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Abstract. A classic result in formal language theory is the equivalence
among aperiodic finite automata, star-free regular expressions, and first-
order logic on words. Extending these results to structured subclasses of
context-free languages, such as tree languages, did not work as smoothly:
there are star-free tree languages that are counting. We argue that inves-
tigating the same properties within the family of operator precedence
languages (OPLs) by going back to string languages rather than tree
languages may lead to equivalences that perfectly match those on regu-
lar languages. We define operator precedence expressions; we show that
they define exactly the class of OPLs and that, when restricted to the
star-free subclass, coincide with first-order definable OPLs and are ape-
riodic.

Since operator precedence languages strictly include other classes
of structured languages such as visibly pushdown languages, the same
results given in this paper hold as trivial corollary for that family too.

Keywords: Operator precedence languages · First-order logic ·
Monadic second-order logic · Star-free languages · Aperiodic
languages · Input-driven languages · Visibly-pushdown languages

1 Introduction

It is well known that regular languages are closed w.r.t. all basic operations
and are characterized also in terms of classic monadic second-order (MSO) logic
[8,17,36], but the same properties do not hold for general context-free (CF) lan-
guages with the exception of structured CF languages. With this term we mean
those various families of languages whose typical tree structure is immediately
visible in their sentences: two first equivalent examples are parenthesis languages
[27] and tree languages [34]. More recently, input-driven languages (IDLs) [7],
later renamed visibly pushdown languages (VPLs) [2], height-deterministic lan-
guages [29] have also been shown to share many important properties of regular
languages. Tree-languages and VPLs, in particular, are closed w.r.t. Boolean
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operations, concatenation, Kleene *, and are characterized in terms of some
MSO logic, although such operations and the adopted logic language are rather
different in the two cases. For a more complete analysis of structured languages
and how they extend various properties of regular languages, see [26].

In this paper we are interested in an important subfamily of regular lan-
guages and its extension to various types of (structured) CF languages, namely
noncounting (NC) or aperiodic languages. Intuitively, aperiodicity is a property
of a recognizing device which prevents from separating strings that differ from
each other by the number of repetitions of some substring, e.g. odd versus even.
It is well-known [28] that NC regular languages coincide with those expressible
by means of star-free regular expressions or by the first-order (FO) fragment
of MSO. FO definability has a strong impact on the success of model-checking,
thanks to the first-order completeness of linear temporal logic [32].

Various attempts have been done to extend the notion of aperiodicity beyond
regular languages, specifically to some kind of structured CF languages. In facts,
linguists as well as language designers have observed over and over that modulo-
counting features are not present or needed either in natural or in technical
languages.

NC parenthesis languages have been first introduced in [10]; then an equiva-
lent definition thereof has been given in [35]. That paper, however, showed that
the same equivalences holding for regular languages do not extend to tree lan-
guages: e.g., there are counting star-free tree languages. Further investigations
(e.g., [18,21,22,31]) obtained partial results on special subclasses of the involved
families but the complete set of equivalences was lost.

In this paper we pursue a different approach to achieve the goal of restat-
ing the above equivalences in the larger context of structured CF languages.
In essence, we go back to string languages as opposed to the approaches based
on tree languages but we choose a family of languages where the tree struc-
ture is somewhat implicit in the string, namely operator precedence languages
(OPL). OPLs have been invented by Floyd to support efficient deterministic
parsing [19]. We classify them as “structured but semivisible” languages since
their structure is implicitly assigned by precedence relations between terminal
characters which were inspired by the precedence rules between arithmetic oper-
ations: as an early intuition for readers who are not familiar with OPLs, the
expression a + b · c “hides” the parenthetic structure a + (b · c) which is implied
by the fact that multiplicative operations should be applied before the additive
ones. Subsequent investigations characterized OPLs as the largest known family
of structured CFLs that is closed under all fundamental language operations and
can be defined through a natural extension of the classic MSO logic [26].

Our new results on the relations between aperiodicity, star-freeness, and FO-
definability of OPLs are the following. We define Operator precedence expressions
(OPE), as a simple extension of regular expressions and show that they define
exactly OPLs. We prove closure properties of NC OPLs and derive therefrom
that the languages defined by star-free OPEs are NC. We show that star-free
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OPEs and FO formulas define exactly the same subfamily of OPLs. We conjec-
ture that all NC OPLs are FO-definable.

2 Background

For brevity, we just list our notations for the basic concepts we use from formal
language and automata theory. The terminal alphabet is denoted by Σ, and the
empty string is ε. We also take for granted the traditional logic and set theoretic
abbreviations. For a string x, |x| denotes its length. The character #, not present
in the terminal alphabet, is used as string delimiter, and we define the alphabet
Σ# = Σ ∪ {#}.

Definition 1 (Regular expression and language). A regular expression
(RE) over an alphabet Σ is a well-formed formula made with the characters
of Σ, ∅, ε, the Boolean operators ∪,¬,∩, the concatenation ·, the Kleene star ∗

and plus + operators. When neither ∗ nor + are used, the RE is called star-free
(SF). An RE E defines a language over Σ, denoted by L(E). REs define the
language family of regular languages.

A regular language L over Σ is called noncounting or aperiodic if there
exists an integer n ≥ 1 such that for all x, y, z ∈ Σ∗, xynz ∈ L iff xyn+mz ∈ L,
∀m ≥ 0.

Proposition 2. The family of aperiodic regular languages coincides with the
family of languages defined by star-free REs.

Definition 3 (Grammar and language). A (CF) grammar is a tuple G =
(Σ,VN , P, S) where Σ and VN , with Σ ∩ VN = ∅, are resp. the terminal and the
nonterminal alphabets, the total alphabet is V = Σ ∪ VN , P ⊆ VN × V ∗ is the
rule (or production) set, and S ⊆ VN , S 	= ∅, is the axiom set. For a generic
rule B → α, where B and α are resp. called the left/right hand sides (lhs/rhs)
the following forms are relevant:

axiomatic: B ∈ S, terminal: α ∈ Σ+, empty: α = ε,
renaming: α ∈ VN ,
operator: α 	∈ V ∗VNVNV ∗,
parenthesized: α = �β�, with �, � new terminals.

G is called backward deterministic (or BD-grammar) if (B → α,C → α ∈ P )
implies B = C.
If all rules of G are in operator form, G is called an operator grammar or O-
grammar.
G̃ =

(
Σ ∪ {�, �}, VN , P̃ , S

)
is a parenthesis grammar (Par-grammar) if the rhs

of every rule is parenthesized. G̃ is called the parenthesized version of G, if P̃
consists of all rules B → �β� such that B → β is in P . For brevity we take for
granted the usual definition of derivation; the language defined by a grammar
starting from a nonterminal A is LG(A) =

{
x ∈ Σ∗ | A

∗==⇒
G

x
}
. The subscript
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G will be omitted whenever clear from the context. The string x is derivable
from A and we call x a sentence if A ∈ S. The union of LG(A) for all A ∈ S is
the language L(G) defined by G. Two grammars defining the same language are
equivalent. Two grammars such that their parenthesized versions are equivalent,
are structurally equivalent. The language generated by a Par-grammar is called
a parenthesis language, and its sentences are well-parenthesized strings.

From now on we only consider w.l.o.g. [5,20] BD-, unless otherwise stated,
O-grammars without renaming rules, and without empty rules except, if the
empty string is in the language, the axiomatic rule B → ε where B does not
appear in the rhs of any rule.

Definition 4 (Backward deterministic reduced grammar [27,33]). A
context over an alphabet Σ is a string in Σ∗{−}Σ∗, where the character ‘−’ 	∈ Σ
and is called a blank. We denote by α[x] the context α with its blank replaced
by the string x. Two nonterminals B and C of a grammar G are termed equiv-
alent if, for every context α, α[B] is derivable exactly in case α[C] is derivable
(not necessarily from the same axiom). A nonterminal B is useless if there is
no context α such that α[B] is derivable or B generates no terminal string. A
terminal b is useless if it does not appear in any sentence of L(G). A grammar
is clean if it has no useless nonterminals and terminals. A grammar is reduced
if it is clean and no two nonterminals are equivalent. A BDR-grammar is both
backward deterministic and reduced.

From [27], every parenthesis language is generated by a unique, up to an
isomorphism of its nonterminal alphabet, Par-grammar that is BDR.

2.1 Operator-Precedence Languages

Intuitively, operator precedence grammars (OPG) are based on three precedence
relations, called equal, yield and take, included in Σ# × Σ#. For a given O-
grammar, a character a is equal in precedence to b iff some rhs contains as
substring ab or a string aBb, where B is a nonterminal; in fact, when evaluating
the relations between terminal characters for OPG, nonterminals are “transpar-
ent”. A character a yields precedence to b iff a can occur immediately to the
left of a syntax subtree whose leftmost terminal character is b. Symmetrically, a
takes precedence over b iff a can occur as the rightmost terminal character of a
subtree and b is the immediately following terminal character.

Definition 5 [19]. Let G = (Σ,VN , P, S) be an O-grammar. Let a, b denote
elements in Σ, A,B in VN , C in VN or ε, and α, β range over (VN ∪ Σ)∗. The
left and right terminal sets of nonterminals are respectively:

LG(A) =
{

a | ∃C : A
∗==⇒
G

Caα
}

and RG(A) =
{

a | ∃C : A
∗==⇒
G

αaC
}

.

(The grammar name will be omitted unless necessary to prevent confusion.)
The operator precedence relations (OPRs) are defined over Σ# × Σ# as

follows:
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– equal in precedence: a
.= b ⇐⇒ ∃A → αaCbβ ∈ P,# .= #

– takes precedence: a � b ⇐⇒ ∃A → αBbβ ∈ P, a ∈ R(B); a � # ⇐⇒ a ∈
R(B), B ∈ S

– yields precedence: a � b ⇐⇒ ∃A → αaBβ ∈ P, b ∈ L(B);# � b ⇐⇒ b ∈
L(B), B ∈ S.

The OPRs can be collected into a |Σ#| × |Σ#| array, called the operator
precedence matrix of the grammar, OPM(G): for each (ordered) pair (a, b) ∈
Σ# × Σ#, OPMa,b(G) contains the OPRs holding between a and b.

Consider a square matrix: M = {Ma,b ⊆ { .=, �, �} | a, b ∈ Σ#}. Such an
OPM matrix, is called conflict-free iff ∀a, b ∈ Σ#, 0 ≤ |Ma,b| ≤ 1. A conflict-free
matrix is called total or complete iff ∀a, b ∈ Σ#, Ma,b 	= ∅. A matrix is =̇-acyclic
if �ai ∈ Σ such that ai=̇ . . . =̇ai.

In this we assume that an OPM is =̇-acyclic. Such a hypothesis is stated
for simplicity despite the fact that, rigorously speaking, it affects the expressive
power of OPLs. It could be avoided if we adopted OPGs extended by the possi-
bility of including regular expressions in production rhs [12,14], which however
would require a much heavier notation.

We extend the set inclusion relations and the Boolean operations in the
obvious cell by cell way, to any two matrices having the same terminal alphabet.
Two matrices are compatible iff their union is conflict-free.

Definition 6 (Operator precedence grammar). An O-grammar G is an
operator precedence grammar (OPG) iff the matrix OPM(G) is conflict-free,
i.e., the three OPRs are pairwise disjoint. Then the language generated by G is
an operator precedence language (OPL). An OPG is =̇-acyclic if OPM(G) is
so.

It is known that the OPL family is strictly included within the deterministic
and reverse-deterministic CF family and strictly includes the VPL one [12].

Example 7. For the grammar GAE1 (see Fig. 1, left), the left and right terminal
sets of nonterminals E, T and F are, respectively: L(E) = {+, ∗, e}, L(T ) =
{∗, e}, L(F ) = {e}, R(E) = {+, ∗, e}, R(T ) = {∗, e}, and R(F ) = {e}.

Figure 1 (center) displays the conflict-free OPM associated with the grammar
GAE1; for instance OPM∗,e = � tells that ∗ yields precedence to e.

S = {E, T, F}
E → E + T | T ∗ F | e
T → T ∗ F | e
F → e

+ ∗ e #
+ � � � �

∗ � � � �

e � � �

# � � �
.=

# e + e ∗ e + e #

0 1 2 3 4 5 6 7 8

Fig. 1. GAE1 (left) and its OPM (center); the string e + e ∗ e + e, with relation �

(right).
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Unlike the arithmetic relations having similar typography, the OPRs do not
enjoy any of the transitive, symmetric, reflexive properties.

A conflict-free matrix associates to every string at most one structure, i.e.,
a unique parenthesization. This aspect, paired with a way of deterministically
choosing rules’ rhs to be reduced, are the basis of Floyd’s natural bottom-up
deterministic parsing algorithm. E.g., the following BD version of GAE1 (axioms
and OPM are unchanged) drives the parsing of the string e + e ∗ e + e to the
unique structure ���e� + ��e� ∗ �e��� + �e��:

E → E + T | E + F | T + T | F + F | F + T | T + F
T → T ∗ F | F ∗ F F → e.

Various formal properties of OPGs and languages are documented in the
literature, chiefly in [12,13,26]. For convenience, we just recall and collect the
ones that are relevant for this article in the next proposition.

Proposition 8. (Relevant properties of OPGs and OPLs).
Let M be a conflict-free OPM over Σ# × Σ#.

1. The class of OPGs and OPLs compatible with M are:
CM = {G | G is an OPG,OPM(G) ⊆ M}, LM = {L(G) | G ∈ CM}.

2. The class CM contains a unique grammar, called the maxgrammar of M ,
denoted by Gmax,M , such that for all grammars G ∈ CM , the inclusion holds
L(G) ⊆ L(Gmax,M ). L(Gmax,M ) is called max-language. If M is total, then
L(Gmax,M ) = Σ∗.

3. Let M be total. With a natural overloading, we define the function
M : Σ∗ → (Σ ∪ {�, �})∗ as M(x) = y, if A

∗=====⇒
Gmax,M

x, A
∗=====⇒

G̃max,M

y are

corresponding derivations.
E.g. with M such that a � a, a

.= b, b � b, M(aaaabbb) = �a�a�a�ab�b�b��.
4. Let M be total.

– LM is closed under all set operations, therefore it is a Boolean algebra.
– LM is closed under concatenation and Kleene star.

In summary, an OPM assigns a universal structure to strings in Σ∗, thus we
call the pair (Σ,M) an OP alphabet. The following characterizations of OPLs,
in terms of logic and expressions, are bound to the OP alphabet.

Logic Characterization. In [25] the traditional monadic second order logic
(MSO) characterization of regular languages by Büchi, Elgot, and Trakhtenbrot
[8,17,36] is extended to the case of OPL. To deal with the typical tree structure
of CF languages the original MSO syntax is augmented with the predicate �,
based on the OPL precedence relations: informally, x � y holds between the
rightmost and leftmost positions of the context encompassing a subtree, i.e.,
respectively, of the character that yields precedence to the subtree’s leftmost
leaf, and of the one over which the subtree’s rightmost leaf takes precedence.

Unlike similar but simpler relations introduced, e.g., in [23] and [2], the �

relation is not one-to-one. For instance, Fig. 1 (right) displays the � relation
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holding for the sentence e + e ∗ e + e generated by grammar GAE1: we have
0 � 2, 2 � 4, 4 � 6, 6 � 8, 2 � 6, 0 � 6, and 0 � 8. Such pairs correspond to
contexts where a reduce operation is executed during the parsing of the string
(they are listed according to their execution order).

Formally, we define a countable infinite set of first-order variables x ,y , . . .
and a countable infinite set of monadic second-order (set) variables X ,Y , . . . .
We adopt the convention to denote first and second-order variables in boldface
font.

Definition 9 (Monadic Second-order Logic over (Σ,M)). Let V1 be a set
of first-order variables, and V2 be a set of second-order (or set) variables. The
MSOΣ,M (monadic second-order logic over (Σ,M)) is defined by the following
syntax (symbols Σ,M will be omitted unless necessary to prevent confusion),
where c ∈ Σ#, x,y ∈ V1, and X ∈ V2:

ϕ := c(x) | x ∈ X | x < y | x � y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ.

A MSO formula is interpreted over a (Σ,M) string w, with respect to assign-
ments ν1 : V1 → {0, 1, . . . |w| + 1} and ν2 : V2 → ℘({0, 1, . . . |w| + 1}), in this
way:

– #w#,M, ν1, ν2 |= c(x) iff #w# = w1cw2 and |w1| = ν1(x).
– #w#,M, ν1, ν2 |= x ∈ X iff ν1(x) ∈ ν2(X).
– #w#,M, ν1, ν2 |= x < y iff ν1(x) < ν1(y).
– #w#,M, ν1, ν2 |= x � y iff #w# = w1aw2bw3, |w1| = ν1(x), |w1aw2| =

ν1(y), and w2 is the frontier of a subtree of the syntax tree of w.
– #w#,M, ν1, ν2 |= ¬ϕ iff #w#,M, ν1, ν2 	|= ϕ.
– #w#,M, ν1, ν2 |= ϕ1 ∨ ϕ2 iff #w#,M, ν1, ν2 |= ϕ1 or #w#,M, ν1, ν2 |= ϕ2.
– #w#,M, ν1, ν2 |= ∃x.ϕ iff #w#,M, ν′

1, ν2 |= ϕ, for some ν′
1 with ν′

1(y) =
ν1(y) for all y ∈ V1 − {x}.

– #w#,M, ν1, ν2 |= ∃X.ϕ iff #w#,M, ν1, ν
′
2 |= ϕ, for some ν′

2 with ν′
2(Y) =

ν2(Y) for all Y ∈ V2 − {X}.
To improve readability, we drop M , ν1, ν2 and the delimiters # from the

notation whenever there is no risk of ambiguity; furthermore we use some stan-
dard abbreviations in formulas, e.g., ∧, ∀, x + 1, x − 1, x = y, x ≤ y.

A sentence is a formula without free variables. The language of all strings
w ∈ Σ∗ such that w |= ϕ is L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

The above MSO logic describes exactly the OPL family [25]. We denote the
restriction of the MSO logic to the first-order as FO. Whenever we deal with
logic definition of languages we implicitly exclude from such languages the empty
string, according with the traditional convention adopted in the literature (e.g.,
[28]); thus, when talking about MSO or FO definable languages we exclude empty
rules from their grammars.
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2.2 Parenthesis and OPLs and the Noncounting Property

We briefly recall the standard definition of the NC property for CF parenthesis
languages [10] and its decidability, then we apply it to OPLs.

Definition 10 (NC parenthesis language and grammar [10]). A paren-
thesis language L is NC (or aperiodic) iff ∃n > 1 such that, for all strings
x, u, w, v, y in (Σ ∪ {�, �})∗ where w and uwv are well parenthesized, xunwvny ∈
L iff xun+mwvn+my ∈ L, ∀m ≥ 0.

A derivation of a Par-grammar is counting iff it has the form B
∗=⇒ umBvm,

with m > 1, and there is not a derivation B
∗=⇒ uBv. A Par-grammar is NC iff

none of its derivations is counting.

The next proposition ensures the decidability of the NC property.

Theorem 11. [NC language and grammar (Th. 1 of [10])] A parenthesis lan-
guage is NC iff its BDR grammar has no counting derivation.

Definition 12 (NC OPLs and grammars). For a given OPL L with OPM
M , Lp is the language of the parenthesized strings xp uniquely associated to L’s
strings x by M . An OPL L is NC iff its corresponding parenthesized language
Lp is NC.

A derivation of a grammar G is counting iff the corresponding derivation of
the associated Par-grammar Gp is counting.

Thus, an OPL is NC iff its BDR OPG (unique up to an isomorphim of
nonterminal alphabets) has no counting derivations.

In the following, unless parentheses are explicitly needed, we refer to unparen-
thesized strings since their correspondence to parenthesized strings is one-to-one.
It is also worth recalling [11] the following peculiar property of OPLs: such lan-
guages are NC or not independently on their OPM, in other words, although the
NC property is defined for structured languages (parenthesis or tree languages
[27,34]), in the case of OPLs this property does not depend on the structure
given to the sentences by the OPM.

It is important to stress, however, that, despite the above peculiarity of OPLs,
aperiodicity remains a property that makes sense only with reference to the struc-
tured version of languages. Consider the following languages, with the same OPM
consisting of {c�c, c

.= a, c
.= b, a � b, b � a} besides the implicit relations w.r.t.

#: L1 = {c2n(ab)n | n ≥ 1}, L2 = (ab)+. They are both clearly NC and so is
their concatenation L1 ·L2, according to Definition 12, which in its parenthesized
version is {�2(m−n)(�c)2n(a�b�)m | m > n ≥ 1}, (see also Theorem 20); however,
if we applied Definition 10 to L1 · L2 without considering parentheses, we would
obtain that, for every n, c2n(ab)2n ∈ L1 · L2 but not so for c2n+1(ab)2n+1.

3 Expressions for OPLs

Operator Precedence Expressions (OPE) extend traditional REs in a similar way
as in other cases such as, e.g., REs for tree-languages [35]. We show that OPEs
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define exactly the OPL family, so that, by joining this result with the previous
characterizations of OPL in terms of MSO definability and recognizability by
Operator Precedence Automata (OPA) [25], we have that the class OPL can be
defined equivalently as the class of languages generated by OPGs, or described
through MSO formulas, or recognized by OPAs, or defined by OPEs.

As well as for MSO logic and OPA, OPE’s definition is based on an OP
alphabet.

Definition 13 (OPE). Given an OP alphabet (Σ,M), where M is complete,
an OPE E and its language LM (E) ⊆ Σ∗ are defined as follows. The meta-
alphabet of OPE uses the same symbols as REs, together with the two symbols
‘[’, and ‘]’. Let E1 and E2 be OPEs:

1. a ∈ Σ is an OPE with LM (a) = a.
2. ¬E1 is an OPE with LM (¬E1) = Σ∗ − LM (E1).
3. a[E1]b, called the fence operation, i.e., we say E1 in the fence a, b, is an OPE

with
if a, b ∈ Σ: LM (a[E1]b) = a · {x ∈ LM (E1) | M(a · x · b) = �a · M(x) · b�} · b
if a = #, b ∈ Σ: LM (#[E1]b) = {x ∈ LM (E1) | M(x · b) = �M(x) · b�} · b
if a ∈ Σ, b = #: LM (a[E1]#) = a · {x ∈ LM (E1) | M(a · x) = �a · M(x)�}
where E1 must not contain #.

4. E1 ∪ E2 is an OPE with LM (E1 ∪ E2) = LM (E1) ∪ LM (E2).
5. E1 · E2 is an OPE with LM (E1 · E2) = LM (E1) · LM (E2), where E1 does

not contain a[E3]# and E2 does not contain #[E3]a, for some OPE E3, and
a ∈ Σ.

6. E∗
1 is an OPE defined by E∗

1 :=
⋃∞

n=0 En
1 , where E0

1 := {ε}, E1
1 = E1,

En
1 := En−1

1 · E1; E+
1 :=

⋃∞
n=1 En

1 .

Among the operations defining OPEs, concatenation has the maximum prece-
dence; set-theoretic operations have the usual precedences, the fence operation is
dealt with as a normal parenthesis pair. A star-free (SF) OPE is one that does
not use ∗ and +.

The conditions on # are due to the peculiarities of OPLs closure w.r.t. con-
catenation (see also Theorem 20). In 5. the # is not permitted within, say, the
left factor E1 because delimiters are necessarily positioned at the two ends of a
string.

Besides the usual abbreviations for set operations (e.g., ∩ and −), we also use
the following derived operators: aΔb := a[Σ+]b, and a∇b := ¬(aΔb) ∩ a ·Σ+ · b.
It is trivial to see that the identity a[E]b = aΔb ∩ a · E · b holds.

The fact that in Definition 13 matrix M is complete is w.l.o.g.: to state
that for two terminals a and b, Ma,b = ∅ (i.e. that there should be a “hole” in
the OPM for them), we can use the short notations: hole(a, b) := ¬(Σ∗(ab ∪
aΔb)Σ∗), hole(#, b) := ¬(#ΔbΣ∗), hole(a,#) := ¬(Σ∗aΔ#) and intersect
them with the OPE.

The following examples illustrate the meaning of the fence operation, the
expressiveness of OPLs w.r.t. less powerful classes of CF languages, and how
OPEs naturally extend REs to the OPL family.
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Example 14. Let Σ be {a, b}, {a � a, a
.= b, b � b} ⊆ M . The OPE a[a∗b∗]b

defines the language {anbn | n ≥ 1}. In fact the fence operation imposes that any
string x ∈ a∗b∗ embedded within the context a, b is well-parenthesized according
to M .

The OPEs a[a∗b∗]# and a+a[a∗b∗]b ∪ {a+}, instead, both define the language
{anbm | n > m ≥ 0} since the matrix M allows for, e.g., the string aaabb
parenthesized as �a�a�ab�b��.

It is also easy to define Dyck languages with OPEs, as their parenthesis
structure is naturally encoded by the OPM. Consider LDyck the Dyck language
with two pairs of parentheses denoted by a, a′ and b, b′. This language can be
described simply through an incomplete OPM, reported in Fig. 2 (left). In other
words it is LDyck = L(Gmax,M ) where M is the matrix of the figure. Given that,
for technical simplicity, we use only complete OPMs, we must refer to the one
in Fig. 2 (center), and state in the OPE that some OPRs are not wanted, such
as a, b′, where the open and closed parentheses are of the wrong kind, or a,#,
i.e. an open a must have a matching a′.

Fig. 2. The incomplete OPM defining LDyck (left), a possible completion Mcomplete

(center), and the OPM Mint for the OPE describing an interrupt policy (right).

The following OPE defines LDyck by suitably restricting the “universe”
L(Gmax,Mcomplete):

hole(a, b′) ∩ hole(b, a′) ∩ hole(#, a′) ∩ hole(#, b′) ∩ hole(a,#) ∩ hole(b,#).

Example 15. For a more application-oriented case, consider the classical LIFO
policy managing procedure calls and returns but assume also that interrupts
may occur: in such a case the stack of pending calls is emptied and computation
is resumed from scratch.

This policy is already formalized by the incomplete OPM of Fig. 2 (right),
with Σ = {call, ret, int} with the obvious meaning of symbols. For example,
the string call call ret call call int represents a run where only the second call
returns, while the other ones are interrupted. On the contrary, call call int ret is
forbidden, because a return is not allowed when the stack is empty. If we further
want to say that there must be at least one terminating procedure, we can use
the OPE: Σ∗ · callΔret · Σ∗.

Another example is the following, where we state that the run must contain at
least one sub-run where no procedures are interrupted: Σ∗ · hole(call, int) · Σ∗.
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Notice that the language defined by the above OPE is not a VPL since VPLs
only allow for unmatched returns and calls at the beginning or at the end of a
string, respectively.

Theorem 16. For every OPE E on an OPM M , there is an OPG G, compatible
with M , such that LM (E) = L(G).

Proof. By induction on E’s structure. The operations ∪,¬, ·, and ∗ come from
the closures of OPLs (Proposition 8). The only new case is a[E]b which is given
by the following grammar. The function η : Σ# → Σ, such that η(#) = ε,
η(a) = a otherwise, is used to take borders into account. If, by induction, G
defines the same language as E, with axiom set SE , then build the grammar G′

from G by adding the following rules, where A and A′ are new nonterminals of
G′ not in G, A is an axiom of G′, and B ∈ SE :

– A → η(a)Bη(b), if a
.= b in M ;

– A → η(a)A′ and A′ → Bη(b), if a � b in M ;
– A → A′η(b) and A′ → η(a)B, if a � b in M .

The grammar for a[E]b is then obtained by applying the construction for L(G′) ∩
L(Gmax,M ). This intersection is to check that a � L(B) and R(B) � b; if it
is not the case, according to the semantics of a[E]b, the resulting language is
empty. ��

Next, we show that OPEs can express any language that is definable through
an MSO formula as defined in Sect. 2.1. Thanks to the fact that the same MSO
logic can express exactly OPLs [25] and to Theorem 16 we obtain our first major
result, i.e., the equivalence of MSO, OPG, OPA (see e.g., [26]), and OPE.

To construct an OPE from a given MSO formula we follow the traditional
path adopted for regular languages (as explained, e.g., in [30]) and augment it
to deal with the � relation. For a MSO formula ϕ, let xxx1,xxx2, . . . ,xxxr be the
set of first-order variables occurring in ϕ, and XXX1,XXX2, . . . ,XXXs be the set of
second order variables. We use the new alphabet Bp,q = Σ × {0, 1}p × {0, 1}q,
where p ≥ r and q ≥ s. The main idea is that the {0, 1}p part of the alphabet
is used to encode the value of the first-order variables (e.g. for p = r = 4,
(1, 0, 1, 0) stands for both the positions xxx1 and xxx3), while the {0, 1}q part of the
alphabet is used for the second order variables. Hence, we are interested in the
language Kp,q formed by all strings where the components encoding the first-
order variables contain exactly one occurrence of 1. We also use this definition
Ck := {c ∈ Bp,q | the (k + 1)-st component of c = 1}.

Theorem 17. For every MSO formula ϕ on an OP alphabet (Σ,M) there is
an OPE E on M such that LM (E) = L(ϕ).

Proof. By induction on ϕ’s structure; the construction is standard for regu-
lar operations, the only difference is xxxi � xxxj . Bp,q is used to encode inter-
pretations of free variables. The set Kp,q of strings where each component
encoding a first-order variable is such that there exists only one 1, is given
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by: Kp,q =
⋂

1≤i≤p(B
∗
p,qCiB

∗
p,q − B∗

p,qCiB
∗
p,qCiB

∗
p,q). Disjunction and negation

are naturally translated into ∪ and ¬; like in Büchi’s theorem, for OPE ∃xxxiψ
(resp. ∃XXXjψ), first the expression Eψ for ψ on an alphabet Bp,q is built, then E
for ∃xxxiψ is obtained from Eψ by erasing the component i (resp. j) from Bp,q;
xxxi < xxxj is represented by Kp,q ∩ B∗

p,qCiB
∗
p,qCjB

∗
p,q. Last, the OPE for xxxi � xxxj

is: B∗
p,qCi[B+

p,q]CjB
∗
p,q. ��

4 Closure Properties of Noncounting OPLs and Star-Free
OPEs

Thanks to the fact that an OPM implicitly defines the structure of an OPL, i.e.,
its parenthesization, aperiodic OPLs inherit from the general class the same clo-
sure properties w.r.t. the basic algebraic operations. Such properties are proved
in this section under the same assumption as in the general case (see Propo-
sition 8), i.e., that the involved languages have compatible OPMs. As a major
consequence we derive that star-free OPEs define aperiodic OPLs.

Theorem 18. Counting and NC parenthesis languages are closed w.r.t. com-
plement. Thus, for any OPM M , counting and NC OPLs in the family LM

(Proposition 8) are closed w.r.t. complement w.r.t. the max-language defined by
M .

Proof. We give the proof for counting languages which also implies the closure
of NC ones.

By definition of counting parenthesis language and from Theorem 11, if L is
counting there exist strings x, u, v, z, y and integers n,m with n > 1,m > 1 such
that xvn+rzun+ry ∈ L for all r = km > 0, k > 0, but not for all r > 0. Thus,
the complement of L contains infinitely many strings xvn+izun+iy ∈ L but not
all of them since for some i, i = km. Thus, for ¬L too there is no n such that
xvnzuny ∈ L iff xvn+rzun+ry ∈ L for all r ≥ 0. ��
Theorem 19. NC parenthesis languages and NC OPLs in the same family LM

are closed w.r.t. union and therefore w.r.t. intersection.

Proof. Let L1, L2 be two NC parenthesis languages (resp. OPLs). Assume by
contradiction that L = L1 ∪ L2 is counting. Thus, there exist strings x, u, v, z, y
such that for infinitely many m, xvmzumy ∈ L but for no n xvnzuny ∈ L iff
xvn+rzun+ry ∈ L for all r ≥ 0. Hence, the same property must hold for at least
one of L1 and L2 which therefore would be counting. ��

Notice that, unlike the case of complement, counting languages are not closed
w.r.t. union and intersection, whether they are regular or parenthesis or OPLs.
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Fig. 3. An example of paired derivations combined by the concatenation construction.
In this case the last character of u is in

.
= relation with the first character of v.

Theorem 20. NC OPLs are closed w.r.t. concatenation.

Proof. Let Li = L(Gi), i = 1, 2, be NC OPLs with Gi = (Σ,VNi, Pi, Si) BDR
OPGs. Let also Lpi = L(Gpi) be the parenthesized languages and grammars.
We exploit the proof in [12] that OPLs with compatible OPM are closed w.r.t.
concatenation. In general the parenthesized version Lp of L = L1 · L2 is not the
parenthesized concatenation of the parenthesized versions of L1 and L2, i.e., Lp

may differ from �L′
p1 · L′

p2�, where �L′
p1� = Lp1 and �L′

p2� = Lp2, because the
concatenation may cause the syntax trees of L1 and L2 to coalesce.

The construction given in [12] builds a grammar G whose nonterminal alpha-
bet includes VN1, VN2 and a set of pairs [A1, A2] with A1 ∈ VN1, A2 ∈ VN2; the
axioms of G are the pairs [X1,X2] with X1 ∈ S1, X2 ∈ S2.1 In essence (Lemmas
18 through 21 of [12]) G’s derivations are such that [X1,X2]

∗==⇒
G

x[A1, A2]y,

[A1, A2]
∗==⇒
G

u implies u = w · z for some w, z and X1
∗==⇒

G1
xA1, A1

∗==⇒
G1

w,

X2
∗==⇒

G2
A2y, A2

∗==⇒
G2

z. Notice that some substrings of x · w, resp. z · y, may

be derived from nonterminals belonging to VN1, resp. VN2, as the consequence
of rules of type [A1, A2] → α1[B1, B2]β2 with α1 ∈ V ∗

1 , β2 ∈ V ∗
2 , where [B1, B2]

1 This is a minor deviation from [12], where it was assumed that grammars have only
one axiom.
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could be missing; also, any string γ derivable in G contains at most one nonter-
minal of type [A1, A2].2

Suppose, by contradiction, that G has a counting derivation3 [X1,X2]
∗==⇒
G

x[A1, A2]y
∗==⇒
G

xum[A1, A2]vmy
∗==⇒
G

xumzvmy (one of um, vm could be empty

either in L or in Lp) whereas [A1, A2] does not derive u[A1, A2]v: this would
imply the derivations A1

∗==⇒
G1

umA1, A2
∗==⇒

G2
A2v

m which would be counting in

G1 and G2 since they would involve the same nonterminals in the pairs [Ai, Aj ]. If
instead the counting derivation of G were derived from nonterminals belonging
to VN1, (resp. VN2) that derivation would exist identical for G1 (resp. G2).
Figure 3 shows a counting derivation of G derived by the concatenation of two
counting derivations of G1 and G2; in this case neither um nor vm are empty.��
Theorem 21. The OPLs defined through star-free OPEs are NC.

Proof. We need to show that if the language defined by the SF expression E is
NC, so is the language defined by a[E]b. This follows by the identity a[E]b =
aΔb ∩ aEb = a[Σ+]b ∩ aEb. ��

5 FO-Definable OPLs and SF OPEs

We now prove that SF OPE-definable languages coincide with FO-definable
OPLs which are therefore NC as well; a result in sharp contrast with the negative
results for NC tree-languages [35]. In Sect. 5.1 we show that NC linear OPLs are
FO-definable too.

Lemma 22 (Flat Normal Form). Any star-free OPE can be written in the
following form, called flat normal form:

⋃
i

⋂
j ti,j , where the elements ti,j have

either the form Li,jai,jΔbi,jRi,j, or Li,jai,j∇bi,jRi,j, or Hi,j, for ai,j, bi,j ∈ Σ#,
and Li,j, Ri,j, Hi,j star-free REs.

Proof. The lemma is a consequence of the distributive and De Morgan prop-
erties, together with the following identities, where ◦1, ◦2 ∈ {Δ,∇}, and Lk,
1 ≤ k ≤ 3 are star-free REs:

a[E]b = aΔb ∩ aEb

L1a1 ◦1 a2L2a3 ◦2 a4L3 = (L1a1 ◦1 a2L2a3Σ
+a4L3) ∩ (L1a1Σ

+a2L2a3 ◦2 a4L3)

¬(L1a1Δa2L2) = L1a1∇a2L2 ∪ ¬(L1a1Σ
+a2L2)

¬(L1a1∇a2L2) = L1a1Δa2L2 ∪ ¬(L1a1Σ
+a2L2)

2 See Fig. 3.
3 Note that the G produced by the construction is BD if so are G1 and G2, but it

could be not necessarily BDR; however, if a BDR OPG has a counting derivation,
any equivalent BD grammar has also a counting derivation.
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The first two identities are immediate, while the last two are based on the idea
that the only non-regular constraints of the left-hand negations are respectively
a1∇a2 or a1Δa2, that represent strings that are not in the set only because of
their structure. ��
Theorem 23. For every FO formula ϕ on an OP alphabet (Σ,M) there is a
star-free OPE E on M such that LM (E) = L(ϕ).

Proof. Consider the formula ϕ, and its set of first-order variables: like in Sect. 3,
Bp = Σ × {0, 1}p (the q components are absent, ϕ being a first-order formula),
and the set Kp of strings where each component encoding a variable is such that
there exists only one 1.

First, Kp is star-free: Kp =
⋂

1≤i≤p(B
∗
pCiB

∗
p − B∗

pCiB
∗
pCiB

∗
p).

Disjunction and negation are naturally translated into ∪ and ¬; xxxi < xxxj is
covered by the star-free OPE Kp ∩ B∗

pCiB
∗
pCjB

∗
p . The xxxi � xxxj formula is like in

the second order case, i.e. is translated into B∗
pCi[B+

p ]CjB
∗
p , which is star-free.

For the existential quantification, the problem is that star-free (OP and
regular) languages are not closed under projections. Like in the regular case,
the idea is to leverage the encoding of the evaluation of first-order variables,
because there is only one position in which the component is 1 (see Kp), to
use the bijective renamings π0(a, v1, v2, ..., vp−1, 0) = (a, v1, v2, ..., vp−1), and
π1(a, v1, v2, ..., vp−1, 1) = (a, v1, v2, ..., vp−1), where the last component is the
one encoding the quantified variable. Notice that the bijective renaming does
not change the Σ component of the symbol, thus maintaining all the OPRs.

Let Eϕ be the star-free OPE on the alphabet Bp for the formula ϕ, with x a
free variable in it. Let us assume w.l.o.g. that the evaluation of x is encoded by the
last component of Bp; let B = Σ × {0, 1}p−1 × {0}, and A = Σ × {0, 1}p−1 × {1}.

The OPE for ∃xϕ is obtained from the OPE for ϕ through the bijective
renaming π, and considering all the cases in which the symbol from A can occur.

First, let E′ be an OPE in flat normal form, equivalent to Eϕ (Lemma 22).
The FO semantics is such that L(ϕ) = LM (E′) = LM (E′) ∩ B∗AB∗.

By construction, E′ is a union of intersections of elements Li,jai,jΔbi,jRi,j ,
or Li,jai,j∇bi,j Ri,j , or Hi,j , where ai,j , bi,j ∈ Σ, and Li,j , Ri,j , Hi,j are star-free
regular languages.

In the intersection of E′ and B∗AB∗, all the possible cases in which the sym-
bol in A can occur in E′’s terms must be considered: e.g. in Li,jai,jΔbi,jRi,j

it could occur in the Li,j prefix, or in ai,jΔbi,j , or in Ri,j . More precisely,
Li,jai,jΔbi,jRi,j ∩ B∗AB∗ = (Li,j ∩ B∗AB∗)ai,jΔbi,jRi,j ∪ Li,j (ai,jΔbi,j

∩B∗AB∗) Ri,j ∪ Li,jai,jΔ bi,j(Ri,j ∩ B∗AB∗) (the ∇ case is analogous, Hi,j

is immediate, being regular star-free).
The cases in which the symbol from A occurs in Li,j or Ri,j are easy, because

they are by construction regular star-free languages, hence we can use one of the
standard regular approaches found in the literature (e.g. by using the splitting
lemma in [16]). The only differences are in the factors ai,jΔbi,j , or ai,j∇bi,j .

Let us consider the case ai,jΔbi,j ∩ B∗AB∗. The cases ai,j ∈ A or bi,j ∈ A
are like (Li,j ∩ B∗AB∗) and (Ri,j ∩ B∗AB∗), respectively, because Li,jai,j and
bi,jRi,j are also regular star-free (∇ is analogous).
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The remaining cases are ai,jΔbi,j ∩ B+AB+ and ai,j∇bi,j ∩ B+AB+. By
definition of Δ, ai,jΔbi,j ∩ B+AB+ = ai,j [B∗AB∗]bi,j , and its bijective renam-
ing is π0(ai,j)[π0(B∗)π1(A) π0(B∗)]π0(bi,j) = a′

i,j [B
+
p−1]b

′
i,j , where π0(ai,j) =

a′
i,j , and π0(bi,j) = b′

i,j , which is a star-free OPE. By definition of ∇,
ai,j∇bi,j ∩B+AB+ = ¬(ai,j [B+

p ]bi,j)∩ ai,jB
+
p bi,j ∩B+AB+ = ¬(ai,j [B+

p ]bi,j) ∩
ai,jB

∗AB∗bi,j . Hence, its renaming is ¬(π0(ai,j)[π0(B∗
p)π1(Bp)π0(B∗

p)] π0(bi,j))
∩π0(ai,jB

∗)π1(A)π0(B∗ bi,j) = ¬(a′
i,j [B

+
p−1]b

′
i,j) ∩ a′

i,jB
+
p−1b

′
i,j , a star-free

OPE. ��
Theorem 24. For every star-free OPE E on an OP alphabet (Σ,M), there is
a FO formula ϕ on (Σ,M) such that LM (E) = L(ϕ).

Proof. The proof is by induction on E’s structure. Of course, singletons are
easily first-order definable; for negation and union we use ¬ and ∨ as natural.
Like in the case of star-free regular languages, concatenation is less immediate,
and it is based on formula relativization. Consider two FO formulas ϕ and ψ, and
assume w.l.o.g. that their variables are disjunct, and let xxx be a variable not used
in either of them. To construct a relativized variant of ϕ, called ϕ<xxx, proceed
from the outermost quantifier, going inward, and replace every subformula ∃zzzλ
with ∃zzz((zzz < xxx)∧λ). Variants ϕ≥xxx and ϕ>xxx are analogous. We also call ϕxxx,yyy the
relativization where quantifications ∃zzzλ are replaced by ∃zzz((xxx < zzz < yyy) ∧ λ).
The language L(ϕ) · L(ψ) is defined by the following formulas: ∃xxx(ϕ<xxx ∧ ψ≥xxx)
if ε 	∈ L(ψ); otherwise ∃xxx(ϕ<xxx ∧ ψ≥xxx) ∨ ϕ.

The last part we need to consider is the fence operation, i.e. a[E]b. Let ϕ
be a FO formula such that L(ϕ) = LM (E), for a star-free OPE E. Let xxx and yyy
be two variables unused in ϕ. Then the language L(a[E]b) is the one defined by
∃xxx∃yyy(a(xxx) ∧ b(yyy) ∧ xxx � yyy ∧ ϕxxx,yyy). ��

5.1 Linear Noncounting OPLs Are First-Order Definable

Definition 25. Let G = (Σ,VN , P, S) be a linear grammar, i.e., a grammar
where all rule rhs ∈ Σ+VNΣ∗ ∪ Σ∗VNΣ+ ∪ Σ+. The finite state stencil automa-
ton associated to G is AΞ

G = (Q,Ξ, δ, S, {qF }), where Q = VN ∪ {qF } are its
states, Ξ ⊆ (Σ∗ × Σ∗) ∪ Σ+, its input alphabet, is the set of stencils of G,4 and
the transition relation δ ⊆ Q × Ξ × Q is defined as follows:

δ = {A
(x,y)−−−→ B | A → xBy ∈ P} ∪ {A z−−→ qF | A → z ∈ P}.

Lemma 26. Let G be a linear OPG, with OPM M , and Ξ the set of stencils of
G. L(G) is NC iff L(AΞ

G) is a NC regular language.

Proof. By construction, every derivation A0
∗==⇒ x1A1y1

∗==⇒ x1x2A2y2y1∗==⇒ x1x2 . . . xkAk ykyk−1 . . . y1
∗==⇒ x1x2 . . . xk zykyk−1 . . . y1 of G corre-

sponds to a run A0 � A1 � . . . � Ak � qF of AΞ
G, reading the word

(x1, y1)(x2, y2) . . . (xk, yk)z, and vice versa.
4 Ξ := {(x, y) | A → xBy ∈ P} ∪ {z | A → z ∈ P}.
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According to Definitions 10 and 12, if it is x1x2 . . . xkzykyk−1 . . . y1 =
ounwvnp, for some strings o, u, w, v, p, then oun+1wvn+1 p ∈ L(G), i.e., assum-
ing that xi . . . xj = u and yj . . . yi = v, oun+1wvn+1p = x1x2 . . . (xi . . .
xj)2xj+1 . . . xkz ykyk−1 . . . (yj . . . yi)2yi−1 . . . y1.
Hence, (x1, y1)(x2, y2) . . . (xk, yk)z = o′u′nw′, where u′ = (xi, yi) . . . (xj , yj), and
(x1, y1) . . . ((xi, yi) . . . (xj , yj))2 (xj+1, yj+1) . . . (xk, yk)z = o′u′n+1w′ ∈ L(AΞ

G).
The other direction is analogous. ��
Theorem 27. Let G be a linear NC OPG with OPM M , L(G) is expressible in
FO(Σ,M).

Proof. From Lemma 26, we can build AΞ
G, which defines a NC regular language.

It is known from [28] that there exists an equivalent first-order formula ϕ(AΞ
G)

on the alphabet Ξ.
We can build a FO(Σ,M) formula defining L(G) in this way. First, for each

p ∈ Ξ, where p = (u, v), u = u1u2 . . . um, v = v1v2 . . . vn, m,n ≥ 0, m + n > 0,
we introduce the following formula σp:

σp(x ) :=

(
u1(x ) ∧ u2(x + 1)∧
. . . ∧ un(x + m − 1)

)
∧ ∃y

(
x + m − 1 � y ∧ v1(y) ∧ v2(y + 1)∧

. . . ∧ vn(y + n − 1)

)

(the case p ∈ Σ+ is trivial.) E.g. for p = (ε, ab), σp(x ) = ∃y(x � y ∧ a(y) ∧
b(y + 1)).

It is easy to see that σp is a straightforward way to encode a stencil p into a
FO(Σ,M) formula defining its structure.

Let us consider ϕ(AΞ
G), and obtain a trivially equivalent formula ϕ′(AΞ

G) by

substituting each quantified subformula ∃x (ρ) in it with ∃x
((∨

p∈Ξ p(x )
)

∧ ρ
)

.

Hence, we are stating that each quantified variable in ϕ(AΞ
G) correspond to a posi-

tion in which there is a stencil.
To obtain a FO(Σ,M) formula ξ, such that L(ξ) = L(G), we take ϕ′(AΞ

G),
and substitute in it every subformula p(x ) with σp(x ), for each p ∈ Ξ, and
variable x . ��

6 Conclusion

To the best of our knowledge OPLs are the largest family among the many
families of structured CFLs to enjoy closure w.r.t. most fundamental language
operations and to be characterized in terms of a MSO logic that naturally extends
the classic one for regular languages. In this paper we have introduced OPEs as
an extension of Kleene’s REs. We have shown that languages defined by OPEs
coincide with OPLs and that FO-definable OPLs are those defined by SF OPEs
and are NC, in sharp contrast with comparable results framed in the context
of tree-languages [21,35]. Together with previous partial results [15,24] and the
fact that linear NC OPLs are first-order definable (Sect. 5.1), they support our
conjecture that OPLs jointly with our MSO and FO logics, perfectly extend
the classic results of regular languages. Figure 4 summarizes past, present and
“future” results on OPLs and their logics.
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Legend
All boxes denote classes of OPLs with a common
OPM:

– MSO denotes languages defined through
MSO formulas

– FO denotes languages defined through FO
formulas

– OPA denotes languages defined through OP
automata [25]

– OPESF denotes languages defined through
star-free OPEs

– OPGNC denotes aperiodic OPLs, i.e.,
languages defined through NC OPGs

Arrows between boxes denote language family

inclusion; they are labeled by the reference

pointing to where the property has been proved,

either to previous literature or to a section of this

paper. The dashed arrow stands for the inclusion

of linear NC OPLs, and for our conjecture.

Fig. 4. The relations among the various characterizations of OPLs and their aperiodic
subclass.

The figure immediately suggests a first further research step, i.e., making
the internal triangle a square, as well as the external one: we conjecture that
once the concept of NC OPLs has been put in the appropriate framework, a
further characterization thereof in terms of a suitable subclass of OPAs should
be possible but so far we did not pursue such an option.

The further goal that we wish to pursue is the complete reproduction of the
historical path that, for regular languages, lead from the first characterization in
terms of MSO logic to the restricted case of FO characterization of NC regular
languages, to the temporal logic case which in turn is first-order complete, and,
ultimately, to the success of model checking techniques.

Some proposals of temporal logic extension of the classical linear or branching
time ones to cope with the typical nesting structure of CF languages have been
already offered in the literature. E.g., [1,4,6] present different cases of temporal
logics extended to deal with VPLs; they also prove FO-completeness of such
logics but do not afford the relation between FO and MSO versions of their
logics; see also [3]. A first example of temporal logic for OPLs and a related
model checking algorithm have also been provided in [9].

Given that most, if not all, of the CF languages for practical applications are
aperiodic, the final goal of building verification tools that cover a much wider
application field than that of regular languages –and of VPLs too– does not seem
unreachable.

Acknowledgments. We are grateful to the reviewers for their careful reading and
suggestions.
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