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Abstract. For a Boolean type of nets τ , a transition system A is syn-
thesizeable into a τ -net N if and only if distinct states of A correspond to
distinct markings of N , and N prevents a transition firing if there is no
related transition in A. The former property is called τ -state separation
property (τ -SSP) while the latter – τ -event/state separation property
(τ -ESSP). A is embeddable into the reachability graph of a τ -net N if
and only if A has the τ -SSP. This paper presents a complete character-
ization of the computational complexity of τ -SSP for all Boolean Petri
net types.

Keywords: Boolean Petri nets · Boolean state separation ·
Complexity characterization

1 Introduction

Providing a powerful mechanism for the modeling of conflicts, dependencies and
parallelism, Petri nets are widely used for studying and simulating concurrent
and distributed systems. In system analysis, one aims to check behavioral prop-
erties of system models, and many of these properties are decidable [7] for Petri
nets and their reachability graphs, which represent systems’ behaviors. The task
of system synthesis is opposite: a (formal) specification of the system’s behavior
is given, and the goal is then to decide whether this behavior can be implemented
by a Petri net. In case of a positive decision, such a net should be constructed.

Boolean Petri nets form a simple yet rich and powerful family of Petri
nets [3,4,8,10,12,13,16], applied in asynchronous circuits design [25,27], con-
current constraint programs [9] and analysis of biological systems models [6]. In
Boolean nets, each place contains at most one token, for any reachable marking.
Hence, a place can be interpreted as a Boolean condition that is true if marked
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and false otherwise. A place p and a transition t of such a net are related by
one of the Boolean interactions that define in which way p and t influence each
other. The interaction inp (out) defines that p must be true (false) before and
false (true) after t’s firing; free (used) implies that t’s firing proves that p is
false (true); nop means that p and t do not affect each other at all; res (set)
implies that p may initially be both false or true but after t’s firing it is false
(true); swap means that t inverts p’s current Boolean value. Boolean Petri nets
are classified by the sets of interactions that can be applied. A set τ of Boolean
interactions is called a type of net, and a net N is of type τ (a τ -net) if it
applies at most the interactions of τ . For a type τ , the τ -synthesis problem
consists in deciding whether a specification given in the form of a labeled tran-
sition system (TS) is isomorphic to the reachability graph of some τ -net N , and
in constructing N if it exists. The complexity of τ -synthesis has been studied
in different settings [17,20,23], and varies substantially from polynomial [16] to
NP-complete [2].

In order to perform synthesis, that is, to implement the behavior specified by
the given TS with a τ -net, two general problems have to be resolved: The τ -net
has to distinguish the global states of the TS, and the τ -net has to prevent actions
at states where they are not permitted by the TS. In the literature [3], the former
requirement is usually referred to as τ -state separation property (τ -SSP), while
the latter – τ -event/state separation property (τ -ESSP). Both τ -SSP and τ -ESSP
define decision problems that ask whether a given TS fulfills the respective prop-
erty. The present work focuses exclusively on the computational complexity of
τ -SSP. The interest to state separation is motivated in several ways. First, many
synthesis approaches are very sensitive to the size of the input’s state space. This
raises the question if some initial, so-called pre-synthesis procedures [5,26] can
be employed as a quick-fail mechanism, i.e., techniques with a small computa-
tional overhead that would gain some helpful information for the main synthesis,
or reject the input if exact (up to isomorphism) synthesis is not possible. Since
τ -synthesis allows a positive decision if and only if τ -SSP and τ -ESSP do [3],
an efficient decision procedure for τ -SSP could serve as a quick-fail pre-process
check. Second, if exact synthesis is not possible for the given TS, one may want
to have a simulating model, i.e., a τ -net that over-approximates [14,15] the spec-
ified behavior with some possible supplement. Formally, the TS then has to be
injectively embeddable into the reachability graph of a τ -net. It is well known
from the literature [3] that a TS can be embedded into the reachability graph
of a τ -net if and only if it has the τ -SSP. Finally, in comparison to τ -ESSP, so
far the complexity of τ -SSP is known to be as hard [1,16,23,24] or actually less
hard [18,19]. On the contrary, in this paper, for some types of nets, deciding
the τ -SSP is proven harder (NP-complete) than deciding the τ -ESSP (polyno-
mial), e.g., for τ = {nop, res, set}. From the contribution perspective, the τ -SSP
has been previously considered only in the broader context of τ -synthesis, and
only for selected types [16,19,22,23]. In this paper, we completely characterize
the complexity of τ -SSP for all 256 Boolean types of nets and discover 150 new
hard types, cf. §1–§3, §6, §9 of Fig. 1, and 4 new tractable types, cf. Fig. 1 §10,
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and comprise the known results for the other 102 types as well, cf. Fig. 1 §4,
§5, §7, §8. In particular, our characterization categorizes Boolean types with
regard to their behavioral capabilities, resulting from the Boolean interactions
involved. This reveals the internal organization of the entire class of Boolean
nets, suggesting a general approach for reasoning about its subclasses.

This paper is organized as follows. In Sect. 2, all the necessary notions and
definitions will be given. Section 3 presents NP-completeness results for the types
with nop-interaction. τ -SSP for types without nop is investigated in Sect. 4.
Concluding remarks are given in Sect. 5. Due to space restrictions, one proof is
omitted but can be found in [21].

Fig. 1. Overview of the computational complexity of τ -SSP for Boolean types of nets
τ . The gray area highlights the new results that this paper provides.

2 Preliminaries

In this section, we introduce necessary notions and definitions, supported by
illustrations and examples, and some basic results that are used throughout the
paper.

Transition Systems. A (finite, deterministic) transition system (TS, for short)
A = (S,E, δ) is a directed labeled graph with the set of nodes S (called states),
the set of labels E (called events) and partial transition function δ : S×E −→ S.
If δ(s, e) is defined, we say that e occurs at state s, denoted by s e . By s e s′ ∈
A, we denote δ(s, e) = s′. This notation extends to paths, i.e., q0

e1 . . . en qn ∈
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A denotes qi−1
ei qi ∈ A for all i ∈ {1, . . . , n}. A TS A is loop-free, if s e s′ ∈ A

implies s �= s′. A loop-free TS A is bi-directed if s′ e s ∈ A implies s e s′ ∈ A.
We say s0

e1 . . . en sn ∈ A is a simple bi-directed path if si �= sj for all i �= j
with i, j ∈ {0, . . . , n}. An initialized TS A = (S,E, δ, ι) is a TS with a distinct
initial state ι ∈ S, where every state s ∈ S is reachable from ι by a directed
labeled path.

Boolean Types of Nets [3]. The following notion of Boolean types of nets
allows to capture all Boolean Petri nets in a uniform way. A Boolean type of net
τ = ({0, 1}, Eτ , δτ ) is a TS such that Eτ is a subset of the Boolean interactions:
Eτ ⊆ I = {nop, inp, out, res, set, swap, used, free}. Each interaction i ∈ I is a
binary partial function i : {0, 1} → {0, 1} as defined in Fig. 2. For all x ∈ {0, 1}
and all i ∈ Eτ , the transition function of τ is defined by δτ (x, i) = i(x). Notice

Fig. 2. All interactions i of I. If a cell is empty, then i is undefined on the respective x.

Fig. 3. Left: τ = {nop, inp}. Right: τ̃ = {nop, set, swap, used}. The red colored area
emphasizes the inside. The only SSP atom of A1 is (s0, s1). It is τ̃ -solvable by R1 =
(sup1, sig1) with sup1(s0) = 0, sup1(s1) = 1, sig1(a) = swap. Thus, A1 has the τ̃ -
separative set R = {R1}. The SSP atom (s0, s1) is not τ -solvable. The only SSP
atom (r0, r1) in A2 can be solved by τ̃ -region R2 = (sup2, sig2) with sup2(r0) = 0,
sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus, A2 has the τ̃ -SSP. The same atom
can also be solved by τ -region R3 = (sup3, sig3) with sup3(r0) = 1, sup3(r1) = 0,
sig3(b) = sig3(c) = inp. Hence, A2 has the τ -SSP, as well. (Color figure online)

Fig. 4. Left: TS A3, a simple directed path. If τ̃ is defined as in Fig. 3, then sup(ι) = 1,
sig(a) = used, sig(b) = swap and sig(c) = set implicitly defines the τ̃ -region R =
(sup, sig) of A3 as follows: sup(s1) = δτ̃ (1, used) = 1, sup(s2) = δτ̃ (1, swap) = 0 and
sup(s3) = δτ̃ (0, set) = 1. Middle: The image AR

3 of A3 (under R). One easily verifies
that δA3(s, e) = s′ implies δτ̃ (sup(s), sig(e)) = sup(s′), cf. Fig. 3. In particular, R is
sound. For event b, the edge defined by δA3(s1, b) = s2 is mapped into δτ̃ (1, swap) = 0
under R, i.e., b makes a state change on the path; similar for sig(c) = set. R is not

normalized, since sup(s0) = sup(s1), but sig(a) = used �= nop. Right: The image AR′
3

of A3 under the normalized τ̃ -region R′ that is similar to R but replaces used by nop.
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that a type τ is completely determined by Eτ . Hence we often identify τ with Eτ ,
cf. Fig. 1. Moreover, since I captures all meaningful Boolean interactions [23,
p. 617] and τ is defined by Eτ ⊆ I, there are 256 Boolean types of nets at all.
For a Boolean type of net τ , we say that its state 1 is inside and 0 is outside. An

interaction i ∈ Eτ exits if 1 i 0, enters if 0 i 1, saves 1 if 1 i 1 and saves 0

if 0 i 0. Accordingly, we group interactions together by exit = {inp, res, swap},
enter = {out, set, swap}, save1 = {nop, set, used}, save0 = {nop, res, free} and
save = save1 ∪ save0.

For a net of type τ (τ -net), the interactions of τ determine relations between
places and transitions of the net. For instance, if a place p and a transition t are
related via inp, then p has to be marked (true) to allow t to fire, and becomes
unmarked (false) after the firing (cf. Fig. 2). Since we are only concerned with
state separation, we omit the formal definition of τ -nets and rather refer to,
e.g., [3] for a comprehensive introduction to the topic.

τ-Regions. The following notion of τ -regions is the key concept for state sepa-
ration. A τ -region R = (sup, sig) of TS A = (S,E, δ, ι) consists of the mappings
support sup : S → {0, 1} and signature sig : E → Eτ , such that for every edge

s e s′ of A, the edge sup(s) sig(e)
sup(s′) belongs to the type τ ; we also say sup

allows (sig and thus the region) R. If P = q0
e1 . . . en qn is a path in A, then

PR = sup(q0)
sig(e1) . . .

sig(en)
sup(qn) is a path in τ . We say PR is the image

of P (under R). For region R and path P , event ei with 1 ≤ i ≤ n is called state
changing on the path PR, if sup(qi−1) �= sup(qi) for qi−1

ei qi in P . Notice
that R is implicitly defined by sup(ι) and sig: Since A is reachable, for every
state s ∈ S, there is a path ι e1 . . . en sn such that s = sn. Thus, since τ is

deterministic, we inductively obtain sup(si+1) by sup(si)
sig(ei+1) sup(si+1) for

all i ∈ {0, . . . , n − 1} and s0 = ι. Hence, we can compute sup and thus R purely
from sup(ι) and sig, cf. Fig. 4. If nop ∈ τ , then a τ -region R = (sup, sig) of a TS
A is called normalized if sig(e) = nop for as many events e as sup allows: for all
e ∈ E, sig(e) �∈ {used, free} and if sig(e) ∈ exit ∪ enter then there is s e s′ ∈ A
such that sup(s) �= sup(s′).

τ-State Separation Property. A pair (s, s′) of distinct states of A defines a
state separation atom (SSP atom). A τ -region R = (sup, sig) solves (s, s′) if
sup(s) �= sup(s′). If R exists, then (s, s′) is called τ -solvable. If s ∈ SA and, for
all s′ ∈ SA \ {s}, the atom (s, s′) is τ -solvable, then s is called τ -solvable. A TS
has the τ -state separation property (τ -SSP) if all of its SSP atoms are τ -solvable.
A set R of τ -regions of A is called τ -separative if for each SSP atom of A there
is a τ -region R in R that solves it. By the next lemma, if nop ∈ τ , then A has
the τ -SSP if and only if it has a τ -separative set of normalized τ -regions:

Lemma 1. Let A be a TS and τ be a nop-equipped Boolean type of nets. There
is a τ -separative set R of A if and only if there is a τ -separative set of normalized
τ -regions of A.
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Proof. The if -direction is trivial. Only-if : Let R = (sup, sig) be a non-
normalized τ -region, i.e., there is e ∈ EA such that s e s′ ∈ A implies
sup(s) = sup(s′). Since τ is nop-equipped, sup(s) nop sup(s′) ∈ τ for all
s e s′ ∈ A. Thus, a τ -region R′ = (sup, sig′) can be constructed from R, where
sig′ is equal to sig except for sig′(e) = nop. Since EA is finite, a normalized
region can be obtained from R by inductive application of this procedure. �	

By the following lemma, τ -SSP and τ̃ -SSP are equivalent if τ and τ̃ are
isomorphic:

Lemma 2 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the τ -SSP if and only if A has the τ̃ -SSP.

In this paper, we consider the τ -SSP also as decision problem that asks
whether a given TS A has the τ -SSP. The decision problem τ -SSP is in NP:
By definition, A has at most |S|2 SSP atoms. Hence, a Turing-machine can
(non-deterministically) guess a τ -separative set R such that |R| ≤ |S|2 and
(deterministically) check in polynomial time its validity if it exists.

In what follows, some of our NP-completeness results base on polynomial-
time reductions of the following decision problem, which is known to be NP-
complete [11]:

Cubic Monotone 1-in-3 3Sat. (CM 1-in-3 3Sat) The input is a Boolean
formula ϕ = {ζ0, . . . , ζm−1} of negation-free three-clauses ζi = {Xi0 ,Xi1 ,Xi2},
where i ∈ {0, . . . , m − 1}, with set of variables X =

⋃m−1
i=0 ζi; every variable

v ∈ X occurs in exactly three clauses, implying |X| = m. The question to decide
is whether there is a (one-in-three model) M ⊆ X satisfying |M ∩ ζi| = 1 for all
i ∈ {0, . . . , m − 1}.

Example 1 (CM 1-in-3 3Sat). The instance ϕ = {ζ0, . . . , ζ5} of CM 1-in-3
3Sat with set of variables X = {X0, . . . , X5} and clauses ζ0 = {X0,X1,X2},
ζ1 = {X0,X2,X3}, ζ2 = {X0,X1,X3}, ζ3 = {X2,X4,X5}, ζ4 = {X1,X4,X5}
and ζ5 = {X3,X4,X5} has the one-in-three model M = {X0,X4}.

3 Deciding the State Separation Property for
nop-equipped Types

In this section, we investigate the computational complexity of nop-equipped
Boolean types of nets. For technical reasons, we separately consider the types
that include neither res nor set (§5–§7 in Fig. 1) and the ones that have at least
one of them (§1–§4 in Fig. 1).

First of all, the fact that τ -SSP is polynomial for the types of §7 in Fig. 1 is
implied by the results of [16] [23, p. 619]. Moreover, for the types of Fig. 1 §5
the NP-completeness of τ -SSP has been shown in [24] (τ = {nop, inp, out}), and
in [19] (τ = {nop, inp, out, used}, there referred to as 1-bounded P/T-nets). Thus,
in order to complete the complexity characterization for the nop-equipped types
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that neither contain res nor set, it only remains to ascertain the complexity of
τ -SSP for the types Fig. 1 §6. The following Subsect. 3.1 proves that τ -SSP is
NP-complete for these types.

Then, we proceed with the types of §1–§4 in Fig. 1. The fact that τ -SSP is
polynomial for the types of §4 follows from [23, p. 619]. The NP-completeness
of τ -SSP for the remaining types (§1–§3) will be demonstrated in Subsect. 3.2.

3.1 Complexity of τ -SSP for nop-equipped Types
Without res and set

The following theorem summarizes the complexity for the types of §5–§7 in
Fig. 1.

Theorem 1. Let τ be a nop-equipped Boolean type of nets such that τ ∩
{res, set} = ∅. The τ -SSP is NP-complete if τ ∩ {inp, out} �= ∅ and swap �∈ τ ,
otherwise it is polynomial.

As just discussed in Sect. 3, to complete the proof of Theorem 1 it remains
to characterize the complexity of τ -SSP for the types of Fig. 1 §6. Since τ -SSP
is NP-complete if τ = {nop, inp, out} [24], by Lemma 1, the τ -SSP is also NP-
complete if τ = {nop, inp, out, free} and τ = {nop, inp, out, free, used}.

Thus, in what follows, we restrict ourselves to the types τ = {nop, inp} ∪ ω
and τ = {nop, out} ∪ ω, where ω ⊆ {used, free}, and argue that their τ -SSP are
NP-complete. To do so, we let τ = {nop, inp} and show the hardness of τ -SSP by
a reduction of CM 1-in-3 3Sat. By Lemma 1, this also implies the hardness of
τ ∪ ω-SSP, where ω ⊆ {used, free}. Furthermore, by Lemma 2, the latter shows
the NP-completeness of τ -SSP if τ = {nop, out} ∪ ω and ω ⊆ {used, free}. The
following paragraph introduces the intuition of our reduction approach.

The Roadmap of Reduction. Let τ = {nop, inp} and ϕ = {ζ0, . . . , ζm−1} be
an input of CM 1-in-3 3Sat with variables X = {X0, . . . , Xm−1} and clauses
ζi = {Xi0 ,Xi1 ,Xi2} for all i ∈ {0, . . . , m − 1}. To show the NP-completeness of
τ -SSP, we reduce a given input ϕ to a TS Aϕ (i.e., an input of τ -SSP) as follows:
For every clause ζi = {Xi0 ,Xi1 ,Xi2}, the TS Aϕ has a directed labeled path Pi

that represents ζi by using its variables as events:

We ensure by construction that Aϕ has an SSP atom α such that if R =
(sup, sig) is a τ -region solving α, then sup(ti,0) = 1 and sup(ti,3) = 0 for all
i ∈ {0, . . . , m − 1}. Thus, for all i ∈ {0, . . . ,m − 1}, the path PR

i is a path from
1 to 0 in τ . First, this obviously implies that there is an event e ∈ {Xi0 ,Xi1 ,Xi2}
such that sig(e) = inp. Second, it is easy to see that there is no path in τ on
which inp occurs twice, cf. Fig. 3. The following figure sketches all possibilities
of PR

i , i.e., sig(Xi0) = inp and sig(Xi1) = sig(Xi2) = nop, sig(Xi1) = inp and
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sig(Xi0) = sig(Xi2) = nop, and sig(Xi2) = inp and sig(Xi0) = sig(Xi1) = nop,
respectively:

Hence, the event e is unique. Since this is simultaneously true for all paths
P0, . . . , Pm−1, the set M = {e ∈ X | sig(e) = inp} selects exactly one variable
per clause and thus defines a one-in-three model of ϕ. Altogether, this approach
shows that if Aϕ has the τ -SSP, which implies that α is τ -solvable, then ϕ has
a one-in-three model.

Conversely, our construction ensures that if ϕ has a one-in-three model, then
α and the other separation atoms of Aϕ are τ -solvable, that is, Aϕ has the τ -SSP.

The Reduction of Aϕ for τ = {nop, inp}. In the following, we introduce
the announced TS Aϕ, cf. Fig. 5. The initial state of Aϕ is t0,0. First of all,
the TS Aϕ has the following path P that provides the announced SSP atom
α = (tm,0, tm+1,0):

Fig. 5. The TS Aϕ originating from the input ϕ of Example 1, which has the one-in-
three model M = {X0, X4}. The colored area sketches the region RM of Lemma 4 that
solves α = (t6,0, t7,0). (Color figure online)

Moreover, for every i ∈ {0, . . . ,m − 1}, the TS Aϕ has the following path Ti

that uses the variables of ζi = {Xi0 ,Xi1 ,Xi2} as events and provides the sub-
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path Pi = ti,0
Xi0 . . . Xi2 ti,3:

Finally, the TS Aϕ has, for all i ∈ {0, . . . , m − 1}, the following path Gi:

Notice that the paths P and T0, . . . , Tm−1 have the same “final”-state ⊥. Obvi-
ously, the size of Aϕ is polynomial in the size of ϕ. The following Lemma 3 and
Lemma 4 prove the validity of our reduction and thus complete the proof of
Theorem 1.

Lemma 3. Let τ = {nop, inp}. If Aϕ has the τ -SSP, then ϕ has a one-in-three
model.

Proof. Let R = (sup, sig) be a τ -region that solves α, that is, sup(tm,0) �=
sup(tm+1,0). By tm,0

k tm+1,0 and τ = {nop, inp}, this implies sig(k) = inp,

sup(tm,0) = 1 and sup(tm+1,0) = 0. If s0
e0 . . . ei si

k si+1
ei+2 . . . en sn is

a path in Aϕ, then, by sig(k) = inp, we get sup(sj) = 1 for all j ∈ {0, . . . , i},
sup(sj) = 0 for all j ∈ {i + 1, . . . , n} and sig(ej) = nop for all j ∈ {1, . . . , i, i +
2, . . . , n}. This implies sup() = 0, sig(v) = nop as well as sig(ui) = nop
and sup(ti,0) = 1 for all i ∈ {0, . . . , m − 1}. Furthermore, by sup() = 0 and
sig(ui) = nop, we get sup(ti,3) = 0 for all i ∈ {0, . . . , m − 1}. Hence, for all
i ∈ {0, . . . , m − 1}, the image PR

i of Pi is a path from 1 to 0 in τ . Hence, as just
discussed above, M = {e ∈ X | sig(e) = inp} selects exactly one variable per
clause and defines a one-in-three model of ϕ. �	
Lemma 4. Let τ = {nop, inp}. If ϕ has a one-in-three model, then Aϕ has the
τ -SSP.

Proof. Let M be a one-in-three model of ϕ.
The following region R1 = (sup, sig) solves (s, s′) for all s ∈ ⋃m−1

i=0 S(Pi)
and all s′ ∈ ⋃m−1

i=0 S(Gi), where s′ �= t0,0: sup(t0,0) = 1; for all e ∈ EAϕ
, if

e ∈ {y0, . . . , ym−1}, then sig(e) = inp, otherwise sig(e) = nop.
Let i ∈ {0, . . . , m − 1} be arbitrary but fixed. The following region RT

i =
(sup, sig) solves (s, s′) for all s ∈ {ti,0, . . . , ti,3} and all s′ ∈ ⋃m−1

j=i+1 S(Tj) ∪
{tm,0, tm+1,0}: sup(t0,0) = 1; for all e ∈ EAϕ

, if e ∈ {wi} ∪ {u0, . . . , ui} ∪
{yi+1, . . . , ym−1}, then sig(e) = inp, otherwise sig(e) = nop.

The following region R2 = (sup, sig) solves (tm+1,) and (gi,0, gi,1) and
(gi,0, gi,2) for all i ∈ {0, . . . , m − 1}: sup(t0,0) = 1; for all e ∈ EAϕ

, if e ∈
{v} ∪ {u0, . . . , um−1}, then sig(e) = inp, otherwise sig(e) = nop.

The following region RM = (sup, sig) uses the one-in-three model M of ϕ
and solves α as well as (gi,1, gi,2) for all i ∈ {0, . . . , m − 1}: sup(t0,0) = 1; for all
e ∈ EAϕ

, if e ∈ {k} ∪ M , then sig(e) = inp, otherwise sig(e) = nop. Note Fig. 5
for an example of RM .
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Let i ∈ {0, . . . , m − 2} be arbitrary but fixed. The following region RG
i =

(sup, sig) solves (s, s′) for all s ∈ {gi,0, gi,1, gi,2} and all s′ ∈ ⋃m−1
j=i+1 S(Gj),

where s′ �= t0,0: sup(t0,0) = 1; for all e ∈ EAϕ
, if e ∈ {yi+1, . . . , ym−1}, then

sig(e) = inp, otherwise sig(e) = nop.
By the arbitrariness of i for RT

i and RG
i , it remains to show that ti,0, . . . , ti,3

are pairwise separable for all i ∈ {0, . . . ,m − 1}. Let i ∈ {0, . . . , m − 1} be
arbitrary but fixed. We present only a region RX

i0
= (sup, sig) that solves (ti,0, s)

for all s ∈ {ti,1, ti,2, ti,3}. It is then easy to see that the remaining atoms are
similarly solvable. Let j �= 	 ∈ {0, . . . , m − 1}\{i} select the other two clauses of
ϕ that contain Xi0 , that is, Xi0 ∈ ζj ∩ ζ�. RX

i0
= (sup, sig) is defined as follows:

sup(t0,0) = 1; for all e ∈ EAϕ
, if e ∈ {Xi0} ∪ {v} ∪ {u0, . . . , um−1} \ {ui, uj , u�},

then sig(e) = inp, otherwise sig(e) = nop.
Similarly, one gets regions where Xi1 or Xi2 has inp-signature. These regions

solve the remaining atoms of S(Ti)\{}. Since i was arbitrary, this completes
the proof. Please note that the technical report [21] that corresponds to this
paper provides graphical representations and examples for the just presented
regions. �	

3.2 Complexity of τ -SSP for nop-equipped Types with res or set

The next theorem states that τ -SSP is NP-complete for the nop-equipped types
that have not yet been considered, cf Fig. 1 §1–§3. Moreover, it summarizes the
complexity of τ -SSP for all types of Fig. 1 §1–§4:

Theorem 2. Let τ and τ̃ be Boolean type of nets and {nop, res} ⊆ τ and
{nop, set} ⊆ τ̃ .

1. The τ -SSP is NP-complete if τ ∩ enter �= ∅, otherwise it is polynomial.
2. The τ̃ -SSP is NP-complete if τ̃ ∩ exit �= ∅, otherwise it is polynomial.

In this section we complete the proof of Theorem 2 as follows. Firstly, we
let τ0 = {nop, inp, out} and, by a reduction of τ0-SSP, we show that the τ -
SSP is NP-complete if τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free} or if
{nop, res, set} ⊆ τ . By Lemma 2, the former also implies the NP-completeness of
τ -SSP if τ = {nop, inp, set} ∪ ω and ω ⊆ {out, used, free}. Altogether, this proves
the claim for all the types listed in §1 and §3 of Fig. 1.

Secondly, we let τ1 = {nop, inp} and reduce τ1-SSP to τ -SSP, where
τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}. Again by Lemma 2, this
also implies the NP-completeness of τ -SSP if τ = {nop, set, swap} ∪ ω and
ω ⊆ {out, used, free}. Hence, this proves the claim for all the types listed in
§2 of Fig. 1 and thus completes the proof of Theorem 2.

For the announced reductions, we use the following extensions of a TS A, cf.
Fig. 6. Let A = (SA, EA, δA, ιA) be a loop-free TS, and let EA = {e | e ∈ EA}
be the set containing for every event e ∈ EA the unambiguous and fresh event
e that is associated with e. The backward-extension B = (SA, EA ∪ EA, δB , ιA)
of A extends A by EA and additional backward edges: for all e ∈ EA and all
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s, s′ ∈ SA, if δA(s, e) = s′, then δB(s, e) = s′ and δB(s′, e) = s. The oneway loop-
extension C = (SA, EA ∪ EA, δC , ιA) of a TS A extends B by some additional
loops: for all x ∈ EA ∪ EA and all s ∈ SA, we define δC(s, e) = δB(s, e) and,
for all e ∈ EA and all s, s′ ∈ SA, if δA(s, e) = s′, then δC(s′, e) = s′. Finally,
the loop-extension D = (SA, EA ∪ EA, δD, ιA) of A is an extension of C, where
for all x ∈ EA ∪ EA and all s ∈ SA, we define δD(s, x) = δC(s, x) and, for all
e ∈ EA and all s, s′ ∈ SA, if δA(s, e) = s′, then δD(s, e) = s.

Depending on the considered type τ , we let τ̃ = τ0 or τ̃ = τ1 and reduce
a loop-free TS A = (SA, EA, δA, ιA) either to its backward-, oneway loop- or
loop-extension and show that sup : SA → {0, 1} allows a τ̃ -region of A if and
only if it allows a τ -region of the extension:

Lemma 5. Let τ0 = {nop, inp, out}, τ1 = {nop, inp}, A a loop-free TS, sup :
SA → {0, 1} and B, C and D the backward-, oneway loop- and loop-extension
of A, respectively.

Fig. 6. Top, left to right: A TS A consisting of a single edge; backward-extension B of
A; oneway loop-extension C of A; loop-extension D of A. Bottom, left to right: images
of A and its extensions B, C, D under regions corresponding to the types of Lemma 5
solving (q0, q1): a {nop, inp}- ({nop, inp, out}-) region of A; a {nop, res, out}-region of B;
a {nop, res, swap}-region of C; a {nop, res, set}-region of D.

1. If τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free}, then sup allows a τ0-
region R = (sup, sig) of A if and only if it allows a normalized τ -region
R′ = (sup, sig′) of B.

2. If τ ⊇ {nop, res, set}, then sup allows a τ0-region R = (sup, sig) of A if and
only if it allows a normalized τ -region R′ = (sup, sig′) of D.

3. If τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}, then sup allows a τ1-
region R = (sup, sig) of A if and only if it allows a normalized τ -region
R′ = (sup, sig′) of C.

Proof. (1): Only-if : Let R = (sup, sig) be a τ0-region of A. Recall that sig(e) =
nop, sig(e) = inp, sig(e) = out imply sup(s) = sup(t), sup(s) = 1 and sup(t) = 0,
sup(s) = 0 and sup(t) = 1 for all edges s e t of A, respectively. Thus, it is easy
to see that R induces a normalized τ -region R′ = (sup, sig′) of B as follows, cf.
Fig. 6: For all e ∈ EA and its associated event e ∈ EA, if sig(e) = nop, then
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sig′(e) = sig′(e) = nop; if sig(e) = inp, then sig′(e) = res and sig′(e) = out; if
sig(e) = out, then sig′(e) = out and sig′(e) = res.

If : Let R′ = (sup, sig′) be a normalized τ -region of B, and let e ∈ EA and
s e t ∈ B and s′ e t′ ∈ B be arbitrary but fixed. First of all, we argue that
if sup(s) �= sup(t), then sup(s) = sup(s′) and sup(t) = sup(t′): By definition of

B, we have that t e s and t′ e s′ are present. If sup(s) = 1 and sup(t) = 0,

then s e t and t e s imply sig′(e) ∈ {inp, res} and sig′(e) = out. By e t′

and e s′, this immediately implies sup(s′) = 1 and sup(t′) = 0. Similarly, if
sup(s) = 0 and sup(t) = 1, then sig′(e) = out and sig′(e) ∈ {inp, res}, which
implies sup(s′) = 0 and sup(t′) = 1. Consequently, since s′ e t′ was arbitrary,
the claim follows. Note that this implies in return that if sup(s) = sup(t), then
sup(s′) = sup(t′). Since both edges were arbitrary, it is easy to see that the
following τ0-region R = (sup, sig) of A is well defined: for all e ∈ EA, if there
is s e t ∈ B such that sup(s) �= sup(t), then sig(e) = inp if sup(s) = 1 and
sup(t) = 0, else sig(e) = out; otherwise, sig(e) = nop.

(2): Only-if : Recall that 0 res 0 and 1 set 1 are present in τ . Consequently,
if R = (sup, sig) is a τ0-region of A, then the region R′ = (sup, sig′), similarly
defined to the one for the Only-if-direction of (1), but replacing out by set, is a
τ -region of D, cf. Fig. 6.

If : If R′ = (sup, sig′) is a normalized τ -region of D, then it holds sig′(e) ∈
{nop, res, set} for all e ∈ ED. This is due to the fact that if s x s′ ∈ D, then
s′ x s′ ∈ D for all x ∈ ED and all s, t ∈ SD. Thus, R = (sup, sig) is obtained
from R′ by the same arguments as the ones presented for the If-direction of (1).

(3): Only-if : Let R = (sup, sig) be a τ1-region of A. Recall that sig(e) = nop
and sig(e) = inp imply sup(s) = sup(t) and sup(s) = 1, sup(t) = 0 for all
edges s e t of A, respectively. Moreover, 1 res 0, 0 res 0 and 0 swap 1 are present
in τ . Thus, we get a normalized τ -region R′ = (sup, sig′) of C as follows, cf.
Fig. 6: For all e ∈ EA and its associated event e ∈ EA, if sig(e) = nop, then
sig′(e) = sig′(e) = nop; if sig(e) = inp, then sig′(e) = res and sig′(e) = swap.

If : Let R′ = (sup, sig′) be a normalized τ -region of C, and let e ∈ EA and
s e t ∈ C and s′ e t′ ∈ C be arbitrary but fixed. We argue that sup(s) �=
sup(t) implies sup(s) = sup(s′) = 1 and sup(t) = sup(t′) = 0: By definition of C

and s e t ∈ C, we get t e t ∈ C. Thus, sig′(e) ∈ {nop, res}. Thus, if sup(s) �=
sup(t), then sig′(e) = res, which implies sup(s) = 1 and sup(t) = 0. Moreover,

by t e s ∈ C, this also implies sig′(e) = swap. Finally, by sig′(e) = res, e t′,

sig′(e) = swap and t′ e s′, we get sup(t′) = 0 and sup(s′) = 1. Consequently,
the following definition of sig yields a well-defined τ1-region R = (sup, sig) of
A: for all e ∈ EA, if sig′(e) = res, then sig(e) = inp, otherwise sig(e) = nop. �	

Notice that the TS Aϕ of Sect. 3.1 is loop-free. Furthermore, in [24], it has
been shown that {nop, inp, out}-SSP is NP-complete even if A is a simple directed
path. Moreover, the introduced extensions of A are constructible in polynomial
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time. Thus, by Lemma 1 and Lemma 2, the following corollary, which is easily
implied by Lemma 5, completes the proof of Theorem 2.

Corollary 1 (Without Proof). Let τ0 = {nop, inp, out} and τ1 = {nop, inp},
and let A be a loop-free TS and B, C and D its backward-, oneway loop- and
loop-extension, respectively.

1. If τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free}, then A has the τ0-SSP if
and only if B has the τ -SSP.

2. If τ ⊇ {nop, res, set}, then A has the τ0-SSP if and only if D has the τ -SSP.
3. If τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}, then A has the τ1-SSP if

and only if C has the τ -SSP.

4 Deciding the State Separation Property for nop-free
Types

The following theorem summarizes the complexity of τ -SSP for nop-free Boolean
types:

Theorem 3. Let τ be a nop-free type of nets and A a TS.

1. If swap �∈ τ or swap ∈ τ and τ ∩ save = ∅, then deciding if A has the τ -SSP
is polynomial.

2. If swap ∈ τ and τ ∩ save �= ∅, then deciding if A has the τ -SSP is NP-
complete.

The tractability of τ -SSP for nop-free types that are also swap-free has been
shown in the broader context of τ -synthesis in [22]. Thus, restricted to Theo-
rem 3.1, it remains to argue that τ -SSP is polynomial if τ = {swap} ∪ ω and
ω ⊆ {inp, out}. The following lemma states that separable inputs of τ -SSP are
trivial for these types and thus proves its tractability:

Lemma 6. Let τ = {swap} ∪ ω, where ω ⊆ {inp, out}, and A = (S,E, δ, ι) be a
TS. If A has the τ -SSP, then it has at most two states.

Proof. If there is s e s ∈ A, then A has no τ -regions. Hence, if such A has more
than one state, then it does not have the τ -SSP.

Let’s consider the case when A is loop-free, that is, s e s′ ∈ A implies
s �= s′. First of all, note that there is at most one outgoing edge ι e s at ι,

since if ι e s, ι e′
s′ and s �= s′, then s and s′ are not separable. This can be

seen as follows: If R = (sup, sig) is a τ -region that solves (s, s′), then sup(s) = 0
and sup(s′) = 1 or sup(s) = 1 and sup(s′) = 0. If sup(s) = 0 and sup(s′) = 1,
then sup(ι) = 0 contradicts sig(e) ∈ τ , and sup(ι) = 1 contradicts sig(e′) ∈ τ .
Similarly, sup(s) = 1 and sup(s′) = 0 yields a contradiction. Thus, a separating

region R does not exist, which proves the claim. Secondly, if ι e s e′
s′′ ∈ A,

then ι = s′′, since otherwise, ι and s′′ are not separable. This can be seen as
follows: If R = (sup, sig) is a τ -region that solves (ι, s′′), then sup(ι) = 0 and
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sup(s′′) = 1 or sup(ι) = 1 and sup(s′′) = 0. If sup(ι) = 0 and sup(s′′) = 1,
then sup(s′) = 0 contradicts sig(e) ∈ τ , and sup(s′) = 1 contradicts sig(e′) ∈ τ .
Similarly, sup(ι) = 1 and sup(s′′) = 0 yields a contradiction. This implies again
that a separating region does not exist, which proves the claim and, moreover,
proves the lemma. �	

To complete the proof of Theorem 3, it remains to prove the NP-completeness
of τ -SSP for the types listed in §9 of Fig. 1, which are exactly covered by Theo-
rem Theorem 3.2. Thus, in the remainder of this section, if not stated explicitly
otherwise, we let τ be a nop-free type such that swap ∈ τ and τ ∩ save �= ∅.
Moreover, we reduce CM 1-in-3 3Sat to τ -SSP again.

Basic Ideas of the Reduction. Similar to our previous approach we build a TS
Aϕ that has for every clause ζi = {Xi0 ,Xi1 ,Xi2}, where i ∈ {0, . . . , m − 1}, a (bi-

directed) path Pi = . . . Xi0 . . . Xi1 . . . Xi2 . . . on which the elements of ζi occur
as events. Together, the corresponding paths P0, . . . , Pm−1 are meant to repre-
sent ϕ. However, the current types are more diverse than {nop, inp}, since they
also allow swap and other interactions. Simultaneously, they are more restricted
than {nop, inp}, since they lack of nop. One of the main obstacles that occur
is that if s e s′ ∈ Aϕ, then the current types basically allow sup(s) = 1 and
sup(s′) = 0 as well as sup(s) = 0 and sup(s′) = 1 for a τ -region R = (sup, sig)
that solves (s, s′). It turns out that this requires a second representation of ϕ. To
do so, we use a copy ϕ′ that originates from ϕ by simply renaming its variables.
That is, ϕ′ originates from ϕ by replacing every variable v ∈ X of ϕ by a unique
and fresh variable v′.

Example 2 (Renaming of ϕ). The instance ϕ′ = {ζ ′
0, . . . , ζ

′
5} that originates

from ϕ of Example 1 is defined by X ′ = {X ′
0, . . . , X

′
5} and ζ ′

0 = {X ′
0,X

′
1,X

′
2},

ζ ′
1 = {X ′

0,X
′
2,X

′
3}, ζ ′

2 = {X ′
0,X

′
1,X

′
3}, ζ ′

3 = {X ′
2,X

′
4,X

′
5}, ζ ′

4 = {X ′
1,X

′
4,X

′
5}

and ζ ′
5 = {X ′

3,X
′
4,X

′
5}.

It is immediately clear that ϕ is one-in-three satisfiable if and only if ϕ′

is one-in-three satisfiable. The TS Aϕ additionally has for every clause ζ ′
i =

{X ′
i0

,X ′
i1

,X ′
i2

}, where i ∈ {0, . . . , m − 1}, of ϕ′ also a (bi-directed) path P ′
i =

. . .
X ′

i0 . . .
X ′

i1 . . .
X ′

i2 . . . on which the elements of ζ ′
i occur as events. Moreover,

by the construction, the TS Aϕ has a SSP atom α = (s, s′) such that if a τ -
region solves α, then either the signatures of the variable events X of ϕ define
a one-in-three model of ϕ or the signatures of the variable events X ′ of ϕ′

define a one-in-three model of ϕ′. Obviously, both cases imply the one-in-three
satisfiability of ϕ.

Conversely, the construction ensures, if ϕ has a one-in-three model then Aϕ

has the τ -SSP.
Similar to our approach for Theorem 1, the TS Aϕ is a composition of several

gadgets. The next Lemma 7 introduces some basic properties of τ -regions in
bi-directed TS for nop-free types that we use to prove the functionailty of Aϕ’s
gadgets. After that, Lemma 8 introduces TS that are the (isomorphic) prototypes
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of the gadgets of Aϕ and additionally proves the essential parts of their intended
functionality.

Lemma 7. Let τ be a nop-free Boolean type of nets and A a bi-directed TS; let
s e s′ be an edge of A, P0 = s0

e1 . . . em sm and P1 = q0
e1 . . . em qm be

two simple paths of A that both apply the same sequence e1 . . . em of events, and
R = (sup, sig) be a τ -region of A.

1. If sig(e) ∈ save, then sup(s) = sup(s′) = sup(q) = sup(q′) for every edge
q e q′ ∈ A.

2. If sup(sm) �= sup(qm), then sig(ei) = swap for all i ∈ {1, . . . , m}.
3. If sup(s0) = sup(sm), then |{e ∈ {e1, . . . , em} | sig(e) = swap}| is even.

Proof. (1): A is bi-directed and i p ∈ τ and i p′ ∈ τ imply p = p′ for all
i ∈ save.

(2): By definition of τ , if sup(sm) �= sup(qm), then, by em sm and em qm, we
get sig(em) = swap. Clearly, by sup(sm) �= sup(qm), this implies sup(sm−1) �=
sup(qm−1). Thus, the claim follows easily by induction on m.

(3): Since sup(s0) = sup(sm), the image PR
0 of P0 is a path of τ that starts

and terminates at the same state. Consequently, the number of changes between
0 and 1 on PR

0 is even. Since A is bi-directed, sup(s) �= sup(s′) if and only if
sig(e) = swap for all s e s′ ∈ P0. Thus, the number of events of P0 with a
swap-signature must be even. Hence, the claim. �	
Lemma 8 (Basic Components of Aϕ). Let τ be a nop-free Boolean type and
A a bi-directed TS with the following paths G, F , T and Q, and let R = (sup, sig)
be a τ -region of A:

1. If R solves α = (g2, g4), then either sig(k0) ∈ save and sig(k1) = swap or
sig(k0) = swap and sig(k1) ∈ save;

2. If sig(k0) ∈ save and sig(k1) = swap or sig(k0) = swap and sig(k1) ∈ save,
then sig(v) = sig(w) = swap;

3. If sig(k0) ∈ save and sig(vi) = swap for all i ∈ {0, . . . , 6}, then there is
exactly one X ∈ {X0,X1,X2} such that sig(X) �= swap.

Proof. Since A is bi-directed, we have sig(e) �∈ {inp, out} for all e ∈ EA.
(1): R solves α, thus sup(g2) �= sup(g4). If sig(k0) �= swap �= sig(k1) or

sig(k0) = sig(k1) = swap, then sup(g2) = sup(g4), a contradiction. Hence the
claim, cf. Fig. 7.
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(2): If sig(k0) ∈ save and sig(k1) = swap, then we have sup(g2) = sup(f3) �=
sup(f2), cf. Fig. 7. By symmetry, the latter is also true if sig(k0) = swap and
sig(k1) ∈ save. Hence, the claim follows from Lemma 7.2.

(3): Since sig(k0) ∈ save, we get sup(t1) = sup(t10). By Lemma 7.3, this
implies that |{e ∈ E(T ) | sig(e) = swap}| is even. Moreover, since sig(v0) =
. . . sig(v5) = swap, this implies |{e ∈ {X0,X1,X2} | sig(e) = swap}| ∈ {0, 2}.
If |{e ∈ {X0,X1,X2} | sig(e) = swap}| = 0 then, we get sup(t3) = sup(t4) �=
sup(t5) = sup(t6) �= sup(t7) = sup(t8) by Lemma 7.1. This particularly implies
sup(t4) = sup(t7) and, again by Lemma 7.1, also sup(t4) = sup(q1) = sup(q2)
and contradicts sig(v6) = swap, cf. Fig. 8. Thus, we have |{e ∈ {X0,X1,X2} |
sig(e) = swap}| = 2, which proves the claim, cf. Fig. 7. �	

Fig. 7. Illustrations for Lemma 8. The images GR, F R, T R and QR, where R =
(sup, sig) is a {swap, free}-region that solves (g2, g4) and satisfies sig(k0) = sig(X0) =
free and sig(k1) = sig(v) = sig(w) = sig(X1) = sig(X2) = sig(vi) = swap for all
i ∈ {0, . . . , 6}.

Fig. 8. Illustration for Lemma 8. A {swap, used, free}-region R = (sup, sig), restricted
to T , where sig(k0) = sig(X0) = sig(X2) = free, sig(X1) = used and sig(vi) = swap
for all i ∈ {0, . . . , 5} and, hence, |{e ∈ {X0, X1, X2} | sig(e) = swap}| = 0. R is not
extendable to a region of a TS that has T and Q such that sig(v6) = swap, since
sig(v6) = swap would contradict sup(q0) = · · · = sup(q3) = 0, which would be required
by sig(X0) = sig(X2) = free.

Let ϕ be an instance of CM 1-in-3 3Sat with the set of variables X =
{X0, . . . , Xm−1} and ϕ′ its renamed copy with event set X ′ = {X ′

0, . . . , X
′
m−1}.

In the following, we introduce the construction of Aϕ.
Firstly, for every i ∈ {0, . . . , 7m − 1}, the TS Ai has the following gadgets Gi,

Fi, G′
i and F ′

i with starting states gi,0, fi,0, g′
i,0 and f ′

i,0, respectively, providing
the atom α = (g0,2, g0,4):
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Secondly, for every i ∈ {0, . . . , m − 1}, the TS Aϕ has the following gad-
gets Ti,0, Ti,1 and T ′

i,0, T
′
i,1 that use the elements of ζi = {Xi0 ,Xi1 ,Xi2} and

ζ ′
i = {X ′

i0
,X ′

i1
,X ′

i2
} as events, respectively; their starting states are ti,0,0, ti,1,0,

t′i,0,0 and t′i,1,0:

Finally, the gadgets are connected via their starting states to finally build Aϕ

as follows:

The following Lemma 9 and Lemma 10 prove the validity of our polynomial-time
reduction and, hence, complete the proof of Theorem 3.

Lemma 9. If Aϕ has the τ -SSP, then ϕ is one-in-three satisfiable.

Proof. Let G, F , T and Q be the paths defined in Lemma 8. First of all, we
observe that G ∼= G7i+j

∼= G′
7i+j and F ∼= F7i+j

∼= F ′
7i+j and T ∼= Ti,0

∼= T ′
i,0 and

Q ∼= Ti,1
∼= T ′

i,1 for all i ∈ {0, . . . , m − 1} and j ∈ {0, . . . , 6}. Let R = (sup, sig)
be a τ -region that solves α = (g0,2, g0,4) (which exists, since Aϕ has the τ -SSP)
and let i ∈ {0, . . . , m − 1} be arbitrary but fixed. By Lemma 8.1, we have either
sig(k0) ∈ save and sig(k1) = swap or sig(k0) = swap and sig(k1) ∈ save. This
implies sig(u7i) = · · · = sig(u7i+6) = sig(u′

7i) = · · · = sig(u′
7i+6) = swap by

Lemma 8.2. If sig(k0) ∈ save and sig(k1) = swap, then by Lemma 8.3, this
implies that there is exactly one event e ∈ {Xi0 ,Xi1 ,Xi2} such that sig(e) �=
swap. Consequently, since i was arbitrary, if sig(k0) ∈ save and sig(k1) = swap,



140 R. Tredup and E. Erofeev

then M = {e ∈ X | sig(e) �= swap} selects exactly one variable of every clause
ζi for all i ∈ {0, . . . , m − 1}. Thus, M is a one in three-model of ϕ. Otherwise,
if sig(k0) = swap and sig(k1) ∈ save, then we similarly obtain that M ′ = {e ∈
X ′ | sig(e) �= swap} defines a one-in-three-model of ϕ′, which also implies the
one-in-three satisfiability of ϕ. �	
Lemma 10. If ϕ is one-in-three satisfiable, then Aϕ has the τ -SSP.

Due to space restrictions, the proof of Lemma 10 is omitted but can be found
in the technical report that corresponds to this paper [21].

5 Conclusion

In this paper, we present the overall characterization of the computational com-
plexity of the problem τ -SSP for all 256 Boolean types of nets τ . Our presentation
includes 154 new complexity results (Fig. 1: §1–§3, §6, §9, §10) and 102 known
results (Fig. 1: §4 [23], §5 [19,24], §7 [16,23], §8 [22]) and classifies them in the
overall context of boolean state separation. Besides the new 150 hardness - and
4 tractability-results, this classification is one of the main contributions of this
paper. First of all, it becomes apparent that the distinction between nop-free
and nop-equipped types is meaningful: Within the class of nop-free types, τ -SSP
turns out to be NP-complete if and only if swap ∈ τ and τ ∩ save �= ∅. Within
the class of nop-equipped types, a differentiation between types τ that satisfy
τ ∩ {res, set} = ∅ and the ones with τ ∩ {res, set} �= ∅ is useful: τ -SSP for the
former ones is NP-complete if and only if τ ∩ {inp, out} �= ∅ and swap �∈ τ . In
particular, {swap} ∪ τ -SSP becomes polynomial for all these types. On the other
hand, for the latter ones, which include i ∈ {res, set} such that i ∈ τ , τ -SSP is
NP-complete as long as there is also an interaction in τ that opposes i, that is,
τ ∩ exit �= ∅ if i = set and τ ∩ enter �= ∅ if i = res.

Moreover, our proofs discover that, up to isomorphism, there are essen-
tially four hard kernels that indicate the NP-completeness of τ -SSP, namely
{nop, inp} and {nop, inp, out} for the nop-equipped types and {swap, free} and
{swap, free, used} for the nop-free types. That means, for a nop-equipped type
τ , the hardness of τ -SSP can either be shown by a reduction of {nop, inp}-SSP
or {nop, inp, out}-SSP (or their isomorphic types), which is basically done in the
proof of Lemma 5, or τ -SSP is polynomial otherwise. Similarly, one finds out
that for the nop-free types τ in question, the hardness of τ -SSP can be shown
by a reduction of {swap, free}-SSP or {swap, free, used}-SSP. Due to the space
limitation, a reduction that covers all hard nop-free types on one blow is given
instead of explicit proof.

For future work, it remains to completely characterize the computational
complexity of deciding if a TS A is isomorphic to the reachability graph of a
Boolean Petri net, instead of only being embeddable by an injective simulation
map.
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