
How to Reduce Computation Time While
Sparing Performance During Robot

Navigation? A Neuro-Inspired
Architecture for Autonomous Shifting
Between Model-Based and Model-Free

Learning

Rémi Dromnelle1(B) , Erwan Renaudo2 , Guillaume Pourcel1 ,
Raja Chatila1 , Benôıt Girard1 , and Mehdi Khamassi1

1 Institut des Systèmes Intelligents et de Robotique (ISIR), Sorbonne Universités,
CNRS, 75005 Paris, France

remi.dromnelle@gmail.com
2 Intelligent and Interactive Systems Lab (IIS), Universität Innsbruck,

6010 Innsbruck, Austria

Abstract. Taking inspiration from how the brain coordinates multi-
ple learning systems is an appealing strategy to endow robots with
more flexibility. One of the expected advantages would be for robots
to autonomously switch to the least costly system when its performance
is satisfying. However, to our knowledge no study on a real robot has
yet shown that the measured computational cost is reduced while per-
formance is maintained with such brain-inspired algorithms. We present
navigation experiments involving paths of different lengths to the goal,
dead-end, and non-stationarity (i.e., change in goal location and appari-
tion of obstacles). We present a novel arbitration mechanism between
learning systems that explicitly measures performance and cost. We find
that the robot can adapt to environment changes by switching between
learning systems so as to maintain a high performance. Moreover, when
the task is stable, the robot also autonomously shifts to the least costly
system, which leads to a drastic reduction in computation cost while
keeping a high performance. Overall, these results illustrates the interest
of using multiple learning systems.

1 Introduction

The idea of taking inspiration from how the brain coordinates multiple learning
systems to enable more flexibility in robots is getting more and more attention
in the robotics community [1–6]. One of the expected advantages of such a
strategy would be for robots to autonomously learn which system is the most
appropriate for each encountered task or situation. For instance, a robot can
learn that different systems are efficient in different subparts of the environment
c© Springer Nature Switzerland AG 2020
V. Vouloutsi et al. (Eds.): Living Machines 2020, LNAI 12413, pp. 68–79, 2020.
https://doi.org/10.1007/978-3-030-64313-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64313-3_8&domain=pdf
http://orcid.org/0000-0002-7322-2523
http://orcid.org/0000-0003-3282-8972
http://orcid.org/0000-0002-7147-3652
http://orcid.org/0000-0001-7822-0634
http://orcid.org/0000-0002-3914-6483
http://orcid.org/0000-0002-2515-1046
https://doi.org/10.1007/978-3-030-64313-3_8

How to Reduce Computation Time 69

[3]. Another expected advantage for a robot is to detect when it can avoid the
computation time associated to a costly planning process and rely on cheaper
systems if they enable to reach the same level of performance.

In computational neuroscience, reinforcement learning (RL) algorithms have
been proposed to account for how animals initially solve a new task through
planning within a model-based (MB) system, and progressively shift to model-
free (MF) control when learning has converged [7,8]. MF learning is proposed to
represent habit learning because it takes a long time to converge, but permits fast
and efficient decisions after learning. Moreover, its slowness in learning makes it
inflexible in response to task changes, requiring that the brain switches back to
a control level similar to MB.

We have previously proposed a way to implement these principles within
a classical three-layered robot cognitive architecture, to facilitate integration
with other sensing and control components, as well as permit future transfer
to different robotic platforms [9]. Here, and after evaluating several arbitration
mechanisms between MB and MF learning systems in a previous study [10],
we present a novel one which dynamically deals between the quality of learning
and the computation cost. We test the new algorithm during simulated and real
robot navigation in a task involving paths of different lengths to the goal, dead-
ends, and non-stationarity. We find that the algorithm flexibly and consistently
switches to MB control after environmental changes, and to MF control when the
task is stationary. Overall, the robot achieves the same performance as optimal
MB control in the task, while dividing computation time by more than two.

In summary, we propose a MB/MF algorithm using an arbitration mechanism
that coordinates the learning systems and efficiently reduces computation cost
while maintaining performance. We evaluate the algorithm both on simulated
and real robots.

2 Materials and Methods

2.1 A Robotic Architecture with a Dual Decision-Making System

The present work implements a classical three-layer robot cognitive architecture
[11,12] composed of a decision, an executive and a functional layer. The decision
layer of the proposed architecture (Fig. 1) is composed by two competing experts
which generate action propositions, each with its own method and with its own
advantages and disadvantages. These two experts are directly inspired by the
currently conventional distinction in computational neuroscience models between
goal-directed and habitual strategies [8]. The two experts run three processes in
a row: learning, inference and decision. This layer is also provided with a meta-
controller (MC) in charge of arbitrating between experts. The MC determines
which expert’s proposed action will be executed in the current state, according
to an arbitration criterion.

After that, the decision layer sends the chosen action to the executive layer,
who ensures its accomplishment by recruiting robot’s skills from the functional
layer. The latter consists of a set of reactive sensorimotor loops that control

70 R. Dromnelle et al.

Fig. 1. The generic version of the architecture. Two experts having different properties
are computing the next action to do in the current state s. They each send monitoring
data to the meta-controller (MC) about their learning status and inference process (t1).
The MC designate the winning expert according to a criterion that uses these data
and authorizes it to carry out its inference and decision processes (t2). After making
a decision, the winning expert sends its proposition to the MC (t3), which sends the
action to the Executive Layer (t4). The effect of the executed action generates a new
perception, transformed into an abstract Markovian state, and eventually a non null
reward r, that are sent to the experts. Each expert learns according to the action
chosen by the MC, the new state reached and the reward.

actuators during interaction with the environment. The robot reaches a new
state and obtains or not a reward. The two experts use the new state and the
reward information to update their knowledge about the executed action. This
allows MB and MF experts to cooperate by learning from each others’ decision.

Compared to our previous architecture [10], several changes have been made:
The overall organization of the decision-making layer and the prioritization of
communication between modules have been changed. The MF expert is no longer
built as a neural network but as a tabular algorithm. The MC chooses which
expert is the most suitable at a given time and in a given state, and no longer
simply at a given time. And above all, we have defined a novel arbitration crite-
rion that allows to reduce computational cost while maintaining performance.

2.2 The Decision Layer

Model-Based Expert. The MB expert learns a transition model T and a
reward model R of the problem, and uses them to compute the values of actions
in each state. These models allow to simulate over several steps the consequences
of following a given behavior and to look for desirable states to reach. Con-
sequently, when the robot realizes that the task has changed, it can use this
knowledge of the world to instantly find the new relevant behavior. However,

How to Reduce Computation Time 71

this search process is costly in terms of computation time as it needs to simulate
several value iterations [13] in each state to find the correct solution.

Learning Process. The learning process of the MB consists in updating the reward
and the transition models by interacting with the world. The transition model
T is learnt by counting occurrences of transitions (s, a, s′). We build it using
the number of visits VN (s, a) of state s and action a. VN (s, a) has a maximum
value of N and VN (s, a, s′) is the number of visits of the transition (s, a, s′) in
the last N visits of (s, a). The transition probability T (s, a, s′) is defined in (1).
This leads to an estimation of the probability to the closest multiple of 1/N .

T (s, a, s′) =
VN (s, a, s′)
VN (s, a)

(1)

The reward model R stores the most recent reward value rt received for
performing action a in state s and reaching the current state s′, multiplied by
the probability of the transition (s, a, s’).

Inference Process. Performing the process of inference consists in planning using
a tabular Value Iteration algorithm [13]:

Q(s, a) ←
∑

s′
T (s, a, s′) [R(s, a) + γmaxa′Q(s′, a′)] (2)

Q(s, a) is the action-value estimated by the agent for performing the action a
in the state s, R(s, a) the probabilistic reward of the reward model R associated
with the transition (s, a) and γ the decay rate of future rewards.

Decision Process. Performing the decision process consists in converting the esti-
mation of action-values into a distribution of action probabilities using a softmax
function, and drawing the action proposal from this distribution:

P (a|s) =
exp(Q(s, a)/τ)∑

b∈A exp(Q(s, b)/τ)
(3)

where τ is the exploration/exploitation trade-off parameter.

Model-Free Expert. The MF algorithm does not use models of the problem
to decide which action to do in each state, but directly learns the state-action
associations by caching in each state the earned rewards in the value of each
action (action-values). Because updating the action-values is local to the visited
state, the process is slow and the robot cannot learn the topological relationships
between states. Consequently, when the task changes, the robot takes many
actions to adopt the new relevant behavior. On the other hand, this method is
less expensive in terms of inference duration.

Learning Process. Performing the learning process consists in estimating the
action-value Q(s, a) using a tabular Q-learning algorithm:

Q(s, a) = Q(s, a) + α [R(s) + γmaxa′Q(s′, a′) − Q(s, a)] (4)

72 R. Dromnelle et al.

R(s) is the instant reward received for reaching the state s and γ the decay
rate of future rewards and the s′ the state reached after executing a.

Inference Process. Since the MF expert does not use planning, its inference
process consists only in reading from the table that contains all the action-values
the one that corresponds to performing the action a in the state s.

Decision Process. The decision process is the same as for the MB expert (3).

Meta-controller and Arbitration Method. The MC is in charge of selecting
which expert will generate the behavior using a novel arbitration criterion which
is a trade-off between the quality of learning and the cost of inference.

Quality of Learning. At each time step t, if the expert E is selected to lead the
decision, its action selection probabilities (3) are filtered using a low-pass filter
and stored by the system :

f(P (a|s,E, t)) = (1.0 − α) ∗ f(P (a|s,E, t − 1)) + α ∗ P (a|s,E, t) (5)

Else, no low-pass filter is applied:

f(P (a|s,E, t)) = f(P (a|s,E, t − 1))

Using the filtered action probability distribution f(P (a|s,E, t)), the MC can
compute the entropy H(s,E, t) of each expert, which has previously been found
to reflect the quality of learning in humans [14]:

H(s,E, t) = −
|A|∑

a=0

f(P (a|s,E, t)) · log2(f(P (a|s,E, t))) (6)

Cost of Inference. At each time step t and for each state s, the duration T (s,E, t)
of the inference process of each expert is recorded and filtered in the same way
as the action selection probabilities (5).

Arbitration Criterion. Using the quality of learning and the cost of inference,
the MC computes one expert-value Q(s,E, t) for each expert:

Q(s,E, t) = −(H(s,E, t) + κT (s,E, t)) (7)

where κ = e−ηH(s,MF,t) allows to weight the impact of time in the criterion:
The lower the entropy of the distribution of MF action probabilities, the more
weight the time taken to perform the inference process has in the equation. η is
a constant parameter (η = 7) weighting the entropy term and set according to
a Pareto front analysis [15] (not shown here). We were looking for a κ that min-
imizes the cost of inference, while maximizing the agent’s ability to accumulate
reward over time.

Finally, the MC converts the estimation of expert-values Q(s,E, t) into a
distribution of expert probabilities using a softmax function (3), and draws the
expert proposal from this distribution. The inference process of the unchosen
expert is inhibited, which thus allows the system to save computation time.

How to Reduce Computation Time 73

General Information. Similarly to the Rmax algorithm [13], we initialized the
action-values to a value of 1 so to help exploration of non-previously selected
actions, since the action-values are updated according to the previous ones.

For the MF expert, we conducted a grid search to find the best parameter-set,
i.e. parameters maximizing the total accumulated reward over a fixed duration
of 1600 timesteps. We experimentally found that the duration of 1600 actions
is a good trade-off between the time needed by the MF to start learning and a
reasonable experiment time (1600 actions correspond to about 5 hours of real
experiment). We found α = 0.6, γ = 0.9 and τ = 0.02. For the MB expert, we
chose γ = 0.95 and N = 6. For the MB expert and the MC, we chose the same
value of τ as the MF expert.

2.3 The Experimental Task

We evaluated our cognitive architecture in a navigation task. Since running 1600
actions on the robot takes about six hours, we have created a simulation of the
task where the probabilities of transitions are derived from a 13 h exploration of
the real arena (without the reward). This simulation allowed us to quickly test
multiple coordination criteria and parameterizations, before evaluating them on
a real robot.

We used 2.6 m 9.5 m arena containing obstacles (Fig. 2), and a turtlebot.
The computer uses ROS [16] to process the signals from its sensors, controls the
mobile base and interfaces with our architecture. A Kinect-1 sensor returns an
estimate of distance to obstacles in its field of view, completed by contact sen-
sors at the front and sides of the mobile base. The robot localizes itself using the
gmapping Simultaneous Location and Mapping Algorithm (SLAM, [17]). During
a preliminary environmental exploration phase, the robot incrementally builds
a topological map by adding evenly spaced centers, and thus autonomously cre-
ating new Markovian states (Fig. 2. A). The current state (of the corresponding
MDP) is the closest center from the robot when its previous action is completed
and it evaluates the consequences. We chose to build this map beforehand and
to reuse it for each of the learning experiments, so as to reduce the sources of
behavioral variability. However, note that with the present method the system
could start with an empty map and build it incrementally, and that a new map
could be used for each experiment.

In this experiment, the robot must learn to reach a specific state of the
environment (state 18 – see Fig. 2. B). When it succeeds, it receives a unitary
reward and is randomly returned to one of the two initial positions, located in
the extremities of the arena (states 0 and 32), to start over. The goal of the
robot is first to reach state 18. The experiment involves a stable period where
the environment and reward do not change (i.e., until action 1600), followed by
a task change where the reward is moved from state 18 to state 34. We also
made a second series of experiments where the reward is fixed but obstacles
are introduced in the environment. As the state space, the action space is a
discrete space. Here, performing an action consists of going forward along 8
equally distributed allocentric directions (Fig. 2. A). As long as the robot has not

74 R. Dromnelle et al.

Fig. 2. A. Map of the arena’s states. The eight-pointed star indicates the direction (in
the map) of each robot actions. B. Photo of the arena and a turtlebot heading into
the middle corridor. The state 18 (initial reward location) is represented in red. (Color
figure online)

changed state, the action is not considered as completed. However, if while the
robot moves forward, its contact sensors are activated (it bumps into a wall), then
it will move back 0.15 meters and the action is considered as completed. Finally,
according to the exact position in which the agent is located within a state, the
arrival state will not necessarily be identical for the same action performed. The
environment is therefore probabilistic, which multiplies the possibilities for the
agent. For the MB expert, this specificity implies that the transitions T (s, a, s′)
and the rewards R(s, a) are stored respectively in the model of transition T and
the model of reward R as probability distributions.

3 Results

We first present the results obtained when a virtual agent performs the task in
a simulated environment, and then, the replication of these results in the real
environment with a Turtlebot.

3.1 Simulated Task

To evaluate the performance of the virtual agent, we studied four combinations
of experts: (1) a MF only agent using only the MF expert to decide, (2) an MB
only agent using only the MB expert to decide, (3) a random coordination agent
(MC-Rnd) which coordinates the two experts randomly and (4) an Entropy and
Cost agent (MC-EC) which coordinates the two experts using the model of arbi-
tration presented in 2.2. We also compare our agent to an agent using a reference
learning algorithm in the literature, a DQN [18]. We evaluated iteratively several
networks with various number of layers and size of layers, and selected the set of
parameters that achieved the best performance. The neural network composed
of two hidden layers of 76 neurons which takes as input a vector of size 38 (cor-
responding to the activity of the states, with 1 if the state is active, and 0 if

How to Reduce Computation Time 75

Fig. 3. A. Mean performance for 100 simulated runs of the task. The performance
is measured as the cumulative reward obtained over the duration of the experiment.
The duration is represented as the number of actions performed by the agent. We use
standard deviation as dispersion indicator. At the 1600th action, the reward switches
from the state 18 to the state 34. B. Mean computational cost for 100 simulated
runs of the task. The computational cost is measured as the cumulative time of the
inference process over the duration of the experiment in seconds. C. Mean probabilities
of selection of experts by the MC using the Entropy and Cost criterion for 100 simulated
runs of the task. These probabilities are defined by the softmax function of each expert.
D. Probabilities of selection of experts by the MC using the Entropy and Cost criterion
for 2 simulated runs of the task. (Color figure online)

not), returns a vector of size 8 (corresponding to the 8 action-values of the active
state) and uses experience replay. Its parameters are α = 0.1 γ = 0.95 and τ =
0.05.

We define the “optimal behaviour” as the behaviour that allows the agent
to accumulate the most reward over time (Fig. 3. A). As expected, the MF only
agent (red) takes longer to reach the optimal behaviour. On the other hand, the
MB only agent (blue) has the best performance. The MC-EC agent (purple) has a
non-significantly different performance from the MB only agent, showing that our
coordination method does not penalize the agent in terms of cumulated reward.
In addition to that, it performs better than the MC-Rnd agent (green) suggesting
that our coordination method is more effective than chance to accumulate reward
over time. At the 1600th action, the environment is modified (change of reward
state). The MF only agent takes longer to recover from environmental change
than the other agents. Indeed, the MF expert does not use planning method

76 R. Dromnelle et al.

and only updates its action-values locally: a method that takes longer to be
effective. Finally, we can observe that the DQN agent learns and adapts less well
than all other agents. As it is a model-free algorithm, it is not surprising that
agents using the MB expert are more efficient and adaptive. The DQN is also
worse than our tabular MF because it has much more memorized values (i.e. the
weights of the network) to adapt before being able to provide correct outputs:
the training of deep neural networks generally require several hundred thousand
iterations. Such number are much too large, when targeting applications to real
robot experiments, where learning on-the-fly is required. Replay mechanisms,
or training in simulation, could be used to speed-up learning of the DQN, but
these additional computations would clearly increase the computational cost of
the resulting system.

Unsurprisingly, the MF only agent has a very low computational cumulated
cost (Fig. 3. B) since its inference process simply consists in reading from the
table that contains all the actions-values, while the MB only agent has a high
computational cost, because its inference process is a planning method. The MC-
EC agent, which exhibits a performance similar to the MB, has a computational
cost three times smaller: the average cumulative time at the end of the experi-
ment spent by the MB only agent on its inference process is1750 s versus 500s
for the MC-EC agent at action 6400. It is to be noted that the meta-controller
has in any case a very low cost, similar to the MF expert, of 10−5 seconds per
iteration on average. In this system, only the MB expert is expensive, with an
average cost of 10−2 seconds per iteration. The cost of using a meta-controller
is therefore negligible compared to what it brings in terms of overall savings.

The dynamics of the selection of the experts by the MC, expressed in terms
of selection probabilities (Fig. 3. C), displays three different phases:

The MF Exploring Phase (1 on Fig. 3. C). Before the discovery of the
position of the reward, the agent uses mainly the MF expert. This is due to the
difference in the method for updating action-values between the two experts.
With the same initial values and the set of parameters we have defined, the
action-values of the MF expert decrease slightly more than those of the MB
expert, which drives a more pronounced decrease of the entropy of the action
probability distribution. In addition, since we do not have an expert specialized
in exploration, it makes sense to use the cheapest expert until the position of
the reward has been discovered. About exploration, other studies propose to deal
between three experts: a MB expert, a MF expert and an expert specialized in
the exploration of the environment [3].

The MB Driving Phase (2 on Fig. 3. C). After finding the first reward
the MB expert progressively takes the lead on the decision because its process
of inference needs only to find the reward once to spread action-values into its
transition model. It finds the reward more easily than the MF expert, and so,
its performance increases.

The MF Driving Phase (3 on Fig. 3. C). The MF expert learns by demon-
stration from the MB expert, and thus spreads action-values from state to state

How to Reduce Computation Time 77

and eventually, towards the 800th action, it reaches the performance of the MB
expert. Because the MF expert is less expensive, the model of arbitration gives
it the lead on the decision.

A MF exploring phase starts again at the 1600th action when the rewarded
state moves from state 18 to 34. Then, the MB driving and the MF driving
phases repeat.

The large standard deviation is explained by the fact that for each experi-
ment, the agent’s strategy and behaviour can be very different, notably due to
the large number of states and possible actions, but also to the probabilistic
nature of the environment. As a result, the time of the switches from one phase
to another varied a lot from one individual to another. Nevertheless the individ-
ual behavior of each run is consistent with the average behavior presented here
(Fig. 3. D).

3.2 Real Task

Fig. 4. A. Mean performance (brown) and cost (cyan) for 100 simulated runs (dashed
curves) and 10 real runs (solid curves) of the navigation task for the MC-EC agent.
B. Mean probabilities of selection of experts by the MC using the Entropy and Cost
criterion for 10 real runs of the task. (Color figure online)

We evaluated our model of coordination on a real robot to verify that these
results cross the reality-gap. Figure 4. A compares the performance and the cost
of the MC-EC agent and the real robot (both use the same model of arbitration).
The reality gap is visible, with a drop in performance and a cost increase for
the real robot compared to the simulation. However, the model still allows the
real robot to learn and accumulate reward over time in the same way, and the
economy of cost remains advantageous.

Figure 4. B shows the dynamics of selection of the experts by the MC, for
the experiments in real environment with the real robot. Again, the three-phases
pattern is present, with only a 300 actions mean delay at the beginning of the
third phase.

78 R. Dromnelle et al.

We obtained similar strategy alternations with the environment change con-
sisting of obstacles introduction without moving the reward. We also observed
that geographical patterns of coordination of experts emerged over time. These
results won’t be presented in details here because of space limitations.

4 Discussion

We analyzed the behavior of a three-layered robotic architecture integrating
neuro-inspired mechanisms for the coordination of MB and MF reinforcement
learning. The novelty relies in the explicit online measure of performance and
cost of each system, so as to give control to the system with best current trade-off
between the two. We presented real and simulated navigation results in a com-
plex, non-stationary indoor environment. The arbitration criterion proposed in
this work allowed the robot to autonomously determine when to shift between
systems during learning, generating a coherent temporal decision-making pat-
tern that alternates between strategies over time. This promoted more flexibility
than pure MF control in response to task changes, and permitted to reach the
same level of performance than pure MB control, while dividing computation
time by three. The comparison with DQN showed that using end-to-end RL has
a computational cost not compatible with robotic constraints, and that thus
building and using a data representation adapted to the task at hand reduces
the burden on the RL part of the system, allowing for low-cost on-the-fly learn-
ing. In future work, we plan to test whether this architecture is generalizable to
other scenarios and larger spaces states, which we have already begun to do by
applying our model to a social interaction task defined by 112 states [19].

References

1. Meyer, J.-A., Guillot, A.: Biologically-inspired robots. In: Handbook of Robotics
(B. Siciliano and O. Khatib, eds.), pp. 1395–1422. Springer, Berlin (2008). https://
doi.org/10.1007/978-3-540-30301-5 61

2. Dollé, L., Khamassi, M., Girard, B., Guillot, A., Chavarriaga, R.: Analyzing inter-
actions between navigation strategies using a computational model of action selec-
tion. In: International Conference on Spatial Cognition, pp. 71–86 (2008)

3. Caluwaerts, K., et al.: A biologically inspired meta-control navigation system for
the Psikharpax rat robot. Bioinspiration Biomimetics 7, 025009 (2012)

4. Zambelli, M., Demiris, Y.: Online multimodal ensemble learning using self-learned
sensorimotor representations. IEEE Trans. Cogn. Dev. Syst. 9(2), 113–126 (2016)

5. Banquet, J.-P., Hanoune, S., Gaussier, P., Quoy, M.: From cognitive to habit
behavior during navigation, through cortical-basal ganglia loops. In: Villa, A.E.P.,
Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 238–247.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0 28

6. Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., Mordatch, I.: Plan online,
learn offline: efficient learning and exploration via model-based control. In: Inter-
national Conference on Learning Representations (2019)

https://doi.org/10.1007/978-3-540-30301-5_61
https://doi.org/10.1007/978-3-540-30301-5_61
https://doi.org/10.1007/978-3-319-44778-0_28

How to Reduce Computation Time 79

7. Daw, N., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8(12), 1704–
1711 (2005)

8. Khamassi, M., Humphries, M.: Integrating cortico-limbic-basal ganglia architec-
tures for learning model-based and model-free navigation strategies. Front. Behav.
Neurosci. 6, 79 (2012)

9. Renaudo, E., Girard, B., Chatila, R., Khamassi, M.: Respective advantages and
disadvantages of model-based and model-free reinforcement learning in a robotics
neuro-inspired cognitive architecture. In: Biologically Inspired Cognitive Architec-
tures BICA 2015, (Lyon, France), pp. 178–184 (2015)

10. Renaudo, E., Girard, B., Chatila, R., Khamassi, M.: Which criteria for
autonomously shifting between goal-directed and habitual behaviors in robots?
In: 5th International Conference on Development and Learning and on Epigenetic
Robotics (ICDL-EPIROB), pp. 254–260. (Providence, RI, USA) (2015)

11. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots.
MIT Press (1998)

12. Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for
autonomy. IJRR J. 17, 315–337 (1998)

13. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT
Press, Cambridge (1998)

14. Viejo, G., Khamassi, M., Brovelli, A., Girard, B.: Modelling choice and reaction
time during arbitrary visuomotor learning through the coordination of adaptive
working memory and reinforcement learning. Front. Behav. Neurosci. 9(225) (2015)

15. Powell, T., Sammut-Bonnici, T.: Pareto Analysis (2015)
16. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-

shop on Open Source Software (2009)
17. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping

with Rao-blackwellized particle filters. Trans. Rob. 23, 34–46 (2007)
18. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature

518, 529–533 (2015)
19. Dromnelle, R., Girard, B., Renaudo, E., Chatila, R., Khamassi, M.: Coping

with the variability in humans reward during simulated human-robot interactions
through the coordination of multiple learning strategies. In: The 29th IEEE Inter-
national Conference on Robot & Human Interactive Communication (2020)

	How to Reduce Computation Time While Sparing Performance During Robot Navigation? A Neuro-Inspired Architecture for Autonomous Shifting Between Model-Based and Model-Free Learning
	1 Introduction
	2 Materials and Methods
	2.1 A Robotic Architecture with a Dual Decision-Making System
	2.2 The Decision Layer
	2.3 The Experimental Task

	3 Results
	3.1 Simulated Task
	3.2 Real Task

	4 Discussion
	References

