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Abstract. Dedicated many-core processors such as GPGPUs, enable
programmers to design and implement parallel algorithms to optimize
performance. The stream compaction and summed-area table algorithms
are two examples where parallel versions have been proposed in the lit-
erature with substantial speed ups compared to sequential counterparts.

Since these two algorithms are widely used, their correctness is of the
utmost importance, i.e., the algorithms must be functionally correct and
their implementations must be memory safe. These algorithms use the
parallel prefix sum algorithm internally. In our previous work, we verified
two parallel prefix sum algorithms. In this paper, we show how we can
reuse a verified sub-function (i.e., prefix sum) to prove more complicated
algorithms (i.e., stream compaction and summed area table) in a mod-
ular way with less effort. Moreover, we demonstrate that it is feasible in
practice to verify larger case studies by building the verification of the
complicated algorithm on top of the basic one.

To show the correctness of the algorithms, we use deductive program
verification based on permission-based separation logic, which is sup-
ported by the program verifier VerCors. To the best of our knowledge,
we are the first to verify functional correctness of the parallel stream com-
paction and summed-area table algorithms for an arbitrary array size,
using tool support.

Keywords: GPU verification + Deductive verification - Separation
logic

1 Introduction

Many parallel algorithms have been proposed for optimizing performance by
exploiting the new parallel architectures, and parallelizing sequential algorithms
is an active area of research. General Purpose Graphics Processing Units (GPG-
PUs) are one of the promising parallel architectures, where many threads exe-
cute the same instructions, but on different data (known as SIMD). Stream
compaction and summed-area table [11] algorithms are two examples where the
parallel (GPU-based) implementations [3,12-14,24] outperform the sequential
(CPU-based) counterparts.
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Stream compaction reduces an input array to a smaller array by removing
undesired elements. This is an important primitive operation on GPUs, because a
variety of applications such as collision detection and sparse matrix compression
rely on it. The reduction in size by eliminating undesired elements is useful
because (1) the computation can be done more efficiently by not wasting the
computation power on undesired elements and, (2) it greatly reduces the transfer
costs between the CPU and GPU, especially for applications where data transfer
between CPU and GPU is frequent.

A summed-area table is a two-dimensional (2D) table generated from a 2D
input array where each entry in the table is the sum of all values in the square
defined by the entry location and the upper-left corner in the input array. Gen-
erating such a table is useful in computer graphics and image processing [13].

Since these two algorithms are widely used in practice (also as a building
block in other applications), their correctness is of the utmost importance. This
means not only that the algorithms should be memory and thread safe (e.g.,
free of data races!), but also that they should be functionally correct, i.e., they
should actually produce the result we expect. Concretely, functional correctness
for stream compaction means that the result must be the compacted input array
with exactly the desired elements. In case of the summed-area table, functional
correctness means that the result must be a table, the same size as the input,
where each entry contains the sum of all elements in the square defined by the
entry location and the upper-left corner in the input.

The two algorithms exploit the prefix sum algorithm, which takes an array
of integers and, for each element, computes the sum of the previous elements. In
our previous work [23], we verified data race-freedom and functional correctness
of two parallel prefix sum algorithms.

In this paper, we investigate (1) how we can profit from already verified
sub-functions (i.e., prefix sum) to prove the stream compaction and summed-
area table algorithms; i.e., how much effort is needed to adapt the specifications
from [23] for the verification of these two algorithms; and (2) how much time is
needed to verify them in comparison to the verification of our previous work on
prefix sum. We believe such case studies are important to gain more insight in the
effort that is needed to verify complex algorithms and how more automation can
be added to the verification process. In general, proving functional correctness
of parallel algorithms is a challenging task. In particular, proving functional
correctness of these two algorithms is challenging because (1) in the stream
compaction algorithm, the input of the prefix sum sub-function is an array of
flag and the output is used as indices of elements in another array. Therefore,
additional properties should be proved to reason about the prefix sum result
to be safely used as indices; and (2) in the summed-area table algorithm, in
addition to the prefix sum, the transposition operation is used intermittently.
Due to these intermediate steps, we should store the manipulated values and

1 A data race is a situation when two or more threads may access the same memory
location simultaneously, and at least one of them is a write.
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establish a formal relation between the values of each step in order to reason
about the final result (i.e, output).

To prove memory safety and functional correctness of the stream compaction
and summed-area table algorithms, we use VerCors [5], which is a deductive
program verifier for concurrent programs. Deductive program verification is a
static approach to verify program properties by augmenting the source code
with pre- and postconditions. To guide verification, intermediate annotations
are added to capture the intermediate properties of the program. Then, in our
case, the annotated code is translated into proof obligations (via Viper [20]),
which are discharged to an automated theorem prover; the SMT solver Z3 [19].

To the best of our knowledge, this is the only tool-supported verification
of data race-freedom and functional correctness of the two parallel algorithms
for any arbitrary size of input. None of the existing other approaches to ana-
lyze GPU applications is able to verify similar properties. Most approaches are
dynamic [10,18,21,22,25], and only aim to find bugs. Other existing static veri-
fication techniques [2,9,15,17] either require a bound on the input size, or they
do not fully model all aspects of GPU programming, such as the use of barriers.
We show that the verification of larger case studies is feasible, by adding the
verification of the more complex algorithm on top of the basic one, not only
in theory, but also in practice using tool support. Moreover, our work enables
the verification of other parallel algorithms that are built on top of the stream
compaction and summed-area table algorithms, such as collision detection and
box filtering.

Contributions. The main contributions of this paper are:

1. We provide a tool-supported proof of data race-freedom and functional cor-
rectness of the parallel stream compaction algorithm for any input size.

2. We show that the parallel summed-area table algorithm is data race-free and
functionally correct for arbitrary input sizes using tool support.

3. We demonstrate how much effort and time needed in practice to verify com-
plicated algorithms by reusing verified algorithms in a layered manner.

Organization. Section 2 discusses related work and Sect. 3 explains the neces-
sary background. Sections4 and 5 describe how to specify and verify the correct-
ness of the stream compaction and summed-area table algorithms, respectively.
Section 6 concludes the paper.

2 Related Work

GPGPU programming is becoming more popular because of its potential to
increase the performance of programs. However, it is also highly error-prone due
to its inherent parallization. Therefore, the demand for guaranteeing correctness
of GPGPU programs is growing. There are only a few approaches to reason
about GPGPU programs; most of them focus on finding data races.
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In dynamic analysis, a program is instrumented to record memory accesses.
Then, by running the instrumented program, data races might be identified (e.g.,
cuda-memcheck [21], Oclgrind [22] and GRace [25]). This technique depends
on concrete inputs and cannot guarantee data race-freedom. Dynamic symbolic
execution is a combination of static and dynamic analysis to combine concrete
and symbolic inputs to find data races (e.g., GKLEE [18] and KLEE-CL [10]).

Static approaches analyse the complete state space of a program without
running it. Deductive program verification as in VerCors, is a static approach,
where a program is annotated with intermediate (invariant) properties. Tools
such as PUG [17] and GPUVerify [2] use static analysis, but require less anno-
tations. Except VerCors and VeriFast [15], none of these tools can reason about
functional correctness of parallel programs. VeriFast aims at proving functional
correctness of single-threaded and multi-threaded C and Java programs, but it
is not specifically tailored to reason about GPGPU programs.

There is no previous work on formally verifying the parallel stream com-
paction and summed-area table algorithms on GPUs. To verify these two algo-
rithms, the parallel prefix sum algorithms need to be verified, which has been
done by Chong et al. [9] in addition to our previous work [23]. Chong et al. verify
data race-freedom and propose a method to verify functional correctness of four
different parallel prefix sum algorithms for a fixed input size. They show that if a
parallel prefix sum algorithm is proven to be data race-free, then the correctness
can be established by generating one test case. Then they use GPUVerify to
prove data race-freedom of the parallel prefix sum algorithms for a fixed input
size. In our previous work [23], we prove data-race freedom and functional cor-
rectness of two different parallel prefix sum algorithms using the VerCors verifier
for any arbitrary size of input. We benefit from ghost variables to reason about
in-place prefix sum algorithms. In our opinion, the advantages of our approach
is that our verification approach for the prefix sum can be reused for these two
new algorithms, while Chong would not be able to reuse his prefix sum approach
to verify the parallel stream compaction and summed-area table algorithms.

3 Background

This section describes the program verifier VerCors and the logic behind it by
illustrating an example. It then briefly discusses the parallel prefix sum algo-
rithm which is used in both parallel stream compaction and summed-area table
algorithms.

3.1 VerCors

VerCors? is a verifier to specify and verify (concurrent and parallel) programs
written in a high-level language such as (subsets of) Java, C, OpenCL, OpenMP
and PVL, where PVL is VerCors’ internal language for prototyping new fea-
tures. VerCors can be used to verify memory safety (e.g., data race-freedom) and

2 The tool is available at: https://github.com /utwente-fmt /vercors.
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List. 1. A simple annotated OpenCL program

1| /+*@ context everywhere array != NULL && array.length == size;

2 requires tid != size—1 ? Perm(array[tid+1], read) : Perm(array|0], read);
3 ensures Perm(array[tid], write);

4 ensures tid |= size—1 ==> array[tid] == \old(array[tid+1]);

5 ensures tid == size—1 ==> array[tid] == \old(array[0]); @x/

6 | __kernel void leftRotation(int array[|, int size) {

7 int temp;

8 int tid = get_global_id(0); // get the thread id

9 if (tid != size—1) { temp = array[tid+1]; } else { temp = array|0]; }
10
11 /*Q requires tid != size—1 ? Perm(array[tid+1], read) : Perm(array[0], read);
12 ensures Perm(array[tid], write); @Qx/
13 barrier(CLK_GLOBAL_MEM_FENCE);
14 array [tid] = temp;
15| }

functional correctness of programs. The programs are annotated with pre- and
postconditions in permission-based separation logic [1,7]. Permissions are used
to capture which heap memory locations may be accessed by which threads, and
are used to guarantee thread safety. Permissions are written as fractional values
in the interval (0, 1] (cf. Boyland [8]): any fraction in the interval (0, 1) indicates
a read permission, while 1 indicates a write permission.

Blom et al. [6] show how to use permission-based separation logic to reason
about GPU kernels including barriers. We illustrate this logic by an example.
Listing 1 shows a specification of a kernel that rotates the elements of an array
to the left3. It is specified by a thread-level specification. To specify permissions,
we use predicate Perm(L, ) where L is a heap location and 7 a fractional value
in the interval (0, 1]%. Pre- and postconditions, (denoted by keywords requires
and ensures, respectively in lines 2-5), must hold at the beginning and the
end of the function, respectively. The keyword context_everywhere is used to
specify an invariant (line 1) that must hold throughout the function. As pre-
conditions, each thread has read permission to its right neighbor (except thread
“size-1” which has read permission to the first index) in line 2. The postconditions
indicate (1) each thread has write permission to its location (line 3) and (2) the
result of the function as a left rotation of all elements (lines 4-5). Each thread
is responsible for one array location and it first reads its right location (line 9).
Then it synchronizes in the barrier (line 13). When a thread reaches a barrier,
it has to fulfill the barrier preconditions, and then it may assume the barrier
postconditions. Thus barrier postconditions must follow from barrier precondi-
tions. In this case, each thread gives up read permission on its right location
and obtains write permission on its “own” location at index tid (lines 11-12).
After that, each thread writes the value read before to its “own” location (line

3 We assume there is one workgroup and “size” threads inside it.
4 The keywords read and write can also be used instead of fractions in VerCors.
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Input Exclusive Prefix Sum Inclusive Prefix Sum

[3]6]1]7]2]4]0]9] [o[3]9oftof1719]23[23] [3]9f10]17[19]23[23[32

Fig. 1. An example of exclusive and inclusive prefix sum of an input.

14). Note that the keyword \old is used for an expression to refer to the value
of that expression before entering a function (lines 4-5). The OpenCL example
(Listing 1) is translated into the PVL language of VerCors, using two parallel
nested blocks. The outer block indicates the number of workgroups and the inner
one shows the number of threads per workgroup (see [6] for more details). In
this case study, we reason at the level of the PVL encoding directly, but it is
straightforward to adapt this to the verification of the OpenCL kernel.

3.2 Prefix Sum

Figure 1 illustrates an example of the prefix sum operation. This operation is a
basic block used in both stream compaction and summed-area table algorithms,
defined as: given an array of integers, the prefix sum of the array is another array
with the same size such that each element is the sum of all previous elements.
An (inclusive) prefix sum algorithm has the following input and output:

— INPUT: an array Input of integers of size N.

— OUTPUT: an array Output of size N such that Output[i] = ZI nputlt] for

t=0
0<i<N.

In the exclusive prefix sum algorithm, where the ith element is excluded from
the summation, the output is as follows:

i—1
— OUTPUT: an array Output of size N such that Output[i] = ZI nput[t] for

t=0
0<i<N.

Blelloch [4] introduced an exclusive parallel in-place prefix sum algorithm
and Kogge-Stone [16] proposed an inclusive parallel in-place prefix sum algo-
rithm. These two parallel versions are frequently used in practice (as a primitive
operation in libraries AMD APP SDK®, and NVIDIA CUDA SDK?).

4 Verification of Parallel Stream Compaction Algorithm

This section describes the stream compaction algorithm and how we verify it.
First, we explain the algorithm and its encoding in VerCors. Then, we prove data

® http://developer.amd.com /tools/heterogeneous-computing /amd-accelerated-
parallel-processing-app-sdk.
5 https://developer.nvidia.com/gpu-computing-sdk.
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Algorithm 1. Stream Compaction Algorithm

1: function sTream compacTioN(int[| Input, int|| Output, int[] Flag, int[] ExPre, int
N)

2:  Par(tid = 0.. N)
3: EXCLUSIVE_PREFIXSUM(Flag, ExPre, tid, N);
4: Barrier(tid);
5: if Flag[tid] == 1 then
6: Output|EzPre(tid]] = Input(tid];
Input Flag ExPre Output
[s[2[s[1]3]e[of2] [tofo[tfofo[i]r] [of1]1]t]2[2]23] ([s[t]o[2]

‘ 0o 1 2 3 Index

Fig. 2. An example of stream compaction of size 8.

race-freedom and we show how we prove functional correctness of the algorithm.
Moreover, we show how we can reuse the verified prefix sum from our previous
work [23] to reason about the stream compaction algorithm. We explain the
main ideas mostly by using pictures instead of presenting the full specification”.

4.1 Stream Compaction Algorithm

Given an array of integers as input and an array of booleans that flag which
elements are desired, stream compaction returns an array that holds only those
elements of the input whose flags are true. An algorithm is a stream compaction
if it satisfies the following:

— INPUT: two arrays, Input of integers and Flag of booleans of size N.
— OUTPUT: an array Output of size M (M < N) such that
o V5.0 <j < M: Output[j] =t = Fi. 0 < i < N: Inputi] =t N Flagli].
e Vi.0 < i< N:Inputli] =t A Flag[i] = 3j. 0 < j < M: Output[j] = t.
Vi,j. 0 <i,j < N:(Flagli] A Flaglj] A i<j < (3k,1.0<k 1< M:
* Output[k] = Input[i] A Output[l] = Input[j] N k <1)).

Algorithm 1 shows the pseudocode of the parallel algorithm and Fig.2
presents an example of stream compaction. Initially we have an input and a
flag array (implemented as integers of zeros and ones). To keep the flagged ele-
ments and discard the rest, first we calculate the exclusive prefix sum (from [4])
of the flag array. Interestingly, for the elements whose flags are 1, the exclusive
prefix sum indicates their location (index) in the output array. In the implemen-
tation, the input of the prefix sum function is Flag and the output is stored in
EzPre (line 3). Then all threads are synchronized by the barrier in line 4, after
which all the desired elements are stored in the output array (lines 5-6).

" The full specification is available at https://github.com/Safaril991/Prefixsum-
Applications.
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4.2 Data Race-Freedom

To prove data race-freedom, we specify how threads access shared resources
by adding permission annotations to the code. In Algorithm 1, we have several
arrays that are shared among threads. There are three locations in the algorithm
where permissions can be redistributed: before Algorithm 1 as preconditions, in
the exclusive prefix sum function as postconditions and in the barrier (redis-
tribution of permissions). Figure3 visualizes the permission pattern for those
shared arrays, which reflects the permission annotations in the code according
to these three locations. The explanation of the permission patterns in each array
in these three locations is as follows:

— Input: since each thread (tid) only needs read permission (line 6 in Algo-
rithm 1), we define each thread to have read permissions to its “own” location
at index tid throughout the algorithm (Fig.3). This also ensures that the
values in Input cannot be changed.

— Flag: since Flag is the input of the exclusive prefix sum function, its per-
mission pattern at the beginning of Algorithm 1 must match the permission
preconditions of the exclusive prefix sum function. Thus, following the pre-
conditions of this function (see [23]), we define the permissions such that
each thread (tid) has read permissions to its “own” location (Fig. 3: left). The
exclusive prefix sum function returns the same permissions for Flag in its
postconditions (Fig. 3: middle). Since, each thread needs read permission in
line 5 of Algorithm 1, we keep the same permission pattern in the barrier as
well (Fig. 3: right).

— FEzxPre: since FxPre is the output of the exclusive prefix sum function, the
permission pattern at the beginning of Algorithm 1 should match the per-
mission preconditions of the exclusive prefix sum function (specified in [23]).
Thus, each thread (tid < half ExPre size) has write permissions to locations
2 x tid and 2 x tid + 1 (Fig. 3: left). As postcondition of the exclusive pre-
fix sum function (specified in [23]), each thread has write permission to its
“own” location in ExPre (Fig.3: middle). Since each thread only needs read
permission in line 6 of Algorithm 1, we change the permission pattern from
write to read in the barrier (Fig. 3: right).

— Qutput: it is only used in line 6 of Algorithm 1 and its permissions are accord-
ing to the values in EzPre. Thus, the initial permissions for Output can be
arbitrary and in the barrier, we specify the permissions such that each thread
(tid) has write permission in location EzPre[tid] if its flag is 1 (indicated by
t; in Fig. 3: right).

4.3 Functional Correctness

Proving functional correctness of the parallel stream compaction algorithm con-
sists of two parts. First, we prove that the elements in the exclusive prefix sum
function (EzPre) are in the range of the output, thus they can be used safely
as indices in Qutput (i.e., line 6 in Algorithm 1). Second, we prove that Output
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o~ Yo At the beginning of the algorithm After the exclusive prefix sum Afier the barrier
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Fig. 3. Permission pattern of arrays in stream compaction algorithm corresponding
to Fig.2; Rt;/ Wt means thread ¢ has read/write permission. Green color indicates
permission changes. (Color figure online)

contains all the elements whose flags are 1, and does not contain any elements
whose flags are not 1. Moreover, the order of desired elements, the ones whose
flags are 1, in Input must be the same as in Qutput.

To prove both parts, we use ghost variables®, defined as sequences. There are
some advantages of using ghost variables as sequences: (1) it is not required
to define permissions over sequences; (2) we can define pure functions over
sequences to mimic the actual computations over concrete variables; (3) we can
easily prove desired properties (e.g., functional properties) over ghost sequences;
and (4) ghost variables can act as histories for concrete variables whose values
might change during the program. This gives us a global view (of program states)
of how the concrete variables change to their final value. Concretely, we define
two ghost variables, inp seq and flag _seq as sequences of integers to capture
all values in arrays Input and Flag, respectively. Since values in Input and Flag
do not change during the algorithm?, inp seq and flag _seq are always the same
as Input and Flag'®

First, to reuse of the exclusive prefix sum specification (line 3 in Algorithm 1)
from our previous work [23], we should consider two points: (1) the input to the
exclusive prefix sum (Flag) in this paper is restricted to 0 and 1; and (2) the
elements in the exclusive prefix sum function (EzPre) should be safely usable
as indices in Output (i.e., line 6 in Algorithm 1). Therefore, we use VerCors to
prove some suitable properties to reason about the values of the prefix sum of
the flag. For space reasons, we show the properties without discussing the proofs
here. The first property that we prove in VerCors is that the sum of a sequence
of zeros and ones is non-negative'!

Property 4.1

(Vi.0 < i < |flag_seq|: flag_seq[i] = 0 vee flag seqli] = 1) =
intsum(flag _seq) > 0.

8 Ghost variables are not part of the algorithm and are used only for verification
purposes.

9 Note that threads only have read permissions over Input and Flag.

9 Thus, properties for inp _seq and flag _seq also hold for Input and Flag.

11 The intsum operation sums up all elements in a sequence.
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List. 2. The filter function

/*@ requires |inp seq| == |flag_seq|;
requires (\forall int i; 0 <1 && i < |flag_seq|; flag seqli|==0 || flag_seq|i]==1);
ensures |\result| == intsum(flag seq);

ensures 0 < [\result| && [\result| < |flag seq|; @Qx/
static pure seq<int> filter(seq<int> inp _seq, seq<<int> flag seq) = |inp _seq|>0 7
head(flag _seq)==1 7 seq<int>{head(inp seq)} + filter(tail(inp seq), tail(flag seq))
: filter(tail(inp _seq), tail(flag _seq)) : seq<int>{};

N O U W N

We need Property 4.1 since the prefix sum for each element is the sum of all
previous elements. We benefit from the first property to prove in VerCors that
all the elements in the exclusive prefix sum of a sequence flag _seq (only zeros
and ones) are greater than or equal to zero and less than or equal to the sum of
elements in flag seq'?:

Property 4.2

(Vi.0 <i < |flag_seq|: flag seq[i] =0 V flag seqli] =1) =
(Vi.0 < i < |epsum(flag_seq)|: epsum(flag seq)[i] >0 A
epsum(flag _seq)[i] < intsum(flag _seq)).

This gives the lower and upper bound of elements in the prefix sum, which
are used as indices in Qutput. This property is not sufficient to prove that the
elements are in the range of Output due to two reasons. First, an element in the
prefix sum can be as large as the sum of ones in the flag. Hence, it might exceed
Output size which is in the range 0 to intsum(flag _seq) — 1. Second, we only use
the elements in the prefix sum whose flags are 1. Property 4.2 does not specify
those elements explicitly. Therefore, we prove another property in VerCors to
explicitly specify the elements in the prefix sum whose flags are 1 as follows:

Property 4.3

(Vi.0 < i < |flag_seq|: flag_seq[i] =0 V flag_ seqli] =1) =
(Vi.0 < i < |epsum(flag_seq)| N flag_seq[i] = 1:
(epsum(flag _seq)[i] >0 A epsum(flag seq)[i] < intsum(flag_seq))).

Property 4.3 guarantees that the elements in the prefix sum whose flags are 1
are truly in the range of Output, and can be used safely as indices. Moreover, it
has been proven in [23] that epsum(flag seq) is equal to the result of the prefix
sum function (i.e., EzPre).

Second, we reason about the final values in Output, using the following steps:

1. Define a ghost variable as a sequence.
2. Define a mathematical function that updates the ghost variable according to
the actual computation of the algorithm.

12 The epsum operation of a sequence returns an exclusive prefix sum of that sequence.
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List. 3. The proof steps to relate out _seq to Output array

1| seq<int> out_ seq = filter(inp_seq, flag seq);

2 | assert |out seq| == intsum(flag seq); // by line 4 in Listing 2

3| if(flag seq[tid] == 1)

4 // applying Property 4.4

5 assert inp _seqltid| == filter(inp_seq, flag_seq)|epsum(flag seq)|tid]];

6 assert out seq == filter(inp_seq, flag_seq); // by line 1

7 assert inp_seq[tid| == out_seqlepsum(flag seq)[tid|]; // by lines 5—6

8 assert Output|ExPre|tid]] == Input|tid]; // by lines 5—6 in Algorithm 1

9 assert Output|ExPreltid|] == out_seglepsum(flag seq)[tid]]; // by lines 7—8

3. Prove functional correctness over the ghost variables by defining a suitable
property.

4. Relate the ghost variable to the concrete variable; i.e., prove that the elements
in the ghost sequence are the same as in the actual array.

Following this approach, we define a ghost variable, out _seq, as a sequence
of integers and a mathematical function, filter, as shown in Listing 2. This func-
tion computes the compacted list of an input sequence, inp seq, by filtering it
according to a flag sequence, flag seq (where head returns the first element of
a sequence and tail returns a new sequence by eliminating the first element).
Thus, for each element in inp _seq, this function checks its flag to either add it
to the result (line 6) or discard it (line 7). The function specification has two
preconditions: (1) the length of both sequences is the same (line 1) and (2) each
element in flag _seq is either 0 or 1 (lines 2). The postcondition states that the
length of the compacted list (result) is the sum of all elements in flag _seq (line
3) which is at most the same length as flag _seq (line 4). We apply the filter func-
tion to inp seq and flag seq (as ghost statements) at the end of Algorithm 1
to update out _seq.

To reason about the values in out _seq and relate it to inp _seq and flag _seq
we prove the following property in VerCors:

Property 4.4

(Vi.0 <i < |flag seq|: flag seq[i] =0 V flag seqli] =1) =
(Vi.0 < i < |epsum(flag_seq)| N flag seq[i] = 1:
(inp_seqi] = filter(inp_seq, flag_seq)[epsum(flag seq)li]])).

From Property 4.4, we can prove in VerCors that all elements in inp seq
(and Input) whose flags are 1 are in out_seq and the order is also preserved.
Since we specify that the length of out seq is the sum of all elements in the
flag, which is the number of ones (line 4 in Listing 2), we also prove that there
are no elements in out _seq whose flags are not 1.

The last step is to relate out _seq to Output. Listing 3 shows the proof steps
which are located at the end of Algorithm 1. Through some smaller steps, and
using Property 4.4 we prove in VerCors that out seq and Qutput is the same
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Algorithm 2. Summed-Area Table Algorithm

1: function summeD AREA _TABLE(int|[] Input, int[][] Temp, intl[][] Output, int N)
2: for(int i = 0; i < N; i++)

3 Pal‘(tid =0.. N) // First Prefix Sum

4 INCLUSIVE_PREFIXSUM(Input[i], Templi], inp seq[i], tmpl seq[i], tid, N);
5:  Properties 1 and 2 (Table 1) hold here

6: Par(tidX = 0.. N, tidY = 0.. N) // First Transposition

7:  int temporary = Temp[tidX|[tidY];

8:  Barrier(tidX, tidY);

9:  Temp[tidY][tidX]| = temporary;

10: tmp2 seq tr'ans,r)()sa(fm,p]75(5(]. 0, N):

11:  Properties 8 and 4 (Table 1) hold here

12: for(int i = 0; 4 < Nj i+ +)

13: Par(tid = 0.. N) // Second Prefix Sum
14: INCLUSIVE_PREFIXSUM( Templi], Output[i], tmp1 _seq[i], tmp3 _seq[i], tid, N);
15:  Properties 5 and 6 (Table 1) hold here

16: Par(tidX = 0.. N, tidY = 0.. N) // Second Transposition
17:  int temporary = Output[tidX|[tidY];

18:  Barrier(tidX, tidY);
19:  Output[tidY][tidX]| = temporary;
20:  out seq transpose(tmp3 _seq, 0, N);
21:  Properties 7 and 8 (Table 1) hold here

(line 9). Note that for each tid, epsum(flag seq)[tid] is equal to ExPreltid] as
proven in [23].

As we can see in this verification, we could reuse the specification of the
verified prefix sum algorithm, by proving some more properties. We should note
that the time we spent to verify the stream compaction algorithm is much less
than the verification of the prefix sum algorithm.

5 Verification of Parallel Summed-Area Table Algorithm

This section discusses the summed-area table algorithm and its verification. As
above, after describing the algorithm and its encoding in VerCors, we first prove
data-race freedom and then explain how we prove functional correctness. We
also show how we reuse the verified prefix sum from [23] in the verification of

the summed-area table algorithm. Again, we only show the main ideas'3.

5.1 Summed-Area Table Algorithm

Given a 2D array of integers, the summed-area table is a 2D array with the same
size where each entry in the output is the sum of all values in the square defined
by the entry location and the upper-left corner in the input. The algorithm’s
input and output are specified in the following way:

'3 The verified specification is available at https://github.com/Safari1991 /Prefixsum-
Applications.
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Input Output
50281 5| 7[15[16
3/0/4]5 8[10]22|28 [«
6 12 14(25 46 B
Inclusive 73] 8][4 21[3556[68|  Tramsposition
prefix sum of - -
each row
Temp Temp Inclusive Output
5| 7]15]16] 4 i 5[3]6[7] profixsum 5|8|1421
of each row
3[3]|7[12 7131510 7110[25|35
6[15[16[18 15| 7]16[18 15[22]38|56
7110{18(22 16{12(18|22 16{28| 46|68

Fig. 4. An example of summed-area table of size 4 x 4.

Barrier

Before the barrier After the barrier
Rt,.t)\R1, 1Rt 0 Rt 1, } Wi, .t W, t Wt t | Wit
Rt],tﬂRt,,thtI,t3 Rtl,tj Wt Wt t Wt t | Wt
Rt,,t)Rt,,t|Rt,,t|Rt, 1, Wi, LW, W, L Wt
Rtj,tﬂRtyt]Rtj,tz Rtj,tj Wi, e Wt et Wt

Temp/Output Temp/Output

Fig. 5. Permission pattern of matrix Temp/Output before and after the barrier in the
transposition phase; Rt;, t;/ Wt;, t; means thread (i, j) has read/write permission.

— INPUT: a 2D array Input of integers of size N x M.
— OUTPUT: a 2D array Output of size N x M such that

i J
Output[i] z anput klfor0 <i< Nand0 < j < M.
t=0 k=0

Algorithm 2 shows the (annotated) pseudocode of the parallel algorithm and
Fig. 4 shows an example for the summed-area table algorithm. For example, the
red element 38 in Qutput is the sum of the elements in the red square in Input.
We apply the inclusive prefix sum (from [16]) to each row of Input and store it in
Temp (lines 2-4). Then, we transpose the Temp matrix (lines 6-9). Thereafter,
we apply again the inclusive prefix sum to each row of Temp (lines 12-14).
Finally, we transpose the matrix again, resulting in matrix Output (lines 16-19).
The parallel transpositions after each prefix sum are determined by creating 2D
thread blocks for each element of the matrix (lines 6-9 and 16-19) where each
thread (tidI, tidJ) stores its value into location (tidJ, tidI) by first writing into
a temporary variable (lines 7 and 17) and then synchronizing in the barrier (lines
8 and 18).

5.2 Data Race-Freedom

Since data race-freedom of the parallel inclusive prefix sum has been verified
in our previous work [23], we only show data-race freedom of the transposition
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List. 4. The transpose function

1| /#Q requires |xzs| == N && (\forall int j; 0 < j && j < N; |zs|j]| == N);

2 requires ¢ > 0 && i < N;

3 ensures |\result| == N — 4;

4 ensures (\forall int j; 0 < j && j < N — 4; [\result[j|]| == N);

5 ensures (\forall int j; 0 <j && j< N — ¢

6 (\forall int k; 0 < k && k < N; \result|j]|k] == xs|k][i+4])); @x/

7 | static pure seq<int> transpose(seq<seq<int>> zs, int ¢, int N) =i < N 7

8 seq<seq<int>> {transpose _helper(zs, 0, i, N)} + transpose(zs, i+1, N) :

9 seq<int> {};

10

11 | /*@Q requires |xs| == |N| && (\forall int j; 0 < j && j < Nj; |zs[j]] == N);

12 requires k > 0 && k < N && i > 0 && i < N;

13 ensures |\result| == N — k;

14 ensures (\forall int j; 0<j && j<|\result|; \result|j] == zs[k + j|[¢]); @x/

15 | static pure seq<int>> transpose helper(seq<seq<int>> zs, int k, int 4, int N) =
16 k < N 7 seq<int> {as[k|[i|} + transpose helper(zs, k+1, i, N) : seq<int> {};

phases in Algorithm 2. As an example, Fig.5 illustrates the permission pattern
in a matrix Temp (and also Output) of size 4 x 4. Before the barrier (lines 7 and
14 in Algorithm 2) each thread (¢idI, tidJ) has read permission in location (tidI,
tidJ) in Temp (and also Output). In the barrier, the permission pattern changes
such that each thread (tidI, tidJ) has write permission to location (tidJ, tidI).
In this way, each thread (tidl, tid.J) can read its value from location (tidl, tid.J)
(before the barrier) and write that value into location (tidJ, tidI) (after the
barrier) safely.

5.3 Functional Correctness

Next, we discuss functional correctness of the parallel summed-area table algo-
rithm. The approach to verify this algorithm is the same as before. First of all,
we define two ghost variables: inp _seq is a sequence of sequences that captures
the elements in Input, and tmpl _seq stores the inclusive prefix sum of elements
in Input (see Fig. 6: step 1).

After applying the first prefix sum function, Properties 1 and 2 from Table 1
hold (line 5 in Algorithm 2). Property 1 specifies that tmp! seq contains the
inclusive prefix sum of the elements in inp _seq'“. Property 2 shows the relation
between tmpl _seq, and the actual array, Temp. We obtain these properties from
the postconditions of the verified inclusive prefix sum (see [23]).

Now, we define a mathematical function transpose, as shown in Listing 4. This
function computes the transposition of a sequence of sequences. The transpose
function creates a sequence for each column ¢ (starting from 0) as a new row ¢
in the result, using a helper function (transpose helper) to collect the ith ele-
ments of each row (in the input sequence)'®. The preconditions of both functions

14 The ipsum operation of a sequence returns an inclusive prefix sum of that sequence.
15 Both functions are recursive and they are invoked with i and k equal to zero.
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v
inp_seq > out_seq
@ Corollary 3
{{5.2'& } {{5.7,15.16}~
{3,045} {8,10,22,28}
{69. .2} {14,25,38,46} . @
Inclusive
prefix sum {7384} } {21,35,56, 63}} Applying the
@ of each seq transpose @
function
g {{577‘1516}' {{5,3,6,7}, {{5,8,14,21}« g
s Applying the Inclusive <
= {33,712} > transpose {7.3,15,10} - prefic sum {7.10,25,35} - g
S Sunction Seach soq 3
S| {61516, 18) @ {15.716.18) . ————» {15.22,38.56} =
{7,10,18,22} } {16,12,18.22 } @ { 16,28, 46, 68}}
Lw tmpl_seq tmp2_seq - fmp3_seq

Fig. 6. An example of phases in the summed-area table algorithm over sequences as
ghost variables. The sequences and functions capture the same arrays and computations
as in Fig. 4.

specify the length of the input sequence and the range of the parameter’s inte-
ger variables (lines 1-2 and 10-11). The postcondition of the transpose helper
function (lines 12-13) indicates that the result has the same size as each row and
the return sequence contains the ith element of each row in the input sequence.
The postcondition of the transpose function (lines 3-6) indicates that the result
has the same size and indeed is the transposition of the input sequence.

Table 1. List of all properties in the summed-area table algorithm. Even numbers
indicate the relation between the ghost and concrete variables. Odd numbers shows
the relation between the ghost variables before and after each phase of the algorithm.

No. | Mathematical description of properties

(Vi.0 <@ < |inp_seq|: (V5.0 < j < |inp_ seq[i]\

tmpl _seq[i][j] = ipsum(inp_seq[i])[j] = Z’an seqli][t]))

2 (Vi.0 <@ < |[tmpl _seql: (V5.0 < j < |tmpliseq[z]|. tmpl _seq[i][j] = Templi][j]))

3 (Vi.0 <@ < [tmpl _seq|: (V5.0 < j < |[tmpl _seq[i]|: tmp2 _seqli][j] = tmpl _seq[j][i]))
4 (Vi.0 < i < [tmp2 _seq|: (V.0 < j < |[tmp2 _seq[i]|: tmp2 _seq[i][j] = Templ[i][j]))
(Vi.0 <@ < |[tmp2 _seq|:(V5.0 < j < |[tmp2 _seq[i]]:

tmp3 _seqli)ls] = ipsum(tmp2_seqli)[j] = Ztmpe seqlil[#])

6 (V.0 <@ < [tmp3 _seq|: (V7.0 < j < [tmp3 _seq[i]|: tmp3 _seq[i][j] = Output[z][j]))
7 (Vi.0 <@ < |[tmp3 _seql: (V5.0 < j < |[tmp8 _seq[i]|: out_seq[i][j] = tmp3 _seq[j][i]))
8 (Vi.0 <@ < |out _seq|: (V5.0 < j < |out _seq[i]|: out _seq[i][j] = Output[i][j]))

We apply the transpose function to tmpl seq right after the first transposi-
tion computation of the algorithm (line 10 in Algorithm 2). We store the result
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in a different sequence as tmp2 seq. Figure6: step 2, illustrates this phase of
the algorithm over the sequences. From the postcondition of the transpose func-
tion we have Properties 3 and 4 (Table1) in line 11 of Algorithm 2. Property 3
shows that tmp2 seq is the transposition of tmpl seq and Property 4 relates
the ghost variable, tmp2 seq to the actual array Temp.

Then we have the second prefix sum function to compute the inclusive prefix
sum of elements in Temp and store it in Output. We define a ghost variable,
tmp3 _seq, to store the inclusive prefix sum of elements in tmp2 seq, which is
the same as Temp (lines 14 in Algorithm 2). Figure 6: step 3, shows this phase
against the ghost variables. From the postcondition of the verified inclusive pre-
fix sum (see [23]), it follows that Properties 5 and 6 (Table1) hold in line 15
of Algorithm 2. Property 5 specifies that tmp3 seq contains the inclusive pre-
fix sum of the elements in tmp2 seq. Property 6 shows the relation between
tmp3 _seq and Output.

The last phase of the algorithm is the second transposition, but this time for
Output. Therefore, we now apply the transposition function to the tmp3 seq
ghost variable and store the result in another ghost variable, out seq in line
20 of Algorithm?2 (see Fig.6: step 4). At this point (line 21 in Algorithm 2)
we have Properties 7 and 8 (Table1). Property 7 indicates that out seq is the

transposition of tmp3 seq and Property 8 relates out _seq to Output.

As we can see in Property 8, we relate the final result between the ghost
variable, out _seq and the actual array Output, but we still should reason about
the values in out seq (and correspondingly Output). To accomplish this, we
prove several corollaries following from the properties in Table 1:

Corollary 1. From Properties 7 and 5 we have:
(Vi.0 <@ < |out_seq|: (V5.0 < j < |out_seq[i]|: out_seq[i][j] = Z tmp2 _ seq[j][t])).
Corollary 2. From Corollary 1 and Property 3 we have:

(Vi.0 <@ < |out_seq|: (V5.0 < j < |out_seq[i]|: out_seq[i][j] = Ztmpl seq[t][4]))-
t=0

Corollary 3. From Corollary 2 and Property 1 we have:

(Vi.0 <1 < |out_seq|: (V4.0 < j <|out_seq[d]|:

out_seqli][j] = Z Z inp_seq[t1][t2])).

t1=0tp=0

Corollary 1 relates out _seq to tmp2 seq (Fig.6: step 5). Corollary 2 shows
the relation between the ghost variables out seq and tmpl seq (Fig.6: step
6). Corollary 3 proves the relation between inp seq and out seq (Fig.6: step
7). As inp_seq and out_seq are the same as Input and Output (Property 8),
respectively, we conclude functional correctness.

In this verification, we could easily reuse the specification of the verified prefix
sum algorithm in a straightforward way without proving more properties. As a
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consequence, the verification of the summed-area table algorithm takes much
less time than the verification of the prefix sum algorithm. Moreover, we verified
the parallel transposition, which is also a primitive operation in GPGPUs, and
thus its verification can be reused for the verification of other algorithms that
use this operation.

6 Conclusion

In this paper, we have proven data race-freedom and functional correctness of
the parallel stream compaction and summed-area table algorithms, for an arbi-
trary input size by encoding the algorithms into the VerCors verifier. The two
algorithms are widely used as primitive operations in other algorithms (e.g., col-
lision detection and sparse matrix compression). Proving functional correctness
of both algorithms is challenging because both use other parallel algorithms as
sub-routine (e.g., prefix sum and transposition). To overcome these challenges,
we reuse previous work on the verification of parallel prefix sum algorithms. It is
straightforward to reuse the verification of prefix sum in the summed-area table
algorithm. However, the transposition operation is used intermittently in addi-
tion to the prefix sum sub-routine. We should establish a formal relation between
each of these intermediate steps in order to reason about the final result. In the
stream compaction algorithm, since the input to the prefix sum sub-routine is
a flag array, we should prove more properties of the prefix sum. Moreover, we
define ghost variables and suitable functions that mimic the actual computations
in the algorithms.

The complete verification of both algorithms took 2 weeks, whereas in com-
parison the verification of prefix sum took a couple of months. This shows that
less effort is needed to verify complicated algorithms by reusing verified sub-
routines in practice. Therefore, we believe that now it will be a minimal effort
to verify even more complex algorithms that are built on top of the stream
compaction and summed-area table algorithms. As future work, we would like
to investigate how a substantial part of the required annotations, in particu-
lar those related to permissions, can be generated automatically. In addition,
based on our verifications, we plan to develop a library of general properties for
common GPGPU sub-routines in VerCors.
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