
Analysis of Bayesian Networks
via Prob-Solvable Loops

Ezio Bartocci, Laura Kovács, and Miroslav Stankovič(B)

TU Wien, Vienna, Austria
{Ezio.Bartocci,Laura.Kovacs,Miroslav.Stankovic}@tuwien.ac.at

Abstract. Prob-solvable loops are probabilistic programs with polynomial
assignments over random variables and parametrised distributions, for which the
full automation of moment-based invariant generation is decidable. In this paper
we extend Prob-solvable loops with new features essential for encoding Bayesian
networks (BNs). We show that various BNs, such as discrete, Gaussian, con-
ditional linear Gaussian and dynamic BNs, can be naturally encoded as Prob-
solvable loops. Thanks to these encodings, we can automatically solve several
BN related problems, including exact inference, sensitivity analysis, filtering and
computing the expected number of rejecting samples in sampling-based proce-
dures. We evaluate our work on a number of BN benchmarks, using automated
invariant generation within Prob-solvable loop analysis.

1 Introduction

Bayesian networks (BNs) are well-established probabilistic models widely adopted to
represent complex systems and to reason about their intrinsic uncertain knowledge.
BNs are graphically depicted as directed acyclic graphs (DAGs) whose nodes represent
random variables and edges capture conditional dependencies. Since the seminal work
of [40], BNs have been extensively employed in several application domains including
machine learning [22], speech recognition [44], sports betting [12], gene regulatory
networks [20], diagnosis of diseases [24] and finance [39]. Part of their success is due to
the inherited Bayesian inference framework enabling the prediction about the likelihood
that one of several known causes is responsible for the evidence of an observed event.

Figure 1 illustrates a simple BN with two events that can cause the grass (G) to be
wet: the rain (R) or an active sprinkler (S). When it rains the sprinkler is usually not
active, so the rain has a direct effect on the use of the sprinkler. This dependency is
provided by a conditional probability table, in short CPT, associated to the sprinkler
random variable S. A CPT lists, for each possible combination of values of the parents’
variables (one for each row of the table), the corresponding probability for the child’s
variable to have a certain discrete value (one for each column of the table). The random
variables G,R, S of Fig. 1 are, for example, binary random variables with Bernoulli
conditional distributions. However, in general BNs allow arbitrary types for their ran-
dom variables and their conditional distributions.

This research was supported by the Vienna Science and Technology Fund (WWTF) under grant
ICT19-018 (ProbInG), the ERC Starting Grant 2014 SYMCAR 639270 and the Austrian FWF
project W1255-N23.

c© Springer Nature Switzerland AG 2020
V. K. I. Pun et al. (Eds.): ICTAC 2020, LNCS 12545, pp. 221–241, 2020.
https://doi.org/10.1007/978-3-030-64276-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64276-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-64276-1_12

222 E. Bartocci et al.

Fig. 1. Solving probabilistic inference, the expected number of samples and the sensitivity anal-
ysis for a discrete BN (disBN), by encoding the disBN as a Prob-solvable loop and computing
automatically moment-based invariants (MBIs).

Probabilistic Inference. Given the BN in Fig. 1, the following can be asked:

Q1 - What is the probability that it is raining, given that the grass is wet?

The answer to this question can be obtained by solving a probabilistic inference, that
is the problem to optimally estimate the probability of an event given an observed evi-
dence. The works in [13,14] show that both exact and approximated (up to an arbitrary
precision) methods to solve probabilistic inference are NP-hard.

How Many Samples? Approximating solutions for probabilistic inferences can be done
using Monte Carlo sampling techniques [28,43]. For example, rejection sampling is
one of the fundamental techniques for sampling from the joint (unconditional) distri-
bution of the BN: a sample is accepted when it complies with the evidence, otherwise
is rejected. Unfortunately, this method may require many samples before obtaining the

Analysis of Bayesian Networks via Prob-Solvable Loops 223

Fig. 2. Solving probabilistic inference and sensitivity analysis in a conditional linear Gaussian
BN (clgBN), by encoding the clgBN as a Prob-solvable loop and computing MBIs.

first accepted samples, while most of the samples may be wasted simply because they
do not satisfy the observations. Thus, an interesting question, investigated also in [7],
is:

Q2 - What is the expected number of samples until an accepting sample occurs?

Sensitivity Analysis. As BN parameters are often provided manually or estimated from
(incomplete) data, they are most likely to be imprecise or wrong. For example, in Fig. 1
the CPT of the random variable S contains imprecise symbolic parameters a and b. In
this case, sensitivity analysis aims to answer the following question:

Q3 - How much does a small change in BN parameters affect probabilistic inference?

224 E. Bartocci et al.

Probabilistic Programs. Probabilistic programs (PPs) provide a unifying framework to
both encode probabilistic graphical models, such as BNs, and to implement sophis-
ticated inference algorithms and decision making routines that can operate in real-
world applications [21]. Probabilistic programming languages, such as [1,8,42] include
native constructs for sampling distribution, enabling the programmer to mix determin-
istic and stochastic elements. However, the automated analysis of PPs implemented
in these languages is still at its infancy. For example, one of the main challenges in
the analysis of PPs comes with computing invariant properties summarizing PP loops.
While full automation of invariant generation for PPs is in general undecidable, recent
results identify classes of PPs for which invariants can automatically be computed [4,7].
In [4], we introduced a method to automatically generate moment-based invariants of
so-called Prob-solvable loops with polynomial assignments over random variables and
parametrised distributions. Doing so, we exploit statistical properties to eliminate prob-
abilistic choices and turn random updates into recurrence relations over higher-order
moments of program variables.

Analysis of BNs as Prob-solvable Loops. In this paper we extend Prob-solvable loops
with new features essential for encoding BNs and for solving several kind of BN analy-
sis via invariant generation over higher-order statistical moments of Prob-solvable loop
variables. Figure 1(B) shows a Prob-solvable loop encoding the probabilistic behaviour
of the discrete BN (disBN) illustrated in Fig. 1(A). The Prob-solvable loop of Fig. 1(B)
requires one variable for each disBN node, one variable for each row of the CPT tables,
one variable for each unknown parameter and some extra variables that depend on the
particular BN analysis. For example, to solve exact probabilistic inference and sensitiv-
ity analysis, we require an extra variable to store the product of the random variables G
and R. On the other hand, to compute the expected number of samples until an accept-
ing sample occurs, we would need other two auxiliary variables count and continue.
Each row of each CPT is encoded as a probabilistic assignment in the Prob-solvable
loop. Our approach generates moment-based invariants as quantitative invariants over
higher-order moments to solve the three questions (Q1-Q3) of Fig. 1. The required Prob-
solvable loop analysis requires however additional steps (e.g., calculating a limit) that
are not yet supported in [4]. Moreover, while the Prob-solvable programming model
of [4] can model the probabilistic behavior of disBNs, it cannot model other BN vari-
ants, such as BNs with Gaussian conditional dependencies as in Fig. 2(A). We therefore
extend Prob-solvable loops with new features supporting Gaussian and uniform random
variables depending on other random variables (Sect. 3) and show that these extensions
allow us to solve BN problems via Prob-solvable loop reasoning (Sects. 4 and 5).

Our Contributions. (i) We prove that our extended model of Prob-solvable loops admits
a decision procedure for computing moment-based invariants (Sect. 3). (ii) We pro-
vide a sound encoding of BNs as Prob-solvable loops, in particular addressing discrete
BNs (disBNs), Gaussian BNs (gBNs), conditional linear Gaussian BNs (clgBNs) and
dynamic BN (dynBNs) (Sect. 4). (iii) We formalize several BN problems as moment-
based invariant generation tasks in Prob-solvable loops (Sect. 5). (iv) We implemented
our approach in the MORA tool [6] and evaluated it on a number of examples, fully
automating BN analysis via Prob-solvable loop reasoning (Sect. 5.4). Complete proofs

Analysis of Bayesian Networks via Prob-Solvable Loops 225

for the theorems in this work as well as further details are available in the extended
version [5].

2 Preliminaries

We first introduce basic notions from statistics in order to reason about probabilistic
systems (Sect. 2.1), and refer to [35] for further details. We then adopt basic defini-
tions and properties of Bayesian Networks (BNs) from [40] to our setting (Sect. 2.2).
Throughout this paper, let N,R denote the set of natural and real numbers, respectively.

2.1 Probability Space and Statistical Moments

We denote random variables by capital letters X,Y, S,R, . . . and program variables by
small letters x, y, . . ., all possibly with indices.

Definition 1 (Probability Space). A probability space is a triple (Ω,F, P), where
Ω �= ∅ is a sample space representing the set of outcomes, F ⊂ 2Ω is a σ-algebra rep-
resenting the set of events, and P : F → [0, 1] is a probability measure with P (Ω) = 1.

We now define random variables, together with their higher-order statistical
moments, in order to reason about probabilistic properties.

Definition 2 (Random Variable). A random variable X : Ω → R is a measurable
function from a set Ω of possible outcomes to R. If Ω is countable, the random variable
X is called discrete; otherwise, X is continuous.

In particular, in this paper we will be interested in the following random variables:

– Random variable X with Bernoulli distribution Bern(p), given by probability p,
where Ω = {0, 1} and X(0) = 1 − p and X(1) = p;

– Random variable X with Gaussian distribution G(μ, σ2), given by mean μ and vari-

ance σ2, where Ω = R and probability density function f(x) = 1
σ

√
2π

e− 1
2 (x−μ

σ)2 .
– Random variable X with uniform distribution U(a, b), given by limits a, b where

Ω = R and probability density function f(x) =

{
1

b−a for z ∈ [a, b]
0 for z �∈ [a, b]

.

Example 1. The variables R,S,G of the BN from Fig. 1(A) are Bernoulli random vari-
ables, with variable R given by probability 0.8. Figure 2(A) features two Bernoulli ran-
dom variables S and D as well as two real-valued random variables W1 and W2 drawn
from a Gaussian distribution. Note that the parameters of the Gaussian distribution of
W1 depend on the values of D, whereas for W2 they depend on D and W1.

For a given random variable X we will denote by Ω(X) the sample space of X .
When working with a random variable X , the most common statistical moment of X
to consider is its first-order moment, called the expected value of X .

226 E. Bartocci et al.

Definition 3 (Expected Value). An expected value of a random variable X defined
on a probability space (Ω,F, P) is the Lebesgue integral: E[X] =

∫
Ω

X · dP. In the
special case when Ω is discrete, that is the outcomes are x1, . . . , xn with corresponding
probabilities p1, . . . , pn and n ∈ N, we have E[X] =

∑n
i=1 xi · pi. The expected value

of X is often also referred to as the mean or μ of X .

The key ingredient in analyzing and deriving properties of a random variable X is
the so-called characteristic function of X .

Definition 4 (Characteristic Function). The characteristic function of a random vari-
able X , denoted by φX(t), is the Fourier transform of its probability density function
(pdf). That is, φX(t) = E[eitX], with a bijective relation between probability distribu-
tions and characteristic functions.

The characteristic function φX(t) of a random variable X captures the value dis-
tribution induced by X . In particular, the characteristic function φX(t) of X enables
inferring properties about distributions given by weighted sums of X and other random
variables, and thus also about statistical higher-order moments of X .

Definition 5 (Higher-Order Moments). Let X be a random variable, c ∈ R and k ∈
N. We write Momk[X] to denote the kth raw moment of X , which is defined as:

Momk[X] = E[Xk]. (1)

Remark 1. For a Bernoulli random variable X with parameter probability p, all
moments of X coincide with its probability. Thus, Momk[X] = P (X = 1) = p.

Example 2. Figure 1 lists the first-order moment E[G] of G, as well as the first-order
moment E[GR] of the mixed random variable GR. The second-order moment of W2
is used to compute the variance V ar(W2) of W2 in Fig. 2.

2.2 Probabilistic Graphical Models as Bayesian Networks

Definition 6 (Bayesian Network (BN)). A Bayesian network (BN) is a directed
acyclic graph (DAG) in which each node is a discrete/continuous random variable.
A set of directed links or arrows connects pairs of BN nodes. If there is an arrow from
a BN node Y to a node X , then Y is said to be a parent of X .

For a random variable/node X in a BN, we write Par(X) to denote the set of
parents of X in the BN. Each BN node X has a conditional probability distribution
P (X|Par(X)) that quantifies the effect of the parents Par(X) on the node X . Depen-
dencies in a BN can be given in different forms and we overview the most common
ones. For a discrete variable X , dependencies are often given by a conditional prob-
ability table, by listing all possible values of parent variables from Par(X) and the
corresponding values of X . In the case of a continuous variable X , dependencies can
be specified using Gaussian distributions. Another common dependency in a BN is a
deterministic one, where value of a node X is determined by values of its parents from
Par(X); that is, a binary variable can be true iff all its (binary) parents are true, or if
one of its parents is true. We overview below BN variants, studied further in Sect. 4.

Analysis of Bayesian Networks via Prob-Solvable Loops 227

Definition 7 (Variants of Bayesian Networks).

– A discrete Bayesian Network (disBN) is a BN whose variables are discrete.
– A Gaussian Bayesian Network (gBN) is a BN whose dependencies are given by

Gaussian distributions in which, for any BN node X , we have P (X|Par(X)) =
G(μX , σ2

X), with μX = αX +
∑mX

k=1 βX,kYX,k,, Par(X) = {Y1, · · · , YmX
} and

σ2
X is fixed.

– A conditional linear Gaussian Bayesian Network (clgBN) is a BN in which (i) con-
tinuous nodes X cannot be parents of discrete nodes Y ; (ii) the local distribution of
each discrete node Y is a conditional probability table (CPT); (iii) the local distri-
bution of each continuous node X is a set of Gaussian distributions, one for each
configuration of the discrete parents Y , with the continuous parents acting as regres-
sors.

– A dynamic Bayesian Network (dynBN) is a structured BN consisting of a series of
time slices that represent the state of all the BN nodes X at a certain time t. For each
time-slice, a dependency structure between the variables X at that time is defined by
intra-time-slice edges. Additionally, there are edges between variables from different
slices—inter-time-slice edges, with their directions following the direction of time.

Example 3. A disBN encoding the probabilistic model of the grass getting wet is shown
in Fig. 1(A). Figure 2(A) lists a clgBN, describing a weight loss process in a drug trial
performed on rats. The (Gaussian) random variables encoding weight loss for weeks 1
and 2 are respectively denoted with W1 and W2.

3 Programming Model: Extending Prob-solvable Loops

We introduce our programming model extending the class of Prob-solvable loops [4],
allowing us to encode and analyze BN properties in Sect. 4. In particular, we extend [4]
to support Prob-solvable loops with symbolic random variables encoding dependencies
among other (random) variables, where Gaussian and uniform random variables can
linearly depend on other program variables, encoding this way common BN dependen-
cies. To this end, we consider probabilistic while-programs as introduced in [30,37]
and restrict this class of programs to probabilistic programs with polynomial updates
among random variables. We write x := e1[p]e2 to denote that the probability of the
program variable x being updated with expression e1 is p ∈ [0, 1], whereas the proba-
bility of x being updated with expression e2 is 1 − p. In the sequel, whenever we refer
to a Prob-solvable loop/program, we mean a program as defined below.

Definition 8 (Prob-solvable Loop). Let m ∈ N and x1, . . . , xm denote real-valued
program variables. A Prob-solvable loop with variables x1, . . . , xm is a probabilistic
program of the form

I;while(true){U}, (2)

where:

– (Initialization) I is a sequence of initial assignments over x1, . . . , xm. That is, I is
an assignments sequence x1 := c1;x2 := c2; . . . ;xm := cm, with ci ∈ R repre-
senting a number drawn from a known distribution 1 - in particular, ci can be a real
constant.

1 A known distribution is a distribution with known and computable moments.

228 E. Bartocci et al.

Algorithm 1. Moment-Based Invariants (MBIs) of Prob-solvable Loops
Input: Prob-solvable loop P with variables {x1, . . . , xm}, and k ≥ 1
Output: MBIs of P of degree k
Assumptions: n ∈ N is an arbitrary loop iteration of P

1: Extract moment-based recurrence relations of P , for i = 1, . . . , m:

E[xi(n + 1)] = pi · E[
aixi(n) + Pi(x1(n), . . . , xi−1(n))

]

+(1 − pi) · E[
bixi(n) + Qi(x1(n), . . . , xi−1(n))

]
.

2: MBRecs = {E[xi(n + 1)] | i = 1, . . . , m} � initial set of moment-based recurrences
3: S := {xk

1 , . . . , xk
m} � initial set of monomials of E-variables

4: while S �= ∅ do
5: M :=

∏m
i=1 xαi

i ∈ S, where αi ∈ N

6: S := S \ {M}
7: M ′ = M [xαi

i ← updi], for each i = m, . . . , 1 � replace each xαi
i in M with updi

where updi denotes:
pi · (

aixi + Pi(x1, . . . , xi−1)
)αi + (1 − pi) · (

bixi + Qi(x1, . . . , xi−1)
)αi

8: Rewrite M ′ as M ′ =
∑

Nj for monomials Nj over x1, . . . , xm

9: Simplify moment-based recurrence E[M(n + 1)] = E[
∑

Nj] using (5)-(6)
� M(n + 1) denotes

∏m
i=1 xi(n + 1)αi

10: MBRecs = MBRecs ∪ {E[M(n + 1)]}
� add E[M(n + 1)] to the set of moment-based recurrences

11: for each monomial Nj in M do
12: if E[Nj] �∈ MBRecs then � there is no moment-based recurrence for Nj

13: S = S ∪ {Nj} � add Nj to S

14: end while
15: MBI = {E[xi(n)

k] − fxi,k(n) = 0 | i = 1, . . . , m}
� fxi,k(n) is the closed form solution of E[xk

i]
16: return MBIs of P for the kth moments of x1, . . . , xm

– (Update) U denotes a sequence of m random updates, each update of the form:

xi := aixi + Pi(x1, . . . , xi−1) [pi] bixi + Qi(x1, . . . , xi−1), (3)

or, in case of a deterministic assignment,

xi := aixi + Pi(x1, . . . , xi−1), (4)

where ai, bi ∈ R are constants and Pi, Qi ∈ R[x1, . . . , xi−1] are polynomials over
program variables x1, . . . , xi−1.

– (Dependencies) The coefficients ai, bi and the coefficients of Pi and Qi in the vari-
able assignments (3)-(4) of xi can be drawn from a random distribution as long
as the moments of this distribution are known and either they are (i) Gaussian or
uniform distributions linearly depending on xi and other random variables xj with
j �= i; or (ii) other known distributions independent from x1, . . . , xm .

Note that Prob-solvable loops support parametrised distributions, for example one
may have the uniform distribution U(d1, d2) with arbitrary d1 < d2 ∈ R symbolic

Analysis of Bayesian Networks via Prob-Solvable Loops 229

constants. Similarly, the probabilities pi in the probabilistic updates (3) can be sym-
bolic constants. The restriction on random variable dependencies from Definition 8
extends [4] by allowing parameters of Gaussian and uniform random variables xi in
Prob-solvable loop to be specified using previously updated program variables xj and
to depend on xi linearly. In Theorem 1 we prove that this extension maintains the exis-
tence and computability of higher-order statistical moments of Prob-solvable loops,
allowing us to derive all moment-based invariants of Prob-solvable loops of degree
k ≥ 1.

Definition 9 (Moment-Based Invariants (MBIs)). Let P be a Prob-solvable loop and
n ∈ N denote an arbitrary loop iteration of P . Consider k ∈ N with k �= 0. A moment-
based invariant (MBI) of degree k over xi of P is E[xi(n)k] = fxi,k(n), where fxi,k :
N → R of n is a closed form expression for the kth (raw) higher-order moment of xi,
such that fxi,k(b) depends only on n and the initial variable values of P .

In what follows, we consider an arbitrary Prob-solvable loop P and formalize our
results relative to P . Further, we reserve n ∈ N to denote an arbitrary loop iteration
of P . Note that MBIs of P yield functional representations of the kth higher-order
moments of loop variables xi at n. Hence, the MBIs E[xi(n)k] = fxi,k(n) are valid
and invariant. In Algorithm 1 we show that MBIs of Prob-solvable loops can always be
computed. As in [4], the main ingredient of Algorithm 1 are so-called E-variables for
capturing expected values and other higher-order moments of loop variables of P .

Definition 10 (E-variables of Prob-solvable Loops [4]). An E-variable of P is an
expected value of a monomial over the random variables xi of P .

Using Definition 10, in Algorithm 1 we compute E-variables based on expected
values E[xi(n)] of loop variables xi, as well as using higher-order and mixed moments
of P , such as E[xk

i (n)] or E[xixj(n)] (lines 3 and 9 of Algorithm 1). To this end,
Algorithm 1 resembles the approach of [4] and extends it to handle Prob-solvable loops
with dependencies among random variables drawn from Gaussian/uniform distributions
(line 9 of Algorithm 1). More specifically, Algorithm 1 uses moment-based recurrences
over E-variables from [4], describing the expected values E[xi(n)] of xi as functions
of other E-variables (line 2 of Algorithm 1). To this end, note that Prob-solvable loop
updates from (3)-(4) over xi yield linear recurrences with constant coefficients over
E[xi(n)], by using the following simplification rules over E-variables:

E[expr1 + expr2] → E[expr1] + E[expr2]
E[expr1 · expr2] → E[expr1] · E[expr2], if expr1, expr2 are independent
E[c · expr1] → c · E[expr1]
E[c] → c
E[D · expr1] → E[D] · E[expr1]

(5)

where c ∈ R is a constant, D is a known independent distribution, and expr1, expr2
are polynomial expressions over random variables. Yet, to address our Prob-solvable
loop extensions compared to [4], in addition to (5) we need to ensure that dependencies
among the random variables of P yield also moment-based recurrences. We achieve
this by introducing the following two simplification rules over random variables with
Gaussian/uniform distributions:

G(expr1, σ
2) → expr1 + G(0, σ2),

U(expr1, expr2) → expr1 + (expr2 − expr1)U(0, 1), (6)

230 E. Bartocci et al.

for arbitrary polynomial expressions expr1, expr2 over random variables. Using (6)
in addition to (5), moment-based recurrences of Prob-solvable loops can always be
computed as linear recurrences with constant coefficients over E-variables (line 9 of
Algorithm 1), implying thus the existence of closed form solutions of E-variables and
hence of MBIs of P , as formalized below.

Theorem 1 (Moment-Based Invariants (MBIs) of Prob-solvable Loops). Let P be
a Prob-solvable loop with variables {x1, . . . , xm} and consider k ∈ N with k ≥ 1.
Algorithm 1 is sound and terminating, yielding MBIs of degree k of P .

Proof. We first prove correctness of the simplification rules (6), from which the sound-
ness and termination of Algorithm 1 follows. Recall that there is a one-to-one corre-
spondence between probability distributions and characteristic functions E[eitX] of a
random variable X . In particular, the characteristic function of a Gaussian distribu-
tion with parameters μ and σ2 is eiμt− 1

2σ2t2 , and thus the characteristic function of
G(expr1, σ

2) is E[eitN (expr1,σ2)]. Then,

E

[
eitN (expr1,σ2)

]
= E

[∫
eitN (y,σ2)f(y)dy

]
=

∫∫
eitx 1√

2πσ2
e− (x−y)2

2σ2 f(y)dxdy

=
∫

eitx 1√
2πσ2

e− (x)2

2σ2 dx

∫
eityf(y)dy

= E

[
eitN (0,σ2)

]
· E [

eit·expr1
]
= E

[
eit(N (0,σ2)+expr1)

]
by change of limits for x ∈ R, where f is the probability density function of the ran-

dom variable expr1. Note that E
[
eit(N (0,σ2)+expr1)

]
corresponds to the characteris-

tic function of expr1 + G(0, σ2), and hence the simplification rule G(expr1, σ
2) →

expr1 + G(0, σ2) of (6) is correct. The correctness of the simplification rule of (6) over
uniform distributions can be established in a similar way.

Further, observe that polynomial expressions remain polynomial after applications
of (6) (line 9 of Algorithm 1). Once Gaussian and uniform distributions depending on
loop variables are replaced using (6), we are left with independent known distributions
and polynomial expressions over random variables for which (5) can further be used,
as in [4]. As Algorithm 1 extends [4] only with (6) (line 9 of Algorithm 1), using results
of [4], we conclude that Algorithm 1 is both sound and terminating. 	

Example 4. Consider the Prob-solvable loop in Fig. 2(B). An example of E-variable
would be E[W22], for which an MBI E[W22] = 4.01408a2+53.83168a+4.01408b+
250.3172 is computed using Algorithm 1.

Remark 2. While Prob-solvable loops are non-deterministic, with trivial loop guards
of true, we note that probabilistic loops bounded by a number of iterations (such as
n := 0;while(n < 1000){n := n + 1}) can be encoded as Prob-solvable loops.

4 Encoding BNs as Prob-solvable Loops

In this section we argue that Prob-solvable loops offer a natural way for encoding BNs,
enabling further BN analysis via Prob-solvable loop reasoning in Sect. 5.

Analysis of Bayesian Networks via Prob-Solvable Loops 231

4.1 Modeling Local Probabilistic Models of BNs as Prob-solvable Loop Updates

A BN is fully specified by its local dependencies. We consider common local proba-
bilistic models and encode these models as Prob-solvable loop instances, as follows.

Deterministic Dependency. We first explore local probabilistic models specifying
deterministic dependency, that is when the values of BN nodes X are determined by the
values of the parent variables from Par(X). For example, when X is binary-valued,
such a deterministic dependency can be a Boolean expression. On the other hand, when
X is continuous, deterministic dependency can be a function over Par(X).

For a continuous variable X whose value is given by a polynomial Q(Par(X)),
encoding deterministic dependencies as a Prob-solvable loop update is straightforward:
we simply set X = Q(Par(X)).

For a discrete random variable X , let [X = x] be the expression such that [X =
x] = 1 if X = x and 0 otherwise. Note that when X is binary-valued, we have [X =
1] = X and [X = 0] = 1−X . It follows that, in general, for a discrete variable X with
possible values x = 0, 1, · · · , k, we have [X = x] =

∏
0≤i<k

i�=x

X−i
x−i . Furthermore, let

[(X,Y) = (x, y)] = [X = x] · [Y = y]. Then, [(X,Y) = (x, y)] = 1 iff X = x ∧ Y =
y, and 0 otherwise. Finally, we write [X �= x] to denote 1 − [X = x]. Observe that
[X = x] and [X �= x] are polynomials in X , providing thus a natural way to specify
deterministic dependencies as updates (3)-(4) of Prob-solvable loops (see Algorithm 2).

Conditional Probability Tables – CPTs. As shown in Fig. 1(A), a common way to
specify BN dependencies among discrete variables is CPTs, with each CPT line repre-
senting a possible assignment of values of a BN node X to Par(X). A CPT for X can
be turned into Prob-solvable loop updates, as follows.

We represent values of X with integers. For simplicity, assume that X is binary-
valued. Let Par(X) = {Y1, · · · , Yk} denote the parents of X . For each line L in the
CPT for X we introduce a new variable XL. Each line L specifies values for Par(X);
for example, Y1 = y1, · · · , Yk = yk. Let pL := P (X = 1|L) and define

XL =
∏

0<i≤k

[Yi = yi] [pL] 0, (7)

encoding that the value of XL is 0 if the values of Yi are not specified in the respective
CPT line L; otherwise the value of XL is 1 with probability pL. We then set

X =
∑

L∈CPT

XL. (8)

Example 5. Using (7)-(8), the disBN of Fig. 1(A) is encoded as a Prob-solvable loop
in Fig. 1(B). While the parameters of S and G are not directly visible from the disBN,
these parameters are given by the expected values of S and G in the Prob-solvable
loop of Fig. 1(B). Note that Fig. 1(B) also features a GR variable corresponding to a
Bernoulli random variable depending on G and R, such that GR is 1 iff both G and R
are 1. The program variable continue samples a sequence of Bernoulli random vari-
ables (one for each iteration n), while the random variable count represents a geometric
distribution encoding the sum of continue values.

232 E. Bartocci et al.

Fig. 3. In Fig. 3(B) we give the Prob-solvable loop encoding of the dynBN from Fig. 3(A).

Linear Dependency for Gaussian Variables. A local probabilistic model for a Gaus-
sian random variable with continuous parents (as introduced in Definition 7) can be
encoded as a Prob-solvable loops update, as follows:

X = RV (gauss, αX +
∑

Y ∈Par(X)

βX,Y · Y, σ2
X), (9)

where αX , βX,Y are constants, σ2
X is fixed and RV (gauss, μ, σ2) denotes a Gaussian

random variable drawn from a Gaussian distribution G(μ, σ2).

Conditional Linear Gaussian Dependency. By combining BN dependencies on dis-
crete and continuous variables for a Gaussian random variable X , we can model con-
ditional linear Gaussian dependencies for X . Let D be the joint distribution of the
discrete parents of X and for each d ∈ D let Gd be the Gaussian distribution associated
with condition d (here Gd may depend on the values of continuous parents Par(X) of
X , as discussed in Sect. 3). The conditional linear Gaussian dependency for X can be
modeled as the following Prob-solvable loop update:∑

d∈Ω(D)

[D = d] · Gd. (10)

Example 6. Figure 2(B) shows the Prob-solvable loop encoding of the clgBN of
Fig. 2(A). The random variables, W1 and W2 are given by conditional linear Gaussian
dependency and encoded using (10). For simplicity, W1 and W2 are further split into
variables W1 1 and W1 2, and W2 1 and W2 2, respectively, representing different
values of W1 and W2 based on the value of D. Further, D1 S is a binary variable which
is 1 iff D is 1 and S is 0, and W2D1 S represents the expected value of W2 · D1 S.

Temporal Dependencies in DynBNs. Dependencies in dynBNs are given by intra- and
inter-time-slice edges. While the encoding of these dependencies is similar to the BN
dependencies discussed above, there are two restrictions on the structure of the dynBNs
ensuring that dynBNs can be encoded as Prob-solvable loops. First, dependency of a
dynBN variable X on itself must be represented by a linear function. This restriction

Analysis of Bayesian Networks via Prob-Solvable Loops 233

Fig. 4. BN hierarchy.

could be lifted for discrete variables, as discussed in Lemma 1. Second, a variable X
can only depend on itself in previous time-slice and current time-slice variables.

Example 7. Figure 3(B) lists the Prob-solvable loop corresponding to Fig. 3(A). The
Bernoulli random variables R and U are encoded using (7)-(8). The parameters of R
and U change across iterations, corresponding to parameters in different time-slices of
the dynBN; their concrete values are given by the expected values of R and U .

Algorithm 2. Encoding BN variants as Prob-solvable loops
Input: BN
Output: Prob-solvable program
Notation: LPM denoting a local probabilistic model

1: Nodes := topologically ordered set of BN nodes
2: for X in Nodes do
3: if LPM of X is CPT then
4: for each line L in the CPT do Set XL as in (7)
5: Set X as in (8)
6: if LPM of X is a linear dependency for Gaussian variables then Set X as in (9)
7: if LPM of X is a conditional linear Gaussian dependency then Set X as in (10)

4.2 Encoding BNs as Prob-solvable Loops

Section 4.1 encoded common local probabilistic models of BN dependencies as Prob-
solvable loop updates. Since BNs are DAGs, BN nodes can be ordered in such a way
that each BN node X depends only on previous BN variables— its parents Par(X).
Hence, BNs can be encoded as Prob-solvable loops, as shown in Algorithm 2 and stated
below.

Theorem 2. Every BN and dynBN2 with local probabilistic models given by CPT or
(conditional linear) Gaussian dependencies can be encoded as a Prob-solvable loop.
In particular, disBNs, gBNs and clgBNs can be encoded as Prob-solvable loops.

2 subject to the restriction on structure of dynBN as discussed in Sect. 4.1.

234 E. Bartocci et al.

Based on Algorithm 2 and Theorem 2, we complete this section by defining the
following class of BNs, in relation to Prob-solvable loops.

Definition 11 (Prob-solvable Bayesian Networks). A Prob-solvable Bayesian Net-
work (PSBN) is a BN which can be encoded as a Prob-solvable loop.

The relation and expressivity of PSBNs, and hence Prob-solvable loops, compared
to BN variants is visualized in Fig. 4.

5 Automatic BN Analysis via Prob-solvable Loop Reasoning

We now show that several BN challenges can be automatically solved by generating
moment-based invariants of Prob-solvable loops encoding the respective BNs. To this
end, (i) we consider exact inference, sensitivity analysis, filtering and computing the
expected number of rejecting samples in sampling-based BN procedures and (ii) for-
malize these BN problems as reasoning tasks within Prob-solvable loop analysis. We
then (iii) encode BNs as Prob-solvable loop P using Algorithm 2 and (iv) generate
moment-based invariants of P using Algorithm 1. We address steps (i)-(ii) in Sects. 5.1-
5.3, and report on the automation of our work in Sect. 5.4.

5.1 Exact Inference in BNs

Common queries on BN properties address (i) the probability distributions of BN nodes
X , for example by answering what is P (X = x) or P (X < c); (ii) the conditional
probabilities of BN nodes X,Y , such as P (X = x|Y = y); or (iii) the expected values
and higher-order moments of BN nodes X,Y , for instance E[X],E[X2],E[X|Y = y]
and E[X2|Y = y]. Here we focus on (iii) but show that, in some BN variants, queries
related to (ii) can also be solved by our work.

Exact Inference in disBNs. In the case when a BN node X is binary-valued, we
have E[X] = P (X = true). Furthermore, for any higher-order moment of X we
also have Momk[X] = P (X = true). For non-binary-valued but discrete BN node
X , with values from {0, . . . , m}, the higher-order moments of X are also computable.
Moreover, the first m−1 moments are sufficient to fully specify probabilities P (X = i),
for i ∈ {0, . . . , m − 1}, as proven below.

Lemma 1. The probabilities, and hence the higher-order moments, of a discrete ran-
dom variable X over {0, . . . , m − 1} are specified by the first m − 1 higher-order
moments of X .

Proof. Let pi := P (X = i), for i ∈ {0, . . . , m − 1}. Then,
∑

0≤i<m ikpk =
Momk(X), yielding m−1 linear equations over p0, · · · , pm−1, with k ∈ {1, · · · ,m−
1}. As we also have

∑
0≤i<m pi = 1, we have a linear system of m linearly independent

equations, implying the existence of a unique solution which specifies the distribution
of X . 	

For computing conditional expected values and higher-order moments, we show

next that deriving E[Xk|D = i] is reduced to the problem of computing E[Xk·[D=i]]
E[[D=i]] .

Analysis of Bayesian Networks via Prob-Solvable Loops 235

Lemma 2. If D = i with non-zero probability, we have E[Xk|D = i] = E[Xk·[D=i]]
E[[D=i]] .

Proof. By partition properties for expected values, we have

E[Xk[D = i]] = E[Xk[D = i]|D = i]P (D = i) + E[Xk[D = i]|D �= i]P (D �= i).

As [D = i] = 1 iff D = i, we derive E[Xk[D = i]|D = i] = E[Xk|D = i] and
E[Xk[D = i]|D �= i] = 0. Therefore, E[Xk|D = i] = E[Xk|D = i]P (D = i). Since

P (D = i) �= 0, we conclude E[Xk|D = i] = E[Xk·[D=i]]
E[[D=i]] . 	

Exact Inference in gBNs. Recall that a Gaussian distribution is specified by its first
two moments, that is by its mean μ and variance σ2. As all nodes in a gBN are Gaus-
sian random variables, the first two moments of gBN nodes are sufficient to analyse
gBN behaviour. Further, E[X] and E[X2] of a gBN node X are computable using
Algorithm 1.

Exact Inference in clgBNs. As continuous variables X in clgBNs are Gaussian ran-
dom variables, the means and variance of X are also computable using Algorithm 1.
However, clgBNs might also include discrete variables D, whose (conditional) higher-
order moments can be computed as in Lemmas 1-2. Further, for a continuous variable
X and a discrete variable D in a clgBN, we have

E[X|D = i] =
E[Xk · [D = i]]

E[[D = i]]
,

allowing us, for example, to derive E[W2|D = 1] = 7.25 + 0.89a in Fig. 2.

Exact Inference in dynBNs. As dynBNs are infinite in nature, (infinite) Prob-solvable
loops are suited to reason about dynBN inferences, such as (i) long-term behaviour
or prediction and (ii) filtering and smoothing. A related problem is characterizing the
dynBN behaviour after n iterations, and in particular for n → ∞.

(i) Prediction and long-term behaviour in dynBNs By modeling dynBNs as Prob-
solvable loops, we can compute/predict higher-order moments E[Xk

n] of dynBN nodes
X using Algorithm 1, for an arbitrary n. Further, thanks to the existence of E[Xk

n] for
Prob-solvable loops, we conclude that limn→∞ E[Xk

n] is also computable. Moreover,
Algorithm 1 computes higher-order moments/MBIs in O(1) time w.r.t. n, which is not
the case of the O(n) approach of the standard Forward algorithm.

(ii) Filtering and prediction in dynBNs Predicting next dynBNs states Xt+1 given all
observations e1, . . . , et+1 until time t can be expressed as P (Xt+1|e1, . . . , et+1), which
in turn can be rewritten using Bayes’ rule under the sensor Markov assumption (the evi-
dence et depends only on program variables Xt from the same time-slice), as follows:

P (Xt+1|e1, . . . , et+1) = P (et+1|Xt+1) ·
∑
xt

P (Xt+1|xt) · P (xt|e1, . . . , et),

where P (et+1|Xt+1) and P (Xt+1|xt) are specified by the BN, assuming discrete-
valued observation variables. Filtering and prediction in dynBNs is thus computable
using MBIs of Prob-solvable loops.

236 E. Bartocci et al.

5.2 Number of BN Samples Until Positive BN Instance

As pointed out in [7], an interesting question about BNs is “Given a Bayesian network
with observed evidence, how long does it take in expectation to obtain a single sample
that satisfies the observations?”. A related, though arguably simpler, question would
require giving the expected number of positive instances (samples satisfying the obser-
vation) in N samples of BNs. Both of these questions can be answered using standard
results from probability theory.

Lemma 3. Given the probability p of a BN observation, the expected number of pos-
itive BN instances in N samples is pN . Further, the expected number of BN samples
until the first positive BN instance is 1

p .

Although the lemma can be proven using standard techniques from probability, we
note that the results can also be obtained using Prob-solvable loop reasoning, by relying
on Algorithm 1, as illustrated next.

Example 8. For inferring the expected number of positive instances in N samples in
Fig. 1, we first encode the observation in the BN as a new variable GR = G · R,
capturing the observation that the grass is wet and there was rain. We then transform
the BN into a dynBN adding an inter-time-slice counter update count = count + GR.
The expected number of positive instances is then the prediction E[countn] for n = N .

For answering the question of [7], we again encode the observation first as above,
e.g. GR = G · R. We use a boolean variable to indicate whether there has been a
positive instance continue = continue · [GR = 0], which is initiated as 1 (or true)
and updated to 0 once GR = 1 and stays 0 thereafter. Finally, we update a loop counter
as long as there was no positive instance observed with count = count+continue. The
expected number of samples until the first positive instance is the long-term behaviour
of count, i.e. limn→∞ E[countn].

5.3 Sensitivity Analysis in BNs

As BNs rely on network parameters, a challenging task is to understand to what extent
does a small change in a network parameter affect the outcome of particular BN query.
This task is referred to as sensitivity analysis in BNs. More precisely, we would like to
compute P (X|e) and E[X|e] for a random variable X and evidence e as functions of
a BN parameter(s) θ. For doing so, we note that Prob-solvable loops may use symbolic
coefficients. Thus, replacing concrete BN probabilities with symbolic parameters and
solving BN queries as discussed in Sect. 5.1, allow us to automate sensitivity analysis
in BNs by computing MBIs of the respective Prob-solvable loops, using Algorithm 1.

Example 9. A sensitivity analysis in Fig. 2 could measure the effect of parameters of
weight loss in week 1 on the conditional expectation E[W2|D = 1]. That is, we com-
pute E[W2|D = 1] as a function of parameters of W1. In this case, we introduce sym-
bolic parameters a and b adjusting the parameters of weight loss in week 1 (W1 1) when
the drug was administered. Using Algorithm 1, we compute the MBIs E[W2k·D],E[D],
from which we have, for k = 1, E[W2|D = 1] = E[W2·D]

E[D] = 0.89a + 7.25, answering
the respective sensitivity analysis of Fig. 2.

Analysis of Bayesian Networks via Prob-Solvable Loops 237

Table 1. BN analysis via Prob-solvable loop reasoning within Mora.

238 E. Bartocci et al.

5.4 Implementation and Experiments

We automated BN analysis via Prob-solvable loop reasoning by extending and using our
tool Mora [6]. To this end, we first manually encoded BNs as Prob-solvable loops using
Algorithm 2. We then extended Mora to support our extended programming model
of Prob-solvable loops and integrated Algorithm 1 within Mora3 to generate MBIs of
Prob-solvable loops, solving thus the BN problems of Sects. 5.1–5.3. As benchmarks,
we used 28 BN-related problems for 6 BNs taken from [17,29,34,36,41]. Table 1 sum-
marizes our experiments. For each example of Table 1, we list the BN queries we con-
sidered, that is probabilistic inference (Q1), number of BN samples (Q2) and sensitiv-
ity analysis (Q3) as introduced in Sect. 1 and discussed in Sects. 5.1–5.3. Column 2 of
Table 1 shows the time needed by Mora to compute moment-based invariants (MBIs)
solving the respective BN problems. The last column of Table 1 gives our derived solu-
tions for the considered BN queries. Our experiments were run on a MacBook Pro 2017
with 2.3 GHz Intel Core i5 and 8GB RAM.

6 Related Work

The classical approach to analyze probabilistic models is based on probabilistic model
checking [2]. However, approaches [15,27,33] cannot yet handle unbounded and real
variables that are required for example to encode Gaussian BNs, nor do they support
invariant generation, which is a key step in our work.

In the context of probabilistic programs (PPs), a formal semantics for PPs was first
introduced in [30], together with a deductive calculus to reason about expected running
time of PPs [31]. This approach was further refined and extended in [37], by intro-
ducing weakest pre-expectations based on the weakest precondition calculus of [16].
While [37] infers quantitative invariants only over expected values of program vari-
ables, our moment-based invariants yield quantitative invariants over arbitrary higher-
order moments, including expected values. Further, the setting of [37] considers PPs
where the stochastic inputs are restricted to discrete distributions with finite support. To
encode Gaussian BNs it is however necessary to handle also continuous distributions
with infinite support, as described in our work.

The first semi-automatic and complete method synthesizing the linear quantitative
invariants needed by [37] was introduced in [26]. To this end, PP loops are annotated
with linear template invariants and constraint solving is used to find concrete values
of the template parameters. Further extensions for template-based non-linear quanti-
tative invariant generation have been proposed in [11,18]. A related line of research
is given in [3], where martingales and user-provided hints are used to compute quan-
titative invariants of PPs. The recent work of [32] generalizes the use of martingales
in conjunction with templates for computing higher-order moments of program vari-
ables, with the overall goal of approximating runtimes of randomized programs. Unlike
these works, our approach extends Prob-solvable loops from [4] and provides a fully
automated approach for deriving non-linear invariants over higher-order moments.

Several techniques infer runtimes and expected values of PPs, see e.g. [9,10,19,
23,38]. To the best of our knowledge, however only [7] targets explicitly BNs on the
source code level, by using a weakest precondition calculus similar to [25,37]. The PPs

3 https://github.com/probing-lab/mora.

https://github.com/probing-lab/mora

Analysis of Bayesian Networks via Prob-Solvable Loops 239

addressed in [7] are expressed in the Bayesian Network Language (BNL) fragment of
the probabilistic Guarded Command Language (pGCL) of [37]. The main restriction
of BNL is that loops prohibit undesired data flow across multiple loop iterations: it is
not possible to assign to a variable the value of the same variable or another variable
at the previous iteration. Furthermore, BNL does not natively allow to draw samples
from Gaussian distribution, allowing thus only discrete BNs to be encoded in BNL.
In contrast to [7], in our work we use Prob-solvable loops, as a subclass of PPs, to
allow polynomial updates over random variables and parametric distributions. Variable
updates of Prob-solvable loops can involve coefficients from Bernoulli, Gaussian, uni-
form and other distributions, whereas variable updates drawn from Gaussian and uni-
form distributions can depend on other program variables. Compared to [7], we thus
support reasoning about (conditional linear) Gaussian BNs and our PPs also allow data
flow across loop iterations which is necessary to encode dynamic BNs.

7 Conclusion

We extend the class of Prob-solvable loops with variable updates over Gaussian and uni-
form random variables depending on other program variables. We show that moment-
based invariants (MBIs) in Prob-solvable loops can always be computed as quantitative
invariants over higher-order moments of loop variables. We further encode BN variants
as Prob-solvable loops, allowing us to turn several BN problems into the problem of
computing MBIs of Prob-solvable loops. In particular, we automate the BN analysis
of exact inference, sensitivity analysis, filtering and computing the expected number
of rejecting samples in sampling-based procedures via Prob-solvable loop reasoning.
As future work, we plan to further extend the class of Prob-solvable loops with more
complex flow and arithmetic and address termination analysis of such loops.

References

1. Ai, J., et al: HackPPL: a universal probabilistic programming language. In: Proceeding of
MAPL@PLDI, pp. 20–28 (2019)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
3. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic invariants via

doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
43–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 3

4. Bartocci, E., Kovács, L., Stankovič, M.: Automatic generation of moment-based invariants
for prob-solvable loops. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS,
vol. 11781, pp. 255–276. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31784-
3 15

5. Bartocci, E., Kovács, L., Stankovič, M.: Analysis of bayesian networks via prob-solvable
loops. arXiv preprint arXiv:2007.09450 (2020)

6. Bartocci, E., Kovács, L., Stankovič, M.: MORA - automatic generation of moment-based
invariants. TACAS 2020. LNCS, vol. 12078, pp. 492–498. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45190-5 28

7. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C.: How long, O Bayesian network, will
I sample thee? In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 186–213. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 7

8. Bingham, E., et al.: Pyro: deep universal probabilistic programming. J. Mach. Learn. Res.
20, 1–6 (2019)

https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15
http://arxiv.org/abs/2007.09450
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.1007/978-3-030-45190-5_28
https://doi.org/10.1007/978-3-319-89884-1_7

240 E. Bartocci et al.

9. Brázdil, T., Kiefer, S., Kucera, A., Vareková, I.H.: Runtime analysis of probabilistic pro-
grams with unbounded recursion. J. Comput. Syst. Sci. 81(1), 288–310 (2015)

10. Celiku, O., McIver, A.: Compositional specification and analysis of cost-based properties in
probabilistic programs. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 107–122. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 9

11. Chen, Y.-F., Hong, C.-D., Wang, B.-Y., Zhang, L.: Counterexample-guided polynomial loop
invariant generation by lagrange interpolation. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 658–674. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21690-4 44

12. Constantinou, A.C., Fenton, N.E., Neil, M.: pi-Football: a Bayesian network model for fore-
casting association football match outcomes. Knowl. Based Syst. 36, 322–339 (2012)

13. Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief
networks. Artif. Intell. 42(2–3), 393–405 (1990)

14. Dagum, P., Luby, M.: Approximating probabilistic inference in bayesian belief networks is
NP-hard. Artif. Intell. 60(1), 141–153 (1993)

15. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern probabilistic
model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–
600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 31

16. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM 18(8), 453–457 (1975)

17. Edwards, D.: Introduction to Graphical Modelling. Springer Science & Business Media, New
York (2012)

18. Feng, Y., Zhang, L., Jansen, D.N., Zhan, N., Xia, B.: Finding polynomial loop invariants
for probabilistic programs. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS,
vol. 10482, pp. 400–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-
2 26

19. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness, and com-
positionality. In: Proceedings of POPL, pp. 489–501 (2015)

20. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expres-
sion data. J. Comput. Biol. 7(3–4), 601–620 (2000)

21. Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521, 452–
459 (2015)

22. Heckerman, D.: A tutorial on learning wihtbayesian networks. In: Innovations in Bayesian
Networks: Theory and Applications, Studies in Computational Intelligence, vol. 156, pp.33–
82. Springer (2008). https://doi.org/10.1007/978-3-540-85066-3 3

23. Hehner, E.: A probability perspective. Formal Aspects Comput. 23(4), 391–419 (2011).
10.1007/s00165-010-0157-0

24. Jiang, X., Cooper, G.: A Bayesian spatio-temporal method for disease outbreak detection. J.
Am. Med. Inform. Assoc. 17(4), 462–471 (2010)

25. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition reasoning for
expected run–times of probabilistic programs. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol.
9632, pp. 364–389. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-
1 15

26. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant generation for
probabilistic programs: automated support for proof-based methods. In: Cousot, R., Martel,
M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15769-1 24

27. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the
probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)

28. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Techniques. MIT
Press, Cambridge (2009)

29. Korb, K., Nicholson, A.: Bayesian Artificial Intelligence, 2nd edn. Chapman and Hall, Boca
Raton (2010)

https://doi.org/10.1007/11526841_9
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/978-3-319-68167-2_26
https://doi.org/10.1007/978-3-540-85066-3_3
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-662-49498-1_15
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-642-15769-1_24

Analysis of Bayesian Networks via Prob-Solvable Loops 241

30. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–350 (1981)
31. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
32. Kura, S., Urabe, N., Hasuo, I.: Tail probabilities for randomized program runtimes via mar-

tingales for higher moments. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol.
11428, pp. 135–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1 8

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

34. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on graphical struc-
tures and their application to expert systems (with discussion). Roy. Stat. Soc. B (Stat.
Methodol.) 50(2), 157–224 (1988)

35. Lin, G.L.: Characterizations of Distributions via Moments. Indian Statistical Institute,
Kolkata (1992)

36. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, Cambridge
(1979)

37. McIver, A., Morgan, C.: Abstraction Refinement and Proof for Probabilistic Systems. Mono-
graphs in Computer Science. Springer, New York (2005)

38. Monniaux, D.: An abstract analysis of the probabilistic termination of programs. In: Cousot,
P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-47764-0 7

39. Neapolitan, R., Jiang, X.: Probabilistic Methods for Financial and Marketing Informatics.
Morgan Kaufmann, San Francisco (2010)

40. Pearl, J.: Bayesian Networks: A model of self-activated memory for evidential reasoning. In:
Proceedings of Cognitive Science Society, pp. 329–334 (1985)

41. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Pearson Education,
London (2010)

42. Tran, D., Hoffman, M.D., Saurous, R.A., Brevdo, E., Murphy, K., Blei, D.M.: Deep Proba-
bilistic Programming. CoRR abs/1701.03757 (2017)

43. Yuan, C., Druzdzel, M.J.: Importance sampling algorithms for bayesian networks: principles
and performance. Math. Comput. Model. 43(9), 1189–1207 (2006)

44. Zweig, G., Russell, S.J.: Speech recognition with dynamic bayesian networks. In: Proceed-
ings of AAAI, pp. 173–180 (1998)

https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-47764-0_7
https://doi.org/10.1007/3-540-47764-0_7

	Analysis of Bayesian Networks via Prob-Solvable Loops
	1 Introduction
	2 Preliminaries
	2.1 Probability Space and Statistical Moments
	2.2 Probabilistic Graphical Models as Bayesian Networks

	3 Programming Model: Extending Prob-solvable Loops
	4 Encoding BNs as Prob-solvable Loops
	4.1 Modeling Local Probabilistic Models of BNs as Prob-solvable Loop Updates
	4.2 Encoding BNs as Prob-solvable Loops

	5 Automatic BN Analysis via Prob-solvable Loop Reasoning
	5.1 Exact Inference in BNs
	5.2 Number of BN Samples Until Positive BN Instance
	5.3 Sensitivity Analysis in BNs
	5.4 Implementation and Experiments

	6 Related Work
	7 Conclusion
	References

