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Abstract. This work explores a method for analytically computing the infinites-
imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a
hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the
iPRCs, could assist in tuning the strength and locations of sensory pathways.
We model the SNS exoskeleton controller in a reduced form using a state-space
representation that interfaces neural and motor dynamics. The neural dynamics
are modeled after non-spiking neurons configured as a central pattern generator
(CPG), while the motor dynamics model a power unit for the hip joint of the
exoskeleton. Within the dynamics are piecewise functions and hard boundaries
(i.e. “sliding conditions”), which cause discontinuities in the vector field at their
boundaries. The analytical methods for computing the iPRCs used in this work
apply the adjoint equationmethodwith jump conditions that are able to account for
these discontinuities. To show the accuracy and speed provided by these methods,
we compare the analytical and brute-force solutions.

Keywords: Infinitesimal phase response curve · Synthetic nervous system ·
Hybrid exoskeleton

1 Introduction

Research and development of exoskeleton devices to mimic or assist walking have been
ongoing since the 1960s [1]. The mechanical design and control strategies for these
exoskeletons can vary widely. A collaborative team at Case Western Reserve Univer-
sity and the Cleveland Stokes Veteran’s Affairs (VA) hospital is currently developing
a hybrid exoskeleton [2]. The exoskeleton is considered a hybrid because it combines
functional electrical stimulation (FES) [3] of the user’s muscles with the bracing and
power assistance of an exoskeleton [4]. Such an exoskeleton will enable patients to
regain mobility and act as a form of physical therapy due to the physiological benefits of
FES [5]. Specifically, paraplegic patients benefit from the exoskeleton’s powered joints
that compensate for inadequate muscle activation when using FES.
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Despite the progress of exoskeletons and biped robots to date, their movements
remain in general less robust and adaptive compared to those of humans. The robustness
and adaptation of humanwalking is due to the structure and function of the neural control
networks within the nervous system. Decades of study in neuroscience and biology have
begun to uncover how these controllers operate [6]. Controlling our exoskeleton with a
computational model of these networks, which we call a “Synthetic Nervous System”
(SNS) [7], may endow it with more robust and adaptive locomotion.

Our ultimate goal is to control our exoskeleton and FES with an SNS model that
incorporates sensory feedback to coordinate the motion of different limb segments in
a flexible framework that can be altered by descending influences in a task-dependent
way. These two features have been shown to underlie periodic motor output in animals
[8–10]. Neural models of animal locomotion in [11–13] can serve as a basis for the
organization of our SNS model moving forward. However, with the actuators of the
exoskeleton more closely resembling servomotors than antagonistic pairs of muscles,
design of joint movement controls will be more in line with the design process outlined
in [14]. Interjoint coordination will be relying on sensory feedback signals from the
positions of other joints and forces on the leg [11, 15].

An expected hurdle to developing and tuning this SNS will be in the coordination of
the multiple rhythmic systems, i.e. the oscillation of each joint. Inter-joint coordination
arises from sensory pathways between leg joints adjusting the oscillatory phase of the
other joints. For example, loading information from the foot adjusts the phase of the
hip’s control network to generate propulsion [11]. But how should the strength of such
pathways be tuned? One tool that quantifies how periodic trajectories are altered by
perturbations is the infinitesimal phase response curve, or iPRC. An iPRC reveals how
the cycle’s phase changes in response to perturbations applied to each of its state variables
at different phases throughout its limit cycle. By locating the areas of higher and lower
sensitivity, wemay be able to design sensory pathways that exploit the oscillators’ phase-
dependent sensitivity to inputs. In addition, understanding how sensory information
alters the relative phase of the joints, wemay be able to determine the stability of periodic
trajectories (i.e. how the exoskeleton walks) and its robustness to system parameters.

Despite the potential benefits these iPRCs could provide, the process of finding the
iPRCs via brute force guess-and-check can require long computation times, especially
as the dimensionality of the SNSmodel grows. Analytical methods for generating iPRCs
exist, which should be faster and computationally less expensive than brute force meth-
ods. However, such methods mostly consider smooth systems and tend to break down
in non-smooth systems due to the Jacobian matrices of the system’s vector fields not
being well defined [16]. Our model joint model system contains piecewise functions and
certain hard boundaries (i.e. “sliding conditions”) that make it non-smooth. However,
more recently developed analytical methods for finding iPRCs can treat systems whose
dynamics contain piecewise functions and sliding conditions [16, 17]. In this work, we
will apply these newer methods with a reduced model of our SNS exoskeleton controller
to compute its iPRC numerically.We compare this iPRC to one generated via brute force
(i.e. repeated perturbed simulation). We then discuss future applications for this work.
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2 Methods

This work establishes a system wherein the direction, timing, and speed of the hip joint
of a powered exoskeleton is controlled by simple neural network consisting of a central
pattern generator (CPG), modeled using two non-spiking leaky neurons. The hip joint is
powered by a DC motor with a gearbox, and the rotation of the joint provides feedback
to the CPG.

2.1 Motor Dynamics

The hip power unit is the actuator driving the movement. It is composed of a DC motor
paired with a transmission to produce a larger torque, while still being capable of out-
putting the needed speeds of the hip during walking locomotion. The power unit can be
modeled as a motor.

Kirchhoff’s Current Law. To model the electrical properties of the motor we use
Kirchhoff’s Current Law,

L · İ = Vin − Kv · θ̇ − Rm · I (1)

Where L is the motor armature inductance, Vin is the motor voltage input, Kv is the
motor speed constant, θ̇ is the angular velocity, Rm is the motor terminal resistance, and
I is the motor current. Equation 1 makes up the basis of our motor current state. Due to
limitations of the motor controller and transmission inside the power unit, only a certain
amount of current can be sourced at once. This restriction introduces a sliding condition
to the state equation for current, where it can only reach a set maximum amount of
current.

Newton’s Law of Motion. To model the mechanical properties of the motor we use
Newton’s Law of Motion resulting in

J · θ̈ = Kt · I − B · θ̇ − sign(θ) · τext (2)

where the J is the motor mass moment of inertia, Kt is the motor torque constant, B
is the motor viscous friction, and τext is the external torque, which is used to account
for the static friction. Equation 2 makes up the basis of the angular velocity state of the
motor.

Angular Position. To describe the dynamics in a state-space representation, we add a
differential equation modeling the angular position of the motor,

θ̇ = dθ

dt
(3)
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2.2 Neural Dynamics

The neural dynamics contribute four state variables to the system. These variables model
the activation level of the two neurons in our CPG, as well as those neurons’ persistent
sodium channel inactivation.

Non-spikingLeakyNeuronModel. Theneurons aremodeled as non-spikingHodgkin-
Huxley compartments with the substitutionU = V − Er , as used in [7, 14] to simplify
analysis, whereEr is the resting potential,V is the neuron voltage, andU is the activation
level above the resting voltage. This gives us

Cm · U̇ = −Gm · U + Gsyn(U ) · (
�Esyn − U

) + GNa · m∞(U ) · h · (�ENa − U )

+ Iapp + Ipert + Gfb · (
�Efb − U

)
(4)

where Cm is the membrane capacitance, Gm is the membrane conductance, Gsyn is the
instantaneous synaptic conductance, �Esyn is the synaptic reversal potential, GNa is
the sodium conductance, m∞ is a sigmoid for the persistent sodium channel activation,
h is the persistent sodium channel inactivation, �ENa is the sodium channel reversal
potential, Iapp is the membrane applied current, and Ipert is a small current pulse that is
only applied to one of the neurons at the beginning to create an offset to begin oscillation
of the CPG. The terms Gfb and �Efb are feedback terms used to interface feedback
pathways with the motor. Gfb is the feedback synapse conductance and �Efb is the
feedback reversal potential.

Central Pattern Generator. The central pattern generator is formed by mutual inhibi-
tion between two neurons with persistent sodium channels [14]. The synaptic conduc-
tance,Gsyn, of the inhibitory synaptic connections between the two neurons is described
by the piecewise-linear function

Gsyn(U ) =
⎧
⎨

⎩

0,
gsyn · U

R ,

gsyn,

ifU ≤ 0
if 0 < U < R

ifU ≥ R
(5)

whereR is the expected range of voltage output from the neuron and gsyn is themaximum
synaptic conductance. To have our network oscillate between the voltage range of 0 to
R at steady state when one neuron is inhibited and the other is uninhibited, GNa is found
using

GNa = Gm · R
m∞(R) · h∞(R) · (�ENa − R)

. (6)

The maximum synaptic conductance, gsyn, is found using

gsyn = −δ − GNa · m∞(δ) · h∞(δ) · (δ − �ENa)

δ − �Esyn
. (7)

Here, δ is a bifurcation parameter that represents the strength of the synaptic inhi-
bition as the difference between the inhibited neuron’s resting potential and the lower
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threshold of the synapse [14]. The term h∞ is another sigmoid, similar to m∞, but for
the sodium inactivation channel. The sigmoids are defined as

m∞(V ) = 1

1 + exp(S · (R − V ))
(8)

h∞(V ) = 1

1 + 0.5 · exp(S · V )
(9)

where S is the maximum slope of the sigmoid.

Sodium Channel Inactivation. The differential equation that governs the sodium
channel inactivation term, h, found in Eq. 4 is

ḣ = h∞(U ) − h

τh(U )
(10)

where τh is the sodium inactivation time constant found using

τh(V ) = τh,max · h∞(V ) · √
0.5 · exp(S · V ) (11)

2.3 Interfacing the Dynamics

With the motor and neural dynamics laid out in the sections above, we must establish
coupling terms between them. Our goal is to use the neural states to specify position and
velocity commands for the motor. For the CPG to be able to control the movement of
the motor, the states of the neural dynamics are integrated in to the motor dynamics as
inputs as well as having certain states from the motor dynamics used in new feedback
pathways for the neurons.

NeuronActivation as Inputs to theMotor. To have the CPG specify the velocity of the
motor, the motor voltage input, Vin, becomes a piecewise-linear function of the neuron
activation states.

Vin(U1, U2) = P · min(max(U1, 0), R) − min(max(U2, 0), R)) (12)

where U1 and U2 represent the activation states of neurons 1 and 2, respectively. The
term P is a gain term represented as

P = 4 · Kv

1000 · R (13)

that limits the maximum commanded speed to 4 rads/s, since this is the approximate
speed of the hip joint during walking locomotion found in [18].

Angular Position as Feedback for the Neurons. The feedback synapse conductance,
Gfb, is set as a function of position θ . If neuron 1 (U1) was active when θ reaches a
certain threshold, the feedback synapse conductance activates to allow a strong inhibitory
current to inhibit U1. With U1 now inhibited, U2 is allowed to escape and become the
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active neuron in the CPG. This causes the angular velocity to switch signs due to Eq. 12,
leading to a change in direction.Gfb for neurons 1 and 2 are represented by the following
piecewise functions

Gfb,1(θ) =
{

0, θ < θFLX

gFB, θ ≥ θFLX
(14)

Gfb,2(θ) =
{

0, θ > θEXT

gFB, θ ≤ θEXT
(15)

WheregFB is themaximumfeedback conductance, θFLX is theflexion position trigger
and θEXT is the extension position trigger. The current model sets θFLX = 30 degrees
and θEXT = −10 degrees based on hip angle ranges during locomotion found in [18].
For completeness, all state equations are listed in Table 1 and all variable values and
units are shown in Table 2.

Table 1. State equations of the system

Variable name State equation

Current L · İ = Vin − Kv · θ̇ − Rm · I
Angular position θ̇ = dθ

dt

Angular velocity J · θ̈ = Kt · I − B · θ̇ − sign(θ) · τext

Neuron 1 activation Cm · U̇1 = −Gm ·U1 + Gsyn(U2) · (
�Esyn − U1

) + GNa

· m∞(U1) · h1 · (�ENa − U1) + Iapp

+ Ipert + Gfb,1(θ) · (
�Efb − U1

)

Neuron 2 activation Cm · U̇2 = −Gm ·U2 + Gsyn(U1) · (
�Esyn − U2

) + GNa

· m∞(U2) · h2 · (�ENa − U2) + Iapp

+ Gfb,2(θ) · (
�Efb − U2

)

Neuron 1 Sdium Channel
inactivation

ḣ1 = h∞(U1) − h1
τh(U1)

Neuron 2 Sodium Channel
inactivation

ḣ2 = h∞(U2) − h2
τh(U2)
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Table 2. Parameter values and units.

Variables Parameter Base value/Units

Vin Motor Voltage Input V

Kv Motor Speed Constant 5.7886 V
rad/s

Rm Motor Armature Resistance 0.608�

L Motor Armature Inductance 0.000463H

Kt Motor Torque Constant 4.11Nm/A

B Motor Viscous Friction 0.859 Nm
rad/s

τext External Torque 2.38Nm

J Motor Mass Moment of Inertia 0.444 kg · m2

Gm Membrane Conductance 1µS

gsyn Max Synaptic Conductance 0.2819µS

�Esyn Synaptic Reversal Potential −100mV

GNa Sodium Conductance 3.1455µS

�ENa Sodium Channel Reversal Potential 50mV

Iapp Membrane Applied Current 0 nA

Ipert Membrane Perturbation Current 1 nA

Cm Membrane Capacitance 5 nF

τh Sodium Inactivation Time Constant ms

τh,max Sodium Inactivation Time Constant Max 300ms

δ Bifurcation Parameter 0.1

R Voltage Range 20

S Slope of sigmoid 0.05

θFLX Hip Flexion Angle 30◦

θEXT Hip Extension Angle −10◦

2.4 Deriving/Generating Analytically the Infinitesimal Phase Response Curves
(IPRCs)

The system, governed by the state equations shown above in Table 1, exhibits a limit
cycle with both piecewise functions and hard boundaries acting as sliding conditions.
Deriving iPRCs for piecewise-linear and limit cycles with sliding conditions (LCSCs)
have been treated in detail in [16, 17]. However, we will briefly summarize the process.

Finding the Infinitesimal Phase Response Curve via Brute Force. To generate the
iPRC of a system via brute force, the unperturbed system is simulated for at least one
period. After obtaining this unperturbed limit cycle, the system is integrated up to given
phases. Once reaching the given phase, the solution is halted, perturbed in the direction
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of a basis vector at a sufficiently small magnitude (1E-2–1E-4 are common values [17])
and re-initialized. The system is then integrated after this perturbation for a sufficiently
long time (typically 10 times the period). The value of the iPRC for the phase at which
the perturbation is applied is calculated as the difference between the duration of the
unperturbed and perturbed limit cycles, divided by the magnitude of the perturbation.

Analytically Finding the Infinitesimal Phase Response Curve. For a general smooth
nonlinear system which produces a limit cycle, the iPRC can be found using an adjoint
equation method [19]. The adjoint equation is

ż = −(DF(γ ))T · z, (16)

where z is the iPRC and DF(γ ) is the Jacobian matrix evaluated on the limit cycle γ .
Usually, the adjoint equation cannot be used on nonsmooth systems due to the disconti-
nuities present at the boundaries of piecewise functions or sliding conditions. However,
[16, 17] introduce methods to account for these discontinuities.

To account for the discontinuities at the boundaries, jump matrices are calculated at
each boundary crossing. These jump matrices capture the abrupt changes that happen
to the vector field of the system at the boundaries. To use the jump matrices to properly
calculate the iPRC, one evaluates the adjoint equation backwards in time. The adjoint
equation is calculated backwards in time because the jump matrix at the liftoff point for
sliding conditions would not be well defined otherwise, as detailed in Remark 3.9 and
Theorem 3.7 in [16]. When a boundary is encountered, the iPRC just before (in forwards
time) the boundary is calculated by

z− = J z+, (17)

where z− is the iPRC just before the boundary, z+ is the iPRC just after the boundary
and J is the jump matrix. How to calculate the jump matrix is detailed in Theorem 2.2
for piecewise smooth limit cycles in [17] and Remark 3.10 for LCSCs in [16]. Once z−
is found, one re-initializes the adjoint equation using z− and continues to evaluate the
adjoint equation backwards in time.

3 Results

3.1 Simulation of the Full System

The state equations shown in Table 1 were simulated in MATLAB (The Mathworks,
Natick, MA) using its ODE15s solver with relative and absolute tolerances set at 1 ×
10−10, for 5000 ms to produce Fig. 1. Figure 1 shows that the system is rhythmically
oscillating. The flattening of the peaks in plot (c) in Fig. 1 verifies and displays the
locations of the system’s sliding conditions, where the motor’s current draw is limited.
Because the motor’s current draw is a dynamical state variable, this limitation represents
a sliding condition, not a discontinuity. The period of the system was calculated as
T ≈ 545ms.
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Fig. 1. Simulation results of the SNS controlled hip power unit model. (a): Plot of neuron 1 (U1)

and neuron 2 activation (U2) represented by black lines and dashed gray lines, respectively. (b):
Plot of neuron 1 (h1) and neuron 2 sodium channel inactivation (h2) represented by black lines and
dashed gray lines, respectively. (c): Plot of the motor current. Sliding conditions take place at the
maximum and minimum allowable currents of magnitude 8.76A. (d): Plot of the angular position
of the motor in degrees. (e): Plot of the angular velocity of the motor in radians per second.

3.2 Infinitesimal Phase Response Curve

The brute force and analytical iPRCs of the limit cycle are displayed together in Fig. 2.
The perturbation magnitude used for the brute force iPRC was calculated as 10−2 times
the average absolute value of each state over one period. Two hundred fifty equally
spaced given phase positions were used to generate the brute force iPRC. The Jacobian
matrixDF used in the adjoint equation for the analytically obtained iPRCwas calculated
numerically by finite difference. Figure 2 shows good agreement between the brute force
and analytical iPRCs. The runtime for the analytical solution was 28.65 s versus more
than 5 h for the brute force solution, representing a massive speedup.

4 Discussion

In this work, we present a model wherein the direction, timing, and speed of the hip
joint of a powered exoskeleton are controlled by simple neural network consisting of
a central pattern generator (CPG), modeled using two non-spiking leaky neurons. The
model identifies the CPG, the plant, and the coupling between them in a control archi-
tecture directly reflecting the structure of biological motor systems [20]. For this system,
we show that the analytical methods in [16, 17] for generating iPRCs of limit cycles
containing piecewise-linear functions and sliding conditions agree with the iPRCs cal-
culated for our system via brute force. This method will enable us to precisely tune the
interjoint coordinating influences in our exoskeleton control model.
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Fig. 2. The brute force (dots) and analytical (lines) iPRCs of the SNS controlled hip power unit
model. (a): iPRC of U1 and U2 with the brute force iPRC represented by blue and green dots
respectively, and the analytical iPRC represented by black and gray lines, respectively. (b): iPRC
of h1 and h2 with the brute force iPRC represented by blue and green dots respectively, and the
analytical iPRC represented by black and gray lines, respectively. (c): iPRC of the motor current.
(d): iPRC of the angular position. (e): iPRC of the angular velocity. (Color figure online)

The analytical method for generating iPRCs will enable us to more rapidly tune
the parameters of our system. One of our intended uses for the iPRCs is to find and
evaluate ideal parameter values for interjoint coordinating influences in our networks.
Proper walking emerges from sensory feedback pathways that synapse onto the CPGs
to change their oscillation phases [8]. However, it is not clear which states should alter
CPG phase, or how strong those influences should be. We can use iPRCs to determine at
what phases a network is most sensitive to inputs, and exploit this knowledge to design
locomotion-stabilizing coordination pathways. Even though this could be accomplished
by generating iPRCs via simulation and brute force [14], the analytical iPRC method
is faster and computationally less expensive, allowing quicker evaluation of possible
changes to the system.

This analyticalmethod for generating iPRCswill also enable us to determine synaptic
sites for descending influences that alter locomotion. Descending influences from the
brain are known to be critical for directing (but not necessarily generating) ongoing
periodic motor output in all types of animals [9, 10]. However, it is not always clear
what parts of the network descending commands modify to alter locomotion, or how
strong those influences are. With the ability to rapidly generate iPRCs, we can identify
how the parameters of a joint controller change its response to descending signals, and
how the form and strength of those signals affect locomotion.
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The ability of the analytical methods to account for piecewise and sliding conditions
is also of great value. As shown in our methods and [14], the SNS can depend on piece-
wise equations to function correctly. Importantly, such piecewise equations enable the
output of a neuron to be completely “shut off,” such as when a neuron stops firing action
potentials. This effect cannot be produced by traditional recurrent neural networks with
continuous synaptic activation functions [21]. As the system in this work is scaled up and
developed for use as a controller for an assistive exoskeleton for walking gait rehabili-
tation, the discontinuous mechanics of walking will introduce more sliding conditions
[22], such as making and breaking contact with the ground, which must be accounted
for. We believe we can continue to scale this method up to more accurately and quickly
predict how a dynamical system’s periodic orbit may be altered by perturbations in a
phase-dependent way.

For futureworkwe intend to continuedevelopment towards a larger andmore realistic
network for controlling our exoskeleton, that would include additional joints, as well
as expanded sensory pathways and descending commands. We also plan to explore
additionalmethods in [16] for analytically finding the infinitesimal shape response curves
(iSRCs) for our systems. The iSRC would show how the values of each state change
throughout its period when system parameters are perturbed from their baseline values
for the duration of the limit cycle. Understanding how these lasting perturbations alter
the periodic trajectory of the system will assist tuning of parameter values. Essentially,
by perturbing one ormore parameters for the full period of the limit cycle, their effects on
the state values can be determined at each instance of the period. With this information,
the proper parameter values needed for the trajectory to exhibit key features (i.e. level
body height during the stance phase) can be found. We expect this analytical method
to again be faster and computationally less expensive than solving the iSRC via brute
force, allowing tuning to be done more quickly and efficiently.
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