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Foreword

It ismy great pleasure to see the publication ofGastrointestinal ImageAnalysis edited
by Prof. Jorge Bernal del Nozal and Prof. Aymeric Histace. They are a pioneer and a
central figure of the researchfield of computer-aided detection/diagnosis of colorectal
polyps, an area I have beenworking in as well. This world’s first, unique book gathers
amazing results obtained from theGastrointestinal ImageANAalysis (GIANA) chal-
lenge 2017 and 2018 (an official project endorsed by the MICCAI society), in
which participants submitted detection, segmentation, or classification algorithms
for colonoscopy or Wireless Capsule Endoscopy (WCE) videos for competition.
I believe this ambitious challenge will definitely contribute to acceleration of the
research on Artificial Intelligence (AI) for gastrointestinal endoscopy, ultimately
resulting in improvement of quality of endoscopy which is yet to be standardized at
all in “real” clinical practice; the Adenoma Detection Rate (ADR), the most impor-
tant quality indicator for colonoscopy, varies according to endoscopists’ expertise,
strongly affecting the incidenceof post-colonoscopyCRCand relatedmortality [3, 4].
I think this issue of theADRwould be one of the largest problems that gastrointestinal
endoscopy practice harbours.

To change this unfavourable situation, researchers devoted to computer vision
have been trying to adopt AI technologies. As the data described in this book show,
the performance of AI for polyp detection/segmentation has surprisingly improved in
comparisonwith the previous reports probably because of the application of advanced
deep learning technologies and the improvement of hand-crafted feature extraction.
Given the AI tools have potential to evolve the quality of colonoscopy regardless
of the endoscopists’ skill, they will have greater benefits for patient care than we
expected. However, at the same time, we should bear in mind that the results of
experimental studies are not always translated to clinical practice; there is a wide
gap between ex vivo and in vivo studies [5].

To overcome this critical hurdle, we, clinical researchers, should assess the AI’s
potential in practical settings where the AI tools will be used in a real-time fashion
during colonoscopy. Unfortunately, the number of such prospective studies is very
limited; however, it is expected to increase because clinical researchers in this area are
now shifting their focus to prospective evaluation. Ultimately, these AI tools should

vii



viii Foreword

be validated in trials with long-term follow-up, and CRC incidence and mortality as
the main outcome measures.

I believe this book will be an indispensable guide not only for engi-
neers/researchers working on computer vision but also clinicians who are keen on
future perspective of colonoscopy andWCE practice. I sincerely hope it will find the
widest readership it doubtlessly deserves.

Yuichi Mori
Digestive Disease Center

Showa University Northern Yokohama Hospital
Yokohama, Kanagawa, Japan
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Introduction

This book presents the first comprehensive analysis of Gastrointestinal Image Anal-
ysis systems. These systems aim to assist clinicians in several critical clinical tasks
such as are lesion detection in colonoscopy images or lesion classification in wireless
capsule endoscopy imaging.

When writing this book, several objectives were identified. First of all, we wanted
to focus on those clinical tasks that have been identified by clinicians as critical.
Second, we wanted to take the chance to fully present the different methodologies
that have concurred in the two iterations of GIANA challenge which is organized by
the editors of this book. Going beyond a simple journal paper allows us to give the
different teams to explain their methodologies with the depth they wanted. Third,
as we are worried not only by the development but also by the validation of our
methodologies, we wanted to fully introduce the different validation frameworks
that we have used in the challenge and that will be available to anyone interested to
do research in the topic.

We have designed the structure of the book with these objectives in mind, being
its content divided into four different parts. The Part I deals with the clinical and
technical context of the different target tasks that will be targeted. We present an
overview of the clinical drawbacks that current clinical practice present and we
explore which technical challenges should be faced in order to provide expected
performance levels.

The Part II of the book is devoted to the explanation of the different methodologies
that will be validated in this book. Each of the teams has a different chapter in which
to explain their approach to solve the different tasks that are targeted. For those using
deep learning approaches a similar structure has been proposed: themain architecture
is introduced and then modifications over this baseline are presented in depth.

The Part III of the book deals with the explanation of the three different vali-
dation frameworks for polyp detection, polyp segmentation and wireless capsule
endoscopy lesion analysis. We introduce each of the datasets and we present the
different performance metrics that will be used to compare methods performance.

The Part IV of the book presents and analyzes the results of the different teams that
concurred to GIANA 2017 and 2018 challenges. For the case of those tasks that were
exactly the same in both iterations, we made an additional study aiming to observe if
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xii Introduction

there were an evolution in the performance achieved by the best methodology and,
for the case of the teams that concurred in both editions, we observe if there were
significant changes in method performance.

We hope we have been able to fulfill our objectives and that this book offers a
pleasant reading.

Jorge Bernal
Aymeric Histace
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Chapter 1
Clinical Context for Intelligent Systems
in Colonoscopy

Gloria Fernández-Esparrach and Ana García-Rodríguez

Colorectal cancer (CRC) is the third most common cancer in both sexes and the
second leading cause of death in the world (Bray et al. 2018). Worldwide, 1.4 million
new cases of CRC are diagnosed annually and the incidence rates are slightly higher
in men than in women. The World Health Organization (WHO) reported a rate of
mortality of 9.2% in 2018, as can be seen in Fig. 1.1.

CRC incidence rates vary widely. Incidence in developed countries tends to stabi-
lize due to the implementationof screeningprograms, an issue that has beenhampered
in countries with limited resources (Favoriti et al. 2016). The disease can be consid-
ered a marker of socioeconomic development, with incidence rates that increase in
parallel to the growth of developing countries, where people are adapting to western
lifestyle (Arnold et al. 2017).

1.1 Risk Factors

Almost 90% of cases of CRC are sporadic, where an interaction between environ-
mental factors and genetic susceptibility determines the onset and development of
CRC. The diet probably influences colorectal carcinogenesis through the interaction
of direct effects on the immune response and inflammation and the indirect effects of
malnutrition and the risk of obesity for CRC. Calcium, fiber (whole grain) and milk
have been associated with a lower risk of CRC whereas the intake of red and pro-
cessed meat has been associated with an increased risk (Song et al. 2015). Tobacco
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Fig. 1.1 Pie charts present the distribution of cases and deaths for the 10 most common cancers in
2018 for both sexes. Source GLOBOCAN 2018: overall, colorectal cancer ranks third in terms of
incidence but second in terms of mortality

and alcohol consumption increase the risk of CRC too (Botteri et al. 2008; Cai et al.
2014).Modifications in diet and lifestyle are therefore an attractive strategy to reduce
the overall burden of CRC.

1.2 Pathogenesis

CRC pathogenesis is due to the progressive accumulation of genetic and epigenetic
alterations. Almost all CRC originate from a polyp, with an estimated progression
time of 10–15 years, depending on the characteristics of the lesion and other inde-
pendent risk factors (Kuipers et al. 2013).

From a histological point of view, polyps are classified as neoplastic and non-
neoplastic, depending on whether or not they have a risk of degeneration. Neoplastic
lesions include adenomas and serrated polyps. Neoplastic transformation affecting
the colon epithelium is characterized by two distinct morphological pathways of car-
cinogenesis: the conventional adenoma-carcinoma sequence and the serrated path-
way (Rex et al. 2012).
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1.3 Management

Endoscopy is the most effective diagnostic and therapeutic tool for secondary and
tertiary prevention of CRC, since it not only allows identification of polyps, but also
allows removing them. On the other hand, optical advanced diagnosis can predict
the histology of a polyp based on its endoscopic features.

Once identified, neoplastic polyps should be resected endoscopically in an en-
bloc manner to allow a proper pathological diagnosis. Fortunately, most polyps are
small in size (<10 mm) and have a low potential for malignancy (Lieberman et al.
2008). Therefore, the American Society for Gastrointestinal Endoscopy (ASGE)
proposes “resect and discard” or “leave in situ” strategies for diminutive polyps (≤5
mm) of the colon and rectum and recto-sigma, respectively, to reduce the costs of
histopathological analysis (Rex et al. 2011).

At present, the evidence is insufficient to secure benchmarks and extend the use of
these strategies in daily clinical practice.Artificial Intelligence, throughdeep learning
systems, emerges as a helpful tool to enable the recognition of polyps in real time
(Mori et al. 2018). However, its effectiveness has not yet reached the sufficient level
of performance in terms of applicability in clinical practice.

1.4 Current Limitations of White Light Endoscopy

Colonoscopy is not foolproof and still has some drawbacks. The reduced field of view
of the optical camera placed at the tip of the endoscope (<180◦), the polyp occultation
produced by colon angulations and folds, the insufficient bowel preparation and the
dependence on the experience of the endoscopist, result in a polyp miss rate of
22% and a risk of developing cancer after a negative colonoscopy of 8% (Van Rijn
et al. 2006; Samadder et al. 2014). Currently, 12% of large adenomas (at least 1
cm) are missed even by expert endoscopists using meticulous techniques with the
best available equipment, and these large adenomas are the ones that are most likely
to transform into cancer. Factors such as quality of bowel cleansing and time spent
examining the colonic mucosa have been shown to affect miss rates (Rex et al. 2015).
For these reasons, several efforts have been made to improve the detection of polyps,
which include better tolerated cleaning solutions, improvements in endoscopes, and
accessory devices that increase mucosal visualization (Cheng et al. 2016; Bucci et al.
2014; Williet et al. 2018).

Nevertheless, the ambiguous in situ differential diagnosis of neoplastic from non-
neoplastic polyps leads to an inefficient management and treatment of patients (delay
in decision making, repetition of colonoscopies, and increased patient journey and
risk) (Lee et al. 2014). This is because colonoscopy heavily relies on the subjective
nonquantifiable visual assessments of colorectal polyps (e.g., polyp morphology and
surface patterns), which is not considered sufficient evidence. For this reason, the
“resect and discard” or “leave in situ” strategies for polyps<5 mm can only be used
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for experienced endoscopists with a reliable histological prediction capacity (Dayyeh
et al. 2015).

In order to achieve a better histological prediction, several techniques have been
developed. The most common technique is chromoendoscopy (with dyes or virtual).
A meta-analysis published in 2015 (Dayyeh et al. 2015) including 20 studies that
used Narrow Band Imagine (NBI), all in vivo and published between 2008 and
2014, showed that the pooled negative predictive value of NBI for adenomatous
polyp histology was 91% (95% CI 88%, 94%).

During real-time optical diagnosis, validated optical diagnostic scales, such as the
widely used NBI International Colorectal Endoscopic (NICE) classification should
be used to improve diagnostic accuracy (Bisschops et al. 2019). No universal training
system for differentiation between neoplastic and non-neoplastic colorectal polyps
has been established yet. Several teaching modules, mostly computer-based, have
been studied and some of them are showing promising results with respect to improv-
ing interobserver agreement; however, in a substantial number of studies the inter-
observer agreement was still moderate after training (Rastogi et al. 2014).

Considering the mentioned drawbacks of colonoscopy, three potential areas in
which computer science may play a role have been identified:

1. Automatic polyp detection and localization: one of the drawbacks is related to
the difficulty in detecting certain types of polyps such as small or flat lesions.
Flat polyps can be detected with the support of CT (Fidler and Johnson 2009)
although its detection supposes additional patient radiation and is limited by the
size. Detection of small polyps cannot be undertaken with the help of CT as the
current available resolution makes it impossible to detect polyps with size smaller
than 10mm, therefore the diagnosis in these cases should only rely on endoscopic
exploration.

2. Polyp classification: the decision to perform polypectomy is commonly taken by
an estimation of the size and histology of the detected lesion. This estimation is
usually made by means of visual observation and therefore incorporates some
degree of subjectivity. In this context, a system that can objectively provide an
estimation of the size and classification of the polyp could allow taking in vivo
diagnostic decisions and this would optimize the treatment timing.

3. Patients lesion follow-up and endoscopy navigation: there is a necessity expressed
by some clinicians regarding the recognition of the area that a lesion occupies,
which can be useful for two different reasons: (1) for the case of polyps that
have not been removed, an univocal recognition of the lesion would allow the
study of the evolution of the lesion; (2) an accurate recognition of the marks that
clinicians leave to identify the area of the polyp once it is removed would allow
the exploration of areas nearby the lesion to search for new pathologies.
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Chapter 2
Clinical Context for Wireless Capsule
Endoscopy Image Analysis

Romain Leenhardt, Xavier Dray, and Aymeric Histace

2.1 Introduction

Wireless Capsule Endoscopy (WCE) takes the form of a pill equipped with a CCD
or CMOS sensor, two batteries, and a RF (radiofrequency) transmitter, that enables
the wireless identification of gastrointestinal abnormalities such as ulcers, blood, and
polyps (Moglia et al. 2009) with no need for hospitalization or sedation.

Wireless Capsule Endoscopy (WCE) has rapidly become the standard minimally
invasive method for visualization of the small bowel (SB). WCE is considered as the
first-line investigation of SB diseases (Iddan et al. 2000) andmay become the leading
diagnostic tool for the entire gastrointestinal tract. With a mean number of 50,000
SB frames per video, SB-CE reading is time-consuming, tedious (30–40 min per
video), and costly (McAlindon et al. 2016). This entails an inherent risk of missed
lesions during the reading process by physicians.

In the last decade, WCE has become a breakthrough technology. Many fabricants
such as Medtronics, IntroMedic, and Olympus (Gerber et al. 2007) have developed
a variety of capsules for the complete examination of the gastrointestinal tract.

2.2 WCE Technical Aspects

Figure2.1 shows the usual classic component layout of WCE.
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Fig. 2.1 Images and
diagram showing the
composition of a video
capsule endoscope.
References: Royal Free
Hospital - London/UK

As it can be noticed, the battery is the element that occupies majority of avail-
able space in the capsule. The current autonomy is between 8 and 10 h by exam.
Nevertheless, the average processing time from the mouth to the anus is more than
12 h, and, depending on the organism of the patient, sometimes even 24 h; under
these conditions the capacity of this battery will be 55 mA @ 12 h, a very low one
to supply enough power to the capsule. Currently the two batteries used in the WCE
are composed of silver oxide, the only material approved for clinical use. Even if
it is not the most efficiently solution, improvements are quite limited in this area:
If others batteries were used, as lithium batteries that can provide longer operating
times or carbon nanotubes that will produce at the same time a good autonomy while
reducing the required space, the energy performance will be better. As an example,
batteries composed of Zinc Air (ZnO2), will increase about four times the capacity
and the weight will be reduced in 20%.

CMOS and CCD sensors are both used inWCE. The main characteristics of these
technologies are as follows:

• CMOS (Complementary Oxide Silicone): A CMOS imager converts the charge to
voltage within each pixel, using an array of pixels to convert light into electronic
signals. This signal is weak and needs amplifying to a usable level, and then each
pixel has its own amplifier circuit. The result is a lower chip count, an increased
reliability, a reduced power consumption, and a more compact.

• CCD (Charge Coupled Device): The CCD imager transfers the charge from the
pixel, created by photoelectric conversion, through a bucket relay transfer to the
imager output stage. The charge transfer is almost complete, which means that
noise is rare, but a high voltage differential is required to improve transfer effi-
ciency, which increases power consumption.

The most recent WCE of Given Imaging company uses a CMOS sensor “Aptina
MT9S526”.

The transmission is one of the most important but consuming elements of the
capsule, because it has to process about at least 150,000 images per exam (often
more), this module is nearly 100%-active during the all exam. Currently, the capsules
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Table 2.1 Technical comparisons of the existing WCE

PillCam SB EndoCapsule MiroCam Sayaka OMOM Vector

Size (mm) 26×11 26×11 24×11 23×9 28×13 26×11

Weight (gr) 3.7 3.8 3.3 6

See angle 140 145 150 360 140

LED 4 6 6 4 6 4

Rate (fps) 2 2 2–3 30 0.5, 1, 2 19

Image
sensor

CMOS CCD CMOS CCD QVGA

Autonomy 8 8–10 9–11 8 5

could use either one of these systems for image transmission to the wearable data-
logger:

• By RF-transmitter (Zarlink ZL70340 E3, for instance): composed of an oscillator
and a control circuit that send images with a variable rate 800/400/200 kbps and a
carrier frequency of 402–405 MHz, the nominal current is 5 and 1 mA in passive
mode.

• By electric-field propagation: this system is a more experimental one used on the
MIRO capsule. Based on a novel human telemetry technology known as electric-
field propagation, it uses the humanbody as a conductivemedium for data transmis-
sion. The transmitters are a pair of gold plates coated on the surface of the capsule,
reducing drastically the power consumed compared with existing communication
devices that use RF transmission technology. Thanks to a longer operation time,
this capsule takes advantage of the surplus energy to produce more image data;
the autonomy of this capsule is between 10 and 12 h but remains barely used by
clinicians.

In Table2.1, a comparison of the different existing technologies of WCE is pro-
posed.

Very recent generations of videocapsules have strongly improved the quality of
bowel investigation. PillCam SB3, for instance, compared to the previous SB2 gener-
ation showed a significant improvement in bleeding detection (Blanco-Velasco et al.
2019) but also on several other types of pathologies as largely reported in the litera-
ture. Increase of the image resolution, more important acquisition rate (up to 5 fps),
non-conventional image sensors (see Fig. 2.2 and finally improved Graphical User
Interface for physicians pave the way to strengthen the use of WCE for a broader
field of applications).
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Fig. 2.2 Illustration of (left) PillCamSB3 and (right) Capsovision WCE with a lateral sensors
for non-conventional image acquisition of the small intestine. Respectively taken from VideoDi-
gest2017 and www.ortoday.com

2.3 Challenges in WCE

Current main issues of WCE are (Gerber et al. 2007):

• The complete analysis of the 150,000+ images is time-consuming for physicians,
and even for experienced ones, WCE diagnoses are sometimes challenging.

• The transmission of the 150,000+ images, that represents 80% of the overall
energy consumption of the embedded batteries, limits to 8 h the autonomy of the
classic WCE, whereas 12 h are necessary to scan the complete intestinal tract.

• In the particular case of Colorectal Cancer, a recent study comparing diagnostic
capabilities of videoendoscopy and of WCE shows that the average detection rate
is around 80% polyps per patient (Spada et al. 2011; Eliakim et al. 2009). Thus, the
improvement of polyp detection and classification capabilities of WCE is strongly
expected from gastroenterologists.

• Processing capabilities of WCE are limited to transmit raw images. No “intelli-
gence” is currently embedded into the imaging device itself.

Artificial intelligence (AI) has become the main focus in the last 10 years for
Computer-aided analysis of the WCE images.

Nevertheless, AI-based solutions rely strongly on databases. Big data exploita-
tion (epidemiology, predictive medicine) and signals analysis (EKG, EEG, imaging,
pathology, dermatology, ophthalmology...) were the first successful application of AI
in healthcare, followed by government approval. AI has a vast spectrum of potential
applications in digestive endoscopy as well. AI can be used for screening, diagnosis,
characterization, treatment, and prognosis evaluation, in a wide array of procedures.
The quantity of published work in this field is thriving. Computer-assisted detection
and characterization of colonic polyps, for instance, were amongst the first success-
ful applications of AI and should be commercially available shortly. The automated
reading of a capsule endoscopy is also very demonstrative of what AI will be able to
accomplish in the next future.

www.ortoday.com
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It is believed that AI will significantly improve diagnostic performances and thus
the quality of care. Today, endoscopists should not only promote this technological
revolution, but also address new issues in the field ofAI, regarding the respective roles
of physicians (focused on ethics and patient-relations) and AI-machines (assistants
vs autonomous), as well as responsibility (physicians vs. manufacturing companies),
and reimbursement (physician vs manufacturing companies).

In Koulaouzidis et al. (2017), authors reported that incorporating machine learn-
ing algorithms into CE reading is difficult as large amounts of image annotations are
required for training. They noted back that existing databases lack graphic annota-
tions of pathologies and cannot be used for advancement of software solutions.

2.4 Conclusions

Based on this, it then appeared a real need for robust and reliable databases for WCE
image analysis. GIANA challenge was the perfect opportunity to gather efforts and
build a first database dedicated toWCEdata and permitting the community to develop
AI-based approaches that could be fairly compared in terms of performance.
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Chapter 3
Technical Context for Intelligent Systems
in Colonoscopy

F. Javier Sánchez, Yael Tudela, Marina Riera, and Jorge Bernal

We define polyp presence detection as the capability of a given system to determine
polyp presence in a given image. The expected output of a polyp detection system
is a simple indication of if the system has predicted the presence of a polyp in the
frame, without any kind of information of where it is in the image.

We extend this definition by denoting polyp localization as the capability of a
system to indicate precisely where is the polyp within the image, in case it has
determined such a presence. The majority of the methods published in the literature
(which will be referenced in this chapter) use the terminology polyp detection to
couple both polyp presence detection and polyp localization tasks.

Polyp segmentation can be described as the ability by which a given method is
able to outline the polyp region in the image. While segmentation has no direct
clinical task associated, it is commonly used as a prior stage in lesion classification
methodologies.

We present in this chapter some of the current available methodologies that have
been published for the before mentioned tasks as well as an indication of the current
challenges that thesemethodologies have to deal with to provide a good performance.

3.1 State of the Art on Polyp Detection

Following the classification of computational approaches for polyp detection that
was proposed in Bernal et al. (2017), we can divide existing methodologies in two
big groups: handcrafted methods and machine learning ones.
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Handcrafted methods are the ones that extract local features from the images and
build a classifier (or detector) using those features as input. Local features are usually
color descriptors (histograms) or pattern descriptors (key points) and are designed
and tuned specifically to solve a concrete problem. This is one of the reasons why
those methods normally don’t generalize well across multiple datasets.

Machine learning algorithms are those which build a mathematical model based
on patterns and inference from sample data, known as “training data”. That way, they
learn how to make predictions or decisions about a task, without being programmed
for that specific task.

3.1.1 Handcrafted Methods

With respect to polyp detection and, to the best of our knowledge, the firstmethod that
tried to solve the colorectal polyp detection problem is the one from Karkanis et al.
(2003), which was published on 2003. In their work, they tried to detect adenomatous
tissues by color wavelet co-variance (CWC) of different regions from images and a
step-wise linear discriminant analysis to classify the features.

Hwang et al. (2007) presented in 2007 a method that tried to exploit the common
polyp shapes to detect the lesions on the images. They used watersheds to partially
segment the images. Then they tried to fit ellipses into the watershed edge map
and apply filters based on curve directions, curvature, and edge distance. Finally,
they applied a threshold filter using the mean intensity value of the region. Also,
they implemented inter-frame coherence based on ellipse distance between adjacent
frames.

On 2012, Park et al. (2012) published a framework for polyp detection. First,
they preprocessed the images removing the ones that weren’t informative, and dein-
terlaced the others. Also they applied contrast equalization and removed specular
regions using top-hat filters. From the informative images, they extracted features
based on co-variance matrices from 5 to 10 sections of the frame and classified them
into polyp/non-polyp. They used Conditional Random Fields (CRF) as a inter-frame
coherencemethod, assuming that an adjacent frame should have a similar probability
of being classified as the previous one.

Tajbakhsh et al. (2014) presented on 2014 a method that uses geometric con-
straints and intensity variations patterns (IVP) in the object boundaries in order to
detect polyps in colonoscopy videos. Firstly they created an edge map from the
image using Canny filters on RGB channels. Then, they refined this map by using
IVP and computed a normalized DCT over multiple patches from the edges. Next,
they classified those patches into five classes: polyp, lumen, vessel, reflections, and
random. Also they computed the orientation of the patch for the ones classified as
polyp. Finally they computed a voting map using these patches and orientations.

Bernal et al. (2015) proposed in 2015 a methodology based on a definition of
model appearance for polyps. This model was built considering how colonoscopy
images are acquired and it defined polyp boundaries by means of intensity valleys.
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Once these are found, they created energy maps representing polyp presence in
the image by integrating valley information in a way such complete, continuous,
and circular structures are fostered. They were also the first to tackle the impact of
other endoluminal structures in method performance: their results proved that the
mitigation of specular highlights and blood vessels led to a overall increase in all
considered metrics.

On 2015, Wang et al. (2015) presented Polyp-Alert a near real-time (10 frames
per second) system for polyp detection in video. The system tried to identify if a
previously detected edge map (obtained using Canny filter) is from a polyp or not.
They extracted multiple features using edge cross-section profile (ECSP) related
to the shape and length of the edges and also some features related to the texture
and sizes of the enclosed regions. They consider polyp a region that are inside the
range value for all the analyzed features. They also removed false positives regions
using a tracking system. Their tracking system is based on optical-flow computation
from a pyramid edge map and thresholding by a number of coincidences between
contiguous frames.

On 2016, Geetha and Rajan (2016) published amethod that combined three robust
descriptors (LBP, DCT, and average color per channel) from different patches of an
image. Then they fused the three different features to a common space and then used
a decision tree, concretely J48, to make a detection for the frame.

3.1.2 Machine Learning Algorithms

Machine learning algorithms are those which build a mathematical model based on
patterns and inference from sample data, known as “training data”. That way, they
learn how to make predictions or decisions about a task, without being programmed
for that specific task

There have beenmany approaches that used classical machine learning paradigms
(feature extractor+ classifier, such as in theworks ofAngermann et al. 2017; Bae and
Yoon 2015; Ameling et al. 2009 just to mention a few). The increasing availability
of GPUs as well as the development of large public datasets has, as it has happened
in many other research fields, led to the irruption of convolutional neural network
methodologies to tackle polyp detection task.

There are various architectures mainly used regarding colorectal polyp detection.
Those include one-stagemethods such as SSDandYOLOv3, and two-stagemethods:
Faster R-CNN, Mask R-CNN, and the like.

On July 2018, Zheng et al. (2018) presented an application of a unified and real-
time object detector based on You-Only-Look-Once (YOLO). Unlike the
classification-based detectors, YOLO is a regression-based object detector which
looks at the whole image once to perform the detection. It uses a single CNN simul-
taneously to predict bounding boxes as well as the class probabilities for the boxes.
In addition, unlike sliding window and region proposal based detectors, YOLO looks
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at the entire image so it can encode contextual information during prediction which
can reduce background mistakes.

On August 2018, Shin et al. (2018a, b) proposed a framework of conditional
adversarial networks (conditional GAN) to increase the number of training sam-
ples by generating synthetic polyp images, as the lack of labeled polyp images for
training is one of the major obstacles in this task. Generative Adversarial Networks
(GAN) (Goodfellow et al. 2014) is a framework to generate artificial images by using
the competitive way of two networks: generator and discriminator. Later, conditional
GANwas proposed to control the labeling of the generated images. The authors pro-
pose training with synthetic images generated with conditional GAN, instead of
applying simple image augmentation techniques, due to the large variation of polyps
in terms of shape, scale, and color. Improved detection performance is achievedwhen
the images are fed into a Faster R-CNN network.

On September 2018, Mo et al. (2018) made use of before mentioned Faster R-
CNN framework for polyp detection. Faster-RCNN (Ren et al. 2015) is a detector
that replaces handcrafted ROI selection stepwith a regional proposal network (RPN),
and is much faster than the previous region proposal networks, thus achieving very
competing results, and still being an efficient approach for clinical practice.

OnOctober 2018, Qadir et al. (2020) proposed amethod consisting of two phases:
a region of interest (RoI) proposal by CNN-based object detector networks and a
false positive (FP) reduction unit, which is important since CNNs have shown to be
vulnerable to small perturbations and noise, thus sometimes missing the same polyp
appearing in neighboring frames, producing a high number of false positives. In order
to improve the overall performance of the CNN, the FP reduction unit exploits the
bidirectional temporal coherence (among both previous and future frames) in video
by integrating the RoIs in a set of consecutive frames, to make the final decision for
each single frame. This showed how bidirectional temporal information is helpful in
estimating polyp positions and accurately predict the FPs.

On January 2019, Kang and Gwak (2019) proposed an ensemble method for
accurate polyp detection, consisting in the combination of twoMask R-CNNmodels
with different backbone structures (ResNet50 and ResNet101) to enhance the per-
formance and obtain a more accurate detection of the polyp. Mask R-CNN (He et al.
2017) is a two-stage network, and one of the best deep-learning models for segmen-
tation, because it first detects targets in the image, and then produces the predicted
mask for each detected target. In that sense, this model trades detection speed for a
better segmentation of the polyp.

On April 2019, Zheng et al. (2019) proposed a method for polyp detection and
tracking across following frames. Themethod, then, consisted of two parts. It initially
detects and localizes polypswith a single frameobject detector, such asU-Net. Then it
used optical flow to track polyps and exploit temporal information. Also, to overcome
tracking failure caused by camera motion, they trained a motion regression model,
as well as a CNN, which is efficiently trained on-the-fly with the information of
previous frames.

On May 2019, Liu et al. (2019) explored the application of single shot detector
(SSD) framework, which can work at a very high frame rate, thus being suitable
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for clinic purposes. SSD is a one-stage method which uses a feed-forward CNN
to produce a collection of fixed-size bounding boxes for each object from different
feature maps. They also explored three different feature extractors: VGG16 (which
is already integrated into SSD), ResNet50, and InceptionV3. The last two had to be
specifically integrated into SSDbydesigning themulti-scale featuremaps. Regarding
the variety of polyp shape, size, and color, they found that InceptionV3 was the one
to better capture those features, thus achieving the best performance among the three.

To close with this section, we present two tables summarizing the key points of
the methodologies that have been described before (Tables3.1 and 3.2).

Authors Architec-
ture

Novelty Temporal
coherence
(yes/no)

Validation
database

Metrics Proces-
sing time

Zheng et al.
(2018)

YOLO Unified real-
time object
detector based
on You-Only-
Look-Once
(YOLO) for
polyp localiza-
tion

None CVC-ClinicDB,
CVC-ColonDB
(public), PWH-
ColonDB (private)

Prec, Rec,
F1, F2

Real-time

Shin et al.
(2018b)

Faster-
RCNN

Conditional
GAN to
increase the
number of
training sam-
ples by gener-
ating synthetic
polyp images

None CVC-Clinic,
CVC-Clinic-
VideoDB, ETIS-
Larib (public),
ASU-Mayo Clinic
(no longer public)

Prec, Rec,
Spec,
Acc, F1,
F2, MPT,
RT, PDR

NA

Mo et al.
(2018)

Faster-
RCNN

VGG16 as
the backbone
followed by
RPN and head
networks

None CVC-Clinic2015,
CVC-Clinic2017,
CVC-ColonDB,
CVC-
EndoSceneStill
(public)

Prec,
Rec, Acc,
F1, F2,
RT, MD
(mean
Euclidean
distance)

17 fps

Qadir et al.
(2020)

Faster-
RCNN and
SSD

RoI proposal
followed by an
FPs reduction
unit integrat-
ing bidirec-
tional temporal
coherence in
video

Integrates
RoI in
consecu-
tive past
and future
frames,
checking
for FPs

CVC-Clinic,
CVC-
ClinicVideoDB
(public), ASU-
Mayo Clinic (no
longer public)

Prec, Rec,
Spec, F1

2.56 fps
(Faster-
RCNN),
30 fps
(SSD)
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3.2 State of the Art on Polyp Segmentation

As for detection, polyp segmentation has also attracted the attention of several
researchers during recent years. It is true that the number of related paper is sig-
nificantly smaller than for the first task; this can be associated with the lack of large
publicly available datasets or with the lack of direct clinical applicability of polyp
segmentation. Nevertheless, we present in this section a brief recap of some of the
most recent developments in the field.

Bernal et al. (2014) presented in 2014 their approach for polyp segmentation,
which is a continuation of their work performed for polyp localization. In this case,
they used the information provided by the intensity valleys image and the polyp
localization energymap to create a first segmentation of the lesion. To remove outliers
vertexes and to increase the smoothness of the final region, a median operator is
applied. This is the first work tested on a public dataset. This work also tackles the
impact of endoluminal scene objects in segmentation performance, showing again
superior results when specular highlights and blood vessels are mitigated.

Vázquez et al. (2017) proposed in 2017 the first study on complete endoluminal
scene segmentation (including polyps) using convolutional neural networks. In this
case, the authors based their methodology on Fully Convolutional Networks (FCNs).
They also studied the impact that data augmentation could have on the performance,
as well as whether the performance of the main task (polyp segmentation) could be
affected by the number of target classes to be segmented. Their results clearly out-
performed state-of-the-art methods, showing that the use of deep-learning methods
is a clear alternative to classical approaches.

One year later and also using as base architecture FCNs, Akbari et al. (2018) pro-
posed amethodologywhich incorporates both a pre-processing and a post-processing
stage. In the former, patch selection is performed to improve the candidates fed in
the training stage. The result provided by the network is post-processed using Otsu
thresholding and connected components analysis to improve the performance. The
authors incorporated weights from Caffe to improve the training stage.

Last year, Qadir et al. (2019) presented their approach for polyp segmentation
in which they trained a two-stage network (Mask R-CNN) using different CNN
architectures (Resnet50, Resnet101 and InceptionResnetV2) for polyp segmentation.
The authors show that the three different feature extractors that they propose do
indeed compute different types of features due to differences in their number of
layers and architectures. They propose an ensemble model to combine the outputs
obtained in intermediate stages of themethods but in a way suchmodels support each
other when deemed necessary. Due to the lack of available images, they also tried to
incorporate weights from pre-trained models such as VOC 2012 dataset, which led
to an improvement in the overall performance.

Also in 2019, Kang and Gwak (2019) also proposed the use of Mask R-CNN
for polyp segmentation. Similar to the previous work, an ensemble using different
backbone structures (ResNet50 and ResNet101) was used to incorporate information
gathered by different feature extractors, which also led to an improvement in the
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Table 3.3 Summary of polyp segmentation methods

Authors Method Novelty Validation
database

Metrics Processing
time

Bernal et al.
(2014)

Handcrafted Mitigation of
endoluminal
scene
elements

CVC-
ColonDB

DICE, Jaccard 12 s

Vázquez et al.
(2017)

FCNs Use of several
classes (polyp,
lumen,
specular)

CVC-
ColonDB,
CVC-
ClinicDB

IoU, Acc 12 fps

Akbari et al.
(2018)

FCNs Use of pre and
post-
processing
stage.
Pre-trained on
Caffe

CVC-
ColonDB

Prec, Rec,
Spec, DICE

N/A

Qadir et al.
(2019)

Mask R-CNN Ensemble of
ResNet based
architectures.
Pre-trained on
VOC 2012

CVC-
ColonDB,
CVC-
ClinicDB,
ETIS-Larib

Prec, Rec,
DICE, Jaccard

N/A

Kang and
Gwak (2019)

Mask R-CNN Ensemble of
ResNet based
architectures.
Pre-trained on
COCO

CVC-
ColonDB,
CVC-
ClinicDB,
ETIS-Larib

Prec, Rec, IoU N/A

overall performance. They also used pre-trained weights (in this case from COCO)
due to the lack of large publicly available datasets.

Other base architectures have also been recently proposed, such as Generative
Adversarial Networks (GANs) in the work of Poomeshwaran et al. (2019) or U-Net
(Zhou et al. 2018) (Table3.3).

3.3 Technical Challenges

3.3.1 Polyp Detection and Localization

A clinically useful automatic polyp detection methodology in colonoscopy has to
deal with the in-vivo analysis of images acquired during a colonoscopy procedure.
During the exploration, clinicians try to cover the majority of the colon wall to
increase the likelihood of finding polyps; several protocols and guidelines are already
defined to indicate clinicians how this exploration should be made. They include
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Fig. 3.1 Image showing a complete endoluminal scene with several elements on it

topics such as preparation quality to the need of reaching the cecum before starting
the withdrawal stage. Even considering this useful guidelines and, as mentioned
in the clinical introduction, still some polyps are missed. Therefore, the role of
computational systems canbeunderstood as not onlyfinding thosepolyps that already
appear in the images but also to guide clinicians to those areas that are suspicious to
contain lesions.

Considering this, we could state that polyp detection presents several challenges.
First, it is important to determine if the majority of the colon wall was observed
during the exploration. Second, it is important to assess whether the quality of the
images acquired is enough to be used by computational systems. Third and final,
efficient polyp detection methods have to be developed. In this subsection we will
focus on how to deal with this last challenge andwewill link this with those problems
that appear due to image quality issues.

A polyp can be characterized by means of its shape, color, and texture. Polyp
visual appearance characterization has to be specific enough to differentiate them
from other endoluminal scene elements, such as the ones shown in Fig. 3.1.

Paris classification (Van Doorn et al. 2015) determines the different shapes that
a polyp can have. In the majority of the cases, polyps can be seen as protruding
structures from the colon wall. Thus, a good characterization of these protruding
elements can be a key for polyp detection, as it can provide false detections due to
intestinal folds or fecal particles resulting for poor patient preparation. Moreover,
this way of characterizing polyps is not valid for flat or depressed polyps. It also has
to be considered that polyps visual appearance can vary due to the view of point.

With respect to polyps, they tend to appear reddish than abdominal wall. They
could even have some blood particles in their surface. While this could be seen as a
promising cue to aid in polyp detection, differentiation by color is a tough pathway as
the difference relies in the hue more than in the color itself. Besides, this is not valid
for all cases. For instance, polyps in their very early stages present colors very similar
to the colon wall; these polyps are the most difficult to detect and, due to lengthy
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periods between interval colonoscopies, they could be one of the main causes of
cancer development.

Finally, polyps do present a different texture from the colon wall. As Kudo pit
pattern classification suggests (Kudo et al. 2001), these differences increase with the
level of development of the lesion. While this classification paradigm is powerful
for in-vivo histological prediction, it does have some specific technical constraints
as it requires magnifying endoscopy and virtual chromoendoscopy, as well as High
Definition endoscopy imaging. The use of these images requires more processing
time and they are often downsampled to allow meeting real-time constraints, needed
for a practical use in the exploration room.

As it can be seen, shape, color, and texture are three features that can help to
characterize polyps but none of them alone is enough to cover all cases. All of them
are affected by the quality of the images acquired during the exploration, which will
be the focus of our next section.

3.3.1.1 Image Quality

The quality of the images acquired by the endoscopes is limited by the resolution,
noise, movement, optical deformation, and other problems associated with the scene
that has to be captured. These limitations affect the performance of automatic polyp
detection and segmentation methods. We will see how each of the image quality
limitations impact polyps visual features.

Endoscopy is non-invasive way to obtain images of the interior of the human
body. Endoscopy tubes have at one or their tips all the instrumental needed to acquire
images (camera, lighting source, and procedure instrumental), all designed with a
high degree of miniaturization (Yabe 1990). With this configuration, endoscope illu-
mination of the endoscope is frontal as the light comes from the same point where the
camera is. Frontal illumination generates many specular reflections (Sánchez et al.
2017) over the aqueous surface of the colon. The size and position of these specular
reflections could hinder those characteristics that allow the detection of polyps. Fur-
thermore, these reflections are very unstable and their appearance change with small
movements of the endoscope. This makes frame-by-frame polyp detection output
very unstable; this can be mitigated by forcing the use of temporal integration tech-
niques such as considering the response in consecutive frames to improve the results
(Angermann et al. 2017). Reflections make it difficult to fully observe polyp shape,
color, or texture, therefore equally affecting all visual characteristics of the polyps.
Although there are methods to recover the contents below specular reflections, they
are not that applicable in colonoscopy images as they also have to deal with inherent
overexposure that could have removed key information from the colon wall.

Endoscopes use wide-angle optics in order to maximize the observed area of the
colon and thus preventing any part of the colon wall from being inspected. It has to
be noted that this also leads to a deformation of the image up to the point that the
content of the corners of the image is removed as it could lead tomisinterpretations of
the scene. This geometric deformation invalidates the possibility of making accurate
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measurements and it is also the cause of the great variation in polyp appearance as
it deviates from the center of the image, making it difficult for their characterization
by means of shape features.

The use of wide-angle optics (Adler et al. 2012) reduces the resolution of the
camera making each pixel occupy a larger area. Also, the area that a pixel occupies
grows as we move away from the center of the image. This means that the details
of the texture of a polyp can only be observed correctly in the center of the image,
and even then, the captured detail of the texture will be insufficient due to the lack
of resolution.

The miniaturization of the endoscope camera forces the use of small sensors that
tend to present worse features than larger ones. Thus, the images captured by the
endoscope are affected by noise introduced by image capture noise. Additionally,
these sensors have low resolution, which has a special impact on the acquisition of
texture details. On the one hand, smaller textures are difficult to distinguish from
image noise. On the other hand, texture details could not be present at all due to the
lack of resolution. Thus, texture details can only be properly observed in close-up
views of polyp surface. Consequently, texture can hardly be used to detect those
challenging polyps as, in those cases where enough texture quality information can
be observed, the endoscopist would have already seen the polyp.

Endoscope manufacturers try to reduce the impact of using small sensors that
generate poor quality images by applying aggressive image processing techniques.
On the one hand, the sensors do not reach HD resolution (1920× 1080 pixels), so
they scale the image to display it on HD monitors. On the other hand, they aim to
foster details captured in the images with the application of aggressive sharpening
filters (Cao et al. 2011). While these filters do give a better visual appearance to
the images, they do it at the expense of introducing halos which generate intensity
ridges and valleys that were not in the raw sensor image. This means that, when
detecting fine details in the images, it is difficult to be sure if they are real or they
appear as a result of the processing that the manufacturer has applied to the images.
In addition, the use of sharpening also emphasizes noise in images, which results in
an even lower image resolution. All this artificial processing especially affects the
texture and polyps contour detection.

Finally, in some cases, the endoscope sensor does not capture all the pixels in the
image at the same time instant. For example, image acquisition might be based on
interlaced television standards; in these cases, odd and even image lines are captured
at different times. Other standards aim to improve image colorimetry by capturing
three separate monochrome images with red, green, and blue lighting, which are then
put together to obtain a single color image. This works well unless the endoscopy
moves; in these cases, the images to be combined represent lightly different points
of view. This produces artifacts in the image such as saw-tooth outlines (Faroudja
and Swartz 1997) or colored reflections that make it difficult to extract the visual
characteristics of the polyps.
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3.3.1.2 Actual Ground Truth Limitations

Videos of endoscopic explorations are used to validate polyps detection methods. In
these examinations, the endoscopist looks for polyps and when he/she finds them,
he observes them carefully to decide what is the best action to take. Therefore, the
videos that will be generated are not fully useful to test the capabilities of a polyp
detection system as, once it is detected, the following frames will consist of close-ups
views of the polyp that tend to be easy to detect.

To perform an appropriate validation of polyp detection methods, explorations
should be recorded without further polyp analysis by means of the endoscopist. This
is not realistic, as we are dealing with real patients that have to be diagnosed. One
possible solution is to explore partially the colon and recording two different videos
per part: one without clinician intervention and another one where he/she interacts
with the lesion. This would result in an excessive procedure time and would lead to
a saturation of the healthcare system. Taking this into account, performance metrics
should not rely only on frame-based measurements. We will develop more on this in
the specific Experimental Setup part of this book.

Current screening protocols could lead to certain biases in the appearance and
typology of the polyps detected, since there are no representative examples of all
the age strata of the population. This results in uneven ground truths that are not
representative of the full range of polyps. Also, current available datasets are created
by using lots of frames from very few different polyps, which could lead to the
development of polyp detection methods that do not generalize well. Efforts have to
be made to enlarge existing datasets with new and different examples.

3.3.2 Polyp Segmentation

The way polyp segmentation is seen, from a clinical application point of view, leads
to its use in the analysis of still frames rather than on full sequences. This could
alleviate real-time constraints and allow working with the maximum available image
resolution. As we mentioned earlier, the direct application of polyp segmentation is
to indicate the area of the colon wall occupied by the polyp. This information could
be used to assist clinician in lesion removal tasks as well as to highlights those part
of the image to be carefully inspected to obtain an in-vivo histology prediction.

As polyp segmentation can be done with still images, the system can select the
highest quality image from all the sets of images that are being acquired. For instance,
selection criteria could be based on choosing the image with the optimal focus and
best exposure. This would allow to better observe the details of polyp boundary
which, for sure, ease its segmentation. In this case, the segmentation method could
also rely on the same features that we used for polyp detection (shape, color, and
texture), inheriting the same issues related to image quality already mentioned. For-
tunately, working with still images alleviates some of these problems, specially if
the system is able to select the best quality image from a set of candidates.
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The appearance of specular reflections in the image may cause that the segmenta-
tion method has to extrapolate the shape of the polyp if the reflection covers part of
the polyp border. We should also consider that this problem occurs when the border
is hardly noticeable, which happens when there is no change in color or texture at
the polyp boundary. In this case, it is important to remember that a polyp can appear
as a smooth protruding object in the colon wall, producing in this case just a smooth
curvature on its border. This smooth change in curvature generates very weak gra-
dients that can hardly be detected without applying a shape model. These gradients
are hidden by the image’s texture and noise, making it even more difficult to detect.
In other cases, polyp boundary can be easily detected as it is highlighted by a large
curvature or fold on the surface that can easily be detected as a valley in the image.

With respect to dataset availability, the number of publicly available datasets is
very small. Existing ones do not cover a great number of different polyps and, the
largest ones (in terms of number of images) have low resolution. Efforts have to be
made to enlarge these datasets both in number of different polyps (the use of video
datasets in this case does not appear specially useful) and quality of the image. The use
of HD-based datasets could be used for both polyp segmentation and classification
tasks.
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Chapter 4
Technical Context for Wireless Capsule
Endoscopy Image Analysis

Aymeric Histace

4.1 WCE and Small Bowel

As said before, WCE has rapidly become the standard minimally invasive method
for visualization of the Small Bowel (SB) which is highly difficult to reach using
classic endoscopy techniques like enteroscopy.

SB is part of the intestines. The intestines are a long, continuous tube running
from the stomach to the anus. Most absorption of nutrients and water happen in the
intestines. The intestines include the SB, colon, and rectum (Fig. 4.1).

SB is about 20 feet long and about an inch in diameter. Its job is to absorb most
of the nutrients from what we eat and drink. Velvety tissue lines the small intestine,
which is divided into the duodenum, jejunum, and ileum.

Problems with the small intestine can include

• Bleeding
• Celiac disease
• Crohn’s disease
• Infections
• Intestinal cancer
• Intestinal obstruction
• Irritable bowel syndrome
• Ulcers, such as peptic ulcer.
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Fig. 4.1 Intestines
morphology

4.2 Vascular and Inflammatory Lesions in SB

In the context of GIANA challenge, a focus on two classic intestinal types of lesions
was proposed because of their prevalence in WCE exam indication:

• Gastrointestinal angiodysplasia (GIA)
• inflammatory Bowel lesions (IBL).

GIA is an acquired vascular malformation defined as a clearly demarcated, bright-
red, flat lesion, consisting of tortuous and clustered capillary dilatation, within the
mucosal layer (Leenhardt et al. 2018). GIAs are the most common small bowel (SB)
vascular lesions and are associated with a risk of gastrointestinal bleeding (Becq
et al. 2017).

IBL is a generic term used to describe disorders that involve chronic inflammation
of the digestive tract (Bharadwaj et al. 2018). Types of IBL include ulcerative colitis
that cause long-lasting inflammation and sores (ulcers) and Crohn’s disease charac-
terized by inflammation of the lining of the digestive tract, which often spreads deep
into affected tissues.

4.3 Remaining Challenges

Despite the fact that WCE has shown a real impact for lesion detections in SB,
limitations still remain (Goel et al. 2014) (Figs. 4.2 and 4.3):
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Fig. 4.2 Some examples of WCE images presenting with GIA

Fig. 4.3 Some examples of WCE images presenting with IBL

• missed lesions due to reader error or technical malfunction;
• unable to obtain biopsies or perform therapeutic interventions;
• the position of the capsule cannot be accurately controlled;
• potentially obstructed views from inadequate bowel preparation;
• subjectivity of interpretation of images by the observer.
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To mitigate the impacts of these limitations, AI applications are emerging in the
field of WCE. In the next few years, automated software should be able to facilitate
more efficient reporting. Many studies have been conducted in order to establish a
cleansing score for SB-CE quality preparation. Different approaches have focused
on the abundance of bubbles (Pietri et al. 2018), the red over green color (Van
Weyenberg et al. 2011; Ali et al. 2018), as well as the quality of bowel preparation in
colon capsule endoscopy (Becq et al. 2018). Algorithms based on machine learning
approaches have also been developed to detect SB lesions (Fan et al. 2018; Leenhardt
et al. 2019) and recently it has been proposed to scale-up the process to be able to
bring it to the level of Software as a Service (SaaS).

More precisely, an AI-based framework for Supporting large-scale automated
analysis of WCE was proposed in Giordano et al. (2019). More precisely, authors
introduced anAI-based computational frameworkwhich is able to detect eight classes
of lesion and to support large-scale analysis of VCE videos. The proposed system, in
particular, supports all processing stages, fromvideo upload to automated analysis for
lesion detection through a deep learning-based method, to a content-based retrieval
system to facilitate diagnosis, to report generation. The proposed algorithm reports
a mean accuracy of 94.4% considering a 8-lesion classification task. Nevertheless,
the dataset used for this study is not available and the ground truth was not explicitly
illustrated.

Thus, although AI in endoscopy remains very promising, it still requires further
research and clinical trials to be validated in daily clinical practice, and a strong need
for large annotated databases, at the segmentation level, not only at the classification
one, is still of primary interest. To this aim, GIANA challenge was the first to propose
a collection of annotated data providing a significant amount of data with a focus on
both types of lesions that were described above.

4.4 Conclusions

In conclusion, the GIANA database aims to promote development of CAD reading
in SB-WCE. It represents an opportunity to design fully automated software for
detection of all SB lesions to facilitate and improve the future of WCE reading,
reviewing, and reporting.
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Chapter 5
Combination of Color-Based
Segmentation, Markov Random Fields
and Multilayer Perceptron

Pedro Miguel Vieira, Nuno Renato Freitas, Carla Rolanda,
and Carlos Santo Lima

5.1 Motivation

Angioectasias are lesions characterized by specific features, related to the color and
shape. These lesions have a cherry red appearance, due to the nature of its origin
(inflammation of blood vessels); and usually are characterized with a circular shape.
Aswas previously reported, CIELab color has high efficiency in differentiating colors
in an image (Connolly and Fleiss 1997). This color space is composed of three differ-
ent channels: L represents the lightness information that goes from 0 (black) to 100
(diffusewhite), and the components a and b represent the color-opponent dimensions.
Negative values of channel a indicate green and positive indicate magenta (adequate
for the detection of red color); and negative values of b indicate blue and positive
indicate yellow (Weatherall and Coombs 1992). Since the red color in these lesions
is easily spotted in the middle of the gastrointestinal tissue, CIELab was the chosen
color space for processing the lesions. A pre-processing was included to overcome
some problems with high values of the component a that do not represent a red area
on the tissue. This step was designed by observation of a high number of images,
leading to the understanding that certain areas of the images (usually near bubbles)
could lead the segmentation step to fail. As was already shown in a previous work
of the authors (Vieira et al. 2016), these types of lesions can be separated from the
normal tissue by using probabilistic segmentation methods, as the Maximum A Pos-
teriori (MAP) approach. This method was complemented with the use of Markov
Random Fields (MRF) to improve the border definition. Because the segmentation

P. M. Vieira (B) · N. R. Freitas · C. S. Lima
CMEMS-UMinho Research Unit, Campus de Azurém - Universidade do Minho,
Guimarães, Portugal
e-mail: pmpvieira@gmail.com

C. Rolanda
ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal

Department of Gastroenterology, Hospital de Braga, Braga, Portugal

© Springer Nature Switzerland AG 2021
J. Bernal and A. Histace (eds.), Computer-Aided Analysis of Gastrointestinal Videos,
https://doi.org/10.1007/978-3-030-64340-9_5

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64340-9_5&domain=pdf
mailto:pmpvieira@gmail.com
https://doi.org/10.1007/978-3-030-64340-9_5


42 P. M. Vieira et al.

used was based on probability approaches, the authors decided to use statistical fea-
tures to characterize the tissue and consequently to classify the images as having
angioectasia lesions or not.

5.2 Methodology

This method can be divided into three different subsections: Image Pre-Processing,
Segmentation and finally Features Extraction + Classification.

5.2.1 Pre-processing

The pre-processing is made so the angioectasia lesions can be highlighted in the
image when compared to the rest of the tissue. Due to the reddish appearance of
angioectasias, the choice of color space was CIELab; in this specific space, high
values of the component a represent the red color (Weatherall and Coombs 1992).
Nevertheless, due to specific noise of WCE exams (e.g., bubbles), not only these
lesions appear highlighted in the images. So, the following algorithm was applied to
the images. Let C be an RGB image with a M × N size and D the corresponding
image in CIELab color space.Ck(i, j) and Dl(i, j) represent the correspondent pixel
in the component k = R,G, B and l = L , a, b, respectively, andwith the coordinates
i = 1, 2, . . . , M and j = 1, 2, . . . , N . In this algorithm (Algorithm 5.1), the pixels
that present values of green or blue components lower than a chosen threshold (δ)
are replaced by an average of a neighboring region (with a variable size) centered in
that pixel (ℵ{Dl(i, j)}).

Algorithm 5.1 Pre-processing algorithm
1: for each pixel (i, j) do
2: if CG(i, j) < δ or CB(i, j) < δ then
3: Da(i, j) ← ℵ{Da(i, j)}
4: Break
5: end if
6: end for

After this step, channel a of the images will have the regions with angioectasia
highlighted. After this, the segmentation step will be applied.
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5.2.2 Segmentation

The segmentation is based on aMaximumAPosteriori (MAP) approach by using the
Expectation-Maximization (EM) algorithm (Vieira et al. 2016, 2019). A modified
MRF, with a weighted boundary function, was included for spatial context modeling
purposes.

The segmentation module uses a statistical classification based on Bayes rule.
This rule indicates how the posterior probability of each class is calculated. MAP is
computed for all classes and each pixel is assigned to the class with maximumMAP.
Class conditional probability density function is usually assigned to the Gaussian
function, being the observations modeled as a Gaussian mixture whose parameters
can be iteratively estimated by using the EM algorithm.

The most appropriate parameters of the GMM are then estimated according to
the Maximum Likelihood (ML) criterion (Zhang et al. 2001). Regarding the a priori
probability, this has a precise meaning in the model regarding data partition over all
classes; however, it is frequently used as a spatial regularizer by capturing neigh-
boring information, not taken into consideration in the Gaussian mixture model that
models pixel intensities as random variables which are independent and identically
distributed. Neighborhood information can be modeled by Markov Random Fields
(MRFs). MRF models have the ability of capturing neighborhood information to
improve a priori probabilities p(ω). An image can be considered as a random field,
or a collection of random variables (� = �1, . . . , �N ) that are defined on the set
S. Using Gibbs Random Field (GRF), the a priori class probability can be assigned
such as

P(ω) = 1

Z
exp

(−U (ω)

T

)
(5.1)

Z =
∑

ω

exp

(
−U (ω)

T

)
(5.2)

In this equation, the constant T represents the temperature and controls the level of
peaking in the probability density, and the quantity Z is a normalizing constant which
guarantees that p(ω) is always between zero and one. U (ω) is an energy function
and is obtained by summing all functions V (ω) (clique potential) over all C possible
cliques. A clique is defined as a grouping of pixels in a neighborhood system, such
that the grouping includes pixels that are neighbors of another in the same system.

The Hammersley–Clifford theorem defines that if and only if a random field �

on S is a MRF with respect to neighborhood systemN , then � is a GRF on S with
respect to a neighborhood system N . This fact allows to convert the conditional
probability as a Markovianity condition of a MRF to the non-conditional probability
of a Gibbs distribution of Eq. (5.1).

To compute the estimation of p(ω), the energy function used was based on Van
Leemput et al. (1999):
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U (ω j ) =
∑
k

βk .lk, j (5.3)

In Eq. (5.3), k is the direction (in this case it can be horizontal or vertical) and
lk, j is the Dirac impulse function in such a way that U (ω j ) depends on the count of
pixels in neighborhood that do not belong to class j .

Usually, in practice, models are considered as isotropic, so the amount of variables
to estimate is strongly decreased, becoming in this case βk a constant. However,
pixels near the borders are sometimes wrongly classified in the Gaussian Mixture
especially due to the partial volume effect. Therefore, using theβk parameter tomodel
intensity differences in neighborhood pixels in order to reinforce border conditions
has been used in several works where several functions have been suggested. The
main idea is to set βk in such a way that a direct interference on border location is
achieved. Heuristically we want to avoid class j under situations of high variance
that usually appear near borders, even if a large number of pixels belong to class j .
Under relative smooth conditions the border can also be present and can be detected
by pixel intensity variations which occur at corners of small structures. Some tests
were conducted in order to compute βk for pixels on and near the border of several
angioectasias and the approximated function given by Eq. (5.4) was used as follows:

βk = σk

1 + exp
(
−σk

∑n
i |Ii−Ic |.dist(Ii ,Ic)

n

) (5.4)

In Eq. (5.4), βk is dependent on the difference of intensities (|Ii − Ic|) of the
neighbor in the direction k, but also of the distance between the pixel in the center
and the neighboring pixel (dist(Ii , Ic)). The term σ is the standard deviation of the
neighboring used in this case and presented in Fig. 5.1.

This energy function uses a 2D-neighboring system of 8 pixels that can be seen
in Fig. 5.1, where the darker pixel is the current observation.

With all the previous steps followed, the process now is to find the best parameters.
This is done in an iterative manner, proceeding as follows:

1. Initialization of parameters, which in this case was done by using K-means algo-
rithm

Fig. 5.1 Neighborhood
system of 8 pixels used
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2. E-step (expectation): calculation of likelihood of each sample for each class
3. M-step (maximization): find maximum likelihood value and recalculate the

parameters

Steps 2 and 3 are repeated until convergence is achieved.
After the EM algorithm, a post-processing step was also included. This was done

to improve the segmentation result since

1. isolated pixels are sometimes selected as abnormal region,
2. sharp and irregular edges appear in some lesions,
3. some pixels are included in the lesion class, but are in fact belonging to the normal

class.

These problems are overcome with the following solutions:

1. Opening operation: using a small structuring element, the regions that consist of
isolated pixels will disappear from the binary image.

2. Closing operation: using the same structuring element, smoothing the edges for
both directions.

3. Shape analysis: because angioectasias are circular regions, connected components
algorithm was applied, and lesions with a ratio between major and minor axis
length superior than 3 were removed.

5.3 Feature Extraction + Classification

The output of the segmentation module described previously can have three different
results:

1. after post-processing step, only one region exists in the image.
2. the image is divided into two different regions (one of them contains an angioec-

tasia lesion),
3. the image is divided in two different regions (none of them contains an angioec-

tasia lesion),

With situation 1, the image is classified as normal since no significant differences
are found in channel a (so, different classes are not considered under the constraint
of contiguous minimum area). When situation 2 or 3 happens, the classification
module is necessary so the regions can be classified as normal or abnormal. This
classification module needs features to feed it, that are extracted from both regions.
This approach models the difference between both regions, in order to improve
robustness against environmental conditions (related to device and subject changes).
In fact, light characteristics may vary among different devices while tissue color may
vary among different subjects.

Since the segmentation of the images was done based on the statistical distribution
of the intensities, the features chosen were different statistical features that together
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Fig. 5.2 Two examples of results with training images. a Original image. b Component a from
CIELab. c Component a from CIELab after pre-processing step. d Segmentation result

can represent these distributions. In the current work, two different measures were
computed (mean and variance), using the following expressions:

μ = E{X} = 1

N

N∑
i

xi (5.5)

σ 2 = E{(X − μ)2} = 1

N

N∑
i

(xi − μ)2 (5.6)

All the features (from the different channels and different regions) were used as
input to a Multilayer Perceptron (MLP) classifier with 1 hidden layer of 5 neurons.
The output of the classifier is the presence or not of angioectasia tissue in each frame.

5.4 Results

Figure5.2 shows some examples of results of the application of the proposedmethod-
ology over WCE images from GIANA 2017 dataset.
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Chapter 6
Hand Crafted Method: ROI Selection
and Texture Description

Orlando Chuquimia, Bertrand Granado, Xavier Dray, and Andrea Pinna

6.1 Motivation

The method presented here had been developed to be integrated in a SoC1 imple-
mented in a WCE 2 (Swain 2003). Its goal is to give a WCE the capacity to detect
the polyps inside the colon (Orlando et al. 2017). To do that we need to take into
account all non-functional constraints of an embedded system: real-time execution,
energy budget, and limited area.

This method is inspired from the psychovisual two phases methodology used by
a physician when doing a colonoscopic examination:

1. the first phase is the selection of the regions of interest (ROI), this phase is done
using shape features.

2. the second phase is the polyp detection in an ROI and the follow-up of this ROI.

Based on this methodology, we propose a four-stage method visible in Fig. 6.1.
The stages of our method are

1. ROI selection stage: in this stage, suspect regions that contain circular/elliptical
shapes are selected and become ROI. These shapes could be a polyp. To do so,
we apply the Hough Transform algorithm (Karargyris and Bourbakis 2011, 2009;
Romain et al. 2013; Mamonov et al. 2014) on two color models.

2. ROI follow-up stage: in this stage, each ROI, validated as class1, is followed.
The follow-up processing is based on a motion estimation method to determine
where the ROI should be.

1System on Chip.
2 Wireless Capsule Endoscopy.
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Fig. 6.1 Proposed system scheme of polyps detection

3. ROI description stage: in this stage, 26 texture and luminosity descriptors are
extracted for each ROI. The co-occurrence matrix is used to compute them. The
texture and luminosity are the important descriptors to recognize and discriminate
polyps (Romain et al. 2013).

4. ROI classification stage: in this stage, a fuzzy forest is used to classify each ROI.
An ROI containing a polyp is classified as class1, if not it is classified as class0.
If any previous ROI was validated as class1 in the last image, we restart from
stage 2, otherwise, we continue with stage 1 for the next image.

With this method, we can follow an ROI containing a polyp once it is detected.
This strategy reduces the number of ROI processed per image and the number of false
positives. The fuzzy forest is created with specialized fuzzy trees that recognized a
particular type of polyp; this approach robustifies the classification.

In the next sections, we describe each stage of our method.

6.2 ROI Selection Stage

In this stage, we use two color spaces: a brightness model and a color model.

1. the brightness model allows an efficient texture analysis. To obtain the brightness
model, thewell-known formulae is applied to theRGB image imageout = 0.587 ∗
imagein−green + 0.299 ∗ imagein−red + 0.114 ∗ imagein−blue (B. S. B. service
(television) 2011). The resulting image, imageout , is filtered by a gaussian filter
to remove the noise. This model preserves the texture information and provides
a good degree of integrability inside an SoC.

2. the color model enables the use of color information for image analysis. Three
convolutional kernels are applied to the RGB image, one kernel by channel, and a
sum, with a normalization, of the three filtered images is made, see Fig. 6.2. This
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Fig. 6.2 Convolutional kernel model

model is very effective to locate a certain type of polyps and has a high degree of
integrability.

On the two images from the two models, a Canny filter is applied as an edge
detector (Canny 1986). Then Hough transform is used on both images to detect
ellipses, each region containing an ellipse becomes an ROI.

Hough transform processing is integrable in real time in a system on chip (Tagzout
et al. 2001; Orlando et al. 2018) and it is efficient processing to detect ellipse (Tagzout
et al. 2001; Chen et al. 2012).

6.2.1 The Convolutional Kernels

To obtain the convolutional kernels, first a Convolutional Neural Network (CNN), the
GoogleNet (Szegedy et al. 2015), is trained to classify images from colonoscopies
in two classes: image containing at least one polyp and image without polyp. The
architecture of this CNN is shown in Fig. 6.3.

GoogleNet implements the InceptionV3 model proposed by Google (Szegedy
et al. 2015). This CNN was the winner of the 2014 ILSVRC Contest with less
number of synapses and neurons in comparison with Alexnet, VGGnet, Lenet, or
Resnet.
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Fig. 6.3 The Googlenet CNN

Fig. 6.4 Input image and the output of convolutional kernel number 13

We adapt its last layer, the fully connected layer, with a structure with two outputs
dedicated to determining the presence of a polyp in an image.

To train this CNN, we use a 11952 images database divided into 10023 images
with polyp and 1929 images without polyp. These images are issued from 18 videos
of endoscopic examinations of Hospital Clinic, Barcelona, Spain. This dataset was
used as train dataset for EndoVisSub2017-GIANA contest (Bernal et al. 2018). Each
image is associated with a ground-truth: a binary-image that indicates the position
of the polyp in the image.

We use 70% of the data to train the CNN and the remaining 30% to test this
performance. The result show an accuracy of more than 98%. Although we have
achieved very good accuracy, it is impossible to embed this convolutional neural
network with four million parameters into a capsule.

We use then this CNN, not to integrate it inside a capsule, but to identify the good
kernels to extract the useful information from a color image.

To do so, our method is to realize a visual analysis of each feature map, feature
map by feature map, to identify kernels that made processing suitable to identify
a polyp. For example, in Fig. 6.4, after the processing by a specific convolutional
kernel, we clearly see that the area where the polyp is located has been darkened.
This means that this convolutional kernel could be effective to help in the process to
detect polyps.

With the visual analysis, we have identified three convolutional kernels that are
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kred =
⎡
⎣
0.08919 0.17597 0.14030
0.17235 0.28923 0.17626
0.13088 0.20982 0.18990

⎤
⎦ (6.1)

kgreen =
⎡
⎣

−0.01763 0.01118 −0.04105
0.01724 0.05383 −0.03952

−0.04559 −0.02233 −0.01358

⎤
⎦ (6.2)

kblue =
⎡
⎣

−0.12489 −0.17314 −0.10103
−0.15373 −0.27334 −0.20675
−0.12675 −0.22742 −0.14564

⎤
⎦ (6.3)

6.3 ROI Follow-Up Stage

In the follow-up stage, prior to following an ROI validated as class1 in a previous
image, we convert each image RGB model into a brightness model.

Themotion estimationmethodused is the blockmatching algorithm.The principle
is to measure the similarity between two blocks, one in the previous image In−1 and
the other in the current image In .

To do so an ROI validated as class1 in In−1 is considered as a block Bp,q of size
P ∗ Q. We note the pixel values of the block Bp,q in the image In−1: In−1(Bp,q).
In−1(Bp,q) is defined as

In−1(Bp,q) = [In−1(p, q), . . . , In−1(p + P − 1, q), . . . ,

In−1(p + P − 1, q + Q − 1)] (6.4)

If the block In−1(Bp,q) is displaced from its initial position (p, q) to a newposition

(p − i, q − j) by a motion vector
−→
V = (i, j), we obtain a new block In(Bp−i,q− j ).

To estimate if this displacement is probable, a similaritymeasure between In−1(Bp,q)

and In(Bp−i,q− j ) is computed using the SAD, Sum of Absolute Difference, metric.

SADi j =
∑

∀p,q∈[P∗Q]

|In−1(Bp,q) − In(Bp−i,q− j )| (6.5)

Eight candidate motion vectors are used for each ROI validated as class1, as
it is visible in Fig. 6.5. Between these eight motion vectors, we select the motion
vector where SADi j is minimum as the probable

−→
V = (i, j). The resulting block

In(Bp−i,q− j ) becomes a ROI.
With this technique, we follow the ROI selected and classified class1 in the

image In−1. Furthermore, we can also increase the depth of the motion estimation to
follow the ROI selected and classified class1 in the images In−1, In−2, . . . , In−Depth .
By default we use Depth = 2.
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Fig. 6.5 a Block matching with 1 neighborhood. b Block matching with 2 neighborhoods. c ROI
validated in the image In−1. d 8 candidate motion vectors. e 8 candidate blocks displaced by the
candidate motion vectors. f Candidate block having the lowest intensity standard variation SADi j

6.4 ROI Description Stage

Each selected ROI is described by 26 texture and luminosity descriptors extracted
calculating by the co-occurrence matrix (Romain et al. 2013) and the brightness
histogram. Among the descriptors, we extracted the texture descriptors proposed by
Haralick et al. (1973); there are autocorrelation, contrast, correlation, dissimilarity,
entropy, homogeneity, maximum probability, variance, sum average, Kurtosis, and
skewness.

6.5 ROI Classification Stage

In this stage, fuzzy trees and fuzzy forests are used.

6.5.1 Fuzzy Trees

This inductive recognition algorithm consists of two parts: learning phase and clas-
sification phase. In learning phase, fuzzy trees, composed of membership functions
μ(x), nodes, arcs vx , and leaves μmCck

, are constructed from a training dataset. In
classification phase fuzzy trees classify the ROI that belongs to the class which has
the highest degree of membership; there are two classes: “1” stand for ROI contain-
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ing a polyp and “0” stand for ROI not containing a polyp. We aggregate one binary
classification method called Classical Modus Ponem and one fuzzy classification
method called Generalized Modus Ponem.

6.5.1.1 Database and Learning Phase

We used a set of 18 video-colonoscopies, in total 9894 images in which 8010 contain
a polyp validated. In these videos, there is a maximum of one polyp per video and
several images of the same polyp per video. These videos are issued from endoscopic
examinations of Hospital Clinic, Barcelona, Spain. This dataset was used as train
dataset for EndoVisSub2017-GIANA contest (Bernal et al. 2018).

From the 18 video-colonoscopies, we have obtained a dataset composed by
560388 ROI of which 228549 ROI contain a polyp class1. After that we have built
80 learning datasets composed by 6000 ROI where 50% belong to class1. In total,
80 fuzzy trees � are constructed from these learning datasets.

6.5.1.2 Classification Phase

Touse fuzzy trees� to classify an observed object εi {w1, w2, . . . , w26}, we aggregate
two different classification, a binary classification using the method de classical
Modus Ponem and a fuzzy classification using the method of generalized Modus
Ponem described below (Marsala 1998).

1. First, we calculate a satisfiability degree Fdedm(ck ) for each class ck = {0, 1}
and for each rule m. We calculate this using the triangular norm operator �, the
observed values wm( j) and the membership function μ j (wm( j)) of each attribute J
of the rule m multiplied by a factor called as conditional probability of Zadeh
μmCck

= P∗(ck/(vm(1), vm(2), . . . , vm( j))) .

Fdedm(1) = � j=1,...,Jμ j (wm( j)) ∗ μmC1 (6.6)

Fdedm(0) = � j=1,...,Jμ j (wm( j)) ∗ μmC0 (6.7)

2. Finally, we calculate a new membership degree μck aggregating all the satisfia-
bility degrees of each rule m using the triangular conorm operator ⊥.

μpolyp = ⊥m=1,2,...,M Fdedm(1) (6.8)

μn_polyp = ⊥m=1,2,...,M Fdedm(0) (6.9)
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We use the Zadeh operators to calculate triangular norm �(x,y) = min(x, y) and
conorm ⊥(x,y) = max(x, y).

In the case of Classical Modus Ponem, the output is binary and the fuzzy tree is
treated as a binary tree, to cross from one node to another node a comparison between
the observed valueswm( j) and the arcs or break points vm( j) is done for each attribute
j of the rule m.

6.5.2 Fuzzy Forest

In order to enhance the classification rate,we construct a fuzzy forest as a combination
of n fuzzy trees. We calculate a new membership degree, we aggregate the degrees
of membership of the n fuzzy trees ∀i=1,2,...,n{μpolyp(�i ), μn_polyp(�i )}, this criterion
is called triangular conorm “⊥”:

ϒpolyp = ⊥i=1,2,...,n{μpolyp(�i )} (6.10)

ϒn_polyp = ⊥i=1,2,...,n{μn_polyp(�i )} (6.11)

In our case, for the binary classification,we propose amajority vote how triangular
conorm criterion, for fuzzy classification we use the triangular criterion chosen in
Sect. 6.5.1.2.

Finally, the ROI is classified as class1 only if both binary and fuzzy method
classify the ROI as class1; in this case, the confidence value is the membership
degree given by the fuzzy classification.

We consider that the image contains a polyp when at least 1 ROI in the image is
classified as class1. For the (x, y) coordinates of polyp location, we give the center
of the ROI detected.

6.6 Results

Figure6.6 shows results obtained using the proposed methodology.
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Fig. 6.6 Example of results obtained with the proposed methodology
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Chapter 7
AECNN: Adversarial and Enhanced
Convolutional Neural Networks

Saeed Izadi and Ghassan Hamarneh

7.1 Introduction

The proposed method for segmenting gastrointestinal polyps from colonoscopy
images uses an adversarial and enhanced convolutional neural networks (AECNN).
As the number of training images is small, the core of AECNN relies on fine-tuning
an existing deep CNNmodel (ResNet152). AECNN’s enhanced convolutions incor-
porate both dense upsampling, which learns to upsample the low-resolution feature
maps into pixel-level segmentationmasks, as well as hybrid dilation, which improves
the dilated convolution by using different dilation rates for different layers. AECNN
further boosts the performance of its segmenter by incorporating a discriminator com-
peting with the segmenter, where both are trained through a generative adversarial
network formulation.

7.2 Methodology

Thearchitecture of thismethod is shown inFig. 7.1.Given the limitednumber of train-
ing images, we fine-tune a fully convolutional version of the ResNet152 model (He
et al. 2016), pre-trained on ImageNet (Russakovsky et al. 2015), for segmenting
the gastrointestinal polyps in colonoscopy images. To tackle the problem of low-
resolution feature maps caused by max-pooling operations, we utilize the method of
Wang et al. (2017) to incorporate a dense upsampling convolution (DUC) module,
as the final component of the network, which learns to upsample the low-resolution
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Fig. 7.1 The schematic of the proposedAECNNmodel for polyp segmentation. The error in the dis-
criminator is backpropagated through the segmenter to make it produce more realistic segmentation
masks

featuremaps into pixel-level segmentationmaps. Compared to non-learnable upsam-
pling techniques, e.g., bilinear interpolation, theDUC technique leads to finer bound-
aries. We also exploit dilated convolutional operations (Yu and Koltun 2016), which
enlarge the valid receptive field of our model, in order to improve the segmenta-
tion performance, especially for large polyps. Wang et al. (2017) also highlighted
the “gridding effect” problem with dilated convolutions and proposed a simple yet
effective solution to tackle it. Instead of using the same dilation rate after the down-
sampling stage, they suggested different dilation rates for each subsequent layer in
a sawtooth wave-like fashion. Particularly, a number of layers are grouped together
to form a “rising edge” of the wave that has an increasing dilation rate, and the next
group repeats the same pattern. We also found, in our experiments, the approach of
Wang et al. effective for segmenting objects with large objects.

Inspired by the works of Pan et al. (2017) and Luc et al. (2016), we further boost
the performance of our model by adding a discriminator network to distinguish
ground truth from generated prediction maps. Specifically, we feed the loss value of
the discriminator network back to the segmenter. When the segmenter-discriminator
are trained alternately, the adversarial scenario causes the two networks to compete
against each other: The segmenter learns to produce prediction maps that are difficult
for the discriminator to distinguish from the ground truthmask, while the discrimina-
tor attempts to correctly distinguish the true (i.e., ground truth) from the synthesized
(i.e., automatically predicted) label masks (Sect. 7.3). Our qualitative experiments
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show that this adversarial competition leads the segmenter model to uniformly high-
light the polyp regions and ignore irrelevant features in the final prediction map.
As data augmentation, we inflate the training set by applying rotation, horizontal,
and vertical flipping. All images are also resized to 240 × 320. We post-process the
binarized prediction results with one iteration of morphological closing and opening
operations with a 5 × 5 structuring element to remove any remaining isolated pixels
or small holes.

7.3 Generative Adversarial Networks

Generative adversarial networks (Goodfellow et al. 2014), GANs in short, have been
recently introduced as a way to train generative models in the scope of deep learning.
Typically, GAN models consist of two sub-models, a generator and a discriminator
which are trained jointly in an adversarial atmosphere. The generator network G
receives a noise sample z from a random distribution pz and produces a realistic
sample x via capturing the data distribution pdata , while the discriminator D takes
the generated sample x as the input and determines whether it came from the true
distribution ptrue or the one learned byG. Once trained adversarially, the generatorG
attempts to produce realistic data samples that fools the discriminator. Nevertheless,
the discriminator’s ultimate goal is to perfectly distinguish between the synthetic and
real samples. BothG and D are trained alternately in a two-player training framework
using the following objective function:

min
G

max
D

L(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz (z)[log(1 − D(G(z)))] (7.1)

Conditional generative adversarial network (Mirza and Osindero 2014), CGAN for
short, is a variant of GANs where the generator and/or discriminator are conditioned
on some extra information. The conditioning is typically performed by exposing the
information as inputs to the networks. For binary segmentation, this extra information
is provided by the ground truth binarymask y as the input to the discriminativemodel
during the training. The objective function of CGAN is as follows:

min
G

max
D

L(D,G) = Ex∼pdata(x)[log D(x |y)] + Ez∼pz (z)[log(1 − D(G(z)))]
(7.2)

It is noteworthy that for image segmentation, the input of the generator z is the image
to be segmented.
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Chapter 8
Dilated ResFCN and SE-Unet for Polyp
Segmentation

Yunbo Guo and Bogdan J. Matuszewski

8.1 Motivation

Segmentation is one of the key enabling technologies in medical image analysis
with a great variety of methods proposed (Histace et al. 2009; Zhang et al. 2010,
2013; Matuszewski et al. 2011). Methods based on deep learning, with the features
learned directly from data rather than handcrafted, showed significant improvement
in the quality of the segmentation including the analysis of colonoscopy images.
The recent advances in fully convolutional networks and in particular the dilation
convolution and squeeze-and-excitation unit have inspired the two architectures pro-
posed in this chapter. More specifically, the first proposed network can be seen as a
specific example of an encoder-decoder architecture with the multi-channel encoder
providing features operating at different spatial resolution of the input image. The
dilation kernels in each channel facilitate a compromise between the capacity of the
network and the size of the receptive fields. The second network combines the base
U-net architecture with squeeze-and-excitation units, to take better advantage of the
extracted features. Overall, the key motivation behind the proposed solutions is to
strike a balance between network capacity and the size of the receptive field. The
objective is to use a possibly large receptive field, without significantly increasing
the network capacity. This way, the network is less prone to overfitting, particularly
when trained on relatively small data sets with somewhat limited dimensionality of
the underlying segmentation problem.
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8.2 Introduction of the Base Structure

The fully convolutional network (FCN) architecture was the first type of end-to-end
network to be successfully used for semantic image segmentation based on deep
learning (Long et al. 2015). FCN can process images of any size and obtain a full-
size segmentation result without the need for additional pre-processing. The structure
of an FCN can be divided into two parts, an encoder and a decoder. The former is
used to extract low resolution, high-level features from the input image. The latter
fuses these features and converts them into low-resolution segmentation results, then
restores their size by means of up-sampling and cropping layers. The loss in the
backward direction is determined by processing the full-scale segmentation result
and ground truth. Then, the errors are propagated to each hidden layer that needs to
be trained. This method not only simplifies the steps of image segmentation, but also
is more accurate than the traditional methods.

Encoder

The encoder can be any CNN whose fully connected layer has been removed. It can
be one of the existing CNN architectures or a custom built one. When designing
an FCN, the choice of the encoder is usually determined by the complexity of the
images and the performance of the hardware, with the goal of avoiding unnecessary
calculations. It should be noted that when using an FCN model, the final feature
map is required to be of a certain size, otherwise, some smaller objects of interest
could be missed. Therefore, the rate of down-sampling should be chosen based on
the characteristics of the specific segmentation problem.

Decoder

The decoder consists of a pixel classifier, an up-sampling layer and a cropping layer.
The pixel classifier is used to classify the pixels in the feature maps one by one. It is
a convolutional layer rather than a fully connected layer. This is because the number
of outputs of a fully connected layer is fixed, making it impossible to process images
of different sizes. For general pixel classifiers, a 1×1 convolution kernel is used to
fuse the feature maps and generate low-resolution segmentation results. Large con-
volution kernels can also be used, but additional padding is needed to ensure that the
size of the feature maps is not significantly reduced.

To reduce the loss of segmentation details caused by down-sampling, featuremaps
of different resolutions can be extracted from convolution layers at different depths
in the encoder, and corresponding pixel classifiers can then be designed separately.
After that, the results can be fused through up-sampling, creating the so-called skip
structure (Long et al. 2015). As the fusion method, a direct addition could be used,
or build structures are stacked and fused by using a 1×1 convolution kernel. The
up-sampling layer is a critical hidden layer in an FCN, and it serves as the basis
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for end-to-end training. The up-sampling layer is essentially a special convolutional
layer controlled by a set of three parameters, namely, the size of the convolution
kernel, the stride and the kernel weighs. The stride size corresponds to the scale of
previous down-sampling operations. The kernel weights often are selected to corre-
spond to bilinear interpolation, subsequently in some cases, they are adjusted during
the network training. Finally, the up-sampled results are cropped to match the size
of the ground truth.

The original architecture of FCN inducted three sub-architectures, namely,
FCN32s, FCN16s and FCN8s (Long et al. 2015) (Fig. 8.1). In all three, VGG16
was used as an encoder. The difference in the sub-architecture is that the sizes of
the skip structures are different. FCN8s performs classification after FC7, pool4 and
pool3 and generates a corresponding segmentation result for each case. VGG16 con-
tains a total of 5 down-sampling layers, and each output is reduced by a factor of
2. Therefore, the results of the last two down-sampling layers are required to be
up-sampled and then merged with the result of the pool3 classifier to obtain the final
segmentation result. Since the output of pool3 is only 1/8th the size of the original
image, the fusion result needs to be enlarged by a factor of 8 (hence the name FCN8s).
In FCN16s classifiers are included only after pool4 and FC7, and their outputs are
fused. The output of pool4 is 1/16th the size of the original image, so the segmen-
tation result needs to be enlarged by a factor of 16. FCN32s uses only the output of
FC7 as the segmentation result.

One of the important concepts in the design of FCN is the receptive field, which
refers to the size of the area in the input image to which each unit in the output
layer corresponds. A larger receptive field allows the output to contain more global
features, which helps to improve the accuracy of the segmentation results. However,
reducing the stride for down-sampling to improve local spatial segmentation accuracy
will make the receptive field smaller.

In the example shown in Fig. 8.2, when the pooling stride is 2 (Fig. 8.2a), the
receptive field is 6 (a single output unit is connected to 6 input units). When the
pooling stride becomes 1 (Fig. 8.2b), the output size is increased to 7, but only 4
input units are connected to a single output unit. In this case, there is no doubt that
the output size is improved, but the amount of information contained in each output
unit is reduced.

Using a larger convolution kernel can solve this problem, but it will increase
the computational cost and the number of parameters to be estimated, as shown in
Fig. 8.2c. To solve this problemmore efficiently, the so-called dilated convolution (Yu
and Koltun 2016) (also known as atrous convolution) was proposed. The underlying
idea is to increase the size of the convolution kernel by adding 0s between theweights
without changing the number of weights, as shown in Fig. 8.2d. The definition of the
dilated convolution is given as

y[i] =
K∑

k=1

x[i + r × k]w[k]
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Fig. 8.1 The structure of FCN8s, FCN16s and FCN32s

Fig. 8.2 Regular convolution (a)–(c) and atrous convolution (d). a Regular convolution, with
pooling stride 2 and 1×3 kernel. b Regular convolution, with pooling stride 1 and 1×3 kernel.
c Regular convolution, with pooling stride 1 and 1×5 kernel. d Atrous convolution, with pooling
stride 1, 1×5 kernel and dilation 2; kernel size is 5 but only 3 weights are trainable
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where y[i] is the output, x[i] is an 1-D input signal, w[k] represents the weight in a
kernel. The parameter r is called dilation rate and it controls the stride between each
weight in an atrous kernel.

8.3 Methodology Explanation

Based on analysis of existing machine learning and polyp image segmentation tech-
niques, a novel hybrid deep learning segmentation method (Guo and Matuszewski
2019, 2020; Guo 2019) has been proposed for both SD and HD GIANA polyp seg-
mentation problems. The method consists of two fully convolutional networks. The
first network named “Dilated ResFCN” takes advantage of dilation convolution lay-
ers (Chen et al. 2017) to increase receptive fields, and therefore, makes the algorithm
aware of variousmulti-scale relationships between the polyps and their surroundings.
The second network “SE-Unet” is designed to segment small and flat polyps which
have been missed by the Dilated ResFCN, however, overall it tends to produce more
false positive pixels.

8.3.1 Dilated ResFCN

The architecture of the first proposed network, Dilated ResFCN, is shown in Fig. 8.3.
This architecture is inspired by Long et al. (2015), Chen et al. (2017), and the Global
Convolutional Network (Peng et al. 2017). The proposed FCN consists of three sub-
networks performing specific tasks: feature extraction,multi-resolution classification
and fusion. The feature extraction sub-network is based on the ResNet-50 model (He
et al. 2016).

The classification sub-network consists of four parallel paths. Each such path
includes a dilation convolutional layer, which is used to increase the receptive field
without increasing computational complexity. The larger receptive fields are needed
to access contextual information about polyp neighbourhood areas. The dilation
rate is determined by the number of active kernel weights (Guo and Matuszewski
2020). The dilation rates for sub-nets connected to Res5-Res2 are 2, 4, 8, 16 and the
corresponding kernel sizes are 5, 9, 17 and 33. The fusion sub-network corresponds
to the deconvolution layers of the FCN model. The segmentation results from each
classification sub-network are up-sampled and fused by a bilinear interpolation.

The feature extraction sub-network weights are initialized by a publicly available
ResNet-50 (Deep residual networks 2017). The convolutional layers in the four par-
allel classification paths are initialized by the Xavier method (Glorot and Bengio
2010).
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Fig. 8.3 Dilated ResFCN polyp segmentation network, with the feature extraction sub-network (in
blue) based on the ResNet, the multi-resolution classification sub-network (in yellow) based on the
dilated convolution, and the fusion sub-network (in green) using bilinear interpolation

8.3.2 SE-Unet

The Dilated ResFCN focuses on learning features using a larger receptive field.
However, smaller polyps may be ignored by networks with a large receptive field,
this is because smaller polyps may not excite lower resolution feature maps strongly
enough. To solve this problem, the SE-Unet network has been proposed. It has been
designed specifically for the detection and segmentation of small polyps missed by
the Dilated ResFCN network.

The SE-Unet, shown in Fig. 8.4, is based on the classic U-net architecture (Ron-
neberger et al. 2015). In the encoder, the original architecture of U-net is replaced by
the VGG16 network (Simonyan and Zisserman 2015), and a modified atrous spatial
pyramid pooling (ASPP) module (Chen et al. 2017). The ASPP module has four
kernels, with respective sizes of 1 × 1, 3 × 3, 5 × 5, 7 × 7. The last two are dilated
kernels, with corresponding dilation rates of 2 and 4. These two modifications have
the purpose of improving the performance of image feature extraction. The decoder
can be regarded as a mirrored VGG16 network where the down-sampling layers are
replaced by up-sampling layers. The original U-net fuses different level feature maps
after each up-sampling layer to provide more features to the pixel level classifier.
In SE-Unet, this is further reinforced with the squeeze-and-excitation (SE) module
(Hu et al. 2018) added between the up-sampling and fusion layer. The SE module
aims to assign higher weights to the high importance features and lower weights
to minor importance features and therefore the network is expected to focus more
on important features in the decoder. The parameter “r ’’ in the SE module is set to
16. The SE-Unet training consists of two stages. In the first stage, the SE modules
are removed from SE-Unet. In the second stage, the SE modules are added and the
whole network is re-trained. Both Dilated ResFCN and SE-Unet are trained using
the Adam algorithm.
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Fig. 8.4 SE-Unet polyp segmentation network with SE-module to introduce attention gating to
better utilize information in the computed feature maps and atrous spatial pyramid pooling (ASPP)
to effectively control receptive filed

8.3.3 Training-Time Data Augmentation

One of the key advantages of deep learning is that features are learned directly from
data rather than been designed/handcrafted. Therefore, in many cases, these features
inherently better represent complex data. However, for this to work, the training data
should adequately represent data variabilities, including size, pose, shape, texture,
colour, etc. From that perspective, the training data available for the GIANA polyp
segmentation challenge was rather small. Therefore, available data were heavily
augmented with random rotation, translation, scale changes as well as colour and
contrast jitter. In total, after augmentation, the training dataset consisted of more than
90,000 images.

8.3.4 Test-Time Data Augmentation

Since the convolutional neural networks are not inherently rotation invariant, a possi-
ble option to improve segmentation results is to perform the data augmentation during
the test time (Simonyan and Zisserman 2015). For this, rotated versions of the origi-
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Fig. 8.5 Visualization of the test-time data augmentation. The image on the left shows an input
test image. Images in the middle represent rotated, in 15◦ intervals, versions of the original image;
the corresponding results of the binary segmentation in the rotated image reference frame; and
the results after restoration to the original image reference frame. The image on the right shows
final segmentation results, superimposed on the original image, with (in red) and without (in blue)
test-time augmentation

nal test image are also presented to the network and the corresponding outputs, after
restoring to the original image reference frame, are averaged to take advantage of the
network generalization capabilities. The adopted test-time augmentation process is
explained in Fig. 8.5. The implemented augmentation uses 24 images derived from
the original test image rotated in 15◦ intervals.

8.4 Example of Results

This section presents validation results of the proposed methods using GIANA SD
training images, with a standard 4-fold cross-validation scheme. Frames extracted
from the same video are always in the same validation sub-set, i.e. they are not
used for training and validation at the same time. The three main configurations
have been tested: Dilated ResFCN, SE-Unet and the hybrid method. The hybrid
method uses Dilated ResFCN as the base network and switches to the SE-Unet when
the base network does not detect any polyps. These three architectures have been
compared against the FCN8s and simplified version of the Dilated ResFCN, called
here ResFCN. The ResFCN has the same architecture like the one shown in Fig. 8.3,
but without the dilation kernels. This network has been included to demonstrate the
significance of the dilation kernels on the segmentation performance.

Figure8.6 shows a sample of segmentation results for typical small, medium
and large polyps. The polyp occurrence confidence maps show that FCN8s can
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Fig. 8.6 Typical results obtained for the SD images using FCN8s, ResFCN, Dilated ResFCN and
SE-Unet networks (Guo 2019). For each image: the left column shows the polyp occurrence confi-
dence maps with the red colour representing the high confidence and blue colour representing the
low confidence of a polyp presence; the right column shows the original images with superimposed
red and blue contours representing the ground truth and segmentation results, respectively

Table 8.1 Mean Dice index obtained on 4-fold validation data using Dilated ResFCN network

Dice Precision Recall Hausdorff

Mean Std Mean Std Mean Std Mean Std

FCN8s 0.63 0.11 0.68 0.10 0.65 0.12 193 76

ResFCN 0.71 0.08 0.75 0.07 0.74 0.09 201 110

Dilated
ResFCN

0.79 0.08 0.81 0.07 0.81 0.09 54 21

SE-Unet 0.70 0.06 0.75 0.04 0.71 0.06 109 28

Hybrid 0.80 0.06 0.84 0.06 0.82 0.07 61 21

determine the approximate position of a polyp, but it generates a large number of
false positives and false negatives with diffused network response and irregular shape
of the segmented polyps. For the large polyp, FCN8s generate many strong responses
outside of the polyp. For the Dilated ResFCN, the confidencemaps aremore accurate
than those of the other methods with a clear boundary defining polyp edges.

Table8.1 presents the corresponding results for the Dice Index, Precision, Recall
and the Hausdorff distance metrics. It can be seen that overall all best results are
provided by the hybrid method closely followed by the Dilated ResFCN, indeed the
latter outperforms the former with respect to the Hausdorff distance.

Figure8.7 shows a more detailed representation of the mean Dice index results
achieved by the testedmethods. For eachmethod, the results are shown as histograms
of a number of polyps calculated as a function of the Dice index. It can be observed
that DilatedResFCN segments the largest number of polypswithin the topDice index
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Fig. 8.7 Number of polyps as a function of Dice index histograms obtained on validation data for
different segmentation methods. The definition of the Dice index histogram bin intervals is given
below the graph

range (i.e. with the Dice index between 0.9 and 1). The Hybrid method produces
very similar results within the top range, but improving (reducing the number of
polyps) within the bottom range (i.e. with the Dice index between 0 and 0.4), due to
improvement in segmentation of small polyps.
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Chapter 9
Multi-encoder Decoder Network for
Polyp Detection

Ahmed Mohammed and Marius Pedersen

9.1 Motivation

A typical approach to polyp detection algorithm using deep learning involves either
training a model from scratch or fine-tuning learned weights through transfer learn-
ing. However, in this work, we propose a deep learning architecture that exploits
fine-tuning and random initialization of weights in a multi-encoder with a single
decoder network architecture. The architecture follows encode-decoder design strat-
egy as it has been shown in the literature to give a state-of-the-art semantic image
segmentation result for medical applications (Ronneberger et al. 2015). The archi-
tecture is novel in that randomly initialized and fine-tuned features are fused at each
stage of the encoder network and concatenated with the decoder of a similar stage.
Moreover, the proposed encoder specific learning rate to train the architecture allows
for gradual fine-tuning of the pretrained and randomly initialized weights. A gener-
alized multi-encoder decoder approach is shown in Fig. 9.1.

9.2 Y-Net for Polyp Detection

This work is based on Mohammed et al. (2018, 2019)1 using two encoders. The
approach focuses on using the pretrained model features optimally by slow fine-
tuning the pretrained network and aggressive learning on the second encoder for a
better generalization on the test set. The framework consists of two fully convolution
encoder networks which are connected to a single decoder network that matches
the encoder network resolution at each down-sampling operation. The main goal

1Source code supporting this publication is available at https://ahme0307.github.io/.
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Fig. 9.1 Multi-encoder decoder object segmentation network

for having two encoders network is to address the performance loss due to domain-
shift from pretrained network (natural images) to testing (polyp data), leading to
degradation in performance. Since the pretrained encoder weights are initialized
with VGG19 (Simonyan and Zisserman 2014), they are better suited for initializing
the encoder network compared to randomly initialized weights, for extracting basic
image features such as edges and curves. We propose encoder specific adaptive
learning rates that update the parameters of randomly initialized encoder network
with a larger step size as compared to the encoder with pretrained weights. The
two encoders features are merged with a decoder network at each down-sampling
path through sum-skip connection. The input to the network is an RGB video frame
with the corresponding ground truth mask, and the decoder output is a binary mask
segmentation of the polyp, Fig. 9.2.
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Fig. 9.2 Y-Net: given an input image, it is fed to both encoders. The weights of the last convolution
at each depth of the encoder are summed and concatenated to the same spatial depth of the decoder

9.2.1 Model Learning and Implementation

Given the network architecture outlined above with one of the encoders preloaded
with pretrained VGG19 weights, we explain next the optimization objectives and
training strategy.

Loss function: The output layer in the decoder consists of a single plane for fore-
ground detected polyp. We applied convolution with sigmoid activation to form the
loss. Let p and g be the set of predicted and ground truth binary labels, respectively.
The weighted binary cross-entropy and dice coefficient loss between two binary
images is defined as

L (p, g) = − 1

N

N∑

i=1

(
λ

2
· gi · log pi

)
+

(
1 − 2

∑N
i=1(gi · pi ) + ε

∑N
i=1(pi ) + ∑N

i=1(gi ) + ε

)

(9.1)

where λ and ε are false negatives (FN) penalty and smoothing factor, respectively
In order to penalize FN more than false positives (FP) in training our network for
highly imbalanced data, the first term in Eq. (9.1) penalizes FN and the second term
weighs FPs and FNs (precision and recall) equally. In other words, the second term
is the same as the negative of F1-score. This is to avoid miss detection of polyps, as
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it is more critical to miss a polyp than giving a FP. Hence, the summed loss function
gives a good balance between FN and FP.
Learning rates: Since the pretrained encoder weights are initialized with VGG19,
they are good, compared to randomly initialized weights, in extracting basic image
features such as edges and curves. Therefore, it would be beneficial while training
not to distort them too much. Hence, we propose encoder specific adaptive learning
rates. The parameter update equation for RMSProp (RootMean Square Propagation)
gradient descent becomes

θt+1 = θt − c · η√
E[g2] + ε

· gt (9.2)

where c = 0.01 for pretrained encoder and c = 1 for encoder two and decoder, θ is a
model parameter with a learning rate η and E[g2] is the running average of squared
gradients. In this way, encoder two is learned aggressively while fine-tunning the
pretrained encoder.
Data augmentation: To increase robustness and reduce overfitting on our model,
we increase the amount of training data. First, frames with polyp are doubled during
pretraining by applying random rotation (10◦ to 350◦), zoom (1 to 1.3), translation in
x, y (–10 to 10), and shear (–25 to 25) followed by centering the polyp and cropping
padded regions. Second, during training, for each framewith polyp, random cropping
of the non-polyp region, aswell as perspective transform, is appliedwith a probability
of 0.3 and 0.4 with random horizontal and vertical flip, respectively. We also tried
applying contrast enhancement methods such as CLAHE (Contrast-limited adaptive
histogram equalization) (Zuiderveld 1994) and gamma correction, but that did not
improve the detection accuracy.
Implementation Details: Our model is implemented on Tensorflow and Keras
library with a single NVIDIA GeForce GTX 1080 GPU. Due to the different image
sizes in the dataset, we first crop large boundary margins and resize all images into
fixed dimensions with a spatial size of 224 × 224 before feeding to both encoders
and finally normalized to [0, 1].We use customRMSProp (Eq. (9.2)) as the optimizer
with batch size 3 and learning rate η set to 0.0001. We monitor the dice coefficient
and use early-stop criteria on the validation set error.

9.3 Example of Performance

As shown in Mohammed et al. (2018), Mohammed (2019), compared to baseline
architecture such as U-Net (Ronneberger et al. 2015) with VGG19 (Simon 2016)
weight as encoder, Y-Net achieves a better result which suggests the multi-encoder
strategy improves polyp detection accuracy.Moreover, our result suggests that hybrid
fine-tuning a pretrained network and training from scratch a mirrored network gives
a better performance for colonoscopy and wireless capsule endoscopy pathology
detection tasks. Based on experimental results inMohammed et al. (2018), the overall
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Fig. 9.3 Visualization of different layers for Y-Net. Image on the left shows the early convolutions
layer in the encoder block for the first convolution. Image on the right shows late-stage convolution
layer at the decoder. It is evident from patterns that the proposed model is able to learn different
appearance of polyp sizes and orientation

improvement in terms of F1-score and recall is 7.3 and 13%, respectively, compared
toothermethods inMohammedet al. (2018).An increase in recallmetric is significant
in that if a recall or true positive rate is low, it means the model misses finding polyps
which can lead to a late-stage diagnosis for colorectal cancer. Elaborating on why
Y-Net improves detection, we can say that it is reasonable since it uses both transfer
learning and training from scratch in an end-to-end fashion it is able to improve the
feature representation of the network.

Figure9.3 shows feature responses of Y-Net at different depth of the network. The
left side image shows the response of earlier layers of the encoder network. From
the output, we can infer that maximum filter response is obtained for patterns having
a round shape (pedunculated) with a hollow structure in the middle of the frame.
The structures are similar to polyps and give a good indication that the network
has learned important polyp shapes. As we move to the later stage of the model,
maximum filter responses are obtained for more complicated structures with a long
base similar to sessile polyps and bigger shapes.
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Chapter 10
Multi-resolution Multi-task Network and
Polyp Tracking

Hanbo Chen

10.1 Motivation

Usually, different convolutional neural networks (CNN) are designed for different
tasks and trained separately. However, the same convolutional encoder can be shared
between classification, segmentation, and object detection network. Based on this
observation, we wonder if it is possible to combine those different parts and solve
multiple tasks in a single network to save the cost of training multiple networks.

Based on the observation that different tasks could rely on the same set of features,
themulti-task network design could also help improve the training efficiency on small
clinical dataset. Given polyp detection and localization tasks as objectives, it is likely
that the attention of the CNN for positive endoscopy frame classification could also
reveal the location of polyps (Liu et al. 2018; Zhou et al. 2016).

Despite multi-task constraint, supervision in middle layers has also been shown
effective in improvingnetwork’s performance (Merkowet al. 2016;Xie andTu2015).
Since polyp many appear in a different size in the image (e.g., a large polyp could be
small in the endoscopy image when it is far away from the camera), supervision in
convolution layers with different resolutions could supervise the network in learning-
related object features in different scales (Xie and Tu 2015). In addition, since the
target like polyp could be sparsely distributed on the image, guidance in the low
resolution feature maps can force the network giving more attention to the object of
interest (Merkow et al. 2016).

Based on these previous findings, in our approach, we propose a multi-resolution
multi-task network (MRMT-Net) which simultaneously conducts lesion classifica-
tion, localization, and segmentationwithmulti-resolution guidance (Fig. 10.1).When
training MRMT-Net, instead of optimizing a single objective function, a combina-
tion of multiple losses (namely, bag of losses) are simultaneously optimized. To test
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MRMT-Net, we train the network to detect positive endoscopy frames, to predict the
center of polyps, and to segment the area of polyps.

Notably, in this task, our goal is to detect polyp from colonoscopy videos. How-
ever, MRMT-Net and most of the other existing systems and algorithms only attempt
to detect polyp in each frame separately and ignore the temporal context informa-
tion in the video. By visually inspecting the result of polyp detection in each video
frame with segmentation network, we noticed both false positive and false negative
detection as well as jittering effect between adjacent frames. Such problem can be
potentially solved by smoothing findings between adjacent frames across time.

Due to the lack of training data, it is challenging to conduct end-to-end training
with temporal networks suchRecurrentNeuralNetwork. Thus, instead of introducing
temporal dimension in polyp detection/segmentation network, we proposed a polyp
tracking algorithm to track and smooth findings through time. In this chapter, we
will first introduce MRMT-Net, which detect polyp in a single frame. Then we will
introduce polyp tracking algorithm, which could process and fine-tune the results of
MRMT-Net.

10.2 Introduction of the Base Structure

The design of our segmentation network is shown in Fig. 10.1. It follows U-Net
architecture (Ronneberger et al. 2015). However, we heavily modified the network
architecture such that we have a heavy encoder and light decoder. The idea is sim-
ilar to the design of deep-lab V3 (Chen et al. 2017). For the encoder, we adopt
DenseNet169 architecture (Huang et al. 2017). A three-level spatial pyramid pool-
ing is also added on top of the DenseNet169 to hierarchically fuse global information
with local information (Zhao et al. 2017). For the decoder, we repeatedly cascade a
deconvolution layer (spatial resolution recover), a concatenation layer (combine fea-
ture maps of different resolutions like U-Net), and a convolution layer (fuse features
in different levels). A linear interpolation layer is finally used to resize the output to
the same size as input image.

Instead of using different networks for different tasks, we design the network to
allow it simultaneously conduct classification, localization, and segmentation tasks
(Fig. 10.1). Classification and localization results are generated based on DenseNet
outputs. In addition, to facilitate detecting objects of different sizes in different scales,
instead of only using the last featuremap for classification,we concatenate the feature
maps in the last three scales of DenseNet for the final computation.

As polyp could be of different size, to guide the network learn feature maps in
different scales, we introducedmulti-resolution guidance during the training. Specif-
ically, the outputs of last three convolution layers in the encoder network are taken
to train three independent classifiers. In addition to the classifiers, we also guide the
training with the class activation map (CAM). The training loss of CAM is the same
as segmentation loss.
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10.3 Multi-resolution Guidance and Class Activation Map
Supervision

In previous works, it has been shown that supervised training in themiddle layers can
improve the performance of segmentation networks (Merkow et al. 2016; Xie and
Tu 2015) by learning features in different scales. Notably, this guidance is usually
added to the layer in the decoder network. Here, we propose to add this guidance in
the encoder network as a multi-resolution guidance. Specifically, the outputs of last
three convolution layers in the encoder network are taken to train three independent
classifiers (classifier 1–3 in Fig. 10.1). The objective function of these three classifiers
is the same as the final classifier and they are computed in the same way: global
average pooling layer followed by a FC layer for regression.

In addition to the classifiers, we also guide the training with the class activation
map (CAM). CAM is initially proposed to visualize the activated image regions
associated with classification decisions (Zhou et al. 2016). Given a CNN ended with
global average pooling and a FC layer, by taking the parameters w in the FC layer
as the weight factor of the output channels hi in the last convolution layer of CNN,
the CAM of an image is defined as

Fig. 10.1 Detailed architecture of multi-resolution multi-task supervised segmentation network
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CAM(x, θ) = b + a
N∑

i=0

wi hi (10.1)

where hi andwi are the hidden variables of channel i and the corresponding FC layer
weight. a and b are the shift and scaling factors to normalize CAM.

Usually, when CAM agrees with the semantic segmentation of the class, it indi-
cates that the classifier correctly learns the features associated with that class. Later,
it has been shown that by taking CAM as optimization objective like segmentation
tasks can also improve the performance of a classifier (Li et al. 2018). Inspired by this
observation, we further optimize CAM of multi-resolution classifiers in our training
process. The shifting and scaling factors (a and b) in Eq.10.1 are optimized together.

10.4 Bag of Losses

As highlighted by gray-boxes in Fig. 10.1, MRMT-Net has nine optimization objec-
tives. In summary, they are loss of final classifier Lc, loss of target center regressor
Ll , loss of segmentation Ls , and the multi-resolution guidance loss LMR including
classifier loss L(i,c) and class activation map loss L(i,a) in each resolution. We call
them a bag of losses:

(θ) = argmin
θ

αcLc + μαl Ll + αs Ls +
3∑

i=1

(αi,cLi,c + αi,a Li,a) (10.2)

where θ is the network parameters to optimize, and α∗ are the loss weights. μ is
binary variable which is 1 only when the predicted target exists in the image. The
weights are empirically selected according to their importance.

For all classifiers, we follow the convention and adapt cross-entropy as loss func-
tion:

Lc = −
C∑

k

log(yc,k) (10.3)

For center regressor, we follow the design of classic region proposal networks
and normalize the coordinate of target center to [0, 1] by its relative location in the
image. Then the smooth-L1 norm between predicted center y∗

l and truth center yl is
computed:

Ll =
{
0.5||y∗

l − yl ||2 if |y∗
l − yl | ≤ 1,

|y∗
l − yl | if |y∗

l − yl | > 1,
(10.4)

Since CAM can be viewed as a pixel-wise classification map which is similar to
segmentation map, the same loss function is utilized to compute the dissimilarity
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between predicted segmentation/CAM y∗
s and the truth segmentation ys . To deal

with the sparsely distributed foreground object in our problem, we combine dice
coefficient with cross-entropy when computing the segmentation loss:

Ls = −γ
∑

[ys log(y∗
s ) + (1 − ys) log(1 − y∗

s )] − μ(2
∑

ys · y∗
s )/(

∑
(ys + y∗

s ))

(10.5)
where γ is the trade-off value, andμ is the binary variable in Eq.10.2which zeros-out
dice loss when the mask is empty.

10.5 Polyp Tracking Algorithm

In our solution, we first identify polyp detection with high confidence and only keep
them at the beginning. Then we adopted a tracking algorithm to track the detected
polyp and smooth the polyp detection through time (Zheng et al. 2019) (Fig. 10.2).
The rationale behind this design is based on the following three observations: (1) the
location of polyp is consistent between adjacent frames; (2) the appearance of one
polyp is consistent in the videos; (3) only 1 polyp can be observed in a frame in most
of the times. The system is composed by three critical steps and will be elaborated in
details: (1) confident polyp seed detection; (2) object tracking; and (3) spatial voting.

To find the polyp detection with high confidence, we averaged segmentation map
by different weights through the time:

Si =
N∑

j=1

γ |i− j |VjMj (10.6)

where Si is the averaged segmentation map of frame i , Mj is the raw segmentation
map of frame j , Vj is the likelihood ratio of frame j be classified as positive frame,
γ is the decaying factor of time which we set to 0.5 in this work.

The pixels with high value in Si meet the following three criteria and thus can be
taken with high confidence as polyp detected: (1) The frame has high likelihood to
be positive, (2) the pixel has high likelihood to be segmented as foreground, (3) both
criteria are consistent over the time. We then threshold Si with a relatively high value
and took the center of the largest connected component inside a frame as a confident
polyp seed.

We track the polyp seed across frames to complete the missing ones. Given a
polyp p j

i in frame j , the goal is to compute p j+1
i . Optical tracking is adopt to fulfill

the task (Lucas and Kanade 1981). However, it may fail and lost the target when
motion is large. As a back up, we adopt on-the-fly trained CNN to track the polyp
(Chu et al. 2017). In brief, four image crops close to p j

i are taken as positive samples
and other four crops far away are taken as negative samples. An CNN is trained to
classify them. The CNN then classify crops on frame j + 1 to search for p j+1

i . If
none of the crops meet the criteria, the tracking of pi will be terminated.
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Fig. 10.2 Illustration of pipeline of polyp detection in endoscopic video stream

For the same polyp, seeds could be generated on multiple frames. After track-
ing, there could be multiple tracked polyp center on the same frame. Based on the
assumption that only one polyp should be observed each time, we filter outliers and
combine the rest into the final one. In practice, the centers with distance smaller than
threshold are connected. Then the center of the largest component is taken as the
final result.

10.6 Data Normalization and Augmentation

Given that the number of training data is limited, to avoid over-fit, we first normalized
the data into a uniform space and then augment the data during training (Fig. 10.3).
During the testing phase, only normalization will take place.

Normalization is performed in the following order: (1) crop the blanket border in
the image; (2) isotropically resize image and zero-pad the shorter edge to uniform
size; (3) shift the average hue and the saturation of image to the same value.
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Fig. 10.3 Illustration of data pre-processing and training augmentation pipeline

Augmentation is performed in the following order with parameters given in the
bracelet: (1) random hue shift (±20); (2) random value shift (±20); (3) random
intensity scale by curve; (4) random deformation; (5) random rotation (180◦); (6)
random scaling (±20%); (7) random shearing (±20◦).

10.7 Example of Results

In Fig. 10.4, we visualize some example results of MRMT-Net predictions. By visual
inspection, the predicted result largely agrees with annotation truth. Moreover, as
highlighted by the white arrows in Fig. 10.4e, f, our model also detects potential
polyps that were missed by human experts when annotating. And for these two cases
that contain two polyps, the polyp center regressor still correctly localizes the position
of the primary findings.

In comparison with single frame detection system, the proposed tracking system
can significant improve recall value. However, since increasing the number of polyp
detected also increases the chance of false positive detection, we observed a small
trade-in of precision value. The balance between false positive and false negative
findings can be fine-tuned by changing the confidence threshold to control the number
of tracking seeds. In our result, the overall F1 and F2 scores are higher than single
frame detector. For more details, one can refer to Zheng et al. (2019).
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Fig. 10.4 Six examples of prediction results by our proposed method. On the left side of each
sub-figure shows the raw image overlapped with polyp center truth (white cross) and predicted
polyp center (black cross). On the right side of each sub-figure is the comparison between predicted
segmentation and the truth annotation overlaid on the dimmed raw image. White arrows pointing
to potential polyps missed by human experts when annotating
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Chapter 11
Region-Based Convolutional Neural
Network for Polyp Detection and
Segmentation

Hemin Ali Qadir, Ilangko Balasingham, and Younghak Shin

11.1 Introduction

For polyp detection, we adapt a Faster R-CNN (Ren et al. 2015) architecture shown
in Fig. 11.1. Faster R-CNN has two stages: region proposal network (RPN), and a
box classifier network. Both stages share a common set of convolutional layers as a
feature extractor to reduce the marginal cost for detection. The RPN utilizes feature
maps of the last convolutional layer to generate class-agnostic RoI proposals called
anchors, eachwith an objectness confidence value. The anchors have different aspect
ratios and scales. The classifier network crops these anchors from the feature maps
of the last convolutional layer and feeds the cropped features to the remainder of
the network in order to predict location and confidence values of the object class
(polyps). We use Inception-ResNet-v2 (Szegedy et al. 2017) as the feature extractor
which was pre-trained on Microsoft’s COCO dataset (Lin et al. 2014). For polyp
segmentation, we use Mask R-CNN (He et al. 2017) which is a general framework
for object instance segmentation. Mask R-CNN is an intuitive extension of Faster R-
CNN (see Fig. 11.1). It has the same structure of Faster R-CNN with an extra branch
to the second stage for predicting polyp masks in parallel with the existing branches
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Fig. 11.1 Faster R-CNN andMask R-CNN architecture used for polyp detection and segmentation,
respectively. They both share the same structure except there is an additional branch to predict mask
in Mask R-CNN as highlighted in light blue

for bounding box regression and confidence value. Instead of using RoIPool, which
performs coarse quantization for feature extraction in Faster R-CNN, Mask R-CNN
uses RoIAlign, quantization-free layer, to fix the misalignment problem. For further
improvement, we combine outputs of two Mask R-CNNs with two different feature
extractor networks, i.e., Inception-ResNet-v2 (Szegedy et al. 2017) and ResNet 101
(He et al. 2016) both pre-trained on Microsoft’s COCO dataset (Lin et al. 2014).

11.2 ResNet 101 and Inception-ResNet-v2

ResNet stands for residual networks. It is proposed by Kaiming He et al. (2016) to
address the degradation problem associated with deeper networks. Deeper networks
are crucial for performance improvement. Higher levels of features can be extracted
by adding more stacked layers. However, training a deeper network with more layers
becomes problematic due to vanishing or exploding gradients problem. In ResNet,
there are skip connections to prevent gradients from vanishing/exploding during
training. The skip connection enables to have deeper networks and benefit from rich
features, and thus better performance can be achieved. Figure11.2 shows how skip
connection is formed and solves the problem of vanishing and exploding gradients.

Hence, the output is a combination of x and f (x)

h(x) = f (x) + x, (11.1)
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Fig. 11.2 A building block
of residual network

the weight layers learns a kind of residual mapping

f (x) = h(x) − x, (11.2)

that means there is always the identity (x) to transfer back to earlier layers, even if
there is vanishing gradients.

ResNet 101 has 101 layers in the form of residual connections shown in Fig. 11.2.
Its full architecture can be found in Table1 in He et al. (2016). ResNet 101 achieved
4.60% top-5 error on the ImageNet validation dataset for classification. We use
ResNet 101 as the feature extractor network for ourMask R-CNN of auxiliary model
(see Sect. 11.4).

Inception architecture was proposed by C. Szegedy et al. in Szegedy et al. (2015)
to allow for increasing the depth and width of the network for better performance at
relatively low computational cost. Inception module tries to create a sparse structure
using dense components of convolutional layers as shown in Fig. 11.3. C. Szegedy
et al. in Szegedy et al. (2017) showed that training of Inception networks can signif-
icantly be accelerated with residual connections. They also presented that residual
Inception networks could outperform counterpart Inception networks without resid-
ual. We use Inception-ResNet-v2 (see Fig. 15 in Szegedy et al. (2017)) as our feature
extractor network for Faster R-CNN and Mask R-CNN of our main model. This
network combines the benefits from both Inception-v4 architecture (see Fig. 9 in
Szegedy et al. (2017)) and residual connections in a single network. We choose this
network because it outperformed its variants (Inception-v3, Inception-ResNet-v1
and Inception-v4) on ImageNet validation dataset.
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Fig. 11.3 Inception module (Szegedy et al. 2015)

11.3 Polyp Detection

Current deep neural networks, including CNNs, are vulnerable to small noises and
can easily be fooled (Su et al. 2019). In colonoscopy, Faster R-CNNmight get fooled
by the specular highlights and small changes in polyp appearance. This means that
the same polyp appearing in a sequence of neighboring frames might be missed and
unstable detection output contaminated with a high number of FPs will be produced
by Faster R-CNN. We use temporal dependencies among consecutive frames to
find and remove FPs and detect intra-frame missed polyps based on the consecutive
detection outputs of Faster R-CNN. Neighboring frames should contain the same
polyp with slight changes in its position and size.

Ourmethod for polyp detection consists of two stages as illustrated in Fig. 11.4: (1)
the Faster R-CNN shown in Fig. 11.1 to provide region of interests (RoI), (2) a false
positive (FP) reduction unit to explore the temporal dependencies among neighboring
frames. The Faster R-CNN proposes multiple RoIs to the FP reduction unit. The FP
reduction unit exploits the temporal dependencies among the neighboring frames in
video by integrating the bidirectional temporal information obtained by RoIs in a set
of consecutive frames. This information is used to make the final decision.

We let Faster R-CNN to provide one RoI per frame. We set the confidence thresh-
old value of Faster R-CNN to 0.0 so that we always have a RoI regardless of its
confidence value in every frame. The proposed RoIs in a number of previous and
future frames are passed through the FP reduction unit to find detection irregularities
and outliers before the final decision is made for the RoI in the current frame—the
frame in the middle. When a polyp appears in a sequence of frames, its location
slightly changes following a motion estimating the movement in the sequence. Irreg-
ularities and outliers are those detection outputs that do not smoothly follow such a
movement. We consider those detection irregularities and outliers as FPs. In case of
an outlier, we use interpolation (Lagrange formula) to correct the detection. There-
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Fig. 11.4 Our proposed method for polyp detection. The Faster R-CNN provides RoIs to the
FP reduction unit. The FP reduction unit classifies the RoIs as either TPs or FPs using temporal
coherence information among a set of consecutive frames, and estimates the location of missed
polyps using interpolation

fore, the FP reduction unit comprises of two processes: a mechanism to detect FPs,
and a mechanism to correct the outliers denoting the missed polyps in the sequence.

We only pick those RoIs overlapped with at least 7 RoIs in a set of 15 consecutive
frames, i.e., 7 previous frames and 7 future frames (optimized numbers). We also
calculate the average confidence for the overlapped RoIs and only classify those RoIs
with an average confidence (avg − th) ≥ 0.5 as TPs. In this way, we have less FPs
and keep only those RoIs that repeat in more than 7 consecutive frames with high
confidence values in the final output.

11.4 Polyp Segmentation

Dissimilar CNN feature extractors compute different types of features due to differ-
ences in their number of layers and architectures. A deeper CNN can extract higher
levels of features from the input images while it loses some spatial information due to
the contraction and pooling layers. To segment polyps from normal mucosa, we pro-
pose an ensembleMask R-CNN shown in Fig. 11.5.We combine results of twoMask
R-CNNmodels with two different CNN feature extractors, i.e., Inception-ResNet-v2
and ResNet 101. The hypothesis is that some polyps might be missed by one of the
models while they could be detected by the other one. We use Mask R-CNN with
Inception-ResNet-v2 as the main model and its output is always relied on. We use
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Fig. 11.5 Our proposed method for polyp segmentation. The first Mask R-CNN is used as the main
model and its output is always taken while the second Mask R-CNN is used as an auxiliary model
to help detect missed polyps and refine the output masks

(a) Input image (c) Output by main model (e) Output by auxiliary model

(b) Ground-truth provided (d) Output mask by main (f) Output mask by auxiliary
by clinicians model model

Fig. 11.6 A case which explains the benefit of our ensemble model

Mask R-CNN with ResNet 101 as an auxiliary model to support the main model.
To avoid increasing FPs, we only take into account the outputs from the auxiliary
model when the confidence of the detection is >95% (an optimized value using a
validation dataset).

Figure11.6 illustrates a case where a polyp in the input image is missed by Mask
R-CNN with Inception-ResNet-v2 while it is successfully detected and segmented
by Mask R-CNN with ResNet 101. It is also possible that a polyp might be partially
segmented by the main model and precisely segmented by the auxiliary model to
complete the final segmentation and vise versa.
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Table 11.1 Augmentation strategies applied to enlarge the training dataset

Augmentation Quantity Applied to

Rotation 90, 180 and 270 degrees Original images

Flip Horizontal and vertical Original images

Shearing Two alone x-axis and two
alone y-axis

Original images

Zoom-in 10% only Riginal+rotated+flipped

Zoom-out (10, 30, and 50)% Original+rotated+flipped

11.5 Training the Systems

11.5.1 Augmentations and Fine-Tuning

It is important to mention that we only use those images (frames) that contain at least
one polyp. ResNet 101 and Inception-ResNet-v2 are deep and complex networks.
The datasets of polyps provided for GIANA challenge are not large enough to train
such deep networks. Therefore, we apply augmentation strategies to enlarge the
training data and prevent the models from overfitting. This augmentation step cannot
improve data distribution, i.e., it can only add an image-level transformation through
depth and scale. Table11.1 presents all the augmentation techniques that we apply
to increase training data for both Faster R-CNN and Mask R-CNN.

Only applying augmentation does not ensure the models from being overfitted.
Therefore, we use transfer learning by initializing the weights of Resnet 101 and
Inception-ResNet-v2 from models pre-trained on Microsoft’s COCO for both tasks.

We use stochastic gradient descent (SGD) with a momentum of 0.9, learning rate
of 0.0003, and batch size of 1 to fine-tune the pre-trainedmodels using the augmented
datasets. We keep the original image size during both training and test phases.

11.5.2 Objective Losses

To train our Faster R-CNN, we use a combined loss of classification loss �cls for the
predicted class fcls(I ; a, θ) (polyp or background) and location loss �loc for the pre-
dicted bounding box floc(I ; a, θ) on each anchor proposed by RPN. If intersection
of union (IoU) between anchor a and ground-truth box b is > 0.3, then anchor a
is considered as a positive anchor, and we assign a class label ya = 1, and a vector
(φ(ba; a)) encoding box b with respect to anchor a. If IoU is < 0.3, anchor a is
considered as a negative sample, and the class label is set to ya = 0,
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L (a, I ; θ) = 1

m

m∑

i=1

1

N

N∑

j=1

α · 1[a is positive] · �loc (φ(ba; a) − floc(I ; a, θ)) + β · �cls (ya , fcls (I ; a, θ)) .

(11.3)

For Mask R-CNN, we add the mask branch which has a 14 × 14-dimensional
output for each anchor. Then the loss for each anchor a consists of three losses:
location loss �loc, classification loss �cls , and mask loss �mask for the predicted mask
fmask(I, a, θ),

L (a, I ; θ) = 1

m

m∑

i=1

1

N

N∑

j=1

1[a is positive]·�loc (φ(ba; a) − floc(I ; a, θ)) + �cls (ya , fcls (I ; a, θ))

+ �mask (maska , fmask (I, a, θ)) .

(11.4)

In both Eqs. (11.3) and (11.4), I is the image, θ is the model parameters, m is the
size ofmini-batch and N is the number of anchors for each frame.We use softmax for
the classification loss, Smooth L1 for the localization loss, and binary cross-entropy
for the mask loss.
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Chapter 12
ResNet

Isabel Amaya-Rodriguez, Isabel Amaya-Rodriguez, Javier Civit-Masot,
Francisco Luna-Perejon, Lourdes Duran-Lopez, Alexander Rakhlin,
Sergey Nikolenko, Satoshi Kondo, Pablo Laiz, Jordi Vitrià, Santi Seguí,
and Patrick Brandao

12.1 General Motivation

In this chapter, all groups have used Residual Network (ResNet) (He et al. 2016) as
part of different architectures with the purpose of solving the GIANA challenge. In
some cases like RTC-ATC group ResNet-50 was used as a layer in Faster Convolu-
tional Neural Network (FCNN) in order to build an automated recognition system
to detect the presence of polyps in colonoscopy images.

The main reason to use this network is because ResNet models try to solve the
overload of the accuracy which comes from network depth. The accuracy saturation
is not due to overfitting or the quantity of layers is because of the named Vanishing
Gradient (Hochreiter 1998) this effect try to explain when the network is deep the
loss functions in gradients value are near to zero after several chain rule applications.
Then weights are not updated and consequently no learning is being performed. To
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Fig. 12.1 Residual learning
block

solve this problem, Microsoft created a new deep learning concept based on residual
leaning which allows gradients to flow between layers.

12.2 Introduction to ResNet Architecture

In this section, the basic concepts of ResNet architecture is explained. As it was
introduced in the Sect. 12.1 ResNet architecture makes it possible to implement
hundreds or even thousands of layers and still achieves compelling performance.
Residual Network works substracting features learned from input of that layer.

The main characteristic introduced by ResNet is the identity shortcut connection
defined as F(x) := H(x) − x shown in Fig. 12.1. This shortcut connections X are
identity mappings and their outputs are added to the following stacked layers. Then
ResNet apply simply stacked identity mappings and the residual of X in H(x) is
learned. It solves problems like training error increase when the depth increases too.

In the case of ResNet-12 contains five Residual Blocks as shows Fig. 12.2. For
each two-convolutional layer there is one identity shorcut connection.

12.3 Methodologies

12.3.1 RTC-ATC Group

In this section, RTC-ATC group shows an application of Faster R-CNNs (FRCNN)
in order to build an automated recognition system to detect the presence of polyps in
colonoscopy images presented in GIANA challenge 2019. To realize this goal, they
used an implementation of FRCNNwith ResNet-50 as Fully Convolutional Network
(FCN) architecture. FRCNN builds on the idea of Region Proposals by sharing inter-
mediate features with the classification network. For example, the ResNet takes an
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Fig. 12.2 ResNet-12 architecture

input image and produces a series of transformations before arriving at the prediction.
The FRCNN will use the intermediate features of ResNet to aid in region proposal.

12.3.1.1 Brief Methodology Introduction

Faster R-CNNs have been used for different purposes: face detection (Jiang and
Learned-Miller 2017), driver’s cell-phone usage and hands on steering wheel detec-
tion (Hoang Ngan Le et al. 2016) are some application examples of this algorithm,
which has proven to show good results. As it was mentioned in the introduction, a
FRCNNwas used in this work for the polyp detection task. This algorithm is divided
into two modules (Fig. 12.3):

1. First of all, a deep Fully Convolutional Network (FCN) (Ren et al. 2015) receives
the images from the dataset. Then, it extracts feature maps or descriptive charac-
teristics and analyzes them to propose regions of interest. The novel step that this
architecture introduced is the way to determine the regions of interest. Region
Proposal Network (RPN) is computed base on the output feature map of the pre-
vious step. Then, RPN is connected to a convolutional layer with 3 × 3 filters,
1 padding, 512 output channels. The output is connected to two 1 × 1 convo-
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Fig. 12.3 Block diagram of
the implemented approach

lutional layer for classification and box-regression (Note that the classification
here is to determine if the box is an object or not).

2. Next, as shows Fig. 12.4 ROI pooling layer is used for these proposed regions in
order to ensure the standard and pre-defined output size. These valid outputs are
passed to a fully connected layer as inputs. In our case, by using a neural network
that takes advantage of the mathematical operations made in the convolutional
layers. In our architecture we have used the ResNet-50 model (He et al. 2016)
as FCN. ResNet models try to solve the saturation of the accuracy caused by
increasing the network depth (Fig. 12.5).

3. Finally, the proposed regions that are the input of the second module, called Fast
R-CNN detector, composed of two fully connected layers, a regression layer and
a classification layer (Ren et al. 2015).
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Fig. 12.4 ResNet-50 in faster convolutional neural network

Fig. 12.5 Block diagram of
the implemented approach
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Fig. 12.6 Processing applied to the original images. First, black edges are removed in a pre-
processing step. Then data augmentation is applied, generating three different new images

12.3.1.2 Architecture and Parameters Tuning

Basic architecture was modified to achieve the better results, aiming to observe the
benefit of using different datasets by training the network with background examples
and augmented dataset. Firstly, with the aimof reducing the number of false positives,
a technique called hard-negative mining was used (Felzenszwalb et al. 2009). It
consists of adding negative samples, which means, including examples of images
that do not contain polyps in the training step, labeling them as background. The
dataset was augmented using a series of transformations so that the model would
never train twice the exact same image. For each original preprocessed image, an
horizontal flip, a vertical flip, and a blur filter have been applied. Thus, we obtain
three new images from each original sample. After this data augmentation step, we
obtain a dataset that consists of 47.816 images in total (Fig. 12.6).
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Ourmodel contains several parameters to be defined in order to improve the results
training with some invariant parameters as learning rate 10−5, 1000 iterations per
epoch, 32 number of Regional Object Interest (ROIs) and the increased image dataset
with rotations and flips. Tests were performed every 50 epochs, selecting different
confidence thresholds in order to obtain the best results.

12.3.2 Neuromation

In this section, the Neuromation team discusses their model architecture and seg-
mentation uncertainty estimation based on Bayesian approximation.

Network Architecture.Themodel architecture stems from theHourglass andU-Net
design principles (Ronneberger et al. 2015; Liu et al. 2017). The contracting branch
of the model is based on the Resnet-34 encoder where we introduce useful modifica-
tions: ELU activations instead of ReLU, reversed order of batch normalization and
activation layers (Mishkin et al. 2017), and He normal weight initialization (He et al.
2015). One major difference from the classical U-Net architecture is meant to deal
with the limited dataset size characteristic for the GIANA challenge and for medical
imaging problems in general. We use two approaches to alleviate the problem of
overfitting to limited training data: (1) extreme data augmentation and (2) Spatial
2D Dropout (Tompson et al. 2015) incorporated into the upsampling branch. The
upsampling branch is implemented as a Feature Pyramid Network (FPN) (Lin et al.
2016), reconstructing high-level semantic feature maps at 4 scales simultaneously.
We implement a Feature Pyramid block as a convolutional layer with 64 activation
maps followed by upsampling to the original resolution with upsampling rate of 8, 4,
2, or 1 depending on the featuremap depth (see Fig. 12.7).We concatenate upsampled
maps into a single layer of 64× 4 = 256 maps and finalize it with the Spatial 2D
Dropout layer. Spatial 2D Dropout acts like a regularizer and prevents co-adaptation
of the network weights, but unlike conventional dropout it drops out not individual
neurons but entire activation maps. In all experiments, we use dropout rate 0.5, i.e.,
drop 128 out of 256 activation maps.

Finally, the output of the model is a sigmoid layer that assigns to every pixel a
continuous probability from 0 to 1 of being a polyp region.

Loss functions. It is known that the categorical cross entropy (CCE), while conve-
nient for training, does not directly translate into the metric of interest, Jaccard index
(Rakhlin et al. 2018; Iglovikov et al. 2017; Rakhlin et al. 2019). Hence, as the loss
function we use

L(w) = (1− α)CCE(w) − α J (w), (12.1)

a weighted sum of CCE and the soft Jaccard loss

J = 1

P

P∑

p=1

(
yp ŷp

yp + ŷp − yp ŷp

)
, (12.2)
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Fig. 12.7 Neuromation architecture

where yp is the binary label for pixel p, ŷp is the predicted probability for p, and P
is the number of pixels in the image.

Segmentation uncertainty estimation. In the domain of medical imaging, it is
particularly important to tell whether a model is confident about its estimate or not.
One distinctive feature of our approach is an innovative application of dropout as
a Bayesian approximation, as recently proposed by Gal and Ghahramani (2016),
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html.

Classical deep learning tools do not capture model uncertainty, returning only a
point estimate at the output. Using softmax to get probabilities is actually insufficient
to obtain model uncertainty (http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.
html). Bayesian models, on the other hand, offer a framework suitable to reason
about model uncertainty, but usually do it with a prohibitive computational cost.
Gal et al. show that dropout neural networks are identical—under certain, not too
restrictive, assumptions—to variational inference in Gaussian processes. In particu-
lar, they demonstrate “that averaging forward passes through the dropout network is
equivalent to Monte Carlo integration over a Gaussian process posterior approxima-
tion” (http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html).

Traditionally, dropout is considered as model averaging, and it was originally
explained that scaling the weights at test time without dropout gives a reasonable
approximation to the “average” model (Srivastava et al. 2014). However, for convo-
lutional networks this approximation is not sufficient and can be improved consid-
erably (Gal and Ghahramani 2016).

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
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Fig. 12.8 Basic network
architecture
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12.3.3 Konica Minolta

Figure12.8 shows the basic structure of our network. We use U-Net (Ronneberger
et al. 2015) or Link Net (Chaurasia and Culurciello 2017) type deep neural networks
with different encoders from the original U-Net and Link Net. U-Net and Link Net
both have an encoder-decoder structure and intermediate feature maps in the encoder
are concatenated or summed to intermediate featuremaps in the decoder, respectively.

12.3.3.1 Modification of Base Architecture

Polyp detection, localization and segmentation tasks Our encoder is based on 101
layer ResNeXt (Xie et al. 2017) with Squeeze-and-Excitation blocks (Hu et al. 2018).
The decoder is almost same as the original U-Net and Link Net networks except the
number of feature maps. We use Link Net type for the polyp detection task, and use
U-Net type network for the polyp localization and segmetation tasks.

WCE detection and localization tasks Figure 12.9 shows the whole structure of
our network for the WCE detection and localization tasks. We use Link Net type
for the WCE detection and localization tasks. Our encoder is based on 101 layer
ResNeXt (Xie et al. 2017) with Squeeze-and-Excitation blocks (Hu et al. 2018).
The decoder is almost same as the original U-Net and Link Net networks except
the number of feature maps. We add two fully connected layers on top of the last
residual block of the encoder (“Residual + SE Block #4” in Fig. 12.9) and obtain the
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Fig. 12.9 Network
architecture for WCE
detection and localization
task
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classification results. We also obtain the lesion area (segmentation mask) as output
of the decoder. The network is trained on the tasks of classification and segmentation
simultaneously. The locations of the lesions are obtained by post-processing the
segmentation results as described later.

12.3.3.2 Parameter Tuning to Solve the Task

Polyp detection, localization and segmentation tasks The training procedure is as
follows.An input image is resized to 320× 320 pixels after the border area is cropped.
We use stochastic gradient descent for the optimization. The hyper-parameters in the
optimization are that the initial learning rate is 0.1 and the momentum is 0.9. We
decay the learning rate with a cosine annealing for each epoch. Themini-batch size is
32 and we run 200 epochs. The loss function is summation of softmax cross entropy
loss and dice loss (Milletari et al. 2016). The softmax cross entropy loss is weighted
depending on the distance from the contour of the polyp area (Anas et al. 2017). Data
augmentation is applied on the fly during the training. We augment using translation,
rotation, resizing, flipping, and contrast. We also use mixup (Zhang et al. 2017).
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At inference, the final probability map is resized to the original size and thresh-
olded. When probabilities of any pixels are greater than the threshold, we decide
there are polyps. Otherwise, we decide there are no polyps.

In the polyp detection task, the threshold value is 0.2 which is decided by using
the validation dataset.

In the polyp localization task, the threshold value is 0.4 which is decided by using
the validation dataset. When we decide there are polyps, we find the largest area and
we use the center of gravity of the largest area as the location of the polyp.

In the polyp segmentation task, the threshold value is 0.3 which is decided by
using the validation dataset.

WCE detection and localization tasks The training procedure is as follows. An
input image is resized to 320 × 320 pixels after the border area is cropped. We
use stochastic gradient descent for the optimization. The hyper-parameters in the
optimization are that the initial learning rate is 0.1 and the momentum is 0.9. We
decay the learning rate with a cosine annealing for each epoch. The mini-batch size
is 64 and we run 400 epochs. The loss function is summation of the classification
loss and the segmentation loss. The classification loss is softmax cross entropy, and
the segmentation loss is the summation of pixel-wise softmax cross entropy loss
and dice loss (Milletari et al. 2016). Data augmentation is applied on the fly during
the training. We augment using translation, rotation, resizing, flipping, and contrast
adaptations.

At inference, the classification results are obtained from the output of the fully
connected layer on top of the encoder. When the classification result is vascular or
inflammatory, we identify the locations of the lesions by using the segmentation
result. The segmentation result is obtained from the output of the decoder as a prob-
ability map. The probability map is resized to the original image size. Candidates of
lesions are regions where the probability is greater than a threshold. If the region size
is greater than another threshold, we identify the region as a lesion. The centroids
of the detected lesion regions are used as localization results. The threshold values
for the probability map and the region size are 0.7 and 50, respectively, which are
chosen based on the results on the validation dataset.

12.4 Examples of Results (on the Training Sets)

12.4.1 RTC-ATC

Different experiments were carried out to determine if polyps were detected correctly
or not. Tests were performed every 50 epochs, selecting different confidence thresh-
olds in order to obtain the best results. Polyps detection performance is reported in
Table 12.1. The results show the robustness of the proposed Faster R-CNN archi-
tecture on detecting the polyp position in colonoscopy images with a precision of
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Table 12.1 Polyps detection performance. TP:TruePositive, FP: False Positive, TN:TrueNegative,
FN: False Negative

TP FP TN FN Precision Recall Accuracy Specificity F1 F2

3533 866 1659 1154 80.31 75.37 71.99 65.70 77.76 76.30

Fig. 12.10 RTC-ATC Polyp detection results task. Left: polyps detected by Faster R-CNN. Con-
fidence values are represented in blue. Right: their corresponding ground truth. A and B show the
performance in case a polyp appears, while C shows the performance in case there is no polyp

80.31%, a recall of 75.37%, an accuracy of 71.99% and a specificity of 65.70%. The
minimal threshold was established at 0.80.

In Fig. 12.10 the results of our recognition system can be seen by showing the
precision when detecting polyps inside samples from the dataset, and their corre-
sponding mask images (as a ground truth) indicating where the polyps are located.
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12.4.2 Neuromation

A direct application of Gal and Ghahramani (2016), http://mlg.eng.cam.ac.uk/yarin/
blog_3d801aa532c1ce.html theory gives us tools to model uncertainty out of deep
learning networks at almost zero additional cost. To this end, at test time we do
not scale the weights, as it would be in the case of classical dropout. Instead, the
model keeps dropping out random activation maps, producing multiple predictions
for the same input. This output distribution provides more accurate point estimate
and makes possible to assess the uncertainty of polyp segmentation.

Figure12.11 shows sample segmentation results of our model on validation set
samples that we set aside from the training set. It shows, left to right, the original
image, ground truth segmentation mask, the model’s binary prediction, and, finally,
the level of uncertainty estimated by spatial 2D dropout. We see that not only the
model shows excellent segmentation results but also assigns reasonable uncertainty
values, usually being least certain near the boundaries of a polyp.

12.4.3 Konica Minolta

WCE detection and localization tasks We evaluated our proposed method by using
the training data set provided in WCE lesion detection and localization challenge in
gastrointestinal image analysis (GIANA). The training data set is composed of 600
imageswithout lesion, i.e., normal, 600 imageswith a vascular lesion and 600 images
with an inflammatory lesion. The evaluation was conducted with cross-validation of
the training data set. We divided the training data set into six groups and used four
groups for training, one group for validation, and one group for testing. Thus, we
had six folds for cross-validation and the performance was evaluated with average
values and standard deviations of test data in six folds.

We used some evaluation metrics based on the definition in the WCE lesion
detection and localization challenge. For classification, we calculated the following
metrics; true positive rate (TPR), false positive rate (FPR), false negative rate (FNR),
true negative rate (TNR), and accuracy. With respect to localization, we calculated
precision, recall, F1 and F2 for two lesion types, i.e., vascular and inflammatory
lesions.

Tables12.2 and 12.3 show the summary of classification and localization perfor-
mance, respectively. In those tables, the numbers mean “average ± standard devi-
ation” and the units are percent. The average and standard deviation are calculated
for test data of all folds in all lesion types for classification and two lesion types
(vascular and inflammatory) for localization.

http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
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a

b

c

d

Fig. 12.11 Neuromation results. Left to right: a original image, b ground truth, c predicted mask,
d uncertainty of the prediction

Table 12.2 Results of classification task

TPR FPR FNR TNR Accuracy

98.67 ± 0.42 0.67 ± 0.21 1.33 ± 0.42 99.33 ± 0.21 99.11 ± 0.28

Table 12.3 Results of localization task

Precision Recall F1 F2

88.76 ± 1.59 76.26 ± 4.05 81.98 ± 2.28 78.44 ± 3.37
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Chapter 13
Multi-scale Ensemble of ResNet Variants

Joost van der Putten and Farhad Ghazvinian Zanjani

13.1 Motivation

Residual learning has become a staple in the deep learning community due to its
simple yet effective design. ResNets have been successfully employed for a variety
of problems (Tan et al. 2018; Chen et al. 2018; Habibzadeh et al. 2018; Putten
et al. 2019). Additionally, we incorporate multi-scale information in our approach
by training models with different input image resolutions. This approach is taken
since multi-scale approaches have been shown to be effective for many medical
image analysis problems (Litjens et al. 2017). Finally, ensembling is a good way
to boost performance and ensembles have been used to win many AI competitions.
These methods are especially effective when the models are diverse (Brown et al.
2005). We achieve this diversity by using different ResNet models and by employing
the multi-scale approach.

13.2 Methods

13.2.1 Pre-processing

All images are pre-processed before the actual training process. A few images had a
larger resolution of 704× 704 pixels, these instances were first resized to 576× 576
pixels in order to keep the images on the same scale. Second, the black borders
surrounding the endoscopic field of view were also removed before training. This
was done for two reasons: (1) it removes redundant useless information and (2)
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timestamps in the corners of the images could cause an unwanted bias. The image
resolution after pre-processing is 512× 512× 3 for all images in the data set.

13.2.2 Class Split

The classification process was split up into two binary classification problems instead
of one ternary problem. First, we train a network to classify the images as either
normal or diseased frames (Vascular Lesion (VL) and Inflammatory Lesion (IL)
combined), with a training set which contains 600 normal images and 1212 diseased
images. Second, we train a separate network to classify the diseased images as
either VL or IL, with a training set of 605 vascular lesions and 607 inflammatory
lesions. This approach was taken as initial experiments showed poor results on the
ternary problem. By simplifying the difficult ternary problem into two easier binary
problems, the validation results were increased substantially.

13.2.3 Training Details

13.2.3.1 Transfer Learning

For the normal-diseased classification we use several models pre-trained on Ima-
geNet (Deng et al. 2009). We employed several versions of the widely used ResNet
architecture for our approach. Table13.1 shows all ResNet (He et al. 2016) variants
that were used for this solution. ResNet like architectures have become a staple in
deep learning since the introduction in 2016 (Tan et al. 2018). Many works have
successfully used networks with residual connections such as in road scene seg-
mentation (Chen et al. 2018), or white blood cell classification (Habibzadeh et al.
2018). Residual Networks have also been successfully used for artificial intelligence
in endoscopy (Putten et al. 2019). In this work, we employ fully convolutional ver-
sions of these networks, so we have no restrictions on the input dimensions of the
networks. This facilitates the training of 3 separate models for each of the architec-
tures in Table13.1, the first with the original input resolution (512× 512), the second
where the input resolution is resized to 256× 256 pixels and a third where we resize
the images to 128× 128 pixels. This approach results in 15 trained networks for
the classification of normal images versus diseased images that operate on different
scales. This multi-scale approach is also commonly used in medical imaging anal-
ysis (Litjens et al. 2017). More information on the combination of these models is
further described in Sect. 13.2.4.

The same approach is taken for the vascular lesion versus inflammatory lesion
classificationwith onedifference. Instead of usingnetworks pre-trainedon ImageNet,
we use the weights of the networks obtained in the normal-diseased classification
stage.
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Table 13.1 Base architecures used for this solution

Model Description

ResNet18 ResNet architecture with 18 convolutional layers

ResNet34 ResNet architecture with 34 convolutional layers

ResNet50 ResNet architecture with 50 convolutional layers

ResNet101 ResNet architecture with 101 convolutional layers

ResNext (Xie et al. 2017) Adaptation of ResNet where each Residual block is split up
into a large amount of 3× 3 convolutions after applying a
bottleneck layer

13.2.3.2 Two-stage training

In order to fully leverage the effectiveness of the transfer learning strategy, we train
our model in two stages. First, as we need to replace the final layer to suit our binary
classification problem, the corresponding weights are not yet trained in the normal-
diseased classification part. For that reason, all weights of themodel are frozen except
for the final layer and are trained for one epoch with a starting learning rate (λ) of
10−2, for the rest of the epoch we decay λ with cosine annealing every batch in such
a way that the learning rate equals 10−4 at the end of the epoch. During the disease-
classification part, this first step is skipped as we already have a binary output. The
learning rates for all models were obtained with the learning rate range test.

We use differential learning rates in the second stage of training. Differential
learning rates capitalize on the tendency of neural nets to learn basic features such as
edges and shapes in the first few layers, and complex features such as, in the case of
ImageNet, faces, and dog breeds. We assume the former are still very useful for our
goal while the later are nearly useless. First, we unfreeze all weights of the model.
Second, the learning rates for the layers are changed depending on depth. λ of the
final third are set to 10−2. Maximum λ of the middle third of the layers and first third
of the layers are set to 5−3 and 10−3, respectively. This approach allows the optimizer
to update the weights in the later irrelevant layers more aggressively than in the early
layers containing relevant low-level features. We train the model for five cycles with
a cyclical learning rate scheduler (Smith 2017) and a cycle multiplier of 2.

13.2.4 Ensembling

After training all models, each model’s prediction score is saved for each image.
Resulting in 15 classification scores per image. These scores are then fed into a final
fully connected neural network with only one hidden layer and 20 hidden neurons.
The output of this model is a binary classification (normal-disease or VL-IL). This
small network automatically learns which of the 15 models contribute the most to
the final classification. One ensemble network is trained for each of the classification
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Fig. 13.1 Schematic overview of the usedmodels and the ensemblingmethod. A given input image
is fed to five different models with three different input resolutions. The outputs of the resulting 15
models are then finally fed to a small fully connected network to determine a final classification
label

parts. Ensembling almost always improves classification performance compared to
singe model predictions. When there is no limitation on the amount of available
compute, ensembling is a good way to boost performance (Dietterich 2000). An
overview of the used model is shown in Fig. 13.1.

13.2.5 Test-Time Augmentation

At test time, we predict the probability that a certain patch belongs to a class as usual.
In addition to that we also predict the class of eight random transformations of the
same image. The transformations used in this case are the same transformations used
as data augmentation during training. In this workwe use randomflipping (horizontal
and vertical), random zoomwith a maximum zoom of 10%, and balance and contrast
adjustments. This results in nine classification probabilities of slight permutations
of the same image. The average of these predictions is in many cases a better class
indicator than using only the original image.
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13.2.6 Validation

To determine hyper parameters such as learning rate, batch size, and stopping criteria,
25% of the training set is randomly selected to validate the model. After determining
the optimal hyperparameter settings, the entire model is retrained with all available
labeled data using the optimal hyperparameters. Then, the entire test set is first
classified into diseased versus normal with the first model. Finally, the samples
classified as diseased are further split into vascular lesion or inflammatory lesion
with the second model.
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Chapter 14
Convolutional LSTM

Tom Eelbode, Pieter Sinonquel, Raf Bisschops, and Frederik Maes

14.1 Introduction

A common limitation to almost all state-of-the-art techniques for automated polyp
detection and delineation is that they are based on still-frame analysis (Wang et al.
2018; Urban et al. 2018; Shin et al. 2018; Mohammed et al. 2018). Colonoscopy,
however, is a video-basedmodality and an endoscopist will always use the contextual
information from previous frames to make an accurate decision about the potential
presence of a polyp. Recent developments in semantic segmentation of videos in
non-medical applications (Fayyaz et al. 2016; Valipour et al. 2017) show that includ-
ing temporal features in a CNN can increase its performance and also yield more
consistent results over time. Recurrent neural networks (RNNs) are a commonly used
concept for sequence modeling and essentially allow neural networks to retain infor-
mation over time. Long short-term memory (LSTM) models are a type of RNNs that
can model longer time dependencies than traditional RNNs and it is a convolutional
variant of these LSTM models (Xingjian et al. 2015) that is used in this chapter.
The latter can not only encode temporal features but can simultaneously incorporate
spatial features into one single layer.

We extend a state of the art, non-medical object segmentation network—
Deeplabv3+ (Chen et al. 2018)—with a convolutional LTSM layer in its decoder.
This allows the use of a pretrained network and to finetune it to our relatively small
polyps dataset. This makes the training of the LSTM layers much faster and easier
to converge.
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14.2 Methods

In this work, an extension to the powerful Deeplab v3+ (Chen et al. 2018) is proposed
where a convolutional LSTM layer is introduced at the deepest level as illustrated in
Fig. 14.1. Deeplab is an encoder-decoder network that uses spatial pyramid pooling
modules for multi-scale contextual information extraction. It effectively models rich
semantic information on a coarse level, but also captures fine object details along
its boundaries. The former (the coarse features) typically have a more continuous
course over sequential frames (Shelhamer et al. 2016) and having access to these
features from previous frames might help with segmentation. That’s why here, these
high-level features are fed to a convLSTM layer before they are up-sampled and
concatenated with the low-level features. All layers are identical to the original
Deeplab architecture except for this one added layer. This has the advantage that we
can use a pretrained encoder. The original model is pretrained on Imagenet and then
further finetuned for single frame prediction of colonic polyps before the convLTSM
layer is added.

The training of the network is done in three sequential steps:

1. Finetuning of Deeplab on GIANA dataset
We use the original Deeplabv3+ architecture with Xception backbone pretrained
on the PASCAL VOC 2012 challenge dataset (Everingham et al. 2010). This
network is then finetuned on the GIANA Challenge dataset by progressively
setting more layers as trainable starting from the final layer. We use the Adam
optimizer with focal loss (Lin et al. 2017) and a learning rate of 1e−5 for 1000
epochs. Steps per epoch are 50 steps for a batch size of 16 full images.

2. Changing architecture towards recurrent model
The Deeplab architecture is extended by introducing the ConvLTSM layer into

Fig. 14.1 Our proposed extension to Deeplabv3+ places a convLSTM layer after the high-level
features are extracted. This gives the decoder network access to relevant semantic information from
the previous frames
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the decoder. The rest of the architecture is left unaltered such that we can re-use
the weights from step 1 for further training. We found that loading weights from
the previously trained network allow for a much faster and more robust training
of the RNN compared to training it from scratch.

3. Training of Deeplab_rec on GIANA dataset with BPTT
The decoder part of our recurrent deeplabmodel is retrained with the same dataset
as before. To train a recurrent neural network, one cannot simply use backpropa-
gation as for a standard CNNmodel. In order to also learn temporal dependencies,
we use truncated backpropagation through time (BPTT) with 10 timesteps. Once
again, we use the Adam optimizer with focal loss and a learning rate of 1e−5. We
train for 30 epochs with 100 steps per epoch and a batch size of 16 sequences.

For training, the oval-shapedCVC_video annotations are used directly for training
this dense segmentation network. Although not ideal since edges of the polyps will
most likely not be recovered, we see that it can still converge and learn the location of
the polyp in this way. During training, intensive data augmentation is used: rotation,
flipping, random cropping and width shifting, color and brightness disturbance, and
blurring. All experiments were run on a single NVIDIA RTX 2080 Ti GPU card with
11Gb of memory.

14.3 Task-Specific Parameter Tuning

The same method was applied to each of the first four tasks, being polyp detec-
tion, localization, segmentation, and HD segmentation. This section describes the
differences between the implementations for each task.

14.3.1 Polyp Detection

Pre-processing—The original images of size 384× 288 are cropped and subse-
quently bilinearly downsampled to fit the network’s input size of 224× 224. Their
histograms are equalized with contrast limited adaptive histogram equalization
(CLAHE) and they are normalized to zero mean and a variance of 1 on a sample
level.
Post-processing—The output of the network is a segmentation map for each image
indicating the probability of every pixel belonging to a polyp or not. A simple blob
detector is applied to these segmentation maps to identify any coherent blobs with
sufficient probability. The center points of these blobs are then used as candidates for
possible polyp locations. A confidence score is then calculated for each candidate
basedon the output probability of the network in that region and also onwhether or not
the previous frames had a candidate in roughly the same location. This confidence
value is then thresholded to determine final polyp locations. The output value for
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polyp detection is then determined by the presence in the entire frame of a polyp
candidate with a high enough confidence value.

14.3.2 Polyp Localization

The process for this task is completely identical to the one for polyp detection
(Sect. 14.3.1). The output is however not just the frame-wide prediction, but each
candidate location is returned with its confidence value.

14.3.3 Polyp Segmentation

The data for this task was slightly different. The frames in this dataset were not
sequential and an oval-shaped annotated ground truth was provided for each image.
Since no temporal information was available, the same network was applied but
without the convLSTM layer (i.e., the original Deeplabv3+ model). This model was
then also finetuned on the segmentation training set.
Pre-processing—This is almost identical to the process defined for polyp detection
in Sect. 14.3.1 except for the resizing. The original images of size 574× 500 were
squashed immediately to fit the network’s input dimensions of 224× 224 without
cropping since there was only a small difference in aspect ratio.
Post-processing—The output probability map is passed to a fully connected CRF
in order to finetune the predictions to the finer edges (Krähenbühl and Koltun 2011).
The resulting probability map is thresholded and any remaining holes are filled.

14.3.4 Polyp Segmentation HD

Pre-processing The process is identical to that for the SD except for one pre-
processing step. The black borders on the image are cropped before further pro-
cessing the image. This way, a large portion of the image (which is not of interest)
is removed and the size of the input image is significantly lower. The non-temporal
polyp segmentation network from the previous subsection is finetuned once more
for these higher resolution images.

In this chapter, a state-of-the-art object segmentation network is extended with a
ConvLSTM layer to incorporate temporal features into the decoder of the network.
Access to this temporal information has the potential to decreases the number of false
positives detected by the networkwithout any decrease in sensitivity. In Eelbode et al.
(2019), it is shown that treating colonoscopy as a video-based modality instead of
processing each frame individually, is feasible and beneficial in terms of detection
performance. Especially for confusing frames (such as blurry or artefact-containing
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frames), the recurrent version is more robust. The same technique is applied here
with a few limitations: the number of polyp sequences to train on in the GIANA
dataset is much lower, the nature of the ground truths for these sequences is also
less informative since these are bounding boxes as opposed to dense delineations.
Additionally, this technique delivers dense segmentations for each frame as opposed
to the frame-level classification or location that is needed for the polyp detection and
localization task in this challenge. This makes the post-processing a vital step for
the result and effectively makes the model not end-to-end trainable for this task. The
segmentation task on the other hand does expect these dense outputs, but there is
no temporal information available for these subtasks. The full benefit of this method
should therefore be evaluated on a different type of dataset which will hopefully be
available in future GIANA challenge editions.

In future work, we will investigate how this technique can be extended for video-
based polyp characterization, i.e., the automated identification of the polyp type
(malignant or benign). We believe that for this type of application, inclusion of
temporal information will be even more important since an endoscopist also needs
to inspect a polyp from multiple angles to make an accurate prediction of its type.
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Chapter 15
TernausNet

Vladimir I. Iglovikov and Alexey A. Shvets

15.1 Model Architecture

In this work we evaluate four different deep architectures for segmentation: U-Net
(Ronneberger et al. 2015), two modifications of TernausNet (Iglovikov and Shvets
2018), and a modification of LinkNet called AlbuNet34 (Chaurasia and Culurciello
2017; Shvets et al. 2018).

In general, a U-Net-like architecture consists of a contracting path to capture
context and of a symmetrically expanding path that enables precise localization
(for example, see Fig. 15.1). The contracting path follows the typical architecture
of a convolutional network with alternating convolution and pooling operations and
progressively downsamples feature maps, increasing the number of feature maps per
layer at the same time. Every step in the expansive path consists of an upsampling of
the feature map followed by a convolution. Hence, the expansive branch increases
the resolution of the output. In order to localize, upsampled features, the expansive
path combines them with high-resolution features from the contracting path via
skip-connections (Ronneberger et al. 2015). The output of the model is a pixel-by-
pixel mask that shows the class of each pixel. We use slightly modified version of
the original U-Net model that previously proved itself very useful for segmentation
problems with limited amounts of data, for example, see (Iglovikov et al. 2018). Our
submission to the MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia
detection and localization is produced using this architecture.

As an improvement over the standard U-Net architecture, we use similar networks
with pre-trained encoders. TernausNet (Iglovikov and Shvets 2018) is a U-Net-like
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Fig. 15.1 These segmentation networks are based on encoder-decoder network of U-Net family.
TernausNet uses pre-trained VGG16 network as an encoder, while AlbuNet34 uses pre-trained
ResNet34 as an encoder. It is different from TernausNet in that it adds skip-connections to the
upsampling path, while TernausNet concatenates downsampled layers with the upsampling path
(just like original U-Net does). Each box corresponds to a multi-channel feature map. The number
of channels is pointed below the box. The height of the box represents a feature map resolution.
The blue arrows denote skip-connections where information is transmitted from the encoder to the
decoder
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architecture that uses relatively simple pre-trained VGG11 or VGG16 (Simonyan
and Zisserman 2014) networks as an encoder (see Fig. 15.1). VGG11 consists of
seven convolutional layers, each followed by a ReLU activation function, and five
max polling operations, each reducing feature map by 2. All convolutional layers
have 3 × 3 kernels. TernausNet16 has a similar structure and uses VGG16 network
as an encoder (see Fig. 15.1).

In contrast, AlbuNet uses an encoder based on a ResNet-type architecture (He
et al. 2016). In this work, we use pre-trained ResNet34, see Fig. 15.1. The encoder
starts with the initial block that performs convolution with a kernel of size 7 × 7 and
stride 2. This block is followed by max-pooling with stride 2. The later portion of
the network consists of repetitive residual blocks. In every residual block, the first
convolution operation is implemented with stride 2 to provide downsampling, while
the rest convolution operations use stride 1. In addition, the decoder of the network
consists of several decoder blocks that are connected with the corresponding encoder
block. As for TernausNets, the transmitted block from the encoder is concatenated
to the corresponding decoder block. Each decoder block includes 1 × 1 convolution
operation that reduces the number of filters by 4, followed by batch normalization
and transposed convolution to upsample the feature map.

15.2 Model Training

We use Jaccard index (Intersection Over Union) as the evaluation metric. It can be
interpreted as a similarity measure between a finite number of sets. For two sets A
and B, it can be defined as following:

J (A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (15.1)

Since an image consists of pixels, the last expression can be adapted for discrete
objects in the following way:

J = 1

n

n∑

i=1

(
yi ŷi

yi + ŷi − yi ŷi

)
(15.2)

where yi and ŷi are a binary value (label) and a predicted probability for the pixel i ,
correspondingly.

Since image segmentation task can also be considered as a pixel classification
problem, we additionally use common classification loss functions, denoted as H in
15.3. For a the binary segmentation problem H is a binary cross entropy, while for
the multi-class segmentation problem H is a categorical cross entropy.

The final expression for the generalized loss function is obtained by combining
(15.2) and H as following:
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Fig. 15.2 The prediction of our detector on the validation set image. Here, the left panel shows
the original image, the middle panel shows the ground truth training mask, and the right panel
shows the predicted mask. Green dots inside of each mask corresponds to the centroid that defines
angiodysplasia localization output. Here, for example, the real and predicted values for centroid
coordinates correspondingly are p1mask = (376, 144), p1pred = (380, 143) for the first mask and p2mask

= (437, 445), p2pred = (437, 447) for the second mask

L = H − log J (15.3)

By minimizing this loss function, we simultaneously maximize probabilities for cor-
rect pixels to be predicted andmaximize the intersection J betweenmasks and corre-
sponding predictions, which improves overall segmentation performance (Iglovikov
and Shvets 2018). Each model is trained with Adam optimizer for 10 epochs with
learning rate 0.001, and then for another 5 epochs with the learning rate 0.0001.

15.3 Postprocessing

At the output of amodel,we obtain an image, inwhich each pixel value corresponds to
a probability of belonging to the area of interest or a class. The size of the output image
matches the input image size. For binary segmentation, we use 0.3 as a threshold
value (chosen using validation dataset) to binarize pixel probabilities. All pixel values
below the specified threshold are set to 0, while all values above the threshold are
set to 255 to produce final prediction mask.

Following the segmentation step, we perform postprocessing in order to find
the coordinates of angiodysplasia lesions in the image. In the postprocessing
step we use OpenCV implementation of connected component labeling function:
connectedComponentsWithStats. This function returns the number of con-
nected components, their sizes (areas), and centroid coordinates of the corresponding
connected component. In our detector we use another threshold to neglect all clusters
with the size smaller than 300 pixels. Therefore, in order to establish the presence of
the lesions, the number of found components should be higher than 0, otherwise the
image corresponds to a normal condition. Then, for localization of angiodysplasia
lesions we return centroid coordinates of all connected components.
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Table 15.1 Segmentation results. Intersection over Union (IoU) and Dice coefficient (Dice) are in
%, and inference time (Time) is in ms

Model IOU Dice Time

U-Net 73.18 83.06 30

TernausNet11 74.94 84.43 51

TernausNet16 73.83 83.05 60

AlbuNet34 75.35 84.98 21

15.4 Results

The qualitative results of segmentation and localization on the image from the vali-
dation set are shown in Fig. 15.2. Given imperfect segmentation, this example does
show that the algorithm successfully detects angiodysplasia lesions. When there are
few lesions in an image and they are well separated in space, the detector demon-
strates near-perfect performance. In case of many lesions that possibly overlap in
space, further improvements are required in order to achieve better performance,
specifically in choosing model hyperparameters.

The quantitative comparison of our models’ performance is presented in the
Table15.1. As measured by the segmentation performance, both modifications of
TernausNet and AlbuNet34 demonstrate performance improvements over the origi-
nal U-Net architecture. AlbuNet34 shows the overall best results with I oU = 0.754
and Dice = 0.831. These results show that despite the different image character-
istics, networks pre-trained on natural images improve initialization of the encoder
part in the segmentation model. When compared by the inference time, AlbuNet is
also the fastest model due to the lighter encoder. This network takes around 20ms to
segment 512 × 512 pixel image and more than three times as fast as TernausNets.
The inference time was measured using a single NVIDIA GTX 1080Ti GPU.

These results can be improved even further by, for example, employing deeper
and/or wider encoder architectures (Iglovikov et al. 2018) and applying more sophis-
ticated image augmentations.

The code of this methodology is publicly available under MIT license at https://
github.com/ternaus/angiodysplasia-segmentation.
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Chapter 16
Regression-Based Convolutional Neural
Network with a Tracker

Ruikai Zhang and Carmen C. Y. Poon

16.1 Motivation

An automatic colonic polyp localization algorithm named RYCO is developed to
tackle the challenges of precise polyp location indication together with fast pro-
cessing time when general limited and accessible computation resource is given.
The uniqueness of RYCO is that it aims to utilize spatial information from current
frame while incorporate temporal information accumulated from previous frames.
Figure16.1 shows the pipeline of RYCO, where a regression-based 2D CNN detec-
tion model named ResYOLO was built to locate a polyp in current frame as well as
to check whether the tracked polyp was still in the view. Meanwhile, assuming that a
polyp will not jump from one location to another between two consecutive frames by
large distance, a DCF-based tracker called Efficient Convolution Operators (ECO)
(Danelljan et al. 2017) was introduced to provide a stable guidance on the polyp
location. The proposed pipeline is robust on frames with poor quality such as electri-
cal noise and motion artifacts that are commonly encountered during colonoscopy.
It has also inspired a few researchers adopting the same architecture with different
CNN architectures and tracking methods for similar tasks.

R. Zhang (B) · C. C. Y. Poon
Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
e-mail: rzhang@surgery.cuhk.edu.hk

© Springer Nature Switzerland AG 2021
J. Bernal and A. Histace (eds.), Computer-Aided Analysis of Gastrointestinal Videos,
https://doi.org/10.1007/978-3-030-64340-9_16

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64340-9_16&domain=pdf
mailto:rzhang@surgery.cuhk.edu.hk
https://doi.org/10.1007/978-3-030-64340-9_16


134 R. Zhang and C. C. Y. Poon

Fig. 16.1 Pipeline of the proposed computer-aided detection algorithm RYCO (Zhang et al. 2018)

16.2 Method Description in Details

16.2.1 Spatial Feature Learning

16.2.1.1 One-Stage Detector

It is reported that one-stage object detector can be at least 2.5 times faster than a
region-proposal-based object detector with comparable performance (Redmon et al.
2016). In addition, regression-based CNN encodes information of the whole image
instead of regions to make predictions and therefore, it is less vulnerable to back-
ground errors. The proposed regression-based 2D CNN ResYOLO is based on a
famous one-stage object detector called YOLO (Redmon et al. 2016). Adopting the
one-stage strategy, the intuition of YOLO was to mathematically model all ground
truths in a single matrix, which make the end-to-end CNN training straightforward
and efficient. Firstly, input image was divided intoG byG grids, and the CNNmodel
was trained to predict B bounding boxes for each grid. The ground truth for each grid
to be assigned for training was decided by whether an object was centered on that
grid. If the grid contained an object, the conditional class probability P(c) for class
c would be assigned. A total of five indicators were used to describe each bounding
box, of which includes four indicators for box offset and one indicator for confidence
score of objectnessCon f . The box offset was described by object center coordinates
(x, y), width, and height of the box (w, h). Thus, each grid was described by a vec-
tor of K elements, where K = 5 × B + C . The output of candidate bounding boxes
for the whole image was a matrix of size of G × G × K . Non-maximum suppres-
sion was used to remove redundant candidate bounding boxes with high intercept
of union with each other. The loss function L for optimizing the regression model
was comprised of loss for grids labeled as object Lobj and those as no-object Lno−obj

described in the following equations:
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Lobj =
G2∑

g

(

B∑

b

Og,b(λbboxε(xg, yg,
√

wg,
√
hg) + ε(Con fg)) + Og

C∑

c

ε(Pg(c))) (16.1)

Lno−obj =
G2∑

g

B∑

b

(1 − Og,b)λno−obj (ε(Con fg)) (16.2)

L = Lobj + Lno−obj (16.3)

where g and b are the index for grid and box, respectively. The higher the intersection
over union the predicted bounding box is with ground truth, the higher the Con f
is. Function ε(·) denotes the sum of square of the differences between the variable
and its ground truth. Indicator O equals to 1 if any object is within the selected grid
and equals to 0 if not. As described above, since one-stage object detector trained
regression on box offset and class probability as well as taking loss for grids with and
without objects into account simultaneously, it is not fair to take the loss of different
terms for equal contribution to the overall loss. Thus, different weights coefficient
λ were added to different terms, where λbbox was associated to the loss for box
offset and λno−obj was associated to loss of non-object. The different weights λ were
selected according to (Redmon et al. 2016).

16.2.1.2 Residual Learning Module

Objects in non-medical domain usually stand out more clearly from the image back-
ground than objects inmedical domain. In colonoscopic images, for example, a polyp
usually looks very similar to its surrounding mucosa. In order to extract features that
better describe endoscopic and histological features of different polyps, we proposed
to introduce residual learning modules in the YOLO CNN architecture for feature
learning (He et al. 2016). The rationale of including the residual learning modules
in our design is as follows: It was reported that the depth of the CNN is crucial for
performance as themore layers network has, the richer andmore abstract the features
can be learned, which could benefit in identifying polyps frommucosa. Nevertheless,
as the CNN architecture gets deeper, it becomes more difficult to train, especially
when only limited training data samples are available. By introducing the residual
module as a skip network structure in the design, an enrich set of features can be
extracted from the proposed deep architecture even with limited training data. The
diagram of residual learning modules used in ResYOLO is illustrated in Fig. 16.2.
The residual mapping F(·) implemented can be described by

Hl = Fl(Hl−1) + I (Hl−1) (16.4)

where I (·) is the identity function, l is the index of layer, and Hl denotes the output
of lth layer. Three convolutional blocks were used for residual feature learning,
where a, b, c, and d were coefficients to manipulate the number of channels N and
dimension S of the data. If both the number of channels and the dimensions of Hl−1
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Fig. 16.2 Residual learning
module of our proposed
ResYOLO detector

and Hl were the same, the identity function I (·) can be described as I (x) = x . While
in some cases, coefficient cwas set to 0.5 to increase the number of features to extract
and d was set to 2 to down-sample instead of using pooling layers. To match up the
size of I (Hl−1) with Fl(Hl−1), an additional 1× 1 convolutional layer was added
and the identity function I (·) was described as I (x) = x instead.

16.2.1.3 Training of ResYOLO

TheCNN-based object detectors were usually trainedwith images containing objects
only in previous studies, while these detectors can still perform well as non-medical
objects were usually visually special. However, polyps in endoscopic images can be
wrongly identified ormissed as they can sometimes bemixed upwith normalmucosa
or colon wall. It is intuitive to train the object detector with both endoscopic images
with or without polyps, which introduce more variations to better extract features
that are specific to polyps. Thus, besides images with polyps, images without polyps
extracted from endoscopic videos were also included in the training dataset and
labeled them as a negative class such that the number of classes C used in our model
was 2 instead of 1, which is just the polyp. The benefits of including additional
negative class are categorized in two folds: (1) the training dataset covers a more
generalized data distribution; and (2) the trained model will be more sensitive to
suspicious frames and reduce false positives.

Besides similarity of object to backgrounds, the quality of endoscopic video
frames extracted also brings challenges to the training of ResYOLO. Although it’s
arguable whether polyps in images damaged by motion artefacts were worth detect-
ing, regardless of the quality, all polyp images were accounted as long as the polyp
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can still be recognized in some degree in this training design. Besides using common
augmentationmethods for training dataset like random degree rotation, up-down flip,
and left-right flip, two additional methods were used as well, which were additive
Gaussian smoothing and random contrast and brightness for the purposed of mim-
icking the motion blurs caused by bowel and endoscope movements and variations
of light conditions during colonoscopy. The sequence of methods used for augmen-
tation was randomly selected during training. For example, some of the images were
augmented by rotation of random degree, up-down flip, and Gaussian smoothing
only, while some were augmented by all the five methods mentioned above. The
degree of random rotation, Gaussian smoothing, and contrast and brightness were all
randomly selected within a certain range to keep augmentation from going beyond
reasons.

The diagram of architecture of ResYOLO detector was illustrated in Fig. 16.3,
where 16 residual learning modules were used with three convolutional layers fol-
lowed as classifier. The first and second numbers after each semicolon in each block
of layers in Fig. 16.3 represents the number of channels and the dimension of the out-
put, respectively. Images were resized to 448 × 448 × 3 pixels and subtracted with
the mean of training dataset as input. The grid size G is set to be 14, which was also
the dimension of the output matrix. The intuition of using 14 instead of the original
setting of using 7 in YOLO is to equip ResYOLO with a better capacity in identify-
ing small polyps. Moreover, the number of candidate bounding boxes B predicted
for each grid was set to 2 so that the number of channels of the output matrix was
12(5 ∗ 2 + 2). The maximum number of objects can be detected in this configuration
will be 392(14 ∗ 14 ∗ 2), which was considered more than enough and sufficient for
polyp detection since the number of polyps appeared in the same endoscopic images
rarely goes beyond 10.

16.2.2 Temporal Information Integration

16.2.2.1 Integration of ResYOLO Detector and ECO Tracker

To better explain how the results of ResYOLO detector and ECO tracker (Danelljan
et al. 2017) were integrated, each frame was assumed to contain at most one polyp
here. ECO tracker will only be activated once a polyp was detected by ResYOLO
detector, of which the detection was confirmed by the candidate bounding box with
the highest confidence score Con f in the frame higher than a threshold T . Once the
ECO tracker was activated, the final decision for a frame t was no longer decided by
only ResYOLO detector but instead decided by two factors: (1) fusion of predictions
resulted from both ResYOLO detector and ECO tracker, (2) predictions made from
previous frames. The pipeline of this procedure can be summarized in Fig. 16.1. The
candidate polyp location given by ECO tracker was used as a guidance for a rough
location of polyp for frame t . To avoid miss detection on some polyp frames during
a consecutive period, regardless of whether the Con f score predicted was higher
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Fig. 16.3 Architecture of
ResYOLO detector

than the threshold T or not, the one bounding box given by ResYOLO detector
with the smallest Euclidean distance to the candidate polyp location given by ECO
tracker was taken as a second candidate bounding box. If the mean Con f of the
previous M (including the one from current frame) frames that were predicted with
polyps contained, denoted as Con f , was larger than another threshold T̂ , then the
current frame was suspicious of containing polyp; otherwise, stop ECO tracker and
re-initialize it again when polyp was detected by ResYOLO on later frames. The
intuition of using Con f is to refine the original Con f of current prediction resulted
fromResYOLO detector based on the temporal information brought by ECO tracker,
where the additional threshold T̂ for the refined Con f was using the same threshold
T for Con f for simplicity. The Con f is calculated by

Con f = 1

M
∗

M−1∑

m=0

Con f t−m (16.5)
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If the Con f t of the selected candidate bounding box given by ResYOLO detector
on current frame t was higher than the said Con f , then this bounding box will be
considered as the final detection for current frame t and used as one of the samples
for online training of ECO tracker.

16.2.3 Experimental Setup

The models were trained using images with or without polyps to evaluate the perfor-
mance improvement brought by introducing negative class. Similar to the optimizing
strategy utilized inYOLO (Redmon et al. 2016), a smaller learning rate 10−5 was used
for the first epoch, followed by a higher learning rate 10−4 and gradually decreased
by a factor of 10. The decay rate, momentum, and batch size were set as 0.0005,
0.9 and 5, respectively. Threshold T for initializing tracking as well as determining
suspicious frame was 0.2. The performance of using different numbers of frames M
for calculating the Con f was reported. The best performance of RYCO resulted in
M equals to 6.
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Chapter 17
Other Methodologies

Jorge Bernal and Aymeric Histace

We present in this section some works belonging to teams that also took part in the
different editions of GIANA challenge but, for time reasons, were not able to provide
full chapters like the rest of teams.

17.1 GastroView Angiodysplasia Detection and
Localization

Angiodysplasia detection algorithm in the GastroView system uses a convolutional
neural network as a base classification model. The network is trained on image
patches instead of entire images in order to operate in sliding-window mode in test
time. The outputs are then aggregated and postprocessed in order to provide detection
(full-frame classification) and localization outputs.

17.1.1 Base Model

Classification model uses MobileNet network architecture, featuring good tradeoff
between accuracy and computational cost (Howard et al. 2017). In order to address
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Fig. 17.1 Proposed feature maps for exemplary angiodysplasia image patch

the relatively low training data size, training of the base classification model is per-
formed on image patches cropped from the original images, which significantly
increases the amount of training samples (at the cost of losing some context infor-
mation, however). Four rectangular patch sizes were used of following ratios: 0.1,
0,2, 0.33, 0.5. During training process, for each input image, several random patches
are selected and put into the input batch. Also, batches are balanced in a positive-
negative ratio of 1:2. In addition, input images are subject to random augmentation
transforms, including rotation, flip, skew and perspective transforms, blur, noise as
well as color variance transforms: hue distortion, saturation distortion, and PCAcolor
augmentation (Krizhevsky et al. 2012).

As an additional mean for addressing low training data size, a concept of ded-
icated feature maps is introduced. For this purpose, seven high-level features of
angiodysplasia were identified and implemented in a form of simple image process-
ing algorithms. Each of the features produces an activation map. The resulting seven
feature maps are appended to regular B, G, R channels of the original image, forming
a 10-channel image, which is passed as input to the neural network, with featuremaps
suppressed with 0.1 factor in order to keep network focus on the original channels.
The features are based on the previous work (Brzeski 2014) and they include three
features detecting areas of high color similarity to angiodysplasia regions (based
on smoothed histograms), including color similarity, area smoothness and contour
clearness, similar set of three features for regions of moderate angiodysplasia color
similarity, and lastly, a feature describing domination of red color. Figure17.1 shows
an example of the proposed feature maps applied over an input image.

After initial training of the classifier, hard example mining was applied, in which
30% of all training samples that produced worst classification results were selected
and inserted into hard examples set. In the final training, training sampleswere picked
in 1:1 ratio from the original training set and from the hard examples set, resulting
in approximately four times amplification of hard examples in the training process.
The final base classifier is an ensemble of six top performing models, each acquired
from a different split of sixfold cross-validation applied over the training set.
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17.1.2 Detection

In order to perform classification of a full image frame, a sliding-window detector
using the base model is applied over the image, using patch sizes of 0.1, 0.2, 0.33, 0.5
and respective overlaps 0.5, 0.5, 0.5, 0.25. For each patch size a separate threshold
value was defined. The final detector returns a positive output, if at least one base
model output on any image patch exceeds the threshold respective for its size. The
four thresholds were automatically optimized using random search to minimize full-
frame classification error, evaluated using cross-validation over the training set.

17.1.3 Localization

The outputs of the base model collected over the image during the sliding-window
process are converted into an activation map. To achieve this, each positive output
from the detection is added to the activation map, while negative outputs are sub-
tracted. In order to smooth the activation map, scores for patches are represented as
circles instead of rectangles and blur is applied, which is followed by normalization
of the map. The base model activation map is then multiplied by the fourth of the
introduced featuremaps, denotingmoderate color values similarity to angiodysplasia
regions, which results in the final activation map.

Next, for each patch size a new threshold value is defined. The final localization
algorithm returns one angiodysplasia location point for each base model output that
exceeds the threshold respective for its size, and the selected point is the location
of maximum value of the activation map in the area of considered patch. Similarly
as detection thresholds, localization thresholds are automatically optimized using
cross-validation and random search to minimize localization error over the training
set.
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Chapter 18
Polyp Detection in Colonoscopy Videos

Jorge Bernal, Gloria Fernández, Ana García-Rodríguez, Yael Tudela,
Marina Riera, and F. Javier Sánchez

18.1 CVC-VideoClinicDB Dataset

We introduced in GIANA 2017 and 2018 challenges CVC-VideoClinicDB database,
which is composed of 38 short and long sequences extracted from routinary explo-
rations at Hospital Clinic of Barcelona, Spain using OLYMPUS endoscopes. This
database aims to cover all different scenarios that a given support system should
face. We provide an approximation of ground truth for all polyp frames, as shown in
Fig. 18.2. Ground truth was created using GT Creator tool (Bernal et al. 2017).

CVC-ClinicVideoDB is the largest fully publicly available database1 and con-
tains a total of 29657 frames (21813 frames (73.55%) containing at least a polyp).
Complete description of CVC-ClinicVideoDB is shown Fig. 18.1.

18.2 Performance Metrics

There are some terms defined next which are key to set performance metrics. As we
deal with images from real patients examinations, we will find two different cases:
images with polyps and images without polyps.

In the first case, if detection output lies within the polyp, the method is said to be
providing a True Positive (TP) or correct alarm. It has to be noted that only one TP

1Available at https://giana.grand-challenge.org.
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Fig. 18.1 Statistics of CVC-ClinicVideoDB database. PF stands for polyp frames, NPF for non-
polyp frames, PC for Paris classification representing morphology of the polyp according (0-Is for
sessile polyps, 0-Ip for pedunculated polyps and 0-IIa for flat-elevated polyps) and S for the size of
the polyps (in mm)

Fig. 18.2 Example of the content of CVC-VideoClinicDB database. First pair of images shows a
scene with a polyp and its corresponding binary ground truth mask, representing the polyp in the
image. The second pair of images shows a scene without a polyp. In this case, ground truth is a
black image

will be considered per polyp, no matter how many detections fall within the polyp.
Any detection that falls outside the polyp is considered a False Positive (FP) or false
alarm. The absence of alarm in images with a polyp is considered a False Negative
(FN), counting one per each polyp in the image that has not been detected. Regarding
images without polyps, we define as a True Negative (TN) whenever the method
does not provide any output for this particular image. Any detection provided for
frameswithout a polyp counts as aFalsePositive (FP). Considering these definitions,
we propose the use of the frame-based performance metrics presented in Table18.1.

Apart from these metrics, we will also use Reaction Time (RT) as a way to
measure how fast a given system reacts to the presence of a polyp in the sequence.
RT is calculated as the time difference (in frames) between the first appearance of
the polyp in the sequence and the first correct detection/localization. Given that in
results tables we will only showmean reaction time across all test sequences, we will
calculate Mean Reaction Time (MRT) as the mean of all reaction times (not counting
for the mean those videos in which the polyp was not detected).
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Table 18.1 Performance metrics for polyp detection

Metric Abbreviation Calculation

Precision Prec Prec = T P
T P+FP

Recall Rec Rec = T P
T P+FN

Specificity Spec Spec = T N
FP+FN

Accuracy Acc Acc = T P+T N
T P+T N+FP+FN

F1-measure F1 F1 = 2×Prec×Rec
Prec+Rec

F2-measure F2 F2 = 5×Prec×Rec
4×Prec+Rec

Fig. 18.3 List of participants in GIANA 2017 Challenge on the polyp detection and localization
categories

18.3 Validation Experiments

In this context we will present both polyp detection and localization results. As
mentioned before in this book, detection refers to the capability of a given system to
determine object presence/absence in an image, without worrying about where the
detected object is. Localization deals with the accurate identification of the area that
occupies the polyp in the image.

18.4 Participating Teams

Figures18.3 and 18.4 show the different teams that took part in the 2017 and 2018
iterations of the polyp detection and localization sub-challenges of GIANA. As it
can be seen, 6 different teams took part in the first edition of this subchallenge, being
this number increased to 14 in the 2018 edition.
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Fig. 18.4 List of participants in GIANA 2018 Challenge on the polyp detection and localization
categories
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Chapter 19
Polyp Segmentation in Colonoscopy
Images

Jorge Bernal, Gloria Fernández, Ana García-Rodríguez,
and F. Javier Sánchez

19.1 CVC-HDSegment, CVC-300 Y CVC-612 Datasets

With respect to polyp segmentation, two different types of data will be provided:
Standard-Definition (SD, 574× 500× 3 and 384× 288× 3 pixels) images andHigh-
Definition (HD, 1920× 1080× 3 pixels) images. We provide both of them to cover
those cases that a given system might face during the exploration. Giving a first
indication of the polyp region during the exploration might need to be under real-
time constraints whether, once the polyp is found, the segmentation might be refined
using HD images.

With respect to SD images, we propose the use of CVC-ColonDB (Bernal et al.
2012) as training dataset and CVC-ClinicDB (Bernal et al. 2015) as testing dataset.
The training dataset contains 300 images all of them containing a polyp whereas the
testing one contains 612 images that contain at least a polyp. We show examples of
the content of both databases in Fig. 19.1.

We introduced in GIANA 2017 Sub-challenge the new CVC-PolypHD database,1

which is the first, up to our knowledge, database for polyp segmentation comprising
exclusively HD images. This database is composed of around 164 HD frames, 56
in the training set and 108 in the testing set, all of them showing a different polyp
extracted from routinary explorations at Hospital Clinic of Barcelona, Spain. This
database aims to cover as many different polyp appearances as possible. As ground
truth, we provide a pixel-wise representation of the polyp region for all frames; this

1Available at https://giana.grand-challenge.org.
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Fig. 19.1 Examples of content of SD segmentation training and testing datasets. The first two
images show an original image and its corresponding ground truth from CVC-ColonDB whereas
the last two ones show an original image from CVC-ClinicDB and its corresponding ground truth

Fig. 19.2 Examples of content of HD segmentation image dataset. Image on the left shows an
original image showing a polyp whereas image on the right shows its associated binary mask
annotation

ground truth was created using GT Creator software (Bernal et al. 2019). We show
an example of the content of this database in Fig. 19.2.

19.2 Performance Metrics

With respect to the evaluation of polyp segmentation methods, we propose the use
of state-of-the-art performance metrics: Jaccard and DICE similarity score. Jaccard
index (also known as intersection over union, IoU) is defined as the size of the
intersection divided by the size of the union of the sample sets, and it is calculated
as follows:

J (method, gt) = |method
⋂

gt |
|method

⋃
gt | , (19.1)

where method stands for the binary mask representing the output provided by the
method and gt stands for the binary mask provided by clinicians as the ground truth
annotation of the polyp region.

DICE similarity score is a statistic also used for comparing the similarity of two
samples. It is calculated as follows:
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Fig. 19.3 List of participants in GIANA 2017 Challenge on polyp segmentation (SD and HD
categories)

DICE(method, gt) = 2|method
⋂

gt |
|method| + |gt | . (19.2)

We propose the use of both scores as they consider in a different way the number
of true positive pixels (those which coincide in the output and in the ground truth).
DICE is also used to specify the amount of relevant information that is kept, which
is crucial for the segmentation task as we mentioned before.

19.3 Validation Experiments

The experiments related to polyp segmentation aim to validate method performance
in standard- and high-definition datasets. For each team we provide both mean and
standard deviation values of the two considered performance metrics.

19.4 Participating Teams

Figures19.3 and 19.4 show the different teams that took part in the 2017 and 2018
iterations of the polyp detection and localization sub-challenges of GIANA. As it
happened for the polyp detection and localization sub-challenges, the number of
participating teams grows from one edition to another, counting with 5 teams in the
first one and 13 in the second one.
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Fig. 19.4 List of participants in GIANA 2018 Challenge on polyp segmentation (SD and HD
categories)
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Chapter 20
Wireless Capsule Endoscopy Image
Analysis

Aymeric Histace, Romain Leenhardt, and Xavier Dray

20.1 CAD-CAP Database

The Computer-Assisted Diagnosis for Capsule Endoscopy Database (CAD-CAP)
is a French national multicenter database approved by the French Data Protection
Authority in which still frames (associated with short adjacent video sequences)
collected from 4,166 deidentified, third-generation SB-VCE videos (PillcamÂ�
SB3 system, Medtronic) routinely recorded in 13 French centers can be found. This
database comprises 6,360 still frames with a pathological finding (from 1,341 SB-
VCEs).

In September 2016, all third-generation SB-CE videos (PillcamÂ� SB3 system,
Medtronic, MN) registered in the 12 participating endoscopy units were retrospec-
tively collected and deidentified. Clinical data were noted (age, gender, indication
for SB-CE). Any SB icon selected by the local reared was considered as a frame
of interest. Each frame of interest was extracted and included in the CAD-CAP
database, together with a short adjacent video sequence that included 25 frames
upstream and downstream the index frame. Two pre-med students were trained, and
supervised by an expert reader, to select and to delimitate any lesion found into the
selected frames of interest. The delimitation process used Adobe Photoshop CS6Â�
(Adobe Systems, USA) and GIMPÂ� softwares (GNOME Foundation, USA) with
a WacomÂ� (Wacom Co., Ltd, Japan) pen tablet connected to a laptop. During sev-
eral face-to-face meetings, three expert SB-CE readers screened all selected frames
of interest (and associated short video sequences) and all delimitations of abnormal
findings within each selected frames. Doubtful, blurred, or irrelevant frames were
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excluded. Findings’ delimitations were also reviewed, and remade when necessary.
Abnormal findings were first sorted into three different categories: (a) fresh blood
and clots; (b) vascular findings; and (c) ulcerative/inflammatory findings. Then, into
these categories, all abnormal findings were sorted again according to their rele-
vance. Relevance was defined as followed by a group of four SB-CE experts. Fresh
blood and clots, typical angiectasia, and ulcerated lesions were considered “highly
relevant” findings. Non-ulcerated but inflammatory findings (for instance, erythema,
edema, denudation) were considered “moderately relevant” findings. Subtle vas-
cular lesions (for instance, erythematous patches, red spots/dots, phlebectasia, and
so-called “diminutive angiectasia”) were considered “poorly relevant” findings.

A set of 20 normal and complete SB-CE videos was used to create a control
dataset. Still frames were automatically extracted from these latter videos, every
1% of the SB sequence (between 1% and 100% of the SB sequence). Thus, 100
normal frames were extracted per video. Again, for any normal extracted still frame,
a short video sequence was also captured (with 25 frames upstream and downstream
the index frame). All supposedly normal frames were reviewed by two readers.
Doubtful, blurred, or irrelevant frames were excluded.

We collected 4,174 third-generation SB-CE from the 12 participating centers.
We included in the database 1,480 videos (35%) containing at least one frame of
interest (with abnormal findings), and 20 normal videos (as controls). Clinical char-
acteristics from these 1480 SB-CE were collected (59%men, 41% female, mean age
of 64-year-old). SB-CE were mainly indicated for obscure gastrointestinal bleeding
(67%), suspected Crohnâ’s disease (CD) (12%), and sometimes (21%) for others
various indications such as coeliac disease and Peutz–Jeghers polyposis. In total,
we extracted 6,013 still frames (with their adjacent short video sequences). Abnor-
mal findings were delimitated by the pre-med students within 5,124 frames, and then
reviewed and sorted by the experts: 3103 frames contained images of vascular abnor-
malities (817 frames with highly relevant images of angiectasia, 2286 frames with
other, poorly relevant, images of vascular lesions), 1370 frames contained images
of ulcerative/inflammatory findings (1057 frames with highly relevant images of
ulcerated lesions, 313 frames with moderately relevant images of inflammatory but
not ulcerated lesions). Seven-hundred-and-eighteen frames contained highly relevant
images of fresh blood and clots.

In the context of GIANA 2017, a first extraction was made from the CAD-CAP
database to propose the following training and testingdatasets focusingonangiectasia
detection and localization:

• Training2017: 300 images presenting with typical angiectasia and 300 normal
images;

• Testing2017: Same proportion as Training.

In the context of GIANA 2018, to make the tasks more challenging and in accor-
dance with the clinical expectations, we proposed a third class to be considered
focusing on inflammatory lesions. The database was composed in total of 1800
images that were divided into a training and a testing dataset as follows:
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Fig. 20.1 Some examples of WCE images extracted from the CAD-CAP database with related
ground truth. First raw: Angiectasia, Second raw: Inflammatory lesions, Third raw: Normal images

• Training2018: 300 images presentingwith typical angiectasia, 300 presentingwith
typical inflammatory lesions (including ulcers), and 300 normal images;

• Testing2018: Same proportion as Training.

Some examples for each class are shown in Fig. 20.1.

20.2 Performance Metrics

20.2.1 GIANA 2017

As the proposed tasks for GIANA 2017 were related only on one specific lesion, the
classic metrics were used for each tasks, that is to say:

• Precision, Recall, Specificity, Accuracy;
• F1, F2 scores;
• Area Under the ROC Curve (AUC) if a confidence value was provided by com-
petitors.
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20.2.2 GIANA 2018

In 2018, as the tasks evolvedwith integration of a new class, considering the detection
task, the confusion matrix was used to provide more adapted metrics. The classic
confusion matrix is shown in Fig. 20.2.

The following related metrics were used:

• Global Accuracy = 100× A + E + I

A + B + C + D + E + F + G + H + I
,

• Normal Image Accuracy (NAI) = 100× A + E + I

A + B + C + D + E + G + I
,

• Inflammatory Images Accuracy (IIA) = A + E + I

E + A + I + H + D + F
,

• Vascular Images Accuracy (VIA) = A + E + I

I + E + A + C + F + G + H
,

• Mean Accuracy per Class = N I A + I I A + V I A

3
.

For the localization task, we came back to a more classic evaluation (see GIANA
2017) considering each class versus the rest of the images.

Fig. 20.2 Confusion Matrix for GIANA 2018
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Table 20.1 2017 Participating Team

Table 20.2 2018 Participating Team

20.3 Participating Teams

In 2017, seven teams took part in the two tasks of theWCEchallenge (see Table20.1).
In 2017, eight teams took part in the WCE challenge (see Table20.2), and five

considered both detection and localization tasks. Three of them only took part to one
task.
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Experimental Results and Analysis



Chapter 21
Polyp Detection in Colonoscopy Videos

Jorge Bernal, Yael Tudela, Marina Riera, and F. Javier Sánchez

21.1 Polyp Detection and Localization

We present in this section results of the polyp detection and localization subchal-
lenges, part of GIANA challenge.Wewill first make a separate analysis of the results
per edition and last, we will show a summary of the main findings after analyzing
the performances of the different teams. It has to be noted that some of the teams
took part in different editions of the challenge under different names; in this case,
we will use the best results of the team in the final summary.

21.1.1 GIANA 2017 Challenge

We can extract the following conclusions after analyzing Table21.1. The main result
that can be extracted is that all teams detect all polyps in at least one frame so no
object is fully misdetected.

Going into details for each of the teams we can observe that LIP6 team is the
one that detects more polyp frames but, when it comes to polyp localization, fails
to place correctly the output inside the polyp. As a general trend, we can observe a
decrease in all metrics when going from detection to localization task though it has
to be mentioned that this seems to affect more KM and LIP6 teams than the rest.

The number of false alarms (and, therefore, precision score) is crucial for a poten-
tial deployment of these systems in the exploration room; in this context, TA-MIT,
UCL, and CUSURG offer precision scores higher than 90%; these results do get
worse for the localization sub-task where all teams see how their precision score is
lowered by at least a 10%.
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Table 21.1 Polyp detection and localization results at GIANA 2017. Total number of images:
18103 (12592 with a polyp and 6141 without a polyp)
Team TP FP TN FN Prec Rec Spec Acc F1 F2 MRT

Polyp detection

KM 8926 1545 4596 3666 85.2 70.9 74.8 72.2 77.4 73.3 3.72

ODS_AI - MIT 9471 862 5279 3121 91.7 75.2 85.9 78.7 82.6 78.0 14.0

LIP6 11240 3762 2379 1352 74.9 89.2 38.7 72.7 81.5 85.9 3.7

NTNU 10058 1282 4859 2534 88.7 79.8 79.1 79.6 84.0 81.5 2.0

UCL 9251 766 5375 3341 92.3 73.4 87.5 78.0 81.8 76.6 12.6

CUENDO 8812 928 5213 3780 90.5 69.9 84.9 74.9 78.9 73.3 10.3

Polyp localization

KM 6267 4204 4596 6413 59.8 49.4 52.2 50.5 54.1 51.2 13.0

ODS_AI - MIT 8657 1676 5279 4023 83.7 68.2 75.9 70.9 75.2 70.9 37.3

LIP6 3650 11355 2375 9030 24.3 28.8 17.3 22.8 26.4 27.7 73.3

NTNU 9287 2053 4859 3393 81.9 73.2 70.3 72.2 77.3 74.8 3.8

UCL 8502 2226 5375 4178 79.2 67.0 70.7 68.4 72.6 69.2 13.4

CUENDO 8080 1660 5213 4600 82.9 63.7 75.8 67.9 72.1 66.8 13.0

With respect to aggregation metrics in polyp detection, we can observe how two
teams provide superior performance than the rest by obtaining F1 and F2 scores
higher than 80%. It is curious to see that, for polyp detection, LIP6 is the one achieving
higher F2 score but NTNU outperforms them in the F1 score, though the difference
is not big. For sure these results decrease when localization task is considered; in
this case, NTNU appears as the best performing team obtaining both the highest F1
and F2 scores.

Finally, the analysis of MRT yields some interesting conclusions; in general,
none of the teams take more than 1 second (25 frames) to alert polyp presence in the
image, which could be seen as an almost instantaneous response to the stimuli. This
good result is kept for the majority of teams when it comes to polyp localization; it
is interesting to observe how UCL team almost keeps intact its MRT score, being
NTNU the fastest team when alerting correctly of both polyp presence and location
within the image.

These results are confirmed by the analysis of the ROC curves presented in
Fig. 21.1. With respect to the lines representing each of the teams it has to be noted
that some teams did not provide confidence values for their detections, being their
performance represented by a single point. We can observe again the superior per-
formance by LIP6 and NTNU for polyp detection and NTNU and TA-MIT for polyp
localization.
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Fig. 21.1 ROC curves for a polyp detection and b polyp localization from GIANA 2017 challenge

21.1.2 GIANA 2018 Challenge

The year that passed between the two iterations of GIANA challenge leads to an
increase in the number of participating teams and also in the performances achieved
by the different methodologies presented. As we did for the previous edition, we
highlight next the main conclusions that can be extracted (Table21.2).
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Table 21.2 Polyp detection and localization results at GIANA 2018. Total number of images:
18103 (12592 with a polyp and 6141 without a polyp)
Team TP FP TN FN Prec Rec Spec Acc F1 F2 MRT

Polyp detection

FanVoyage 9495 799 5342 3097 92.2 75.4 86.9 79.2 82.9 78.3 5.06

KM 12193 4440 1701 399 73.3 96.8 27.7 74.2 83.4 90.9 0.06

LIP6 11059 3923 2218 1533 73.8 87.8 36.1 70.9 80.2 84.6 3.83

LPixel 8822 1097 5044 3770 88.9 70.1 82.1 74.0 78.4 73.2 18.72

MIRC 8277 934 5207 4315 89.9 65.7 84.8 71.2 75.9 69.5 8.72

ODS_AI −
MIT

10152 829 5312 2440 92.4 80.6 86.5 82.5 86.1 82.7 7.22

NTNU 9963 860 5281 2629 92.0 79.1 86.0 81.4 85.1 81.4 6.22

TencentAI 3448 11 6130 9144 99.7 27.4 99.8 51.1 42.9 32.0 259.19

Neuromation 9471 1416 4725 3121 86.9 75.2 76.9 75.8 80.7 77.3 5.06

RTC ATC 10174 3206 2935 2418 76.0 80.8 47.8 69.9 78.3 79.8 0.56

SRV UCL 10449 2094 4047 2143 83.3 82.9 65.9 77.4 83.1 83.0 0.61

Winterfell 11060 2531 3610 1532 81.4 87.8 58.8 78.3 84.5 86.4 1.22

Polyp localization

FanVoyage 9056 1238 5342 3624 87.9 71.4 81.2 74.7 78.8 74.2 5.28

KM 9496 4055 3662 3184 70.0 74.9 47.4 64.5 72.4 73.8 4.11

LIP6 2403 12579 2218 10277 16.0 18.9 14.9 16.8 17.3 18.3 191.65

LPixel 7794 2644 5044 4886 74.7 61.4 65.6 63.0 67.4 63.7 35.22

MIRC 7782 2132 5298 4898 78.5 61.3 71.3 65.0 68.9 64.2 9.78

MMMIL 9875 1630 5078 2805 85.8 77.8 75.7 77.1 81.6 79.3 4.17

ODS_AI −
MIT

9637 1344 5312 3043 87.7 76.0 79.8 77.3 81.4 78.1 18.89

NTNU 9478 1345 5281 3202 87.6 74.7 79.7 76.4 80.6 77.0 6.39

TencentAI 3255 204 6130 9425 94.1 25.6 96.8 49.3 40.3 30.0 256.87

Neuromation 9355 1959 4813 3325 82.7 73.8 71.0 72.8 77.9 75.4 9.78

SRV UCL 9288 3255 4047 3392 74.0 73.2 55.4 66.7 73.6 73.4 2.00

Winterfell 9842 5450 2564 2838 64.3 77.6 31.9 59.9 70.4 74.5 1.78

First of all, and as it happened before, all teams were able to detect all the polyps
that appeared throughout the sequences. With respect to reaction time for polyp
detection, almost all teams are able to detect the polyp presence correctly in less than
a second (KM takes 0.06 frames only to detect the polyp); we can observe how one
team (PenguinAI) has a way superior MRT than the rest of the teams. This happens
because, in one sequence, the polyp appears and disappears and this particular team
was only able to detect polyp apparition in the second sub-sequence.

With respect to correct detections we can observe how KM team is able to detect
almost all polyp frames, followed by LIP6 which also offered a good performance
in these terms in 2017. Again, the number of correct detections drops when we also
consider good localizations; in this case, ODS_AI is the one that sees the smallest
impact in performance when switching between both tasks.
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Precision scores are clearly higher for polyp detection than for polyp localization,
increasing vastly the number of false alarms when polyp localization is considered
but for KM team, which is able to reduce the number of false alarms by increasing
greatly the number of TN.

Finally, aggregation metrics are the ones that help us to determine which of the
teams provided better overall performance. In this context, we can observe how
KM is the one with better trade-off for polyp detection between F1 and F2 scores
(specially due to its very high F2 score) whereas MMMIL is the one providing
superior performance for the polyp localization task.

In order to confirm these results in a graphical way, we show in Fig. 21.2 ROC
curves for polyp detection and localization associated to the results of GIANA 2018
challenge. We can clearly observe how KM distances from the rest of the teams with
respect to polyp detection and howMMMIL outperforms the rest of the teams (being
followed closely by ODS%A I ) for the case of polyp localization.

21.2 Evolution of Results

Table21.3 shows a summary of the most relevant findings after two iterations of
the polyp detection sub-task as part of the GIANA challenge. First, we can observe
that the performance of the best team (which were LIP6 in 2017 and KM in 2018)
improves over the years. KMoutperforms LIP6 in themost clinically relevantmetrics
(Recall, F1 and F2 scores, andMRT) though it has to be noted that it provides a higher
number of false positives than LIP6.

This table also shows the evolution in the performance for those teams that con-
curred in both editions of GIANA. We can observe that, in general, they improved
their performance,which can be particularly seen in the evolution of F1 andF2 scores.
We want to emphasize that some teams improved their performance regarding MRT
score by a great margin (KM, ODS_AI and, especially, UCL) which indicates that
efforts were made to capture those more difficult polyp appearances which tend to
happen when they first appear on screen.

We perform a similar analysis for the polyp localization task by observing care-
fully Table21.3. Again we observe that the performance achieved by the best team
(MMMIL in 2018 with respect to NTNU in 2017) improves year over year in all
metrics but, surprisingly, onMRT. In this case, all performance metrics increase by a
margin of around 4%, reducing the number of false alarms while detecting correctly
more polyps.

With respect to the evolution per team, we observe how KM was able to greatly
increase its polyp localization performance, increasing precision and recall metrics
in more than 10 points. The rest of the teams also improved their performance with
respect to the previous edition, particularly with respect of MRT and TP, leading to
a consequent improvement in Recall, F1 and F2 scores (Table21.4).
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Fig. 21.2 ROC curves for a polyp detection and b polyp localization from GIANA 2018 challenge
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Table 21.3 Summary of key results from the polyp detection task at GIANA 17 and 18 challenges
Year Team TP FP TN FN Prec Rec Spec Acc F1 F2 MRT

Best teams

2017 LIP6 11240 3762 2379 1352 74.9 89.2 38.7 72.7 81.5 85.9 3.7

2018 KM 12193 4440 1701 399 73.3 96.8 27.7 74.2 83.4 90.9 0.06

Performance evolution

2017 KM 8926 1545 4596 3666 85.2 70.9 74.8 72.2 77.4 73.3 3.72

2018 KM 12193 4440 1701 399 73.3 96.8 27.7 74.2 83.4 90.9 0.06

2017 ODS_AI -
MIT

9471 862 5279 3121 91.7 75.2 85.9 78.7 82.6 78.0 14.0

2018 ODS_AI −
MIT

10152 829 5312 2440 92.4 80.6 86.5 82.5 86.1 82.7 7.22

2017 LIP6 11240 3762 2379 1352 74.9 89.2 38.7 72.7 81.5 85.9 3.7

2018 LIP6 11059 3923 2218 1533 73.8 87.8 36.1 70.9 80.2 84.6 3.83

2017 NTNU 10058 1282 4859 2534 88.7 79.8 79.1 79.6 84.0 81.5 2.0

2018 NTNU 9963 860 5281 2629 92.0 79.1 86.0 81.4 85.1 81.4 6.22

2017 UCL 9251 766 5375 3341 92.3 73.4 87.5 78.0 81.8 76.6 12.6

2018 UCL 10449 2094 4047 2143 83.3 82.9 65.9 77.4 83.1 83.0 0.61

Table 21.4 Summary of key results from the polyp localization task atGIANA17 and 18 challenges
Year Team TP FP TN FN Prec Rec Spec Acc F1 F2 MRT

Best teams

2017 NTNU 9287 2053 4859 3393 81.9 73.2 70.3 72.2 77.3 74.8 3.8

2018 MMMIL 9875 1630 5078 2805 85.8 77.8 75.7 77.1 81.6 79.3 4.17

Performance evolution

2017 KM 6267 4204 4596 6413 59.8 49.4 52.2 50.5 54.1 51.2 13.0

2018 KM 9496 4055 3662 3184 70.0 74.9 47.4 64.5 72.4 73.8 4.11

2017 ODS_AI -
MIT

8657 1676 5279 4023 83.7 68.2 75.9 70.9 75.2 70.9 37.3

2018 ODS_AI −
MIT

9637 1344 5312 3043 87.7 76.0 79.8 77.3 81.4 78.1 18.89

2017 LIP6 3650 11355 2375 9030 24.3 28.8 17.3 22.8 26.4 27.7 73.3

2018 LIP6 2403 12579 2218 10277 16.0 18.9 14.9 16.8 17.3 18.3 191.65

2017 NTNU 9287 2053 4859 3393 81.9 73.2 70.3 72.2 77.3 74.8 3.8

2018 NTNU 9478 1345 5281 3202 87.6 74.7 79.7 76.4 80.6 77.0 6.39

2017 UCL 8502 2226 5375 4178 79.2 67.0 70.7 68.4 72.6 69.2 13.4

2018 UCL 9288 3255 4047 3392 74.0 73.2 55.4 66.7 73.6 73.4 2.00



Chapter 22
Polyp Segmentation in Colonoscopy
Images

Jorge Bernal and Arnau Real

22.1 Polyp Segmentation SD

We show in Table22.1 the results obtained by the different teams when dealing
with the segmentation of SD images. Several conclusions can be extracted from
the analysis of this table. First of all, there is a clear winner in the 2017 edition
(CVML) but, in the 2018 edition, teams were closer (probably to the huge increase
in segmentation networks appeared within this year). Second, for all cases, DICE
scores were higher than Jaccard ones but in the same order, that is, the team that won
in DICE also won with respect to Jaccard score. This highlights that both metrics,
though complementary, are not enough to solve potential draws between teams and
methodologies. We show in this chapter the performance of the different teams that
took part of the GIANA 17 and 18 poly segmentation tasks.

We can also observe that standard deviation is around 22% in year 2017 but it is
a little higher in the following year. This is accompanied by a general improvement
in the overall performance, being the highest mean DICE and Jaccard scores around
three points higher in 2018 than in year 2017. Though, in general, all teams showed
a consistent performance across the different images in the dataset, some of them
were particularly challenging for all the teams. We show an example of these images
in Fig. 22.1.

By analyzing these images we can clearly see that segmentation methods have
difficulties in those examples where the polyp can hardly be seen (images in the top
left or bottom right) or when the whole endoluminal scene is crowded with elements
(fecal content in the case of top right, along with a very small polyp), including those
that appear as result of poor patient preparation.
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Table 22.1 Polyp segmentation results. Total number of images: 612 SD images

Team Mean Jaccard Std Jaccard Mean DICE Std DICE

GIANA 2017

CVML 0.72 0.22 0.81 0.21

UCL 0.61 0.24 0.72 0.25

SFU 0.67 0.25 0.77 0.22

NII 0.27 0.21 0.39 0.25

ODS_AI - MIT 0.47 0.35 0.54 0.38

GIANA 2018

CVML 0.750 0.219 0.835 0.185

FanVoyage 0.716 0.239 0.804 0.226

KM 0.704 0.260 0.790 0.245

MIRC 0.603 0.291 0.702 0.282

ModuLabs 0.481 0.254 0.605 0.265

ODS_AI −
MIT

0.622 0.239 0.730 0.250

NTNU 0.670 0.322 0.741 0.324

TencentAI 0.760 0.218 0.841 0.190

Neuromation 0.729 0.254 0.808 0.241

Reutlingen 0.311 0.252 0.419 0.293

SRV UCL 0.744 0.267 0.815 0.254

Winterfell 0.562 0.278 0.672 0.272

22.2 Polyp Segmentation HD

The analysis of polyp segmentation results, shown in Table22.2, indicates that some
of the trends that were observed for the case of SD images are kept for high-definition
ones. Again, unit values for DICE scores are higher than Jaccard ones. We also
observe an overall improvement in the results between the two editions, being the
best team in 2017 (CVML) outperformed in around 10 points by the best one in 2018
(OUS).

As we did for SD images, we show in Fig. 22.2 some examples of those images
that were particularly challenging for the majority of the teams, aiming at detecting
common elements that could lead to conclusions on why these methods fail on them.
We can observe how the different methods have difficulties when locating very small
polyps or those lateral ones in which the full contour cannot be observed (or, if it can
be seen such as in the bottom right image, it is very diffuse).
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Fig. 22.1 Example of some of the most challenging images for all teams regarding segmentation
of SD images. Polyp regions are highlighted by a circle

22.3 Evolution of Results

As we did for the analysis of polyp detection and localization results, we show in
Tables22.3 and 22.4 a summary of the most relevant results extracted by observing
carefully the previously presented tables.

With respect to SD images, the winning team in the 2018 edition (PenguinAI) out-
performed thewinner of 2017 (CVML) in both Jaccard andDICEmetrics by amargin
of a 3%. We can also observe how all teams clearly improved their game between
editions, especially for the case of ODS_AI and SRVUCL which improved their
scores by more than a 10%.

The analysis of HD images yields very similar results. Again there was a change
with respect to thewinning team,CVML in 2017 and PenguinAI in 2018.Differences
between the performance of the best teamswere higher than in the case of SD images,
showingdifferences close to a 10% inbothDICEand Jaccard scores.Contrary towhat
happened with SD images, not all the teams that took part in both editions showed
an improvement regarding the segmentation of HD images; CVML showed a slight
improvement whereas SRV UCL really outperformed themselves but, surprisingly,
ODS_AI lowered their performance by a small margin.
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Table 22.2 Polyp segmentation results. Total number of images: 150 HD images

Team Mean Jaccard Std Jaccard Mean DICE Std DICE

GIANA 2017

CVML 0.74 0.20 0.83 0.18

UCL 0.40 0.27 0.52 0.28

SFU 0.70 0.24 0.80 0.20

ODS_AI - MIT 0.64 0.28 0.73 0.28

GIANA 2018

CVML 0.756 0.190 0.844 0.159

FanVoyage 0.683 0.264 0.774 0.247

KM 0.755 0.203 0.841 0.172

MIRC 0.718 0.263 0.799 0.247

ODS_AI −
MIT

0.572 0.219 0.699 0.208

NTNU 0.872 0.145 0.923 0.120

TencentAI 0.801 0.203 0.869 0.182

Neuromation 0.740 0.265 0.814 0.249

SRV UCL 0.802 0.241 0.861 0.227

Winterfell 0.508 0.291 0.618 0.294

XMU 0.841 0.157 0.904 0.112

Fig. 22.2 Example of some of the most challenging images for all teams regarding segmentation
of HD images. Polyp regions are highlighted by a circle
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Table 22.3 Summary of the most relevant polyp segmentation results in SD images over the two
editions of the GIANA challenge. Total number of images: 612 SD images

Year Team Mean
Jaccard

Std Jaccard Mean DICE Std DICE

Best team

2017 CVML 0.72 0.22 0.81 0.21

2018 PenguinAI 0.760 0.218 0.841 0.190

Performance evolution

CVML 2017 0.72 0.22 0.81 0.21

CVML 2018 0.750 0.219 0.835 0.185

UCL 2017 0.61 0.24 0.72 0.25

SRV UCL 2018 0.744 0.267 0.815 0.254

ODS_AI - MIT 2017 0.47 0.35 0.54 0.38

ODS_AI − MIT 0.622 0.239 0.730 0.250

Table 22.4 Summary of the most relevant polyp segmentation results in HD images over the two
editions of the GIANA challenge. Total number of images: 150 HD images

Year Team Mean
Jaccard

Std Jaccard Mean DICE Std DICE

Best team

2017 CVML 0.74 0.20 0.83 0.18

2018 NTNU 0.872 0.145 0.923 0.120

Performance evolution

CVML 2017 0.72 0.22 0.81 0.21

CVML 2018 0.756 0.190 0.844 0.159

UCL 2017 0.40 0.27 0.52 0.28

SRV UCL 2018 0.802 0.241 0.861 0.227

ODS_AI - MIT 2017 0.64 0.28 0.73 0.28

ODS_AI − MIT 0.572 0.219 0.699 0.208



Chapter 23
Wireless Capsule Endoscopy Image
Analysis

Aymeric Histace

23.1 Introduction

As explained in previous chapters, in 2017 and 2018, an evolution of the tasks of
GIANA challenge related to WCE was proposed. More precisely, in 2017, it was
the first time that a task focusing on lesion detection for WCE was proposed in the
context of an international challenge, and a particular focus was done on vascular
lesions detection. Consequently, the classification/detection task was indeed binary
with, on one hand, normal images fromWCE presenting with no type of lesions, and,
on the other hand, an equivalent subset of images mainly presenting angiodysplasia.

The proposed task was challenging but we clearly saw that it could be improved
in terms of difficulty level so it was decided in 2018 to propose a multiclass classifi-
cation/detection tasks by including a new category to manage: inflammatory lesions
that could be seen as more challenging to define and delineate, even for physicians.

As a consequence, the results are presented accordingly to the metrics introduced
specifically for each of the year of the challenge.

23.2 2017: Angiodysplasia Detection and Localization

Table23.1 shows results of angiodysplasia lesion detection and localization.
As it can be noticed inTable23.1, global performance for angiodysplasia detection

and localization is very good both at the sensitivity and specificity levels.
All participating teams for the detection task not only obtained very high perfor-

mance in terms of precision with a min at 96.9% and a max at 100% but also in terms
of specificity. A very interesting point here is that it is not really possible to make a
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Table 23.1 WCE angiodysplasia detection and localization results

Team TP FP TN FN Prec Rec Spec Acc F1 F2

Lesion detection

KM 297 6 294 3 98.0 99.0 98.0 98.5 98.5 98.8

ODS.ai - MIT 294 0 300 6 100.0 98.0 100.0 99.0 98.9 98.4

PG 297 6 294 3 98.0 99.0 98.0 98.5 98.5 98.8

NTNU 299 1 299 1 99.7 99.7 99.7 99.7 99.7 99.7

SRV UCL 278 0 300 22 100.0 92.7 100.0 96.3 96.2 94.0

TU/e-VCA 292 1 299 8 99.6 97.3 99.7 98.5 98.5 97.8

UMinho 283 9 291 17 96.9 94.3 97.0 95.6 95.6 94.8

Lesion localization

KM 295 15 288 30 95.1 90.7 95.0 92.8 92.9 91.6

ODS.ai - MIT 305 4 300 20 98.7 93.8 98.7 96.2 96.2 94.8

PG 296 9 294 29 97.0 91.1 97.0 93.9 93.9 92.2

NTNU 306 8 299 19 97.4 94.1 97.4 95.7 95.7 94.8

SRV UCL 272 17 300 53 94.1 83.7 94.6 89.1 88.6 85.6

TU/e-VCA 302 7 299 23 97.7 92.9 97.7 95.2 95.2 93.8

UMinho 287 187 291 38 60.5 88.3 60.8 71.9 71.8 80.9

strong separation between deep-learning-based methods and more classic one using
colorimetric approaches (UMinho). This is probably due to the fact that for this first
challenge, very typical vascular lesions were considered with a strong contrast on
the mucosa and a very typical saturated red color. It is important to emphasize here
that these kind of lesions are the ones that are highly targeted by physicians as they
are the most likely to be related to micro-bleeding. It is then very interesting to see
that even ad hoc methods, compared with deep learning ones, can provide very high
performance.

Looking at the results of localization, we can notice that a gap appears between
ad hoc and machine-learning-based methods as a result of the task being more chal-
lenging since a bounding box has to be given as an output. Though the ad hoc
approach of UMinho remains competitive, the precision falls to 60.5% whereas for
other approaches this performance indicator remains high with a mean value around
97.0%. The same can be noticed for the specificity metric, which logically leads to a
strong difference when considering F1 score. This can be explained by the fact that
the ad hoc method here, based on colorimetric analysis for part of the algorithm, is
more sensitive to illumination and can lead to an overestimation of the area depending
on the position of the WCE cam with respect to the lesions.

Nevertheless, it is very interesting to emphasize that even ad hoc methods can
lead to very good results in detection as they are not demanding in computational
resources and that they can handle the task without a strong need for a huge amount
of annotated data which still is a primary challenge in the clinical field, including
WCE.
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As a conclusion here, it is important to highlight that this first attempt to propose
detection/localization tasks on WCE in the context of GIANA challenge was a real
success and showed the potential of deep-learning-based methods to address typical
vascular lesion detection/localization. It was also a good opportunity to show that
ad hoc methods are not totally out of the race and thus can lead to very satisfying
results when the detection task is considered, without the need of huge computational
resources. It could then be imagined that ad hoc color-based method can be a first
low-cost filter for fast detection and very complementary to deep-based approaches.

It also appeared that it was important to increase the difficulty level of the tasks
for a next challenge on this particular topic in order to push proposed approaches to
their limits. A way to address such an objective was to consider more challenging
lesions, whichmeans vascular lesions of different types, but also new types of lesions
considered as of primary importance by physicians and that also brought a higher
level of difficulty because of their clinical characteristics.

23.3 2018: Multilabel Detection and Localization

For the 2018 challenge, following the conclusions of previous challenge, a third
category of images was added to the tasks, and inflammatory lesions became part of
the detection/localization challenge. These types of lesions are quite interesting since
they can take very different forms from one to another. At a very early evolution level,
they can be confused with angiodysplasia, when evolving to next steps, ulceration
can appear, showing a yellow/white area inside the inflammatory part and making it
fully different.

To increase evenmore the difficulty of the tasks,we also decided to slightly change
the content of the vascular lesion database by adding less typical angiodysplasia that,
as just said, can be sometimes confusedwith inflammatory lesion at a very early stage.

As explained in related chapters about database and metrics, adding this new
category of inflammatory lesions leads us to propose different kind of metrics for
evaluation, extracted from the classic confusion matrix.

Table23.2 shows results of WCE lesion detection.
Table23.3 shows results of WCE lesion localization.
Considering lesion detection task (Table23.2), compared with 2017 challenge,

one can notice that the objective of increasing the level of difficulty was fulfilled:
we have a more important variety with respect to performance of each participating
team, and more than that, having a quick look to TU/e-VCA team, who took part
in the 2017 challenge with very high performance, one can notice that the overall
accuracy decreased to 88.4% by adding a new category. Another strong difference
is the fact that all methods proposed are based on deep learning approaches and that
no ad hoc methods took part in the challenge.

On the overall, the mean class accuracy for each team is very satisfying as, if we
exclude the worst performance (46.4%), we obtained a minimum value of 87.7%.
Surprisingly, at the detection level, the challenge did not come finally from the
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Table 23.2 WCE lesion detection results

Team Global Acc NIA IIA VIA MeanClassAcc

Lesion detection

FanVoyage 93.5 96.7 94.4 95.7 95.6

KM 95.5 99.8 95.7 95.5 97.0

ODS.ai − MIT 36.6 46.0 47.1 46.1 46.4

TencentAI 94.3 99.7 94.4 94.5 96.2

SRV UCL 88.7 91.6 91.7 93.2 92.1

TU/e-VCA 88.4 98.3 89.1 89.1 92.1

UB 82.6 89.6 86.5 87.0 87.7

Table 23.3 WCE lesion localization results

Team TP FP FN Prec Rec F1 F2

Inflammatory lesions

FanVoyage 493 247 112 66.6 81.5 73.3 78.0

KM 471 75 134 86.2 77.8 81.8 79.4

ODS.ai − MIT 434 221 171 66.2 71.7 68.9 70.6

TencentAI 456 477 149 48.8 75.4 59.3 68.0

SRV UCL 430 327 175 56.8 71.0 63.1 67.7

Yimei 356 27566 249 1.3 58.8 2.5 5.9

Vascular lesions

FanVoyage 432 155 170 73.6 71.7 72.7 72.1

KM 564 20 38 96.6 93.7 95.1 94.2

ODS.ai − MIT 562 106 40 84.1 93.4 88.5 91.3

TencentAI 558 81 44 87.3 92.7 89.9 91.6

SRV UCL 523 98 79 84.2 86.9 85.5 86.3

Yimei 554 28830 48 1.9 92.0 3.7 8.7

inflammatory lesion by their own, but by the fact that we also add some “confusing”
vascular lesions in the angiodysplasia database. This can be appreciated by looking
at the related performance in the IIA (Inflammatory) and VIA (Vascular) columns
where the performance remains quite homogeneous.

It also appears that the identification of normal images was a quite easy task
since two teams reaches more than 99% in the specific category. This may lead to
an overestimation of the global accuracy and probably could lead to another strategy
for future challenges which can be proposed to mitigate this effect.

At the localization level, it is quite interesting to see that the challenging aspect of
the tasks appears fully achieved considering the obtained performance. In terms of
precision and recall, the best team (KM) obtained a 86.2%, 77.8% for inflammatory
lesions and a 96.6%, 93.7% for vascular lesions. Two things can be said here: first
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of all, the localization tasks strongly discriminate here with a clear advantage for
vascular lesions in terms of easiness. All of the teams, except one, managed to
obtain (very) satisfying results on this categorywhereas for inflammatory lesions, the
variability is definitely more important starting at 48.8%, 75.4% (excluding the team
with the worst obtained results) to 86.2%, 77.8% for the best one, with intermediate
teams at 66.0%, 71.7%. It shows that the fact that inflammatory lesions can have very
different aspects depending on the evolution stage can lead to a strong dependence
to the deep architecture used. It is also linked to the fact that semantic segmentation
architectures are less easy to tune and can depend strongly on the way the learning
stage is parameterized (loss function, batch, etc.). This is also illustrated by the fact
that one team has very poor results although using a classic architecture that has
already shown good performance for other kind of applications.

The very interesting point here is the fact that there is room for improve-
ment considering the multilabel tasks. If, in 2017, one could argue that the detec-
tion/localization of angiodysplasia could be considered as a solved task on typi-
cal vascular lesion due to the very high performance obtained by deep learning
approaches, the 2018 datasets brought new challenges and improvement is still pos-
sible to have a clear impact on the computer-assisted reading of WCE data.



Chapter 24
Conclusions and Perspectives

Jorge Bernal and Aymeric Histace

The objective of this book was to present several methodologies that have been
proposed during the last few years aiming to assist clinicians in some of the most
demanding gastrointestinal endoscopy tasks. More precisely, we focus on the anal-
ysis of those methods targeting polyp characterization (detection and segmentation)
in colonoscopy images and wireless capsule endoscopy lesion detection and local-
ization.

It is clear that, by a simple analysis of the different methodologies proposed, deep
learning approaches suppose today the state of the art for all the studied tasks, clearly
outperforming classical hand-crafted ones due to their higher capability to generalize
from examples. This difference is bigger for the case of colonoscopy video analysis
as the large number of images available for sure helps the network to learn polyp
appearance with more reliability.

We close the book with this chapter in which we make a brief summary of the
main findings that we have observed by the analysis of the different experiments that
were carried out during the different challenges, as well as proposing future lines in
which validation frameworks could be improved to reflect, even more faithfully, the
performance of a given method. We break down this chapter into the two types of
images that have been analyzed throughout the book.
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24.1 Colonoscopy Image Analysis

The analysis of colonoscopy images by means of artificial intelligence can be con-
sidered already a mature research field. More than 20 years with new developments
almost each month makes it a research domain in which innovation is difficult to
achieve. With the advent of deep learning networks, differences between method-
ologies are way smaller than they were in the early 20s where hand-crafted methods
were popular. Due to the high popularity of some of the public datasets that are used
in this challenge, polyp detection has been the task that has attracted more attention
during both GIANA 2017 and 2018.

When GIANA 2017 was proposed, there was no fully publicly available anno-
tated dataset containing videos for the case of colonoscopy image analysis, and
CVC_V ideoClinicDB appeared as the first and largest one in the research domain.
Though it is weakly labeled (providing ellipses as ground truth instead of pixel-wise
masks) the length and variability of the videos soon made it the one to use to train
and validate the different methodologies. It has to be mentioned that, to preserve the
fairness in the results, ground truth for the testing images was never made public; we
offered participants an online evaluation tool in which they could test their methods
in a subset of test videos. This initiative was greatly appreciated by the different
teams, allowing them to propose improvements to their methodologies up until the
last minute.

The analysis of the results achieved by the different methods clearly indicate that
it is the time to advance to the next level and test these methods in real procedures.
Just to make ourselves clear, the videos from our datasets are indeed from real
patients, but the way images are acquired do not represent exactly the way a clinician
would manage in a real-life scenario. Those that helped us to build our datasets paid
special attention to capture each and every one of the different views of the polyps
that appeared in the sequences, which was particularly useful to train the different
methods. We plan to incorporate the analysis of full procedures in future iterations
of the challenge, provided that we find a way to efficiently annotate large video
sequences.

Proposed methodologies are already able to accurately detect and locate all the
different polyps that appear in the videos under a reasonable computation time. There
is still work to be done in the spatio-temporal coherence of the outputs provided by
the methods as the majority of them treat each frame individually, therefore not
considering outputs provided before when dealing with a new instance. Besides, the
majority of the methods focus on the characterization of the polyp as the ground
from which to build up their methodologies, forgetting about the rest of the elements
that could also assist on polyp detection/localization such as specular highlights or
folds.

Polyp segmentation has not yet achieved the level of attention than polyp detection
and localization have. There can be several reasons behind this being the main one
that, in fact, there is no clear clinical target behind it. It is true that polyp segmentation
can be seen as an intermediate step for polyp classification in a way such the content
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of the polyp region is deeply analyzed to determine lesion histology but it is also true
that many of the available object detection networks do already provide a class for
each detected object. Second, the number of polyp segmentation databases (and,more
particularly, their size) is very limited: the majority of the available ones contain very
few samples, many of them grouped around a same polyp thus presenting a reduced
variability in global polyp appearance. This makes it difficult to train and validate a
deep learning network from scratch and leads to the use of fine-tuning to efficiently
train the network. We have introduced in this book the first publicly available dataset
of HD images, which will be enlarged soon and complemented with polyp histology
to allow its use for both polyp segmentation and classifications tasks.

Segmenting the region that the polyp occupies in the image could also be useful to
assist clinicians in lesion removal or, when used in polyp classification ones, to assist
on in vivo histology prediction using lesion size as a cue. Nevertheless, it is clear that
this task is not yet mature and that more effort should be made on proposing datasets
and also on defining new meaningful metrics, as we have observed how Jaccard and
DICE are not particularly complementary with respect to the performance of a given
method.

24.2 WCE Image Analysis

It is interesting to see that from 2017 to 2018 the tasks related to WCE attracted
much attention with a significant amount of participating teams (7 in 2017, and a
total of 8 in 2018). It is quite an important point sinceWCE is becoming a very strong
alternative to classic endoscopy making small bowel examination easier compared
with enteroscopy from instance.

Inflammatory lesion, coupled with vascular lesion of different types, is a very
challenging task that shows real ambition for future improvement. It would have
been very interesting in 2018 to have at least one participant with an ad hoc approach
in order to have a common point with 2017: if deep learning method and above all
semantic segmentation approaches obtained the best performance on every type of
images and lesions, they are still very demanding in terms of computational resources.
Ad hoc approaches beyond the simple aspect of performance can bring insight on the
explainability of the considered features and could help to have a better understanding
of the psychovisual mechanism used by physicians. Bridging this with deep learning
architecture would certainly be of great interest as it is not that easy right now to
have a good understanding of the underlying mechanisms of some architecture nor
the reliability one can have on the results even if good from a quantitative point of
view (considering standard metrics).

Another topic of interest for next challenges on WCE is, of course, to propose a
bigger annotated database, even if it remains a real challenge considering the fact
that annotation is a really high time-consuming task for clinicians, especially at the
segmentation level. This latter is, however, necessary if we want to address semantic
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segmentation task that could lead finally also to characterization of the lesions, which
remains an open challenge.

Lesion characterization could be considered from two perspectives: first, at the
level of providing quantitative parameters on the lesion (size, area, perimeter, com-
pacity, etc.) that can be related to clinical features and then help the physician to
categorize the type of lesions among a particular type, and even more challenging
to consider the pertinence level of a lesion which needs to take into account dur-
ing the learning process a new type of information making it even more interesting.
Nevertheless, for the latter, it also means to have access to new databases proposing
this kind of data, and only a few initiatives have been started since 2019 (CAD-CAP
database in one of the few) and time will be needed to propose a significant and
reliable set of images.

A last challenge for future iterations of GIANAwill be to consider several types of
video capsules. Until now, theCAD-CAPdatabase used for the challenge has focused
only on the main constructor on the market, leading more than 95% of the selling,
Medtronics and the Pillcam (SB3). Several alternatives can be considered right now
including Olympus, Ankon, or OMOM. Image characteristics can be slightly differ-
ent depending on the sensor used for image acquisition and it could have influence on
the performance related to lesion detection/localization which have to be estimated
for a same kind of pathology. Again, we are facing the curse of database here, and
time is needed to gather significant amount of data with reliable annotations.

Methodologically speaking, finally, it would be very interesting to propose a
task related to data and ground truth computer-assisted generation as it has been
proposed in other fields of applications. GAN, few-shot learning, variational encoder
approaches can be seen as core strategy to strengthen competitivity of the approaches
regarding the small amount of data with respect to classic challenges in computer
vision/machine learning communities.

24.3 Overall Conclusions

Gastrointestinal image analysis, as it has been shown in this book, is a clearly active
research topic. This is proven by the amount of new publications appearing daily
and with the increasing interest of manufacturers on including artificial intelligence
modules as part of their devices. This book has shown how different methodologies
can be used to tackle a same problem and that some of them already present a
performance level that could warrantee their use in a clinical scenario.

It is clear that these systems should be tested under real-life conditions to complete
their validation but still the variability of the different datasets that we have used for
the experiments should be seen as a proof of concept of the performance of these
methods in the exploration room.

The objectives of this book were both to introduce to the general and specialized
public the work that has been done in the field of gastrointestinal image analysis as
well as to present a validation framework that can be used for any given method to
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test its performance. It is clear that more tasks could have been explored and deeper
analysis could have been provided but we do believe that this book really shows
what we pretended at the beginning of its writing: gastrointestinal image analysis
is here to stay and to assist clinicians in a meaningful way. Thank you very much
for accompanying us in this first book; hopefully, there will be more to come in the
future with new tasks, methods, and analysis.
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