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Abstract. The paper proposes a surprisingly simple characterization
of task computability of the wait-free shared-memory model in which
processes, in addition to read-write registers, have access to k-test-and-set
objects. Our characterization is expressed in the form of an affine task :
a subcomplex of some iteration of the standard chromatic subdivision.
This appears to be the first topological characterization of a model in
which processes communicate via long-lived objects beyond read-write
registers.
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1 Introduction

One of the central challenges in the theory of distributed computing is deter-
mining relative computability of its numerous models, parameterized by types
of failures they expose (crash, omission, Byzantine), synchrony hypotheses they
assume (asynchronous, partially synchronous, synchronous), and communication
primitives they employ (message-passing, read-write registers, powerful shared
objects). Starting from the seminal work by Herlihy and Shavit [18], task com-
putability of multiple models of computation have been characterized using the
language of combinatorial topology [12,17,23,26]. More precisely, given a task T
and a model of computation M , we can equate the question of whether T is solv-
able in M with the existence of a specific continuous map between a transformed
input complex of T and the output complex of T , carried by T , i.e., preserving
the task specification. M entirely determines the way the input complex is trans-
formed.

For example, to characterize task computability in the wait-free read-write
model [15], we can simply consider a subdivision of the input complex [18]. In
particular, we can choose this subdivision to be a number of iterations of the
standard chromatic subdivision (denoted Chr, Fig. 1). The complex captures one
round of immediate snapshot (IS) [3].

Task computability in the t-resilient read-write model has been character-
ized [26] via a specific task Rt−res . The task is defined for n processes as a
restriction of the double immediate snapshot task: the output complex of the
task is a sub-complex consisting of all simplices of the second iteration of the
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Synchronous
run: {p1, p2, p3}

Ordered run:{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Fig. 1. Chr(s), the standard chromatic subdivision of a 2-simplex, the output complex
of the 3-process IS task.

standard chromatic subdivision of the task’s input complex, except the simplices
adjacent to the (n − t − 1)-skeleton of the input complex. Intuitively the output
complex of Rt−res contains all of 2-round IS runs in which every process “sees”
at least n− t−1 other processes. Figure 2 depicts the output complex of R1−res ,
the affine task for the 3-process 1-resilient model.

Fig. 2. R1−res , the affine task of 1-resilience (in blue). (Color figure online)

Complex Chr and Rt−res are called affine tasks [11,12] for the wait-free
model and t-resilient model, respectively. More generally, an affine task RM for
a model M is defined as a subcomplex of a finite number of iteration of the
standard chromatic subdivision, such that a task T is solvable in M if and only
if there exists a continuous map from a finite number of iterations of RM on the
input complex of T to the output complex of T , carried by T .

Recently, affine tasks for a large class of fair adversarial models have been
characterized via affine tasks [23]. An adversarial [8] shared-memory is defined
via a collection A of process subsets, called live sets. A run is in the corresponding
adversarial A-model if the set of processes taking infinitely many steps in it is
a live set of A. Computability of adversarial models has been characterized for
several special cases: wait-freedom [18], t-resilience [26], k-concurrency [11] and,
finally, fair adversaries [23].
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These characterizations mostly focused on read-write shared memory. The
only exception is the work by Gafni et al. [11], where the processes could, addi-
tionally, access k-set consensus objects. Via simulations, this model was shown
to be equivalent to the model of k-concurrency that assumes up to k processes
are allowed to be concurrently active. However, to the best of our knowledge, no
direct topological characterization has been proposed for models in which pro-
cesses communicate via powerful shared objects, other than read-write registers.
In this paper, we complement earlier results with a simple characterization of a
model in which processes, in addition to read-write registers, can access k-test-
and-set objects, for a fixed natural k. A k-test-and-set object is accessed by a
single operation that eventually returns either 1 or 0, so that at least 1 and at
most k of the participating processes obtain 1.

It has been observed that computability of a model in distributed comput-
ing is tightly coupled with its ability to solve set consensus. The agreement
function [20,25] of a model specifies the “best” level of set consensus, i.e., the
minimal guaranteed number of distinct output values, for all sets of participating
(proposing inputs and expecting outputs) and active (taking steps) processes.
Depending on their agreement functions, models can be classified in (1) sym-
metric models, where agreement functions only depend on the set cardinalities,
(2) fair, where agreement functions do not depend on the active sets, (3) local,
where agreement functions do not depend on the participating sets, and (4) reg-
ular, where agreement function increase with increasing participation. In Fig. 3,
we depict interrelations between these and other shared-memory models.

(Active-Res)

Fair Adv
Advk-OFk-T&S

Regular

Symmetric

WF

Sym

t-Res SSCSet-Cons
Collections

Asymmetric

Set-Cons

Collections

Fig. 3. A classification of shared-memory models based on agreement functions.

In this paper, we define an affine task Rk−T&S capturing the task com-
putability of the wait-free read-write shared memory models equipped with k-
test-and-set objects. Our characterization can be put as the following general-
ization of the ACT [18]:

A task T = (I,O,Δ) is solvable in a wait-free shared memory models
enhanced with k-test-and-set objects if and only if there exists a natural
number � and a simplicial map φ : R�

k−T&S (I) → O carried by Δ.
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Task Rk−T&S (see Fig. 5) can be defined as a subcomplex of Chr, just a single
iteration of the standard chromatic subdivision. In contrast, affine tasks of other
models, such as k-concurrency or t-resilience (1 < k < n and 0 < t < n − 1)
require at least two iterations [7,11,26].

We believe that the results can be extended to all “practical” restrictions
of the wait-free model which may result in a complete computability theory
for distributed computing shared-memory models. Affine tasks may also lead to
decidable characterization of relative task computability, as has been recently
shown for 2-process models [22].

Roadmap. Section 2 reviews our model definitions. Section 3 defines our affine
task Rk−T&S . In Sect. 4, we show that R∗

k−T&S can be simulated in the wait-
free shared memory model enhanced with k-test-and-set objects. In Sect. 5, we
show that, reciprocally, any task solvable in the wait-free shared memory model
enhanced with k-test-and-set objects can be solved in R∗

k−T&S . Section 6 reviews
related work and concludes the paper. Missing proofs can be found in the full
version of the paper [21].

2 Preliminaries

We assume a system of n asynchronous processes, Π = {p1, . . . , pn}. Two mod-
els of communication are considered: (1) atomic snapshots [1] and (2) iterated
immediate snapshots [4,18].

Atomic Snapshot Models. The atomic-snapshot (AS) memory is represented as
a vector of n shared variables, where each process pi is associated with the posi-
tion i. The memory can be accessed with two operations: update and snapshot.
An update operation performed by pi modifies the value at position i and a
snapshot returns the vector current state.

A protocol is a deterministic distributed automaton that, for each process and
each its local state, stipulates which operation and state transition the process
may perform. A run of a protocol is a possibly infinite sequence of alternating
states and operations. An AS model is a set of infinite runs.

In an infinite run of the AS model, a process that takes only finitely many
steps is called faulty, otherwise it is called correct. We assume that in its first
step, a process shares its initial state using the update operation. If a process
completed this first step in a given run, it is said to be participating, and the set
of participating processes is called the participating set.

Iterated Immediate Snapshot Model. In the iterated immediate snapshot (IIS)
model, processes proceed through an infinite sequence of independent memo-
ries M1,M2, . . .. Each memory Mr is always accessed by a process with a single
WriteSnapshot operation [3]: the operation performed by pi takes a value vir

and returns a set Vir of submitted values (w.l.o.g, values of different processes
are distinct), satisfying the following properties (See Fig. 4 for IS examples):
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– self-inclusion: vir ∈ Vir;
– containment: (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir);
– immediacy: vir ∈ Vjr ⇒ Vir ⊆ Vjr.

Fig. 4. Examples of valid sets of IS outputs. On the left, we have the “ordered” execu-
tion in which every process outputs a distinct set of inputs (blue - only itself, red - blue
and itself, and green - all three). On the right, we have the “synchronous” execution
in which all three processes output all the inputs. (Color figure online)

In the IIS communication model, we assume that processes run the full-
information protocol, in which, the first value each process writes is its ini-
tial state. For each r > 1, the outcome of the WriteSnapshot operation on
memory Mr−1 is submitted as the input value for the WriteSnapshot opera-
tion on Mr. There are no failures in the IIS model, all processes go through
infinitely many IS instances.

Note that the wait-free AS model and the IIS model are equivalent as regards
task solvability [3,16].

Tasks. In this paper, we focus on distributed tasks [18]. A process invokes a task
with an input value and the task returns an output value, so that the inputs
and the outputs across the processes respect the task specification. Formally,
a task is defined through a set I of input vectors (one input value for each
process), a set O of output vectors (one output value for each process), and a
total relation Δ : I �→ 2O that associates each input vector with a set of possible
output vectors. We require that Δ is a carrier map: ∀ρ, σ ∈ I, ρ ⊆ σ: Δ(ρ) ⊆
Δ(σ). An input ⊥ denotes a non-participating process and an output value ⊥
denotes an undecided process. Check [16] for more details on the definition.

In the k-set consensus task [6], input values are in a set of values V (|V | ≥
k + 1), output values are in V , and for each input vector I and output vector
O, (I,O) ∈ Δ if the set of non-⊥ values in O is a subset of values in I of size at
most k. The case of 1-set consensus is called consensus [9].

A protocol solves a task T = (I,O,Δ) in a model M , if it ensures that in
every run of M in which processes start with an input vector I ∈ I, there is a
finite prefix R of the run in which: (1) decided values form a vector O ∈ O such
that (I,O) ∈ Δ, and (2) all correct processes decide. Hence, in the IIS model,
all processes must decide.

k-Test-and-Set Model. For an integer k ≥ 1, a k-test-and-set object exports one
operation, apply(), that may be only accessed once by each process, takes no
parameters, and returns a boolean value. It guarantees that at most k processes
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will get 1 as output and that not all processes accessing it obtained 0. In the
special case of k = 1 the object is simply called test-and-set.

The k-test-and-set model is then simply defined as the wait-free model with,
additionally, access to any number of k-test-and-set objects. Hence processes run
a full-information protocol on an AS memory without any restrictions on the set
of possible runs, but processes may proceed, between any operations on the AS
memory, to operations on any number of k-test-and-set objects.

Simplicial Complexes. We use the standard language of simplicial complexes [16,
27] to give a combinatorial representation of the IIS model. A simplicial complex
is defined as a set of vertices and an inclusion-closed set of vertex subsets, called
simplices. The dimension of a simplex σ is the number of vertices of σ minus
one, and any subset of σ is one of its faces. We denote by s the standard (n−1)-
simplex: a fixed set of n vertices and all its subsets.

Given a complex K and a simplex σ ∈ K, σ is a facet of K, denoted
facet(σ,K), if σ is not a face of any strictly larger simplex in K. Let facets(K) =
{σ ∈ K, facet(σ,K)}. A simplicial complex is pure (of dimension m) if all its
facets have dimension m.

A map α from the vertices of a complex K to the vertices of a complex L is
simplicial if each simplex in K is mapped to a simplex in L. A simplicial map
α : K → L is rigid if for all σ ∈ K, |σ| = |α(σ)|.

A simplicial complex is chromatic if it is equipped with a coloring function—
a rigid simplicial map χ from its vertices to s, in one-to-one correspondence with
n colors. In our setting, colors correspond to processes identifiers.

Standard Chromatic Subdivision and IIS. The standard chromatic subdivi-
sion [18] of a complex K, ChrK (Chr s is depicted in Fig. 1), is a complex
where vertices of Chr K are couples (c, σ), where c is a color and σ is a face
of K containing a vertex of color c. Simplices of ChrK are the sets of vertices
(c1, σ1), . . ., (cm, σm) associated with distinct colors (i.e., ∀i, j, ci �= cj) such
that the σi satisfies the containment and immediacy properties of IS.

Every simplex σ has a geometric realization |σ|. It is obtained by representing
the vertices of σ as an affinely independent set of points in a Euclidean space and
then taking the convex hull of them. A geometric realization of a complex K,
denoted by |K|, is the union of geometric realizations of its simplices, properly
“glued” along their faces [16].

It has been shown that Chr is a subdivision [19], i.e., informally, |Chr s| is
homeomorphic to |s|. If we iterate this subdivision m times, each time applying
Chr to all simplices, we obtain the mth chromatic subdivision, Chrms. Chrms
precisely captures the runs of the m-round IIS model, ISm [4,18].

Given a complex K and a subdivision of it Sub(K), the carrier of a simplex
σ ∈ Sub(K) in K, carrier(σ,K), is the smallest simplex ρ ∈ K such that the
geometric realization of σ, |σ|, is contained in |ρ|: |σ| ⊆ |ρ|. The carrier of a
vertex (p, σ) ∈ Chr s is σ. In the matching IS task, the carrier corresponds to
the snapshot returned by p, i.e., the set of processes seen by p. The carrier of
a simplex ρ ∈ ChrK is simply the union (or, due to inclusion, the maximum)
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of the carriers of vertices in ρ. Given a simplex σ ∈ Chr2s, carrier(σ, s) is
equal to carrier(carrier(σ,Chr s), s). carrier(σ,Chr s) corresponds to the set of
all snapshots seen by processes in χ(σ). Hence, carrier(σ, s) corresponds to the
union of all these snapshots. Intuitively, it results in the set of all processes seen
by processes in χ(σ) through the two successive immediate snapshots instances.

Simplex Agreement and Affine Tasks. In the simplex agreement task, processes
start on vertices of some complex K, forming a simplex σ ∈ K, and must output
vertices of some subdivision of K, Sub(K), so that outputs form a simplex ρ
of Sub(K) respecting carrier inclusion, i.e., carrier(ρ,K) ⊆ σ. In the simplex
agreement tasks considered in the characterization of wait-free task computabil-
ity [4,18], K is the standard simplex s and the subdivision is usually iterations
of Chr.

An affine task is a generalization of the simplex agreement task, where s is
fixed as the input complex and where the output complex is a pure non-empty
sub-complex of some iteration of the standard chromatic subdivision, Chr�s.
Formally, let L be a pure non-empty sub-complex of Chr�s for some � ∈ N. The
affine task associated with L is then defined as (s, L,Δ), where, for every face
σ ⊆ s, Δ(σ) = L ∩ Chr�(σ). Note that L ∩ Chr�(t) can be empty, in which case
the set of participating processes must increase before processes may produce
outputs. Note that, since an affine task is characterized by its output complex,
with a slight abuse of notation, we use L for both the affine task (s, L,Δ) and
its output complex.

By running m iterations of this task, we obtain Lm, a sub-complex of Chr�ms,
corresponding to a subset of IS �m runs (each of the m iterations includes � IS
rounds). The affine model associated with L, denoted L∗, corresponds to the set
of infinite runs of the IIS model where every prefix restricted to a multiple of �
IS rounds belongs to the subset of IS �m runs associated with Lm.

3 Affine Task for k-Test-and-Set

In this section, we define affine task Rk−T&S capturing computability of the
k-test-and-set model. The task is defined as a simple subcomplex of a single
iteration of the standards chromatic subdivision.

The intuition is the following. Test-and-set solves, in a straightforward man-
ner, perfect renaming [2]. It also provides adaptive solutions to renaming in
which names of the processes reflect the order in which they access the task.
Hence a process obtaining the name j can see all values shared previously by
processes that receive a smaller name i with i < j. It can also be used to solve
immediate snapshot [3] in a way that every process obtains a distinct rank j and
observes the inputs of all processes with smaller positions: the process of level
j sees precisely j inputs, its own plus those of the processes with strictly lower
ranks. Such an immediate snapshot execution essentially impose total order on
the processes.

We can naturally generalize this observation to k-test-and-set objects. Indeed,
consider a partial order in which every process is associated with a rank so that
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at most k processes share the same rank. Similarly, a process can observe the
values previously shared by processes obtaining a lower or equal rank. In an
immediate snapshot, this is equivalent to having at most k processes sharing the
same output. It leads to a definition of k-ordered executions or corresponding
simplices of Chr: among any set of k + 1 processes, at least two have different
ranks. Note that total order executions corresponding to 1-test-and-set are 1-
ordered.

Rk−T&S captures the set of k-ordered executions. Formally, Rk−T&S is the
set of simplices of Chr s, the standard chromatic subdivision, in which at most
k vertices share the same carrier:

Definition 1. Rk−T&S is equal to:

σ ∈ Chr(s) : ∀σ′ ⊆ σ, (∀v, v′ ∈ σ′, carrier(v) = carrier(v′)) =⇒ |σ′| ≤ k.

To be an affine task, Rk−T&S needs to be a pure sub-complex of Chr s of the
same dimension:

Property 1. Rk−T&S is an affine task.

Proof. The fact that Rk−T&S is a sub-complex of Chr s is trivial. Indeed, the
definition is inclusion-closed. Consider any simplex σ ∈ Rk−T&S and any face of
it σ′ ⊆ σ. Any face of σ′ is a face of σ and hence satisfies the condition of having
at most k vertices sharing the same carrier.

Showing that Rk−T&S ⊆ Chr s is pure and of the same dimension as s is less
trivial. For this, we need to show that any simplex σ ∈ Rk−T&S is a face of a
simplex σ′ ∈ Rk−T&S of dimension equal to dim(s). Note that by transitivity, it
is sufficient to show that any simplex of Rk−T&S of a strictly smaller dimension
than dim(s) is the face of a strictly larger simplex of Rk−T&S .

Consider a simplex σ ∈ Rk−T&S and any color c from Π such that c �∈ χ(σ)
and let v ∈ s be the vertex of s of color c. Two cases may happen: either c is a
color of the carriers every vertex of in σ, or else, there exists a vertex in σ with
the largest carrier t such that c �∈ χ(t). In the former case, we can add vertex
(c, {v}) to σ. In the latter case, we can add the vertex (c, {v} ∪ t) to σ. It is
easy to check that the new simplex still verifies the immediacy, self-inclusion,
and containment properties and, thus, belongs to Chr s. Moreover, the carrier of
the new vertex is distinct (shared by no vertex in σ), and hence the new simplex
belongs to Rk−T&S . Indeed, any vertex v ∈ σ such that χ(v) ∈ χ(t) has a carrier
that is a face of t due to the immediacy property. Hence, as long as there are
missing colors, we can find a larger simplex in Rk−T&S including σ as a face.
Hence, Rk−T&S ⊆ Chr s is indeed a pure complex of dimension of s. ��

The affine tasks corresponding to 3-process models of 1-test-and-set and 2-
test-and-set are depicted in Fig. 5. Note that affine tasks’ facets are displayed in
blue and, thus, the faces of blue simplices also belong to the affine task.
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Fig. 5. 3-process affine tasks R1−T&S and R2−T&S with their facets displayed in blue.
(Color figure online)

4 Solving Rk−T&S in the k-Test-and-Set Model

Solving Rk−T&S using k-test-and-set objects and read-write registers is rather
straightforward. The idea, originally suggested in [14,24], consists in using a
level-based immediate snapshot implementation that additionally uses access to
k-test-and-set objects.

Recall that the level-based implementation of an immediate snapshot [3]
operates as follows. Starting with level � = n, every process (1) writes its input
and � in the memory array; (2) takes a snapshot of the array; (3) if the snapshot
contains � values associated with levels �′ ≤ �, the process returns the snapshot
consisting of these � values; otherwise, the process proceeds to level � − 1 (see
Fig. 4).

The modification proposed in [14,24] to solve Rk−T&S , consists in modifying
step (3) of this implementation as follows: (3’) if the snapshot contains � values
associated with a level �′ ≤ � then processes accesses the k-test-and-set object
number �. If the k-test-and-set object returns true, then the process terminates
with the snapshot consisting of these � values; otherwise (in both else condi-
tions), the process proceeds to level � − 1. The formal description is depicted in
Algorithm 1, Figure 6 illustrates the general procedure.

T&S0

1

T&S
1

0

T&S
1

Fig. 6. Ordered IS algorithm with test-and-set.

The proof of the following theorem is delegated to the full version of the
paper [21].

Theorem 1. Algorithm 1 solves Rk−T&S.
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This result implies that every task solvable in R∗
k−T&S is solvable in the k-

test-and-set model. Indeed, a task solvable in R∗
k−T&S implies a solution φ from

Rm
k−T&S(I) to O, for some given m. One can thus simply iterate the solution of

Algorithm 1 m times using its input and return the solution provided by φ to
obtain a task solution in the k-test-and-set model.

Algorithm 1: Solving Rk−T&S for process pi.
1 Shared Objects: MEM [1 . . . n] ∈ V al × N), initially (⊥, ⊥);
2 Init: level = n + 1, exit = true, value = InputV alue, snap = ∅;

3 Do
4 Do
5 level = level − 1;
6 MEM [i].Update(value, level);
7 snap = MEM.Snapshot();

8 While |{(v, �) ∈ snap, � ≤ level}| �= level;
9 exit = k-Test&Set[level];

10 While ¬exit;
11 Return {(v, �) ∈ snap, � ≤ level};

5 Simulating k-Test-and-Set Model in R∗
k−T&S

Simulating the k-test-and-set model using iterations of Rk−T&S (R∗
k−T&S) is

slightly less straightforward. Simulating shared memory is well known for itera-
tions of the standard chromatic subdivision, hence, for a subset of such runs as
well. A standard simulation described in [13] (for completeness described in the
full version of the paper [21]) ensures progress to the non-terminated processes
with infinitely often the smallest view. This provides lock-freedom, one process
makes progress and will eventually return with a task output. Hence, this is
enough to ensure that eventually all processes can obtain a task output. Our
goal is to ensure that the same set of “fast” processes make progress with their
k-test-and-set operations as well.

As not all processes may participate in a k-test-and-set operation, processes
with the smallest view need to progress independently. But processes with a
larger view could later participate in a round in which they have the smallest
view. Hence, to ensure that not more than k processes return 1, slow processes
must preemptively fail the test-and-set operations. Unfortunately, this is not
possible, as a process can only identify processes with smaller views and not
precisely those that have the smallest view. Indeed, we could have a process
preemptively fail without anyone returning 1. We resolve this issue by simulating
k-set-consensus operations among sets of k + 1 processes and showing then that
it is sufficient to simulate n-process k-test-and-set operations.
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Let us first show how a k+1-process k-test-and-set can be used to implement
an n-process k-test-and-set. Then, we will show how k-set consensus among k+1
processes can be used to implement k-test-and-set among k+1 processes. Lastly,
we are going to show how to simulate operations of k-set consensus among k +1
processes in R∗

k−T&S .

From k + 1-Process Test-and-Set to n-Process k-Test-and-Set. In the solution,
depicted in Algorithm 2, every process participates in k-test-and-set operations
among any possible subset of k +1 processes it belongs to. The processes iterate
on over these sets of k + 1 processes in the same deterministic order and return
0 as soon as they obtain 0 from a k-test-and-set operation. If a process manages
to obtain 1 from all k-test-and-set operations, it returns 1.

Algorithm 2: n-process k − T&S using k + 1-process k-T&S for pi.
1 forall S ⊆ Π, |S| = k + 1 do
2 if i ∈ S then
3 if k − T&S[S].apply()=0 then Return 0 ;

4 Return 1;

Theorem 2. Algorithm 2 solves n-process k-test-and-set.

Proof. Let us first show that at most k process may return 1. It is straightfor-
ward. Indeed, assume that there are k+1 processes returning 1. They must have
all accessed the same k-test-and-set operation corresponding to their set of k+1
processes. But at most k of them may have obtained 1 from it, the remaining
ones must have therefore returned from the protocol with 0—a contradiction.

Let us now show that not all participating processes may return 0. Indeed,
consider the last set of k+1 processes in the sequence for which the associated k-
test-and-set object has been accessed. Not all processes accessing this object can
return 0. Hence, they must either access another k-test-and-set object afterward,
which is not the case by assumption or return with 1 or crash. Therefore, not
all participating processes can return 0. ��

From (k + 1)-Process k-set Consensus to k-Test-and-Set. Using k-set consensus
among k + 1 processes to solve k-test-and-set operations among k + 1 processes
is straightforward. Processes can access a k-set consensus operation with their
identifier. Then they write their output to the shared-memory and take a snap-
shot. If a process sees that some process obtained its identifier as output, it
returns 1, and otherwise, it returns 0. See Algorithm 3 for a formal description.
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Algorithm 3: k + 1-process k − T&S using k + 1-process k-set-consensus
for pi.
1 res = k-set-consensus[i];
2 MEM .update(res);
3 snap = MEM .snapshot();
4 if i ∈ snap then
5 Return 1;
6 else
7 Return 0;

Theorem 3. Algorithm 3 solves k + 1-process k-test-and-set.

Proof. A process can return with 1 only if its identifier was returned to some
process, hence at most k process can obtain 1. Assume now that all participating
processes terminate and consider the process for which its identifier was first
written to the shared memory. This process must see its identifier in its snapshot
and return 1, hence not all participating processes may return 0. ��

Solving k-Set-Consensus Among k+1 processes in R∗
k−T&S. The advantage of k-

set consensus operations compared to k-test-and-set operations is that processes
can participate as soon as they see some process participating. Indeed, since it
is a colorless task, processes can adopt inputs from any other process. Hence,
to solve k-set consensus operations among k + 1 processes, processes maintain
a decision estimate for all k-set consensus operations and share them in all
iterations of R∗

k−T&S . When a process initiates a new operation for which it has
no decision estimate yet, it simply adds a decision estimate corresponding to
its input value. Moreover, when a process sees a process participating in a new
operation, it adopts its decision estimate.

Now, at the end of each iteration of Rk−T&S , processes look at the decision
estimate for all operations. If a process sees all k + 1 potential participants of
an operation, then it replaces its decision estimate by the decision estimate of
the process with the next identifier (going back to the first to form a loop when
there are none higher). For a process to terminate, it must see that all potential
participants share a decision estimate for the same round. If it happens, processes
return their potentially updated decision estimate as k-set consensus output.

Note that once terminated, processes use a special input value ⊥. When a
process competes with a terminated process for a k-set consensus operation, then
it directly returns with its proposal.

Correctness of the Simulation of k-set Consensus Among k+1 Processes. Let us
first show that simulated operations respect the specification of k-set consensus
among k+1 processes before showing that sufficient progress is also guaranteed.

Lemma 1. The simulation satisfies the safety properties of k-set consensus
among k + 1 processes in R∗

k−T&S.
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Proof. Processes return their decision estimate which is initially set to their input
or adopted from other processes decision estimates. Hence validity is satisfied.

Now consider the first iteration of the affine task after which the first process
returns with an output. In this iteration, all processes with the smallest view
shared a decision estimate. Hence, all processes adopted a decision estimate at
the end of the round. If at the end of the round there are less than k distinct
decision estimates, then the agreement property will be ensured as the number
of distinct decision estimates in later rounds is a subset of this one.

To see that there are at most k distinct decision estimates at the end of this
first iteration in which a process decides, consider the processes which see the
k + 1 potential participants. These processes adopt the decision estimate of the
next process (relatively to identifier ranks). But in Rk−T&S , at most k vertices
may share the same carrier. Hence a process seeing all participants must adopt
the decision estimate of a process not seeing all of them. But this process does
not change its decision estimate. Thus, two processes share the same decision
estimate. The number of distinct decision estimates is, therefore, smaller than
or equal to k and hence at most k distinct outputs may be returned. ��
Lemma 2. The simulation of k-set consensus among k + 1 in R∗

k−T&S pro-
vides progress to processes having infinitely often the smallest view among non-
terminated processes.

Proof. Processes participate in an operation as soon as they see another pro-
cess participating. In particular if a process with the smallest view among non-
terminated participates in some iteration, all processes participate in the next
iteration (terminated processes are always participating). But if all processes
observed in some iteration are participating, then processes return at the end of
the round. Hence, a process with a k-set consensus operation terminates at most
one round after obtaining the smallest view among non-terminated processes. ��

Equivalence Between the k-Test-and-Set Model and R∗
k−T&S. Both the AS mem-

ory and k-set consensus among k + 1 provides progress to the non-terminated
processes with the smallest view infinitely often. Hence, some process will even-
tually output and terminate as long as they are non-terminated processes. Thus,
all processes eventually produces valid task outputs.

We can conclude with the equivalence of the two classes of models. Indeed,
this simulation and Algorithm 1 can be used to simulate the affine model R∗

k−T&S

in the k-test-and-set model and reciprocally. Therefore:

Theorem 4. A task is solvable in the k-test-and-set model if and only if it is
solvable in the affine model R∗

k−T&S.

Thus, we get the following generalization of the asynchronous computability
theorem for the k-test-and-set model:

Theorem 5. Task T = (I,O,Δ) is solvable in the k-test-and-set model if and
only if there exist � ∈ N and a simplicial map δ : (Rk−T&S)�(I) → O car-
ried by Δ.
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6 Related Work and Concluding Remarks

Herlihy and Shavit [18] proposed a characterization of wait-free task computabil-
ity through the existence of a simplicial map from a subdivision of the input
complex of a task I to its output complex O. (The reader is referred to [16]
for a thorough discussion of the use of combinatorial topology in distributed
computability.) Herlihy and Rajsbaum [17] studied colorless task computability
in the particular case of superset-closed adversaries. They show that the proto-
col complex of a superset-closed adversary with minimal core size c is (c − 2)-
connected. This result, obtained via an iterative application of the Nerve lemma,
gives a combinatorial characterization of superset-closed adversaries. The char-
acterization only applies to colorless tasks, and it does not allow us to express
the adversary in an affine way.

Gafni et al. [12] introduced the notion of an affine task and characterized
task computability in iterated adversarial models via infinite subdivisions of
input complexes, assuming a limited notion of solvability that only guarantees
outputs to “fast” processes [5,10] (i.e., “seen” by every other process infinitely
often). The liveness property defined in this paper for iterated models guarantees
outputs for every process, which allowed us to establish a task-computability
equivalence with conventional non-iterated models.

Affine tasks have been defined for the read-write models of wait-free [18], t-
resilience [26], k-concurrency [11] and, finally, for the general class of fair adver-
saries [23], encompassing all these models. In this paper, we complement the
characterization of [23] with a model in which processes can communicate via
k-test-and-set objects, in addition to read-write registers.

This paper proposes a new affine characterization of the wait-free shared
memory model enhanced with k-test-and-set objects. Just as the wait-free char-
acterization [18] implies that the IS task captures the wait-free model, our char-
acterization equates any such model with a (compact) affine task embedded in
the standard chromatic subdivision.

Interestingly, unlike [26], we cannot rely on the shellability [16] (and, thus,
link-connectivity) of the affine task. Link-connectivity of a simplicial complex
C allows us to work in the point set of its geometrical embedding |C| and use
continuous maps (as opposed to simplicial maps that maintain the simplicial
structure). For example, the existence of a continuous map from |RAt−res

| to any
|Rk

At−res
| implies that RAt−res

indeed captures the general task computability
of At−res [26]. In general, however, the existence of a continuous map onto C
only allows us to converge on a single vertex [16]. If C is not link-connected,
converging on one vertex allows us to compute an output only for a single pro-
cess and not more. Unfortunately, only very special adversaries, such as At−res ,
have link-connected counterparts (see, e.g.., the affine task corresponding to 1-
test-and-set in Fig. 5). Instead of relying on link-connectivity, this paper takes
an explicit algorithmic way of showing that iterations of Rk−T&S simulate the
wait-free shared memory model enhanced with k-test-and-set objects. An inter-
esting question is to which extent point-set topology and continuous maps can
be applied in affine characterizations.
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