ri can observe the position of rj
on G. Robot ri can also know its own position.

– Compute: In any LCM cycle, ri may perform an arbitrary computation using
only the positions observed during the “look” portion of that cycle. This
includes determination of a (possibly) new position (which is a node of G)
and internal memory storage for ri for the start of the next cycle. Robot ri
maintains this new memory information from that cycle to the next.

– Move: At the end of the LCM cycle, ri changes its memory to the new infor-
mation and moves to its new position.

Robot Activation and Time. In the fully synchronous setting (FSY NC),
every robot is active in every LCM cycle. In the semi-synchronous setting
(SSY NC), at least one robot is active, and over an infinite number of LCM
cycles, every robot is active infinitely often. In the asynchronous setting
(ASY NC), there is no common notion of time and no assumption is made
on the number and frequency of LCM cycles in which a robot can be active;
nevertheless, each robot is active infinitely often. For the FSY NC, time is mea-
sured in rounds. For the SSY NC and ASY NC, time is measured in epoch. An
epoch is the smallest interval of time within which each robot is guaranteed to
be active at least once.
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Configuration. A configuration Ct = {(rt1,memt
1), . . . , (r

t
K ,memt

K)} defines
the positions of the robots in R on the nodes of G and their internal memory for
any time t ≥ 0. A configuration for a robot ri ∈ R, Ct(ri), defines the positions
of the robots in R that are visible to ri (including ri) and their memory, i.e.,
Ct(ri) ⊆ Ct, at time t. Since each robot has visibility range 2·max{n/k, k}, Ct(ri)
has the robots that are within distance 2 · max{n/k, k} from ri. For simplicity
and clarity, we sometime write C,C(ri) to denote Ct, Ct(ri), respectively. The
configuration Ct at t = 0 is called the initial configuration Cinit, in which K
robots are on K distinct nodes of G.

Uniform Scattering. Given an anonymous grid G = (V,E) of N = (n + 1) ×
(n+1) nodes and a team of K = (k+1)×(k+1) robots with n = k·d, k ≥ 2, d ≥ 2,
positioned initially arbitrarily on the distinct nodes of G, reposition the robots
autonomously to reach an equilibrium such that the nodes (i · d, j · d) of G with
i, j ∈ [0, k] hosting exactly one robot each. We say nodes (i·d, j ·d) with i, j ∈ [0, k]
the final positions. We say a node (x, y) of G occupied (or non-empty), if there
is a robot positioned on it.

Fig. 2. Cgather.

Gathering Configuration. Let R be a set of
K robots positioned on the distinct nodes of G.
Let LN , LS , LW , LE be the North, South, East and
West boundary lines of G, respectively. Let L′

W and
L′
S be the vertical and horizontal lines parallel to

LE and LN and passing through k hops West and
South of LE and LN , respectively. Let G′ be the
sub-grid of G enclosed by lines LE , LN , L′

W , and
L′
S (including the nodes of G on LE , LN , L′

W , L′
S)

in G. We say that a robot ri ∈ R is in a gathering
configuration Cgather if ri lies on G′ and ri sees all
the nodes in G′ are occupied (Fig. 2). We say that
the robots in the set R are in Cgather, if each robot in R is in Cgather. Therefore,
in Cgather, the (k + 1) × (k + 1) sub-grid on the topright part of G is occupied
with robots. Moreover, we define two regions w.r.t. G′. The grid area of G in the
West of G′ between LN and L′

S is denoted as west-region of G′. The grid area
of G in the South of G′ between LE and L′

W is denoted as south-region of G′.

3 Uniform Scattering Algorithm in FSY NC

We now describe our collision-free, time-optimal O(n)-round Uniform Scat-
tering algorithm in the FSY NC setting. The pseudocode is given in Algorithm
1. The robots have the common orientation, knowledge of parameters n and k,
visibility range of 2 · max{�n/k�, k}, and O(1)-bits of memory internal to each
robot. We describe the algorithm with respect to a single robot ri ∈ R. Figure 3
depicts what intuitively Phases 1–3 do to solve Uniform Scattering starting
from any arbitrary Cinit.
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Fig. 3. (a) Initial configuration Cinit; (b) Gathering configuration Cgather (Phase
1); (c) Pre-scatter Configuration (Phase 2); (d) Uniform Scattering Configuration
(Phase 3).

Algorithm 1: UNIFORM SCATTER(ri, n, k,G)
1 C(ri) ← configuration C for robot ri (including ri);
2 LE , LW , LN , LS ← East, West, North and South boundary lines of G, respectively;

3 L′
W ← vertical line parallel to LE at distance k west from LE ;

4 L′
S ← horizontal line parallel to LN at distance k south from LN ;

5 G′ ← subgraph of G enclosed by lines LE , LN , L′
W and L′

S ;
6 H(ri), V (ri) ← horizontal and vertical lines on G passing through ri, respectively;
7 ri · state ← 0 (initial state of ri); d ← n/k;

8 if ri · state = 0 then GATHER(ri ,H (ri),V (ri ),LE ,LN ,L′
S ,L

′
W ,G′,C (ri ));

9 else if ri · state = 1 then PRE SCATTER(ri , d,H (ri ),V (ri),LE ,LW ,L′
S ,C (ri ));

10 else if ri · state = 2 then SCATTER(ri , d,V (ri ),LN ,LS ,C (ri));

Algorithm 2: GATHER(ri,H(ri), V (ri), LE , LN , L′
S , L′

W , G′, C(ri))
1 (xi, yi) ← current position of ri in G;

2 if (xi, yi) ∈ G′ then

3 if ri sees all the nodes of G′ occupied then ri · state ← 1;

4 else BALANCE(ri ,H (ri),V (ri ),LE ,LN ,L′
W ,L′

S ,G
′,C (ri ));

5 else if (xi, yi + 1) is empty ∧ ((xi, yi + 1) /∈ G′ ∨ ((xi, yi + 1) ∈ G′ ∧ (xi + 1, yi + 1) is

empty ∧ ri sees no robot in the West of G′ between LN and L′
S)) then

6 ri moves to (xi, yi + 1);

7 else if (xi + 1, yi) is empty ∧ (((xi + 1, yi) ∈ G′ ∧ (xi + 1, yi + 1) is empty)

∨((xi + 1, yi) /∈ G′ ∧ (xi + 1, yi − 1) is empty)) then ri moves to (xi + 1, yi);

Phase 1 (Gather). The purpose of Phase 1 is to reach a gathering configuration
Cgather starting from Cinit (Fig. 3(a)–(b)). The pseudocode is given in Algorithm
2. Phase 1 has two sub-phases, Phase 1.1 (Northeast moves) and Phase 1.2
(Balancing moves), which execute sequentially one after another. In Phase 1.1,
robots move towards the North-East of G until they reach G′. After a robot
reaches G′, it switches to Phase 1.2 doing balancing moves to reposition itself
inside G′. We guarantee that after a robot enters G′, it never moves out of G′

during Phase 1. By the end of Phase 1, all K robots are positioned on the distinct
nodes of G′ achieving Cgather. We will prove that Phases 1.1 and 1.2 each run
for O(n) rounds. We describe Phase 1.1 and 1.2 in detail below.

Phase 1.1 (Northeast Moves). Let (xi, yi) be the current position of robot
ri in G. In Phase 1.1, ri does the following in each LCM cycle.
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Algorithm 3: BALANCE(ri,H(ri), V (ri), , LE , LN , L′
W , L′

S , G′, C(ri))
1 if ri sees no robot in the South of G′ between LE and L′

W ∨ ri sees at least a robot at

distance ≤ (2k − 2) in the West of G′ between LN and L′
S then MoveSE();

2 else if ri sees no robot in the West of G′ between LN and L′
S ∧ ri sees at least a robot at

distance ≤ (2k − 2) in the South of G′ between LE and L′
W then MoveWN();

Algorithm 4: MoveSE()
1 rsouth ← southmost robot seen by ri in the West of G′;
2 Lref ← horizontal reference line passing through rsouth;
3 dref ← distance between LN and Lref ;

4 dx, dy ← distance from ri to L′
W and Lref , respectively;

5 if (xi, yi − 1) is empty ∧ dx ≥ dy ∧ there exist less than (k − dref ) robots on V (ri) in the
South of ri then ri moves to (xi, yi − 1);

6 else if (xi + 1, yi) and (xi + 1, yi + 1) are empty then ri moves to (xi + 1, yi);

– Move to (xi, yi + 1), if that position (i.e., grid node) is empty and either:
i. (xi, yi + 1) does not lie on G′, or
ii. (xi, yi + 1) lies on G′, (xi + 1, yi + 1) is empty and ri sees no robot in the

west-region of G′. (Note: This condition prevents possible collision of ri
with another robot rj inside G′ due to the balancing move of rj .)

– Otherwise, move to (xi + 1, yi), if (xi + 1, yi) is empty, and either:
i. (xi + 1, yi) lies on G′ and there is no robot on (xi + 1, yi + 1), or
ii. (xi + 1, yi) does not lie on G′ and there is no robot on (xi + 1, yi − 1).

– Switch to Phase 1.2, if it lies on G′ and G′ is not fully occupied.
– Switch to Phase 2, if G′ is fully occupied.

Phase 1.2 (Balancing Moves). The pseudocode for Phase 1.2 is in Algo-
rithm 3. When a robot ri reaches G′, it performs balancing moves as follows.
(Note that the robot ri never moves outside of G′ during Phase 1.2.).

Case 1 – ri sees no robot in the south-region of G′ OR ri sees at least a
robot at distance ≤ (2k−2) in the west-region of G′: ri moves either South
or East. ri first checks for possible move towards South, and then towards East.
Let (xi, yi) be the current position of ri in G and H(ri), V (ri) be the horizontal
and vertical lines passing through ri, respectively. Let rsouth be the southmost
robot seen by ri in the west-region of G′ and Lref be the horizontal reference
line passing through rsouth. Let L′

W be the westmost vertical line of G′. Let dref
be the distance between LN and Lref , dx be the distance from ri to L′

W and
dy be the distance from ri to Lref . Then, ri moves South to (xi, yi − 1), if the
following conditions are satisfied: (i) (xi, yi − 1) is empty, (ii) dx ≥ dy, and (iii)
ri sees less than (k − dref ) robots on V (ri) in the South of ri.

Else if (xi + 1, yi) and (xi + 1, yi + 1) are empty, then ri moves East to
(xi + 1, yi).
Case 2 – ri sees no robot in the west-region of G′ but sees at least a
robot at distance ≤ (2k − 2) in the south-region of G′: ri moves either
West or North. ri first checks for possible move towards West, and then towards
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Algorithm 5: MoveWN()
1 rwest ← westmost robot seen by ri in the South of G′;
2 L′

ref ← vertical reference line passing through rwest;

3 d′
ref ← distance between LE and L′

ref ;

4 dx′, dy′ ← distance from ri to L′
ref and L′

S , respectively;

5 if (xi − 1, yi) is empty ∧ dy′ ≥ dx′ ∧ there exist less than (k − d′
ref ) robots on H(ri) in the

West of ri then ri moves to (xi − 1, yi);
6 else if (xi, yi + 1) and (xi + 1, yi + 1) are empty then ri moves to (xi, yi + 1);

North. Let rwest be the westmost robot seen by ri in the south-region of G′

and L′
ref be the vertical line passing through rwest. Let L′

S be the southmost
horizontal line of G′. Let d′

ref be the distance between LE and L′
ref . Let dx′ and

dy′ be the distances from ri to L′
ref and L′

S , respectively. Then, ri moves one
unit West, if the following conditions are satisfied: (i) (xi − 1, yi) is empty, (ii)
dy′ ≥ dx′, and (iii) ri sees less than (k −d′

ref ) robots on H(ri) in the West of ri.
Else if (xi, yi+1) and (xi+1, yi+1) are empty, ri moves North to (xi, yi+1).
Recall that a robot reaches Phase 1.2 after Phase 1.1; however, two different

sets of robots execute Phase 1.1 and Phase 1.2 in parallel. While the robots
inside G′ are performing Balancing moves, the robots outside G′ are performing
Northeast moves. Phase 1.2 starts after at least a robot reaches G′. Phase 1.1
ends when all the robots reach Phase 1.2. When all the robots reach Phase 1.2,
gathering configuration Cgather is achieved and Phase 1.2 also ends. That means,
Phase 1.1 and 1.2 both end together.

Lemma 1. Phase 1.2 starts in at most O(n) rounds after Phase 1.1.

Proof. If a robot rj lies inside G′ in the initial configuration Cinit, then rj
directly reaches Phase 1.2. In this case, both Phase 1.1 and Phase 1.2 start at
the same time. Let us analyze the case where no robot lies inside G′ in Cinit.
Let r be the topmost and rightmost robot in the initial configuration Cinit of
K robots in G. Let Phase 1.1 starts and r executes Algorithm 2. Since, r is the
topmost and rightmost robot in G, it moves North until it reaches either G′, or
north boundary line LN of G. If r reaches G′, it has taken less than n rounds
and Phase 1.2 starts. Otherwise, r takes at most n rounds to reach LN , and it
moves East on LN until it reaches G′ in less than next n rounds. Since, r is the
topmost and rightmost robot, there is no other robot that blocks the movement
of r. Hence, in less than 2n rounds, r reaches G′ and Phase 1.2 starts. 
�
Lemma 2. Phase 1.1 is collision-free.

Lemma 3. Phase 1.2 is collision-, deadlock-, and livelock-free.

Lemma 4. Phase 1 finishes in O(n) rounds.

Proof. We have two sub-phases of Phase 1 (Phase 1.1 and Phase 1.2). Phase 1.2
starts after at least a robot reaches G′. Thus, the total runtime of Phase 1 can
be divided into two parts: (i) time elapsed in Phase 1.1 and (ii) runtime of Phase
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Fig. 4. Illustration of movement of robots during Phase 1; (a) if all robots reach west-
region of G′ in Phase 1.1, they move South/East inside G′ in Phase 1.2; (b) if all robots
reach south-region of G′ in Phase 1.1, they move North/West inside G′ in Phase 1.2;
(c) if robots reach in both west-region and south-region of G′ in Phase 1.1, they may
perform all four types of moves (East, West, North or South) inside G′ in Phase 1.2.

1.2. From Lemma 1, the time elapsed in Phase 1.1 before the start of Phase 1.2
is O(n) rounds.

Now, let us analyze the runtime of Phase 1.2 with three different cases.
Case I: All robots reach the west-region of G′ during Phase 1.1
(Fig. 4(a)). Let Ri = {r0i , r

1
i , . . . , r

p−1
i }, i = 1, 2, . . . , n−k, be the set of p ≤ k+1

robots on each column at i distance west of L′
W where r0i represents the robot

at the northmost horizontal line, r1i represents the robot on the next horizontal
line below it and so on. Note that each horizontal line contains ≤ n − k robots
and each column in the West of L′

W contains ≤ p robots on it. When robots in
set R1 move East, they reach G′ (i.e. L′

W ) and Phase 1.2 starts. In round 1 of
Phase 1.2, the robots on L′

W (initially in set R1) of G′ execute Algorithm 3 to
perform balancing moves. If p = k + 1, all the robots on L′

W move East. This
process repeats for all other sets of robots and it is easy to see that all the robots
reach G′ in 2(k+1) rounds. Let us analyze the scenario of p < k+1. In this case,
the southmost robot (rp−1

1 ) on L′
W moves South and the remaining ones move

East leaving behind the top p positions on L′
W empty. During this round, the

next set of robots (R2) move East and occupy the previous positions of R1 in
the West of L′

W . In round 2 of Phase 1.2, the robots in R2 reach L′
W , the robots

which are already in G′ (i.e. R1), move further East or South (the southmost,
rp−2
1 , moves South and others move East). This provides empty nodes for the

robots currently on L′
W (i.e. R2) to move East or South in the next round. Also,

in round 2, the robots in set R3 reach to the initial positions of R2. In round 3,
robots in R4 reach to the initial positions of R3, robots in R3 reach to the initial
positions of R1 and the robots in R2 (currently on L′

W ) move East or South in
G′. The robots in R1 move further East or South by one unit. When the south-
most robot rp−1

1 of R1 reaches the South boundary line L′
S of G′, it moves East

in the next round where it meets rp−2
1 on its North neighboring node. In the

next round, these both robots move East and meet rp−3
1 . Following this process,

all the p robots of set R1 ultimately reach the consecutive nodes on LE in the
South part of G′. That means, the southmost p rows of G′ will be occupied by
the first k + 1 sets of robots (i.e. R1 to Rk+1). Similarly, next p rows of G′ will
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be occupied by the next k + 1 sets of robots (i.e. Rk+2 to R2k+2). Recall that,
in this case, a robot always search for a possible East or South move inside G′,
thus creating an empty node for each incoming robot from next column in the
West. That means, in every two rounds, one column of p robots enter G′. Thus,
in 2(n − k) ≤ 2n rounds, all the robots reach G′. This achieves the gathering
configuration Cgather and Phase 1.2 terminates.
Case II: All robots reach the south-region of G′ during Phase 1.1
(Fig. 4(b)). This case is analogous to Case I. Here, each vertical line con-
tains ≤ n − k robots on it. In this case, robots reach G′ performing North move
from each of the eastmost q ≤ k + 1 vertical lines. Once a robot reaches G′,
it performs West or North move inside G′. Following the arguments of Case I
analogously, in every 2 rounds, one robot each from the q vertical lines reaches
G′. That means, in ≤ 2n rounds, all the robots reach G′ having the gathering
configuration Cgather and Phase 1.2 terminates.
Case III: There are robots in both sides (west-region and south-region)
of G′ during Phase 1.1 (Fig. 4(c)). This case is the combination of Case I
and Case II. In Phase 1.1, the robots in the south-region of G′ do not move to
G′ until they see robots in the west-region of G′. That means, first all the robots
in the west-region of G′ move to G′ and then the robots in the south-region of
G′ move to G′. The robots in the west-region follow case I and the robots in
the south-region follow case II to reach and move inside G′. However, as soon
as all the robots in the west-region reach G′, the robots in the south-region may
not be able to move immediately to G′ as there might not be empty positions.
Because, in case I, the robots inside G′ move South/East to occupy South/East
part of G′. But, when there are no robots in the west-region of G′, the robots
inside G′ also satisfy case II and start moving North/West. This may take at
most 2k time to have empty nodes in the southmost horizontal line L′

N of G′.
As soon as there are empty nodes on L′

N , the robots in the south-region start
moving to G′ following case II. Case I and II execute for ≤ 2n rounds each. Thus,
all the robots reach gathering configuration in ≤ 4n + 2k rounds and Phase 1.2
terminates.

Hence, Phase 1 finishes in total at most O(n) + 4n + 2k = O(n) rounds. 
�

Phase 2 (Pre-Scatter). The pseudocode of the algorithm for Phase 2 is given
in Algorithm 6. The purpose of Phase 2 is to distribute the robots on k + 1
vertical lines separated at d distance apart, such that each vertical line contains
k + 1 robots achieving the pre-scatter configuration Cpre−scatter (Fig. 3(c)). In
this phase, robots move horizontally West in G. Let H(ri) and V (ri) be the
horizontal and vertical line passing through ri in G, respectively. Let LN be
the north boundary line of G and L′

S be the horizontal line parallel to LN and
passing through k distance South of LN . In each LCM cycle, ri moves one unit
West if the node is empty and it sees a robot on H(ri) in the East at distance
less than d. When a robot reaches to the West boundary line LW , it changes its
state to Phase 3. ri also changes its state to Phase 3, if it sees a robot in the
South of L′

S at horizontal distance d · x from V (ri) where x = 0, 1, 2, . . . . We
prove the following lemma.
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Algorithm 6: PRE SCATTER(ri, d,H(ri), V (ri), LE , LW , L′
S , C(ri))

1 if (xi, yi) ∈ LW then ri · state ← 2;

2 else if ri sees a robot in the south of L′
S at distance d · x from V (ri) (on, left or right of

V (ri)) where x = 0, 1, 2, . . . then ri · state ← 2;
3 else if (xi − 1, yi) is empty ∧ ri sees a robot on H(ri) at distance less than d in the East

then ri moves to (xi − 1, yi);

Algorithm 7: SCATTER(ri, d, V (ri), LN , LS , C(ri))
1 Ld

V ← vertical line parallel to V (ri) at distance d east of V (ri);
2 if (xi, yi) ∈ LN ∨ (xi, yi) ∈ LS then ri terminates;
3 else if ri sees robots on V (ri) exactly at distance d · x from ri where x = 1, 2, 3, . . . then
4 ri terminates;
5 else if ri sees a robot on V (ri) in the North at distance less than d ∧ ri sees no robot

between V (ri) and Ld
V ∧ (xi, yi − 1) is empty then ri moves to (xi, yi − 1);

Lemma 5. Phase 2 finishes in O(n) rounds avoiding robot collisions.

Phase 3 (Scatter). Phase 3 executes after Phase 2 and the pseudocode is given
in Algorithm 7. The purpose of Phase 3 is to uniformly scatter the robots in G
achieving the Uniform Scattering configuration as depicted in Fig. 3(d). In
this phase, robots move vertically towards South in G. Let LN , LS be the North
and South boundary lines of G, respectively and H(ri), V (ri) be the horizontal
and vertical lines passing through ri, respectively. Let Ld

V be the vertical line
parallel to V (ri) and passing through d distance East of V (ri). All the robots on
LN terminate without moving as they are already at the final positions. When
a robot ri at (xi, yi) sees another robot on V (ri) in the North at distance less
than d, it moves one unit South to (xi, yi − 1) if the node is empty and ri sees
no robot between V (ri) and Ld

V . When ri reaches to LS , it terminates. ri also
terminates when it sees all the robots on V (ri) (up to the visibility range) are
exactly at d distance apart.

Lemma 6. Phase 3 finishes in O(n) rounds avoiding robot collisions.

Proof of Theorem 1. The analysis above proves Theorem 1 for the
FSY NC. 
�

4 Uniform Scattering Algorithm in ASY NC

In this section, we extend the algorithm for the FSY NC to the ASY NC setting.
We describe a collision-free, time-optimal ASY NC O(n)-epoch algorithm. The
algorithm has four phases: Phase 0 (Pre-Gather), Phase 1 (Gather), Phase 2
(Pre-Scatter) and Phase 3 (Scatter). Unlike FSY NC, the ASY NC algorithm
has one more phase called Phase 0 (Pre-Gather) before Phase 1. Phases 1, 2
and 3 of the ASY NC are equivalent to the FSY NC but each phase is modified
appropriately. In the FSY NC algorithm, all the robots switch to Phase 2 from
Phase 1 synchronously when Cgather is achieved. But in the ASY NC algorithm,
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Phase 0: Pre-Gather
– All the robots on LN of G move South to L′

N and reach Phase 1 avoiding collision.
Phase 1: Gather
– All the robots perform Northeast move (avoiding collisions due to the movement of robots

at LN to L′
N in Phase 0) to reach sub-grid G′ in the North-East part of G below LN .

– When a robot reaches G′, it performs Balancing move inside G′ to achieve Cgather .
– All the robots reach Phase 2 after achieving gathering configuration Cgather .

Phase 2: Pre-Scatter
Phase 2.1:
– Robot at the North-East corner v′

ne of G
′ moves North to the North-East corner vne of G.

– Robot at the South-West corner v′
sw of G′ moves West after the robot at v′

ne moved to vne.
– Then, the remaining robots on the westmost boundary line L′

W of G′ move West.
– After all the robots on L′

W moved one unit west of L′
W , the southmost robot among them

moves further West; the remaining others in the column also follow the West move after it.
Phase 2.2:
– When a robot inside G′ sees next robot in the West on its horizontal line at distance 3 and

all the nodes in the East are occupied, it moves one unit West.
– The robot also moves West when it sees the next robot in the East on its horizontal line has

already started moving West.
Phase 2.3:
– A robot moves West when it sees another robot in the East on its horizontal line at distance

less than d.
– When the k + 1 robots reach the westmost boundary line LW of G, the northmost robot

among them moves North to LN .
– Among every next column of k + 1 robots at d distance apart, the northmost robot moves

North to LN after seeing the robot from the previous column at distance d moved to LN .
– The robots on LN reach Phase 3. The remaining robots on LE move one unit West and reach

Phase 3. The other remaining robots move one unit East and reach Phase 3.
Phase 3: Scatter
– Each robot moves South avoiding collision and maintaining a gap of at most distance d to

the next robot in the North on its vertical line.
– When a robot reaches the south boundary line LS of G, if it lies one unit West of LE , it

moves one unit East and terminates; Otherwise, it moves one unit West and terminates.
– Any other robot when sees no robot in South on its vertical line but a robot at d distance South

on the next vertical line in the West (East), it moves one unit West (East) and terminates.

Fig. 5. Algorithm for Uniform Scattering in the ASY NC setting.

robots may become active asynchronously and some robots may never see Cgather

when they become active. So, we need a different mechanism to switch from
Phase 1 to Phase 2 in ASY NC. To handle this situation, we introduce Phase 0
before Phase 1 which makes the northmost boundary line of G empty. Later in
Phase 1, when Cgather is achieved, one robot is moved to the North-East corner
of G which becomes a reference for other robots to switch from Phase 1 to Phase
2. The detail mechanism is explained later in the description of each Phase. Each
robot passes through Phases 0–3 sequentially. Figure 5 outlines the algorithm in
high level. Figure 6 illustrates the configuration of robots at different stages of
each phase.
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Fig. 6. Configuration of robots at different phases executing algorithm for ASY NC.

Phase 0 (Pre-Gather). The purpose of this phase is to make the North bound-
ary line LN of G empty. If any robot ri is located on LN in Cinit, the robot is
moved South during Phase 0. For this, first, ri checks if the South neighboring
node on the next horizontal line below LN (i.e. L′

N ) is empty or not. If the South
node is empty, ri moves to it. Otherwise, if the West neighboring node is empty,
ri moves one unit West on LN . The movement of ri on LN towards West helps
it to find the empty node on L′

N fast because the robots on L′
N move East. Once

a robot moves South of LN , it never moves again to LN . Phase 0 ends when no
robot is positioned on LN (e.g. Fig. 6(c)).

Lemma 7. Phase 0 ends in O(n) epochs avoiding robot collisions.

Phase 1 (Gather). Similar to the Phase 1 of FSY NC, the purpose of this
phase is to reach a gathering configuration Cgather on the North-East part of
G; the only difference is that the sub-grid G′ for Cgather in ASY NC lies one
unit South of G′ in FSY NC. Let L′

N be the next horizontal line below the
North boundary line LN of G. Then the sub-grid G′ is bounded by the East
boundary line LE , L′

N , the vertical line parallel to LE at k distance West of LE

(say L′
W ) and the horizontal line parallel to L′

N at k distance South of L′
N (say

L′
S). Cgather is said to be achieved if all the robots reach in G′ at the distinct
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nodes. Phase 1 in ASY NC is also divided into two sub-phases, Phase 1.1 and
1.2 that execute sequentially. We describe each sub-phase below.

Phase 1.1 (Northeast moves). This phase is analogous to the Phase 1.1 of
FSY NC after removing the North boundary line LN of G. A robot ri never
moves North towards LN from L′

N . If ri is already on LN in Cinit, it moves
South to L′

N during Phase 0. Any robot below LN (except the robot at L′
N )

first searches empty position on its North neighboring node for possible North
move. If the North move is not possible, it searches an empty node in the East
neighboring node for possible East move. A robot below L′

N does not move North
to L′

N if it sees a robot on LN in the same vertical line. Similarly, a robot at L′
N

does not move East if it sees a robot on LN in its North-East neighboring node.
This handles the possible collision due to movement of robot at LN to L′

N .

Phase 1.2 (Balancing moves). Phase 1.2 of ASY NC directly follows Phase
1.2 of FSY NC to reach the gathering configuration Cgather. Since robots per-
form their LCM cycles asynchronously, how they change their states to reach
Phase 2 in ASY NC is slightly different than in FSY NC. If a robot ri sees
Cgather configuration, it changes its state to Phase 2. Otherwise, ri changes its
state to Phase 2 after seeing the robot in the North-East corner v′

ne of G′ moved
North to LN . In the mean time, ri ensures that there is no robot in the South of
G′, the remaining k nodes on LE of G′ are occupied and the nodes in the East
of ri on H(ri) (except v′

ne) are also occupied.
Complying with Lemma 2–4, we have following lemma for Phase 1 in

ASY NC:

Lemma 8. Phase 1 finishes in O(n) epochs. Phase 1 is collision-free and
deadlock-free.

Phase 2 (Pre-Scatter). In this phase, robots move West to reach the pre-
scatter configuration Cpre−scatter. Unlike FSY NC, in Cpre−scatter of ASY NC,
the horizontal line below LN (i.e. L′

N ) is empty, instead the horizontal line at
k + 1 distance South of LN (i.e. L′

S) contains the k + 1 robots separated at d
distance apart. Figure 6(e–i) illustrate the movements of robots during Phase 2
to reach Cpre−scatter from Cgather.

Phase 2 is divided into three sub-phases, Phase 2.1–2.3. In Phase 2.1, only
the robots on L′

W and the robot at the North-East corner of G′ (say v′
ne) are

moved. The robot at v′
ne moves North to the North-East corner of G (say vne)

and reaches Phase 2.3. Then, the robot at the South-West corner of G′ (say
v′
sw) moves one unit West to the neighboring node (say vref ). After that, the

remaining robots on L′
W also move one unit West. Now, the robot at vref sees

all the nodes on its vertical line towards North occupied and L′
W empty, then it

moves one unit West and reaches Phase 2.2. The remaining robots in the North
of vref also move one unit West after it and reach Phase 2.2.

In Phase 2.2, when a robot ri is inside G′ and sees next robot in the West on
the same horizontal line H(ri) at distance 3, it moves one unit West and waits
for next robot in the East on H(ri) to move one unit West. When ri sees the
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next robot in the East on H(ri) moved one unit West (i.e. ri sees a robot at
distance 2 in the East on H(ri)), it also moves one unit West and reaches Phase
2.3.

In Phase 2.3, robot ri moves West when it sees another robot in the East at
distance less than d on H(ri). Since v′

ne is empty, as a special case, the eastmost
robot on L′

N can move up to d distance West of LE without seeing a robot in
the East on L′

N . When the westmost k+1 robots reach LW of G, the northmost
robot among them moves North to LN . Among every next column of k+1 robots
at d distance apart, the northmost robot moves to LN . Then, the pre-scatter
configuration (Cpre−scatter) is achieved. Since, in every 2 epochs, at least one
column of robots move one unit West, it is immediate that the westmost k + 1
robots reach LW in 2(n−k) epochs. In next 2k epochs, the k robots on L′

N move
to LN . Thus, Cpre−scatter is achieved in at most 2n epochs.

All the robots change their states to Phase 3 after achieving Cpre−scatter.
Additionally, if d > 2, any robot ri south of LN moves one unit East as well
(except the robots on LE which move one unit West) (Fig. 6(j)). Thus, Phase 2
also finishes in O(n) epochs in ASY NC. Since no robot moves South in Phase
2 and no robot reaches Phase 3 before Cpre−scatter, the movements of robots in
Phase 2 of ASY NC are collision-free.

Lemma 9. Phase 2 finishes in O(n) epochs in ASY NC avoiding robot colli-
sions.

Phase 3 (Scatter). In this phase, robots move South to achieve Uniform
Scattering configuration and terminate. Figure 6(j–l) provide an illustration.
If d = 2, robot ri has the visibility range of n and hence can see all the final
positions on it’s vertical line. Then, ri moves South by directly following the
Phase 3 of FSY NC to reach the final position and terminates. If d > 2, the
algorithm works as follow: Let H(ri), V (ri) be the horizontal and vertical lines
passing through ri, respectively. Let V ′(ri) be the vertical line parallel to V (ri)
and passing through one unit West of ri (for the robots at one unit West of
LE , consider LE as V ′(ri)). When a robot ri at (xi, yi) sees another robot on
V (ri) in North at distance less than d, then ri moves to (xi, yi − 1) if (xi, yi − 1)
and (xi − 1, yi − 1) are both empty. If ri it on one unit West of LE , it ensures
that (xi + 1, yi − 1) is empty instead of (xi − 1, yi − 1) to move South. When ri
reaches the south boundary line LS , it moves West (except the eastmost robot
on LS which moves East to LE) to reach the final position and terminates.
When ri sees another robot rj on V ′(ri) at exactly d distance South of H(ri),
ri moves horizontally to V ′(ri) to occupy the final position and terminates. The
southmost robots on the k + 1 vertical lines take at most 2(n − k) epochs to
reach LS . By that time all the robots on each of those k + 1 vertical lines are at
d distance apart. In at most next 2k epochs, all those robots reach to the final
positions and terminate. Thus, in at most 2n epochs, Phase 3 terminates.

Lemma 10. Phase 3 finishes in O(n) epochs in the ASY NC setting.

Proof of Theorem 1. Combine results of Lemmas 7, 8, 9 and 10. 
�
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5 Concluding Remarks

We have provided the first optimal O(n) time algorithm to the Uniform Scat-
tering problem in a square grid graph of N = (n+1)×(n+1) nodes in the COR
model under the ASY NC setting. This is the O(n/d) = O(k) improvement com-
pared to the best previously known algorithm with runtime O(N/d) ≡ O(n2/d)
in the COR model. In the future work, it will be interesting to extend our algo-
rithm to consider faults.
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