
Proof-Theoretic Conservative Extension
of HOL with Ad-hoc Overloading

Arve Gengelbach(B) and Tjark Weber(B)

Department of Information Technology, Uppsala University, Uppsala, Sweden
{arve.gengelbach,tjark.weber}@it.uu.se

Abstract. Logical frameworks are often equipped with an exten-
sional mechanism to define new symbols. The definitional mechanism
is expected to be conservative, i.e. it shall not introduce new theorems
of the original language. The theorem proving framework Isabelle imple-
ments a variant of higher-order logic where constants may be ad-hoc
overloaded, allowing a constant to have different definitions for non-
overlapping types. In this paper we prove soundness and completeness
for the logic of Isabelle/HOL with general (Henkin-style) semantics, and
we prove model-theoretic and proof-theoretic conservativity for theories
of definitions.

Keywords: Classical higher-order logic · Conservative theory
extension · Proof-theoretic conservativity · Ad-hoc overloading ·
Isabelle

1 Introduction

With the help of theorem provers such as HOL4 [14] and Isabelle [13], users
formalise mathematical reasoning to create machine-checkable proofs. For con-
venience and abstraction, these systems allow the user to define new types and
constants. Definitions extend the theory that is underlying a formalisation with
additional axioms, but they are expected to be proof-theoretically conservative
(and Wenzel [16] adds further requirements). Informally, any formula that is
derivable from the extended theory but expressible prior to the definition should
be derivable also from the original theory. As a special case, extension by defi-
nitions shall preserve consistency ; any extension by a definition shall not enable
the derivation of a contradiction. Design flaws in definitional mechanisms have
repeatedly led to inconsistencies in theorem provers [12,16].

In this paper we establish proof-theoretic conservativity for higher-order
logic (HOL) with ad-hoc overloading, meaning that constant symbols may have
different definitions for non-overlapping types. Proof-theoretic conservativity is
not obvious in this setting [12]: type and constant definitions may depend on one
another, and type definitions cannot be unfolded in the same way as constant
definitions. Moreover, type and constant symbols may be declared and used, e.g.
to define other symbols, before a definition for them is given.
c© Springer Nature Switzerland AG 2020
V. K. I. Pun et al. (Eds.): ICTAC 2020, LNCS 12545, pp. 23–42, 2020.
https://doi.org/10.1007/978-3-030-64276-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64276-1_2&domain=pdf
http://orcid.org/0000-0001-7708-348X
http://orcid.org/0000-0001-8967-6987
https://doi.org/10.1007/978-3-030-64276-1_2

24 A. Gengelbach and T. Weber

In this setting the notion of proof-theoretic conservativity as informally
described above does not hold. Consider a theory extension that defines a pre-
viously declared constant symbol: the equational axiom that is introduced by
the definition is expressible, but in general not derivable prior to the defini-
tion. Therefore, we consider a notion of proof-theoretic conservativity that sep-
arates signature extensions (declarations) from theory extensions (definitions).
We prove that any formula that is derivable from a definitional extension but
independent of the newly defined symbol is also derivable prior to the extension.

Our results are particularly relevant to the foundations of Isabelle/HOL [13],
which is an implementation of the logic and definitional mechanisms considered
in this paper. As a practical consequence, proof-theoretic conservativity allows
independence to be used as a syntactic criterion for deciding [8] whether a defi-
nition may be ignored when searching for the proof of a formula.

We establish proof-theoretic conservativity via several intermediate results
that are of interest in their own right. Proof-theoretic conservativity has a seman-
tic counterpart, model-theoretic conservativity. It is known [5,6] that HOL with
ad-hoc overloading satisfies model-theoretic conservativity w.r.t. lazy ground
semantics, that is a semantics that defines interpretations only for ground
(i.e. type-variable free) symbols and for which semantic entailment is quanti-
fied over term variable valuations parametrised by ground type instantiation. In
this paper, we generalise the model-theoretic conservativity result to a general
(Henkin-style) [7] version of the lazy ground semantics. Subsequently, we prove
the HOL deductive system sound and complete for general semantics. Soundness
and completeness imply that provability and semantic validity coincide; thus we
obtain proof-theoretic conservativity from model-theoretic conservativity.

Proof-theoretic conservativity of HOL with ad-hoc overloading has been stud-
ied before, notably by Kunčar and Popescu [9], who showed proof-theoretic con-
servativity of definitional theories relative to a fixed minimal theory, called initial
HOL. Our result is stronger: we show proof-theoretic conservativity of defini-
tional extensions relative to an arbitrary definitional theory. From this, we can
immediately recover Kunčar and Popescu’s result by noting that initial HOL is
definitional; but our conservativity result also applies to formulae that do not
belong to the language of initial HOL.

Contributions. We make the following contributions:

– We define a Henkin-style [7] generalisation of the lazy ground semantics [1]
for HOL by relaxing the interpretation of function types to subsets of the
set-theoretic function space (Sect. 4).

– We show model-theoretic conservativity for HOL with ad-hoc overloading
w.r.t. general semantics (Sect. 5.1) by adapting an earlier proof of model-
theoretic conservativity for lazy ground semantics [5,6].

– We prove soundness (Sect. 5.2) and completeness (Sect. 5.3) of the HOL
deductive system for general semantics. The former is proved by induction
over derivations, the latter by adapting ideas from Henkin’s original com-
pleteness proof for the theory of types [7].

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 25

– From model-theoretic conservativity, soundness and completeness we derive
a proof-theoretic conservativity result for HOL with ad-hoc overloading
(Sect. 5.4). This result generalises the conservativity result of Kunčar and
Popescu [9].

2 Related Work

We briefly review related work on meta-theoretical properties of higher-order
logic for both standard and Henkin semantics, and discuss the different
approaches to consistency and conservativity of HOL with ad-hoc overloading.
Finally, we outline how our own work connects to these results.

Higher-Order Logic and Standard Semantics. HOL extends the simple theory of
types introduced by Church [4] with rank-1 polymorphism. The logic is imple-
mented, e.g. in HOL4 [14] and Isabelle/HOL [13], with slightly different defini-
tional mechanisms. In Isabelle/HOL, ad-hoc overloading is a feature of the logic;
in HOL4, it is supported through extensions of parsing and pretty-printing.

Pitts [15, § 15.4] introduces standard models for HOL (without ad-hoc over-
loading). These are set-theoretic models of theories whose signature contains
the constants ⇒bool→bool→bool,

.=α→α→bool and some(α→bool)→α that are inter-
preted as logical implication, equality and Hilbert-choice, respectively. Types
are inhabited, i.e. their interpretation is a non-empty set, and function types are
interpreted by the corresponding set-theoretic function space.

This semantics and its properties in interplay with the deductive system are
discussed in detail in the HOL4 documentation. For standard semantics HOL is
sound [14, § 2.3.2] but incomplete, as by Gödel’s incompleteness theorem there
are unprovable sequents that hold in all standard models.

Henkin Semantics. Despite its incompleteness for standard semantics, HOL is
complete for Henkin semantics [7], which relaxes the notion of a model and allows
function types to be interpreted by proper subsets of the corresponding function
space. For this semantics Andrews [2] proves completeness of a monomorphic
logic Q0 whose built-in symbols are expressed in terms of equality. Andrews
approaches the completeness proof as follows.

Each (syntactically) consistent theory is contained in a maximal consistent
set of formulae, i.e. adding any other formula to the set would render it incon-
sistent. For maximal consistent theories one can construct a model by defining
a term’s interpretation as the equivalence class of provably equal terms. Hence,
every consistent theory has a model (as there is a model of a maximal consistent
superset of that theory). Completeness follows by contraposition.

Both Andrews and Henkin discuss completeness of variants of the simple
theory of types. Their results transfer to HOL with Henkin-style semantics.

26 A. Gengelbach and T. Weber

HOL with Ad-hoc Overloading. Wenzel [16] considers proof-theoretic conser-
vativity “a minimum requirement for wellbehaved extension mechanisms.” He
introduces the stronger notion of meta-safety, which additionally requires that
new constants are syntactically realisable, i.e. they can be replaced with a term
in the language of the original theory while preserving provability.

Kunčar and Popescu [9] extend meta-safety to type definitions and show
meta-safety of definitional theories over initial HOL, the theory of Booleans with
Hilbert-choice and the axiom of infinity. Their result is achieved by unfolding
constant definitions and removing type definitions via a relativisation predicate
over the corresponding host type. It follows that any definitional theory is a
proof-theoretically conservative extension of initial HOL, and (as a special case)
that any definitional theory is consistent. This result regards definitional theories
as monolithic extensions of initial HOL, despite the incremental nature of theory
extension by iterated application of definitional mechanisms.

The same authors prove definitional theories consistent by a semantic argu-
ment [12], introducing a so-called ground semantics for HOL, where validity of
formulae is quantified over ground type instantiations. Hence ground semantics
only ever interprets type-variable free terms. Given a definitional theory, Kunčar
and Popescu construct a model for ground semantics by recursion over a well-
founded dependency relation that relates each definiendum (i.e. each left-hand
side of a definition) to any symbol occurring in the definiens. Åman Pohjola
and Gengelbach [1] mechanise this model construction in HOL4 and correct fix-
able mistakes, leading to a larger dependency relation and a term semantics
that applies type substitutions lazily, i.e. at the latest possible moment when
interpreting a term.

In earlier work [6], we show model-theoretic conservativity of HOL with ad-
hoc overloading by refining Kunčar and Popescu’s monolithic model construction
(which builds a model from the ground up) to instead extend a given model of
a definitional theory. Gengelbach et al. [5], again using lazy ground semantics,
mechanise this result in HOL4.

Connection to Our Work. This paper combines some of the mentioned related
work in new ways. First, we generalise lazy ground semantics in the sense of
Henkin, relaxing the interpretation of function types. The deductive system of
HOL is sound and complete with respect to general (Henkin-style) lazy ground
semantics. For the proof of completeness, we adapt ideas from Henkin’s and
Andrews’s completeness proofs to account for polymorphism. Second, re-using
and extending our earlier proof of model-theoretic conservativity, we strengthen
this result to general (Henkin-style) lazy ground semantics. Third, we combine
soundness, completeness, and model-theoretic conservativity to obtain proof-
theoretic conservativity of HOL with ad-hoc overloading relative to an arbitrary
definitional theory, thereby generalising the conservativity result of Kunčar and
Popescu.

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 27

3 Background

We introduce the language of polymorphic higher-order logic (HOL) (Sect. 3.1),
definitional theories (Sect. 3.2), and the deductive system (Sect. 3.3). Parts of this
section are adapted from our previous work [6, §2]. Our notation and terminology
largely agree with other [1,5,12] related work.

3.1 The Language of Polymorphic HOL

The syntax of polymorphic HOL is that of the simply-typed lambda calculus,
enriched with a first-order language of types. We fix two infinite sets TVar of type
variables, ranged over by α, β, and Var of term variables, ranged over by x, y.

Signatures. A signature is a quadruple (K, arOf,Const, tpOf), where K
and Const are two countably infinite, disjoint sets. The elements of K are type
constructors, and those of Const are constants. Each type constructor has an
associated arity, given by the function arOf : K → N. Each constant has an
associated type, given by the function tpOf : Const → Type, where the set Type,
ranged over by σ, τ , is defined inductively as the smallest set such that

– TVar ⊆ Type, and
– (σ1, . . . , σn)k ∈ Type whenever k ∈ K, arOf(k) = n and σ1, . . . , σn ∈ Type.

For technical reasons (cf. Lemma 2), we assume that Const contains infinitely
many constants a with tpOf(a) ∈ TVar.

Built-in Types and Constants. For the remainder of this paper, we will assume
a fixed signature. Moreover, we assume that K contains the following built-in
type constructors: bool of arity 0, ind of arity 0, and → a right-associative type
constructor of arity 2. A type is built-in if its type constructor is.

We also assume that Const contains the following built-in constants:
– ⇒ of type bool → bool → bool,
– .= of type α → α → bool,
– some of type (α → bool) → α,

– zero of type ind,
– succ of type ind → ind.

Instances. A type substitution is a function ρ : TVar → Type that replaces type
variables by types. We extend type substitutions homomorphically to all types,
and denote the set of type substitutions by TSubst. For any ρ ∈ TSubst and any
type σ ∈ Type, ρ(σ) is a (type) instance of σ, written ρ(σ) ≤ σ.

The set of constant instances CInst is a subset of the cartesian product Const×
Type that contains exactly those tuples (c, σ) ∈ CInst for which the type σ is
a type instance of the type of c, namely σ ≤ tpOf(c). We use cσ as shorthand
notation for the tuple (c, σ). A constant instance is built-in if it is an instance
of a built-in constant. For example, the constant instances .=bool→bool→bool and
.=ind→ind→bool are built-in as both are instances of the built-in constant .=, which
has the type tpOf(.=) = α → α → bool.

28 A. Gengelbach and T. Weber

Terms. The terms of our language are given by the following grammar, where x
ranges over term variables, σ and τ are types, and cσ ranges over constant
instances:

t, t′ ::= xσ | cσ | (tσ→τ t′σ)τ | (λxσ. tτ)σ→τ

We may write t for tσ when there is no risk of ambiguity. We require all
terms to be well-typed, e.g. in t t′ the type of t′ equals the argument type of t.
Equality of terms is considered modulo α-equivalence. The set of all terms is
denoted by Term.

A term is closed if it does not contain any free (term) variables. We
extend tpOf to terms by defining tpOf(tσ) := σ. Terms of type bool are called
formulae.

For u ∈ Term∪Type, we write TV(u) for the set of type variables that occur
syntactically in u. We can apply a type substitution ρ to a term t, written ρ(t),
by applying ρ to all type variables that occur in t.

Non-Built-Ins. To obtain the immediate non-built-in sub-types of a type, we
define the following function ·• on types:

α• := {α} bool• := ∅ ind• := ∅ (σ → τ)• := σ• ∪ τ•

((σ1, . . . , σn) k)• := {(σ1, . . . , σn) k} for k 	∈ {bool,→, ind}

For instance, if K contains a unary type constructor list, (α list → bool)• =
{α list}. We overload ·• for terms, to collect non-built-in types of terms:

xσ
• := σ• cσ

• := σ• (s t)• := s• ∪ t• (λx. t)• := x• ∪ t•

The non-built-in types of M ⊆ Type are those types for which ·• is invariant, i.e.
M• := {x ∈ M | x• = {x}}.

The operator ·◦ collects all non-built-in constant instances in a term:

xσ
◦ := ∅ cσ

◦ :=

{
∅ if c is built-in
{cσ} otherwise

(s t)◦ := s◦ ∪ t◦ (λx. t)◦ := t◦

Similar as defined for types, the non-built-in constant instances of M ⊆ CInst
are those constant instances for which ·◦ is invariant, i.e. M◦ := {x ∈ M | x◦ =
{x}}.

Ground Symbols. A type is ground if it contains no type variables. The set of
ground types is denoted by GType. The type substitutions that map all type
variables to ground types are written GTSubst. A constant instance cσ ∈ CInst is
ground if its type σ is ground, and the set of ground constant instances is GCInst.

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 29

3.2 Definitional Theories

Definitional theories are theories that consist of definitions u ≡ t, with the
constant instance or type u that is being defined on the left-hand side, and
the defining term t on the right-hand side. Constant instances are defined by a
term, and types are defined by a predicate. In short we say symbol for a constant
instance or a type. Definitions of symbols can be of two kinds:

– A constant instance definition is of the form cσ ≡ tσ where cσ ∈ CInst◦,
t ∈ Term contains no free term variables, TV(t) ⊆ TV(σ), and c 	∈ {rep, abs}.

– A type definition is of the form τ ≡ tσ→bool where τ = (α1, . . . , αarOf(k))k ∈
Type•, αi ∈ TVar (for 0 ≤ i ≤ arOf(k)) distinct, t ∈ Term contains no free
term variables, and TV(t) ⊆ TV(σ).

We now define the semantics of constant and type definitions. A constant
instance definition equates the constant instance with the defining term. A
type definition asserts the existence of a bijection repτ→σ (with inverse absσ→τ)
between the type τ and the subset of σ that is given by the predicate t, pro-
vided this subset is non-empty. As a technical detail, as opposed to existentially
quantifying over rep and abs in the resulting axiom [12], we assume that these
two constants are present in the signature (with type α → β), and reserve them
as not definable.

– A constant instance definition cσ ≡ t stands for the formula cσ
.= t.

– A type definition τ ≡ tσ→bool stands for the formula

(∃xσ. t x) ⇒ (∀xσ. t x ⇒ repτ→σ (absσ→τ x) .= x)
∧ (∀yτ . t (rep y)) ∧ (∀yτ . abs (rep y) .= y)

The signature needs to contain all logic symbols from these axioms (Sect. 3.3).
We impose two additional constraints [1,12] that ensure consistency of the-

ories of definitions: orthogonality of definitions, and termination of a certain
relation.

Orthogonality. Two types σ and τ are orthogonal, written σ # τ , if they have
no common instance, i.e. if for all ρ, ρ′ ∈ TSubst ρ(σ) 	= ρ′(τ). Orthogonality
extends to constant instances, written cσ # dτ , if c 	= d or σ # τ . Two definitions
u ≡ t, v ≡ s are orthogonal if they are either of different kinds or if u # v.

Dependency Relation. Given a set of definitions D, the dependency relation
for D, written �D, is a binary relation on symbols. It tracks dependencies
of defined symbols on their definiens, and is defined by u �D v (for u, v ∈
CInst ∪ Type) if:

1. u ≡ t ∈ D and v ∈ t• ∪ t◦, or
2. u is a constant of type σ and v ∈ σ•, or
3. u is a type (α1, . . . , αarOf(k)) k and v ∈ {α1, . . . , αarOf(k)}.

We may simply write � when D is clear from the context.

30 A. Gengelbach and T. Weber

Type-Substitutive Closure. When R is a binary relation on CInst∪Type, we write
R↓ for the type-substitutive closure of R, defined as the smallest relation such
that, for any (s, t) ∈ R and any ρ ∈ TSubst, (ρ(s), ρ(t)) ∈ R↓. Thus, the type-
substitutive closure extends R to its image under arbitrary type substitutions.

Definitional Theories. A binary relation R is terminating (also converse well-
founded or Noetherian) if there exists no infinite sequence (ai)i∈N such that
ai R ai+1 for all i ∈ N.

Finally, a theory D is definitional if it is a finite set of pairwise orthogonal
definitions for which the relation �D

↓ is terminating. As a result of [1,12], every
definitional theory has a (lazy ground semantics) model.

3.3 The Deductive System

We follow Kunčar and Popescu [10,11] in our description of the deductive system
for HOL. The system is motivated by and abstracts from the implementation of
higher-order logic in Isabelle.

We assume that the usual logical connectives and quantifiers are present in
the signature, and define the set Ax of axioms to contain the formulae in Fig. 1.
We note that the formulae on the left-hand side of the figure can be regarded
as definitions of the logical connectives. For simplicity, we do not consider the
axioms mem Collect eq and Collect mem eq in this paper, which introduce set-
builder notation. The notation t 	 .= t′ is shorthand for ¬(t .= t′). We let ϕ range
over formulae.

Inference rules of the deductive system, given in Fig. 2, have the shape

T, Γ1 � ϕ1 · · · T, Γn � ϕn

T, Γ � ϕ

where T is the theory from which ϕ is derived by assuming the formulae in Γ [14].
Hereinafter, we deliberately omit empty assumption lists.

Fig. 1. Axioms for Isabelle/HOL.

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 31

Fig. 2. Inference rules for Isabelle/HOL.

4 General Semantics

In this section, we define a general (Henkin-style) semantics for HOL. Our
semantics generalises the lazy ground semantics of [1], by incorporating ideas
of Henkin [2,7]: in a general model, function types may be interpreted by a
proper (non-empty) subset of the corresponding function space.

Built-in Closure. For a set of types T ⊆ Type let Cl(T) denote the built-in closure
of T , defined as the smallest set such that: T ⊆ Cl(T), bool, ind ∈ Cl(T), and
for any two types σ, τ ∈ Cl(T) the function type σ → τ is in Cl(T). Thus, Cl(T)
contains those types that can be constructed from T by repeated application of
built-in type constructors.

Fragments. A (signature) fragment F is a pair F = (T,C) of types T ⊆ GType•

and constant instances C ⊆ GCInst◦, with the constraint that for each cσ ∈ C:
σ ∈ Cl(T). The types generated by the fragment are TypeF := Cl(T), and its
terms TermF := {t ∈ Term | t• ⊆ TypeF , t◦ ⊆ C} are those whose non-built-in
symbols are from the fragment. TermF is closed under taking sub-terms. We call
the largest fragment (GType•,GCInst◦) the total fragment.

Fragment Pre-interpretations. We fix the set of Booleans B := {true, false}.
For a fragment F = (T,C) an F -pre-interpretation is a pair of families I =(
([σ])σ∈TypeF , ([cσ])cσ∈C

)
that for all symbols σ, τ ∈ TypeF and cσ ∈ C satisfies1

[σ] �= ∅, [bool] = B, [ind] = N, 1 [cσ] ∈ [σ], and [σ → τ] ⊆ [σ] → [τ].

Valuations. A valuation for I is a function ξρ parameterised by a ground type
substitution ρ ∈ GTSubst that assigns meaning to all variables whose type is
contained in the fragment, i.e. ρ(σ) ∈ TypeF implies ξρ(xσ) ∈ [ρ(σ)] for all term
variables xσ ∈ Var × Type.

1 We use [ind] = N for simplicity but could allow any infinite set. [1,12].

32 A. Gengelbach and T. Weber

General Fragment Interpretations. For an F -pre-interpretation I and a valu-
ation ξρ, we define a partial function [[·]]ξρ

that extends I to terms t with
ρ(t) ∈ TermF :

[[xσ]]ξρ
:= ξρ(xσ) [[cσ]]ξρ

:= [cρ(σ)] for c non-built-in
[[s t]]ξρ

:= [[s]]ξρ
([[t]]ξρ

) [[λxσ. tτ]]ξρ
: [ρ(σ)] → [ρ(τ)], z �→ [[tτ]]ξρ(|x�→z|)

Here, function update f(|x �→ z|) denotes the function that is equal to f except
for the argument x, for which its value is z. The built-in constants have a fixed
interpretation:

[[⇒bool→bool→bool]]ξρ
is implication [[zeroind]]ξρ

:= 0
[[.=σ→σ→bool]]ξρ

is equality on [ρ(σ)] [[succind→ind]]ξρ
is the successor function

[[some(σ→bool)→σ]]ξρ
is Hilbert-choice

In general, [[·]]ξρ
is partial because the interpretations of function types in I

may not contain enough elements to interpret all terms. We say that I is a general
F -interpretation if [[·]]ξρ

is total for every ρ ∈ GTSubst and every valuation ξρ

for I, and [[t]]ξρ
∈ [tpOf(ρ(t))] for all t with ρ(t) ∈ TermF .

General Models and Validity. A general model is a general (GType•,GCInst◦)-
interpretation, i.e. a general interpretation for the total fragment. A general
model is standard if [σ → τ] = [σ] → [τ] for all σ, τ ∈ GType.

A formula ϕ is valid in a general model M, written M |= ϕ, if for all ground
type substitutions ρ ∈ GTSubst and all valuations ξρ it holds that [[ϕ]]ξρ

= true.
We write M |= E if all formulae within a set E are valid in a general model M.

5 Results

In this section we derive model-theoretic conservativity, and prove soundness
and completeness for the deductive system w.r.t. general semantics. We finish
the section by transferring the semantic conservativity result to a syntactic one.

5.1 Model-Theoretic Conservativity

We discuss how symbols in a definitional theory extended by a symbol definition
can be interpreted before and after the extension.

We write �↓∗ for the reflexive-transitive type-substitutive closure of the
dependency relation.

For a set of symbols U , we recall the U -independent fragment FU [5,6].
In [6] FU was introduced for singleton sets U (corresponding to the definition of
a single symbol); this was generalised to arbitrary sets in [5].

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 33

Lemma 1. Let D be a definitional theory, and let U ⊆ Type• ∪CInst◦. We write
VU for the pre-image of type instances of elements in U under the reflexive-
transitive, type-substitutive closure of the dependency relation �D, i.e.

VU :=
{

v ∈ GType• ∪ GCInst◦ | ∃u ∈ U, ρ ∈ TSubst. v (�D
↓)

∗
ρ(u)

}
.

Then FU := (GType• \VU ,GCInst◦ \VU) is a fragment, called the U -independent
fragment.

Model-theoretic conservativity as we prove it extends a model for possibly
several definitional updates, keeping the interpretations for all symbols that are
independent of the updates, i.e. all symbols that are in the independent fragment
where U are the updated symbols.

In the proof a part of a general model M of a definitional theory D is
expanded to a general model of a definitional extension D′ by well-founded
recursion over parts of the �↓ relation. The part of the general model that is
extended corresponds to the fragment independent of the defined symbols from
D′ \ D. The earlier monolithic model construction [1,12] obtains a model from
the ground up, by recursion over the entire �↓ relation. The incremental model
construction in [5,6] considers standard models and extension by a single defini-
tion (although the latter can be generalised to any finite definitional extension).

We make use of a fragment of dependencies E�D
, which is defined as all

instances of elements in E and their dependencies.

E�D
:=

{
x ∈ GType• ∪ GCInst◦

∣∣∣∃u ∈ E, ρ ∈ TSubst : ρ(u)�D
↓∗

x
}

Indeed, this is a fragment: for any cσ ∈ E�D
we have σ ∈ Cl(Type∩E�D

), which
is simply by cσ �D v for v ∈ σ• because σ ∈ Cl(σ•).

Theorem 1 (Model-theoretic conservativity). Let M be a general model
of a definitional theory D, and let D′ ⊇ D be a definitional extension of D (by
possibly several definitions). Let U be the symbols defined in D′ \D, i.e. U = {u |
∃t. u ≡ t ∈ D′ \ D}. There exists a general model M′ of the extended theory D′

with the following property: the models M and M′ agree on the interpretation
of all types and terms in TypeFU ∪ TermFU .

Proof. Any dependency relation in this proof is w.r.t. D′. Let U be the set of
symbols defined in D′ \ D and let VU be defined as in Lemma 1. We define an
interpretation for the total fragment � = (GType•,GCInst◦). For any ground
symbol w ∈ � \ VU we define [w] as the interpretation of w within the model
M. For all elements in VU we define an interpretation by well-founded recursion
over �↓+, which is the transitive closure of the type substitutive dependency
relation. From the definitional theory D′ we get a terminating dependency rela-
tion �↓+ [1], and we can define an interpretation [v] for any symbol v ∈ VU ,
basing on [w] for w such that v �↓+ w, and their standard interpretation. Thus
in each step we define the interpretation for v from the interpretation of symbols
E� for E = {w|v �↓+ w} ∪ FU .

34 A. Gengelbach and T. Weber

We say v ∈ GSymb matches definition (s ≡ r) ∈ D′ if v = ρ(s) is a type
instance of s for ρ ∈ GTSubst. Due to orthogonality of D′, a matching definition
is uniquely determined. If there is no match for v, as v is ground, it is orthogonal
to any definition in D′.

Case 1. v matches s ≡ r and v = ρ(s). Because v �↓+ ρ(r)• and v �↓+ ρ(r)◦

the closed term ρ(r) has an interpretation [[r]]ξρ
for an arbitrary ξρ w.r.t. ρ.

Sub-case 1.1. s is a constant instance. We assign [v] = [[r]]ξρ
.

Sub-case 1.2. s is a (non-built-in) type with tpOf(r) = σ → bool. We set [v] ={
a ∈ [ρ(σ)]

∣∣[[r]]ξρ
(a) = true

}
if this set is non-empty and [v] = 1 alternatively.

Case 2. there is no matching definition for v in D′. We distinguish two sub-cases.

Sub-case 2.1. v is a non-built-in type. If v = τ → σ we define [v] = [τ] → [σ].
Otherwise we define [v] = 1.

Sub-case 2.2. v is a constant instance and v �↓+ tpOf(v)•.

– v = absσ→τ , or v = repτ→σ and there is a definition in s ≡ r ∈ D′ with a
type substitution ρ ∈ TSubst such that ρ(s) = σ and ρ(tpOf(r)) = τ → bool.
(Again, due to orthogonality there can only be one such matching definition.)
In this case [v] is undefined and it holds [σ] ⊆ [τ] as σ ∈ Vu.

• v = absσ→τ then we define [v] as the (identical) embedding [σ] ⊆ [τ]
which exists in [σ → τ], or

• v = repτ→σ then we define [v] as some embedding of [τ] to [σ] such that
[v]

∣∣
[σ]

is the identity
– v = cσ for some cσ ∈ GCInst◦ then we define [v] = choice([σ]).

We get a model from the constructed pre-interpretation [·] of � by [[·]] to
arrive at an interpretation of terms from Term.

We prove that the recursively constructed total fragment interpretation is
indeed a model for D′. For types τ ∈ TypeE� the built-in constants equality
.=τ→τ→bool and Hilbert-choice some(τ→bool)→τ are both interpretable within any
of their ground types either by induction hypothesis, or otherwise as both of the
constants’ types are the full function spaces.

Let s ≡ r ∈ D′, and let ρ ∈ GTSubst be a ground type substitution for
which we show [s ≡ r]ξρ

= true for an arbitrary ξρ (as s ≡ r is a closed term).
By orthogonality, ρ(s) matches only the definition s ≡ r. If ρ(s) 	∈ VU then
ρ(s ≡ r) ∈ TermFU , and s ≡ r ∈ D, and for (even arbitrary) ρ and any ξρ it
holds, with the interpretation from M written as M(·):

[s ≡ r]ξρ
= M(s ≡ r)ξρ

= true.

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 35

Otherwise if ρ(s) ∈ VU we distinguish by the kind of s. If s is a constant instance
by the first case

[s ≡ r]ξρ
= [[s .= r]]ξρ

= [[s]]ξρ
[[.=]]ξρ

[[r]]ξρ
= [[r]]ξρ

[[.=]]ξρ
[[r]]ξρ

= true

for any ξρ. If s = τ is a type instance and the predicate [[rσ→bool]]ξρ
is satisfied for

some element of [ρ(σ)], proving [[s ≡ r]]ξρ
= true means to prove that the proper-

ties for repρ(σ→σ) and absρ(τ→σ) hold, because the first-order logic operators are
behaving in a standard sense. For any a ∈ [ρ(σ)] by definition we have [[r]]ξρ

(a)
which is the first conjunct as [repρ(σ→τ)]([ρ(σ)]) = [ρ(σ)] ⊆ [ρ(τ)]. Similarly by
sub-case 2.2 above, both

[repρ(τ→σ)] ◦ [absρ(σ→τ)] and [absρ(σ→τ)] ◦ [repρ(τ→σ)]

are identity on [ρ(τ)] ⊆ [ρ(σ)].
The axioms trivially hold, also by the definition of general model. ��
In the proof a model for general semantics can be extended, as terms from

the fragment of all dependencies E�D
are interpretable and as function types

within the recursion are interpreted by the full set-theoretic function space. For
example, for a type τ whose interpretation is defined in the recursion, the type
τ → bool of predicates on τ is interpreted by the set of all functions [τ] → B.

Corollary 1. Any definitional theory has a general model.

The proof is by induction on the size of the theory. The base case is the empty
theory, which has a (standard) model. The induction step is by Theorem 1.
(Of course, the corollary also follows directly from the stronger result that any
definitional theory has a standard model [1,12].)

5.2 Soundness

The deductive system is sound w.r.t. general semantics: any formula that is
derivable is valid in all general models.

Theorem 2 (Soundness for general semantics). Let T be a set of formulae.
If ϕ is a formula such that T � ϕ, then for every general model M with M |= T
it holds that M |= ϕ.

The proof is by induction over the derivation T � ϕ (which we omit here).
Since any definitional theory has a general model, soundness implies that False
is not derivable, i.e. any definitional theory is (syntactically) consistent.

5.3 Completeness

In this section we lay out the completeness proof of the deductive system with
respect to general models. Completeness means for any formula which is valid
in all models of a theory there is a proof from the theory. Our proof follows the

36 A. Gengelbach and T. Weber

argumentation of Henkin [2,7]: we show that any consistent theory is contained
in a consistent super-set that is extensionally complete. From these properties
we construct a general model, which is also a model of the original theory.
Completeness follows from the existence of a model for any consistent set in
Theorem 4.

Negation-Complete. A theory T is negation-complete if for any closed formula ϕ,
we can derive T � ϕ or T � ¬ϕ.

Extensionally Complete. A theory T is extensionally complete if for any closed
term t and t′ there is an a such that T � (t a

.= t′ a) ⇒ (t .= t′). The con-
trapositive t 	 .= t′ ⇒ t a 	 .= t′ a means that a witnesses the inequality of t and
t′.

Lemma 2 (Extension Lemma). Any finite consistent set of formulae has a
consistent, negation-complete and extensionally complete theory extension.

Proof. For a finite theory T in the given countably infinite language we construct
a theory extension T ′ which satisfies the stated properties.

We well-order all closed formulae of the language of T and denote them by ψn

for n a natural number. Let C denote the set of countably many constants Const
whose type is a type variable minus all (finitely many) constants that syntac-
tically appear within T . We define a sequence (Tn)n∈N0 of theory extensions
of T .

For a theory Tn and for two closed terms tσ→τ and t′ of same type, let a
be the constant instance of type σ whose name is smallest in C less all constant
names from Tn. The finite number of symbols used in Tn is at most n plus the
number of symbols appearing in T . We define T0 := T , T ′ :=

⋃
n∈N0

Tn and

Tn+1 :=

⎧⎪⎨
⎪⎩

Tn ∪ {ψn} if the union is consistent
Tn otherwise, if ψn is no equality of two functions
Tn ∪ {t a 	 .= t′ a} otherwise, for ψn = (t .= t′) and a as described

By induction any Tn is consistent: Assuming Tn is consistent, we prove its
successor Tn+1 consistent. For the first two sub-cases consistency is immediate.
For the third sub-case, assume that a is chosen as remarked above and Tn ∪{t

.=
t′} is inconsistent. Consequently, Tn � t 	 .= t′. Suppose that also Tn ∪{t a 	 .= t′ a}
is inconsistent, and thus we have Tn � t a

.= t′ a. It is derivable that t
.= t′ is

equivalent to t x
.= t′ x. Instantiating the contrapositive at a, we get Tn � t a 	 .=

t′ a in contradiction to consistency of Tn.
We show that T ′ is negation-complete. Let ϕ be any closed formula. Then

there is an n such that ψn = ϕ. If Tn+1 = Tn ∪ {ϕ} then T ′ � ϕ. Otherwise
Tn ∪ {ϕ} is inconsistent and by law of excluded middle we derive T ′ � ¬ϕ.

We prove that T ′ is extensionally complete. For two closed terms t and t′ of
same function type, if T ′ � t

.= t′ then by extensionality this holds at any x:
T ′ � t x

.= t′ x. Otherwise there is n such that ψn = t
.= t′ and Tn+1 is defined

as Tn ∪ {t a 	 .= t′ a} for some a. ��

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 37

We will use the previous Lemma 2 to obtain an extensionally complete exten-
sion of a definitional theory. This extension T ′ is not a definitional theory, but
this is not problematic.

For a theory we want consistency to be equivalent to the existence of a general
model. To construct a model of a consistent theory, we—different from Henkin
and Andrews—also define interpretations for (non-built in) types. We show that
the construction gives a model for our semantics.

Theorem 3 (Henkin’s Theorem). Every consistent set of closed formulae
has a general model.

Proof. Let T ′ be an extension according to Lemma 2 of a consistent set of
formula. We define an interpretation [t]t∈Term (initially only for closed ground
terms) and [σ]σ∈GType for the extension T ′. The construction goes by induction
on the types σ ∈ GType such that the two properties hold:

1. [σ] = {[tσ]|tσ closed (ground) term of type σ}
2. for all closed (ground) terms sσ, tσ: [tσ] = [sσ] iff T ′ � tσ

.= sσ

At several instances we use that ground types are closed under the sub-type
relation. Closed terms of type σ, like some(λxσ.True), ensure that each type’s
interpretation [σ] is non-empty if defined according to Item 1.

Booleans. For [bool] := B, Items 1 and 2 hold, when setting [ϕbool] := true iff
T ′ � ϕbool and otherwise [ϕbool] := false as by maximality of T ′ otherwise the
formula ¬ϕbool is deducible from T ′.

Natural Numbers. Define [ind] := N. Define for tind a closed term of type ind:

[tind] := {n ∈ N|T ′ � tind
.= succ(. . . (succ︸ ︷︷ ︸

n times

(zero)) . . .)}

We have [ind] = {[tind]|tind a closed term}, as reflexivity of .= gives (⊆) and on
the other hand the only possible constructors for the ind type are zero and succ.
Clearly both properties hold.

Function Types. Let σ, τ ∈ GType, [σ] and [τ] be defined. We define

[tσ→τ] : [σ] → [τ], [sσ] �→ [tσ→τ sσ].

The term [tσ→τ][sσ] is well-defined, as the choice of sσ as the representative
of the equivalence class [sσ] is irrelevant: let s′

σ be such that [sσ] = [s′
σ] holds

and thus equivalently T ′ � sσ
.= s′

σ, which implies T ′ � tσ→τ sσ
.= tσ→τ s′

σ.
We define [σ → τ] := {[tσ→τ]|tσ→τ a closed term} satisfying Item 1 and

proceed with the proof of Item 2. Let tσ→τ , t′σ→τ and sσ be closed terms. If
T ′ � tσ→τ

.= t′σ→τ then especially tσ→τ sσ
.= t′σ→τ sσ is provable in T ′. By

[tσ→τ][sσ] = [tσ→τ sσ] = [t′σ→τ sσ] = [t′σ→τ][sσ],

38 A. Gengelbach and T. Weber

the functions [tσ→τ] and [t′σ→τ] coincide at every value.
On the other hand assume the equality [tσ→τ] = [t′σ→τ]. As T ′ is extensionally

complete there exists a closed term sσ for the term tσ→τ
.= t′σ→τ such that

(tσ→τsσ
.= t′σ→τsσ) ⇒ (tσ→τ

.= t′σ→τ)

holds in T ′. By [tσ→τ sσ] = [tσ→τ][sσ] = [t′σ→τ][sσ] = [t′σ→τ sσ], and induction
hypothesis, we have that tσ→τsσ

.= t′σ→τsσ holds in T ′. Ultimately it holds:

[tσ→τ sσ] = [t′σ→τ sσ] iff T ′ � tσ→τ sσ
.= t′σ→τ sσ.

Non-built-in types. All other types σ ∈ GType are either instances of a definition
or are undefined. In any case we define the interpretation as the equivalence class
for all closed (ground) terms tσ, which satisfies Items 1 and 2.

[tσ] = {sσ|T ′ � tσ
.= sσ for closed sσ}

[σ] = {[tσ]|tσ closed (ground) term of type σ}

If T ′ � ∃xσ. t xσ then we can derive from T ′ that

(∀xσ. t x ⇒ repτ→σ (absσ→τ x) .= x) ∧ ∀yτ . t (rep y) ∧ abs (rep y) .= y

As the properties of quantifiers, equality and logical connectives proof-
theoretically correspond to those of the meta logic, we get al.l the desired prop-
erties for the interpretations of rep and abs.

General Model. Now all ground closed terms are interpretable w.r.t. [·]. For
this to become a model we define a function [·]ξρ

that will become the inter-
pretation function for this model, to also interpret terms w.r.t. a ground type
substitution ρ and a term variable assignment ξρ.

We write yξρ for t such that [t] = ξρ(y) and extend interpretation to non-
ground formulae by defining [t′]ξρ

= [ρ(t′[xξρ/x]x∈FV(t))]ξρ
for any ground type

substitution ρ and any ξρ such that ξρ(xσ) ∈ [ρ(σ)] for any term variable xσ. By
induction we see that this gives an interpretation with the desired properties:

– [xσ]ξρ
= [ρ(xξρ)] = [xσ

ξρ] = ξρ(xσ) ∈ [ρ(σ)]
– [cσ]ξρ

= [cρ(σ)]

– Syntactic juggling gives [s t]ξρ
=

[
ρ

(
(s t)

[
yξρ

/
y
]
y∈FV(s t)

)]

=
[
ρ

(
s
[
yξρ

/
y
]
y∈FV(s)

)] [
ρ

(
t
[
yξρ

/
y
]
y∈FV(t)

)]
= [s]ξρ

[t]ξρ
.

– By Beta rule for any closed term a of type σ we have T ′ � (λxσ. t′τ) a
.=

t′τ [a/xσ] for any t′τ . Followed by type instantiation and meta-level rewriting
(note that ρ is ground) we have that T ′ � ρ ((λxσ. t′τ) a) .= ρ (t′τ [ρ(a)/xσ]).
Let [s] be an arbitrary element of [ρ(σ)], then the above holds for ρ(a) = s

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 39

and for t′τ = tτ
[
yξρ

/
y
]
y∈FV(λxσ. tτ)

. And thus (without loss of generality
rewriting variable names) we have

[λxσ. tτ]ξρ
[s] =

[
ρ

(
(λxσ. tτ)

[
yξρ

/
y
]
y∈FV(λxσ. tτ)

)]
[s]

=
[
ρ

(
(λxσ. tτ)

[
yξρ

/
y
]
y∈FV(λxσ. tτ)

s
)]

=
[
ρ

(
tτ

[
yξρ(|xσ �→[s]|)

/
y
]

y∈FV(tτ)

)]
= [tτ]ξρ(|xσ �→[s]|).

For the built-in constant some(σ→bool)→σ we require that [some(σ→bool)→σ]
is Hilbert-choice. For any [pσ→bool] and any [x] ∈ [σ] that satisfies [p], we show
[p (some p)] holds. By [p][x] = [p x] = true we get T ′ � p x equivalently. From
the axiom we prove T ′ � p (some p) .= True, thus [p (some p)] holds.

Also for any ground type τ , equality .=τ→τ→bool should be interpreted as
equality on [τ]. Immediately by construction, we have for any [s], [t] ∈ [τ] that

[s] = [t] iff T ′ � s
.= t iff [s][.=][t] = [s .= t] = true.

As any ground type is non-empty, there are no empty types overall. Hence, as
the axioms hold and as there is a valuation function this gives a general model.
The constructed model is a general model of T ′ and any of its subsets. ��

The semantics [[t]]ξρ
of a term t is defined to apply type substitutions lazily,

i.e. at the latest possible moment when interpreting a term (and never to term
variables). Applying type substitutions eagerly would erroneously force equal
valuation of distinct variables, e.g. xα and xbool under a type substitution ρ with
ρ(α) = bool [1].

However in the proof we see a different characterisation of the term semantics,
namely as [[t]]ξρ

= [[ρ(t[yξρ/y]y∈FV(t))]]ξρ
, which eagerly applies ρ to t, but only

after replacing each free variable y ∈ FV(t). Therein y is replaced by a closed
term yξρ that has the same interpretation. The resulting term ρ(t[yξρ/y]y∈FV(t))
is closed, hence a capture of term variables does not occur. This characterisation
requires for any type σ and valuation ξρ that the function [[·]]ξρ

: Termσ → [ρ(σ)]
is surjective, which is not given in Åman Pohjola and Gengelbach [1].

Completeness follows by Theorem 3 and a generic argument.

Theorem 4 (Completeness for general semantics). Let T be a set of
formulae. If ϕ is a formula that is valid in every general model M with M |= T ,
then T � ϕ.

Proof. Let ψ be a universal closure of ϕ, then also ψ is valid in every general
model of T . Suppose that T ′ := T ∪{¬ψ} is consistent, then by Theorem 3 let M
be a general model of T ′. We have M |= ¬ψ but also M |= T , hence M |= ψ. This
is a contradiction. Consequently T ∪ {¬ψ} is inconsistent, i.e. T ∪ {¬ψ} � False,
thus T � ψ. Eliminating the universal closure, we obtain T � ϕ. ��

40 A. Gengelbach and T. Weber

As noted by a reviewer, completeness w.r.t. general lazy ground semantics
can also be proved more directly from completeness of the monomorphic calculus.
We briefly sketch the idea (but we have not worked out the technical details).
If a (polymorphic) theory T is consistent, the theory of all ground instances of
formulas in T is consistent. By completeness this theory has a (general) model.
This model is also a model of T w.r.t. ground semantics.

5.4 Proof-Theoretic Conservativity

Having proven the deductive system with general semantics sound and complete,
we derive proof-theoretic conservativity from model-theoretic conservativity in
this section.

Lemma 3. If a deductive system is sound and complete then model-theoretic
conservativity implies proof-theoretic conservativity.

Proof. Consider a theory extension D′ ⊇ D. Assume D′ � ϕ (with suitable
assumptions on ϕ). We need to show D � ϕ. Due to completeness it is sufficient
to prove that ϕ holds in all models of D. By model-theoretic conservativity, for
any model M of D there is a model M′ of D′ such that M′ agrees with M
on the interpretation of ϕ. Since D′ � ϕ, soundness implies that M′ is a model
of ϕ, hence M is a model of ϕ. ��

We recall the main model-theoretic conservativity theorem [6, Theorem 3.3].
For U a set of symbol, the U -independent fragment FU [5,6] defines the ground
symbols which are not in the pre-image of type instances of U under the
reflexive-transitive, type-substitutive closure of the dependency relation. The
terms TermFU are all terms whose ground instances can be interpreted within FU

and accordingly are TypeFU all the types that occur in the terms TermFU (see
also Theorem 1).

Lemma 3 shows how the constraint in our model-theoretic notion of conser-
vativity translates to a syntactic constraint:

Theorem 5 (Proof-theoretic conservativity). Let D be a definitional the-
ory and D′ ⊇ D be a definitional theory extension of D (by possibly several
definitions), and let U be the set of symbols defined in D′ \ D.
If ϕbool ∈ TermFU and D′ � ϕ then D � ϕ.

Proof. For a definitional theory extension D′ ⊇ D, ϕbool ∈ TermFU and D′ � ϕ,
it is sufficient to prove that ϕ holds in all models of D, due to completeness
(Theorem 4). Let M be a model of D. From model-theoretic conservativity
(Theorem 1), we obtain a model extension M′ for D′ such that M and M′ agree
on the interpretation of all types and terms in TypeFU ∪ TermFU . Consequently,
we have M |= ϕ iff M′ |= ϕ. Soundness implies that M′ |= ϕ, hence also M |= ϕ.
��

Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading 41

6 Conclusion

We introduced general models as a generalisation of standard models, and proved
soundness and completeness (by using ideas by Henkin [2,7]) for HOL with ad-
hoc overloading. We extended our earlier model-theoretic conservativity result [5]
to general models, and applied these results to show proof-theoretic conservativ-
ity for HOL with ad-hoc overloading: for a definitional theory extension D′ ⊇ D,
any formula ϕ that is derivable in D′ and that does not (explicitly or implicitly)
depend on symbols defined in D′ \ D is already derivable in D.

The established notion of proof-theoretic conservativity should be extensible
to hold for related settings, for example with further axioms [14], with Arthan’s
constant specification [3], and with explicit signature extensions like in [1]. Using
our results and unfolding definitions with ideas from [11] may allow a relative
meta-safety result, i.e. unfolding the symbols defined in a definitional extension
relative to an arbitrary definitional base theory.

Acknowledgements. We thank Andrei Popescu, Georg Struth and the anonymous
reviewers for their valuable feedback on earlier versions of this paper.

References

1. Åman Pohjola, J., Gengelbach, A.: A mechanised semantics for HOL with ad-hoc
overloading. In: Albert, E., Kovács, L. (eds.) LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning. EPiC
Series in Computing, vol. 73, pp. 498–515. EasyChair (2020). https://doi.org/10.
29007/413d, https://easychair.org/publications/paper/9Hcd

2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Applied logic series, No. 27, 2nd edn.. Kluwer Academic Publishers,
Dordrecht; Boston (2002)

3. Arthan, R.: HOL constant definition done right. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 531–536. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08970-6 34

4. Church, A.: A formulation of the simple theory of types. J. Symbol. Logic 5(02),
56–68 (1940). https://doi.org/10.2307/2266170, http://www.journals.cambridge.
org/abstract S0022481200108187

5. Gengelbach, A., Åman Pohjola, J., Weber, T.: Mechanisation of Model-theoretic
Conservative Extension for HOL with Ad-hoc Overloading (2020, Under submis-
sion)

6. Gengelbach, A., Weber, T.: Model-theoretic conservative extension of definitional
theories. In: Proceedings of 12th Workshop on Logical and Semantic Frameworks
with Applications (LSFA 2017), pp. 4–16. Braśılia, Brasil, September 2017. https://
doi.org/10.1016/j.entcs.2018.10.009

7. Henkin, L.: Completeness in the theory of types. J. Symbol. Logic 15(2), 81–91
(1950). https://doi.org/10.2307/2266967

8. Kuncar, O.: Correctness of Isabelle’s cyclicity checker: implementability of over-
loading in proof assistants. In: Leroy, X., Tiu, A. (eds.) Proceedings of the 2015
Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India, January
15–17, 2015, pp. 85–94. ACM (2015). https://doi.org/10.1145/2676724.2693175,
https://doi.org/10.1145/2676724.2693175

https://doi.org/10.29007/413d
https://doi.org/10.29007/413d
https://easychair.org/publications/paper/9Hcd
https://doi.org/10.1007/978-3-319-08970-6_34
https://doi.org/10.1007/978-3-319-08970-6_34
https://doi.org/10.2307/2266170
http://www.journals.cambridge.org/abstract_S0022481200108187
http://www.journals.cambridge.org/abstract_S0022481200108187
https://doi.org/10.1016/j.entcs.2018.10.009
https://doi.org/10.1016/j.entcs.2018.10.009
https://doi.org/10.2307/2266967
https://doi.org/10.1145/2676724.2693175
https://doi.org/10.1145/2676724.2693175

42 A. Gengelbach and T. Weber

9. Kunčar, O., Popescu, A.: Safety and conservativity of definitions in HOL and
Isabelle/HOL. Proc. ACM Program. Lang. 2(POPL), 24:1–24:26 (2017). https://
doi.org/10.1145/3158112

10. Kunčar, O.: Types, Abstraction and Parametric Polymorphism in Higher-Order
Logic. Ph.D. thesis, Technische Universität München (2016). http://www21.in.
tum.de/∼kuncar/documents/kuncar-phdthesis.pdf

11. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 724–749. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 27

12. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J. Autom.
Reasoning 62(4), 531–555 (2018). https://doi.org/10.1007/s10817-018-9454-8

13. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

14. Norrish, M., Slind, K., et al.: The HOL System LOGIC, August 2019. http://
sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf/
download

15. Pitts, A.: The HOL logic. In: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic, pp. 191–232. Cambridge University Press, Cam-
bridge; New York (1993)

16. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0028402

https://doi.org/10.1145/3158112
https://doi.org/10.1145/3158112
http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
http://www21.in.tum.de/~kuncar/documents/kuncar-phdthesis.pdf
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1007/s10817-018-9454-8
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf/download
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf/download
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf/download
https://doi.org/10.1007/BFb0028402

	Proof-Theoretic Conservative Extension of HOL with Ad-hoc Overloading
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Language of Polymorphic HOL
	3.2 Definitional Theories
	3.3 The Deductive System

	4 General Semantics
	5 Results
	5.1 Model-Theoretic Conservativity
	5.2 Soundness
	5.3 Completeness
	5.4 Proof-Theoretic Conservativity

	6 Conclusion
	References

