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Preface

This volume contains the papers presented at the 22nd International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS 2020), held during
November 18-21, 2020.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their structure, performance, and/or security in the face of an adverse
operational environment.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first two of
which were held in Austin, USA, in 1989 and in Las Vegas, USA, in 1995. After 1995,
the workshop was held biennially until 2005 when it became an annual event. Starting
from then, it broadened its scope and attracted researchers from other communities. In
2006, the name of the conference was changed to the International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS). The last three SSS
conferences were held in Boston, USA (2017), Tokyo, Japan (2018), and Pisa, Italy
(2019).

This year, the conference was initially planned to be held in Austin, USA. However,
due to the COVID-19 worldwide pandemic, we decided to switch to a virtual event.
Anish Arora (The Ohio State University, USA) and Sandeep Kulkarni (Michigan State
University, USA) served as general chairs. Stéphane Devismes (Université Grenoble
Alpes, France) and Neeraj Mittal (The University of Texas at Dallas, USA) served as
program chairs. The authors were asked to align their submission with one of the four
tracks:

– Track A: Self-Stabilization (chaired by Sayaka Kamei, Hiroshima University,
Japan)

– Track B: Foundations of Concurrent and Distributed Computing (chaired by LuiÌs
E. T. Rodrigues, Universidade de Lisboa, Portugal)

– Track C: Mobile and Robot Computing (chaired by Gokarna Sharma, Kent-State
University, USA)

– Track D: Fault tolerance, Security, and Privacy (chaired by Emmanuel Anceaume,
IRISA, CNRS, France)

A total of 44 submissions were received. The submissions spanned a wide spectrum
of distributed computing topics, from fundamental principles to real world applications.
All the manuscripts went through a rigorous review process. Each submission was
reviewed by at least three Program Committee members. We are grateful to the
reviewers for their hard work and valuable feedback. Overall, the committee decided to
accept 16 regular papers and 7 brief announcements. The proceedings also include



2 invited papers. We hope that you will enjoy reading these excellent and very selective
papers.

October 2020 Stéphane Devismes
Neeraj Mittal

vi Preface
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Store-Collect in the Presence of Continuous
Churn with Application to Snapshots

and Lattice Agreement

Hagit Attiya1(B), Sweta Kumari1, Archit Somani1, and Jennifer L. Welch2

1 Department of Computer Science, Technion, Haifa, Israel
{hagit,sweta,archit}@cs.technion.ac.il

2 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX, USA
welch@cse.tamu.edu

Abstract. We present an algorithm for implementing a store-collect object in an
asynchronous crash-prone message-passing dynamic system, where nodes con-
tinually enter and leave. The algorithm is very simple and efficient, requiring just
one round trip for a store operation and two for a collect. We then show the versa-
tility of the store-collect object for implementing churn-tolerant versions of useful
data structures, while shielding the user from the complications of the underlying
churn. In particular, we present elegant and efficient implementations of atomic
snapshot and generalized lattice agreement objects that use store-collect.

Keywords: Store-collect object · Dynamic message-passing systems · Churn ·
Crash resilience · Atomic snapshots · Generalized lattice agreement

1 Introduction

A popular programming technique that contributes to designing provably-correct dis-
tributed applications is to use shared objects for interprocess communication, instead of
more low-level techniques. Although shared objects are a convenient abstraction, they
are not generally provided in large-scale distributed systems; instead, nodes keep copies
of the data and communicate by sending messages to keep the copies consistent.

Dynamic distributed systems allow computing nodes to enter and leave the system
at will, either due to failures and recoveries, moving in the real world, or changes to the
systems’ composition, a process called churn. Motivating applications include those in
peer-to-peer, sensor, mobile, and social networks, as well as server farms. We focus on
the situation when the network is always fully connected, which could be due to, say,
an overlay network. A broadcast mechanism is assumed through which a node can send
a message to all nodes present in the system.

The usefulness of shared memory programming abstractions has been long estab-
lished for static systems (e.g., [4,5]), which have known bounds on the number of fixed
computing nodes and the number of possible failures. This success has inspired work

Supported by ISF grant 380/18 and NSF grant 1816922; full paper in [9].

c© Springer Nature Switzerland AG 2020
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on providing the same for newer, dynamic, systems. However, most of this work has
shown how to simulate a shared read-write register (e.g., [2,6,10,11,18]). We discuss a
couple of exceptions [12,21] below.

In this paper, we promote the store-collect shared object [7] (defined in Sect. 2) as a
primitive well-suited for dynamic message-passing systems with an ever-changing set
of participants. Each node can store a value in a store-collect object with a STORE oper-
ation and can collect the latest value stored by each node with a COLLECT operation.
Inherent in the specification of this object is an ability to track the set of participants
and to read their latest values.

Below we elaborate on three advantageous features of the store-collect object: The
store-collect semantics is well-suited to dynamic systems and can be implemented eas-
ily and efficiently in them; the widely-used atomic snapshot object can be implemented
on top of a store-collect object; and a variety of other commonly-used objects can be
implemented either directly on top of a store-collect or on top of an atomic snapshot
object. These implementations are simple and inherit the properties of being churn-
tolerant and efficient, showing that store-collect combines algorithmic power and effi-
ciency.

A churn-tolerant store-collect object can be implemented fairly easily. We adopt
essentially the same system model as in [6], which allows ongoing churn as long as not
too many churn events take place during the length of time that a message is in transit.
To capture this constraint, there is an assumed upper boundD on the maximummessage
delay, but no (positive) lower bound. Nodes do not know D and have no local clocks,
causing consensus to be unsolvable [6]. The model differentiates between nodes that
crash and nodes that leave; nodes that have entered but not left are considered present
even if crashed. The number of nodes that can be crashed at any time is bounded by a
fraction of the number of nodes present at that time. During any time interval of length
D, the number of nodes entering or leaving is a fraction of the number of nodes present
in the system at the beginning of the interval. (See Sect. 3 for model details.)

Our algorithm for implementing a churn-tolerant store-collect object is based on
the read-write register algorithm in [6]. It is simple and efficient: once a node joins, it
completes a store operation within one round-trip, and a collect operation within two
round-trips. The store-collect object satisfies a variant of the “regularity” consistency
condition, which is weaker than linearizability [19]. In contrast to our single-round-trip
store operation, the write operation in the algorithm of [6] requires two round trips.
Another difference between the algorithms is that in ours, each node keeps a local set
of tuples with an entry for each known node and its value instead of a single value;
when receiving new information, instead of overwriting the single value, our algorithm
merges the new information with the old. One contribution of our work in this paper
is a significantly revised proof of the churn management protocol that is much simpler
than that in [6], consequently making it easier to build on the results. (See Sect. 4.)

Building an atomic snapshot on top of a store-collect object is easy! We present a
simple algorithm with an elegant correctness proof (Sect. 5.1). One may be tempted to
implement an atomic snapshot in our model by plugging churn-tolerant registers (e.g.,
[6]) into the original algorithm of [1]. Besides needlessly sequentializing accesses to the
registers, such an implementation would have to track the current set of participants. A
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store-collect object which encapsulates the changing participants and collects informa-
tion from them in parallel, yields a simple algorithm very similar in spirit to the original
but whose round complexity is linear instead of quadratic in the number of participants.
The key subtlety of the algorithm is the mechanism for knowing when to borrow a scan
in spite of difficulties caused by the churn, in order to ensure termination.

Atomic snapshot objects have numerous uses in static systems, e.g., to build multi-
writer registers, concurrent timestamp systems, counters, and accumulators, and to
solve approximate agreement and randomized consensus (cf. [1,4]). In addition to anal-
ogous applications, we show (Sect. 5.2) how a churn-tolerant atomic snapshot object
can be used to provide a churn-tolerant generalized lattice agreement object [15]. This
object supports a PROPOSE operation whose argument is a value belonging to a lat-
tice and whose response is a lattice value that is the join of some subset of all prior
input values, including its own argument. Generalized lattice agreement is an extension
of (single-shot) lattice agreement, well-studied in the static shared memory model [8].
Generalized lattice agreement has been used to implement many objects [13,15], most
notably, conflict-free replicated data types [21,24,25].

The store-collect object specification is versatile. Our atomic snapshot and gener-
alized lattice agreement algorithms demonstrate that layering linearizability on top of
a store-collect object is easy. Yet not every application needs the costs associated with
linearizability, and store-collect gives the flexibility to avoid them. Our approach to pro-
viding churn-tolerant shared objects is modular, as the underlying complications of the
message-passing and the churn is hidden from higher layers by our store-collect imple-
mentation. As evidence, we observe in [9] that store-collect allows very simple imple-
mentations of max-registers, abort flags, and sets, in which an implemented operation
takes at most a couple of store and collect operations. The choice of problems and the
algorithms follow [21] but the algorithms inherit good efficiency and churn-tolerance
properties from our store-collect implementation.

Related Work: An algorithm that directly implements an atomic snapshot object in
a static message-passing system, bypassing the use of registers, is presented in [14].
This algorithm includes several nice optimizations to improve the message and round
complexities. These include speeding up the algorithm by parallelizing the collect, as
is already encapsulated in our store-collect algorithm. Our atomic snapshot algorithm
works in a dynamic system and has a shorter and simpler proof of linearizability.

Aguilera [3] presents a specification and algorithm for atomic snapshots in a
dynamic model in which nodes can continually enter and communicate via shared reg-
isters. This algorithm is then used for group membership and mutual exclusion in that
model. Variations of the model were proposed in [17,22], which provided algorithms
for election, mutual exclusion, consensus, collect, snapshot, and renaming. Spiegelman
and Keidar [23] present atomic snapshot algorithms for a crash-prone dynamic sys-
tem in which processes communicate via shared registers. Their algorithms uniquely
identify each scan operation with a version number to help determine when a scan can
be borrowed; we use a similar mechanism in our snapshot algorithm. However, our
atomic snapshot algorithm uses a shared store-collect object which tolerates ongoing
churn. Our use of a non-linearizable building block requires a more delicate approach to
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proving linearizability, as we cannot simply choose, say, a specific write to an atomic
register as the linearization point of an update, as can be done in [23].

The problem of implementing shared objects in the presence of ongoing churn and
crash failures in message-passing systems is studied in [10,11], for read-write registers,
and [12], for sets. Unlike our results, these papers assume the system size is restricted
to a fixed window and the system is eventually synchronous. Like our algorithms, the
set algorithm in [12] uses unbounded local memory at the nodes.

A popular alternative way to model churn in message-passing systems is as
a sequence of quorum configurations, each of which consists of a set of nodes
and a quorum system over that set (e.g., [2,16,18,20,21]). Explicit reconfiguration
operations replace older configurations with newer ones. The assumptions made in
[2,16,18,20,21] are incomparable with those in [6] and in our paper, as the former
assume churn eventually stops while the latter assume the churn is bounded.

Most papers on generalized lattice agreement have assumed static systems (cf. [8,
13,15,24,25]. A notable exception is [21], which considers dynamic systems subject to
changes in the composition due to reconfiguration. This paper provides an implemen-
tation for a large class of shared objects, including conflict-free replicated data types,
that can be modeled as a lattice. By showing how to view the state of the system as a
lattice as well, the paper elegantly combines the treatment of the reconfiguration and the
operations on the object. Unlike our work, the algorithms in [21] require that changes
to the system composition eventually cease in order to ensure progress.

2 The Store-Collect Problem

A shared store-collect object [7] supports concurrent store and collect operations per-
formed by some set of clients. Each operation has an invocation and response. For
a store operation, the invocation is of the form STOREp(v), where v is a value drawn
from some set and p indicates the invoking client, and the response is of the form ACKp,
indicating that the operation has completed. For a collect operation, the invocation is of
the form COLLECTp and the response is of the form RETURNp(V ), where V is a view,
that is, a set of client-value pairs without repetition of client ids. We use the notation
V (p) to indicate v if 〈p, v〉 ∈ V and ⊥ if no pair in V has p as its first element.

Informally, the behavior required of a store-collect object is that each collect oper-
ation should return a view containing the latest value stored by each client. We do not
require the store and collect operations to appear to occur instantaneously, that is, the
object is not necessarily linearizable.

A sequence σ of invocations and responses of store and collect operations is a sched-
ule if, for each client id p, the restriction of σ to invocations and responses by p consists
of alternating invocations and matching responses, beginning with an invocation. Each
invocation and its matching following response (if present) together make an operation.
If the response of operation op comes before the invocation of operation op′ in σ, then
we say op precedes op′ (in σ) and op′ follows op. We assume that every value writ-
ten in a store operation in a schedule is unique (a condition that can be achieved using
sequence numbers and client ids).

A schedule σ satisfies regularity for the store-collect problem if:
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– For each collect operation cop in σ that returns V and every client p, if V (p) = ⊥,
then no store operation by p precedes cop in σ. If V (p) = v �= ⊥, then there is
a STOREp(v) invocation that occurs in σ before cop completes and no other store
operation by p occurs in σ between this invocation and the invocation of cop.

– For every two collect operations in σ, cop1 which returns V1 and cop2 which returns
V2, if cop1 precedes cop2 in σ, then for every 〈p, v1〉 ∈ V1, there exists v2 such that
〈p, v2〉 ∈ V2 where either v1 = v2 or the STOREp(v1) invocation occurs before the
STOREp(v2) invocation in σ. We denote this as V1 � V2.

3 Overview of System Model

The events that can occur at a node p are entering the system (ENTERp), leaving the
system (LEAVEp), crashing (CRASHp), receiving a message m (RECEIVEp(m)), and
invoking an operation (COLLECTp or STOREp(v)). The occurrence of an event at node
p results in changes to p’s local state; optionally, a message to be broadcast; and option-
ally, a response, which is RETURNp(V ) for a collect, ACKp for a store, and JOINEDp

for the enter. An execution is a collection of sequences of events, one sequence for each
node, that satisfies certain conditions. The key points are the following.

A node enters, leaves, and crashes at most once. A node does nothing before it
enters and after it crashes or leaves.

We assume that a nonnegative real number is associated with each event in an exe-
cution, which is the time when the event occurs. A node is present at time t if it entered
but did not leave before time t; a crashed node is considered to be present. N(t) is the
number of nodes present at time t. There is a constant Nmin such that N(t) ≥ Nmin

for all t ≥ 0. A node is active at time t if it is present and not crashed at time t.
At time 0, the system consists of a finite nonempty set of nodes, S0, that are consid-

ered by definition to be active. Initially nodes in S0 have knowledge about all the nodes
in S0; every other node, which enters after time 0, has no initial knowledge about any
node other than itself. A node is joined (or a member) at time t if it is present (has not
left) and either is in S0 or has experienced JOINEDp.

A broadcast service reliably delivers each message sent by node p at time t to each
node q that is active throughout [t, t + D], where D > 0 is a maximum message delay
unknown to the nodes, if p’s next event is not CRASHp. If p’s next event is to crash or if q
enters, leaves, or crashes during the interval, there is no guarantee whether q receives the
message. This is a weaker broadcast specification than in [6], which assumed broadcasts
were atomic with respect to crashes. Messages from the same sender are received in the
order they are sent. Every message that is received has delay in (0,D].

Let α > 0 and 0 < Δ < 1 be real numbers that denote the churn rate and failure
fraction, respectively. The parameters α and Δ are known to the nodes. For all times
t ≥ 0, there are at most α ·N(t) enter and leave events in [t, t+D] (churn assumption),
and at most Δ · N(t) nodes are crashed at time t (failure fraction assumption).

An algorithm is a correct implementation of a store-collect object if in every exe-
cution: (1) Every node that enters the system after time 0 and remains active eventually
joins, and no joined node p experiences JOINEDp. (2) Every store or collect operation
invoked at a node that remains active eventually completes. (3) The schedule resulting
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from restricting the execution to the store and collect invocations and responses satisfies
regularity for the store-collect problem.

4 The Continuous Churn Collect (CCC) Algorithm

In our algorithm, nodes run client threads, which invoke collect and store operations,
and server threads. We assume that the code segment that is executed in response to
each event executes without interruption.

Our implementation adds a sequence number, sqno, to each value in a view, which
is now a set of triples, {〈p, v, sqno〉, . . .}, without repetition of node ids. We use the
notation V (p) = v if there exists sqno such that 〈p, v, sqno〉 ∈ V , and ⊥ if no triple in
V has p as its first element. A merge of two views picks the latest value in each view.
That is, given two views V1 and V2, merge(V1, V2) is the subset of V1 ∪V2 consisting of
every triple whose node id is in one of V1 and V2 but not the other, and, for node ids that
appear in both V1 and V2, it contains only the triple with the larger sequence number.
Note that V1, V2 � merge(V1, V2).

A node p tracks the composition of the system with a set Changes of events con-
cerning the nodes that have entered the system. Initially, node p’s Changes set equals
{enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0}, if p ∈ S0, and ∅ otherwise. Node p
also maintains a set of nodes that it believes are present: Present = {q|enter(q) ∈
Changes ∧ leave(q) �∈ Changes}, i.e., nodes that have entered, but have not left, as far
as p knows. The code for managing these sets (Algorithm 1) is the same as [6] except
for Line 5, which merges newly received information with current local information
instead of overwriting it. Once a node has joined, its client thread handles collect and
store operations (Algorithm 2) and its server thread (Algorithm 3) responds to clients.
The client at node p maintains a derived variable Members = {q | join(q) ∈ Changes∧
leave(q) �∈ Changes} of nodes it considers as members, i.e., nodes that have joined but
not left.

Each node keeps a local copy of the current view in its LView variable. In a collect
operation, a client thread requests the latest value of servers’ local views using a collect-
query message (Line 29). When a server node p receives a collect-query message, it
responds with its local view (LView) through a collect-reply message (Line 53) if p
has joined the system. When the client receives a collect-reply message, it merges its
LViewwith the received view (RView), to get the latest value corresponding to each node
(Line 31). Then the client waits for sufficiently many collect-reply messages before
broadcasting the current value of its LView variable in a storemessage (Line 36). When
server p receives a store message with a view RView, it merges RView with its local
LView (Line 50) and, if p is joined, it broadcasts store-ack (Line 48). The client waits
for sufficiently many store-ackmessages before returning LView to complete the collect
(Line 47); this threshold is recalculated in Line 34 to reflect possible changes to the
system composition that the client has observed.

In a store operation, a client thread updates its local variable LView to reflect the
new value by doing a merge (Line 39) and broadcasts a store message (Line 42). When
server p receives a store message with view RView, it merges RView with its local
LView (Line 48) and, if p is joined, it broadcasts store-ack (Line 50). The client waits
for sufficiently many store-ack messages before completing the store (Line 46).
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Algorithm 1. CCC—Common code managing churn, for node p.
Local Variables:
LView: set of (node id, value, sequence number) triples, initially ∅ // local view
is_joined: Boolean, initially false // true iff p has joined the system
join_threshold: int, initially 0 // number of enter-echo messages needed for joining
join_counter: int, initially 0 // number of enter-echo messages received so far
Changes: set of enter(q), leave(q), and join(q) // active membership events known to p

initially {enter(q)|q ∈ S0} ∪ {join(q)|q ∈ S0} if p ∈ S0, and ∅ otherwise
Derived Variable:
Present = {q | enter(q) ∈ Changes∧ leave(q) �∈ Changes}

When ENTERp occurs:
1: add enter(p) to Changes
2: broadcast 〈enter, p〉

When RECEIVEp〈enter, q〉 occurs:
3: add enter(q) to Changes
4: broadcast〈enter-echo,Changes, LView,

is_joined, q〉

When RECEIVEp〈enter-echo, C, RView, j, q〉
occurs:
5: LView = merge(LView, RView)
6: Changes = Changes ∪ C
7: if ¬is_joined ∧ (p == q) then
8: if (j ==true)∧(join_threshold == 0)

then
9: join_threshold = γ · |Present|
10: join_counter++
11: if join_counter ≥ join_threshold > 0

then
12: is_joined = true
13: add join(p) to Changes

14: broadcast 〈join, p〉
15: return JOINEDp

When RECEIVEp〈join, q〉 occurs:
16: add join(q) to Changes
17: add enter(q) to Changes
18: broadcast 〈join-echo, q〉

When RECEIVEp〈join-echo, q〉 occurs:
19: add join(q) to Changes
20: add enter(q) to Changes

When LEAVEp occurs:
21: broadcast 〈leave, p〉
22: halt

When RECEIVEp〈leave, q〉 occurs:
23: add leave(q) to Changes
24: broadcast 〈leave-echo, q〉

When RECEIVEp〈leave-echo, q〉 occurs:
25: add leave(q) to Changes

The fraction β is used to calculate the number of messages that should be received
(stored in local variable threshold) based on the size of the Members set, for the oper-
ation to terminate. Setting β is a key challenge in the algorithm as setting it too small
might not return correct information from collect or store, whereas setting it too large
might not guarantee termination of the collect and store.

We define a phase to be the execution by a client node p of one of the following
intervals of its code: (1) lines 26 through 33, the first part of a collect operation, (2)
lines 34 through 36 and 43 through 47, the second part of a collect operation called the
“store-back”, or (3) lines 37 through 46, the entirety of a store operation. The first kind
of phase is called a collect phase while the second and third kinds are called a store
phase. For any completed phase ϕ executed by node p, define view(ϕ) to be the value
of LViewt

p, where t is the time at the end of the phase. Since a store operation consists
solely of a store phase, we also apply the notation to an entire store operation.
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Algorithm 2. CCC—Client code, for node p.
Local Variables:
optype: string, initially ⊥ // indicates which type of operation (collect or store) is pending
tag: int, initially 0 // counter to identify currently pending operation by p
threshold: int, initially 0 // number of replies/acks needed for current phase
counter: int, initially 0 // number of replies/acks received so far for current phase
sqno: int, initially 0 // sequence number for values stored by p
Derived Variable:
Members = {q| join(q) ∈ Changes ∧ leave(q) �∈ Changes}

When COLLECTp occurs:
26: optype = collect; tag++
27: threshold = β · |Members|
28: counter = 0
29: broadcast 〈collect-query, tag, p〉

When RECEIVEp〈collect-reply, RView, t, q〉
occurs:
30: if (t == tag) ∧(q == p) then
31: LView = merge(LView, RView)
32: counter++
33: if (counter ≥ threshold) then
34: threshold = β · |Members|
35: counter = 0
36: broadcast 〈store, LView, tag, p〉

When STOREp(v) occurs:
37: optype = store; tag++
38: sqno++
39: LView = merge(LView,{〈p, v, sqno〉})
40: threshold = β · |Members|
41: counter = 0
42: broadcast 〈store, LView, tag, p〉

When RECEIVEp〈store-ack, t, q〉 occurs:
43: if (t == tag) ∧(q == p) then
44: counter++
45: if (counter ≥ threshold) then
46: if (optype==store) then return ACK
47: else return LView

Algorithm 3. CCC—Server code, for node p.

When RECEIVEp〈store, RView,tag, q〉 occurs:
48: LView = merge(LView, RView)
49: if is_joined then
50: broadcast 〈store-ack, tag, q〉
51: broadcast 〈store-echo, LView〉

When RECEIVEp〈collect-query, tag, q〉 occurs:
52: if is_joined then
53: broadcast 〈collect-reply, LView, tag, q〉

When RECEIVEp〈store-echo, RView〉 occurs:
54: LView = merge(LView, RView)

To prove the correctness of the algorithm, consider any execution of the algorithm.
The correctness of the algorithm relies on the following constraints (Z =

[
(1 − α)3

−Δ · (1 + α)3
]
, which is the fraction of nodes that survive an interval of length 3D):

Nmin ≥ 1
Z + γ − (1 + α)3

(A)

γ ≤ Z/(1 + α)3 (B)

β ≤ Z/(1 + α)2 (C)

β >
(1 − Z)(1 + α)5 + (1 + α)6

((1 − α)3 − Δ · (1 + α)2)((1 + α)2 + 1)
(D)
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Fortunately, there are values for the parameters α, Δ, γ, and β that satisfy these con-
straints. In the extreme case when α = 0 (i.e., no churn), the failure fraction Δ can
be as large as 0.21; in this case, it suffices to set both γ and β to 0.79 for any value
of Nmin that is at least 2. As α increases up to 0.04, Δ must decrease approximately
linearly until reaching 0.01; in this case, it suffices to set γ to 0.77 and β to 0.80 for any
value of Nmin that is at least 2. The following technical claims hold:

Lemma 1. For all i ∈ N and all t ≥ 0, (a) at most ((1 + α)i − 1) · N(t) nodes enter
during (t, t + i · D]; and (b) N(t + i · D) ≤ (1 + α)i · N(t).

Lemma 2. For any interval [t1, t2] with t2 − t1 ≤ 3D, where S is the set of nodes
present at t1, at least Z · |S| of the nodes in S are active at t2.

Below, a local variable name is subscripted with p and superscripted with t to denote
its value in node p at time t; e.g., vt

p is the value of node p’s local variable v at time t.
In the analysis, we will frequently be comparing the data in nodes’ Changes sets to

the set of ENTER, JOINED, and LEAVE events that have actually occurred in a certain
interval. We are especially interested in these events that trigger a broadcast invoked
by a node that is not in the middle of crashing, as these broadcasts are guaranteed to
be received by all nodes that are present for the requisite interval. We call these active
membership events. Because of the assumed initialization of the nodes in S0, we use
the convention that the set of active membership events occurring in the interval [0, 0]
is {enter(p)|p ∈ S0} ∪ {join(p)|p ∈ S0}. The next lemma holds:

Lemma 3. For every node p and all times t such that p is joined and active at t,
Changestp contains all the active membership events for [0,max{0, t − 2D}].

We can prove that a node that is active sufficiently long eventually joins.

Theorem 1. Every node p that enters at some time t and is active for at least 2D time
joins by time t + 2D.

Theorem 2. A phase invoked by a client that remains active completes within 2D time.

Proof sketch. Consider a phase invoked by node p at time t. Let S be the set of nodes
present at time max{0, t − 2D}. Lemma 2 and Theorem 1 imply that at least Z · |S|
of them are joined by time t and active at time t + D, and thus respond to p’s message.
We argue that Z · |S| is at least as large as the value of threshold computed by p in
Line 27 or 34 or 40 of Algorithm 2. We first show that |S| ≥ |Presenttp|/(1 + α)2, by
Lemmas 3 and 1(a). Then we note that Constraint C implies that Z/(1 + α)2 ≥ β, and
so Z · |S| ≥ β · |Presenttp|. Since |Presenttp| ≥ |Memberstp|, the definition of threshold
gives the result. �

The next lemma shows that the view of a store phase is smaller, in the partial order
�, than the view of a subsequent, non-overlapping, collect phase.

Lemma 4. For any store phase s and any collect phase c, if s finishes before c starts
and c terminates, then view(s) � view(c).
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Theorem 3. The schedule resulting from the restriction of the execution to the store
and collect invocations and responses satisfies regularity for the store-collect problem.

Proof. (1) Suppose cop is a collect operation that returns view V . Let c be the collect
phase of cop. Let p be a node. If V (p) = ⊥ and a store operation by p, consisting
of store phase s, precedes cop, then, by Lemma 4, view(s) � view(c). Hence, view(s)
contains a tuple for p with a non-⊥ value, which is a contradiction.

Therefore, V (p) = v �= ⊥. We show that a STOREp(v) invocation occurs before
cop completes and no other store operation by p occurs between this invocation and
the invocation of cop. A simple induction shows that every (non-⊥) value for one node
in another node’s LView variable at some time comes from a STORE invocation by the
first node that has already occurred. Since V is the value of the invoking node’s LView
variable when cop completes, there is a previous STOREp(v) invocation.

Now suppose for the sake of contradiction that the STOREp(v) completes—call this
operation sop—and there is another store operation by p, call it sop′, that follows sop
and precedes cop. Let v′ be the value of sop′; by the assumption of unique values,
v �= v′. Since sop and sop′ are executed by the same node, it is easy to see from the
code that view(sop) � view(sop′). By Lemma 4, view(sop′) � view(c) = V . But then
value v is superseded by value v′ �= v, contradicting the assumption that V (p) = v.

(2) Suppose cop1 and cop2 are two collect operations such that cop1 returns V1,
cop2 returns V2, and cop1 precedes cop2. Note that cop1 contains a store phase s which
finishes before the collect phase c of cop2 begins. By Lemma 4, view(s) � view(c).
Regularity holds since view(s) = V1 and view(c) = V2, implying that V1 � V2. �

By Theorem 1, every node that enters and remains active sufficiently long eventually
joins. Since a store operation consists of a store phase and a collect operation consists
of a collect phase followed by a store phase, by Theorem 2, every operation eventually
completes as long as the invoker remains active. Finally, Theorem 3 ensures regularity.

Corollary 1. CCC is a correct implementation of a store-collect object, in which each
Store or Collect completes within a constant number of communication rounds.

5 Implementing Distributed Objects Despite Continuous Churn

We show implementations of two objects using store-collect. Three additional objects
are discussed in [9]. For all applications, we assume that the conditions for store-collect
termination hold, which guarantees termination of the operations.

5.1 Atomic Snapshots

Like other atomic snapshot algorithms [1,14,23], our algorithm uses repeated collects
to identify an atomic scan when two collects return the same collected views. Updates
help scans to complete by embedding an atomic scan that can be borrowed by over-
lapping scans they interfere with. The set from which the values to be stored in the
snapshot object are taken is denoted ValAS . A snapshot view is a subset of Π ×ValAS ,
i.e., a set of (node id, value) pairs, without duplicate node ids.
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An atomic snapshot provides two operations: SCAN(), which has no arguments and
returns a snapshot view, and UPDATE(v), which takes a value v ∈ V alAS as an argu-
ment and returns ACK. Its sequential specification consists of all sequences of updates
and scans in which the snapshot view returned by a SCAN contains the value of the last
preceding UPDATE for each node p, if such an UPDATE exists, and no value, otherwise.

An implementation should be linearizable [19]. Roughly speaking, for every exe-
cution α, we should find a sequence of operations, containing all completed operations
in α and some of the pending operations, which is in the sequential specification of an
atomic snapshot, and preserves the real-time order of non-overlapping operations in α.

Our algorithm to implement an atomic snapshot uses a store-collect object, whose
values are taken from the set (P indicates the power set of its argument):

ValSC = ValAS × N × N × P(Π × ValAS) × P(Π × N)

The first component (val) holds the argument of the most recent update invoked at p.
The second component (usqno) holds the number of updates performed by p. The third
component (ssqno) holds the number of scans performed by p. The fourth component
(sview) holds a snapshot view that is the result of a recent scan done by p; it is used
to help other nodes complete their scans. The fifth component (scounts) holds a set of
counts of how many scans have been done by the other nodes, as observed by p. The
projection of an element v in ValSC onto a component is denoted, respectively, v.val,
v.usqno, v.ssqno, v.sview, v.scounts.

A store-collect view is a subset of Π × ValSC , i.e., a set of (node id, value) pairs,
with no duplicate node ids. We extend the projection notation to a store-collect view
V , so that V.comp is the result of replacing each tuple 〈p, v〉 in V with 〈p, v.comp〉;
when v.comp = ⊥, the tuple is omitted. Recall that for any kind of view V , V (p) is the
second component of the pair whose first component is p (⊥ if there is no such pair).

To execute a SCAN, Algorithm 4 increments the scan sequence number (ssqno)
(Line 55) and stores it in the shared store-collect object with all the other components
unchanged, indicated by the − notation. Then, a view is collected (Line 57). In a while
loop, the last collected view is saved and a new view is collected (Line 59). If the two
most recently collected views are equal (Line 60), the latest collected view is returned
(Line 61). We call this a successful double collect, and say that this is a direct scan. Oth-
erwise, the algorithm checks whether the last collected view contains a node q that has
observed its own ssqno, by checking the scounts component (Line 62). If this condition
holds, the snapshot view of q is returned (Line 63); we call this a borrowed scan.

An UPDATE first obtains all scan sequence numbers from a collected view and
assigns them to a local variable scounts (Line 64). Next, the value of an embedded
scan is saved in a local variable sview (Line 65). Then it sets its val variable to the argu-
ment value and increments its update sequence number (Lines 66 and 67). Finally the
new value, update sequence number, collected view, and set of scan sequence numbers
are stored; the node’s own scan sequence number is unchanged (Line 68).

To prove linearizability, we consider an execution and specify an ordering of all the
completed scans and all the updates whose store on Line 68 takes effect. The ordering
takes into consideration the embedded scans, which are inside updates, as well as the
“free-standing” scans; since scans do not change the state of the atomic snapshot object,
it is permissible to do so. We first show that direct scans are comparable in the � order.
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Algorithm 4. Atomic snapshot: code for node p.
Local Variables:
ssqno: int, initially 0 // counts how many scans p has invoked so far
scounts: set of (node id, integer) pairs with no duplicate node ids; initially ∅
val: an element of ValAS , initially ⊥ // argument of most recent update invoked by p
usqno: int, initially 0 // number of updates p has invoked so far
sview: a snapshot view, initially ∅ // the result of recent embedded scan by p
V1, V2: store-collect views, both initially ∅

When SCANp() occurs:
55: ssqno++
56: STOREp(〈−, −, ssqno, −, −〉)
57: V1 = COLLECTp()
58: while true do
59: V2 = V1; V1 = COLLECTp()
60: if (V1 == V2) then
61: return V1.val // direct scan
62: if ∃q such that

〈p, ssqno〉 ∈ V1(q).scounts then

63: return V1(q).sview
// borrowed scan

When UPDATEp(v) occurs:
64: scounts = COLLECTp().ssqno
65: sview = SCANp() // embedded scan
66: val = v
67: usqno++
68: STOREp(〈val, usqno, −, sview, scounts〉)
69: return ACK

Lemma 5. If a direct scan by node p returns V1 and a direct scan by node q returns V2,
then either V1 � V2 or V2 � V1.

Proof. Let cop1p and cop2p be the last two collects of p (both returning V1), and cop1q
and cop2q be the last two collects of q (both returning V2). We have that either cop1p
completes before cop2q starts or cop1q completes before cop2p starts. In the former case,
by the regularity of store-collect, V1 � V2, while in the latter case, V2 � V1. �

Consider all direct scans in the order they complete and place them by the compa-
rability order. If a direct scan returning snapshot view V1 precedes another direct scan
returning snapshot view V2, then the regularity of store-collect ensures V1 � V2. Hence,
this ordering preserves the real-time order of non-overlapping direct scans.

The next lemma helps to order borrowed scans. Its statement is based on the obser-
vation that if a scan sopp by node p borrows the snapshot view in V1(q), then there is
an update uopq by q that writes this view (via a store).

Lemma 6. If a scan sopp by node p borrows from a scan sopq by node q, then sopq
starts after sopp starts and completes before sopp completes.

Proof. Let uopq be the update in which sopq is embedded. Since sopp borrows the
snapshot view of sopq, its ssqno appears in scounts of q’s value in the view collected in
Line 59. The properties of store-collect imply that the collect of uopq (Line 64) does not
complete before the store of p (Line 56) starts. Hence, sopq (called in Line 65) starts
after sopp starts. Furthermore, since the collect of p returns the snapshot view stored
after sopq completes (Line 68), sopq completes before sopp completes. �

For every borrowed scan sop1, there exists a chain of scans sop2, sop3, . . ., sopk
such that sopi borrows from sopi+1, 1 ≤ i < k, and sopk is a direct scan from which
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sop1 borrows. Consider all borrowed scans in the order they complete and place each
borrowed scan after the direct scan it borrows from, as well as all previously linearized
borrowed scans that borrow from the same direct scan. Applying Lemma 6 inductively,
sopk starts after sop1 starts and completes before sop1 completes, i.e., the direct scan
from which a scan borrows is completely contained, in the execution, within the bor-
rowing scan. This fact, together with the rule for ordering borrowed scans, implies that
the real-time order of any two scans, at least one of which is borrowed, is preserved
since direct scans have already been shown to be ordered properly.

Finally, we consider all updates in the order their stores (Line 68) start. Place each
update, say uop by node p with argument v, immediately before the first scan whose
returned view includes 〈p, v′〉, where either v′ = v or v′ is the argument of an update
by p that follows uop. If there is no such scan, then place uop at the end of the ordering.
Note that all later scans return snapshot views that include 〈p, v′〉, where either v′ = v
or v′ is the argument of an update by p that follows uop. This rule for placing updates
ensures that the ordering satisfies the sequential specification of atomic snapshots.

Note that if a scan completes before an update starts, then the scan’s returned view
cannot include the update’s value; similarly, if an update completes before a scan starts,
then the scan’s returned view must includes the update’s value or a later one. This
shows that the ordering respects the real-time order between non-overlapping updates
and scans. The next lemma deals with non-overlapping updates.

Lemma 7. Let V be the snapshot view returned by a scan sop. If V (p) is the value of
an update uopp by node p and an update uopq by node q precedes uopp, then V (q) is
the value of uopq or a later update by q.

Consider an update uopp, by node p, that follows an update uopq, by node q, in the
execution. If uopp is placed at the end of the (current) ordering because there is no scan
that observes its value or a later update by p, then it is ordered after uopq. If uopp is
placed before a scan, then the same must be true of uopq. By construction, the next scan
after uopp in the ordering, call it sop, returns view V with V (p) equal to the value of
uopp or a later update by p. By Lemma 7, V (q) must equal the value of uopq or a later
update by q. Thus uopq cannot be placed after sop, and thus it is placed before uopp.

We now consider the termination property of the algorithm. Let V1 and V2 be two
collect views returned by consecutive collects cop1 and cop2, within a scan sopq by
node q. If this double collect is not successful, then V1 �= V2. If V1(p).usqno �=
V2(p).usqno, then it is immediate that for some update uopp of node p, either uopp’s
scounts includes the scan sequence number of sopq, or uopp starts before sopq starts.
Let t be the time that sopq starts, and note that at most N(t) updates are pending at time
t. Further note that if uopp’s scounts includes the scan sequence number of sopq, then
sopq can borrow the scan view of uopp’s embedded scan. This implies that sopq has at
most N(t) unsuccessful double collects before it can borrow a scan view, and there-
fore it executes at most O(N(t)) collects. Hence, UPDATE executes at most O(N(t))
collects and stores. Putting the pieces together, we have:

Theorem 4. Algorithm 4 is a linearizable implementation of an atomic snapshot
object. The number of communication rounds in a SCAN or an UPDATE operation is at
most linear in the number of nodes present in the system when the operation starts.
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5.2 Generalized Lattice Agreement

Let 〈L,�〉 be a lattice, where L is the domain of lattice values, ordered by �. We
assume a join operator, �, that merges lattice values. A node p calls a PROPOSE opera-
tion with a lattice input value, and gets back a lattice output value. The input to p’s i-th
PROPOSE is denoted vp

i and the response is wp
i . The following conditions are required:

(1) Every response value wp
i is the join of some values proposed before this response,

including vp
i , and all values returned to any node before the invocation of p’s i-th PRO-

POSE (validity). (2) Any two values wp
i and wq

j are comparable (consistency). This
definition is a direct extension of one-shot lattice agreement [8], following [21]. The
version studied in [15] is weaker and lacks real-time guarantees across nodes.

Our algorithm uses an atomic snapshot object, in which each node stores a single
lattice value (val). A PROPOSE operation is simply an UPDATE of a lattice value which
is the join of all the node’s previous inputs, followed by a SCAN returning the analogous
values for all nodes, whose join is the output of PROPOSE.

Validity and consistency are immediate from atomic snapshot properties. Clearly,
the algorithm terminates within O(N) collects and stores, where N is the maximum
number of nodes concurrently active during the execution of PROPOSE. Since PROPOSE

includes one UPDATE and one SCAN, it terminates if the node does not crash or leave.

6 Conclusion

We have advocated for the usefulness of the store-collect object as a powerful, flexible,
and efficient primitive for implementing a variety of shared objects in dynamic systems
with continuous churn. If the level of churn is too great, our store-collect algorithm
is not guaranteed to preserve the safety property; that is, a collect might miss the value
written by a previous store, essentially by the same counter-example as that given in [6].
This behavior is in contrast to the algorithms in [2,18,21], which never violate the safety
property but only ensure progress once reconfigurations cease. In future work, we would
like to either improve our algorithm to avoid this behavior or prove that any algorithm
that tolerates ongoing churn is subject to such bad behavior.

Our correctness proof for our store-collect algorithm requires that the parameters
defining the churn rate and failure fraction satisfy certain conditions. These conditions
imply that even in the absence of churn the failure fraction tolerable by our algorithm
is smaller than in the static case (namely, less than one-third versus less than one-half).
Some degradation is unavoidable when allowing for the possibility of churn, since an
argument from [6] can be adapted to show that when implementing store-collect in a
system with churn rate α, the fraction of failures must be less than 1/(α + 2). It would
be nice to find less restrictive constraints on the parameters, either through a better
analysis or a modified algorithm, or to show that they are necessary.

Another desirable modification to the store-collect algorithm would be reducing
the size of the messages and the amount of local storage by garbage-collecting the
Changes sets. In the same vein, we would like to know if modifying the atomic snapshot
specification to remove from returned views entries of nodes that have left, as is done
in [23], can lead to a more space-efficient algorithm.
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1 Background

Cloud services have become very common in recent years. Many computer com-
panies offer information storage and processing services for individuals, compa-
nies, and organizations. These services allow customers to enjoy an enormous
storage space, massive processing power, and cheap, convenient and efficient
management facilities. Many customers all over the world enjoy such services.
However, in many cases, the information that the customer wants to export to
the cloud is confidential. In such cases, there is a concern that the confidential-
ity of the information will be compromised due to hacking or even by the cloud
company’s employees. One possible way of maintaining privacy is to encrypt the
information by the user before sending it to the cloud (and keep the encryption
keys secretly). This way is suitable in cases where the customer is only interested
in storing the information. However, in many cases, the customer is also inter-
ested in processing the data by the cloud servers. In such cases, a question arises
– how (if at all) can we enjoy the cloud’s processing services while keeping the
confidentiality of the data? This problem is hereafter referred to as the secure
delegation problem. The works reviewed in this manuscript seek solutions for this
problem.

The secure delegation problem was first raised in 1978 by Rivest, Adelman,
and Dertouzos. In their seminal paper [34], they suggested to use ‘privacy homo-
morphisms,’ nowadays known as homomorphic encryption schemes, to encrypt
the data and enable oblivious processing of it by (honest-but-curious) remote
servers (possibly in the cloud). The data is typically represented by finite field ele-
ments. Encryption schemes are composed of algorithms for encryption, decryp-
tion, and key generation (typically denoted Enc, Dec, and Gen). To phrase the
problem mathematically, let m1,m2 be elements of a finite field (or a ring), and
c1, c2 their encryptions generated by an encryption system denoted π. Can c1, c2
be used to publicly generate cadd = Encπ

(
m1 + m2

)
or cmult = Encπ

(
m1 · m2

)
?

If it is possible to use c1, c2 to publicly generate cadd = Encπ

(
m1 +m2

)
(respec-

tively, cmult = Encπ

(
m1 · m2

)
), then π is additively homomorphic (respectively,

multiplicatively homomorphic). If both tasks can be carried out, then π is a fully
homomorphic encryption (FHE) system.

The search for fully homomorphic encryption schemes has been going on for
many years and was tagged as ‘the holy grail of cryptography’. The first signif-
icant breakthrough in the field occurred in 2009, when Craig Gentry proposed
the first (computationally secure) fully homomorphic encryption scheme [23].
Gentry’s scheme has been refined and additional FHE schemes have been pro-
posed [2,13,24,25,37–39]. Unfortunately, the time complexity of the currently
known FHE schemes is too high to make them practical [1,31].
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While FHE schemes can provide solutions to the secure delegation prob-
lem, they can achieve at most computational security, but not information-
theoretical (IT-) security. In IT-secure schemes, the security of the scheme is
derived purely from information theory and depends neither on the computing
power of the adversary nor on any computational hardness assumptions. The
security of cryptographic schemes that have computational security is based on
unproven assumptions regarding the non existence of efficient algorithms for
solving specific mathematical problems and the computing power of the pos-
sible adversary. FHE schemes cannot achieve IT-security since existences of an
IT-secure FHE scheme would contradict known theorems regarding private infor-
mation retrieval.

Solutions for the secure delegation problem can be divided into two categories
according to their overall approach. FHE schemes suggest solutions for the secure
delegation problem based on the centralized approach. This approach assumes
that the user delegates the data to be stored and processed by a single server.
The second approach to the secure delegation problem is the distributed approach,
in which the user distributes the secret information between several clouds. In
the distributed approach, the user typically uses a secret sharing scheme to
distribute shares of the data among the servers. In this case, the users’ privacy
is kept as long as no more than a predefined threshold of the servers collude
in an adversarial attempt to reveal the data. Unlike FHE scheme, distributed
solutions to the secure delegation problem often achieve IT-security. The first
work reviewed in this manuscript [8] presents a distributed approach solution
to the secure delegation problem that suggests an IT-secure delegation scheme.
This scheme supports homomorphic evaluation of quadratic functions and 2-
CNF circuits over a dynamic database of secrets with no communication between
the servers.

The distributed approach to the secure delegation problem is related to secure
multiparty computation (MPC). MPC is an active field of research in cryptog-
raphy [6,19–22,27,33,40]. This field discusses the following problem. Several
participants are holding secret inputs and wish to evaluate a multivariate func-
tion over their secret inputs while not revealing to each other any information
regarding their secret inputs (except for what may be deduced from the output).
MPC schemes differ in their security and efficiency levels and their assumptions
regarding the behavior of the parties and the communication setting. One of the
typically used ideas is to secret share inputs. Then, adding two secret shared
values can implement logical OR gate, multiplication of two secret-shared values
(and reducing the degree of the obtained polynomial) can implement a logi-
cal AND gate. Using these two gates, a general logical circuit can be blindly
computed.

More often than not, MPC schemes provide distributed solutions to the
secure delegation problem. In several cases, it also works the other way around.
Namely, some distributed solutions to the secure delegation problem can be used
to construct MPC schemes. The second work reviewed in this manuscript con-
siders a specific secret sharing scheme – the distributed random matrix (DRM)
scheme [10]. That secret sharing scheme is used to construct an efficient and
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IT-secure preprocessing-MPC protocol and a distributed solution for the secure
delegation problem. These schemes support homomorphic evaluation of poly-
nomials over non-zero inputs with optimal round complexity. We present the
one-time secrets (OTS) protocols that enable the evaluation of multivariate poly-
nomials over shares of non-zero secrets without requiring a secret sharing phase
invoked in an offline preprocessing phase. In addition, [10] deals with the prob-
lem of handling possibly zero secrets in several ways. By enabling the servers to
communicate with each other, we manage to enable the homomorphic evaluation
of polynomials of an arbitrary degree. Recall that in [8], we were able to support
evaluation of polynomials of degree at most two with no communication between
the servers.

So far, we have described the secure delegation problem and possible solu-
tions for it assuming all participants are classic computers. An equally exciting
problem arises when it is assumed that some (or all) of the participants are quan-
tum computers. In the third work reviewed in this manuscript, [11], we take the
centralized approach, assume that the user and server are quantum computers,
and seek efficient and IT-secure solutions to the secure delegation problem. In
that paper, the homomorphic encryption system presented is used to construct
a quantum key distribution (QKD) protocol that is resistant to attacks based on
weak measurements (WM). We present new proposed WM-based attacks against
existing QKD schemes that cannot be applied against our system (Table 1).

Table 1. A comparison of the solutions presented here.

Work Approach Communication Supported functions

[8] Distributed Servers - user only Quadratic polynomials

[10] Distributed Servers - user, servers - servers Polynomials of arbitrary degree

[11] Centralized Server - user A family of quantum gates

In the rest of the paper, we review the works [8,10,11] in more detail– for
each work, we provide some additional background, examine the overall concept
and methods, and the main contributions.

2 Communication-Less Evaluation

In 1979, Adi Shamir [35] presented one of the two first (N, t)-secret sharing
schemes (see [12] for the other suggestion). Such a scheme allows a user to split
a piece of information (hereafter a secret) among a set of N participants in such
a way that only subsets of size at least t are able to recover the secret, while
smaller subsets will not be able to learn any information about the secret. Secret
sharing is a vital building block in MPC schemes and distributed solutions to
the secure delegation problem. In Shamir’s secret sharing scheme, the secret s
is an element of a finite field of order p, denoted by Fp, and is shared by a user
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among a set of N parties (where p > N) in the following way. Each party Pi,
1 ≤ i ≤ N , is assigned by the user with an arbitrary element αi of F×

p , where
the αi’s are distinct. Random elements aj of Fp, 1 ≤ j ≤ t − 1, are picked by
the user. Let f be the polynomial defined by f(x) = s +

∑t−1
j=1 ajx

j in the field
Fp. Each party Pi gets the value f(αi). Shamir proved that, in this way, every
group of t parties is able to reconstruct s, but no group of t − 1 parties gains
any information about s [35].

One prominent property of Shamir’s scheme is that it is additively homomor-
phic. This property is based on the fact that the sum of polynomials of degree
≤ t−1 is again a polynomial of degree ≤ t−1. Unfortunately, since the product
of two polynomials of degree ≤ t − 1 is in general of a higher degree, Shamir’s
scheme is not multiplicatively homomorphic. As the degree of the polynomial
gets larger, a larger coalition is required in order to extract the secret. One of the
main results obtained in [8] is a method for making Shamir’s scheme support one
homomorphic multiplication of secrets while, in some sense, not increasing the
degree of the polynomial that represents the secrets. This is our novel function
sieving method. This method provides a way of choosing the non-free coefficients
for two N − 1 degree polynomials, f1 and f2, such that, if f1(0) = s1 and
f2(0) = s2, then interpolating the N points

(
αi, f1(αi) · f2(αi)

)
(for 1 ≤ i ≤ N)

one obtains a polynomial whose value at zero is s1 · s2. Our method enables to
find the specific cases in which the polynomials f1 and f2 are such that, multi-
plying the shares of the corresponding secrets, one obtains N products of shares
that represent a polynomial of degree ≤ N − 1 that has the right value at 0. We
define a set of 2(N − 1)-tuples. Each tuple contains suitable non-free coefficients
for a pair of polynomials for which homorphic multiplication in Shamir’s scheme
works.

The Algorithm in a Nutshell. We now briefly sketch the outline of our
constructions in more detail. Assume that the field Fp, in which the secrets s1
and s2 reside, is such that p ≡ 1 (mod N). In that case, since F

×
p is cyclic,

it contains a primitive root of unity of order N . Let α be such a root. For
1 ≤ j ≤ N denote αj := αj , and assign to each party Pj the value αj . Let
ai, bi ∈ Fp, 1 ≤ i ≤ N −1, and consider the polynomials f1(x) = s1 +

∑N−1
i=1 aix

i

and f2(x) = s2 +
∑N−1

i=1 bix
i, in Fp[x]. Share the secrets s1, s2 among the parties

using f1, f2. Let yj = f1(αj) · f2(αj), 1 ≤ j ≤ N. The pairs (αj , yj) ∈ F
2
p are N

distinct points through which the polynomial (f1 · f2)(x) passes.
Since f := f1 · f2 is of degree ≤ 2N − 2, it is uniquely determined by 2N − 1

points. Since there are only N points (αj , yj), interpolation of them will certainly
not yield (f1 · f2)(x). Nevertheless, let g(x) be the interpolation polynomial for
the N points, (αj , yj). Obviously, g is of degree ≤ N − 1. Since f and g agree on
the roots of ψ, we have g(x) ≡ f(x) (mod ψ(x)), where ψ(x) =

∏N
j=1(x − αj).

Since the αj ’s are all the roots of unity of order N , we have ψ(x) = xn+1 − 1.
Hence, it is easy to compute g.

In fact, denote f(x) = s1s2 +
∑2N−2

i=1 cix
i. We have xN ≡ 1 (mod ψ(x)), and

therefore g(x) ≡ f(x) ≡ s1s2 + cN +
∑N−1

i=1 (ci + cN+i)xi (mod ψ(x)). This in
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turn implies that g(0) = s1s2 + cN . Thus, if we take f1 and f2 such that cN = 0,
we get g(0) = f(0). Now, cN =

∑N−1
i=1 aibN−i. Hence, instead of picking the

coefficients of f1 and f2 uniformly at random, we pick them in such a way that
cN = 0.

This is, in essence, the function sieving method. Instead of using Shamir’s
secret sharing scheme with random polynomials from Fp[x], we use it with poly-
nomials f1, f2, for which cN = 0, which compels g(0) = f(0). Such a pair (f1, f2)
is a 1-homomorphic multiplicative pair of polynomials.

This method enables a user to securely distribute a confidential database of
m elements to a set of N semi-trusted servers while enabling homomorphic eval-
uation of quadratic functions and 2-CNF circuits over the secrets efficiently, with
no communication between servers, IT-secure against coalitions of up to N − 2
semi-honest servers, with O(m2) ciphertext, and dynamically. A secure outsourc-
ing scheme is dynamic if it enables the user to add (or remove) new records to
the database with no need for storing and re-sharing existing secrets by the
dealer. The dynamic property is vital for a secure outsourcing scheme and may
have significant benefits in many practical applications. Whenever one wishes to
outsource the storage of a database to a set of semi-trusted servers, some pieces
of data may not be known at the moment of construction of the database and
are expected to be known in the future. A dynamic scheme resolves the need for
storing a copy of the entire database on the user’s computer. In [8], we review
existing communication-less schemes that enable similar homomorphic proper-
ties (e.g., Beaver’s multiplication technique [4], or other variants of Shamir’s
scheme) and show that these schemes are either non-dynamic or less secure.

3 Optimal-Round P-MPC

The search for solutions for the secure delegation problem often gives rise to
MPC protocols, as exemplified in [10]. MPC is an extensively studied field in
cryptography rooted in Yao’s millionaire problem from the early 80’s [40]. In their
seminal work from 1988, Ben-Or et al. [6] showed that, in the plain model, every
function of N inputs can be efficiently computed with perfect passive security
by N parties if and only if one assumes that the majority of the participant are
honest. One may enable multiparty computation of functions in the presence of
a dishonest majority by switching to the preprocessing model, first suggested in
[5]. The preprocessing model enables achieving perfect passive security against
dishonest majority by enabling the parties to engage in an offline preprocessing
phase before the secret inputs are known. At the end of that offline phase, the
parties obtain correlated randomness (CR) – random coins to be used in the
online phase of the protocol. Given a preprocessing MPC protocol (hereafter
P-MPC), the space complexity of the scheme indicates how the amount of CR
required for the scheme grows with respect to other parameters.

An important measure of efficiency of MPC schemes is their round complex-
ity. Two rounds of communication are now known to be optimal for MPC – in the
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plain or preprocessing model [15,32]. Ishai et al. suggested in [30] two-round P-
MPC protocols with perfect passive security against dishonest majority, followed
by several improvements [14,16]. There already exist MPC schemes with opti-
mal round complexity and dishonest majority. Nevertheless, all these schemes
require amounts of either time, memory or communication exponential in some
of the parameters: depth or size of the circuit, size of the domain, or number of
parties. The space complexity of known solutions is (believed to be inherently)
exponential in the size of the input and N .

In [10], we construct efficient N -party P-MPC schemes for polynomials over
non-zero inputs. There already exist schemes for efficient evaluation of polynomi-
als over non-zero inputs [26]. However, our schemes are the first not to require an
additional secret sharing round during the preprocessing stage. We also suggest
several ways of handling possibly-zero inputs. Each of these ways best suits dif-
ferent families of functions. These schemes are based on the DRM secret sharing
scheme, a novel homomorphic secret sharing scheme established in [10]. These
results were established based on our work [9], where we constructed efficient
schemes for secure outsourcing of stream computations.

The DRM secret sharing scheme, presented in [10], supports homomorphic
multiplications of secrets and, after a single round of communication, supports
homomorphic additions of secrets. We use the DRM secret sharing scheme to
construct the one-time secrets (OTS) protocols. These protocols enable the eval-
uation of multivariate polynomials over shares of non-zero secrets with the fol-
lowing properties: communication and space complexities linear in the num-
ber of monomials, optimal round complexity, perfect security against dishonest
majority. The main advantage of our scheme is that we achieve all these proper-
ties without requiring a secret sharing phase invoked in an offline preprocessing
phase. In addition, our paper suggests new techniques for handling possibly-zero
secrets in several ways.

The Algorithm in a Nutshell. We now review the main ideas behind our
method. First, we construct the Distributed Random Matrix (DRM) secret-
sharing scheme. In this scheme, a secret is randomly split to a sum of field
elements, and each of the addends is randomly split to a product of field elements.
The factors of these products are put in the rows of a matrix, and each column
of that matrix is considered a share of the secret. Namely, given an element
x of a finite field Fp, we split x to a sum of N random Fp elements γi, 1 ≤
i ≤ N . Then, each of the γi’s is split to a random product of Fp elements
mi,j , 1 ≤ j ≤ N . Denote by C the square matrix of order N whose entries are
the multiplicative shares mi,j of the additive shares γi. The mi,j are randomly
picked under the condition that C contains zeroes only on its main diagonal,
if any. The N columns of C are N DRM-shares of x. The double splitting of
each secret (additively splitting the secret and multiplicatively splitting each
addend) enables supporting both homomorphic multiplications and additions.
In [10] we prove that, the DRM secret sharing scheme supports homomorphic
multiplications with multiplicatively secret-shared F

×
p elements. Furthermore, a
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single round of communication enables the parties to switch to additive shares
of x.

Next, the DRM secret sharing scheme is used to construct a P-MPC scheme.
The outline of the scheme is as follows. In the preprocessing phase, each party
is supplied with a sufficient amount of CR in the form of DRM shares of 1 ∈ Fp

– one share for each monomial in the target polynomial. Recall that these DRM
shares support homomorphic multiplications. To evaluate the polynomial over
the secret inputs, for each monomial, each party multiplies the corresponding
DRM-share (a column vector) with a power of the secret as required by that
monomial, and obtains a new column vector. In the first communication round,
the entries of this column are split among the other servers. Next, each server
computes the products of the values obtained in the previous round (one product
for each monomial) and adds these products to obtain an additive share of the
output. Lastly, the parties distribute the additive shares of the output to each
other, and each party locally adds them to obtain the output. The main advan-
tage of our scheme is that it requires no secret sharing round in the preprocessing
phase.

Our results are also extended to the client-server model, providing an IT-
secure solution to the secure delegation problem. The DRM single-round client-
server scheme enables a set of users to securely outsource the storage of their
private inputs to a set of servers and have the servers evaluate polynomials over
the entire collection of users-inputs (non-zero). The users obtain the result after
a single round of communication between the servers.

To securely delegate non-zero secrets to the servers, the user distributes mul-
tiplicative shares of each secret among the servers. Then, to enable homomorphic
evaluation of polynomials of arbitrary degree over the secrets, the user sends a
query to the server containing a description of the polynomial and DRM-shares
of 1 ∈ Fp, one for each monomial, to be used as CR. Next, the servers use the
CR to evaluate the polynomial in a single round of communication and send the
shares of the result to the user.

The DRM client-server scheme is perfectly secure against coalitions of up to
N −1 honest-but-curious servers. The users do not communicate with each other
during the execution of the scheme. Each user distributes secret-shares of the
inputs to the servers and receives the output from the servers.

The innovative approach of the scheme enables handling high degree polyno-
mials without being concerned with the depth of the arithmetic circuit, which is
one of the main complexity bottlenecks in MPC. The communication and space
complexities of our schemes are independent of the degree of the polynomial,
and the required CR is independent of the function.

To emphasize the importance of round-efficiency, we note that, while pro-
cessing information becomes faster as technology improves, the time it takes
to transmit information between two distant places is strictly limited by the
speed of light. One may consider a future need to perform MPC over inputs held
by parties residing in distant places, perhaps in different continents or even in
space. Denote by T the time it takes to process the computations needed for the
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evaluation of some function f using our schemes. If sending a message between
parties takes more than T , then optimal-round schemes outperform any scheme
with non-optimal round complexity.

4 Quantum HE and Applications

Quantum computers may allow feasible solutions to problems that are currently
considered impractical to solve [7,18,28,36]. In view of this fact, it is natural
to wonder if quantum computers can be used to achieve an IT-secure FHE
scheme. In 2014, [41] showed that it is impossible to construct an efficient IT-
secure quantum FHE (QFHE) scheme. Efficient IT-secure (quantum or classical)
encryption schemes can support homomorphic evaluation of only a subset of all
possible functions.

In a search for a quantum encryption scheme of classical data, [11] suggested
the random basis encryption scheme – an efficient, IT-secure, perfectly correct,
non-interactive, and fully compact encryption scheme that supports homomor-
phic evaluation of several quantum gates. The scheme presented in [11] shares
some resemblance with the quantum one-time pad (QOTP) based encryption
scheme. In QOTP based schemes, Pauli gates are randomly applied to plaintext
qubits to obtain IT-secure encryption, while supporting homomorphic evaluation
of Pauli gates. QOTP was suggested by Ambainis et al. in [3].

The main difference between the random basis encryption scheme and the
QOTP-based schemes is that in [11], a plaintext bit is encrypted by a rotation of
the corresponding qubit in an angle chosen from an immense number of possibil-
ities, while in [3] there are only four possible different encodings for a plaintext
qubit. The random basis encryption scheme essentially implements a continuous
version of the (discrete) QOTP scheme. The difference between the continuous
and discrete versions becomes significant in several scenarios when considering
attacks based on weak measurements (WM).

Another advantage of our random basis encryption scheme over QOTP-
based schemes is that in contrast to the legacy quantum one-time pad based
HE scheme, that requires modifications of the keys by the user, our scheme is
computation agnostic. Namely, when delegating computations, the user is not
required to carry out such computations and key-adjustments and can remain
utterly oblivious to the implementation method chosen by the server/cloud.

Weak measurements enable accumulating information regarding the state of
a qubit while not collapsing the state, but only biasing it a little. In [11], it is
shown how WM can be used to attack quantum key distribution (QKD) schemes
that are based on QOTP. Namely, we demonstrate a WM attack on the [7] and
[17] schemes that enables an adversary to obtain a non-negligible advantage at
guessing a key-bit while reducing the risk of being caught.

Our WM attack works as follows. First, we weakly interact the subject qubit
with an ancillary qubit. Then, we (strongly) measure the ancillary qubit. The
outcome of the (strong) measurement of the ancillary qubit is the outcome of
the weak measurement of the subject qubit. This process enables imprecisely
measuring quantum states, outsmarting the uncertainty principle.
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To this end, we construct a two-qubit quantum gate that is very close to the
identity operator (not doing anything), but slightly tends towards the CNOT
quantum gate. The CNOT quantum gate enables copying computational basis
qubits ({|0〉 , |1〉}) without disturbing them. If the qubits are not in the com-
putational basis, the CNOT gate disturbs them1. Our two-qubit quantum gate
can be taken to be arbitrarily close to the identity operator, hence enabling a
tradeoff between information gain and state disturbance.

Explicitly, given ε > 0, let Wε =
√

ε · i · CNOT +
√

1 − ε · I a two-qubit
gate (I is the identity operator and i is the square root of −1). In our WM
attacks, Wε is used to weakly interact a target qubit with an ancillary qubit.
If the target qubit is in the computational basis, then measuring the ancillary
qubit provides some information regarding the target qubit. If the target qubit
is in the Hadamard basis, we obtain no information, but only slightly disturb
the state.

In addition, [11] presents the random basis CNOT QKD scheme – an IT-
secure QKD scheme that is resilient against weak measurement based attacks.
Another advantage of our QKD scheme compared to other schemes is that only
one side measures, and the other side can decide to blindly negate the state
without knowing the chosen random base.

The random basis encryption scheme is shown to be useful in another setting
– securing entanglement. Entanglement is an essential resource in many quan-
tum settings – teleportation, private communication, and distinguishing quan-
tum states [29]. The utilization of entanglement in communication, computation,
and other scenarios is a very active area of research. In practice, entanglement
is typically generated by direct interactions between subatomic particles. The
generation of entangled systems requires efforts and expenditures. In [11] it is
suggested that, once entanglement was generated, it should be secured in the
sense that only its rightful owners will be able to use it. We demonstrate a process
of securing entanglement using the random basis encryption scheme. Moreover,
we show that our method of securing entanglement provides safer implications
in the face of weak measurements compared to possible straightforward QOTP
based methods for the same task.

5 Conclusions

We believe that distributed computing can benefit much from using the tech-
niques reviewed above and in particular secure multiparty computation. The
classical methods of secure multiparty computation imply high communication
overhead. The reviewed works’ scope is to advance the research for reducing the
communication overhead in the scope of dynamic database, streaming compu-
tation, and quantum computers.

1 It is not possible to copy general qubits due to the no-cloning theorem.
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Abstract. Reliable communication is a fundamental primitive in dis-
tributed systems prone to Byzantine (i.e. arbitrary, and possibly mali-
cious) failures to guarantee integrity, delivery and authorship of messages
exchanged between processes. Its practical adoption strongly depends on
the system assumptions. One of the most general (and hence versatile)
such hypothesis assumes a set of processes interconnected through an
unknown communication network of reliable and authenticated links,
and an upper bound on the number of Byzantine faulty processes that
may be present in the system, known to all participants.

To this date, implementing a reliable communication service in such
an environment may be expensive, both in terms of message complex-
ity and computational complexity, unless the topology of the network is
known. The target of this work is to combine the Byzantine fault-tolerant
topology reconstruction with a reliable communication primitive, aiming
to boost the efficiency of the reliable communication service component
after an initial (expensive) phase where the topology is partially recon-
structed. We characterize the sets of assumptions that make our objective
achievable, and we propose a solution that, after an initialization phase,
guarantees reliable communication with optimal message complexity and
optimal delivery complexity.

Keywords: Reliable communication · Byzantine fault tolerance ·
Topology reconstruction

1 Introduction

Reliable communication primitives are fundamental building blocks for a dis-
tributed system, guaranteeing the eventual delivery of all messages sent by
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correct processes to their intended receivers. Their employment is particularly
relevant when a fraction of processes may suffer arbitrary failures i.e., they are
Byzantine and may deviate from the protocol by dropping messages, altering
their content, or generating spurious messages.

The availability of a reliable communication primitive strongly depends on
the system behavior and on its capability to match the set of assumptions
required to ensure the correctness of the reliable communication specification.
In particular, it has been shown that such a primitive can be efficiently imple-
mented when every process can directly exchange messages with every other [5],
also in presence of a bounded and known number of Byzantine processes. How-
ever, full connectivity is a strong assumption in large networks and it results
impractical whenever scalability is envisioned.

When considering multi-hop networks i.e., systems where every process can
communicate directly only with a subset of the others, several results exist to
build a Byzantine-tolerant reliable communication primitive. In this paper, we
are interested in the solutions designed for multi-hop networks where the topol-
ogy is not known to the participants. In this context, [8] defined a solution
working under the assumption that processes are sufficiently connected. How-
ever, providing a reliable communication service in such a general environment
may mandate a huge amount of messages and may require very high computa-
tional power. Those complexity issues can somewhat be reduced to a tractable
problem when either the entire network topology is known to all the processes [8]
or it satisfies specific topological requirements [17]. Thus, a naive approach to
build an efficient reliable communication primitive is to act in two steps: (i) run a
topology reconstruction algorithm to infer the network graph and (ii) use an effi-
cient reliable communication protocol for known network on the reconstruction
just inferred. Unfortunately, Byzantine fault-tolerant topology reconstruction
has been proved difficult [16], and the final topology inferred does not perfectly
match the real one. Besides, correct peers may end the topology reconstruction
algorithm by obtaining different network graphs.

Given a network topology G unknown to processes, our goal in this paper is
to detail how properly combine the two steps of the described naive approach
and to study the set of conditions that G must satisfy to correctly support it.
The rationale of this work is that the high topology reconstruction overhead
only needs to be paid once, afterwards, reliable communication can be achieved
efficiently (otherwise, it would have remained always extremely expensive). The
main difficulty is to ensure that discrepancies in the topology reconstructions
do not hinder the proper functioning of the reliable communication system. Our
work builds upon two reliable communication protocols (DolevR and DolevU [8]),
and a topology reconstruction one (Explorer [16]). In more detail, we character-
ize the sets of assumptions that make our objective achievable, and we propose
a solution that, after an initialization phase, guarantees reliable communication
with optimal message complexity and delivery complexity.

Due to space constraints, minor proofs of Properties, Lemmas and Theorems
have been reported in the technical report version of this paper [3].
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2 Related Works

Several solutions have been proposed in the literature to build Byzantine-tolerant
reliable communication primitives. A seminal contribution was provided by
Dolev [8], assuming (i) processes interconnected through a possibly multi-hop
communication network (ii) and an upper bound f on the number of Byzantine
faulty processes present in the system (globally bounded failure model). Dolev
proved that a (2f +1)-connected network is required to build a reliable commu-
nication primitive in presence of f Byzantine participants i.e., the node connec-
tivity of the communication network must be greater than twice the maximum
estimated number of faulty processes. Dolev proposed two protocols working
with different assumptions on the knowledge of the network topology by partic-
ipating processes. More precisely, the lack of topology knowledge impacts both
the message complexity (i.e., the number of messages exchanged in the system
during a reliable communication instance) and the delivery complexity (i.e., the
computational complexity of the procedure used to validate a message) of the
protocol. The Dolev’s protocol for unknown networks was recently revised to
reduce its message complexity [4]. To the best of our knowledge, no other contri-
bution addressed the reliable communication problem in the globally bounded
failure model without considering stronger assumptions. When moving to the
locally bounded failure model (where every process is linked to at most f Byzan-
tine peers) other approaches have been defined [18]. The Certified Propagation
Algorithm (CPA) was proposed as a reliable communication protocol by Pelc and
Peleg, and it has been proven optimal, for the number of faulty processes that
can be simultaneously tolerated [17]. Let us note that, either assuming a globally
or locally bounded failure model, a dense communication network is required to
enable reliable communication in a distributed system. For this reason, weaker
primitives have been defined, allowing a (small) part of correct processes to either
deliver spurious messages (i.e. messages not generated by their claimed author)
or to never deliver a valid message [12–14]. These weaker versions enable almost
reliable communication also on sparse communication networks.

All the aforementioned solutions do not necessarily rely on digital signatures
or other cryptographic primitives. Indeed, the goal of Byzantine-tolerant algo-
rithms is to withstand (computationally) unbounded adversaries that are poten-
tially able to solve (computationally hard) problems on which cryptographic
primitives are based upon. Nevertheless, links are assumed to be authenticated
and reliable, so if u and v are linked, every message v received from u has been
previously sent by u. Notice that cryptographic primitives are not necessary to
implement authenticated links [19].

The Byzantine fault-tolerant topology reconstruction problem has been ana-
lyzed by Nesterenko and Tixeuil [16] assuming the globally bounded failure
model. Then, temporary arbitrary faults have been considered by Dolev et al.,
defining a self-stabilizing Byzantine-tolerant solution [9].
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3 Preliminaries

3.1 System Model

We consider an asynchronous distributed system [5] composed by a set P of n
processes, each associated with a unique identifier i.e., P = {p1, p2, . . . , pn}.

Failure Model. We consider the globally bounded Byzantine failure model,
namely we assume that inside the system there might be at most f Byzan-
tine faulty processes. All other peers are assumed correct. Let us note that the
identity of Byzantine processes is not known to correct ones.

Messages and Communication. Processes communicate by exchanging mes-
sages on top of a communication network made of reliable and authenticated
links [5]. It means that messages cannot be lost or altered during their transmis-
sion and that the identity of their sender cannot be forged. Such communication
network is abstracted by an undirected graph G = (P,E) where the set of nodes
V corresponds the set of processes participating in the system and the set of
edges E contains an element ei,j for each existing link connecting two processes
pi and pj . We assume the node connectivity k of G greater than twice the number
of the potentially faulty processes i.e., k > 2f1.

On top of the communication network, two alternative primitives are avail-
able: unicast (UL) and local broadcast (LBL) links [1,2,11]: the former intercon-
nect single pairs of processes pi, pj ; the latter attach a process pi to many others,
such that if a message is sent by pi then it is received by all of its neighbors, thus
preventing a faulty process to equivocate (i.e., to transmit conflicting messages
to different neighbors).

We assume that processes are unaware about the topology of the communi-
cation network, namely the graph G: they either know the identifier of the peers
they have a link with (known neighborhood i.e., KN assumption) or they have
no knowledge about (unknown neighborhood i.e., UN assumption).

We refer with source to the advertised author of a message, and with sender
to the process that is sending a message through a link.

3.2 Problem Specification: Reliable Communication

We investigate the reliable communication problem between a source process ps
and a target process pt. Informally, when addressing this problem, the goal is to
define a distributed protocol able to deliver only the messages generated by a
correct source to every correct process in the system.

Let us note that, in the literature, the term message is commonly used instead
of content when formalizing a problem specification based on message exchanges.
However, several messages carrying the same payload can be diffused in a system
to solve the reliable communication problem. Therefore, for ease of presentation,

1 It is not possible otherwise to achieve reliable communication in the system model
we are considering [8].
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we will refer with content to the payload diffused by a process and with message
to union of a content and the protocol specific overhead.

More formally, we will say that a protocol solves the reliable communication
problem if, for every pair of processes ps and pt in the system, both the following
conditions are satisfied:

– (Safety) if pt is correct and it delivers a content m from ps, then ps previously
sent m;

– (Liveness) if ps and pt are both correct and ps sends a content m to pt, then
pt eventually delivers m from ps.

We refer with spurious content to one not sent by its claimed source (i.e. a
content initially diffused by some Byzantine processes).

3.3 Evaluation Metrics

We will evaluate the solutions to the reliable communication problem in terms of
(i) message complexity i.e., the number of messages that the protocol generates to
solve the problem and (ii) delivery complexity i.e., the computational complexity
of the procedure that allows a target process pt to decide if a content can be
delivered or not.

3.4 The Topology Reconstruction Problem

Given an unknown network G of correct and Byzantine faulty processes, the
aim of a distributed protocol addressing the topology reconstruction problem
is to enable every correct process pi to reconstruct a subset of the topology
of the communication network G. Such a reconstruction Gi is expected to be
as complete as possible. The nodes of the communication network G can be
partitioned in correct and faulty, and its edges in correct, one-faulty and two-
faulty, respectively interconnecting two correct processes, a correct process and
a faulty one, and two Byzantine processes. Likewise, the nodes and edges of a
topology reconstruction Gi can be either real or spurious, respectively mapping
or not nodes and edges in G.

3.5 Basic Definitions

For the sake of presentation, this section recalls some definitions and results
coming from graph theory [6] that will be employed in this work.

Let us consider an undirected graph G = (V,E). A path P is a sequence of
nodes with no repetition i.e., P = [v1, v2, . . . , vm] (with vi ∈ V ) such that for
each pair of adjacent elements vi, vi+1 there exists an edge ei,i+1 ∈ E. The first
and last elements of a path are referred with endpoints.

A pair of nodes vi, vj ∈ V is connected if there exists at least one path Pi,j

between them in G, it is disconnected otherwise. Given two nodes vi and vj ,
many paths between them may exist. Given a set of paths P1

i,j ,P2
i,j , . . . ,Px

i,j
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between two nodes vi and vj they are said node disjoint if they share no vertex
except for their endpoints.

We refer with Πi,j to a disjoint paths solution between nodes vi and vj ,
i.e. a set of node disjoint paths having vi and vj as endpoints. The local node
connectivity κi,j between two nodes vi, vj is the minimum number of nodes
that has to be removed from G to disconnect vi from vj . The node connectivity
of a graph is the minimum value k for the local node connectivity κi,j (i.e.,
k = min(κi,j),∀vi, vj ∈ V ). A graph having node connectivity greater or equal
than k is said k-connected graph. The local node connectivity between two nodes
is equal to the maximum number of disjoint paths that exist between them
(Menger theorem [15]). It is possible to compute a disjoint paths solution Πi,j

between two nodes vi, vj of maximum size (namely κi,j) with a deterministic
algorithm with computational complexity polynomial in the size of the graph
[7,10]. In the following, we will consider every disjoint paths solution Πi,j always
of maximum size κi,j .

4 Dolev Protocols

Dolev [8] identified the necessary and sufficient conditions to solve reliable com-
munication in the system model we consider.

Remark 1. The reliable communication problem can be solved if and only if the
node connectivity of the communication graph is greater than 2f i.e., k > 2f .

Dolev provided two protocols that work under different assumptions on the
(partial) knowledge that processes have about the network topology.

4.1 Dolev’s Routed Protocol (DolevR)

DolevR is a protocol solving reliable communication in routed-networks [8], i.e.
systems where all messages are relayed over (and only) fixed and known paths.
Specifically, processes employing DolevR route contents between each pair of
process pi, pj over 2f + 1 disjoint paths Πi,j . The reliable and authenticated
links restrict the capabilities of faulty processes, allowing them to diffuse spurious
contents through at most f paths of any Πi,j . The assumption of a (2f + 1)-
connected network guarantees that at least f +1 paths of any Πi,j are fault-free
(i.e. they do not pass through any faulty processes). A process pj employing
DolevR delivers a content m from a process pi if it is received through at least
f + 1 routes of Πi,j .

Protocol Complexity. The message complexity of DolevR is linear in the
size of the network, whereas its delivery complexity is linear in the number of
maximum assumed faults, as detailed in the following Lemmas.

Lemma 1. DolevR solves the reliable communication problem with O(n) mes-
sage complexity.
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Lemma 2. DolevR solves the reliable communication problem with O(f) deliv-
ery complexity.

The delivery complexity and message complexity of DolevR are optimal solv-
ing the reliable communication problem in the system model we consider.

Theorem 1. DolevR solves the reliable communication problem in routed net-
works assuming the globally bounded Byzantine failure model with optimal mes-
sage complexity and optimal delivery complexity.

Proof. Given Lemmas 1 and 2, we show that no algorithm can solve the reli-
able communication problem, in the settings considered in this paper, with an
asymptotically lower complexity without considering additional assumptions.

Let us consider two processes ps and pt, not connected by a link, respectively
as source and target of a reliable communication instance.

The target process relies on the messages it receives from its neighbors to
deliver a content. Nevertheless, up to f of its neighbors could be Byzantine faulty
and process pt cannot identify them. Thus, a O(f) procedure is required.

Given that ps and pt are not linked, a content must be relayed over fault-
free paths (i.e. not including any faulty process) to achieve liveness of reliable
communication. In the worst-case scenario the length of the longest fault-free
path is n − k. ��

4.2 Dolev’s Topology Unaware Protocol (DolevU)

DolevU protocol solves the reliable communication problem in unknown net-
works [8], where contents are flooded in the system. Specifically, DolevU spreads
messages 〈m, path〉, in which m is the content and path is a list data structure
collecting the identifier of processes that are traversed by m. The source process
starts the communication multicasting to all of its neighbors the content m with
an empty path. Then, every process pi that receives a message 〈m, path〉 from
a neighbor pj adds the identifier of pj to path, it stores 〈m, path + {j}〉 and it
relays such a message to all of its neighbors not yet included in path+{j}. Every
process that succeeds identifying f + 1 disjoint path among the ones it received
with a content m delivers m.

Protocol Complexity. The message complexity of DolevU is factorial in the
size of the network, whereas a NP-Complete problem has to be solved verifying
every content, as detailed in the following Lemmas.

Lemma 3. DolevU solves the reliable communication problem with a message
complexity factorial in the number of processes.

Lemma 4. DolevU solves the reliable communication problem with a NP deliv-
ery complexity.
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The DolevU protocol has been recently reviewed to reduce its message com-
plexity [4]. It has been proven that modifications can be adopted in the protocol
preventing some messages to be generated. Nonetheless, it is still an open prob-
lem whether it is always possible to solve reliable communication in unknown
networks, under the weakest assumptions identified by Dolev (Remark 1), with
a protocol having polynomial message complexity and/or polynomial delivery
complexity. For sake of simplicity, we do not employ the reliable communication
protocol defined in [4], given that its worst-case delivery complexity and message
complexity is unchanged with respect DolevU.

The DolevU protocol provides the following additional guarantee in case local
broadcast links are assumed.

Theorem 2. Let DolevU solve reliable communication in a network G with local
broadcast links. Then, a content m is delivered by every correct process if it is
delivered by any correct one.

Proof. When the reliable communication necessary correctness condition is met
(Remark 1), the DolevU protocol guarantees that if the source ps of a content
m is correct, then any correct target eventually delivers m. This is not guar-
anteed in case of a faulty source: it may diverge from the protocol and it may
prevent some targets from delivering its contents. The local broadcast links pro-
vide an additional guarantee: every message a process sends is received by all
its neighbors. A correct source in DolevU multicast message 〈m, ∅〉 to all of its
neighbors. It follows that if a correct process delivered m, then message 〈m, ∅〉
has been sent to all neighbors of ps, given the local broadcast links, and the claim
follows. ��

5 Explorer

Nesterenko and Tixeuil analyzed the Byzantine fault-tolerant topology recon-
struction problem [16]. Among the results they provided, two impossibilities
have been identified.

Remark 2. No algorithm can decide whether a two-faulty edge exists [16].

Remark 3. No algorithm can compute a reconstruction of only real nodes and
edges while including both all correct and all one-faulty edges [16].

They also defined Explorer, an algorithm that enables processes to partially
reconstruct the topology of G in the globally bounded failure model assuming
KN. It is specified only by the following two procedures: every process pi 1)
broadcasts its neighborhood Γ (i) (namely it broadcasts the identifier of processes
it has a link with) and 2) it stores all neighborhoods Γ (j) delivered with a reliable
communication primitive in a dictionary data structure cTopi :=

⋃〈j, Γ (j)〉.
We introduce a simple neighborhood discovery procedure to cope with the

unknown neighborhood scenario, defined by the following actions: 1) every pro-
cess multicasts a HELLO message (basically a message with no payload), and 2)
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every process that receives a HELLO message adds the identifier of the sender
to its neighborhood.

Then, every process pi broadcasts with a reliable communication primitive
its neighborhood Γ (i) every time that it changes, and it updates the entry
〈j, Γ (j)〉 ∈ cTopi if 〈j, Γ (j)′〉, such that Γ (j) ⊂ Γ (j)′, is delivered.

Additionally, if local broadcast links are assumed, every process pi that deliv-
ers two neighborhood Γ (j) and Γ (j)′ from pj , such that Γ (j)′ 
⊂ (Γ (j) ∈ cTopi)
and (Γ (j) ∈ cTopi) 
⊂ Γ (j)′, do not consider j for the reconstruction.

Every process pi computes the reconstruction Gi(Pi, Ei) from cTopi as fol-
lows:

– ∀〈u, Γ (u)〉 ∈ cTopi ⇒ ∃u ∈ Pi;
– ∀〈v, Γ (v)〉, 〈u, Γ (u)〉 ∈ cTopi, u ∈ Γ (v) ⇒ ∃(v, u) ∈ Ei.
– ∀v ∈ Γ (u), 〈u, Γ (u)〉 ∈ cTop : X ← ⋃

u, |X| > f ⇒ ∃v ∈ Pi.

We report some properties of any reconstructed topology Gi computed with
the defined protocol.

Property 1. (From [16]) j /∈ P ⇒ j /∈ Pi (no Gi contains non-existent nodes).

Property 2. Assuming the unknown neighborhood assumption (UN), some recon-
struction Gi may never include some Byzantine processes.

Property 3. (From [16]) Assuming the known neighborhood assumption (KN),
the reconstruction Gi eventually guarantees the following property: j ∈ Pi ⇔
pj ∈ P (Property 1 + all real nodes are eventually detected).

Property 4. ∀〈u, v〉 ∈ E, u, v ∈ Correct ⇒ ∃〈u, v〉 ∈ Ei (all correct edges are
eventually contained in Gi).

Property 5. ∀〈u, v〉 ∈ Ei, 〈u, v〉 /∈ E ⇒ u ∈ Byzantine (every spurious edge
contains at least one Byzantine process).

Property 6. (From [16]) Assuming the known neighborhood assumption (KN):
∀〈u, v〉 ∈ E, u ∈ Correct, v ∈ Byzantine ⇒ ∃〈u, v〉 ∈ Ei (all one-faulty edges
will eventually be present in any Gi).

Property 7. Assuming local broadcast links (LBL), all one-faulty edges between
a Byzantine process and all of its correct neighbors are eventually either all or
none present in every Gi.

Property 8. Assuming local broadcast links (LBL), all correct processes eventu-
ally share the same topology reconstruction.

Property 9. No reconstruction Gi computed assuming local broadcast links
(LBL) will ever contain more real edges than one obtained assuming the known
neighborhood assumption (KN).
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5.1 Protocol Complexity Analysis

All correct processes pi in Explorer broadcast their neighborhood Γ (i). Sup-
posing the know neighborhood assumption (KN), every process broadcasts such
information only once. It follows that Explorer requires O(n) reliable commu-
nication executions to enable all correct processes to compute Gi. Considering
the unknown neighborhood (UN) assumption, every process has to perform the
neighborhood discovery and then to broadcast its Γ (i). Unfortunately, no process
pi knows how many nodes have to be detected before diffusing Γ (i), and thus,
they may broadcast their neighborhood many times, n − f − 1 in the worst-case
scenario. It follows that Explorer with neighborhood discovery executes O(n2)
reliable communication instances to enable all correct processes to compute Gi.

5.2 Fault-Free Disjoint Path Solution

The Explorer protocol enables processes to partially reconstruct the topology
of G. We showed that different sets of assumptions provide more or less accu-
rate reconstructions (Properties 1–9). We reported the DolevR protocol, that it
leverages disjoint routes defined between all pairs of processes to achieve reliable
communication. We highlighted how f Byzantine faulty processes may compro-
mise at most f paths of any disjoint path solution Πi,j in DolevR, and that the
liveness of such a protocol is guaranteed by the existence of disjoint path solu-
tions of size greater than 2f between all pairs of processes, where at least f + 1
paths cannot be compromised. It follows that, if every pair of correct processes is
able to identify a disjoint path solution interconnecting them where at least f +1
paths are faults-free (i.e. they do not include any Byzantine faulty process), real
and disjoint (FF R D), then they are able to achieve reliable communication.

We analyze several sets of assumptions that enable all pairs of correct pro-
cesses pi, pj to compute a disjoint path solutions Πi,j in Gi containing at least
f + 1 FF R D paths.

Theorem 3. The set of assumptions a) k > 3f , b) unicast links and c)
unknown neighborhood enables every correct process pi to compute a dis-
joint paths solution Πi,j toward any correct process pj that contains at least
f + 1 faults-free, real and disjoint paths.

Proof. Let us assume processes employing Explorer and that all messages it
generates have been already delivered by the peers. The unknown neighborhood
assumption and unicast links allow Byzantine faulty processes to decide which
one-faulty and two-faulty edges to declare (Remarks 2, 3), thus the local con-
nectivity between any two processes pi, pj in the reconstructed topology may be
reduced by at most f . It follows that any disjoint paths solution Πi,j will contain
more than 2f paths (Property 4). Given that at most f paths of any Πi,j may
contain faults the claim follows. ��
Theorem 4. The set of assumptions a) k ≤ 3f , b) unicast link and c)
unknown neighborhood is not sufficient to enable every correct process pi to
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compute a disjoint paths solution Πi,j toward every correct process pj containing
at least f + 1 faults-free, real and disjoint paths with any protocol.

Proof. The unknown neighborhood assumption and the unicast links allow faulty
processes to decide which one-faulty and two-faulty edges are detectable by cor-
rect processes (Remarks 2, 3). It follows that the faulty processes may potentially
be able to reduce the local connectivity between some pairs of correct processes
pi, pj by f : the local connectivity κi,j in Gi may be lower than 2f and at most
2f − 1 disjoint path Πi,j will be identifiable between pi and pj , whatever algo-
rithm is envisioned for the reconstruction. Then, up to f paths in Πi,j may
include faulty processes and the claim follows. ��
Theorem 5. The set of assumptions a) k > 2f + �f/2�, b) local broadcast
links and c) unknown neighborhood enables every correct process pi to com-
pute a disjoint paths solution Πi,j toward any correct process pj containing at
least f + 1 faults-free, real and disjoint paths.

Proof. Given Property 7, let us suppose that fd ≤ f Byzantine processes decide
to be detected by their neighbors and they send the HELLO message, whereas
f − fd ones do not. Let us assume that all messages exchanged by Explorer
have been already delivered and let us consider Πi,j as the disjoint path solution
computed on Gi between a pair of correct processes pi and pj . The assumption
on the node connectivity of G guarantees that at least 2f + �f/2� + 1 disjoint
paths exist between pi and pj in the communication network. The undeclared
Byzantine processes may reduce the local connectivity between pi and pj by
f − fd in Gi. Let us temporarily assume, for the purpose of the proof, that the
declared Byzantine processes behave as correct ones. It follows, from Property
4 and 7 of Explorer, that the size of Πi,j would be at least equal to:

2f + �f/2� + 1 − (f − fd) = f + �f/2� + 1 + fd

Specifically, all paths between pi and pj that contain only correct or declared
Byzantine processes existing in G are present in Gi.

Let us now consider the declared Byzantine processes not reporting the edges
existing between them (i.e. the two-faulty edges). It follows that the paths in G
containing two-faulty edges may not be present in Gi (Remark 2). Therefore,
pairs of Byzantine processes may potentially cause a reduction to the maximum
size of Πi,j : every couple may decrease the number of available disjoint paths in
Gi between pi and pj by one. It follows that the size of Πi,j would be at most
reduced to:

f + �f/2� + 1 + fd−�fd/2�
namely, fd declared Byzantine faulty processes may reduce the local connectivity
between p and q in Gi by at most �fd/2�. The fd declared Byzantine processes
may also be selected in the paths Πi,j . Specifically, in the worst case scenario fd
paths in Πi,j may contain Byzantine processes. It follows that at most fd paths
would not be fault-free, and thus the remaining fault-free ones in Πi,j would be:

f + �f/2� + 1 + fd − �fd/2�−fd = f + 1 + �f/2� − �fd/2�
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Thus, at least f + 1 paths in Πi,j are faults-free, real and disjoint. ��
Notice that, given Property 9, the Theorem 5 extends substituting local

broadcast links with the unicast ones and assuming the known neighborhood
assumption.

6 CombinedRC, Reliable Communication Protocol

We combine Explorer, DolevU and DolevR protocols to design a new reliable
communication primitive. We call such a protocol CombinedRC, that aims to set
up an efficient reliable communication service.

The Explorer protocol is used to partially reconstruct the network topol-
ogy, and then to enable processes to compute disjoint paths solutions through
which relay contents. The DolevU protocol is adopted as reliable communica-
tion subprimitive by Explorer and CombinedRC during the initialization. Lastly,
the DolevR protocol is employed as actual reliable communication primitive in
CombinedRC, leveraging the routes computed and communicated using Explorer
and DolevU.

We showed in Sect. 5.2 that Explorer, under certain conditions, enables every
correct process pi to identify a disjoint paths solution Πi,j interconnecting it with
any other correct process pj , such that at least f + 1 paths in the solution are
faults-free, real and disjoint. Once that the solution Πi,j is known to both pi
and pj , they can efficiently communicate. We claimed in Property 8 that all
correct processes eventually obtain the same topology reconstruction in case
local broadcast links are employed. Thus, under such an assumption, processes
pi and pj eventually compute the same solution Πi,j . Under the weaker condition
of unicast links, the reconstructed topologies may differ on distinct processes,
thus a source process pi has additionally to communicate the computed solution
Πi,j to a target process pj using DolevU.

Any source process pi routes contents through the computed Πi,j and any
target process pj waits for messages over f + 1 paths among the ones in Πi,j .

The pseudo-code of CombinedRC is presented in Algorithm 1.
Every process relays its contents over the computed routes if available, oth-

erwise, they are queued for subsequent transmission (lines 1–5).
Every process pi attempts to compute a solution Πi,j toward every other

process pj of the system. In the case of local broadcast links, the reconstructed
topology Gi is eventually the same in every process. Therefore, a source process
has to relay its contents over the computed disjoint routes every time they change
(a finite number of times). In case of unicast links, once that the local connec-
tivity toward a target pj reaches a value greater than 2f , the source process pi
communicates the computed solution Πi,j via DolevU (lines 6–21).

Every process relays contents or computed disjoint solution following the
path attached to messages (lines 22–23).

Every process that delivers a disjoint paths solution with DolevU adopts it
to verify contents (lines 34–35) using DolevR (lines 36–37).
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Algorithm 1. CombinedRC
1: upon RC send(m, target) do
2: Sent ← Sent ∪ 〈m, target〉
3: if Πi,target �= ∅ then
4: for path ∈ Πi,target do
5: send(〈CNT, i, target, m, path〉, path[1])

6: upon Gi changes do
7: for j ∈ Gi such that i �= j do
8: if LB then
9: if local conn(Gi, i, j) > f + 	f/2
 and disj paths(Gi, i, j) �= |Πi,j | then

10: Πi,j ← disj paths(Gi, i, j)
11: for path ∈ Πi,j do
12: for 〈m, target〉 ∈ Sent such that j = target do
13: send(〈CNT, i, j, m, path〉, path[1])

14: Πj,i ← disj paths(Gi, j, i)

15: else if UC then
16: if Πi,j = ∅ and local conn(Gi, i, j) > 2f then
17: Πi,j ← disj paths(Gi, i, j)
18: for path ∈ Πi,j do
19: send(〈ROU, i, j, Πi,j , path〉, path[1])
20: for 〈m, target〉 ∈ Sent such that j = target do
21: send(〈CNT, i, j, m, path〉, path[1])

22: upon receive(〈CNT, s, t, m, path〉, j) do
23: if predecessor(path, i) = j then
24: if t = i then
25: Pathscnt[〈m, s〉] ← Pathscnt[〈m, s〉] ∪ {path}
26: else
27: send(〈CNT, s, t, m, path〉, successor(path, i))

28: upon receive(〈ROU, s, t, Π, path〉, j) do
29: if predecessor(path, i) = j then
30: if t = i then
31: Pathsrou[〈s, Π〉] ← Paths uRts[〈s, Π〉] ∪ {path}
32: else
33: send(〈ROU, s, t, Π, path〉, successor(path, i))

34: upon DolevU deliver(Pathsrou[〈s, Π〉], s) do
35: Πs,i ← Π

36: upon DolevR deliver(Pathscnt[〈m, s〉], s) do
37: RC deliver(m, s)
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6.1 CombinedRC Correctness

Theorem 6. CombinedRC provides safety of reliable communication.

Theorem 7. CombinedRC provides liveness of reliable communication in all
cases where Explorer succeeds in identifying a disjoint path solution between
two processes i, j that contains f + 1 FF R D paths.

Proof. Let us assume that all messages exchanged by Explorer have been
already delivered and that a process pi aims to reliably communicate with a
correct process pj . In case of local broadcast links, processes pi and pj even-
tually share the same topology reconstruction Gi, thus also the disjoint path
solution Πi,j will eventually be the same both on pi and pj . Process pi relays
the contents through Πi,j every time such a solution changes. The assumption
of f +1 FF R D paths in Πi,j guarantees reliable communication. In case of uni-
cast channels, the solution Πi,j is diffused via DolevU and contents are routed
over Πi,j . The assumption of f + 1 FF R D paths in Πi,j guarantees reliable
communication. ��

6.2 Protocol Complexity Analysis

CombinedRC provides reliable communication with optimal message complexity
and delivery complexity (Theorem 1). Specifically, it routes contents over com-
puted disjoint routes as DolevR, thus O(n) messages per content are exchanged,
and an O(f) procedure is executed to verify any content.

CombinedRC requires an initialization phase where the network topology is
partially reconstructed and the solutions containing f + 1 FF R D paths are
computed between every pair of correct processes. We showed in Sect. 5 that
Explorer requires at most O(n2) reliable communication instances to partially
reconstruct the network topology. The same solution Πi,j is eventually computed
by both pi and pj , assuming local broadcast channels, without additional mes-
sage exchanges, because the topology reconstruction will eventually be the same
on every process and the disjoint paths solutions can be computed through a
deterministic algorithm. On the other hand, employing unicast links, every cou-
ple of processes has to agree on a solution Πi,j . Thus, an additional content
exchange (with payload Πi,j) using a reliable communication primitive has to
be performed for each pair of correct processes. It follows that the initialization
phase of CombinedRC requires the execution of O(n2) DolevU instances. Notice
that, in the case of known neighborhood and local broadcast links, the cost of
the initialization phase reduces to O(n) DolevU instances, indeed each process
diffuses its neighborhood only once and all correct processes eventually share
the same reconstruction.

7 Conclusion

We demonstrated how to boost the efficiency of reliable communication despite
some of the participants being Byzantine faulty, when the network topology is
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unknown to the participants, assuming reliable authenticated links. Our solution
combines a costly topology reconstruction process, that is executed once, and
an efficient reliable communication scheme that is optimal both in terms of
exchanged messages and of local computation complexity. Without leveraging
the topology reconstruction, the cost of every reliable communication instance
in the same scenario would have been factorial in message complexity and NP
in delivery complexity.

An interesting path for future research is to decrease the adversary capabil-
ities. A noteworthy candidate is the computationally bounded adversary, that
enables solutions based on cryptography.
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Abstract. We consider two mobile oblivious robots that evolve in a
continuous Euclidean space. We require the two robots to solve the ren-
dezvous problem (meeting in finite time at the same location, not known
beforehand) despite the possibility that one of those robots crashes
unpredictably. The rendezvous is stand up indulgent in the sense that
when a crash occurs, the correct robot must still meet the crashed robot
on its last position.

We characterize the system assumptions that enable problem solv-
ability, and present a series of algorithms that solve the problem for the
possible cases.

1 Introduction

The study of swarm robotics in Distributed Computing has focused on the com-
putational power of a set of autonomous robots evolving in a bidimensional
Euclidean space. In this setting, a robot is modeled as a point in a two dimen-
sional plane and has its own coordinate system and unit distance. Robots are
usually assumed to be very weak: they are (i) anonymous (they can not be dis-
tinguished), (ii) uniform (they execute the same algorithm) and, (iii) oblivious
(they cannot remember past actions). Robots operate in cycles that comprise
three phases: Look, Compute and Move. During the first phase (Look), a robot
takes a snapshot to see the position of the other robots. During the second phase
(Compute), a robot decides to move or stay idle. In the case in which it decides
to move, it computes a target destination. In the last phase (Move), a robot
moves to the computed destination (if any). Depending on how robots are acti-
vated and the synchronization level, three models have been introduced: Fully
synchronous model (FFSYNC) in which robots are activated simultaneously and
execute cycles synchronously. Semi synchronous model (SSYNC) in which a sub-
set of robots are activated simultaneously. The activated robots execute a cycle
synchronously. The asynchronous model (ASYNC) in which there is no global
clock. The duration of each phase is finite but unbounded. That is, one robot
can decide to move according to an outdated view.

Among the various problems considered under such weak assumptions there
is the gathering problem which is one of the benchmarking tasks in mobile robot
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networks. The gathering task consists in all robots reaching a single point, not
known beforehand, in finite time. The particular case of gathering two robots
is called rendezvous in the literature. In this paper, we consider the Stand Up
Indulgent Rendezvous (SUIR) problem: in the case one of the two robots crashes,
they still have to gather (obviously, at the position of the crashed robot); if no
robot crashes, the robots are expected to gather in finite time. The SUIR problem
is at least as difficult as the rendezvous problem, so classical impossibility results
still apply.

Related Works. A foundational result [14] shows that when robots operate
in a fully synchronous manner, the rendezvous can be solved deterministically,
while if robots are allowed to wait for a while (this is the case e.g. in the SSYNC
model), the problem becomes impossible without additional assumptions. Such
additional assumptions include the robots executing a probabilistic protocol [8,9]
(but the rendezvous only occurs probabilistically), the robots sharing a common
x − y coordinate system [14] or an approximation of a common coordinate sys-
tem [12], or the robots being endowed with persistent memory [7,11,13–15].
Recent work considered the minimum amount of persistent memory that is nec-
essary to solve rendezvous [7,11,13,15]. It turns out that exactly one bit of
persistent memory is necessary and sufficient [11] even when robots operate
asynchronously and are disoriented.

When robots can crash unexpectedly, two variants of the gathering problem
can be defined [1]: weak gathering requires correct robots to gather, regardless
of the position of crashed robots; strong gathering requires all robots to gather
at the same point. Obviously, strong gathering is only feasible if all crashed
robots crash at the same location. Early solutions to weak gathering in SSYNC
for groups of at least three robots make use of extra hypotheses: (i) starting
from a distinct configuration (that is, a configurations where at most one robot
occupies a particular position), at most one robot may crash [1], (ii) robots are
activated one at a time [8], (iii) robots may exhibit probabilistic behavior [9],
(iv) robots share a common chirality (that is, the same notion of handedness) [4],
(v) robots agree on a common direction [3]. It turns out that these hypotheses
are not necessary to solve deterministic weak gathering in SSYNC, when up to
n − 1 robots may crash [5].

The case of strong gathering mostly yielded impossibility results: with at
most a single crash, strong gathering n ≥ 3 robots deterministically in SSYNC
is impossible even if robots are executed one at a time, and probabilistic strong
gathering n ≥ 3 robots is impossible with a fair scheduler [8,9]. However, proba-
bilistic strong gathering n ≥ 3 robots becomes possible in SSYNC if the relative
speed of the robots is upper bounded by a constant [8,9].

For the special case of two robots, the strong gathering problem boils down
to stand up indulgent rendezvous (SUIR), as presented above. Only few results
are known:

1. The algorithm “with probability 1
2 , go to the other robot position” is a prob-

abilistic solution to SUIR in SSYNC [8,9],
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2. The algorithm “go to the other robot position” is a deterministic solution to
SUIR in SSYNC when exactly one robot is activated at any time [8,9].

To this paper, it is unknown whether additional assumptions (e.g. a common
coordinate system in SSYNC, or FSYNC scheduling) enable deterministic SUIR
solvability.

Our Contribution. In this paper, we consider the SUIR problem and con-
centrate at characterizing its deterministic solvability. When robots share a
common x − y coordinate system, rendezvous is deterministically solvable in
SSYNC [14]: the two robots simply meet at the position of the Northernmost,
Easternmost position. Our main impossibility result shows that SUIR cannot
be solved deterministically in this setting. Furthermore, it remains impossible if
robots have both infinite persistent memory (this is a stronger assumption than
the classical luminous robot model that permits to solve classical rendezvous in
ASYNC [7,11,13,15]) and a common x−y coordinate system. This motivates our
focus on the FSYNC setting, where both robots always operate synchronously.
Our main positive result is that SUIR is deterministically solvable in FSYNC
by oblivious disoriented robots. Our approach is constructive: we first present
a simple algorithm for the case the robots share a common coordinate system,
and then a more involved solution for the case of disoriented robots.

An interesting byproduct of our work is an oblivious deterministic rendezvous
protocol (so, assuming no faults) for the case where robots only agree on a single
axis. This complements previous results where robots agree on both axes [14] or
approximately agree on both axes [12].

A summary of our results is presented in the following table.

Rendezvous SUIR

SSYNC oblivious, disoriented Impossible [14] Impossible (Theorem 1)

SSYNC oblivious, common x axis Possible (Algorithm 1) Impossible (Theorem 1)

SSYNC oblivious, common x − y axes Possible [10,14] Impossible (Theorem 1)

SSYNC luminous, disoriented Possible [7,11,13–15] Impossible (Theorem 1)

FSYNC oblivious, disoriented Possible [2,6,14] Possible (Algorithm 3)

2 Model

We consider two robots, evolving in a Euclidean two-dimensional space. Robots
are anonymous and oblivious. The time is discrete, and at each time instant,
called round, a subset of the robots is activated and executes a Look-Compute-
Move cycle. Each activated robot first Looks at its surroundings to retrieve
the position of the other robot in its ego-centered coordinate system. Then, it
Computes a target destination, based only on the current position of the other
robot. Finally, it moves towards the destination following a straight path.



48 Q. Bramas et al.

If the movements are rigid, each robot always reaches its destination before
the next Look-Compute-Move cycle. Otherwise, movements are non-rigid, and
an adversary can stop the robot anywhere along the path to its destination, but
only after the robot traveled at least a fixed positive distance δ. The value of δ
is not known by the robots, and can be arbitrary small, but it does not change
during the execution.

In the fully-synchronous model (FSYNC), all correct robots are activated at
each round. In the Semi-synchronous model (SSYNC), only a non-empty subset
of the correct robots may be activated at each round. In this case, we consider
only fair schedules i.e., schedules where each correct robot is activated infinitely
often.

Configurations and Local Views. We consider different settings that impact
how a robot retrieves the position of the other robot. Robots might agree on one
or both axes of their ego-centered coordinate systems. In other words, robots
may have a common North (and possibly a common East direction). They may
also have different unit distance.

For the analysis, we assume a global coordinate system Z that is not acces-
sible to the robots. A configuration is a set {r1, r2} containing the positions of
both robots in Z. Notice that ri, i = 1, 2, denotes at the same time a robot and
its position in R

2 in the coordinate system Z.
To model the agreement of the robots about their coordinate system, we

define the set T of indistinguishable transformations, that modify how robots
see the current configuration. If robots agree on both axes and on the unit
distance, then T only contains the identity. If robots do not agree on the unit
distance, then T contains all the (uniform) scaling transformations. If robots do
not agree on the x-axis, then T also contains the reflection along the y-axis. If
robots does not agree on any axis, then T also contains all the rotations. Finally,
T is closed by composition.

We say robots are disoriented if robots do not agree on any axis, nor on a
common unit distance i.e., T contains the rotations, scaling, reflection, and their
compositions.

In a configuration {r1, r2} the local view V1 of robot r1 is obtained by trans-
lating the global configuration by −r1 (so that r1 is seen at position (0, 0) and
r2 is at position r2 − r1) from which we apply the transformation function h1

of r1. Formally, V1 = {(0, 0), h1(r2 − r1)}. Similarly the local view of r2 is
V2 = {(0, 0), h2(r1 − r2)}, where h2 ∈ T corresponds to the transformation
function of robot r2. Notice that the transformation function of a robot r is
chosen by an adversary but it does not change over time.

A configuration C is said to be distinct if |C| = 2.

Configurations and Local Views in One Dimension. The evolving space
of the robots can be naturally restricted to a one-dimensional space i.e., robots
that evolve on a line. In this case, robots in a configuration C correspond to
points in R instead of R

2. Similarly, the set of transformation functions T
contains scaling if robots do not agree on the unit distance, and contains the
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reflection (or equivalently the π-rotation) if robots do not agree on the orienta-
tion of the single axis (i.e., are disoriented).

Algorithms and Executions. An algorithm A is a function mapping local
views to destinations. The local view of a robot r is centered and transformed
by a function hr, and when activated, algorithm A outputs r’s destination d in its
local view. So to obtain the destination of a robot in the global coordinate system
Z, one should apply the inverse transformation h−1

r i.e., the global destination
is r + h−1

r (d).
When a non-empty subset of robots S executes an algorithm A in a given

configuration C, the obtained configuration C ′ is the smallest set satisfying1:

∀r ∈ C\S ⇒ r ∈ C ′

∀r ∈ C ∩ S ⇒ r + h−1
r (A ({(0, 0), hr(r′ − r)})) ∈ C ′,with r′ ∈ C\{r}.

In this case, we write C
A→ C ′, and say C ′ is obtained from C by applying A. We

say a robot crashes at time t if it is not activated at time t, and never activated
after time t i.e., a crashed robot stops executing its algorithm and remains at
the same position.

An execution of algorithm A is an infinite sequence of configurations
C0, C1, . . . such that Ci

A→ Ci+1 for all i ∈ N. We say an execution contains
one crashed robot, if one robot crashes at some round t.

The Stand Up Indulgent Rendezvous Problem. An algorithm solves the
Stand Up Indulgent Rendezvous (SUIR) problem if, for any initial configuration
C0 and for any execution C0, C1, . . . with up to one crashed robot, there exists
a round t and a point p such that Ct′ = {p} for all t′ ≥ t.

Informally, if one robot crashes, the correct robot goes to the crashed robot;
if no robot crashes, both robots gather in a finite number of rounds.

Since we allow arbitrary initial configuration and the robots are oblivious,
we can consider without loss of generality that the crash, if any, occurs at the
start of the execution.

3 Impossibility Results

In this section we prove that the SUIR problem is not solvable in SSYNC,
even if robots share a full coordinate system (the transformation function is
the identity), and have access to infinite persistent memory that is readable by
the other robot. In the literature [7], the persistent memory aspect is called the
Full-light model with an infinite number of colors. We now prove that having
such capabilities does not help solving the problem. The next lemma is very
simple but is a key point to prove our main impossibility result.

1 This definition works when |C| = 2 but can be easily generalized to larger configu-
rations.
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Lemma 1. Consider the SSYNC model, with rigid movements, robots endowed
with full-lights with infinitely many colors, and a common coordinate system.
Assuming algorithm A solves the SUIR problem, then, in every execution suffix
starting from a distinct configuration where only robot r is activated ( e.g. because
the other robot has crashed), there must exist a configuration where algorithm A
commands that r moves to the other robot’s position.

Proof. Any move of robot r that does not go to the other robot location does
not yield gathering. If this repeats infinitely, no rendezvous is achieved. �	

Theorem 1. The SUIR problem is not solvable in SSYNC, even with rigid
movements, robots endowed with full-lights with infinitely many colors, and shar-
ing a common coordinate system.

Proof. Assume for the purpose of contradiction that such an algorithm exists.
Let r be one of the robots, and r′ be the other robot. We construct a fair infinite
execution where rendezvous is never achieved. At some round t, we either activate
only r, only r′, or both, depending on what the (deterministic) output of the
algorithm in the current configuration is:

– If r is dictated to stay idle: activate only r
– If r is dictated to move to p 
= r′: activate only r
– If r is dictated to move to r′, and r′ is dictated to move: activate both robots.
– Otherwise (r′ is dictated to stay idle): activate only r′

We now show that the execution is fair. Suppose for the purpose of contra-
diction that the execution is unfair, so there exists a round t after which only
r is executed, or only r′ is executed. In the first case, it implies there exists an
execution suffix where r is never dictated to move to the other robot, which
contradicts Lemma 1. Now, if only r′ is activated after some round t, then there
exists a suffix where r′ is always dictated to stay idle, which also contradicts
Lemma 1.

The schedule we choose guarantees the following. When only r is activated,
rendezvous is not achieved as r is not moving to r′. When only r′ is activated,
rendezvous is not achieved as r′ is idle. If both robots are activated rendezvous
is not achieved as r is moving to r′ while r′ is moving.

Overall, there exists an infinite fair execution where robots never meet, a
contradiction with the initial assumption that the algorithm solves SUIR. �	

4 Reduction to One-Dimensional Space

In this section, we prove that having an algorithm solving the SUIR problem in
a one-dimensional space implies the existence of an algorithm solving the same
problem in a two-dimensional space. This theorem is important as our algorithms
are defined on the one-dimensional space. However, since we do not prove the
converse, the impossibility result we present in the previous Section works in
the most general settings, assuming a two-dimensional space. Indeed, we present
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after the theorem, an example of a problem (the fault-free rendezvous with one
common full axis) that is solvable in a two dimensional space, but that cannot
be reduced to the one-dimensional space. Despite the results being intuitive, the
formal proof is not trivial.

Theorem 2. Suppose there exists an algorithm solving the SUIR problem where
robots are restricted to a one-dimensional space. Then, there exists an algorithm
solving the SUIR problem in a two-dimensional space.

Proof. Let A1 be an algorithm solving the SUIR problem where robots are
restricted to a one-dimensional space. We provide a constructive proof of the
theorem by giving a new algorithm A2 executed by robots in the two-dimensional
space.

First, for a configuration C = {rmin, rmax}, with rmin < rmax (using the
lexicographical order on their coordinates), we define the function v as follows:

v({rmin, rmax}) =
rmax − rmin

‖rmax − rmin‖

Let r1 and r2 denote the two robots, having transformation functions h1 and
h2, respectively. Let Vi = {(0, 0), hi(rj −ri)}, i = 1, 2, j = 3−i, be the local view
of robot ri. Each robot ri can compute its own orientation vector vi = v(Vi) of
the line joining the two robots. Notice that, if robots remains on the same line,
then vi remains invariant during the whole execution as long as robots do not
gather.

We define algorithm A2, executed by robots in the two-dimensional space as
follow. First, if the local view of a robot ri is {(0, 0)}, then A2 outputs (0, 0).

Otherwise, ri can map its local view Vi in a one-dimensional space to obtain
Vi = {0, bi} with bi such that hi(rj − ri) = bivi, and execute A1 on Vi. The
obtained destination p = A1(Vi), is then converted back to the two-dimensional
space to obtain the destination p = pvi. Doing so, the robots remain on the same
line, and vi remains invariant while the robots are not gathered (when they are
gathered, both algorithms stop).

Let E = C0, C1, . . . be an arbitrary execution of A2. We want to construct
from E an execution E of A1 such that the rendezvous is achieved in E if and
only if the rendezvous is achieved in E.

Recall that we analyze each configuration Ci, i ∈ N, using Z, the global
coordinate system we use for the analysis. Let v = v(C0). Again, since robots
remain on the same line, then v = v(Ci) for any Ci while robots are not yet
gathered.

Let O be any point of the line L joining the two robots. We define as follow the
bijection m mapping points of L (in Z), to the global one-dimensional coordinate
system (O, v):

∀a ∈ R,m(O + av) = a

We can extend the function m to configurations as follows:
m(C) = {m(r) | r ∈ C}.
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Now, let E = C0, C1, . . . be the execution of A1, in (O, v), of two robots
having transformation function h1 and h2 respectively, with hi(a) = b if and
only if hi(av) = bvi.

We now show that, if C
A2→ C ′ then m(C) A1→ m(C ′). To do so we

show that the result of executing A1 on m(C) coincides with m(C ′). Let
C = {O + a1v,O + a2v}, i be an activated robot and j be the other robot. On
one hand, we have m(C) = {a1, a2} and, by construction, the view Vi of robot i in
m(C) is {0, bi} with bi = hi(aj −ai), so that the global destination of ri in m(C)
is then ai+h

−1

i (p) (with p = A1(Vi)). On the other hand, the view Vi of robot i is
{(0, 0), hi((aj −ai)v)} = {(0, 0), bivi}, so that the global destination of ri in Z is
O+aiv+h−1

i (pvi) = O+aiv+h
−1

i (p)v. Since m(O+aiv+h
−1

i (p)v) = ai+h
−1

i (p),

we obtain that m(C) A1→ m(C ′) (assuming the same robots are activated in C
and in m(C).

Hence, Ci = m(Ci) for all i ∈ N. Since A1 solves the SUIR problem, there
exists a point p ∈ R and a round t such that, for all t′ ≥ t, m(Ct′) = {p}. This
implies that Ct′ = {O + pv}, so that A2 solves the SUIR problem. �	

Rendezvous Without Faults with One Full Axis. Now, we show that the
converse of Theorem 2 is not true in the fault-free model. This observation
justifies that, for the results to be more general, we defined our model and gave
our impossibility results for the two-dimensional space.

We present an algorithm solving the (fault-free) rendezvous problem in a two-
dimensional space, assuming robots agree on one full axis (that is, they agree
on the direction and the orientation of the axis). Under this assumption, it is
possible that the robots do not agree on the orientation of the line joining them,
so that assuming the converse of Theorem 2 would imply the existence of an
algorithm in the one-dimensional space with disoriented robots (which does not
exists, using a similar proof as the one given in [14]).

The idea is that, if the configuration is symmetric (robots may have the same
view), then robots move to the point that forms, with the two robots, an equi-
lateral triangle. Since two such points exist, the robots choose the northernmost
one (the robots agree on the y-axis, which provides a common North). Other-
wise, the configuration is not symmetric, and there is a unique northernmost
robot r. This robot does not move and the other robot moves to r.
Algorithm 1: Fault-free rendezvous. Robots agree on one full axis,
may not have common unit distance, and movements are non-rigid
Data: r : robot executing the algorithm
Let {(0, 0), (x, y)} be r’s local view.
if y = 0 then

1 move to the point
(
x/2,

∣∣∣x
√
3

2

∣∣∣
)

else if y > 0 then
2 move to the other robot, at (x, y).
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Theorem 3. Algorithm 1 solves the (fault-free) rendezvous problem with non-
rigid movements and robots having only one common full axis, and different unit
distance.

Proof. If the configuration is not symmetric, then, after executing Line 2, either
the rendezvous is achieved, or the moving robots remains on the same line joining
the robots, so the obtained configuration is still asymmetric, and the same robot
is dictated to move towards the same destination, so it reaches it in a finite
number of rounds.

Consider now that the initial configuration C is symmetric. If both robots
reaches their destination, the rendezvous is completed in one round. If robots
are stopped before reaching their destinations, two cases can occur. Either they
are stopped after traveling different distances, or they are stopped at the same
y-coordinate. In the former case, the obtained configuration is asymmetric and
we retrieve the first case. In the latter, the configuration remains symmetric, but
the distance between the two robots decreases by at least 2δ√

2
. Hence, at each

round either robots complete the rendezvous, reach an asymmetric configuration,
or come closer by a fixed distance. Since the latter case cannot occurs infinitely,
one of the other case occurs at least once, and the rendezvous is completed in a
finite amount of rounds. �	

5 SUIR Algorithm for FSYNC Robots with a Common
Coordinate System

Since it is impossible to solve the SUIR problem in SSYNC, we now concentrate
on FSYNC. We first consider a strong model, assuming robots agree on both axis,
have a common unit distance, and assuming movements are rigid, before relaxing
all hypotheses in Sect. 6. By Theorem 2, it is sufficient to give an algorithm
for a one-dimensional space. Figure 1 illustrates the two possible configurations:
either the distance between the two robots is greater than one (the common unit
distance), or at most one. In the former case both robots move to the middle.
In the latter, we can dictate the right robot to move to the left one, and the left
robot to move one unit distance to the right of the other robot. Recall that we
can distinguish the left and the right robot on the line because we assume the
robots agree on both axis in the two-dimensional space.

Algorithm 2: Rendezvous with rigid movements, and a common
coordinate system
Data: r : robot executing the algorithm
d : the distance between the two robots
if d > 1 then move to the middle
else

if r is the left robot then
move to the point at distance one at the right of the other robot

else
move to the other robot
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case d > 1 case d ≤ 1
1

Fig. 1. The two possible configurations, depending the distance between the two robots

Theorem 4. Algorithm 2 solves the SUIR problem in FSYNC with rigid move-
ment, and robots agreeing on both axes and unit distance.

Proof. First we consider the case where a robot crashes. If the left robot crashes,
the right robot halves its distance with the other robot each round until its
distance is at most one. Then, the right robot move to the other robot and the
rendezvous is achieved.

If the right robot crashes, the left robot halves its distance with the other
robot each round until its distance is at most one unit. Then, the left robot
moves to the right of the other robot, at distance one. It then move to the other
robot and the rendezvous is achieved.

Now assume no robot crashes. If the configuration is such that the distance d
between the two robots is greater than one, then both robots move to the middle
at the same time and the rendezvous is achieved. Otherwise, if the distance d is
at most one, after one round the robots are at distance 1 + d > 1, so that after
one more round, the rendezvous is achieved. �	

6 SUIR Algorithm for Disoriented Robots in FSYNC

In this section we present Algorithm 3, which works with disoriented robots
(robots do not agree on any axis, nor on the unit distance), and non-rigid move-
ments. The algorithm is defined on the line. Each robot sees the line oriented
in some way, but robots might not agree on the orientation of the line. How-
ever, since the orientation of the line is deduced from the robot own coordinate
system, it does not change over time.

Algorithm 3: SUIR Algorithm for disoriented robots
Let d be the distance to the other robot
Let i ∈ Z such that d ∈ [2−i, 21−i)
if i ≡ 0 mod 2 then move to the middle
if i ≡ 1 mod 4 then left → move to middle ; right → move to other
if i ≡ 3 mod 4 then left → move to other ; right → move to middle

The different moves of a robot r depend on whether a r sees itself on the left
or the right of the other robot, and on its level. The level of robot at distance d
from the other robot (according its own coordinate system, hence its own unit
distance), is the integer i ∈ Z such that d ∈ [2−i, 21−i). Figure 2 summarizes the
eight possible views of a robot r, and the corresponding movements. Each line
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case i ≡ 0 mod 4

case i ≡ 1 mod 4

case i ≡ 2 mod 4

case i ≡ 3 mod 4

Fig. 2. The four possible configurations, depending the distance between the two
robots. We have split the case i ≡ 0 mod 2 into two lines to help the reader.

represents the congruence of the level of the robot modulo four, and on each line,
we see the movement of the robot whether it sees itself on the right or on the left
of the other robot. A given figure does not necessarily imply that both robots
will actually perform the corresponding movement at the same time (since they
may not have the same view).

For instance, if a robot r1 has a level i1 congruent to 1 modulo 4 and sees
itself on the right, while the other robot r2 has a level i2 congruent to 2 modulo
4, and also sees itself on the right, then r1 moves to the other robot position, and
r2 moves to the middle. Assuming both robots reach their destinations, then the
distance between them is divided by two (regardless of the coordinate system)
so their levels increase by one, and they both see the other robot on the other
side, so each robot now sees the other robot on its left.

Let C be any configuration and d is the distance (in the global coordinate
system Z) between the two robots. Let x, resp. y, be the distance, in Z, traveled
by the left robot, resp. the right robot. Since the robots move toward each other,
after executing one round, the distance between the robot becomes f(d, x, y) =
|d − x − y|.

Lemma 2. If at least one robot is dictated to move to the middle, then we have
f(d, x, y) ≤ d − min(δ, d/2).

Proof. For any fixed d, using the symmetry of f (with respect to the second and
third argument), we have f(d, x, y) = gd(x + y) with gd : w �→ |d − w|. We know
that the distance traveled by the robots is either 0 (if one robot crashes), or at
least min(d/2, δ), but we cannot have x = y = 0. Also, since at least one robot
moves to the middle, we have either (i) x ≤ d/2 and y ≤ d, or (ii) x ≤ d and
y ≤ d/2. Hence, the sum x + y is in the interval [min(d/2, δ), 3d/2].

As a convex function, the maximum of gd is reached at the boundary of its
domain

f(d, x, y) = gd(x + y) ≤ max(gd(3d/2), gd(min(d/2, δ)))
≤ max(d/2, d − min(d/2, δ)) = d − min(d/2, δ)

�	
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The next lemma is a direct consequence of Lemma 2, but due to space con-
straints, its proof has been ommited.

Lemma 3. From a configuration where robots are at distance d (in Z), then,
after two rounds, the distance between the robots decreases by at least min(δ, d/2).

Lemma 4. Assuming rigid movement and one robot crash, Algorithm 3 solves
the SUIR problem.

Proof. Let i be the level of the correct robot r. Assume the other robot crashes.
Robot r either sees itself on the right or on the left of the other robot.

If r sees itself on the right, then depending on its level, either r moves to the
middle, or move to the other robot. In the former case, the level of r increases by
one and r continues to see itself on the right. In the latter case, the rendezvous
is achieved in one round. After at most three rounds, the level of r is congruent
to 1 modulo 4 so that after at most four rounds the rendezvous is achieved.

Similarly, if r sees itself on the left, then after at most four rounds, r level is
congruent to 3 modulo 4 and the rendezvous is achieved. �	

If, at round t, one robot sees itself on the right, and the other sees itself on
the left, then they agree on the orientation of the line at time t. Since, for each
robot, the orientation of the line does not change, then they agree on it during
the whole execution (except when they are gathered, as the line is not defined
in that case).

Similarly, if at some round, both robots see themselves at the right (resp.
at the left), then their orientations of the line are opposite, and remain oppo-
site during the whole execution (again, until they gather). Hence we have the
following remark.

Remark 1. Consider two disoriented robots moving on the line L joining them
and executing Algorithm 3. Then, either they have a common orientation of L
during the whole execution (while they are not gathered), or they have opposite
orientations of L during the whole execution (while they are not gathered).

Lemma 5. Assuming rigid movements, no crash, and robots having a com-
mon orientation of the line joining them, then, Algorithm 3 solves the SUIR
problem.

Proof. Since the robots have a common orientation, we know there is one robot
that sees itself on the right and and one robot that sees itself on the left. Of
course the robots are not aware of this, but we saw in the previous remark that
a common orientation is preserved during the whole execution (while robots are
not gathered).

Let (i, j) ∈ Z
2 denote a configuration where the robot on the left is at level

i, and the robot on the right is at level j, and we write (i, j) ≡ (k, l) mod 4 if
and only if i ≡ k mod 4 and j ≡ l mod 4.

To prove the lemma we want to show that for any configuration (i, j) ∈ Z
2,

the robots achieve rendezvous. Take an arbitrary configuration (i, j) ∈ Z
2. We

consider all 16 cases:
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1. if (i, j) ≡ (0, 0) mod 4: rendezvous is achieved in one round.
2. if (i, j) ≡ (0, 1) mod 4: we reach configuration (j +1, i+1) ≡ (2, 1) mod 4
3. if (i, j) ≡ (0, 2) mod 4: rendezvous is achieved in one round.
4. if (i, j) ≡ (0, 3) mod 4: rendezvous is achieved in one round.
5. if (i, j) ≡ (1, 0) mod 4: rendezvous is achieved in one round.
6. if (i, j) ≡ (1, 1) mod 4: we reach configuration (j +1, i+1) ≡ (2, 2) mod 4
7. if (i, j) ≡ (1, 2) mod 4: rendezvous is achieved in one round.
8. if (i, j) ≡ (1, 3) mod 4: rendezvous is achieved in one round.
9. if (i, j) ≡ (2, 0) mod 4: rendezvous is achieved in one round.

10. if (i, j) ≡ (2, 1) mod 4: we reach configuration (j +1, i+1) ≡ (2, 3) mod 4
11. if (i, j) ≡ (2, 2) mod 4: rendezvous is achieved in one round.
12. if (i, j) ≡ (2, 3) mod 4: rendezvous is achieved in one round.
13. if (i, j) ≡ (3, 0) mod 4: we reach configuration (j +1, i+1) ≡ (1, 0) mod 4
14. if (i, j) ≡ (3, 1) mod 4: we reach configuration (j, i) ≡ (1, 3) mod 4
15. if (i, j) ≡ (3, 2) mod 4: we reach configuration (j +1, i+1) ≡ (3, 0) mod 4
16. if (i, j) ≡ (3, 3) mod 4: we reach configuration (j +1, i+1) ≡ (0, 0) mod 4

In any case, rendezvous is achieved after at most three rounds. �	

Lemma 6. Assuming rigid movement, no crash, and robots having opposite
orientations of the line joining them, then, Algorithm 3 solves the SUIR prob-
lem.

Proof. Since the robots have opposite orientations, we know they either both see
themselves on the right or they both both see themselves on the left. Of course
the robots are not aware of this, but we saw in the previous remark that the
opposite orientations are preserved during the whole execution (while robots are
not gathered).

In this proof, R{i, j} denotes a configuration where both robots see them-
selves on the right and one of them has level i and the other as level j. Here, the
order between i and j does not matter (hence the set notation). Similarly L{i, j}
denotes a configuration where both robots see themselves on the left, and one
of them has level i and the other as level j.

Here, assuming without loss of generality that i ≤ j mod 4, we write
R{i, j} ≡ (k, l) mod 4, resp. L{i, j} ≡ (k, l) mod 4, if and only if, i ≡ k mod 4
and j ≡ l mod 4.

To prove the lemma, we want to show that for any configuration R{i, j} or
L{i, j}, the robots achieve rendezvous. Take an arbitrary configuration (i, j) ∈
Z
2. We consider all 20 cases:

1. if L{i, j} ≡ (0, 0) mod 4: rendezvous is achieved in one round.
2. if L{i, j} ≡ (0, 1) mod 4: rendezvous is achieved in one round.
3. if L{i, j} ≡ (0, 2) mod 4: rendezvous is achieved in one round.
4. if L{i, j} ≡ (0, 3) mod 4: we reach configuration R{i+1, j+1}≡(0, 1)

mod 4.
5. if L{i, j} ≡ (1, 1) mod 4: rendezvous is achieved in one round.
6. if L{i, j} ≡ (1, 2) mod 4: rendezvous is achieved in one round.
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7. if L{i, j} ≡ (1, 3) mod 4: we reach configuration R{i+1, j+1}≡(0, 2)
mod 4.

8. if L{i, j} ≡ (2, 2) mod 4: rendezvous is achieved in one round.
9. if L{i, j} ≡ (2, 3) mod 4: we reach configuration R{i+1, j+1}≡(0, 3)

mod 4.
10. if L{i, j} ≡ (3, 3) mod 4: we reach configuration R{i, j}≡(3, 3) mod 4.
11. if R{i, j} ≡ (0, 0) mod 4: rendezvous is achieved in one round.
12. if R{i, j} ≡ (0, 1) mod 4: we reach configuration L{i+1, j+1}≡(1, 2)

mod 4.
13. if R{i, j} ≡ (0, 2) mod 4: rendezvous is achieved in one round.
14. if R{i, j} ≡ (0, 3) mod 4: rendezvous is achieved in one round.
15. if R{i, j} ≡ (1, 1) mod 4: we reach configuration L{i, j}≡(1, 1) mod 4.
16. if R{i, j} ≡ (1, 2) mod 4: we reach configuration L{i+1, j+1}≡(2, 3)

mod 4.
17. if R{i, j} ≡ (1, 3) mod 4: we reach configuration L{i+1, j+1}≡(0, 2)

mod 4.
18. if R{i, j} ≡ (2, 2) mod 4: rendezvous is achieved in one round.
19. if R{i, j} ≡ (2, 3) mod 4: rendezvous is achieved in one round.
20. if R{i, j} ≡ (3, 3) mod 4: rendezvous is achieved in one round.

In any case, rendezvous is achieved after at most three rounds. �	

Theorem 5. Algorithm 3 solves the SUIR problem with disoriented robots in
FSYNC.

Proof. By Lemma 3, the distance between the two robots decreases by at least
min(δ, d/2) every two rounds. Hence, eventually, robots are at distance smaller
than δ from one another and, from this point in time, movements are rigid.
Assume now that movements are rigid. If a robot crashes, then the rendezvous
is achieved by using Lemma 4. Otherwise, depending on whether the robots
have a common orientation or opposite orientation of the line joining them
(see Remark 1), the Theorem follows either by using Lemma 5 or by using
Lemma 6. �	

7 Concluding Remarks

We considered the problem of Stand Up Indulgent Rendezvous (SUIR). Unlike
classical rendezvous, the SUIR problem is unsolvable in SSYNC even with the
strongest assumptions: robots share a common x − y coordinate system, and
have access to infinite persistent memory. We demonstrate that it is nevertheless
solvable in FSYNC without any additional assumptions. A natural open question
is related to the optimality (in time) of our algorithm.

Also, we would like to investigate further the possibility of deterministic
strong gathering for n ≥ 3 robots. It is known that executing a single robot at
a time in SSYNC is insufficient [8,9], but additional hypotheses may make the
problem solvable.
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Abstract. This work focuses on the following question related to the
Gathering problem of n autonomous, mobile robots in the Euclidean
plane: Is it possible to solve Gathering of disoriented robots with lim-
ited visibility in o(n2) fully synchronous rounds (Fsync)? The best
known algorithm considering the OBLOT model (oblivious robots) needs
Θ

(
n2

)
rounds [6]. The lower bound for this algorithm even holds in a

simplified closed chain model, where each robot has exactly two neigh-
bors and the chain connections form a cycle. The only existing algorithms
achieving a linear number of rounds for disoriented robots assume robots
that are located on a two dimensional grid [1] and [5]. Both algorithms
consider the LUMINOUS model.

We show that, considering a closed chain, n disoriented robots with
limited visibility in the Euclidean plane can be gathered in Θ (n) rounds
assuming the LUMINOUS model. The lights are used to initiate and
perform so-called runs along the chain. For the start of such runs, locally
unique robots need to be determined. In contrast to the grid [1], this is
not possible in every configuration in the Euclidean plane. Based on the
theory of isogonal polygons by Grünbaum, we identify the class of isog-
onal configurations in which – due to a high symmetry – no such locally
unique robots can be identified. Our solution combines two algorithms:
The first one gathers isogonal configurations; it works without any lights.
The second one works for non-isogonal configurations; it identifies locally
unique robots to start runs, using a constant number of lights. Interleav-
ing these algorithms solves the Gathering problem in O (n) rounds.

Keywords: Mobile robots · Gathering · Closed chain · Local ·
Runtime

1 Introduction

The Gathering problem requires a set of initially scattered point-shaped robots
to meet at the same (not predefined) position. This problem has been studied

A full version of this brief announcement is available online [4].
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under several different robot and time models all having in common that the
capabilities of the individual robots are very restricted. The central questions
among all these models are: Which capabilities of robots are needed to solve the
Gathering problem and how do these capabilities influence the runtime? While
the question about solvability is quite well understood nowadays, much less is
known concerning the question how the capabilities influence the runtime. The
best known algorithm – Go-To-The-Center (see [2] and [6] for the runtime
analysis) – for n disoriented robots (no agreement on the coordinate systems)
in the Euclidean plane with limited visibility in the OBLOT model, assuming
the Fsync scheduler (robots operate in fully synchronized Look-Compute-Move
cycles), requires Θ(n2) rounds. The best known lower in this model is the trivial
Ω(n) bound. Thus, the above mentioned question can be formulated as follows: Is
it possible to gather n disoriented robots with limited visibility in the Euclidean
plane in o(n2) rounds, and which capabilities do the robots need?

The Ω(n2) lower bound for Go-to-the-Center examines an initial config-
uration where the robots form a cycle with neighboring robots having a con-
stant distance. It is shown that Go-to-the-Center takes Ω(n2) rounds until
the robots start to see more robots than their initial neighbors. Thus, the lower
bound holds even in a simpler closed chain model, where the robots form an arbi-
trarily winding closed chain, and each robot sees exactly its two direct neighbors.
Our main result is that this quadratic lower bound can be beaten for the closed
chain model, if we allow each robot a constant number of visible lights, which
can be seen by the neighboring robots, i.e.; if we allow LUMINOUS robots,
compare [7]. For this model we present an algorithm with linear runtime.

Related Work. For a comprehensive overview over the area of mobile robots,
we refer the reader to [8]. We focus on results about the synchronous setting
(Fsync), where algorithms as well as runtime bounds are known. In the OBLOT
model, there is the Go-To-The-Center algorithm [2] that solves Gathering
of disoriented robots with local visibility in Θ

(
n2

)
rounds assuming the Fsync

scheduler [6]. The same runtime can be achieved for robots located on a two
dimensional grid [3]. Interestingly, a lower bound of Ω(D2

G) for DG ∈ Θ
(√

log n
)

has been shown for any conservative algorithm, an algorithm that only incre-
ments the edge set of the visibility graph. DG denotes the diameter of the initial
visibility graph [10]. Faster runtimes could so far only be achieved by assuming
agreement on one or two axes of the local coordinate systems or considering
the LUMINOUS model. In [11], a universally optimal algorithm with runtime
Θ (DE) for robots in the Euclidean plane assuming one-axis agreement in the
OBLOT model is introduced. DE denotes the Euclidean diameter of the initial
configuration. Beyond the one-axis agreement, the algorithm crucially depends
on the distinction between the viewing range of a robot and its connectivity
range: Robots only consider other robots within their connectivity range as their
neighbors but can see farther beyond. Notably, this algorithm also works under
the Async scheduler. Assuming disoriented robots, the algorithms that achieve
a runtime of o(n2) are developed under the LUMINOUS model and assume
robots that are located on a two dimensional grid: There exist two algorithms
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having an asymptotically optimal runtime of O (n); one algorithm for closed
chains [1] and another one for connected swarms [5]. Following the notion of [1],
we consider a closed chain of robots in this work. In a closed chain, the robots
form a winding, possibly self-intersecting, chain where the distance between two
neighbors is upper bounded by the connectivity range and the robots can see a
constant distance along the chain in each direction, denoted as the viewing range.
The main difference between a closed chain and arbitrary swarms is that in the
closed chain, a robot only observes a constant number of its direct neighbors
while in arbitrary swarms all robots in the viewing range of a robot are consid-
ered. Interestingly, the lower bound of the Go-To-The-Center algorithm [6],
holds also for the closed chain model.

Our Contribution. We give the first asymptotically optimal algorithm that
solves Gathering of disoriented robots in the Euclidean plane. More pre-
cisely, we show that a closed chain of disoriented robots with limited visibility
located in the Euclidean plane can be gathered in O (n) rounds assuming the
LUMINOUS model with a constant number of lights and the Fsync scheduler.
This is asymptotically optimal.

Theorem 1. For any initially connected closed chain of disoriented robots in the
Euclidean plane with a viewing range of 4 and a connectivity range of 1, Gath-
ering can be solved in O (n) rounds under the Fsync scheduler and a constant
number of visible lights. The number of rounds is asymptotically optimal.

The visible lights help to exploit asymmetries in the chain to identify locally
unique robots that generate runs. One of the major challenges is the handling of
highly symmetric configurations. While it is possible to identify locally unique
robots in every connected configuration on the grid [1], this is impossible in the
Euclidean plane. We identify the class of isogonal configurations based on the
theory of isogonal polygons by Grünbaum [9] and show that no locally unique
robots can be determined in these configurations. We believe that this char-
acterization is of independent interest because highly symmetric configurations
often cause a large runtime. For instance, the lower bound of the Go-To-The-
Center algorithm holds for an isogonal configuration [6].

2 Model

We consider n robots r0, . . . , rn−1 connected in a closed chain. Every robot ri
has two direct neighbors: ri−1 and ri+1 (modulo n). The connectivity range is
assumed to be 1, i.e., two direct neighbors are allowed to have a distance of
at most 1. The robots are disoriented, i.e.; they do not agree on any axis of
their local coordinate systems and the latter can be arbitrarily rotated. This
also means that there is no common understanding of left and right. Except of
their direct neighbors, robots have a constant viewing radius along the chain.
Each robot can see its 4 predecessors and successors along the chain. We assume
the LUMINOUS model: the robots have a constant number of locally visible
states (lights) that can be perceived by all robots in their neighborhood.



Gathering a Closed Chain of Robots in Linear Time 63

3 Algorithm

Our approach consists of two algorithms – one for asymmetric configurations
and one for highly symmetric (isogonal) configurations. The main concept of the
asymmetric algorithm is the notion of a run. A run is a visible state (realized
with lights) that is passed along the chain in a fixed direction. Robots with a
run perform a movement operation while robots without do not. The movement
is sequentialized in a way that in round t the robot ri executes a move operation
(and neither ri−1 nor ri+1), the robot ri+1 in round t + 1 and so on, see Fig. 1.

Fig. 1. A run located at ri in round t is passed in its direction along the chain, i.e.; it
is located at ri+x in round t + x.

This way, any moving robot does not have to consider movements of its
neighbors to ensure connectivity. To preserve the connectivity of the chain only
two run patterns are allowed: a robot ri has a run and either none of its direct
neighbors (an isolated run) has a run or exactly one of its direct neighbors has
a run such that the runs are heading in each other’s direction (a joint run-pair).
This essentially means that there are no sequences of runs of length at least 3.

For robots with a run, there are three kinds of movement operations, the
merge, the shorten and the hop. The purpose of the merge is to reduce the
number of robots in the chain. It is executed by a robot ri if its neighbors have
a distance of at most 1. In this case, ri is not necessary for the connectivity of
the chain and can safely be removed. Removing ri means, that it jumps onto the
position of its next neighbor in the direction of the run, the robots merge their
neighborhoods and both continue to behave as a single robot in future rounds.
The execution of a merge stops a run. Moreover, some additional care has to
be taken here: removing robots from the chain decreases the distance of nearby
runs. To avoid that runs come too close, a merge stops all runs that might be
present in the neighborhoods of the two merging robots. The goal of a shorten
is to reduce the length of the chain. Intuitively, if the angle between vectors of
ri pointing to its neighbors is not too large, it can reduce the length of the chain
by jumping to the midpoint between its neighbors. The execution of a shorten
also stops a run. In case neither a merge nor a shorten can be applied, a hop
is executed. The purpose of a hop is to exchange two neighboring vectors in the
chain. By this, each run is associated with a run vector that is swapped along the
chain until it finds a position at which progress can be made. For each operation,
there is also a joint one which is a similar operation executed by a joint run-pair.
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The main question now is where runs should be started. For this, we identify
robots that are – regarding their local neighborhood – geometrically unique.
These robots are assigned an Init-State allowing them to regularly generate new
runs. During the generation of new runs it is ensured that a certain distance
to other runs is kept. In isogonal configurations, however, it is not possible to
identify locally unique robots. To overcome this, we introduce an additional
algorithm for these configurations. Isogonal configurations have in common that
all robots lie on the boundary of a common circle. We exploit this fact by letting
the robots move towards the center of the surrounding circle in every round until
they finally gather in its center. Additional care has to be taken in case both
algorithms interfere with each other. This can happen if some parts of the chain
are isogonal while other parts are asymmetric. We show how to handle such a
case and ensure that the two algorithms do not hinder each other later.
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Abstract. Most existing robot formation problems seek a target for-
mation of a certain minimal and, thus, efficient structure. Examples
include the Gathering and the Chain-Formation problem. In this
work, we study formation problems that try to reach a maximal struc-
ture, supporting for example an efficient coverage in exploration sce-
narios. A recent example is the NASA Shapeshifter project [22], which
describes how the robots form a relay chain along which gathered data
from extraterrestrial cave explorations may be sent to a home base.

As a first step towards understanding such maximization tasks, we
introduce and study the Max-Chain-Formation problem, where n
robots are ordered along a winding, potentially self-intersecting chain and
must form a connected, straight line of maximal length connecting its two
endpoints. We propose and analyze strategies in a discrete and in a con-
tinuous time model. In the discrete case, we give a complete analysis if all
robots are initially collinear, showing that the worst-case time to reach an
ε-approximation is upper bounded by O(n2 ·log(n/ε)) and lower bounded
by Ω(n2·log(1/ε)). If one endpoint of the chain remains stationary, this
result can be extended to the non-collinear case. If both endpoints move,
we identify a family of instances whose runtime is unbounded. For the
continuous model, we give a strategy with an optimal runtime bound of
Θ(n). Avoiding an unbounded runtime similar to the discrete case relies
crucially on a counter-intuitive aspect of the strategy: slowing down the
endpoints while all other robots move at full speed. Surprisingly, we can
show that a similar trick does not work in the discrete model.

Keywords: Mobile robots · Max-chain formation · Continuous time

A Brief Announcement of this paper appeared at SPAA’20 [4]; a full version is available
online [3].
c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 65–80, 2020.
https://doi.org/10.1007/978-3-030-64348-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-64348-5_6


66 J. Castenow et al.

1 Introduction

Robot coordination problems deal with systems consisting of many autonomous
but simple, mobile robots that try to achieve a common task. The robots’ capa-
bilities are typically quite restricted (e.g., they have no common coordinate sys-
tem or sense of direction). Among the most well-studied tasks are Gathering

problems, in which robots are initially scattered and must gather at one point.
Another class of important tasks are Chain-Formation problems, where robots
take the role of communication relays that, initially, form a winding chain con-
necting two distinguished robots. The relays are to move such that the chain
becomes straight, allowing for a more energy-efficient communication. Applica-
tions of such chain formations can be found in the exploration of difficult terrain
that restricts normal communication (e.g., cave systems) [19,22].

Both Gathering and Chain-Formation problems can be described as
contracting : starting from an initially scattered formation, they seek to reach
a smaller, more efficient (communication) structure. A natural complement to
such contracting formation primitives are extension problems. The general idea is
to spread a set of distinguished robots such that their convex hull is maximized,
while maintaining a suitable connection network of simple relay robots. We ini-
tiate the theoretical study of such problems for the case of two distinguished
robots connected by a chain of relay robots. Already this comparatively simple
scenario turns out to be non-trivial to analyze.

Movement Model and Time Notions. We consider n identical, oblivious,
mobile robots with a limited viewing range (normalized to 1) scattered in the
Euclidean plane. The robots form a communication chain, such that each robot
has a specific predecessor and successor in distance at most 1. We assume no
common coordinate systems. Instead, a robot may only measure its relative
position (distances and angles) to its two neighbors. We seek a simple, deter-
ministic1 movement strategy that, when executed simultaneously by all robots,
causes them to converge towards a straight chain of (maximal) length n − 1.
This movement strategy takes the relative positions of the (at most) two neigh-
boring robots and specifies where the robot moves next. It is crucial that the
distance between two neighboring robots never exceeds 1, since otherwise we
cannot guarantee that the (oblivious) robots will be able to reconnect the chain.

We refer to this as the Max-Chain-Formation problem and study it in
two different time models, the classical (synchronous) Look-Compute-Move

(LCM) model and the continuous time model. In the LCM model, time is divided
into discrete rounds in which all robots simultaneously perform a cycle of a
Look, a Compute, and a Move operation. During the Look operation, each
robot takes a snapshot of its neighbors’ current relative positions. Afterward,

1 Determinism implies that from certain, very symmetrical system states, robots will
not be able to form a maximum length chain (e.g., when all robots start in the same
position). This can be resolved with a very limited and small amount of randomness.
(e.g., having the outer robots move in a random direction in such a situation).
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all robots start the Compute operation, during which they use their snapshot
to compute a target point. Finally, all robots perform the Move operation by
moving to the target point. Together with our simple type of (oblivious and
communication-less) robots, this is also known as the OBLOT model [10].

The above described model is inherently discrete, which severely limits the
accuracy of information on which movements are based. The situation observed
by a robot at the beginning of a round might be very different from the end
of the round, when all other robots performed their movement. This effect can
be compensated, e.g., by limiting how far a robot may move towards its target
point during a round. [13] considered such a model and studied how it evolves
in the limit, such that robots move an infinitesimal distance per round. This
gives rise to the continuous time model. Here, each robot perpetually measures
its neighbors’ positions and, at the same time, adjusts the target point towards
which it moves. This model exhibits fundamentally different properties, as was
already experimentally observed in [13] and later analytically proven in [6] (see
our detailed discussion of related work).

While the continuous model is certainly idealized, it also abstracts away the
“loss of discretization” and allows one to focus on the complexity of the formation
problem. In a sense, it showcases the best possible improvement one can hope
for when approaching LCM cycles of length zero in practical implementations.

Related Work. The following overview focuses on robot formation strategies
with known runtime bounds. In particular, we do not cover semi- or asynchronous
variants of the LCM model, in which the robots’ LCM cycles are not necessarily
synchronized. In such systems, already achieving a task like Gathering may be
impossible [8] or requires additional robot properties [11,20]. The synchronous
setting allows us to concentrate on the runtime analysis and to better compare
the discrete and continuous models. See [10] for a quite complete and very recent
survey on robot coordination problems.

The Gathering problem has been considered in both the discrete and con-
tinuous setting. Here, there is no predecessor/successor relation between the
robots, and the snapshot from the Look operation contains all robot positions
within viewing range. A natural strategy is to move towards the center of the
smallest enclosing circle spanning all robots in viewing range. In the discrete
setting, [1] proved that this strategy gathers all robots in finite time; a runtime
bound of Θ(n2) was proven later in [7]. Up to now, this strategy achieves the
asymptotically fastest (and conjectured optimal) runtime in this model. Taking
a look at the continuous setting yields a very different situation: [13] proposed a
simple, continuous strategy, in which robots try and decide locally whether they
are at a vertex of the global convex hull formed by all robots. If a robot concludes
that it is at such a vertex, it moves along the angle bisector towards the inside
of the (supposed) convex hull. This strategy was shown to gather all robots in
finite time. Later, [15] proved that the strategy’s worst-case runtime is Θ(n); a
considerable improvement about the Θ(n2) bound for discrete Gathering. For
an overview over continuous strategies for Gathering, see [17].
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The Chain-Formation problem was introduced and analyzed by [9] in
the discrete setting. The authors proposed the natural Go-To-The-Middle

(GtM) strategy, in which each robot moves towards the midpoint between its
two neighbors. It is proven that GtM requires O

(
n2 · log(n/ε)

)
rounds to reach

an ε-approximation (w.r.t. the length) of the straight chain between the base
stations. [16] gave an almost matching lower bound of Ω

(
n2 · log(1/ε)

)
and gen-

eralized these bounds to a class of (linear) strategies related to GtM. Note that
while there are some discrete Chain-Formation strategies, specifically [18],
that achieve a better (linear) asymptotic runtime, such strategies are known only
for relaxed models and goals (e.g., reaching only a Θ(1)-approximation). The
continuous setting was analyzed by [6], who suggested the Move-On-Bisector

(MoB) strategy (robots move along the angle bisector formed by their two neigh-
bors) and proved a runtime of Θ(n). Similar to the Gathering problem, we see
a linear improvement when going from the discrete to the continuous setting.

Scenarios related to the idea of extension problems have been considered
in other settings (like on discrete graphs) under the name uniform scattering
or deployment [2,21]. The general problem of forming a line in a distributed
system has been studied in many different contexts, see e.g. [12,14,19]. While
the presented theoretical models are certainly idealized (ignoring, e.g., collisions
of physical robots), such algorithms can be adapted for practical systems [23].

Our Contribution. We adapt the known (contracting) Chain-Formation

strategies GtM (discrete setting) and MoB (continuous setting) such that they
still straighten the chain but, at the same time, keep extending its length. The
basic idea is to let inner robots perform the contracting strategy while the two
outer robots extend the chain by moving away from their respective neighbor.
While this seems to be a small modification of the contracting strategies on a
conceptual level, we identify a much more complex behavior of the robots caused
by the extension part. This also affects the analysis – we use several different
techniques: among others, we make use of discrete Fourier transforms, the mixing
time of Markov chains and the stability theory of dynamical systems.

Section 3 considers the discrete setting, for which we distinguish the one-
dimensional case (all robots are initially collinear) and the general two-
dimensional case. In the one-dimensional case, we already see that very sym-
metric configurations are problematic for any (deterministic) strategy. This is
obvious for the trivial configuration (all robots start in the same spot). But also
from less contrived starting positions (e.g., when the initial chain is symmet-
rical around the origin), any deterministic strategy results in a non-maximal
chain (that potentially keeps moving) (see Theorem 4). Still, in the case of our
proposed Max-GtM strategy, we can show:

Theorem 1. Under the Max-GtM strategy on the line, the robot movement
reaches in time Ω

(
n2 · log(1/ε)

)
and O

(
n2 · log(n/ε)

)
an ε-approximation of:

a stationary, max-chain of length n − 1, if the outer robots move in different
directions after n − 2 rounds or a chain of non-maximal length moving at speed
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1/n (marching chain), if the outer robots move in the same direction after n−2
rounds.

While this gives a pretty complete picture of the one-dimensional case, the
two-dimensional case exhibits a much more complex behavior. We can still prove
convergence in finite time and derive a lower bound (which now depends also on
the outer robots’ initial distance) but an upper bound remains elusive.
Theorem 2. Under the Max-GtM strategy, the robot movement reaches an ε-
approximation either of the max-chain or of a one-dimensional marching chain.
There are configurations for which this takes Ω(n2 · log(1/δ)) rounds, where δ
denotes the initial distance between the outer robots.
Interestingly, however, fixing the position of one of the two outer robots enables
us to employ tools from Markov Chain theory (as used in previous results [16]),
yielding again the same almost tight runtime bound as in the one-dimensional
case (see Theorem 9). Given this and some simple experimental evaluations, we
conjecture that the lower worst-case bound stated in Theorem 2 is tight.

Section 4 considers the continuous setting. As in the discrete setting, very
symmetric configurations again lead to unavoidable problems for deterministic
strategies. Moreover, a naïve translation of the MoB strategy results in the
same dependency on the outer robots’ initial distance δ. However, the continuous
model allows for an interesting tweak which, as we show in Sect. 5, cannot be
done in the discrete model. Namely, it turns out that decreasing the speed of
outer robots by a small constant τ gets rid of the dependency on δ and yields
an optimal, linear runtime bound. As a byproduct, this also causes symmetrical
initial positions to collapse to a single point instead of becoming a marching
chain. Summarized, we get the following result for the continuous setting:
Theorem 3. Max-MoB reaches in worst-case optimal time Θ(n) a stationary,
maximum chain of length n − 1 or the chain collapses to a single point.

Our results show that the idealized continuous model yields again a linear
speed-up for the Max-Chain-Formation problem, similar as for contracting
robot formation problems. The major open problem is to find an upper runtime
bound for Max-GtM in the discrete setting where both endpoints move. More-
over, while very symmetrical initial configurations pose a problem for determin-
istic algorithms, both, experiments with a simple, custom simulator and looking
at our processes from the perspective of dynamical systems suggest that such
configurations are few and unstable. Thus, minor, random perturbations usu-
ally yield a configuration in which the robots reach the desired maximal chain.
We analyze this observation formally by proving that the marching chain is an
unstable fixed point of the related dynamical system. We discuss this in more
detail towards the end of Sect. 3. Due to space constraints, all proofs can be
found in the full version of this paper [3].

2 Model and Problem Description

We follow the robot model of the Chain-Formation problem [5,6,9,15,16]: We
consider n robots, r1, . . . , rn that are connected in a chain topology positioned
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in the Euclidean plane. The robots r1 and rn are denoted as outer robots and
all other robots are inner robots. Each inner robot ri can distinguish its two
neighbors ri−1 and ri+1 while the robots do not have a common understanding
of left and right. The outer robots have only a single neighbor: the neighbor of
r1 is r2 and rn’s neighbor is rn−1. Based on their neighborhoods, robots can
detect whether they are an inner or an outer robot. Each robot has a uniform
viewing range of one. Apart from their direct neighbors, robots cannot see any
other robot that might be present in their viewing range. Initially, at time t0, the
chain topology is connected, i.e., the distance between a robot and its neighbors
is less than or equal to one. The position of ri at time t is denoted by pi(t) ∈ R

2

and for all 2 ≤ i ≤ n, the vector wi(t) := pi(t) − pi−1(t) is the vector pointing
from robot ri−1 to robot ri at time t. Starting at robot r1, a configuration of
robots at time t can be written as w(t) := (w2(t), w3(t), . . . wn(t))

T . The length
of a configuration at time t is denoted by L(t) :=

∑n
i=2 ‖wi(t)‖, where ‖wi(t)‖

denotes the Euclidean norm of vector wi(t). For a vector wi(t), we denote the
normalized vector 1

‖wi(t)‖wi(t) by ŵi(t). The Euclidean distance between two
robots ri and rj at time t is denoted by Δi,j(t) = ‖pi(t) − pj(t)‖.

Next, we introduce a characterization of configurations that is relevant for
our analyses. In one-dimensional configurations, the positions of all robots are
collinear. In two-dimensional configurations, there exists a set of at least 3 robots
whose positions are not collinear. Our analyses distinguish two special kinds of
one-dimensional configurations: Opposed configurations and marching configura-
tions. In opposed configurations, the outer robots are on different sides of their
neighbors, i.e., ŵ2(t) = ŵn(t). In marching configurations, the outer robots are
on the same side of their neighbors, i.e., ŵ2(t) = −ŵn(t). For 2 ≤ i ≤ n − 1, we
denote by αi(t) the smaller of the two angles created by anchoring wi+1(t) at the
terminal point of wi(t). Our goal is to reach a configuration with Δ1,n(t) = n−1.
More precisely, each vector wi should have a length of 1 and wi(t) = wi+1(t)
for 2 ≤ i ≤ n − 1. We call this configuration a max-chain. We say that we have
reached an ε-approximation of the max-chain if Δ1,n(t) ≥ (1 − ε) (n − 1) and
‖wi(t)‖ > 1 − ε for all 2 ≤ i ≤ n.

We assume a very restricted robot model, namely robots having the capa-
bilities of the OBLOT model with disoriented coordinate systems and limited
visibility. Thus, the robots neither have a global coordinate system nor a common
compass. A robot can only observe the position of its neighbors relative to its
own. We assume that the robots can measure distances precisely and have a com-
mon notion of unit distance. Additionally, the robots are oblivious and cannot
rely on any information from the past. Furthermore, the robots cannot com-
municate. Throughout this work, we consider two different notions of time, the
Fsync time model and the continuous time model. In Fsync all robots operate
in fully synchronous Look-Compute-Move (LCM) cycles (rounds), i.e.; robots
observe their environment, compute a target point and finally move there. The
continuous time model can be seen as a continuous variant of the Fsync model
for an infinitesimal small movement distance for each robot per round [13]. In
this model, robots continuously observe their environment and adjust their own
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movement. There is no delay between observing the environment and adjusting
the movement. At every point in time, the movement of each robot ri can be
expressed by a velocity vector vi(t) with 0 ≤ ‖vi(t)‖ ≤ 1, i.e., the maximal speed
of a robot is bounded by 1. The function pi : R>0 → R

2 is the trajectory of ri. The
trajectories pi are continuous but not necessarily differentiable because robots
are able to change their speed and direction non-continuously. However, natural
movement strategies, such as the strategy presented in this paper, have (right)
differentiable trajectories. Thus, the velocity vector of a robot vi : R>0 → R

2 can
be seen as the (right) derivative of pi and we can write vi(t) = pi

′(t).

3 The Discrete Case

In this section, we describe Max-GtM for the Fsync time model. Intuitively,
the strategy solves two tasks concurrently. The first task is to arrange all robots
on a straight line while the second task is to lengthen the chain by moving the
outer robots away from each other. For the first task, we adapt the GtM-strategy
for Chain-Formation in which all inner robots move to the midpoint between
their neighbors in every round. For the second task, the outer robots move as
far as possible away from their neighbors while keeping the chain connected.

3.1 Max-Go-To-The-Middle (Max-GTM)

Max-GtM works as follows: Every inner robot moves to the midpoint between
its neighbors. The new position of an inner robot ri can thus be computed as
pi(t+1) = 1

2pi−1(t)+ 1
2pi+1(t). An outer robot moves as far possible away from its

neighbor by imagining a virtual robot. At time t, the outer robot r1 normalizes
the vector w2(t), imagines a virtual robot r0 positioned at p1(t)−ŵ2(t) and moves
to the midpoint between r0 and r2. Thus, p1(t + 1) = 1

2p1(t) + 1
2p2(t) − 1

2 ŵ2(t).
The procedure works analogously for rn : pn(t+1) = 1

2pn−1(t)+ 1
2pn(t)+ 1

2 ŵn(t).
In the special case p1(t) = p2(t) (pn−1(t) = pn(t) respectively) r1 (rn) does not
move. Similarly, we can derive formulas for w(t + 1): w2(t + 1) = 1

2 ŵ2(t) +

rn+1
r0

r1

rn

(a) A visualization of Max-GtM. The tar-
get point of each robot is marked by a cross.
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(b) The strategy matrix S(t) that de-
pends on w2(t) and wn(t).

Fig. 1. A visualization of Max-GtM and the strategy matrix S(t).
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1
2w3(t), wi(t + 1) = 1

2wi−1(t) + 1
2wi+1(t) and wn(t + 1) = 1

2wn−1(t) + 1
2 ŵn(t).

Simplified, we can compute w(t + 1) as a matrix-vector product: w(t + 1) =
S(t) · w(t) =

∏t
i=0 S(i) · w(0) with the strategy matrix S(t). See Figs. 1a and 1b

for a visualization of Max-GtM and the strategy matrix S(t).

3.2 One-Dimensional Analysis

Next, we investigate the performance of Max-GtM in a one-dimensional con-
figuration. These configurations already reveal an interesting behavior of Max-

GtM: some configurations do not converge to a max-chain but to a different
structure, we will denote as the marching chain. The two classes of configura-
tions that play a role in this analysis are marching and opposed configurations.

Lemma 1. Max-GtM switches at most once between opposed and marching
configurations. The switch is executed after at most n − 2 rounds.

The switch between opposed and marching configurations can only happen
if w3(t0) = −ŵ2(t0) or wn−1(t0) = −ŵn(t0). In this case, r1 and r2 or rn−1 and
rn move to the same position and it can take up to n − 2 rounds until this is
resolved. See [3] for a more comprehensive discussion of this special case. For
the ease of notation, we say in the following that a configuration is an opposed
configuration if it is an opposed configuration after applying Max-GtM for n−2
rounds (similar for marching configurations).

As a consequence of Lemma 1, starting from a marching configuration, Max-

GtM does not converge to a max-chain. For some highly symmetric configu-
rations, for instance the configuration depicted in Fig. 2, this even cannot be
obtained by any deterministic strategy due to a high symmetry.

Theorem 4. There are marching configurations that cannot be transformed into
a max-chain by any deterministic strategy.

For opposed configurations, we can show that Max-GtM converges towards
an ε-approximation of the max-chain. Define mi(t) = 1 − wi(t). For the anal-
ysis, we use the potential function φ1(t) =

∑n
i=2 mi(t)2 as a progress measure.

Intuitively, φ1(t) measures how close the configuration is to the max-chain, since
in the max-chain, wi(t) = 1 for all i. For m1(t) = 0 and mn+1(t) = 0, it
holds φ1(t + 1) =

∑n
i=2 mi(t + 1)2 =

∑n
i=2

(mi−1(t)+mi+1(t)
2

)2. Inspired by [5],
we can analyze φ1(t) with the help of discrete Fourier Transforms. Discrete
Fourier Transforms are useful here, because they allow us to decouple the com-
putations of the mi(t + 1)’s. By now, we can express mi(t + 1) based upon
mi−1(t) and mi+1(t). Discrete Fourier Transforms remove this dependency such
that we get a single (non-recursive) formula for each mi(t + 1) and can bound
φ1(t + 1) by the slowest decreasing mi(t), resulting in an upper runtime bound
of O

(
n2 · log (n/ε)

)
.

Theorem 5. Started in an opposed configuration, Max-GtM needs at most
O(n2 · log (n/ε)) rounds to achieve an ε-approximation of the max-chain.
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The analysis of the mixing time of a Markov Chain allows us to prove a close
lower bound of Ω

(
n2 · log (1/ε)

)
. Here, we can rewrite w(t) and S(t) slightly

such that the resulting strategy matrix is a stochastic matrix that could also be
the transition matrix of a Markov Chain with a single absorbing state. Markov
Chains with a single absorbing state have a unique stationary distribution, such
that some bounds for the mixing times of Markov Chains can be applied.

Theorem 6. There exist opposed configurations such that Max-GtM needs at
least Ω

(
n2 · log(1/ε)

)
rounds to achieve an ε-approximation of the max-chain.

Marching configurations do not converge to a max-chain but have a different
convergence behavior, they converge to the marching chain. It is called marching
chain because the robots all together move into the same direction and never
stop. The configuration wM (t) defines the marching chain. wM (t) = (1 − 2

n , 1 −
4
n , . . . , 2

n , 0, − 2
n ,− 4

n , . . . ,−(1 − 2
n ))

T . Figure 2 visualizes this marching chain.
Observe that S(t) · wM (t) = wM (t) (wM (t) is an eigenvector of S(t) to the
eigenvalue 1). In the marching chain, each robots moves distance 1

n per round.

r1

r10

r2 r3 r4 r5

r6r7r8r9

w2(t) w3(t) w4(t) w5(t)

w10(t) w9(t) w8(t) w7(t)
w6(t)

Fig. 2. A marching chain for n = 10. Every position is occupied by two robots.

Starting in a marching configuration, the convergence time until all vectors
only differ up to ε from their corresponding vector in the marching chain is equal
to the runtime bound for opposed configurations. Here, we can again use the
analysis of the mixing time of a Markov Chain for a slightly different transition
matrix. We consider the vectors zi(t) = pi(t+1)−pi(t) pointing from the current
position of a robot to its next position. The changes of the vectors zi(t) can be
calculated via a matrix-vector product of a doubly stochastic transition matrix
and the current vectors. A doubly stochastic matrix can also be the transition
matrix of an irreducible, aperiodic and reversible Markov Chain. These Markov
Chains converge to a unique stationary distribution and the runtime bounds
depend on the second largest eigenvalue of the transition matrix. By analyzing
this second largest eigenvalue we can prove the following runtime bounds:

Theorem 7. Given a marching configuration, Max-GtM needs at most O(n2 ·
log(n/ε)) and at least Ω(n2 · log(1/ε)) rounds to achieve an ε-approximation of
the marching chain.

3.3 Two-Dimensional Analysis

Next, we prove a convergence result for two-dimensional configurations, stating
that an initial configuration either converges to the max-chain or to the marching
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chain. In the analysis, we again consider the vectors zi(t) = pi(t+1)− pi(t) and
the function φ2(t) =

∑n
i=1 ‖zi(t)‖2. φ2(t) is a monotonically decreasing function

and the analysis of φ2(t+1)− φ2(t) allows us to conclude that two-dimensional
configurations either converge to a marching chain or to the max-chain.

Theorem 8. Given an arbitrary connected chain in the Euclidean plane, Max-

GtM converges either to the marching chain or to the max-chain.

Interestingly, when assuming that only one of the outer robot moves while
the other one remains stationary, we can prove the same upper runtime bound
as for one-dimensional configurations. The proof relies on the analysis of φ2(t)
for this case. Again, the analysis of a transition matrix plays a role here – since
only one outer robot moves we obtain a substochastic transition matrix where
every row except of one sums up to 1. The last row only sums up to 1/2 such
that high powers of this matrix converge to the 0-matrix. A diagonalization of
the transition matrix yields the following runtime bound:

Theorem 9. In case one of the outer robots is stationary and all other robots
move according to Max-GtM, an ε-approximation of the max-chain is achieved
after O(n2 · log(n/ε)) rounds.

In case both outer robots move, we identify a certain class of configurations
that lead to an arbitrarily high runtime based on a parameter δ which can be seen
as the width of the configuration. Before defining the configurations, we give some
intuition about their construction: Applying Max-GtM to the configuration
of robots can be interpreted as a discrete time dynamical system. In Sect. 3.2,
we have seen that this dynamical system has two different (classes of) fixed
points, i.e., a configuration that remains unchanged when applying Max-GtM.
These fixed points are the max-chain and the marching chain. We can prove
that the marching chain is an unstable fixed point. Unstable means that a small
perturbation in the configuration results in a different behavior – the dynamical
system moves away from this fixed point. In our case this means that a small
perturbation in the marching chain leads to a configuration that converges to the
max-chain. For a formal description of the relation to dynamical systems and a
proof that the marching chain is an unstable fixed point, we refer the reader to [3].
We use the property that marching chains are unstable fixed points to define
configurations which are very close to the marching chain, discrete δ-V-confi-
gurations. For δ = 0, discrete δ-V-configurations and marching chains coincide.
Choosing any δ > 0 changes the behavior such that the configuration converges
to the max-chain. The runtime, however, can be arbitrarily high depending on δ.

Definition 1. For n even, a discrete δ-V-configuration is defined by the vectors
wi(t) := ( δ

n−1 , 1 − 2(i−1)
n )T for i = 2, . . . , n.

Theorem 10. Starting in a discrete δ-V-configuration, Max-GtM needs at
least Ω

(
n2 · log(1/δ)

)
rounds to achieve an ε-approximation of the max-chain.
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Hence, the runtime of Max-GtM can be arbitrarily high depending on δ.
The dependence on δ can be removed in the continuous time model by an (at
the first sight) counter-intuitive approach: The outer robots move slower than
the inner robots. The same approach does not work in Fsync (see Sect. 5).

4 The Continuous Case

This section is dedicated to the Max-MoB strategy that transforms a connected
chain into a max-chain in the continuous time model. After introducing the
strategy, we continue with some preliminaries in Sect. 4.1 and provide an intuitive
explanation of the strategy combined with a proof outline in Sect. 4.2.

Max-Move-On-Bisector (Max-MoB) Outer robots move with a max-
imal speed of (1 − τ) for a constant 0 < τ ≤ 1/2 as follows: In case ‖w2(t)‖ < 1:
v1(t) = − (1 − τ) · ŵ2(t). Similarly, in case ‖wn(t)‖ < 1: vn(t) = (1 − τ) · ŵn(t).
In other words, outer robots move with a speed of (1 − τ) away from their direct
neighbors. Otherwise, provided ‖w2(t)‖ = 1 (‖wn(t)‖ = 1 respectively), an outer
robot adjusts its own speed and tries to stay in distance 1 to its neighbor while
moving with a maximal speed of 1 − τ . An inner robot ri with 0 < αi(t) < π
moves only if at least one of the following three conditions holds: ‖wi(t)‖ = 1,
‖wi+1(t)‖ = 1 or αi(t) < ψ for ψ := 2 · cos−1 (1 − τ) . Otherwise an inner robot
does not move at all. In case one of the conditions holds, an inner robot moves
with speed 1 along the angle bisector formed by the vectors pointing to its neigh-
bors. As soon as the position of the robot and the positions of its neighbors are
collinear it continues to move with speed 1 towards the midpoint between its
neighbors while ensuring to stay collinear. Once it has reached the midpoint it
adjust its own speed to stay on the midpoint. See Fig. 3 for a visualization.

4.1 Preliminaries

For both outer robots we determine the index of the first robot that is not
collinear with its neighbors and the respective outer robot.

Definition 2. (t) is the index, s.t. for all 2 < j ≤ (t) either wj(t) = (0, 0) or
ŵj(t) = ŵ2(t), w�(t)+1(t) �= (0, 0) and ŵ�(t)+1(t) �= ŵ2(t). Similarly, define r(t) to
be the index such that for all r(t) < j < n either wj(t) = (0, 0) or ŵj(t) = ŵn(t)
and wr(t)(t) �= (0, 0) and ŵr(t)(t) �= ŵn(t). In case there is no such an index
define (t) = r(t) = 0. α�(t)(t) and αr(t)(t) are denoted as outer angles.

We omit the time parameter t when it is clear from the context, e.g., we write
α�(t) instead of α�(t)(t). In addition to the indices (t) and r(t), we define the
last indices of robots (starting to count at (t) and r(t)) that are collinear with
their neighbors and the corresponding robot with index (t) or r(t).

Definition 3. Let +(t) be the smallest index larger than (t) such that α�+(t) <
π. Similarly let r+(t) be the largest index less than r(t) such that αr+(t) < π.
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r1 rn

r�(t)

rr(t)

ri(t)
αi(t) < ψ

Fig. 3. A chain visualizing the
movements of Max-MoB. The
velocity vectors are depicted by
dashed arrows.

r1

rn

r�(t)

r�+(t)

rr+(t)

rr(t)

O�(t)

Or(t)

Fig. 4. A visualization of �(t), �+(t), r(t),
r+(t), O�(t) and Or(t).

Definition 4. The left outer length O�(t) :=
∑�(t)

i=2 ‖wi(t)‖ and the right outer
length Or(t) :=

∑n
i=r(t)+1 ‖wi(t)‖. The maximal values of the left and right outer

length are denoted by γ�(t) := (t) − 1 and γr(t) := n − r(t). Additionally, the
inner length is defined as I(t) :=

∑r(t)
i=�(t)+1 ‖wi(t)‖. See Fig. 4.

4.2 Intuition and Proof Outline

The main idea of Max-MoB is to flatten and stretch the chain starting at
the outer robots towards the inside of the chain. At first, ‖w2(t)‖ = 1 and
‖wn(t)‖ = 1 is ensured, afterwards the angles α2(t) and αn−1(t) should reach
a size of π and so on until finally all vectors have length 1 and all angles have
a size of π. Figure 5 visualizes this core idea. To achieve this behavior, one of
the two cases in which an inner robot ri moves demands either ‖wi(t)‖ = 1 or
‖wi+1(t)‖ = 1, because locally it can assume that it is already located on the
straight line to one outer robot and all vectors into the direction of the outer
robot have a length of 1. In addition, an inner robot ri moves if αi(t) < ψ. In
Sect. 5 we see that this property is crucial for the linear runtime of the strategy
by introducing configurations that have a high runtime that not only depends
on the number of robots in case the property is ignored. To express the behavior
of flattening and stretching the chain starting at the outer robots towards the
inside of the chain, we have introduced the indices (t) and r(t). For each of the
two sets of robots r1, . . . , r�(t) and rr(t), . . . , rn it always holds that these robots
continue to stay collinear for the rest of the execution.

The outer angles α�(t) and αr(t) play an important role in the analysis. We
divide the possible sizes into three intervals, [0, ψ), [ψ, 3

4π] and ( 34π, π]. For an
outer angle αi(t) ∈ [0, ψ)(i ∈ {(t), r(t)}) two properties hold: I(t) decreases
with speed at least 1− τ and the corresponding outer length decreases since the
outer robots move with speed at most 1 − τ . As I(t) decreases with a constant
speed of at least 1 − τ , the total time in such a case is upper bounded by
O (n). Given αi(t) ∈ [ψ, 3

4π], the strategy is designed such that ri only moves if
Oi(t) = γi(t). Thus, as long as Oi(t) < γi(t), Oi(t) increases with speed 1 − τ .
As soon as Oi(t) = γi(t) holds, the robot ri starts moving along its bisector.
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This movement causes a decrease of I(t) with speed at least cos
(
3
8π

)
while the

length of Oi(t) does not change. Since, I(t) decreases with constant speed, this
case can hold for time at most O(n). For the last interval, αi(t) ∈ ( 34 , π] we
use a different progress measure since large angles cause a very slow decrease of
I(t) which cannot be bounded by a constant anymore. Therefore, we consider
the height Hi(t). Assume i = (t), then H�(t) denotes the distance between r�(t)

and the line segment connecting r1 and r�+(t). Intuitively, if we consider the line
segment connecting r1 and r�+(t) as a line parallel to the x-axis, the robot r�

moves with a velocity vector that has a small angle to the y-axis towards this
line segment. Thus, Hi(t) decreases with constant speed. All in all, we can prove
that the total time of outer angles in any of these intervals is bounded by O (n)
such that finally (t) = r(t) holds. Lastly, we analyze the case (t) = r(t) and
prove a linear runtime for the strategy (Theorem11).

1) 2)

‖w2(t)‖ = 1, ‖wn(t)‖ = 1‖w2(t)‖ < 1, ‖wn(t)‖ < 1

3) 4)

α2(t) = π, αn−1(t) = π ‖w3(t)‖ = 1, ‖wn−1(t)‖ = 1

Fig. 5. A visualization of the core idea of Max-MoB. 1) depicts an initial configura-
tion. 2) visualizes the configuration after stretching w2(t) and wn(t). In 3), α2(t) = π
and αn−1(t) = π. In 4) r1 and r2 as well as rn−1 and rn have moved such that
‖w2(t)‖ = ‖w3(t)‖ = ‖wn−1(t)‖ = ‖wn(t)‖ = 1.

Theorem 11. Starting Max-MoB in a two-dimensional configuration, the ini-
tial chain is either transformed into a straight line of length n − 1 or all robots
are located at the same position after time O(n).

Our simulations support the following conjecture.

Conjecture 1. The set of initial two-dimensional configurations that result in a
configuration where all robots are located on the same position when applying
Max-MoB has Lebesgue measure 0.

5 On the Speed of the Outer Robots

We close by a brief discussion on the influence of the speed of the outer robots.
An elaboration on it can be found in the full version [3]. It turns out there
exists a special class of configurations – called continuous δ-V-configurations –
parameterized in the initial distance of the two outer robots δ for which Max-

MoB needs a runtime independent of δ, see Theorem 12.
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Theorem 12. Starting in a continuous δ-V-configuration, Max-MoB needs
time at most n ·

(
1
τ + 1

1−τ

)
to transform the configuration into a max-chain.

One might suspect that an algorithm in which the outer robots move at
full speed stretches the chain faster. Interestingly, this is not true! For such an
algorithm – let it be called Naive-Max-MoB – we can show that the runtime
for continuous δ-V-configurations is lower bounded dependent on δ.

Theorem 13. Naive-Max-MoB transforms a continuous δ-V-configuration
into a max-chain in time Ω (n · log (1/δ)).

Slowing down the outer robots actually allows us to achieve a runtime inde-
pendent of the initial configuration in the continuous case. Can we apply the
same idea in the discrete model? Unfortunately not! Consider the algorithm
(1 − τ)-Max-GtM that behaves as Max-GtM except that the outer robots
move always by a distance of (1 − τ) times the distance they would in Max-

GtM. Similar to discrete δ-V-configurations for Max-GtM, there exists the
class of discrete (δ, 1 − τ)-V-configurations in which (1 − τ)-Max-GtM has a
runtime depending on δ.

Theorem 14. Starting in a discrete (δ, 1 − τ)-V-configuration, (1 − τ)-Max-

GtM needs at least Ω
(
n2 · log(1/δ)

)
rounds to achieve an ε-approximation of

the max-chain.
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Abstract. We generalize the definition of Proof Labeling Schemes to
reactive systems, that is, systems where the configuration is supposed
to keep changing forever. As an example, we address the main classical
test case of reactive tasks, namely, the task of token passing. Different
RPLSs are given for the cases that the network is assumed to be a tree
or an anonymous ring, or a general graph, and the sizes of RPLSs’ labels
are analyzed. We also address the question whether an RPLS exists.
Interestingly, for the anonymous ring, it is known that no token passing
algorithm is possible even if the number n is known. Nevertheless, we
show that an RPLS is possible. We show that if one drops the assumption
that n is known, the construction becomes impossible.
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1 Introduction

Proof Labeling Schemes [37] as well as most later variations of distributed “local”
verification of global properties, were suggested for “input/output” distributed
algorithms, where the (distributed) input is available at the nodes before an
algorithm is executed, and the algorithm uses it to generate the final output and
terminate. (Those tasks are also called “static” or “one-shot”; they are“silent”
in terms of self-stabilization [21]). As discussed in Subsect. 1.1, they were shown
useful in the context of the development of algorithms, as well as in the context
of distributed computability and complexity. This motivates the extension for-
malized in the current paper – that of local checking in reactive systems, where
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the configuration is supposed to keep changing forever. We note that reactive
systems are by far, the bulk of distributed systems.

In the current paper, we define and initiate the development of efficient Reac-
tive Proof Labeling Schemes (RPLS) tailored to specific tasks. As a test case, we
address the main classical problem of self-stabilization – token passing. Different
RPLSs are given for the cases that the network is assumed to be a tree, or a
ring, or a general graph, and the sizes of their labels are analyzed.

We also address the question whether an RPLS exists. Interestingly, it is
known that no token passing algorithm exists for the anonymous ring even if the
number n of nodes is known [17] (except for special cases [13]). Nevertheless, we
show that there exists an RPLS for token passing on anonymous rings, provided
n is known, for any value of n. We also show that no RPLS exists for the
anonymous token ring if we remove the assumption that n is known.

Recall that by coupling a non-self-stabilizing algorithm with a “one-shot”
task, one could develop a self-stabilizing algorithm for that task. Similarly, cou-
pling such an RPLS with a non-stabilizing token passing algorithm would ease
the task of designing a self-stabilizing token passing algorithm. Another possible
direct application is to allow the use of a randomized algorithm until stabilization
when deterministic algorithms do not exist, and to cease the use of potentially
expensive randomness when the RPLS does not indicate an illegal state [24].

1.1 Background

The notion of local checking started in the context of self-stabilization, and later
motivated further research. Early self-stabilizing algorithms [13,17–19,39] as if
by magic, managed to stabilize (see definitions in [20]) without explicitly declar-
ing the detection of a faulty global state. In [17], the configuration (the collection
of all nodes’ state) is “legal” iff the state of exactly one node is “holding a token”.
A node holding a token takes a certain step to “pass the token” to the next node,
whether the configuration is legal or not. This seems a much more elegant design
than addressing multiple cases. Looking at this very elegant algorithm, one is
amazed how extra tokens (if such exist) somehow disappear. Similarly, in [18,19],
a node repeatedly chooses to point at the neighbor who has the lowest value in
the “distance-from-the-root” variable whether the current configuration is legal
or not. This, again, elegantly avoids cluttering the algorithm with various cases
and subcases. Surprisingly, if the configuration is not already a Breadth First
Search tree rooted at the assumed special node, then it converges to being such
a tree.

Despite the elegance of the above approach, it also has the disadvantage
of requiring the ingenuity to especially design an algorithm for different tasks
from scratch. On the other hand, the opposite approach, that of detecting an
illegal state and then addressing it, also seems difficult at first. As Dijkstra
described [17], the difficulty in self-stabilization arises from the fact that the
configuration is not known to anybody. A node is not aware of the current
state of far away nodes. It can know only about some past states that may have
changed. The seminal works of [14,34] suggested a way to overcome this inherent
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difficulty in distributed systems. A “snapshot” algorithm collects a “consistent”
(see [14]) representation of the configuration to some given “leader” node, who
can then check whether the configuration follows some given legality predicate,
e.g., “exactly one node has a token”, and detect the case where it does not. (A
self-stabilizing algorithm to elect such a leader was suggested at the same time
in [2]). This could simplify the task of designing self-stabilizing algorithms by
practically automating the part of the task involving the detection of a faulty
state. This allows the modular approach of designing a part of the algorithm
especially for addressing faults. However, this kind of checking, requiring that
a fault even at very remote nodes is detected, was named “global checking” [7]
for a good reason. It carried a lot of overhead in time and communication (even
if the communication was reduced by tailoring the global checking to a specific
task and even assuming that the checking process itself could not suffer faults
but only the checked task may be faulty [11,36,40]).

The notion of local checking and detecting a violation of the legality predicate
on the configuration was thus suggested in [2]. The main new idea (the “local
detection paradigm”) was that if the configuration was not legal, then at least one
node detects the violation using only its own state and the state of its neighbors.
(If the configuration was legal, then no node detects a violation). Note that the
locality was made possible by allowing the detection to be made by a single
and arbitrary node, which is enough in the context of self-stabilization, since
then correction measures (of various kinds [1,2,5–8,22,31,38]) can be taken. An
example of a predicate that can be checked that way is equality – in the election
algorithm of [2], every node checked repeatedly whether the unique identity of
the node it considered to be the leader was indeed the same as the identity its
neighbors considered to belong to the leader. Predicates that can be computed
that way are locally checkable.

Some other properties, e.g., the acyclicity of a subgraph, required enhancing
the output (and the legality predicate) by the addition of information at each
node to ensure local checkability of the enhanced predicate. This was generalized
by various other papers, at first, still in the context of self-stabilization. In [6,8],
general functions were discussed. In [21], this allowed the definition of a stronger
form of self-stabilization by reaching a state in which communication can be
saved. In [10], the generalization was to consider different faults at different
distances in time or in graph distance, and thus invest more only in cases where
more exact pinpointing of the faults was needed.

The first impact of local checkability outside of the realm of self-stabilization
is due to [43]. Indeed, they motivated the study of locally checkable predicates by
the fact that local detection is useful in self-stabilization. Still, the subject of their
paper was the not-necessarily-self-stabilizing computation of a language (viewing
the output configuration as a word in a distributed language) for which a locally
checkable predicate holds. They asked which of those could also be computed in
O(1) time. This started a long line of research, eventually characterizing exactly
what (distributed time) complexity classes exist for languages whose predicate
is locally checkable. See e.g., [9].
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A further development beyond self-stabilization was the notion of Proof
Labeling Schemes (PLS) [37]. Those were suggested as a distributed counterpart
of the classical foundation of computing notion of Nondeterministic Polynomial
(NP) time. Recall that a language is in NP iff there exists a “verifier” such that
for each word in the language, there exists a “witness” that can be checked
“easily” by the verifier. The word is in the language if and only if the verifier
accepts. In a PLS, the distributed “witness” is some label, possibly different for
each node. The verifier is distributed in the sense that in each node, it can check
only variables and the label of the node, and the labels of the node’s neighbors.1

Here, “easily” checking means O(1) distributed time, rather than the polynomial
non-distributed time of the classical NP notion.

This led to an ongoing rich area of research by adapting notions, and hope-
fully also results of classical non-distributed theory into the distributed realm,
see e.g., [27,30,35,42]. In some cases, there are multiple interactions between
a prover and the distributed verifier at each node. This is still very different
from the subject of the current paper. For example, in [35,42], multiple interac-
tions are useful even in the verification of one, non-changing configuration, while
here, we deal with a configuration that is supposed to be changed in an ongoing
manner. Moreover, in [27,35,42], an all-powerful and non-distributed prover is
assumed, that can communicate with the nodes. This is very different from the
current paper where the idea is to make the proof labeling “long-lived” by having
it maintained by a distributed mechanism such that the configuration changed
by a correct algorithm can still be verified as correct after the change. Static
checking in a network where edges may be inserted or removed was addressed
in [29]. However, the labels there are never changed, so this can support only
the case that both the graph before the change and the graph after the change
obey the predicate. Additional complexity related results [45] were obtained by
expanding the research into less local forms of checking.

The local detection paradigm was also applied to obtain results in distributed
testing, hardness of approximation, Peer-to-Peer networks, and more [24,26,44,
45]. Many generalizations were suggested, such as verifiers who are allowed to
communicate to a distance larger than 1, or to a given number of nodes [30].
Another line of research generalized the verifier to output some general function
rather than a binary one (of either accepting or rejecting) [25].

Unfortunately, verification schemes were designed for a single configuration,
e.g., the output of “one time” distributed tasks. Algorithms that updated the
labels were used, e.g., after a system reset [2,7] or even every step [2] (to verify
that a certain global condition (a cycle) did not occur in the new configuration).
Still, there, the tasks addressed were not reactive (e.g., leader election [2]).

Checking is indeed often intermixed in the design of reactive systems, to
identify situations that may need a repair. More directly, we are inspired by the
local stabilizer [1] – a general fault recovery mechanism. Essentially, it reduces

1 Under some other definitions, then the predicate is computed on the whole state of
the neighbor [3,21,33] or just variables on a specific port of an edge at a node and
the neighbor at the other endpoint of that edge [6–8].
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the distributed network into a non-distributed one by having each node v main-
tain copies of the local states of every other node in the system (but the copy of
the state of a remote node is from an earlier time in history since it takes time
until v can hear about it). Hence, each node can simulate nodes in the whole
system up to some time ago. The simulations in neighboring nodes are compared
each step so inconsistencies (caused by a fault) are detected one time unit after
the fault. The detection part of [1] can be viewed as a reactive counterpart of the
non - reactive “universal” PLS [37] since it too sends all the information available
and can detect an illegal configuration for any predicate. However, in our con-
text, the scheme of [1] can be viewed more as a proof of possibility rather than
an efficient algorithm, because of the large communication and memory required
for replicating every piece of information everywhere continuously. We still fol-
low the idea that the algorithm configuration, as well as the set of node labels,
resulted from the recent history of the execution. This is useful, for example,
when coming to define the labels of the “initial configuration” (e.g., in the case
some outside corrective measure resets the system to a legal configuration plus
legal labels). One approach for generating such an initial labeling is to simulate
some fault free history invented for that.2

Other Related Notions. Another notion that sounds similar to an RPLS – local
observer was proposed in [11,12]. A local observer algorithm enables the detec-
tion of stabilization (versus the detection of illegality addressed here) through
one observer at a unique node, as opposed to requiring one observer at every node
in [40]. An observer, similar to an RPLS, does not interfere with the observed
algorithm. However, the observers of [11,12,40] relied on the extra assumption
that the variables and messages of the observing algorithm itself (at least in one
node [11]) cannot be corrupted (possibly analogous to relying on extra assump-
tions when consulting an oracle in complexity theory). Such an assumption is
not used here. Note that all these observers were not “local” in the sense used
here, of detection time and distance (see Sect. 1.1).

2 Preliminaries

We represent a distributed system by a connected graph G = (V,E) that belongs
to a graph family F . The topology of G does not change. Let n = |V |. For any ver-
tex v ∈ V , N(v) is the set of neighbors of v and deg(v) is the number of neighbors
of v. Either the nodes may be identical or each node v may have a unique iden-
tifier id(v) (that cannot be changed by the environment, nor by an algorithm).
For the sake of simple presentation only, we use the “KT1 model”[4] (knowing
neighbor’s id) for trees and general graphs. We use the sense-of-direction model
[28] for anonymous rings.

2 This may sound not unlike the claim that the world was created only a few thousand
years ago, but created with a history built in, e.g., looks as if there were dinosaurs
in time much older than a few thousand years ago.
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The communication model is synchronous and time is divided into rounds.
In each round, a node goes through three stages in the following order: sending
messages to neighbors, receiving messages sent by neighbors in the same round,
and local computation. In the computation stage, each node v follows some
distributed algorithm Alg; let v’s algorithm state include all v’s variables and
constants used by Alg, as well as the received messages. (We use just “state”
when no confusion arises).

Let s be a mapping from the nodes to the set of algorithm states. The col-
lection of nodes’ states is called the configuration. Denote by Vs(r) (or just V
when s is clear from the context) the set of nodes together with their local states
for round r. Specifically, unless stated otherwise, when any value at round r is
mentioned, the reference is to the end of the computation stage of round r. For
example, for each variable var in a local state, we may use the notation varr
to denote the value of var at (the end of) round r. A legality predicate f is
defined on Gs(r) = (Vs(r), E). The value of f may change when the configura-
tion is changed by the environment (see “fault” below). Alg may also change the
configuration in the computation stage.

Often, it is convenient to define the legality predicate only for some subset
of the variables of Alg (see [5]), called the interface variables (for example, any
token passing algorithm can be revised slightly to also maintain a variable that
says whether the node has the token or not). This way, predicate f (and the
RPLS defined below) can be made independent of the specific algorithm used
(e.g., the specific token passing algorithm used) as long as it follows the specifi-
cation for the problem it solves. Henceforward, when speaking of the (algorithm)
state of a node v, we may be speaking only of the interface variables at v. Sim-
ilarly, the configuration may include just the interface variable of every node
v.

Definition 1. A fault occurs when the environment (rather than Alg) changes
the value of at least one variable at one or more nodes. This can be either a
variable in the algorithm state or a variable of the RPLS.

We assume that the environment may choose one round r (only) such that
every fault occurs just before round r starts (and after round r − 1 ends, if
such exists). This constraint on the faults guarantees that any message a node
v receives from neighbor u is indeed the one that u sends to v at the beginning
of the same round. The constraint can be relaxed using known techniques (see
the discussion of atomicity in [23] and elsewhere, e.g., [3]), but is used here for
the ease of the exposition.

The execution of a reactive task is, in general, infinite. However, the defini-
tions are simplified by choosing some arbitrary round r0 and calling it the initial
round, and calling its configuration the initial configuration.

Definition 2. The execution is correct until r (excluding r) if ∀r0 ≤ rk < r,
no faults occur before the beginning of rk and frk = 1.
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Definition 3. The configuration of Alg becomes incorrect in r if the execution
is correct until r (excluding r) but some faults occur just before r and change
the configuration such that fr = 0.

2.1 Definition of Reactive Proof Labeling Schemes

Definition 4. An RPLS for a predicate f on some given set of interface vari-
ables is a pair π = (M,V) of two algorithms. The marker M algorithm consists
of a node marker M(v) in each node v that maintains a variable L(v) called
a label of v which is stored in v but is not considered to be a part of the (algo-
rithm) state of v and is not manipulated by Alg. The marker is distributed3 but
its specification includes the specification of its initial values at r0 as a function
of the values of the interface variables at round r0.

Similarly, the verifier algorithm V consists of a node verifier V(v) in each
node v. After Alg completes its computation for round r, the marker M(v) may
change the value of L(v). Then, L(v) is sent to v’s neighbors at the beginning of
round r + 1. In the computation stage of r + 1, verifier V(v) is executed before
Alg. The verifier uses v’s Alg state, as well as L(v) and L(u) received from each
neighbor u, to output either 0 or 1.

If the interface variables are only a subset of the Alg state then, before the
execution of M(v) in each round r, Alg updates the values of v’s interface vari-
ables which are accessible for M(v) in r and for V(v) at the beginning of r + 1.

An RPLS π = (M,V) is correct if the following two properties hold.
i. For every G ∈ F , if the execution is correct until r + 1 (excluding r + 1)

and the labels were labeled according to the specification of M at round r0, then
∀r0 < rk ≤ r + 1, V(v) outputs 1 for all v.

ii. For every G ∈ F , if the configuration becomes incorrect in r, then ∃v ∈ G
such that V(v) outputs 0 at the beginning of r + 1.

The interface between the RPLS and the algorithm is shown in Algorithm
1. Intuitively, for each round, the RPLS implies a PLS (the specification of the
initial labels plus the verifier’s action). The addition here is that M updates the
PLS each round to accommodate the actions of Alg. If f does not hold even in
r0, then definition 4 implies that this is detected already in the next round (if
no further faults occurred) and further updates of the labels do not interest us
here. Hence, let us now treat the case that f holds for the initial state.

Definition 5. A legal initial labeling for a given RPLS is the assumed set of
labels of M(v) in a given initial configuration of Alg at round r0, defined if f
holds for that configuration.

Definition 6. The size of an RPLS π = (M,V) is the maximum number of
bits in the label that M(v) assigns over all the nodes v in G and all G ∈ F and
all the rounds. For a family F and a legality predicate f , we say that the proof
size of F and f is the smallest size of any RPLS for f over F .
3 A non-distributed marker may also be useful in some settings.
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Note that the size of a label does not depend on Alg (as long as f does not
depend on Alg, e.g., when f is defined over the interface variables only).

Algorithm 1: Implementation of an RPLS and Alg at v at round r.
1: Send Lr−1(v) to neighbors
2: Receive Lr−1(u) from each neighbor u
3: Call V(v)
4: Call Alg to update the values of the interface variables
5: Call M(v)

3 RPLS for Token Passing Algorithms

Definition 7. Given a graph G = (V,E) that belongs to a graph family F, a
token predicate ftoken is a predicate evaluated at each node on its state and
the messages it has received which determines whether it holds a token.

Definition 8. A Token Passing Algorithm (TPA) is any distributed algo-
rithm for which a token predicate is defined.
The legality predicate f for token passing evaluates to 1 if there is exactly one
token-holder on G and evaluates to 0 otherwise.
We assume that TPA may cause ftoken at some node v to cease to hold at some
round r and to start to hold at some neighbor u of v. We then say that the token
is passed from v to u in r.

We assume that the token can be passed exactly once from the token-holder
v to exactly one of v’s neighbors in each round until r + 1 (excluding r + 1) if
the execution is correct until r + 1 (excluding r + 1). In each round r, at line 4
of Algorithm 1, TPA sets the interface variable sr(v) = 1 if v holds the token in
r and sr(v) = 0 otherwise. We assume M(v) knows whether the token is passed
from some u ∈ N(v) to v or from v to u in r when such a movement happens in
r (implemented easily using the notion of interface variables). For the 3 RPLSs
given in the next sections of this paper we show (in the longer version of this
extended abstract) the following:

Theorem 1. Given (1) the RPLS is executed with Alg and with a legal initial
labeling at time r0, and (2) the execution is correct until r + 1 (excluding r + 1),
then all the verifiers output 1 in r + 1.

Theorem 2. If the configuration becomes incorrect in r, then at least one veri-
fier outputs 0 in r + 1.

4 RPLS for Token Passing on Trees

Let us start with a simple example of a token passing over a tree. The new RPLS
is a “link reversal” algorithm. Such algorithms maintain and change virtual
directions on the edges, thus creating a directed graph rooted at objects such as
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a token, see e.g., [15,16,32,46]. In the RPLS, the violation of f can be detected
by some node not having an edge directed out but still not having the token,
or a node having an edge directed out but having a token, or by a node having
two such edges. When the token is passed from a node v to its neighbor u, the
marker algorithm updates the direction of edge (u, v) so that the tree is still
rooted at the token. The nice property is that this update can be performed in
the same round as the one in which a token is passed and only at the two nodes
that are anyhow involved in the token pass.

The RPLS maintains the following variables for each node v:
•weight(v)u = 0, 1 or 2, ∀u ∈ N(v)—Informally, each edge (u, v) is directed
from the endpoint with the “higher”(modulo 3) weight to the endpoint with the
“lower” (modulo 3) weight. See Definition 9 and Definition 10 below.
•L(v) = (id(v), (id(u), weight(v)u)|∀u ∈ N(v)).

Definition 9. For 0, 1 and 2, define: 0 ≺ 1, 1 ≺ 2, 2 ≺ 0.

Definition 10. We say that edge (v, u) is an incoming edge for v and an
outgoing edge for u in round r, denoted by v

r←− u if the following holds: for
the pair of neighbors u and v, there is one pair (id(x), weightr(v)x) in Lr(v)
and one pair (id(y), weightr(u)y) in Lr(u) such that: id(u) = id(x) ∧ id(v) =
id(y) ∧ weightr(v)x ≺ weightr(u)y.

Specification of the legal initial labeling: denote the token holder of r0 by
v. The nodes are labeled such that v has only incoming edges in r0 while every
node u 	= v has exactly 1 outgoing edge and every other edge of u is incoming
to u. Clearly, the verifiers output 1 in r0 + 1 (See C1 and C2 of Algorithm 2).

Algorithm 2: V(v) in round r

1: IF any of the following conditions is violated, output 0:

2: C1: if sr−1(v) = 1, then ∀u ∈ N(v), v
r−1←−− u

3: C2: if sr−1(v) = 0, then ∃u ∈ N(v) : u
r−1←−− v ∧ ∀w ∈ N(v) ∧ w �= u : v

r−1←−− w
4: ELSE, output 1

Algorithm 3: M(v) in round r

1: IF token is passed from u ∈ N(v) to v in r:
2: weight(v)u ⇐ (weightr−1(u)v − 1) mod 3

5 RPLS for Anonymous Rings

Consider a ring R = (V,E) of n > 2 identical nodes (without unique identifiers).
We assume that n is known to every node. Each node has two edges, each
connecting to one neighbor. Each node can distinguish between its two neighbors
– a successor (the clockwise neighbor) and a predecessor (the counterclockwise
neighbor). The label of each node v is an integer in [0, n2 − 1].

Definition 11. For integers x, y in [0, n2 − 1], let x ≺ y if y = (x + 1) mod n2.
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Specification of the Legal Initial Labeling: For any k = 0,1,..., n − 1, let
node vk+1 mod n be the successor of vk, such that s(vn−1) = 1. (The numbering
is not known to the nodes). The legal initial labeling is: For every 0 ≤ k ≤ n−1,
let L(vk) = k. This gives us L(vn−1) = (L(v0) + n − 1) mod n2 and L(v0) ≺
L(v1) ≺ ... ≺ L(vn−1). Clearly, fr0 = 1 and all the verifiers output 1 in r0 + 1 if
no fault occurs before r0 + 1. See C1 and C2 of Algorithm 4.

Algorithm 4: V(v) in round r

1: /*Denote the successor of v by w*/
2: IF any of the following conditions is violated, output 0:
3: C1: if sr−1(v) = 1, then Lr−1(v) = (Lr−1(w) + n − 1) mod n2

4: C2: if sr−1(v) = 0, then Lr−1(v) ≺ Lr−1(w)
5: ELSE output 1

Algorithm 5: M(v) in round r

1: /*Denote the predecessor of v by u*/
2: IF token is passed from u ∈ N(v) to v in r: /*token passed clockwise*/
3: L(v) ⇐ (Lr−1(u) + 1) mod n2

4: IF token is passed from v to u ∈ N(v) in r: /*token passed counterclockwise*/
5: L(v) ⇐ (Lr−1(u) − (n − 1)) mod n2

5.1 Necessity of Assumptions for Any RPLS for Anonymous Rings

We prove that without the assumption that each node knows the size of the ring,
no RPLS exists for token passing on anonymous rings.

Lemma 1. If there exists an RPLS for f on anonymous rings, then there exists
a PLS for f on anonymous rings.

Lemma 2. If there exists a (static) PLS for f on anonymous rings, then there
exists a (static) PLS which verifies whether the size of an anonymous ring is n.

Lemma 3. (Lemma 3.1 in [37]). There is no (static) on anonymous of an
anonymous ring is n.

The proof of these lemmas, as well as the other omitted proofs, can be found
in the longer version of this extended abstract. Combining Lemma 1, Lemma 2,
and Lemma 3 completes the proof that there does not exist an RPLS for token
passing on anonymous rings without some additional assumption such that the
size of the anonymous ring is known to every node.

6 RPLS for General Graphs G

In this section, we assume that each node has a unique identifier. We also assume
that each node knows the number n of nodes in the graph.

Definition 12. A round r is a checkpoint if r mod n = 0.
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Informally, the first idea behind the RPLS for general graphs was to try to
use the PLS of [37] for a static rooted spanning tree. That is, as long as the
token resides in one node v and does not move, let v be the root and verify that
v holds a token. Every other node u 	= v then needs to verify it does not hold a
token, and (using the PLS) that a root does exist. Unfortunately, consider the
case that the token is passed from v to some other node w over an edge that
does not belong to the tree. While it may be easy to update the tree so that w
is the new root, it may take diameter (of the tree) time for a distributed marker
to update the PLS of [37]. Hence, the next idea is to have a second part of the
RPLS to verify the movements of the token at any round after r0. Whenever a
node u passes the token to some other node w, both u and w record this move,
as well as the round number when this happened. Thus, had we allowed them
to remember all the history, they could simulate their actions in the execution.
As shown later by induction (in the long version of this paper), if the records of
all the nodes match those of their neighbors, and match the assumption that at
time r0, the token holder was v, then there exists indeed a single token.

Unfortunately, the above method would have used unbounded history, as
well as an unbounded round number. The main new idea is how to truncate the
history from time to time. Specifically, at each round r that is not a checkpoint,
the static tree is one that verifies the place of the token at the one before last
checkpoint r1. Any part of the history before r1 is forgotten and the count of
the time starts by setting r1 = 0. The static tree is replaced every checkpoint,
to prove the location of the token in the previous checkpoint (n rounds earlier)
since it takes a diameter time to construct such a PLS.

L(v) is a collection of the local variables at v maintained by the RPLS:
•static root(v)—id of the root node of the static tree.
•static parent(v)—NULL or the id of v’s parent on the static tree.
•static dist(v)—distance from the root of the static tree.
•cand root(v)—id of the root of the candidate tree.
•cand dist(v)—distance from the root of the candidate tree.
•cand parent(v)—NULL or the id of v’s parent on the candidate tree.
•dynamic parent(v)—NULL or the id of v’s parent on the dynamic tree.
•token in(v)—set of pairs of (r, id(u)) which logs the round r at which the

token was sent from v’s neighbor u to v.
•token out(v)—set of pairs of (r, id(u)) which logs the round r at which the

token was sent from v to v’s neighbor u.

Definition 13. The static tree of round r is the collection of edges pointed by
the static parentr(v) pointers at each node v. The dynamic tree of round r is
the collection of edges pointed by the dynamic parentr(v) pointers at each node
v. The candidate tree of checkpoint r is the dynamic tree of checkpoint r.
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Specification of the Legal Initial Labeling: Let r0 be a checkpoint. Select
any spanning tree rooted at the token holder v and set static distr0(v) ⇐ 0,
static parentr0(v) ⇐ NULL. Then ∀w 	= v that is k hops away from v,
denote w’s parent by some neighbor p that is k − 1 hops away from v. Also,
set static distr0(w) ⇐ k, static parentr0(w) ⇐ id(p). In addition, for every
u ∈ G, static rootr0(u) ⇐ id(v), cand rootr0(u) ⇐ id(v), cand parentr0(u) ⇐
static parentr0(u), cand distr0(u) ⇐ static distr0(u), and dynamic parentr0(u)
⇐ static parentr0(u). At last, set token inr0(u) ⇐ ∅, token outr0(u) ⇐ ∅.

See the RPLS in Algorithm 6 and Algorithm 7. The entries in token in(v)
and token out(v) are sorted in a linearly increasing order over the rounds of
the entries. Denote the kth entries of token in(v) and token out(v) by enin

k

and enout
k respectively. Let |token in(v)| = a and |token out(v)| = b. Given

any (r1, id(u)) and (r2, id(w)), define (r1, id(u)) ≺ (r2, id(w)) if r1 < r2. Note
that for simplicity of exposition, the round r looks unbounded in the algorithm.
However, a “bounded timestamp” can be easily implemented by encoding the
rounds modulo 2n, since the history before the previous checkpoint is forgotten.

Algorithm 6: V(v) in round r

1: IF checkST (v) = 0, output 0 /* see Algorithm 8*/
2: ELSE IF any of the following conditions is violated, output 0:
3: /*H0-H3 check consistency of the history logs*/
4: /*Denote checkpoint r − 1 − ((r − 1) mod n) − n by rc1*/
5: H0: ∀(rk, id(u)) ∈ token outr−1(v) or token inr−1(v), rc1 < rk < r ∧ u ∈ N(v)
6: H1: ∀(r1, id(u)), (r2, id(w)) ∈ token inr−1(v) ∨ token outr−1(v), r1 �= r2
7: H2.1: if static rootr−1(v) = id(v) ∧ sr−1(v) = 0, then b = a + 1 > 0 and

enout
1 ≺ enin

1 ≺ enout
2 ≺ enin

2 ≺ ... ≺ enout
a ≺ enin

a ≺ enout
a+1

8: H2.2: if static rootr−1(v) �= id(v) ∧ sr−1(v) = 1, then a = b + 1 > 0 and
enin

1 ≺ enout
1 ≺ enin

2 ≺ enout
2 ≺ ... ≺ enin

b ≺ enout
b ≺ enin

b+1;
9: H2.3: if static rootr−1(v) = id(v) ∧ sr−1(v) = 1, then a = b and enout

1 ≺ enin
1 ≺

enout
2 ≺ enin

2 ≺ ... ≺ enout
b ≺ enin

b

10: H2.4: if static rootr−1(v) �= id(v) ∧ sr−1(v) = 0, then a = b and enin
1 ≺ enout

1 ≺
enin

2 ≺ enout
2 ≺ ... ≺ enin

a ≺ enout
a

11: H3.1: ∀u ∈ N(v), if ∃(r, id(u)) ∈ token outr−1(v), then
∃(r, id(v)) ∈ token inr−1(u)

12: H3.2: ∀u ∈ N(v), if ∃(r, id(u)) ∈ token inr−1(v), then
∃(r, id(v)) ∈ token outr−1(u)

13: ELSE output 1
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Algorithm 7: M(v) in round r

1: IF cand parent(v) �= NULL ∧ cand distr−1(cand parent(v)) �= NULL:
2: cand root(v) ⇐ cand rootr−1(cand parent(v))
3: cand dist(v) ⇐ cand distr−1(cand parent(v)) + 1
4: IF token is passed from u ∈ N(v) to v in r:
5: dynamic parent(v) ⇐ NULL, add (r, id(u)) in token in(v)
6: ELSE IF token is passed from v to u ∈ N(v) in r:
7: dynamic parent(v) ⇐ id(u), add (r, id(u)) in token out(v)
8: IF r mod n = 0:
9: remove all the entries with rk ≤ r − n in token out(v) and token in(v).

10: static root(v) ⇐ cand root(v)
11: static parent(v) ⇐ cand parent(v)
12: static dist(v) ⇐ cand dist(v)
13: cand parent(v) ⇐ dynamic parent(v)
14: IF s(v) = 1:
15: cand root(v) ⇐ id(v), cand dist(v) ⇐ 0
16: ELSE cand root(v) ⇐ NULL, cand dist(v) ⇐ NULL

Algorithm 8: Procedure checkST (v) in round r

1: IF any of the following conditions is violated, return 0:
2: /*S1-S3 check the correctness of the static spanning tree*/
3: S1: ∀u ∈ N(v): static rootr−1(v) = static rootr−1(u)
4: S2: if static rootr−1(v) = id(v), then

static parentr−1(v) = NULL ∧ static distr−1(v) = 0
5: S3: if static rootr−1(v) �= id(v), then ∃u ∈ N(v) : static parentr−1(v) = id(u) ∧

static distr−1(v) = static distr−1(u) + 1
6: ELSE return 1

7 Concluding Remarks

In the introduction, we mentioned quite a few implications of PLSs, the study
of which for the notion of RPLS may yield interesting results. We now consider
an additional implication of the new notion. Under the PLS generalization stud-
ied here, the predicate was changed together with (legitimate) changes in the
configuration. Still, the examples addressed only the case that the legality pred-
icate is defined for a single configuration at a time. One could define predicates
involving more than a single configuration (intuitively this makes it easier to
check also liveness properties while checking only one configuration at a time is
better suited for checking safety). For example, given a universal scheme that
saves the whole reachable history and user inputs at the nodes (constructing a
universal RPLS based on the approach of [1]), one can verify that a token moved
only clockwise in the last t rounds for some t (unless the history in all the nodes
is fake, note that the history in each node is eventually updated to be correct).

Another generalization addresses the “locality” of the marker, and especially
that of the initial configuration. Informally, Linial [41] asked “from which dis-
tance must the information arrive to compute a given function”. One could ask
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similar questions for the checking, rather than for computing. In particular, using
the approach of [1], the labels of some node v are influenced even by an event
that happened at some large distance t from a node v. It may take at least t time
after the event for the label at v to be impacted. Let a t-semi-universal RPLS be
one where a node maintains all the history of all the nodes (as in [1]) but only
the history of the last t (rather than n) rounds. It would be interesting to char-
acterize the hierarchy of (reactive/interactive) distributed tasks. The distributed
task class-t consists of all distributed tasks with legality predicates that can be
checked by a t-semi-universal RPLS but not by a (t − 1)-semi-universal RPLS.
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Abstract. An immediate snapshot object is a high level communication
object, built on top of a read/write distributed system in which all except
one processes may crash. This object provides the processes with a single
operation, denoted write_snapshot(), which allows the invoking process
to write a value and obtain a set of pairs 〈process id, value〉 satisfying
some set containment properties, that represent a snapshot of the values
written to the object, occurring immediately after the write step.

Considering an n-process model in which up to t processes may crash,
this paper introduces first the k-resilient immediate snapshot object,
which is a natural generalization of the basic immediate snapshot (which
corresponds to the case k = t = n − 1). In addition to the set contain-
ment properties of the basic immediate snapshot, a k-resilient immediate
snapshot object requires that each set returned to a process contains at
least (n − k) pairs.

The paper first shows that, for k, t < n−1, k-resilient immediate snap-
shot is impossible in asynchronous read/write systems. Then it investi-
gates a model of computation where the processes communicate with
each other by accessing k-immediate snapshot objects, and shows that
this model is stronger than the t-crash model. Considering the space of
x-set agreement problems (which are impossible to solve in systems such
that x ≤ t), the paper shows then that x-set agreement can be solved
in read/write systems enriched with k-immediate snapshot objects for
x = max(1, t+k−(n−2)). It also shows that, in these systems, k-resilient
immediate snapshot and consensus are equivalent when 1 ≤ t < n/2 and
t ≤ k ≤ (n− 1)− t. Hence, the paper establishes strong relations linking
fundamental distributed computing objects (one related to communi-
cation, the other to agreement), which are impossible to solve in pure
read/write systems.
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1 Introduction

Context. This article considers the t-crash model consisting of n asynchronous
processes, among which any subset of at most t processes may crash, and com-
municate through a shared memory composed of single writer/multi reader
(SWMR) atomic registers. The (n − 1)-crash model is also called wait-free
model [12]. We keep the term t-resilience for algorithms. This article focuses
on algorithms for distributed tasks in which every non-failed process has to pro-
duce an output value (wait-freedom progress condition1).

A task is defined in terms of (a) possible inputs to the processes, and (b)
valid outputs for each assignment of input values (tasks are precisely defined
in [6,15,17]). Of special importance is the family of x-set agreement tasks [8],
one for each integer value of x, 1 ≤ x ≤ n. Set agreement was introduced
to show a hierarchy of tasks whose solvability depends on t, the number of
processes that may crash. In the x-set agreement task, processes decide at most
x different values, out of their input assignments. When x = 1, x-set agreement
is the celebrated consensus (CONS) task. Consensus is impossible even in the
presence of a single process crash [19], and (n − 1)-set agreement is wait-free
impossible, namely, in the presence of n − 1 process crashes [3,17,23], a result
proved using algebraic topology. More generally, x-set agreement is solvable if
and only if t < x, as implied by the simulation in [6]. There are characterizations
of the solvability of any given task, in the t-crash model, and in others (for an
overview of results see [13]).

Immediate Snapshot Object. The immediate snapshot (IS) object was first used
in [4,23], and then further investigated as an “object” in [3]. This object is at
the heart of the iterated immediate snapshot (IIS) model [5,16], which consists
of n asynchronous wait-free processes, communicating through IS objects. In an
iterated model [21], the processes execute a sequence of asynchronous rounds,
and each round is provided with exactly one object, which allows the processes
to communicate only during this round. In the IIS model, for any r > 0, a
process accesses the rth immediate snapshot object only when it executes the
r-th round, and accesses it only once.

From an abstract point of view, an IS object IS , can be seen as an initially
empty set, which can then contain up to n pairs (one per process), each made up
of a process index and a value. This object provides each process with a single
operation denoted write_snapshot(), that it can invoke once. The invocation
IS .write_snapshot(v) by a process pi adds the pair 〈i, v〉 to IS and returns a set
of pairs belonging to IS such that the sets returned to the processes that invoke
write_snapshot() satisfy specific inclusion properties. It is important to notice
that, in the IIS model, the processes access the sequence of IS objects one after
the other, in the same order, and asynchronously. The power of the IIS model
with respect to task solvability is the same as the one of the classical read/write

1 Weaker progress conditions, such as obstruction-freedom [14] and non-blocking [18]
have been proposed for (n − 1)-resilient algorithms.
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model, its interest lies in the fact that it provides a higher abstraction layer
than the read/write model; a survey including simulations between iterated and
classical models can be found in [15].

Contribution of the Paper. This work continues and generalizes the work started
in [9] where a preliminary result was presented. Roughly speaking, while [9]
considered the case k = t, the present article addresses the more general case
k ≤ t.

As previously said, the IS object was designed for the wait-free model (i.e.,
t = n−1). This paper considers it in the context of the t-crash n-process system
models where t < n − 1. To this end it generalizes the IS object by introducing
the notion of a k-immediate snapshot (k-IS) object. Such an object provides the
processes with a single operation denoted write_snapshotk() which, in addition
to the properties of an IS object, returns a set including at least (n − k) pairs.
Hence, for k < n−1, due to the implicit synchronization implied by the constraint
on the minimal size of the sets it returns, a k-IS object allows processes to obtain
more information from the whole set of processes than a simple IS object (which
may return sets containing less than (n − k) pairs).

The obvious question is then the implementability of a k-IS object in the
t-crash n-process asynchronous read/write model. The paper shows first that,
differently from the basic IS object which can be implemented in the wait-free
model, no k-IS object where k < n−1, can be implemented in a 1-crash n-process
read/write system.

This impossibility result is far from being the first impossibility result in
the presence of asynchrony and process crashes, e.g. see the monograph [2].
We already mentioned the impossibility of Consensus (CONS) in the presence
of even a single process crash and the impossibility of x-set agreement (x-SA)
when x ≤ t. These agreement objects are at the heart of the theory of fault-
tolerant distributed computing. Hence, a second natural question: Are there
relations linking the previous “impossible” objects, namely k-IS and x-SA, and
if the answer is “yes”, under which conditions? The paper provides the following
answers to this question2.

– Let 1 ≤ k ≤ t < n. It is possible to implement a k-IS object in a t-crash
n-process read/write system enriched with consensus objects.

– Let 1 ≤ t < n/2 and t ≤ k ≤ (n − 1) − t. k-IS and Consensus are equivalent
in a t-crash n-process read/write system. (A and B are equivalent if A can
be implemented in the t-crash n-process read/write system enriched with B,
and reciprocally.)

2 As already indicated, this work was initiated in [9]. Considering k-IS in a system in
which up to k processes may crash, this preliminary result showed that, somehow
surprisingly, while there is a deterministic (n − 1)-resilient algorithm implementing
an (n − 1)-IS object in an (n − 1)-crash read/write system, there is no t-resilient
algorithm that implements a t-IS object when 1 ≤ t < n − 1.
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Table 1. From k-IS to x-SA for n = 11 and x = max(1, t+ k − (n − 2))

k → 1 2 3 .. .. .. n − 4 n − 3 n − 2 n − 1

t ↓ 1 2 3 4 5 6 7 8 9 10

1 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA
2 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA 3-SA
3 1-SA 1-SA 1-SA 1-SA 1-SA 2-SA 3-SA 4-SA
4 1-SA 1-SA 1-SA 2-SA 3-SA 4-SA 5-SA

5 < n/2 1-SA 2-SA 3-SA 4-SA 5-SA 6-SA
6 ≥ n/2 3-SA 4-SA 5-SA 6-SA 7-SA
7 = n − 4 5-SA 6-SA 7-SA 8-SA
8 = n − 3 7-SA 8-SA 9-SA
9 = n − 2 9-SA 10-SA
10 = n − 1 11-SA

– Let (n−1)/2 ≤ k ≤ n−1 and (n−1)−k ≤ t ≤ k. It is possible to implement
an x-SA object, where x = t + k − (n − 2), in a t-crash n-process read/write
system enriched with k-IS objects.

An illustration of the results is presented in Table 1, which considers a system of
n = 11 processes. As an example, the entry 〈4, n−4〉 states that, in the presence
of up to t = 4 crashes, (n − 4)-IS allows to solve 2-SA.

Roadmap. The paper is made up of 7 sections. Section 2 presents the basic t-
crash n-process asynchronous read/write model, and the definitions of the IS,
x-SA, and k-IS objects. Section 3 proves the impossibility for the k-IS object
in the previous basic model. The other sections are on the power of k-IS with
respect to x-SA. Section 4 shows that x-SA can be built in the t-crash n-process
asynchronous read/write model enriched with k-IS objects, for x = max(1, t +
k − (n − 2)). Section 5 shows that t-IS and CONS are equivalent in the t-crash
n-process asynchronous read/write model when 1 ≤ t < n/2. Section 6 shows
that CONS is stronger than k-IS when n/2 ≤ t ≤ k < n − 1. Finally, Sect. 7
concludes the paper.

2 The Model and the Problems

2.1 Basic Read/Write System Model

Processes. The computing model is composed of a set of n ≥ 3 sequential pro-
cesses denoted p1, ..., pn. Each process is asynchronous which means that it
proceeds at its own speed, which can be arbitrary and remains always unknown
to the other processes.

A process may halt prematurely (crash failure), but executes correctly its
local algorithm until it possibly crashes. The model parameter t denotes the
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maximal number of processes that may crash in a run. A process that crashes
in a run is said to be faulty. Otherwise, it is correct or non-faulty. Let us notice
that, as a faulty process behaves correctly until it crashes, no process knows if it
is correct or faulty. Moreover, due to process asynchrony, no process can know
if another process crashed or is very slow.

It is assumed that (a) t < n (at least one process does not crash), and (b)
any process, until it possibly crashes, executes correctly the algorithm assigned
to it. Moreover, each process is assumed to participate in the algorithm.

Communication Layer. The processes cooperate by reading and writing Single-
Writer Multi-Reader (SWMR) atomic read/write registers. This means that the
shared memory can be seen as a set of variables A[1..n] where, while A[i] can be
read by all processes, it can be written only by pi.

Notation. The previous model is denoted CARWn,t[∅] (which means “Crash
Asynchronous Read/Write with n processes, among which up to t may crash”).
A model constrained by a predicate on t (e.g. t < a) is denoted CARWn,t[t < a].
CARWn,t[t = n−1] is a synonym of CARWn,t[∅], which (as already indicated) is
called wait-free model. When considering t-crash models, CARWn,t[t < a] is less
constrained than CARWn,t[t < a − 1]. More generally, CARWn,t[P, T ] denotes
the system model CARWn,t[∅] restricted by the predicate P , and enriched with
any number of shared objects of the type T (e.g., consensus objects).

Shared objects are denoted with capital letters. The local variables of a pro-
cess pi are denoted with lower case letters, sometimes suffixed by the process
index i.

2.2 Immediate Snapshot (IS)

The immediate snapshot (IS) object [3] was informally presented in the intro-
duction. Defined in the context of the wait-free model (i.e., t = n − 1), it can
be seen as a variant of the snapshot object introduced in [1]. While a snapshot
object provides the processes with two operations (write() and snapshot()) which
can be invoked separately by a process (usually a process invokes write() before
snapshot()), a one-shot immediate snapshot object provides the processes with
a single operation write_snapshot() (one-shot means that a process may invoke
write_snapshot() at most once).

Definition. Let IS be an IS object. It is a set, initially empty, that will contain
pairs made up of a process index and a value. Let us consider a process pi
that invokes IS .write_snapshot(v). This invocation adds the pair 〈i, v〉 to IS
(contribution of pi to IS ), and returns to pi a set, called view and denoted viewi,
such that the sets returned to processes (that return from their invocation of
write_snapshot()) collectively satisfy the following properties.

– Termination. The invocation of write_snapshot() by a correct process termi-
nates.
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– Self-inclusion. ∀ i : 〈i, v〉 ∈ viewi.
– Validity. ∀ i : (〈j, v〉 ∈ viewi) ⇒ pj invoked write_snapshot(v).
– Containment. ∀ i, j : (viewi ⊆ viewj) ∨ (viewj ⊆ viewi).
– Immediacy. ∀ i, j : (〈i, v〉 ∈ viewj) ⇒ (viewi ⊆ viewj).3

Implementations of an IS object in the wait-free model CARWn,t[t = n − 1]
are described in [3,22]. While both a one-shot snapshot object and an IS object
satisfy the Self-inclusion, Validity and Containment properties, only an IS object
satisfies the Immediacy property. This additional property creates an important
difference, from which follows that, while a snapshot object is atomic (operations
on a snapshot object can be linearized [18]), an IS object is not atomic (its
operations cannot always be linearized). However, an IS object is set-linearizable
(set-linearizability allows several operations to be linearized at the same point
of the time line [7,20]).

The Iterated Immediate Snapshot ( IIS) Model. This model (introduced in [5])
considers t = n − 1. Its shared memory is composed of a (possibly infinite)
sequence of IS objects: IS [1], IS [2], ..., which are accessed sequentially and asyn-
chronously by the processes according to the following round-based pattern exe-
cuted by each process pi. The variable ri is local to pi; it denotes its current
round number.

ri ← 0; �si ← initial local state of pi (including its input, if any);
repeat forever % asynchronous IS-based rounds

ri ← ri + 1;
viewi ← IS [ri].write_snapshot(�si);
computation of a new local state �si (which contains viewi)

end repeat.

As indicated in the Introduction, when considering distributed tasks (as formally
defined in [6,15,17]), the IIS model and CARWn,t[t = n − 1] have the same
computability power [5,11,15].

2.3 x-Set Agreement (x-SA)

x-Set agreement was introduced by S. Chaudhuri [8] to investigate the relation
linking the number x of different values that can be decided in an agreement
problem, and the maximal number of faulty processes t. It generalizes consensus
which corresponds to the instance x = 1.

An x-set agreement (x-SA) object is a one-shot object that provides the
processes with a single operation denoted proposex(). This operation allows the
invoking process pi to propose a value, which is called proposed value, and is
passed as an input parameter. It returns a value, called decided value. The object
is defined by the following set of properties.

3 An equivalent formulation of the Immediacy property is: ∀ i, j :
(
(〈i,−〉 ∈ viewj)∧

(〈j,−〉 ∈ viewi)
) ⇒ (viewi = viewj).
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– Termination. The invocation of proposex() by a correct process terminates.
– Validity. A decided value is a proposed value.
– Agreement. No more than x different values are decided.

It is shown in [4,17,23] that (n − 1)-SA is impossible to implement in
CARWn,t[t = n − 1], and in [6] that x-SA is impossible to implement in
CARWn,t[x ≤ t].

2.4 k-Immediate Snapshot

Definition of k-Immediate Snapshot. A k-immediate snapshot (k-IS) object is
an immediate snapshot object with the following additional property.

– Output size. The set view obtained by a process is such that |view| ≥ n − k.

This means that in addition to the Self-inclusion, Validity, Containment, and
Immediacy properties, the set returned by a process contains at least (n − k)
pairs. The associated operation is denoted write_snapshotk().

k-Immediate Snapshot vs x-Set Agreement. When considering a k-IS object and
a x-SA object, we have the following differences.

– On concurrency. An x-SA object is atomic (linearizable), while a k-IS object
is not (it is only set-linearizable [7,20]). In other words, k-IS objects “accept”
concurrent accesses (this is captured by the Immediacy property), while x-SA
objects do not.

– On the values returned. When considering an x-SA object, each process
pi knows that each other process pj (which returns from its invocation of
proposex()) obtains a single value, but it does not know which one (uncer-
tainty); pi knows only that at most k values are decided by all processes
(certainty).
When considering a k-IS object, each process pi knows that each other process
pj (which returns from its invocation of write_snapshotk()) obtains a set of
pairs viewj that is included in, is equal to, or includes its own set of pairs
(certainty due to the containment property), but it does not know the size of
viewj (uncertainty).

A Property Associated with k-IS Objects. The next theorem (stated and proved
in [9]) characterizes the power of a k-IS object in term of its Output size and
Containment properties.

Theorem 1. Let us consider a k-IS object, and assume that all correct processes
invoke write_snapshotk(). If the size of the smallest view obtained by a process is
� (� ≥ n−k), there is a set S of processes such that |S| = � and each process of S
obtains the smallest view or crashes during its invocation of write_snapshotk().

Proof. It follows from the Output size property of the k-IS object that no view
contains less than � ≥ n − k pairs. Let min_view be the smallest view returned
by a process; hence � = |min_view|.
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Let us consider a process pi such that (〈i,−〉 ∈ min_view), which returns
a view. Due to (a) the Immediacy property (namely (〈i,−〉 ∈ min_view) ⇒
(viewi ⊆ min_view)) and (b) the minimality of min_view, it follows that
viewi = min_view. As this is true for each process whose pair participates in
min_view, it follows that there is a set S of processes such that |S| = � ≥ n−k,
and each of these processes obtains min_view, or crashes during its invocation
of write_snapshotk(). Due to the Containment property, the others processes
crash or obtain views which are a superset of min_view. �Theorem 1

An Impossibility Result. The following theorem first stated and proved in [9]
establishes an important property of a k-IS object.

Theorem 2. A k-IS object cannot be implemented in CARWn,t[k < t].

Proof. To satisfy the output size property, the view obtained by a process pi
must contain pairs from (n − k) different processes. If t processes crash (e.g.,
initial crashes), a process can obtain at most (n−t) pairs. If t > k, we have n−t <
n−k. It follows that, after it has obtained pairs from (n− t) processes, a process
can remain blocked forever waiting for the (t − k) missing pairs. �Theorem 2

3 t-Resilience Impossibility of k-Immediate Snapshot

Theorem 3. It is impossible to implement a k-IS object in the model
CARWn,t[1 ≤ t ≤ k < n − 1].

Proof. The proof considers the case 1 = t ≤ k < n− 1 (this constraint explains
the model assumption n ≥ 3, Sect. 2.1). If, for k ≤ n − 1, there is no imple-
mentation of a k-IS object in CARWn,t[t = 1], there is no implementation
either for t ≥ 1. The proof is by contradiction, namely, assuming an implemen-
tation of a k-IS object, where k < n − 1, in CARWn,t[t = 1], we show that
it is possible to solve consensus in CARWn,t[t = 1, k-IS]. As consensus cannot
be solved in CARWn,t[t = 1], it follows that k-IS cannot be implemented in
CARWn,t[1 ≤ t ≤ k].

Let us recall the main property of k-IS (captured by Theorem 1). Let � be
the size of the smallest view (min_view) returned by a process. There is a set
S of � processes such that any process of S returns min_view or crashes, and
� ≥ n − k. As k < n − 1 (theorem assumption), we have � ≥ 2, which means
that at least two processes obtain min_view. It follows that, if a process obtains
the views returned by the k-IS object to (n − 1) processes, one of these views is
necessarily min_view. This constitutes Observation O.

Let us now consider Algorithm 1. In addition to a k-IS object denoted IS ,
the processes access an array VIEW [1..n] of SWMR atomic registers, initialized
to [⊥, · · · ,⊥]. The aim of VIEW [i] is to store the view obtained by pi from
the k-IS object IS . When it calls propose1(v), a process pi invokes first the k-IS
object, in which it deposits the pair 〈i, v〉 and obtains a view from it (line 1),
that it writes in VIEW [i] to make it publicly known (line 2). Then, it waits
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operation propose1(v) is
(1) viewi ← IS .write_snapshotk(v);
(2) V IEW [i] ← viewi;
(3) wait(|{ j such that V IEW [j] = ⊥}| = n − t);
(4) let view be the smallest of the previous (n − t) views;
(5) return(smallest proposed value in view)
end operation.

Algorithm 1: Solving consensus in CARWn,t[t = 1, k-IS] (code for pi)

until it sees the views of at least (n − 1) processes (line 3). Finally, pi extracts
from these views the one with the smallest cardinality (line 4), and returns the
smallest value contained in this smallest view (line 5).

We show that this reduction algorithm solves consensus in CARWn,t[t =
1, k-IS]. As at least (n − 1) processes do not crash, and write in their entry of
the array VIEW [1..n], no correct process can block forever at line 2, proving the
Termination property of consensus.

As � ≥ n − k ≥ 2, it follows from Observation O that at least one of the
views obtained by a process at line 3 is necessarily min_view. It follows that
each process that executes line 3 obtains min_view and returns its smallest
value at line 4), proving the Agreement property of consensus.

The consensus Validity property follows directly from k-IS Validity property,
and the observation that any set view contains only proposed values line 4).
�Theorem 3

Remark. When considering Algorithm 1, let us observe that, as n − k ≤ n − t,
the array VIEW [1..n] can be replaced by a k-immediate snapshot object IS2.
We obtain then the following algorithm.

operation propose1(v) is
view1i ← IS .write_snapshotk(v);
view2i ← IS2.write_snapshotk(view1i);
let view be the smallest view in view2i;
return(smallest proposed value in view)

end operation.

4 From k-Immediate Snapshot to x-Set Agreement

This section proves the content of Table 1, namely x-SA can be implemented
in the system model CARWn,t[t ≤ k < n − 1], for x = max(1, t + k − (n − 2)).
Interestingly, the algorithm providing such an implementation is Algorithm 1,
whose operation name is now proposex() (instead of propose1(v)).

Theorem 4. Let x = max(1, k + t − (n − 2)). Algorithm 1 implements an x-SA
object in the system model CARWn,t[1 ≤ t ≤ k < n − 1, k-IS].
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Proof. The x-SA Termination follows directly from the Termination property
of the underlying k-IS object IS , the fact that there are at least (n − t) correct
processes, and the assumption that all correct processes invoke proposex(). The
x-SA Validity property follows directly from the Validity property of the IS .

As far as the x-SA Agreement property is concerned, we have the following.
Due to Theorem 1, a set of � ≥ n − k processes obtain the smallest possible
view min_view, which is such that |min_view| = � ≥ n − k. It follows that,
at most k processes obtain a view different from min_view. In the worst case,
these k views are different. Consequently, there are at most k+1 different views,
namely min_view, V (1), ..., V (k), and due to their Containment property, we
have min_view ⊂ V (1) ⊂ · · · ⊂ V (k). The rest of the proof is a case analysis
according to the value of (n − t) with respect to k.

– n− t > k. In this case, a process obtains views from (n− t) processes (line 3),
and in the first case it obtains the views V (1), ..., V (k). But as n − t > k it
also obtains min_view from at least one process. It follows that, all processes
see min_view, and consequently decide the same value at line 5. Hence,
(n − t > k) ⇒ (x = 1).

– n − t = k. In this case, it is possible that some processes do not obtain
min_view at line 3. But, if this occurs, they necessarily obtain the views
from the n − t = k processes that deposited V (1), ..., V (k) in VIEW [1..n].
Hence, all these processes obtains V (1) at line 3, and decide consequently
the same value from V (1). As the decided values are decided from the views
min_view and V (1), we have (n − t = k) ⇒ (x = 2).

– n− t = k − 1. In this case, it is possible that, at line 3, some processes obtain
not only min_view, but also V (1) and decide the smallest value of V (2).
As the decided values are then decided from the views min_view, V (1), and
V (2), we have (n − t = k − 1) ⇒ (x = 3).

– Applying the same reasoning to the general case n − t = k − c, we obtain
(n − t = k − c) ⇒ (x = 2 + c).

Abstracting the previous case analysis, we obtain x = 1 (consensus) for n−t > k,
and x = k + t − (n − 2), i.e., when n − t = k − x + 2, from which follows that
x = max(1, k+ t−(n−2)), which completes the proof of the theorem. �Theorem 4

The next corollary is a re-statement of Theorem 4 for x = 1.

Corollary 1. Algorithm 1 implements a CONS object in the system model
CARWn,t[1 ≤ t < n/2, t ≤ k ≤ (n − 1) − t, k-IS].

5 An Equivalence Between k-Immediate Snapshot
and Consensus

This section shows first that consensus is strong enough to implement a k-IS
object when t ≤ k. Combining this result with the fact consensus can be imple-
mented from a k-IS object in CARWn,t[1 ≤ t < n/2, t ≤ k ≤ (n−1)− t] (Corol-
lary 1), we obtain that consensus and k-IS are equivalent in CARWn,t[1 ≤ t <
n/2, t ≤ k ≤ (n − 1) − t].
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5.1 From CONS to k-IS in CARWn,t [t ≤ k ≤ n − 1]

Algorithm 2 describes a reduction of k-IS to consensus in CARWn,t[0 < t ≤
k ≤ n − 1]. This algorithm uses three shared data structures. The first is an
array REG [1..n] of SWMR atomic registers (where REG [i] is associated with
pi), the second is a consensus object denoted CS , and the third is an immediate
snapshot object denoted IS (let us recall that such an object can be implemented
in CARWn,t[t ≤ n − 1]).

operation write_snapshotk(vi) is
(1) REG[i] ← vi;
(2) wait

(|j such that REG[j] = ⊥}| ≥ n − k
)
;

(3) auxi ← {〈j,REG[j]〉 such that REG[j] = ⊥};
(4) viewi ← CS .propose1(auxi);
(5) if (〈i, vi〉 ∈ viewi)
(6) then return(viewi)
(7) else auxi ← IS .write_snapshot(vi);
(8) viewi ← viewi ∪ auxi;
(9) return(viewi)
(10) end if
end operation.

Algorithm 2: Building k-IS in CARWn,t[0 < t ≤ k ≤ n − 1,CONS] (code for pi)

The behavior of a process pi can be decomposed in three parts.

– When it invokes write_snapshotk(vi), pi first deposits its value vi in REG [i],
in order all processes to know it, and waits until at least (n − k) processes
have deposited their input value in REG [1..n] (lines 1–2).

– Then pi proposes to the underlying consensus object CS , the set of all the
pairs 〈j,REG [j]〉 such that REG [j] �= ⊥ (lines 3–4). Let us notice that this
set contains at least (n − k) pairs. Hence, the consensus object returns to pi
a view viewi, which contains at least (n − k) pairs.

– Finally, pi returns a view (of at least (n − k) pairs).
• If viewi contains its own pair 〈i, vi〉, pi returns viewi (line 6).
• If viewi does not contain 〈i, vi〉, pi proposes vi to the underlying immedi-

ate snapshot object from which it obtains a set of pairs auxi (line 7). Let
us notice that, due to the properties of the immediate snapshot object IS ,
auxi contains the pair 〈i, vi〉. Process pi then adds auxi to viewi (line 8)
and returns it (line 9).

Theorem 5. Algorithm 2 implements a k-IS object in the system model
CARWn,t[0 < t ≤ k ≤ n − 1,CONS].

Proof. Proof of k-IS Self-inclusion. If pi returns at line 6, self-inclusion follows
directly from the predicate of line 5. If this predicate is not satisfied, pi invokes
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the underlying immediate snapshot object IS with the value vi it initially pro-
posed (line 7). It then follows from the self-inclusion property of IS that auxi

contains 〈i, vi〉, and due to line 8, the set viewi that is returned at line 9 contains
〈i, vi〉.

Proof of k-IS Validity. This property follows from (a) the fact that a process pi
assigns to REG [i] the value it wants to deposit in the k-IS object, (b) this atomic
variable is written at most once (line 1), and (c) the predicate REG [j] �= ⊥ is
used at line 3 to extract values from REG [1..n].

The Output size property follows from (a) the predicate of line 2, which
ensures that the set viewi obtained at line 4 from the underlying consensus
object contains at least n− t ≥ n− k pairs, and the fact that a set viewi cannot
decrease (line 3).

Proof of k-IS Containment. Let P6 (resp., P9) be the set of processes that
terminate at line 6 (resp., 9). Let view be the set of pairs decided by the underly-
ing consensus object CS (line 4). Hence, all the processes in P6 return view. Due
to line 8, the set viewi returned by a process that terminates at line 9 includes
view. It follows that ∀ pj ∈ P6, pi ∈ P9, we have viewj = view ⊂ viewi.

Let us now consider two processes pi and pj belonging to P9. It then follows
from the IS Containment property of the underlying IS object, that we have
auxi ⊆ auxj or auxj ⊆ auxi (where the value of auxi and auxj are the ones at
line 7). Consequently, at line 8 we have viewi ⊆ viewj or viewj ⊆ viewi, which
completes the proof of the k-IS Containment property.

Proof of k-IS Immediacy. Let pi and pj be two processes that return viewi

and viewj , respectively, such that 〈i, v〉 ∈ viewj . We have to show that viewi ⊆
viewj . Let us considering the sets P6 and P9 defined above. There are three
cases.

– Both pi and pj belong to P6. In this case, due to line 4, we have viewi = viewj .
– pi belongs to P6, while pj belong to P9. In this case, due to line 8, we have

viewi ⊂ viewj .
– Both pi and pj belong to P9. In this case, due to the IS Immediacy property

of IS we have (at line 8) 〈i,−〉 ∈ auxj ⇒ auxi ⊆ auxj (and 〈j,−〉 ∈ auxi

⇒ auxj ⊆ auxi). Let view the set of pairs returned by the consensus object
line 4. As, due to line 9, we have viewi ← view ∪ auxi and viewj ← view ∪
auxj , the k-IS Immediacy property follows.

Proof of k-IS Termination. Let p be the number of processes that deposit
a value in REG . As t ≤ k, we have n − k ≤ n − t ≤ p ≤ n. It follows that
no correct process can wait forever at line 2. The fact that no correct process
blocks forever at line 4 and line 7 follows from the termination property of the
underlying consensus and immediate snapshot objects. �Theorem 5

5.2 When Consensus and k-IS Are Equivalent

Let us consider the right triangular matrix defined by the entries are marked
“x-SA” in Table 1. Theorem 5 states that it is possible to implement k-IS from
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CONS for any entry (t, k) belonging to this triangular matrix. Combined with
Corollary 1, we obtain the following theorem.

Theorem 6. CONS objects and and k-IS objects are equivalent in the system
model CARWn,t[0 < t < n/2, t ≤ k ≤ (n − 1) − t].

6 When Consensus Is Stronger Than k-Immediate
Snapshot

Section 4 investigated the power of k-IS to implement x-SA objects, namely
x-SA can be implemented in CARWn,t[1 ≤ t ≤ k < n − 1, k-IS] where x =
max(1, t + k − (n − 2)), see Theorem 4. As we have seen, considering the other
direction, Sect. 5 has shown that k-IS can be implemented in CARWn,t[1 ≤ t ≤
k < n − 1,CONS] (Theorem 5). The combination of these results showed that
Consensus and k-IS are equivalent in CARWn,t[0 < t = k < n/2] (Theorem 6).

This section shows an upper bound on the power of k-IS to implement x-SA
objects, namely, k-IS objects are not powerful enough to implement consensus
in the system model CARWn,t[n/2 ≤ t ≤ k < n − 1].

Preliminary: A Simple Lemma. Let us remark that, as immediate snapshot
objects, k-immediate snapshot objects are not linearizable. As a k-IS object
IS contains values from at least (n − k) processes, at least (n − k) processes
must have invoked the operation IS .write_snapshotk() for any invocation of
write_snapshotk() to be able to terminate. It follows that there is a time τ
at which n − k processes have invoked IS .write_snapshotk() and have not yet
returned. We then say that these (n − k) processes are “inside IS ”. Hence the
following lemma.

Lemma 1. If an invocation of write_snapshotk() on a k-immediate snapshot
object IS terminates, there is a time τ at which at least (n − k) processes are
inside IS .

Theorem 7. There is no algorithm implementing a CONS object in the system
model CARWn,t[n/2 ≤ t ≤ k < n − 1, k-IS].

Due to page limitation, the reader will find the proof of this theorem in [10].

7 Conclusion

The aim and content of the paper. The paper has first introduced the notion of a
k-immediate snapshot (k-IS) object, which generalizes the notion of immediate
snapshot (IS) objects to t-crash n-process systems (the IS object corresponds
to the case k = t = n − 1). It has then shown that k-IS objects cannot be
implemented in asynchronous read/write systems for k < n − 1.

The paper considered then the respective power of k-IS objects and x-set
agreement objects (x-SA) in t-crash-prone systems. As both these families of
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objects are impossible to implement in read/write systems for t, k < n − 1 or
x ≤ t, respectively, the paper strove to establish which of k-IS and x-SA objects
are the most “impossible to solve”. The main results are the following where the
zones A, B, C, D, refer to Fig. 1.

1 (n − 2) (n − 1)

B

A

t > k
D

C

t = 1
t = 2

t < n/2
t ≥ n/2

t = n − 2
t = n − 1

k = k =
n/2 n/22

k =k = k < k ≥

Fig. 1. Summarizing the results

– Even if we have CONS objects, it is not possible to implement k-IS objects
in a t-crash system where t > k (Zone D).

– It is possible to implement x-SA objects, where x = max(1, t + k − (n − 2)),
from k-IS objects in systems where 1 ≤ t ≤ k < n − 1 (Zone A + B + C).

– It is possible to implement k-IS objects from 1-SA objects (CONS) in
read/write systems where 1 ≤ t ≤ k ≤ n − 1 (Zone A + B + C).

– 1-SA objects (CONS) and k-IS objects are equivalent in read/write systems
where 1 ≤ t < n/2 and t ≤ k ≤ (n − 1) − t (Zone A).

– It is not possible to implement 1-SA (consensus) from k-IS objects in
read/write systems when n/2 ≤ t ≤ k < n − 1 (Zone C).

Stated in a more operational way, these results exhibit the price of the syn-
chronization hidden in k-IS object (which requires that the view returned to a
process contains at least (n − k) pairs, (where a pair is made up of a value plus
the id of the process that deposited it in the k-IS object).

More generally, the previous results establish a computability map relating
important problems, which are impossible to solve in pure read/write systems.
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Open Problems. The following problems remain to be solved to obtain a finer
relation linking k-IS and x-SA, when t > 1.

– Direction “from k-IS to x-SA”. Is it possible to implement x-SA objects, with
1 ≤ x < t+k−(n−2) in t-crash n-process systems enriched with k-IS objects
(Zone B)? We conjecture that the answer to this question is no.

– Direction “from x-SA to k-IS”. Given an x-SA object, which k-IS objects can
be implemented from it? More generally, is there a “k-IS-like” communica-
tion object such that x-SA and this “k-IS-like” object are computationally
equivalent (by “k-IS-like” we mean an object possibly weaker than a k-IS
object)?
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Abstract. In computer networks, participants may cooperate in pro-
cessing tasks, balancing working loads among them. The distributed load
balancing problem is well-known. We present local algorithms solving
it based on a short deal-agreement communication. Unlike the previ-
ous algorithms, they converge monotonically, always providing a bet-
ter feasible state as the execution progresses. Our synchronous algo-
rithms achieve ε-Balanced state for the continuous setting in time
O(nD log(nK/ε)) and 1-Balanced state for the discrete setting in time
O(nD log(nK/D) + nD2), for general graphs in the worst case, where
n is the number of nodes, K is the initial discrepancy, and D is the
graph diameter. We also suggest an asynchronous load balancing algo-
rithm solving the problem in time O(nK2) for general graphs, and its
self-stabilizing version.

Keywords: Distributed algorithms · Deterministic · Load balancing ·
Self-stabilization · Monotonic

1 Introduction

The distributed load balancing problem is defined when there is an undirected
network (graph) of computers (nodes), each one assigned a non-negative working
load, and they like to balance their loads. If nodes u and v are connected by an
edge, then any part of the load of u may be transferred over that edge from u to
v, and similarly from v to u. The information at the nodes is local, and the only
way to get more knowledge on the graph is by communicating with its neighbors.
The application and scope include grid computing, clusters, and clouds.

The accepted global measure for the deviation of a current state from being
balanced is its discrepancy, defined as K = Lmax − Lmin, where Lmax (Lmin)
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is the currently maximum (minimum) node load in the graph. An alternative,
local way to measure the deviation is the maximal difference of loads between
neighboring nodes: a state is ε-Balanced if that difference is at most ε. In the
discrete problem setting, all loads and thus also all transfer amounts should be
integers; in the continuous one, transfer amounts are arbitrary. In this paper,
we concentrate on deterministic algorithms solving the problem in a worst case
time polynomial in the global input size, that is in the number n of graph nodes
and in the logarithm of the maximal load (though we deviate from polynomiality
for the asynchronous model).

The research on the load balancing problem began from the papers of
Cybenko [4] and Boillat [3]. Both are based on the concept of diffusion: at any
synchronized round, every node divides its load equally among its neighbors and
itself. As a rule, the case of d-regular graphs is considered; only laconic remarks
on a possibility to generalize the results to the case of general graphs appear in
the literature. Markov chains and ergodic theory are used for deriving the rate of
convergence. In the discrete setting, diffusion methods require rounding of every
transferred amount, which makes the analysis harder; Rabani et al. [9] made
a substantial advancement in that direction; their the time bound for reaching
the discrepancy of ε in the worst case is O

(
ln(Kn2/ε)

(1−λ)

)
, where λ is the second

largest eigen-value of the diffusion matrix. The diffusion approach is popular
in the literature. The alternative methods are mathching (see, e.g., [10]) and
balancing circuits (see, e.g., [2,9]). For the discrete setting and the considered
computational model, all those approaches do not achieve neither a constant final
discrepancy, nor a constant-balanced state. Many suggested algorithms cannot
be stopped at any time, since intermediate solutions either might include neg-
ative node loads, or might be worse than previous ones. Almost all papers on
load balancing use the synchronous distributed model. The only theoretically
based approach suggested for asynchronous distributed setting is turning it to
synchronous by appropriately enlarging the time unit, see e.g., [1].

We suggest using the distributed computing approach based on short agree-
ment between neighboring nodes in load balancing. We develop local distributed
algorithms, with no global information collected at the nodes; the advantage
is that the actual time of an algorithm run can be quite small, if the problem
instance is lucky. We say that a load balancing algorithm is monotonic if the
maximal load value never increases and the minimal load value never decreases.
Such algorithms produce a not worse feasible state at each step of the execution,
and thus are anytime in the sense of [5,8]. Our main results on load balancing
are as follows, where D is the graph diameter, and ε is an arbitrary constant.

– In the continuous setting, the first synchronized deterministic algorithm for
general graphs, which is monotonic and works in time O(nD log(nK/ε)).

– In the discrete setting, the first deterministic algorithms for general graphs
achieving a 1-Balanced state in time depending on the initial discrepancy
logarithmically. It is monotonic and works in time O(nD log(nK/D)+nD2).

– The first asynchronous anytime algorithm, and its self-stabilizing version.

The full version of this paper can be found in arXiv [6].
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2 Monotonic Distributed Load Balancing Algorithms

Algorithm 1: Synchronous Single-Proposal Algorithm: Continuous
Input: An undirected graph G = (V, E, load)

1 Execute forever do
2 for every node u do
3 if u has at least one neighbor with a strictly smaller load then
4 find the neighbor, v, with the minimal load
5 u sends to v a transfer proposal of (load(u) − load(v))/2

6 for every node u do
7 if there is at least one transfer proposal to u then
8 find a neighbor, w, proposing to u the transfer of maximum value
9 node u makes a deal: increases its load by the value proposed by w

and informs node w on accepting its proposal

10 for every node u do
11 node u updates its load w.r.t. the deal made on its proposal, if accepted,

and sends the current value of load(u) to every its neighbor

Let us begin with the synchronous model. Algorithm 1 solves the continu-
ous load balancing problem. It is composed of three-phase rounds, one phase
upon the global clock tick, cyclically. At each round, each node sends a transfer
proposal to at most one of its neighbors. In reply, each node accepts a single
proposal among those sent to it, if any. (Each node may finally both send and
get load at same round.)

The analysis of Algorithm 1 is based on node potentials. Let Lavg be the
average value of load over V . We define potentials p(u) = (load(u) − Lavg)2 for
any node u, and p(G) =

∑
u∈V p(u) for entire G. Any transfer of load l from u

to v in our algorithms satisfies load(u)− load(v) ≥ 2l > 0. For any such transfer,
we prove that it decreases p(G) by at least 2l2. The central point of our analysis
is the following statement.

Lemma 1. If the discrepancy of G at the beginning of some round is K, the
potential of G decreases after that round by at least K2/2D.

Proof. Consider an arbitrary round. Let x and y be nodes with load Lmax

and Lmin, respectively, and let P be a shortest path from y to x, P =
(y = v0, v1, v2, . . . , vk = x). Note that k ≤ D. Consider the sequence of
edges (vi−1, vi) along P , and choose its sub-sequence S consisting of all
edges with δi = load(vi) − load(vi−1)>0. Let S = (e1 = (vi1−1, vi1), e2 =
(vi2−1, vi2), . . . , ek′ = (vik′−1, vik′ )), k′ ≤ k ≤D. Observe that by the defini-
tion of S, interval [Lmin, Lmax] on the load axis is covered by intervals
[load(vij−1), load(vij−1)], since load(vi1−1) = Lmin, load(vik′ ) = Lmax, and for
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any 2 ≤ j ≤ k′, load(vij−1) ≥ load(vij−1). As a consequence, the sum of load

differences
∑k′

j=1 δij over S is at least Lmax − Lmin = K.
Since for every node vij , its neighbor vij−1 has a strictly lesser load, the

condition of the first if in Algorithm 1 is satisfied for each vij . Thus, each vij

proposes a transfer to its minimally loaded neighbor; denote that neighbor by
wj . Note that the transfer amount in that proposal is at least δij/2. Hence, the
sum of load proposals issued by the heads of edges in S is at least K/2. By the
algorithm, each node wi accepts the biggest proposal sent to it, which value is
at least δij/2. Consider the simple case when all nodes wj are different. Then,
the total decrease of the potential at the round, Δ, is at least

∑
j 2(δij/2)2.

By simple algebra, for a set of at most D numbers with a sum bounded by K,
the sum of numbers’ squares is minimal if there are exactly D equal numbers
summing to K. We obtain Δ ≥ D · 2(K/2D)2 = K2/2D, as required.

The rest of the proof reduces the general case to the simple case as above.

We prove that Algorithm 1 is monotonic, and that it arrives at the discrep-
ancy of at most ε in time O(nD log(nK/ε)).

The algorithm for the discrete setting differs by the rounding of proposal
values only. Its analysis up to the arrival at a discrepancy of at most 2D is
similar; the rest of its execution is analyzed separately. Also that algorithm is
monotonic, and it arrives at a 1-Balanced state in time O(nD log(nK/D)+nD2).

We believe that the running time bounds of deal-agreement distributed algo-
rithms for load balancing could be improved by future research. This is since the
current bounds are based on analyzing only a single path at each iteration.

Multiple-Proposal Load Balancing Algorithm. We suggest also the mono-
tonic synchronous deal-agreement algorithm based on multiple proposals. There,
each node may propose load transfers to several of its neighbors with smaller
load, aiming to equalize the loads in its neighborhood as much as possible. We
formalize this as follows. Consider node p and the part Vless(p) of its neighbors
with loads smaller than load(p). Node p proposes load transfers to some of the
nodes in Vless(p) in such a way that if all its proposals would be accepted, then
the resulting minimal load in the node set Vless(p)∪{p} will be maximal. (Com-
pare with the scenario, where we pour water into a basin with unequal heights at
its bottom: the flat water surface will cover the deepest pits.) Performing deals
in parallel with several neighbors has a potential to yield faster convergence in
practice, as compared with the single-proposal algorithm.

Asynchronous Load Balancing Algorithm. The asynchronous version of
the load balancing algorithm is based on repeated enquiries of the load of the
neighbors and whenever proposing a deal to a neighbor with a lower load, wait
for the acknowledgment of the proposal acceptance or rejection prior to reexam-
ination. In more detail, our asynchronous load balancing algorithm is based on
distributed proposals. There, each node may propose load transfers to several
of its neighbors by computing PV less(p), which is part of Vless(p). PV less(p)
is the resulting minimal loaded node set whose load is less than TentativeLoad
after all proposal gets accepted. While sending the proposal, each node sends the
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value of LoadToTransfer (load which can be transferred to neighboring node)
and TentativeLoad (load of the node after giving loads to its neighbors) with all
set of nodes in PV less(p). After receiving a proposal, the node sends an acknowl-
edgment to the sender node; the sender node waits for an acknowledgment from
all nodes of PV less(p). The asynchronous algorithm ensures that the local com-
putation between two nodes is assumed to be before the second communication
starts. Consider an example where a node q of PV less(p) receives a proposal and
the deal happens between node p and node q. In this case, TentativeLoad(p) is
always greater than the load of node q (when q responds to the deal) because
node p is waiting for acknowledgments from all nodes of PV less(p).

Self-stabilizing Load Balancing Algorithm. The self-stabilizing load bal-
ancing algorithm is based on the asynchronous version, where a self-stabilizing
data link algorithm is used to verify that eventually (after the stabilization of
the data-link) whenever a neighbor sends and acknowledge accepting a deal, the
invariant of load transfer, from a node with load higher than the load of the
acknowledging node, holds. This solution can be extended to act as a super-
stabilizing algorithm [7], gracefully, dealing with dynamic settings, where nodes
can join/leave the graph anytime, as well as handle received/dropped loads.
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Abstract. In this paper we show that approximation can help reduce
the space used for self-stabilization. In the classic state model, where the
nodes of a network communicate by reading the states of their neighbors,
an important measure of efficiency is the space: the number of bits used
at each node to encode the state. In this model, a classic requirement is
that the algorithm has to be silent, that is, after stabilization the states
should not change anymore. We design a silent self-stabilizing algorithm
for the problem of minimum spanning tree, that has a trade-off between
the quality of the solution and the space needed to compute it.

1 Introduction

1.1 Our Questions

Context. Self-stabilization is a technique to ensure fault-tolerance in distributed
systems. It aims at designing systems that can recover from arbitrary faults.
Silent self-stabilization consists in asking for the additional property that, once a
correct configuration has been reached, the processors basically stop computing.

In the context of self-stabilization, the most studied measure of performance
is the time to stabilize to a correct configuration. Another essential parameter
is the space used by each processor. This parameter not only captures some
notion of memory (and is actually also called the memory), but more remark-
ably, it captures the performance in terms of communication, as self-stabilizing
algorithms communicate by reading the states of their neighbors (when they are
described in the so-called state model, which is the most common model).

For silent self-stabilizing algorithms, this memory usage is tightly related to
the space needed to locally certify that a configuration is correct. Such certifi-
cations, also called proofs, have been studied independently under the name of
proof-labeling schemes. On the one hand, it is known that the space needed for
the proof is a lower bound on the space required for silent stabilization. Indeed,
after stabilization, a silent algorithm is only checking that the configuration is
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correct via reading its neighbors’ states, which is exactly what a distributed
proof is made for. On the other hand, it is proved in [7] that one can always
design an algorithm matching this lower bound (up to an additive logarithmic
factor), even in the most asynchronous setting. Thus in some sense, one can
always achieve optimal space.

There are two issues to this situation. First the general technique of [7] is
inherently exponential in time: it basically consists in looking for the distributed
proof via an exhaustive search. Second, the space required for silent stabilization
can be simply be too large for applications.

Approximation-Memory Trade-Off. The core of our paper is to give a solution
for the second problem, which can be rephrased as: what can be done when we
do not even have the space needed for a distributed proof? One technique is to
consider non-silent algorithms, that keep changing their states. For example, [8]
achieves O(log log n) space for leader election on a ring, when the lower bound for
silent stabilization is Ω(log n) (where n is the number of nodes in the network).
In this paper, we make the choice of keeping the silence property, but to be less
demanding on the quality of the solution. More precisely we are aiming at a
trade-off between the memory used and the quality of the solution produced,
that is, we want to design approximation algorithms for optimization problems,
such that the larger the memory allowed, the better the approximation ratio.
To our knowledge this is the first time approximation is used to reduce memory
usage for self-stabilization (although it has recently been proved fruitful in the
more restricted context of proof-labeling schemes [10,16]).

Optimal Space in Polynomial Time. Now a second question, which follows from
the exponential-time algorithm of [7], is: when we can afford the optimal space
to compute an exact solution, can we get it in polynomial time? The answer is
no in general. Consider for example the task of 3-coloring a 3-colorable graph.
The distributed proof uses only constant space, because the colors are enough
for local checkability. On the other hand, it is known that no algorithm can com-
pute a 3-coloring in constant space. Indeed, in order to perform even a minimal
symmetry breaking (such as having two nodes with two different outputs), an
algorithm needs strictly more than constant space [2] (actually Ω(log log n) bits
are necessary [5]). On the positive side, [6] shows that for various tree construc-
tion problems, one can match the optimal space bound and have polynomial-time
stabilization. In particular, one can get down to Θ(log2n) bits for minimum span-
ning tree, which is optimal when the edge weights are in a polynomial range.
As we will see, we can improve on this, as a side result of our approximation
algorithm.

1.2 Our Results

In this paper, we focus on the central problem of minimum spanning tree (MST).
Our main result is an approximation-memory trade-off for this problem. The
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theorem below, and all the results of this paper hold under the classic assumption
that the edge weights are in [1, n], where n is the size of the network.1

Theorem 1. There exists a silent self-stabilizing approximation algorithm for
minimum spanning tree, that stabilizes in polynomial time and has a trade-off
between memory and approximation. This trade-off goes from space O(log2n) for
a minimum spanning tree to space O(log n) for a simple spanning tree.

The precise trade-off has a complicated expression, thus we do not write
explicitly here. It is given in Lemma 1. The two extreme values, O(log2 n) for
an MST and O(log n) for a simple spanning tree are optimal (see [22,23] for
the lower bounds). We get a smooth trade-off between these extremes, with for
example O(log n log log n) space for a 2-approximation.

One of the two ingredients to achieve this result is an exact algorithm for
MST, which is self-stabilizing, silent and polynomial-time, and uses O(log n · s)
space,2 where s is the number of bits used to encode an edge weight.3

Theorem 2. There exists a silent self-stabilizing algorithm for (exact) mini-
mum spanning tree, with O(log n · s) memory, that stabilizes in polynomial time.

It is known that an MST requires Ω(log n · s) space [22]. Therefore our algo-
rithm improves on the state-of-the-art by proving that, even with a parametriza-
tion by s, MST is part of the set of problems that can be solved in optimal space
and polynomial-time.

1.3 Our Techniques

Our algorithm has two main ingredients: the exact algorithm that we have
already mentioned and a technique to transform the weights. The weight trans-
formation changes the original weights into approximated weights that can be
encoded in smaller space. Then we basically feed these approximated weights to
the exact algorithm and get as a result an approximate solution. The better the
approximation of the weight, the better the approximation of the final solution,
but the larger the space used.

The weight transformation (Lemma 1) takes as input a weight in [1, poly(n)],
encoded on Θ(log n) bits, and outputs a weight in a smaller range, hence using
less bits of memory. The simplest form of the technique is the following: replace
each weight by the position of its most significant bit. This way when we write
weights in the memory, we use exponentially less space: s will be in O(log log n)
instead of Θ(log n). Of course by this operation we loose some precision. Namely,
we only have the information to recover a 2-approximation of each weight. Now

1 Assuming the maximum to be n and not poly(n) allows to have cleaner proofs with-
out additional constants, but the asymptotic results are also correct for polynomial
weights.

2 Here and everywhere in the paper, log n · s should be read as (log n) × s.
3 Note that as we assume the weights are polynomial in n, s is in O(log n).
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if we feed these “new weights” to an exact algorithm for minimum spanning
tree, then we will get a 2-approximation, and using much less space. We design
an extension of this technique, that allows to get the whole trade-off between
space and approximation. This extension is more complicated, but is still based
on manipulations of the binary representation of the weights.

The rest of the paper consists in designing the exact self-stabilizing algorithm
for minimum spanning tree in space O(log n · s). This exact algorithm does not
follow the usual design of silent self-stabilizing algorithms. A silent algorithm
typically stores some key pieces of information, while it is building the output,
e.g. while selecting the edges of the MST. These pieces of information form a
certificate of correctness that allows, during and after stabilization, to check
whether the construction is correct. And if the construction is correct then the
output is correct. This is for example the way the O(log2n)-space algorithm
of [6] is designed, book-keeping the important information of a Boruvka-inspired
algorithm. Unfortunately, it seems that this approach is difficult if not impossible
to use when one wants to go below log2n space for minimum spanning tree.
Instead, we use a two-phase approach: we first build a minimum spanning tree,
and, once it is finished, we certify it. This paper is, as far as we know, the first
occurrence of such a modular approach. The certification we use is the proof-
labeling scheme of [22]. As a side result we answer a question of [22] where
designing a self-stabilizing algorithm using this certification was left as an open
problem.

1.4 Outline

We start in Sect. 2 with a description of the model. In Sect. 3, we describe the
general structure of our algorithm. Then in Sect. 4, 5, and 7, we describe the
different components of our algorithm. Section 6 is a high-level description of
the certification of [22] that we use in Sect. 7.

2 Model

We consider that a network is represented by an undirected connected graph
G = (V,E) where V is a set of processors (or nodes), and E is a set of edges
that represent communication channels. We denote the number of nodes by n.
Every node v is given a unique identifier IDv, and every edge has a weight. Both
identifiers and weights are polynomial, that is, they are integers in [1, poly(n)].
The identifiers are all distinct, but the weights are not required to be distinct.

We want to compute an approximation of a minimum spanning tree. A k-
approximation of an MST is a spanning tree whose weight is not larger than
k times the weight of an MST. Note that in our definition of approximation,
we do not relax the requirement of acyclicity, thus it is not the same kind of
approximation as the one used in the literature about spanners.
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State Model. Our algorithm is designed for the classic state model [13]. In this
model, every node has a state, and communication between neighbors is modeled
by direct reading of states instead of exchanges of messages. This state is the
mutable memory, that is, it is the part of the memory that can be modified,
and also the one that is counted when we consider space complexity. There is
also the non-mutable memory, that contains for each node, its identifier and the
weights of the adjacent edges, as well as the code of the algorithm. The tuple of
all the states of the network is called the configuration, and the execution of an
algorithm is therefore described by a sequence of configurations.

In the state model, an algorithm is usually described as a set of rules. A
rule basically states that if the local view of a node satisfies some property,
then the node can change its state to a specified new value. Here by “local
view” we mean the state of a node, the states of its neighbors, the identifier
of the node, and the weights of the adjacent edges. If there exists a rule, such
that the property of the node’s view is satisfied, then we say that the node is
enabled. (Note that for a node deciding whether it is enabled or not could take
some time and space. As in most models in network distributed computing, such
local computation is not taken into account for the time and space complexity.)
The asynchrony of the system is modeled by a scheduler who chooses, at each
step, a non-empty subset of enabled nodes, that are allowed to apply a rule.
We consider the harshest scheduler, the distributed unfair scheduler, which has
no further constraint for the choices it makes. Other schedulers considered in
the literature can have, for example, fairness constraints: they cannot activate
always the same nodes. See [15] for a survey of the schedulers of the literature.
The choice of the distributed unfair scheduler makes our algorithm the most
robust possible.

To compute time complexities, we use the definition of round of [14]. This
definition captures the execution rate of the slowest process in any execution.
The first round of an execution ε, noted ε′, is the minimal prefix of ε such that
every node that was enabled in the initial configuration, either has taken a step
or is not enabled anymore. Let ε′′ be the suffix of ε such that ε = ε′ε′′. The
second round of ε is the first round of ε′′, and so on.

Distributed Proof, Proof-Labeling Schemes and Silent Stabilization. Given a
property, for example ‘a set of pointers defines a spanning tree’, a distributed
proof (or distributed certificate) is a labeling of the nodes that certifies that the
property is satisfied. It is usually presented as a proof-labeling scheme [23]. In
such a scheme, the first element is an oracle, called the prover, which provides
each node with a label. The second element of a scheme is a verification algo-
rithm. This algorithm, run at a node v, takes as input the view of v, including
the labels of v and of its neighbors, and decides whether to accept or to reject. A
scheme is correct for a property P , if (1) for any configuration satisfying P , there
is a way for the prover to make all nodes accept, and (2) for any configuration
not satisfying P , there is no way for the prover to make all nodes accept. The
performance of a scheme is measured by the size of the labels in number of bits
(all labels have the same size). The notion of distributed proof is tightly related
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to the concept of silent self-stabilizing algorithm. An algorithm is self-stabilizing
if starting from an arbitrary configuration, it reaches a correct configuration after
some finite time, called the stabilization time, and stays in correct configurations
afterwards. Such an algorithm is silent, if the algorithm reaches a correct config-
uration and then stays silent: it does not change the states anymore, or in other
words, no node is enabled. To be sure to be in a correct configuration, a silent
self-stabilizing algorithm has to keep some certification of the correctness. This
certification ensures that, if the configuration is not correct, then at least one
node will detect it, be enabled, and start the recovery (for example launching
a reset). This is basically the same as the notion of distributed proof above [7],
except that the proof is not given by an oracle: it is built by the algorithm. We
refer to [17,20] for surveys on distributed proofs.

3 General Description

Our algorithm is made of several components. Basically, we have several algo-
rithms that will operate one after the other, in order to reach a configuration
with a minimum spanning tree certified by a distributed proof. The algorithms
are designed to work if they start from a clean situation (for example our first
algorithm expects its variables to be empty) and we have a reset mechanism that
will go back to such a situation if one of our algorithms detects a problem.

Two-Phase Approach. In order to reach a configuration where the nodes can
safely stop updating their states, we need first to have a correct solution at hand,
and second to allow the nodes to be sure that indeed the solution is correct. As
said earlier, the classic way to do this is to keep in memory some key extra pieces
of information gathered during the computation. As it seems that this approach
is difficult to implement here, we use another way: we first build the solution
alone, and then we build a certification (i.e. a distributed proof) of this solution.

The strategy of aiming for a distributed proof simplifies the design of the
algorithm. Indeed, if something goes wrong in the computation because of the
initial configuration, then we have to face two rather simple situations. In the
first case, one of our algorithms detects the error, for example because there is
an obvious inconsistency between the neighbors’ states. In the second case, the
problem is subtle enough to not be detected during the run of our algorithms,
but then if the output is not correct, the distributed proof that is built cannot
be correct either. In both cases the error is detected, and a reset is launched. In
other words, either there is something obviously wrong that is caught on the fly,
or there is something that is more subtle, and it is caught at the end.

The difficulties that remain are the same as for any self-stabilizing algorithm.
First, one has to ensure that for any computation, starting from a clean configu-
ration, we cannot end up in a configuration that is detected as incorrect. If this
were to happen, then the scheduler could make the algorithm go through a reset
infinitely often, and it would never stabilize. Second, we have to make sure that
the algorithm does not get stuck in a position where no node can be activated.
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The Components and How They Work Together. We have three main compo-
nents: one algorithm that builds the minimum spanning tree (detailed in Sect. 5),
one algorithm that takes this tree and certifies it, thus allows the silent stabiliza-
tion (detailed in Sect. 7), and a reset algorithm that can erase everything and
go back to a clean configuration. We describe the algorithm in a modular way
to ease the reading, but in the end our result is one algorithm. In particular, it
is important to have the three pieces working together. Note that such modular
design for a self-stabilizing algorithms is not new, even for unfair schedulers: for
example in the recent and celebrated coloring algorithm of [1] there is a first
algorithm reducing the number of colors very fast and then a second algorithm
to finish the job by eliminating the last extra-colors.

In our algorithm, the reset procedure is dominant, in the sense that if a
reset is launched it will basically overrule the other procedures. For this reset we
take a solution from the literature: Devismes and Johnen [12] recently proposed
a cooperative (that is, tolerating multiple simultaneous initiators) silent self-
stabilizing reset algorithm that satisfies our constraints in terms of scheduler,
stabilization time and space complexity. Then to articulate the two other pieces,
we simply use flags that indicate for each node which algorithm it is running.
If the algorithm are not run one after the other, then there will be a local
inconsistency between these flags, and the reset will be launched.

One last element about how the pieces work together is related to the weight
transformation. As said earlier, a key ingredient to get our approximation algo-
rithm in small space (Theorem 1) is a transformation of the weights. This trans-
formation consists in replacing each weight by a smaller weight. But, as we have
limited space, we cannot store the transformed weights of all the edges adjacent
to a node in its state (there can be n − 1 edges adjacent to a node). Instead,
every time a step is taken, the node recomputes the new weights to know which
rule applies.

4 Approximation-Memory Trade-Off

In this section, we show how we can replace the original weights with approxi-
mated weights to decrease the number of bits used to encode them, while pre-
serving guarantees on the MST computed. The precise trade-off between the
space used for the new weights and the approximation is given in Lemma 1. As
the expression is not very elegant, this is the only place of the paper where we
write it explicitly. The trade-off for the whole algorithm can be derived from the
values of this lemma: simply multiply by O(log n).

Lemma 1. There exists a transformation of the weights that allows for a trade-
off between space needed to encode the new weights, and the quality of the tree
one can compute from them. More precisely, for every integer k in the range
[− log log n, log n], we can get new weights with the following properties:

– for k = log n − 1, approximation 1 and size log n + 1,
– k ∈ [0, log n − 2], approximation 1 + 1

2k
and space k + log(log n − k + 1)) + 1,
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– for k ∈ [− log log n, 0] approximation 22
−k

and space log
(

logn
2−k + 1

)
+ 1.

Before proving the lemma, let us restate and prove the three points of the
trade-offs that we have already mentioned.

Corollary 1. The construction of Lemma 1 gives in particular:

– Exact solution, with weights encoded on O(log n) bits.
– 2-approximation, with weights encoded on O(log log n) bits.
– A trivial guarantee (poly(n)-approximation), with weights encoded on a con-

stant number of bits.

The exact solution directly follows from the case k = log n − 1. The 2-
approximation corresponds to k = 0. The arbitrary approximation corresponds
to k = − log log n.

The full proof of Lemma 1 is deferred to the full version [4], but we give a
sketch of the argument now. The explanation is illustrated by Fig. 1.

The core idea of the weight transformation is to group the weights into buck-
ets, that will be assigned the same new weight. The larger the buckets, the less
bits needed to encode the group name, but the larger the rounding error on each
weight. The basic idea is to use exponential bucketing. For example, with expo-
nent 2, a weight w, will be in a bucket b, if 2b−1 < w ≤ 2b. This way, every weight
is at most doubled, and an MST computed on these new weights is at most twice
as heavy as the MST with the original weights. The good thing is that now there
are O(log n) different weights instead of n, which means it can be encoded on
O(log log n) bits instead of O(log n). Now for various reasons explained in the
full version [4], we do not use this vanilla version of exponential bucketing with
other bases for other approximation ratios. Instead we consider the series of the
rounding values 1, 2, 4, 8, ..., 2logn given by the technique above, that we call
milestones, and work on it. We remove some of the milestones to get a coarser
approximation or we add new ones to get a more fine-grain approximation.

5 MST Construction Algorithm

In this section, we give a distributed algorithm for minimum spanning tree. This
algorithm is not self-stabilizing; the self-stabilizing part will be taken care of in
Sect. 7. As our main goal is to use small space, we do not optimize the time of
this construction algorithm (except that we want it to be polynomial), and keep
it as simple as possible.

Lemma 2. There exists a distributed algorithm in space O(s+log n) that builds
a minimum spanning tree in polynomial time.

Proof. Our algorithm is a distributed version of Kruskal’s algorithm. Remember
that Kruskal’s algorithm sorts the edges by increasing weight, and then adds the
edges to the tree one by one, discarding any edge that would close a cycle. There
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k = −1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

k = 1

Fig. 1. Illustration of Lemma 1. For k = 0, for example the weight 2, stays as 2, but
weight 3 is transformed into 4. For the case k− 1, we remove basically half milestones,
and for k = 1 we basically double the number of milestones.

are several modifications to perform in order to make this algorithm work in our
framework.

First, to consider the edges by increasing weights, we work in phases, each
phase corresponding to a specific value that a weight can take. We have a phase
for the possible edges of weight 1, then a phase for those of weight 2, etc.

Then in order to have these phases somehow synchronized on the whole
network, and to avoid simultaneous additions of edges of the same weight (which
could create cycles), we use a token. This token visits the nodes of the graph, and
only the node with the token will be allowed to add edges to the tree. The token
transports the information about the weight of the current phase. To make the
token visit all the nodes we need to build a spanning tree beforehand, and we
make the token traverse the tree. We use the same spanning tree construction
and token circulation as in [3], inspired by the tree algorithm of [11] and the
token algorithm of [24]. These algorithms ensure, under the distributed unfair
scheduler, stabilization to a proper token circulation in O(n) rounds, and they
use only O(log n) bits of memory.

Finally, a node must be able to decide locally whether adding a specific edge
would close a cycle or not. To do so every node will hold a component name.
This name is the minimum identifier in the connected component of the node,
in the current state of the tree. This way, a node can safely add an edge if its
component name is different from the component name of the other endpoint.
To maintain this name, we will need to perform a traversal of a part of the tree
every time we add an edge. This is also known to be doable in our setting in
polynomial time and logarithmic memory [9].

The space complexity is in O(s + log n), because we just need to store a
constant number of IDs, weights and additional O(log n)-size objects. The time
complexity in terms of rounds is polynomial. Indeed the number of phases is
polynomial, because we consider polynomial weights, and each phase lasts a
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polynomial number of rounds (because the primitives we use, token circulation
and traversal of the tree, are known to be polynomial [3,9,11,24]).

Augmented MST. Actually, for the next steps (described in Sect. 7), we will need
a bit more than the minimum spanning tree. We want to have for each node:
an orientation to an arbitrary root, the number of nodes that are descendants
of this node (including the node itself), and the total number of nodes in the
graph. These are easy to compute by simple traversals.

6 Distributed Proof of MST

The second part of our algorithm, that makes it self-stabilizing, consists in label-
ing the nodes with a distributed proof. This labeling certifies the correctness of
the minimum spanning tree. It comes from a proof-labeling scheme described in
[22]. It is necessary here to describe the scheme of [22] with some details (even
though it is not our work) in order to allow the reader to understand the next
section without reading the full version in [22]. For an intuitive but more in
depth description of the main ideas behind the scheme, we refer to [18].

Lemma 3 ([22]). There exists a distributed proof of size O(log n · s) for mini-
mum spanning trees.

Proof (Sketch of the scheme and of the proof). The labeling is actually in two
parts. The first part certifies the acyclicity of the tree. It is well known that
acyclicity can be certified with O(log n) bits [23], for example with each node
storing its number of descendants, thus we focus on the second part.

The second part of the scheme has a recursive shape. Let us first describe
the top-most level of it. The prover chooses a node to be the center of the tree,
and orients the tree towards this node such that it becomes a root. This node
has some x subtrees, that is, if we remove this center from the graph, there
would be x trees. The prover gives a distinct number to each subtree from 1 to
x. Every node (except the center) is labeled with the number of its subtree. Also
every node is given the maximum weight on its path to the center along the
edges of the tree. It is rather easy to check that the correctness of these pieces
of information can be checked locally.

To show why this is useful, consider a node u of a subtree A, that is adjacent
in the graph (but not in the tree) to a node v of a subtree B. Thanks to the
subtree numbers in their labels, the nodes u and v know that they do not belong
to the same subtree. We claim that they can check whether adding (u, v) to
the tree could result in a smaller weight tree (which would contradict the fact
that the selected edges form an MST). First, remember that adding (u, v) would
lead to a lighter tree, if and only if, the path from u to v (in the tree) has
an edge that is heavier than (u, v) (and thus that could be replaced by (u, v)).
Therefore, u and v only have to look for such an edge. The path from u to v
must go through the root, because these nodes are in different subtrees. Thus
the maximum weight on this path is either the maximum weight from u to the
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root, or from v to the root. As the nodes are given these maximum weights on
the paths to the root in their labels, they can check whether (u, v) is lighter or
not than the heaviest edge on the path.

To allow the nodes to test for all the non-selected edges, we need to handle
adjacent nodes that are in the same subtree. We do so by choosing recursively a
center in each subtree, and providing the same information as for the top level.
That is, every node will have information regarding the first center, its second
center (i.e. the center of its subtree of the first center), its third center (i.e. the
center of its subtree of the second center) etc. until the level where it is itself
a center. Thanks to this recursive structure, for every pair of nodes, there is a
level of the recursion for which they are assigned to two distinct subtrees (or to
a subtree and its root), and the checking can be done in the same way as for the
top-most level.

To be sure to use only O(log n · s) space, for all this information about all
the centers of a node, we need the above scheme to have two properties. First,
we need the centers to be placed in a balanced manner. Precisely, we want the
center of a (sub)tree T to be at a node such that every subtree has size at most
|T |/2. (Such a node always exists and can be computed in a simple way, as
described in the next section.) This balance for the centers implies that there
is at most O(log n) centers per node. Second, we need that for each node, the
concatenation of all its subtree numbers is not too long. To get this, it has
been proved (see [21]) that it is enough that, for each center, the subtrees are
numbered by decreasing number of nodes (the largest subtree gets number 1,
the second largest gets number 2, etc.).

Also, remember that we need to have an orientation towards the center, for
each of the O(log n) centers a node has. This takes O(log2 n) bits if we use the
ID of the parent as a pointer. Instead, we have only one orientation of the full
tree encoded by IDs, and the other orientations are encoded with respect to this
original orientation. Concretely, every node will store whether the center of the
current level is in the direction of its parent in the original orientation, or if it
is in the direction of one of its children. Surprisingly, this is enough to describe
and check each orientation, and it takes only constant number of bits per level.
(See [22] or [18], to see for example why not knowing the precise child-parent
relation is not problematic.)

7 Certification Labeling Algorithm

In this section, we describe an algorithm that builds the labeling of Sect. 6.
Remember that thanks to Sect. 5, we start with a tree that has an orientation
toward a root and whose nodes are labeled with the number of nodes in their
subtrees. Thus the first part of the labeling of Sect. 5 is already present.

Lemma 4. Given a tree with an orientation to a root and subtree sizes, there
exists an algorithm that builds the labeling of Sect. 6 in space O(log n · s) and
polynomial time.
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Proof. We first describe the algorithm, and then highlight some key properties.
The algorithm takes as input a tree, and certifies it as a minimum spanning tree.
The construction follows the recursive description of the labeling of Sect. 6.

Before any computation, we do a copy of the pointers, subtree number, etc.
We will modify the copies, but we need to keep the original labels. Let us first
describe the computation of a center. (This description is for the first center, we
explain later how to adapt it to the other phases of the labeling.) Basically, we
will move the root of the tree until it satisfies the property of a proper center.
(Remember that this property is that the center separates the tree into parts
that have size at most half the size of the full tree.) Our first candidate for a
center is then the root of the tree. Thanks to the subtree sizes that every node
holds, the root can detect whether it is in a central position or not. Indeed, as the
subtree size of the root is the number of nodes in the full tree, the root can easily
check whether its neighbors have subtree sizes at most half this number. If the
root is not in a central position, then we transfer the root to the neighbor having
the largest subtree size. This transfer of the root implies several computations:

– the old root designates the new root
– the old root orients its pointer to the new root
– the new root, erase its pointer and takes the root label
– the old root takes as new subtree size its old subtree size, minus the old

subtree size of the new root
– the new root takes as subtree size the old subtree size of the old root.

Thanks to this step, we are in the same position as before (that is, we have
a tree with a correct orientation, and correct subtree sizes), but in addition, the
root is in a more central position, in the sense that the largest subtree size is
smaller than before the transfer. After O(n) such moves, the root is in a central
position.

Once the center is validated, we have to label each node with: the orientation
to the center, the maximum weight on the path to the center, and the subtree
number. There is a difficulty here. Remember that only the center can decide
which subtree gets which number, because these numbers depend on the relative
sizes of all the subtrees. Thus the center has to announce the subtree numbers
e.g. “the subtree with root IDv has number 3”. It is not possible to announce all
these numbers at once. Indeed, the list of these numbers can have length of order
n, therefore we cannot write the whole list in the state of the center. Instead the
center will announce a first pair identifier-number, then wait for the node with
this identifier to confirm this information, and then go to the second etc. Once
the root of a subtree receives its subtree number, it broadcasts this information
to all its subtree using a snap-stabilizing (i.e., self-stabilizing with a stabiliza-
tion time of 0 rounds) Propagation of Information with Feedback algorithm. Bui
et al. [9] provide such an algorithm with constant space requirement and poly-
nomial completion time (in rounds) on trees, that meets our requirements. In
the same wave, the maximum weight to the center is computed by keeping and
updating the maximum weight seen so far, while descending in the tree. The
orientation is even easier to store: just copy the current orientation.
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Once the broadcast waves have come back to the root of the subtree, every
node has, in its label, all the information it needs to store for this phase. And
then we can start immediately a new recursive call, looking for the next center.
Indeed we have a tree, with a root, with a proper orientation, and with correct
subtree numbers.

Now, let us highlight some key points of the algorithm.

– Once a center has finished launching the computations in each subtree, it
becomes silent, and will not change its state, except if there is a reset.

– As soon as two adjacent nodes (in the graph) become centers, they can start
checking their labelings to see if the distributed proof makes sense, at least
for this edge (and launch a reset if it is not the case).

– Once the root has launched the computation in the subtrees, these subtrees
will run independent computations (except for the cycle checking mentioned
in previous item). This means that the scheduler can delay the computation
in one subtree, by making a series of recursive calls in the other subtrees, but
at some point these recursive calls will end up by having all nodes as centers,
thus disabled, and the scheduler will have to enable the remaining nodes.

– Suppose that we are in a subtree, looking for the center for the second recur-
sive call. The main center is already chosen, and thanks to the pieces of
information stored, the nodes can check that it exists. But they cannot check
whether it was placed in a central position, because we are reusing the subtree
size variables. Thus if we start from an initial configuration that corresponds
to this situation, we are not following the correct construction described in
Sect. 6. This means that we could end up with a larger memory than what
we claimed. What we do is that we control the size used. If we end up using
more than α · log n · s bits, for a constant α large enough to allow correct
computations, then we launch a reset. Note that it may actually be the case
that the centers are not perfectly placed, but that their positions are good
enough to ensure that the memory size does not cross the α · log n · s limit;
in this case we do not detect it, and the outcome is correct.

When the computations ends on all nodes, every node is labeled as specified
in Sect. 6, and the algorithm becomes silent.

8 Conclusion

This paper presents the first self-stabilizing algorithm using approximation to
reduce memory usage. A step in this construction is the design of a polynomial-
time silent self-stabilizing algorithm for MST construction using O(log n · s) bits
of memory. This later algorithm uses an unusual two-phase approach: building
and then certifying the solution. We believe that this modular approach is the
key to go down to complexity O(log n · s), and we think that it is an interesting
problem to formally prove this intuition.4

4 Some elements indicating that at least the classic techniques cannot avoid a modular
approach can be found in [19].
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Abstract. It has been established that in-network caching in an
Information-Centric Network (ICN) environment significantly reduces
required bandwidth and content retrieval delay, and reduces load on
content producers. However, malicious actors masquerading as legiti-
mate consumers can probe cache contents and use the resultant data
to map content objects to, and thereby violate the privacy of, the con-
sumer(s) who requested them. Existing mitigation approaches suffer a
direct trade-off between privacy and utility; the two are diametrically
opposed, and prioritizing either rapidly degrades its counterpart. This
paper presents a collaborative caching approach with provable privacy
and utility guarantees that instead monotonically increase as a function
of one another, growing in tandem. Our proposed scheme preserves all
true cache hits to utilize in-network caching as efficiently as possible. We
have evaluated our method against a number of other in ICN caching
policies for a variety of workloads and topologies. Our results show that
our technique delivers high cache hit ratios and minimizes interest sat-
isfaction delay while offering provable privacy guarantees.

Keywords: Secure information centric networking · Provable privacy ·
Distributed system security

1 Introduction

Information-Centric Networking (ICN) encompasses a paradigm shift from the
point-to-point, address-based IP protocol which comprises the “thin waist” of
today’s internet. ICN eschews this existing model in favor of an architecture in
which content is treated as a first-class citizen and is named, addressable, and
routable [6]. At a high level, entities within an ICN are content producers, con-
tent consumers and routers. ICN development is motivated by modern internet
usage patterns resembling those of a content distribution network (CDN). IP
was designed to address the needs of a network of hosts intercommunicating
via relatively equally-weighted full duplex conversations. However, many of the
hosts in today’s internet operate almost exclusively as consumers, requesting
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content from those who produce it. ICN is the product of an attempt to design
an internet architecture better suited to this model of communication.

An important feature of proposed ICN architectures is the utilization of in-
network content caching at routers. However, if implemented in a naive fashion,
ICN content caching is susceptible to attacks against consumer privacy. In this
context consumer privacy is informally defined by asserting that a legitimate
consumer (Alice) wishes to hide the fact that she has requested a content object
O. Suppose a malicious user (Darth) connects to same first-hop router R to
which Alice is connected, and wants to determine if, indeed, Alice has requested
O. As described in greater detail in Sect. 2.1, Darth issues a request for O. Darth
also has determined the expected time TR to satisfy content requests from R.
If the time to receive O is approximately equal to TR then Darth can conclude
that Alice has previously requested O. Note that this attack still works if users
besides Alice are connected to R.

Defenses against the attack just described include TOR-like mechanisms or
introducing artificial delays to request response. Both of these approaches intro-
duce performance penalties. The contribution of our paper is to introduce a
collaborative caching policy designed to defeat consumer privacy attacks with-
out introducing significant performance penalties. We focus on domain-clustering
ICN deployments and show how to serve a content request from an in-network
cache in such a way as to hide from Darth information about Alice’s content
requests. We also show that our scheme produces a provable privacy bound, in
the sense of providing (ε, δ)-probabilistic indistinguishability, a standard mea-
surement used to quantify the utility of privacy protocols [8,16].

2 Background and Related Work

Over the last decade or so there have been several proposed Information Centric
Networking architectures, such as the European PURSUIT project [5]. Our work
is motivated by research in Content Centric Networking proposals and work in
the ongoing Named Data Networking (NDN) project [10,19].

2.1 NDN Overview

Content retrieval in NDN1 does not necessitate a persistent end-to-end connec-
tion between the entity which produced it and that which is requesting it. Rather,
network endpoints fall into one or both of the following categories: consumers,
which issue interests for the data they wish to retrieve, and producers, which
dispatch content packets to satisfy received interests. Notably, a host in the net-
work can be both a producer and consumer. Pure consumers or producers are
those which perform solely the functions of consumers or producers, respectively.
A pure consumer has no addressable namespace and no private/public key pair
for signing and authenticating its (nonexistent) content. Content packets in NDN

1 After this section we revert to the abbreviation ICN.
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are only forwarded to consumers which specifically request them via interests.
A noteworthy security implication of these policies is that pure consumers are
not addressable entities in ICN. Two data structures are present in each router
in an NDN network: A Pending Interest Table (PIT), which records each of
the interests which have arrived at the router and the corresponding interfaces
on which they were received, and a Forwarding Interest Base (FIB), which
contains a mapping of content name prefixes to outgoing interfaces.

A router is not required to but may additionally possess a content store
(CS). A router can opportunistically cache content in its CS, upon receiving
that content in response to a previously forwarded interest. The router can then
serve that content from its CS in response to future interests received for the
same content. This has the benefit of potentially greatly reducing data retrieval
delays, as an interest and its corresponding content may not need to traverse the
entire path between a consumer and producer. Any content received by a router
which does not match an entry in the router’s PIT is discarded. The focus of our
work is to ensure consumer privacy in the face of timed probing attacks against
content stores. In NDN the content that satisfies an interest is always forwarded
along the reverse path of the interest which requested it. The determination of
this reverse path in the absence of a source address is accomplished by per-
interest state recorded at each router hop in the form of an entry in the PIT.
Upon receipt of an interest for the same content as another interest already in its
PIT, a router will simply add the interface on which the new interest was received
to the existing entry in its PIT and discard the remaining information in the
new interest without forwarding it. Corresponding content is returned along all
necessary interfaces whilst avoiding duplication. Producers and/or other routers
are not inundated with multiple interests forwarded by a given router requesting
the same content. The satisfaction of a single interest by a producer may serve
the content in question to many consumers whose interests were collapsed into
that received by the producer.

2.2 Related Work

There has recently been significant interest in ICN cache privacy issues.
ANDaNA [4] and AC3N [25] are applications of the onion routing and ephemeral
circuits of TOR to ICN. Though effective, these approaches increase latency,
decrease available bandwidth compared to vanilla NDN, and- due to ephemeral
encryption- prohibit any useful in-network caching.

A proposed mitigation to the cache privacy attack which incorporates a ran-
domized content satisfaction delay to mask cache hits is presented in [2]. A router
R can introduce an artificial delay before responding to an interest. In doing so,
R prevents an adversary A from determining whether or not a given piece of
content C is in its content store (CS), denoted CSR. This work also establishes
privacy bounds. As with all approaches that introduce artificial delays, perfor-
mance can become an issue. Somewhat similar to [2] is the work presented in [18]
and [17] which uses privacy preserving delays at edge routers. The work described
in [1] uses the concept of “Betweenness Centrality-based” caching that caches
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content at nodes with a higher betweenness centrality value to put consumers
in larger anonymity sets. Unlike this work, we focus on providing consumers
with a uniform anonymity level, and we provide a computable privacy bound.
Additional related efforts include a namespace-based privacy [14] approach, and
a Long Short Term Memory detection approach to detect a timing attack [27].
The work described in [26] details an edge-based access control mechanism for
ICNs. Our work differs from the above papers because we focus on protecting
individual consumers without sacrificing performance, and because we offer a
provable privacy bound. We also note that our methods are not vulnerable to
attacks that exploit hop limit and scope fields in the NDN packet header [2].

We note that there is recent interest in using domain clustering methods, in
conjunction with hash routing, to support large ICNs [23]. Our approach relies
on the use of clustering.

3 Collaborative Caching Algorithm

As illustrated in Fig. 1a, our proposed caching scheme divides the network into
clusters of routers, each of which will operate as a distributed aggregate in-
network cache. This abstraction is transparent to producers, consumers, and
other clusters. The cluster to which a router will belong is determined by the
partitioning around medoids algorithm [12]. Upon the arrival of a content packet
at a router on the edge of a cluster, a router is chosen uniformly at random from
the members of the cluster (including the specific router which actually received
the content packet) as the designated, or “authoritative”, router at which to
cache the content. The content is then multicast to both the designated router
cache for later use and to the next-hop router on the path back to the consumer
which originally issued the interest for the content.

When a router on the edge of a cluster encounters an interest, that interest is
forwarded to the authoritative router cache pertaining to the content requested
by the interest, if one has already been determined. If the requested content is in
the content store of a router in the cluster, it is returned to the consumer which
issued the interest. If not, a single interest for the entire cluster is propagated
upstream toward the appropriate producer by the cluster router closest to that
producer. This process is illustrated in Fig. 1b and detailed in Algorithm 1.

We now describe our system and adversary model. Let Σ∗ and Γ denote
the universes of all content names (composed of some finite alphabet Σ) and
content objects, respectively, using notation in common with [2]. Let G represent
a cluster of collaborating routers according to our proposed caching model, and U
represent the set of all consumers downstream from G. S : (Γ,U) → N represents,
for a given content item C ∈ Γ in the cache of any router in G, the number of
times C has been forwarded by G to u ∈ U . Note that we use the definition of N

from ISO 8000-2 [9], where 0 ∈ N. S(C, u) = 0 for all content not in any router
cache in G, and for all content for which u has not issued an interest.

We allow consumers to determine whether specific content has been for-
warded by G via probing attacks. As in [2], this is modeled by a function
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cluster α

cluster β

cluster γ

(a) (b)

Fig. 1. (a) A network divided into router clusters α, β, and γ, the routers belonging to
which lie within the pink, cyan, and orange shaded regions, respectively. Producers are
denoted by blue nodes, consumers by green nodes, and routers by black nodes. Black
solid edges represent intra-cluster connections, whereas red edges are inter-cluster or
cluster-to-producer connections and consumer-to-router connections are indicated with
dashed black edges. (b) Caching process within a cluster. A content packet d, requested
by consumer c, has just arrived at router r0 from producer p. r1 is selected uniformly
at random from all cluster routers to cache d. Blue arrowheads indicate the multicast
flow of d to router r1 and along the (green) shortest path to c. (Color figure online)

QS : Σ∗ → {0, 1}. We let NC ∈ Σ∗ denote the name associated with content
C ∈ Γ . In network state S,

QS(NC , G) =

{
1, if cached content C in G matches the input name NC

0, otherwise
(1)

Each invocation of QS(NC , G) by a given consumer u causes S to transition to
S′ such that:

1. S′(C, u) = S(C, u) + 1
2. ∀C ′ ∈ Γ \ {C}, S′(C ′, u) = S(C ′, u)
3. ∀C ′′ ∈ Γ, u′ ∈ U \ {u}, S′(C ′′, u′) = S(C ′′, u′)

The attack we are concerned with operates as follows [7]: A malicious con-
sumer, A, is connected to an edge router R, the only other consumer connected
to which is u. A determines the round-trip time to R by issuing two identical
interests with the same random content name and observing the content return
delay. A then issues an interest for some content C and measures that content
retrieval delay. If that content (C) is returned with a delay approximately equal
to the round trip time (RTT) from A to R, A concludes that u recently requested
C, as the interest must have been satisfied at the first hop router.
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Algorithm 1: Collaborative-Caching
Input: Interest I from consumer N , requesting content C produced by P , Collaborating

router cluster G

Output: C, x =

{
1, if collaborative cache hit

0, otherwise

1 CSloc := local content store of router R receiving interest;
2 if C /∈ CSloc then
3 if C in CSg for some g ∈ G then
4 Route I to authoritative router for C;
5 Return (C, 1) when C returned from authoritative router;

6 else
7 Decrement HopLimit;
8 if HopLimit = 0 then
9 Return (NULL, 0);

10 end
11 Forward I to router RE on edge of G and onward toward P ;
12 while C has not arrived at RE from P do
13 Wait;
14 end

15 Determine authoritative router gC ∈ G with Pr = 1
|G| (uniformly random);

16 RE : (Mulicast) send C to gC for caching and return (C, 0) on shortest path to N ;

17 end

18 else
19 Return (C, 1);
20 end

4 Provable Privacy

4.1 Quantifying “Privacy”

We derive our understanding of cache privacy from the concept of (ε, δ)-
probabilistic indistinguishability, which we define using a definition motivated
by that provided in [2].

Definition 1 (ε, δ)-probabilistic indistinguishability. Two distributions D1

and D2 are (ε, δ)-probabilistically indistinguishable if we can divide the output
space Ω = Range(D1) ∪ Range(D2) into Ω1 and Ω2 such that, letting Q1 and
Q2 be random variables with probability distributions D1 and D2 respectively,

1. for all O ∈ Ω1, e−ε ≤ Pr[Q1=O]
Pr[Q2=O] ≤ eε

2. Pr[Q1 ∈ Ω2] + Pr[Q2 ∈ Ω2] ≤ δ

The similarity of distributions D1 and D2 is directly proportional to the mag-
nitude of both ε and δ. Minimizing the upper bound on both ε and δ is therefore
desirable when seeking to prove that two distributions are indistinguishable.
Suppose we observe a network in two measurable states, represented by D1 and
D2, respectively. Intuitively, this definition merely implies that, when ε and δ
are both small, those states are quite similar. This similarity makes it difficult
to distinguish between the distributions. If the two distributions were to respec-
tively represent states of the network in which, on the one hand, consumer u had
not requested content C, and, on the other, it had, then the difficulty of distin-
guishing between the two distributions would be directly related to the difficulty
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of defeating cache privacy. This is the difficulty of mounting a successful attack
which can identify the source of an interest based on cached content.

Our definition of (k, ε, δ)-privacy is a modified version of that presented in
[2], adapted to suit a collaborative caching model.

Definition 2 (k, ε, δ)-privacy. For all names n ∈ Σ∗, subset of content M ⊂
Γ , and pairs of states S0, S1 such that S0(γ, u′) = S1(γ, u′) for all γ ∈ Γ \ M
and for all u′ ∈ U , and S0(C, u) = 0 and 0 < S1(C, u) ≤ k for all C ∈ M
(i.e., S0 and S1 differ only on content objects in M) and for consumer u down-
stream from router cluster G; QS0(n,G) and QS1(n,G) are (ε, δ)-probabilistically
indistinguishable.

Notably, the above definition does not prohibit S0 and S1 from differing in terms
of the number or distribution of requests made for content C by routers other
than u. We allow, but do not require, S0(C, u′) �= S1(C, u′),∀u′ ∈ U \ {u},
and S0(C, u′) and S1(C, u′) could each be zero or positive for any given router
u′ ∈ U \ {u} (as long as S1(C, u′) ≥ S0(C, u′)).

4.2 Provable Privacy Guarantee

Our approach, like those which employ artificial delay, ultimately serves to pro-
hibit an adversary from learning if a given consumer has issued an interest for
a particular piece of content. However, the two methodologies are divergent
with respect to the manner in which this is accomplished. Random-Caching [2]
seeks to conceal the existence of any particular piece of content in a router’s
cache, assuming that cognizance of the content’s presence there would allow an
adversary A to correctly infer that a specific consumer u requested that content.
Collaborative-Caching (Algorithm 1) decouples the existence of a content item in
a router’s cache from the implication that a consumer directly downstream from
that router issued an interest for that content. We allow an adversary to success-
fully determine that a consumer downstream from a collaborating router cluster
has issued an interest for some specific content- and even the exact router in the
cluster at which that content is cached- without revealing the precise identity
of the consumer from which the interest originated. We achieve this by main-
taining an anonymity set of a specified size for every router downstream from
a collaborating router cluster; the size of a router’s anonymity set is no longer
determined by the number of other consumers which share its first-hop router.

Let m(v,i) denote the number of interests issued by consumer v ∈ U for
all content in state Si. Let Q0(C, r0) and Q1(C, r1) denote the output x of
Algorithm 1 in states S0 and S1, respectively, with C where ri denotes the set of
expected values of the number of interests for C issued by consumers- other than
u- downstream from the collaborating router cluster G in each state Si. That
is, ri = {E(Si(C, v)),∀v ∈ U \ {u}} where U denotes the set of all consumers
downstream from G. Note that we use zero-based array indexing when referring
to elements of r in the subsequent formulae.
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Theorem 1 If all cached content is statistically independent, and con-
sumers issue interests for specific content with uniformly random probability,
Collaborative-Caching is

( |U |−1∑
v=0

m(v,0), ln |r0|,
(

1 − 1
|Γ |

)|r0|−1∑
v=0

m(v,0)
)

− private.

Proof. Per Definition 2, S0(C, u) = 0 and S1(C, u) = n, where 1 ≤ n ≤ k.
Qt

0(C, r0) and Qt
1(C, r1) denote the sequence of outputs produced by Algorithm

1 when executed t consecutive times with C, in states S0 and S1 respectively. As
noted in [2], the presumed statistical independence of content simplifies this
analysis by allowing us to focus on the difference between S0 and S1 only
as it relates to C- whether or not other content has been requested and by
whom is irrelevant. The following probabilistic analyses therefore assume con-
tent object independence and leverage the idea that separate requests for content
are statistically independent events. Let Qt

0 and Qt
1 denote two random variables

describing Qt
0(C, r0) and Qt

1(C, r1) respectively when consumers request content
uniformly at random. Each entry in the zero-indexed set ri will therefore be:
ri[v] = m(v,i) · 1

|Γ | where m(v,i) denotes the total number of requests (for all
content) which have been made by downstream consumer v in state Si.

We show that, assuming consumers are equally likely to request or not request
C, Qt

0 and Qt
1 are (and consequently Collaborative-Caching is)

(
ln |r0|,

(
1 − 1

|Γ |
)|r0|−1∑

v=0
m(v,0)

)
− probabilistically indistinguishable

for any C (a corollary of our assumption that content is statistically indepen-
dent). Note that in our adversarial model, A has no knowledge of the likelihood
that any particular consumer would be interested in a given piece of content.
As such, A possesses no information from which it can extrapolate that the
probability distribution of a given consumer’s requests is anything but uniform.

The output x (defined in Algorithm 1) of Qt
1 will be {1}t because, in state

S1, u has already issued at least one interest for C and it is therefore cached at
some router in the router cluster. The output of Qt

0 will be:

Qt
0 =

{
{1}t, if ∃v ∈ U \ {u} s.t. S0(C, v) ≥ 1
0||{1}t−1, otherwise

That is to say, Qt
0 will be either {1}t (a sequence of t ones), if a consumer

other than u has already issued at least one interest for C in S0, or 0||{1}t−1, if
no consumer other than u has issued an interest for C. We partition the output
space Ω = Range(Qt

0) ∪ Range(Qt
1) into Ω1 and Ω2, for all t and C, as follows:
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– Ω1 = Range(Qt
0) \ Range(Qt

1): If no consumer downstream from G other
than u has issued an interest for C, then the first interest issued will result
in a cache miss (in S0, u must not have issued an interest for C yet either).
However, this cannot occur in S1, as u would have already requested C and
it would be in G’s collaborative cache. Therefore, �r1 such that Qt

0(C, r0) =
Qt

1(C, r1).
– Ω2 = Range(Qt

0) ∩ Range(Qt
1): Either some consumer other than u has

requested C in S0, or we are in S1 so u has issued an interest for C (but
may not be the only consumer to have done so). Either way, the output will
be t cache hits: {1}t. Thus, Qt

0(C, r0) = Qt
1(C, r1).

Note that Ω1 ∪ Ω2 = Ω, as there are no possible outputs of Qt
1 that are not

possible outputs of Qt
0 (whereas the converse is true).

A series of t ones is the only output O ∈ Ω2. Therefore, for all O ∈ Ω2,
Pr[Qt

1 = O] = 1. For all O ∈ Ω2,

Pr[Qt
0 = O] = Pr[∃v ∈ U \ {u} s.t. S0(C, v) ≥ 1]

=
|r0|−1∑
v=0

Pr[S0(C, v) ≥ 1] =
|r0|−1∑
v=0

(1 − Pr[S0(C, v) = 0])

=
|r0|−1∑
v=0

(
1 −

(
1 − 1

|Γ |
)m(v,0)

)
=

|r0|−1∑
v=0

1 −
|r0|−1∑
v=0

(
1 − 1

|Γ |
)m(v,0)

= |r0| −
|r0|−1∑
v=0

(
1 − 1

|Γ |
)m(v,0)

(2)
Substituting these values into clause 1 of Definition 1, we obtain

∀O ∈ Ω2,
Pr[Qt

1 = O]
Pr[Qt

0 = O]
=

1

|r0| −
|r0|−1∑
v=0

(
1 − 1

|Γ |

)m(v,0)
(3)

To circumvent the issue of division by zero, we assume there is at least a
single piece of content in the network and each consumer downstream from the
collaborating router cluster has issued at least one interest (for at least one piece
of content). We then derive the value of ε as defined in Definition 1:
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|Γ | ≥ 1,m(v,0) ≥ 1 ∀v ∈ U \ {u} ⇒ ∀v ∈ U \ {u}, 1 >

(
1 − 1

|Γ |
)m(v,0)

⇒
|r0|−1∑
v=0

1 >

|r0|−1∑
v=0

(
1 − 1

|Γ |
)m(v,0)

⇒ |r0| >

|r0|−1∑
v=0

(
1 − 1

|Γ |
)m(v,0)

⇒ |r0| −
|r0|−1∑
v=0

(
1 − 1

|Γ |
)m(v,0)

≥ 1

⇒ 1

|r0| −
|r0|−1∑
v=0

(
1 − 1

|Γ |

)m(v,0)
=

Pr[Qt
1 = O]

Pr[Qt
0 = O]

≤ 1

(4)

Having determined an upper bound on Pr[Qt
1=O]

Pr[Qt
0=O]

, we now calculate a lower
bound on the same value in terms of ε.

1
eε

≤ 1

|r0| −
|r0|−1∑

v=0

(

1 − 1
|Γ |

)m(v,0)
=

Pr[Qt
1 = O]

Pr[Qt
0 = O]

⇒ eε ≥ |r0| −
|r0|−1∑

v=0

(

1 − 1
|Γ |

)m(v,0)

(5)
Under the reasonable assumption that the total number of requests made by

any given consumer downstream from a collaborating router cluster will grow
faster than the amount of content in the network, we find limm(v,0)→∞

(
1 −

1
|Γ |

)m(v,0)

= 0, meaning this value approaches 0 as the number of interests issued
in a given network state increase- a natural consequence of typical network traffic.
Substituting this limit into the RHS of our inequality to allow us to calculate a
concrete value for ε, we arrive at:

eε ≥ |r0| −
|r0|−1∑
v=0

⇒ eε ≥ |r0| ⇒ ln eε ≥ ln |r0| ⇒ ε ≥ ln |r0| (6)

Combining the upper and lower bounds computed on Pr[Qt
1=O]

Pr[Qt
0=O]

, we conclude:

e− ln |r0| ≤Pr[Qt
1 = O]

Pr[Qt
0 = O]

≤ 1 ≤ eln |r0| ∴ ε = ln |r0| (7)

We now derive the value of δ as defined in clause 2 of Definition 1. A zero
followed by t − 1 ones is the only output O ∈ Ω1. If O ∈ Ω1,

δ = Pr[Qt
0 = O] + Pr[Qt

1 = O] = Pr[Qt
0 = O] + 0 = Pr[S0(C, v) = 0], ∀v ∈ U \ {u}

=
|r0|−1∏

v=0

Pr[S0(C, v) = 0] =
|r0|−1∏

v=0

(

1 − 1
|Γ |

)m(v,0)

=
|r0|−1∏

v= 0

(

1 − m(v,0) · 1
|Γ |

)

=
(

1 − 1
|Γ |

)
|r0|−1∑
v=0

m(v,0)

(8)
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Finally, we determine an appropriate value for k as defined in Definition 2. As
previously stated, S0 and S1 differ only in requests made for content object C.
Therefore, M = {C}, where M is defined as in Definition 2. The only stipulation
which must be satisfied by the chosen value of k is therefore that 0 < S1(C, u) ≤
k. S1(C, u) is defined to be the cumulative number of requests made by router u
for content C in state S1. The maximum possible number of such requests is the
cumulative number of requests for all content made by all consumers collectively
in state S1 (in the case where only consumer u issues any interests and every
one of those interests is for content C). Therefore, we let k =

∑|U |−1
v=0 m(v,0).

Though the values of ε and δ we have proven may at first appear too complex
to be meaningful, it is illustrative to consider them in the context of a network as
time (and with it network traffic) progresses. The value of ε we have found grows
logarithmically with respect to the number of consumers downstream from a
router cluster. Complementing the slow logarithmic growth of ε is the observation
that, compared to the amount of content and requests in a network, the number
of consumers attached to a router cluster could reasonably be expected to grow
quite slowly (or even remain relatively stagnant). We can conclude something
even more concrete about the value of δ in this context. Assuming, as before,
that the number of requests issued by consumers in a network grows at a rate
faster than the number of unique content objects in the network, we see that:

lim
m(v,0)→∞ δ = lim

m(v,0)→∞

(
1 − 1

|Γ |
)|r0|−1∑

v=0
m(v,0)

= 0

Note that the binary representation of the output of Qi(C) deliberately
abstracts away any details of the delay associated with interest satisfaction
beyond the granularity of a cache hit or miss. Any attack which leverages a
timing side-channel to determine the precise router within a cluster at which
content is stored, even if successful, reveals no more information about individ-
ual consumers’ requests than the knowledge that the content is cached anywhere
in the cluster. Because the router at which content is to be cached is chosen
uniformly at random, knowledge of the content in a particular router’s cache in
no way leaks any information about which specific consumer downstream from
the cluster requested that content.

4.3 Quantifying Utility

Definition 3 Utility [2]. Let H(ρ) denote the random variable describing the
distribution of the number of cache hits depending on the total number of requests
ρ (ρ ≥ 1). The utility function u : N → R+ of a cache management scheme is
defined as: u(ρ) = 1

ρE(H(ρ))

Intuitively, we define utility as the expected number of cache hits as a fraction
of total interests issued. Using notation and assumptions from Sect. 4.2, let G
denote the set of all clusters in the network (cluster count n = |G|) and rg,0

denote r0 for a given cluster g ∈ G.
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Theorem 2. The utility u(ρ) = 1
ρE(H(ρ)) of Collaborative-Caching is:

1
ρ

·

(
n∑

g=0

(
|rg,0| −

|rg,0|−1∑
v=0

(
1 − 1

|Γ |

)m(v,0)
))

n

Proof. If we consider the scale of a single collaborating router cluster, intuitively,
the probability of a cache hit for a given interest is directly related to the proba-
bility that any consumer (including the one that issued the interest in question)
downstream from the cluster has already requested the same content for which
the interest was issued. Using the same notation as in our proof of Theorem
4.1, and again making the assumption that the content requested in consumers’
interests is uniformly distributed, we denote this probability as the following:

Pr[∃v ∈ U s.t. S0(C, v) ≥ 1] =

|r0|−1∑

v=0

(

1 −
(

1 − 1

|Γ |

)m(v,0)
)

= |r0| −
|r0|−1∑

v=0

(

1 − 1

|Γ |

)m(v,0)

(9)
for some network state S0. Now consider the wider scope of all clusters in

the network, letting n = |G| denote the total number of clusters, where G is the

(a) GEANT Topology. 13 producers, 8 con-
sumers, 32 routers acting as in-network caches.
From the Internet Topology Zoo[13]. Figure from
http://www.topology-zoo.org/dataset.html

(b) WIDE Topology. 11 producers, 6 consumers, 13 routers
acting as in-network caches. From the Internet Topology
Zoo[13]. Figure from http://www.topology-zoo.org/dataset.html

(c) GARR Topology. 13 producers, 21 con-
sumers, 27 routers acting as in-network caches.
From the Internet Topology Zoo[13]. Figure from
http://www.topology-zoo.org/dataset.html

(d) TISCALI topology. 44 producers, 36 con-
sumers, 160 routers acting as in-network caches.
Parsed from the Rocketfuel dataset[24]. Figure from
https://research.cs.washington.edu/networking/rocketfuel/interactive/

Fig. 2. Network topologies used in simulations.
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set of all clusters in the network, and letting rg,0 denote r0 for a given cluster
g ∈ G. Averaging the above probability over all clusters yields, as the value of
E(H(ρ)):

n−1∑
g=0

(|rg,0| −
|rg,0|−1∑

v=0

(
1 − 1

|Γ |

)m(v,0)

)

n

which we then multiply by 1
ρ to derive the expected cache hit ratio in Theorem 2.

5 Simulation Results

Having defined Collaborative Caching ’s utility as a function of network traffic
and topology, we now establish the practical implications of those bounds in a
variety of simulated environments, with the intent of precisely quantifying the
utility penalty one might expect to suffer in exchange for the proven privacy
guarantees established in Sect. 4.2 and evaluating the impact of cache eviction
on utility. Of particular interest is the comparative performance of multicast
Hash Routing [21], a scheme expressly designed for improving ICN caching per-
formance and which, when benchmarked against Collaborative Caching, should
produce telling results regarding the trade-off between privacy and utility. Using
the Icarus ICN caching performance simulation framework [22], experiments
encompassing a variety of network topologies (detailed in Fig. 2), traffic char-
acteristics, and caching schemes were performed. Constant factors in all experi-
ments included the existence of 3x105 unique content objects, 3x105 “warmup”
requests (issued prior to the beginning of performance measurements, to pop-
ulate in-network caches), 6x105 measured requests (used to compute results),
an aggregate request rate of 1 per second, uniform content distribution amongst
producers, and uniform cache space allocation amongst all in-network caches.
Each experiment was parameterized by a unique combination of: cache eviction
policy p ∈ {Least Recently Used (LRU), Practical/In-Cache Least Frequently
Used (LFU)}, traffic including requests characterized by a Zipf distribution with
coefficient α ∈ {0.6, 0.8, 1.0}, total network cache size n ∈ {0.002, 0.008, 0.02}
as a fraction of content objects in the network, topology t ∈ {GEANT, WIDE,
GARR, TISCALI}, and caching strategy s ∈ {No Caching, Leave Copy Every-
where [11], Cache Less For More [3], ProbCache [20], Leave Copy Down [15],
Random Choice [22], Random Bernoulli [22], Multicast Hash Routing [21], Col-
laborative Caching}. For all topologies, “unclustered” variants of multicast Hash
Routing and Collaborative Caching (wherein all cache nodes form one large clus-
ter, implying a total cluster count of 1) were tested, whereas cluster counts of 2,
4, and 8 were also used in experiments involving “clustered” variants of multi-
cast Hash Routing and Collaborative Caching on smaller topologies (WIDE and
GARR), as opposed to cluster counts of 5, 10, and 20 for those same experiments
on larger topologies (TISCALI and GEANT). Exhaustive simulations were con-
ducted, including all possible experiments parameterized by each element of the
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Table 1. Comparing the interest satisfaction latency and cache hit ratio observed in
experiments pitting Collaborative Caching against a variety of other caching schemes
using several network topologies. Zipf coefficient α = 0.8. Cache size as a fraction of
total content objects in network = 0.008. Reported values over ten trials per experiment
indicated as “<mean> ± <error>”, where (mean − error, mean + error) denotes
a confidence interval of 99%. Data grouped into columns by cache eviction policy
(Least Recently Used (LRU) vs. Practical/In-Cache Least Frequently Used (LFU))
and evaluated performance metric (cache hit ratio vs. interest satisfaction latency in
milliseconds).

Caching Topology LRU Cache Hit Ratio LRU Latency (ms) LFU Cache Hit Ratio LFU Latency (ms)

No Caching GEANT 0.0000 ± 0.0000 87.1733 ± 0.0411 0.0000 ± 0.0000 87.2018 ± 0.0449

WIDE 0.0000 ± 0.0000 78.2623 ± 0.0388 0.0000 ± 0.0000 78.2523 ± 0.0578

GARR 0.0000 ± 0.0000 81.5429 ± 0.0243 0.0000 ± 0.0000 81.5514 ± 0.0261

TISCALI 0.0000 ± 0.0000 91.9094 ± 0.0418 0.0000 ± 0.0000 91.9487 ± 0.0360

Leave Copy Everywhere GEANT 0.1340 ± 0.0013 77.2756 ± 0.0875 0.2490 ± 0.0009 68.0778 ± 0.0531

WIDE 0.1131 ± 0.0025 70.0952 ± 0.1585 0.2175 ± 0.0015 62.4335 ± 0.1063

GARR 0.0877 ± 0.0023 75.1306 ± 0.1537 0.1931 ± 0.0014 67.2137 ± 0.1026

TISCALI 0.0629 ± 0.0029 87.2501 ± 0.2061 0.1592 ± 0.0014 79.3937 ± 0.0980

Cache Less for More GEANT 0.0976 ± 0.0012 79.3849 ± 0.0976 0.1455 ± 0.0021 75.4987 ± 0.1557

WIDE 0.1175 ± 0.0012 69.6373 ± 0.0795 0.1851 ± 0.0016 64.7108 ± 0.1153

GARR 0.1257 ± 0.0016 72.0542 ± 0.1068 0.1748 ± 0.0017 68.5384 ± 0.1129

TISCALI 0.0810 ± 0.0015 85.2013 ± 0.1149 0.1142 ± 0.0031 82.9270 ± 0.2286

ProbCache GEANT 0.1901 ± 0.0012 73.1032 ± 0.0810 0.2097 ± 0.0009 70.8426 ± 0.0762

WIDE 0.1600 ± 0.0021 66.7402 ± 0.1302 0.2065 ± 0.0015 63.2143 ± 0.0988

GARR 0.1346 ± 0.0012 71.8143 ± 0.0769 0.1787 ± 0.0010 68.2259 ± 0.0675

TISCALI 0.0966 ± 0.0023 84.7233 ± 0.1597 0.1254 ± 0.0019 81.7880 ± 0.1281

Leave Copy Down GEANT 0.1901 ± 0.0006 72.2230 ± 0.0482 0.2321 ± 0.0010 69.3720 ± 0.0750

WIDE 0.1552 ± 0.0012 66.9467 ± 0.0728 0.2179 ± 0.0018 62.4464 ± 0.1200

GARR 0.1420 ± 0.0012 70.8519 ± 0.0873 0.1865 ± 0.0020 67.7530 ± 0.1326

TISCALI 0.1111 ± 0.0011 82.9278 ± 0.0867 0.1492 ± 0.0026 80.4490 ± 0.1715

Random Choice GEANT 0.1714 ± 0.0008 74.2851 ± 0.0523 0.2451 ± 0.0012 68.3600 ± 0.0832

WIDE 0.1396 ± 0.0021 68.1645 ± 0.1348 0.2176 ± 0.0014 62.4283 ± 0.0900

GARR 0.1136 ± 0.0013 73.1932 ± 0.0904 0.1896 ± 0.0017 67.4475 ± 0.1115

TISCALI 0.0848 ± 0.0030 85.4584 ± 0.2096 0.1544 ± 0.0018 79.7452 ± 0.1239

Random Bernoulli GEANT 0.1691 ± 0.0008 74.5642 ± 0.0509 0.2462 ± 0.0007 68.2988 ± 0.0494

WIDE 0.1408 ± 0.0022 68.0703 ± 0.1325 0.2171 ± 0.0010 62.4687 ± 0.0634

GARR 0.1136 ± 0.0022 73.2183 ± 0.1399 0.1908 ± 0.0013 67.3758 ± 0.0870

TISCALI 0.0840 ± 0.0034 85.6602 ± 0.2316 0.1573 ± 0.0016 79.5238 ± 0.1101

Multicast Hash Routing GEANT (1 Cluster) 0.2024 ± 0.0004 77.1330 ± 0.0360 0.2980 ± 0.0007 69.9174 ± 0.0533

GEANT (5 Clusters) 0.1498 ± 0.0011 81.0665 ± 0.2781 0.2614 ± 0.0024 71.8809 ± 0.5363

GEANT (10 Clusters) 0.1445 ± 0.0031 80.3193 ± 0.6959 0.2581 ± 0.0031 71.4754 ± 0.5042

GEANT (20 Clusters) 0.1327 ± 0.0030 80.3586 ± 0.4330 0.2520 ± 0.0034 70.5184 ± 0.4933

WIDE (1 Cluster) 0.2022 ± 0.0003 69.4218 ± 0.0231 0.2992 ± 0.0009 62.5137 ± 0.0660

WIDE (2 Clusters) 0.1772 ± 0.0027 70.7592 ± 0.5882 0.2753 ± 0.0017 63.9659 ± 0.5566

WIDE (4 Clusters) 0.1529 ± 0.0037 71.8960 ± 0.8385 0.2594 ± 0.0058 64.2794 ± 0.5646

WIDE (8 Clusters) 0.1412 ± 0.0039 70.5638 ± 0.5580 0.2391 ± 0.0035 62.7147 ± 0.4347

GARR (1 Cluster) 0.2022 ± 0.0005 72.1170 ± 0.0419 0.2985 ± 0.0007 65.1865 ± 0.0504

GARR (2 Clusters) 0.1678 ± 0.0016 76.0041 ± 0.1719 0.2834 ± 0.0014 67.3761 ± 0.1233

GARR (4 Clusters) 0.1540 ± 0.0010 75.9113 ± 0.2279 0.2633 ± 0.0010 67.5829 ± 0.1285

GARR (8 Clusters) 0.1435 ± 0.0036 76.0570 ± 0.4793 0.2488 ± 0.0022 67.9702 ± 0.4740

TISCALI (1 Cluster) 0.2023 ± 0.0005 85.9880 ± 0.0348 0.2986 ± 0.0009 78.6860 ± 0.0671

TISCALI (5 Clusters) 0.1447 ± 0.0027 91.9963 ± 0.3347 0.2515 ± 0.0033 83.1105 ± 0.2408

TISCALI (10 Clusters) 0.1361 ± 0.0043 91.6054 ± 0.4447 0.2393 ± 0.0023 82.6559 ± 0.3442

TISCALI (20 Clusters) 0.1221 ± 0.0043 92.1700 ± 1.1268 0.2261 ± 0.0049 83.7201 ± 0.4924

Collaborative Caching GEANT (1 Cluster) 0.2019 ± 0.0003 77.1064 ± 0.0229 0.2983 ± 0.0006 69.8392 ± 0.0500

GEANT (5 Clusters) 0.1501 ± 0.0021 81.1400 ± 0.4658 0.2619 ± 0.0014 71.9911 ± 0.4231

GEANT (10 Clusters) 0.1424 ± 0.0022 80.4245 ± 0.3510 0.2557 ± 0.0030 71.6417 ± 0.4440

GEANT (20 Clusters) 0.1357 ± 0.0028 80.2378 ± 0.4199 0.2543 ± 0.0030 70.2752 ± 0.3869

WIDE (1 Cluster) 0.2021 ± 0.0005 69.3865 ± 0.0365 0.2989 ± 0.0008 62.4855 ± 0.0626

WIDE (2 Clusters) 0.1755 ± 0.0033 71.0600 ± 0.7987 0.2756 ± 0.0022 63.7720 ± 0.6622

WIDE (4 Clusters) 0.1593 ± 0.0032 71.5101 ± 0.5026 0.2565 ± 0.0077 64.2052 ± 0.8650

WIDE (8 Clusters) 0.1390 ± 0.0048 71.0124 ± 0.6516 0.2449 ± 0.0068 63.1633 ± 0.8622

GARR (1 Cluster) 0.2019 ± 0.0004 72.1890 ± 0.0332 0.2985 ± 0.0006 65.2583 ± 0.0396

GARR (2 Clusters) 0.1695 ± 0.0013 75.9091 ± 0.1358 0.2829 ± 0.0015 67.5114 ± 0.1462

GARR (4 Clusters) 0.1544 ± 0.0016 75.7915 ± 0.3114 0.2627 ± 0.0010 67.5725 ± 0.1946

GARR (8 Clusters) 0.1440 ± 0.0030 76.1438 ± 0.4875 0.2504 ± 0.0023 67.9309 ± 0.3139

TISCALI (1 Cluster) 0.2003 ± 0.0003 86.4305 ± 0.0235 0.2973 ± 0.0009 79.0758 ± 0.0690

TISCALI (5 Clusters) 0.1444 ± 0.0009 92.0837 ± 0.2891 0.2501 ± 0.0016 83.2046 ± 0.3384

TISCALI (10 Clusters) 0.1331 ± 0.0031 92.3790 ± 0.3812 0.2384 ± 0.0025 83.4196 ± 0.6007

TISCALI (20 Clusters) 0.1216 ± 0.0036 92.4759 ± 0.2060 0.2230 ± 0.0049 84.5297 ± 0.8395
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Cartesian product of all aforementioned parameter sets (10 trials for each of
1,080 unique experiments).

The data produced by the experiments with a Zipf coefficient of 0.8 and total
network cache size of 0.008 (as a fraction of content objects in the network)
proved to be representative of trends in the larger collected results as a whole,
and is therefore provided in Table 1 as a focused subset thereof. Predictably,
the performance of all schemes (with the exception of “No Caching”) improved
as aggregate cache size and the Zipf coefficient α (indicating the relative simi-
larity/overlap of content requests) increased. Collaborative Caching consistently
performed on par with Hash Routing regardless of cluster count, in some cases
out-performing it relative to both latency and cache hit ratio metrics, and occa-
sionally trailing Hash Routing ’s performance by a very thin margin. Unclustered
Collaborative Caching and unclustered Hash Routing achieved notably higher
cache hit ratios than other schemes for each topology, and were often among the
schemes with the lowest reported interest satisfaction latencies, as well. Inter-
estingly, as cluster count decreased (and cluster size consequently increased),
both Collaborative Caching and Hash Routing performed more favorably (lower
latencies and higher cache hit ratios).

This trend is likely the result of the focus of our chosen simulation framework
(namely, the measurement of caching performance). Our scheme has the poten-
tial to increase utility and privacy simultaneously. As cluster size increases, the
likelihood that a given interest intercepted by the cluster corresponds to content
cached in the cluster must monotonically increase, regardless of the distribution
of content and interests. Also, the number of connected consumers must mono-
tonically increase, increasing the size of the anonymity set of which downstream
consumers are a part. The downside of increased cluster size is the overhead
incurred by coordination and communication within the cluster, and simulat-
ing the resulting link saturation and congestion is not a problem Icarus claims
to accurately emulate. We supplement these empirical observations with a the-
oretical calculation of Collaborative Caching ’s utility as a function of network
characteristics in Theorem 2.

6 Conclusions

We set out to demonstrate a caching scheme for ICN which would provide prov-
able privacy guarantees and attack vector resilience for network consumers with
negligible performance degradation. We have shown that, in a variegated pool of
simulated environments, the interest satisfaction latencies and cache hit ratios
afforded by our caching scheme are comparable to, and occasionally better than,
those observed when schemes solely designed for improving cache utility are
used. However, unlike those alternative methods, Collaborative Caching is able
to accomplish this whilst preserving consumer privacy.
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2009, pp. 1–12. Association for Computing Machinery, New York (2009). https://
doi.org/10.1145/1658939.1658941

11. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking named content. In: Proceedings of the 5th International Confer-
ence on Emerging Networking Experiments and Technologies, CoNEXT 2009, pp.
1–12. Association for Computing Machinery, New York (2009). https://doi.org/10.
1145/1658939.1658941

https://doi.org/10.1145/3267955.3267964
https://doi.org/10.1109/TDSC.2017.2679711
https://doi.org/10.1016/j.comcom.2013.01.007
https://doi.org/10.1016/j.comcom.2013.01.007
https://doi.org/10.1016/j.comcom.2013.01.007
https://www.ndss-symposium.org/ndss2012/andana-anonymous-named-data-networking-application
https://www.ndss-symposium.org/ndss2012/andana-anonymous-named-data-networking-application
https://doi.org/10.1007/978-3-642-30376-0_1
https://doi.org/10.1109/LANMAN.2018.8475052
https://doi.org/10.1109/LANMAN.2018.8475052
https://doi.org/10.1145/3125719.3125723
http://doi.acm.org/10.1145/3125719.3125723
http://doi.acm.org/10.1145/3125719.3125723
https://www.iso.org/standard/31887.html
https://www.iso.org/standard/31887.html
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941


A Privacy-Preserving Collaborative Caching Approach in ICN 149

12. Kaufman, L., Rousseeuw, P.J.: Partitioning Around Medoids (Program
PAM), chap. 2, pp. 68–125. John Wiley & Sons, Ltd. (2008). https://
doi.org/10.1002/9780470316801.ch2, https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470316801.ch2

13. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

14. Kumar, N., Aleem, A., Singh, A.K., Srivastava, S.: NBP: namespace-based privacy
to counter timing-based attack in named data networking. J. Network Comput.
Appl. 144, 155–170 (2019). https://doi.org/10.1016/j.jnca.2019.07.004, http://
www.sciencedirect.com/science/article/pii/S1084804519302280

15. Laoutaris, N., Che, H., Stavrakakis, I.: The LCD interconnection of LRU caches
and its analysis. Perform. Eval. 63(7), 609–634 (2006). https://doi.org/10.1016/j.
peva.2005.05.003

16. Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: the-
ory meets practice on the map. In: 2008 IEEE 24th International Conference on
Data Engineering, pp. 277–286 (2008)

17. Mohaisen, A., Mekky, H., Zhang, X., Xie, H., Kim, Y.: Timing attacks on access pri-
vacy in information centric networks and countermeasures. IEEE Trans. Depend-
able Secure Comput. 12(6), 675–687 (2015)

18. Mohaisen, A., Zhang, X., Schuchard, M., Xie, H., Kim, Y.: Protecting access pri-
vacy of cached contents in information centric networks. In: Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communications Secu-
rity, ASIA CCS: 513, pp. 173–178. Association for Computing Machinery, New
York (2013). https://doi.org/10.1145/2484313.2484335, https://doi.org/10.1145/
2484313.2484335

19. NDN Project Homepage (2020). https://named-data.net/. Accessed 4 June 2020
20. Psaras, I., Chai, W.K., Pavlou, G.: Probabilistic in-network caching for

information-centric networks. In: Proceedings of the Second Edition of the ICN
Workshop on Information-Centric Networking, ICN 2012, pp. 55–60. Association
for Computing Machinery, New York (2012). https://doi.org/10.1145/2342488.
2342501, https://doi.org/10.1145/2342488.2342501

21. Saino, L., Psaras, I., Pavlou, G.: Hash-routing schemes for information centric
networking. In: Proceedings of the 3rd ACM SIGCOMM Workshop on Information-
Centric Networking, ICN 2013, pp. 27–32. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2491224.2491232

22. Saino, L., Psaras, I., Pavlou, G.: Icarus: a caching simulator for information cen-
tric networking (ICN). In: Proceedings of the 7th International ICST Conference
on Simulation Tools and Techniques (SIMUTOOLS 2014). ICST, ICST, Brussels,
Belgium (2014)

23. Sourlas, V., Psaras, I., Saino, L., Pavlou, G.: Efficient hash-routing and
domain clustering techniques for information-centric networks. Comput. Networks
103, 67–83 (2016). https://doi.org/10.1016/j.comnet.2016.04.001, http://www.
sciencedirect.com/science/article/pii/S1389128616300998

24. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel.
SIGCOMM Comput. Commun. Rev. 32(4), 133–145 (2002). https://doi.org/10.
1145/964725.633039

25. Tsudik, G., Uzun, E., Wood, C.A.: Ac3n: anonymous communication in content-
centric networking. In: 2016 13th IEEE Annual Consumer Communications Net-
working Conference (CCNC), pp. 988–991, January 2016. https://doi.org/10.1109/
CCNC.2016.7444924

https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch2
https://doi.org/10.1016/j.jnca.2019.07.004
http://www.sciencedirect.com/science/article/pii/S1084804519302280
http://www.sciencedirect.com/science/article/pii/S1084804519302280
https://doi.org/10.1016/j.peva.2005.05.003
https://doi.org/10.1016/j.peva.2005.05.003
https://doi.org/10.1145/2484313.2484335
https://doi.org/10.1145/2484313.2484335
https://doi.org/10.1145/2484313.2484335
https://named-data.net/
https://doi.org/10.1145/2342488.2342501
https://doi.org/10.1145/2342488.2342501
https://doi.org/10.1145/2342488.2342501
https://doi.org/10.1145/2491224.2491232
https://doi.org/10.1016/j.comnet.2016.04.001
http://www.sciencedirect.com/science/article/pii/S1389128616300998
http://www.sciencedirect.com/science/article/pii/S1389128616300998
https://doi.org/10.1145/964725.633039
https://doi.org/10.1145/964725.633039
https://doi.org/10.1109/CCNC.2016.7444924
https://doi.org/10.1109/CCNC.2016.7444924


150 A. Jones and R. Simon

26. Xue, K., et al.: A secure, efficient, and accountable edge-based access control frame-
work for information centric networks. IEEE/ACM Trans. Networking 27(3), 1220–
1233 (2019)

27. Yao, L., Jiang, B., Deng, J., Obaidat, M.S.: LSTM-based detection for timing
attacks in named data network. In: 2019 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6 (2019)



Affine Tasks for k-Test-and-Set

Petr Kuznetsov1 and Thibault Rieutord2(B)
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Abstract. The paper proposes a surprisingly simple characterization
of task computability of the wait-free shared-memory model in which
processes, in addition to read-write registers, have access to k-test-and-set
objects. Our characterization is expressed in the form of an affine task :
a subcomplex of some iteration of the standard chromatic subdivision.
This appears to be the first topological characterization of a model in
which processes communicate via long-lived objects beyond read-write
registers.

Keywords: Affine tasks · Distributed computability · Test-and-set

1 Introduction

One of the central challenges in the theory of distributed computing is deter-
mining relative computability of its numerous models, parameterized by types
of failures they expose (crash, omission, Byzantine), synchrony hypotheses they
assume (asynchronous, partially synchronous, synchronous), and communication
primitives they employ (message-passing, read-write registers, powerful shared
objects). Starting from the seminal work by Herlihy and Shavit [18], task com-
putability of multiple models of computation have been characterized using the
language of combinatorial topology [12,17,23,26]. More precisely, given a task T
and a model of computation M , we can equate the question of whether T is solv-
able in M with the existence of a specific continuous map between a transformed
input complex of T and the output complex of T , carried by T , i.e., preserving
the task specification. M entirely determines the way the input complex is trans-
formed.

For example, to characterize task computability in the wait-free read-write
model [15], we can simply consider a subdivision of the input complex [18]. In
particular, we can choose this subdivision to be a number of iterations of the
standard chromatic subdivision (denoted Chr, Fig. 1). The complex captures one
round of immediate snapshot (IS) [3].

Task computability in the t-resilient read-write model has been character-
ized [26] via a specific task Rt−res . The task is defined for n processes as a
restriction of the double immediate snapshot task: the output complex of the
task is a sub-complex consisting of all simplices of the second iteration of the

c© Springer Nature Switzerland AG 2020
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Synchronous
run: {p1, p2, p3}

Ordered run:{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Fig. 1. Chr(s), the standard chromatic subdivision of a 2-simplex, the output complex
of the 3-process IS task.

standard chromatic subdivision of the task’s input complex, except the simplices
adjacent to the (n − t − 1)-skeleton of the input complex. Intuitively the output
complex of Rt−res contains all of 2-round IS runs in which every process “sees”
at least n− t−1 other processes. Figure 2 depicts the output complex of R1−res ,
the affine task for the 3-process 1-resilient model.

Fig. 2. R1−res , the affine task of 1-resilience (in blue). (Color figure online)

Complex Chr and Rt−res are called affine tasks [11,12] for the wait-free
model and t-resilient model, respectively. More generally, an affine task RM for
a model M is defined as a subcomplex of a finite number of iteration of the
standard chromatic subdivision, such that a task T is solvable in M if and only
if there exists a continuous map from a finite number of iterations of RM on the
input complex of T to the output complex of T , carried by T .

Recently, affine tasks for a large class of fair adversarial models have been
characterized via affine tasks [23]. An adversarial [8] shared-memory is defined
via a collection A of process subsets, called live sets. A run is in the corresponding
adversarial A-model if the set of processes taking infinitely many steps in it is
a live set of A. Computability of adversarial models has been characterized for
several special cases: wait-freedom [18], t-resilience [26], k-concurrency [11] and,
finally, fair adversaries [23].
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These characterizations mostly focused on read-write shared memory. The
only exception is the work by Gafni et al. [11], where the processes could, addi-
tionally, access k-set consensus objects. Via simulations, this model was shown
to be equivalent to the model of k-concurrency that assumes up to k processes
are allowed to be concurrently active. However, to the best of our knowledge, no
direct topological characterization has been proposed for models in which pro-
cesses communicate via powerful shared objects, other than read-write registers.
In this paper, we complement earlier results with a simple characterization of a
model in which processes, in addition to read-write registers, can access k-test-
and-set objects, for a fixed natural k. A k-test-and-set object is accessed by a
single operation that eventually returns either 1 or 0, so that at least 1 and at
most k of the participating processes obtain 1.

It has been observed that computability of a model in distributed comput-
ing is tightly coupled with its ability to solve set consensus. The agreement
function [20,25] of a model specifies the “best” level of set consensus, i.e., the
minimal guaranteed number of distinct output values, for all sets of participating
(proposing inputs and expecting outputs) and active (taking steps) processes.
Depending on their agreement functions, models can be classified in (1) sym-
metric models, where agreement functions only depend on the set cardinalities,
(2) fair, where agreement functions do not depend on the active sets, (3) local,
where agreement functions do not depend on the participating sets, and (4) reg-
ular, where agreement function increase with increasing participation. In Fig. 3,
we depict interrelations between these and other shared-memory models.

(Active-Res)

Fair Adv
Advk-OFk-T&S

Regular

Symmetric

WF

Sym

t-Res SSCSet-Cons
Collections

Asymmetric

Set-Cons

Collections

Fig. 3. A classification of shared-memory models based on agreement functions.

In this paper, we define an affine task Rk−T&S capturing the task com-
putability of the wait-free read-write shared memory models equipped with k-
test-and-set objects. Our characterization can be put as the following general-
ization of the ACT [18]:

A task T = (I,O,Δ) is solvable in a wait-free shared memory models
enhanced with k-test-and-set objects if and only if there exists a natural
number � and a simplicial map φ : R�

k−T&S (I) → O carried by Δ.
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Task Rk−T&S (see Fig. 5) can be defined as a subcomplex of Chr, just a single
iteration of the standard chromatic subdivision. In contrast, affine tasks of other
models, such as k-concurrency or t-resilience (1 < k < n and 0 < t < n − 1)
require at least two iterations [7,11,26].

We believe that the results can be extended to all “practical” restrictions
of the wait-free model which may result in a complete computability theory
for distributed computing shared-memory models. Affine tasks may also lead to
decidable characterization of relative task computability, as has been recently
shown for 2-process models [22].

Roadmap. Section 2 reviews our model definitions. Section 3 defines our affine
task Rk−T&S . In Sect. 4, we show that R∗

k−T&S can be simulated in the wait-
free shared memory model enhanced with k-test-and-set objects. In Sect. 5, we
show that, reciprocally, any task solvable in the wait-free shared memory model
enhanced with k-test-and-set objects can be solved in R∗

k−T&S . Section 6 reviews
related work and concludes the paper. Missing proofs can be found in the full
version of the paper [21].

2 Preliminaries

We assume a system of n asynchronous processes, Π = {p1, . . . , pn}. Two mod-
els of communication are considered: (1) atomic snapshots [1] and (2) iterated
immediate snapshots [4,18].

Atomic Snapshot Models. The atomic-snapshot (AS) memory is represented as
a vector of n shared variables, where each process pi is associated with the posi-
tion i. The memory can be accessed with two operations: update and snapshot.
An update operation performed by pi modifies the value at position i and a
snapshot returns the vector current state.

A protocol is a deterministic distributed automaton that, for each process and
each its local state, stipulates which operation and state transition the process
may perform. A run of a protocol is a possibly infinite sequence of alternating
states and operations. An AS model is a set of infinite runs.

In an infinite run of the AS model, a process that takes only finitely many
steps is called faulty, otherwise it is called correct. We assume that in its first
step, a process shares its initial state using the update operation. If a process
completed this first step in a given run, it is said to be participating, and the set
of participating processes is called the participating set.

Iterated Immediate Snapshot Model. In the iterated immediate snapshot (IIS)
model, processes proceed through an infinite sequence of independent memo-
ries M1,M2, . . .. Each memory Mr is always accessed by a process with a single
WriteSnapshot operation [3]: the operation performed by pi takes a value vir

and returns a set Vir of submitted values (w.l.o.g, values of different processes
are distinct), satisfying the following properties (See Fig. 4 for IS examples):
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– self-inclusion: vir ∈ Vir;
– containment: (Vir ⊆ Vjr) ∨ (Vjr ⊆ Vir);
– immediacy: vir ∈ Vjr ⇒ Vir ⊆ Vjr.

Fig. 4. Examples of valid sets of IS outputs. On the left, we have the “ordered” execu-
tion in which every process outputs a distinct set of inputs (blue - only itself, red - blue
and itself, and green - all three). On the right, we have the “synchronous” execution
in which all three processes output all the inputs. (Color figure online)

In the IIS communication model, we assume that processes run the full-
information protocol, in which, the first value each process writes is its ini-
tial state. For each r > 1, the outcome of the WriteSnapshot operation on
memory Mr−1 is submitted as the input value for the WriteSnapshot opera-
tion on Mr. There are no failures in the IIS model, all processes go through
infinitely many IS instances.

Note that the wait-free AS model and the IIS model are equivalent as regards
task solvability [3,16].

Tasks. In this paper, we focus on distributed tasks [18]. A process invokes a task
with an input value and the task returns an output value, so that the inputs
and the outputs across the processes respect the task specification. Formally,
a task is defined through a set I of input vectors (one input value for each
process), a set O of output vectors (one output value for each process), and a
total relation Δ : I �→ 2O that associates each input vector with a set of possible
output vectors. We require that Δ is a carrier map: ∀ρ, σ ∈ I, ρ ⊆ σ: Δ(ρ) ⊆
Δ(σ). An input ⊥ denotes a non-participating process and an output value ⊥
denotes an undecided process. Check [16] for more details on the definition.

In the k-set consensus task [6], input values are in a set of values V (|V | ≥
k + 1), output values are in V , and for each input vector I and output vector
O, (I,O) ∈ Δ if the set of non-⊥ values in O is a subset of values in I of size at
most k. The case of 1-set consensus is called consensus [9].

A protocol solves a task T = (I,O,Δ) in a model M , if it ensures that in
every run of M in which processes start with an input vector I ∈ I, there is a
finite prefix R of the run in which: (1) decided values form a vector O ∈ O such
that (I,O) ∈ Δ, and (2) all correct processes decide. Hence, in the IIS model,
all processes must decide.

k-Test-and-Set Model. For an integer k ≥ 1, a k-test-and-set object exports one
operation, apply(), that may be only accessed once by each process, takes no
parameters, and returns a boolean value. It guarantees that at most k processes
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will get 1 as output and that not all processes accessing it obtained 0. In the
special case of k = 1 the object is simply called test-and-set.

The k-test-and-set model is then simply defined as the wait-free model with,
additionally, access to any number of k-test-and-set objects. Hence processes run
a full-information protocol on an AS memory without any restrictions on the set
of possible runs, but processes may proceed, between any operations on the AS
memory, to operations on any number of k-test-and-set objects.

Simplicial Complexes. We use the standard language of simplicial complexes [16,
27] to give a combinatorial representation of the IIS model. A simplicial complex
is defined as a set of vertices and an inclusion-closed set of vertex subsets, called
simplices. The dimension of a simplex σ is the number of vertices of σ minus
one, and any subset of σ is one of its faces. We denote by s the standard (n−1)-
simplex: a fixed set of n vertices and all its subsets.

Given a complex K and a simplex σ ∈ K, σ is a facet of K, denoted
facet(σ,K), if σ is not a face of any strictly larger simplex in K. Let facets(K) =
{σ ∈ K, facet(σ,K)}. A simplicial complex is pure (of dimension m) if all its
facets have dimension m.

A map α from the vertices of a complex K to the vertices of a complex L is
simplicial if each simplex in K is mapped to a simplex in L. A simplicial map
α : K → L is rigid if for all σ ∈ K, |σ| = |α(σ)|.

A simplicial complex is chromatic if it is equipped with a coloring function—
a rigid simplicial map χ from its vertices to s, in one-to-one correspondence with
n colors. In our setting, colors correspond to processes identifiers.

Standard Chromatic Subdivision and IIS. The standard chromatic subdivi-
sion [18] of a complex K, ChrK (Chr s is depicted in Fig. 1), is a complex
where vertices of Chr K are couples (c, σ), where c is a color and σ is a face
of K containing a vertex of color c. Simplices of ChrK are the sets of vertices
(c1, σ1), . . ., (cm, σm) associated with distinct colors (i.e., ∀i, j, ci �= cj) such
that the σi satisfies the containment and immediacy properties of IS.

Every simplex σ has a geometric realization |σ|. It is obtained by representing
the vertices of σ as an affinely independent set of points in a Euclidean space and
then taking the convex hull of them. A geometric realization of a complex K,
denoted by |K|, is the union of geometric realizations of its simplices, properly
“glued” along their faces [16].

It has been shown that Chr is a subdivision [19], i.e., informally, |Chr s| is
homeomorphic to |s|. If we iterate this subdivision m times, each time applying
Chr to all simplices, we obtain the mth chromatic subdivision, Chrms. Chrms
precisely captures the runs of the m-round IIS model, ISm [4,18].

Given a complex K and a subdivision of it Sub(K), the carrier of a simplex
σ ∈ Sub(K) in K, carrier(σ,K), is the smallest simplex ρ ∈ K such that the
geometric realization of σ, |σ|, is contained in |ρ|: |σ| ⊆ |ρ|. The carrier of a
vertex (p, σ) ∈ Chr s is σ. In the matching IS task, the carrier corresponds to
the snapshot returned by p, i.e., the set of processes seen by p. The carrier of
a simplex ρ ∈ ChrK is simply the union (or, due to inclusion, the maximum)
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of the carriers of vertices in ρ. Given a simplex σ ∈ Chr2s, carrier(σ, s) is
equal to carrier(carrier(σ,Chr s), s). carrier(σ,Chr s) corresponds to the set of
all snapshots seen by processes in χ(σ). Hence, carrier(σ, s) corresponds to the
union of all these snapshots. Intuitively, it results in the set of all processes seen
by processes in χ(σ) through the two successive immediate snapshots instances.

Simplex Agreement and Affine Tasks. In the simplex agreement task, processes
start on vertices of some complex K, forming a simplex σ ∈ K, and must output
vertices of some subdivision of K, Sub(K), so that outputs form a simplex ρ
of Sub(K) respecting carrier inclusion, i.e., carrier(ρ,K) ⊆ σ. In the simplex
agreement tasks considered in the characterization of wait-free task computabil-
ity [4,18], K is the standard simplex s and the subdivision is usually iterations
of Chr.

An affine task is a generalization of the simplex agreement task, where s is
fixed as the input complex and where the output complex is a pure non-empty
sub-complex of some iteration of the standard chromatic subdivision, Chr�s.
Formally, let L be a pure non-empty sub-complex of Chr�s for some � ∈ N. The
affine task associated with L is then defined as (s, L,Δ), where, for every face
σ ⊆ s, Δ(σ) = L ∩ Chr�(σ). Note that L ∩ Chr�(t) can be empty, in which case
the set of participating processes must increase before processes may produce
outputs. Note that, since an affine task is characterized by its output complex,
with a slight abuse of notation, we use L for both the affine task (s, L,Δ) and
its output complex.

By running m iterations of this task, we obtain Lm, a sub-complex of Chr�ms,
corresponding to a subset of IS �m runs (each of the m iterations includes � IS
rounds). The affine model associated with L, denoted L∗, corresponds to the set
of infinite runs of the IIS model where every prefix restricted to a multiple of �
IS rounds belongs to the subset of IS �m runs associated with Lm.

3 Affine Task for k-Test-and-Set

In this section, we define affine task Rk−T&S capturing computability of the
k-test-and-set model. The task is defined as a simple subcomplex of a single
iteration of the standards chromatic subdivision.

The intuition is the following. Test-and-set solves, in a straightforward man-
ner, perfect renaming [2]. It also provides adaptive solutions to renaming in
which names of the processes reflect the order in which they access the task.
Hence a process obtaining the name j can see all values shared previously by
processes that receive a smaller name i with i < j. It can also be used to solve
immediate snapshot [3] in a way that every process obtains a distinct rank j and
observes the inputs of all processes with smaller positions: the process of level
j sees precisely j inputs, its own plus those of the processes with strictly lower
ranks. Such an immediate snapshot execution essentially impose total order on
the processes.

We can naturally generalize this observation to k-test-and-set objects. Indeed,
consider a partial order in which every process is associated with a rank so that
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at most k processes share the same rank. Similarly, a process can observe the
values previously shared by processes obtaining a lower or equal rank. In an
immediate snapshot, this is equivalent to having at most k processes sharing the
same output. It leads to a definition of k-ordered executions or corresponding
simplices of Chr: among any set of k + 1 processes, at least two have different
ranks. Note that total order executions corresponding to 1-test-and-set are 1-
ordered.

Rk−T&S captures the set of k-ordered executions. Formally, Rk−T&S is the
set of simplices of Chr s, the standard chromatic subdivision, in which at most
k vertices share the same carrier:

Definition 1. Rk−T&S is equal to:

σ ∈ Chr(s) : ∀σ′ ⊆ σ, (∀v, v′ ∈ σ′, carrier(v) = carrier(v′)) =⇒ |σ′| ≤ k.

To be an affine task, Rk−T&S needs to be a pure sub-complex of Chr s of the
same dimension:

Property 1. Rk−T&S is an affine task.

Proof. The fact that Rk−T&S is a sub-complex of Chr s is trivial. Indeed, the
definition is inclusion-closed. Consider any simplex σ ∈ Rk−T&S and any face of
it σ′ ⊆ σ. Any face of σ′ is a face of σ and hence satisfies the condition of having
at most k vertices sharing the same carrier.

Showing that Rk−T&S ⊆ Chr s is pure and of the same dimension as s is less
trivial. For this, we need to show that any simplex σ ∈ Rk−T&S is a face of a
simplex σ′ ∈ Rk−T&S of dimension equal to dim(s). Note that by transitivity, it
is sufficient to show that any simplex of Rk−T&S of a strictly smaller dimension
than dim(s) is the face of a strictly larger simplex of Rk−T&S .

Consider a simplex σ ∈ Rk−T&S and any color c from Π such that c �∈ χ(σ)
and let v ∈ s be the vertex of s of color c. Two cases may happen: either c is a
color of the carriers every vertex of in σ, or else, there exists a vertex in σ with
the largest carrier t such that c �∈ χ(t). In the former case, we can add vertex
(c, {v}) to σ. In the latter case, we can add the vertex (c, {v} ∪ t) to σ. It is
easy to check that the new simplex still verifies the immediacy, self-inclusion,
and containment properties and, thus, belongs to Chr s. Moreover, the carrier of
the new vertex is distinct (shared by no vertex in σ), and hence the new simplex
belongs to Rk−T&S . Indeed, any vertex v ∈ σ such that χ(v) ∈ χ(t) has a carrier
that is a face of t due to the immediacy property. Hence, as long as there are
missing colors, we can find a larger simplex in Rk−T&S including σ as a face.
Hence, Rk−T&S ⊆ Chr s is indeed a pure complex of dimension of s. ��

The affine tasks corresponding to 3-process models of 1-test-and-set and 2-
test-and-set are depicted in Fig. 5. Note that affine tasks’ facets are displayed in
blue and, thus, the faces of blue simplices also belong to the affine task.
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Fig. 5. 3-process affine tasks R1−T&S and R2−T&S with their facets displayed in blue.
(Color figure online)

4 Solving Rk−T&S in the k-Test-and-Set Model

Solving Rk−T&S using k-test-and-set objects and read-write registers is rather
straightforward. The idea, originally suggested in [14,24], consists in using a
level-based immediate snapshot implementation that additionally uses access to
k-test-and-set objects.

Recall that the level-based implementation of an immediate snapshot [3]
operates as follows. Starting with level � = n, every process (1) writes its input
and � in the memory array; (2) takes a snapshot of the array; (3) if the snapshot
contains � values associated with levels �′ ≤ �, the process returns the snapshot
consisting of these � values; otherwise, the process proceeds to level � − 1 (see
Fig. 4).

The modification proposed in [14,24] to solve Rk−T&S , consists in modifying
step (3) of this implementation as follows: (3’) if the snapshot contains � values
associated with a level �′ ≤ � then processes accesses the k-test-and-set object
number �. If the k-test-and-set object returns true, then the process terminates
with the snapshot consisting of these � values; otherwise (in both else condi-
tions), the process proceeds to level � − 1. The formal description is depicted in
Algorithm 1, Figure 6 illustrates the general procedure.

T&S
0

1

T&S
1

0

T&S
1

Fig. 6. Ordered IS algorithm with test-and-set.

The proof of the following theorem is delegated to the full version of the
paper [21].

Theorem 1. Algorithm 1 solves Rk−T&S.
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This result implies that every task solvable in R∗
k−T&S is solvable in the k-

test-and-set model. Indeed, a task solvable in R∗
k−T&S implies a solution φ from

Rm
k−T&S(I) to O, for some given m. One can thus simply iterate the solution of

Algorithm 1 m times using its input and return the solution provided by φ to
obtain a task solution in the k-test-and-set model.

Algorithm 1: Solving Rk−T&S for process pi.
1 Shared Objects: MEM [1 . . . n] ∈ V al × N), initially (⊥, ⊥);
2 Init: level = n + 1, exit = true, value = InputV alue, snap = ∅;

3 Do
4 Do
5 level = level − 1;
6 MEM [i].Update(value, level);
7 snap = MEM.Snapshot();

8 While |{(v, �) ∈ snap, � ≤ level}| �= level;
9 exit = k-Test&Set[level];

10 While ¬exit;
11 Return {(v, �) ∈ snap, � ≤ level};

5 Simulating k-Test-and-Set Model in R∗
k−T&S

Simulating the k-test-and-set model using iterations of Rk−T&S (R∗
k−T&S) is

slightly less straightforward. Simulating shared memory is well known for itera-
tions of the standard chromatic subdivision, hence, for a subset of such runs as
well. A standard simulation described in [13] (for completeness described in the
full version of the paper [21]) ensures progress to the non-terminated processes
with infinitely often the smallest view. This provides lock-freedom, one process
makes progress and will eventually return with a task output. Hence, this is
enough to ensure that eventually all processes can obtain a task output. Our
goal is to ensure that the same set of “fast” processes make progress with their
k-test-and-set operations as well.

As not all processes may participate in a k-test-and-set operation, processes
with the smallest view need to progress independently. But processes with a
larger view could later participate in a round in which they have the smallest
view. Hence, to ensure that not more than k processes return 1, slow processes
must preemptively fail the test-and-set operations. Unfortunately, this is not
possible, as a process can only identify processes with smaller views and not
precisely those that have the smallest view. Indeed, we could have a process
preemptively fail without anyone returning 1. We resolve this issue by simulating
k-set-consensus operations among sets of k + 1 processes and showing then that
it is sufficient to simulate n-process k-test-and-set operations.
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Let us first show how a k+1-process k-test-and-set can be used to implement
an n-process k-test-and-set. Then, we will show how k-set consensus among k+1
processes can be used to implement k-test-and-set among k+1 processes. Lastly,
we are going to show how to simulate operations of k-set consensus among k +1
processes in R∗

k−T&S .

From k + 1-Process Test-and-Set to n-Process k-Test-and-Set. In the solution,
depicted in Algorithm 2, every process participates in k-test-and-set operations
among any possible subset of k +1 processes it belongs to. The processes iterate
on over these sets of k + 1 processes in the same deterministic order and return
0 as soon as they obtain 0 from a k-test-and-set operation. If a process manages
to obtain 1 from all k-test-and-set operations, it returns 1.

Algorithm 2: n-process k − T&S using k + 1-process k-T&S for pi.
1 forall S ⊆ Π, |S| = k + 1 do
2 if i ∈ S then
3 if k − T&S[S].apply()=0 then Return 0 ;

4 Return 1;

Theorem 2. Algorithm 2 solves n-process k-test-and-set.

Proof. Let us first show that at most k process may return 1. It is straightfor-
ward. Indeed, assume that there are k+1 processes returning 1. They must have
all accessed the same k-test-and-set operation corresponding to their set of k+1
processes. But at most k of them may have obtained 1 from it, the remaining
ones must have therefore returned from the protocol with 0—a contradiction.

Let us now show that not all participating processes may return 0. Indeed,
consider the last set of k+1 processes in the sequence for which the associated k-
test-and-set object has been accessed. Not all processes accessing this object can
return 0. Hence, they must either access another k-test-and-set object afterward,
which is not the case by assumption or return with 1 or crash. Therefore, not
all participating processes can return 0. ��

From (k + 1)-Process k-set Consensus to k-Test-and-Set. Using k-set consensus
among k + 1 processes to solve k-test-and-set operations among k + 1 processes
is straightforward. Processes can access a k-set consensus operation with their
identifier. Then they write their output to the shared-memory and take a snap-
shot. If a process sees that some process obtained its identifier as output, it
returns 1, and otherwise, it returns 0. See Algorithm 3 for a formal description.
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Algorithm 3: k + 1-process k − T&S using k + 1-process k-set-consensus
for pi.
1 res = k-set-consensus[i];
2 MEM .update(res);
3 snap = MEM .snapshot();
4 if i ∈ snap then
5 Return 1;
6 else
7 Return 0;

Theorem 3. Algorithm 3 solves k + 1-process k-test-and-set.

Proof. A process can return with 1 only if its identifier was returned to some
process, hence at most k process can obtain 1. Assume now that all participating
processes terminate and consider the process for which its identifier was first
written to the shared memory. This process must see its identifier in its snapshot
and return 1, hence not all participating processes may return 0. ��

Solving k-Set-Consensus Among k+1 processes in R∗
k−T&S. The advantage of k-

set consensus operations compared to k-test-and-set operations is that processes
can participate as soon as they see some process participating. Indeed, since it
is a colorless task, processes can adopt inputs from any other process. Hence,
to solve k-set consensus operations among k + 1 processes, processes maintain
a decision estimate for all k-set consensus operations and share them in all
iterations of R∗

k−T&S . When a process initiates a new operation for which it has
no decision estimate yet, it simply adds a decision estimate corresponding to
its input value. Moreover, when a process sees a process participating in a new
operation, it adopts its decision estimate.

Now, at the end of each iteration of Rk−T&S , processes look at the decision
estimate for all operations. If a process sees all k + 1 potential participants of
an operation, then it replaces its decision estimate by the decision estimate of
the process with the next identifier (going back to the first to form a loop when
there are none higher). For a process to terminate, it must see that all potential
participants share a decision estimate for the same round. If it happens, processes
return their potentially updated decision estimate as k-set consensus output.

Note that once terminated, processes use a special input value ⊥. When a
process competes with a terminated process for a k-set consensus operation, then
it directly returns with its proposal.

Correctness of the Simulation of k-set Consensus Among k+1 Processes. Let us
first show that simulated operations respect the specification of k-set consensus
among k+1 processes before showing that sufficient progress is also guaranteed.

Lemma 1. The simulation satisfies the safety properties of k-set consensus
among k + 1 processes in R∗

k−T&S.
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Proof. Processes return their decision estimate which is initially set to their input
or adopted from other processes decision estimates. Hence validity is satisfied.

Now consider the first iteration of the affine task after which the first process
returns with an output. In this iteration, all processes with the smallest view
shared a decision estimate. Hence, all processes adopted a decision estimate at
the end of the round. If at the end of the round there are less than k distinct
decision estimates, then the agreement property will be ensured as the number
of distinct decision estimates in later rounds is a subset of this one.

To see that there are at most k distinct decision estimates at the end of this
first iteration in which a process decides, consider the processes which see the
k + 1 potential participants. These processes adopt the decision estimate of the
next process (relatively to identifier ranks). But in Rk−T&S , at most k vertices
may share the same carrier. Hence a process seeing all participants must adopt
the decision estimate of a process not seeing all of them. But this process does
not change its decision estimate. Thus, two processes share the same decision
estimate. The number of distinct decision estimates is, therefore, smaller than
or equal to k and hence at most k distinct outputs may be returned. ��
Lemma 2. The simulation of k-set consensus among k + 1 in R∗

k−T&S pro-
vides progress to processes having infinitely often the smallest view among non-
terminated processes.

Proof. Processes participate in an operation as soon as they see another pro-
cess participating. In particular if a process with the smallest view among non-
terminated participates in some iteration, all processes participate in the next
iteration (terminated processes are always participating). But if all processes
observed in some iteration are participating, then processes return at the end of
the round. Hence, a process with a k-set consensus operation terminates at most
one round after obtaining the smallest view among non-terminated processes. ��

Equivalence Between the k-Test-and-Set Model and R∗
k−T&S. Both the AS mem-

ory and k-set consensus among k + 1 provides progress to the non-terminated
processes with the smallest view infinitely often. Hence, some process will even-
tually output and terminate as long as they are non-terminated processes. Thus,
all processes eventually produces valid task outputs.

We can conclude with the equivalence of the two classes of models. Indeed,
this simulation and Algorithm 1 can be used to simulate the affine model R∗

k−T&S

in the k-test-and-set model and reciprocally. Therefore:

Theorem 4. A task is solvable in the k-test-and-set model if and only if it is
solvable in the affine model R∗

k−T&S.

Thus, we get the following generalization of the asynchronous computability
theorem for the k-test-and-set model:

Theorem 5. Task T = (I,O,Δ) is solvable in the k-test-and-set model if and
only if there exist � ∈ N and a simplicial map δ : (Rk−T&S)�(I) → O car-
ried by Δ.
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6 Related Work and Concluding Remarks

Herlihy and Shavit [18] proposed a characterization of wait-free task computabil-
ity through the existence of a simplicial map from a subdivision of the input
complex of a task I to its output complex O. (The reader is referred to [16]
for a thorough discussion of the use of combinatorial topology in distributed
computability.) Herlihy and Rajsbaum [17] studied colorless task computability
in the particular case of superset-closed adversaries. They show that the proto-
col complex of a superset-closed adversary with minimal core size c is (c − 2)-
connected. This result, obtained via an iterative application of the Nerve lemma,
gives a combinatorial characterization of superset-closed adversaries. The char-
acterization only applies to colorless tasks, and it does not allow us to express
the adversary in an affine way.

Gafni et al. [12] introduced the notion of an affine task and characterized
task computability in iterated adversarial models via infinite subdivisions of
input complexes, assuming a limited notion of solvability that only guarantees
outputs to “fast” processes [5,10] (i.e., “seen” by every other process infinitely
often). The liveness property defined in this paper for iterated models guarantees
outputs for every process, which allowed us to establish a task-computability
equivalence with conventional non-iterated models.

Affine tasks have been defined for the read-write models of wait-free [18], t-
resilience [26], k-concurrency [11] and, finally, for the general class of fair adver-
saries [23], encompassing all these models. In this paper, we complement the
characterization of [23] with a model in which processes can communicate via
k-test-and-set objects, in addition to read-write registers.

This paper proposes a new affine characterization of the wait-free shared
memory model enhanced with k-test-and-set objects. Just as the wait-free char-
acterization [18] implies that the IS task captures the wait-free model, our char-
acterization equates any such model with a (compact) affine task embedded in
the standard chromatic subdivision.

Interestingly, unlike [26], we cannot rely on the shellability [16] (and, thus,
link-connectivity) of the affine task. Link-connectivity of a simplicial complex
C allows us to work in the point set of its geometrical embedding |C| and use
continuous maps (as opposed to simplicial maps that maintain the simplicial
structure). For example, the existence of a continuous map from |RAt−res

| to any
|Rk

At−res
| implies that RAt−res

indeed captures the general task computability
of At−res [26]. In general, however, the existence of a continuous map onto C
only allows us to converge on a single vertex [16]. If C is not link-connected,
converging on one vertex allows us to compute an output only for a single pro-
cess and not more. Unfortunately, only very special adversaries, such as At−res ,
have link-connected counterparts (see, e.g.., the affine task corresponding to 1-
test-and-set in Fig. 5). Instead of relying on link-connectivity, this paper takes
an explicit algorithmic way of showing that iterations of Rk−T&S simulate the
wait-free shared memory model enhanced with k-test-and-set objects. An inter-
esting question is to which extent point-set topology and continuous maps can
be applied in affine characterizations.
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Abstract. We characterize self-stabilizing functions in population pro-
tocols for complete interaction graphs. In particular, we investigate self-
stabilization in systems of n finite state agents in which a malicious
scheduler selects an arbitrary sequence of pairwise interactions under a
global fairness condition. We show a necessary and sufficient condition
for self-stabilization. Specifically we show that functions without certain
set-theoretic conditions are impossible to compute in a self-stabilizing
manner. Our main contribution is in the converse, where we construct
a self-stabilizing protocol for all other functions that meet this charac-
terization. Our positive construction uses Dickson’s Lemma to develop
the notion of the root set, a concept that turns out to fundamentally
characterize self-stabilization in this model. We believe it may lend to
characterizing self-stabilization in more general models as well.

Keywords: Population protocols · Self-stabilization · Anonymous ·
Finite-state · Chemical reaction networks

1 Introduction

The population protocol computational model assumes a system of n identical
finite state transducers (which we call agents) in which pairwise interactions
between agents induce their respective state transitions. Each agent is provided
a starting input and starting state, and an adversarial scheduler decides at each
time step which two agents are to interact. In order to make the behavior of the
scheduler precise, the scheduler is allowed to act arbitrarily so long as the global
fairness condition (defined in the paper defining the model by Angluin, Aspnes,
Diamadi, Fischer, and Peralta [1]) is satisfied: if a configuration of agent states
appears infinitely often, then any configuration that can follow (say, after an
interaction) must also appear infinitely often. We stress that agents individually
do not have unique identifiers and a bound on n in not known. We call all n
agents jointly a population. When an agent interacts with another agent, both
agents change states as a function of each agent’s input and state tuple. Each
agent outputs some symbol at every time step as a function of their current
state, and once every agent agrees on some common output for all subsequent
time steps, we say the protocol has converged to that symbol. We say a protocol
c© Springer Nature Switzerland AG 2020
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computes (or decides) some function f if distributing the input symbols of input
x and running the protocol causes the population (i.e. all agents) to converge to
f(x). In the general model an accompanying interaction graph restricting which
agents can ever interact may be provided as a constraint on the scheduler. In this
paper, we will be considering the original, basic model introduced in [1], where we
deal with complete interaction graphs and inputs that do not change with time.
For the population protocol model on complete graphs, the characterization of
computable predicates (not necessarily with self-stabilization) has been studied
by Angluin, Aspnes, Eisenstat, and Ruppert, who proved it to be equivalent to
the set of semilinear predicates [2].

It is desirable to have population protocols that can handle transient faults:
specifically, we would like it to be the case that no matter what multiset of
states the agents are initialized with, the protocol will eventually converge to the
correct output. For this reason, such a protocol is called self-stabilizing, being
able to converge after experiencing any adversarial fault that erroneously changes
an agent state. Since fault-tolerance is a desirable property of any distributed
system, we aim to determine exactly what computable functions in this model
admit self-stabilizing solutions, and which do not. We prove the following main
theorem for population protocols on complete interaction graphs.

Theorem (Main). Let f : X → Y be a function where X is any set of
finite multisets on a finite alphabet. Then f has a self-stabilizing protocol ⇐⇒
(For any A,B P X , A Ď B “⇒ f(A) “ f(B)).

We remark on the definition of X : Firstly, it is a set of multisets; thus A Ď B
refers to multiset inclusion, not set inclusion (e.g. {a, a, b} Ď {a, a, b, b} but
Moreover, the domain X can be any set of multisets; that is, the domain does
not necessarily contain all possible nonempty finite multisets on a finite alphabet,
but could be a subset of it. If X is all possible nonempty finite multisets on a
finite alphabet, then the theorem states f is a constant function: the output of f
on the singleton multisets is the output of f on the union of all singletons; since
f agrees on all singletons, it agrees on all larger multisets. Thus self-stabilizing
decision problems, where all possible inputs are included, will be a constant
function. In contrast, self-stabilizing promise problems, where only a subset of
all possible inputs are included, may be non-constant.

Our Techniques: The technique that we use to show when self-stabilization
is not possible follows from the work of Angluin, Aspnes, Fischer, and Jiang
in [3]. Informally, self-stabilizing functions must not allow subpopulations to
“re-converge” to a different answer; so if A Ď B but f(A) ‰ f(B), running a
protocol with input B from any configuration could lead to the subpopulation
with input A converging on erroneous output f(A). The converse, that func-
tions where subsets lead to the same output are self-stabilizing, is an unstudied
problem that involves a technically intricate construction. Tools from partial
order theory (Dickson’s Lemma) are used to observe that the domain X will
have a finite set of minimal elements under the Ď partial order; these minimal
elements completely determine the output of f , and so our protocol computes f
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by identifying which of these minimal elements is present in the population. A
function is self-stabilizing if it admits a self-stabilizing protocol under the basic
model. A nontrivial corollary of our main theorem is that for a fixed (possibly
infinite) domain X and a finite output alphabet Y , there are only finitely many
self-stabilizing functions f : X → Y .

Corollary (Self-Stabilizing Functions are Rare). Fix some set, X , of finite mul-
tisets on a finite alphabet. Fix a finite output alphabet Y . There are only finitely
many self-stabilizing functions of the form f : X → Y .

This follows from the fact that the outputs of finitely many minimal elements
in the domain fully characterize a self-stabilizing function. This validates the
intuition that the set of all self-stabilizing functions is very limited in comparison
to the set of computable functions. We note that our general self-stabilizing pro-
tocol is not efficient, and often specific problems have much faster self-stabilizing
protocols. Unsurprisingly the functions we list in Sect. 1.3 admit faster solutions
than our protocol.

1.1 Related Work

The population protocol model was first introduced by Angluin, Aspnes, Dia-
madi, Fischer, and Peralta in [1] to represent a system of mobile finite-state
sensors. Dijkstra was the first to formalize the notion of self-stabilization within
a distributed system, although the models and problems he discussed imposed
different constraints than that of population protocols, such as distinguishing
agents with unique identifiers [13]. Self-stabilizing population protocols were
first formalized in the work of Angluin, Aspnes, Fischer, and Jiang [3]. Their
work generated self-stabilizing, constant-space protocols for problems includ-
ing round-robin token circulation, leader election in rings, and 2-hop coloring
in degree-bounded graphs. Moreover their work established a crucial method
of impossibility result. Call a class of graphs simple, if there does not exist a
graph in the class which contains two disjoint subgraphs that are also in the
class. Example of this include the class of all rings or the class of all connected
degree-d regular graphs. Angluin et al.’s work demonstrated that leader election
in non-simple classes of graphs are impossible. Our paper’s impossibility result
follows from Angluin et al.’s technique, as the class of complete graphs that we
work with is non-simple. Other impossibility results come from Cai, Izumi, and
Wada [10] using closed sets, which are sets of states such that a transition on
any two of the states results in a state within the set; impossibility in leader
election is demonstrated by identifying a closed set excluding the leader state.

Many self-stabilizing population protocol constructions besides those from
[3] tend to give the model additional properties to achieve self-stabilization.
Beauquier, Burman, Clement, and Kutten introduce intercommunication speeds
amongst agents, captured by the cover time; they also add a distinguished,
non-mobile agent with unlimited resources called a base station [7]. Under this
model, Beauquier, Burman, and Kutten design an automatic tranformer that
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takes a population protocol algorithm solving some static problem and trans-
forms it into a self-stabilizing algorithm [8]. Izumi, Kinpara, Izumi, and Wada
also use this model to create efficient protocols for performing a self-stabilizing
count of the number of agents in the network, where there is a known upper
bound P on the number of sensors. Their protocol converges under global fair-
ness with 3 · rP

2 s agent states [16]. Fischer and Jiang introduce an eventual
leader detector oracle into the model that allows self-stabilizing leader election
in complete graphs and rings. The complete graph protocol works with local
and global fairness conditions, while the ring protocol requires global fairness
[14]. Beauquier, Blanchard, and Burman extend this work by presenting self-
stabilizing leader election in arbitrary graphs when a composition of eventual
leader detectors is introduced into the model [6]. Knowledge of the number
of agents allows Burman, Doty, Nowak, Severson, and Xu to develop several
efficient self-stabilizing protocols for leader election; with no silence or space
constraints they achieve optimal expected parallel time of O(log n) [9]. Loosely-
stabilizing protocols relax self-stabilization to allow more tractable solutions,
such as leader election protocols with polylogarithmic convergence time by Sudo,
Ooshita, Kakugawa, Masuzawa, Datta, and Larmore [19]. Self-stabilizing Leader
election (under additional symmetry-breaking assumptions) is possible without
unique identifiers, as discussed in [5,18], but the communication happens over a
fixed graph - unlike population protocols where interaction of agents is arbitrary
and interaction pattern is controlled by an adversarial scheduler. Population self-
stabilizing protocols are also related to biological systems self-stabilization, see
[15] for further discussion.

In this work, we do not extend the basic model with any extra abilities.
We demonstrate a universal self-stabilizing population protocol for any function
f : X → Y where for any A,B P X , A Ď B implies that f(A) “ f(B). We
do this by using a result from partial order theory by Dickson [12] that states
that any set of finite dimensional vectors of natural numbers have finitely many
minimal elements under the pointwise partial order.

1.2 The Number of Self-stabilizing Functions Depends on the
Number of Minimal Elements

In Definition 7 we define the root set. Formally, let X be a (possibly infinite) set
of finite multisets over a finite alphabet (e.g. X “ {{a}, {a, a}, . . .} over alphabet
Σ “ {a}). The root set is some subset R Ď X with the following property: for
any element of the domain A P X , there is some element R P R such that R Ď A.
We call R a root. Section 2.1 uses Dickson’s Lemma to prove that there exists a
unique, finite, and minimally sized root set R. We note the following corollary
to the main theorem: to determine the output of any A P X for a self-stabilizing
function f : X → Y , it suffices to identify some root R Ď A since f(R) “ f(A).
In fact the entire output of f is determined by f(R) for each R P R. The number
of possible outputs is then upper bounded by the size of the smallest root set,
which is an interesting fact in of its own right.
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Corollary. Let X be a set of finite multisets over a finite alphabet, let Y be
a finite output alphabet, and let R be the minimally sized root set of X . Then
|im(f)| ď |R|.

Fix some domain X and finite output alphabet Y , and let R be the minimally
sized root set of X . The number of self-stabilizing functions f : X → Y are
precisely the number of ways to assign an output to each root in R, of which
there are at most N “ |Y ||R| ways. In fact, the number of functions is exactly
N if and only if every A P X has a unique root R Ď A. This is true because if
two roots R and R′ are both subsets of A, then they must be assigned the same
output f(R) “ f(R′) “ f(A); otherwise if every A has a unique root, then there
is no overlap and each root has |Y | choices for its output.

Corollary. Let X be a set of finite multisets over a finite alphabet, let Y be a
finite output alphabet, and let R be the minimally sized root set of X . The number
of self-stabilizing functions f : X → Y is finite. Specifically there are at most
|Y ||R| self-stabilizing functions. There are exactly this number of self-stabilizing
functions if and only if every A P X has a unique root R P R.

1.3 Nontrivial Examples of Self-stabilizing Functions

If we can restrict the domain X to exclude some inputs, then it can become
easier to generate problems that admit self-stabilizing solutions.

– In Chemical Reaction Networks (CRN), it can be desirable to compute
boolean circuits. In CRNs one prevalent technique to compute some boolean
function g : {0, 1}n → {0, 1}m is to have n different species, each with 2 sub-
species each [11]. That is, we have molecules s01, s

1
1, s

0
2, s

1
2, . . . , s0n, s1n, where

molecule sj
i signifies that the ith bit has value j P {0, 1}. All species will

appear in the input, but only one sub-species per species will appear (i.e. s0i
and s1i will not both appear, but one of them will). This way of formulating
the input allows for self-stabilizing computation of boolean functions! This is
because if A Ď B for some input multisets, A and B, of molecules, they will
include the same sub-species and hence have the same output g(A) “ g(B).

– Generalizing the former example, suppose we have an input alphabet of n
symbols, but only k ă n of these symbols will ever show up in the population
(though a given symbol could occur multiple times). Then we can compute
any self-stabilizing function of the k present members.
For instance, suppose we have k different classes of finite-state mobile agents,
a1, . . . , ak. There are a nonzero number of agents in each class ai, and agents
within the same class are running a (possibly not self-stabilizing) population
protocol. Eventually every agent in class ai will converge and be outputting
the same common value oi. These outputs o1, . . . , ok will then be the input
to our self-stabilizing population protocol. The agents might perform some
sort of protocol composition where a tuple of states (q, s) are used for each
agent; q would correspond to the agent state in the first protocol, and then
s would correspond to the agent state in the self-stabilizing protocol. If the
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first protocol was also self-stabilizing (it doesn’t have to be), then the entire
protocol composition would be self-stabilizing as well.
As an example, we could have each class of agents ai compute some boolean
circuit Ci in a self-stabilizing way. Eventually each agent of class ai will be
outputting some m character string over the set {0i, 1i}. Notice that even
both agents in class a1 and in class a2 intend to output 0110, the former
agents will output 01111101 and the latter agents will output 02121202. Once
all of these boolean circuit computations are done, all the agents across classes
will calculate the majority output in a self-stabilizing way (and they would
be able to do so since the outputs o1, . . . , ok are all distinguishable).

– Any computable function in which the number of agents is a fixed constant k
admits a self-stabilizing solution (there can’t be any subsets, so the condition
is vacuously true). For instance, distribute bits amongst exactly k agents; we
can create a self-stabilizing protocol to output 1 if any permutation of those
k bits represents a prime number in binary.

1.4 The Basic Model

There are different formalizations of the basic population protocol model. We
adopt the basic one first introduced by Angluin et al. [1], except where we impose
that any two agents are allowed to interact.

A population protocol is a tuple P “ (Q,Σ, Y, I,O, δ) where Q is the
finite set of agent states; Σ is a finite set of input symbols; Y is a finite set of
output symbols; I : Σ → Q is an input function; O : Q → Y is the output
function; and δ : (Q ˆ Σ) ˆ (Q ˆ Σ) → (Q ˆ Q) is the transition function.

Note that population protocols are independent over the size of the system;
rather, first a population protocol is specified and then it is run on some set
of agents V . At the beginning of execution, an input assignment α : V → Σ is
provided, providing each agent an input symbol (we will observe that in complete
graphs, we can view input assignments as merely a multiset of inputs). Since our
model focuses on the computation of functions, we will enforce that the input
does not change (i.e. the input is hardwired into every agent). If an agent is
assigned input symbol σ P Σ, it will determine its starting state via the input
function as I(σ) (note that in the basic model the input determines the starting
states, but in self-stabilization we do not consider starting states). At each time
step, a scheduler selects (subject to a global fairness condition) an agent pair
(u, v) for interaction; semantically the scheduler is selecting agents u and v to
interact, where u is called the initiator and v is called the responder. Agents u
and v will then state transition via δ; letting qu, qv P Q and σu, σv P Σ be the
states and inputs for u and v respectively, the new respective states will be the
output of δ((qu, σu), (qv, σv)).

We use the notion of a configuration to describe the collective agent states.

Definition 1. Configuration. Let V be the set of agents and Q be a set of states.
A configuration of a system is a function C : V → Q mapping every agent to its
current state.
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When running the protocol we will go through a sequence of configurations.
If C and C ′ are configurations under some population protocol such that C ′

can follow from a single agent interaction in C, we write C → C ′. If a series of
interactions takes us from C to C ′, we write C

˚́→ C ′.

Definition 2. Execution. An execution of a population protocol is a sequence of
configurations C “ C1C2 . . . where for all i, Ci → Ci`1.

The scheduler is subject to a global fairness condition, which states that if a
configuration can follow from an infinitely occurring configuration, then it must
also occur infinitely often.

Definition 3. Global Fairness Condition [1]. Let C and C ′ be configurations
such that C → C ′. If C appears infinitely often during an execution, then C ′

appears infinitely often during that execution.

At each time step every agent outputs some symbol from Y via output func-
tion O. If all agents output the same symbol and continue to do so for each time
step afterwards, we say the protocol’s output is that symbol (interactions may
continue, but the output of the agents remain that symbol). Note that when
computing functions, the protocol should output the same symbol when the
same inputs are provided, irrespective of the globally fair scheduler’s behavior.
When the population has determined the final output, we say it has converged.

Definition 4. Convergence [1]. A population is said to have converged to an
output y P Y during a population protocol’s execution if the current configuration
C is such that each agent’s output is y and C → C ′ implies that C ′ has each
agent with the same output y.

When agents u and v interact, their state transition is a function of both
agent’s current state and respective inputs; since this is all the information they
receive, an agent does not learn the identity of the agent it interacts with, but
merely the state and input of that agent. In this sense, agents with the same
input that are in the same state are indistinguishable from one another. Further-
more, population protocols are independent of the number of agents, making it
impossible to design the state set to give every agent a unique identifier, so
agents are truly anonymous.

As noted earlier, our model accepts input via an input assignment α : V → Σ,
where V is the set of agents and Σ is our finite input alphabet. It is useful to
note, though, that we can actually view our input instead as some finite multiset
A over alphabet Σ, with |A| “ |V | [4]. Though we omit the proof, the idea follows
from the fact that any two agents can interact, so which agent gets what input
symbol is less important than what input symbols are provided to the system
in the first place. We use the notation mA(σ) to denote the multiplicity, the
number of occurrences, of element σ in multiset A.

Definition 5. Population Protocol Functions. Let f : X → Y be a function
where X is a set of multisets over the finite alphabet Σ. A population protocol
P computes f if and only if for any A P X , all executions of P with input A
converge to f(A).
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In this paper when we say P is a population protocol (or simply protocol),
we mean that it computes some function f . When we don’t care about whether a
population protocol computes some function, we will refer to it as a sub-protocol.
This will be useful jargon in our protocol composition in Sect. 2.3.

We say that a population protocol computing a function is self-stabilizing
when it can begin in any configuration and eventually converge (to the same
output). Such a function is called a self-stabilizing function.

Definition 6. Self-Stabilizing Protocol. Let P “ (Q,Σ, Y, I,O, δ) be a popula-
tion protocol computing some function f : X → Y . P is called self-stabilizing
if and only if for any input multiset A P X , any set of agents V of cardinality
|A|, and any starting configuration C : V → Q, we have that any execution of P
converges to f(A).

2 Constructing a Self-stabilizing Protocol for the Basic
Model

We aim to show that not only does Theorem 1 specify necessary conditions for
computing self-stabilizing functions (shown in the full version of this paper [17]),
but they are also sufficient for self-stabilization. We do this by generating a self-
stabilizing protocol for computing all functions of the form f : X → Y where for
all A,B P X , A Ď B “⇒ f(A) “ f(B). To do this, we must introduce a new
notion known as the root set of a set of multisets.

2.1 The Root Set

The inputs for our agents are represented by a multiset of inputs, an element of
domain X . We are interested in a kind of subset R Ď X such that all multisets
in X are a superset of some multiset in R. This section aims to show that all
sets of multisets X actually have a finite R.

Definition 7. Root Set and its Roots. Let X be a set of finite multisets. A
subset R Ď X is called a root set of X if and only if for all A P X , there exists
R P R such that R Ď A. We call a multiset R P R a root of A.

Notice that X is always trivially its own root set. However, X can be infinitely
large; for example the set of all nonempty finite multisets on alphabet Σ “ {a}
is X “ {{a}, {a, a}, . . .}. However, we are primarily interested in the existence
of a finite root set over our function f ’s domain. Dickson’s Lemma [12] provides
us what we need, though an alternative proof is in our full paper [17].

First, consider a finite multiset over an alphabet, Σ, of n elements. An equiva-
lent representation of a multiset is as a vector of multiplicities in N

n. For instance,
the multiset {a, a, b} on ordered alphabet Σ “ {a, b, c} would be represented by
(2, 1, 0). Hence a set of finite multisets on an alphabet of size n could be consid-
ered a subset S Ď N

n. Consider two vectors n,m P N
n, and denote ni and mi

as the ith component in the corresponding vectors. Define the pointwise partial
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order n ď m ⇐⇒ ni ď mi for all i. A minimal element of a subset S Ď N
n is

an element that has no smaller element with respect to this partial order. Now
we can state Dickson’s Lemma.

Lemma 1. Dickson’s Lemma. In every subset S ‰ H of N
n, there is at least

one but no more than a finite number of elements that are minimal elements of
S for the pointwise partial order.

This is equivalent to the existence of a finite root set.

Corollary 1. Let X be a set of finite multisets over a finite alphabet. X has a
finite root set. In other words, there exists a finite subset R Ď X such that for
any A P X , there exists R P R such that R Ď A.

A interesting corollary is that the root set of minimal size is unique, making
it legitimate to speak of the minimally-sized root set. See the full version of this
paper for a proof [17].

Corollary 2. Let X be a set of finite multisets over a finite alphabet. The min-
imal length root set R of X is unique.

From order theory, we note that the minimal root set is a strong downwards
antichain. We call a subset A of a poset P a strong downwards antichain if A
is an antichain (a subset of P with incomparable elements) and no two distinct
elements of A have a smaller element in P . The proof is in the full version [17].

Corollary 3. Let X be a set of finite multisets over a finite alphabet. The min-
imal length root set R of X is a strong downwards antichain with respect to the
subset partial ordering.

Now suppose we have a function f : X → Y over multisets such that for
A,B P X , A Ď B “⇒ f(A) “ f(B). We have that there exists a finite, minimal
length root set R Ď X . If the input to the population is A, it suffices to identify
the root R P R such that R Ď A, since the output would be f(R) “ f(A).

2.2 Self-stabilizing Population Protocol Construction

Before we formally specify a universal self-stabilizing population protocol, it is
much more helpful to first understand how it works at a high level. As a reminder,
we will be working with functions of the form f : X → Y , where X is some set
of finite multisets on a finite alphabet and Y is the finite output alphabet. The
function f is also assumed to satisfy the following property:

∀A,B P X , A Ď B “⇒ f(A) “ f(B).

We need to determine how to design our protocol to compute f in a self-
stabilizing manner. Since X is a set of finite multisets, it has a finite root set; let
R Ď X be the minimally sized, finite root set. R will be given some arbitrary
fixed ordering so that we can index into it. Loosely speaking, we can compute f
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by having each agent iterate through every root in the finite root set to see if a
given root is a subset of the population’s input A.

As an agent iterates through the root set, how can it tell if the current root
is indeed a subset of the population’s input multiset, A? Suppose an agent has
guessed that root Ri Ď A. Consider some other root Rj where f(Ri) ‰ f(Rj).
Naturally there are some symbols that occur more often in Rj than in Ri, and
vice versa. Consider a symbol σ that occurs n times in Rj and m times in Ri,
where n ą m. Suppose agents start counting how many other agents they see
with input σ, and manage to identify there are at least n of them. Now further
suppose that this is the case for all such σ; that is, every σ occurring more often
in Rj has at least that many inputs distributed in the population. Then we now
know that f(Ri) ‰ f(A) by way of contradiction. For any symbol σ occurring n
times in Rj and m times in Ri, we have two cases. If n ą m, then we know that
input multiset A has at least n instances of σ. If n ď m, since Ri Ď A by our
hypothesis then we also know that there are at least n instances of σ. Therefore
we simultaneously have that Rj Ď A and Ri Ď A, which is a contradiction since
f(A) “ f(Rj) ‰ f(Ri)! Therefore our initial assumption was wrong and Ri is
not a subset of the input multiset A, and so we should increment our index i to
guess root Ri`1. Note that we could also change our index i to become j, and
the authors believe this would be a faster protocol; however since this is a paper
about computability, we leave this optimization as an observation.

On the other hand if Ri really is a subset of A, then the existence of such
a Rj would be impossible. If our counters are all initialized to 0, then no agent
counter would ever increment high enough to identify such a Rj . However since
the protocol may start in an arbitrary configuration, we have to make sure to
reset counters whenever an agent increments and guesses a new root.

To formalize this idea, we need convenient notation. We define MOREi,j to
be the set of symbols occurring more often in Rj than in Ri when f(Ri) ‰ f(Rj).

MOREi,j “
{

{σ | mRi
(σ) ă mRj

(σ)} f(Ri) ‰ f(Rj)
H otherwise

.

Each agent will have a table indexed by i and j, where each entry is a binary
string of length |MOREi,j |. The kth bit of this string is set to 1 when the agent
counts that the kth symbol of MOREi,j occurs in the population as often as it
does in Rj ; otherwise it is 0. Once any entry in this table becomes a (nonempty)
bit string of all 1’s, then the agent tries a new root. To keep track of these counts,
each agent will also maintain a nonnegative integer count; when two agents with
the same count and same input symbol σ meet, the responder will increment its
value. To keep the states finite, the count is bounded above by the maximum
multiplicity that occurs in the root set. It’s important to note that the fact that
the root set is finite is crucial to keeping the number of states here finite.

2.3 Sub-protocols for Protocol Composition

The self-stabilizing population protocol we construct will be a protocol compo-
sition A ˆ B ˆ C, where the input is given to A, the input to B is the output of
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A, the input to C is the output of B, and the composition output is the output
of C. With the previous discussion as our design motivation, we decompose our
protocol into three distinct sub-protocols:

1. SymbolCount. This sub-protocol implements a simple modular counting
mechanism, where agents with the same input symbol σ compare their counts.
If two agents with the same count meet, then the responder increments its
count (modulo the maximum multiplicity of any symbol in the root set, M ,
to keep things finite). If there are at least k ă M agents with the same
symbol, then some agent must eventually have their count at least k ´ 1 by
the Pigeonhole Principle, irrespective of initial configuration. The converse is
only true if all the counts are initialized to 0, which is problematic if we are
designing a self-stabilizing protocol that can initialize in any configuration.
We will circumvent this by having the larger protocol composition reset this
counter whenever moving on to the next root.

2. WrongOutput?. This sub-protocol maintains a table indexed by i, j P {0, 1,
. . . , |R| ´ 1}, where R is the minimally sized root set. Each entry will be
a binary string of length |MOREi,j |, where MOREi,j is the set of all input
symbols occurring more often in Rj than in Ri. If the kth symbol of MOREi,j

occurs in the population at least as often as it does in Rj , then the corre-
sponding bit in the binary string is set to 1. Notice that this table is only
useful when it is initialized with all entries as binary strings of all 0’s. Again,
we will circumvent this by having the larger protocol composition reset the
table whenever moving on to the next root.

3. RootOutput. This sub-protocol uses an index root P {0, 1, . . . , |R|´1}. Adopt-
ing the notation from the previous bullet and letting root “ i, this protocol
increments root if there is a j such that the (i, j) entry in the table has a
binary string of all 1’s. The protocol composition will use the incrementing
of root to signal that the other sub-protocol states should reset.

We now list the three sub-protocols below.

Definition 8. SymbolCount. Let f : X → Y be a function over finite mul-
tisets on a finite alphabet Σ, and let R be a finite and minimally sized root
set of X . Each agent has a state called count, where count P {0, 1, . . . ,M}
and M is the maximum multiplicity of any symbol in the root set. Let M “
maxRPR,σPΣ mR(σ). Each agent takes as input some σ from some input multiset
A P X . When an agent meets another agent with the same σ and same count,
one of them will increment their count modulo M . This guarantees that if there
are n agents with symbol σ, then eventually one agent will have count ě n ´ 1.

(count, σ), (count, σ) → (count, count ` 1 mod M)

An agent in state count with input σ outputs (count, σ).

Note that even though output is a function of just the state, we can formally
allow SymbolCount agents to output their input symbol as well, since we could
take our current states Q and define a new set of states via the cross product
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Q′ “ Q ˆ Σ. Then transitions on this could be defined in a similar way, where
we would also have to make agents transition into a state that reflects their own
input symbol (which can happen after every agent interacts once).

For WrongOutput?, our transitions need to satisfy two properties.

1. First, it is natural to have agents share their tables with each other to share
their collected information about the counts of the inputs. Whenever an agent
meets another agent, they bitwise OR their tables.

2. Fix some ordering on MOREi,j and denote the kth symbol by σk. Consider
the bitstring entry at index i and j. By our previous discussion we want the
kth bit to be 1 if the number of occurrences of σk in the population is at least
its multiplicity in Rj P R.
This can be enforced by setting this bit to 1 when the count of some agent
with input σk is sufficiently high enough; then the first property will ensure
this bit is set for the other agents by bitwise OR’ing tables. This can formally
be accomplished by bitwise OR’ing the agent’s table with an indicator table
of the same dimension. Let i and j be the indices into the table, k be the
index into the bitstring entry, σk be the kth symbol of MOREi,j , and count
and σ be the agent’s inputs. Define

INDICATORi,j,k “
{

1 if σ “ σk and count ě mRj
(σ) ´ 1

0 otherwise
.

We will denote this table as INDICATOR(count, σ) to be explicit about the
agent’s inputs count and σ. Note that the count is 0-indexed, which is why
we subtract by 1. Also, since agents can start in arbitrary states, every agent
has to transition once to have the table updated with INDICATOR.

Definition 9. WrongOutput? Let f : X → Y be a function over finite multisets
on a finite alphabet, and let R be a finite and minimally sized root set of X . Each
agent has a state called HAS -MORE, a table indexed by i and j where each entry
is a binary string of length |MOREi,j | (as described in previous discussion).

HAS -MORE i,j P {0, 1}|MOREi,j |.

Each agent takes as input (from SymbolCount) some count P {0, 1, . . . ,M},
where M is the maximum multiplicity of any symbol in the root set, and some σ
from the input multiset A P X .

Denote bitwise OR with symbol _. Our transition rule is

(HAS -MORE 1, (count, σ)), (HAS -MORE 2, (count′, σ′))
↓

(HAS -MORE 3 _ INDICATOR(count, σ),
HAS -MORE 3 _ INDICATOR(count′, σ′))

where HAS -MORE 3 “ HAS -MORE 1 _ HAS -MORE 2.

An agent outputs their HAS -MORE table.
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RootOutput will have an integer root that is an index into the root set. An
agent with input HAS -MORE increments its root modulo |R| if there is a j
such that HAS -MORE root,j is all 1’s. Of course, this would mean that the state
root keeps cycling every time an agent with such an input interacts. When we
define the overall protocol composition after, this will be resolved by resetting
the previous two sub-protocols’ states when root increments. Notice that agents
don’t care about the states of the other agents in an interaction; instead the
behavior depends on how sub-protocol WrongOutput? changes its output over
time. Notice that we don’t allow protocols to have changing inputs, but our 3
protocol composition allows two of the sub-protocols to have a changing input
as the states of the other sub-protocols change.

Definition 10. RootOutput. Let f : X → Y be a function over finite multisets
on a finite alphabet, and let R be a finite and minimally sized root set of X . Each
agent has a state called root, where root P {0, 1, . . . , |R| ´ 1}. Each agent takes
as input HAS -MORE, a table indexed by i and j where each entry is a binary
string of length |MOREi,j | (as described in previous discussion).

HAS -MORE i,j P {0, 1}|MOREi,j |.

Our transition rules are:

((root1,HAS -MORE 1), (root2,HAS -MORE 2)) → (root′
1, root′

2)

where i′ “
{

i ` 1 mod |R| if ∃j s.t. HAS -MORE i,j “ 1|MOREi,j |

i otherwise
.

An agent outputs f(Rroot).

Putting these three sub-protocols together, we get the SS-Protocol, a self-
stabilizing population protocol for f .

Definition 11. SS-Protocol. Let f : X → Y be a function over finite multisets
on a finite alphabet, and let R be a finite and minimally sized root set of X .
Define SS-Protocol as protocol composition

SymbolCount ˆ WrongOutput? ˆ RootOutput,

where we define protocol composition in the beginning of Sect. 2.3. We addition-
ally modify this composition’s transition function so that whenever an agent’s
RootOutput state root gets incremented, then

– The count state from SymbolCount becomes 0.
– The HAS -MORE state from WrongOutput? becomes a table of all 0’s.

When this modified transition occurs, we say the agent has been reset and is in a
reset state (note there are multiple reset states as we allow root to be arbitrary).
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Say the input to the population is A with root Ri. If the protocol ever
incorrectly outputs f(Rj) ‰ f(Ri), it will recognize this because the protocol
would count enough symbols in MOREi,j to make HAS -MOREi,j a bitstring
of all 1’s. If the protocol outputs f(Ri) and begins in a reset state, then there
will never be a bitstring entry with all 1’s. This protocol composition is a self-
stabilizing protocol for f . See the full version of this paper for the proof [17].

Theorem (Self-Stabilizing Population Protocol Theorem).] Let f : X → Y
be a function computable with population protocols on a complete interaction
graph, where X is a set of multisets. Then f has a self-stabilizing protocol ⇐⇒
(∀A,B P X , A Ď B “⇒ f(A) “ f(B)).

3 Conclusions and Generalizations

A function f : X → Y in the basic computational model of population protocols
is self-stabilizing if and only if for any multisets A and B in the domain, A Ď
B “⇒ f(A) “ f(B). The principle insight yielding the forward implication
is that we cannot have the scheduler isolate a subpopulation and have that
subpopulation restabilize to another output. The converse holds because we only
need to parse the root set of the domain and find a root that is a subset of the
population to determine what the output is, as our protocol does.

The notion of a root set should be applicable to arbitrary interaction graphs
as well. Angluin et al. [3] demonstrated that leader election in non-simple classes
of graphs are impossible, which is effectively applying the idea that different
subgraphs may converge on different answers. We can view input assignments
as interaction graphs where the nodes are the input symbols; if there exists a
subgraph of an input assignment that maps to a different output under f , then f
could not admit a self-stabilizing protocol. We believe that the converse should
hold as well. If we consider the class of all graphs of input assignments, we
can use the subgraph relation Ď as our partial order and find its corresponding
minimal elements. Unfortunately there are infinite minimal elements in the class
of rings, leading to an infinite root set. Perhaps taking a quotient on the domain
of possible input assignments (e.g. calling all rings equivalent) may lead to a finite
root set, though this is a subject for future research, as well as on characterizing
self-stabilization in general population protocols and other distributed models.
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Abstract. We study smoothed analysis of the leader election (LE) prob-
lem in distributed networks. Smoothed analysis is a hybrid between
worst-case analysis and average-case analysis. It takes a worst-case
instance for the algorithm and perturbs the input by adding some ran-
dom noise and analyzes the algorithm on this perturbed input. We con-
sider smoothed analysis, in which the topology of the input graph G is
randomly perturbed by adding random edges to G. The complexity of
the algorithm is parameterized by a smoothing parameter 0 ≤ ε(n) ≤ 1
which controls the amount of random edges to be added to the input
graph G per round, where ε is a small function of n, e.g., n−4 (n is the
number of nodes in the graph G). Informally, ε is the probability that a
random edge can be added to a node per round.

We analyze the time and message complexity of leader election in
the above smoothing model. We present the following three results in
synchronous CONGEST distributed model:
(i) A simple randomized algorithm that elects a leader with high prob-

ability (With high probability (or w.h.p. in short) means with prob-
ability ≥ 1 − 1/n.) in O((log n)/ε) rounds and uses O(

√
n log2.5 n)

messages. Note that both the time and the message bounds are opti-
mal (up to a polylog n factor).

(ii) A time-improved randomized algorithm that elects a leader with high

probability in O
(

log n√
ε

)
rounds, but uses O(m + n log n) messages,

where m is the number of edges in the input graph G.
(iii) A deterministic algorithm (except the randomized smoothing part)

which solves leader election in O
(

log2 n√
ε

)
rounds and incurs O(m +

n
√

ε log2 n) messages.
Our work extends the study of smoothed analysis of distributed problems
one step further, an open direction raised by [7].
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1 Introduction

Motivated by the work of Dinitz et al. [8], the smoothed analysis of distributed
algorithms is first formally modeled by Chatterjee et al. [7] and studied for the
minimum spanning tree (MST) problem. In this paper, we extend the study of
smoothed analysis of distributed problems, an open direction raised by [7], by
considering the smoothed analysis of leader election problem. Leader election
is one of the fundamental and well studied problem in the field of distributed
computing. It outlines the problem of electing a particular node in a network as
the leader. A version of this problem requires only the leader node to be aware of
its status. All the nodes other than the leader are simply aware that they are not
the leader. They need not be aware the leader’s identity. This version is called
the implicit leader election. The explicit version of the leader election problem
requires all the nodes in the network to be aware of the identity of the leader.
The widespread application of the leader election can be found in many domains,
e.g., sensor networks [29], IoT networks [26], grid computing [2], peer-to-peer net-
works [21,27] and cloud computing [32]. In IoT networks, a leader node performs
crucial tasks such as gathering information, coordinate tasks among the nodes,
generating encryption-decryption keys etc. [14,26].

We consider the same smoothing model as defined in the paper [7] to analyze
distributed algorithms. In particular, we consider smoothed analysis, in which
the topology of the input graph G is randomly perturbed by adding random edges
to G. The perturbance is determined by a smoothing parameter 0 ≤ ε(n) ≤ 1
which controls the amount of random edges to be added to the input graph
G per round. Typically ε is a small function of n, e.g., n−4, where n is the
number of nodes in the graph G. Smoothed edges are used for communication
only. The study of the smoothing analysis investigates how these additional
smoothed edges can be exploited to improve the time and message complexity
of a distributed algorithm.

Kutten et al. [20] studied the (implicit) leader election problem in both com-
plete networks and general networks. They presented an algorithm that takes
in O(1) time and uses only O(

√
n log3/2 n) messages to elect a leader in the

complete graph. For the general graphs, they extend this algorithm which takes
O(τ) time and O(τ

√
n log3/2 n) messages, where τ is the mixing time of graph.

The mixing time of a graph could be as large as O(n3) [23]. This algorithm
requires to know the mixing time to be known as input. A major improvement
was introduced in [12] where the same problem has been solved without any
knowledge of the mixing time of the graph. All these works build on a technique
of sampling smaller set of nodes (via random walks) and compute leader in the
sampled set. This is a standard technique that is useful for reducing the mes-
sage complexity. We also use the same idea in our randomized algorithms. The
algorithms of [12,20] analyze the worst case time and message complexities. A
smoothed analysis of the same problem is considered in this paper where the
objective is to analyze both the time and message complexities of the algorithm.
Smoothed analysis can be viewed as a hybrid between worst-case analysis and
the average-case analysis. It takes a worst-case instance for the algorithm and
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perturbs the input by adding some random noise and analyzes the algorithm on
this perturbed input.

The paper [7] analyzed only the time complexity of the MST problem. In
this paper, we analyze both the time and the message complexity of the leader
election problem. Similar to [7], we assume that the nodes of the input graph
able to distinguish between the smoothed edges and the original graph edges.
We present a simple algorithm that solves the problem with high probability in
O( log n

ε ) rounds using O(
√

n log5.2 n) messages. Then we present an improvement
algorithm that takes O( log n√

ε
) rounds and uses O(m + n log n) messages. We

further present a deterministic algorithm that solves leader election in O
(

log2 n√
ε

)

rounds and incurs O(m + n
√

ε log2 n) messages. The algorithm is deterministic
in the sense that except the randomized smoothing part, all other parts are
deterministic. Note that one can directly solve leader election in general graphs
in O(D log n) rounds and O(m log n) messages deterministically using algorithm
in [19] or using a randomized algorithm in time Õ(τ) and Õ(τ

√
n) messages

[12,20], but the diameter D or mixing time τ of a graph could be large (Õ hides
a polylog n factor).

1.1 Model

Distributed Network Model. We model the communication network as an undi-
rected, unweighted, connected graph G = (V,E), where |V | = n, and |E| = m.
Every node has limited initial knowledge. We assume anonymous network, i.e.,
nodes do not know their neighbors. We assume that nodes are associated with
a distinct identity number (e.g., its IP address). If not, then each node can ran-
domly pick a number in the range [1, n4] such that the numbers are distinct for
all the nodes. The random number can be used as the ID of the nodes. The
node may also accept some additional inputs as specified by the problem at
hand. The nodes are allowed to communicate through the edges of the graph G.
The communication occurs in synchronous rounds. In one round, nodes can send
messages, receive messages (from neighbors) and perform some local computa-
tion. Our algorithms use only small-sized messages. In particular, in each round,
each node sends a message of size O(log n) through its adjacent edges. This is
a widely used standard model known as the CONGEST model of distributed
computing [25], and captures the bandwidth constraints inherent in real-world
computer networks.

Smoothing Model. There are many smoothing models exits in sequential set-
tings, see [7,8,31]. We consider the smoothing model defined by Chatterjee
et al. [7]. The smoothing model of [7] is appropriate to analyze distributed net-
work algorithms.

Given an arbitrary graph G, smoothing allows to introduce some “pertur-
bance” to the input graph. In particular, the smoothing model allows adding
some random edges, determined by a smoothing parameter ε, to the input graph
G. The smoothing parameter 0 ≤ ε = ε(n) ≤ 1 is a function of n, which controls
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the amount of random edges to be added in the graph per round (typically ε is
a small function of n, e.g., n−4). Thereby the graph structure is altered. This
model is called the ε-smoothing model [7]. More precisely, in every (smoothing)
round, every node add an edge with probability ε to a randomly chosen node
from V in the given graph G. The added edges are called smoothed edges. In
case of multiple edges being present between two nodes, unless specified, only
one smoothed edge is used for communication. The added edges persists in the
network and can be used for communication in the later rounds. Let the induced
graph formed by the random edges be R(G) = R(V, S), where S is the set of
only the smoothed edges. R(G) is called smoothed graph.

As noted in [7], one can view the smoothing model as a generalization of the
congested clique model. Suppose the graph G is embedded in a congested clique.
A node, besides using its incident edges in E, can also choose to use a random
edge in the clique (not in G) with probability ε in a round to communicate (once
chosen, a random edge can be used subsequently till the end of computation).
Thus, the smoothed edges are the clique edges.

Smoothed edges are used for faster communication. The study of the smooth-
ing analysis investigates how these additional smoothed edges can be exploited
to improve the time and message complexity of a distributed algorithm. In this
paper, we consider only addition of edges to the input graph; while a smoothing
model also allows deletion of edges from the graph.

A formal definition of the leader election problem.

Definition 1 (Leader Election). Every node u maintains a variable statusu

that it can set to a value in {⊥,NON-ELECTED,ELECTED}; initially
statusu =⊥ for all u. An algorithm A solves leader election in T rounds if,
from round T on, exactly one node has its status set to ELECTED while all
other nodes are in state NON-ELECTED. This is the requirement for standard
(implicit) leader election.

Note that the implicit leader election algorithm can be converted to an
explicit leader election (where every node knows the ID of the leader) by simply
the leader sends its ID to all the nodes.

Paper Organization. Section 2 discusses related works. Section 3 contains
smoothed analysis of leader election algorithm. We first present a simple opti-
mal time and message complexity leader election algorithm in Sect. 3.1. Then an
improved time algorithm in Sect. 3.2 and a deterministic smoothed analysis in
Sect. 3.3. Finally, we conclude in Sect. 4.

2 Related Work

Leader election is one of the fundamental problem in distributed networks. It
has been extensively studied in various models and settings, starting from its
introduction by Le Lann [22] in ring network and then by a seminal work of
Gallager-Humblet-Spira [11] in general graphs. The problem is well studied in
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complete network itself [1,13,16–18,30], and reference there in, and also in gen-
eral networks [12,15,19].

Some closely related leader election works in the classical congest model are
[5,12,19,20]. Kutten et al. [20] studies the (implicit) leader election problem in
both complete networks and general networks and showed efficient time and mes-
sage bounds of leader election algorithms. In particular, they presented an algo-
rithm that executes in O(1) time and uses only O(

√
n log3/2 n) messages to elect

a leader in a complete graph. They also showed an almost matching lower bound
for randomized leader election. The standard technique of sampling smaller set
of nodes and compute leader among themselves is further used in general graphs
and achieve Õ(τ)-time and Õ(τ

√
n)-message complexity leader election algo-

rithm [12,20], where τ is the mixing time of a graph (Õ hides a polylog n fac-
tor). We also use this sampling techniques in the randomized algorithms. Several
tight results are shown in general graphs in [19], including a notable determinis-
tic algorithm which solves leader election in O(D log n) rounds and O(m log n)
messages. We adapt this deterministic algorithm in our deterministic smoothing
analysis of leader election. The our paper is inspired mainly by the works of
[12,19,20].

Smoothed algorithms have been explored in [28] as the next step in bridging
the gap between the “theoretical predictions and empirical observation” in their
performances. Since its introduction in [31], analyses have shown the practical
running time of algorithms to be closer to their smoothed complexities than
the worst-case ones. Smoothed analysis of some popular graph problems have
been explored in [3,9,10] and [4]. The first smoothed analysis of distributed
algorithms, to the best of our knowledge, has been conducted in [8] where in
they study the robustness of their algorithm for dynamic networks. They analyse
three problems, namely random walks, flooding and aggregation and their upper
and lower bounds on dynamic networks. Their smoothing procedure consists of
addition as well as deletion of edges from the evolving graph. Robustness is
measured by monitoring the change in bounds with the magnitude of smoothing
introduced in the model.

3 Leader Election in the Smoothing Model

Given an arbitrary graph G = (V,E) and CONGEST model of communica-
tion, the goal is to compute a leader in the ε-smoothing model of G. We first
present a simple algorithm that solves the leader election problem in O

(
log n/ε

)
rounds using O(

√
n log2.5 n) messages in the ε-smoothing model. The message

complexity is optimal (up to a polylogn factor) and the time complexity is also
optimal (up to a polylogn factor) for any ε ≥ 1/polylog n. Then we present a
time improved algorithm which solves leader election in O (log n/

√
ε) rounds,

but uses O
(
m + n log n

)
messages. While these two algorithms are random-

ized, we present a deterministic algorithm that takes O
(
log2 n/

√
ε
)

rounds and
O(m+n

√
ε log2 n) messages to elect a leader. The deterministic algorithm builds

on the similar idea of the improved algorithm. In all the algorithms, we assume
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that the nodes can distinguish between original edges in the given graph and the
smoothed edges.

3.1 Simple and Efficient Algorithm

We present a simple, yet efficient algorithm for leader election in the ε-smoothing
model. At a high-level, the algorithm consists of two parts: (I) Smoothing, i.e.,
adding random edges to the given graph in such a way that the smoothed graph
becomes an expander, (II) Compute a leader in the smoothed graph. Note that
the nodes are fixed; so the elected leader is a valid leader in the given graph.
The smoothed edges are used for the communication only.

(I) Constructing Smoothed Graph (A Random Expander Graph). In
the beginning, the algorithm adds O(log n) random edges per node according
to the smoothing model. In particular, the algorithm runs the smoothing pro-
cedure for Θ(log n/ε) rounds. In every round, each node adds a smoothed edge
with probability ε to one of the nodes selected uniformly at random. Thus, it is
easy to show that with high probability a node will add Θ(log n) random edges
(smoothed edges). Let us call this graph as the smoothed graph R(G) = (V, F )
which is induced only by the smoothed edges F after Θ(log n/ε) rounds. It is
intuitive that R(G) is an Erdős-Rényi random graph (expander), which is for-
mally shown in [7] and gives the following lemma.

Lemma 1 (Lemma 3.1, [7]). The smoothed graph R(G) has a constant con-
ductance and O(log n) mixing time.

(II) Computing a Leader. The second part of the algorithm computes leader
among the n nodes. For this, the algorithm uses R(G) as the communication
graph. Our goal is to compute a leader using minimum number of messages and
time. For this part, we adapt the leader election approach of [20] for general
graphs. If the mixing time τ of a graph is known, then an algorithm in [20]
computes a leader with high probability in O(τ) rounds and uses O(τ

√
n log1.5 n)

messages. In essence, we adapt this algorithm in the smoothed graph R(G) since
the mixing time O(log n) of R(G) is known.

Let us discuss an outline of the algorithm. Recall that we consider anony-
mous network, i.e., nodes do not know each other’s ID. We assume that nodes
have unique IDs; otherwise each node can randomly pick a number (or rank)
in the range [1, n4] such that the numbers are distinct for all the nodes. The
rank can be used as the ID of the nodes. The idea of the algorithm is to select
a smaller committee nodes (called candidate nodes) which are responsible for
electing a leader node among themselves. In fact, the maximum ID node among
the candidate nodes will be elected as the leader and all other nodes put them-
selves in the NON-ELECTED state. This is a standard technique to reduce the
message complexity. A random set of candidate nodes of size Θ(log n) is selected.
For this, each node selects itself with probability O(log n/n) to become a candi-
date node. This selection is done locally at each node and hence the candidate
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nodes do not know each other initially. All the non-candidate nodes put them-
selves in the NON-ELECTED state. The candidate nodes communicate among
themselves via some other nodes, called referee nodes. For this, each candidate
node samples 2

√
n log n random referee nodes in the network. This referee sam-

pling is done via performing random walks on R(G) by token forwarding. Each
candidate node creates 2

√
n log n random walk tokens and each token performs

random walk of length O(log n) on the smoothed graph R(G). Since the mixing
time of R(G) is O(log n), the tokens stop at random nodes after O(log n) steps.
The ending nodes of the tokens after O(log n) steps act as the referee nodes.
In this way each candidate node samples 2

√
n log n random referee nodes. The

reason behind sampling so many referee nodes is to make sure at least one com-
mon referee node between any pair of candidate nodes’ referees. Each candidate
node sends its ID with the random walk tokens. An intermediate node or referee
node may receive IDs (or tokens) from multiple candidate nodes. Since our goal
is to elect the maximum ID node to be the leader, the referee nodes send back a
winner message 〈“WIN”, node id, count〉 to the maximum ID candidate node
only, via back tracking the random walk paths. In the winner message, node id
carries the maximum ID of the candidate node and count variable stores the
number of tokens having the maximum ID. During the token forwarding pro-
cess, an intermediate node forwards only the tokens with maximum ID among
all the tokens received in a round (and discards all other tokens with smaller ID).
The intermediate node also stores this ID and the port numbers, through which
it has received the maximum ID token, for back tracking. In subsequent rounds,
if an intermediate node receives any token with higher ID than the previous one,
then it updates its stored ID and the port number accordingly.

During back tracking, an intermediate node on receiving multiple winner
messages 〈“WIN”, node id, count〉, adds up the count for the maximum node id
and forwards to the back track node (it discards the winner messages with lower
node id). When back track finishes, each candidate node sums up the count in
the winner messages it has received. The candidate node which receives 2

√
n log n

winner messages enters the ELECTED state. All the other candidate nodes enter
the NON-ELECTED state. It is easy to see that only the maximum ID candidate
node receives 2

√
n log n winner messages and elected as the leader.

One difficult part in the algorithm is the congestion over the edges when
performing many random walks in parallel as we consider CONGEST model.
The congestion is handled by sending only the count of random walk tokens that
need to be sent by a particular candidate node, and not the tokens themselves.

To show the correctness of the algorithm, we first discuss the following two
results. The first one says that there is at least one candidate node with high
probability. Also the size of the candidate nodes is not too large– bounded by
O(log n). The second one says that there is at least one common referee node
between any pair of candidate nodes with high probability.

Lemma 2. The size of the candidate nodes is Θ(log n) with high probability.

Proof. Each node selects itself with probability O(log n/n) to become a candi-
date node. Thus, in expectation, O(log n) candidate nodes are selected. Then



190 A. R. Molla and D. Shur

one can show using a standard Chernoff bound that the number of the selected
candidate nodes is Θ(log n) with high probability. �	
Lemma 3 (Theorem 1, [20]). With high probability, there is a common referee
node between any pair of candidate nodes.

This implies that the maximum ID candidate node has a common referee
node with all other candidate nodes. Thus, those common referees generate the
winner message for the maximum ID candidate node only and discards all other
random walk tokens. Further, during the token forwarding procedure, the max-
imum ID candidate node’s tokens dominate all other tokens. This means in
subsequent rounds when the winner messages reach their respective candidate
nodes, no candidate node, other than the one having maximum ID, would have
received all 2

√
n log n winner messages with high probability. Therefore, only the

candidate node with the maximum ID enters the ELECTED state with a high
probability.

Thus we get the following result.

Theorem 1. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a randomized distributed algorithm that computes a leader in G with
high probability in O( log n

ε ) rounds and incurs O(
√

n log2.5 n) messages (assum-
ing that the smoothed edges are added without sending any messages).

Proof. We already discussed that the algorithm correctly elects a leader with
high probability.

The time complexity of the algorithm is determined by two procedures: (I)
Constructing smoothed graph– which takes O(log n/ε) rounds. (II) Computing
leader in the smoothed graph, which requires to perform random walks of length
O(log n) and back tracking (in parallel). Further, there is no congestion due to
performing multiple random walks in parallel as we are sending the token counts
and not the tokens themselves. All other computations are done locally. This
procedure takes O(log n) rounds. Thus, the time complexity of the algorithm is
O(log n/ε + log n) = O(log n/ε) rounds.

The message complexity of the algorithm is determined by the leader election
procedure in the smoothed graph R(G). The number of the candidate nodes is
Θ(log n) with high probability. Each candidate node performs 2

√
n log n random

walks for O(log n) steps. Thus a total of O(
√

n log5/2 n) messages are required
for this step. The back tracking of the winner messages may take at most the
same number of messages. Therefore message complexity of the algorithm is
O(

√
n log2.5 n). �	

Remark 1. In the above theorem, we assume that the smoothed edges are added
by the system without sending any messages. If we consider one message is used
per edge addition, then the message complexity of the smoothing process would
be O(n log n), as each node adds O(log n) random edges. Then the message
complexity of the algorithm would be O(n log n).
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3.2 An Improved Algorithm

Now we present an improved algorithm which is a variant of the previous algo-
rithm and has a lower time complexity. This algorithm solves the leader election
in O(log n/

√
ε) rounds. It crucially applies the previous algorithm over a super-

graph induced by minimum-spanning-tree (MST) fragments as the super nodes.
Broadly, this algorithm consists of three parts: (I) Compute MST fragments.
(II) Apply smoothing to add an expander over the super-graph induced by the
MST fragments. (III) Compute a leader using the previous random walk based
sampling algorithm on the smoothed super-graph.

Let us describe the algorithm and simultaneously its analysis.

(I) Computing MST Fragments. We use controlled Gallagher-Humblet-
Spira (GHS) algorithm to construct MST fragments, see Sect. 7.4 in [24]. The
main difference compared to the standard GHS algorithm is that the growth
(size, diameter) of fragments are controlled during merging of fragments.

The controlled GHS algorithm runs in phases [24]. The algorithm starts with
each individual node as a fragment and merges fragments in each phase. In each
phase, the algorithm maintains the following invariant: Each MST fragment
has a leader (which is the root of the tree) and all nodes know their respective
parents and children. Initially, each node (a singleton fragment) is a leader node;
subsequently each fragment will have one leader (root) node. Each fragment is
identified by the identifier of its root (called the fragment ID) and each node in
the fragment knows its fragment ID. Each fragment’s operation is coordinated by
the respective fragment’s leader. Each phase consists of two major operations: (1)
Finding minimum-weight-outgoing-edge (MOE) of all fragments and (2) Merging
fragments via their MOEs. Note that, while the controlled GHS finds an MST
in a weighted graph (where edges have weight), it also works on an unweighted
graph where one can consider the edge-weights are 1. The details on finding
MOE and merging fragments cane be found in Sect. 7.3.1 of [24].

The algorithm starts by running a controlled GHS algorithm for log( 1√
ε
)

phases (ε is the smoothing parameter). The size and diameter of each MST
fragment are Ω(1/

√
ε) and O(1/

√
ε) respectively, and there will be O(n

√
ε) such

fragments ([24], Sect. 7.4). Each fragment will be treated as a super-node. Each
node, that is not a root node, maintains two IDs: 1. Its fragment ID, denoted
by FID, and 2. Its own ID in the given graph which we denote by GID in this
section. For a root node, its FID would be same as its GID.

The following lemma shows that this MST fragments construction takes
O( log

∗ n√
ε

) rounds and uses O(m) messages.

Lemma 4. The number of MSTs formed after log( 1√
ε
) phases is O(n

√
ε). The

MST fragments construction takes O( log
∗ n√
ε

) rounds and O(m) messages, where
m is the number of edges in the given graph.

Proof. It is shown in Corollary 7.1 of [24] that the number of MST fragments at
the beginning of phase i is at most n

2i . So after log( 1√
ε
) phases, the number of
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MSTs is at most n/2log(
1√
ε
) = O(n

√
ε). It also follows from Lemma 7.3 of [24] that

the diameter of each MST at the beginning of phase i is bounded by 2i. Hence the
diameter of the MST fragments after log( 1√

ε
) phases is O(2log(

1√
ε
)) = O(1/

√
ε).

The time and message complexities follows from the 3 sub-procedures.

1. Finding MOE from each node in parallel takes O(2i) rounds for the ith phase.

So for the log( 1√
ε
) phases, it takes: O

(∑log( 1√
ε
)

i=1 2i

)
= O

(
2√
ε
(1 − √

ε)
)

=

O
(

1√
ε

)
rounds.

The number of messages required is: O

(∑
v∈V 2 · d(v)+

∑log( 1√
ε
)

i=1

∑
v∈V O(1)

)

= O
(
m + n log( 1√

ε
)
)

.

2. SelectingMOE formerging fragments takesO(2i log∗ n) rounds andO(n log∗ n)

messages per phase. Thus in total it takes, O

(∑log( 1√
ε
)

i=1 (2i log∗ n)
)

=

O
(

log∗ n√
ε

)
rounds and O

(
n log∗ n log

(
1√
ε

))
messages.

3. Merging fragments takes O(2i) rounds and O(n) messages per phase. So
in total it takes, O

(
1√
ε

)
rounds and O

(
n log( 1√

ε
)
)

messages.

Thus, MST fragments construction takes O( log
∗ n√
ε

) rounds and O(m) mes-
sages. �	

(II) Constructing a Smoothed Graph. After constructing the MST forest,
perform O( log n√

ε
) rounds of smoothing. Let S denotes the set of smoothed edges

added in the graph. The probability that a smoothed edge added between two
nodes in G is Θ(

√
ε log n

n ). Consider each MST fragment as a super-node. Let
the set of super-node be V ′; then |V ′| = O(n

√
ε) as there are so many MST

fragments. Let S′ ⊆ S be the set of inter-super-node smoothed edges. Consider
the super-graph R′(V ′, S′); we call it as smoothed super-graph. Then it is easy
to show that R′(V ′, S′) is an Erdős-Rényi random graph [7]. Thus, the mixing
time of R′(V ′, S′) is O(log(n

√
ε)) = O(log n).

(III) Computing a Leader. Now we apply the similar random walk based app-
roach on the smoothed super-graph R′(V ′, S′) to elect a leader in G. In particu-
lar, we run the “Computing a leader” procedure of the previous algorithm over
this super-graph R′(V ′, S′), where the root node in each super-node simulates
and coordinates the tasks of a node there (recall that each MST fragment has
a specified root node). First, O(log n) random set of candidate super-nodes are
selected. For this, each super-node selects itself with probability Θ( log n

n
√

ε
). Note

that when we say a “super-node does something”, it means the root node inside
the super-node does this and communicate to all the nodes in the fragment. To
implement this in a super-node, the root node coordinates the tasks with the frag-
ment nodes. Thus, an extra term of O(1/

√
ε) rounds may be incurred due to the

communication within a super-node. This is because, the diameter of each MST
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fragment is O(1/
√

ε)), so the communication within a fragment takes O(1/
√

ε)
rounds. Further recall that each super-node has an ID, the fragment ID which
is essentially the ID of the root node in the fragment. Then in the similar way,
each candidate super-node samples O(

√
n log n) referee nodes (super-nodes)1 by

performing O(
√

n log n) random walks of length O(log n) (since the mixing time
of R′ is O(log n)). Then the referee nodes send back winner message to the max-
imum ID super-node. Finally, the super-node with maximum ID becomes the
leader. Since the super-node carries the ID of its root node, the root node in the
maximum ID super-node becomes the leader in G.

One crucial part remains to discuss is– how the super-nodes perform multiple
random walks on R′(V ′, S′) in parallel. Let r be the root node in a super-node
T . In the beginning of this procedure – “computing a leader” – every node
in T sends the number of its inter-super-node smoothed edges (i.e., outgoing
smoothed edges) to the root r. The root node computes the total number of
outgoing smoothed edges from T and also stores the ID of the fragment nodes
and their outgoing edge number. Suppose a super-node T has k random walk
tokens to forward in the next round. For each token, r (locally) selects one
outgoing smoothed edge randomly among all the outgoing edges of T . Then r
sends a count of the number of tokens to the corresponding fragment nodes. A
count � of a fragment node v indicates that � number of random walk tokens
are selected to move over the outgoing edges of the node v. The root sends this
random walk count information to all the selected nodes in T in parallel. Then
the fragments nodes forward their tokens to the outgoing neighbors selected
uniformly at random (among the outgoing edges). The node forwards the tokens
together with the count through its corresponding outgoing smoothed edges to
avoid any congestion. When a node receives random walk tokens from a different
super-node, it sends the count (of the tokens) to the root node of its super-node.
The root node sums up the count to know the total number of received tokens
from the same candidate node. Then it forwards the tokens, in the same way as
described above, for the next step.

Theorem 2. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a randomized distributed algorithm that computes a leader in G with
high probability in O( log n√

ε
) rounds and incurs O(m + n log n) messages.

Proof. The algorithm correctly elects a leader as the previous algorithm does.

Time Complexity. The first procedure (‘computing MST fragments’) takes
O( log

∗ n√
ε

) rounds (follows from Lemma 4). The second procedure (‘constructing

smoothed graph’) takes O( log n√
ε

) rounds as we apply smoothing for so many

rounds. The third procedure (‘computing a leader’) takes O( log n√
ε

) rounds. This
is because, the random walks are performed over the super-nodes in paral-
lel for O(log n) rounds and one step of the random walk may take extra 1√

ε

1 Since |V ′| = O(n
√

ε), it would suffice to sample O(
√

n
√

ε log n) referee nodes to
ensure a common referee node between any pair of candidate super-nodes.
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rounds for communication inside a super-node. In the calculation, we implicitly
assume O(log(n

√
ε)) = O(log n). Therefore, the time complexity the algorithm

is: O( log
∗ n√
ε

+ log n√
ε

+ log n√
ε

) = O( log n√
ε

) rounds.

Message Complexity. The first procedure uses O(m) messages (follows from
Lemma 4). The second procedure uses no messages if we assume that the smooth-
ing process (addition of random edges) is done by the system without incurring
any messages. It may use O(n log n) messages if we assume one message cost per
one edge addition. The third procedure uses O(

√
n log2.5 n + n log n) messages.

The term O(
√

n log2.5 n) comes from performing O(
√

n log n) random walks for
O(log n) steps from O(log n) candidate nodes. The term O(n log n) comes from
the communication inside super-nodes or MST fragments via the spanning tree
edges for O(log n) rounds. Thus, the message complexity of the algorithm is
O(m + n log n). �	

3.3 Deterministic Algorithm

In this section, we describe a deterministic algorithm for leader election in the
smoothing model. Note that the smoothing part uses random bits, which we
cannot avoid in this smoothing model. The rest of the algorithm is determinis-
tic. That’s why we are calling the algorithm deterministic. The algorithm builds
on the similar ideas of the previous improved algorithm (cf. Sect. 3.2). Anal-
ogously, it has three procedures: (I) Compute MST fragments, (II) Construct
smoothed graph, and (III) Compute a leader. The first two procedures (com-
pute MST fragments, construct smoothed graph) follow the same procedures
as in the previous algorithm. Note that the controlled GHS algorithm (which
is used to compute MST fragments) is deterministic. Now for the third proce-
dure, we use a deterministic approach instead of applying random walks. In fact,
we use a deterministic algorithm from [19] which had solved the leader election
problem in O(D log n) rounds and O(m log n) messages.

After running the first two procedures, we obtain the smoothed graph
R′(V ′, S′) where V ′ is the set of super-nodes (MST fragments), |V ′| = O(n

√
ε)

and S′ is the set of inter-super-node smoothed edges. Since R′(V ′, S′) is a random
expander graph, its diameter is O(log(n

√
ε)) = O(log n), e.g., see Theorem 8.13

of [6].
Now for the third procedure (computing a leader), we use the deterministic

algorithm from [19] and describe how to run it on R′ to elect a leader. This
algorithm runs in phases, and each phase consists of 4 stages. First all the nodes
become candidate nodes. In each phase i, every candidate node is required to
develop a BFS tree of depth 2i−1 (for i = 1, 2, . . . log(n

√
ε) and then carry out

operations in 4 stages. In the first stage, every candidate node v (which translates
as the root node of the BFS tree) sends a token ELECT(phase, ID, counter)
on its BFS tree, where phase refers to the phase i that this candidate node is in,
ID is candidate node’s ID and counter refers to the depth of BFS tree in any phase
i that this candidate node needs to develop. As the tree develops, this counter
is decremented by 1. At the beginning, that is, at the candidate node, it is set
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to 2i−1. In the 2nd stage, it receives an ACK token from all its BFS children of
the form: ACK(ID, max, phase status), where ID is the ID of the candidate
node that generated this token, max is the maximum ID encountered by that
candidate node, and phase status is about whether its phase status is same as or
lower than this candidate node’s phase. Next, the candidate node v updates its
field v.max with the highest ID it has received, that was contained in the max
field among the ACK tokens and sends a CONFIRM(v.max) token along its
BFS tree in the 3rd stage. In the 4th stage, v receives a VICTOR(phase, ID)
token from all its neighbors which contains the v.max – the highest ID node –
encountered by them. If this v.max is the same as the ID of the candidate node,
v, then v continues to the next phase; otherwise assumes a NON-ELECTED
state. In every phase, all the above 4 stages are repeated. After log(n

√
ε) phases,

only the maximum ID node will be ELECTED as a leader and all the other
nodes have NON-ELECTED status.

We now explain how to adapt this procedure on the smoothed graph
R′(V ′, S′). The super-nodes are MST fragments which contain a root node. Since
the root node coordinates the tasks inside a super-node, all the root nodes mark
themselves as the candidate nodes in the beginning of the algorithm (essentially,
all the super-nodes become candidate nodes). Each super-node acts as a single
node and implement all the phases on the smoothed graph R′(V ′, S′) only, e.g.,
the BFS trees are constructed on R′(V ′, S′). Inside a super-node, the root con-
trols and coordinates the tasks and all the communication done through MST
edges inside the supernode. Thus, an extra factor of O(1/

√
ε) rounds may be

incurred for each step of the above algorithm due to the communication within
a super-node. This is because, the diameter of each MST fragment is O(1/

√
ε)),

so the communication within a fragment takes O(1/
√

ε) rounds. In the end, one
super-node will be elected as the leader. The root node of this super-node will
be the leader in the graph.

We now discuss the time and message complexity of the entire deterministic
algorithm.

Theorem 3. Given an anonymous graph G = (V,E) in the ε-smoothing model,
there exists a deterministic distributed algorithm that solves the leader election
problem in O

(
log2 n√

ε

)
rounds using O(m + n

√
ε log2 n) messages.

Proof. It follows from Theorem 2 that the first two procedures takes O
(

log n√
ε

)

rounds and O
(
m + n log∗ n log( 1√

ε
)
)

messages.

It follows Lemma 4.8 in [19] that third procedure can have O(log(n
√

ε))
phases. Further, each of the 4 stages can take at most the diameter time of the
smoothed graph R′. Since the diameter of R′ is O(log(n

√
ε)), and communication

inside a super-node takes O( 1√
ε
) rounds, the total time for the third procedure

is:
O(( 1√

ε
) · log(n

√
ε) · log(n

√
ε)) = O

(
log2(n

√
ε)√

ε

)
= O

(
log2 n√

ε

)
rounds.

Thus, the time complexity of the algorithm is O
(

log2 n√
ε

)
rounds.
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Let us calculate the message complexity of the third procedure. Consider
a phase i of the algorithm. The message exchanges within a fragment hap-
pen over the MST edges. Thus, it uses O(n

√
ε) × O( 1√

ε
) = O(n) messages

inside all the MST fragments (super-nodes). Message exchanges between the
MST fragments happen over the inter-super-node smoothed edges, which is
O (n

√
ε log n). Therefore, total number of messages uses in O(log(n

√
ε)) phases

is: O(log(n
√

ε)) × O (n + n
√

ε log n) = O(n
√

ε log2 n).
Thus, the message complexity of the algorithm is: O

(
m + n log∗ n log( 1√

ε
)
)
+

O(n
√

ε log2 n) = O(m + n
√

ε log2 n). �	

4 Conclusion

We studied smoothed analysis of leader election, one of the fundamental problem
in distributed networks. We consider the same smoothing model as introduced
by Chaterjee et al. [7] in distributed networks. We present two randomized algo-
rithms and a deterministic algorithm and discuss their smoothed complexity of
time and messages. The time and message complexity of our first algorithm are
optimal, up to a polylogn factor. For the second algorithm there is a trade off
as it solves the problem in less number of rounds, but incurs more messages. We
present a third algorithm which is deterministic but takes slightly more time to
solve the leader election problem.

We believe this work extends the study of smoothed analysis of distributed
problems. An obvious next step is to investigate how tight these complexities are
by analyzing the lower time and message bound of these algorithms. Another line
of work could probe the behavior of these algorithms in a different smoothing
model and when the nodes can not differentiate between the input edges and
the smoothed edges.
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Abstract. We define and investigate the consensus problem for a set of
N processes embedded on the d-dimensional plane, d ≥ 2, which we call
the geoconsensus problem. The processes have unique coordinates and
can communicate with each other through oral messages. In contrast to
the literature where processes are individually considered Byzantine, it
is considered that all processes covered by a finite-size convex fault area
F are Byzantine and there may be one or more processes in a fault area.
Similarly as in the literature where correct processes do not know which
processes are Byzantine, it is assumed that the fault area location is not
known to the correct processes.

In this paper, we first prove that the geoconsensus is impossible if
all processes may be covered by at most three areas where one is a fault
area. We then prove the following results on the constructive side consid-
ering the 2-dimensional embedding. For M ≥ 1 fault areas F of arbitrary
shape with diameter D, we present a consensus algorithm that tolerates
f ≤ N−(2M+1) Byzantine processes provided that there are 9M+3 pro-
cesses with pairwise distance between them greater than D. For square
F with side �, we provide a consensus algorithm that lifts this pairwise
distance requirement and tolerates f ≤ N − 15M Byzantine processes
given that all processes are covered by at least 22M axis aligned squares
of the same size as F . For a circular F of diameter �, this algorithm tol-
erates f ≤ N − 57M Byzantine processes if all processes are covered by
at least 85M circles. Finally, we extend these results to various size com-
binations of fault and non-fault areas as well as d-dimensional process
embeddings, d ≥ 3.

1 Introduction

The problem of Byzantine consensus [10,14] has been attracting extensive atten-
tion from researchers and engineers in distributed systems. It has applications
in distributed storage [1,2,4,5,9], secure communication [6], safety-critical sys-
tems [16], blockchain [12,17,19], and Internet of Things (IoT) [11].

Consider a set of N processes with unique IDs that can communicate with
each other. Assume that f processes out of these N processes are Byzantine.
Assume also that which process is Byzantine is not known to correct processes,
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https://doi.org/10.1007/978-3-030-64348-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64348-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-64348-5_15


200 J. Oglio et al.

except possibly the size f of Byzantine processes. The Byzantine consensus prob-
lem here requires the N −f correct processes to reach to an agreement tolerating
arbitrary behaviors of the f Byzantine processes.

Pease et al. [14] showed that the maximum possible number of faults f that
can be tolerated depends on the way how the (correct) processes communicate:
through oral messages or through unforgable written messages (also called signa-
tures). An oral message is completely under the control of the sender, therefore,
if the sender is Byzantine, then it can transmit any possible message. This is not
true for a signed, written message. Pease et al. [14] showed that the consensus
is solvable only if f < N/3 when communication between processes is through
oral messages. For signed, written messages, they showed that the consensus is
possible tolerating any number of faulty processes f ≤ N .

The Byzantine consensus problem discussed above assumes nothing about
the locations of the processes, except that they have unique IDs. Since each pro-
cess can communicate with each other, it can be assumed that the N processes
work under a complete graph (i.e., clique) topology consisting of N vertices
and N(N − 1)/2 edges. Byzantine consensus has also been studied in arbitrary
graphs [14,18] and in wireless networks [13], relaxing the complete graph topol-
ogy requirement so that a process may not be able to communicate with all
other N − 1 processes. The goal in these studies is to establish necessary and
sufficient conditions for consensus to be solvable. For example, Pease et al. [14]
showed that the consensus is solvable through oral messages tolerating f Byzan-
tine processes if the communication topology is 3f -regular. Furthermore, there is
a number of studies on a related problem of Byzantine broadcast when the com-
munication topology is not a complete graph topology, see for example [8,15].
Byzantine broadcast becomes fairly simple for a complete graph topology.

Recently, motivated by IoT-blockchain applications, Lao et al. [11] proposed
a consensus protocol, which they call Geographic-PBFT or simply G-PBFT, that
extends the well-known PBFT consensus protocol by Castro and Liskov [4] to the
geographic setting. The authors considered the case of fixed IoT devices embed-
ded on geographical locations for data collection and processing. The location
data can be obtained through recording location information at the installation
time or can also be obtained using low-cost GPS receivers or location estimation
algorithms [3,7]. They argued that the fixed IoT devices have more computa-
tional power than other mobile IoT devices (e.g.., mobile phones and sensors)
and are less likely to become malicious nodes. They then exploited (geographical)
location information of fixed IoT devices to reach consensus. They argued that
G-PBFT avoids Sybil attacks, reduces the overhead for validating and record-
ing transactions, and achieves high consensus efficiency and low traffic intensity.
However, G-PBFT is validated only experimentally and no formal analysis is
given.

In this paper, we formally define and study the Byzantine consensus prob-
lem when processes are embedded on the geographical locations in fixed unique
coordinates, which we call the Byzantine geoconsensus problem. If fault locations
are not constrained, the geoconsensus problem differs little from the Byzantine
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consensus. This is because the unique locations serve as IDs of the processes
and same set of results can be established depending on whether communica-
tion between processes is through oral messages or unforgable written messages.
Therefore, we relate the fault locations to the geometry of the problem, assum-
ing that the faults are limited to a fault area F (going beyond the limitation
of mapping Byzantine behavior to individual processes). In other words, the
fault area lifts the restriction of mapping Byzantine behavior to individual pro-
cesses in the classic setting and now maps the Byzantine behavior to all the
processors within a certain area in the geographical setting. Applying the clas-
sic approaches of Byzantine consensus may not exploit the collective Byzantine
behavior of the processes in the fault area and hence they may not provide ben-
efits in the geographical setting. Furthermore, we are not aware of prior work in
Byzantine consensus where processes are embedded in a geometric plane while
faulty processes are located in a fixed area.

In light of the recent development on location-based consensus protocols,
such as G-PBFT [11], discussed above, we believe that our setting deserves a
formal study. In this paper we consider the Byzantine geoconsensus problem in
case the processes are embedded in a d-dimensional plane, d ≥ 2. Formally, we
define the problem as follows. Consider the binary consensus where every correct
process is input a value v ∈ {0, 1} and must output an irrevocable decision with
the following three properties.

Agreement – no two correct processes decide differently;
Validity – if all the correct processes input the same value v, then every correct

process decides v;
Termination – every correct process eventually decides.

Definition 1 (Byzantine Geoconsensus). An algorithm solves the Byzan-
tine geoconsensus Problem (or geoconsensus for short) for fault area set F , if
every computation produced by this algorithm satisfies the three consensus prop-
erties.

We study the possibility and bounds for a solution to geoconsensus. We
demonstrate that geoconsensus allows quite robust solutions: all but a fixed
number of processes may be Byzantine. We discuss in detail our contributions
below.

Contributions. Let N denotes the number of processes, M denotes the number
of fault areas F , D denotes the diameter of F , and f denotes the number of faulty
processes. Assume that each process can communicate with all other N − 1
processes and the communication is through oral messages. Assume that all the
processes covered by a faulty area F are Byzantine. The correct processes know
the size of each faulty area (such as its diameter, number of edges, area, etc.)
and the total number M of them but do not know their exact location.

In this paper, we made the following five contributions:

(i) An impossibility result that geoconsensus is not solvable if all N processes
may be covered by 3 equal size areas F and one of them may be fault area.
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This extends to the case of N processes being covered by 3M areas F with
M areas being faulty.

(ii) The algorithm BASIC that solves geoconsensus tolerating f ≤ N −(2M +1)
Byzantine processes, provided that there are 9M +3 processes with pairwise
distance between them greater than D.

(iii) The algorithm GENERIC that solves geoconsensus tolerating f ≤ N −15M
Byzantine processes, provided that all N processes are covered by 22M axis-
aligned squares of the same size as the fault area F , removing the pairwise
distance assumption in the algorithm BASIC.

(iv) An extension of the GENERIC algorithm to circular F tolerating f ≤ N −
57M Byzantine processes if all N processes are covered by 85M circles of
same size as F .

(v) Extensions of the results (iii) and (iv) to various size combinations of fault
and non-fault areas as well as to d-dimensional process embeddings, d ≥ 3.

Our results are interesting as they provide trade-offs among N,M, and f ,
which is in contrast to the trade-off provided only between N and f in the
Byzantine consensus literature. For example, the results in Byzantine consensus
show that only f < N/3 Byzantine processes can be tolerated, whereas our
results show that as many as f ≤ N −αM , Byzantine processes can be tolerated
provided that the processes are placed on the geographical locations so that at
least βM areas (same size as F ) are needed to cover them. Here α and β are
both integers with β ≥ c · α for some constant c.

Furthermore, our geoconsensus algorithms reduce the message and space
complexity in solving consensus. In the Byzantine consensus literature, every
process sends communication with every other process in each round. Therefore,
in one round there are O(N2) messages exchanged in total. As the consensus
algorithm runs for O(f) rounds, in total O(f ·N2) messages are exchanged in the
worst-case. In our algorithms, let N processes are covered by X areas of size the
same as fault area F . Then in a round only O(X2) messages are exchanged. Since
the algorithm runs for O(M) rounds to reach geoconsensus, in total O(M · X2)
messages are exchanged in the worst-case. Therefore, our geoconsensus algo-
rithms are message (equivalently communication) efficient. The improvement on
space complexity can also be argued analogously.

Finally, Pease et al. [14] showed that it is impossible to solve consensus
through oral messages when N = 3f but there is a solution when N ≥ 3f + 1.
That is, there is no gap on the impossibility result and a solution. We can only
show that it is impossible to solve consensus when all N processes are covered
by 3M areas that are the same size as F but there is a solution when all N
processes are covered by at least 22M areas (for the axis-aligned squares case).
Therefore, there is a general gap between the condition for impossibility and the
condition for a solution.

Techniques. Our first contribution is established extending the impossibility
proof technique of Pease et al. [14] for Byzantine consensus to the geoconsensus
setting. The algorithm BASIC is established first through a leader selection to
compute a set of leaders so that they are pairwise more than distance D away
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from each other and then running carefully the Byzantine consensus algorithm
of Pease et al. [14] on those leaders.

For the algorithm GENERIC, we start by covering processes by axis-aligned
squares and studying how these squares may intersect with fault areas of various
shapes and sizes. Determining optimal axis-aligned square coverage is NP-hard.
We provide constant-ratio approximation algorithms. We also discuss how to
cover processes by circular areas. Then, we use these ideas to construct algorithm
GENERIC for fault areas that are either square or circular, which does not
need the pairwise distance requirement of BASIC but requires the bound on
the number of areas in the cover area set. Finally, we extend these ideas to
develop covering techniques for higher dimensions. These covering techniques
then provide tolerance bounds for Byzantine consensus in higher dimensions.

Future Work. Our results show the dependency of the tolerance guarantees on
the shapes and sizes of the fault areas. Therefore, for future work, it would also
be interesting to consider fault area F shapes beyond circles and squares that we
studied; to investigate process coverage by non-identical squares, circles or other
shapes to see whether better bounds on the set A and fault-tolerance guarantee
f can be obtained. It would also be interesting to close or reduce the gap between
the condition for impossibility and a solution (as discussed in Contributions).
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Abstract. When being applied to share data in distributed comput-
ing in practice, even the VSS scheme with the highest efficiency and
strongest information-theoretic security cannot be totally assumption
free and is vulnerable to attack if its secure communication channel is
publicly implemented and verified.

1 Introduction

The VSS by Peng [12] claims to be free of computational assumption or costly
exponentiation computation. However, when deploying it in practice, we dis-
cover that it still needs some computational assumption and costly exponenti-
ation computation although they can be confined to a very limited extend. In
addition, a key technique in [12] is not sufficiently implemented and may cause
disputes between the computing nodes, which need PVSS (publicly verifiable
secret sharing) to settle. Unfortunately, extension of Peng’s VSS to PVSS [13]
is not always sound.

2 Background

Among the existing VSS schemes [1,3–5,8–10,14] and PVSS schemes [2,7,11,
15,16], Peng’s design [12,13] have unique properties in assumption-freeness and
high efficiency. Peng’s VSS [12] works as follows for a sharer A to ensure share
holders P1, P2, . . . , Pn that their shares are fragments of and can reconstruct the
same secret where N is a large prime.

1. Sharing
A builds a polynomial F (x) =

∑t−1
j=0 ajx

j where a0 = s and aj for j =
1, 2, . . . , t − 1 are random integers chosen from ZN . Each Pi’s share is si =
F (i) mod N for i = 1, 2, . . . , n.

2. Verification
(a) A builds a polynomial G(x) =

∑t−1
j=0 bjx

j where bj for j = 0, 1, . . . , t − 1
are random integers chosen from ZN . Each Pi’s verification commitment
is ki = G(i) mod N .

(b) The share holders choose a random integer r from ZN as a challenge to
A.

c© Springer Nature Switzerland AG 2020
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(c) A publishes γj = bj + raj mod N for j = 0, 1, . . . , t − 1.
(d) Each Pi can verify (1) and accepts his share only if (1) is satisfied.

ki + rsi =
∑t−1

j=0
γji

j mod N (1)

8 years after its publication Peng’s design is still the simplest and most effi-
cient VSS protocol. In Sect. 2 of [13], when the share for every Pi does not
overflow the message space of the encryption algorithm used to securely deliver
the share to him, his VSS is extended to PVSS as follows to settle any dispute
between the participants.

– Paillier encryption is employed to encrypt each Pi’s share such that

ci = Ei(si) = gsi
i ri

Ni mod N2
i (2)

c′
i = Ei(ki) = gki

i r′
i
Ni mod N2

i (3)

where Ni is the product of two secret primes and larger than N , gi is generator
of a cyclic subgroup defined in Paillier encryption and ri is a random integer
in ZNi

.
– Facing the random challenge r and returning responses γj for j = 0, 1, . . . , t−

1, to convince Pi the sharer has to publish Ri ∈ ZNi
and prove knowledge of

zi to satisfy
cr
i c

′
i = gSi

i RNi
i (gN

i )zi mod Ni
2 (4)

using ZK proof of knowledge of logarithm as detailed in [13] where Si =
∑t−1

j=0 γji
j mod N .

3 Drawback of VSS

When applying Peng’s VSS in practice, we find that it needs a secure communica-
tion channel for the sharer to securely distribute the shares to the share holders.
The abstract concept of reliable and confidential communication, whose imple-
mentation is taken for granted in Peng’s design, usually depends on encryption in
the communication channel in practice. No matter which encryption algorithm
is employed, it must rely on some computational assumption for its security.
Therefore, when being applied in practice, it is actually impossible to deploy
VSS in an environment free of any computational assumption, although we do
agree that by employing a symmetric cipher to implement the needed secure
communication channel, application of Peng’s simple and efficient VSS can be
very efficient and does not need any exponentiation of large integers (except a
couple of exponentiations in session key exchange).

Although Peng’s VSS proof and verification in [12] is very efficient and
exponentiation-freed, its realisation depends on randomness of a challenge cho-
sen by the share holders. Our concern in implementation is that it is not specified
in detail how the share holders can cooperate to generate the random challenge
all of them are satisfied with. The explanation in [12] about this question is
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not directive or helpful to actual implementation work. We have no clue how
to generate the random integer in practice, no to mention practical methods to
generate the random challenge accepted by all the share holders probably need
some computational assumption to compromise its claimed perfect information-
theoretic security. We notice that a random integer to satisfy any single share
holder can be chosen by the share holder himself for verification of his own share.
Namely, each Pi can choose his own challenge ri and then A sends a response
γi,j = bj + riaj mod N for j = 0, 1, . . . , t − 1 to Pi such that it can verify
ki + risi =

∑t−1
j=0 γi,ji

j mod N. Unfortunately, after this modification, Theorem
2 in [12] cannot guarantee that all the share holders’ shares are generated by a
unique polynomial and soundness of VSS may fail. Moreover, if any two share
holders Pu and Pv collude and put their received responses together, they will
have

γu,j = bj + ruaj mod N for j = 0, 1, . . . , t − 1
γv,j = bj + rvaj mod N for j = 0, 1, . . . , t − 1.

Then they can use the 2t equations to easily obtain the 2t secret coefficients
a0, a1, . . . , at−1 and b0, b1, . . . , bt−1 and thus s = a0.

If all the n share holders must cooperatively generate the random challenge,
each Pi must contribute a seed ri to r. As none of them wants to reveal his
own seed first, they have to commit to their seeds first before any commitment
is open to reveal the committed seed. However, the commitment function will
depend on some additional computational assumption.

4 Upgrade to PVSS—Resolution and More Challenge

To handle possible dispute between the sharer and share holders and practically
implement gneration of the random challenge, Peng’s VSS in is upgraded to
PVSS in [13]. When the shares are guaranteed to be smaller than N , we can
employ the simpler and more efficient PVSS in Sect. 2 of [13] instead of the more
complicated version in Sect. 3 of [13]. Another benefit of PVSS is that the random
challenge can be publicly calculated as r = H(c1, c2, . . . , cn, c′

1, c
′
2, . . . , c

′
n) using

Fiat-Shamir heuristic [6] where H() is a one-way and collision-resistent hash
function and the share holders do not need to generate it any longer. However, as
implied in Sect. 3 of [13] the PVSS in Sect. 2 of [13] is vulnerable to the following
attack such that it cannot fairly solve the disputes caused by a dishonest sharer
who maliciously distributes incorrect and inconsistent shares.

1. For i = 1, 2, . . . , n, a malicious sharer does not build any share-generating
polynomial but chooses any si in ZN and any ki as he likes, and then he
calculates and publishes ci and c′

i following (2) and (3) as the encrypted
shares.

2. The sharer chooses γj ∈ ZN for j = 0, 1, . . . , t − 1 in any way he likes and
publishes them.
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3. Although the shares are not generated by the same share-generating polyno-
mial and have nothing to do with any γj , the sharer can prove correctness of
each Pi’s share as follows:
(a) The sharer can employ the Extended Euclidean Algorithm with an over-

whelmingly large probability to calculate two integers μ and ν to satisfy

rsi + ki − Si = μN + νNi

where Si =
∑t−1

j=0 γji
j mod N since GCD(N,Ni) = 1 except for a negli-

gible probability.
(b) By setting Ri = rr

i r
′
ig

ν
i mod N2

i and zi = μ the sharer can pass the
verification (4) as

cr
i c

′
i = (gsi

i rNi
i )rgki

i r′Ni

i = gsir+ki
i (rr

i r
′
i)

Ni = gSi+μN+νNi

i (rr
i r

′
i)

Ni

= gSi
i gNμ

i (gν
i )Ni(rr

i r
′
i)

Ni = gSi
i gNμ

i (gν
i rr

i r
′
i)

Ni = gSi
i RNi

i (gN
i )zi mod Ni

2

Success of the attack means that Peng’s PVSS protocol in Sect. 2 of [13] is
still not compeltely sound.

5 Further Optimisation

The PVSS to covercome the problem is as follows.

1. Public commitment
The dealer publicly publishes a commitment of his secret.
(a) p and q are large primes such that p = 2q + 1. G is the cyclic subgroup

of Z∗
p with order q. g and h are two generators of G such that logg h is

secret.
(b) A has a secret s in Zq to share. He randomly chooses an additional secret

k in Zq.
(c) A publishes u = gshx mod p and v = gkhy mod p where x and y are

randomly chosen from Zq.
2. Public share distribution

The dealer encrypts the shares and publicly sends them to the share holders.
Unlike the existing PVSS schemes, which employ costly asymmetric encryp-
tion algorithms, our new solution can employ a much more efficient symmetric
encryption algorithm to encrypt the shares. However, for fairness in compar-
ison with the existing PVSS schemes, we include distribution of the symmet-
ric keys through asymmetric cipher in our share distribution procedure. The
dealer publicly distributes the shares of secret s as follows.
(a) A builds a polynomial G(x) =

∑t−1
j=0 bjx

j where b0 = k and bj for j =
1, 2, . . . , t − 1 are random integers chosen from Zq.

(b) A calculates ki = G(i) mod q and publishes di = Ei(ki) for each Pi

where Ei() denotes encryption using Pi’s public key and an asymmetric
encryption algorithm (e.g. RSA or ElGamal).
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(c) A builds a polynomial F (x) =
∑t−1

j=0 ajx
j where a0 = s and aj for j =

1, 2, . . . , t − 1 are random integers chosen from Zq.
(d) A calculates si = F (i) mod q and publishes ei = Eki

(si) for each Pi

where Eki
() denotes symmetric encryption using session key ki and an

symmetric encryption algorithm.
3. Reconstruction

If at least t share holders submit their shares si, the secret s is reconstructed:

s =
∑

i∈V
siwi mod q where wi =

∏

j∈V,j �=i

j

j − i
mod q

and V is the set containing the indexes of the t shares.

6 Conclusion

Peng’s VSS and PVSS proposal can work better in practical applications of
distributed computing after being upgraded and optimised.
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Abstract. We consider K = (k+1)×(k+1) autonomous mobile robots
operating on an anonymous N = (n + 1) × (n + 1)-node grid, n =
k ·d, d ≥ 2, k ≥ 2, following Look-Compute-Move cycles under the classic
oblivious robots model. Starting from any initial configuration of robots
positioned on distinct grid nodes, we consider the uniform scattering
problem of repositioning them on the grid nodes so that each robot
reaches to a static configuration in which they cover uniformly the grid.
In this paper, we provide the first O(n) time, collision-free algorithm
for this problem in the asynchronous setting, given that the robots have
common orientation, knowledge of n and k, O(1)-bits of memory, and
visibility range of 2 · max{n/k, k}. The best previously known algorithm
for this problem on a grid has runtime O(n2/d) (or O(nk)) with the
same robot capabilities in the asynchronous setting except the visibility
range 2 · n/k. The proposed algorithm is asymptotically time-optimal
since there is a time lower bound of Ω(n).

1 Introduction

The well-studied model in distributed computing by a team of autonomous
mobile robots is the classic oblivious robots (COR) model [8] where the robots
in the team are points (do not occupy any space), autonomous (no external
control), anonymous (no unique identifiers), indistinguishable (no external iden-
tifiers), disoriented (no agreement on coordinate systems and units of distance
measures), oblivious (no memory of past computation), and silent (no direct
communication and actions are coordinated via only vision and mobility). The
robots operate on a plane and execute the same algorithm. The robots perform
their computation in Look-Compute-Move (LCM) cycles: an active robot first
gets a snapshot of its surroundings (Look), computes a destination point based
on the snapshot (Compute), and finally moves to the destination point (Move).

In this paper, we assume that robots operate on a grid G. We assume that
nodes and edges of G are unlabeled, i.e., robots cannot differentiate one node
(edge) from another. The robots reside at nodes of G and they can move from
one node to another following the edges of G. The non-neighbor nodes in G are
visited following the intermediate nodes of G. We assume that, if a robot at a

c© Springer Nature Switzerland AG 2020
S. Devismes and N. Mittal (Eds.): SSS 2020, LNCS 12514, pp. 211–228, 2020.
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Table 1. Results for Uniform Scattering on a grid.

Algorithm Model Visibility range Runtime Setting

Barriere et al. [2] Classic oblivious 2 · n/k O(nk) Asynchronous

Poudel and Sharma [18] Robots with lights 2 · n/k Θ(n) Fully Synchronous

Theorem 1 Classic oblivious 2 · max{n/k, k} Θ(n) Asynchronous

node computes a destination point (to move) in one LCM cycle, then that des-
tination point is the neighboring node of the node where that robot is currently
positioned.

We study the fundamental Uniform Scattering problem on an anonymous
(square) grid G of N = (n+1)× (n+1) nodes for a set of K = (k +1)× (k +1)
robots, which is defined as follows: Given any initial configuration of K robots
positioned on distinct nodes of G, the robots reposition to reach a configuration
in which each robot is on a distinct node of G and they uniformly cover G (see
Fig. 1).

Fig. 1. (a) Initial configuration;
(b) Uniform Scattering.

This problem has practical applications when
a team of randomly deployed robots in a region
have to cover the region uniformly to maxi-
mize the coverage for different purposes, such as
intruder detection. An essential requirement is
clearly that the robots will reach a state of static
equilibrium and that scattering is completed as
fast as possible. It is assumed that n = k · d,
d ≥ 2, k ≥ 2 to guarantee a final Uniform
Scattering configuration.

Barriere et al. [2] studied Uniform Scattering for the first time in the
COR model, providing a deterministic algorithm in the asynchronous setting
given that the robots have the following capabilities:

– common orientation – each robot has consistent notion of North-South and
West-East, e.g., as provided by a compass,

– knowledge of parameters n and k,
– a visibility range of 2 · �n/k� (i.e., a robot can see robots within distance

2 · �n/k�),
– O(1)-bits of memory in each robot to store the different states of the system.

Barriere et al. [2] did not formally analyze the runtime; however, it is easy to
show that their algorithm has runtime O(n2/d) (or O(nk)). Recently, Poudel and
Sharma [18] proposed a Θ(n)-time algorithm in the fully synchronous setting for
Uniform Scattering in the robots with lights (RWL) model [4], where robots
have an externally visible light that can assume a distinct color at a time from
a given constant sized set. In this paper, our goal is to design a faster algorithm
in the asynchronous setting for Uniform Scattering in the COR model (see
Table 1 for the comparison).
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Contributions. We consider the robots and problem setting on a grid as in
Barriere et al. [2], except the visibility range 2 · max{�n/k�, k}. Unobstructed
visibility is considered where a robot sees all other robots within its visibility
range. Asynchronous setting is considered where the robots perform their LCM
cycles at arbitrary times. Two robots cannot move to the same node in G. This
would constitute a collision. We prove:

Theorem 1. For any initial configuration of K = (k + 1) × (k + 1) robots
positioned on distinct nodes of an anonymous square grid G of N = (n + 1) ×
(n+1) nodes with each robot having the visibility range 2·max{n/k, k}, Uniform
Scattering can be solved in Θ(n) time in the asynchronous setting avoiding
collisions, when robots have common orientation, knowledge of n and k, and
O(1) bits of internal memory.

Theorem 1 improves significantly on the O(nk) (or O(n2/d)) runtime of Bar-
riere et al. [2] for the COR model under the same capabilities, except that our
algorithm has visibility range 2 · max{n/k, k} whereas Barriere et al. [2] has
2 · n/k. Interestingly when k ≤ √

n, our visibility range matches with the visi-
bility range of Barriere et al.

Techniques. The time lower bound can be established by showing the minimum
number of times some robot has to move to reach a Uniform Scattering
configuration. The time lower bound established in Poudel and Sharma [18]
immediately proves this lower bound. For the time upper bound, we provide a
deterministic algorithm that works in three phases, Phase 1 to Phase 3, executed
sequentially.

– Phase 1 (Gather): In this phase, all K robots are repositioned on the dis-
tinct nodes in the top-right part of G forming a square sub-grid G′ (which we
call the gathering configuration Cgather; formal definition in Sect. 2). Essen-
tially what happens in Cgather is that robots occupy the (k + 1) × (k + 1)
sub-grid G′, one robot on each node of G′. Cgather is obtained through two
kinds of moves: (i) Northeast moves and (ii) Balancing moves. A robot per-
forms Northeast moves to reach G′. The robot moves either vertically North
or horizontally East during Northeast moves. After reaching G′, the robot
switches to Balancing moves. In the Balancing moves, based on the configu-
ration of other robots, the robot may move North, East, South or West inside
G′, facilitating new incoming robots to be accommodated inside G′ fast. We
show that this process results Cgather in O(n) time.

– Phase 2 (Pre-scatter): The robots in Cgather move horizontally West to
occupy (k + 1) columns of G with distance between two subsequent columns
exactly d = n/k. In each such column, the k +1 robots occupy k +1 consecu-
tive positions from the top boundary line of G, which we call the pre-scatter
configuration Cpre−scatter. In this phase, when a robot sees at least one robot
on the same horizontal line in the East at distance less than d and the neigh-
boring node in the West is empty, it moves to the West. We show that this
phase finishes in O(n) time.
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– Phase 3 (Scatter): The k + 1 robots in each of the k + 1 columns move
vertically South maintaining a fixed distance d = n/k between consecutive
robots. There are k + 1 final positions on each line, and hence a Uniform
Scattering configuration is achieved when robots move to the final positions
on those lines. The algorithm then terminates. We will show that this phase
also finishes in O(n) time.

Therefore, the overall runtime of the algorithm becomes O(n), which is
asymptotically optimal given the time lower bound of Ω(n). Executing Phases
1–3 becomes relatively straightforward in the fully synchronous setting. The
challenge is on how to execute Phases 1–3 correctly in the asynchronous set-
ting. For simplicity in understanding, we present the synchronous case first and
extend it later to the asynchronous case.

Related Work. Uniform Scattering is the subject of extensive research in
several fields. The research literature is vast and we only discuss in brief the
aspects related to our work. In cooperative mobile swarm robotics, this question
has been studied in terms of scattering, coverage, and a special case of formation
[1,3,5,9,10,13,15,22]. Uniform Scattering has also been studied in terms of
self-deployment in mobile sensor networks and in networks of robotic sensors
[11,12,16,17,19,21].

The existing works differ on whether robots (sensors) operate on plane or on
graphs. They also differ on various parameters, e.g., (i) synchronization settings
(fully synchronous, semi-synchronous, or asynchronous), (ii) the robots are obliv-
ious or have persistent memory, (iii) unlimited or limited visibility range, (iv)
exact or approximate covering, (v) termination guarantees, (vi) knowledge of the
number of robots in the system, (vii) obstructed/unobstructed visibility, (viii)
knowledge of the global coordinate system/common orientation/chirality/one-
axis agreement, etc.

Our work is on graphs, particularly grids. The grid setting was heavily used
in self-deployment and covering problems. We build upon the only previous work
of Barriere et al. [2] in the COR model. Furthermore, scattering is considered in
[14] in the Euclidean plane under limited visibility and non-trivial time bounds
(lower and upper) were reported. Scattering on a ring is considered in [6,7,20].

Paper Organization. We discuss model and some preliminaries in Sect. 2.
The algorithm in the fully synchronous setting is presented in Sect. 3 and the
extension to the asynchronous setting is provided in Sect. 4. Finally, we conclude
in Sect. 5. Some proofs and pseudocodes are omitted due to space constraints.

2 Model and Preliminaries

Graph. Let G = (V,E) be a grid of N = (n + 1) × (n + 1) nodes, where
V = {v1, v2, . . .} denotes the node sets and E ⊆ V × V denotes the edge sets.
Each node vi represents a point location and each edge (vi, vj), i �= j, represents
a line connecting any two nodes vi and vj of V . We assume that the grid is
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anonymous, i.e., nodes and edges of G are unlabeled. We assume that each edge
of G is of unit distance length.

Robots. Let R = {r1, r2, . . . , rK} be a set of K = (k + 1) × (k + 1) robots
residing on the nodes of grid G. No robot can reside on the edges of G at any
time (except in motion). Moreover, no two robots can occupy the same node of
G. In the initial configuration, we assume that robots in R are at distinct nodes
of G and maintain this property throughout the execution of the algorithm.
In the algorithm description, we denote by ri the robot ri and vi the node
on which ri resides. The robots have the visibility range 2 · max{n/k, k}. We
assume unobstructed visibility, i.e., a robot sees all other robots within distance
2 · max{n/k, k} (even if the robots are collinear). Following Barriere et al. [2],
we assume that robots can detect the boundary lines of G when they are ≤
2 · max{n/k, k} distance away from the boundary of G.

Common Orientation. The common orientation means that each robot has
a consistent notion of “North-South” and “West-East”, e.g., as provided by a
compass [2]. For the common orientation, no access to any global localization
system is required, i.e., the robots do not need to know their own position on
the grid G. We assume that the edges of G are consistently labeled North (top),
South (bottom), West (left), and East (right), and edge labels are visible to
robots.

Look-Compute-Move. At any time, a robot ri ∈ R could be active or inactive.
When a robot ri becomes active, it performs the “Look-Compute-Move” cycle
as follows.

– Look: For each robot rj that is visible to it, ri can observe the position of rj
on G. Robot ri can also know its own position.

– Compute: In any LCM cycle, ri may perform an arbitrary computation using
only the positions observed during the “look” portion of that cycle. This
includes determination of a (possibly) new position (which is a node of G)
and internal memory storage for ri for the start of the next cycle. Robot ri
maintains this new memory information from that cycle to the next.

– Move: At the end of the LCM cycle, ri changes its memory to the new infor-
mation and moves to its new position.

Robot Activation and Time. In the fully synchronous setting (FSY NC),
every robot is active in every LCM cycle. In the semi-synchronous setting
(SSY NC), at least one robot is active, and over an infinite number of LCM
cycles, every robot is active infinitely often. In the asynchronous setting
(ASY NC), there is no common notion of time and no assumption is made
on the number and frequency of LCM cycles in which a robot can be active;
nevertheless, each robot is active infinitely often. For the FSY NC, time is mea-
sured in rounds. For the SSY NC and ASY NC, time is measured in epoch. An
epoch is the smallest interval of time within which each robot is guaranteed to
be active at least once.
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Configuration. A configuration Ct = {(rt1,memt
1), . . . , (r

t
K ,memt

K)} defines
the positions of the robots in R on the nodes of G and their internal memory for
any time t ≥ 0. A configuration for a robot ri ∈ R, Ct(ri), defines the positions
of the robots in R that are visible to ri (including ri) and their memory, i.e.,
Ct(ri) ⊆ Ct, at time t. Since each robot has visibility range 2·max{n/k, k}, Ct(ri)
has the robots that are within distance 2 · max{n/k, k} from ri. For simplicity
and clarity, we sometime write C,C(ri) to denote Ct, Ct(ri), respectively. The
configuration Ct at t = 0 is called the initial configuration Cinit, in which K
robots are on K distinct nodes of G.

Uniform Scattering. Given an anonymous grid G = (V,E) of N = (n + 1) ×
(n+1) nodes and a team of K = (k+1)×(k+1) robots with n = k·d, k ≥ 2, d ≥ 2,
positioned initially arbitrarily on the distinct nodes of G, reposition the robots
autonomously to reach an equilibrium such that the nodes (i · d, j · d) of G with
i, j ∈ [0, k] hosting exactly one robot each. We say nodes (i·d, j ·d) with i, j ∈ [0, k]
the final positions. We say a node (x, y) of G occupied (or non-empty), if there
is a robot positioned on it.

Fig. 2. Cgather.

Gathering Configuration. Let R be a set of
K robots positioned on the distinct nodes of G.
Let LN , LS , LW , LE be the North, South, East and
West boundary lines of G, respectively. Let L′

W and
L′
S be the vertical and horizontal lines parallel to

LE and LN and passing through k hops West and
South of LE and LN , respectively. Let G′ be the
sub-grid of G enclosed by lines LE , LN , L′

W , and
L′
S (including the nodes of G on LE , LN , L′

W , L′
S)

in G. We say that a robot ri ∈ R is in a gathering
configuration Cgather if ri lies on G′ and ri sees all
the nodes in G′ are occupied (Fig. 2). We say that
the robots in the set R are in Cgather, if each robot in R is in Cgather. Therefore,
in Cgather, the (k + 1) × (k + 1) sub-grid on the topright part of G is occupied
with robots. Moreover, we define two regions w.r.t. G′. The grid area of G in the
West of G′ between LN and L′

S is denoted as west-region of G′. The grid area
of G in the South of G′ between LE and L′

W is denoted as south-region of G′.

3 Uniform Scattering Algorithm in FSY NC

We now describe our collision-free, time-optimal O(n)-round Uniform Scat-
tering algorithm in the FSY NC setting. The pseudocode is given in Algorithm
1. The robots have the common orientation, knowledge of parameters n and k,
visibility range of 2 · max{�n/k�, k}, and O(1)-bits of memory internal to each
robot. We describe the algorithm with respect to a single robot ri ∈ R. Figure 3
depicts what intuitively Phases 1–3 do to solve Uniform Scattering starting
from any arbitrary Cinit.
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Fig. 3. (a) Initial configuration Cinit; (b) Gathering configuration Cgather (Phase
1); (c) Pre-scatter Configuration (Phase 2); (d) Uniform Scattering Configuration
(Phase 3).

Algorithm 1: UNIFORM SCATTER(ri, n, k,G)
1 C(ri) ← configuration C for robot ri (including ri);
2 LE , LW , LN , LS ← East, West, North and South boundary lines of G, respectively;

3 L′
W ← vertical line parallel to LE at distance k west from LE ;

4 L′
S ← horizontal line parallel to LN at distance k south from LN ;

5 G′ ← subgraph of G enclosed by lines LE , LN , L′
W and L′

S ;
6 H(ri), V (ri) ← horizontal and vertical lines on G passing through ri, respectively;
7 ri · state ← 0 (initial state of ri); d ← n/k;

8 if ri · state = 0 then GATHER(ri ,H (ri),V (ri ),LE ,LN ,L′
S ,L

′
W ,G′,C (ri ));

9 else if ri · state = 1 then PRE SCATTER(ri , d,H (ri ),V (ri),LE ,LW ,L′
S ,C (ri ));

10 else if ri · state = 2 then SCATTER(ri , d,V (ri ),LN ,LS ,C (ri));

Algorithm 2: GATHER(ri,H(ri), V (ri), LE , LN , L′
S , L′

W , G′, C(ri))
1 (xi, yi) ← current position of ri in G;

2 if (xi, yi) ∈ G′ then

3 if ri sees all the nodes of G′ occupied then ri · state ← 1;

4 else BALANCE(ri ,H (ri),V (ri ),LE ,LN ,L′
W ,L′

S ,G
′,C (ri ));

5 else if (xi, yi + 1) is empty ∧ ((xi, yi + 1) /∈ G′ ∨ ((xi, yi + 1) ∈ G′ ∧ (xi + 1, yi + 1) is

empty ∧ ri sees no robot in the West of G′ between LN and L′
S)) then

6 ri moves to (xi, yi + 1);

7 else if (xi + 1, yi) is empty ∧ (((xi + 1, yi) ∈ G′ ∧ (xi + 1, yi + 1) is empty)

∨((xi + 1, yi) /∈ G′ ∧ (xi + 1, yi − 1) is empty)) then ri moves to (xi + 1, yi);

Phase 1 (Gather). The purpose of Phase 1 is to reach a gathering configuration
Cgather starting from Cinit (Fig. 3(a)–(b)). The pseudocode is given in Algorithm
2. Phase 1 has two sub-phases, Phase 1.1 (Northeast moves) and Phase 1.2
(Balancing moves), which execute sequentially one after another. In Phase 1.1,
robots move towards the North-East of G until they reach G′. After a robot
reaches G′, it switches to Phase 1.2 doing balancing moves to reposition itself
inside G′. We guarantee that after a robot enters G′, it never moves out of G′

during Phase 1. By the end of Phase 1, all K robots are positioned on the distinct
nodes of G′ achieving Cgather. We will prove that Phases 1.1 and 1.2 each run
for O(n) rounds. We describe Phase 1.1 and 1.2 in detail below.

Phase 1.1 (Northeast Moves). Let (xi, yi) be the current position of robot
ri in G. In Phase 1.1, ri does the following in each LCM cycle.
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Algorithm 3: BALANCE(ri,H(ri), V (ri), , LE , LN , L′
W , L′

S , G′, C(ri))
1 if ri sees no robot in the South of G′ between LE and L′

W ∨ ri sees at least a robot at

distance ≤ (2k − 2) in the West of G′ between LN and L′
S then MoveSE();

2 else if ri sees no robot in the West of G′ between LN and L′
S ∧ ri sees at least a robot at

distance ≤ (2k − 2) in the South of G′ between LE and L′
W then MoveWN();

Algorithm 4: MoveSE()
1 rsouth ← southmost robot seen by ri in the West of G′;
2 Lref ← horizontal reference line passing through rsouth;
3 dref ← distance between LN and Lref ;

4 dx, dy ← distance from ri to L′
W and Lref , respectively;

5 if (xi, yi − 1) is empty ∧ dx ≥ dy ∧ there exist less than (k − dref ) robots on V (ri) in the
South of ri then ri moves to (xi, yi − 1);

6 else if (xi + 1, yi) and (xi + 1, yi + 1) are empty then ri moves to (xi + 1, yi);

– Move to (xi, yi + 1), if that position (i.e., grid node) is empty and either:
i. (xi, yi + 1) does not lie on G′, or
ii. (xi, yi + 1) lies on G′, (xi + 1, yi + 1) is empty and ri sees no robot in the

west-region of G′. (Note: This condition prevents possible collision of ri
with another robot rj inside G′ due to the balancing move of rj .)

– Otherwise, move to (xi + 1, yi), if (xi + 1, yi) is empty, and either:
i. (xi + 1, yi) lies on G′ and there is no robot on (xi + 1, yi + 1), or
ii. (xi + 1, yi) does not lie on G′ and there is no robot on (xi + 1, yi − 1).

– Switch to Phase 1.2, if it lies on G′ and G′ is not fully occupied.
– Switch to Phase 2, if G′ is fully occupied.

Phase 1.2 (Balancing Moves). The pseudocode for Phase 1.2 is in Algo-
rithm 3. When a robot ri reaches G′, it performs balancing moves as follows.
(Note that the robot ri never moves outside of G′ during Phase 1.2.).

Case 1 – ri sees no robot in the south-region of G′ OR ri sees at least a
robot at distance ≤ (2k−2) in the west-region of G′: ri moves either South
or East. ri first checks for possible move towards South, and then towards East.
Let (xi, yi) be the current position of ri in G and H(ri), V (ri) be the horizontal
and vertical lines passing through ri, respectively. Let rsouth be the southmost
robot seen by ri in the west-region of G′ and Lref be the horizontal reference
line passing through rsouth. Let L′

W be the westmost vertical line of G′. Let dref
be the distance between LN and Lref , dx be the distance from ri to L′

W and
dy be the distance from ri to Lref . Then, ri moves South to (xi, yi − 1), if the
following conditions are satisfied: (i) (xi, yi − 1) is empty, (ii) dx ≥ dy, and (iii)
ri sees less than (k − dref ) robots on V (ri) in the South of ri.

Else if (xi + 1, yi) and (xi + 1, yi + 1) are empty, then ri moves East to
(xi + 1, yi).
Case 2 – ri sees no robot in the west-region of G′ but sees at least a
robot at distance ≤ (2k − 2) in the south-region of G′: ri moves either
West or North. ri first checks for possible move towards West, and then towards
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Algorithm 5: MoveWN()
1 rwest ← westmost robot seen by ri in the South of G′;
2 L′

ref ← vertical reference line passing through rwest;

3 d′
ref ← distance between LE and L′

ref ;

4 dx′, dy′ ← distance from ri to L′
ref and L′

S , respectively;

5 if (xi − 1, yi) is empty ∧ dy′ ≥ dx′ ∧ there exist less than (k − d′
ref ) robots on H(ri) in the

West of ri then ri moves to (xi − 1, yi);
6 else if (xi, yi + 1) and (xi + 1, yi + 1) are empty then ri moves to (xi, yi + 1);

North. Let rwest be the westmost robot seen by ri in the south-region of G′

and L′
ref be the vertical line passing through rwest. Let L′

S be the southmost
horizontal line of G′. Let d′

ref be the distance between LE and L′
ref . Let dx′ and

dy′ be the distances from ri to L′
ref and L′

S , respectively. Then, ri moves one
unit West, if the following conditions are satisfied: (i) (xi − 1, yi) is empty, (ii)
dy′ ≥ dx′, and (iii) ri sees less than (k −d′

ref ) robots on H(ri) in the West of ri.
Else if (xi, yi+1) and (xi+1, yi+1) are empty, ri moves North to (xi, yi+1).
Recall that a robot reaches Phase 1.2 after Phase 1.1; however, two different

sets of robots execute Phase 1.1 and Phase 1.2 in parallel. While the robots
inside G′ are performing Balancing moves, the robots outside G′ are performing
Northeast moves. Phase 1.2 starts after at least a robot reaches G′. Phase 1.1
ends when all the robots reach Phase 1.2. When all the robots reach Phase 1.2,
gathering configuration Cgather is achieved and Phase 1.2 also ends. That means,
Phase 1.1 and 1.2 both end together.

Lemma 1. Phase 1.2 starts in at most O(n) rounds after Phase 1.1.

Proof. If a robot rj lies inside G′ in the initial configuration Cinit, then rj
directly reaches Phase 1.2. In this case, both Phase 1.1 and Phase 1.2 start at
the same time. Let us analyze the case where no robot lies inside G′ in Cinit.
Let r be the topmost and rightmost robot in the initial configuration Cinit of
K robots in G. Let Phase 1.1 starts and r executes Algorithm 2. Since, r is the
topmost and rightmost robot in G, it moves North until it reaches either G′, or
north boundary line LN of G. If r reaches G′, it has taken less than n rounds
and Phase 1.2 starts. Otherwise, r takes at most n rounds to reach LN , and it
moves East on LN until it reaches G′ in less than next n rounds. Since, r is the
topmost and rightmost robot, there is no other robot that blocks the movement
of r. Hence, in less than 2n rounds, r reaches G′ and Phase 1.2 starts. 
�
Lemma 2. Phase 1.1 is collision-free.

Lemma 3. Phase 1.2 is collision-, deadlock-, and livelock-free.

Lemma 4. Phase 1 finishes in O(n) rounds.

Proof. We have two sub-phases of Phase 1 (Phase 1.1 and Phase 1.2). Phase 1.2
starts after at least a robot reaches G′. Thus, the total runtime of Phase 1 can
be divided into two parts: (i) time elapsed in Phase 1.1 and (ii) runtime of Phase
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Fig. 4. Illustration of movement of robots during Phase 1; (a) if all robots reach west-
region of G′ in Phase 1.1, they move South/East inside G′ in Phase 1.2; (b) if all robots
reach south-region of G′ in Phase 1.1, they move North/West inside G′ in Phase 1.2;
(c) if robots reach in both west-region and south-region of G′ in Phase 1.1, they may
perform all four types of moves (East, West, North or South) inside G′ in Phase 1.2.

1.2. From Lemma 1, the time elapsed in Phase 1.1 before the start of Phase 1.2
is O(n) rounds.

Now, let us analyze the runtime of Phase 1.2 with three different cases.
Case I: All robots reach the west-region of G′ during Phase 1.1
(Fig. 4(a)). Let Ri = {r0i , r

1
i , . . . , r

p−1
i }, i = 1, 2, . . . , n−k, be the set of p ≤ k+1

robots on each column at i distance west of L′
W where r0i represents the robot

at the northmost horizontal line, r1i represents the robot on the next horizontal
line below it and so on. Note that each horizontal line contains ≤ n − k robots
and each column in the West of L′

W contains ≤ p robots on it. When robots in
set R1 move East, they reach G′ (i.e. L′

W ) and Phase 1.2 starts. In round 1 of
Phase 1.2, the robots on L′

W (initially in set R1) of G′ execute Algorithm 3 to
perform balancing moves. If p = k + 1, all the robots on L′

W move East. This
process repeats for all other sets of robots and it is easy to see that all the robots
reach G′ in 2(k+1) rounds. Let us analyze the scenario of p < k+1. In this case,
the southmost robot (rp−1

1 ) on L′
W moves South and the remaining ones move

East leaving behind the top p positions on L′
W empty. During this round, the

next set of robots (R2) move East and occupy the previous positions of R1 in
the West of L′

W . In round 2 of Phase 1.2, the robots in R2 reach L′
W , the robots

which are already in G′ (i.e. R1), move further East or South (the southmost,
rp−2
1 , moves South and others move East). This provides empty nodes for the

robots currently on L′
W (i.e. R2) to move East or South in the next round. Also,

in round 2, the robots in set R3 reach to the initial positions of R2. In round 3,
robots in R4 reach to the initial positions of R3, robots in R3 reach to the initial
positions of R1 and the robots in R2 (currently on L′

W ) move East or South in
G′. The robots in R1 move further East or South by one unit. When the south-
most robot rp−1

1 of R1 reaches the South boundary line L′
S of G′, it moves East

in the next round where it meets rp−2
1 on its North neighboring node. In the

next round, these both robots move East and meet rp−3
1 . Following this process,

all the p robots of set R1 ultimately reach the consecutive nodes on LE in the
South part of G′. That means, the southmost p rows of G′ will be occupied by
the first k + 1 sets of robots (i.e. R1 to Rk+1). Similarly, next p rows of G′ will
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be occupied by the next k + 1 sets of robots (i.e. Rk+2 to R2k+2). Recall that,
in this case, a robot always search for a possible East or South move inside G′,
thus creating an empty node for each incoming robot from next column in the
West. That means, in every two rounds, one column of p robots enter G′. Thus,
in 2(n − k) ≤ 2n rounds, all the robots reach G′. This achieves the gathering
configuration Cgather and Phase 1.2 terminates.
Case II: All robots reach the south-region of G′ during Phase 1.1
(Fig. 4(b)). This case is analogous to Case I. Here, each vertical line con-
tains ≤ n − k robots on it. In this case, robots reach G′ performing North move
from each of the eastmost q ≤ k + 1 vertical lines. Once a robot reaches G′,
it performs West or North move inside G′. Following the arguments of Case I
analogously, in every 2 rounds, one robot each from the q vertical lines reaches
G′. That means, in ≤ 2n rounds, all the robots reach G′ having the gathering
configuration Cgather and Phase 1.2 terminates.
Case III: There are robots in both sides (west-region and south-region)
of G′ during Phase 1.1 (Fig. 4(c)). This case is the combination of Case I
and Case II. In Phase 1.1, the robots in the south-region of G′ do not move to
G′ until they see robots in the west-region of G′. That means, first all the robots
in the west-region of G′ move to G′ and then the robots in the south-region of
G′ move to G′. The robots in the west-region follow case I and the robots in
the south-region follow case II to reach and move inside G′. However, as soon
as all the robots in the west-region reach G′, the robots in the south-region may
not be able to move immediately to G′ as there might not be empty positions.
Because, in case I, the robots inside G′ move South/East to occupy South/East
part of G′. But, when there are no robots in the west-region of G′, the robots
inside G′ also satisfy case II and start moving North/West. This may take at
most 2k time to have empty nodes in the southmost horizontal line L′

N of G′.
As soon as there are empty nodes on L′

N , the robots in the south-region start
moving to G′ following case II. Case I and II execute for ≤ 2n rounds each. Thus,
all the robots reach gathering configuration in ≤ 4n + 2k rounds and Phase 1.2
terminates.

Hence, Phase 1 finishes in total at most O(n) + 4n + 2k = O(n) rounds. 
�

Phase 2 (Pre-Scatter). The pseudocode of the algorithm for Phase 2 is given
in Algorithm 6. The purpose of Phase 2 is to distribute the robots on k + 1
vertical lines separated at d distance apart, such that each vertical line contains
k + 1 robots achieving the pre-scatter configuration Cpre−scatter (Fig. 3(c)). In
this phase, robots move horizontally West in G. Let H(ri) and V (ri) be the
horizontal and vertical line passing through ri in G, respectively. Let LN be
the north boundary line of G and L′

S be the horizontal line parallel to LN and
passing through k distance South of LN . In each LCM cycle, ri moves one unit
West if the node is empty and it sees a robot on H(ri) in the East at distance
less than d. When a robot reaches to the West boundary line LW , it changes its
state to Phase 3. ri also changes its state to Phase 3, if it sees a robot in the
South of L′

S at horizontal distance d · x from V (ri) where x = 0, 1, 2, . . . . We
prove the following lemma.
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Algorithm 6: PRE SCATTER(ri, d,H(ri), V (ri), LE , LW , L′
S , C(ri))

1 if (xi, yi) ∈ LW then ri · state ← 2;

2 else if ri sees a robot in the south of L′
S at distance d · x from V (ri) (on, left or right of

V (ri)) where x = 0, 1, 2, . . . then ri · state ← 2;
3 else if (xi − 1, yi) is empty ∧ ri sees a robot on H(ri) at distance less than d in the East

then ri moves to (xi − 1, yi);

Algorithm 7: SCATTER(ri, d, V (ri), LN , LS , C(ri))
1 Ld

V ← vertical line parallel to V (ri) at distance d east of V (ri);
2 if (xi, yi) ∈ LN ∨ (xi, yi) ∈ LS then ri terminates;
3 else if ri sees robots on V (ri) exactly at distance d · x from ri where x = 1, 2, 3, . . . then
4 ri terminates;
5 else if ri sees a robot on V (ri) in the North at distance less than d ∧ ri sees no robot

between V (ri) and Ld
V ∧ (xi, yi − 1) is empty then ri moves to (xi, yi − 1);

Lemma 5. Phase 2 finishes in O(n) rounds avoiding robot collisions.

Phase 3 (Scatter). Phase 3 executes after Phase 2 and the pseudocode is given
in Algorithm 7. The purpose of Phase 3 is to uniformly scatter the robots in G
achieving the Uniform Scattering configuration as depicted in Fig. 3(d). In
this phase, robots move vertically towards South in G. Let LN , LS be the North
and South boundary lines of G, respectively and H(ri), V (ri) be the horizontal
and vertical lines passing through ri, respectively. Let Ld

V be the vertical line
parallel to V (ri) and passing through d distance East of V (ri). All the robots on
LN terminate without moving as they are already at the final positions. When
a robot ri at (xi, yi) sees another robot on V (ri) in the North at distance less
than d, it moves one unit South to (xi, yi − 1) if the node is empty and ri sees
no robot between V (ri) and Ld

V . When ri reaches to LS , it terminates. ri also
terminates when it sees all the robots on V (ri) (up to the visibility range) are
exactly at d distance apart.

Lemma 6. Phase 3 finishes in O(n) rounds avoiding robot collisions.

Proof of Theorem 1. The analysis above proves Theorem 1 for the
FSY NC. 
�

4 Uniform Scattering Algorithm in ASY NC

In this section, we extend the algorithm for the FSY NC to the ASY NC setting.
We describe a collision-free, time-optimal ASY NC O(n)-epoch algorithm. The
algorithm has four phases: Phase 0 (Pre-Gather), Phase 1 (Gather), Phase 2
(Pre-Scatter) and Phase 3 (Scatter). Unlike FSY NC, the ASY NC algorithm
has one more phase called Phase 0 (Pre-Gather) before Phase 1. Phases 1, 2
and 3 of the ASY NC are equivalent to the FSY NC but each phase is modified
appropriately. In the FSY NC algorithm, all the robots switch to Phase 2 from
Phase 1 synchronously when Cgather is achieved. But in the ASY NC algorithm,
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Phase 0: Pre-Gather
– All the robots on LN of G move South to L′

N and reach Phase 1 avoiding collision.
Phase 1: Gather
– All the robots perform Northeast move (avoiding collisions due to the movement of robots

at LN to L′
N in Phase 0) to reach sub-grid G′ in the North-East part of G below LN .

– When a robot reaches G′, it performs Balancing move inside G′ to achieve Cgather .
– All the robots reach Phase 2 after achieving gathering configuration Cgather .

Phase 2: Pre-Scatter
Phase 2.1:
– Robot at the North-East corner v′

ne of G
′ moves North to the North-East corner vne of G.

– Robot at the South-West corner v′
sw of G′ moves West after the robot at v′

ne moved to vne.
– Then, the remaining robots on the westmost boundary line L′

W of G′ move West.
– After all the robots on L′

W moved one unit west of L′
W , the southmost robot among them

moves further West; the remaining others in the column also follow the West move after it.
Phase 2.2:
– When a robot inside G′ sees next robot in the West on its horizontal line at distance 3 and

all the nodes in the East are occupied, it moves one unit West.
– The robot also moves West when it sees the next robot in the East on its horizontal line has

already started moving West.
Phase 2.3:
– A robot moves West when it sees another robot in the East on its horizontal line at distance

less than d.
– When the k + 1 robots reach the westmost boundary line LW of G, the northmost robot

among them moves North to LN .
– Among every next column of k + 1 robots at d distance apart, the northmost robot moves

North to LN after seeing the robot from the previous column at distance d moved to LN .
– The robots on LN reach Phase 3. The remaining robots on LE move one unit West and reach

Phase 3. The other remaining robots move one unit East and reach Phase 3.
Phase 3: Scatter
– Each robot moves South avoiding collision and maintaining a gap of at most distance d to

the next robot in the North on its vertical line.
– When a robot reaches the south boundary line LS of G, if it lies one unit West of LE , it

moves one unit East and terminates; Otherwise, it moves one unit West and terminates.
– Any other robot when sees no robot in South on its vertical line but a robot at d distance South

on the next vertical line in the West (East), it moves one unit West (East) and terminates.

Fig. 5. Algorithm for Uniform Scattering in the ASY NC setting.

robots may become active asynchronously and some robots may never see Cgather

when they become active. So, we need a different mechanism to switch from
Phase 1 to Phase 2 in ASY NC. To handle this situation, we introduce Phase 0
before Phase 1 which makes the northmost boundary line of G empty. Later in
Phase 1, when Cgather is achieved, one robot is moved to the North-East corner
of G which becomes a reference for other robots to switch from Phase 1 to Phase
2. The detail mechanism is explained later in the description of each Phase. Each
robot passes through Phases 0–3 sequentially. Figure 5 outlines the algorithm in
high level. Figure 6 illustrates the configuration of robots at different stages of
each phase.
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Fig. 6. Configuration of robots at different phases executing algorithm for ASY NC.

Phase 0 (Pre-Gather). The purpose of this phase is to make the North bound-
ary line LN of G empty. If any robot ri is located on LN in Cinit, the robot is
moved South during Phase 0. For this, first, ri checks if the South neighboring
node on the next horizontal line below LN (i.e. L′

N ) is empty or not. If the South
node is empty, ri moves to it. Otherwise, if the West neighboring node is empty,
ri moves one unit West on LN . The movement of ri on LN towards West helps
it to find the empty node on L′

N fast because the robots on L′
N move East. Once

a robot moves South of LN , it never moves again to LN . Phase 0 ends when no
robot is positioned on LN (e.g. Fig. 6(c)).

Lemma 7. Phase 0 ends in O(n) epochs avoiding robot collisions.

Phase 1 (Gather). Similar to the Phase 1 of FSY NC, the purpose of this
phase is to reach a gathering configuration Cgather on the North-East part of
G; the only difference is that the sub-grid G′ for Cgather in ASY NC lies one
unit South of G′ in FSY NC. Let L′

N be the next horizontal line below the
North boundary line LN of G. Then the sub-grid G′ is bounded by the East
boundary line LE , L′

N , the vertical line parallel to LE at k distance West of LE

(say L′
W ) and the horizontal line parallel to L′

N at k distance South of L′
N (say

L′
S). Cgather is said to be achieved if all the robots reach in G′ at the distinct
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nodes. Phase 1 in ASY NC is also divided into two sub-phases, Phase 1.1 and
1.2 that execute sequentially. We describe each sub-phase below.

Phase 1.1 (Northeast moves). This phase is analogous to the Phase 1.1 of
FSY NC after removing the North boundary line LN of G. A robot ri never
moves North towards LN from L′

N . If ri is already on LN in Cinit, it moves
South to L′

N during Phase 0. Any robot below LN (except the robot at L′
N )

first searches empty position on its North neighboring node for possible North
move. If the North move is not possible, it searches an empty node in the East
neighboring node for possible East move. A robot below L′

N does not move North
to L′

N if it sees a robot on LN in the same vertical line. Similarly, a robot at L′
N

does not move East if it sees a robot on LN in its North-East neighboring node.
This handles the possible collision due to movement of robot at LN to L′

N .

Phase 1.2 (Balancing moves). Phase 1.2 of ASY NC directly follows Phase
1.2 of FSY NC to reach the gathering configuration Cgather. Since robots per-
form their LCM cycles asynchronously, how they change their states to reach
Phase 2 in ASY NC is slightly different than in FSY NC. If a robot ri sees
Cgather configuration, it changes its state to Phase 2. Otherwise, ri changes its
state to Phase 2 after seeing the robot in the North-East corner v′

ne of G′ moved
North to LN . In the mean time, ri ensures that there is no robot in the South of
G′, the remaining k nodes on LE of G′ are occupied and the nodes in the East
of ri on H(ri) (except v′

ne) are also occupied.
Complying with Lemma 2–4, we have following lemma for Phase 1 in

ASY NC:

Lemma 8. Phase 1 finishes in O(n) epochs. Phase 1 is collision-free and
deadlock-free.

Phase 2 (Pre-Scatter). In this phase, robots move West to reach the pre-
scatter configuration Cpre−scatter. Unlike FSY NC, in Cpre−scatter of ASY NC,
the horizontal line below LN (i.e. L′

N ) is empty, instead the horizontal line at
k + 1 distance South of LN (i.e. L′

S) contains the k + 1 robots separated at d
distance apart. Figure 6(e–i) illustrate the movements of robots during Phase 2
to reach Cpre−scatter from Cgather.

Phase 2 is divided into three sub-phases, Phase 2.1–2.3. In Phase 2.1, only
the robots on L′

W and the robot at the North-East corner of G′ (say v′
ne) are

moved. The robot at v′
ne moves North to the North-East corner of G (say vne)

and reaches Phase 2.3. Then, the robot at the South-West corner of G′ (say
v′
sw) moves one unit West to the neighboring node (say vref ). After that, the

remaining robots on L′
W also move one unit West. Now, the robot at vref sees

all the nodes on its vertical line towards North occupied and L′
W empty, then it

moves one unit West and reaches Phase 2.2. The remaining robots in the North
of vref also move one unit West after it and reach Phase 2.2.

In Phase 2.2, when a robot ri is inside G′ and sees next robot in the West on
the same horizontal line H(ri) at distance 3, it moves one unit West and waits
for next robot in the East on H(ri) to move one unit West. When ri sees the
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next robot in the East on H(ri) moved one unit West (i.e. ri sees a robot at
distance 2 in the East on H(ri)), it also moves one unit West and reaches Phase
2.3.

In Phase 2.3, robot ri moves West when it sees another robot in the East at
distance less than d on H(ri). Since v′

ne is empty, as a special case, the eastmost
robot on L′

N can move up to d distance West of LE without seeing a robot in
the East on L′

N . When the westmost k+1 robots reach LW of G, the northmost
robot among them moves North to LN . Among every next column of k+1 robots
at d distance apart, the northmost robot moves to LN . Then, the pre-scatter
configuration (Cpre−scatter) is achieved. Since, in every 2 epochs, at least one
column of robots move one unit West, it is immediate that the westmost k + 1
robots reach LW in 2(n−k) epochs. In next 2k epochs, the k robots on L′

N move
to LN . Thus, Cpre−scatter is achieved in at most 2n epochs.

All the robots change their states to Phase 3 after achieving Cpre−scatter.
Additionally, if d > 2, any robot ri south of LN moves one unit East as well
(except the robots on LE which move one unit West) (Fig. 6(j)). Thus, Phase 2
also finishes in O(n) epochs in ASY NC. Since no robot moves South in Phase
2 and no robot reaches Phase 3 before Cpre−scatter, the movements of robots in
Phase 2 of ASY NC are collision-free.

Lemma 9. Phase 2 finishes in O(n) epochs in ASY NC avoiding robot colli-
sions.

Phase 3 (Scatter). In this phase, robots move South to achieve Uniform
Scattering configuration and terminate. Figure 6(j–l) provide an illustration.
If d = 2, robot ri has the visibility range of n and hence can see all the final
positions on it’s vertical line. Then, ri moves South by directly following the
Phase 3 of FSY NC to reach the final position and terminates. If d > 2, the
algorithm works as follow: Let H(ri), V (ri) be the horizontal and vertical lines
passing through ri, respectively. Let V ′(ri) be the vertical line parallel to V (ri)
and passing through one unit West of ri (for the robots at one unit West of
LE , consider LE as V ′(ri)). When a robot ri at (xi, yi) sees another robot on
V (ri) in North at distance less than d, then ri moves to (xi, yi − 1) if (xi, yi − 1)
and (xi − 1, yi − 1) are both empty. If ri it on one unit West of LE , it ensures
that (xi + 1, yi − 1) is empty instead of (xi − 1, yi − 1) to move South. When ri
reaches the south boundary line LS , it moves West (except the eastmost robot
on LS which moves East to LE) to reach the final position and terminates.
When ri sees another robot rj on V ′(ri) at exactly d distance South of H(ri),
ri moves horizontally to V ′(ri) to occupy the final position and terminates. The
southmost robots on the k + 1 vertical lines take at most 2(n − k) epochs to
reach LS . By that time all the robots on each of those k + 1 vertical lines are at
d distance apart. In at most next 2k epochs, all those robots reach to the final
positions and terminate. Thus, in at most 2n epochs, Phase 3 terminates.

Lemma 10. Phase 3 finishes in O(n) epochs in the ASY NC setting.

Proof of Theorem 1. Combine results of Lemmas 7, 8, 9 and 10. 
�
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5 Concluding Remarks

We have provided the first optimal O(n) time algorithm to the Uniform Scat-
tering problem in a square grid graph of N = (n+1)×(n+1) nodes in the COR
model under the ASY NC setting. This is the O(n/d) = O(k) improvement com-
pared to the best previously known algorithm with runtime O(N/d) ≡ O(n2/d)
in the COR model. In the future work, it will be interesting to extend our algo-
rithm to consider faults.
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5. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile
robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112
(2008)

6. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor.
Comput. Sci. 412(8–10), 783–795 (2011)

7. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a
ring. Theor. Comput. Sci. 402(1), 67–80 (2008)

8. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory, vol. 3, no.
2, pp. 1–185 (2012)

9. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2016).
https://doi.org/10.1007/s00446-016-0291-x

10. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)

11. Heo, N., Varshney, P.K.: Energy-efficient deployment of intelligent mobile sensor
networks. Trans. Sys. Man Cyber. Part A 35(1), 78–92 (2005)
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Abstract. A channel from a process p to a process q satisfies the ADD
property if there are two constants K and D, unknown to the processes,
such that in any sequence of K consecutive messages sent by a process p
to a process q, at least one of them is delivered to q at most D time units
after it has been sent. This paper studies implementations of an eventual
leader, namely an Ω failure detector, in a (not necessarily complete)
connected network of eventual ADD channels, where processes may fail
by crashing. It presents an algorithm that assumes that the processes
initially know n, the total number of processes, sending messages of size
O(log n).

Keywords: ADD channel · Arbitrarily connected networks ·
Distributed algorithm · Eventual leader · Fault-tolerance · Process
crash · Synchrony · System model · Weak channel

1 Introduction

Leader Election. This is a classical problem encountered in distributed com-
puting. Each process pi has a local variable leaderi, and it is required that all
the local variables leaderi forever contain the same identity, which is the identity
of one of the processes. If processes may crash, the system is fully asynchronous,
and the elected leader must be a process that does not crash, leader election
cannot be solved [9]. Not only the system must no longer be fully asynchronous,
but the leader election problem must be weakened to the eventual leader election
problem. This problem is denoted Ω in the failure detector parlance [3,4]. Notice
that the algorithm must elect a new leader each time the previously elected
leader crashes.

The ADD Distributed Computing Model. ADD channels were introduced
by S. Sastry and S. M. Pike in [10] as a realistic model for partially synchronous
systems in which channels can lose and reorder messages. Each channel guar-
antees that some subset of the messages sent on it will be delivered in a timely
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manner and such messages are not too sparsely distributed in time. More pre-
cisely, for each channel there exist two constants K and D, not known to the
processes and not necessarily the same for all channels, such that for every K
consecutive messages sent in one direction, at least one is delivered within D
time units after it has been sent.

Even though ADD channels seem so weak, S. Kumar and J.L. Welch showed
in [6] that it is possible to implement an eventually perfect failure detector in an
arbitrarily connected network of ADD channels. An efficient implementation of
♦P in such a system, using messages of size O(n log n), is presented [11].

Contribution. Considering the election of an eventual leader, called Ω in the
failure detector parlance [3], this paper shows that it is possible to implement
such a leader in an arbitrarily connected network where asynchronous processes
may fail by crashing in a weaker ADD model than the one used in [11]. More
precisely, it presents an implementation of Ω where the size of the messages
is O(log n), reducing significantly the message size with respect to [11]. The
proposed algorithm works under very weak assumptions, requiring only that a
directed spanning tree from the leader exists, composed of channels that even-
tually satisfy the ADD property.

We put particular attention to the size of the messages but also, we make sure
our solution is efficient in terms of the time it takes for the processes to agree on
the same leader. When designing leader election ADD-based algorithms using
messages whose size is bounded, a difficult challenge comes from the uncertainty
created by the fact that, while the constants K and D do exist, a process knows
neither them nor the time at which the channels satisfy them. This is the type
of difficulty encountered in the design of leader election algorithms under weak
eventual synchrony assumptions, e.g., [1,5,9,11]. Also, the hopbound technique
we used is reminiscent of the one used in self-stabilizing algorithms [2] and in [11].

2 Model of Computation

System Model. The system consists of a finite set of processes Π =
{p1, p2, ..., pn}. Any number of processes may fail by crashing. A process is cor-
rect if it does not crash, otherwise, it is faulty. The communication network is
represented by a directed graph G = (Π,E), where an edge (pi, pj) ∈ E means
that there is a unidirectional channel that allows the process pi to send messages
to pj . Is required the existence of a spanning tree containing all correct processes
whose root will be the leader (the correct process with the smallest identity).

A directed channel (pi, pj) satisfies the ♦ ADD property if there is a finite
time (unknown to the processes) after which there are two constants K and D
(unknown to the processes) such that for every K consecutive messages sent by
pi to pj , at least one is delivered to pj within D time units after it has been sent.
The other messages from pi to pj can be lost or experience arbitrary delays.
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Eventual Leader Election. Assuming a read-only local variable leaderi at each
process pi, the leader failure detector Ω satisfies the follwing properies [3,8]:

– Validity: Each read of leaderi returns a process name to pi.
– Eventual leadership: There is a finite (but unknown) time after which the

local variables leaderi of all the correct processes contain forever the same
process name, which is the name of one of them.

3 Eventual Leader Election in the ♦ADD Model

This section presents an algorithm that implements Ω, assuming that each pro-
cess knows n, the number of processes. The parameter T denotes an arbitrary
duration. Its value can affect the efficiency of the algorithm, but not its cor-
rectness. (If T is too big, the failure detection of a process currently considered
as a leader can be delayed. On the contrary, a too small value of T can entail
false suspicions of the current eventual leader pj until the corresponding timer
timer i[j] has been increased to an appropriate timeout value.)

3.1 General Principle of the Algorithm

The algorithm uses a single type of message denoted alive. Such a message
carries two values: a process identity and an integer x ∈ {2, . . . , n − 1}. In the
following, “*” stands for any process identity. A message alive(∗, n−1) is called
generating message, while a message alive(∗, n − k) such that 1 < k < n − 1, is
called forwarding message. Moreover, the value n − k is called hopbound value.

When process pi starts the algorithm, it proposes itself as candidate to be
leader. It sends a generating alive(i, n − 1) message to its neighbors every T
time units.

When a process pi receives an alive(j, n−k) message such that 1 < k < n−1,
it learns that (a) pj is candidate to be leader, and (b) there is a path with k
hops from pj to itself. If j < i, pi adopts pj as current leader, and forwards
messages alive(j, n − (k + 1)) to its neighbors. It follows that a generating
message alive(j, n−1) (which can be issued only by pj) can give rise to a finite
number of forwarding messages alive(j, n−2), alive(j, n−3),..., possibly up to
alive(j, 2).

As it is possible that there are several paths from pj to pi of different lengths,
pi can receive different hopbound values of forwarding messages alive(j, n − k)
with leader j. As it does not know which of those paths will satisfy the ♦ADD
property, pi manages a timer for each value of n−k for each potential leader. In
this way, pi can associate increasing penalties with each hopbound value, namely,
every time a hopbound value does not arrive on time, its penalty is increased.
Assuming pj will be the elected leader, pi selects a hopbound value associated
with pj with the smallest penalty, which allows pi to identify a path satisfying
the ♦ADD property from an alive(j, n − k) message.

Let us observe that, whatever the delays of the messages is, the number of
messages sent in the whole execution by faulty processes is finite. It follows that
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whatever their transfer delays are, there is time after which eventually there are
no messages in transit sent by faulty processes

3.2 Local Variables at Each Process pi

Each process pi manages the following local variables.

– in neighborsi (resp., out neighborsi) is a (constant) set containing the iden-
tities of the processes pj such that there is channel from pj to pi (resp., there
is channel from pi to pj).

– leaderi: when stable, will contain the identity of the elected leader.
– timeout i[1..n, 1..n] is a matrix of timeout values and timer i[1..n, 1..n] is a

matrix of timers, such that the pair 〈timer i[j, n − k], timeout i[j, n − k]〉 is
used by pi to monitor the cycle-free paths from pj to pi whose length is k.

– hopboundi[1..n] is an array of non-negative integers; hopboundi[i] is initialized
to n, while each other entry hopboundi[j] is initialized to 0. Then, when j �= i,
hopboundi[j] = n − k �= 0 means that, if pj is currently considered as leader
by pi, the information carried by the last message alive(j, n − 1) sent by pj

to its out-neighbors (which forwarded alive(j, n − 2) to their out-neighbors,
etc.) went through a path of k different processes before being received by pi.
The identifier hopbound stands for “upper bound on the number of forward-
ing” that – due to the last message alive(j,−) received by pi– the message
alive(j,−) sent by pi has to undergo to be received by all processes. It is
similar to a time-to-live value.

– penaltyi[1..n, 1..n] is a matrix of integers such that pi increases penaltyi[j, n−
k] each time the timeri[j, n−k] expires. It is a penalization counter monitored
by pi with respect to the elementary paths of length k starting at pj and
ending at pi.

– not expiredi is an auxiliary local variable.

3.3 Underlying Behavioral Assumption and Proof Sketc.h

The proof assumes there is a time τ after which there is a directed spanning
tree (i) that includes all the correct processes and only them, (ii) its root is the
correct process with the smallest identity, and (iii) its channels satisfy the ♦
ADD property.

The structure of the correctness proof is the following. First, let us observe
that the local variables leaderi of all the processes always contain a process
identity.

Then, the proof shows that, for the Diamond ADD channels, there is a
constant Δ indicating what is the maximum delay between two consecutive
correct delivery of messages on a channel. Then, the proof shows that eventually
there are no alive messages in the network from a crashed process. And finally,
it shows that there is a finite time after which the variables leaderi of all the
correct processes contain the smallest identity from the set of correct processes.

Page limitation prevents us from giving a detailed description of the algo-
rithm and its correctness proof. The interested reader will find them in [7].
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initialization —-Code for pi—-

(1) leaderi ← i; hopboundi[i] ← n; set timeri[i, n] to + ∞;

(2) for each j ∈ {1, · · · , n} \ {i} and each x ∈ {1, · · · , n} do

(3) timeouti[j, x] ← 1; set timeri[j, x] to timeouti[j, x];

(4) set penaltyi[j, x] to − 1; hopboundi[j] ← 0

(5) every T time units of clocki() do

(6) if (hopboundi[leaderi] > 1) then

(7) for each j ∈ out neighborsi do

send alive(leaderi, hopboundi[leaderi] − 1) to pj

(8) when alive(�, hb) such that � �= i is received % from a process in in neighborsi

(9) if (� ≤ leaderi) then

(10) leaderi ← �;

(11) if ([timeri[leaderi, hb] expired) then

timeouti[leaderi, hb] ← timeouti[leaderi, hb] × 2

(12) set timeri[leaderi, hb] to timeouti[leaderi, hb];

(13) not expiredi ← {x | timeri[leaderi, x] not expired };
(14) hopboundi[leaderi] ←

max{x ∈ not expired with smallest non-negative penaltyi[leaderi, x]}

(15) when timeri[leaderi, hb] expires and (leaderi �= i) do

(16) penaltyi[leaderi, hb] ← penaltyi[leaderi, hb] + 1;

(17) if
( ∧1≤x≤n ([timeri[leaderi, x] expired)

)
then

(18) leaderi ← i

(19) else % same as lines 13-14

(20) not expiredi ← {x | timeri[leaderi, x] not expired };
(21) hopboundi[leaderi] ←

max{x ∈ not expired with smallest non-negative penaltyi[leaderi, x]}

Algorithm 1: Eventual leader election in the ♦ADD model

Acknowledgments. We thank the reviewers for the constructive comments. This
work was partially supported by UNAM-PAPIIT grant IN106520.

References

1. Aguilera, M., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: 23th ACM
Symposium on Principles of Distributed Computing (PODC 2004), pp. 328–337.
ACM press (1996)

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Morgan and Claypool series on Distributed Computing
Theory, p. 148 (2019)

3. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

5. Fernández, A., Jimenez, E., Raynal, M., Trédan, G.: A timing assumption and two
t-resilient protocols for implementing an eventual leader service in asynchronous
shared-memory systems. Algorithmica 56(4), 550–576 (2010)

6. Kumar, S., Welch, J.L.: Implementing ♦P with bounded messages on a network
of ADD channels. Parallel Process. Lett. 29(1), 1950002 (2019)



234 S. Rajsbaum et al.

7. Rajsbaum, S., Raynal, M., and Vargas K., Leader election in arbitrarily connected
networks with process crashes and weak channel reliability. Technical report, p. 21
(2020)

8. Raynal, M.: A short introduction to failure detectors for asynchronous distributed
systems. ACM SIGACT News 36(1), 53–70 (2005)

9. Raynal M.: Fault-tolerant message-passing distributed systems: an algorithmic
approach, p. 492. Springer (2018). https://doi.org/10.1007/978-3-319-94141-7,
ISBN 978-3-319-94140-0

10. Sastry, S., Pike, S.M.: Eventually perfect failure detectors using ADD channels.
In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T., Jia, W., Guo, M., de Mello,
R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 483–496. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74742-0 44

11. Vargas, K., Rajsbaum, S., Raynal, M.: An eventually perfect failure detector
for networks of arbitrary topology connected with ADD channels using time-to-
live values. Parallel Process. Lett. 30(2), 2050006 (2020). A preliminary version
appeared in the 49th IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2019), pp. 264–275 (2019)

https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-540-74742-0_44


Physical Zero-Knowledge Proof
for Suguru Puzzle
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Abstract. Suguru is a paper and pencil puzzle invented by Naoki Inaba.
The goal of the game is to fulfil a grid with numbers between 1 and 5
and to respect three simple constraints. In this paper we design a phys-
ical Zero-Knowledge Proof (ZKP) protocol for Suguru. A ZKP protocol
allows a prover (P ) to prove that he knows a solution of a Suguru grid
to a verifier (V ) without leaking any information on the solution. For
constructing such a physical ZKP protocol, we only rely on a small num-
ber of physical cards and an adapted encoding. For a grid of Suguru
with n cells, we only use 5n + 5 cards. Moreover, we prove the three
classical security properties of a ZKP: completeness, extractability, and
zero-knowledge.

Keywords: Physical zero-knowledge proof · Suguru · Security ·
Completeness · Extractability · Zero-knowledge

1 Introduction

Zero-Knowledge Proofs (ZKP) were introduced in 1985 by Goldwasser et al. [8].
Two parties are involved in such a ZKP protocol: a prover P and a verifier V .
At the end of the protocol, the verifier V is convinced that P knows the solution
s to the instance I of a problem P, without revealing any information about s.
A zero-knowledge proof prevents the verifier from gaining any knowledge about
the solution other than its correctness. In fact, when both randomization and
interaction are allowed, the proofs that can be verified in polynomial time are
exactly those proofs that can be generated within polynomial space [19].
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Formally, for a solution s to any instance I of a problem P , a convincing
interactive zero-knowledge protocol between P and V must then satisfy the
three following properties1:

Completeness: If P knows s, then he is able to convince V .

Extractability2: If P does not know s, then he is not able to convince V except
with some small probability. More precisely, we want a negligible probability, i.e.,
the probability should be a function f of a security parameter λ (for example
the number of repetitions of the protocol) such that f is negligible, that is for
every polynomial Q, there exists n0 > 0 such that:

∀ x > n0, f(x) <
1

Q(x)
.

Zero-Knowledge: V learns nothing about s except I, i.e. there exists a prob-
abilistic polynomial time algorithm Sim(I) (called the simulator) such that out-
puts of the real protocol and outputs of Sim(I) follow the same probability
distribution.

There exist two kinds of ZKP: interactive and non-interactive. In an interac-
tive ZKP the prover can exchange messages with the verifier in order to convince
him, while in the non-interactive case the prover can just create the proof in order
to convince the verifier.

ZKPs are usually executed by computers. They are often used in electronic
voting to prove that some parties correctly mix some ballots without cheating, or
in multi-party computation [3,4,16]. Moreover, there exist generic cryptographic
zero-knowledge proofs for all problems in NP [6], via a reduction to an NP-
complete problem with a known zero-knowledge proof.

In [15], the authors explained simply this concept to some children using a
circular cave. This was the first proposition of a physical ZKP. Later, Gradwohl
et al. [9] proposed a ZKP for the famous Nikoli’s puzzle called Sudoku3. They
just used some physical cards to construct a ZKP protocol. It was one of the
first interactive physical ZKP protocols for such puzzles. Our aim is to design a
ZKP protocol for Suguru puzzles in the same spirit as the one done for Sudoku.

Suguru: It was designed by Naoki Inaba, the original name of the game was
“Nanba Burokku’ but it is also known as Tectonics or Number Blocks. Suguru is
a paper and pencil puzzle in which a grid is divided into outlined blocks called
region. Each region containing up to five cells. Every cell of the grid must contain

1 Moreover, if P is NP-complete, then the ZKP should be run in a polynomial time [7].
Otherwise it might be easier to find a solution than proving that a solution is a correct
solution, making the proof pointless.

2 This implies the standard soundness property, which ensures that if there exists no
solution of the puzzle, then the prover is not able to convince the verifier regardless
of the prover’s behavior.

3 https://www.nikoli.co.jp/en/puzzles/sudoku.html.

https://www.nikoli.co.jp/en/puzzles/sudoku.html
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a number from 1 to 5 (according to the number of cells in the region). Each cell
should be filled such that no two identical numbers touch—not even diagonally.

Suguru’s Rule: This puzzle is formed by a rectangular grid where blocks divide
the overall area. Those blocks called region contain up to five cells. The goal is
to fill all the cells with integers under the following constraints:

– Number region rule: A region composed of k cells must be filled with
integers 1, . . . , k.

– Neighbour rule: For every cell, all of its eight neighbours must have different
values from the cell’s value.

2

4

3

4

3

5

Fig. 1. Initial Suguru grid

In Fig. 1, we give an example of an initial Suguru grid and in Fig. 2 we give
its unique solution.

Contributions: We propose a simple ZKP protocol for Suguru using a small
number of cards. Our construction is simple and can be used as a pedagogical
example to explain the role of ZKP protocols. We propose an encoding of the
number using simple cards. Using this encoding, the prover places some cards
on the grid according to its solution. We use these cards to prove that the two
rules of Suguru are satisfied. We start with the first number of cell in a region,
after having verified the validity of all regions and replacing the cards placed by
the prover, we reuse them to prove the second rule of Suguru about the eight
neighbours of each cell of the grid. Here is the difficulty of Suguru, since we need
to prove that all values of the eight neighbours of each cell are different without
revealing any information to the verifier. Here, we use a trick of our encoding
of the values of the cards in order not to leak any information. Our encoding
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2

4

3

4

3

54 1 1

2 4 2

5 1 1

2 5 2

1 3 1 3

5 2

Fig. 2. Solution of the Suguru grid of Fig. 1

requires five cards per cell; therefore if a Suguru grid has n cells to guess, our
protocol only requires 5n+5 cards. Finally, we prove the three security properties
of our construction i.e., completeness, extractability, and zero-knowledge.

Related Work: In [18] the authors proposed an improved ZKP protocol for
Sudoku that follows the pioneer work of [9]. In [5], the authors proposed a ZKP
protocol for the Nikoli’s puzzle Norinori.

In [12], a method to take into account one feature of several puzzles that
consists to construct a single loop, has been invented. This technique used a
topological approach with successive interactive transformations.

Recently several ZKP proofs have been proposed for different Nikoli’s puzzles.
In [13], card-based ZKP Protocols for Takuzu and Juosan have been proposed.
In [17] a physical ZKP proof for Numberlink has been designed. In [14], a card-
based physical ZKP for Kakuro have been given that improves the first version
proposed by Bultel et al. in [1] with the ZKP protocols for three other Nikoli’s
games: Akari, Takuzu, and Kenken.

All these works clearly demonstrate that designing physical ZKP is clearly an
interesting topic of research. Each game has its own particular rules and requires
an adapted construction.

Although the existence of all those previous works, one cannot reuse or adapt
directly them for the Suguru game. Indeed, the main reason is the “strong”
neighbour rule where no cell can have its eight neighbours with the same value.
Other puzzles have a similar rule but with relaxed restrictions. For instance,
Makaro has a neighbour rule but only for adjacent cells (and not in diagonal).
Thus a naive adaptation would imply a loss in terms of efficiency and of zero-
knowledge (no information about the solution can be leaked). Furthermore, it
is worth noting that the encoding for the proof of NP-completness of Makaro
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cannot be applied for Suguru. Thus ZKP for Suguru cannot be directly adapted
from the ZKP of Makaro. Further discussion is given in Sect. 5.

Outline: In Sect. 2, we present our notations, and all subprotocols needed to
construct our ZKP. In Sect. 3, we design our ZKP protocol for Suguru. In Sect. 4,
we prove the security of our protocol. In Sect. 5, we discuss a complexity of
Suguru and of Makaro. In the last section, we conclude the paper.

2 Preliminaries

We introduce some notations of cards and shuffles used in our construction.

2.1 Notations

Card: A deck of cards used in our protocol consists of blacks ♣ and reds ♥
whose back sides are identical ? . Each integer i ∈ {1, . . . , 5} is encoded as:

1

♥
2

♣
3

♣
4

♣
5

♣
︸ ︷︷ ︸

1

,
1

♣
2

♥
3

♣
4

♣
5

♣
︸ ︷︷ ︸

2

,
1

♣
2

♣
3

♥
4

♣
5

♣
︸ ︷︷ ︸

3

,

1

♣
2

♣
3

♣
4

♥
5

♣
︸ ︷︷ ︸

4

,
1

♣
2

♣
3

♣
4

♣
5

♥
︸ ︷︷ ︸

5

.

We call such face-down five cards ? ? ? ? ? corresponding to an integer
according to the above encoding rule a commitment to the respective integer.

We also use numbered cards such as 1 2 3 4 5 whose backs are identical
? .

Neighbour Cell: Consider a target cell denoted ct on a grid. A cell is a neighbour
of ct if it is next to ct. It can be on the left, the right, the top, or the bottom of
ct, and also on its diagonal:

ct

Thus, a cell can have at most eight neighbours.

Pile-Scramble Shuffle: A shuffle used in our protocol is a pile-scramble shuffle,
which was first used by Ishikawa et al. [10] and was used in other physical ZKP
protocols for puzzles (e.g., Sudoku [18]). Consider that we have a sequence of
� piles of cards, each of which consists of the same number of face-down cards,
denoted by (p1, p2, . . . , p�) for some positive integer �. Applying a pile-scramble
shuffle to the sequence results in (pr−1(1), pr−1(2), . . . , pr−1(�)) where permutation
r is uniformly and randomly chosen from the symmetric group of degree �. That
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is, it randomly permutes a sequence of piles and nobody knows the order of the
resulting sequence.

One can easily implement a pile-scramble shuffle by using physical tools that
can fix each pile of cards such as rubber bands and envelopes; a player (or
players) randomly shuffle them until nobody traces the order of the piles.

3 ZKP Protocol for Suguru

We propose a ZKP protocol for Suguru composed of two phases, the setup phase
and the verification phase.

3.1 Setup Phase

The verifier V and the prover P place commitments corresponding to the integers
on the initial grid of a Suguru puzzle. In addition, when a region of k cells is
already filled with k − 1 cells, then P and V agreed on the last cell to complete
and place the commitment accordingly4.

Then, P continues to place commitments on all the remaining cells by himself
according to the solution of the puzzle.

3.2 Verification Phase

There are two verifications to ensure the number region rule and the neighbour
rule.

Number Region Rule: V wants to check that a region of k cells contains all the
consecutive integers from 1 to k.

1. For every i, 1 ≤ i ≤ k, V picks all cards of the i-th cell (in any ordering) to
form a pile pi. Then, V attaches a numbered card i to pi. Thus, there are
p1, . . . , pk piles, each of which consists of six cards.

2. Apply the pile-scramble shuffle [10].
3. V reveals the cards of each pile except for the numbered card. The revealed

output is of the form (up to a permutation in the rows), i.e., all the k (opened)
commitments corresponding to 1 through k should appear. For example, if k =
4, the revealed output should be of the following form (up to a permutation
in the rows):

♥ ♣ ♣ ♣ ♣ ?

♣ ♥ ♣ ♣ ♣ ?

♣ ♣ ♥ ♣ ♣ ?

♣ ♣ ♣ ♥ ♣ ?

,

where the face-down cards on the right side are the numbered cards. If the
revealed output is not of this form, V aborts.

4 For example, in Fig. 1 the upper left region can be directly completed with a 1.
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4. Turn over the face-up cards and apply the pile-scramble shuffle again to the
piles.

5. Reveal only the numbered cards of all piles. Because these revealed cards
indicate the initial positions for each pile, V rearranges each pile back to their
initial place. The revealed numbered cards can be reused for the remaining
verifications.

Neighbour Rule: V wants to check if a given cell has no neighbour having the
same integer as the cell.

1. V picks the first card of the target commitment and then picks each first card
of the commitments on its neighbour cells (in any ordering) to form the pile
p1. The following is an example when there are eight neighbours:

7

? ? ? ? ?
8

? ? ? ? ?
9

? ? ? ? ?
6

? ? ? ? ?
1

? ? ? ? ?
2

? ? ? ? ?
5

? ? ? ? ?
4

? ? ? ? ?
3

? ? ? ? ?

→ p1 :
1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?

.

2. V repeats the same operation until the pile p5 is formed.
3. V attaches a numbered card i to pi. (If the target cell is the last one, V

does not perform this step.)
4. If an integer is written on the target cell, then go to the next step. Otherwise,

apply the pile-scramble shuffle to the piles.
5. V reveals the first card of each pile, which corresponds to the target commit-

ment. Let pt denotes the pile where a red card appears.
6. V reveals all the cards in the pile pt except for the numbered cards. If there

are two red cards in the pile then V aborts; otherwise, V goes to the next
step.

7. As Steps 4. and 5. in the previous verification, V rearranges all the cards in
the piles back to their initial places. (If the target cell is the last one, V does
not perform this step.)

3.3 Evaluation

If the size of the grid is represented by n then the number of cards used in this
protocol is equal to 5n + 5. Indeed, each cell must be encoded with 5 cards (4
blacks and 1 red)5 and 5 numbered cards are used for all target cell.

5 We could have encoded each cell with a total of � cards where � is the number of
cells in the region (thus, a region with two cells has its cell encoded with only two
cards, a red and a black). Yet, this would lead to inconstancy in the encoding rule
which is required in the neighbour verification.
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4 Security Proofs

We give the theorems along with their proofs to provide that our protocol
respects the security properties. A ZKP protocol is secure if the following three
properties are satisfied:

Correctness: If the prover P commits its cards according to the actual solution,
then all verifications will not abort. Hence, if P knows a solution, then it can
always convince the verifier V . Correctness is proven in Theorem 1.

Extractability: If P ’s input is invalid, the protocol will point errors out to V .
Therefore, if P does not know the solution, it cannot convince V . Extractabil-
ity is proven in Theorem 2.

Zero-knowledge: V learns nothing about P ’s solution. Zero-knowledge is
proven in Theorem 3.

Theorem 1 (Completeness). If P knows a solution of a Suguru grid, then it
can convince V .

Proof. Suppose that the prover P knows the solution of the Suguru grid. It runs
with the verifier V the Setup phase (Sect. 3.1). We show that P can perform
both verification phases without aborting.

Number Region Verification: In this phase, the goal of P is to show that each
region of size k contains consecutive integers from 1 to k (note that the lower
bound of k is 1 and its upper bound 5). Since P places the cards accordingly
with the solution, each region of size k contains the numbers 1 to k. Without
loss of generality, suppose that the pile pi corresponds to the number i with
i = 1 . . . k. The pile p1 is composed of the sequence (in this order):

♥ ♣ ♣ ♣ ♣ .

The pile p2 is composed of the sequence (in this order):

♣ ♥ ♣ ♣ ♣ .

More generally, the pile pi is a sequence of black cards where the red card is
placed on position i.

Since the pile-scramble shuffle applied on Step 2. does not modify the order
of the sequence, the red card of pile pi is on position i. As i = 1 . . . k, all numbers
from 1 to k are represented. Thus, V is convinced that the number region rule
is verified by revealing the piles in Step 3..

Neighbour Verification: The goal of P is to convince V that no cell has the same
number of its neighbours (there are eight neighbours as defined in Sect. 2). Let
ct be the target cell placed on the center of the 3 × 3 square. Since P placed the
commitments according to the solution, there is no cell with the same value of
ct in this square. Let i be the position of the red card of ct (with i = 1 . . . 5).
Since no neighbour cell has the same value of ct, there is no other red card with
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position i. Since each pile is composed of card with the same indices, the pile
pi (before the shuffle) contains exactly one red card. Hence, V is convinced that
the neighbour rule is verified.

Finally, since all verifications are checked, we proved that if P has the solution
then the verifications will always succeed. �	
Theorem 2 (Extractability). If P does not provide a solution of the Suguru
puzzle, it is not able to convince V .

Proof. Suppose that P does not know a solution for the puzzle. We want to show
that V will always detect it.

Since P cannot provide the solution, at least one of the two rules is not
verified (if both can be verified, this is the solution). We can distinguish two
cases corresponding to each verification:

– The number region rule is not respected. That is, suppose w.l.o.g. that a region
of size k with k > 1 does not contain the number 1. Hence, the sequence
corresponding to this number is missing, meaning that V cannot reveal at
Step 3. the sequence:

♥ ♣ ♣ ♣ ♣ .

Thus, V will abort the protocol and detect that P cannot provide the solution.
– The neighbour rule is not respected. Suppose that we have the following

configuration:

2
2

with blank cards of unimportant value but different from 2.
We encode number 2 as:

♣ ♥ ♣ ♣ ♣ .

Thus, the pile p2 corresponding to all the cards with indices 2 (before the
shuffle) will contain exactly two red cards. Thus, V will abort the protocol.

We proved that if P does not have the solution then the verifications will
abort in both cases meaning that P cannot convince V . �	
Theorem 3 (Zero-knowledge). V learns nothing about P ’s solution of the
given grid G.

Proof. We use the same proof technique as in [9]: zero-knowledge is caused by a
description of an efficient simulator which simulates interaction between a cheat-
ing verifier and a real prover. However, the simulator does not have a solution
but it can swap cards for different ones during shuffles. The simulator acts as
follows:
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– During the number region verification at Step 2., the simulator swaps the
piles to replace them by the sequences (up to a permutation in the rows):

♥ ♣ ♣ ♣ ♣
♣ ♥ ♣ ♣ ♣
♣ ♣ ♥ ♣ ♣
♣ ♣ ♣ ♥ ♣

– During the neighbour verification, when revealing the cards at Step 6., the
simulator swaps the pile with a pile containing k − 1 black cards and 1 red
card.

The simulated proofs and the real proofs are indistinguishable; thus, V learns
nothing about P ’s solution. �	

5 Discussion

Among related work introduced in Sect. 1, the closest work is [2], where a ZKP
for Makaro has been proposed. This game is close to the Nikoli’s game called
Makaro6 where regions are called rooms and some extra black cells indicate
thanks to an arrow the position of the biggest number among the (up to) four
cells around (over, under, left, right) the cell with the arrow (black) is in the cell
the arrow points at.

In [11], the authors proved that the two games Herugolf and Makaro are NP-
complete. Solving Makaro was shown to be NP-complete via a reduction from
3-SAT.

Makaro is a game close to Suguru, with different constraints as follows:

1. Room condition: Each room contains all the numbers from 1 up to the number
of cells in the room.

2. Neighbour condition: A number cannot be next (adjacent) to the same number
in another room.

3. Arrow condition: Every black arrow cell must point at the largest number
among the numbers in the adjacent cells of the black cell (possibly the fours
cells: right, left, above, and bottom).

In Fig. 3, we give a simple example of a Makaro game, where all black cells are
arrow cells and all white cells are empty cells except for one filled cell with three.
It is easy to verify that the three constraints are satisfied in the solution given
in Fig. 4. We remark that in a solution all white cells are filled with numbers
between 1 and k, where k is the maximum size of all the rooms of the grid.

The room condition is the same, however the neighbour condition is different
in Suguru. In Suguru for each cell, we consider the eight neighbours while in
Makaro we consider only the four neighbours. Moreover in Suguru the size of
6 http://nikoli.co.jp/en/puzzles/makaro.html.

http://nikoli.co.jp/en/puzzles/makaro.html
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33

Fig. 3. Example of a Makaro grid

1 2 1 4

2 3 1 2 3

1 2 3 4

3 1 2 3

1 2 1 2

Fig. 4. Solution of a Makaro grid of Fig. 3

the regions is limited to five while in Makaro there is no limit on the size of the
rooms.

These differences avoid us to reuse the 3-SAT encoding used in the proof of
NP-completeness of Makaro [11]. If we remove the limit of the maximum of five
cells in each region, we can use the same gadgets as the ones used for Makaro
to prove in a similar way that Suguru is also NP-complete. But with the limit
of five cells per regions and the change of four neighbours into eight neighbours,
it is not clear if we can prove the NP-completeness of Suguru. These extra
constraints seem to remove some difficulty in finding some solutions for Suguru.
At the moment we are not able to prove NP-completeness and we conjecture
that solving a Suguru grid should be in P.

Even if solving Suguru is in P, our physical ZKP is an interesting approach
since it requires only 5n+5 cards as we show when we present our ZKP protocol
in Sect. 3. (In addition, it could always happen that one cannot solve a Suguru
puzzle.) This is clearly a real ZKP protocol that can be used by Suguru players
in practice.
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6 Conclusion

In this paper we propose a simple card-based physical ZKP for Suguru. Our
solution is simple and efficient since it relies on only 5n + 5 cards. One open
question left for the future is to demonstrate the conjecture states in the intro-
duction i.e., proving that solving a Suguru grid is in P. We clearly cannot adapt
the proof of NP-completeness of Makaro with the rules of Suguru, it is why we
conjecture that Suguru is in P.

Moreover, our long term research direction is to design physical ZKP proto-
cols for all Nikoli’s games. However some rules of some games like Shakashaka7

that requires to draw rectangles which is not easy to model without leaking any
information. Another example of challenging game is Shikaku8, where the rules
are simple: 1) Divide the grid into rectangles with the numbers in the cells. 2)
Each rectangle is to contain only one number showing the number of cells in the
rectangle. However it remains a challenging open question to design a physical
ZKP for this game without revealing any information on the positions of the
rectangles.
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16. Romero-Tris, C., Castellà-Roca, J., Viejo, A.: Multi-party private web search with
untrusted partners. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.)
SecureComm 2011. LNICST, vol. 96, pp. 261–280. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31909-9 15

17. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for Numberlink. In: Farach-
Colton, M., Prencipe, G., Uehara, R. (eds.) Fun with Algorithms 2020. LIPIcs
(2020)

18. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge
proof for Sudoku. Theor. Comput. Sci. (2020). https://doi.org/10.1016/j.tcs.2020.
05.036, http://www.sciencedirect.com/science/article/pii/S0304397520303200

19. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992). https://doi.org/10.
1145/146585.146609

https://doi.org/10.1109/SFCS.1986.47
https://doi.org/10.1007/3-540-47721-7_11
https://doi.org/10.1145/3335741.3335750
https://doi.org/10.1007/978-3-540-72914-3_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-34339-2_8
https://doi.org/10.1587/transfun.E102.A.1072
https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/978-3-642-31909-9_15
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1016/j.tcs.2020.05.036
http://www.sciencedirect.com/science/article/pii/S0304397520303200
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609


Uniform Deployment of Mobile Agents
in Dynamic Rings

Masahiro Shibata1(B), Yuichi Sudo2, Junya Nakamura3, and Yonghwan Kim4

1 Kyushu Institute of Technology, Fukuoka, Japan
shibata@cse.kyutech.ac.jp

2 Osaka University, Osaka, Japan
y-sudou@ist.osaka-u.ac.jp

3 Toyohashi University of Technology, Aichi, Japan
junya@imc.tut.ac.jp

4 Nagoya Institute of Technology, Aichi, Japan
kim@nitech.ac.jp

Abstract. In this paper, we consider the uniform deployment prob-
lem of mobile agents in synchronous dynamic bidirectional rings, which
requires agents to spread uniformly in the ring. So far, uniform deploy-
ment has been considered in static graphs. In this paper, we consider this
problem in 1-interval connected rings, that is, one of the links may be
missing at each time step. In such networks, we aim to clarify the solv-
ability of the uniform deployment problem, focusing on global knowledge
given to the agents. To the best of our knowledge, this is the first research
considering uniform deployment in dynamic networks. First, we consider
agents with knowledge of the number n of nodes. In this case, we show
that our algorithm can solve the problem with O(k log n) memory space
per agent, O(n log k) rounds, and a total number of O(kn) moves, where
k is the number of agents. Next, we consider agents without knowledge
of n but with knowledge of k. In this case, when k ≥ 4, we show that
our algorithm can also solve the problem but requires O(k log n) mem-
ory space per agent, O(n2) rounds, and a total number of O(n2) moves.
These results mean that the uniform deployment problem can be solved
also in dynamic rings.

1 Introduction

1.1 Background and Related Work

A distributed system comprises a set of computing entities (nodes) connected by
communication links. As a promising design paradigm of distributed systems,
(mobile) agents have attracted much attention [1]. The agents can traverse the
system, carrying information collected at visited nodes, and execute an action
at each node using the information to achieve a task. In other words, agents can
encapsulate the process code and data, which simplifies design of distributed
systems [2].
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In this paper, we consider the uniform deployment (or uniform scatter-
ing) problem as a fundamental problem for agents’ coordination. This problem
requires agents to spread uniformly in the network. Uniform deployment is useful
for network management. In distributed systems, it is necessary that each node
is periodically checked whether some application installed on the node works cor-
rectly or not [3]. Thus, considering agents with such services, uniformly deployed
agents can visit each node at short intervals and check nodes’ statuses. Uniform
deployment might be useful also for load balancing. That is, when agents deploy
uniformly in the network with bringing large-size database replicas, not all nodes
need to store the database but each node can quickly access the database [4].
Thus, the uniform deployment problem can be seen as a particular case of the
resource allocation problem (e.g., the k-server problem).

As related work, uniform deployment has been considered in rings [5,6] and
grids [7,8]. All of them assumed that agents are oblivious (or memoryless) but
can observe multiple nodes within its visibility range. On the other hand, Shi-
bata et al. [9,10] considered uniform deployment in asynchronous unidirectional
rings for agents that have memory but cannot observe nodes except for their
currently visited nodes. They clarified the relationship between the capability of
agents and the solvability of the problem [9], and they considered the relationship
between the capability of agents and the memory space required per agent [10].
All of the above work on uniform deployment are considered in static graphs,
where a network topology does not change during an execution. On the other
hand, recently many problems involving agents have been studied in dynamic
graphs, where a network topology changes during an execution. For example, the
gathering problem [11], the exploration problem [12,13], the patrolling problem
[14], and the dispersion problem [15] are considered in dynamic graphs.

1.2 Our Contribution

In this paper, we consider the uniform deployment problem in synchronous
dynamic bidirectional rings. Similarly to [9,10], we consider agents that have
memory but cannot observe nodes except for their currently visited nodes. In
this paper, we consider 1-interval connected rings [11,12,14,15], that is, one of
the links may be missing at each time step. In such a network, one agent may be
blocked from traversing forever during an execution of an algorithm. Hence, we
say that agents solve the uniform deployment problem in a dynamic ring when
all agents other than one agent spread uniformly in the ring. An example is given
in Fig. 1, where n and k are the number of nodes and agents, respectively. Such
a deployment can guarantee some fair resource allocation in spite of temporal
link-missings. In such networks, we aim to clarify the solvability of the problem,
focusing on global knowledge given to the agents. To the best of our knowledge,
this is the first research considering uniform deployment in dynamic networks.

Throughout the paper, we consider agents under the following eight assump-
tions: (1) Agents are anonymous, that is, they do not have distinct IDs. (2)
Agents have knowledge of k or n. (3) Agents have chirality, that is, they agree
on the orientation of clockwise and counterclockwise direction in the ring. (4)
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Fig. 1. An example of uniform deployment in a dynamic ring (n = 20, k = 5).

Agents have the strong multiplicity detection capability, that is, they can count
the exact number of agents staying at the same node. (5) Agents cannot per-
form a direct message communication even when they stay at the same node.
(6) Each agent initially has a token and can release it on the currently visited
node. (7) Agents start executions of the algorithm from mutually distinct nodes.
(8) Agents behave in a synchronous manner. In particular, we can simply show
in Sect. 2.1 that assumptions (1), (2), (5), (6), and (7) are the weakest assump-
tions for solving the problem, and at this point it is possible that the other
assumptions can be removed or weakened.

In Table 1, we compare our contribution with the results for agents with
knowledge of k or n in [9]. We consider two problem settings. First, we consider
agents with knowledge of n. In this case, we show that our algorithm can solve
the problem with O(k log n) memory space per agent, O(n log k) rounds, and a
total number of O(kn) moves. Next, we consider agents without knowledge of n
but with knowledge of k. In this case, when k ≥ 4, we show that our algorithm
can also solve the problem but requires O(k log n) memory space per agent,
O(n2) rounds, and a total number of O(n2) moves. These results mean that the
uniform deployment problem can be solved also in dynamic rings. In addition,
it is worthwhile to mention that, while knowledge of n and knowledge of k are
equivalent in static rings (that is, agents with knowledge of n can easily get to
know k and vice versa [9]), this no longer holds in dynamic rings. Interestingly,
in our algorithms, it requires longer time to know n using knowledge of k than
to know k using knowledge of n. As a result, the algorithm with knowledge of
n solves the problem faster and requires a smaller number of agent moves than
the algorithm with knowledge of k. Due to page limit, we omit pseudocodes and
several proofs of lemmas and theorems.

2 Preliminaries

2.1 System Model

We basically follow the model defined in [11]. A dynamic bidirectional ring R
is defined as 2-tuple R = (V,E), where V = {v0, v1, . . . , vn−1} is a set of n
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Table 1. Results in each model (n: #nodes, k: #agents)

Results in [9] Results of this paper

Result 1 Result 2 Result 1
(Sec. 3)

Result 2
(Sec. 4)

Static/Dynamic ring Static Static Dynamic Dynamic

Knowledge k or n k or n n k

Agent memory O(k log n) O(log n) O(k log n) O(k log n)

Time complexity Θ(n) O(n log k) O(n log k) O(n2)

Total number of agent moves Θ(kn) Θ(kn) Θ(kn) O(n2)

anonymous nodes and E = {e0, e1, . . . , en−1} (ei = {vi, v(i+1) mod n}) is a set of
links. For simplicity, we denote v(i+j) mod n (resp., e(i+j) mod n) by vi+j (resp.,
e(i+j)) for any integers i and j. We define the direction from vi to vi+1 (resp.,
vi to vi−1) as the forward or clockwise (resp., backward or counterclockwise)
direction. In addition, one of the links may be missing at each time step, and
which link is missing is controlled by an adversarial scheduler. Such a dynamic
ring is known as a 1-interval connected ring. The distance from node vi to vj is
defined to be (j − i) mod n. Note that this definition of the distance is correct
when there is no missing link.

Let A = {a0, a1, . . . , ak−1} be a set of k (≤ n) agents. Agents are anonymous,
that is, they do not have distinct IDs (assumption (1) in Sect. 1.2). Obviously,
this is the weakest assumption about identification among agents. An agent is a
state machine having two special states, initial state sinitial and final state sfinal.
Once an agent changes its state to sfinal, it never changes its state or leaves
the current node thereafter. We say that an agent terminates when its state
changes to sfinal. We consider two problem settings: (i) agents know n, and (ii)
agents know k. Note that either of knowledge n or k is necessary (assumption
(2) in Sect. 1.2). This is because, it is shown in [9] that agents without knowledge
of n or k cannot achieve uniform deployment even in static rings if termination
detection is required (i.e., they need to change their states to sfinal). Agents have
chirality, that is, they agree on the orientation of clockwise and counterclockwise
direction in the ring. Agents have the strong multiplicity detection capability, that
is, they can count the exact number of agents staying at the same node. However,
agents cannot perform a direct message communication even when they stay
at the same node (assumption (5) in Sect. 1.2). Obviously, this is the weakest
assumption about message communication. Each agent initially has a token and
can release it on the currently visited node (assumption (6) in Sect. 1.2). After
the token is released, it cannot be removed. The token on an agent can be realized
by only 1-bit memory and cannot carry any additional information. Hence, even
when an agent visits a node with tokens, the agent can detect only the existence
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of the tokens and cannot recognize the owners of the tokens1. Note that the
assumption on tokens is necessary because, if agents are not allowed to have
tokens and they move in a synchronous manner, they cannot mark nodes in any
way, they cannot get any other information of other agents, and thus uniform
deployment cannot be achieved. Hence, agents communicate only by the tokens
and the strong multiplicity detection capability.

During execution of the algorithm, we assume that agents move instanta-
neously, that is, they always exist at nodes (do not exist on links). Each agent ai

executes the following three operations in an atomic action: 1) Agent ai counts
the number of agents at the same node v and the number of tokens released on
v, 2) agent ai executes some local computation, and 3) agent ai releases its token
(if it decides to do so) and leaves v (if it decides to move). When ai tries to move
to its neighboring node (e.g., from node vj to vj+1) but the corresponding link
(e.g., link ej) is missing, we say that ai is blocked, and it still exists at vj at the
beginning of the next atomic action.

In an agent system, a (global) configuration is defined as the Cartesian prod-
uct of the states of all agents, the states (the number of tokens) of all nodes, and
the locations of all agents. We define C as a set of all configurations. In an initial
configuration c0 ∈ C, all agents are in the same state sinitial and every agent has
one token. Furthermore, we assume that agents are located at mutually distinct
nodes in c0 (assumption (7) in Sect. 1.2). This assumption is necessary because
otherwise two agents initially located at the same node always execute the same
action and they never stay at distinct nodes, which implies that the agents can-
not achieve uniform deployment deterministically. The node where agent a is
located in c0 is called the home node of a and is denoted by vHOME(a).

Moreover, we define periodic initial configurations. First, we define the i-
th forward (resp., backward) agent a′ of agent a as the agent such that i − 1
agents exist between a and a′ in a’s forward (resp., backward) direction in c0.
For convenience, we define the 0-th forward agent of a as a itself. Then, in c0,
we assume that agents a0, a1, . . . , ak−1 exist in this order, that is, ai is the i-
th forward agent of a0 in c0. We define the distance sequence of agent ai in c0
as Di(c0) = (di0(c0), . . . , d

i
k−1(c0)), where dij(c0) is the distance from the j-th

forward agent of ai to the (j + 1)-st forward agent of ai in c0. We define the
distance sequence D(c0) of c0 as the lexicographically minimum sequence among
{Di(c0) | 0 ≤ i ≤ k − 1}. Let shift(D,x) = (dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1)
for sequence D = (d0, d1, . . . , dk−1). Then, if D(c0) = shift(D(c0), x) holds for
some x (0 < x < k), we say c0 is periodic. Otherwise, we say c0 is aperiodic.

In this paper, we consider a synchronous execution, that is, in each time step
called round, all agents perform atomic actions. An execution from c0 is defined
as E = c0, c1, . . . where each ci (i ≥ 1) is the configuration reached from ci−1 by
atomic actions of all agents. An execution is infinite, or ends in a configuration
where the state of every agent is sfinal.

1 In practice, obviously each node can store information more than 1-bit token, but it
is sufficient to store information about tokens when considering anonymous agents.
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2.2 The Uniform Deployment Problem

In [9], the uniform deployment problem in a static ring is defined so that all
k (≥ 2) agents spread uniformly in the ring, that is, all agents are located at
distinct nodes and the adjacent distance between any two adjacent agents should
be the same. Here, we say that two agents are adjacent when there exists a path
(a set of consecutive links) connecting the two agents such that no other agent
exists on the path, and the adjacent distance is the number of links on the path.
However, if we follow this definition, agents cannot achieve uniform deployment
in a dynamic ring intuitively by the following two reasons: (i) The adversarial
scheduler can continue to block one agent a′ at some node vj forever during an
execution by deciding that link ej (resp., ej−1) is missing when a′ tries to move
from vj to vj+1 (resp., from vj to vj−1), and (ii) the other agents (and a′) cannot
detect whether a′ is blocked forever and they need to determine their destinations
according to the node vj where a′ is blocked, or a′ can eventually leave vj and
they must not determine their destinations according to the location of vj . Hence,
the uniform deployment problem in a dynamic ring allows at most one agent to
stay at an arbitrary node, that is, the problem requires that all agents other than
one agent spread uniformly in the ring (Fig. 1). In addition, we should consider
the case that n is not divisible by k. In this case, we aim to distribute agents so
that the adjacent distance of any two adjacent agents should be �n/k� or �n/k�.
As an exception, let a′ be an agent allowed to stay at an arbitrary node due to
missing links. Then, when considering the configuration such that a′ does not
exist in the ring, the adjacent distance of one pair of adjacent agents is either
2�n/k�, 2�n/k� + 1, or 2�n/k�, and each adjacent distance of the other pairs of
adjacent agents is �n/k� or �n/k�. Formally, we define the uniform deployment
problem in dynamic rings as follows.

Definition 1. An algorithm solves the uniform deployment problem in a
dynamic ring if any execution E satisfies the following conditions.

– Execution E is finite (i.e., all agents terminate in state sfinal).
– When E terminates, there is an agent a′ such that if we ignore a′, the adjacent

distance of exactly one pair of adjacent agents is either 2�n/k�, 2�n/k� + 1,
or 2�n/k�, and each adjacent distance of the other pairs of adjacent agents is
�n/k� or �n/k�.
In this paper, we evaluate the proposed algorithms by memory space per

agent, the time complexity (the number of rounds for agents to solve the prob-
lem), and the total number of agent moves. In [9], lower bounds on the time
complexity and the total number of agent moves for static rings are shown to be
Ω(n) and Ω(kn), respectively. These bounds also hold in dynamic rings, because
there exists an initial configuration that requires the above time and the total
number of agent moves for k − 1 agents to spread uniformly in the ring. Thus,
we have the following theorems.

Theorem 1. When k ≤ pn holds for some constant p (p < 1), a lower bound
of the total number of agent moves to solve the uniform deployment problem in
dynamic rings is Ω(kn).
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Theorem 2. A lower bound of the time complexity to solve the uniform deploy-
ment problem in dynamic rings is Ω(n).

3 Agents with Knowledge of n

In this section, for agents with knowledge of n, we propose an algorithm that
solves the problem with O(k log n) memory space per agent, O(n log k) rounds,
and a total number of O(kn) moves. By Theorem 1, this algorithm is asymptot-
ically optimal in terms of the total number of agent moves. For simplicity, we
assume that n is divisible by k in the rest of this section since we can remove this
assumption easily, but we omit the description. The basic idea for the case of
static rings [9] is that each agent first travels once around the ring and then deter-
mines where it should stay at using the information obtained by the traversal.
However, in dynamic rings, agents cannot travel once around the ring when one
link continues to be missing. Agents treat this by additional behaviors explained
in the following subsections. The proposed algorithm comprises two phases: the
selection phase and the deployment phase. In the selection phase, each agent
selects a base node as a reference node for uniform deployment. In the deploy-
ment phase, based on the base node, each agent determines and moves to its
destination node.

3.1 Selection Phase

The aim of this phase is that each agent achieves either of the following two goals:
(i) It travels once around the ring and gets the distance sequence of the initial
configuration c0, or (ii) it detects that all agents stay at the same node. We use
an idea similar to [11] which considers gathering in dynamic rings, in order for
agents to get information about locations of tokens and detect whether all agents
stay at the same node or not. First, each agent ai releases its token at its home
node vHOME(ai) and then moves forward for 3n rounds. During the movement, ai

measures the distance dis between every pair of adjacent token nodes, and stores
dis to an array Di for memorizing the distance sequence. After the movement,
the number of nodes that ai has visited is (a) at least n or (b) less than n due
to missing links. In case (a), ai must have completed traveling once around the
ring. Thus, ai can get the value of k and the distance sequence of c0 (goal (i)
is achieved). Then, ai selects its base node using the obtained sequence. Let
Di = (d0, d1, . . . , dk−1) be the distance sequence observed by ai, where dj is the
distance from the j-th token node ai found to the (j+1)-st token node. We regard
ai’s home node vHOME(ai) as the 0-th token node. Let xi be the minimum integer
satisfying shift(Di, xi) = Dmin, where Dmin is the lexicographically minimum
distance sequence among {shift(Di, xi) | 0 ≤ x ≤ k − 1}. Note that Dmin is
equal to D(c0) defined in Sect. 2.1. Then, ai selects its base node vbase(ai) as the
home node of its xi-th token node. Note that the xi-th agent has the minimum
distance sequence Dmin. If c0 is aperiodic, all agents select the same node as
a base node. If c0 is periodic, multiple nodes are selected as base nodes. For
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Fig. 2. Example of base nodes and destination nodes.

example, when c0 is like Fig. 2 (a), node v1
b (resp., v2

b ) is selected as a base node
for agents a4, a5, and a0 (resp., a1, a2, and a3).

In case (b) (i.e., ai has visited less than n nodes during the 3n rounds), all
agents must have blocked at least 2n times, which implies that all agents stay
at the same node after the 3n rounds (Lemma 1), and thus goal (ii) is achieved.
In this case, ai gets the value of k by counting the number of agents at the same
node using the strong multiplicity detection capability, and it selects the current
node as the base node. Distance sequence Di is not used in this case.

Concerning the selection phase, we have the following lemma.

Lemma 1. After finishing the selection phase, each agent ai achieves either of
the following two goals: (i) It travels at least once around the ring and gets the
distance sequence of the initial configuration c0, or (ii) it detects that all agents
stay at the same node.

3.2 Deployment Phase

In this phase, based on the base nodes, each agent ai determines its destination
node and moves to and stays at the node. First, we explain how to determine the
destination node of ai. In case (a) (i.e., ai travels at least once around the ring
and has the distance sequence of c0), ai considers that it is the rank-th agent
(0 ≤ rank ≤ k − 1) to its base node vbase(ai). Here, we say that ai is the rank-th
agent if rank − 1 tokens exist from vHOME(ai) to vbase(ai) in c0. Thus, rank is
equal to xi in Sect. 3.1. We regard the agent ai staying at vbase(ai) as the 0-th
agent. In Fig. 2 (a), agent a2 (resp., a5) is the 1-st agent since no agent exists
between a2 (resp., a5) and vbase(a2) (= v2

b ) (resp., vbase(a5)(= v1
b )). Similarly,

a1 and a4 are the 2-nd agents. Then, ai determines its destination node as the
node with distance rank×n/k from vbase(ai). In Fig. 2 (b), the destination nodes
of a0, a1, a2, a3, a4, and a5 are v0

d, v
1
d, v

2
d, v

3
d, v

4
d, and v5

d, respectively.
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Fig. 3. An example of computing ranks.

In case (b) (i.e., all agents stay at the same node), some agent does not
travel once around the ring, does not get the distance sequence of c0, and cannot
compute its rank as in case (a). To treat this, each agent computes its rank using
the strong multiplicity detection capability. Concretely, since at most one agent
exists at each node in c0, we consider a synchronous execution, and so far agents
have moved forward, two agents exist at the same node when (1) some agent
ai is blocked at node vj and (2) another agent ah visits vj from vj−1. Then, ai

and ah can recognize which is the first agent that visited vj using the strong
multiplicity detection capability. That is, just before ah visits vj , ai recognizes
that no other agent exists at vj , and it (and ah) recognize that two agents exist
at vj just after ah visits vj . Thus, ai and ah can recognize that ai (resp., ah)
is the 0-th (resp., 1-st) agent. Ranking when three or more agents exist at the
same node is similarly computed. In Fig. 3 (a), agents ah, ai, and aj try to move
forward (right) but ai is blocked. Then, the system reaches the configuration
of Fig. 3 (b) and ai (resp., ah) recognizes that it is the 0-th (resp., 1-st) agent.
From (b) to (c), agents try to move forward but aj is blocked. From (c) to (d),
aj is still blocked, and ah and ai reach aj ’s node. Then, aj , ai and ah recognize
that they are 0-th, 1-st, 2-nd agents, respectively. Using such a technique, even
when all agents stay at the same node and do not have the distance sequence
of c0, each agent can compute its rank and determine its destination node as in
case (a).

Next, we explain how to move to and stay at the destination node for each
agent ai. Basically, each agent continues to move forward and stays at its des-
tination node when it reaches there. When there exists no missing link, each
agent can reach its destination node even if the initial configuration is periodic.
This is because the target configuration of uniform configuration is a symmetric
one and agents can reach the configuration without symmetry breaking from the
periodic configurations. However, if some link continues to be blocked and all
agents move forward, they may continue to be blocked from traversing forever
due to the same missing link and they cannot reach their destination nodes.
To treat this, we introduce a technique called splitting. The splitting technique
comprises several subphases, and each subphase comprises 12n rounds. In addi-
tion, the 12n rounds of each subphase are divided into four parts each of which
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comprises 3n rounds. For the first 3n rounds, each agent ai moves forward. Dur-
ing the movement, if ai reaches its destination node, it terminates an execution
of the algorithm there. After the 3n rounds, if there exists some agent that does
not reach its destination node and is still executing the algorithm, we can show
by the similar discussion of agents’ behaviors in Sect. 3.1 and Lemma 1 that
all agents still executing the algorithm stay at the same node. Let k′ be the
number of agents staying at the same node. Note that the range of ranks for
the k′ agents are from 0 to k′ − 1. Then, for the second 3n rounds, agents with
rank less than �(k′ − 1)/2� (resp., at least �(k′ − 1)/2�) try to move forward
(resp., backward). By this behavior, it does not happen that all agents continue
to be blocked. We call the set of agents with rank less than �(k′ − 1)/2� (resp.,
at least �(k′ − 1)/2�) Af (resp., Ab). During the movement, if ai reaches its
destination node, it terminates an execution of the algorithm there. Thereafter,
for the third 3n rounds, each agent still executing the algorithm moves forward
(regardless whether it is in Af or Ab) and stays at its destination node when it
reaches there. Then, similar to the end of the first 3n rounds, we can show that
all agents still executing the algorithm stay at the same node. For the fourth
(or last) 3n rounds, each agent that belonged to Af (resp., Ab) moves forward
(resp., backward) and stays at its destination node when it reaches there. By
these behaviors, we can show that either of all agents in Af or all agents in Ab

can reach their destination nodes in each subphase (Lemma 2). Intuitively, this
is because, if agents in some group (e.g., Af ) continue to be blocked for a long
time and they have visited less than n nodes in the subphase, agents in the other
group (e.g., Ab) can continue to move to the opposite direction and they can
visit at least n nodes, which implies that they can reach their destination nodes
within the subphase (see Fig. 4 in the proof of Lemma 2). Thus, the number of
agents still executing the algorithm at least halves in each subphase. Therefore,
by executing such a subphase �log k� times, all agents other than one agent can
stay at their destination nodes.

Concerning the deployment phase, we have the following lemma.

Lemma 2. After finishing the deployment phase, all agents other than one agent
stay at their destination nodes.

Proof. Let Af (resp., Ab) be the set of agents that move forward (resp., back-
ward) for the second and fourth 3n rounds in some subphase. Then, −1 ≤
|Af | − |Ab| ≤ 1 holds and it is sufficient to show that either of all agents in Af

or all agents in Ab visit all n nodes of the ring in the subphase. Then, agents in
Af or agents in Ab can stay at their destination nodes and all agents other than
one agent can eventually stay at their destination nodes after executing such a
subphase �log k� times. We show the above argument by contradiction, that is,
we assume that neither agents in Af nor agents in Ab visit all n nodes in some
subphase. Then, we show that, if agents in some group (e.g., Af ) continue to
be blocked for a long time and they have visited less than n nodes in the sub-
phase, agents in the other group (e.g., Ab) can continue to move to the opposite
direction and they must visit at least n nodes, which is a contradiction.
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Fig. 4. An example of the splitting technique.

Now, we show the detail of the proof. Let us consider a situation such that
agents completed the first 3n rounds in some subphase. Then, by the similar
discussion in the proof of Lemma 1, all the agents still executing the algorithm
stay at the same node like Fig. 4 (a). We consider the behavior of agents for the
remaining second, third, and forth 3n rounds. By the assumption, there exist at
least two agents af ∈ Af and ab ∈ Ab that do not reach their destination nodes
during the subphase. For simplicity, in the following we consider behaviors of af

and ab. Let vj be the node where agents start the second 3n rounds. For this
3n rounds, agent af (resp., ab) tries to move forward (resp., backward). Since
neither agents af nor ab visit all n nodes by the assumption of contradiction, af

and ab must continue to be blocked by the same missing link before they visit n
nodes. That is, when af is blocked at some node vh, the link eh is missing and
ab is blocked at node vh+1 (Fig. 4 (b)). Let p2 (resp., q2) be the number of nodes
that af (resp., ab) has visited from vj by moving forward (resp., backward).
Then, 0 ≤ p2, q2 < n and (1) p2 + q2 + 1 = n hold. Thereafter, for the third
3n rounds, ah and ab try to move forward. Since af does not visit n nodes by
the assumption, af must continue to be blocked before it visits vj again (Fig. 4
(c)). Let p3 be the number of nodes that af has visited for this 3n rounds. Then,
p2 + p3 < n holds and ab has visited p3 − 1 nodes for this 3n rounds, that is, ab

exists at the (q2−(p3−1))-th backward node from vj . Also, at the end of this 3n
rounds, af and ab stay at the same node by the similar discussion in the proof
of Lemma 1. Thereafter, for the fourth 3n rounds, af (resp., ab) tries to move
forward (resp., backward). Then, af continues to be blocked before it visits n
nodes. Let p4 be the number of nodes that af visited for this 3n rounds. Then,
(2) p2 + p3 + p4 < n holds. On the other hand, ab continues to move backward
and be blocked at another endpoint node of the missing link (Fig. 4 (d)). Then,
ab has visited n− p4 nodes for this 3n rounds and the number of different nodes
that ab has visited is at least
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q2 − (p3 − 1) + (n − p4)
(1)

︷︸︸︷

= (n − p2 − 1) − (p3 − 1) + (n − p4)
= 2n − (p2 + p3 + p4)
(2)

︷︸︸︷

> 2n − n = n.

This implies that ab has visited at least n nodes and traveled once around the
ring, which is a contradiction. Therefore, the lemma follows. 	


We have the following theorem for the proposed algorithm.

Theorem 3. For agents with knowledge of n, the proposed algorithm solves the
uniform deployment problem in dynamic rings with O(k log n) memory space per
agent, O(n log k) rounds, and a total number of O(kn) moves.

4 Agents with Knowledge of k

In this section, for agents without knowledge of n but with knowledge of k,
when k ≥ 4, we propose an algorithm that solves the problem with O(k log n)
memory space per agent, O(n2) rounds, and a total number of O(n2) moves.
As in Sect. 3, the algorithm comprises the selection phase and the deployment
phase. For simplicity, we assume that n is divisible by k in the rest of this section
as in Sect. 3.

4.1 Selection Phase

Basic Idea. In this section, each agent ai selects its base node similar to
Sect. 3.1. That is, ai first releases its token at its home node vHOME(ai). There-
after, agents try to travel once around the ring and get the distance sequence of
the initial configuration c0. However, since agents in this section have knowledge
of k instead of n, each agent ai moves until (a) it observes k tokens after leaving
vHOME(ai) and returns to vHOME(ai) or (b) it detects that all k agents stay at
the same node due to link-missing. In case (a), similar to Sect. 3.1, we can show
that ai completes traveling once around the ring. Then, ai can get the value of
n and the distance sequence of c0, and can select a base node using the obtained
sequence.

In case (b), similar to Sect. 3.1, it may be possible to select the current node
as a base node. However, in this case agents do not get the value of n yet and
they cannot determine their destination nodes at this stage. Hence, they need
additional behaviors to get n. Concretely, when all k agents stay at the same
node, we call the agent ai′ with the maximum rank (or rank k − 1) the minor
agent, and the other k − 1 agents the major agents. Then, only the minor agent
ai′ switches its direction to backward and the other agents (or the major agents)
keep the forward direction. By this behavior, it does not happen that all agents
continue to be blocked at the same node. In the following, we first explain the
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Fig. 5. An execution example when a link is missing for a long time.

behavior of the minor agent ai′ and then explain the behavior of the major
agents.

Behavior of Minor Agent ai′ . We describe the case that ai′ is not blocked
when moving backward and travels once around the ring at the end of this
paragraph. If ai′ is blocked when it tries to move backward, it returns its direction
to forward, and moves forward until it visits the node where the major agents
exist. Then, ai′ determines whether the major agents moved forward at least
once until ai′ comes back to them or not, by comparing the numbers of backward
moves and forward moves that ai′ made. If the major agents did not move until
ai′ comes back to them, the major agents continue to be blocked while ai′ is
moving. That is, when ai′ is blocked when moving backward, the major agents
exist at another endpoint of the missing link. Then, ai′ can recognize that it has
visited all n nodes during this traversal and get the value of n, and it can tell
the major agents the value of n through the number of rounds that the major
agents were blocked. An example is given in Fig. 5. Otherwise (i.e., the major
agents moved at least once until ai′ comes back to them), ai′ executes the above
behavior again. The minor agent ai′ repeats such a behavior until (i) it continues
to move to some direction, travels once around the ring, and gets the value n
and the distance sequence of c0, (ii) the major agents continue to be blocked
for a long time but ai′ can get the value of n and tell it to the major agents as
mentioned above, or (iii) the major agents tell ai′ the value of n by the method
explained next.

Behavior of the Major Agents. In contrast to the minor agent ai′ , the major
agents do not switch their direction and keep trying to move forward. If the major
agents continue to be blocked at the same node for a long time, ai′ gets the value
of n and tells it to the major agents as mentioned above (Fig. 5). Otherwise (i.e.,
at every node vj the major agents leave vj before ai′ comes back to them), the
major agents eventually observe k tokens and get the value of n. Thereafter, the
major agents try to move forward for 3n rounds to tell ai′ the value of n. During
the movement, if the major agents meet ai′ at some node vj , they tell ai′ the
value of n as follows. When major agents and ai′ meet at round r, ai′ stays at
the current node vj at round r + 1. On the other hand, the agent a0

m with rank
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Fig. 6. An example that the major agents tell the minor agent the value of n.

0 (resp., the agent a1
m with rank 1) in the major agents tries to move forward

(resp., backward) and the other agents in the major agents stay at vj at round
r + 1. By this behavior, a0

m or a1
m can leave vj , and ai′ can detect the change

of the number of agents at vj and the major agents know the value of n. After
that, at round r + 2, a0

m and a1
m try to return to vj (if a0

m or a1
m is blocked at

round r + 1, it stays at vj at round r + 2). By this behavior, at least two major
agents exist at vj at round r + 2 since we consider the case of k ≥ 4, and they
can tell ai′ the value of n. That is, from rounds r+3 to r+3+(n−1), the major
agents stay at the current nodes. Then, at round r + 3 + n, the agent a0

m′ with
rank 0 (resp., the agent a1

m′ with rank 1) in the major agents staying at vj tries
to move forward (resp., backward). Then, the number of agents at vj changes at
least one and ai′ can detect that the major agents finished telling the value of n.
An example is given in Fig. 6. Otherwise (i.e., the major agents do not meet ai′

while trying to move forward for 3n rounds), we can show that ai′ has already
traveled once around the ring, and got the value of n and the distance sequence
of c0 (Lemma 3). Thereafter, the major agents (and ai′) enter the deployment
phase.

Concerning the selection phase, we have the following lemma.

Lemma 3. After finishing the selection phase, each agent knows the value of n.
In addition, when the minor agent ai′ gets the value of n without being told the
value by the major agents, each agent knows the distance sequence of the initial
configuration c0.

4.2 Deployment Phase

By Lemma 3, after executing the selection phase, each agent ai knows the value
of n (and the distance sequence of c0 when the minor agent ai′ gets the value of
n without being told the value by the major agents). Hence, ai can determine
its destination node and move to and stay at the node by the exact same way
in Sect. 3.2. Thus, we have the following theorem for the proposed algorithm.

Theorem 4. For agents with knowledge of k, when k ≥ 4, the proposed algo-
rithm solves the uniform deployment problem in dynamic rings with O(k log n)
memory space per agent, O(n2) rounds, and a total number of O(n2) moves.
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5 Conclusion

In this paper, we considered the uniform deployment problem of mobile agents in
bidirectional dynamic rings. First, for agents with knowledge of n, we proposed
an algorithm that solves the problem with O(k log n) memory space per agent,
O(n log k) rounds, and a total number of O(kn) moves. Second, for agents with
knowledge of k, when k ≥ 4, we proposed an algorithm that solves the problem
with O(k log n) memory space per agent, O(n2) rounds, and a total number of
O(n2) moves. These results mean that the uniform deployment problem can be
solved also in dynamic rings, and unlike [9], agents with knowledge of k cannot
achieve uniform deployment by the same way as that for agents with knowledge
of n.

As future works, first we will analyze the lower bound on the time complexity
and consider whether or not proposed algorithms this time are time optimal. Sec-
ond, we will consider whether or not some assumptions (e.g., chirality, the strong
multiplicity detection capability, etc.) can be removed or weakened. Finally, we
will consider agents without knowledge of n or k. In this case, it is shown in [9]
that, (1) agents cannot solve the problem even in static rings when termination
detection is required, and (2) if termination detection is not required and agents
have communication capability, the problem is solvable. Hence, using the model
like (2), we will consider whether the problem is solvable or not also in dynamic
rings.
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Abstract. In this paper, we consider the problem of partial gathering
for mobile robots in ring topologies. The partial gathering problem is a
generalization of the (well-investigated) total gathering problem, which
requires that all k robots distributed in the network terminate at a non-
predetermined single node. The partial gathering problem requires, for
a given positive integer g (< k), that each robot moves to a node and
terminates, so that at least g robots, or no robot, exists at any node.
We consider the solvability of the problem for anonymous and oblivious
mobile robots from initial configurations where several robots may share
the same node. If an algorithm can solve the problem from any such
initial configuration, the algorithm is called self-stabilizing. In addition,
since the requirement for the partial gathering problem is weaker than
that for the total gathering problem, we aim to clarify whether partial
gathering is (i) solvable in weaker models than those for total gathering,
and (ii) solvable in a strictly smaller total number of moves than that
for total gathering.

First, we show that no probabilistically self-stabilizing partial gath-
ering algorithm exists in the asynchronous (ASYNC) model, or if only
local-strong and global-weak multiplicity detection is available. Surpris-
ingly, these impossibility results are the same as the case of total gath-
ering. Next, in the semi-synchronous (SSYNC) and global-strong multi-
plicity detection model (i.e., the weakest system assumption that may
allow a solution), we consider deterministic and probabilistic algorithms.
In the deterministic case, we first show that unsolvable initial configu-
rations exist, and then propose an algorithm to solve the problem using
O(gn) moves from any solvable initial configuration, where n is the num-
ber of nodes. In the probabilistic case, we propose an algorithm to solve
the problem using O(gn) moves in expectation from any initial configu-
ration (i.e., the algorithm is probabilistically self-stabilizing). Note that
g < k holds, and the partial (resp., total) gathering problem requires
Ω(gn) (resp., Ω(kn)) moves. Thus, our results show that the proposed
algorithms achieve partial gathering in a strictly smaller total number of
moves than that for total gathering.
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1 Introduction

Background. Studies for mobile robot networks have emerged recently in the
field of Distributed Computing. Their goal is to achieve some tasks by a team
of mobile robots with weak capabilities. Most studies assume that robots are
identical (they execute the same algorithm and cannot be distinguished by their
appearance) and oblivious (they cannot remember their past actions). In addi-
tion, it is assumed that robots cannot communicate with other robots explicitly.
Instead, the communication is done implicitly by having each robot observe the
positions of others.

Since Suzuki and Yamashita presented a pioneering work [19], many prob-
lems were studied in various settings [7]. In this paper, we focus on unoriented
anonymous ring-shaped networks, since such topologies proved the hardest to
cope with, particularly with respect to symmetries [2,13,14]. The main concern
of previous works in ring networks is to characterize the minimum assumptions
allowing deterministic algorithms to solve a particular problem. Many algorithms
for fundamental problems such as the total gathering problem, which requires
all k robots to meet at a non-predetermined single node, have been proposed
using various settings [2].

Most previous works considering robots in a discrete model (i.e., a graph)
assume that initial robot positions are unique, that is, in the initial configuration,
no two robots share the same location [2]. A notable exception is due to Ooshita
et al. [14], where all initial configurations are possible (including those with
multiplicity points), yet their probabilistic algorithm yields a solution to the total
gathering problem. Such an algorithm is called probabilistically self-stabilizing
since it solves the problem from any initial configuration in a probabilistic way.

Our Contribution. In this paper, we explore the possibility to obtain self-
stabilizing mobile robot algorithms (i.e., algorithms that allow any initial con-
figuration, including those with multiplicity points) for the g-partial gathering
problem. Considering a set of k robots, the g-partial gathering requires, for a
given positive integer g (< k), that each robot moves to a node and terminates,
so that every node is either empty or hosting at least g robots when all robots
terminate, (e.g., Fig. 1).

Let us observe that the requirement for the g-partial gathering problem is
weaker than that for the (well-investigated) total gathering problem, as a solution
to the total gathering problem is also a solution to the g-partial gathering prob-
lem (obvious, the converse is not true). Thus, we aim to clarify whether g-partial
gathering is (i) solvable in weaker models (i.e., assuming fewer hypotheses) than
those for total gathering, and (ii) solvable in a strictly smaller total number of
moves than that for total gathering.

We summarize our results in Table 1. We consider various hypotheses
such as synchrony assumptions (the network could be asynchronous or semi-
synchronous) and the ability for the robots to detect multiplicity (that is, detect-
ing several robots occupy the same node). For multiplicity, we consider the global
(a robot can sense multiplicity in the entire network) and the local (a robot can
sense multiplicity only at its host node) variants, as well as the strong (the exact
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Fig. 1. An example of a partial gathering solution (g = 3)

number of robots on a node can be sensed) and the weak (only the “multiple
robots” information is sensed) variants.

On the negative side, we show that no probabilistic self-stabilizing g-partial
gathering algorithm exists in the asynchronous (ASYNC) model, or if only local-
strong and global-weak multiplicity detection is available. Surprisingly, these
impossibility results are the same as the case of the total gathering problem [14]
despite the studied problem (g-partial gathering) being “simpler” than total
gathering. Next, in the semi-synchronous (SSYNC) model, and assuming global-
strong multiplicity detection model (i.e., the weakest system assumption that
may allow a solution), we consider deterministic and probabilistic algorithms. In
the deterministic case, we first show that unsolvable initial configurations remain,
and then propose an almost-stabilizing algorithm, that is, an algorithm to solve
the problem from any solvable initial configuration. This algorithm requires O(n)
rounds, and a total number of O(gn) moves, where n is the number of nodes. So,
there exist initial configurations with multiplicity points that allow determin-
istic g-partial gathering solvability. By contrast, deterministic results for total
gathering only consider initial distinct configurations (i.e., initial configurations
where at most one robot is located on a given node). In the probabilistic case, we
propose an algorithm to solve the problem in O(n) rounds in expectation, and
a total number of O(gn) moves in expectation, from any initial configuration.
Hence, our probabilistic algorithm is probabilistically self-stabilizing. Note that,
since g < k holds and the g-partial (resp., the total) gathering problem requires
Ω(gn) (resp., Ω(kn)) moves [15], our algorithms solve the g-partial gathering
problem with an asymptotically optimal number of moves, and this number is
strictly smaller than that for total gathering.

Related Works. The majority of works for mobile robots that have been
published since the pioneering work of Suzuki and Yamashita [19] considers
a two-dimensional Euclidean space (a.k.a. the continuous model). The origi-
nal paper [19] demonstrates that when robots are not fully synchronous (that
is, in the SSYNC or the ASYNC model), the deterministic gathering of two
robots is impossible. This impossibility result was generalized to an even num-
ber of robots initially located evenly at two positions by Courtieu et al. [5]
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Table 1. Results for the g-partial gathering problem (n: #nodes)

Model 1 Model 2 Model 3 Model 4

Deterministic/Probabilistic Probabilistic Probabilistic Deterministic Probabilistic

Synchronicity ASYNC SSYNC SSYNC SSYNC

Multiplicity Global-strong Local-strong and
global-weak

Global-strong Global-strong

Solvable self-stabilizingly No No No Yes

Solvable almost-stabilizingly ? ? Yes Yes

Rounds - - O(n) O(n)

Total number of moves - - O(gn) O(gn)

(those configurations are known as bivalent configurations). By contrast, the case
of an odd number of robots permits to withstand any initial position in a deter-
ministic manner, as demonstrated by Dieudonné et al. [6], assuming global-strong
multiplicity detection. Alternatively, probabilistic approaches permit gathering
without assumptions on the number of robots or their initial configuration [3,8].
Clement et al. [3] (resp., Izumi et al. [8]) show the trade-off between the time
complexity and the availability of global-weak multiplicity detection or global-
strong multiplicity detection (resp., local-weak multiplicity detection or local-
strong multiplicity detection). Finally, weakening synchrony assumptions down
to the fully synchronous model (FSYNC) permits to solve gathering [4], even
from arbitrary initial configurations [1].

Recently, a number of works consider the discrete model (a.k.a. graph model),
where robots may only be located at nodes of the graph, and move from one
position to the next if there is an edge in the graph linking the two corre-
sponding nodes. For ring networks, Klasing et al. [12] propose deterministic
total gathering algorithms in the ASYNC model with global-weak multiplicity
detection. They also show that there exist some initial configurations where no
deterministic algorithm can achieve total gathering. Izumi et al. [9] provide a
deterministic total gathering algorithm with local-weak multiplicity detection.
Their algorithms assume that initial configurations are non-symmetric or non-
periodic, and that the number of robots is less than half of the number of nodes.
For odd number of robots or odd number of nodes in the same model, Kamei
et al. [10,11] propose total gathering algorithms that also work when started
from symmetric configurations. Note that all of the above works assume that
locations of robots in the initial configuration are distinct, and thus they are not
self-stabilizing.

Going probabilistic proved useful: the work of Ooshita et al. [14] demon-
strated that probabilistic algorithm can ensure gathering (in the probabilistic
sense) starting from any initial configuration (including those with multiplicity
points).

To the best of our knowledge, the g-partial gathering problem was considered
only for the so called agent model [15–18], where mobile entities have persistent
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memory but cannot observe others’ positions unless they are located on the exact
same node. Also, they assume that no two mobile entities may share the same
position in the initial configuration. So, this paper is the first to investigate the
g-partial gathering problem in the classical look-compute-move model on graphs.

2 Model

System Models. We use almost the same model as that in Ooshita et al.’s
paper [14]. The system comprises n nodes and k mobile robots. The nodes
v0, v1, . . . , vn−1 construct a directed ring in this order. For simplicity, we consider
mathematical operations to indices of nodes as operations modulo n. We con-
sider two types of rings: oriented and unoriented rings. Neither nodes nor links
have any labels, and consequently robots cannot distinguish nodes and links.
Robots occupy some nodes of the ring.

Robots considered here have the following characteristics and assumptions.
Robots are identical, that is, robots execute the same algorithm and cannot be
distinguished by their appearance. Robots are oblivious, that is, robots have no
persistent memory and cannot remember the history of their execution. Robots
cannot communicate with other robots directly, however they can observe the
positions of other robots. This means that robots can communicate implicitly by
their positions. We assume each robot has some multiplicity detection capability.
We consider two types of multiplicity detection: global-strong multiplicity detec-
tion, and local-strong and global-weak multiplicity detection. When each robot
has global-strong multiplicity detection capability, robots can detect the exact
number of robots at each node. When each robot has local-strong and global-
weak multiplicity detection capability, robots can detect the exact number of
robots only at its current node and detect whether the number of robots at
every other node is zero, one, or more than one.

Each robot executes the algorithm by repeating cycles. At the beginning of
each cycle, the robot observes the environment and the positions of other robots
(look phase). According to the observation, the robot computes whether it moves
to its adjacent node or stays idle (compute phase). If the robot decides to move,
it moves to the node by the end of the cycle (move phase). Such an execution
model is called the Look-Compute-Move model. To analyze the asynchronous
behavior of robots, we introduce the notion of a scheduler that decides when
each robot executes phases. When the scheduler makes robot r execute some
phase, we say the scheduler activates r. We consider two types of synchronicity:
the SSYNC (semi-synchronous) and the ASYNC (asynchronous) model. In the
SSYNC model, a set of robots is selected by the scheduler, and the selected
robots execute cycles synchronously. In the ASYNC model, cycles of robots are
executed asynchronously. Note that in the ASYNC model each robot can move
based on the outdated view that the robot observed before. On the other hand,
in the SSYNC model robots can move based on the latest view. For both models,
the scheduler is fair, that is, each robot is activated infinitely often. When we
analyze the worst-case performance of algorithms, we consider the scheduler as



Partial Gathering of Mobile Robots 269

an adversary. That is, we assume that the scheduler knows all information, such
as positions and decisions of all robots, and activates robots to degrade the
performance of algorithms as much as possible.

A configuration of the system is defined as the number of robots at each
node. If some robots occupy a node, the node is called a robot node. If exactly
one robot occupies a node, the node is called a solo node. If m robots (m ≥ 2)
occupy a node, the node is called a m-robot node or a tower node. If no robot
occupies a node, the node is called a free node.

When a robot observes the environment, it gets a view of the system. Con-
sider a configuration such that nodes vi0 , vi1 , . . . , viw−1(i0 < i1 < · · · < iw−1) are
robot nodes and each robot node vix is occupied by mix robots. A robot obtains
two views: a forward view and a backward view. When robots have global-strong
multiplicity detection capability, let My be the number of robots at its y-th robot
node in the forward direction (i.e., My = mi(x+y)) and Dy be the distance from
its y-th robot node to (y+1)-th robot node (i.e., Dy = (i(x+y+1)−i(x+y))). Then,
the forward view and the backward view of a robot at node vix are defined as
Vf = (M0,D0,M1,D1, . . . ,Mw−1,Dw−1) and Vb = (M0,Dw−1,Mw−1, . . . ,M1,
D0), respectively. When robots have local-strong and global-weak multiplicity
detection capability, views are defined similarly except that My(0 < y < w)
is one or two: My = 1 implies mi(x+y) = 1 and My = 2 implies mi(x+y) > 1
(note that M0 = mix). Figure 2 shows an example of configurations. When
robots have global-strong multiplicity detection capability, robot r at v0 obtains
two views (4, 3, 4, 2, 3, 1, 1, 2) and (4, 2, 1, 1, 3, 2, 4, 3). When robots have local-
strong and global-weak multiplicity detection capability, r obtains two views
(4, 3, 2, 2, 2, 1, 1, 2) and (4, 2, 1, 1, 2, 2, 2, 3). When we assume unoriented rings (or
robots have no chirality) and some robot has the same forward and backward
view, we say that the ring is symmetric. In such cases, we assume the scheduler
decides which direction each robot moves to.

We evaluate the algorithm by the (expected) number of asynchronous rounds
and (expected) total number of moves. A round is defined as the shortest frag-
ment of an execution where each robot executes at least one complete cycle. The
total number of moves is the sum of moves each agent makes.

Problem to be Solved. We define the g-gathering problem as follows: at least
g robots remains at nodes where at least one robot is present, and remain there
thereafter, as in Fig. 1.

Definition 1. An algorithm A solves the g-partial gathering problem if and only
if the system reaches a configuration where each node is a robot node with at least
g robots or a free node.

For the g-partial gathering problem, a lower bound on the total number of
moves for the agent model is shown by Shibata et al. [15]. The result also holds
for the robot model we consider in this paper, and thus we have the following
theorem.

Theorem 1. [15] The lower bound of the total number of agents moves to solve
the g-partial ring networks is Ω(gn) if g ≥ 2.
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Fig. 2. An example of configurations

3 Impossibility Results

In this section, we show the impossibility of probabilistically self-stabilizing g-
Partial gathering algorithms in weaker models. First, we show the impossibility
with a weaker synchronicity model, i.e., the ASYNC model. Recall that cycles of
robots are executed asynchronously in the ASYNC model. We use the technique
by Ooshita et al. [14], which shows that the total gathering problem is unsolvable
in the ASYNC model (even probabilistically). Intuitively, Ooshita et al. [14]
shows that, from the configuration that every node is occupied by exactly one
robot (so, k = n), with some probability, there exists the following asynchronous
execution: When the scheduler activates some robot r at node vx and r decides
to move forward to vx+1, the scheduler activates robot r′ at vx+1. If r′ decides to
move backward to vx, robots r and r′ move in the ring. Then, views of all robots
do not change. If r′ decides to move forward to vx+2, the scheduler activates
robot r

′′
at vx+2. The scheduler repeats such activations until all robots decide

to move forward. After the movement, views of all robots do not change. The
case that robot r at vx decides to move backward to vx−1 is treated similarly.
As a result, views of all robots do not change during the execution and robots
cannot solve the problem. The above idea can be directly applied to the g-partial
gathering problem and we obtain the following theorem.

Theorem 2. No probabilistically self-stabilizing g-partial gathering algorithm
with global-strong multiplicity detection exists in the ASYNC model even if rings
are oriented.

Next, we consider a model with weaker multiplicity detection, i.e., local-
strong and global-weak multiplicity detection. Similarly, we use the technique
by Ooshita et al. [14]. Intuitively, from a configuration that each node is occupied
by three robots, the proof of Ooshita et al. [14] demonstrates that, with some
probability, there exists a following execution: When robot r at vx is activated
and it moves to vx+1 or vx−1, the scheduler continues to activate only r until it
returns to vx. After that, the scheduler continues to activate another robot r′

until it moves in the ring and returns to its initial node. The scheduler repeats
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such activations until all robots are activated, move in the ring, and return to
their initial nodes. During such an execution, the numbers of robots at each
node are between 2 and 4. Hence, the above technique can be also applied to the
g-partial gathering problem for the case of g ≥ 5. We thus have the following
theorem.

Theorem 3. For the case of g ≥ 5, no probabilistically self-stabilizing g-
gathering algorithm with local-strong and global-weak multiplicity detection exists
in the SSYNC model even if rings are oriented.

By the above theorems, in the following sections we consider the semi-
synchronous and global-strong multiplicity detection model.

4 Almost-Stabilizing Deterministic g-Partial Gathering

In this section, we consider a almost-stabilizing deterministic g-partial gathering
algorithm. First, we show that unsolvable initial configurations exist, and then
propose a deterministic algorithm to solve the problem from any solvable initial
configuration.

4.1 Unsolvable Initial Configurations

For explanation, we define the periodicity of the initial configuration. For
a forward view V = (M0,D0,M1,D1, . . . ,Mw−1,Dw−1), let shift (V, t)
= (Mw−t, Dw−t, Mw−t+1, Dw−t+1, . . . ,Mw−1,Dw−1,M0,D0, . . . , Mw−t−1,
Dw−t−1). Then, when shift(V, t) = V holds for some t (0 < t < w − 1), we say
that the configuration is periodic. Otherwise, we say that the configuration is ape-
riodic. Moreover, for the minimum (positive) integer t satisfying shift(V, t) = V ,
we define the number of robots in one period (nOnePeri) as

∑t−1
i=0 Mi. Note that

nOnePeri = k holds in aperiodic configurations. Then, we have the following
theorem

Theorem 4. If the initial configuration is periodic and nOnePeri < g holds, the
g-partial gathering problem is not deterministically solvable.

Proof. We assume that robots move in a synchronous manner. Let Vi be a view of
robot ri in the initial configuration, and let t be the minimum integer satisfying
shift(Vi, t) = Vi. Then

∑t−1
i=0 Mi = nOnePeri holds. In this case, robots with

either of views Vi, shift(Vi, t), . . ., shift(Vi, pt − 1) (p = k/nOnePeri) have the
same view and behave in the exactly same way in a synchronous execution.
Thus, they cannot break the periodicity of the initial configuration and any pair
of them cannot gather at the same node. Then, in the final configuration, there
exist at least p = k/nOnePeri robot nodes and the number of robots at each of
p robot nodes is at most k/p = nOnePeri < g. This means that the g-partial
gathering problem is not solvable by a deterministic algorithm. ��
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4.2 Proposed Algorithm

In this section, we propose the g-partial gathering algorithm in O(n) rounds and
the total number of O(gn) moves from any solvable initial configuration. The
ring is unoriented, that is, robots have no common chirality. The basic idea is
to partition robots into groups each containing at least g robots. Robots realize
this using views. Robots determine their behaviors following the three cases: (i)
Case 1 is when no tower node exists, (ii) Case 2 is when at least one tower node
and at least one solo node exist, and (iii) Case 3 is when no solo node exists.
Recall that a tower node represents a node where at least two robots exist. At
first, we describe the abstract behavior of robots following the above three cases.
Note that, since we allow initial configurations with multiplicity points, robots
may start the algorithm from any of the above cases.

In Case 1, several robots move in the ring to construct a configuration such
that at least one tower node exists (Case 2). To do this, we define a min robot
rmin as the robot with the lexicographically minimum view among all forward
and backward views robots observe. We also define a min node vmin as the node
where rmin exists. Note that in periodic configurations several min nodes (or min
robots) exist. Then, robots closer to vmin move to vmin to make a tower node.
Concretely, for each robot ri, if its nearest backward or forward robot node is
vmin, ri moves to vmin. If both of ri’s backward and forward robot nodes are
min nodes, it moves to its backward min node. If neither of ri’s backward nor
forward robot node is vmin, it remains at the current node. By this behavior,
the system eventually reaches the configuration where at least one tower node
exists. Note that, when the ring is periodic, several min nodes exist. In this case,
since each moving robot gets closer to its nearest min node, at least one min
node vmin keeps its view the minimum and some robot eventually reaches vmin.

In Case 2, that is, when at least one tower node and at least one solo node
exist, robots at solo nodes move in the ring to construct a configuration such
that no solo node exists (Case 3). To do this, let Vmax = (Mmax

0 ,Dmax
0 , . . . ,

Mmax
w−1 ,Mmax

w−1 ) be the lexicographically maximum view among all forward and
backward views robots observe, and rmax be a robot whose view is Vmax. Then,
in Case 2 and 3, robots determine the direction from Mmax

0 -robot node (i.e.,
the node rmax is staying) to Mmax

1 -robot node as the global forward direction
of the ring. In Fig. 2, robots regard the direction from v0 to v3 as the forward
direction. If the ring is symmetric, each robot ri except for rmax regards the
direction from its nearest node rmax exists to ri as its local forward direction.

Then, each robot ri computes its ordinal number from the nearest backward
tower node vt. Concretely, when � − 1 solo nodes exist from vt and ri’s node in
the forward direction, ri recognizes that it stays at the �-th robot node from vt.
Let mt be the number of robots at vt. Then, ri decides its behavior depending on
values of � and mt. Concretely, if (min{mt, g} + � mod g = 1) holds, it remains
at the current node. Otherwise, it moves backward. Intuitively, this behavior
partitions robots into groups each containing at least g robots, except for a
fraction. For example, in Fig. 3 (a) (g = 4), v1

t is a 3 (< g)-tower node. Then,
since r2 stays at the 2-nd robot node and ((3 + 2) mod g = 1) holds, it remains
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Fig. 3. (a): An example of robots’ behaviors in Case 2 (g = 4). (b): An example of
robots’ behaviors in Case 3 (g = 5).

at the current node. On the other hand, r1 (resp., r3 and r4) moves backward to
v1

t (resp., the node where r2 stays). Meanwhile, v2
t is a 4 (≥ g)-robot node. Then,

since r5 stays at the 1-st robot node from v2
t and ((4 + 1) mod g = 1) holds,

it remains at the current node. Oh the other hand, r6 and r7 move backward
to the node where r5 stays. By this behavior, the system eventually reaches the
configuration such that no tower node exists.

In Case 3, that is, when no solo node exists, let V more
g (resp., V less

g ) be the
set of nodes each containing at least (resp., less than) g robots. Then, robots
staying at nodes in V less

g move in the ring to achieve g-partial gathering. To do
this, we assume that vm

t is a robot node in V more
g and there exist tower nodes

v1
t , v2

t , . . . , v�
t each containing less than g robots in vm

t ’s forward direction in this
order. Then, robots at v1

t remain at v1
t and robots at v2

t , v3
t , . . . v�′

t , such that
the total number of robots at v1

t , v2
t , . . . , v�′−1

t (resp., v1
t , v2

t , . . . , v�′
t ) is less than

(resp., at least) g, move backward to v1
t . At the same time, robots at v�′+1

t remain
at v�′+1

t and robots at the next several consecutive robot nodes move backward
to v�′+1

t , so that at least g robots meet at v�′+1
t . For example, in Fig. 3(b) (g = 5),

since the total number of robots at v1
t and v2

t (resp., v1
t , v2

t , and v3
t ) is 4 < g

(resp., 6 > g), robots at v2
t and v3

t move to v1
t . Similarly, since the number

of robots at v4
t (resp., v4

t and v5
t ) is less than (resp., at least) g, robots at v5

t

move backward to v4
t . Robots execute such a behavior until all robots reach their

destination nodes. Note that, if robots at the same tower node move at different
timings, the system reaches a configuration in Case 2. However, even in this
case the destination node of all the robots that have stayed at the same node
does not change. Thus, by continuing such behaviors, robots are partitioned into
groups each containing at least g robots and robots eventually achieve g-partial
gathering.

In the following, we describe the detailed behavior of robots. The goal of
g-partial gathering is to form a configuration such that at least g robots exist
at each node where robots exist. We denote by Cg a set of such configurations.
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Then, the behavior of each robot ri in configuration C (C �= Cg) is described as
follows:

– Case 1: There exists no tower node.
• If its nearest backward robot node is a min node, ri moves there.
• Else if its nearest forward robot node is a min node, ri moves there.
• Otherwise, ri does not move.

– Case 2: There exist at least one tower node and at least one solo node. Let
vt (resp., vt′) be ri’s nearest backward (resp., forward) tower node. Let mt

be the number of robots staying at vt. We assume that if ri stays at a solo
node, it stays at the �-th robot node from vt.

• If ri stays at a tower node, ri remains at the current node.
• If � = 1 holds (i.e., ri’s nearest backward robot node is vt),

– If (mt < g) or (the nearest forward robot node is vt′) or (the ring is
symmetric and there exists exactly one solo node between ri and vt′),
ri moves backward to vt.

– Otherwise, ri does not move.
• If (� �= 1) holds,

– If (min{mt, g} + �) mod g = 1, ri remains at the current node.
– If (min{mt, g} + �) mod g = 2, ri moves backward.
– Otherwise, if the neighboring backward node is a free node, ri moves

backward.
* If ri decides to move backward, it moves only when the global forward
direction does not change after the movement.

– Case 3: There exists no solo node. We assume that if there exists at least
one tower node in V more

g and ri stays at a tower node v�
t ∈ V less

g , there exist
� − 1 tower nodes v1

t , v2
t , . . . v�−1

t in V less
g in this order between the nearest

backward tower node vm
t ∈ V more

g and v�
t . Let vm

t′ be ri’s nearest forward
tower node in V more

g . Let mj (1 ≤ j ≤ �) be the number of robots staying at
vj

t , and let f(1) = m1 and f(j) = f(j − 1) + mj if f(j − 1) + mj < g holds
and f(j) = 0 otherwise.

• If V more
g = ∅ holds,

– If its nearest backward robot node is vmin, ri moves to vmin.
– Otherwise, ri does not move.

• If ri stays at a node in V more
g , ri remains at the current node.

• If � = 1 holds, (i.e., ri’s nearest backward robot node is vm
t ),

– If (the nearest forward robot node is a vm
t′ ) or (the ring is symmetric

and there exists exactly one tower node in V less
g between ri and vm

t′ ),
ri moves backward to vm

t .
– Otherwise, ri does not move.

If � �= 1 holds,
– If f(� − 1) = 0 holds, ri remains at the current node.
– If f(�−2) = 0 holds, or ri stays at the 2-nd robot node from vm

t (i.e.,
� = 2), ri moves backward.

– Otherwise, if the neighboring backward node is a free node, ri moves
backward.
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* If ri decides to move backward, it moves only when the global forward
direction does not change after the movement.

Note that, for the case of � = 1 in Case 2, if ri stays at a solo node and both
of its nearest backward and forward robot nodes are tower nodes vt and vt′ , or
if the ring is symmetric and exactly one solo node exists between ri and vt′ ,
regardless of mt, ri moves backward to vt to construct a configuration in Case
3. In addition, for the case of V more

g = ∅ in Case 3, if no tower node in V more
g

exists, only robots nearest to vmin move to the node.
We have the following lemmas for each case.

Lemma 1. From any configuration in Case 1, the system reaches a configura-
tion in Case 2 in O(n) rounds and the total number of O(n) moves.

Proof. Let Rnext be the set of robots each of whose nearest forward or backward
robot node is a min node. Then, since each robot in Rnext moves to its nearest
min node, at least one min robot keeps its view the lexicographically minimum.
Hence, after at most n rounds, at least one robot in Rnext reaches a min node
and system reaches a configuration in Case 2. Since each link is passed by at
most once during execution in Case 1, the lemma holds. ��
Lemma 2. From any configuration in Case 2 or 3, the system reaches a con-
figuration in Cg in O(n) rounds and the total number of O(gn) moves.

By Lemma 1 and 2, we obtain the following theorem.

Theorem 5. The proposed deterministic algorithm solves the g-partial gather-
ing problem in O(n) rounds and the total number of O(gn) moves from any
solvable configuration.

Proof. We assume that the ring is not symmetric, and we can similarly show
the proof for the case that the ring is symmetric. At first, we show that from
any configuration in Case 2 the system reaches a configuration in Case 3 or Cg

in O(n) rounds and the total number of O(gn) moves. We assume that vt is a
mt-robot node and there exist p solo nodes v1

s , v2
s , . . . vp

s in this order between
vt and the nearest forward tower node v′

t. If p = 1 holds, there exists only one
robot ri between vt and v′

t. In this case, ri moves backward to vt, which clearly
requires O(n) rounds and the total number of O(n) moves. When (p > 1) and
(mt < g), the robots at v1

s , v2
s , . . . vg−mt

s move backward to vt. At the same time,
robots at vg−mt+1

s , v2g−mt+1
s , . . . stay at the current nodes and the other robots

moves backward to the nearest node among vjg−mt+1
s (j ≥ 1). Robots execute

such a behavior until there exists no solo robot node. Also, for the case of mt ≥ g,
robots behave similarly to the above behavior. Thus, after at most n rounds, the
system eventually reaches a configuration in Case 3 or Cg. Since each links is
passed by O(g) times, the total number of moves during execution of this case
is O(gn).
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Next, we show that from any configuration in Case 3 the system eventually
reaches a configuration in Cg in O(n) rounds and the total number of O(gn)
moves. If there exists no robot node in V more

g , the robots nearest to vmin move
backward to vmin. Hence, the system eventually reaches a configuration such that
there exists at least one robot node in V more

g . We assume that vm
t is a robot node

in V more
g and there exist p tower nodes v1

t , v2
t , . . . , vp

t each containing less than g
robots in this order between vm

t and the nearest forward tower node vm
t′ ∈ V more

g .
Let mj (1 ≤ j ≤ p) be the number of robots at vj

t . Then, from the algorithm
robots staying at nodes vg1

t (= v1
t ), vg2

t , vg3
t , . . . (g1 < g2 < g3 < · · · ) such that

for each j > 0 (
∑gj+1−2

i=gj
mi < g)∧ (

∑gj+1−1
i=gj

mi ≥ g) hold, remain at the current
nodes and the other robots move backward to the nearest node among v

gj

t (≥ 1).
After finishing the movement, the system reaches a configuration in Cg. Note
that, if robots at the same tower node move at different timings, the system may
reach a configuration in Case 2. However, even in this case the destination node
of all the robots that have stayed at the same node does not change. Thus, after
at most n rounds, the system eventually reaches a configuration in Cg. Since
each link is passed by O(g) times, the total of agent moves during execution of
this case is O(gn). Therefore, lemma holds. ��

5 Probabilistically Self-stabilizing g-Partial Gathering

In this section, we propose a probabilistic algorithm to solve the problem in
O(n) rounds and the total number of O(gn) moves in expectation starting from
any initial configuration. Hence, the proposed algorithm is probabilistically self-
stabilizing. The idea of the algorithm is as follows. From Sect. 4.2, the proposed
deterministic algorithm achieves g-partial gathering from any solvable configura-
tion. Hence, in this section we use randomization if the current configuration is
not solvable deterministically, and in the other cases robots behave in the exact
same way as in the previous section. Thus, from a deterministically unsolvable
configuration, if robots can reach a deterministically solvable configuration in
O(n) rounds and the total number of O(gn) moves in expectation, they can
solve the problem in O(n) rounds and the total number of O(gn) moves in
expectation from any initial configuration.

The behavior of each robot ri in configuration C (C �= Cg) is described as
follows:

– Case 0: C is deterministically unsolvable. Let Rmax be the set of robots
having Vmax.

– If ri ∈ Rmax, ri moves backward with probability 1/|Rmax|.
– Otherwise, ri does not move.

– Case 0’: C is deterministically solvable (i.e., C is either Case 1, 2, or 3 in
Sect. 4.2). Robot ri behaves in the exact same way as in Sect. 4.2.

We have the following theorem for the proposed algorithm.
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Theorem 6. The proposed probabilistic algorithm solves the g-partial gathering
problem in O(n) rounds and the total number of O(gn) moves in expectation,
starting from any initial configuration.

Proof. If the current configuration is deterministically solvable, from the algo-
rithm in Sect. 4.2 and Theorem 5, robots can solve the problem in O(n) rounds
and the total number of O(gn) moves. Hence, in the following we consider deter-
ministically unsolvable configurations. In this case, each robot in Rmax moves
backward with probability 1/|Rmax|. Then, unless any of the robots in Rmax

does not move or all of them move, the system reaches a deterministically solv-
able configuration. The probability is 1 − (1 − 1

|Rmax| )
|Rmax| − ( 1

|Rmax| )
|Rmax| ≥

1 − ( 1
|Rmax| )

|Rmax| ≥ 3/4. The first deformation comes from Bernoulli’s inequality
and the second deformation comes from the fact that |Rmax| ≥ 2. Hence, after
constant rounds robots can reaches a deterministically solvable configuration.
Thus, the theorem holds. ��

6 Conclusion

In this paper, we considered g-partial gathering algorithms for mobile robots
starting from multiplicity-allowed configurations in rings. First, we proved that
no probabilistic (or deterministic) self-stabilizing g-partial gathering algorithm
can exist in the ASYNC model, or if only local-strong and global-weak multiplic-
ity detection is available. Second, in the SSYNC and global-strong multiplicity
detection model, we considered deterministic and probabilistic algorithms. In the
deterministic case, we first showed that unsolvable initial configurations exist,
and then proposed an algorithm to solve the problem in O(n) rounds and the
total number of O(gn) moves starting from any solvable initial configuration
(i.e., the algorithm is almost-stabilizing). In the probabilistic case, we proposed
an algorithm to solve the problem in O(n) rounds and the total number of
O(gn) moves in expectation from any initial configuration (i.e., the algorithm
is probabilistically self-stabilizing).

Future researches are as follows. First, we plan to extend the impossibility
in the local-strong and global-weak multiplicity detection model for the case
of 2 ≤ g ≤ 4. We conjecture that global-strong multiplicity detection is also
necessary to solve the problem in the total number of O(gn) moves. Next, we plan
to consider existence of almost-stabilizing algorithms in weaker models (e.g..,
ASYNC model, local-strong and global-weak multiplicity detection model, etc.).
Finally, we plan to characterize the problems that are actually solvable in a
self-stabilizing setting using weaker models.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant
Number 18K18031. This work was partially funded by the ANR project SAPPORO,
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Abstract. We consider the dispersion problem for mobile agents. Ini-
tially, k agents are located at arbitrary nodes in an undirected graph.
Agents can migrate from node to node via an edge in the graph syn-
chronously. Our goal is to let the k agents be located at different k nodes
while minimizing the number of steps before dispersion is completed and
the working memory space used by the agents. Kshemkalyani, Molla,
and Sharma [ALGOSENSORS, 2019] present a fast and space-efficient
dispersion algorithm with the assumption that each agent has global
knowledge such as the number of edges and the maximum degree of a
graph. In this paper, we present a dispersion algorithm that does not
require such global knowledge but keeps the asymptotically same run-
ning time and slightly smaller memory space.

Keywords: Dispersion · Mobile agents · Autonomous robots

1 Introduction

We consider the dispersion problem of mobile robots, which we call mobile agents
(or just agents) in this paper. At the beginning of an execution, k agents are
arbitrarily placed in an undirected graph at the beginning of an execution. The
goal of this problem is to let al.l agents be located at different nodes. This prob-
lem was originally formulated by Augustine and Moses Jr. [1] in 2018. The most
interesting point of this problem is the uniqueness of the computation model.
Unlike many problems of mobile agents on graphs, we cannot access the iden-
tifiers of the nodes and cannot use a local memory at each node, usually called
whiteboard. In this setting, an agent cannot get/store any information from/on
a node when it visits the node. Instead, k agents have unique identifiers and can
communicate with each other when they visit the same node in a graph. The
agents must solve a common task in a coordinated manner via direct communi-
cation with each other.
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Table 1. Dispersion algorithm for arbitrary undirected graphs (m′ = min(m, kδmax/2,(
k
2

)
). The information about Sync./Async. and/or knowledge is shown in the setting

that we do not require termination.

Memory space Running time Sync./Async Knowledge

[1] O(k log(δmax + k)) O(m′) Asynchronous

[2] O(log n) bits O(m′�) steps Asynchronous

[4] O(� log(δmax + k)) bits O(m′) steps Asynchronous

[4] O(d log δmax) bits O(δdmax) steps Asynchronous

[4] O(log(δmax + k)) bits O(m′�) steps Asynchronous

[5] O(log n) bits O(m′ log �) steps Synchronous m, k, δmax

This work O(log(δmax + k)) bits O(m′ log �) steps Synchronous

Several algorithms were presented for the dispersion problem of mobile agents
in the literature. Let m′ = min(m, kδmax/2,

(
k
2

)
), where m and δmax are the

number of edges and the maximum degree of a graph, respectively. The value
m′ is a upper bound on the number of edges between two nodes each with at
least one robot. Thus m′ appears in the time complexities of many algorithms.
Augustine and Moses Jr. [1] gave an algorithm that achieves dispersion within
O(m′) steps. In this algorithm, each agent uses O(k log(δmax + k)) bits of mem-
ory space. In the arXiv version [2], they also gave a dispersion algorithm with
much smaller space at the cost of increased execution time, i.e., O(log n) bits
per agent and O(m′�) steps, where n is the number of nodes in a graph and � is
the number of nodes at which at least one agent is located at the beginning of an
execution. Kshemkalyani and Ali [4] presents three dispersion algorithms. Com-
pared to the algorithm of [1], the first one requires the same execution time and
slightly smaller memory space, i.e., O(� log(δmax +k)) bits. The second one uses
O(d log δmax) bits per agent and solves the dispersion problem within O(δd

max)
steps, where d is the diameter of a graph. The third one achieves dispersion with
much smaller space: O(log(δmax+k)) bits per agent. However, it requires O(m′�)
time steps before dispersion is achieved. The current state of art algorithm was
given by Kshemkalyani, Molla, and Sharma [5]. This algorithm is both time and
space efficient. The running time is O(m′ log �) steps and the memory space used
by each agent is O(log n) bits.

The above algorithms are summarized in Table 1. We say that the agents
are synchronous if they have a common global clock, i.e., they can move simul-
taneously at each time step. If the agents may move at different pace, we say
that they are asynchronous. Note that the information of Table 1 are shown
for the case that we do not require the agents to terminate. If termination is
required, all the above algorithms except for the fourth algorithm require the
synchronousness of the agents and some global knowledge to decide whether a
sufficient number of steps has passed or not. For example, the agents can termi-
nate in O(m′) steps in an execution of the first algorithm only if the agents are
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synchronous and they know an asymptotically tight upper bound on m′. If we
do not require termination, all of the first five algorithms correctly work in the
asynchronous setting and without any global knowledge as shown in Table 1.

The sixth algorithm [5] essentially requires the synchronous setting and global
knowledge, i.e., m, k, and δmax, even if termination is not required.1 To the best
of our understanding, the assumption for global knowledge can be reasonably
relaxed: the algorithm correctly works if the agents know common upper bounds
M , K, and Δ on m, k, and δmax, respectively. However, time and space com-
plexities may increase depending on how large those upper bounds are. Indeed,
given those upper bounds, the algorithm achieves dispersion within O(M ′ log �)
steps and uses O(log M ′) bits of memory space, where M ′ = min(M,KΔ,K2).

1.1 Our Contribution

The main contribution of this paper is removing the requirement of global knowl-
edge of the algorithm given by [5]. Specifically, we give a dispersion algorithm
whose running time is O(m′ log �) steps and uses O(log(δmax + k)) bits of the
memory space of each agent. The proposed algorithm does not require any global
knowledge such as m, k, and δmax. In addition, the space complexity is slightly
smaller than the algorithm given by [5], while the running times of both algo-
rithms are asymptotically the same.

As with the aforementioned algorithms, the proposed algorithm works on an
arbitrary simple, connected, and undirected graph. This algorithm solves the
dispersion problem regardless of the initial locations of the agent in a graph. We
require that the agents are synchronous, as in the algorithm given by [5].

1.2 Other Related Work

The dispersion problem has been studied not only for arbitrary undirected
graphs, but for graphs of restricted topology. Augustine and Moses Jr. [1]
addressed this problem for paths, rings, and trees. Kshemkalyani, Molla, and
Sharma [5] studied the dispersion problem also in grid networks. Very recently,
the same authors introduced the global communication model [6]. Unlike the
above setting, all agents can always communicate with each other regardless of
their current locations. They studied the dispersion problem for arbitrary graphs
and trees under this communication model.

The exploration problem of mobile agents is closely related to the dispersion
problem. This problem requires that each node (or each edge) of a graph is
visited at least once by an agent. If the unique node-identifiers are available, a
single agent can easily visit all nodes within 2m steps in a simple depth first
search traversal. Panaite and Pelc [7] gave a faster algorithm, whose cover time
is m + 3n steps. Their algorithm uses O(m log n) bits in the agent-memory,
while it does not use whiteboards, i.e., local memories of the nodes. Sudo, Baba,

1 This algorithm also uses the knowledge of n in [5], but it can keep the same time
and space complexities without knowing n.
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Nakamura, Ooshita, Kakugawa, and Masuzawa [9] gave another implementation
of this algorithm: they removed the assumption of the unique identifiers and
reduced the space complexity on the agent-memory from O(m log n) bits to O(n)
bits by using O(n) bits in each whiteboard. The algorithm given by Priezzhev,
Dhar, Dhar, and Krishnamurthy [8], which is well known as the rotor-router,
also solves the exploration problem efficiently. The agent uses O(log δv) bits in
the whiteboard of each node v ∈ V and the agent itself is oblivious, i.e., it does
not use its memory space at all. The rotor-router algorithm is self-stabilizing,
i.e., it guarantees that starting from any (possibly corrupted) configuration, the
agent visits all nodes within O(mD) steps [10].

1.3 Organization

In Sect. 2, we define the model of computation and the problem specification. In
Sect. 3, we briefly explain the existing techniques used for the dispersion problem
in the literature. This section may help the readers to clarify what difficulties
we addresses and the novelty of the techniques that we introduce to design the
proposed protocol in this paper. In Sect. 4, we present the proposed protocol. In
Sect. 5, we conclude this paper with short discussion for an open problem.

2 Preliminaries

Let G = (V,E) be any simple, undirected, and connected graph. Define n = |V |
and m = |E|. We define the degree of a node v as δv = |{u ∈ V | (u, v) ∈ E}|.
Define δmax = maxv∈V δv, i.e., δmax is the maximum degree of G. The nodes are
anonymous, i.e., they do not have unique identifiers. However, the edges incident
to a node v are locally labeled at v so that a robot located at v can distinguish
those edges. Specifically, those edges have distinct labels 0, 1, . . . , δv − 1 at node
v. We call these local labels port numbers. We denote the port number assigned
at v for edge {v, u} by pv(u). Each edge {v, u} has two endpoints, thus has labels
pu(v) and pv(u). Note that these two labels are not necessarily the same, i.e.,
pu(v) �= pv(u) may hold. We say that an agent moves via port p from a node v
when the agent moves from v to the node u such that pv(u) = p.

We consider that k agents exist in graph G, where k ≤ n. The set of all agents
is denoted by R. Each agent is always located at some node in G, i.e., the move
of an agent is atomic and an agent is never located at an edge at any time step
(or just step). The agents have unique identifiers, i.e., each agent a has a positive
identifier a.ID such that a.ID �= b.ID for any b ∈ R \ {a}. The agents know a
common upper bound idmax = O(poly(k)) such that idmax ≥ maxa∈R a.ID, thus
the agents can store the identifier of any agent on O(log k) space.2 Each agent has
2 Strictly speaking, this means that the agent knows a common integer idmax = O(kc),

where c is some constant. We do not assume that the agents know the degree c. Thus,
the knowledge of idmax does not necessarily give the agents an upper bound on k.
Therefore, this setting does not contradict the main claim of this paper: the proposed
algorithm does not require any global knowledge.



284 T. Shintaku et al.

a read-only variable a.p in ∈ {−1, 0, 1, . . . , δv − 1}. At time step 0, a.p in = −1
holds. For any t ≥ 1, if a moves from u to v at step t − 1, a.p in is set to pv(u)
at the beginning of step t. If a does not move at step t − 1, a.p in is set to −1.

The agents are synchronous. All k agents are given a common algorithm
A. Let R(v, t) ⊆ R be the set of the agents located at a node v. We define
� = |{v ∈ V | R(v, 0) ≥ 1}|, i.e., � is the number of nodes with at least one
agent in step 0. At each step t ≥ 0, the agents in R(v, t) first communicate with
each other and agrees on how each agent a ∈ R(v, t) updates the variables in
its memory space in step t, including a variable a.p out ∈ {−1, 0, 1, . . . , δv − 1},
according to algorithm A. The agents next update the variables according to the
agreement. Finally, each agent a ∈ R(v, t) with a.p out �= −1 moves via port
a.p out. If a.p out = −1, agent a does not move and stays in v in step t.

A node does not have any local memory accessible by the agents. Thus, the
agents have to coordinate only by communicating with each other. No agents
are given a priori any global knowledge such as m, δmax, and k.

The values of all variables in agent a constitute the state of a. Let MA be
the set of all possible agent-states for algorithm A. (M may be an infinite set.)
Algorithm must specify the initial state sinit, which is common to all agents
in R. A global state of the network or a configuration is defined as a function
C : R → (M, V ) that specifies the state and the location of each agent a ∈ R. In
this paper, we consider only deterministic algorithms. Thus, if the network is in
a configuration C at a step, a configuration C ′ in the next step is uniquely deter-
mined. We denote this configuration C ′ by nextA(C). The execution ΞA(C0) of
A starting from a configuration C0 is defined as an infinite sequence C0, C1, . . .
of configurations such that Ct+1 = nextA(Ct) for all t = 0, 1, . . . .

Definition 1 (Dispersion Problem). A configuration C of an algorithm A
is called legitimate if (i) all agents in R are located in different nodes in C, and
(ii) no agent changes its location in execution ΞA(C). We say that A solves the
dispersion problem if execution ΞA(C0) reaches a legitimate configuration for
any configuration C0 where all agents are in state sinit.

We evaluate the running time of algorithm A as the maximum number of
steps until ΞA(C0) reaches a legitimate configuration, where the maximum is
taken over all configurations C0 in which all agents are in state sinit.

We define m′ = min(m, kδmax/2,
(
k
2

)
), which is frequently used in this paper.

We simply write R(v) for R(v, t) when time step t is clear from the context.

3 Existing Techniques

3.1 Simple DFS

If we assume that all k agents are initially located at the same node vst ∈ V ,
the dispersion problem can be solved by a simple depth-first search (DFS). The
pseudocode of the simple DFS is shown in Algorithm 1. Each agent a ∈ R
maintains a variable mode ∈ {settled , unsettled}. We say that agent a is settled



Efficient Dispersion of Mobile Agents without Global Knowledge 285

Algorithm 1: Simple DFS
/* the actions of all agents in R(v) for any v ∈ V */

1 a.p out ← −1 for all a ∈ R(v) // Initialize p out.

2 if R(v) ≥ 2 then
3 if there is no settled agent in R(v) then
4 The agent with the smallest identifier in R(v) becomes settled.
5 av.last ← av.p in + 1 mod δv
6 a.p out ← av.last for all a ∈ R(v) \ {av}
7 else
8 Let p be the common a.p in for a ∈ R(v) \ {av}
9 if a.last �= p then

10 a.p out ← p for all a ∈ R(v) \ {av} // Backtrack

11 else
12 av.last ← av.last + 1 mod δv
13 a.p out ← av.last for all a ∈ R(v) \ {av}

14 Every agent a ∈ R(v) such that a.p out �= −1 moves via a.p out

if a.mode = settled , and unsettled otherwise. All agents are initially unsettled.
Once an agent becomes settled at a node, it never becomes unsettled nor moves
to another node. We say that a node v is settled if an settled agent is located at
v; otherwise, v is unsettled. We denote by av the settled agent located at v when
v is settled. (No two agents become settled at the same node.) In this model, no
node provides a local memory accessible by agents. However, when a node v is
settled, unsettled agents can use the memory of av like the local memory of v
since those agents can communicate with av at v.

Unsettled agents always move together in a DFS fashion. Each time they find
an unsettled node v, the agent with the smallest identifier becomes settled at v
(Line 4). An settled agent av maintains a variable av.last ∈ {0, 1, . . . , δv −1} to
remember which port was used for the last time by unsettled agents to leave v.
At step 0, all agents are unsettled and located at node vst. First, after one agent
becomes settled at vst, the other k − 1 agents move via port 0. Thereafter, the
unsettled agents basically migrates between nodes by the following simple rule:
each time they move from u to v, it moves via port pv(u) + 1 mod δv (Lines 5,
6, 12, and 13). Only exception is the case that node v has already been settled
when they move from u to v and pv(u) �= av.last. At this time, the unsettled
agents immediately backtracks from v to u and this backtracking does not update
av.last (Line 10).

If k > n, this well-known DFS traversal guarantees that the unsettled agents
visit all nodes within 4m steps, during which the agents move through each edge
at most four times. Since we assume k ≤ n, the unsettled agents move through
at most m′ = min(m, kδmax/2,

(
k
2

)
) different edges. Thus, all agents become
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settled5 within 4m′ = O(m′) steps, at which point the dispersion is achieved.3

The space complexity is O(log δmax) bits per agent because each agent maintains
only one non-constant variable a.last in its working memory.

3.2 Parallel DFS

Kshemkalyani and Ali [4] generalized the above simple DFS to handle the case
that the agents may be initially located at multiple nodes, using O(� log(δ + k))
bits per agent. (Remember that � is the number of nodes at which one or more
agents are located in step 0.) That is, � groups of unsettled agents perform DFS
in parallel. Specifically, in step 0, the agents located at each node v compute
max{a.ID | a ∈ A(v, 0)} and store it in a variable group. Thereafter, the agents
use the values of group as their group identifier. Settled agents can distinguish
each group by group identifiers, thus they can maintain � slots of individual
memory space such that unsettled agents of each group can dominantly access
one slot of the space. Since simple DFS requires O(log(δmax)) bits, This imple-
mentation of parallel DFS requires O(� log δmax + � log k)) = O(� log(δmax + k))
bits. The running time is still O(m′) steps.

3.3 Zombie Algorithm

We can solve the dispersion with memory space of O(log(δmax + k)) bits per
agent at the cost of increasing the running time to O(m′k), regardless the initial
locations of k agents. In step 0, all agents compute its group identifier in the
same way as in Sect. 3.2. However, due to the memory constraints, each settled
agent cannot maintain one slot of memory space for each of � groups. Instead,
it provides only one group with memory space of O(log δmax) bits. Each settled
agent memorizes the largest group identifier it observes: each time unsettled
agent visits a node v, av.group is updated to max{a.group | a ∈ R(v)}. Thus,
at least one group of agents can perform its DFS by using the memory space
of settled agents exclusively. If an unsettle agent a visits a node v such that
a.group < av.group, a becomes a zombie, which always chase the agent whose
identifier is equal to av.group, which we call the leader of the group. Specifically,
a zombie z chases a leader by moving via port au.last each time z visits any
node u. When z catch up with the leader, z always follow the leader thereafter
until z becomes settled, which occurs when z reaches an unsettled node v and
z has the smallest identifier among A(v). Every agent moves at most 4m′ times
until it observes larger group identifier than any identifier it has observed so far.
Thus, the running time of this algorithm is O(m′�) steps.

We call this algorithm the zombie algorithm. The zombie algorithm is almost
the same as the O(log n) space algorithm of [2] and the tree-switching algorithm
of [4], while the zombie algorithm is faster only by a constant factor than those
algorithms.
3 Strictly speaking, according to Algorithm 1, the last one agent never becomes settled

even if it visits an unsettled node. However, this does not matter because thereafter
the last agent never moves nor change its state.
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3.4 Dispersion with O(m′ log �) Steps and O(log n) Bits per Agent

Kshemkalyani, Molla, and Sharma [5] gave the current state of art algorithm
that achieves dispersion on arbitrary graphs regardless of the initial locations
of the k agents. Their algorithm requires that each agent knows a priori upper
bounds M , K, and Δ on m, k, and δmax, respectively. Then, the running time
is O(min(M,KΔ,K2) log �) steps and the required memory space per agent is
O(log M) bits. In particular, if those upper bounds are asymptotically tight,
i.e., N = O(n), M = O(m), K = O(k), and Δ = O(δmax), those complexities
are O(m′ log �) steps and O(log n) bits, respectively. In this section, we briefly
explain the key idea of their algorithm to clarify how this algorithm requires
global knowledge M , K, and Δ. The implementation in the following explanation
is slightly different from the original implementation in [5], but the difference is
not essential.

Let T be a sufficiently large O(min(M,KΔ,K2)) value. Each unsettled agent
maintains a timer variable and counts how many steps have passed since an
execution began modulo T . Agents switches from stage 1 to stage 2 and from
stage 2 to stage 1 in every T steps. At the switch from stage 1 to stage 2 and
from stage 2 to stage 1, all settled agents reset their group identifiers to −1,
which is smaller than any group identifier of unsettled agents.

In stage 1, all unsettled agents at each node v first compare their identi-
fiers and adopts the largest one as their group identifier. Then, unsettled agents
perform DFS in parallel like the zombie algorithm. The difference arises when
an unsettled agent finds a settled agent with a larger group identifier. Then,
instead of becoming a zombie, it stops until the end of stage 1. Moreover, unlike
the zombie algorithm, an unsettled agent located at a node v becomes settled
even when |R(v)| = 1.

At the beginning of stage 2, one or more unsettled agents may be located
at settled nodes. Let G′ be the subgraph induced by all settled nodes in the
beginning of stage 2 and G′(v) the component that includes a node v in G′.
The goal of stage 2 is to collect all agents in G′(v) and locate them to the same
node in G′(v) for each v ∈ V . Specifically, each unsettled agents located at
any node u tries to perform DFS in G′(u) twice. Since each settled agent b has
only O(log M) bits space, the memory space of b can be used only by unsettled
agents in the group with the largest identifier that b has observed in stage 2.
An settled agents with smaller group identifier stops when it observes a larger
group identifier. Then, all unsettled agents in the group with the largest group
identifier in G′(u) can perform DFS and visit all nodes in G(u′) twice within T
steps. During the period, they pick up all stopped and unsettled agents in the
component and goes back to the node that they are located at in the beginning
of stage 2.

Hence, each iteration of stages 1 and 2 decreases the number of nodes with at
least one unsettled agent at least by half. This yields that all agents become set-
tled and the dispersion is achieved within O(T log �) = O(min(M,KΔ,K2) log �)
steps.



288 T. Shintaku et al.

The knowledge of the global knowledge M , K, and Δ is inherent to the
key idea of this algorithm. Without those upper bounds, the agents may switch
between two stages before all agents complete a stage so that the correctness
is no longer guaranteed or the agents may stay in one stage too long so that
the running time is much larger than, for example, Ω(mn). To the best of our
knowledge, no simple modification removes the requirement of the knowledge
keeping the same running time asymptotically.

4 Proposed Algorithm

In this section, we give an algorithm Asvl that solves a dispersion within
O(m′ log �) steps and uses O(log(k + δmax)) bits of memory space per agent.
Algorithm Asvl requires no global knowledge.

4.1 Overview

Algorithm Asvl is based on the zombie algorithm explained in Sect. 3.3 but
it has more sophisticated mechanism to achieve dispersion within O(m′ log �)
steps. An agent a maintains its mode on a variable a.mode ∈ {L,Z, S}. We say
that an agent a is a leader (resp. a zombie, a settled agent) when a.mode = L
(resp. a.mode = Z, a.mode = S). A leader may become a zombie, and a zombie
eventually becomes a settled agent. However, a zombie never becomes a leader
again, and a settled agent never changes its mode. An agent a also maintains its
level on a variable a.lv, while a stores the identifier of some leader on a variable
a.leader. As long as an agent l is a leader, l.ID = l.leader holds. These two
variables, lv and leader, determine the strength of agent a. We say that an agent
a is stronger than an agent b if a.lv > b.lv or a.lv = b.lv∧a.leader > b.leader
holds.

All agents are leaders at the beginning of an execution of Asvl, Each time
two or more leaders visit the same node, the strongest leader kills all other lead-
ers, and the killed leaders become zombies. Zombies always follow the strongest
leader that it has ever observed. A leader always tries to perform a DFS. Each
time a leader visits an unsettled node v, the leader picks an arbitrary one zombie
z ∈ R(v) and makes z settled. If there is no zombie at v, the leader suspends its
DFS until zombies visits v. As in Sect. 3, we denote the settled agent located
at a node v by av if it exists. We say that a settled agent s is a minion of a
leader l when s.lv = l.lv and s.leader = l.ID hold. As in the zombie algo-
rithm, a leader l performs a DFS by using the memory space of its minions, in
particular, by using the values of their lasts. When a leader l visits a settled
node v such that av is weaker than l, av becomes a minion of l by executing
(av.lv, av.leader) ← (l.lv, l.ID). Conversely, the leader l becomes a zombie if
av is stronger than l. At this time, the stronger leader may not be located at
node v. Then, this new zombie begins to chase the stronger leader by moving
via av.last repeatedly.
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Table 2. Variables of Asvl

Variables Description Init. value

a.mode ∈ {L, Z, S} : the mode of an agent a L

a.slot ∈ {0, 1, 2, 3}: the current timeslot 0

a.lv ∈ N: the level of an agent a 0

a.leader ∈ N: the identifier of the strongest leader that a observed a.ID

a.last ∈ N: the pointer to the strongest leader that a observed 0

a.port ∈ N ∪ {−1}: the last non-negative value of p in −1

Each leader maintains its level like the famous minimum spanning tree algo-
rithm given by Gallager, Humblet, and Spira [3]. Initially, the level of every agent
is zero. A leader increases its level by one each time it kills another leader with
the same level or meets a zombie with the same level. We have the following
lemma.

Lemma 1. No agent reaches a level larger than log2 � + 1.

Proof. Let �2 be the nodes at which two or more leaders are located in the initial
configuration, i.e., �2 = |{v ∈ V | |R(v, 0)| ≥ 2}|. In step 0, (i) �2 leaders changes
their levels from 0 to 1, (ii) the levels of � − �2 leaders remain 0, and (iii) other
k − � leaders become zombies with level 0. Thus, at most �2 + (� − �2) = �
leaders reaches level 1. Since a zombie never increases its level until it becomes
a settled agent, for any i ≥ 1, at most �/2i−1 leaders reaches level i. Thus, no
agent reaches a level larger than log2 � + 1. 
�

By definition of minions, a leader l loses all its minions when l increases
its level by one. As we will see in Sect. 4.2, when a leader visits a node v, the
leader considers that it has already visited a node v in its DFS if and only if av

is a minion at that time. This means that a leader l restarts a new DFS each
time it increases its level. In every DFS, a leader l moves at most 4m′ times.
However, this does not necessarily mean that l completes its DFS or increases
its level within 4m′ steps because l suspends its DFS while no other agent is
located at the same node. Thus, we require a mechanism to bound the running
time by O(m′ log �) steps. As we will see in Sects. 4.2 and 4.3, we achieve this
by differentiating the moving speed of agents according to various conditions.

4.2 Detailed Description

The list of variables and the pseudocode of Asvl are given in Table 2 and Algo-
rithm 2, respectively.

First, we introduce some terminologies and notations. Let t be any time step.
We denote the set of leaders, the set of zombies, and the set of settled agents at
step t by RL(t), RZ(t), and RS(t), respectively. In addition, we define RL(v, t) =
R(v, t)∩RL(t), RZ(v, t) = R(v, t)∩RZ(t), and RS(v, t) = R(v, t)∩RS(t) for any



290 T. Shintaku et al.

Algorithm 2: Asvl

/* the actions of all agents in R(v) for any v ∈ V */

1 Let amax be the unique leader in Rmax(v) if it exists. Otherwise, let amax = av.
2 a.p out ← −1 for all a ∈ R(v) // Initialize p out.

3 a.mode ← Z for all a ∈ RL(v) \ {amax} // amax kills the other leaders.

4 amax.port ←
{

amax.p in amax.mode = L ∧ amax.p in �= −1

amax.port otherwise

5 if |R(v)| ≥ 2 then
6 if amax.mode = L then

7 amax.lv ←
{

amax.lv + 1 ∃z ∈ RZ(v) : z.lv = amax.lv

amax.lv otherwise

8 if RS(v) = ∅ then
9 Choose any zombie in R(v) \ {amax} and makes it settled.

10 av.lv ← amax.lv; av.leader ← amax.leader; av.last ← amax.port

11 else if av is not a minion of amax then
12 av.lv ← amax.lv; av.leader ← amax.leader; av.last ← amax.port
13 else if av is a minion of amax and amax.port �= av.last then
14 a.p out ← amax.port for all a ∈ R(v) \ {av} // Backtrack

15 else if amax.slot = 0 then
16 a.p out ← amax.port + 1 mod δv for all a ∈ R(v) \ {av}
17 av.last ← amax.p out

18 else if

⎛

⎜
⎝

max
z∈RZ(v)

z.lv < av.lv ∧ av.slot ∈ {2, 3}

∨ max
z∈RZ(v)

z.lv = av.lv ∧ av.slot = 2

⎞

⎟
⎠ then

19 a.p out ← av.last for all a ∈ R(v) \ {av}
20 a.slot ← a.slot + 1 mod 4 for all a ∈ R(v)
21 Every agent a ∈ R(v) such that a.p out �= −1 moves via a.p out

node v ∈ V . Define Rmax(v, t) as the set of strongest agents in R(v, t). We omit
time step t from those notation, e.g., simply write RL(v) for RL(v, t), when time
step t is clear from the context. A leader l located at a node v is called an active
leader when |R(v)| ≥ 2. When |R(v)| = 1, l is called a waiting leader. A zombie
z located at a node v is called a strong zombie if z.lv = av.lv. Otherwise, z is
called a weak zombie. In the pseudocode, we use notation amax for simplicity.
We define amax as follows6: If there is a leader in Rmax(v), amax denotes the
(unique) leader in Rmax(v); Otherwise, let amax = av.4

4 This definition assumes that there is at most one leader in Rmax(v) and there is
no zombie in Rmax(v) at any time step. The former proposition holds because for
any two leaders l1 and l2, l1 is stronger than l2, or l2 is stronger than l1. The latter
holds because (i) a leader becomes a zombie only if it observes a stronger agent,
(ii) a zombie never becomes stronger, i.e., never change its lv or leader, unless it
becomes settled, and (iii) a zombie moves by chasing a stronger leader or moves
together with a stronger leader.
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As mentioned in Sect. 4.1, we differentiate the moving speed of agents. We
implement the differentiation with a variable slot ∈ {0, 1, 2, 3}. Each agent a
counts how many steps have passed since an execution of Asvl began modulo 4
and stores it on a.slot (Line 20). Thus, all agents always have the same value for
this variable. This variable represents timeslots indicating which kind of agents
are allowed to move at each step. For example, an active leader is allowed to
move at slots 0 and 1, while a strong zombie is allowed to move only at slot 2.

The pseudocode (Algorithm 2) specifies how the agents located at a node v
updates their variables including port p out, via which they move to the next
destination. A leader is immediately killed, i.e., becomes a zombie, if it meets a
stronger leader or a stronger settled agent (Line 3). A surviving leader increases
its level by one each time it meets a (weaker) leader or zombie with the same
level (Line 7). A leader l performs a DFS using a variable last in its minions. It
basically moves in timeslot 0, while backtracking occurs in timeslot 1. Since the
information of incoming port in l.p in gets lost in timeslots 2 and 3, the leader
l remembers p in = pv(u) in a variable l.port each time l moves from u to v
(Line 4). Specifically, a leader l performs a DFS as follows until it is killed by a
stronger leader or a stronger settled agent:

– When l moves from u to v such that av is not a minion of l, the leader
l considers that it visits v for the first time in the current DFS. Then, l
changes av to a minion of l (Line 12) and waits for the next timeslot 0.

– When l moves from u to v such that v is an unsettled node, l considers
that it visits v for the first time in the current DFS. If there is at least one
zombie at v, l changes arbitrary one zombie to a settled agent and make it
a minion of l (Lines 9 and 10). Otherwise, it suspends the current DFS until
a zombie or a (weaker) leader a visits v (the condition in Line 5 implements
this suspension). Then, l does the same thing for a, i.e., make a settled and
a minion of l. Thereafter, l waits for timeslot 0.

– When l moves from u to v such that av is a minion and av.last = l.port,
the leader l considers that it has just backtracked from u to v. Then, it just
waits for the next time slot 0.

– In timeslot 0, l leaves the current node v via port l.port+1 = pv(u)+1 after
storing this port on av.last (Lines 16 and 17).

– When l moves from u to v such that av is a minion and av.last �= l.port,
the leader l considers that it has already visited v before in the current DFS.
Thus, it immediately backtracks from v to u without updating av.last (Line
15). Since a leader makes a non-backtracking move only in timeslot 0, this
backtracking occurs only in timeslot 1.

In the first and second case, the leader l simultaneously substitute l.port for
av.last to avoid triggering backtracking mistakenly. Thus, each leader can per-
form a DFS in the same way as a simple DFS explained in Sect. 3.1 until it is
killed and becomes a zombi.e.

A zombie always tries to follow a leader. If a zombie z is located at a node v
without a leader, it moves via port av.last in timeslot 2 if z is a strong zombie
or some strong strong zombie is located at the same node v (Line 19). Otherwise,
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z moves via port av.last in timeslots 2 and 3 (Line 19). If z is located at a node
with a leader, it just moves with the leader (Lines 14 and 16) or becomes settled
(Line 9).

4.3 Correctness and Complexities

In this section, we prove that an execution ΞAsvl
(C) of Asvl starting from any

configuration C where all agents are in the initial state achieves dispersion within
O(m′ log �) steps, and each agent uses O(log(k + δmax)) bits of memory space.

First, we gave an upper bound on the space complexity.

Lemma 2. Each agent uses at most O(log(k + δmax)) bits of its memory space
in an execution of Asvl.

Proof. Each agent a maintains six non-constant variables: a.lv, a.leader,
a.last, a.port, a.p in, and a.p out. The first variable a.lv uses only O(log log �)
bits by Lemma 1. Each of the other five variables just stores the identifier of some
agent or the port numbers of some node. Thus, they uses only O(log(k + δmax))
bits. 
�

In an execution of Asvl, agents located at a node v leaves v only when there
are two or more agents at v. Therefore, we have the following lemma.

Lemma 3. In an execution of Asvl, once all agents are located at different
nodes, no agent leaves the current location thereafter.

Thus, it suffices to show that all agents will be located at different nodes
within O(m′ log �) steps in an execution of Asvl. To prove this, we introduce
some terminologies and notations. Let t be any time step and let a be any
agent in R(v, t) for any v. Then, define the virtual level of agent a at step
t as VL(a, t) = maxb∈R(v) b.lv. Define Lmin(t) be the minimum virtual level
of all active leaders and all zombies in R at step t. For simplicity, we define
Lmin(t) = ∞ if there is no active leader and no zombie in R at step t. Again, we
simply write VL(a) and Lmin for VL(a, t) and Lmin(t), respectively, when time
step t is clear from the context. Note that for any agent a, the virtual level and
the level of a differ if and only if a is a weak zombi.e.

By definition of Asvl, we have the following lemma.

Lemma 4. In an execution of Asvl, for any agent a, the virtual level of a never
decreases.

Lemma 5. In an execution of Asvl, from any time step, each active leader l
increases its level at least by one or becomes a waiting leader, a zombie, or a
settled agent within O(m′) steps.

Proof. The active leader l performs a DFS correctly unless it meets a
leader/zombie with the same level or finds a stronger agent than l. Thus, it
becomes a waiting leader if such event does not occur for sufficiently large O(m′)
steps, Otherwise, it increases its level by one or becomes a zombie or a settled
agent within O(m′) steps. 
�
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Lemma 6. In an execution of Asvl, from any time step, each weak zombie z
increases its virtual level or catches up a leader or a strong zombie within O(k)
steps.

Proof. Suppose that now z is located at a node v and has a virtual level i. By
definition of Asvl, we must have a path w = v1, v2, . . . , vs such that s ≤ k,
v = v1, pvi

(vi+1) = avi
.last for i = 1, 2, . . . , s − 1, and a leader with at least

level i is located at vs. Let j be the smallest integer such that a leader, a strong
zombie, or an agent with virtual level i′ ≥ i + 1 is located at vj . Then, sub-path
w′ of w is defined as w′ = v1, v2, . . . , vj . This sub-path w′ changes as time passes.
Zombie z moves forward in w′ two times in every four steps because it moves in
timeslots 2 and 3. However, a leader moves only once or moves and backtracks
in every four steps, while a strong zombie moves only once in every four steps.
Therefore, by Lemma 4, the length of the w′ decreases at least by one in every
four steps, from which the lemma follows. 
�
Lemma 7. In an execution of Ξ = ΞAsvl

(C0) = C0, C1, . . . , from any time step
such that Lmin < ∞, Lmin increases at least by one in O(m′) steps.

Proof. Let Ct be any configuration where Lmin = i holds. It suffices to show that
the suffix Ξ ′ of Ξ after Ct, i.e., Ξ ′ = Ct, Ct+1, . . . reaches a configuration where
Lmin ≥ i + 1 holds within O(m′) steps. Let Rγ be the set of all weak zombies
with virtual level i that are not located at a node with a leader or a strong
zombi.e. No agent in R \ Rγ becomes an agent in Rγ in Ξ ′ because all leaders
and all strong zombies must have levels no less than i, and thus they become
weak zombies only after their virtual levels reach i + 1. Therefore, by Lemma
6, Rγ = ∅ holds within O(k′) steps in Ξ ′, and Rγ = ∅ always hold thereafter.
If there is no agent in Rγ , no waiting leader with at most level i goes back to
an active leader without increasing its level. Thus, by Lemma 5, within O(m′)
steps, Ξ reaches a configuration Ct′ from which there is always no active leader
with level i.

Let Ξ ′′ be the suffix Ct′ , Ct′+1, . . . of Ξ ′. By definition, in Ξ ′′, there is no
active leader with level at most i. In addition, the virtual level of a zombie
is i only if it is located at a node with a strong zombie with level i. Thus, it
suffices to show that every strong zombie z with level i increases its virtual level
at least by one within O(m′) steps. Suppose that z is located at a node v. By
definition of Asvl, we must have a path w = v1, v2, . . . , vs such that s ≤ k,
v = v1, pvi

(vi+1) = avi
.last for i = 1, 2, . . . , s − 1, and a leader l is located at

vs. In Ξ ′′, there is no active leader with level i. Thus, if l is active, its level is at
least i + 1. Even if l is waiting, its level is at least i, and the virtual level of avs

immediately becomes at least i + 1 after an active leader or a zombie visits vs.
Therefore, if none of the agents av1 , av2 , . . . , avs−1 changes the value of its last
during the next 4s ≤ 4k steps, the virtual level of z reaches at least i + 1. Thus,
suppose that some avj

(1 ≤ j ≤ s − 1) changes the value of its last during
the 4s steps. This yields that an active leader must visit vj during the period.
Moreover, in Ξ ′′, every active leader has level at least i + 1. Thus, the virtual
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level of agent avj
must reach at least i + 1 at that time. Therefore, in any case,

zombie z increases its virtual level at least by one within O(k) steps in Ξ ′′. 
�
Theorem 1. Algorithm Asvl solves a dispersion problem within O(m′ log �)
steps. It uses O(log(k + δmax)) bits of memory space per agent.

Proof. By Lemmas 1 and 7, Lmin = ∞ holds within O(m′ log �) steps. Since
Lmin = ∞ yields that no active leader and no zombie exists, all agents are
located at different nodes at that time. Therefore, the theorem immediately
follows from Lemmas 2 and 3. 
�

5 Conclusion

In this paper, we presented a both time and space efficient algorithm for the
dispersion problem. This algorithm does not require any global knowledge. How-
ever, we require that all agents compute and move synchronously. The proposed
algorithm inherently requires the synchronous assumption: active leaders, strong
zombies, and weak zombies move in different speeds.
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Abstract. We present a simple grid structure to use in a fault-tolerant
clock propagation method and study it by means of simulation experi-
ments. A key question is how well neighboring grid nodes are synchro-
nized, even without faults. Our statistical approach provides substan-
tial evidence that this system performs surprisingly well. In a grid of
height H, the standard deviation of the delay seems to be O(H1/4) (≈2.7
link delay uncertainties for H = 2000) and the standard deviation of the
skew to be o(log log H) (≈0.77 link delay uncertainties for H = 2000).

1 Introduction

Traditionally, clocking of synchronous systems is performed by clock trees or
other structures that cannot sustain faulty components [12]. This imposes limits
on scalability on the physical size of clock domains. To the best of our knowledge,
work on fault-tolerant clocking schemes started in earnest in the last decade, with
an upsurge of interest in single event upsets of the clocking subsystem [1,2,8,10].
Larger systems and smaller components require going beyond these techniques.

There is a significant body of work on fault-tolerant synchronization from the
area of distributed systems considering Byzantine faults [9,11]. A line of works
culminating in [6] additionally consider self-stabilization, the ability of a system
to recover from an unbounded number of transient faults. These highly desirable
properties come at a high price, usually in the form of high connectivity [4].

A suitable relaxation of requirements is proposed in [3], requiring that Byzan-
tine faults are distributed across the system not in a worst-case fashion, but
more “spread out”. Distributing a clock signal through a grid-like network called
HEX is proposed, which tolerates one out of each node’s four in-neighbors being
faulty. Unfortunately, HEX has poor synchronization performance: a crashed
node causes a “detour” resulting in a clock skew between neighbors of at least
one maximum node-to-node communication delay d. This is much larger than
the uncertainty u in the node-to-node delay, which is engineered to be small
(u � d).
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Fig. 1. Zoom-in on a part of a larger
TRIX grid with one crashing node.
Observe that the fault causes no signif-
icant additional skew.
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Fig. 2. Worst-case assignment of wire
delays causing large skew for TRIX.
Squiggly lines indicate slow wires,
straight lines indicate fast wires. ď ..=
d − u.

We propose a novel clock distribution topology that overcomes the above
shortcoming of HEX, in particular the high skew between neighboring nodes.
Similar to HEX, the clock signal is propagated through layers, but for each node,
all of its three in-neighbors are on the preceding layer. If at most one in-neighbor
is faulty, each node still has two correct in-neighbors on the preceding layer, as
demonstrated in Fig. 1. Hence, we can now focus on fault-free executions, because
single isolated faults only introduce an additional uncertainty of at most u � d.
Predictions in the fault-free model are therefore still meaningful for systems with
rare and non-malicious faults.

The TRIX topology is acyclic, which conveniently means that self-
stabilization is trivial to achieve, as any incorrect state is “flushed out” from
the system.

Despite its apparent attractiveness and even greater simplicity, we note that
this choice of topology should not be obvious. The fact that nodes do not check
in with their neighbors on the same layer implies that the worst-case clock skew
between neighbors grows as uH, where H is the number of layers and (for the
sake of simplicity) we assume that the skew on the first layer (which can be seen
as the “clock input”) is 0, see Fig. 2. However, reaching the skew of d between
neighbors on the same layer, which is necessary to give purpose to any link
between them, takes many layers, at least d/u � 1 many. This is in contrast to
HEX, where the worst-case skew is bounded, but more easily attained.

While the worst-case behavior is easy to understand, it originates from a very
unlikely configuration, where one side of the grid is entirely slow and the other
is fast, see Fig. 2. In contrast, correlated but gradual changes will also result in
spreading out clock skews. Any change that affects an entire region in the same
way will not affect local timing differences at all. This motivates to study the
extreme case of independent noise on each link in the TRIX grid. Moreover, we
assume “perfect” input, i.e., each node on the initial layer signals a clock pulse
at time 0, and that the grid is infinitely wide. We argue that this simplistic
abstraction captures the essence of (independent) noise on the channels.
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We provide evidence that TRIX behaves better than conventional concentra-
tion bounds might suggest. The full version [7] argues in-depth that these results
are not just artifacts of the simulation, the model, or due to various biases.

We point out the open problem of analyzing the stochastic process we use
as an abstraction for TRIX. Understanding of the underlying cause would allow
making qualitative and quantitative predictions beyond the considered setting.

2 Model

The network topology is a grid of height H and width W . To simplify, we choose
W = ∞, because we aim to focus on the behavior in large systems. We refer
to the grid nodes by integer coordinates (x, y), where x ∈ Z and y ∈ N0. Layer
0 ≤ � ≤ H consists of the nodes (x, �), x ∈ Z.

Nodes in layer 0 represent the clock source. Note that for the purposes of
this paper, we assume that the problem of fault-tolerant clock signal generation
has already been sufficiently addressed (e.g. using [5]), but the signal still needs
to be distributed. All other nodes (x, �) for � > 0 are TRIX nodes. Each TRIX
node propagates the clock signal to the three nodes “above” it, i.e., the vertices
(x+c, y+1), c ∈ {−1, 0,+1}. Each of the wire delays is modeled as i.i.d. random
variables wx,y

c (or wc for short) that are fair coin flips, i.e., attain the values 0
or 1 with probability 1/2 each. This reflects that any absolute delay does not
matter, as the number of wires is the same for any path from layer 0 (the clock
generation layer) to layer � > 0; also, this normalizes the uncertainty from u
to 1.

Let d(x, y) be the time at which node (x, y) fires. Clock generation provides
us with d(x, 0) = 0. Each TRIX node fires when receiving the second signal from
its predecessors: Define tc ..= d(x − c, y) + wx−c,y

c as the time at which node
(x, y + 1) receives each clock pulse. Then node (x, y + 1) fires a clock pulse at
the median time t ..= median {t−1, t0, t+1}.

We concentrate on two important metrics to analyze this system: absolute
delay and relative skew. Our main interests are the random variables d(H) ..=
d(0,H), i.e. the total delay at the top, and s(H) ..= d(1,H) − d(0,H), i.e. the
relative skew between neighboring nodes.

3 Delay is Tightly Concentrated

We examine d(2000), the delay at layer 2000. The estimated probability mass
function of d(2000) looks like a binomial distribution. The empiric standard
deviation is only 2.741, i.e. less than three delay uncertainties. The full version [7]
explains the statistic methods in detail, contains more figures, and proves all
following lemmas. The peak of the probability mass function falls in the middle
of the support [0,H]:
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Fig. 3. Log-log plot of the empiric stan-
dard deviation of d(H).

Fig. 4. Estimated probability mass
function for s(2000) with logarithmic
Y-axis. Error bounds are only visible
at fringes.

Lemma 1. E[d(H)] = H/2.

The behavior at H = 2000 is similar for other heights and changes slowly
with increasing H.

The empiric standard deviation for various values of H can be seen in the
data plotted in Fig. 3 as a log-log plot. This suggests a polynomial relationship
between standard deviation σ and grid height H. The slope of the line is close
to 1/4, which suggests σ ∼ Hβ with β ≈ 1/4. This is a quadratic improvement
over standard concentration bounds, which would predict β ≈ 1/2.

4 Skew is Tightly Concentrated

We examine s(2000), the skew at layer 2000 between neighboring nodes. As
expected, we see a high concentration around 0 in Fig. 4, with roughly half of
the probability mass at 0.

Observe that the skew does not follow a normal distribution at all: The
probability mass seems to drop off exponentially like e−λ|x| for λ ≈ 2.9 (where x

is the skew), and not quadratic-exponentially like e−x2/(2σ2), as it would happen
in the normal distribution. The probability mass for 0 is a notable exception,
not matching this behavior.

We observe that the skew seems to be symmetric with mean 0.

Corollary 1. s(H) is symmetric with E[s(H)] = 0.

Furthermore, the worst-case skew on layer H is indeed H, c.f. Fig. 2.

Lemma 2. There is an assignment for all cw such that s(H) = H.

We conjecture that the probability mass of high-skew assignments is very
low.

Again, the behavior at H = 2000 is similar for other heights and changes
extremely slowly with increasing H. Figure 5 shows that the skew remains small
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even for large values of H. Note that the X-axis is doubly logarithmic. This
suggests that the standard-deviation of s(H) grows strongly sub-logarithmically,
possibly even converges to a finite value. In fact, the plot suggests that s(H) ∈
O(log log H).

Fig. 5. Empiric standard deviation
of s(H) as a function of H, as a loglog-
lin plot.

Fig. 6. Empiric standard deviation of
d(δ, 500)−d(0, 500) as a function of hor-
izontal distance δ in a log-log plot.

Note that if we pretended that adjacent nodes exhibit independent delays,
the skew would have the same concentration as the delay. In contrast, we see
that adjacent nodes are tightly synchronized; this is ideal for clock propagation.

So far, we have limited our attention to the skew between neighboring nodes.
In the other extreme end, at horizontal distances δ ≥ 2H, node delays are
independent, as they do not share any wires on any path to any clock generator.
In Fig. 6, we see that the skew grows steadily with increasing δ � 2H. The
plot suggests that the standard deviation increases roughly proportional to δγ

for γ ≈ 1/3. This is noticeably less steep than the naive guess γ ≈ 1/2 for small
δ. It is not surprising that the slope falls off towards larger values, as it must
become constant for δ ≥ 2H = 1000.
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Abstract. We propose a self-stabilizing leader election protocol on
directed rings in the model of population protocols. Given an upper
bound N on the population size n, the proposed protocol elects a unique
leader within O(nN) expected steps starting from any configuration and
uses O(N) states. This convergence time is optimal if a given upper
bound N is asymptotically tight, i.e., N = O(n).

1 Introduction

We consider the population protocol (PP) model [2] in this paper. A network
called population consists of a large number of finite-state automata, called
agents. Agents make interactions (i.e., pairwise communication) with each other
to update their states. The interactions are opportunistic, i.e., they are unpre-
dictable for the agents. A population is modeled by a graph G = (V,E), where
V represents the set of agents, and E indicates which pair of agents can interact.
Each pair of agents (u, v) ∈ E has interactions infinitely often, while each pair
of agents (u′, v′) /∈ E never has an interaction. At each time step, one pair of
agents chosen uniformly at random from all pairs in E has an interaction. This
assumption enables us to evaluate time complexities of population protocols.
Almost all studies in the population protocol model make this assumption when
they evaluate time complexities of population protocols. In the field of population
protocols, many efforts have been devoted to devising protocols for a complete
graph, i.e., a population where every pair of agents interacts infinitely often. In
addition, several studies [1,2,4,7,8,10,14,15,17,19,20] have investigated popu-
lations forming graphs other than complete graphs.

Self-stabilization [11] is a fault-tolerant property whereby, even when any
number and kinds of faults occur, the network can autonomously recover from
the faults. Formally, self-stabilization is defined as follows: (i) starting from an
arbitrary configuration, a network eventually reaches a safe configuration (con-
vergence), and (ii) once a network reaches a safe configuration, it maintains its
specification forever (closure). Self-stabilization is of great importance in the PP
model because self-stabilization tolerates any finite number of transient faults,
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and this is a necessary property in a network consisting of a large number of
inexpensive and unreliable nodes.

Consequently, many studies have been devoted to self-stabilizing popula-
tion protocols [1,4,6–8,12,13,15–21]. For example, Angluin et al. [1] proposed
self-stabilizing protocols for a variety of problems, i.e., leader election in rings,
token circulation in rings with a pre-selected leader, 2-hop coloring in degree-
bounded graphs, consistent global orientation in undirected rings, and spanning
tree construction in regular graphs. Sudo et al. [17,20] gave a self-stabilizing
2-hop coloring protocol that uses a much smaller memory space of agents. Sudo
et al. [22] investigates the possibility of self-stabilizing protocols for leader elec-
tion, ranking, degree recognition, and neighbor recognition on arbitrary graphs.

Many of the above studies on self-stabilizing population protocols have
focused on self-stabilizing leader election (SS-LE) because leader election is one
of the most fundamental problems in the PP model. Several important protocols
[1–3] require a pre-selected unique leader. In particular, Angluin et al. [3] show
that all semi-linear predicates can be solved very quickly if we have a unique
leader. The goal of the leader election problem is electing exactly one agent as
a leader in the population. Unfortunately, SS-LE is impossible to solve without
an additional assumption even if we focus only on complete graphs [1,6,22]. The
studies to overcome this impossibility in the literature are roughly classified into
four categories. (Some of the studies belong to multiple categories.)

The first category [5,6,22] assumes that every agent knows the exact num-
ber of agents. With this assumption, Cai et al. [6] gave an SS-LE protocol for
complete graphs, Burman et al. [5] gave faster protocols in the same setting, and
Sudo et al. [22] gave an SS-LE protocol for arbitrary graphs.

The second category [4,7,12] employs oracles, a kind of failure detectors.
Fischer and Jiang [12] introduced an oracle Ω? that eventually tells all agents
whether or not at least one leader exists. They proposed two SS-LE protocols
using Ω?, one for complete graphs and the other for rings. Canepa et al. [7]
proposed two SS-LE protocols that use Ω?, i.e., a deterministic protocol for trees
and a randomized protocol for arbitrary graphs. Beauquier et al. [4] presented a
deterministic SS-LE protocol for arbitrary graphs that uses two copies of Ω?.

The third category [13,15–21] slightly relaxes the requirement of the original
self-stabilization and gave loosely-stabilizing leader election protocols. Specifi-
cally, the studies of this category allow a population to deviate from the speci-
fication of the problem (i.e., a unique leader) after the population satisfies the
specification for an extremely long time. This concept was introduced by [18].
The protocols given by [13,16,18,21] work for complete graphs and those given
by [15,17,19,20] work for arbitrary graphs. Recently, Sudo et al. [16] gave a time-
optimal loosely-stabilizing leader election protocol for complete graphs: given a
parameter τ ≥ 1, an execution of their protocol reaches a configuration with a
unique leader within O(τn log n) expected steps starting from any configuration,
and thereafter, it keeps the unique leader for Ω(nτ ) expected steps, where n is
the number of agents in the population.
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The forth category [1,8,9,12] restricts the topology of a graph to avoid the
impossibility of SS-LE. A class G of graphs is called simple if there does not exist
a graph in G which contains two disjoint subgraphs that are also in G. Angluin
et al. [1] proves that there exists no SS-LE protocol that works for all the graphs
in any non-simple class. Thus, if we focus on a simple class of graphs, there may
exist an SS-LE protocol for all graphs in the class. As a typical example, the
class of rings is simple. Angluin et al. [1] gave an SS-LE protocol that works
for all rings whose sizes are not multiples of a given integer k (in particular,
rings of odd size). They posed a question whether SS-LE is solvable or not for
general rings (i.e., rings of any size) without any oracle or knowledge such as the
exact number of agents in the population, while Fischer and Jiang [12] solves
SS-LE for general rings using oracle Ω?. This question had been open for a
decade until Chen and Chen [8] recently gave an SS-LE protocol for general
rings. These three protocols given by [1,8,12] use only a constant number of
states per agent. The expected convergence times (i.e., the expected numbers
of steps required to elect a unique leader starting from any configuration) of the
protocols proposed by [1,12] are Θ(n3), while the protocol given by [8] requires
an exponentially long convergence time. The oracle Ω? only guarantees that it
eventually reports to each agent whether there exists a leader in the population.
Here, the convergence time of the protocol of [12] is bounded by Θ(n3) assuming
that the oracle immediately reports the absence of the leader to each agent. All
of the three protocols assume that the rings are oriented or directed. However,
this assumption is not essential because Angluin et al. [1] also presented a self-
stabilizing ring orientation protocol, which gave a common sense of direction to
all agents in the ring. In this paper, we also consider directed rings. Very recently,
Chen and Chen [9] generalized their work on the rings for regular graphs.

Table 1. Self-stabilizing leader election on rings

Assumption Convergence Time #states

[1] n is not multiple of a given k Θ(n3) O(1)

[12] oracle Ω? Θ(n3) O(1)

[8] none exponential O(1)

This work n ≤ N for a given N O(nN) O(N)

Our Contribution. This paper belongs to the fourth category. We propose an
SS-LE protocol PRL for directed rings. Specifically, given an upper bound N
on the population size n, PRL elects a unique leader in O(nN) expected steps
for all directed rings (whose size is at most N). One can easily prove that no
protocol can solve SS-LE in o(n2) expected steps. Thus, PRL is time-optimal if
a given upper bound N is asymptotically tight, i.e., N = O(n). The results are
summarized in Table 1.
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The main contribution of this paper is a novel mechanism that largely
improves the number of steps required to decrease the number of leaders to
one when there are multiple leaders in the population. The mechanism requires
only O(n2) expected steps, while the existing three SS-LE protocols for rings
[1,8,12] requires Ω(n3) expected steps to decrease the number of leaders to one.
Our mechanism requires only O(1) states, which is the same as the existing
three protocols [1,8,12]. (Protocol PRL requires O(N) states only to detect the
absence of a leader.) Thus, if we assume an oracle that reports to each leader
an absence of a leader within O(n2) expected steps, we immediately obtain an
SS-LE protocol with O(n2) expected convergence time and constant space per
agent by using the proposed mechanism to remove leaders. We leave open an
interesting question whether or not this oracle can be implemented with o(N)
states.

2 Preliminaries

In this section, we describe the formal definitions of our computation model.
A population is a simple and weakly connected digraph G(V,E), where V

(|V | ≥ 2) is a set of agents and E ⊆ V ×V is a set of arcs. Each arc represents a
possible interaction (or communication between two agents): If (u, v) ∈ E, agents
u and v can interact with each other, where u serves as an initiator and v serves as
a responder. If (u, v) /∈ E, agents u and v never have an interaction. In this paper,
we consider only a population represented by a directed ring, i.e., we assume that
V = {u0, u1, . . . , un−1} and E = {(ui, ui+1 mod n) | i = 0, 1, . . . , n − 1}. Here,
we use the indices of the agents only for simplicity of description. The agents
are anonymous, i.e., they do not have unique identifiers. We call ui−1 mod n and
ui+1 mod n the left neighbor and the right neighbor of ui, respectively. We omit
“modulo by n” (i.e., mod n) in the index of agents when no confusion occurs.

A protocol P (Q,Y, T, πout ) consists of a finite set Q of states, a finite set
Y of output symbols, transition function T : Q × Q → Q × Q, and an output
function πout : Q → Y . When an interaction between two agents occurs, T
determines the next states of the two agents based on their current states. The
output of an agent is determined by πout : the output of agent v with state q ∈ Q
is πout(q). We assume that all agents have a common knowledge N on n such
that n ≤ N = O(poly(n)). Thus, the parameters Q, Y , T , and πout can depend
on the knowledge N . However, for simplicity, we do not explicitly write protocol
P as parameterized with N , e.g., PN = (QN , YN , TN , πout,N ).

A configuration is a mapping C : V → Q that specifies the states of all the
agents. We denote the set of all configurations of protocol P by Call(P ). We say
that configuration C changes to C ′ by an interaction e = (ui, ui+1), denoted by
C

e→ C ′ if we have (C ′(ui), C ′(ui+1)) = T (C(ui), C(ui+1)) and C ′(v) = C(v)
for all v ∈ V \ {ui, ui+1}. We simply write C → C ′ if there exits e ∈ E such
that C

e→ C ′. We say that a configuration C ′ is reachable from C if there exists
a sequence of configurations C0, C1, . . . , Ck such that C = C0, C ′ = Ck, and
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Ci → Ci+1 for all i = 0, 1, . . . , k − 1. We also say that a set C of configurations
is closed if no configuration outside C is reachable from a configuration in C.

A scheduler determines which interaction occurs at each time step (or just
step). In this paper, we consider a uniformly random scheduler Γ = Γ0, Γ1, . . . :
each Γt ∈ E is a random variable such that Pr(Γt = (ui, ui+1)) = 1/n for any
t ≥ 0 and i = 0, 1, . . . , n − 1. Each Γt represents the interaction that occurs at
step t. Given an initial configuration C0, the execution of protocol P under Γ is
defined as ΞP (C0,Γ) = C0, C1, . . . such that Ct

Γt→ Ct+1 for all t ≥ 0. We denote
ΞP (C0,Γ) simply by ΞP (C0) when no confusion occurs.

We address the self-stabilizing leader election problem in this paper. For sim-
plicity, we give the definition of a self-stabilizing leader election protocol instead
of giving the definitions of self-stabilization and the leader election problem sep-
arately.

Definition 1 (Self-stabilizing Leader Election). For any protocol P , we say
that a configuration C of P is safe if (i) exactly one agent outputs L (leader)
and all other agents output F (follower) in C, and (ii) at every configuration
reachable from C, all agents keep the same outputs as those in C. A protocol P
is a self-stabilizing leader election (SS-LE) protocol if ΞP (C0,Γ) reaches a safe
configuration with probability 1.

We evaluate a SS-LE protocol P with two metrics: the expected convergence
time and the number of states. For a configuration C ∈ Call(P ), let tP,C be
the expected number of steps until ΞP (C0,Γ) reaches a safe configuration. The
expected convergence time of P is defined as maxC∈Call(P ) tP,C . The number of
states of P = (Q,Y, T,O) is simply |Q|.

3 Self-stabilizing Leader Election Protocol

In this section, we propose a SS-LE protocol PRL that works in any directed
ring consisting of N agents or less. The expected convergence time is O(nN),
and the number of states is O(N). Thus, PRL is time-optimal if a given upper
bound N of n is asymptotically tight, i.e., N = O(n).

The pseudocode of PRL is given in Algorithm 1, which describes how two
agents l and r update their states, i.e., their variables, when they have an inter-
action. Here, l and r represents the initiator and the responder in the interaction,
respectively. That is, l is the left neighbor of r, and r is the right neighbor of l.
We denote the value of the variable var at agent v ∈ V by v.var. Similarly, we
denote the variable var in state q ∈ Q by q.var. In this algorithm, each agent
v ∈ V maintains an output variable v.leader ∈ {0, 1}, according to which it
determines its output. Agent v outputs L when v.leader = 1 and outputs F
when v.leader = 0. We say that v is a leader if v.leader = 1; otherwise v is
called a follower. For each ui ∈ V , we define the distance to the nearest left
leader and the distance to the nearest right leader of ui as dL(i) = min{j ≥
0 | ui−j .leader = 1} and dR(i) = min{j ≥ 0 | ui+j .leader = 1}, respectively.
When there is no leader in the ring, we define dL(i) = dR(i) = ∞.
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Algorithm PRL consists of two parts: the leader creation part (Lines 1–5) and
the leader elimination part (Lines 6–19). Since PRL is a self-stabilizing protocol,
it has to handle any initial configuration, where there may be no leader or
multiple leaders. The leader creation part creates a new leader when there is no
leader, while the leader elimination part decreases the number of leaders to one
when there are two or more leaders.

3.1 Leader Elimination

We are inspired by the algorithm of [12] to design the leader elimination part
(Lines 6–19). Roughly speaking, the strategy of [12] can be described as follows.

– Each agent may have a bullet and/or a shield.
– A leader always fires a bullet: each time a leader ui+1 having no bullet inter-

acts with an agent ui, the leader ui+1 makes a bullet.
– Bullets move from left to right in the ring: each time ui having a bullet

interacts with ui+1, the bullet moves from ui to ui+1.
– Conversely, shields move from right to left: each time ui+1 having a shield

interacts with ui, the shield moves from ui+1 to ui.
– Each time two agents both with bullets (resp. shields) have an interaction,

the left bullet (resp. the right shield) disappears.
– When a bullet and a shield pass each other, i.e., ui with a bullet and ui+1

with a shield have an interaction, the bullet disappears.
– When a bullet moves to a leader without a shield, the leader is killed (i.e.,

becomes a follower).

The algorithm of [12] assumes an oracle, called an eventual leader detector Ω?,
which detects and tells each agent whether a leader exists or not, when there is
continuously a leader or there is continuously no leader. A follower becomes a
leader when it is reported by Ω? that there is no leader in the population. At
this time, the new leader simultaneously generates both a shield and a bullet.
One can easily observe that by the above strategy together with oracle Ω?, the
population eventually reaches a configuration after which there is always one
fixed leader. However, the algorithm of [12] requires Ω(n3) steps to elect one
leader in the worst case even if oracle Ω? can immediately report to each agent
whether there is a leader in the population.

We drastically modify the above strategy of [12] for the leader elimination
part of PRL to decrease the number of leaders to one within O(n2) steps. First,
a shield never moves in our algorithm. Only leaders have shields. A leader some-
times generates a shield and sometimes breaks a shield. Second, a leader does
not always fire a bullet. Instead, a leader fires a new bullet only after it detects
that the last bullet it fired reaches a (possibly different) leader. Third, we have
two kinds of bullets: live bullets and dummy bullets. A live bullet kills a leader
without a shield. However, a dummy bullet does not have capability to kill a
leader. When a leader decides to fire a new bullet, the bullet becomes live or
dummy with the probability 1/2 each. When a leader fires a live bullet, it simul-
taneously generates a shield (if it does not have a shield). When a leader fires a
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Algorithm 1. PRL

Interaction between initiator l and responder r:

1: l.distL ←
{

0 l.leader = 1

l.distL otherwise

2: r.distL ←

⎧⎪⎨
⎪⎩

0 r.leader = 1

min(l.distL + 1, N) r.leader = r.bullet = 0

r.distL otherwise
3: if r.distL = N then
4: r.leader ← 1; r.bullet ← 2; r.shield ← 1; r.signal ← 0; r.distL ← 0;
5: end if

6: if l.leader = l.signal = 1 then
7: l.bullet ← 2; l.shield ← 1; l.signal ← 0
8: end if
9: if r.leader = r.signal = 1 then

10: r.bullet ← 1; r.shield ← 0; r.signal ← 0
11: end if
12: if l.bullet > 0 ∧ r.leader = 1 then

13: r.leader ←
{

0 l.bullet = 2 ∧ r.shield = 0

1 otherwise

14: l.bullet ← 0;
15: else if l.bullet > 0 ∧ r.leader = 0 then

16: r.bullet ←
{

l.bullet r.bullet = 0

r.bullet r.bullet > 0

17: l.bullet ← 0; r.signal ← 0;
18: end if
19: l.signal ← max(l.signal, r.signal, r.leader)

dummy bullet, it breaks the shield if it has a shield. Thus, roughly speaking, each
leader is shielded (i.e., has a shield) with probability 1/2 at each step. Therefore,
when a live bullet reaches a leader, the leader is killed with probability 1/2. This
strategy is well designed: not all leaders kill each other simultaneously because
a leader must be shielded if it fired a live bullet in the last shot. As a result, the
number of leaders eventually decreases to one.

In what follows, we explain how we implement this strategy. Each agent v
maintains variables v.bullet ∈ {0, 1, 2}, v.shield ∈ {0, 1}, and v.signal ∈
{0, 1}. As their names imply, v.bullet = 0 (resp. v.bullet = 1, v.bullet = 2)
indicates that v is now conveying no bullet (resp. a dummy bullet, a live bullet),
while v.shield = 1 indicates that v is shielded. Unlike the protocol of [12], we
ignore the value of v.shield for any follower v. A variable signal is used by
a leader to detect that the last bullet it fired already disappeared. Specifically,
v.signal = 1 indicates that v is propagating a bullet-absence signal. A leader
always generates a bullet-absence signal in its left neighbor when it interacts
with its left neighbor (Line 19). This signal propagates from right to left (Line
19), while a bullet moves from left to right (Lines 16–17). A bullet disables a
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bullet-absence signal regardless of whether it is live or dummy, i.e., ui+1.signal
is reset to 0 when two agents ui and ui+1 such that ui.bullet > 0 and
ui+1.signal = 1 have an interaction (Lines 16 and 17). Thus, a bullet-absence
signal propagates to a leader only after the last bullet fired by the leader
disappears.

When a leader ui receives a bullet-absence signal from its right neighbor
ui+1, ui waits for its next interaction to extract randomness from the uniformly
random scheduler. At the next interaction, by the definition of the uniformly
random scheduler, ui meets its right neighbor ui+1 with probability 1/2 and
its left neighbor ui−1 with probability 1/2. In the former case, ui fires a live
bullet and becomes shielded (Lines 6–8). In the latter case, ui fires a dummy
bullet and becomes unshielded (Lines 9–11). In both cases, the received signal
is deleted (Lines 7 and 10). The fired bullet moves from left to right each time
the agent with the bullet, say ui, interacts with its right neighbor ui+1 (Lines 16
and 17). However, the bullet disappears without moving to ui+1 if ui+1 already
has another bullet at this time. Suppose that the bullet now reaches a leader. If
the bullet is live and the leader is not shielded at that time, the leader is killed
by the bullet (Line 13). The bullet disappears at this time regardless of whether
the bullet is alive and/or the leader is shielded (Line 14).

3.2 Leader Creation

The leader creation part is simple (Lines 1–5). Each agent ui estimates dL(i)
and stores the estimated value on variable ui.distL ∈ {0, 1, . . . , N}. Specifically,
at each interaction (ui, ui+1), agents ui and ui+1 update their distL as follows
(Lines 1 and 2): (i) ui (resp. ui+1) resets its distL to zero if ui (resp. ui+1) is a
leader, and (ii) if ui+1 is not a leader and does not have a bullet, min(l.distL+
1, N) is substituted for ui+1.distL. Thus, if there is no leader in the population,
some agent v eventually increases v.distL to N , and at that time, the agent
decides that there is no leader. Then, this agent becomes a leader, executing
v.leader ← 1 and v.distL ← 0 (Line 4). At the same time, v fires a live
bullet, generates a shield, and disables a bullet-absence signal (Line 4). This
live bullet prevents the new leader from being killed for a while: the leader
becomes unshielded only after it receives a bullet-absence signal, and the live
bullet prevents the leader from receiving a bullet-absence signal before another
shielded leader appears.

As mentioned above, at interaction (ui, ui+1), the distance propagation does
not occur if ui+1 is a leader. This exception helps us to simplify the analysis of the
convergence time, i.e., we can easily get an upper bound on the expected number
of steps before each bullet disappears. Note that there are two cases that a bullet
disappears: (i) when it reaches a leader, and (ii) when it reaches another bullet.
The first case includes an interaction (ui, ui+1) where ui.distL ≥ N−1 holds and
ui+1 becomes a leader by Line 4. Formally, at an interaction (ui, ui+1) such that
ui.bullet ≥ 1, we say that a bullet located at ui disappears if ui+1.leader = 1,
ui+1.bullet ≥ 1, or ui.distL ≥ N − 1. We have the following lemma thanks to
the above exception.
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Lemma 1. Every bullet disappears before it moves (from left to right) N times.

We should note that the leader creation part may create a leader even when
there is one or more leaders, thus this part may prevent the leader elimination
part from decreasing the number of leaders to one. Fortunately, as we will see in
Sect. 4, within O(nN) steps in expectation, the population reaches a configura-
tion after which no new leader is created.

4 Correctness and Time Complexity

In this section, we prove that PRL is a SS-LE protocol on directed rings of any size
n(≤ N) and that the expected convergence time of PRL is O(nN). In Sect. 4.1,
we define a set SRL of configurations and prove that every configuration in SRL

is safe. In Sect. 4.2, we prove that the population starting from any configuration
reaches a configuration in SRL within O(nN) steps in expectation.

Due to lack of space, we omit proofs for Lemmas 3, 5, and 10, while we give
only a proof sketch for Lemma 12. See a preprint paper [23] for the complete
proofs of these four lemmas.

4.1 Safe Configurations

In this paper, we use several functions whose return values depend on a con-
figuration, such as dL(i) and dR(i). When a configuration should be specified,
we explicitly write a configuration as the first argument of those functions. For
example, we write dL(C, i) and dR(C, i) to denote dL(i) and dR(i) in a configu-
ration C, respectively.

In protocol PRL, leaders kill each other by firing live bullets to decrease the
number of leaders to one. However, it is undesirable that all leaders are killed
and the number of leaders becomes zero. Therefore, a live bullet should not kill
a leader if it is the last leader (i.e., the unique leader) in the population. We
say that a live bullet located at agent ui is peaceful when the following predicate
holds:

Peaceful(i)
def≡

(
ui−dL(i).shield = 1
∧ ∀j = 0, 1, . . . , dL(i) : ui−j .signal = 0

)
.

A peaceful bullet never kills the last leader in the population because its nearest
left leader is shielded. A peaceful bullet never becomes non-peaceful; because let-
ting ui be the agent at which the bullet is located, the agents ui−dL(i), ui−dL(i)+1,
. . . , ui will never have a bullet-absence signal thus ui−dL(i) never becomes
unshielded before the bullet disappears. At the beginning of an execution, there
may be one or more non-peaceful live bullets. However, every newly-fired live
bullet is peaceful because a leader becomes shielded and disables the bullet-
absence signal when it fires a live bullet. Thus, once the population reaches a
configuration where every live bullet is peaceful and there is one or more leaders,
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the number of leaders never becomes zero. Formally, we define the set of such
configurations as follows:

CPB =

{
C ∈ Call(PRL)

∣∣∣∣∣ ∃ui ∈ V : C(ui).leader = 1
∧ ∀uj ∈ V : C(uj).bullet = 2 ⇒ Peaceful(C, j)

}
.

The following lemma holds from the above discussion.

Lemma 2. CPB is closed.

Thus, once the population reaches a configuration in CPB, there is always one or
more leaders.

In protocol PRL, a new leader is created when distL of some agent reaches
N . We require this mechanism to create a new leader when there is no leader.
However, it is undesirable that a new leader is created when there is already one
or more leaders. We say that an agent ui is secure when the following predicate
holds:

Secure(i)
def≡

{
ui.distL = 0 ui.leader = 1
ui.distL ≤ N − dR(i) otherwise

.

One may think that no leader is created once the population reaches a configu-
ration in CPB such that all agents are secure. Unfortunately, this does not hold.
For example, consider the case n = N = 100 and a configuration C ∈ CPB where

– only two agents u0 and u50 are leaders,
– u0.distL = u50.distL = 0,
– ui.distL = 100 − dR(i) for all i = 1, 2, . . . , 49, 51, 52, . . . , 100,
– u49 carries a live (and peaceful) bullet in C, i.e., u49.bullet = 2, and
– u50 is not shielded, i.e., u50.shield = 0.

Note that the above condition does not contradict the assumption C ∈ CPB. In
this configuration, all agents are secure. However, starting from this configura-
tion, the population may create a new leader even when another leader exists. In
configuration C, u49.distL = 99. If u49 and u50 have two interactions in a row,
then u50 becomes a follower in the first interaction, and u49.distL + 1 = 100 is
substituted for u50.distL and u50 becomes a leader again in the second interac-
tion (even though u0 is a leader during this period).

We introduce the definition of modest bullets to clarify the condition by which
a new leader is no longer created. A live bullet located at ui is said to be modest
when the following predicate holds:

Modest(i)
def≡ Peaceful(i) ∧ ∀j = 0, 1, . . . , dL(i) : ui−j .distL ≤ dL(i − j).

As we will see soon, a new leader is no longer created in an execution starting
from a configuration in CPB where all agents are secure and all live bullets are
modest. Note that in the above example, a live bullet located at u49 in C is not
modest. We define a set CNI of configurations as follows:

CNI =

{
C ∈ CPB

∣∣∣∣∣ ∀ui ∈ V : Secure(C, i)
∧ (C(ui).bullet = 2 ⇒ Modest(C, i))

}
.
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Lemma 3. A modest bullet never becomes non-modest.

Lemma 4. A newly-fired live bullet is modest.

Proof. Assume that a leader ui fires a live bullet b at interaction (ui, ui+1)
in C → C ′. Bullet b immediately disappears by Lines 14 and 16 if ui+1 is a
leader or has a bullet in C. Otherwise, b moves to ui+1. Then, ui.shield = 1,
ui.distL = 0, ui+1.distL = 1, and ui.signal = ui+1.signal = 0 must hold in
C ′, which yields that b is modest in C ′. ��
Lemma 5. Let C be any configuration where all live bullets are modest and C ′

any configuration such that C → C ′. Then, a secure agent ui becomes insecure
in C → C ′ only if ui interacts with ui−1 in C → C ′ and ui−1 is insecure in C.

Lemma 6. CNI is closed.

Proof. Immediately follows from Lemmas 2, 3, 4, and 5. ��
Lemma 7. No new leader is created in any execution starting from any config-
uration in CNI.

Proof. Since CNI is closed by Lemma 6, every configuration that appears in
an execution starting from a configuration in CNI is also in CNI. All agents are
secure in a configuration in CNI. Thus, ui.distL ≤ N −1 holds for all ui ∈ V and
ui.distL = N − 1 holds only if ui+1 is a leader. Therefore, in a configuration in
CNI, no agent increases its distL to N , thus no new leader is created. ��

Finally, we define SRL as the set of all configurations included in CNI where
there is exactly one leader.

Lemma 8. SRL is closed and includes only safe configurations.

Proof. Let C be any configuration in SRL and C ′ any configuration such that
C → C ′. Since CNI is closed by Lemma 6 and exactly one agent is a leader in
C, it suffices to show that no one changes its output (i.e., the value of variable
leader) in C → C ′. Since C ∈ CPB, the unique leader in C is never killed in
C → C ′. By Lemma 7, no other agent becomes a leader in C → C ′. Thus, no
agent changes its output in C → C ′. ��

4.2 Convergence

In this subsection, we prove that an execution of PRL starting from any con-
figuration in Call(PRL) reaches a configuration in SRL within O(nN) steps
in expectation. Formally, for any C ∈ Call(PRL) and S ⊆ Call(PRL), we
define ECT (C,S) as the expected number of steps that execution ΞPRL

(C,Γ)
requires to reach a configuration in S. The goal of this subsection is to prove
maxC∈Call(PRL) ECT (C,SRL) = O(nN). We give this upper bound by show-
ing maxC∈Call(PRL) ECT (C, CNI) = O(nN) and maxC∈Call(CNI) ECT (C,SRL) =
O(n2) in Lemmas 11 and 13, respectively.
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In this subsection, we denote interaction (ui, ui+1) by ei. In addition, for
any two sequences of interactions s = ek0 , ek1 , . . . , ekh

and s′ = ek′
0
, ek′

1
, . . . , ek′

j
,

we define s · s′ = ek0 , ek1 , . . . , ekh
, ek′

0
, ek′

1
, . . . , ek′

j
. That is, we use “·” for the

concatenation operator. For any sequence s of interactions and integer i ≥ 1, we
define si by induction: s1 = s and si = s · si−1. For any i, j ∈ {0, 1, . . . , n − 1},
we define seqR(i, j) = ei, ei+1, . . . , ej and seqL(i, j) = ei, ei−1, . . . , ej .

Definition 2. Let γ = ek1 , ek2 , . . . , ekh
be a sequence of interactions. We say

that γ occurs within l steps when ek1 , ek2 , . . . , ekh
occurs in this order (not

necessarily in a row) within l steps. Formally, the event “γ occurs within l steps
from a time step t” is defined as the following event: Γti

= eki
holds for all

i = 1, 2, . . . , h for some sequence of integers t ≤ t1 < t2 < · · · < th ≤ t + l − 1.
We say that from step t, γ completes at step t + l if γ occurs within l steps but
does not occur within l − 1 steps. When t is clear from the context, we write “γ
occurs within l steps” and “γ completes at step l”, for simplicity.

Lemma 9. From any time step, a sequence γ = ek1 , ek2 , . . . , ekh
with length h

occurs within nh steps in expectation.

Proof. For any interaction ei, at each step, ei occurs with probability 1/n. Thus,
ei occurs within n steps in expectation. Therefore, γ occurs within nh steps in
expectation. ��
Lemma 10. Let C be a configuration where no leader exists. In execution Ξ =
ΞPRL

(C,Γ), a leader is created within O(nN) steps in expectation.

Lemma 11. maxC∈Call(PRL) ECT (C, CNI) = O(nN).

Proof. Let C0 be any configuration in Call(PRL) and consider Ξ = ΞPRL
(C0,Γ).

All bullets that exist in C0 disappear before γ = (seqR(0, n − 1))�N/n�+1 com-
pletes by Lemma 1, while γ occurs within O(nN) steps in expectation by Lemma
9. Thus, by Lemmas 3, 4 and 10, within O(nN) steps in expectation, Ξ reaches
a configuration C ′ where all live bullets are modest, there is at least one leader,
and every leader ui satisfies ui.distL = 0.

Let Ξ ′ be the suffix of Ξ after Ξ reaches C ′. In the rest of this proof, we
show that Ξ ′ reaches a configuration in CNI within O(n2) steps. Since CPB is
closed (Lemma 2) and C ′ ∈ CPB, there is always at least one leader in Ξ ′. Thus,
by Lemmas 3 and 4, it suffices to show that Ξ ′ reaches a configuration where all
agents are secure within O(n2) steps in expectation.

Here, we have the following two claims.

Claim 1. In Ξ ′, once an agent ui becomes a leader, ui is always secure there-
after (even after it becomes a follower).

Proof. Suppose that ui is a leader in some point of Ξ ′. At this time, ui.distL =
0. As long as ui is a leader, ui is secure. Agent ui becomes a follower only when
a live bullet reaches ui. In Ξ ′, all live bullets are modest. This yields that, when
ui becomes a follower, all agents ui, ui−1, . . . , ui−dL(i) are secure. Thus, letting
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uj = ui−dL(i), agent ui is secure as long as uj is secure. Similarly, uj is secure as
long as uj is a leader. Even if uj becomes a follower, there is a leader uk such
that uj is secure as long as uk is a leader, and so on. Therefore, ui never becomes
insecure. ��
Claim 2. In Ξ ′, an insecure agent ui becomes secure if it interacts with ui−1

when ui−1 is secure.

Proof. Let C → C ′ be any transition (ui−1, ui) that appears in Ξ such that
ui−1 is secure in C. If ui−1 is a leader in C (thus in C ′), C ′(ui).distL ≤ 1 ≤
N − dR(C ′, i). Otherwise, dR(C ′, i) = dR(C ′, i − 1) + 1 must hold. By Lemma
5, ui−1 is still secure in C ′, hence C ′(ui).distL ≤ C ′(ui−1).distL + 1 ≤ N −
dR(C ′, i − 1) + 1 = N − dR(C ′, i). Thus, ui is secure in C ′ in both cases. ��

Let ui be a leader in C ′. By Lemma 5 and Claims 1 and 2, all agents are
secure when seqR(i, i − 2) completes. This requires O(n2) expected steps by
Lemma 9. ��

As mentioned above, we give only a proof sketch for the following lemma.
The sketch gives the reader the intuition why this lemma holds, but it lacks a
strict analysis on probability. See a preprint [23] for the complete proof.

Lemma 12. Let C0 be a configuration in CNI where there are at least two lead-
ers. Let ui, uj, and uk be the leaders in C0 such that i = j − dL(C0, j) and
j = k−dL(C0, k), i.e., ui is the nearest left leader of uj and uj is the nearest left
leader of uk in C0. (ui = uk may hold.) Let d1 = dL(C0, j) and d2 = dL(C0, k).
Then, in an execution Ξ = ΞPRL

(C0,Γ) = C0, C1, . . . , the event that one of the
three leaders becomes a follower occurs within O(n(d1+d2)) steps in expectation.

Proof Sketch. We show that uj is killed within O(n(d1 + d2)) steps as long
as both ui and uj remain leaders. Leader uj fires a bullet at least once in Ξ ′

before or when γ = seqR(j, k − 1) · seqL(k − 1, j) · ej completes. Thereafter, at
any step, uj is unshielded with probability 1/2 as long as uk remains a leader.
The event ui fires a bullet at least once and the bullet reaches uj before or when
γ′ = seqR(i, j − 1) · seqL(j − 1, i) · seqR(i, j − 1) completes. Thus, each time
γ · γ′ completes, the event that a live bullet reaches uj at the time uj is shielded
occurs with probability at least (1/2) · (1/2) = 1/4. By Lemma 9, uj is killed in
O(n(d1 + d2)) expected steps as long as both ui and uj remain leaders. ��
Lemma 13. maxC∈Call(CNI) ECT (C,SRL) = O(n2).

Proof. Let C0 be any configuration in CNI and let Ξ = ΞPRL
(C0,Γ). By

Lemmas 6 and 7, the number of leaders is monotonically non-increasing and
never becomes zero in Ξ. For any real number x, define Lx as the set of config-
urations where the number of leaders is at most x. First, we prove the following
claim.

Claim 3. Let α = 12/11. For any sufficiently large integer k = O(1), if C0 ∈
(Lαk+1 \ Lαk) ∩ CNI, execution Ξ reaches a configuration in Lαk ∩ CNI within
O(n2/αk) steps in expectation.
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Proof. Let l0, l1, . . . , ls−1 = uπ0 , uπ1 , . . . , uπs−1 be the leaders in C, where π0 <
π1 < · · · < πs−1. We say that lj and lj+1 mod s are neighboring leaders for each
j = 0, 1, . . . , s− 1. Since there are s leaders in C0, there are at least 3s/4 leaders
li = uπi

such that dL(πi+1 mod s) ≤ 4n/s. Thus, there are at least n/2 leaders
lj = uπj

such that dL(πj+1 mod s) ≤ 4n/s and dL(πj+2 mod s) ≤ 4n/s in C0. Let
SL be the set of all such leaders. For each lj ∈ SL, by Lemma 12 and Markov
inequality, lj , lj+1 mod s, or lj+2 mod s becomes a follower within O(n2/s) steps
with probability 1/2. Generally, if X0,X1, . . . , Xi are (possibly non-independent)
events each of which occurs with probability at least 1/2, at least half of the
events occur with probability at least 1/2. Thus, with probability 1/2, for at least
half of the leaders lj in SL, the event that lj , lj+1 mod s, or lj+2 mod s becomes a
follower occurs within O(n2/s) steps. Thus, at least |SL| · (1/2) · (1/3) = s/12
leaders become followers within O(n2/s) steps with probability at least 1/2 =
Ω(1). Repeating this analysis, we observe that Ξ reaches a configuration in
Lαk ∩ CNI within O(n2/αk) steps in expectation. ��

By Claim 3, for sufficiently large integer k = O(1), the number of leaders
becomes a constant (i.e., O(αk) = O(1)) within

∑�logα n�
i=k O(n2/αi) = O(n2)

steps in expectation in Ξ. Thereafter, by Lemma 12, the number of leaders
decreases to one within O(n2) steps in expectation. ��

Lemmas 8, 11, and 13 give the following main theorem.

Theorem 1. Given an integer N , PRL is a self-stabilizing leader election pro-
tocol for any directed rings of any size n ≤ N . The convergence time is O(nN).
The number of states is O(N).

5 Conclusion

We have presented a self-stabilizing leader election protocol for directed rings
in the population protocol, given the knowledge of an upper bound N of the
population size n. Specifically, an execution of the protocol starting from any
initial configuration elects a unique leader within O(nN) steps in expectation,
by using O(N) states per agent. If a given knowledge N is asymptotically tight,
i.e., N = O(n), this protocol is time-optimal.
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Abstract. Internet of Things (IoT) device software has to be resistant
to faults to ensure data privacy and security. In this work, we examine
five common software hardening techniques and study their impact on
software fault-tolerance and security. We experimentally show that some
of these techniques may improve fault-tolerance, while the others can
reduce overall security. We offer a guideline for IoT developers seeking
to make their software robust, and propose a tool for automatic software
fault-tolerance evaluation.

1 Introduction

In order to preserve the end-users privacy IoT devices usually encrypt the sensor
data before transmitting it (e.g. to the local hub, mobile phone or cloud server).
However, a single fault in the encryption logic, introduced either accidentally
(e.g. electromagnetic interference) or intentionally by a malicious attacker, may
cause sensitive data leaks.

To make the devices more resistant to faults, IoT manufacturers often harden
the software components by adding a safety logic that aims to detect the pres-
ence of faults and minimize their impact. While there is a variety of hardening
techniques [6], in practice, IoT software developers rarely have a clear under-
standing of the real impact of a chosen hardening technique on their software’s
fault-tolerance and performance.

In this paper we present a thorough IoT software hardening analysis. We
select five popular and (potentially) automated hardening techniques applied to
implementation of present – a lightweight block cipher targeting IoT devices.
We then expose the hardened versions of present to six kinds of faults, and
evaluate the effectiveness of the hardening techniques on three fronts: (1) their
ability to prevent sensitive data leaks; then (2) their general fault-tolerance and
the impact of each fault type; and, finally, (3) the impact of hardening techniques
on software performance and binary size.

We show experimentally that techniques exploring redundancy on a func-
tion level provide a good balance between software security and general fault-
tolerance, while classic loop hardening techniques in some cases make the hard-
ened software less fault-tolerant. To facilitate the analysis we have developed
c© Springer Nature Switzerland AG 2020
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Chaos Duck – a tool for automatic software fault-tolerance evaluation. The
results in this paper exploit Chaos Duck and demonstrate its utility in detecting
sensitive data leaks, program crashes and corruptions in data and control flows
caused by injected faults.

2 Case Study and Methodology

In this work we evaluate the efficiency of five common software hardening tech-
niques applied to the implementation of present [3] – a block cipher specifically
designed for low-power resource-constrained IoT devices. Listing 1.1 illustrates
an implementation of present used in a heart rate monitor software.

We consider five popular hardening techniques in this case study: classic loop
hardening (CLH) [2] (Listing 1.2); variable duplication (VD) [4] (Listing 1.3);
function duplication (FD) [1] (Listing 1.4); decryption at place (DaP) [1] (List-
ing 1.5); and statement-based counters (SC) [11] (Listing 1.6).

To evaluate the effectiveness of hardening we consider a set of fault models
commonly used to find vulnerabilities in implementations of encryption algo-
rithms [7]: branch instruction faults (both unconditional B and conditional BC )
that aim to disrupt the control flow; FLP faults flipping instruction bits; NOP
faults that skip an instruction; and Z1B and Z1W faults that set a single instruc-
tion byte or word (respectively) to zero.

We consider fault injection on a binary level, as it remains one of the main
attack vectors in the IoT environment [8,9]. For our experiments we developed
Chaos Duck1 – an automatic tool that given a binary file produces “faulted”
binaries (one binary per fault injected), and evaluates the impact of each fault.

We compare five implementations of present hardened with techniques
described above with a non-hardened one (i.e. baseline)2. For each fault model,
every possible fault location is considered. We use a set of three encryption keys
and three plaintexts resulting in nine executions per binary with a 3 s timeout
for each. We differentiate between normally terminated binaries and those that
were interrupted by timeout. We measure the total number of faulted binaries
and collect statistics on fault types and their success rate. The hardening effi-
ciency is evaluated based on its ability to prevent sensitive data leaks in general
and under a differential fault attack (DFA) [5]. Finally, we measure the average
execution time across 10000 executions with randomly generated key,plaintext
pairs, and record the size in bytes for all binaries.

3 Results

With respect to data leaks, none of the hardening techniques were able to prevent
plaintext leakage (see Table 1), which is in line with our previous results [10].

1 Available from https://github.com/zavalyshyn/chaosduck.
2 Available from http://www.lightweightcrypto.org/implementations.php.
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1 encrypt(state ,key) {

2 int round = 0;

3 while(round < 31) {

4 addRoundKey(state ,key);

5 sBoxLayer(state);

6 pLayer(state);

7 round ++;

8 }

9 addRoundKey(state ,key);

10 }

11 reportcycle () {

12 state = sense();

13 key = {0xd3 , 0xe4 ... 0xba};

14 encrypt(state ,key);

15 transmit(state);

16 }

Listing 1.1. A pseudocode of heart rate
monitor’s software using present.

1 encrypt(state ,key) {

2 int round = 0, round_dup = 0;

3 while(( round < 31) &&

4 (round_dup < 31)) {

5 addRoundKey(state ,key);

6 sBoxLayer(state);

7 pLayer(state);

8 round ++; round_dup ++;

9 }

10 if (round != round_dup) error();

11 addRoundKey(state ,key);

12 }

Listing 1.2. Classic loop hard. (CLH).

1 encrypt(state ,key) {

2 int round = 0, round_dup = 0;

3 while(round < 31) {

4 addRoundKey(state ,key);

5 sBoxLayer(state);

6 pLayer(state);

7 if (round!= round_dup) error();

8 round ++; round_dup ++;

9 }

10 if (round != round_dup) error();

11 addRoundKey(state ,key);

12 }

Listing 1.3. Variable duplication (VD).

1 reportcycle () {

2 state = sense();

3 key = {0xd3 , 0xe4 ... 0xba};

4 for (int i=0; i<8; i++) {

5 copy[i] = state[i];

6 }

7
8 encrypt(state ,key);

9 encrypt_dup(copy ,key);

10
11 for (int i=0; i<8; i++) {

12 if (state[i]!= copy[i]) error();

13 }

14 transmit(state);

15 }

Listing 1.4. Function duplication (FD).

1 reportcycle () {

2 state = sense();

3 key = {0xd3 , 0xe4 ... 0xba};

4 for (int i=0; i<8; i++) {

5 copy[i] = state[i];

6 }

7
8 encrypt(state ,key);

9 decrypt(state ,key);

10
11 for (int i=0; i<8; i++) {

12 if (state[i]!= copy[i]) error

();

13 }

14 transmit(state)

15 }

Listing 1.5. Decryption at place
(DaP).

1 #define DECL_INIT(cnt ,x) int cnt;

if((cnt=x)!=x) error();

2 #define CHECK_INC(cnt ,x) cnt=(cnt

==x ? cnt+1 : error());

3 #define RESET_CNT(cnt_while ,val)

(cnt_while ==1|| cnt_while==

val) ? cnt_while =1 : error()

;

4 #define CHECK_LOOP_INC(cnt_loop ,x

) (cnt_loop ==x) ? cnt_loop

+=1 : error();

5 #define CHECK_LOOP_END(cnt_loop ,

val) if (cnt_loop !=val)

error();

6 encrypt(state ,key) {

7 DECL_INIT(enc_cnt ,1);

8 CHECK_INCR(enc_cnt ,1);

9 int round = 0;

10 CHECK_INC(enc_cnt ,2);

11 DECL_INIT(while_cnt ,1);

12 CHECK_INC(enc_cnt ,3);

13 DECL_INIT(loop_cnt ,0);

14 CHECK_INC(enc_cnt ,4);

15 while(round < 31) {

16 RESET_CNT(while_cnt ,6);

17 CHECK_LOOP_INC(loop_cnt ,round)

;

18 CHECK_INC(while_cnt ,1);

19 addRoundKey(state ,key);

20 CHECK_INC(while_cnt ,2);

21 sBoxLayer(state);

22 CHECK_INC(while_cnt ,3);

23 pLayer(state);

24 CHECK_INC(while_cnt ,4);

25 round ++;

26 CHECK_INC(while_cnt ,5);

27 }

28 CHECK_INC(enc_cnt ,5);

29 CHECK_LOOP_END(loop_cnt ,31);

30 CHECK_INC(enc_cnt ,6);

31 addRoundKey(state ,key);

32 CHECK_INC(enc_cnt ,7);

33 }

Listing 1.6. Statement counters
(SC) hardening.
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Table 1. Sensitive data leakage across five hardening techniques.

Baseline CLH VD SC FD DaP

Binaries 1314549 4818348 9267993 52341831 3580380 3902400

Leaked key
(normal/timeout)

0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Leaked plaintext
(normal/timeout)

1713 / 180 1449 / 0 3559 / 4 567 / 0 0 / 72 108 / 72

DFA vulnerable 2 / 0 9 / 0 2 / 0 0 / 0 0 / 0 0 / 0

Table 2. Fault types statistics for faulted binaries leaking sensitive data (normally
terminated vs. terminated by timeout).

Baseline CLH VD SC FD DaP

Binaries 1713 / 180 1449 / 0 3559 / 4 567 / 0 0 / 72 108 / 72

FLP 45 / 108 9 / 0 28 / 0 234 / 0 0 / 0 36 / 0

Z1B/Z1W 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

NOP 0 / 0 0 / 0 0 / 0 9 / 0 0 / 0 0 / 0

B 852 / 0 396 / 0 341 / 1 324 / 0 0 / 0 0 / 0

BC 816 / 72 1044 / 0 3190 / 3 0 / 0 0 / 72 72 / 72

Table 3. Execution results for five hardening techniques in presence of faults.

Baseline CLH VD SC FD DaP

Binaries 1314549 3836889 5639832 52341831 3580380 3902400

Valid cipher 16.7 % 38.64 % 34.07 % 62.87 % 16.99 % 14.02 %

Invalid cipher 17.3 % 2 % 1.64 % 0.19 % 0.57 % 0.55 %

No output 66 % 59.36 % 64.29 % 36.94 % 82.45 % 85.43 %

FD and DaP techniques were more effective since they check final output values
instead of intermediate values, e.g. loop counters.

Branch instruction faults were the most common cause of sensitive data leaks
(see Table 2). Hence hardening techniques that add more branches to the origi-
nal code (e.g. SC technique) should be avoided, as new branches inadvertently
increase the attack surface. Alternative techniques, e.g. FD and DaP, proved to
be less affected by this type of fault.

Our experiments showed that the majority of faulted binaries simply failed to
execute correctly without producing a valid ciphertext (see Table 3). However,
the SC technique turned out to be less affected by the fault presence.

Failures were mostly caused by the binaries getting stuck in an infinite loop
and then interrupted by timeout (see Table 4). The next most common cause
was a segmentation fault, followed by illegal instruction and aborted faults. The
fault detection rate is rather low, barely reaching 10% for most of the hardening
techniques, with the sole exception of CLH reaching 80% detection rate.
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Table 4. Statistics on failed executions.

Baseline CLH VD SC FD DaP

Crashed binaries 867852 1862129 4807851 19334285 3505885 3845470

Seg. fault 56.11 % 35.21 % 20.99 % 17.36 % 45.28 % 60.81 %

Timed out 30.65 % 6.81 % 43.46 % 0.48 % 15.33 % 9.87 %

Illegal instr. 8.83 % 1.82 % 0.85 % 0.65 % 1.83 % 2.25 %

Aborted 0.63 % 1.7 % 0.68 % 0.11 % 0.29 % 0.29 %

Fault detected n/a 52.4 % 33.2 % 80.22 % 35.3 % 25.03 %

Other 3.78 % 2.06 % 0.82 % 1.18 % 1.97 % 1.75 %

All hardening techniques have no significant impact on execution time (52.4±
2 ms), and (except SC ) have little impact on binary size (+1KB).

4 Conclusions

Hardening techniques exploring redundancy on a function level strike a good
balance between security and performance properties, while some of the classic
techniques make the software more vulnerable to faults resulting in a plain-
text being leaked. Although the experiments were performed on present, these
results indicate hardening is generally ineffective in preventing faults. Chaos
Duck proved to be a powerful tool for evaluating an IoT software security and
robustness in the presence of faults.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

2. Barbu, G., Andouard, P., Giraud, C.: Dynamic fault injection countermeasure. In:
Proceedings of CARDIS (2012)

3. Bogdanov, A., et al.: Present: an ultra-lightweight block cipher. In: Proceedings of
CHES (2007)

4. Cheynet, P., Nicolescu, B., Velazco, R., Rebaudengo, M., Reorda, M.S., Violante,
M.: Experimentally evaluating an automatic approach for generating safety-critical
software with respect to transient errors. IEEE Trans. Nucl. Sci. 47(6), 2231–2236
(2000)

5. Ghalaty, N.F., Yuce, B., Schaumont, P.: Differential fault intensity analysis on
present and led block ciphers. In: Proceedings of COSADE (2015)

6. Gilley, G.C., et al.: Ftcs, digest of papers (1971)
7. Given-Wilson, T., Heuser, A., Jafri, N., Legay, A.: An automated and scalable

formal process for detecting fault injection vulnerabilities in binaries. Concurr.
Comput.: Pract. Exp. 31(23), e4794 (2019)

8. Given-Wilson, T., Jafri, N., Legay, A.: The state of fault injection vulnerability
detection. In: Proceedings of VECoS (2018)



322 I. Zavalyshyn et al.

9. Given-Wilson, T., Jafri, N., Legay, A.: Combined software and hardware fault injec-
tion vulnerability detection. Innovations Syst. Softw. Eng. 16(2), 101–120 (2020)

10. Given-Wilson, T., Legay, A.: Formalising fault injection and countermeasures. In:
Proceedings of ARES (2020)

11. Lalande, J.F., Heydemann, K., Berthomé, P.: Software countermeasures for control
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