
Smoothed Analysis of Leader Election
in Distributed Networks

Anisur Rahaman Molla1(B) and Disha Shur2

1 Computer and Communication Sciences Division,
Indian Statistical Institute, Kolkata, Kolkata, India

molla@isical.ac.in
2 R. C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata, Kolkata, India
disha.shur@gmail.com

Abstract. We study smoothed analysis of the leader election (LE) prob-
lem in distributed networks. Smoothed analysis is a hybrid between
worst-case analysis and average-case analysis. It takes a worst-case
instance for the algorithm and perturbs the input by adding some ran-
dom noise and analyzes the algorithm on this perturbed input. We con-
sider smoothed analysis, in which the topology of the input graph G is
randomly perturbed by adding random edges to G. The complexity of
the algorithm is parameterized by a smoothing parameter 0 ≤ ε(n) ≤ 1
which controls the amount of random edges to be added to the input
graph G per round, where ε is a small function of n, e.g., n−4 (n is the
number of nodes in the graph G). Informally, ε is the probability that a
random edge can be added to a node per round.

We analyze the time and message complexity of leader election in
the above smoothing model. We present the following three results in
synchronous CONGEST distributed model:
(i) A simple randomized algorithm that elects a leader with high prob-

ability (With high probability (or w.h.p. in short) means with prob-
ability ≥ 1 − 1/n.) in O((log n)/ε) rounds and uses O(

√
n log2.5 n)

messages. Note that both the time and the message bounds are opti-
mal (up to a polylog n factor).

(ii) A time-improved randomized algorithm that elects a leader with high

probability in O
(

log n√
ε

)
rounds, but uses O(m + n log n) messages,

where m is the number of edges in the input graph G.
(iii) A deterministic algorithm (except the randomized smoothing part)

which solves leader election in O
(

log2 n√
ε

)
rounds and incurs O(m +

n
√

ε log2 n) messages.
Our work extends the study of smoothed analysis of distributed problems
one step further, an open direction raised by [7].

Keywords: Distributed algorithms · Smoothed analysis · Random
model · Leader election

The work is supported, in part, by a project on IoT Security, funded by Govt. of India
at R. C. Bose Centre for Cryptology and Security, Kolkata, India.

c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 183–198, 2020.
https://doi.org/10.1007/978-3-030-64348-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_14&domain=pdf
http://orcid.org/0000-0002-1537-3462
http://orcid.org/0000-0003-4556-0071
https://doi.org/10.1007/978-3-030-64348-5_14

184 A. R. Molla and D. Shur

1 Introduction

Motivated by the work of Dinitz et al. [8], the smoothed analysis of distributed
algorithms is first formally modeled by Chatterjee et al. [7] and studied for the
minimum spanning tree (MST) problem. In this paper, we extend the study of
smoothed analysis of distributed problems, an open direction raised by [7], by
considering the smoothed analysis of leader election problem. Leader election
is one of the fundamental and well studied problem in the field of distributed
computing. It outlines the problem of electing a particular node in a network as
the leader. A version of this problem requires only the leader node to be aware of
its status. All the nodes other than the leader are simply aware that they are not
the leader. They need not be aware the leader’s identity. This version is called
the implicit leader election. The explicit version of the leader election problem
requires all the nodes in the network to be aware of the identity of the leader.
The widespread application of the leader election can be found in many domains,
e.g., sensor networks [29], IoT networks [26], grid computing [2], peer-to-peer net-
works [21,27] and cloud computing [32]. In IoT networks, a leader node performs
crucial tasks such as gathering information, coordinate tasks among the nodes,
generating encryption-decryption keys etc. [14,26].

We consider the same smoothing model as defined in the paper [7] to analyze
distributed algorithms. In particular, we consider smoothed analysis, in which
the topology of the input graph G is randomly perturbed by adding random edges
to G. The perturbance is determined by a smoothing parameter 0 ≤ ε(n) ≤ 1
which controls the amount of random edges to be added to the input graph
G per round. Typically ε is a small function of n, e.g., n−4, where n is the
number of nodes in the graph G. Smoothed edges are used for communication
only. The study of the smoothing analysis investigates how these additional
smoothed edges can be exploited to improve the time and message complexity
of a distributed algorithm.

Kutten et al. [20] studied the (implicit) leader election problem in both com-
plete networks and general networks. They presented an algorithm that takes
in O(1) time and uses only O(

√
n log3/2 n) messages to elect a leader in the

complete graph. For the general graphs, they extend this algorithm which takes
O(τ) time and O(τ

√
n log3/2 n) messages, where τ is the mixing time of graph.

The mixing time of a graph could be as large as O(n3) [23]. This algorithm
requires to know the mixing time to be known as input. A major improvement
was introduced in [12] where the same problem has been solved without any
knowledge of the mixing time of the graph. All these works build on a technique
of sampling smaller set of nodes (via random walks) and compute leader in the
sampled set. This is a standard technique that is useful for reducing the mes-
sage complexity. We also use the same idea in our randomized algorithms. The
algorithms of [12,20] analyze the worst case time and message complexities. A
smoothed analysis of the same problem is considered in this paper where the
objective is to analyze both the time and message complexities of the algorithm.
Smoothed analysis can be viewed as a hybrid between worst-case analysis and
the average-case analysis. It takes a worst-case instance for the algorithm and

Smoothed Analysis of Leader Election in Distributed Networks 185

perturbs the input by adding some random noise and analyzes the algorithm on
this perturbed input.

The paper [7] analyzed only the time complexity of the MST problem. In
this paper, we analyze both the time and the message complexity of the leader
election problem. Similar to [7], we assume that the nodes of the input graph
able to distinguish between the smoothed edges and the original graph edges.
We present a simple algorithm that solves the problem with high probability in
O(log n

ε) rounds using O(
√

n log5.2 n) messages. Then we present an improvement
algorithm that takes O(log n√

ε
) rounds and uses O(m + n log n) messages. We

further present a deterministic algorithm that solves leader election in O
(

log2 n√
ε

)

rounds and incurs O(m + n
√

ε log2 n) messages. The algorithm is deterministic
in the sense that except the randomized smoothing part, all other parts are
deterministic. Note that one can directly solve leader election in general graphs
in O(D log n) rounds and O(m log n) messages deterministically using algorithm
in [19] or using a randomized algorithm in time Õ(τ) and Õ(τ

√
n) messages

[12,20], but the diameter D or mixing time τ of a graph could be large (Õ hides
a polylog n factor).

1.1 Model

Distributed Network Model. We model the communication network as an undi-
rected, unweighted, connected graph G = (V,E), where |V | = n, and |E| = m.
Every node has limited initial knowledge. We assume anonymous network, i.e.,
nodes do not know their neighbors. We assume that nodes are associated with
a distinct identity number (e.g., its IP address). If not, then each node can ran-
domly pick a number in the range [1, n4] such that the numbers are distinct for
all the nodes. The random number can be used as the ID of the nodes. The
node may also accept some additional inputs as specified by the problem at
hand. The nodes are allowed to communicate through the edges of the graph G.
The communication occurs in synchronous rounds. In one round, nodes can send
messages, receive messages (from neighbors) and perform some local computa-
tion. Our algorithms use only small-sized messages. In particular, in each round,
each node sends a message of size O(log n) through its adjacent edges. This is
a widely used standard model known as the CONGEST model of distributed
computing [25], and captures the bandwidth constraints inherent in real-world
computer networks.

Smoothing Model. There are many smoothing models exits in sequential set-
tings, see [7,8,31]. We consider the smoothing model defined by Chatterjee
et al. [7]. The smoothing model of [7] is appropriate to analyze distributed net-
work algorithms.

Given an arbitrary graph G, smoothing allows to introduce some “pertur-
bance” to the input graph. In particular, the smoothing model allows adding
some random edges, determined by a smoothing parameter ε, to the input graph
G. The smoothing parameter 0 ≤ ε = ε(n) ≤ 1 is a function of n, which controls

186 A. R. Molla and D. Shur

the amount of random edges to be added in the graph per round (typically ε is
a small function of n, e.g., n−4). Thereby the graph structure is altered. This
model is called the ε-smoothing model [7]. More precisely, in every (smoothing)
round, every node add an edge with probability ε to a randomly chosen node
from V in the given graph G. The added edges are called smoothed edges. In
case of multiple edges being present between two nodes, unless specified, only
one smoothed edge is used for communication. The added edges persists in the
network and can be used for communication in the later rounds. Let the induced
graph formed by the random edges be R(G) = R(V, S), where S is the set of
only the smoothed edges. R(G) is called smoothed graph.

As noted in [7], one can view the smoothing model as a generalization of the
congested clique model. Suppose the graph G is embedded in a congested clique.
A node, besides using its incident edges in E, can also choose to use a random
edge in the clique (not in G) with probability ε in a round to communicate (once
chosen, a random edge can be used subsequently till the end of computation).
Thus, the smoothed edges are the clique edges.

Smoothed edges are used for faster communication. The study of the smooth-
ing analysis investigates how these additional smoothed edges can be exploited
to improve the time and message complexity of a distributed algorithm. In this
paper, we consider only addition of edges to the input graph; while a smoothing
model also allows deletion of edges from the graph.

A formal definition of the leader election problem.

Definition 1 (Leader Election). Every node u maintains a variable statusu

that it can set to a value in {⊥,NON-ELECTED,ELECTED}; initially
statusu =⊥ for all u. An algorithm A solves leader election in T rounds if,
from round T on, exactly one node has its status set to ELECTED while all
other nodes are in state NON-ELECTED. This is the requirement for standard
(implicit) leader election.

Note that the implicit leader election algorithm can be converted to an
explicit leader election (where every node knows the ID of the leader) by simply
the leader sends its ID to all the nodes.

Paper Organization. Section 2 discusses related works. Section 3 contains
smoothed analysis of leader election algorithm. We first present a simple opti-
mal time and message complexity leader election algorithm in Sect. 3.1. Then an
improved time algorithm in Sect. 3.2 and a deterministic smoothed analysis in
Sect. 3.3. Finally, we conclude in Sect. 4.

2 Related Work

Leader election is one of the fundamental problem in distributed networks. It
has been extensively studied in various models and settings, starting from its
introduction by Le Lann [22] in ring network and then by a seminal work of
Gallager-Humblet-Spira [11] in general graphs. The problem is well studied in

Smoothed Analysis of Leader Election in Distributed Networks 187

complete network itself [1,13,16–18,30], and reference there in, and also in gen-
eral networks [12,15,19].

Some closely related leader election works in the classical congest model are
[5,12,19,20]. Kutten et al. [20] studies the (implicit) leader election problem in
both complete networks and general networks and showed efficient time and mes-
sage bounds of leader election algorithms. In particular, they presented an algo-
rithm that executes in O(1) time and uses only O(

√
n log3/2 n) messages to elect

a leader in a complete graph. They also showed an almost matching lower bound
for randomized leader election. The standard technique of sampling smaller set
of nodes and compute leader among themselves is further used in general graphs
and achieve Õ(τ)-time and Õ(τ

√
n)-message complexity leader election algo-

rithm [12,20], where τ is the mixing time of a graph (Õ hides a polylog n fac-
tor). We also use this sampling techniques in the randomized algorithms. Several
tight results are shown in general graphs in [19], including a notable determinis-
tic algorithm which solves leader election in O(D log n) rounds and O(m log n)
messages. We adapt this deterministic algorithm in our deterministic smoothing
analysis of leader election. The our paper is inspired mainly by the works of
[12,19,20].

Smoothed algorithms have been explored in [28] as the next step in bridging
the gap between the “theoretical predictions and empirical observation” in their
performances. Since its introduction in [31], analyses have shown the practical
running time of algorithms to be closer to their smoothed complexities than
the worst-case ones. Smoothed analysis of some popular graph problems have
been explored in [3,9,10] and [4]. The first smoothed analysis of distributed
algorithms, to the best of our knowledge, has been conducted in [8] where in
they study the robustness of their algorithm for dynamic networks. They analyse
three problems, namely random walks, flooding and aggregation and their upper
and lower bounds on dynamic networks. Their smoothing procedure consists of
addition as well as deletion of edges from the evolving graph. Robustness is
measured by monitoring the change in bounds with the magnitude of smoothing
introduced in the model.

3 Leader Election in the Smoothing Model

Given an arbitrary graph G = (V,E) and CONGEST model of communica-
tion, the goal is to compute a leader in the ε-smoothing model of G. We first
present a simple algorithm that solves the leader election problem in O

(
log n/ε

)
rounds using O(

√
n log2.5 n) messages in the ε-smoothing model. The message

complexity is optimal (up to a polylogn factor) and the time complexity is also
optimal (up to a polylogn factor) for any ε ≥ 1/polylog n. Then we present a
time improved algorithm which solves leader election in O (log n/

√
ε) rounds,

but uses O
(
m + n log n

)
messages. While these two algorithms are random-

ized, we present a deterministic algorithm that takes O
(
log2 n/

√
ε
)

rounds and
O(m+n

√
ε log2 n) messages to elect a leader. The deterministic algorithm builds

on the similar idea of the improved algorithm. In all the algorithms, we assume

188 A. R. Molla and D. Shur

that the nodes can distinguish between original edges in the given graph and the
smoothed edges.

3.1 Simple and Efficient Algorithm

We present a simple, yet efficient algorithm for leader election in the ε-smoothing
model. At a high-level, the algorithm consists of two parts: (I) Smoothing, i.e.,
adding random edges to the given graph in such a way that the smoothed graph
becomes an expander, (II) Compute a leader in the smoothed graph. Note that
the nodes are fixed; so the elected leader is a valid leader in the given graph.
The smoothed edges are used for the communication only.

(I) Constructing Smoothed Graph (A Random Expander Graph). In
the beginning, the algorithm adds O(log n) random edges per node according
to the smoothing model. In particular, the algorithm runs the smoothing pro-
cedure for Θ(log n/ε) rounds. In every round, each node adds a smoothed edge
with probability ε to one of the nodes selected uniformly at random. Thus, it is
easy to show that with high probability a node will add Θ(log n) random edges
(smoothed edges). Let us call this graph as the smoothed graph R(G) = (V, F)
which is induced only by the smoothed edges F after Θ(log n/ε) rounds. It is
intuitive that R(G) is an Erdős-Rényi random graph (expander), which is for-
mally shown in [7] and gives the following lemma.

Lemma 1 (Lemma 3.1, [7]). The smoothed graph R(G) has a constant con-
ductance and O(log n) mixing time.

(II) Computing a Leader. The second part of the algorithm computes leader
among the n nodes. For this, the algorithm uses R(G) as the communication
graph. Our goal is to compute a leader using minimum number of messages and
time. For this part, we adapt the leader election approach of [20] for general
graphs. If the mixing time τ of a graph is known, then an algorithm in [20]
computes a leader with high probability in O(τ) rounds and uses O(τ

√
n log1.5 n)

messages. In essence, we adapt this algorithm in the smoothed graph R(G) since
the mixing time O(log n) of R(G) is known.

Let us discuss an outline of the algorithm. Recall that we consider anony-
mous network, i.e., nodes do not know each other’s ID. We assume that nodes
have unique IDs; otherwise each node can randomly pick a number (or rank)
in the range [1, n4] such that the numbers are distinct for all the nodes. The
rank can be used as the ID of the nodes. The idea of the algorithm is to select
a smaller committee nodes (called candidate nodes) which are responsible for
electing a leader node among themselves. In fact, the maximum ID node among
the candidate nodes will be elected as the leader and all other nodes put them-
selves in the NON-ELECTED state. This is a standard technique to reduce the
message complexity. A random set of candidate nodes of size Θ(log n) is selected.
For this, each node selects itself with probability O(log n/n) to become a candi-
date node. This selection is done locally at each node and hence the candidate

Smoothed Analysis of Leader Election in Distributed Networks 189

nodes do not know each other initially. All the non-candidate nodes put them-
selves in the NON-ELECTED state. The candidate nodes communicate among
themselves via some other nodes, called referee nodes. For this, each candidate
node samples 2

√
n log n random referee nodes in the network. This referee sam-

pling is done via performing random walks on R(G) by token forwarding. Each
candidate node creates 2

√
n log n random walk tokens and each token performs

random walk of length O(log n) on the smoothed graph R(G). Since the mixing
time of R(G) is O(log n), the tokens stop at random nodes after O(log n) steps.
The ending nodes of the tokens after O(log n) steps act as the referee nodes.
In this way each candidate node samples 2

√
n log n random referee nodes. The

reason behind sampling so many referee nodes is to make sure at least one com-
mon referee node between any pair of candidate nodes’ referees. Each candidate
node sends its ID with the random walk tokens. An intermediate node or referee
node may receive IDs (or tokens) from multiple candidate nodes. Since our goal
is to elect the maximum ID node to be the leader, the referee nodes send back a
winner message 〈“WIN”, node id, count〉 to the maximum ID candidate node
only, via back tracking the random walk paths. In the winner message, node id
carries the maximum ID of the candidate node and count variable stores the
number of tokens having the maximum ID. During the token forwarding pro-
cess, an intermediate node forwards only the tokens with maximum ID among
all the tokens received in a round (and discards all other tokens with smaller ID).
The intermediate node also stores this ID and the port numbers, through which
it has received the maximum ID token, for back tracking. In subsequent rounds,
if an intermediate node receives any token with higher ID than the previous one,
then it updates its stored ID and the port number accordingly.

During back tracking, an intermediate node on receiving multiple winner
messages 〈“WIN”, node id, count〉, adds up the count for the maximum node id
and forwards to the back track node (it discards the winner messages with lower
node id). When back track finishes, each candidate node sums up the count in
the winner messages it has received. The candidate node which receives 2

√
n log n

winner messages enters the ELECTED state. All the other candidate nodes enter
the NON-ELECTED state. It is easy to see that only the maximum ID candidate
node receives 2

√
n log n winner messages and elected as the leader.

One difficult part in the algorithm is the congestion over the edges when
performing many random walks in parallel as we consider CONGEST model.
The congestion is handled by sending only the count of random walk tokens that
need to be sent by a particular candidate node, and not the tokens themselves.

To show the correctness of the algorithm, we first discuss the following two
results. The first one says that there is at least one candidate node with high
probability. Also the size of the candidate nodes is not too large– bounded by
O(log n). The second one says that there is at least one common referee node
between any pair of candidate nodes with high probability.

Lemma 2. The size of the candidate nodes is Θ(log n) with high probability.

Proof. Each node selects itself with probability O(log n/n) to become a candi-
date node. Thus, in expectation, O(log n) candidate nodes are selected. Then

190 A. R. Molla and D. Shur

one can show using a standard Chernoff bound that the number of the selected
candidate nodes is Θ(log n) with high probability. �	
Lemma 3 (Theorem 1, [20]). With high probability, there is a common referee
node between any pair of candidate nodes.

This implies that the maximum ID candidate node has a common referee
node with all other candidate nodes. Thus, those common referees generate the
winner message for the maximum ID candidate node only and discards all other
random walk tokens. Further, during the token forwarding procedure, the max-
imum ID candidate node’s tokens dominate all other tokens. This means in
subsequent rounds when the winner messages reach their respective candidate
nodes, no candidate node, other than the one having maximum ID, would have
received all 2

√
n log n winner messages with high probability. Therefore, only the

candidate node with the maximum ID enters the ELECTED state with a high
probability.

Thus we get the following result.

Theorem 1. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a randomized distributed algorithm that computes a leader in G with
high probability in O(log n

ε) rounds and incurs O(
√

n log2.5 n) messages (assum-
ing that the smoothed edges are added without sending any messages).

Proof. We already discussed that the algorithm correctly elects a leader with
high probability.

The time complexity of the algorithm is determined by two procedures: (I)
Constructing smoothed graph– which takes O(log n/ε) rounds. (II) Computing
leader in the smoothed graph, which requires to perform random walks of length
O(log n) and back tracking (in parallel). Further, there is no congestion due to
performing multiple random walks in parallel as we are sending the token counts
and not the tokens themselves. All other computations are done locally. This
procedure takes O(log n) rounds. Thus, the time complexity of the algorithm is
O(log n/ε + log n) = O(log n/ε) rounds.

The message complexity of the algorithm is determined by the leader election
procedure in the smoothed graph R(G). The number of the candidate nodes is
Θ(log n) with high probability. Each candidate node performs 2

√
n log n random

walks for O(log n) steps. Thus a total of O(
√

n log5/2 n) messages are required
for this step. The back tracking of the winner messages may take at most the
same number of messages. Therefore message complexity of the algorithm is
O(

√
n log2.5 n). �	

Remark 1. In the above theorem, we assume that the smoothed edges are added
by the system without sending any messages. If we consider one message is used
per edge addition, then the message complexity of the smoothing process would
be O(n log n), as each node adds O(log n) random edges. Then the message
complexity of the algorithm would be O(n log n).

Smoothed Analysis of Leader Election in Distributed Networks 191

3.2 An Improved Algorithm

Now we present an improved algorithm which is a variant of the previous algo-
rithm and has a lower time complexity. This algorithm solves the leader election
in O(log n/

√
ε) rounds. It crucially applies the previous algorithm over a super-

graph induced by minimum-spanning-tree (MST) fragments as the super nodes.
Broadly, this algorithm consists of three parts: (I) Compute MST fragments.
(II) Apply smoothing to add an expander over the super-graph induced by the
MST fragments. (III) Compute a leader using the previous random walk based
sampling algorithm on the smoothed super-graph.

Let us describe the algorithm and simultaneously its analysis.

(I) Computing MST Fragments. We use controlled Gallagher-Humblet-
Spira (GHS) algorithm to construct MST fragments, see Sect. 7.4 in [24]. The
main difference compared to the standard GHS algorithm is that the growth
(size, diameter) of fragments are controlled during merging of fragments.

The controlled GHS algorithm runs in phases [24]. The algorithm starts with
each individual node as a fragment and merges fragments in each phase. In each
phase, the algorithm maintains the following invariant: Each MST fragment
has a leader (which is the root of the tree) and all nodes know their respective
parents and children. Initially, each node (a singleton fragment) is a leader node;
subsequently each fragment will have one leader (root) node. Each fragment is
identified by the identifier of its root (called the fragment ID) and each node in
the fragment knows its fragment ID. Each fragment’s operation is coordinated by
the respective fragment’s leader. Each phase consists of two major operations: (1)
Finding minimum-weight-outgoing-edge (MOE) of all fragments and (2) Merging
fragments via their MOEs. Note that, while the controlled GHS finds an MST
in a weighted graph (where edges have weight), it also works on an unweighted
graph where one can consider the edge-weights are 1. The details on finding
MOE and merging fragments cane be found in Sect. 7.3.1 of [24].

The algorithm starts by running a controlled GHS algorithm for log(1√
ε
)

phases (ε is the smoothing parameter). The size and diameter of each MST
fragment are Ω(1/

√
ε) and O(1/

√
ε) respectively, and there will be O(n

√
ε) such

fragments ([24], Sect. 7.4). Each fragment will be treated as a super-node. Each
node, that is not a root node, maintains two IDs: 1. Its fragment ID, denoted
by FID, and 2. Its own ID in the given graph which we denote by GID in this
section. For a root node, its FID would be same as its GID.

The following lemma shows that this MST fragments construction takes
O(log

∗ n√
ε

) rounds and uses O(m) messages.

Lemma 4. The number of MSTs formed after log(1√
ε
) phases is O(n

√
ε). The

MST fragments construction takes O(log
∗ n√
ε

) rounds and O(m) messages, where
m is the number of edges in the given graph.

Proof. It is shown in Corollary 7.1 of [24] that the number of MST fragments at
the beginning of phase i is at most n

2i . So after log(1√
ε
) phases, the number of

192 A. R. Molla and D. Shur

MSTs is at most n/2log(
1√
ε
) = O(n

√
ε). It also follows from Lemma 7.3 of [24] that

the diameter of each MST at the beginning of phase i is bounded by 2i. Hence the
diameter of the MST fragments after log(1√

ε
) phases is O(2log(

1√
ε
)) = O(1/

√
ε).

The time and message complexities follows from the 3 sub-procedures.

1. Finding MOE from each node in parallel takes O(2i) rounds for the ith phase.

So for the log(1√
ε
) phases, it takes: O

(∑log(1√
ε
)

i=1 2i

)
= O

(
2√
ε
(1 − √

ε)
)

=

O
(

1√
ε

)
rounds.

The number of messages required is: O

(∑
v∈V 2 · d(v)+

∑log(1√
ε
)

i=1

∑
v∈V O(1)

)

= O
(
m + n log(1√

ε
)
)

.

2. SelectingMOE formerging fragments takesO(2i log∗ n) rounds andO(n log∗ n)

messages per phase. Thus in total it takes, O

(∑log(1√
ε
)

i=1 (2i log∗ n)
)

=

O
(

log∗ n√
ε

)
rounds and O

(
n log∗ n log

(
1√
ε

))
messages.

3. Merging fragments takes O(2i) rounds and O(n) messages per phase. So
in total it takes, O

(
1√
ε

)
rounds and O

(
n log(1√

ε
)
)

messages.

Thus, MST fragments construction takes O(log
∗ n√
ε

) rounds and O(m) mes-
sages. �	

(II) Constructing a Smoothed Graph. After constructing the MST forest,
perform O(log n√

ε
) rounds of smoothing. Let S denotes the set of smoothed edges

added in the graph. The probability that a smoothed edge added between two
nodes in G is Θ(

√
ε log n

n). Consider each MST fragment as a super-node. Let
the set of super-node be V ′; then |V ′| = O(n

√
ε) as there are so many MST

fragments. Let S′ ⊆ S be the set of inter-super-node smoothed edges. Consider
the super-graph R′(V ′, S′); we call it as smoothed super-graph. Then it is easy
to show that R′(V ′, S′) is an Erdős-Rényi random graph [7]. Thus, the mixing
time of R′(V ′, S′) is O(log(n

√
ε)) = O(log n).

(III) Computing a Leader. Now we apply the similar random walk based app-
roach on the smoothed super-graph R′(V ′, S′) to elect a leader in G. In particu-
lar, we run the “Computing a leader” procedure of the previous algorithm over
this super-graph R′(V ′, S′), where the root node in each super-node simulates
and coordinates the tasks of a node there (recall that each MST fragment has
a specified root node). First, O(log n) random set of candidate super-nodes are
selected. For this, each super-node selects itself with probability Θ(log n

n
√

ε
). Note

that when we say a “super-node does something”, it means the root node inside
the super-node does this and communicate to all the nodes in the fragment. To
implement this in a super-node, the root node coordinates the tasks with the frag-
ment nodes. Thus, an extra term of O(1/

√
ε) rounds may be incurred due to the

communication within a super-node. This is because, the diameter of each MST

Smoothed Analysis of Leader Election in Distributed Networks 193

fragment is O(1/
√

ε)), so the communication within a fragment takes O(1/
√

ε)
rounds. Further recall that each super-node has an ID, the fragment ID which
is essentially the ID of the root node in the fragment. Then in the similar way,
each candidate super-node samples O(

√
n log n) referee nodes (super-nodes)1 by

performing O(
√

n log n) random walks of length O(log n) (since the mixing time
of R′ is O(log n)). Then the referee nodes send back winner message to the max-
imum ID super-node. Finally, the super-node with maximum ID becomes the
leader. Since the super-node carries the ID of its root node, the root node in the
maximum ID super-node becomes the leader in G.

One crucial part remains to discuss is– how the super-nodes perform multiple
random walks on R′(V ′, S′) in parallel. Let r be the root node in a super-node
T . In the beginning of this procedure – “computing a leader” – every node
in T sends the number of its inter-super-node smoothed edges (i.e., outgoing
smoothed edges) to the root r. The root node computes the total number of
outgoing smoothed edges from T and also stores the ID of the fragment nodes
and their outgoing edge number. Suppose a super-node T has k random walk
tokens to forward in the next round. For each token, r (locally) selects one
outgoing smoothed edge randomly among all the outgoing edges of T . Then r
sends a count of the number of tokens to the corresponding fragment nodes. A
count � of a fragment node v indicates that � number of random walk tokens
are selected to move over the outgoing edges of the node v. The root sends this
random walk count information to all the selected nodes in T in parallel. Then
the fragments nodes forward their tokens to the outgoing neighbors selected
uniformly at random (among the outgoing edges). The node forwards the tokens
together with the count through its corresponding outgoing smoothed edges to
avoid any congestion. When a node receives random walk tokens from a different
super-node, it sends the count (of the tokens) to the root node of its super-node.
The root node sums up the count to know the total number of received tokens
from the same candidate node. Then it forwards the tokens, in the same way as
described above, for the next step.

Theorem 2. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a randomized distributed algorithm that computes a leader in G with
high probability in O(log n√

ε
) rounds and incurs O(m + n log n) messages.

Proof. The algorithm correctly elects a leader as the previous algorithm does.

Time Complexity. The first procedure (‘computing MST fragments’) takes
O(log

∗ n√
ε

) rounds (follows from Lemma 4). The second procedure (‘constructing

smoothed graph’) takes O(log n√
ε

) rounds as we apply smoothing for so many

rounds. The third procedure (‘computing a leader’) takes O(log n√
ε

) rounds. This
is because, the random walks are performed over the super-nodes in paral-
lel for O(log n) rounds and one step of the random walk may take extra 1√

ε

1 Since |V ′| = O(n
√

ε), it would suffice to sample O(
√

n
√

ε log n) referee nodes to
ensure a common referee node between any pair of candidate super-nodes.

194 A. R. Molla and D. Shur

rounds for communication inside a super-node. In the calculation, we implicitly
assume O(log(n

√
ε)) = O(log n). Therefore, the time complexity the algorithm

is: O(log
∗ n√
ε

+ log n√
ε

+ log n√
ε

) = O(log n√
ε

) rounds.

Message Complexity. The first procedure uses O(m) messages (follows from
Lemma 4). The second procedure uses no messages if we assume that the smooth-
ing process (addition of random edges) is done by the system without incurring
any messages. It may use O(n log n) messages if we assume one message cost per
one edge addition. The third procedure uses O(

√
n log2.5 n + n log n) messages.

The term O(
√

n log2.5 n) comes from performing O(
√

n log n) random walks for
O(log n) steps from O(log n) candidate nodes. The term O(n log n) comes from
the communication inside super-nodes or MST fragments via the spanning tree
edges for O(log n) rounds. Thus, the message complexity of the algorithm is
O(m + n log n). �	

3.3 Deterministic Algorithm

In this section, we describe a deterministic algorithm for leader election in the
smoothing model. Note that the smoothing part uses random bits, which we
cannot avoid in this smoothing model. The rest of the algorithm is determinis-
tic. That’s why we are calling the algorithm deterministic. The algorithm builds
on the similar ideas of the previous improved algorithm (cf. Sect. 3.2). Anal-
ogously, it has three procedures: (I) Compute MST fragments, (II) Construct
smoothed graph, and (III) Compute a leader. The first two procedures (com-
pute MST fragments, construct smoothed graph) follow the same procedures
as in the previous algorithm. Note that the controlled GHS algorithm (which
is used to compute MST fragments) is deterministic. Now for the third proce-
dure, we use a deterministic approach instead of applying random walks. In fact,
we use a deterministic algorithm from [19] which had solved the leader election
problem in O(D log n) rounds and O(m log n) messages.

After running the first two procedures, we obtain the smoothed graph
R′(V ′, S′) where V ′ is the set of super-nodes (MST fragments), |V ′| = O(n

√
ε)

and S′ is the set of inter-super-node smoothed edges. Since R′(V ′, S′) is a random
expander graph, its diameter is O(log(n

√
ε)) = O(log n), e.g., see Theorem 8.13

of [6].
Now for the third procedure (computing a leader), we use the deterministic

algorithm from [19] and describe how to run it on R′ to elect a leader. This
algorithm runs in phases, and each phase consists of 4 stages. First all the nodes
become candidate nodes. In each phase i, every candidate node is required to
develop a BFS tree of depth 2i−1 (for i = 1, 2, . . . log(n

√
ε) and then carry out

operations in 4 stages. In the first stage, every candidate node v (which translates
as the root node of the BFS tree) sends a token ELECT(phase, ID, counter)
on its BFS tree, where phase refers to the phase i that this candidate node is in,
ID is candidate node’s ID and counter refers to the depth of BFS tree in any phase
i that this candidate node needs to develop. As the tree develops, this counter
is decremented by 1. At the beginning, that is, at the candidate node, it is set

Smoothed Analysis of Leader Election in Distributed Networks 195

to 2i−1. In the 2nd stage, it receives an ACK token from all its BFS children of
the form: ACK(ID, max, phase status), where ID is the ID of the candidate
node that generated this token, max is the maximum ID encountered by that
candidate node, and phase status is about whether its phase status is same as or
lower than this candidate node’s phase. Next, the candidate node v updates its
field v.max with the highest ID it has received, that was contained in the max
field among the ACK tokens and sends a CONFIRM(v.max) token along its
BFS tree in the 3rd stage. In the 4th stage, v receives a VICTOR(phase, ID)
token from all its neighbors which contains the v.max – the highest ID node –
encountered by them. If this v.max is the same as the ID of the candidate node,
v, then v continues to the next phase; otherwise assumes a NON-ELECTED
state. In every phase, all the above 4 stages are repeated. After log(n

√
ε) phases,

only the maximum ID node will be ELECTED as a leader and all the other
nodes have NON-ELECTED status.

We now explain how to adapt this procedure on the smoothed graph
R′(V ′, S′). The super-nodes are MST fragments which contain a root node. Since
the root node coordinates the tasks inside a super-node, all the root nodes mark
themselves as the candidate nodes in the beginning of the algorithm (essentially,
all the super-nodes become candidate nodes). Each super-node acts as a single
node and implement all the phases on the smoothed graph R′(V ′, S′) only, e.g.,
the BFS trees are constructed on R′(V ′, S′). Inside a super-node, the root con-
trols and coordinates the tasks and all the communication done through MST
edges inside the supernode. Thus, an extra factor of O(1/

√
ε) rounds may be

incurred for each step of the above algorithm due to the communication within
a super-node. This is because, the diameter of each MST fragment is O(1/

√
ε)),

so the communication within a fragment takes O(1/
√

ε) rounds. In the end, one
super-node will be elected as the leader. The root node of this super-node will
be the leader in the graph.

We now discuss the time and message complexity of the entire deterministic
algorithm.

Theorem 3. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a deterministic distributed algorithm that solves the leader election
problem in O

(
log2 n√

ε

)
rounds using O(m + n

√
ε log2 n) messages.

Proof. It follows from Theorem 2 that the first two procedures takes O
(

log n√
ε

)

rounds and O
(
m + n log∗ n log(1√

ε
)
)

messages.

It follows Lemma 4.8 in [19] that third procedure can have O(log(n
√

ε))
phases. Further, each of the 4 stages can take at most the diameter time of the
smoothed graph R′. Since the diameter of R′ is O(log(n

√
ε)), and communication

inside a super-node takes O(1√
ε
) rounds, the total time for the third procedure

is:
O((1√

ε
) · log(n

√
ε) · log(n

√
ε)) = O

(
log2(n

√
ε)√

ε

)
= O

(
log2 n√

ε

)
rounds.

Thus, the time complexity of the algorithm is O
(

log2 n√
ε

)
rounds.

196 A. R. Molla and D. Shur

Let us calculate the message complexity of the third procedure. Consider
a phase i of the algorithm. The message exchanges within a fragment hap-
pen over the MST edges. Thus, it uses O(n

√
ε) × O(1√

ε
) = O(n) messages

inside all the MST fragments (super-nodes). Message exchanges between the
MST fragments happen over the inter-super-node smoothed edges, which is
O (n

√
ε log n). Therefore, total number of messages uses in O(log(n

√
ε)) phases

is: O(log(n
√

ε)) × O (n + n
√

ε log n) = O(n
√

ε log2 n).
Thus, the message complexity of the algorithm is: O

(
m + n log∗ n log(1√

ε
)
)
+

O(n
√

ε log2 n) = O(m + n
√

ε log2 n). �	

4 Conclusion

We studied smoothed analysis of leader election, one of the fundamental problem
in distributed networks. We consider the same smoothing model as introduced
by Chaterjee et al. [7] in distributed networks. We present two randomized algo-
rithms and a deterministic algorithm and discuss their smoothed complexity of
time and messages. The time and message complexity of our first algorithm are
optimal, up to a polylogn factor. For the second algorithm there is a trade off
as it solves the problem in less number of rounds, but incurs more messages. We
present a third algorithm which is deterministic but takes slightly more time to
solve the leader election problem.

We believe this work extends the study of smoothed analysis of distributed
problems. An obvious next step is to investigate how tight these complexities are
by analyzing the lower time and message bound of these algorithms. Another line
of work could probe the behavior of these algorithms in a different smoothing
model and when the nodes can not differentiate between the input edges and
the smoothed edges.

References

1. Afek, Y., Gafni, E.: Time and message bounds for election in synchronous and
asynchronous complete networks. SIAM J. Comput. 20(2), 376–394 (1991)

2. Anderson, D.P., Kubiatowicz, J.: Introduction to distributed algorithms. The
worldwide computer. Sci. Am. 286(3), 28–35 (2002)

3. Angel, O., Bubeck, S., Peres, Y., Wei, F.: Local max-cut in smoothed polynomial
time. In: STOC (2017)

4. Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method.
J. ACM 58(5), 1–31 (2011)

5. Augustine, J., Molla, A.R., Pandurangan, G.: Sublinear message bounds for ran-
domized agreement. In: PODC, pp. 315–324. ACM (2018)

6. Blum, A., Hopcroft, J., Kannan, R.: Foundations of Data Science. Cambridge Uni-
versity Press (2020). https://doi.org/10.1017/9781108755528

7. Chatterjee, S., Pandurangan, G., Pham, N.D.: Distributed MST: a smoothed anal-
ysis. In: ICDCN, pp. 15:1–15:10 (2020)

https://doi.org/10.1017/9781108755528

Smoothed Analysis of Leader Election in Distributed Networks 197

8. Dinitz, M., Fineman, J., Gilbert, S., Newport, C.: Smoothed analysis of dynamic
networks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 513–527. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48653-5 34

9. Elsässer, R., Tscheuschner, T.: Settling the complexity of local max-cut (almost)
completely. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6755, pp. 171–182. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22006-7 15

10. Etscheid, M., Röglin, H.: Smoothed analysis of local search for the maximum-cut
problem. ACM Trans. Algorithms 13(2), 1–12 (2017)

11. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)

12. Gilbert, S., Robinson, P., Sourav, S.: Leader election in well-connected graphs.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC), pp. 227–236 (2018)

13. Humblet, P.: Electing a leader in a clique in o(n log n) messages. Intern. Memo.,
Laboratory for Information and Decision Systems. M.I.T., Cambridge, MA (1984)

14. Kadjouh, N., et al.: A dominating tree based leader election algorithm for smart
cities IoT infrastructure. Mob. Netw. Appl., 1–14 (2020). https://doi.org/10.1007/
s11036-020-01599-z

15. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. Distrib. Comput.
25(3), 189–205 (2012). https://doi.org/10.1007/s00446-012-0157-9

16. Korach, E., Kutten, S., Moran, S.: A modular technique for the design of efficient
distributed leader finding algorithms. ACM Trans. Program. Lang. Syst. 12(1),
84–101 (1990)

17. Korach, E., Moran, S., Zaks, S.: The optimality of distributive constructions of
minimum weight and degree restricted spanning trees in a complete network of
processors. SIAM J. Comput. 16(2), 231–236 (1987)

18. Korach, E., Moran, S., Zaks, S.: Optimal lower bounds for some distributed algo-
rithms for a complete network of processors. Theor. Comput. Sci. 64(1), 125–132
(1989)

19. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: On the com-
plexity of universal leader election. J. ACM 62(1), 7:1–7:27 (2015)

20. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: Sublinear
bounds for randomized leader election. Theor. Comput. Sci. 561, 134–143 (2015)

21. Kutten, S., Zinenko, D.: Low communication self-stabilization through randomiza-
tion. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp.
465–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-
9 45

22. Lann, G.L.: Distributed systems - towards a formal approach. In: Information
Processing, Proceedings of the 7th IFIP Congress 1977, pp. 155–160 (1977)

23. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American
Mathematical Society, Providence (2006)

24. Pandurangan, G.: Distributed network algorithms (2018). http://sites.google.com/
site/gopalpandurangan/dnabook.pdf

25. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadel-
phia (2000)

26. Rahman, M.U.: Leader election in the Internet of Things: challenges and opportu-
nities. CoRR abs/1911.00759 (2019). http://arxiv.org/abs/1911.00759

27. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable
content-addressable network. In: SIGCOMM, pp. 161–172. ACM (2001)

https://doi.org/10.1007/978-3-662-48653-5_34
https://doi.org/10.1007/978-3-642-22006-7_15
https://doi.org/10.1007/978-3-642-22006-7_15
https://doi.org/10.1007/s11036-020-01599-z
https://doi.org/10.1007/s11036-020-01599-z
https://doi.org/10.1007/s00446-012-0157-9
https://doi.org/10.1007/978-3-642-15763-9_45
https://doi.org/10.1007/978-3-642-15763-9_45
http://sites.google.com/site/gopalpandurangan/dnabook.pdf
http://sites.google.com/site/gopalpandurangan/dnabook.pdf
http://arxiv.org/abs/1911.00759

198 A. R. Molla and D. Shur

28. Roughgarden, T.: Beyond worst-case analysis. Commun. ACM 62(3), 88–96 (2019)
29. Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wirel. Commun. 11(6),

38–43 (2004)
30. Singh, G.: Efficient distributed algorithms for leader election in complete networks.

In: ICDCS, pp. 472–479. IEEE Computer Society (1991)
31. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: why the simplex

algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)
32. Wright, A.: Contemporary approaches to fault tolerance. Commun. ACM 52(7),

13–15 (2009)

	Smoothed Analysis of Leader Election in Distributed Networks
	1 Introduction
	1.1 Model

	2 Related Work
	3 Leader Election in the Smoothing Model
	3.1 Simple and Efficient Algorithm
	3.2 An Improved Algorithm
	3.3 Deterministic Algorithm

	4 Conclusion
	References

