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Preface

This volume contains the proceedings of the 17th International Colloquium on The-
oretical Aspects of Computing (ICTAC 2020), which was held virtually during
November 30 – December 4, 2020. Established in 2004 by the International Institute
for Software Technology of the United Nations University (UNU-IIST, now the United
Nations University Institute in Macao), the ICTAC conference series aims at bringing
together researchers and practitioners from academia, industry, and government to
present research and exchange ideas and experience addressing challenges in both
theoretical aspects of computing and the exploitation of theory through methods and
tools for system development. ICTAC also specifically aims at promoting research
cooperation between developing and industrial countries. The international COVID-19
situation made a physical international gathering in Macao impossible (although Macao
as a city has an extremely low number of cases – alas partially due to travel restric-
tions). Nonetheless, we are grateful to our colleagues at the University of Macao who
were originally involved in the organization and set to host the conference on their
recently extended campus on Hengqin island.

We received a total of 40 full submissions, of which 15 were accepted for publi-
cation (14 regular papers and one tool paper). The acceptance rate was therefore 37.5%.
Papers were assigned to four reviewers, with the reviewing phase being followed by
discussions. Reviewing was single-blind. The program also included three keynote
presentations from Klaus Havelund (Jet Propulsion Laboratory, California Institute of
Technology, USA), Marieke Huisman (University of Twente, The Netherlands), and
Naijun Zhan (State Key Lab. of Computer Science, Institute of Software, Chinese
Academy of Sciences, China). This volume includes a full paper accompanying Klaus’
keynote on “A Flight Rule Checker for the LADEE Lunar Spacecraft,” and abstracts of
Marieke’s contribution on “Teaching Software Verification using Snap!,” and Naijun’s
talk on “Taming delays in cyber-physical systems.”

We are grateful for the support provided by the many people who contributed to
ICTAC 2020, including the Steering Committee members, Ana Cavalcanti, the chair
Martin Leucker, and Tarmo Uustalu. We would like to thank the members of the
Program Committee and their sub-reviewers for their timely and high-quality reviews
as well as their contributions to the discussions. The conference organization was
partially supported by the Norwegian Research Council.

Finally, we appreciate the support and assistance provided by Alfred Hofmann,
Anna Kramer, and Aliaksandr Birukou from Springer.

November 2020 Violet Ka I Pun
Volker Stolz

Adenilso Simao
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Teaching Software Verification Using Snap!

Marieke Huisman

University of Twente, Enschede, The Netherlands
M.Huisman@utwente.nl

With the progress in deductive program verification research, new tools and techniques
have become available to reason about non-trivial programs written in widely-used
programming languages. However, deductive program verification remains an activity
for experts, with ample experience in programming, specification, and verification. We
would like to change this situation, by developing program verification techniques that
are available to a larger audience. Therefore, in this presentation, we show how we
developed program verification support for Snap!. Snap! is a visual programming
language, aiming in particular at high school students. We support both static and
dynamic verification of Snap! programs. Moreover, we also outline how program
verification in Snap! could be introduced to high school students in a classroom
situation.

https://orcid.org/0000-0003-4467-072X


Taming Delays in Cyber-Physical Systems

Naijun Zhan

State Key Laboratory of Computer Science, Institute of Software Chinese
Academy of Sciences, Beijing, China

znj@ios.ac.cn

With the rapid development of feedback control, sensor techniques, and computer
control, time delay has become an essential feature of cyber-physical systems (CPSs),
underlying both the continuous evolution of physical plants and the discrete transition
of computer programs, which may well annihilate the stability/safety certificate and
control performance of CPSs. In the safety-critical context, automatic verification and
synthesis methods addressing time-delay in CPSs should therefore abound. However,
surprisingly, they do not, although time-delay has been extensively studied in the
literature of mathematics and control theory from a qualitative perspective. In this talk,
we will report our recent efforts to tackle these issues, including controller synthesis for
time-delayed systems in the setting of discrete time, bounded and unbounded verifi-
cation of delay differential equations, and discuss remaining challenges and future
trends.
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A Flight Rule Checker
for the LADEE Lunar Spacecraft

Elif Kurklu1 and Klaus Havelund2(B)

1 NASA Ames Research Center, KBR Wyle Services, Moffett Field, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA

klaus.havelund@jpl.nasa.gov

Abstract. As part of the design of a space mission, an important part
is the design of so-called flight rules. Flight rules express constraints on
various parts and processes of the mission, that if followed, will reduce
the risk of failure. One such set of flight rules constrain the format of
command sequences regularly (e.g. daily) sent to the spacecraft to con-
trol its next near term behavior. We present a high-level view of the
automated flight rule checker Frc for checking command sequences sent
to NASA’s LADEE Lunar mission spacecraft, used throughout its entire
mission. A command sequence is in this case essentially a program (a
sequence of commands) with no loops or conditionals, and it can there-
fore be verified with a trace analysis tool. Frc is implemented using
the TraceContract runtime verification tool, an internal Scala DSL
for checking event sequences against “formal specifications”. The paper
illustrates this untraditional use of runtime verification in a real con-
text, with strong demands on the expressiveness and flexibility of the
specification language, illustrating the advantages of an internal DSL.

1 Introduction

On September 7, 2013, NASA launched the LADEE (Lunar Atmosphere and
Dust Environment Explorer) spacecraft to explore the Moon’s atmosphere,
specifically the occurrence of dust. The mission lasted seven months and ended
on April 18, 2014, where the spacecraft was intentionally instructed to crash into
the Moon. NASA Ames Research Center designed, built, and tested the space-
craft, and was responsible for its day-to-day operation. This included specifically
programming of command sequences, which were then uploaded to the spacecraft
on a daily basis. A command sequence is, as it says, a sequence of commands,
with no loops or conditionals. A command is an instruction to carry out a certain
task at a certain time. An obvious problem facing these day-to-day programmers
was whether the command sequences were well-formed.

The research by the second author was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

c© Springer Nature Switzerland AG 2020
V. K. I. Pun et al. (Eds.): ICTAC 2020, LNCS 12545, pp. 3–20, 2020.
https://doi.org/10.1007/978-3-030-64276-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64276-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-64276-1_1


4 E. Kurklu and K. Havelund

Generally speaking, for each space mission, NASA designs flight rules that
capture constraints that must be obeyed during the mission to reduce the risk
of failures. One particular form of flight rules specifically concern the command
sequences sent from ground to a spacecraft or planetary rover on a regular basis
during the mission. We present in this paper the actual effort on building a flight
rule checker, Frc, for programming (formalize) these flight rules in the Scala
programming language [25] using the TraceContract [3,27] API. Trace-
Contract was originally developed in a research effort as an internal Domain-
Specific Language (DSL) [14] in Scala for runtime verification [6], supporting
a notation allowing for a mixture of data parameterized state machines and
temporal logic. An internal DSL is a DSL represented within the syntax of a
general-purpose programming language, a stylized use of that language for a
domain-specific purpose [14]. The programming language Scala has convenient
support for the definition of such internal DSLs. It is, however, fundamentally
an API in the host language.

TraceContract is here used for the purpose of code analysis. The rationale
for this use lies in the observation that a command sequence can be perceived
as an event sequence. Using an internal DSL for such a task has the advantage
that the full power of the underlying host programming language is available,
which turns out to be critical in this case. This is in contrast to an external DSL,
which is a small language with its own syntax, parsing, etc. Other advantages
of internal DSLs compared to external DSLs include ease of development and
adjustment, and use of existing tooling for the host programming language.

Missions traditionally write flight rule checkers in programming languages
such as MatLab or Python. However, numerous impressive runtime verifica-
tion systems have been developed over the last two decades. They all attempt
to solve the difficult problem of simultaneously optimizing: Expressiveness of
formalism, Elegance of properties, and Efficiency of monitoring (the three Es).
Many external DSLs have been developed over time [7,8,11,13,15,21,22,24].
Most of these focus on specification elegance and efficiency. Our own external
DSLs include [1,2,5,20]. Fewer internal DSLs have been developed [9,10,26]. In
addition to TraceContract, we developed a rule-based internal Scala DSL
for log analysis [17]. TraceContract itself has evolved into a newer system,
Daut [12,16], which allows for better optimization wrt. efficiency. We might
conclude by emphasizing that a language such as Scala is generally well suited
for modeling, as argued in [19].

Although the mission took place several years ago, we found that it was
worth reporting on this effort since it represents an actual application of a run-
time verification tool in a highly safety critical environment. Before the LADEE
mission and before the development of Frc, an initial study of the problem was
performed and documented in [4]. Due to restrictions on what can be published
about a NASA mission, the presentation is generic, showing used specification
patterns, without mentioning any mission data.

The rest of this paper is organized as follows. Section 2 outlines the problem
statement, defining the concepts of commands, command sequences, and flight
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rules. Section 3 presents the TraceContract DSL, previously presented in [3].
Section 4 describes the overall high-level architecture of the flight rule checker
Frc. Section 5 presents some of the patterns used for writing flight rules. Finally,
Sect. 6 concludes the paper.

2 Command Sequences and Flight Rules

A command sequence to be uploaded to a spacecraft is typically generated by
a software program referred to as a command sequencer. The input to the com-
mand sequencer is a high level plan, that describes a sequence of science or engi-
neering activities to be achieved, which itself is produced either by humans or
by another program, a planner. Command sequences are short, in the order 10s–
100s commands. Figure 1 shows the generic format of such a command sequence.
Each line represents a command, consisting of a calendar time (year, number of
day in year, and a time stamp), the name of the command, and a list of param-
eters each of the form name=value.

2013-103-00:07:00 /Command1 variable11=value11 ... variable1n1=value1n1

2013-103-00:07:10 /Command2 variable21=value21 ... variable2n2=value2n2

2013-103-00:07:16 /Command3 variable31=value31 ... variable3n3=value3n3

2013-103-00:07:17 /Command4 variable41=value41 ... variable4n4=value4n4

2013-103-00:07:18 /Command5 variable51=value51 ... variable5n5=value5n5

2013-103-00:07:20 /Command6 variable61=value61 ... variable6n6=value6n6

...

Fig. 1. Format of a command sequence.

A command sequence must satisfy various flight rules. An example of such
a rule pattern is the following. A maximum of N commands can be issued per
second. That is, no more than N commands can be issued with the same time
stamp. Another rule pattern is the following: Component activation will be per-
formed at least 1 s after application of power to the component, but no more than
the upper limit for activation time. In other words, at least one second must pass
from a component has been powered on, but no more than some upper limit, till
it is actually activated to perform its task.

As can be seen, a command sequence can be perceived as a sequence of
events, each being a command consisting of a name, a time, and a mapping from
parameter names to values. Such an event sequence can be verified against flight
rules with the TraceContract tool introduced in the next Section.

3 TraceContract

This section introduces the TraceContract DSL through a complete running
example and an overview of the implementation.
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3.1 A Complete TraceContract Example

TraceContract is a Scala API for writing trace monitors. We also refer to
it as an internal (or embedded) DSL since it is a Domain-Specific Language for
writing monitors in an existing host language, in this case Scala. A trace is
a sequence of events. We don’t really care where the event stream comes from,
whether it is emitted from a running system, or, as in this case, a sequence
of commands (where a command is an event). The DSL supports a flavor of
temporal logic combined with state machines, both parameterized with data to
support verification of events that carry data. TraceContract can be used for
monitoring event streams online (as they are generated) as well as offline (e.g.
stored in files as in this case).

We shall illustrate TraceContract with a single complete executable
example. Due to lack of space, the reader is referred to [3,27] for a more com-
plete exposition. Figure 2 shows a Scala program using the TraceContract
DSL. The line numbers below refer to this figure. It first defines the type of
events we are monitoring (line 3), namely commands, a case class (allowing
pattern matching against objects of the class). The program contains two mon-
itors, DistinctTimes (lines 5–11) and ActivateTimely (lines 13–24), each extending
the TraceContract Monitor class, parameterized with the event type.

The DistinctTimes monitor (lines 5–11) checks that commands are issued with
strictly increasing stamps. It waits for any Cmd object to be submitted to it (line
7). The require function (line 6) takes as argument a partial function, enclosed
in curly brackets (lines 6–10), and defined by case statements, in this case one,
ready to fire when an event matches one of the case patterns, in which case
the “transition” is taken. In this case, when a command arrives, matching the
pattern Cmd( ,time1) (line 7), the monitor transitions to the inner anonymous
cold state, where it waits for the next command to be submitted (line 8), which
does not need to occur since it is a cold state (a final state). If a second command
is submitted, however, it is asserted that the time stamp of the second command
is bigger than that of the first. The require function works like the temporal logic
always-operator (�).

The ActivateTimely monitor (lines 13–24) checks that if a power command is
observed then a subsequent activate command must be observed within 30 time
units. The activate command must occur, which is modeled by a hot state (lines
21–23). For illustration purposes, we have defined this rule a bit more long-
winded than needed by defining a function activateTimely(powerTime: Int) (lines
20–23), which when called (line 17) returns the hot state. This style illustrates
how to write state machines using Scala functions. As can be seen, states can
be parameterized with data, and can be written in a way resembling temporal
logic (lines 7–8) or state machines (lines 17 + 20–23), or even a mixture.

There are different kinds of states inspired by temporal logic operators [23],
including the cold (line 7) and hot states (line 21) as we have seen. These states
differ in (1) how they react to an event that does not match any transition (stay
in the state, fail, or drop the state), (2) how they react to an event that matches
a transition to another state (keep staying in the source state or leave it), and
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1 import tracecontract.
2

3 case class Cmd(name: String, time: Int)
4

5 class DistinctTimes extends Monitor[Cmd] {
6 require {
7 case Cmd( ,time1) ⇒ state {
8 case Cmd( ,time2) ⇒ time2 > time1
9 }

10 }
11 }
12

13 class ActivateTimely extends Monitor[Cmd] {
14 val upperBound : Int = 30
15

16 require {
17 case Cmd(”power”, time) ⇒ activateTimely(time)
18 }
19

20 def activateTimely(powerTime: Int): Formula =
21 hot {
22 case Cmd(”activate”, time) ⇒ time − powerTime < upperBound
23 }
24 }
25

26 class Monitors extends Monitor[Cmd] {
27 monitor(new DistinctTimes, new ActivateTimely)
28 }
29

30 object Run {
31 def main(args: Array[String]) {
32 val monitors = new Monitors
33 val trace = List(Cmd(”power”,100), Cmd(”transmit”, 130), Cmd(”activate”, 150))
34 monitors.verify(trace)
35 }
36 }

Fig. 2. A complete TraceContract example.

(3) how they evaluate at the end of the trace (true or false). Beyond the hot

state having the three attributes: (stay if no match, leave if match, false at end),
there are the following states: state (stay, leave, true), strong (fail, leave, false),
weak (fail, leave, true), drop (drop, leave, true), and always (stay, stay, true). A
require(f) call (lines 6 and 16) creates and stores an always(f) state. Un-named
(anonymous) states are allowed, as shown in the DistinctTimes monitor (lines 7–
9), thereby relieving the user from naming intermediate states in a progression
of transitions, as shown in the ActivateTimely monitor (lines 17 + 20–23). This
gives a flavor of temporal logic. The target of a transition can be a conjunction of
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states as well as a disjunction, corresponding to alternating automata (although
this is not used in this work).

Since these monitors are classes, we can write Scala code anywhere Scala
allows it, e.g. declaring constants, variables, methods, etc., and use these in the
formulas. Note that although we in our example associate one property with
each monitor, it is possible to define several properties in a monitor. It is also
possible to combine monitors for purely organizational purposes, with no change
in semantics. E.g. in our example, we define the monitor Monitors (lines 26–28),
the only purpose of which is to group the two other monitors into one. In the
main method (lines 31–35) we instantiate this parent monitor and feed it a
trace of three commands. This event sequence in fact violates the ActivateTimely

monitor, causing the following error message to be issued (slightly shortened),
showing an error trace of relevant events:

Total number of reports: 1
Monitor Monitors.ActivateTimely property violations: 1

Monitor: Monitors.ActivateTimely Property violated
Violating event number 3: Cmd(activate,150)
Trace:

1=Cmd(power,100)
3=Cmd(activate,150)

3.2 The TraceContract Implementation

In this section we shall very briefly give an idea of how TraceContract is
implemented1, see [3,27] for more details. A monitor is parameterized with an
event type Event, and monitors a collection of formulas over such events, each
kind of formula sub-classing the class Formula:

class Monitor[Event] {
var formulas: List[Formula] = List()
...

}

abstract class Formula {
def apply(event: Event): Formula
def reduce(): Formula = this
def and(that: Formula): Formula = And(this, that).reduce()
def or(that: Formula): Formula = Or(this, that).reduce()
...

}

1 Note that we have made some simplifications for ease of presentation.
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The apply function allows one to apply a formula f to an event e as follows:
f(e), resulting in a new formula. For each new event, each formula is evaluated
by applying it to the event, to become a new formula. The function is defined as
abstract and is overridden by the different subclasses of Formula corresponding
to the various kinds of formulas. The reduce function, also specific for each kind
of formula (by default being the identity), will simplify a formula by rewriting
it according to the classical reduction axioms of propositional logic, e.g. true ∧
f = f.

In the monitors above, the function require(f) takes as argument a partial func-
tion f of type PartialFunction[Event,Formula], which represents a transition function,
and creates and stores a formula object always(f) to be monitored, where always(f)

is a formula of the class below.

type Block = PartialFunction[Event, Formula]

def require(block: Block) {
formulas ++= List(always(block))

}

case class always(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) And(block(event),this) else this

}

Similarly for cold and hot states, we have the following definitions, which are
identical (the difference between cold and hot states shows at the end of a trace,
as explained below):

case class state(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

case class hot(block: Block) extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event)) block(event) else this

}

Other states follow the same pattern, but vary in the definition of the apply

function. We saw in Fig. 2 Boolean expressions, such as time2 > time1 occur as
formulas on the right-hand side of case transitions. This is permitted by implicit
functions (applied by the compiler) lifting these values to formulas. E.g., the
functions below are applied by the compiler when a value of the argument type
occurs in a place where the return type (Formula) is expected. Note that True
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and False are TraceContract Formula objects. The second implicit function
allows code with side-effects, not returning a value (of type Unit), as the result
of transitions.

implicit def convBoolean2Formula(cond: Boolean): Formula = if (cond) True else False
implicit def convUnitToFormula(unit: Unit): Formula = True

Finally, a monitor offers a method for verifying a single event, a method for
ending verification (verifying that all active states are cold, e.g. no hot states),
and a method for verifying an entire trace, which calls the previous two methods.

def verify(event: Event): Unit {...}

def end(): Unit {
for (formula ← formulas) {
if (!end(formula)) reportError(formula)

}
}

def end(formula: Formula): Boolean = {
formula match {
case always( ) ⇒ true
case state( ) ⇒ true
case hot( ) ⇒ false
...

}
}

def verify(trace: Trace): MonitorResult[Event] = {
for (event ← trace) verify(event)
end()
getMonitorResult

}

TraceContract also offers Linear Temporal Logic (Ltl) [23] operators, and
rule-based operators for recording facts, useful for checking past time properties.
These features were not used in Frc.

TraceContract was developed with expressiveness in focus rather than
efficiency. However, for the small command sequences of up to 100s of commands,
efficiency is not an issue. As previously mentioned, TraceContract evolved
into a newer system, Daut [12,16]. In [18] is described a performance evaluation
of Daut, processing a log of 218 million events. Daut is here able to process
between 100,000+ - 400,000+ events per second, depending on the property
being verified.
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4 Architecture of Flight Rule Checker

Figure 3 shows the architecture of the flight rule checker. It takes as input a
command sequence, an initial state of the spacecraft (the expected current state),
and an identification of which rules to verify. The catalog of rules programmed
in TraceContract is provided as a Scala library. It produces a verification
report as result. Which rules to execute is selected by a mission operator in a
flight rule editor, a GUI showing all LADEE flight rules, see Fig. 4. The initial
state is also specified in the GUI. Descriptions of the flight rules are stored as an
Xml file, see Fig. 5, grouped into sub-systems. Each rule has an id, a descriptive
title, and a class name indicating which is the corresponding TraceContract
monitor.

Fig. 3. The flight rule checker architecture.

Figure 6 shows the Scala case class FRCCommand, instantiations of which
will represent the commands found in the command sequence file (Fig. 1). The
figure also shows the flight rule checker’s verification function, which takes as
arguments a list of names of monitor classes selected, representing the choices
made in the GUI in Fig. 4; the location of the command sequence file; and
other arguments. The function first locates and instantiates the Scala mon-
itor classes according to their names (using reflection), adding each instance as
a sub-monitor to the ruleVerifier parent monitor. It then builds the command
sequence, verifies the command sequence, and finally produces an error report
based on the data stored in the ruleVerifier monitor.
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Fig. 4. The flight rule checker GUI for selecting rules.

<?xml version=’1.0’ encoding=’UTF−8’?>
<frc>
<rules>
<subsystem name=”System1”>

<rule id=”ID1” title=”Title1” class=”Monitor1”></rule>
<rule id=”ID2” title=”Title2” class=”Monitor2”></rule>
<rule id=”ID3” title=”Title3” class=”Monitor3”></rule>

...
</subsystem>

<subsystem name=”System2”>
...

</subsystem>
...

</rules>
</frc>

Fig. 5. Flight rule catalog in XML format, organized into sub systems.
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case class FRCCommand(name: String, time: Calendar, params: Map[String, String]) {..}

object FRCService extends ... {
def verify(rules: List[String], cmdSequence: File, ...): Report = {

// build monitor containing a sub−monitor for each rule:
val ruleVerifier = new Monitor[FRCCommand]
rules.foreach(key ⇒ {
val ruleInstance = FlightRuleCatalog.getRuleInstance(key)
ruleVerifier.monitor(ruleInstance)

})

// create command sequence:
val commands: List[FRCCommand] = ...

// verify command sequence:
ruleVerifier.verify(commands)

// create and return report:
generateReport(ruleVerifier)

}
...

}

Fig. 6. The flight rule checker.

5 Flight Rules

A total of 37 flight rules were programmed, out of which 31 were actively used.
We will here present the patterns of six of the most generic ones, illustrating dif-
ferent aspects. The rules concern the Flight Software (FSW) subsystem, specifi-
cally expressing constraints on how the commands should be sent, etc. Each rule
is programmed as a class extending the TraceContract Monitor class.

5.1 Command Rate

Figure 7 shows the ‘Command Rate’ monitor. It verifies that no more than MAX

= N commands are issued per second, that is: with the same time stamp, for
some constant N . For each command, let’s call it the initiator command, the
monitor calls the function count, which itself returns a formula, and which recur-
sively consumes commands until either a command with a bigger time stamp is
observed (ok causes the monitor to end tracking this particular initiator com-
mand), or the limit of N is reached, in which case an error is issued. Note that
the require function initiates this tracking for every observed command. A new
counting state machine is created for each command, tracking commands with
the same time stamp.
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// The maximum rate of command issuance is N issued commands per second.

class CommandRate extends Monitor[FRCCommand] {
val MAX = N

require {
case FRCCommand( , time, ) ⇒ count(time)

}

def count(time: Calendar, nr: Int = 1): Formula =
state {
case FRCCommand( , time2, ) ⇒ {
if (time2 > time) ok else if (nr == MAX) error else count(time, nr + 1)

}
}

}

Fig. 7. Command Rate monitor.

5.2 Device Activation

Figure 8 shows the ‘Device Activation’ monitor. It verifies that if a device is
powered on at time t, it must be eventually activated within the time interval
[t + N1, t + N2] for two positive natural numbers N1 < N2, stored in the con-
stants activateMin and activateMax. The monitor defines a map from device power
on commands to their corresponding activation commands, which is used in the
formula to match them up. There are K such map entries for some not small K.
This mapping is manually created and cannot be calculated. The formula itself
shows use of Scala’s conditioned case statements (a match requires the condi-
tion after if to hold), and the hot state to indicate that activation must eventually
occur. The pattern ‘activationCommand‘ (a variable name in single quotes) means:
match the value of the variable activationCommand. The formula states that if we
observe an FRCCommand(”power”, t1, params) command, where params(”state”) =
”on” and params(”device”) = d (power device d on) and deviceMap(d) = a (d’s acti-
vation command is a), then we want to eventually see an FRCCommand(a,t2,...)

such that t2 ∈ [t1 + N1, t1 + N2]. An alternative would have been to define a
monitor for each pair of power on and activate commands. Since there are K
such pairs this would become heavy handed. This illustrates the advantage of
an internal DSL, where maps are available as a data structure.
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// Component activation will be performed at least N1 seconds
// after application of power to the component, but no more than N2 seconds.

class DeviceActivation extends Monitor[FRCCommand] {
val activateMin = N1

val activateMax = N2

val deviceMap: Map[String, String] = Map(
”device1 pwr” → ”name1 activate”,
”device2 pwr” → ”name2 activate”,
”device3 pwr” → ”name3 activate”,
...
”deviceK pwr” → ”nameK activate”

)

require {
case FRCCommand(”power”, powerOnTime, params)
if deviceMap.keys.toList.contains(params.get(”device”).get) &&

params.get(”state”).get.equals(”on”) ⇒
val device = params.get(”device”).get
val activationCommand = deviceMap.get(device).get
hot {
case FRCCommand(‘activationCommand‘, activateTime, ) ⇒

val timeDiff = activateTime.toSeconds − powerOnTime.toSeconds
timeDiff ≥ activateMin && timeDiff ≤ activateMax

}
}

}

Fig. 8. Device Activation monitor.

5.3 Time Granularity

Figure 9 shows the ‘Time granularity’ monitor. It verifies that the millisecond
part of a flight command is 0. That is, the smallest time granularity allowed is
seconds. This property shows a simple check on a command argument. It also
shows the classification of a monitor as a warning rather than an error if violated.

// No stored command sequence shall include commands or command sequences whose
// successful execution depends on command time granularity of less than 1 second.

class TimeGranularity extends Monitor[FRCCommand](Severity.WARNING) {
require {
case FRCCommand( , cmd time, ) ⇒

cmd time.get(Calendar.MILLISECOND) == 0
}

}

Fig. 9. Time granularity monitor.
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// The y value will not be changed while the x mode is M .

class ValueChange extends Monitor[FRCCommand] {
var xMode = Config.getVarValue(”x mode”)
var yValue = Config.getVarValue(”y value”)

val specialMode = M

require {
case FRCCommand(”set x mode”, , params) ⇒

xMode = params.get(”mode”).get
case FRCCommand(”set y value”, , params) ⇒ {
val yValueNew = params.get(”value”).get
if (xMode.equals(specialMode) && !yValueNew.equals(yValue) & ...) {

error
} else {

yValue = yValueNew
}

}
}

}

Fig. 10. Value Change monitor.

5.4 Value Change

Figure 10 shows the ‘Value Change’ monitor. It verifies that some value y will not
change while the mode of some component x is M . The monitor is not temporal,
but illustrates the use of class variables, xMode for holding the current mode of
x, and yValue for holding the current value of y. ”set x mode” commands change
the x mode, and ”set y value” commands change the value of y.

5.5 Unsafe Activation

Figure 11 shows the ‘Unsafe Activation’ property. It verifies that some feature
y is not being activated, while some other feature x is being disabled (disabling
has a duration). The first outer case treats the situation where first an x dis-
abling command (”disable x”) is observed, followed by a y activating command
(”activate y”). In this case it is checked that the time of y activation does not
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occur within the duration of the x disabling. The second outer case treats the
situation where we first observe a y activating command and subsequently an
x disabling command. y activation will happen normally after x disabling, but
if it happens at the same time it could occur before in the command sequence.
This monitor shows this more complicated timing constraint.

// Feature y will not be activated while feature x is being disabled.

class UnsafeActivation extends Monitor[FRCCommand] {
require {
case FRCCommand(”disable x”, disableStart, disableParams) ⇒

state {
case FRCCommand(”activate y”, activateTime, )
if activateTime ≥ disableStart &&

activateTime.toSeconds − disableStart.toSeconds ≤
disableParams.get(”duration”).get.toInt ⇒

error
}

case FRCCommand(”activate y”, activateTime, ) ⇒
state {
case FRCCommand(”dispable x”, disableStart, disableParams)
if disableStart==activateTime ||

(disableStart.toSeconds + disableParams.get(”duration”).get.toInt
== activateTime.toSeconds) ⇒

error
}

}
}

Fig. 11. Unsafe Activation monitor.

5.6 Mathematical Constraint

Figure 12 shows the ‘Mathematical Constraint’ property. It verifies that for a
selection of commands command1 . . . commandk, the constraint W is satisfied on a
function F of parameter variables x1 . . . xn. That is, it verifies that W (F (x1,. . .,xn))

holds. The formula is not temporal and mainly shows validation of command
arguments using a function for performing a non-trivial mathematical computa-
tion.
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// Commands command1 ... commandk must satisfy a non−trivial mathematical
// well−formedness constraint W on a function F of their arguments.

class MathematicalConstraint extends Monitor[FRCCommand] {
def wellformed(command: FRCCommand): Boolean = {
val v1 = command.valueOf(”x1”).get.toDouble
...
val vn = command.valueOf(”xn”).get.toDouble
val value =F (v1,...,vn) // non−trivial mathematical computation
return W (value)

}

require {
case cmd @ FRCCommand(”command1”, , ) if (!wellformed(cmd)) ⇒ error
...
case cmd @ FRCCommand(”commandk”, , ) if (!wellformed(cmd)) ⇒ error

}
}

Fig. 12. Mathematical Constraint monitor.

6 Conclusion

The manual translation of rules expressed in English to monitors in the Trace-
Contract DSL was performed by the first author. The biggest challenges were
finding out which command parameters corresponded to those mentioned in the
flight rules expressed in natural language, and finding programming patterns in
the DSL that would work. Coding errors in Scala was not an issue. We have
some testimony to the value of the developed framework, as the person who
was responsible for command sequencing and verification back then wrote (in
response to the question of how often Frc found errors in command sequences):
“I would actually say it was often, perhaps every other command sequencing
cycle.”.

The effort has shown the use of a runtime verification tool, TraceCon-
tract, for code analysis. The tool was largely not changed for the purpose, and
hence provided all needed features. We attribute this in part to the fact that it
was an internal DSL, as opposed to an external DSL. In addition it was reliable
with no bugs reported. Many real-life log analysis problems in practice are per-
formed with programming languages, and the reason is in part the attractiveness
of Turing completeness. However, internal DSLs do have drawbacks, specifically
the difficulty of analyzing “specifications” since they effectively are programs.
It is always possible to design an external DSL for a particular problem, also
for this application, which more easily can be subject to analysis. However, an
external DSL may fit one problem but not another. An internal DSL can be
more flexible.
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Abstract. Logical frameworks are often equipped with an exten-
sional mechanism to define new symbols. The definitional mechanism
is expected to be conservative, i.e. it shall not introduce new theorems
of the original language. The theorem proving framework Isabelle imple-
ments a variant of higher-order logic where constants may be ad-hoc
overloaded, allowing a constant to have different definitions for non-
overlapping types. In this paper we prove soundness and completeness
for the logic of Isabelle/HOL with general (Henkin-style) semantics, and
we prove model-theoretic and proof-theoretic conservativity for theories
of definitions.

Keywords: Classical higher-order logic · Conservative theory
extension · Proof-theoretic conservativity · Ad-hoc overloading ·
Isabelle

1 Introduction

With the help of theorem provers such as HOL4 [14] and Isabelle [13], users
formalise mathematical reasoning to create machine-checkable proofs. For con-
venience and abstraction, these systems allow the user to define new types and
constants. Definitions extend the theory that is underlying a formalisation with
additional axioms, but they are expected to be proof-theoretically conservative
(and Wenzel [16] adds further requirements). Informally, any formula that is
derivable from the extended theory but expressible prior to the definition should
be derivable also from the original theory. As a special case, extension by defi-
nitions shall preserve consistency ; any extension by a definition shall not enable
the derivation of a contradiction. Design flaws in definitional mechanisms have
repeatedly led to inconsistencies in theorem provers [12,16].

In this paper we establish proof-theoretic conservativity for higher-order
logic (HOL) with ad-hoc overloading, meaning that constant symbols may have
different definitions for non-overlapping types. Proof-theoretic conservativity is
not obvious in this setting [12]: type and constant definitions may depend on one
another, and type definitions cannot be unfolded in the same way as constant
definitions. Moreover, type and constant symbols may be declared and used, e.g.
to define other symbols, before a definition for them is given.
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In this setting the notion of proof-theoretic conservativity as informally
described above does not hold. Consider a theory extension that defines a pre-
viously declared constant symbol: the equational axiom that is introduced by
the definition is expressible, but in general not derivable prior to the defini-
tion. Therefore, we consider a notion of proof-theoretic conservativity that sep-
arates signature extensions (declarations) from theory extensions (definitions).
We prove that any formula that is derivable from a definitional extension but
independent of the newly defined symbol is also derivable prior to the extension.

Our results are particularly relevant to the foundations of Isabelle/HOL [13],
which is an implementation of the logic and definitional mechanisms considered
in this paper. As a practical consequence, proof-theoretic conservativity allows
independence to be used as a syntactic criterion for deciding [8] whether a defi-
nition may be ignored when searching for the proof of a formula.

We establish proof-theoretic conservativity via several intermediate results
that are of interest in their own right. Proof-theoretic conservativity has a seman-
tic counterpart, model-theoretic conservativity. It is known [5,6] that HOL with
ad-hoc overloading satisfies model-theoretic conservativity w.r.t. lazy ground
semantics, that is a semantics that defines interpretations only for ground
(i.e. type-variable free) symbols and for which semantic entailment is quanti-
fied over term variable valuations parametrised by ground type instantiation. In
this paper, we generalise the model-theoretic conservativity result to a general
(Henkin-style) [7] version of the lazy ground semantics. Subsequently, we prove
the HOL deductive system sound and complete for general semantics. Soundness
and completeness imply that provability and semantic validity coincide; thus we
obtain proof-theoretic conservativity from model-theoretic conservativity.

Proof-theoretic conservativity of HOL with ad-hoc overloading has been stud-
ied before, notably by Kunčar and Popescu [9], who showed proof-theoretic con-
servativity of definitional theories relative to a fixed minimal theory, called initial
HOL. Our result is stronger: we show proof-theoretic conservativity of defini-
tional extensions relative to an arbitrary definitional theory. From this, we can
immediately recover Kunčar and Popescu’s result by noting that initial HOL is
definitional; but our conservativity result also applies to formulae that do not
belong to the language of initial HOL.

Contributions. We make the following contributions:

– We define a Henkin-style [7] generalisation of the lazy ground semantics [1]
for HOL by relaxing the interpretation of function types to subsets of the
set-theoretic function space (Sect. 4).

– We show model-theoretic conservativity for HOL with ad-hoc overloading
w.r.t. general semantics (Sect. 5.1) by adapting an earlier proof of model-
theoretic conservativity for lazy ground semantics [5,6].

– We prove soundness (Sect. 5.2) and completeness (Sect. 5.3) of the HOL
deductive system for general semantics. The former is proved by induction
over derivations, the latter by adapting ideas from Henkin’s original com-
pleteness proof for the theory of types [7].
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– From model-theoretic conservativity, soundness and completeness we derive
a proof-theoretic conservativity result for HOL with ad-hoc overloading
(Sect. 5.4). This result generalises the conservativity result of Kunčar and
Popescu [9].

2 Related Work

We briefly review related work on meta-theoretical properties of higher-order
logic for both standard and Henkin semantics, and discuss the different
approaches to consistency and conservativity of HOL with ad-hoc overloading.
Finally, we outline how our own work connects to these results.

Higher-Order Logic and Standard Semantics. HOL extends the simple theory of
types introduced by Church [4] with rank-1 polymorphism. The logic is imple-
mented, e.g. in HOL4 [14] and Isabelle/HOL [13], with slightly different defini-
tional mechanisms. In Isabelle/HOL, ad-hoc overloading is a feature of the logic;
in HOL4, it is supported through extensions of parsing and pretty-printing.

Pitts [15, § 15.4] introduces standard models for HOL (without ad-hoc over-
loading). These are set-theoretic models of theories whose signature contains
the constants ⇒bool→bool→bool,

.=α→α→bool and some(α→bool)→α that are inter-
preted as logical implication, equality and Hilbert-choice, respectively. Types
are inhabited, i.e. their interpretation is a non-empty set, and function types are
interpreted by the corresponding set-theoretic function space.

This semantics and its properties in interplay with the deductive system are
discussed in detail in the HOL4 documentation. For standard semantics HOL is
sound [14, § 2.3.2] but incomplete, as by Gödel’s incompleteness theorem there
are unprovable sequents that hold in all standard models.

Henkin Semantics. Despite its incompleteness for standard semantics, HOL is
complete for Henkin semantics [7], which relaxes the notion of a model and allows
function types to be interpreted by proper subsets of the corresponding function
space. For this semantics Andrews [2] proves completeness of a monomorphic
logic Q0 whose built-in symbols are expressed in terms of equality. Andrews
approaches the completeness proof as follows.

Each (syntactically) consistent theory is contained in a maximal consistent
set of formulae, i.e. adding any other formula to the set would render it incon-
sistent. For maximal consistent theories one can construct a model by defining
a term’s interpretation as the equivalence class of provably equal terms. Hence,
every consistent theory has a model (as there is a model of a maximal consistent
superset of that theory). Completeness follows by contraposition.

Both Andrews and Henkin discuss completeness of variants of the simple
theory of types. Their results transfer to HOL with Henkin-style semantics.
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HOL with Ad-hoc Overloading. Wenzel [16] considers proof-theoretic conser-
vativity “a minimum requirement for wellbehaved extension mechanisms.” He
introduces the stronger notion of meta-safety, which additionally requires that
new constants are syntactically realisable, i.e. they can be replaced with a term
in the language of the original theory while preserving provability.

Kunčar and Popescu [9] extend meta-safety to type definitions and show
meta-safety of definitional theories over initial HOL, the theory of Booleans with
Hilbert-choice and the axiom of infinity. Their result is achieved by unfolding
constant definitions and removing type definitions via a relativisation predicate
over the corresponding host type. It follows that any definitional theory is a
proof-theoretically conservative extension of initial HOL, and (as a special case)
that any definitional theory is consistent. This result regards definitional theories
as monolithic extensions of initial HOL, despite the incremental nature of theory
extension by iterated application of definitional mechanisms.

The same authors prove definitional theories consistent by a semantic argu-
ment [12], introducing a so-called ground semantics for HOL, where validity of
formulae is quantified over ground type instantiations. Hence ground semantics
only ever interprets type-variable free terms. Given a definitional theory, Kunčar
and Popescu construct a model for ground semantics by recursion over a well-
founded dependency relation that relates each definiendum (i.e. each left-hand
side of a definition) to any symbol occurring in the definiens. Åman Pohjola
and Gengelbach [1] mechanise this model construction in HOL4 and correct fix-
able mistakes, leading to a larger dependency relation and a term semantics
that applies type substitutions lazily, i.e. at the latest possible moment when
interpreting a term.

In earlier work [6], we show model-theoretic conservativity of HOL with ad-
hoc overloading by refining Kunčar and Popescu’s monolithic model construction
(which builds a model from the ground up) to instead extend a given model of
a definitional theory. Gengelbach et al. [5], again using lazy ground semantics,
mechanise this result in HOL4.

Connection to Our Work. This paper combines some of the mentioned related
work in new ways. First, we generalise lazy ground semantics in the sense of
Henkin, relaxing the interpretation of function types. The deductive system of
HOL is sound and complete with respect to general (Henkin-style) lazy ground
semantics. For the proof of completeness, we adapt ideas from Henkin’s and
Andrews’s completeness proofs to account for polymorphism. Second, re-using
and extending our earlier proof of model-theoretic conservativity, we strengthen
this result to general (Henkin-style) lazy ground semantics. Third, we combine
soundness, completeness, and model-theoretic conservativity to obtain proof-
theoretic conservativity of HOL with ad-hoc overloading relative to an arbitrary
definitional theory, thereby generalising the conservativity result of Kunčar and
Popescu.
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3 Background

We introduce the language of polymorphic higher-order logic (HOL) (Sect. 3.1),
definitional theories (Sect. 3.2), and the deductive system (Sect. 3.3). Parts of this
section are adapted from our previous work [6, §2]. Our notation and terminology
largely agree with other [1,5,12] related work.

3.1 The Language of Polymorphic HOL

The syntax of polymorphic HOL is that of the simply-typed lambda calculus,
enriched with a first-order language of types. We fix two infinite sets TVar of type
variables, ranged over by α, β, and Var of term variables, ranged over by x, y.

Signatures. A signature is a quadruple (K, arOf,Const, tpOf), where K
and Const are two countably infinite, disjoint sets. The elements of K are type
constructors, and those of Const are constants. Each type constructor has an
associated arity, given by the function arOf : K → N. Each constant has an
associated type, given by the function tpOf : Const → Type, where the set Type,
ranged over by σ, τ , is defined inductively as the smallest set such that

– TVar ⊆ Type, and
– (σ1, . . . , σn)k ∈ Type whenever k ∈ K, arOf(k) = n and σ1, . . . , σn ∈ Type.

For technical reasons (cf. Lemma 2), we assume that Const contains infinitely
many constants a with tpOf(a) ∈ TVar.

Built-in Types and Constants. For the remainder of this paper, we will assume
a fixed signature. Moreover, we assume that K contains the following built-in
type constructors: bool of arity 0, ind of arity 0, and → a right-associative type
constructor of arity 2. A type is built-in if its type constructor is.

We also assume that Const contains the following built-in constants:
– ⇒ of type bool → bool → bool,
– .= of type α → α → bool,
– some of type (α → bool) → α,

– zero of type ind,
– succ of type ind → ind.

Instances. A type substitution is a function ρ : TVar → Type that replaces type
variables by types. We extend type substitutions homomorphically to all types,
and denote the set of type substitutions by TSubst. For any ρ ∈ TSubst and any
type σ ∈ Type, ρ(σ) is a (type) instance of σ, written ρ(σ) ≤ σ.

The set of constant instances CInst is a subset of the cartesian product Const×
Type that contains exactly those tuples (c, σ) ∈ CInst for which the type σ is
a type instance of the type of c, namely σ ≤ tpOf(c). We use cσ as shorthand
notation for the tuple (c, σ). A constant instance is built-in if it is an instance
of a built-in constant. For example, the constant instances .=bool→bool→bool and
.=ind→ind→bool are built-in as both are instances of the built-in constant .=, which
has the type tpOf( .=) = α → α → bool.



28 A. Gengelbach and T. Weber

Terms. The terms of our language are given by the following grammar, where x
ranges over term variables, σ and τ are types, and cσ ranges over constant
instances:

t, t′ ::= xσ | cσ | (tσ→τ t′σ)τ | (λxσ. tτ )σ→τ

We may write t for tσ when there is no risk of ambiguity. We require all
terms to be well-typed, e.g. in t t′ the type of t′ equals the argument type of t.
Equality of terms is considered modulo α-equivalence. The set of all terms is
denoted by Term.

A term is closed if it does not contain any free (term) variables. We
extend tpOf to terms by defining tpOf(tσ) := σ. Terms of type bool are called
formulae.

For u ∈ Term∪Type, we write TV(u) for the set of type variables that occur
syntactically in u. We can apply a type substitution ρ to a term t, written ρ(t),
by applying ρ to all type variables that occur in t.

Non-Built-Ins. To obtain the immediate non-built-in sub-types of a type, we
define the following function ·• on types:

α• := {α} bool• := ∅ ind• := ∅ (σ → τ)• := σ• ∪ τ•

((σ1, . . . , σn) k)• := {(σ1, . . . , σn) k} for k 	∈ {bool,→, ind}

For instance, if K contains a unary type constructor list, (α list → bool)• =
{α list}. We overload ·• for terms, to collect non-built-in types of terms:

xσ
• := σ• cσ

• := σ• (s t)• := s• ∪ t• (λx. t)• := x• ∪ t•

The non-built-in types of M ⊆ Type are those types for which ·• is invariant, i.e.
M• := {x ∈ M | x• = {x}}.

The operator ·◦ collects all non-built-in constant instances in a term:

xσ
◦ := ∅ cσ

◦ :=

{
∅ if c is built-in
{cσ} otherwise

(s t)◦ := s◦ ∪ t◦ (λx. t)◦ := t◦

Similar as defined for types, the non-built-in constant instances of M ⊆ CInst
are those constant instances for which ·◦ is invariant, i.e. M◦ := {x ∈ M | x◦ =
{x}}.

Ground Symbols. A type is ground if it contains no type variables. The set of
ground types is denoted by GType. The type substitutions that map all type
variables to ground types are written GTSubst. A constant instance cσ ∈ CInst is
ground if its type σ is ground, and the set of ground constant instances is GCInst.
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3.2 Definitional Theories

Definitional theories are theories that consist of definitions u ≡ t, with the
constant instance or type u that is being defined on the left-hand side, and
the defining term t on the right-hand side. Constant instances are defined by a
term, and types are defined by a predicate. In short we say symbol for a constant
instance or a type. Definitions of symbols can be of two kinds:

– A constant instance definition is of the form cσ ≡ tσ where cσ ∈ CInst◦,
t ∈ Term contains no free term variables, TV(t) ⊆ TV(σ), and c 	∈ {rep, abs}.

– A type definition is of the form τ ≡ tσ→bool where τ = (α1, . . . , αarOf(k))k ∈
Type•, αi ∈ TVar (for 0 ≤ i ≤ arOf(k)) distinct, t ∈ Term contains no free
term variables, and TV(t) ⊆ TV(σ).

We now define the semantics of constant and type definitions. A constant
instance definition equates the constant instance with the defining term. A
type definition asserts the existence of a bijection repτ→σ (with inverse absσ→τ )
between the type τ and the subset of σ that is given by the predicate t, pro-
vided this subset is non-empty. As a technical detail, as opposed to existentially
quantifying over rep and abs in the resulting axiom [12], we assume that these
two constants are present in the signature (with type α → β), and reserve them
as not definable.

– A constant instance definition cσ ≡ t stands for the formula cσ
.= t.

– A type definition τ ≡ tσ→bool stands for the formula

(∃xσ. t x) ⇒ (∀xσ. t x ⇒ repτ→σ (absσ→τ x) .= x)
∧ (∀yτ . t (rep y)) ∧ (∀yτ . abs (rep y) .= y)

The signature needs to contain all logic symbols from these axioms (Sect. 3.3).
We impose two additional constraints [1,12] that ensure consistency of the-

ories of definitions: orthogonality of definitions, and termination of a certain
relation.

Orthogonality. Two types σ and τ are orthogonal, written σ # τ , if they have
no common instance, i.e. if for all ρ, ρ′ ∈ TSubst ρ(σ) 	= ρ′(τ). Orthogonality
extends to constant instances, written cσ # dτ , if c 	= d or σ # τ . Two definitions
u ≡ t, v ≡ s are orthogonal if they are either of different kinds or if u # v.

Dependency Relation. Given a set of definitions D, the dependency relation
for D, written �D, is a binary relation on symbols. It tracks dependencies
of defined symbols on their definiens, and is defined by u �D v (for u, v ∈
CInst ∪ Type) if:

1. u ≡ t ∈ D and v ∈ t• ∪ t◦, or
2. u is a constant of type σ and v ∈ σ•, or
3. u is a type (α1, . . . , αarOf(k)) k and v ∈ {α1, . . . , αarOf(k)}.

We may simply write � when D is clear from the context.
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Type-Substitutive Closure. When R is a binary relation on CInst∪Type, we write
R↓ for the type-substitutive closure of R, defined as the smallest relation such
that, for any (s, t) ∈ R and any ρ ∈ TSubst, (ρ(s), ρ(t)) ∈ R↓. Thus, the type-
substitutive closure extends R to its image under arbitrary type substitutions.

Definitional Theories. A binary relation R is terminating (also converse well-
founded or Noetherian) if there exists no infinite sequence (ai)i∈N such that
ai R ai+1 for all i ∈ N.

Finally, a theory D is definitional if it is a finite set of pairwise orthogonal
definitions for which the relation �D

↓ is terminating. As a result of [1,12], every
definitional theory has a (lazy ground semantics) model.

3.3 The Deductive System

We follow Kunčar and Popescu [10,11] in our description of the deductive system
for HOL. The system is motivated by and abstracts from the implementation of
higher-order logic in Isabelle.

We assume that the usual logical connectives and quantifiers are present in
the signature, and define the set Ax of axioms to contain the formulae in Fig. 1.
We note that the formulae on the left-hand side of the figure can be regarded
as definitions of the logical connectives. For simplicity, we do not consider the
axioms mem Collect eq and Collect mem eq in this paper, which introduce set-
builder notation. The notation t 	 .= t′ is shorthand for ¬(t .= t′). We let ϕ range
over formulae.

Inference rules of the deductive system, given in Fig. 2, have the shape

T, Γ1 � ϕ1 · · · T, Γn � ϕn

T, Γ � ϕ

where T is the theory from which ϕ is derived by assuming the formulae in Γ [14].
Hereinafter, we deliberately omit empty assumption lists.

Fig. 1. Axioms for Isabelle/HOL.
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Fig. 2. Inference rules for Isabelle/HOL.

4 General Semantics

In this section, we define a general (Henkin-style) semantics for HOL. Our
semantics generalises the lazy ground semantics of [1], by incorporating ideas
of Henkin [2,7]: in a general model, function types may be interpreted by a
proper (non-empty) subset of the corresponding function space.

Built-in Closure. For a set of types T ⊆ Type let Cl(T ) denote the built-in closure
of T , defined as the smallest set such that: T ⊆ Cl(T ), bool, ind ∈ Cl(T ), and
for any two types σ, τ ∈ Cl(T ) the function type σ → τ is in Cl(T ). Thus, Cl(T )
contains those types that can be constructed from T by repeated application of
built-in type constructors.

Fragments. A (signature) fragment F is a pair F = (T,C) of types T ⊆ GType•

and constant instances C ⊆ GCInst◦, with the constraint that for each cσ ∈ C:
σ ∈ Cl(T ). The types generated by the fragment are TypeF := Cl(T ), and its
terms TermF := {t ∈ Term | t• ⊆ TypeF , t◦ ⊆ C} are those whose non-built-in
symbols are from the fragment. TermF is closed under taking sub-terms. We call
the largest fragment (GType•,GCInst◦) the total fragment.

Fragment Pre-interpretations. We fix the set of Booleans B := {true, false}.
For a fragment F = (T,C) an F -pre-interpretation is a pair of families I =(
([σ])σ∈TypeF , ([cσ])cσ∈C

)
that for all symbols σ, τ ∈ TypeF and cσ ∈ C satisfies1

[σ] �= ∅, [bool] = B, [ind] = N, 1 [cσ ] ∈ [σ], and [σ → τ ] ⊆ [σ] → [τ ].

Valuations. A valuation for I is a function ξρ parameterised by a ground type
substitution ρ ∈ GTSubst that assigns meaning to all variables whose type is
contained in the fragment, i.e. ρ(σ) ∈ TypeF implies ξρ(xσ) ∈ [ρ(σ)] for all term
variables xσ ∈ Var × Type.

1 We use [ind] = N for simplicity but could allow any infinite set. [1,12].
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General Fragment Interpretations. For an F -pre-interpretation I and a valu-
ation ξρ, we define a partial function [[ · ]]ξρ

that extends I to terms t with
ρ(t) ∈ TermF :

[[xσ]]ξρ
:= ξρ(xσ) [[cσ]]ξρ

:= [cρ(σ)] for c non-built-in
[[s t]]ξρ

:= [[s]]ξρ
([[t]]ξρ

) [[λxσ. tτ ]]ξρ
: [ρ(σ)] → [ρ(τ)], z �→ [[tτ ]]ξρ(|x�→z|)

Here, function update f(|x �→ z|) denotes the function that is equal to f except
for the argument x, for which its value is z. The built-in constants have a fixed
interpretation:

[[⇒bool→bool→bool]]ξρ
is implication [[zeroind]]ξρ

:= 0
[[ .=σ→σ→bool]]ξρ

is equality on [ρ(σ)] [[succind→ind]]ξρ
is the successor function

[[some(σ→bool)→σ]]ξρ
is Hilbert-choice

In general, [[·]]ξρ
is partial because the interpretations of function types in I

may not contain enough elements to interpret all terms. We say that I is a general
F -interpretation if [[·]]ξρ

is total for every ρ ∈ GTSubst and every valuation ξρ

for I, and [[t]]ξρ
∈ [tpOf(ρ(t))] for all t with ρ(t) ∈ TermF .

General Models and Validity. A general model is a general (GType•,GCInst◦)-
interpretation, i.e. a general interpretation for the total fragment. A general
model is standard if [σ → τ ] = [σ] → [τ ] for all σ, τ ∈ GType.

A formula ϕ is valid in a general model M, written M |= ϕ, if for all ground
type substitutions ρ ∈ GTSubst and all valuations ξρ it holds that [[ϕ]]ξρ

= true.
We write M |= E if all formulae within a set E are valid in a general model M.

5 Results

In this section we derive model-theoretic conservativity, and prove soundness
and completeness for the deductive system w.r.t. general semantics. We finish
the section by transferring the semantic conservativity result to a syntactic one.

5.1 Model-Theoretic Conservativity

We discuss how symbols in a definitional theory extended by a symbol definition
can be interpreted before and after the extension.

We write �↓∗ for the reflexive-transitive type-substitutive closure of the
dependency relation.

For a set of symbols U , we recall the U -independent fragment FU [5,6].
In [6] FU was introduced for singleton sets U (corresponding to the definition of
a single symbol); this was generalised to arbitrary sets in [5].
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Lemma 1. Let D be a definitional theory, and let U ⊆ Type• ∪CInst◦. We write
VU for the pre-image of type instances of elements in U under the reflexive-
transitive, type-substitutive closure of the dependency relation �D, i.e.

VU :=
{

v ∈ GType• ∪ GCInst◦ | ∃u ∈ U, ρ ∈ TSubst. v (�D
↓)

∗
ρ(u)

}
.

Then FU := (GType• \VU ,GCInst◦ \VU ) is a fragment, called the U -independent
fragment.

Model-theoretic conservativity as we prove it extends a model for possibly
several definitional updates, keeping the interpretations for all symbols that are
independent of the updates, i.e. all symbols that are in the independent fragment
where U are the updated symbols.

In the proof a part of a general model M of a definitional theory D is
expanded to a general model of a definitional extension D′ by well-founded
recursion over parts of the �↓ relation. The part of the general model that is
extended corresponds to the fragment independent of the defined symbols from
D′ \ D. The earlier monolithic model construction [1,12] obtains a model from
the ground up, by recursion over the entire �↓ relation. The incremental model
construction in [5,6] considers standard models and extension by a single defini-
tion (although the latter can be generalised to any finite definitional extension).

We make use of a fragment of dependencies E�D
, which is defined as all

instances of elements in E and their dependencies.

E�D
:=

{
x ∈ GType• ∪ GCInst◦

∣∣∣∃u ∈ E, ρ ∈ TSubst : ρ(u)�D
↓∗

x
}

Indeed, this is a fragment: for any cσ ∈ E�D
we have σ ∈ Cl(Type∩E�D

), which
is simply by cσ �D v for v ∈ σ• because σ ∈ Cl(σ•).

Theorem 1 (Model-theoretic conservativity). Let M be a general model
of a definitional theory D, and let D′ ⊇ D be a definitional extension of D (by
possibly several definitions). Let U be the symbols defined in D′ \D, i.e. U = {u |
∃t. u ≡ t ∈ D′ \ D}. There exists a general model M′ of the extended theory D′

with the following property: the models M and M′ agree on the interpretation
of all types and terms in TypeFU ∪ TermFU .

Proof. Any dependency relation in this proof is w.r.t. D′. Let U be the set of
symbols defined in D′ \ D and let VU be defined as in Lemma 1. We define an
interpretation for the total fragment � = (GType•,GCInst◦). For any ground
symbol w ∈ � \ VU we define [w] as the interpretation of w within the model
M. For all elements in VU we define an interpretation by well-founded recursion
over �↓+, which is the transitive closure of the type substitutive dependency
relation. From the definitional theory D′ we get a terminating dependency rela-
tion �↓+ [1], and we can define an interpretation [v] for any symbol v ∈ VU ,
basing on [w] for w such that v �↓+ w, and their standard interpretation. Thus
in each step we define the interpretation for v from the interpretation of symbols
E� for E = {w|v �↓+ w} ∪ FU .
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We say v ∈ GSymb matches definition (s ≡ r) ∈ D′ if v = ρ(s) is a type
instance of s for ρ ∈ GTSubst. Due to orthogonality of D′, a matching definition
is uniquely determined. If there is no match for v, as v is ground, it is orthogonal
to any definition in D′.

Case 1. v matches s ≡ r and v = ρ(s). Because v �↓+ ρ(r)• and v �↓+ ρ(r)◦

the closed term ρ(r) has an interpretation [[r]]ξρ
for an arbitrary ξρ w.r.t. ρ.

Sub-case 1.1. s is a constant instance. We assign [v] = [[r]]ξρ
.

Sub-case 1.2. s is a (non-built-in) type with tpOf(r) = σ → bool. We set [v] ={
a ∈ [ρ(σ)]

∣∣[[r]]ξρ
(a) = true

}
if this set is non-empty and [v] = 1 alternatively.

Case 2. there is no matching definition for v in D′. We distinguish two sub-cases.

Sub-case 2.1. v is a non-built-in type. If v = τ → σ we define [v] = [τ ] → [σ].
Otherwise we define [v] = 1.

Sub-case 2.2. v is a constant instance and v �↓+ tpOf(v)•.

– v = absσ→τ , or v = repτ→σ and there is a definition in s ≡ r ∈ D′ with a
type substitution ρ ∈ TSubst such that ρ(s) = σ and ρ(tpOf(r)) = τ → bool.
(Again, due to orthogonality there can only be one such matching definition.)
In this case [v] is undefined and it holds [σ] ⊆ [τ ] as σ ∈ Vu.

• v = absσ→τ then we define [v] as the (identical) embedding [σ] ⊆ [τ ]
which exists in [σ → τ ], or

• v = repτ→σ then we define [v] as some embedding of [τ ] to [σ] such that
[v]

∣∣
[σ]

is the identity
– v = cσ for some cσ ∈ GCInst◦ then we define [v] = choice([σ]).

We get a model from the constructed pre-interpretation [ · ] of � by [[ · ]] to
arrive at an interpretation of terms from Term.

We prove that the recursively constructed total fragment interpretation is
indeed a model for D′. For types τ ∈ TypeE� the built-in constants equality
.=τ→τ→bool and Hilbert-choice some(τ→bool)→τ are both interpretable within any
of their ground types either by induction hypothesis, or otherwise as both of the
constants’ types are the full function spaces.

Let s ≡ r ∈ D′, and let ρ ∈ GTSubst be a ground type substitution for
which we show [s ≡ r]ξρ

= true for an arbitrary ξρ (as s ≡ r is a closed term).
By orthogonality, ρ(s) matches only the definition s ≡ r. If ρ(s) 	∈ VU then
ρ(s ≡ r) ∈ TermFU , and s ≡ r ∈ D, and for (even arbitrary) ρ and any ξρ it
holds, with the interpretation from M written as M(·):

[s ≡ r]ξρ
= M(s ≡ r)ξρ

= true.
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Otherwise if ρ(s) ∈ VU we distinguish by the kind of s. If s is a constant instance
by the first case

[s ≡ r]ξρ
= [[s .= r]]ξρ

= [[s]]ξρ
[[ .=]]ξρ

[[r]]ξρ
= [[r]]ξρ

[[ .=]]ξρ
[[r]]ξρ

= true

for any ξρ. If s = τ is a type instance and the predicate [[rσ→bool]]ξρ
is satisfied for

some element of [ρ(σ)], proving [[s ≡ r]]ξρ
= true means to prove that the proper-

ties for repρ(σ→σ) and absρ(τ→σ) hold, because the first-order logic operators are
behaving in a standard sense. For any a ∈ [ρ(σ)] by definition we have [[r]]ξρ

(a)
which is the first conjunct as [repρ(σ→τ)]([ρ(σ)]) = [ρ(σ)] ⊆ [ρ(τ)]. Similarly by
sub-case 2.2 above, both

[repρ(τ→σ)] ◦ [absρ(σ→τ)] and [absρ(σ→τ)] ◦ [repρ(τ→σ)]

are identity on [ρ(τ)] ⊆ [ρ(σ)].
The axioms trivially hold, also by the definition of general model. ��
In the proof a model for general semantics can be extended, as terms from

the fragment of all dependencies E�D
are interpretable and as function types

within the recursion are interpreted by the full set-theoretic function space. For
example, for a type τ whose interpretation is defined in the recursion, the type
τ → bool of predicates on τ is interpreted by the set of all functions [τ ] → B.

Corollary 1. Any definitional theory has a general model.

The proof is by induction on the size of the theory. The base case is the empty
theory, which has a (standard) model. The induction step is by Theorem 1.
(Of course, the corollary also follows directly from the stronger result that any
definitional theory has a standard model [1,12].)

5.2 Soundness

The deductive system is sound w.r.t. general semantics: any formula that is
derivable is valid in all general models.

Theorem 2 (Soundness for general semantics). Let T be a set of formulae.
If ϕ is a formula such that T � ϕ, then for every general model M with M |= T
it holds that M |= ϕ.

The proof is by induction over the derivation T � ϕ (which we omit here).
Since any definitional theory has a general model, soundness implies that False
is not derivable, i.e. any definitional theory is (syntactically) consistent.

5.3 Completeness

In this section we lay out the completeness proof of the deductive system with
respect to general models. Completeness means for any formula which is valid
in all models of a theory there is a proof from the theory. Our proof follows the
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argumentation of Henkin [2,7]: we show that any consistent theory is contained
in a consistent super-set that is extensionally complete. From these properties
we construct a general model, which is also a model of the original theory.
Completeness follows from the existence of a model for any consistent set in
Theorem 4.

Negation-Complete. A theory T is negation-complete if for any closed formula ϕ,
we can derive T � ϕ or T � ¬ϕ.

Extensionally Complete. A theory T is extensionally complete if for any closed
term t and t′ there is an a such that T � (t a

.= t′ a) ⇒ (t .= t′). The con-
trapositive t 	 .= t′ ⇒ t a 	 .= t′ a means that a witnesses the inequality of t and
t′.

Lemma 2 (Extension Lemma). Any finite consistent set of formulae has a
consistent, negation-complete and extensionally complete theory extension.

Proof. For a finite theory T in the given countably infinite language we construct
a theory extension T ′ which satisfies the stated properties.

We well-order all closed formulae of the language of T and denote them by ψn

for n a natural number. Let C denote the set of countably many constants Const
whose type is a type variable minus all (finitely many) constants that syntac-
tically appear within T . We define a sequence (Tn)n∈N0 of theory extensions
of T .

For a theory Tn and for two closed terms tσ→τ and t′ of same type, let a
be the constant instance of type σ whose name is smallest in C less all constant
names from Tn. The finite number of symbols used in Tn is at most n plus the
number of symbols appearing in T . We define T0 := T , T ′ :=

⋃
n∈N0

Tn and

Tn+1 :=

⎧⎪⎨
⎪⎩

Tn ∪ {ψn} if the union is consistent
Tn otherwise, if ψn is no equality of two functions
Tn ∪ {t a 	 .= t′ a} otherwise, for ψn = (t .= t′) and a as described

By induction any Tn is consistent: Assuming Tn is consistent, we prove its
successor Tn+1 consistent. For the first two sub-cases consistency is immediate.
For the third sub-case, assume that a is chosen as remarked above and Tn ∪{t

.=
t′} is inconsistent. Consequently, Tn � t 	 .= t′. Suppose that also Tn ∪{t a 	 .= t′ a}
is inconsistent, and thus we have Tn � t a

.= t′ a. It is derivable that t
.= t′ is

equivalent to t x
.= t′ x. Instantiating the contrapositive at a, we get Tn � t a 	 .=

t′ a in contradiction to consistency of Tn.
We show that T ′ is negation-complete. Let ϕ be any closed formula. Then

there is an n such that ψn = ϕ. If Tn+1 = Tn ∪ {ϕ} then T ′ � ϕ. Otherwise
Tn ∪ {ϕ} is inconsistent and by law of excluded middle we derive T ′ � ¬ϕ.

We prove that T ′ is extensionally complete. For two closed terms t and t′ of
same function type, if T ′ � t

.= t′ then by extensionality this holds at any x:
T ′ � t x

.= t′ x. Otherwise there is n such that ψn = t
.= t′ and Tn+1 is defined

as Tn ∪ {t a 	 .= t′ a} for some a. ��
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We will use the previous Lemma 2 to obtain an extensionally complete exten-
sion of a definitional theory. This extension T ′ is not a definitional theory, but
this is not problematic.

For a theory we want consistency to be equivalent to the existence of a general
model. To construct a model of a consistent theory, we—different from Henkin
and Andrews—also define interpretations for (non-built in) types. We show that
the construction gives a model for our semantics.

Theorem 3 (Henkin’s Theorem). Every consistent set of closed formulae
has a general model.

Proof. Let T ′ be an extension according to Lemma 2 of a consistent set of
formula. We define an interpretation [t]t∈Term (initially only for closed ground
terms) and [σ]σ∈GType for the extension T ′. The construction goes by induction
on the types σ ∈ GType such that the two properties hold:

1. [σ] = {[tσ]|tσ closed (ground) term of type σ}
2. for all closed (ground) terms sσ, tσ: [tσ] = [sσ] iff T ′ � tσ

.= sσ

At several instances we use that ground types are closed under the sub-type
relation. Closed terms of type σ, like some(λxσ.True), ensure that each type’s
interpretation [σ] is non-empty if defined according to Item 1.

Booleans. For [bool] := B, Items 1 and 2 hold, when setting [ϕbool] := true iff
T ′ � ϕbool and otherwise [ϕbool] := false as by maximality of T ′ otherwise the
formula ¬ϕbool is deducible from T ′.

Natural Numbers. Define [ind] := N. Define for tind a closed term of type ind:

[tind] := {n ∈ N|T ′ � tind
.= succ(. . . (succ︸ ︷︷ ︸

n times

(zero)) . . .)}

We have [ind] = {[tind]|tind a closed term}, as reflexivity of .= gives (⊆) and on
the other hand the only possible constructors for the ind type are zero and succ.
Clearly both properties hold.

Function Types. Let σ, τ ∈ GType, [σ] and [τ ] be defined. We define

[tσ→τ ] : [σ] → [τ ], [sσ] �→ [tσ→τ sσ].

The term [tσ→τ ][sσ] is well-defined, as the choice of sσ as the representative
of the equivalence class [sσ] is irrelevant: let s′

σ be such that [sσ] = [s′
σ] holds

and thus equivalently T ′ � sσ
.= s′

σ, which implies T ′ � tσ→τ sσ
.= tσ→τ s′

σ.
We define [σ → τ ] := {[tσ→τ ]|tσ→τ a closed term} satisfying Item 1 and

proceed with the proof of Item 2. Let tσ→τ , t′σ→τ and sσ be closed terms. If
T ′ � tσ→τ

.= t′σ→τ then especially tσ→τ sσ
.= t′σ→τ sσ is provable in T ′. By

[tσ→τ ][sσ] = [tσ→τ sσ] = [t′σ→τ sσ] = [t′σ→τ ][sσ],
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the functions [tσ→τ ] and [t′σ→τ ] coincide at every value.
On the other hand assume the equality [tσ→τ ] = [t′σ→τ ]. As T ′ is extensionally

complete there exists a closed term sσ for the term tσ→τ
.= t′σ→τ such that

(tσ→τsσ
.= t′σ→τsσ) ⇒ (tσ→τ

.= t′σ→τ )

holds in T ′. By [tσ→τ sσ] = [tσ→τ ][sσ] = [t′σ→τ ][sσ] = [t′σ→τ sσ], and induction
hypothesis, we have that tσ→τsσ

.= t′σ→τsσ holds in T ′. Ultimately it holds:

[tσ→τ sσ] = [t′σ→τ sσ] iff T ′ � tσ→τ sσ
.= t′σ→τ sσ.

Non-built-in types. All other types σ ∈ GType are either instances of a definition
or are undefined. In any case we define the interpretation as the equivalence class
for all closed (ground) terms tσ, which satisfies Items 1 and 2.

[tσ] = {sσ|T ′ � tσ
.= sσ for closed sσ}

[σ] = {[tσ]|tσ closed (ground) term of type σ}

If T ′ � ∃xσ. t xσ then we can derive from T ′ that

(∀xσ. t x ⇒ repτ→σ (absσ→τ x) .= x) ∧ ∀yτ . t (rep y) ∧ abs (rep y) .= y

As the properties of quantifiers, equality and logical connectives proof-
theoretically correspond to those of the meta logic, we get al.l the desired prop-
erties for the interpretations of rep and abs.

General Model. Now all ground closed terms are interpretable w.r.t. [ · ]. For
this to become a model we define a function [ · ]ξρ

that will become the inter-
pretation function for this model, to also interpret terms w.r.t. a ground type
substitution ρ and a term variable assignment ξρ.

We write yξρ for t such that [t] = ξρ(y) and extend interpretation to non-
ground formulae by defining [t′]ξρ

= [ρ(t′[xξρ/x]x∈FV(t))]ξρ
for any ground type

substitution ρ and any ξρ such that ξρ(xσ) ∈ [ρ(σ)] for any term variable xσ. By
induction we see that this gives an interpretation with the desired properties:

– [xσ]ξρ
= [ρ(xξρ)] = [xσ

ξρ ] = ξρ(xσ) ∈ [ρ(σ)]
– [cσ]ξρ

= [cρ(σ)]

– Syntactic juggling gives [s t]ξρ
=

[
ρ

(
(s t)

[
yξρ

/
y
]
y∈FV(s t)

)]

=
[
ρ

(
s
[
yξρ

/
y
]
y∈FV(s)

)] [
ρ

(
t
[
yξρ

/
y
]
y∈FV(t)

)]
= [s]ξρ

[t]ξρ
.

– By Beta rule for any closed term a of type σ we have T ′ � (λxσ. t′τ ) a
.=

t′τ [a/xσ] for any t′τ . Followed by type instantiation and meta-level rewriting
(note that ρ is ground) we have that T ′ � ρ ((λxσ. t′τ ) a) .= ρ (t′τ [ρ(a)/xσ]).
Let [s] be an arbitrary element of [ρ(σ)], then the above holds for ρ(a) = s
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and for t′τ = tτ
[
yξρ

/
y
]
y∈FV(λxσ. tτ )

. And thus (without loss of generality
rewriting variable names) we have

[λxσ. tτ ]ξρ
[s] =

[
ρ

(
(λxσ. tτ )

[
yξρ

/
y
]
y∈FV(λxσ. tτ )

)]
[s]

=
[
ρ

(
(λxσ. tτ )

[
yξρ

/
y
]
y∈FV(λxσ. tτ )

s
)]

=
[
ρ

(
tτ

[
yξρ(|xσ �→[s]|)

/
y
]

y∈FV(tτ )

)]
= [tτ ]ξρ(|xσ �→[s]|).

For the built-in constant some(σ→bool)→σ we require that [some(σ→bool)→σ]
is Hilbert-choice. For any [pσ→bool] and any [x] ∈ [σ] that satisfies [p], we show
[p (some p)] holds. By [p][x] = [p x] = true we get T ′ � p x equivalently. From
the axiom we prove T ′ � p (some p) .= True, thus [p (some p)] holds.

Also for any ground type τ , equality .=τ→τ→bool should be interpreted as
equality on [τ ]. Immediately by construction, we have for any [s], [t] ∈ [τ ] that

[s] = [t] iff T ′ � s
.= t iff [s][ .=][t] = [s .= t] = true.

As any ground type is non-empty, there are no empty types overall. Hence, as
the axioms hold and as there is a valuation function this gives a general model.
The constructed model is a general model of T ′ and any of its subsets. ��

The semantics [[t]]ξρ
of a term t is defined to apply type substitutions lazily,

i.e. at the latest possible moment when interpreting a term (and never to term
variables). Applying type substitutions eagerly would erroneously force equal
valuation of distinct variables, e.g. xα and xbool under a type substitution ρ with
ρ(α) = bool [1].

However in the proof we see a different characterisation of the term semantics,
namely as [[t]]ξρ

= [[ρ(t[yξρ/y]y∈FV(t))]]ξρ
, which eagerly applies ρ to t, but only

after replacing each free variable y ∈ FV(t). Therein y is replaced by a closed
term yξρ that has the same interpretation. The resulting term ρ(t[yξρ/y]y∈FV(t))
is closed, hence a capture of term variables does not occur. This characterisation
requires for any type σ and valuation ξρ that the function [[·]]ξρ

: Termσ → [ρ(σ)]
is surjective, which is not given in Åman Pohjola and Gengelbach [1].

Completeness follows by Theorem 3 and a generic argument.

Theorem 4 (Completeness for general semantics). Let T be a set of
formulae. If ϕ is a formula that is valid in every general model M with M |= T ,
then T � ϕ.

Proof. Let ψ be a universal closure of ϕ, then also ψ is valid in every general
model of T . Suppose that T ′ := T ∪{¬ψ} is consistent, then by Theorem 3 let M
be a general model of T ′. We have M |= ¬ψ but also M |= T , hence M |= ψ. This
is a contradiction. Consequently T ∪ {¬ψ} is inconsistent, i.e. T ∪ {¬ψ} � False,
thus T � ψ. Eliminating the universal closure, we obtain T � ϕ. ��
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As noted by a reviewer, completeness w.r.t. general lazy ground semantics
can also be proved more directly from completeness of the monomorphic calculus.
We briefly sketch the idea (but we have not worked out the technical details).
If a (polymorphic) theory T is consistent, the theory of all ground instances of
formulas in T is consistent. By completeness this theory has a (general) model.
This model is also a model of T w.r.t. ground semantics.

5.4 Proof-Theoretic Conservativity

Having proven the deductive system with general semantics sound and complete,
we derive proof-theoretic conservativity from model-theoretic conservativity in
this section.

Lemma 3. If a deductive system is sound and complete then model-theoretic
conservativity implies proof-theoretic conservativity.

Proof. Consider a theory extension D′ ⊇ D. Assume D′ � ϕ (with suitable
assumptions on ϕ). We need to show D � ϕ. Due to completeness it is sufficient
to prove that ϕ holds in all models of D. By model-theoretic conservativity, for
any model M of D there is a model M′ of D′ such that M′ agrees with M
on the interpretation of ϕ. Since D′ � ϕ, soundness implies that M′ is a model
of ϕ, hence M is a model of ϕ. ��

We recall the main model-theoretic conservativity theorem [6, Theorem 3.3].
For U a set of symbol, the U -independent fragment FU [5,6] defines the ground
symbols which are not in the pre-image of type instances of U under the
reflexive-transitive, type-substitutive closure of the dependency relation. The
terms TermFU are all terms whose ground instances can be interpreted within FU

and accordingly are TypeFU all the types that occur in the terms TermFU (see
also Theorem 1).

Lemma 3 shows how the constraint in our model-theoretic notion of conser-
vativity translates to a syntactic constraint:

Theorem 5 (Proof-theoretic conservativity). Let D be a definitional the-
ory and D′ ⊇ D be a definitional theory extension of D (by possibly several
definitions), and let U be the set of symbols defined in D′ \ D.
If ϕbool ∈ TermFU and D′ � ϕ then D � ϕ.

Proof. For a definitional theory extension D′ ⊇ D, ϕbool ∈ TermFU and D′ � ϕ,
it is sufficient to prove that ϕ holds in all models of D, due to completeness
(Theorem 4). Let M be a model of D. From model-theoretic conservativity
(Theorem 1), we obtain a model extension M′ for D′ such that M and M′ agree
on the interpretation of all types and terms in TypeFU ∪ TermFU . Consequently,
we have M |= ϕ iff M′ |= ϕ. Soundness implies that M′ |= ϕ, hence also M |= ϕ.
��
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6 Conclusion

We introduced general models as a generalisation of standard models, and proved
soundness and completeness (by using ideas by Henkin [2,7]) for HOL with ad-
hoc overloading. We extended our earlier model-theoretic conservativity result [5]
to general models, and applied these results to show proof-theoretic conservativ-
ity for HOL with ad-hoc overloading: for a definitional theory extension D′ ⊇ D,
any formula ϕ that is derivable in D′ and that does not (explicitly or implicitly)
depend on symbols defined in D′ \ D is already derivable in D.

The established notion of proof-theoretic conservativity should be extensible
to hold for related settings, for example with further axioms [14], with Arthan’s
constant specification [3], and with explicit signature extensions like in [1]. Using
our results and unfolding definitions with ideas from [11] may allow a relative
meta-safety result, i.e. unfolding the symbols defined in a definitional extension
relative to an arbitrary definitional base theory.

Acknowledgements. We thank Andrei Popescu, Georg Struth and the anonymous
reviewers for their valuable feedback on earlier versions of this paper.
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Abstract. We propose a new symbolic trace semantics for register
automata (extended finite state machines) which records both the
sequence of input symbols that occur during a run as well as the con-
straints on input parameters that are imposed by this run. Our main
result is a generalization of the classical Myhill-Nerode theorem to this
symbolic setting. Our generalization requires the use of three relations
to capture the additional structure of register automata. Location equiv-
alence ≡l captures that symbolic traces end in the same location, tran-
sition equivalence ≡t captures that they share the same final transition,
and a partial equivalence relation ≡r captures that symbolic values v
and v′ are stored in the same register after symbolic traces w and w′,
respectively. A symbolic language is defined to be regular if relations
≡l, ≡t and ≡r exist that satisfy certain conditions, in particular, they
all have finite index. We show that the symbolic language associated
to a register automaton is regular, and we construct, for each regular
symbolic language, a register automaton that accepts this language. Our
result provides a foundation for grey-box learning algorithms in settings
where the constraints on data parameters can be extracted from code
using e.g. tools for symbolic/concolic execution or tainting. We believe
that moving to a grey-box setting is essential to overcome the scalability
problems of state-of-the-art black-box learning algorithms.

1 Introduction

Model learning (a.k.a. active automata learning) is a black-box technique which
constructs state machine models of software and hardware components from
information obtained by providing inputs and observing the resulting outputs.
Model learning has been successfully used in numerous applications, for instance
for generating conformance test suites of software components [20], finding mis-
takes in implementations of security-critical protocols [13–15], learning interfaces
of classes in software libraries [23], and checking that a legacy component and a
refactored implementation have the same behavior [35]. We refer to [26,38] for
surveys and further references.
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Myhill-Nerode theorems [21,32] are of pivotal importance for model learning
algorithms. Angluin’s classical L∗ algorithm [3] for active learning of regular
languages, as well as improvements such as [27,34,36], use an observation table
to approximate the Nerode congruence. Maler and Steiger [30] established a
Myhill-Nerode theorem for ω-languages that serves as a basis for a learning
algorithm described in [4]. The SL∗ algorithm for active learning of register
automata of Cassel et al. [11] is directly based on a generalization of the classical
Myhill-Nerode theorem to a setting of data languages and register automata
(extended finite state machines). Francez and Kaminski [16], Benedikt et al. [5]
and Bojańczyk et al. [6] all present Myhill-Nerode theorems for data languages.

Despite the convincing applications of black-box model learning, it is fair to
say that existing algorithms do not scale very well. In order to learn models of
realistic applications in which inputs and outputs carry data parameters, state-
of-the-art techniques either rely on manually constructed mappers that abstract
the data parameters of inputs and outputs into a finite alphabet [2], or otherwise
infer guards and assignments from black-box observations of test outputs [1,11].
The latter can be costly, especially for models where the control flow depends
on data parameters in the input. Thus, for instance, the RALib tool [9], an
implementation of the SL∗ algorithm, needed more than two hundred thousand
input/reset events to learn register automata with just 6 to 8 locations for TCP
client implementations of Linux, FreeBSD and Windows [14]. Existing black-
box model learning algorithms also face severe restrictions on the operations
and predicates on data that are supported (typically, only equality/inequality
predicates and constants).

A natural way to address these limitations is to augment learning algorithms
with white-box information extraction methods, which are able to obtain infor-
mation about the system under learning at lower cost than black-box techniques
[25]. Constraints on data parameters can be extracted from the code using e.g.
tools for symbolic execution [8], concolic execution [19], or tainting [22]. Several
researchers have successfully explored this idea, see for instance [7,12,18,24].
Recently, we showed how constraints on data parameters can be extracted from
Python programs using tainting, and used to boost the performance of RALib
with almost two orders of magnitude. We were also able to learn models of
systems that are completely out of reach of black-box techniques, such as “com-
bination locks”, systems that only exhibit certain behaviors after a very specific
sequence of inputs [17]. Nevertheless, all these approaches are rather ad hoc,
and what is missing is Myhill-Nerode theorem for this enriched settings that
may serve as a foundation for grey-box model learning algorithms for a general
class of register automata. In this article, we present such a theorem.

More specifically, we propose a new symbolic trace semantics for register
automata which records both the sequence of input symbols that occur during
a run as well as the constraints on input parameters that are imposed by this
run. Our main result is a Myhill-Nerode theorem for symbolic trace languages.
Whereas the original Myhill-Nerode theorem refers to a single equivalence rela-
tion ≡ on words, and constructs a DFA in which states are equivalence classes
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of ≡, our generalization requires the use of three relations to capture the addi-
tional structure of register automata. Location equivalence ≡l captures that sym-
bolic traces end in the same location, transition equivalence ≡t captures that they
share the same final transition, and a partial equivalence relation ≡r captures that
symbolic values v and v′ are stored in the same register after symbolic traces w
and w′, respectively. A symbolic language is defined to be regular if relations ≡l,
≡t and ≡r exist that satisfy certain conditions, in particular, they all have finite
index. Whereas in the classical case of regular languages the Nerode equivalence
≡ is uniquely determined, different relations ≡l, ≡t and ≡r may exist that sat-
isfy the conditions for regularity for symbolic languages. We show that the sym-
bolic language associated to a register automaton is regular, and we construct, for
each regular symbolic language, a register automaton that accepts this language.
In this automaton, the locations are equivalence classes of ≡l, the transitions are
equivalence classes of ≡t, and the registers are equivalence classes of ≡r. In this
way, we obtain a natural generalization of the classical Myhill-Nerode theorem for
symbolic languages and register automata. Unlike Cassel et al. [11], we need no
restrictions on the allowed data predicates to prove our result, which drastically
increases the range of potential applications. Our result paves the way for efficient
grey-box learning algorithms in settings where the constraints on data parameters
can be extracted from the code.

Due to the page limit, proofs have been omitted from this article, except for
outlines of the proofs of main Theorems 2 and 3. All proofs can be found in the
report version on arXiv [39].

2 Preliminaries

In this section, we fix some basic vocabulary for (partial) functions, languages,
and logical formulas.

2.1 Functions

We write f : X ⇀ Y to denote that f is a partial function from set X to set Y .
For x ∈ X, we write f(x) ↓ if there exists a y ∈ Y such that f(x) = y, i.e., the
result is defined, and f(x) ↑ if the result is undefined. We write domain(f) =
{x ∈ X | f(x) ↓} and range(f) = {f(x) ∈ Y | x ∈ domain(f)}. We often identify
a partial function f with the set of pairs {(x, y) ∈ X × Y | f(x) = y}. As usual,
we write f : X → Y to denote that f is a total function from X to Y , that is,
f : X ⇀ Y and domain(f) = X.

2.2 Languages

Let Σ be a set of symbols. A word u = a1 . . . an over Σ is a finite sequence of
symbols from Σ. The length of a word u, denoted |u| is the number of symbols
occurring in it. The empty word is denoted ε. We denote by Σ∗ the set of all words
over Σ, and by Σ+ the set of all nonempty words over Σ (i.e. Σ∗ = Σ+ ∪ {ε}).
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Given two words u and w, we denote by u · w the concatenation of u and w.
When the context allows it, u · w shall be simply written uw. We say that u is a
prefix of w iff there exists a word u′ such that u · u′ = w. Similarly, u is a suffix
of w iff there exists a word u′ such that u′ · u = w. A language L over Σ is any
set of words over Σ, so therefore a subset of Σ∗. We say that L is prefix closed
if, for each w ∈ L and each prefix u of w, u ∈ L as well.

2.3 Guards

We postulate a countably infinite set V = {v1, v2, . . .} of variables. In addition,
there is also a variable p �∈ V that will play a special role as formal parameter
of input symbols; we write V+ = V ∪ {p}. Our framework is parametrized by a
set R of relation symbols. Elements of R are assigned finite arities. A guard is
a Boolean combination of relation symbols from R over variables. Formally, the
set of guards is inductively defined as follows:

– If r ∈ R is an n-ary relation symbol and x1, . . . , xn are variables from V+,
then r(x1, . . . , xn) is a guard.

– If g is a guard then ¬g is a guard.
– If g1 and g2 are guards then g1 ∧ g2 is a guard.

We use standard abbreviations from propositional logic such as 
 and g1 ∨ g2.
We write Var(g) for the set of variables that occur in a guard g. We say that g
is a guard over set of variables X if Var(g) ⊆ X. We write G(X) for the set of
guards over X, and use symbol ≡ to denote syntactic equality of guards.

We postulate a structure R consisting of a set D of data values and a dis-
tinguished n-ary relation rR ⊆ Dn for each n-ary relation symbol r ∈ R. In a
trivial example of a structure R, R consists of the binary symbol ‘=’, D the
set of natural numbers, and =R is the equality predicate on numbers. An n-ary
operation f : Dn → D can be modelled in our framework as an n + 1-ary predi-
cate. We may for instance extend structure R with a ternary predicate symbol
+, where (d1, d2, d3) ∈ +R iff the sum of d1 and d2 equals d3. Constants like 0
and 1 can be added to R as unary predicates.

A valuation is a partial function ξ : V+ ⇀ D that assigns data values to
variables. If Var(g) ⊆ domain(ξ), then ξ |= g is defined inductively by:

– ξ |= r(x1, . . . , xn) iff (ξ(x1), . . . , ξ(xn)) ∈ rR
– ξ |= ¬g iff not ξ |= g
– ξ |= g1 ∧ g2 iff ξ |= g1 and ξ |= g2

If ξ |= g then we say valuation ξ satisfies guard g. We call g is satisfiable, and
write Sat(g), if there exists a valuation ξ such that ξ |= g. Guard g is a tautology
if ξ |= g for all valuations ξ with Var(g) ⊆ domain(ξ).

A variable renaming is a partial function σ : V+ ⇀ V+. If g is a guard
with Var(g) ⊆ domain(σ) then g[σ] is the guard obtained by replacing each
occurrence of a variable x in g by variable σ(x). The following lemma is easily
proved by induction.

Lemma 1. ξ ◦ σ |= g iff ξ |= g[σ].
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3 Register Automata

In this section, we introduce register automata and show how they may be used
as recognizers for both data languages and symbolic languages.

3.1 Definition and Trace Semantics

A register automaton comprises a set of locations with transitions between them,
and a set of registers which can store data values that are received as inputs.
Transitions contain guards over the registers and the current input, and may
assign new values to registers.

Definition 1. A register automaton is a tuple A = (Σ,Q, q0, F, V, Γ ), where

– Σ is a finite set of input symbols,
– Q is a finite set of locations, with q0 ∈ Q the initial location, and F ⊆ Q a

set of accepting locations,
– V ⊂ V is a finite set of registers, and
– Γ is a finite set of transitions, each of form 〈q, α, g, 
, q′〉 where

• q, q′ ∈ Q are the source and target locations, respectively; we require that
q′ ∈ F ⇒ q ∈ F ,

• α ∈ Σ is an input symbol,
• g ∈ G(V ∪ {p}) is a guard, and
• 
 : V ⇀ V ∪ {p} is an assignment; we require that 
 is injective.

Register automata are required to be completely specified in the sense that for
each location q ∈ Q and each input symbol α ∈ Σ, the disjunction of the guards
on the α-transitions with source q is a tautology. Register automata are also
required to be deterministic in the sense that for each location q ∈ Q and input
symbol α ∈ Σ, the conjunction of the guards of any pair of distinct α-transitions
with source q is not satisfiable. We write q

α,g,�−−−→ q′ if 〈q, α, g, 
, q′〉 ∈ Γ .

Example 1. Figure 1 shows a register automaton A = (Σ,Q, q0, F, V, Γ ) with a
single input symbol a and four locations q0, q1, q2 and q3, with q0, q1, q2 accepting
and q3 non-accepting. The initial location q0 is marked by an arrow “start”
and accepting locations are indicated by a double circle. There is just a single
register x. Set Γ contains six transitions, which are indicated in the diagram.
All transitions are labeled with input symbol a, a guard over formal parameter
p and the registers, and an assignment. Guards represent conditions on data
values. For example, the guard on the transition from q1 to q2, expresses that
the data value of action a must be smaller than the data value currently stored
in register x. We write x := p to denote the assignment that stores the data
parameter p in register x, that is, the function 
 satisfying 
(x) = p. Trivial
guards (
) and assignments (empty domain) are omitted. Note that location q3
is actually a sink location, i.e., there is no way to get into an accepting state from
q3. Thus the register automaton satisfies the condition that for each transition
either the source location is accepting or the target location is not accepting.
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When drawing register automata, we often only depict the accepting locations,
and leave a non-accepting sink location and the transitions leading to it implicit.
Note that in locations q1 and q2, which have more than one outgoing transition,
the disjunction of the guards of these transitions is equivalent to true, whereas
the conjunction is equivalent to false.

The semantics of a register automaton is defined in terms of the set of data
words that it accepts.

Definition 2. Let Σ be a finite alphabet. A data symbol over Σ is a pair α(d)
with α ∈ Σ and d ∈ D. A data word over Σ is a finite sequence of data symbols,
i.e., a word over Σ × D. A data language over Σ is a set of data words over Σ.

We associate a data language to each register automata as follows.

Definition 3. Let A = (Σ,Q, q0, F, V, Γ ) be a register automaton. A configura-
tion of A is a pair (q, ξ), where q ∈ Q and ξ : V ⇀ D. A run of A over a data
word w = α1(d1) · · · αn(dn) is a sequence

γ = (q0, ξ0)
α1(d1)−−−−→ (q1, ξ1) . . . (qn−1, ξn−1)

αn(dn)−−−−→ (qn, ξn),

where, for 0 ≤ i ≤ n, (qi, ξi) is a configuration of A, domain(ξ0) = ∅, and for
0 < i ≤ n, Γ contains a transition qi−1

αi,gi,�i−−−−−→ qi such that

– ιi |= gi, where ιi = ξi−1 ∪ {(p, di)}, and
– ξi = ιi ◦ 
i.

We say that run γ is accepting if qn ∈ F and rejecting if qn �∈ F . We call w the
trace of γ, notation trace(γ) = w. Data word w is accepted (rejected) if A has
an accepting (rejecting) run over w. The data language of A, notation L(A), is
the set of all data words that are accepted by A. Two register automata over the
same alphabet Σ are trace equivalent if they accept the same data language.

q0start q1 q2 q3
a, x := p

a, x ≤ p, x := p

a, p < x, x := p

a, x ≤ p, x := p

a, p < x

a

Fig. 1. Register automaton.
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Example 2. Consider the register automaton of Fig. 1. This automaton accepts
the data word a(1) a(4) a(0) a(7) since the following sequence of steps is a run
(here ξ0 is the trivial function with empty domain):

(q0, ξ0)
a(1)−−→ (q1, x �→ 1)

a(4)−−→ (q1, x �→ 4)
a(0)−−→ (q2, x �→ 0)

a(7)−−→ (q1, x �→ 7).

Note that the final location q1 of this run is accepting. Upon receiving the first
input a(1), the automaton jumps to q1 and stores data value 1 in the register x.
Since 4 is bigger than 1, the automaton takes the self loop upon receiving the
second input a(4) and stores 4. Since 0 is less than 4, it moves to q2 upon receipt
of the third input a(0) and updates x to 0. Finally, the automaton gets back to
q1 as 7 is bigger than 0.

Suppose that in the register automaton of Fig. 1 we replace the guard on the
transition from q0 to q1 by x ≤ p. Since initial valuation ξ0 does not assign a
value to x, this means that it is not defined whether ξ0 satisfies guard x ≤ p.
Automata in which such “runtime errors” do not occur are called well-formed.

Definition 4. Let A be a register automaton. We say that a configuration (q, ξ)
of A is reachable if there is a run of A that ends with (q, ξ). We call A well-
formed if, for each reachable configuration (q, ξ), ξ assigns a value to all variables
from V that occur in guards of outgoing transitions of q, that is,

(q, ξ) reachable ∧ q
α,g�−−−→ q′ ⇒ Var(g) ⊆ domain(ξ) ∪ {p}.

As soon as the set of data values and the collection of predicates becomes non-
trivial, well-formedness of register automata becomes undecidable. However, it is
easy to come up with a sufficient condition for well-formedness, based on a syn-
tactic analysis of A, which covers the cases that occur in practice. In the remain-
der of article, we will restrict our attention to well-formed register automata. In
particular, the register automata that are constructed from regular symbolic
trace languages in our Myhill-Nerode theorem will be well-formed.

Relation with Automata of Cassel et al. Our definition of a register automaton
is different from the one used in the SL∗ algorithm of Cassel et al. [11] and its
implementation in RALib [9]. It is instructive to compare the two definitions.

1. In order to establish a Myhill-Nerode theorem, [11] requires that structure R,
which is a parameter of the SL∗ algorithm, is weakly extendible. This technical
restriction excludes many data types that are commonly used in practice. For
instance, the set of integers with constants 0 and 1, an addition operator +,
and a less-than predicate < is not weakly extendable. For readers familiar
with [11]: a structure (called theory in [11]) is weakly extendable if for all
natural numbers k and data words u, there exists a u′ with u′ ≈R u which
is k-extendable. Intuitively, u′ ≈R u if data words u′ and u have the same
sequences of actions and cannot be distinguished by the relations in R. Let
u = α(0)α(1)α(2)α(4)α(8)α(16)α(11). Then there exists just one u′ different
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from u with u′ ≈R u, namely u′ = α(0)α(1)α(2)α(4)α(8)α(16)α(13). Now
both u and u′ are not even 1-extendable: if we extend u with α(3), we cannot
find a matching extension α(d′) of u′ such that uα(3) ≈R u′α(d′), and if
we extend u′ with α(5) we cannot find a matching extension α(d) of u such
that uα(d) ≈R u′α(5). In the terminology of model theory [33], a structure
is k-extendable if the Duplicator can win certain k-move Ehrenfeucht-Fräıssé
games. For structures R that are homogeneous, one can always win these
games, for all k. Thus, homogeneous structures are weakly extendible. An even
stronger requirement, which is imposed in work of [31] on nominal automata,
is that R is ω-categorical. In our approach, no restrictions on R are needed.

2. Unlike [11], we do not associate a fixed set of variables to each location. Our
definition is slightly more general, which simplifies some technicalities.

3. However, we require assignments to be injective, a restriction that is not
imposed by [11]. But note that the register automata that are actually con-
structed by SL∗ are right-invariant [10]. In a right-invariant register automa-
ton, two values can only be tested for equality if one of them is the current
input symbol. Right-invariance, as defined in [10], implies that assignments
are injective. As illustrated by the example of Fig. 2, our register automata
are exponentially more succinct than the right-invariant register automata
constructed by SL∗. As pointed out in [10], right-invariant register automata
in turn are more succinct than the automata of [5,16].

4. Our definition assumes that, for any transition from q to q′, q′ ∈ F ⇒ q ∈ F .
Due to this assumption, which is not required in [11], the data language
accepted by a register automaton is prefix closed. We need this property
for technical reasons, but for models of reactive systems it is actually quite
natural. RALib [9] also assumes that data languages are prefix closed.

q0start q1 q2 q2n−1 q2n

qok

a, x1 := p a, x2 := p

· · ·
a, x2n := p

b,
∧n−1

i=1 (xi = xi+1 ↔ xn+i = xn+i+1)

Fig. 2. For each n > 0, An is a register automaton that first accepts 2n input symbols
a, storing all the data values that it receives, and then accepts input symbol b when
two consecutive values in the first half of the input are equal iff the corresponding
consecutive values in the second half of the input are equal. The number of locations and
transitions of An grows linearly with n. There exist right-invariant register automata
Bn that accept the same data languages, but their size grows exponentially with n.

Since register automata are deterministic, there exists a one-to-one corre-
spondence between the accepted data words and the accepting runs. From every
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accepting run γ of a register automaton A we can trivially extract a data word
trace(γ) by forgetting all information except the data symbols. Conversely, for
each data word w that is accepted by A, there exists a corresponding accepting
run γ, which is uniquely determined by the data word since from each configu-
ration (q, ξ) and data symbol α(d), exactly one transition will be enabled.

Lemma 2. Suppose γ and γ′ are runs of a register automaton A such that
trace(γ) = trace(γ′). Then γ = γ′.

3.2 Symbolic Semantics

We will now introduce an alternative trace semantics for register automata,
which records both the sequence of input symbols that occur during a run as
well as the constraints on input parameters that are imposed by this run. We will
explore some basic properties of this semantics, and show that the equivalence
induced by symbolic traces is finer than data equivalence.

A symbolic language consists of words in which input symbols and guards
alternate.

Definition 5. Let Σ be a finite alphabet. A symbolic word over Σ is a finite
alternating sequence w = α1G1 · · · αnGn of input symbols from Σ and guards. A
symbolic language over Σ is a set of symbolic words over Σ.

A symbolic run is just a run, except that the valuations do not return concrete
data values, but markers (variables) that record the exact place in the run where
the input occurred. We use variable vi as a marker for the i-th input value. Using
these symbolic valuations (variable renamings, actually) it is straightforward to
compute the constraints on the input parameters from the guards occurring in
the run.

Definition 6. Let A = (Σ,Q, q0, F, V, Γ ) be a register automaton. A symbolic
run of A is a sequence

δ = (q0, ζ0)
α1,g1,�1−−−−−→ (q1, ζ1) . . .

αn,gn,�n−−−−−−→ (qn, ζn),

where ζ0 is the trivial variable renaming with empty domain and, for 0 < i ≤ n,

– qi−1
αi,gi,�i−−−−−→ qi is a transition in Γ ,

– ζi is a variable renaming with domain(ζi) ⊆ V , and
– ζi = ιi ◦ 
i, where ιi = ζi−1 ∪ {(p, vi)}.
We also require that G1 ∧· · ·∧Gn is satisfiable, where Gi ≡ gi[ιi], for 0 < i ≤ n.

We say that symbolic run δ is accepting if qn ∈ F and rejecting if qn �∈ F . The
symbolic trace of δ is the symbolic word strace(δ) = α1 G1 · · · αn Gn. Symbolic
word w is accepted (rejected) if A has an accepting (rejecting) symbolic run δ
with strace(δ) = w. The symbolic language of A, notation Ls(A), is the set of
all symbolic words accepted by A. Two register automata over the same alphabet
Σ are symbolic trace equivalent if they accept the same symbolic language.
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Example 3. Consider the register automaton of Fig. 1. The following sequence
constitutes a symbolic run:

(q0, ζ0)
a,�,x:=p−−−−−−→ (q1, x �→ v1)

a,x≤p,x:=p−−−−−−−→ (q1, x �→ v2)

a,p<x,x:=p−−−−−−−→ (q2, x �→ v3)
a,x≤p,x:=p−−−−−−−→ (q1, x �→ v4).

Since

ι1 = {(p, v1)}
ι2 = {(x, v1), (p, v2)}
ι3 = {(x, v2), (p, v3)}
ι4 = {(x, v3), (p, v4)}

and the final location q1 of this symbolic run is accepting, the register automaton
accepts the symbolic word w = a 
 a v1 ≤ v2 a v3 < v2 a v3 ≤ v4. Note that the
guard of w is satisfiable, for instance by valuation ξ with ξ(v1) = 1, ξ(v2) = 4,
ξ(v3) = 0 and ξ(v4) = 7.

The two technical lemmas below state some basic properties about variable
renamings in a symbolic run. The proofs are straightforward, by induction.

Lemma 3. Let δ be a symbolic run of A, as in Definition 6. Then range(ζi) ⊆
{v1, . . . , vi}, for i ∈ {0, . . . , n}, and range(ιi) ⊆ {v1, . . . , vi}, for i ∈ {1, . . . , n}.

As a consequence of our assumption that assignments in a register automaton
are injective, all the variable renamings in a symbolic run are injective as well.

Lemma 4. Let δ be a symbolic run of A, as in Definition 6. Then, for each
i ∈ {0, . . . , n}, ζi is injective, and for each i ∈ {1, . . . , n}, ιi is injective.

All symbolic words accepted by a register automaton satisfy some basic sanity
properties: guards may only refer to the markers for values received thus far, and
the conjunction of all the guards is satisfiable. We call symbolic words that satisfy
these properties feasible. Note that if a symbolic word is feasible, any prefix is
feasible as well.

Definition 7 (Feasible). Let w = α1G1 · · · αnGn be a symbolic word. We write
length(w) = n and guard(w) = G1 ∧ · · · ∧ Gn. Word w is feasible if guard(w)
is satisfiable and Var(Gi) ⊆ {v1, . . . , vi}, for each i ∈ {1, . . . , n}. A symbolic
language is feasible if it is prefix closed and consists of feasible symbolic words.

Lemma 5. Ls(A) is feasible.

Since register automata are deterministic, each symbolic trace of A corre-
sponds to a unique symbolic run of A.

Lemma 6. Suppose δ and δ′ are symbolic runs of a register automaton A such
that strace(δ) = strace(δ′). Then δ = δ′.
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Definition 8. Let A be a register automaton and w ∈ Ls(A). Then we write
symb(w) for the unique symbolic run δ of A with strace(δ) = w.

There exists a one-to-one correspondence between runs of A and pairs con-
sisting of a symbolic run of A and a satisfying assignments for the guards from
its symbolic trace.

Lemma 7. Let δ be a symbolic run of A, as in Definition 6, and ξ :
{v1, . . . , vn} → D a valuation such that ξ |= G1 ∧ · · · ∧ Gn. Let runA(δ, ξ) be the
sequence obtained from δ by (a) replacing each input αi by data symbol αi(ξ(vi))
(for 0 < i ≤ n), (b) removing guards gi and assignments 
i, and (c) replacing
valuations ζi by ξi = ξ ◦ ζi (for 0 ≤ i ≤ n). Then runA(δ, ξ) is a run of A.

Lemma 8. Let γ be a run of register automaton A. Then there exist a valuation
ξ and symbolic run δ such that runA(δ, ξ) = γ.

Using the above lemmas, we can prove that whenever two register automata
accept the same symbolic language, they also accept the same data language.

Theorem 1. Suppose A and B are register automata with Ls(A) = Ls(B). Then
L(A) = L(B).

Example 4. The converse of Theorem 1 does not hold. Figure 3 gives a trivial
example of two register automata with the same data language but a different
symbolic language.

q0start q1start

q2 q3

a, p > 0a, p ≤ 0 a

Fig. 3. Trace equivalent but not symbolic trace equivalent.

Lemma 7 allows us to rephrase the well-formedness condition of register
automata in terms of symbolic runs.

Corollary 1. Register automaton A is well-formed iff, for each symbolic run δ

that ends with (q, ζ), q
α,g�−−−→ q′ ⇒ Var(g) ⊆ domain(ζ) ∪ {p}.
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4 Nerode Equivalence

The Myhill-Nerode equivalence [21,32] deems two words w and w′ of a language
L equivalent if there does not exist a suffix u that distinguishes them, that is,
only one of the words w · u and w′ · u is in L. The Myhill-Nerode theorem states
that L is regular if and only if this equivalence relation has a finite index, and
moreover that the number of states in the smallest deterministic finite automa-
ton (DFA) recognizing L is equal to the number of equivalence classes. In this
section, we present a Myhill-Nerode theorem for symbolic languages and register
automata. We need three relations ≡l, ≡t and ≡r on symbolic words to capture
the structure of register automata. Intuitively, two symbolic words w and w′ are
location equivalent, notation w ≡l w′, if they lead to the same location, transition
equivalent, notation w ≡t w′, if they share the same final transition, and marker
v of w, and marker v′ of w′ are register equivalent, notation (w, v) ≡r (w′, v′),
when they are stored in the same register after occurrence of words w and w′.
Whereas ≡l and ≡t are equivalence relations, ≡t is a partial equivalence relation
(PER), that is, a relation that is symmetric and transitive. Relation ≡r is not
necessarily reflexive, as (w, v) ≡r (w, v) only holds when marker v is stored after
symbolic trace w. Since a register automaton has finitely many locations, finitely
many transitions, and finitely many registers, the equivalences ≡l and ≡t, and
the equivalence induced by ≡r, are all required to have finite index.

Definition 9. A feasible symbolic language L over Σ is regular iff there exist
three relations:

– an equivalence relation ≡l on L, called location equivalence,
– an equivalence relation ≡t on L \ {ε}, called transition equivalence, and
– a partial equivalence relation ≡r on {(w, vi) ∈ L × V | i ≤ length(w)}, called

register equivalence. We say that w stores v if (w, v) ≡r (w, v).

We require that equivalences ≡l and ≡t, as well as the equivalence relation
obtained by restricting ≡t to {(w, v) ∈ L × V | w stores v} have finite index.
We also require that relations ≡l, ≡t and ≡r satisfy the conditions of Table 1,
for w,w′, u, u′ ∈ L, length(w) = m, length(w′) = n, α, α′ ∈ Σ, G,G′ guards,
v, v′ ∈ V, and σ : V ⇀ V. Condition 1 implies that, given w, w′ and v, there is
at most one v′ s.t. (w, v) ≡r (w′, v′). Therefore, we may define matching(w,w′)
as the variable renaming σ satisfying:

σ(v) =

⎧
⎨

⎩

v′ if (w, v) ≡r (w′, v′)
vn+1 if v = vm+1

undefined otherwise

Intuitively, the first condition captures that a register can store at most a single
value at a time. When wαG and w′α′G′ share the same final transition, then in
particular w and w′ share the same final location (Condition 2), input symbols
α and α′ are equal (Condition 3), G′ is just a renaming of G (Condition 4),
and wαG and w′α′G′ share the same final location (Condition 5) and final
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Table 1. Conditions for regularity of symbolic languages.

(w, v) ≡r (w, v′) ⇒ v = v′ (1)
wαG ≡t w′α′G′ ⇒ w ≡l w′ (2)
wαG ≡t w′α′G′ ⇒ α = α′ (3)
wαG ≡t w′αG′ ∧ σ = matching(w, w′) ⇒ G[σ] ≡ G′ (4)
w ≡t w′ ⇒ w ≡l w′ (5)
w ≡t w′ ∧ w stores vm ⇒ (w, vm) ≡r (w′, vn) (6)
u ≡t u′ ∧ u = wαG ∧ u′ = w′αG′ ∧ (w, v) ≡r (w′, v′) ∧ u stores v

⇒ (u, v) ≡r (u′, v′) (7)
u ≡t u′ ∧ u = wαG ∧ u′ = w′αG′ ∧ (u, v) ≡r (u′, v′) ∧ v �= vm+1

⇒ (w, v) ≡r (w′, v′) (8)
w ≡l w′ ∧ wαG ∈ L ∧ v ∈ Var(G) \ {vm+1} ⇒ ∃v′ : (w, v) ≡r (w′, v′) (9)
w ≡l w′ ∧ wαG ∈ L ∧ σ = matching(w, w′)

∧ Sat(guard(w′) ∧ G[σ]) ⇒ w′αG[σ] ∈ L (10)
w ≡l w′ ∧ wαG ∈ L ∧ w′αG′ ∈ L ∧ σ = matching(w, w′)

∧ Sat(G[σ] ∧ G′) ⇒ wαG ≡t w′αG′ (11)

assignment (Conditions 6, 7 and 8). Condition 6 says that the parameters of
the final input end up in the same register when they are stored. Condition 7
says that when two values are stored in the same register, they will stay in the
same register for the rest of their life (this condition can be viewed as a right
invariance condition for registers). Conversely, if two values are stored in the
same register after a transition, and they do not correspond to the final input,
they were already stored in the same register before the transition (Condition 8).
Condition 9 captures the well-formedness assumption for register automata. As
a consequence of Condition 9, G[σ] is defined in Conditions 4, 10 and 11, since
Var(G) ⊆ domain(σ). Condition 10 is the equivalent for symbolic languages of
the well-known right invariance condition for regular languages. For symbolic
languages a right invariance condition

w ≡l w′ ∧ wαG ∈ L ∧ σ = matching(w,w′) ⇒ w′αG[σ] ∈ L

would be too strong: even though w and w′ lead to the same location, the values
stored in the registers may be different, and therefore they will not necessarily
enable the same transitions. However, when in addition guard(w′) ∧ G[σ] is sat-
isfiable, we may conclude that w′′αG[σ] ∈ L. Condition 11, finally, asserts that
L only allows deterministic behavior.

The simple lemma below asserts that, due to the determinism imposed by
Condition 11, the converse of Conditions 2, 3 and 4 also holds. This means that
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≡t can be expressed in terms of ≡l and ≡r, that is, once we have fixed ≡l and
≡r, relation ≡t is fully determined.

Lemma 9. Suppose symbolic language L over Σ is regular, and equivalences
≡l, ≡t and ≡r satisfy the conditions of Definition 9. Then

w ≡l w′ ∧ wαG ∈ L ∧ w′αG′ ∈ L ∧ σ = matching(w,w′) ∧ G′ ≡ G[σ]
⇒ wαG ≡t w′αG′.

We can now state our “symbolic” version of the celebrated result of Myhill &
Nerode. The symbolic language of any register automaton is regular (Theorem 2),
and any regular symbolic language can be obtained as the symbolic language of
some register automaton (Theorem 3).

Theorem 2. Suppose A is a register automaton. Then Ls(A) is regular.

Proof. (outline) Let L = Ls(A). Then, by Lemma 5, L is feasible. Define equiv-
alences ≡l, ≡t and ≡r as follows:

– For w,w′ ∈ L, w ≡l w′ iff symb(w) and symb(w′) share the same final loca-
tion.

– For w,w′ ∈ L \ {ε}, w ≡t w′ iff symb(w) and symb(w′) share the same final
transition.

– For w,w′ ∈ L and v, v′ ∈ V, (w, v) ≡r (w′, v′) iff there is a register x ∈ V such
that the final valuations ζ of symb(w) stores v in x, and the final valuation
ζ ′ of symb(w′) stores v′ in x, that is, ζ(x) = v and ζ ′(x) = v′.
(Note that, by Lemma 3, range(ζ) ⊆ {v1, . . . , vm}, for m = length(w), and
range(ζ ′) ⊆ {v1, . . . , vn}, for n = length(w′).)

Then ≡l has finite index since A has a finite number of locations, ≡t has finite
index since A has a finite number of transitions, and the equivalence induced by
≡r has finite index since A has a finite number of registers. We refer to the full
version of this paper for a proof that, with this definition of ≡l, ≡t and ≡r, all
11 conditions of Table 1 hold.

The following example shows that in general there is no coarsest location
equivalence that satisfies all conditions of Table 1. So whereas for regular lan-
guages a unique Nerode congruence exists, this is not always true for symbolic
languages.

Example 5. Consider the symbolic language L that consists of the following three
symbolic words and their prefixes:

w = a v1 > 0 a v1 > 0 b 

u = a v1 = 0 a v1 = 0 b 

z = a v1 < 0 c v1 + v2 = 0 a v2 > 0 c 


Symbolic language L is accepted by both automata displayed in Fig. 4. Thus,
by Theorem 2, L is regular. Let wi, ui and zi denote the prefixes of w, u and



A Myhill-Nerode Theorem 57

q0start

q1

q2

q3

q4

q5

q6

a, p < 0, x := p

a, p > 0, x := p

c, x+ p = 0, x := p

a, x > 0

a, x > 0

b,�

c,�
a, p = 0, x := p a, x = 0

q0start

q1

q2

q3

q4

q5

q6

a, p < 0, x := p

a, p > 0, x := p

c, x+ p = 0, x := p

a, x > 0

a, x > 0

b,�

c,�a, p = 0, x := p
a, x = 0

Fig. 4. There is no unique, coarsest location equivalence.

z, respectively, of length i. Then, according to the location equivalence induced
by the first automaton, w1 ≡l u1, and according to the location equivalence
induced by the second automaton, u1 ≡l z2. Therefore, if a coarsest location
equivalence relation would exist, w1 ≡l z2 should hold. Then, by Condition 9,
(w1, v1) ≡r (z2, v2). Thus, by Lemma 9, w2 ≡t z3, and therefore, by Condition 5,
w2 ≡l z3. But now Condition 10 implies a v1 > 0 a v1 > 0 c 
 ∈ L, which is a
contradiction.

Theorem 3. Suppose L is a regular symbolic language over Σ. Then there exists
a register automaton A such that L = Ls(A).

Proof. (Outline) Since any register automaton without accepting locations
accepts the empty symbolic language, we may assume without loss of gener-
ality that L is nonempty. Let ≡l,≡t,≡r be relations satisfying the properties
stated in Definition 9. We define register automaton A = (Σ,Q, q0, F, V, Γ ) as
follows:

– Q = {[w]l | w ∈ L} ∪ {qsink}, where qsink is a special sink location.
(Since L is regular, ≡l has finite index, and so Q is finite, as required.)

– q0 = [ε]l.
(Since L is regular, it is feasible, and thus prefix closed. Therefore, since we
assume that L is nonempty, ε ∈ L.)
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– F = {[w]l | w ∈ L}.
– V = {[(w, v)]r | w ∈ L ∧ v ∈ V ∧ w stores v}.

(Since L is regular, the equivalence induced by ≡r has finite index, and so
V is finite, as required. Note that registers are supposed to be elements of
V, and equivalence classes of ≡r are not. Thus, strictly speaking, we should
associate a unique register of V to each equivalence class of ≡r, and define V
in terms of those registers.)

– Γ contains a transition 〈q, α, g, 
, q′〉 for each equivalence class [wαG]t, where
• q = [w]l

(Condition 2 ensures that the definition of q is independent from the
choice of representative wαG.)

• (Condition 3 ensures that input symbol α is independent from the choice
of representative wαG.)

• g ≡ G[τ ] where τ is a variable renaming that satisfies, for v ∈ Var(G),

τ(v) =
{

[(w, v)]r if w stores v
p if v = vm+1 ∧ m = length(w)

(By Condition 9, w stores v, for any v ∈ Var(G) \ {vm+1}, so G[τ ] is
well-defined. Condition 4 ensures that the definition of g is independent
from the choice of representative wαG.) Also note that, by Condition 1,
τ is injective.)

• 
 is defined for each equivalence class [(w′αG′, v′)]r with w′αG′ ≡t wαG
and w′αG′ stores v′. Let n = length(w′). Then


([(w′αG′, v′)]r) =
{

[(w′, v′)]r if w′ stores v′

p if v′ = vn+1

(By Condition 8, either v′ = vn+1 or w′ stores v′, so 
([(w′αG′, v′)]r) is
well-defined. Also by Condition 8, the definition of 
 does not depend on
the choice of representative w′αG′. By Conditions 6 and 7, assignment 

is injective.)

• q′ = [wαG]l
(Condition 5 ensures that the definition of q′ is independent from the
choice of representative wαG.)

In order to ensure that A is completely specified, we add transitions to the
sink location qsink . More specifically, if q ∈ Q is a location with outgoing
α-transitions with guards g1, . . . , gm, then we add a transition 〈q, α,¬(g1 ∨
· · · ∨ gm), 
0, qsink 〉 to Γ , for 
0 the trivial assignment with empty domain.
Finally, we add, for each α ∈ Σ, a self loop 〈qsink , α,
, 
0, qsink 〉 to Γ . Since
L is regular, ≡t has finite index and therefore Γ is finite, as required.

We claim that A is deterministic and prove this by contradiction. Suppose
〈q, α, g′, 
′, q′〉 and 〈q, α, g′′, 
′′, q′′〉 are two distinct α-transitions in Γ with
g′ ∧ g′′ satisfiable. Then there exists a valuation ξ such that ξ |= g′ ∧ g′′.
Note that q �= qsink , q′ �= qsink and q′′ �= qsink . Let the two transitions cor-
respond to (distinct) equivalence classes [w′αG′]t and [w′′αG′′]t, respectively.
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Then g′ = G′[τ ′] and g′′ = G′′[τ ′′], with τ ′ and τ ′′ defined as above. Now
observe that G′[τ ′] ≡ G′[σ][τ ′′], for σ = matching(w′, w′′). Using Lemma 4, we
derive

ξ |= g′∧g′′ ⇔ ξ |= G′[σ][τ ′′]∧G′′[τ ′′] ⇔ ξ |= (G′[σ]∧G′′)[τ ′′] ⇔ ξ◦τ ′′ |= G′[σ]∧G′′.

Thus G′[σ] ∧ G′′ is satisfiable and we may apply Condition 11 to conclude
w′αG′ ≡t w′′αG′′. Contradiction.

So using the assumption that L is regular, we established that A is a register
automaton. Note that for this we essentially use that equivalences ≡l, ≡t and
≡r have finite index, as well as all the conditions, except Condition 10. We claim
L = Ls(A).

5 Concluding Remarks

We have shown that register automata can be defined in a natural way directly
from a regular symbolic language, with locations materializing as equivalence
classes of a relation ≡l, transitions as equivalence classes of a relation ≡t, and
registers as equivalences classes of a relation ≡r.

It is instructive to compare our definition of regularity for symbolic languages
with Nerode’s original definition for non-symbolic languages. Nerode defined his
equivalence for all words u, v ∈ Σ∗ (not just those in L!) as follows:

u ≡l v ⇔ (∀w ∈ Σ∗ : uw ∈ L ⇔ vw ∈ L).

For any language L ⊆ Σ∗, the equivalence relation ≡l is uniquely determined
and can be used (assuming it has finite index) to define a unique minimal finite
automaton that accepts L. As shown by Example 5, the equivalence ≡l and
its corresponding register automaton are not uniquely defined in a setting of
symbolic languages. For such a setting, it makes sense to consider a symbolic
variant of what Kozen [29] calls Myhill-Nerode relations. These are relations that
satisfy the following three conditions, for u, v ∈ Σ∗ and α ∈ Σ,

u ≡l v ⇒ (u ∈ L ⇔ v ∈ L) (12)
u ≡l v ⇒ uα ≡l vα (13)

≡l has finite index (14)

Note that Conditions 12 and 13 are consequences of Nerode’s definition. Con-
dition 13 is the well-known right invariance property, which is sound for non-
symbolic languages, since finite automata are completely specified and every
state has an outgoing α-transition for every α. A corresponding condition

u ≡l v ⇒ uαG ≡l vαG

for symbolic languages would not be sound, however, since locations in a register
automaton do not have outgoing transitions for every possible symbol α and
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every possible guard G. We see basically two routes to fix this problem. The
first route is to turn ≡l into a partial equivalence relation that is only defined
for symbolic words that correspond to runs of the register automaton. Right
invariance can then be stated as

w ≡l w′ ∧ wαG ≡l wαG ∧ σ = matching(w,w′) ∧ w′αG[σ] ≡l w′αG[σ]
⇒ wαG ≡l w′αG[σ]. (15)

The second route is to define ≡l as an equivalence on L and restrict attention
to prefix closed symbolic languages. This allows us to drop Condition 12 and
leads to the version of right invariance that we stated as Condition 10. Since
prefix closure is a natural restriction that holds for all the application scenarios
we can think of, and since equivalences are conceptually simpler than PERs, we
decided to explore the second route in this article. However, we conjecture that
the restriction to prefix closedness is not essential, and Myhill-Nerode charac-
terization for symbolic trace languages without this restriction can be obtained
using Condition 15.

An obvious research challenge is to develop a learning algorithm for symbolic
languages based on our Myhill-Nerode theorem. Since for symbolic languages
there is no unique, coarsest Nerode congruence that can be approximated, as
in Angluin’s algorithm [3], this is a nontrivial task. We hope that for register
automata with a small number of registers, an active algorithm can be obtained
by encoding symbolic traces and register automata as logical formulas, and using
SMT solvers to generate hypothesis models, as in [37].

As soon as a learning algorithm for symbolic traces has been implemented,
it will be possible to connect the implementation with the setup of [17], which
extracts symbolic traces from Python programs using an existing tainting library
for Python. We can then compare its performance with the grey-box version of
the RALib tool [17] on a number of benchmarks, which include data structures
from Python’s standard library. An area where learning algorithms for symbolic
traces potentially can have major impact is the inference of behavior interfaces of
legacy control software. As pointed out in [28], such interfaces allow components
to be developed, analyzed, deployed and maintained in isolation. This is achieved
using enabling techniques, among which are model checking (to prove interface
compliance), observers (to check interface compliance), armoring (to separate
error handling from component logic) and test generation (to increase test cov-
erage). Recently, automata learning has been applied to 218 control software
components of ASML’s TWINSCAN lithography machines [40]. Using black-box
learning algorithms in combination with information from log files, 118 compo-
nents could be learned in an hour or less. The techniques failed to successfully
infer the interface protocols of the remaining 100 components. It would be inter-
esting to explore whether grey-box learning algorithm can help to learn models
for these and even more complex control software components.
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D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32759-9 4

2. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.: Generating models of infinite-state
communication protocols using regular inference with abstraction. Formal Methods
Syst. Des. 46(1), 1–41 (2014). https://doi.org/10.1007/s10703-014-0216-x

3. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

4. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

5. Benedikt, M., Ley, C., Puppis, G.: What you must remember when processing data
words. In: Proceedings International Workshop on Foundations of Data Manage-
ment, CEUR Workshop Proceedings 619. CEUR-WS.org (2010)

6. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proceedings
LICS 2011, pp. 355–364. IEEE Computer Society (2011)
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18. Giannakopoulou, D., Rakamarić, Z., Raman, V.: Symbolic learning of component
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Abstract. CafeOBJ is a language for writing formal specifications of
software and hardware systems. It implements equational logic by rewrit-
ing and has been used to verify properties of systems using both proof
scores and theorem proving. In this paper, we present CiMPG+F, an
extension of the CafeInMaude interpreter that, for a large class of
CafeOBJ specifications, (i) generates complete proofs from scratch and
(ii) fixes incomplete proof scores. CiMPG+F allowed us to prove from
scratch the correctness of different protocols, giving us confidence in the
approach.

Keywords: CafeOBJ · Theorem Proving · Automatic Proof Inference

1 Introduction

As systems become more and more complex, the verification techniques required
to prove that they fulfill some given properties must also evolve to deal with
them. Theorem proving is a key methodology for verifying critical properties,
such as soundness and completeness, of systems. In contrast to other techniques
like model checking [4], theorem proving provides complete confidence in the
proven results, but requires in general more effort from the user. Theorem provers
usually present a trade-off between flexibility and automation: more flexibility
implies less automation and vice versa.

CafeOBJ [6] is a language for writing formal specifications for a wide variety
of software and hardware systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful plat-
form for specifying and proving properties of systems. We choose CafeOBJ as
specification language because it provides several features to ease the definition
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of systems. These features include a flexible mix-fix syntax, powerful and clear
typing system with ordered sorts, parameterized modules and views for instan-
tiating the parameters, module expressions, operators for defining terms (which
may include equational axioms, like being associative or having a unit element),
and equations for defining the (possibly conditional) equalities between terms,
among others. In particular, reasoning modulo equational axioms allows for very
natural specifications but also requires proof systems to deal with them in spe-
cific ways.

In this paper we focus on CafeInMaude [16], an interpreter of CafeOBJ imple-
mented in Maude [5] that supports both standard theorem proving [15] and proof
scores [7] as techniques for verifying properties. CafeInMaude is implemented
using Maude’s metalevel, which allows users to manipulate Maude modules and
terms as usual data. In this way, we have implemented meta-heuristics to help
users with their proofs.

The CafeInMaude Proof Assistant (CiMPA) uses structural induction on con-
structors, implements the theorem of constants [8] and case splitting by equations
and terms (with special commands to deal with associative sequences), and uses
rewriting as execution mechanism. On the other hand, proof scores are proof
outlines that use the same syntax as CafeOBJ, hence providing great flexibility
to the user; in particular, new terms can be defined (i.e. to generate the appro-
priate inductive cases), new case splittings can be added by means of equations,
and proofs are carried by using the red command, which reduces the goal in the
enriched module by using all the equations as left-to-right rewrite rules. This
proof methodology is very flexible and allows users to prove results using the
same features available to specify the system, instead of restricting users to a spe-
cific set of proof commands. However, CafeInMaude does not check proof scores
in any way, so only standard theorem proving ensures that the given properties
really hold. Regarding the trade-off between flexibility and automation discussed
above, proof scores are more flexible but less reliable than CiMPA proofs.

In [15], the authors showed that this gap between both tools can be partially
closed, at least for those properties that can be proved by using the commands
available in CiMPA. Each module in a proof score can be understood as a leaf in
a proof tree and presented to the CafeInMaude Proof Generator, CiMPG, which
generates a CiMPA proof from a correct proof score, hence guaranteeing the
soundness of the proof score. In this paper we present the CafeInMaude Proof
Generator & Fixer-upper (CiMPG+F), an extension of CiMPG that:

– Infers proofs from scratch for a wide range of systems. CiMPG+F requires
the user to introduce the properties to be proven and the induction variable,
and the system tries to find a CiMPA proof that proves the given properties.

– Combines this generation mechanism with proof scores in two ways: (i) if a
CiMPA proof is required from an incomplete proof score, CiMPG+F tries to
fix it by using the given information to prune the search space; and (ii) when
a proof cannot be generated from scratch, the user can provide a (partial)
proof score guiding the process; in this way, CiMPG+F is in charge of the
mechanical work and leaves the user the creative tasks.
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– If the proof fails, the tool shows all the case splittings that it tried, including
those goals that were proven and those that failed. This information may
guide the user towards the most appropriate case splittings.

The rest of the paper is organized as follows: Sect. 2 presents the basics of
CafeOBJ and proof scores and summarizes the main features of the previous
version of the tool. Section 3 describes our algorithm for inferring new proofs,
while Sect. 4 presents how this mechanism is combined with partial information
from proof scores. Section 5 discusses some related work and Sect. 6 presents
the benchmarks we have used to test the tool. Finally, Sect. 7 concludes and
outlines some lines of future work. The tool and several case studies are available
at https://github.com/ariesco/CafeInMaude.

2 Preliminaries

CafeOBJ [6] implements order-sorted equational logic by rewriting. It supports
the definition of datatypes by means of sorts and subsort relations, construc-
tors for these datatypes, and functions whose behavior is specified by means of
equations. We present as our running example a simplified cloud synchroniza-
tion protocol as an observational transition system. In this protocol we have a
cloud computer and an arbitrary number of PCs, and they try to keep a value
synchronized, so new values appearing in the PCs must be uploaded to the cloud
and, similarly, PCs must retrieve new values from the cloud. We represent val-
ues as natural numbers and consider that larger values are newer to simplify the
presentation. In this setting the cloud computer is represented by:

– Its status (statusc), which takes the values idlec and busy (a PC is con-
nected).

– Its current value (valc).

Given these ideas, we start our CafeOBJ specification by defining the appro-
priate datatypes for statuses and values. The module LABELC defines the sort
LabelC, with constructors idlec and busy (both with the attribute constr,
standing for constructor). It also defines an equation for the built-in function
_=_; this function is defined for every sort but, by default, it only states that
it holds (that is, it returns true) for syntactically equal terms, so it does not
define the cases when it is reduced to false. In this case we indicate that idlec
is different from busy:

mod! LABELC { [LabelC]

ops idlec busy : -> LabelC {constr}

eq (idlec = busy) = false . }

where the keyword mod! indicates the module has tight semantics [2]. Similarly,
the module VALUE requires the existence of a sort Value for values, which has a
minimum value mv and implements a _<=_ function that verifies that any value
is equal to itself and is larger than mv, with V of sort Value. Note that this

https://github.com/ariesco/CafeInMaude
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module is defined with mod*, indicating it has loose semantics [2].1 We choose
this semantics because, in contrast with to LABELC, different types of values could
be used without affecting the behavior of the system:

mod* VALUE { [Value]

op mv : -> Value {constr}

op _<=_ : Value Value -> Bool .

eq (V <= V) = true .

eq (mv <= V) = true .}

In turn, the PCs are represented by:

– Its status (statusp), which takes values idlep, gotval (the PC has fetc.hed
the value from the cloud), and updated (the PC has updated either its value
or the cloud’s value).

– Its current value (valp).
– A temporal value retrieved from the cloud. This value is used to avoid over-

writing newer values.

We would specify a module LABELP, similar to LABELC above, for the possible
statuses of the PCs. Then, the module CLIENT below requires the existence of a
sort Client, which stands for PC identifiers:

mod* CLIENT { [Client] }

The module CLOUD imports the modules above and defines the sort Sys for
the system. The values of the system are obtained via observers, that return the
status and the value of the cloud (statusc and valc, respectively) and the sta-
tus, the value, and the temporary value (statusp, valp, and tmp, respectively):

mod* CLOUD { pr(LABELP) pr(LABELC) pr(CLIENT) pr(VALUE)

[Sys]

op statusc : Sys -> LabelC

op valc : Sys -> Value

op statusp : Sys Client -> LabelP

ops valp tmp : Sys Client -> Value

The system is built by means of transitions, whose behavior is shown by
using equations for the observers above. These transitions must make sure that
only one PC can be connected to the cloud at the same time and that the cloud
keeps the newest value. The constructor init stands for the initial state, where
all elements are idle and we are not interested in the remaining values:

op init : -> Sys {constr}

eq statusc(init) = idlec .

eq statusp(init,I) = idlep .

1 Modules with tight semantics have a single model (the initial model), which is unique
up to isomorphism. On the other hand, modules with loose semantics indicate that
many different implementations (models) for the sorts and operators in the specifi-
cation satisfy the given axioms.
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Next we define the transition getVal, that takes as arguments a system and
the identifier of the client that is retrieving the value from the cloud. This tran-
sition can only be applied if both the cloud computer and the current computer
are idle. Hence, we first indicate that, if these conditions do not hold, then the
transition is skipped:

op getval : Sys Client -> Sys {constr}

ceq getval(S,I) = S if not(statusp(S,I) = idlep and statusc(S) = idlec) .

If the conditions hold then the status of the cloud is busy and the PC goes
to gotVal:

ceq statusc(getval(S,I)) = busy

if statusp(S,I) = idlep and statusc(S) = idlec .

ceq statusp(getval(S,I),J) = (if I = J then gotval else statusp(S,J) fi)

if statusp(S,I) = idlep and statusc(S) = idlec .

Similarly, if the conditions hold the temporary value of the computer must
be the one of the cloud:

ceq tmp(getval(S,I),J) = (if I = J then valc(S) else tmp(S,J) fi)

if statusp(S,I) = idlep and statusc(S) = idlec .

Because this transition retrieves the value from the cloud and stores it in as
temporary value, the current values does not change:

eq valc(getval(S,I)) = valc(S) .

eq valp(getval(S,I),J) = valp(S,J) .

The remaining transitions are gotoidle, which indicates the PC has finished
the connection and both the PC and the cloud go to idle, modval, which updates
the value stored in the PC by creating a new value (using an auxiliary function
new(S, C), for S a system and C a PC identifier), and update, which updates the
older value (either in the PC or in the cloud). All of them are defined following
the ideas above and are available in the repository. Finally, we define seven
properties that must hold in the system:

– If a PC is updated then it has the same value as the cloud PC (inv1).
– If a PC is in gotval, then its temporary value is the one in the cloud (inv2).
– If two PCs are connected to the cloud (the status is different to idlep in both

cases) then they are the same PC (invariants inv3, inv4, and inv5).
– If a PC is not idle then the cloud cannot be idle at the same time (invariants
inv6 and inv7).

ops inv1 inv2 inv6 inv7 : Sys Client -> Bool

ops inv3 inv4 inv5 : Sys Client Client -> Bool

eq inv1(S,I) = (statusp(S,I) = updated implies valp(S,I) = valc(S)) .

eq inv2(S,I) = (statusp(S,I) = gotval implies tmp(S,I) = valc(S)) .

eq inv3(S,I,J) = (statusp(S,I) = updated and
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statusp(S,J) = gotval implies I = J) .

eq inv4(S,I,J) = (statusp(S,I) = gotval and

statusp(S,J) = gotval implies I = J) .

eq inv5(S,I,J) = (statusp(S,I) = updated and

statusp(S,J) = updated implies I = J) .

eq inv6(S,I) = not(statusp(S,I) = updated and statusc(S) = idlec) .

eq inv7(S,I) = not(statusp(S,I) = gotval and statusc(S) = idlec) . }

We can prove these properties using both proof scores and CiMPA, as par-
tially shown in Fig. 1. On the left we present an open-close environment that
imports the CLOUD module and discharges the subgoal inv1(getval(s,j),i) in
the particular case that the three equations defined in the module hold. Note
that all required constants are defined in the environment and that we use the
induction hypothesis (shown first with the :nonexec attribute, which indicates
that it cannot be directly used for reducing terms; the induction hypotheses for
the remaining goals have been skipped for clarity) as the premise of an implica-
tion. Because the reduction command returns true when executed we know this
particular case holds, but we need another three open-close environments for
discharging this subgoal. Note that these environments follow cafeOBJ syntax
and can be freely defined by the user; CafeOBJ supports the proof by executing
the red command but it does not check that all cases have been discharged (i.e.,
that all environments have been defined). On the other hand, the code on the
right introduces the goal (the remaining goals have been skipped for clarity),
asks CiMPA to apply induction on S:Sys and applies the theorem of constants
(:apply(tc)), which substitutes variables by fresh constants and generates seven
subgoals, one for each property that we want to prove, the first subgoal being
inv1(getval(S#Sys,C#Client),C@Client) (where fresh constants generated
by induction contain # followed by the sort name and fresh constants generated
by the theorem of constants use @ instead of #). Then, we ask CiMPA to apply
case splitting on a given equation (note that it is equivalent to the first equation
on the proof score), which would generate two subgoals (one where the equation
holds and another one where it does not hold); we would introduce two more
case splittings and use the implication command to reach the same case shown
for the open-close environment on the left and then, that would be discharged
with CiMPA red command; then we would continue with the subgoals gener-
ated by the case splittings. Note that in this case we use CiMPA syntax but
the tool makes sure we prove all required cases. CiMPG+F aims to generate a
CiMPA proof (like the one on the right) from an incomplete set of open-close
environments (like the one on the left). In particular, CiMPG+F can generate
proofs by providing a single environment indicating the goals and the variable
used for induction.



70 A. Riesco and K. Ogata

.DUOLCnepo.DUOLCnepo

op s : -> Sys . :goal{

ops i j : -> Client . eq [cloud :nonexec] :

.eurt=)tneilC:C,syS:S(1vni:]cexenon:1vni[qe

inv1(s,K:Client) = true . ...}

)syS:S(nodni:...

eq statusp(s,j) = idlep . :apply(si)

eq statusc(s) = idlec . :apply(tc)

{ftc:=1bscfed:.j=iqe

red inv1(s,i) implies eq statusp(S#Sys,C#Client) = idlep .}

inv1(getval(s,j),i) . :apply(csb1)

...esolc

Fig. 1. Proof fragments: proof score (left) and CiMPA proof (right)

Require: Module m, goal g, depth d, implication bound i , variables bound v .
Ensure: p contains the proof for g or ∅ if the proof is not found.
1: p ← ∅
2: if inductionRequired(g) then (g, m, p) ←applyInduction(m, g)
3: end if
4: return genProof(m, g, d, i, v, p)
5: function genProof(m, g, d, i, v, p)
6: if hasVars(g) or multipleGoals(g) then (g, m, p) ←thOfCons(m, g, p)
7: end if
8: (found , p′) ← discharge(m, g, i, v, p)
9: if ¬found & (d > 0) then
10: cs ← generate(m, g)
11: while cs �= ∅ and ¬ found do
12: c ← pop(cs)
13: (m′, g′, p′) ← apply(m, p, c)
14: (found , p′) ← genProof(m′, g′, d − 1, i, v, p′)
15: end while
16: end if
17: return (found , p′)
18: end function

Fig. 2. Main algorithm for CiMPG+F

3 Inferring New Proofs

In this section we briefly describe how to generate proofs for a given goal (either
the initial goal or a subgoal), describing in detail the main functions of the
algorithm. Then, we will illustrate these ideas with the Cloud protocol above.
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3.1 Proof Generation

Figure 2 presents the main algorithm for CiMPG+F. Because the tool requires
the user to introduce the goal and to identify the variable used for induction,
the first step might be applying induction (Line 2); in this sense, the function
inductionRequired just checks whether there is a variable pointed out by the
user for induction. If induction has been applied, the main function, genProof
(Lines 5–18), is called. This function requires, in addition to the goal, the module
where the evaluation takes place, and the maximum depth, two extra parameters:
how many implications can be used (in addition to the implication with the
hypothesis corresponding to the goal we want to prove, which is always tried)
and how many variables can be instantiated. The function first checks whether
there are other variables that must be transformed into constants by using the
theorem of constants (Line 6). This command is also used to split the goal into
several subgoals when required. Once the goal contains no variables and consists
of exactly one property, we start the backtracking algorithm. The base case is
reached when the goal can be discharged by the discharge function (Line 8, see
Section 3.2). Otherwise, if we have not reached the depth given as parameter,
the generate function (Line 10, see Section 3.3) returns a list of case splittings
for continuing the process. The function apply (Line 13), in charge of applying
the case splitting, was already implemented in CiMPA.

Note that, by interacting with the d, i, and v bounds the user can
reduce/widen the search space for particular subgoals, hence finding proofs for
more complex goals but making the process more expensive.

3.2 Discharging Goals

The function discharge in the previous section checks whether the current
subgoal can be discharged (i.e. it is reduced to true) by using reductions and
implications with the induction hypotheses. That is, the term to be reduced has
the general form . . . → hypothesisj (h1, . . . , hnj

) → . . . → subgoal(t1 , . . . , tns ).
We have a twofold combinatorial explosion when dealing with implications:

1. We need to try all possible sequences of hypotheses, varying both the number
of hypotheses and their order.

2. Induction hypotheses may have free variables, which must be instantiated
with either fresh constants or terms built with constructors.

Because the discharge function is used in all nodes, it should not be expen-
sive. In order to control the issues above we use the values i (for the first issue)
and v (for the second one) introduced in the previous section. Recommended
values for d, i, and v are 5, 1, and 2,2 respectively, although the values can be
customized for each specific case, as discussed in Sect. 7.

In order to alleviate the second issue, we noticed that, when reducing terms
with variables, we obtained some terms of the form f(. . . , vi, . . .) = f(. . . , ti, . . .),
2 These values are obtained empirically, refining possibly bigger values that might

ensure the proof is found.
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with vi a variable and ti a ground term. We used these terms to compute a “pre-
instantiation” . . . , vi �→ ti, . . . that greatly reduces the number of free variables
and makes the function cost-effective for large specifications. Finally, take into
account that if the number of free variables is greater than the parameter v the
instantiation is not tried.

3.3 Finding Case Splittings

The case splittings that can be inferred by CiMPG+F are those that can be
executed by CiMPG [15]: by equations (distinguishing whether the equation
holds or not) and by terms (distinguishing the different values, built using only

Require: Module m and goal g.
Ensure: cs is a list of pairs (c, type), being c a term and type the type of case splitting.
1: function generate(m, g)
2: cs ← [] noSubs ← ∅
3: red ← reduce(m, g)
4: equals ← getEqualities(red)
5: for each hypothesis ∈ m do
6: red ← reduce(m, hypothesis → g)
7: equals ← equals ∪ getEqualities(red)
8: end for
9: for each t = t′ ∈ equals do � The following loop would be repeated for t’
10: for each θ | θ(l) = t |pos & eq l = r if c1 = c′

1 ∧ · · · ∧ cn = c′
n ∈ m do

11: cond ← reduce(m, θci = θc′
i) � for i the first condition that fails

12: equals ← equals ∪ getEqualities(cond)
13: end for
14: if not entered any of the previous loops then noSubs ← noSubs ∪ t = t′

15: end if
16: end for
17: for each t = t′ ∈ noSubs do � We assume t > t′

18: if onlyCtors(t′) then cs ← cs + subterms(t)
19: else cs ← cs + (t = t′, eq) + subterms(t) + subterms(t′)
20: end if
21: end for
22: return cs
23: end function
24: function subterms(t)
25: cs ← []
26: for each subterm t′ of t s.t. t′ has a function symbol at the top do
27: if isAssocSeq(t′) then cs ← cs + (t, seq)
28: else cs ← cs + (t, term)
29: end if
30: end for
31: return prioritize(cs)
32: end function

Fig. 3. generate and subterms functions
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constructors and fresh constants, that this term might take). In the second case
CiMPG provides special cases for associative sequences of elements with identity,
so it is possible to distinguish particular elements in different positions of the
sequence.

As the number of terms that can be built in any given module is generally
infinite, the number of case splittings that can be defined for a given proof are
potentially infinite as well. CiMPG+F uses the current goal to focus on those case
splittings that might lead to true. Figure 3(Lines 1–23) presents the structure of
the generate function. It first initializes in Line 2 cs (the list of case splittings)
and noSubs (the set of equalities with candidates for case splitting), reduces the
current goal to its normal form (Line 3), and extracts the equalities in the thus
obtained term (Line 4). It might be also the case that an implication with an
induction hypothesis is required to obtain the appropriate case splitting, hence
requiring beforehand to introduce a case splitting related to that hypothesis. For
this reason, we extract in Lines 5–8 the equalities when using implication with
each hypothesis (we assume repeated terms are not taken into account).

We traverse these equalities (Lines 9–16) looking for substitutions that make
the left-hand side of an equation match the terms in the equality at any position
(note that the figure only presents the loop for t, another one would be required
for t′). If such a substitution is found we analyze why the equation was not
applied (we know it was not applied because we have previously reduced the
term); because it matches the left-hand side the only reason is that one of the
conditions failed, so we pick the first one that failed and add it to set of equalities
we are traversing. If no substitution is found it means the equality cannot be
further reduced, so we keep it in noSubs.

In Lines 17–22 we traverse the equalities we could not apply equations to
(noSubs). It is important to note that the specification must keep being termi-
nating after adding the case splittings. For this reason, the loop assumes a total
order > over the terms, so given the terms t and t′, with t > t′, then we use the
equation t = t′ instead of t′ = t. Note that, given the terms t, built only with
constructors, and t, which includes at least a function symbol, we always have
t > t′. This order is automatically created by CiMPG+F in each case.

Because we assume equalities are defined for constructors, for an equality
t = t′ (t > t′) that was not reduced at least t contains a function symbol. If
t′ does not contain a function symbol then we only focus on the case splittings
generated by t (because in this case the equation is included in the case splitting
by terms) using the auxiliary function subterms, explained below; otherwise
we extract case splittings from both t and t′ and include the case splitting by
equations of the whole equality.

Finally, the prioritize function implements two heuristics for ordering the
case splittings that we found empirically useful: it first tries those case splittings
directly obtained from the goal, instead of the ones obtained from the impli-
cations in Lines 5–8. It also prioritizes case splittings for associative sequences,
because they are more detailed and usually more powerful than standard case
splittings.
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The auxiliary function subterms traverses all the subterms of a given term
with a function symbol at the top and selects the most appropriate case splitting
for it: if the sort of the term is built by means of an associative constructor with
unit element, then the special for case splitting for associative sequences is used;
otherwise, standard case splitting by terms is used.

3.4 Analyzing the Cloud Protocol

We present here how the proof for the Cloud protocol in Sect. 2 is generated; the
parameters d, i, and v from Sect. 3.1 take the values 5, 1, and 2, respectively. The
proof starts when the user introduces the open-close environments below. The
one on the left, labeled as proofCLOUD, introduces the goals. It uses a variable
S:Sys, which indicates that induction takes place on this argument, and fresh
constants for the remaining parameters. Then, the environment on the right uses
the command :infer to ask CiMPG+F to generate a proof for proofCLOUD:

open CLOUD . open CLOUD .

:id(proofCLOUD) :infer(proofCLOUD)

close

ops i j : -> Client .

red inv1(S:Sys, i) .

red inv2(S:Sys, i) .

red inv3(S:Sys, i, j) .

red inv4(S:Sys, i, j) .

red inv5(S:Sys, i, j) .

red inv6(S:Sys, i) .

red inv7(S:Sys, i) .

close

CiMPG+F starts by applying simultaneous induction, which generates five
subgoals corresponding to the five constructors shown above (each of them con-
taining the seven properties) following the alphabetical order of constructors,
and the main body of the genProof function (see Fig. 2) is started. It first
applies the theorem of constants, which generates seven subgoals (one for each
property) for the first constructor, getval. Hence, the first subgoal that needs to
be proven is inv1(getval(S, C),i), for S and C fresh constants of sort Sys and
Client, respectively. Note that CiMPG+F stores the definition of the fresh con-
stants and the induction hypotheses using S (e.g.. inv1(S, I:Client), inv2(S,
I:Client), inv3(S, I:Client, J:Client), etc.).

We would apply now the discharge function to the goal, which will not find
any way to reduce it to true. As our bounds allow CiMPG+F to use one extra
implication (besides the one with inv1 itself) it tries, for example, an impli-
cation with all the possible instantiations of inv3(S, I:Client, J:Client).
This is allowed because we indicated that up to two free variables are allowed,
so a possible instantiation would be inv3(S, C, C) and CiMPG+F would try
inv3(S, C, C) implies inv1(S, i) implies inv1(getval(S,C), i).
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Because the goal was not discharged we use the generate function to obtain
the possible case splittings. Figure 4 summarizes the generation process. For
the sake of simplicity, we do not show the analysis for the terms generated
by using implications with the hypotheses (Lines 5–8 in Fig. 3). We take the
goal (top of the figure) and reduce it, obtaining the next term (note that it
contains functions such as xor, obtained by applying the predefined equations for
Boolean expressions). This term contains two equalities (one of them, updated =
statusp(getval(S,C),i), appears twice), that are extracted in the next level,
which shows the initial members of the equals variable.

For the term statusp(getval(S,C),i) we find an equation that could be
applied but the first condition, statusp(S,C) = idlep, failed. We add this
equality to equals, but we do not find any other substitution that allows us
to instantiate an equation, so the noSubs set consists of both statusp(S,C) =
idlep and valc(S) = valp(S,i).

Finally, we traverse these equalities to obtain cs. Because idlep is a con-
structor, for the first equality we just generate (statusp(S,C), term), indicat-
ing that it requires case splitting by constructors. On the other hand, for the
second equality we have a case splitting for the whole term by true/false and
case splittings by constructors for the left-hand and the right-hand sides. Note
that in our example we have no sequences, so this case splitting cannot be found.

Fig. 4. Case splitting inference

As shown in Fig. 1, the first case splitting required for this proof is
(statusp(S,C), term). If chosen by the backtracking algorithm, the next set
of case splitting generated by the tool would be very similar to the one above,
because the goal is reduced to the same term shown in Fig. 4. In this case the
condition that fails is the second one, statusc(S) = idlec, which in turn gen-
erates the case splitting (statusc(S), term). Figure 1 also shows that this case
splitting is required for the proof.
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CiMPG+F would continue the proof with this strategy, finally finding a proof
that requires 530 commands (the computation time is less than one second). In
order to find this proof it needs to use some extra strategies not shown here,
in particular using implications with the hypotheses as premises. Note that not
even one of these commands can be inferred with the previous version of the
tool without the user intervention.

3.5 Understanding Failures

In case a proof is not found, CiMPG+F shows the case splittings that were
applied, the subgoals that could be discarded and the ones that failed because
either (i) no more case splittings were available or (ii) the bound on the depth
of the backtracking algorithm is reached. For each goal and subgoal it shows the
case splitting that was tried and how it behaved; because several case splittings
are in general possible for each goal it shows all of them, numbering them and
using indentation for the sake of readability.

In our cloud example we can reduce the number of backtracking levels to 1
to see how this feature behaves, because it is not enough to prove the first goal.
It starts the proof and first applies induction and the theorem of constants, just
as we discussed in the previous sections:

open CLOUD .

:goal{...}

:ind on (S:Sys)

:apply(si)

:apply(tc)

Then, it tries to prove the first goal. It first tries to apply a case splitting
by the equation valc(S#Sys) = valp(S#Sys,i@Client), which generates two
subgoals. The fist one can be discharged (it just requires the term to be reduced),
but the second one would require more case splittings, so it fails because the
maximum depth for backtracking has been reached:

*** Goal 1, Try 1 - inv1(getval(S#Sys,C#Client),i@Client) - Failure

:def csb1 = :ctf {eq valc(S#Sys) = valp(S#Sys,i@Client).}

:apply(csb1)

*** Goal 1-1 Success by reduction

:apply (rd)

*** Goal 1-2 cannot be discharged. Maximum depth reached.

It tries next a case splitting by the term statusc(S#Sys). Again the first
subgoal can be discharged (in this case it requires to use an implication first)
but again the second one reaches the maximum depth:
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*** Goal 1, Try 2 - inv1(getval(S#Sys,C#Client),i@Client) - Failure

:def csb1 = :ctf [statusc(S#Sys) .]

:apply(csb1)

*** Goal 1-1 Success by implication and reduction.

:imp [proofCLOUD] by {i:Client <- i@Client ;}

:apply (rd)

*** Goal 1-2 cannot be discharged. Maximum depth reached.

Once all possible case splittings have been tried CiMPG+F would move to the
next goal (for inv2) and would show similar information. Using this information
the user can decide if a particular case splitting is promising and use it to guide
the proof, as described in the next section, or just provide a larger bound if
he/she considers the current one was too small.

open CLOUD .

op s : -> Sys .

ops i j : -> Client .

eq [inv1 :nonexec] :

inv1(s,K:Client) = true .

...

eq statusp(s,j) = idlep .

red inv1(getval(s,j),i) .

close

Fig. 5. Proof score for guiding the proof

4 Guiding CiMPG+F Using Proof Scores

As explained above, CiMPG+F uses backtracking to try to find a proof. However,
for large specifications each step is computationally expensive because many case
splittings are possible and many implications and instantiations can be used
to check whether a subgoal has been proven, making the approach unfeasible.
Moreover, because fully automated theorem provers cannot deal with large or
complex specifications, user interaction is required to complete proofs for these
systems. Finally, it might be the case that the user is stuck in a particular
subgoal; because CiMPG+F prints all the branches it tried, it might help the
user to focus on more promising case splittings.

In [15], we showed that each open-close environment in a proof score stands
for a “branch” of the proof tree that can be reproduced by a CiMPA proof. Using
this idea, it is possible to feed CiMPG+F with an incomplete proof score, which
must contain the case splittings that will be used first. The CiMPG algorithm
will reconstruct the proof to that point and then execute CiMPG+F to try to
generate the rest of the proof.
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Note, however, that a single equation might not determine the case splitting.
For example, Fig. 5 presents a reduced version of the proof score in Fig. 1 for
the inductive case getval. It suggests a case splitting using eq statusp(s,j)
= idlep. Because idlep is a constructor we do not know whether it suggests a
case-splitting true/false (with the complementary equation eq (statusp(s,j)
= idlep) = false) or by constructors (with the complementary equations eq
pc2(s) = gotval and eq pc2(s) = updated). In this case CiMPG+F would
collect the equations from the remaining open-close environments related to this
inductive case and analyze whether: (i) all the equations required to the splitting
are present. In this case the case splitting is applied and the standard analysis
used by CiMPG continues; (ii) if the splitting is not unambiguously identified,
we need to try each of them and, if the proof fails, try again with the next
possible splitting. If all proofs fail a new proof is tried following the algorithm
in Sect. 3.

Assume now that part of the proof for the cloud protocol is too complex
for generating it automatically, or we just know it requires some extra impli-
cations that will slow down the rest of the proof so we want to feed them
to CiMPG+F directly, which may happen in our case for the inductive case
inv1(update(s,j),i). In that case we can introduce environments like:

open CLOUD .

:id(proofCLOUD)

op s : -> Sys .

ops i j : -> Client .

eq statusc(s) = busy .

eq statusp(s,j) = gotval .

eq i = j .

eq tmp(s,j) <= valp(s,j) = false .

red inv2(s,j) implies inv1(s,i) implies inv1(update(s,j),i) .

close

open CLOUD .

:id(cloud)

op s : -> Sys .

ops i j : -> Client .

eq (statusc(s) = busy) = false .

red inv1(s,i) implies inv1(update(s,j),i) .

close

where we specify the case splittings and the implications required to partially
prove the goal. Note that we have specified the case splittings partially, because
for statusp(s,j) = gotval CiMPG+F does not know if it is case splitting by
terms or by equations, but for statusc(s) = busy it can infer it is by equations
(it finds the complementary equation in the second environment), for i = j it
must be by equations, because j is not a constructor, and for tmp(s,j) <=
valp(s,j) = false it only makes sense to have the complementary equation
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tmp(s,j) <= valp(s,j) = true, that is, we have case splitting by terms with
tmp(s,j) <= valp(s,j).

Regarding the implication, these environments state both the hypotheses and
the instantiations required, so CiMPG+F does not need to try all possible cases.

5 Related Work

Theorem proving is a well established field, with several state-of-the-art the-
orem provers. Possibly two of the most used interactive theorem provers are
Isabelle/HOL [14] and Coq [11]. These theorem provers implement powerful
commands combining several heuristics for trying to automatically discharge
goals. Regarding automatic theorem provers, although they are usually more lim-
ited than interactive ones, some of them, like Spass [17], even support (limited)
inductive proofs. The advantages of CiMPG+F with respect to these provers are:
(i) CafeOBJ is a high-level language for specifying systems, not for specifically
proving theorems, which provides users with a much richer syntax, and (ii) while
heuristics are general, CiMPG+F strategies are specific for each goal, making
them appropriate for novel situations. Finally, note that the trace returned when
a proof fails might help the user for the next try.

Table 1. Benchmarks for CiMPG+F

Name Spec. size Proof size Time Description

2p-mutex 58 23 <1 s 2 processes mutex

ABP 320 1370 ∼2.5 h Alternating bit protocol

Cloud 127 530 <1 s Simplified cloud synchronization protocol

NSLPK 188 342 617 s Authentication protocol NSLPK

Qlock 124 88 <1 s Variant of Dijkstra’s binary semaphore

SCP 182 200 340 s Simple Communication Protocol

TAS 73 88 <1 s Spinlock - Mutual exclusion protocol

Automatic software repair [10] is a field of growing interest. For example, in
model checking a logic-based machine learning technique (inductive logic pro-
gramming) has been used to automatically repair models [1]. We propose the
complementary approach, where the model is assumed correct and we try to
“fix” the proof by closing gaps. Note that this fixing includes automatically gen-
erating new case splittings, which is beyond the standard automatic strategies
integrated in other theorem provers, where a fixed set of previously generated
lemmas is applied.

A similar approach to CiMPG+F was proposed in [13], whose authors present
Crème, a tool checking invariants in CafeOBJ OTS specifications by trying case
splitting. Crème’s main advantage with respect to CiMPG+F is that Crème is



80 A. Riesco and K. Ogata

able to generate a counterexample when the invariant does not hold. However, it
presents a number of problems: it can only use case splitting for Boolean terms,
greatly limiting the proofs it can tackle; it is not directed by the current goal and
the module, hence generating a much bigger state space; and it is not directly
implemented in Maude but in Common Lisp, which greatly reduces its efficiency.
For these reasons Crème is restricted to particular examples, while CiMPG+F
has been applied to many protocols implemented in CafeOBJ.

6 Benchmarks

We discuss in this section the benchmarks we have used to test CiMPG+F.
We have used CiMPG+F to completely generate proofs for different protocols;
the results are presented in Table 1 (times measured with a Mac Book Pro i5
2,4 GHz, 16 GB). In particular, we have:

– The 2p-mutex benchmark is a simple mutual exclusion protocol with exactly
two processes, where we prove mutual exclusion between them (a single goal).

– The ABP benchmark, which will be explained in detail below, is a commu-
nication protocol between two agents that can be understood as a simplified
version of TCP. In this protocol we consider that the channels are unreliable,
in the sense the information might be repeated or lost. In our case we prove
that all messages are delivered in the proper order.

– Cloud refers to the simplified cloud protocol discussed in the previous sections
of this paper.

– The Needham-Schroeder-Lowe Public Key Protocol, NSLPK [12], is an
improvement of the NSPK protocol that fixes a man-in-the-middle attack. In
this case we prove that an intruder cannot reach the information. Although
this protocol is simpler than ABP, the case splittings are non trivial and
illustrate an interesting application of our tool.

– Qlock is a mutual exclusion protocol that introduces a queue to deal with
the different processes. We check both mutual exclusion and that only the
process on the top of the queue can go into the critical section.

– SCP is a simplified version of the ABP, which uses unreliable cells as com-
munication channels between senders and receivers. In this case we need to
prove the reliable communication property: if a receiver gets n packets, then
they are the first n packets dispatched by the sender, and they have been
received in the same order they were sent.

– TAS (Test & Set) is a mutual exclusion protocol that uses a shared lock to
grant the access to the critical section. The proof ensures that at most one
process enters the critical section.

All the proofs are equal to or simpler than the manual proofs already devel-
oped for these protocols by the authors and others, see [15] for details. In par-
ticular, in many cases the implication with the induction hypothesis was used
in manual proofs but nor really required. All the benchmarks but ABP work
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with a single configuration each (definition of bounds for implications, free vari-
ables, and backtracking depth); ABP requires 5 configurations, one for 95 out
of 99 subgoals and one for each one of the remaining subgoals. These different
configurations are required because the number of implications or free variables
is higher, so using these bounds for the whole proof would generate a much
bigger search space. Moreover, in these cases the required depth is also smaller,
which allows us to optimize them. It is worth noting that the values used for the
configurations are the smallest possible; they have been obtained empirically by
progressively reducing larger values.

It is worth briefly discussing the most complex benchmark, ABP. The ABP
protocol [3] has been used for benchmarking many different formal verification
approaches, as discussed in [9]; a completely automatic proof indicates that
the tool has a fair maturity level and can be used in practice. In fact, all the
approaches thus far required user interaction in some degree, so in this sense
CiMPG+F improves previous results obtained in the context of rewriting sys-
tems. ABP requires complex case splittings on associative sequences so, besides
its size, the proof obtained is complex and illustrates the power of CafeOBJ
as specification language and CiMPG+F as theorem generator. Moreover, ABP
makes intensive use of pre-instantation of variables and requires a limitation
in the number of implications (in this case 11 properties are proven, including
lemmas) to work, because otherwise the state space grew too quickly. In fact,
pre-instantiation makes the computation of each node more than 300 times faster
in some cases (from more than 3 min to less than one second).

7 Concluding Remarks and Ongoing Work

In this paper we have presented CiMPG+F, a tool that tries to automati-
cally prove properties of CafeOBJ specifications. These proofs can be based
on known information or completely generated by using a bounded depth-first
search directed by the current goal and system, which greatly reduces the state
space. CiMPG+F optimizes some subtasks, like instantiation of free variables,
and provides three parameters to customize the generated proofs. The perfor-
mance of the tool has been tested with some benchmarks; the results show that
it behaves well in general and can be successfully used with average protocols.

As future work, we are interested in informing the user whether a goal is
not provable, which happens when we are able to reduce it to false and there
are no contradictions in the module. Finally, although CiMPG+F works well in
general, we have already discussed that we do not want to limit its application to
the generation of complete proofs. For this reason, we think it is worth making
CiMPG+F more interactive. It could show information in a graphical way about
those branches that have been traversed without reaching a result and those
branches that have not been traversed yet; in this way the user could understand
which case-splittings are not working, pick some of the ones that have not been
used and suggest new ones. We think that this interaction would ease the proofs
of advanced protocols, which cannot be automatically generated in general and
require too much time from users.
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Abstract. We study the combinatorial structure of concurrent pro-
grams with non-deterministic choice and a fork-join style of coordination.
As a first step we establish a link between these concurrent programs and
a class of combinatorial structures. Based on this combinatorial interpre-
tation, we develop and experiment algorithms aimed at the statistical
exploration of the state-space of programs. The first algorithm is a uni-
form random sampler of bounded executions, providing a suitable default
exploration strategy. The second algorithm is a random sampler of exe-
cution prefixes that allows to control the exploration with respect to the
uniform distribution. The fundamental characteristic of these algorithms
is that they work on the control graph of the programs and not directly
on their state-space, thus providing a way to tackle the state explosion
problem.

Keywords: Concurrency · Non-determinism · Fork-Join processes ·
Loops · Combinatorics · Uniform random generation

1 Introduction

Analyzing the state-space of concurrent programs is a notoriously difficult task,
if only because of the infamous state explosion problem. Several techniques have
been developed to “fight” this explosion: symbolic encoding of the state-space,
partial order reductions, exploiting symmetries, etc. An alternative approach
is to adopt a probabilistic point of view, for example by developing statistical
analysis techniques such as [14]. The basic idea is to generate random executions
from program descriptions, sacrificing exhaustiveness for the sake of tractabil-
ity. However, there is an important difference between generating an arbitrary
execution and generating a random execution according to a known (typically
the uniform) distribution. Only the latter allows to estimate the coverage of the
state-space of a given analysis.

As a preliminary, we have to find suitable combinatorial interpretations for
the fundamental constructions of concurrent programs. In this paper, we study

This research was partially supported by the ANR MetACOnc project ANR-15-CE40-
0014.

c© Springer Nature Switzerland AG 2020
V. K. I. Pun et al. (Eds.): ICTAC 2020, LNCS 12545, pp. 83–102, 2020.
https://doi.org/10.1007/978-3-030-64276-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64276-1_5&domain=pdf
http://orcid.org/0000-0002-5480-0236
http://orcid.org/0000-0003-1892-3017
http://orcid.org/0000-0002-4206-3283
https://doi.org/10.1007/978-3-030-64276-1_5


84 A. Genitrini et al.

a class of programs that uses a fork-join model of synchronization, together with
loops and a choice construct for non-determinism. This is a simple formalism
but it is non-trivial in terms of the concurrency features it provides. Most impor-
tantly, the underlying combinatorial interpretation is already quite involved. In
previous work we studied the combinatorial interpretation of three fundamen-
tal aspects of concurrency: parallelism (as interleaving) interpreted as (strictly)
increasing labelled structures [8], non-determinism as partial labelling [7] and
synchronization as non-strict labelling [9]. In this paper, we integrate these vari-
ous interpretations into a single unified combinatorial specification based on the
symbolic method of [2]. The main interest of this specification of process behav-
iors is that we can then obtain, in a systematic way, the generating function for
the possible executions of a given program. Because we only study finite objects,
the executions are considered of bounded length. At the theoretical level, this is
often a suitable starting point for the study of a quantitative problem in analytic
combinatorics (cf. e.g. [8]). At a more practical level, the combinatorial speci-
fication is also a good source of algorithmic investigations, which is our main
concern in the present paper.

The first problem we study is that of counting the number of executions
(of bounded length) of the programs. This is the problem one has to tackle to
precisely quantify the so-called state “explosion”, and it is also an important
building block of our algorithmic toolbox. Unfortunately, counting executions of
concurrent programs is in fact hard in the general case. We show in [9] that even
for simple programs only allowing barrier synchronization, counting executions
is a �P -complete problem1. Fork-join parallelism enables a good balance between
tractability and expressivity by enforcing some structure in the state-space. A
second problem is caused by non-determinism because for each non-deterministic
choice we have to select a unique branch of execution. Moreover, choices can be
nested so that the number of possibilities can grow exponentially. Relying on an
efficient encoding of the state-space as generating functions, we manage to count
executions without expanding the choices. Of course counting executions has no
direct practical application, but it is an essential requirement for two comple-
mentary and more interesting analysis techniques. First, we develop an efficient
algorithm to generate executions of a given process uniformly at random, for
a given bounded execution length. Without prior knowledge of the state-space,
the uniform distribution yields the best coverage, with the best diversity of out-
puts. The second algorithm generates random prefixes, which allows the user to
introduce some bias in the statistical exploration strategy, e.g. towards regions
of interest of the state-space, while still giving a good coverage and most impor-
tantly still giving control over the distribution. A fundamental characteristics of
these algorithms is that they work on the syntactic representation of the program
and do not require the explicit construction of the state-space, hence enabling
the analysis of systems of a rather large size.

1 A function f is in �P if there is a polynomial-time non-deterministic Turing
machine M such that for any instance x, f(x) is the number of executions of M
that accept x as input [23].
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The outline of the paper is as follows. In Sect. 2 we present the program
class of non-deterministic fork-join programs, as well as its combinatorial inter-
pretation. In Sect. 3 we present in details the two random sampling algorithms
discussed above. Finally, Sect. 4 provides a preliminary experimental study of
the algorithms2.

Related Work. Our study combines viewpoints and techniques from con-
currency theory and combinatorics. A similar line of work exists for the so-
called “true concurrency” model (by opposition to the interleaving semantics
that we use in our study) based on the trace monoid using heaps combinatorics
(see [1,18]). To our knowledge these only address the parallelism issue and not
non-determinism per se. In [3], the authors cover the problem of the uniform
random generation of words in a class of synchronised automata. This approach
is able to cover a slightly more expressive set of programs but this comes at the
cost of the construction of a product (synchronizing) automaton of exponential
size in the worst case. Another approach, investigated in the context of Monte-
Carlo model-checking, is based on the combinatorics of lassos, which relates to
the verification of some temporal-logic properties over potentially infinite execu-
tions. In [15], the authors of this method highlight the importance of uniformity.
Later [21] gives a uniform random sampler of lassos, however relying on the
costly explicit construction of the whole state-space, hence unpractical for even
small processes. Finally [10] studies the random generation of executions in a
model similar to the one we cover by extending the framework of Boltzmann
sampling. Although Boltzmann samplers are usually fast, they turn out to be
impractical in this context because of the heavy symbolic computations imposed
by the interplay between parallelism and synchronisation.

If compared to [7], which discusses non-determinism without synchroniza-
tion, we adopt in the present paper a more direct and simpler encoding of non-
deterministic choices, which significantly improves both the theoretical and prac-
tical developments. The algorithms presented in the paper are in consequence
much more efficient in practice, while covering a more expressive language.

2 Non-deterministic Fork-Join Programs with Loops

We introduce in this section a simple class of concurrent programs featuring
a fork-join programming style with non-deterministic choices and loops. The
interest is twofold. First it showcases non-determinism in interaction with a
non-trivial programming model, which gives insights about its quantitative and
algorithmic aspects. Second the language supports a simple model of iteration,
for which we give a combinatorial interpretation. In terms of expressivity, this
is an important step forward compared to our previous work (see [5,7,8] for
instance). Throughout the paper we will refer to this class as the class of non-
deterministic fork-join programs.
2 An implementation of our algorithms and all the scripts used for the experiments

can be found on the companion repository at https://gitlab.com/ParComb/libnfj.

https://gitlab.com/ParComb/libnfj


86 A. Genitrini et al.

2.1 Syntax

Definition 1 (Non-deterministic fork-join programs). Given a set of
symbols A representing the “atomic actions” of the language, the class of non-
deterministic fork-join programs (over this set A), denoted NFJ, is defined as
follows:

P,Q ::= P ‖ Q (parallel composition (or fork))
| P ;Q (sequential composition (or join))
| P + Q (non-deterministic choice)
| P � (loop)
| a ∈ A (atomic action)
| 0 (empty program, noop).

Informally, the first two constructions form the fork-join “core” of the lan-
guage: P ‖ Q expresses the fact that P is run in parallel with Q and P ;Q means
that P must terminate before Q starts. In a; (b ‖ (c; d)); e, the program starts
by firing a, then it forks two processes b and c; d which run in parallel and when
they terminate e is run, which is called a “join”. The third construction P + Q
expresses a choice: either P or Q is executed but not both. This can model an
“internal” choice of the system such as a random event, a system failure etc., or
an “external” choice, that is a choice depending on a user input3. Finally, the
construction P � expresses loops that can have any (finite) number of iterations.
For instance (a; (b ‖ c))� can be unrolled at runtime to 0 (zero iteration), a; (b ‖ c)
(one iterations), a; (b ‖ c); a; (b ‖ c) (two iterations), etc.

It is important to mention now that the nature of the atomic actions will
remain abstract in the present work, we treat them as black boxes and will
consider that the different occurrences of an action across a term are distinct.
These are sometimes referred to as events in the literature. Our focus is set
on the order in which these actions can be fired and scheduled by the different
operators of the language. In all our examples we use a different lowercase roman
letters as a unique identifiers to help distinguishing between each action.

This simple model is expressive enough to write simple programs in the fork-
join style. Moreover, the four combinators present in the grammar above can
be modelled and well-understood using the tools from analytic combinatorics,
which is at the core of our random sampling procedures in Sect. 3.

2.2 Semantics

We give NFJ an operational semantics in the style of [17]. We define a “reduc-
tion” relation P

a→ P ′ between two programs and an atomic action, it reads
“program P reduces to P ′ by firing action a”. The idea behind the rules is
explained just below.

3 Since we do not interpret the action symbols, no distinction is possible in the provided
semantics between a choice being triggered internally or externally.
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P
a→ P ′

P ‖ Q
a→ P ′ ‖ Q

(Lpar)
Q

a→ Q′

P ‖ Q
a→ P ‖ Q′ (Rpar)

P
a→ P ′

P ; Q
a→ P ′; Q

(Lseq)

nullable(P ) Q
a→ Q′

P ; Q
a→ Q′ (Rseq)

P
a→ P ′

P + Q
a→ P ′ (Lchoice)

Q
a→ Q′

P + Q
a→ Q′ (Rchoice)

a
a→ 0

(act)
P

a→ P ′

P � a→ P ′; P �
(loop)

The nullable predicate, defined just below, tells whether a program can ter-
minate without firing any action.

nullable(P ‖ Q) = nullable(P ) ∧ nullable(Q)
nullable(P ;Q) = nullable(P ) ∧ nullable(Q)
nullable(P + Q) = nullable(P ) ∨ nullable(Q)

nullable(0) = �
nullable(a) = ⊥
nullable(P �) = �

The rules for the parallel composition (Lpar and Rpar) express the inter-
leaving semantics of the language: if an action can be fired in any of P or Q,
then it can be fired in P ‖ Q and the term is rewritten. By iterating these
two rules, we can obtain any interleaving of an execution of P and an execu-
tion of Q. Sequential composition is more asymmetric. The Lseq rule is similar
to Lpar but Rseq captures the synchronisation: an execution can be fired on
the right-hand-side only if the left-hand-side is ready to terminate (expressed
by nullable(P )), in which case it is erased. The choice rules Lchoice and Rchoice
allow actions to be fired from both sides but once we have made the choice of
the branch, it is made definitive by erasing the other branch. Finally the loop P �

can be unrolled any number of times, which is expressed by giving P � the same
semantics as 0+(P ;P �). The fact that nullable P � holds expresses that the loop
can be unrolled zero times, and thus behave as the 0 program.

We call “execution step” a proof-tree built from the above rules (and not
simply its conclusion) and we define an execution as a sequence of such steps
leading to a nullable term.

Definition 2 (Execution). An execution of an NFJ program P0 is a sequence
of steps of the form P0

a1⇒ P1
a2⇒ P2 . . .

an⇒ Pn, such that nullable(Pn) holds, and
where for all i, Pi−1

ai⇒ Pi is a proof-tree ending on the conclusion Pi−1
ai→ Pi.

We refer to the set of all possible executions of a program as its state-space.

Remark 1 (on equality). We purposely based our notion of execution on the
proof-trees rather than simply on the relation P

a→ P ′ to capture the choices
hidden inside these steps. For instance there are two distinct executions depicted
by a�� a⇒ (0; a� ; a��) a⇒ (0; a� ; a��). One corresponds to the case where the
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outer loop is only unrolled once (i.e. the (loop) rule is applied once) but the inner
loop twice. The other corresponds to the case where the outer loop is unrolled
twice and the two occurrences of the inner loop once. The reason behind this
choice is that we focus on the control-flow of programs here rather than the
actual content of the atomic actions.

We will take the following program as a running example for the rest of
the paper: P0 = ((a + (b ‖ c))� ‖ (d + 0))� ; (e + (f ‖ g)). This program has one
length-1 execution, with the following proof tree:

nullable(((a + (b ‖ c))� ‖ (d + 0))�)

e
e→ 0

(act)

e + (f ‖ g) e→ 0
(Lchoice)

P0
e→ 0

(Rseq)

There are also four length-2 executions, as follows4:

– P0
f⇒ (0 ‖ g)

g⇒ 0 ‖ 0

– P0
g⇒ (f ‖ 0)

f⇒ 0 ‖ 0
– P0

a⇒ ((0; (a + (b ‖ c))�) ‖ (d + 0)); ((a + (b ‖ c))� ‖ (d + 0))
�
; (e + (f ‖ g))

e⇒ 0

– P0
d⇒ ((a + (b ‖ c))� ‖ 0); ((a + (b ‖ c))� ‖ (d + 0))

�
; (e + (f ‖ g))

e⇒ 0.

2.3 Combinatorial Interpretation

We now give an interpretation of the executions of an NFJ program as combi-
natorial objects, which will open us the toolbox of analytic combinatorics for
the rest of the paper. We model the set of the executions of a program as a
combinatorial class using the formalism from [12], which we recall here. A com-
binatorial class is a potentially infinite set of objects where each object has been
given a (finite) size and in which there is only a finite number of objects of each
size. In our case, the combinatorial class of interest is the set of finite executions
of a given program and the size of an execution is its length i.e. its number of
reduction steps.

The combinatorial class S(P ) modelling the executions of P is inductively
defined in Table 1. The explanations for the combinatorial constructions are
given bellow.

The empty program 0 and the atomic action a have only one execution, of
length 0 and 1 respectively. This is modelled combinatorially by the neutral
class E : the class containing only one element of size 0, and the atom class Z:
the class with only one element of size 1.

4 In general, the notation P
a⇒ P ′ is ambiguous since there may be several differ-

ent proof-trees with the same conclusion P
a→ P ′. An example of this is given in

Remark 1. For the sake of simplicity and in order to keep the notations light, in the
examples given here, each step P

a⇒ P ′ identifies only one possible proof-tree.
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Table 1. Recursive rules for the computation of the generating function of executions
of an NFJ program.

Construction Specification

P S(P )

0 E
a Z
P ‖ Q S(P ) � S(Q)

P ; Q S(P ) × S(Q)

P + Q when nullable(P ) ∧ nullable(Q) S(P ) + (S(Q) \ E)

P + Q otherwise S(P ) + S(Q)

P � when nullable(P ) Seq(S(P ) \ E)

P � otherwise Seq(S(P ))

The first interesting case is the parallel composition: the executions of P ‖ Q
are made of any interleaving of one execution of P and one execution of Q. For
instance if P = a + (b; c) and Q = d� , then P admits for instance an execution
firing b and then c (denoted by bc for short) and Q admits an execution firing
two ds (denoted by dd for short). Then all the 6 possible interleavings of these
executions are executions of P ‖ Q: bcdd, bdcd, bddc, dbcd, dbdc and ddbc (again,
we only denote the executions by their firing sequences for conciseness). The
labelled product5of combinatorics expresses exactly this and is denoted using
the � symbol. The executions of P ;Q are given by an execution of P followed
by an execution of Q. So for instance, using the same example programs P
and Q as above, bcdd is an execution of (P ;Q) but not dbcd. So they can be
seen as a pair of an execution of P and an execution of Q which is naturally
modelled using the Cartesian product. The set of executions of P + Q is the
union of the executions of P and Q. Moreover this union is “almost” disjoint in
the sense that the only execution that these programs may have in common is
the empty execution, hence the two cases in the definition. Combinatorially, the
fact that nullable(P ) holds corresponds to the fact that the class of its executions
contains one object of size 0: the empty execution. It is in fact important that
we can express this in terms of disjoint unions because they fit in the framework
of analytic combinatorics whereas arbitrary unions are more difficult to handle6.

Finally, the executions of P � are sequences of executions of P or, equivalently,
sequences of non-empty executions of P . This second formulation leads to a
non-ambiguous specification as the unique class P ′ satisfying P ′ = E +P+ × P ′,

5 The word “labelled” is not particularly relevant in our setup. It refers to the fact that
another way to represent the interleaving of two executions is to put an integer label
on each step of both execution carrying the position of each step in the interleaving.

6 Grammar descriptions involving non-disjoint unions are referred to as “ambiguous”
and lack most of the benefits, if not all, of the symbolic method, essentially because
some objects may be counted multiple times when applying the method.
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where P+ denotes the non-empty executions of P . This implicitly defined class P ′

is denoted Seq(P+) and is called the sequence of P+. Once again we must
distinguish whether nullable(P ) holds or not in the definition of P+ to avoid
ambiguities and thus double-counting.

The S function described above maps each program to a combinatorial
specification of its executions. As an example, for our example program we
have S(P0) = Seq(Seq(Z + (Z � Z)) � (Z + E) \ E) × (Z + (Z � Z)). Such a
specification is often the starting point of the study of a problem in analytic
combinatorics, because it has many outcomes, and one of the most important
of them is that it gives a systematic way to compute the generating function of
the combinatorial class. We recall that the generating function of a class C is
the formal power series given by C(z) =

∑
n�0 cnzn where cn is the number of

elements of size n in C.
The generating function of the executions of a program, i.e. of the class S(P ),

constitutes a summary of the counting information of its state space. Moreover,
this encoding as a power series gives a convenient formalism to compute the
number of executions of length n, for bounded n. The symbolic method from [12]
gives an automatic translation from the specification of a class to its generating
function, which we recall in Table 2.

Table 2. The rules of the symbolic method for computing a generating function from a
combinatorial specification. In the case of the labelled product A�B, the corresponding
operation on the series is called the coloured product � and is defined in [6] by A(z) �
B(z) =

∑
n�0

∑n
k=0

(
n
k

)
akbn−kzn.

Specification A Gen. Function A(z)

E 1

Z z

A \ B (only when B ⊂ A) A(z) − B(z)

A + B A(z) + B(z)

A � B A(z) � B(z)

A × B A(z) · B(z)

Seq(A) (1 − A(z))−1

We now illustrate the power of the analytic combinatorics tools, by show-
ing how a few manipulations on polynomials can lead to interesting algorith-
mic applications and precise quantitative results. Further resource on this topic
can be found in the book [12]. We study the generating function φ of the
example program P0 given above, which we recall here for convenience: P0 =
[(a + (b ‖ c))� ‖ (d + 0)]� ; [e+(f ‖ g)]. Let φ(z) =

∑
n�0 pnzn denote the expan-

sion in power series of the generating function of S(P0) and recall that the n-th
coefficient pn is the number of executions of P0 of length n. By applying the
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rules from Table 2 to S(P0) we obtain that:

φ(z) = [(1 − z − 2z2)
−1 � (z + 1)]

−1 · [z + 2z2]

=
(2z + 1)(2z − 1)2(z + 1)2z
1 − 4z − 4z2 + 6z3 + 8z4

The second line of the above formula is obtained by applying the calculus
rule7 z � A(z) = z d(zA(z))

dz . From this formula we derive two applications. First,
from the denominator of this rational expression we deduce that for all n > 6 we
have pn − 4pn−1 − 4pn−2 +6pn−3 +8pn−4 = 0. The obtained recurrence formula
can be used to compute the number of executions of length n of P0 in linear time.
On the analytic side, φ being a rational function, we can do a partial fraction
decomposition to obtain φ as a sum of four terms of the form Ci(1 − zρ−1

i )
(plus a polynomial). Each of these terms expands as

∑
n�0 Ciρ

−n
i zn, hence the

number of executions of P0 of length n satisfies pn = C · ρ−n · (1 + o(1)) for
some constants C and ρ and with an exponentially small error term hidden in
the o(1). In this case we have ρ ≈ 0.221987, C ≈ 0.146871 and the error term is
of the order of 0.327950n. Table 3 compares the values of pn and of the proposed
approximation for a few values of n. One can see that already for small values
of n, the relative error of this approximation is rather low.

Table 3. Value of pn, of its approximation C · ρ−n and of the relative error |pn − C ·
ρ−n|/pn for small values of n.

3 Statistical Analysis Algorithms

In this section, we study the problem of exploring the state-space of a given pro-
cess through random generation. We describe first a uniform random sampler
of executions of given length, and second a uniform random sampler of execu-
tion prefixes. Our approach relies on the counting information contained in the
generating functions, as defined previously.
7 This is the only “non-standard” computation rule we use in this example. All the

rest is usual polynomial manipulations. General rules for computing A(z)�B(z) are
beyond the scope of this article.
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3.1 Preprocessing: The Generating Function of Executions

As explained in the previous section, the symbolic method gives a systematic
way of computing the generating function of the class of the executions of a
program P from its specification S(P ) using the rules from Table 2. A straight-
forward application of this method leads to Algorithm 1 for computing the first
terms of the series.

Algorithm 1. Computation of the generating function of the executions of
an NFJ program up to degree n

Input: An NFJ program P and a positive integer n.
Output: The first n + 1 terms of the generating function of P

function gfun(P, n)
if P = 0 then return 1
else if P = a then return z
else if P = Q ‖ R then return gfun (Q, n) � gfun (R, n) mod zn+1

else if P = Q; R then return gfun (Q, n) · gfun (R, n) mod zn+1

else if P = Q + R then
q(z) ← gfun (Q, n), r(z) ← gfun (R, n)
if q(0) = r(0) = 1 then return q(z) + r(z) − 1 else return q(z) + r(z)

else if P = Q� then
q(z) ← gfun (Q, n)
return (1 − (q(z) − q(0)))−1 mod zn+1

The coloured product � used in the parallel composition case can be imple-
mented using the formula A(z) � B(z) = Lap(Bor(A) · Bor(B)) where Bor
and Lap are respectively the combinatorial Borel and Laplace transforms (see [6]
for insights on the coloured product). This approach has the advantage of ben-
efiting from the efficient polynomial multiplication algorithms from the litera-
ture at the cost of three linear transformations. To be implemented efficiently,
the coefficients of the result of the Borel transform should share n! as a com-
mon denominator so that it is only stored once and we keep working with inte-
ger coefficients. The computation of (1 − A(z))−1 can be carried out efficiently
using Newton iteration (see [22] for instance). The idea is to iterate the for-
mula Si+1(z) ← Si(z)+Si(z)·(A(s)·Si(z)−(Si(z)−1)), starting from S0(z) = 1.
It has been shown that only �log2(n + 1) iterations are necessary for the coef-
ficients of Si(z) to be equal to those of (1 − A(z))−1 up to degree n. Moreover
the total cost of this procedure in terms of integer multiplication is of the same
order of magnitude as that of the multiplication of two polynomials of degree n.

Theorem 1. Let P be an NFJ program and let |P | denote its syntactic size
(i.e. the number of constructors ‖, +, ;, � and atomic actions) in its definition).
Algorithm 1 can be implemented to compute the first n coefficients of the gener-
ating function of the executions of P in O(|P |M(n)) operations on big integers
where M(n) is the complexity of the multiplication of two polynomials of degree n.
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Moreover, these coefficients are bounded by n! and hence have at most n log2(n)
bits.

Proof. The proof of Theorem 1 follows from the above discussion: each construc-
tor incurs one polynomial operation among addition, multiplication, coloured
product and inversion and all of them can be carried out in O(M(n)).

To give a rough idea of the performance that can be achieved by Algorithm 1:
we computed the generating function of P0 up to degree n = 10000—and thus
its number of executions of length k for all k � 10000—in less that 4s on a
standard PC. A detailed benchmark of Algorithm 1 is given in Sect. 4.1.

3.2 Random Sampling of Executions

Another consequence of having a combinatorial specification of the state-space
at our disposal is that we can apply well-known random sampling methods from
the combinatorics toolbox. Our random sampling procedure for program exe-
cutions is based on the so-called “recursive-method” from [13]. It operates in a
similar fashion to the symbolic method, that is by induction on the specifica-
tion by combining the random samplers of the sub-structures with simple rules
depending on the grammar construction. For the sake of clarity we represent
executions as sequences of atomic actions. This encoding does not contain all
the information that defines an execution, typically it does not reflect in which
iteration of a loop an atomic action is fired for instance. However it makes the
presentation clearer and the algorithm can be easily adapted to a more faithful
encoding. Our uniform random sampler of executions is described in Algorithm 2
and the detailed explanations about the different constructions are given below.

Choice. The simplest rule of the recursive method is that of the disjoint union
used at line 4 of Algorithm 2. If qn and rn denote the number of length-n
executions of Q and R, then a uniform random length-n execution of P = Q+R
is a uniform length-n execution of Q with probability qn/(qn +rn) and a uniform
length-n execution of R otherwise. One way to draw the Bernoulli variable is to
draw a uniform random big integer x in �0; qn+rn� and to return true if and only
if x < qn. As an example, consider the programs Q = (a + (b ‖ c)) and R = d� .
We count that Q has two executions of length two: bc and cb and R has only
one: dd. Hence, to sample a length-2 execution in (Q + R), one must perform a
recursive call on Q with probability 2/3 and on R with probability 1/3.

Parallel Composition. The other rules build on top of the disjoint union case. For
instance, the set of length-n executions of P = Q ‖ R can be seen as Q0�Rn+Q1�
Rn−1+ · · ·+Qn �R0 where Qk (resp. Rk) denotes the set of length-k executions
of Q (resp. R). By generalising the previous rule to disjoint unions of (n + 1)
terms, and using the fact that the number of elements of Qk �Rn−k is qkrn−k

(
n
k

)
,

one can select in which one of these terms to sample by drawing a random
variable which is k with probability qkrn−k

(
n
k

)
/pn. Then it remains to sample



94 A. Genitrini et al.

Algorithm 2. Uniform random sampler of executions of given length
Input: A program P and an integer n such that P has length n executions.
Output: A list of atomic actions representing an execution
1: function UnifExec(P, n)
2: if n = 0 then return the empty execution
3: else if P = a then return a
4: else if P = Q + R then
5: if Bernoulli ( qn

qn+rn
) then return UnifExec (Q, n)

6: else return UnifExec (R, n)

7: else if P = Q ‖ R then
8: draw k ∈ �0; n� with probability

(
n
k

)
qkrn−k/pn

9: return shuffle (UnifExec (Q, k), UnifExec (R, n − k))
10: else if P = Q; R then
11: draw k ∈ �0; n� with probability qkrn−k/pn

12: return concat (UnifExec (Q, k), UnifExec (R, n − k))
13: else if P = Q� then
14: draw k ∈ �1; n� with probability qkpn−k/pn

15: return concat (UnifExec (Q, k), UnifExec (P, n − k))

The lower case letters pn, qk, rn−k etc. indicate the number of executions of length n, k,
n − k of programs P , Q and R.

a uniform element of Qk, a uniform element of Rn−k and a uniform shuffling
of their labellings among the

(
n
k

)
possibilities. This is described at line 7 of

Algorithm 2. We do not detail the implementation of the shuffling function here,
an optimal algorithm in terms of random bits consumption, can be found in [5].
As an example, consider the same programs as above: Q = (a+(b ‖ c)) and R =
d� . The number of length-3 executions of (Q ‖ R) is 1·1·(31

)
+2·1·(31

)
= 9 using the

decomposition Q1 � R2 + Q2 � R1. Say k = 1 is selected (with probability 1/3),
then the recursive calls to (Q, 1) and (R, 2) necessarily return a and dd and
the shuffle procedure must choose a shuffling uniformly between add, dad
and dda.

Sequential Composition. The case of the sequential composition is similar (see
line 10 of Algorithm 2). We use the same kind of decomposition, using the
Cartesian product × in place of the labelled product �. This has the consequence
of removing the binomial coefficient in the formula for the generation of the k
random variable. Once k is selected, we generate an execution of Qk, an execution
of Rn−k and we concatenate the two.

Loop. Finally, the case of the loop is a slight adaptation of the case of the
sequential composition using the fact that the executions of Q� are the executions
of (0 + Q;Q�). However, care must be taken to avoid issues related to double-
counting. More specifically, when sampling an execution of (Q;Q�) we must
not choose an execution of length 0 for the left-hand-side Q. This is related to
the same reason we had to specify the executions of Q� as all the sequences of
non-empty executions of Q. This is presented at line 13 of Algorithm 2, note
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that k > 0. As an example, for sampling a length-3 execution in (a + (b; c))� ,
one may select k = 1 with probability 2/3, which yields abc or aaa depending
on the recursive call to (Q� , 2) or k = 2, with probability 1/3, which yields bca.

Generation of Random Variables. We did not give details on how to gener-
ate the random variable k for the parallel, sequential and loop case. Molinero
showed in [19,20] that good performance can be achieved by using the so-
called boustrophedonic order. For instance, in the case of the sequential com-
position P = (Q;R), the idea is to generate a random integer x in the
interval �0; pn� and to find the minimum number � such that the sum of �
terms q0rn + qnr0 + q1rn−1 + qn−1r1 + q2rn−2 + · · · (taken in this particular
order) is greater than x. Then k is such that the last term of this sum is qkrn−k.

Theorem 2. Using the boustrophedonic order, the complexity of the random
generation of an execution of length n in P in terms of arithmetic operations on
big integers is O(n · min(ln(n), h(P ))) where h(P ) refers to the height of P i.e.
its maximum number of nested operators.

Contrary to the classical context of random generation in the context of ana-
lytic combinatorics (like in [13,19,20]), the grammar enumerating the executions
is not a constant but rather a parameter of the problem. Hence its size cannot
be considered constant and the complexity analysis needs to be carefully crafted
to take this variable into account.

Proof. The O(n ln(n)) bound follows from Theorem 11 of [20]. We obtain the
other bound by refining the result of Theorem 12 from the same source. The
combinatorial classes we are considering are built from the �,×,+ and Seq(·)
operators without recursion, they hence fall under the scope of iterative classes
for which Molinero proved a linear complexity in n. However the proof given
in [20] does not give an explicit bound for the multiplicative constants, which
actually depends on the size of the grammar and which we cannot consider
constant in our context. Let C(P, n) denote the cost of UnifExec(P, n) in terms
of arithmetic operations on big integers. We show that C(P, n) � αnh(P ) by
induction for some constant α to be specified later.

– The base cases have a constant cost.
– The case of the choice only incurs a constant number c of arithmetic oper-

ations in addition to the cost of the recursive calls. Hence C(Q + R,n) is
bounded by c + α max(C(Q,n), C(R,n)) � c + αnmax(h(Q), h(R)) = c +
αn(h(Q+R)−1) by induction. Thus, if α � c, then C(Q+R,n) � αnh(Q+R).

– The parallel composition case incurs a number of arithmetic operations
of the form c′ min(k, n − k) where k is the random variable generated
using the boustrophedonic order technique. Hence C(Q ‖ R,n) is bounded
by c′ min(k, n − k) + C(Q, k) + C(R,n − k) and by induction by c′ min(k, n −
k) + αkh(Q) + α(n − k)h(R) � αnh(Q ‖ R) + c′ min(k, n − k) − αn. The last
term on the right is bounded by 0 if α � c′.
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– Sequential composition is treated using the same argument as for parallel
composition.

– Finally, the loop must be handled by reasoning “globally” on the total number
of unrollings. Say the loop Q� is unrolled r times. Then its cost C(Q� , n) is
bounded by

∑r
i=1 c′ min(ki, ki+1 + · · · + kr) +

∑r+1
i=1 C(Q, ki). The first sum

is bounded by c′n and the second is bounded by induction by
∑r+1

i=1 αkih(Q)
which simplified to αnh(Q). Hence, reusing the bound α � c′ and the fact
that h(Q�) = 1 + h(Q), we get C(Q� , n) � αnh(Q�) which terminates the
proof.

3.3 Execution Prefixes

The uniform sampler of executions described above provides one way of explor-
ing the state space of a program, but it does not offer much flexibility. In this
subsection we develop, as a complementary tool, a uniform random sampler of
execution prefixes of given length. Note that this is different from using the
previous algorithm until a length threshold n because this would not yield
uniform prefixes. An execution prefix is a sequence of evaluation steps as in
Definition 2 but unlike an execution, its resulting program Pn does not nec-
essarily satisfy nullable(Pn). We see this algorithm as an elementary building
block for statistical exploration of the state-space, enabling a variety of differ-
ent exploration strategies, possibly biased towards some areas of interest in the
state-space of the program but in a controlled manner.

The idea here is to apply our previous algorithm to a new program pref (P )
defined inductively using Table 4. Note that pref (P ) (as well as its specifica-
tion) can be implemented in linear space by using pointers to refer to the sub-
structures of P .

Table 4. In the second column: the pref () transformation, mapping a program P to a
program whose executions are in correspondence with the prefixes of executions of P .
In the third column: the combinatorial specification of the prefixes of P .

Program P Prefix program pref (P ) Specification of the prefixes 〈P 〉
0 0 E
a 0 + a E + Z
P ‖ Q (pref (P ) ‖ pref (Q)) 〈P 〉 � 〈Q〉
P ; Q pref (P ) + (P ; pref (Q)) 〈P 〉 + S(P ) × (〈Q〉 \ E)

P + Q pref (P ) + pref (Q) 〈P 〉 + (〈Q〉 \ E)

P � P � ; pref (P ) E + S(P �) × (〈P 〉 \ E)

Proposition 1. Let P be an NFJ program. The executions of the pref (P ) are
in one-to-one correspondence with the prefixes of executions of P .
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Proof. The way execution prefixes are defined, the transformation is direct. We
only discuss the cases where a E must be removed. In the case of the sequential
composition, a prefix of execution of P ;Q is either a prefix of P or a complete
execution of P followed by a non-empty prefix of Q. It is important to only
consider non-empty prefixes in order to avoid counting the complete executions
of P twice. In the case of the choice P + Q, we always subtract E from 〈Q〉 to
avoid double-counting the empty prefix because all programs have it. Finally the
case of the loop is a generalisation of the sequence: a prefix of P � is made of any
number of non-empty complete executions of P followed by a non-empty prefix
of P .

As an example, using the notations P0 = P1; (e + (f ‖ g)), where P1 =
(P2 ‖ (d + 0))� and P2 = (a + (b ‖ c))� , the specification of the prefixes of exam-
ple program P0 is given by:

〈P0〉 = 〈P1〉 + S(P1) × ((E + Z + (E + Z) � (E + Z) \ E) \ E)
〈P1〉 = E + S(P1) × (〈P2〉 � (E + Z + E \ E) \ E)
〈P2〉 = E + S(P2) × ((E + Z + (E + Z) � (E + Z) \ E) \ E)

where S(P1) and S(P2) are not given but can be obtained as sub-terms of the
specification S(P0) of the executions of P0 given earlier.

Theorem 3. To sample uniformly a prefix of length n in P we sample uni-
formly a full execution in pref (P ). This has the same complexity as sampling an
execution of n up to a multiplicative constant.

The latter theorem is a consequence of Proposition 1. The complexity bound
is obtained by showing that the height of pref (P ) is at most twice the height
of P . Another possibility of equal complexity would be to express directly the
specification of the prefixes of P without actually constructing the intermediate
program. This specification is denoted 〈P 〉 and is given in the third column of
Table 4.

4 Experimental Study

In order to assess experimentally the efficiency of our method, in this section
we put into use the algorithms presented in the paper and demonstrate that
they can handle systems with a significantly large state space. We generated
a few NFJ programs at random using a Boltzmann random generator. In its
basic form, the Boltzmann sampler would generate a high number of loops and
a large number of sub-terms of the form P +0 in the programs which we believe
is not realistic so we tuned it using [4] so that the number of both types of
nodes represent only 10% of the size of the program in expectation. We rely
on the FLINT library (Fast Library for number theory [16]) to carry all the
computations on polynomials except for the coloured product and the inversion,
which we implemented ourselves in order to achieve the complexity exhibited
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in the previous section. The former was not provided natively by the library
and the latter was feasible using FLINT’s primitives but slow compared to the
dedicated algorithm based on Newton iteration.

Note that besides the choice of the algorithms, we did not optimize our code
for efficiency nor ran extensive tests on a big dataset, hence the numbers we give
should be taken as a rough estimate of the performance of our algorithms. For
the sake of reproducibility, the source code of our experiments is available on
the companion repository8.

4.1 Preprocessing Phase

First, Table 5 gives the runtime of the preprocessing phase (Algorithm 1) that
computes the generating functions of all the sub-terms of a program up to a
given degree n. We measured this for programs of different sizes and for different
values of n. Every measure was performed 7 times and we reported the median
of these 7 values. The time reported is the CPU time as measured by C’s clock
function. The state-space column indicates the number of executions of length
at most n obtained by evaluating the polynomial with z = 1. The figure on the
right displays more data and focuses on the relation between the runtime of the
preprocessing (on the y axis, in seconds) and the size of the state-space (the x
axis is the log2 of the number of executions). Each line corresponds to a program

Table 5. On the left: runtime of the counting algorithm and size of the state-space
(executions of length at most n) for programs of different sizes. On the right: plot of
this runtime as a function of the log2 of the size of the state-space.

8 All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and
32G of RAM running Ubuntu 19.10 with kernel version 5.3.0–46-generic. We used
FLINT version 2.5.2 and GMP version 6.1.2.
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and each point corresponds to a different value of n for this program. Using a
log-scale on both axis, this figure gives experimental “evidence” of a polynomial
relation between the two. Besides the shape of the curves, the take-away here is
that the preprocessing phase can be carried out for systems with a state-space
of size ≈ 218000 in a time of the order of one minute.

4.2 Random Generation

We then measure the runtime of the random generator of executions and exe-
cution prefixes for the same programs. Every measure was performed 100 times
and for each one we report the median of these values as well as the interquar-
tile range (IQR)9, which gives an idea of the dispersion of the measures. We use
these metrics rather than the mean and the variance to reduce the importance
of extreme values and give a precise idea of what runtime the user should expect
when running our sampler. A summary of the results is available in Table 6.
Interestingly, the number of executions and the numbers of execution prefixes
are rather close. We have clues about the reasons behind this phenomenon which
relate to the analytical properties of the generating functions of executions and
prefixes. We will investigate this in the future but this is way beyond the scope
of this article. As the numbers show, both random sampling procedures take a

Table 6. Median and interquartile range (IQR) of the runtime of the executions and
prefixes samplers for various program sizes and object lengths.

|P | n # exec° UnifExec IQR # prefixes UnifPrefix IQR

100 500 1.370 · 21119 0.129ms 4µs 1.841 · 21128 0.147ms 3µs

100 1000 1.690 · 22234 0.276ms 10µs 1.124 · 22244 0.307ms 18µs

100 3000 1.090 · 26691 1.076ms 43µs 1.439 · 26700 1.371ms 359µs

500 500 1.969 · 21926 0.218ms 5µs 1.022 · 21997 0.281ms 12µs

500 1000 1.004 · 23832 0.563ms 21µs 1.404 · 23901 0.688ms 33µs

500 3000 1.245 · 211423 3.718ms 203µs 1.466 · 211492 4.005ms 274µs

1000 500 1.420 · 22330 0.301ms 10µs 1.556 · 22411 0.352ms 19µs

1000 1000 1.005 · 24712 0.777ms 28µs 1.293 · 24790 0.871ms 46µs

1000 3000 1.051 · 214181 4.829ms 481µs 1.127 · 214259 5.307ms 569µs

2000 500 1.704 · 22380 0.308ms 14µs 1.839 · 22484 0.416ms 10µs

2000 1000 1.169 · 24746 1.021ms 51µs 1.482 · 24856 1.225ms 86µs

2000 3000 1.634 · 214120 7.291ms 1.2ms 1.921 · 214256 7.245ms 238µs

5000 500 1.589 · 22923 0.309ms 7µs 1.933 · 23168 0.348ms 14µs

5000 1000 1.448 · 26016 0.898ms 43µs 1.340 · 26231 1.027ms 41µs

5000 3000 1.208 · 218116 18.526ms 1.5ms 1.034 · 218324 21.478ms 1.2ms

9 The interquartile range of a set of measures is the difference between the third and
the first quartiles. Compared with the value of the median, it gives a rough estimate
of the dispersion of the measures.
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few milliseconds, even for rather large state-spaces. Here, the two state-space
columns refer respectively to the number of executions and the number of pre-
fixes of length exactly n. This is the cardinal of the set in which we sample a
uniform element.

4.3 Prefix Covering

This subsection presents an experimentation that highlights the importance of
the uniform distribution for the purpose of state-space exploration. The setup
is the following: consider a given NFJ program and randomly sample prefixes of
given length n of this program using two different algorithms:

– our random sampler which is globally uniform among all prefixes of length n;
– a “naive” sampler that repeatedly generates one execution step uniformly

among the legal steps, until we get a length n prefix. This strategy is called
locally uniform or isotropic.

The question is: in average, how many random prefixes must be generated
in order to discover a given proportion of the possible prefixes? This question
actually falls under the scope of the Coupon Collector Problem, which is treated
in depth in [11]. Table 7 gives numerical answers for both exploration strategies
for a random NFJ program of size 25 and for a target coverage of 20% of the
possible prefixes.

Table 7. Expected number of prefixes to be sampled to discover 20% of the prefixes
of a random program of size 25 with either the isotropic or the uniform method.

Prefix length 1 2 3 4 5

# prefixes 11 18 30 60 128

Isotropic 2.1 4.45 11.17 35.09 1.28 · 1014

Uniform 2.1 3.18 6.57 13.26 27.69

Gain 0% 40% 70% 165% 4.61 · 1014%

Expectedly the uniform strategy is faster but what is interesting to see is
that the speedup compared to the isotropic method grows extremely fast. The
more the state-space grows, the more the uniform approach is unavoidable.

Unfortunately, the formula given in [11] for the isotropic case involves the
costly computation of power-sets which makes it impractical to give values for
larger programs and prefix length. However, these small-size results already
establish a clear difference between the two methods. It would be interesting
to have theoretical bounds to quantify this explosion or to investigate more effi-
cient ways to compute these values but this falls out of the scope of this article.
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Abstract. Software-intensive systems can have thousands of interde-
pendent configuration options across different subsystems. Feature mod-
els allow designers to organize the configuration space by describing con-
figuration options using interdependent features: a feature is a name
representing some functionality and each software variant is identified
by a set of features. Different representations of feature models have
been proposed in the literature. In this paper we focus on the proposi-
tional representation (which works well in practice) and the extensional
representation (which has been recently shown well suited for theoretical
investigations). We provide an algebraic and a propositional character-
ization of feature model operations and relations, and we formalize the
connection between the two characterizations as monomorphisms from
lattices of propositional feature models to lattices of extensional fea-
tures models. This formalization sheds new light on the correspondence
between the extensional and the propositional representations of feature
models. It aims to foster the development of a formal framework for
supporting practical exploitation of future theoretical developments on
feature models and software product lines.

1 Introduction

Software-intensive systems can have thousands of interdependent configuration
options across different subsystems. In the resulting configuration space, different
software variants can be obtained by selecting among these configuration options
and accordingly assembling the underlying subsystems. The interdependencies
between options are dictated by corresponding interdependencies between the
underlying subsysems [7].

Feature models [8] allow developers to organize the configuration space
and facilitate the construction of software variants by describing configuration
options using interdependent features [23]: a feature is a name representing some
functionality, a set of features is called a configuration, and each configuration
that fulfills the interdependencies expressed by the feature model, called a prod-
uct, identifies a software variant. Software-intensive systems can comprise thou-
sands of features and several subsystems [11,12,24,33]. The design, development
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and maintenance of feature models with thousands of features can be simplified
by representing large feature models as sets of smaller interdependent feature
models [11,29] that we call fragments. To this aim, several representations of
feature models have been proposed in the literature (see, e.g., Batory [8] and
Sect. 2.2 of Apel et al. [7]) and many approaches for composing feature models
from fragments have been investigated [3,6,13,28,32].

In this paper we focus on the propositional representation (which works
well in practice [10,27,34]) and the extensional representation (which has been
recently shown well suited for theoretical investigations [25,31]). We investi-
gate the correspondence between the formulation for these two representations
of feature model operators and relations. The starting point of this investiga-
tion is a novel partial order between feature models, that we call the feature
model fragment relation. It is induced by a notion of feature model composition
that has been used to model industrial-size configuration spaces [25,31], such as
the configuration space of the Gentoo source-based Linux distribution [20], that
consists of many configurable packages (the March 1st 2019 version of the Gen-
too distribution comprises 671617 features spread across 36197 feature models).
We exploit this partial order to provide an algebraic characterization of feature
model operations and relations. Then, we provide a propositional characteriza-
tions of them and formalize the connection between the two characterizations
as monomorphisms from lattices of propositional feature models to lattices of
extensional features models.

The remainder of this paper is organized as follows. In Sect. 2 we recollect
the necessary background and introduce the feature model fragment relation. In
Sect. 3 we present the algebraic characterization of feature model operations and
relations, and in Sect. 4 we present the propositional characterization of the oper-
ations and relations together with a formal account of the connection between
the two characterizations. We discuss related work in Sect. 5, and conclude the
paper in Sect. 6 by outlining planned future work.

2 Background and Concept

We first recall the propositional and the extensional representations of feature
models (in Sect. 2.1) together with the feature model composition operation (in
Sect. 2.2), then we formalize the notion of feature model fragment in terms of a
novel partial order relation on feature models (in Sect. 2.3).

2.1 Feature Model Representations

In this paper, we focus on the propositional and on the extensional representa-
tions of feature models (see, e.g., Batory [8] and Sect. 2.3 of Apel et al. [7] for a
discussion about other representations).

Definition 1 (Feature model, propositional representation). A proposi-
tional feature model Φ is a pair (F , φ) where F is a set of features and φ is a
propositional formula whose variables x are elements of F :
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φ = x | φ ∧ φ | φ ∨ φ | φ → φ | ¬φ | false | true

Its products are the set of features p ⊆ F such that φ is satisfied by assigning
value true to the variables x in p and false to the variables in F \ p.

Example 1 (A propositional representation of the glibc feature model). Gentoo
packages can be configured by selecting features (called use flags in Gentoo),
which may trigger dependencies or conflicts between packages. Version 2.29 of
the glibc library, that contains the core functionalities of most Linux systems, is
provided by the package sys-libs/glibc-2.29-r2 (abbreviated to glibc in the sequel).
This package has many dependencies, including (as expressed in Gentoo’s nota-
tion):

doc? ( sys−apps/texinfo )
vanilla?( !sys−libs/timezone−data )

This dependency expresses that glibc requires the texinfo documentation gen-
erator (provided by any version of the sys-apps/texinfo package) whenever the
feature doc is selected and if the feature vanilla is selected, then glibc con-
flicts with any version of the time zone database (as stated with the !sys-
libs/timezone-data constraint). These dependencies can be expressed by a feature
model (Fglibc, φglibc) where

Fglibc = {glibc, texinfo, tzdata, glibc:doc, glibc:v}
φglibc = glibc ∧ (glibc:doc → texinfo) ∧ (glibc:v → (¬tzdata))

Here, the feature glibc represents the glibc package; texinfo represents any sys-
apps/texinfo package; tzdata represents any version of the sys-libs/timezone-data
package; and glibc:doc (resp. glibc:v) represents the glibc’s doc (resp. vanilla) use
flag.

The propositional representation of feature models works well in prac-
tice [10,27,34]. Recently, Schröter et al. [31] pointed out that using an extensional
representation of feature models simplifies the presentation of feature model con-
cepts.

Definition 2 (Feature model, extensional representation). An exten-
sional feature model M is a pair (F ,P) where F is a set of features and P ⊆ 2F

a set of products.

Example 2 (An extensional representation of the glibc feature model). Let 2S

denote the powerset of S. The feature model of Example 1 can be given an
extensional representation Mglibc = (Fglibc,Pglibc) where Fglibc is the same as in
Example 1 and

Pglibc = {{glibc}, {glibc, texinfo}, {glibc, tzdata}, {glibc, texinfo, tzdata}} ∪
{{glibc, glibc:doc, texinfo}, {glibc, glibc:doc, texinfo, tz-data}} ∪
{{glibc, glibc:v}, {glibc, glibc:v, texinfo}} ∪
{{glibc, glibc:doc, glibc:v, texinfo}}
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In the description of Pglibc, the first line contains products with glibc but none of
its use flags are selected, so texinfo and tz-data can be freely installed; the second
line contains products with the use flag doc selected in glibc, so a package of sys-
apps/texinfo is always required; the third line contains products with the use
flag vanilla selected in glibc, so no package of sys-libs/timezone-data is allowed;
finally, the fourth line contains products with both glibc’s use flags selected, so
sys-apps/texinfo is mandatory and sys-libs/timezone-data forbidden.

The following definition introduces the extensional representation of the
empty feature model and of the void feature models.

Definition 3 (Empty feature model and void feature models). The
empty feature model, denoted M∅ = (∅, {∅}), has no features and has just the
empty product ∅. A void feature model is a feature model that has no products,
i.e., of the form (F , ∅) for some set of features F .

2.2 Feature Model Composition

Complex software systems, like the Gentoo source-based Linux distribution [20],
often consist of many interdependent configurable packages [24–26]. The configu-
ration options of each package can be represented by a feature model. Therefore,
configuring two packages in such a way that they can be installed together cor-
responds to finding a product in the composition of their associated feature
models. As pointed out by Lienhardt et al. [25], in the propositional representa-
tion of feature models this composition corresponds to logical conjunction: the
composition of two feature models (F1, φ1) and (F2, φ2) is the feature model
(F1 ∪ F2, φ1 ∧ φ2). Lienhardt et al. [25] also claimed that in the extensional
representation of feature models this composition corresponds to the binary oper-
ator • of Schröter et al. [31], which combines the products sets in way similar to
the join operator from relational algebra [14].

Definition 4 (Feature model composition). The composition of two feature
models M1 = (F1,P1) and M2 = (F2,P2), denoted M1 • M2, is the feature
model (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}).

As proved in [16,17], the composition operator • is associative and com-
mutative, with M∅ as identity element (i.e., M • M∅ = M). Note that
(F1,P1) • (F2, ∅) = (F1 ∪ F2, ∅).
Example 3 (Composing glibc and gnome-shell feature models). Let us consider
another important package of the Gentoo distribution: gnome-shell, a core com-
ponent of the Gnome Desktop environment. Version 3.30.2 of gnome-shell is pro-
vided by the package gnome-base/gnome-shell-3.30.2-r2 (abbreviated to g-shell in
the sequel), and its dependencies include the following statement:

networkmanager?( sys−libs/timezone−data )
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This dependency expresses that g-shell requires any version of the time zone
database when the feature networkmanager (abbreviated to g-shell:nm in the
sequel) is selected.

The propositional representation of this dependency can be captured by the
feature model (Fg-shell, φg-shell), where

Fg-shell = {g-shell, tzdata, g-shell:nm} φg-shell = g-shell ∧ (g-shell:nm → tzdata)

The corresponding extensional representation of this feature model is Mg-shell =
(Fg-shell, Pg-shell), where:

Pg-shell ={{g-shell}, {g-shell, tzdata}} ∪ {{g-shell, tzdata, g-shell:nm}}

Here, the first line contains products with g-shell but none of its use flags are
selected: tzdata can be freely selected; and the second line is the product where
g-shell:nm is also selected and tzdata becomes mandatory.

The propositional representation of the composition is the feature model
(Ffull, φfull), where

Ffull = Fglibc ∪ Fg-shell = {glibc, texinfo, tzdata, g-shell, glibc:doc, glibc:v, g-shell:nm}
φfull = φglibc ∧ φg-shell = (glibc ∧ ((glibc:doc → texinfo) ∧ (glibc:v → (¬tz-data)))

∧ (g-shell ∧ (g-shell:nm → tzdata))

The extensional representation of the composition is the feature model Mfull = Mglibc •
Mg-shell = (Ffull, Pfull) where

Pfull = {{glibc, g-shell} ∪ p | p ∈ 2{texinfo, tzdata}} ∪
{{glibc, glibc:doc, texinfo, g-shell} ∪ p | p ∈ 2{tzdata}} ∪
{{glibc, glibc:v, g-shell} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, g-shell, g-shell:nm, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, glibc:v, texinfo, g-shell}} ∪
{{glibc, glibc:doc, texinfo, g-shell, g-shell:nm, tzdata}}

Here, the first line contains the products where both glibc and g-shell are
installed, but without use flags selected, so all optional package can be freely
selected; the second line contains the products with the glibc’s use flag doc
selected, so sys-apps/texinfo becomes mandatory; the third line contains the
products with the glibc’s use flag vanilla selected, so sys-libs/timezone-data is
forbidden; the fourth line contains the products with the g-shell’s use flag net-
workmanager, so sys-libs/timezone-data is mandatory; the fifth line contains the
product with glibc’s both use flags selected and the sixth line contains the prod-
uct with glibc’s use flag doc and g-shell’s use flag networkmanager are selected.

2.3 The Feature Model Fragment Relation

The notion of feature model composition induces the definition of the notion of
feature model fragment as a binary relation between feature models.
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Definition 5 (Feature model fragment relation). A feature model M0 is
a fragment of a feature model M, denoted as M0 ≤ M1, whenever there exists
a feature model M′ such that M0 • M′ = M1.

For instance, we have (by definition) that Mg-shell ≤ (Mg-shell • Mglibc). It is
worth observing that, as illustrated by the following example, some combination
of features that are allowed in the members of the composition might be no
longer available in the result of the composition.

Example 4 (Composing glibc and libical feature models). Consider for instance
the version 3.0.8 of the library libical in Gentoo. Its feature model contains the
following constraint (as expressed in Gentoo notation):
berkdb? ( sys−libs/db ) sys−libs/timezone−data

This dependency expresses that libical requires the db library whenever the
feature berkdb is selected and requires the package sys-libs/timezone-data to be
installed. These dependencies can be extensionally expressed by a feature model
Mlibical = (Flibical,Plibical) where

Flibical = {libical, berkdb, sys-libs/db, tzdata}
Plibical = {{libical, tzdata}, {libical, tzdata, berkdb, sys-libs/db}}

Composing the feature model of glibc and libical gives the feature model Mc =
(Fc,Pc) where Fc = Fglibc ∪ Flibical and:

Pc = {{glibc, libical, tzdata} ∪ p | p ∈ 2{texinfo, sys-libs/db}} ∪
{{glibc, glibc:doc, texinfo, libical, tzdata} ∪ p | p ∈ 2{sys-libs/db}} ∪
{{glibc, libical, berkdb, sys-libs/db, tzdata} ∪ p | p ∈ 2{texinfo}} ∪
{{glibc, glibc:doc, texinfo, libical, berkdb, sys-libs/db, tzdata}}

Here, the first line contains the products where both glibc and libical are installed,
but without use flags selected, so only the annex package timezone-data is manda-
tory; the second line contains the products with the glibc’s use flag doc selected,
so sys-apps/texinfo becomes mandatory; the third line contains the products
with the libical’s use flag berkdb, so sys-libs/db becomes mandatory; finally, the
fourth line contains the product with all optional features of both glibc and libical
selected.

It is easy to see from the constraint, and also from the extensional repre-
sentation, that combining glibc and libical makes the feature glibc:v dead (i.e.,
not selectable): when composed, the feature models interact and not all com-
binations of products are available. Feature incompatibilities such as this are a
normal occurrence in many product lines (such as the linux kernel) but have
two negative properties: first, it means that some features that are stated to be
optional (i.e., can be freely selected or not by the user) actually are not optional
in some cases, depending on some other packages being selected or not; second, it
means that some packages cannot be installed at the same time because of their
dependencies: consider for instance a package that requires the feature glibc:v
being selected, that package is not compatible with libical.



On Two Characterizations of Feature Models 109

3 Algebraic Characterization of Feature Models

In Sect. 3.1, we recall some relevant algebraic notions. In Sect. 3.2, we show that
the feature model fragment relation induces a lattice of feature models where
the join operation is feature model composition. Then, in Sect. 3.3, we show
that the feature model fragment relation generalizes the feature model interface
relation [31] and we provide some more algebraic properties.

3.1 A Recollection of Algebraic Notions

In this section we briefly recall the notions of lattice, bounded lattice and Boolean
algebra (see, e.g., Davey and Priestley [18] for a detailed presentation). An
ordered lattice is a partially ordered set (P,�) such that, for every x, y ∈ P , both
the least upper bound (lub) of {x, y}, denoted sup{x, y} = min{a | x, y ≤ a}, and
the greatest lower bound (glb) of {x, y}, denoted inf{x, y} = max{a | a ≤ x, y},
are always defined.

An algebraic lattice is an algebraic structure (L,�,) where L is non-empty
set equipped with two binary operations � (called join) and  (called meet)
which satisfy the following.

– Associative laws: x � (y � z) = (x � y) � z, x  (y  z) = (x  y)  z.
– Commutative laws: x � y = y � x, x  y = y  x.
– Absorption laws: x � (x  y) = x, x  (x � y) = x.
– Idempotency laws: x � x = x, x � x = x.

As known, the two notions of lattice are equivalent (Theorem 2.9 and 2.10
of [18]). In particular, given an ordered lattice (P,�) with the operations
x � y = sup{x, y} and x  y = inf{x, y}, the following three statements are
equivalent (Theorem 2.8 of [18]):

x � y, x � y = y, x  y = x.

A bounded lattice is a lattice that contains two elements ⊥ (the lattice’s
bottom) and � (the lattice’s top) which satisfy the following law: ⊥ � x � �.
Let L be a bounded lattice, y ∈ L is a complement of x ∈ L if x  y = ⊥ and
x � y = �. If x has a unique complement, we denote this complement by x̄.

A distributive lattice is a lattice which satisfies the following distributive law:
x  (y � z) = (x  y)� (x  z). In a bounded distributive lattice the complement
(whenever it exists) is unique (see [18, Section 4.13]).

A Boolean lattice (a.k.a. Boolean algebra) L is a bounded distributive lattice
such that each x ∈ L has a (necessarily unique) complement x̄ ∈ L.

3.2 Lattices of Feature Models

Although (to the best of our knowledge) only finite feature models are relevant in
practice, in our theoretical development (in order to enable a better understand-
ing of the relation between the extensional and the propositional representations)
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we consider also feature models with infinitely many features and products. The
following definition introduces a notation for three different sets of extensional
feature models (see Definition 2) over a given set of features.

Definition 6 (Sets of extensional feature models over a set of features).
Let X be a set of features. We denote:

– E(X) the set of the extensional feature models (F ,P) such that F ⊆ X;
– Efin(X) the subset of the finite elements of E(X), i.e., (F ,P) such that F ⊆fin

X; and
– Eeql(X) the subset of elements of E(X) that have exactly the features X, i.e.,

(F ,P) such that F = X.

Note that, if X has infinitely many elements then Efin(X) has infinitely many
elements too. Instead, if X is finite then E(X) and Efin(X) coincide and have a
finite number of elements.

In order to simplify the presentation, P |Y is used to denote {p ∩ Y | p ∈ P}
where P is a set of products and Y is a set of features.

Lemma 1 (Two criteria for the feature model fragment relation). Given
a set X, for all M1 = (F1,P1) and M2 = (F2,P2) in E(X), the following
statements are equivalent:

i) M1 ≤ M2

ii) M1 • M2 = M2

iii) F1 ⊆ F2 and P1 ⊇ P2 |F1

Proof i) ⇒ ii). It is straightforward to check that M • M = M, for all M. Then,
by definition of ≤ (Definition 5) there is M′ ∈ E(X) such that M2 = M1 • M′.
Thus,

M1 • M2 = M1 • (M1 • M′) = (M1 • M1) • M′ = M1 • M′ = M2.

ii) ⇒ iii). By definition of • (Definition 4), it is clear from the hypothesis
that F1 ⊆ F2. Moreover, P2 = {p ∪ q | p ∈ P1, q ∈ P2, p ∩ F2 = q ∩ F1}
immediately implies that P2 = {q | p ∈ P1, q ∈ P2, p = q ∩ F1}, which in turn
implies P2 |F1⊆ P1.
iii) ⇒ i). By using the hypothesis, we have (F1 ∪ F2, {p ∪ q | p ∈ P1, q ∈
P2, p ∩ F2 = q ∩ F1}) = (F2,P2), i.e. M1 • M2 = M2. This implies, by
definition of ≤, that M1 ≤ M2. �
Lemma 2 (The operator • on Eeql(X)). Given two feature models M1 =
(X,P1) and M2 = (X,P2) in Eeql(X), we have that: M1 • M2 = (X,P1 ∩ P2).

Proof According to the definition of • we have:
M1 • M2 = (X, {p1 ∪ p2 | p1 ∈ P1, p2 ∈ P2, p1 = p2}) = (X,P1 ∩ P2). �
Theorem 1 (Lattices of feature models over a set of features). Given a
set X and two feature models M1 = (F1,P1),M2 = (F2,P2) ∈ E(X), we define:
M1 � M2 = (F1 ∩ F2, P1 |F2 ∪ P2 |F1), and M1 = (F1, 2F1 \ P1). Then:
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1. (E(X),≤) is a bounded lattice with join •, meet �, bottom M∅ = (∅, {∅}) and
top (X, ∅).

2. If X is an infinite set then Efin(X) is a sublattice of E(X) with the same
bottom and no top.

3. Eeql(X) is a sublattice of E(X) and it is a Boolean lattice with bottom (X, 2X),
same top of E(X), and complement .̄

Proof. Let first prove that ≤ is a partial order. Let M1 ≤ M2 ≤ M3.

– Reflexivity. In E(X) and Efin(X) holds, because M1 • M∅ = M1. In Eeql(X)
holds, because M1 • (X, 2X) = M1. Clearly, M∅ belongs to Eeql(X) only
when X = ∅ (in this case, (X, 2X) is M∅).

– Antisymmetry. Suppose additionally M2 ≤ M1, so by hypothesis there are
M,M′ such that M2 = M1 • M′ and M1 = M2 • M. Clearly,

M1 = M2 • M = M1 • M′ • M′ • M = M1 • M′ • M′ • M
= M2 • M′ • M = M2 • M • M′ = M1 • M′ = M2 .

The proof is the same for E(X), Efin(X), Eeql(X).
– Transitivity. Let M,M′ such that M3 = M2 • M and M2 = M1 • M′.

Clearly, M3 = M2 • M = (M1 • M′) • M = M1 • (M′ • M) which
ensures that M1 ≤ M3. The proof is the same for E(X), Efin(X), Eeql(X).

Part 1: (E(X),≤) is a lattice with M∅ as bottom and (X, ∅) as top. Let
↑ M be the set of upper bounds of M w.r.t. ≤, viz. {M′ | M ≤ M′}; and, let
↓ M be the set of lower bounds of M w.r.t. ≤, viz. {M′ | M′ ≤ M}.

– If i = 1, 2 then Mi ≤ M1 • M2 by definition of ≤, thus M1 • M2 ∈ (↑
M1) ∩ (↑ M2). Moreover, for all common upper bounds M ∈ (↑ M1) ∩ (↑
M2), we have (cf. Lemma 1)

M = M1 • M = M1 • (M2 • M) = (M1 • M2) • M

And so we have that M1 • M2 is the join M1 � M2.
– Let M = (F ,P) = (F1 ∩ F2,P1 |F2 ∪ P2 |F1). We have {p ∩ F | p ∈ Pi} ⊆ P

and F ⊆ Fi for i ∈ {1, 2}: we thus have M ∈ (↓ M1) ∩ (↓ M2). Moreover,
for all (F ′,P ′) ∈ (↓ M1) ∩ (↓ M2), it is easy to see that F ′ ⊆ F1 ∩ F2 ⊆ F
and P |F ′⊆ P ′ by Lemma 1. And so, again by Lemma 1, M is the meet.

– For all M ∈ E(X), we have M • M∅ = M which implies by definition
that M∅ ≤ M. Similarily, it is easy to see that for all M ∈ E(X), we have
M • (X, ∅) = (X, ∅) which implies by definition that M ≤ (X, ∅).

Part 2: Efin(X), is a sublattice of E(X) with the same bottom and
no top. It is clear that for every M1 ∈ Efin(X) and M2 ∈ E(X) such that
M2 ≤ M1, we have that M2 ∈ Efin(X). It follows that Efin(X) is a sublattice
of E(X) with M∅ as bottom. Moreover, if follows from the definition of • that
if Efin(X) with X infinite would have a top (F ,P), we would have S ⊆ F for all
S ⊆fin X. This means that F should be equal to X, which is not possible.
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Part 3: Eeql(X) is a bounded sublattice of E(X) and a Boolean lat-
tice, with the same top and (X, 2X) as bottom. It is clear that for every
M1,M2 ∈ Eeql(X) we have that M1 • M2 ∈ Eeql(X) and M1 � M2 ∈ Eeql(X).
It follows that Efin(X) is a sublattice of E(X) with (X, ∅) as top. Moreover,
it is easy to see that (X, 2X) ∈ Eeql(X) and that for all M1 ∈ Eeql(X), we
have (X, 2X) • M = M. Let now prove the distributive law. Let us consider
M1 = (X,P1), M2 = (X,P2), M3 = (X,P3) ∈ Eeql(X), we have:

M1  (M2 � M3) = (X,P1 ∪ (P2 ∩ P3))
= (X, (P1 ∪ P2) ∩ (P1 ∪ P3)) = (M1  M2) � (M1  M3)

Finally, it is easy to see that M1  M1 = (X, 2X) and M1 � M1 = (X, ∅). �

3.3 On Fragments and Interfaces

Feature model slices were defined by Acher et al. [4] as a unary operator ΠY

that restricts a feature model to the set Y of features.

Definition 7 (Feature model slice operator). Let M = (F ,P) be a feature
model. The slice operator ΠY on feature models, where Y is a set of features, is
defined by: ΠY (M) = (F ∩ Y,P |Y ).

More recently, Schröter et al. [31] introduced the following notion of feature
model interface.

Definition 8 (Feature model interface relation). A feature model M1 =
(F1, P1) is an interface of feature model M2 = (F2,P2), denoted as M1 � M2,
whenever both F1 ⊆ F2 and P1 = P2 |F1 hold.

Remark 1 (On feature model interfaces and slices). As pointed out in [31], fea-
ture model slices and interfaces are closely related. Namely: M1 � M2 holds if
and only if there exists a set of features Y such that M1 = ΠY (M2).

Example 5 (A slice of the glibc feature model). Applying the operator
Π{glibc, glibc:v} to the feature model Mglibc of Example 2 yields the feature model

F = {glibc, glibc:v} P = {∅, {glibc}, {glibc, glibc:v}},

which (according to Remark 1) is an interface for Mglibc.

The following theorem points out the relationship between the feature model
interface relation (designed to abstract away a set of features from a feature
model) and the feature model fragment relation (designed to support feature
model decomposition).

Theorem 2 (Interfaces are fragments). If M1 � M2 then M1 ≤ M2.

Proof. Immediate by Definition 8 and Lemma 1. �
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We conclude this section by providing some algebraic properties that relate
the slice operator and the interface an fragment relations.

Lemma 3 (Monotonocity properties of the feature model slice opera-
tor). For all F ,F1,F2 ⊆ X and M,M1,M2 ∈ E(X)

1. If F1 ⊆ F2 then ΠF1(M) � ΠF2(M).
2. If F1 ⊆ F2 then ΠF1(M) ≤ ΠF2(M).
3. If M1 � M2 then ΠF (M1) � ΠF (M2).
4. If M1 ≤ M2 then ΠF (M1) ≤ ΠF (M2).

Proof 1. Clearly ΠF1(M) • ΠF2(M) = ΠF2(M). Thus the proof follows by
Definition 8.

2. Immediate by Lemma 3.1 and Theorem 2.
3. By Definition 8, we have that F1 ⊆ F2 and P1 = P2 |F1 . Consequently,

for all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F = P2 |F1 |F . Still,
ΠF (M1) � ΠF (M2) by Definition 8.

4. By Lemma 1, we have that F1 ⊆ F2 and P1 ⊇ P2 |F1 . Consequently, for
all F ⊆ X, we have (F1 ∩ F) ⊆ (F2 ∩ F) and P1 |F ⊇ P2 |F1 |F . Still,
ΠF (M1) ≤ ΠF (M2) by Lemma 1.

We remark that Lemma 3.3 and Theorem 2 do not imply Lemma 3.4.

Theorem 3 (Algebraic properties of the feature model slice operator).
For all M1, M2, M3 ∈ E(X) and F4,F5 ⊆ X, we have

≤-Monotonicity. If M1 ≤ M2 and F4 ⊆ F5, then ΠF4(M1) ≤ ΠF5(M2).
�-Monotonicity. If M1 � M2 and F4 ⊆ F5, then ΠF4(M1) � ΠF5(M2).
Commutativity. ΠF4(ΠF5(M3)) = ΠF5(ΠF4(M3)).

Proof. ≤-Monotonicity. Straightforward by Lemma 3.2 and Lemma 3.4.
�-Monotonicity. Straightforward by Lemma 3.1 and Lemma 3.3.
Commutativity. In accordance with Definition 8, it is sufficient to observe
that ΠF4(ΠF5(M3)) = ΠF4∪F5(M3) = ΠF5(ΠF4(M)) holds. �

4 Propositional Characterization of Feature Models
Operations and Relations

In Sect. 4.1 we introduce a mapping that associates each propositional feature
model to its corresponding extensional representation (cf. Sect. 2.1). Then, in
Sect. 4.2, we provide a propositional characterization for the fragment relation
(≤), for the composition (•) and the meet (�) operations; for the the bottom of
the Boolean lattice Eeql(X) (the feature model MX = (X, 2X)), for the bottom
of the bounded lattice E(X) (the feature model M∅ = (∅, {∅})) and for the
top of bounded the lattice E(X)) (the feature model MX = (X, ∅)); and for
the complement operation (̄ ). Finally, in Sect. 4.3, we provide a propositional
characterization for the slice operator (ΠY ) and for the interface relation (�).
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4.1 Relating Extensional and Propositional Feature Models

As stated at the beginning of Sect. 3.2, in our theoretical development we con-
sider also feature models with infinitely many features and products, where each
product may have infinitely many features. The following definition introduces a
notion for three different sets of propositional feature models (see Definition 1)
over a set of features (cf. Definition 6).

Definition 9 (Sets of propositional feature models over a set of fea-
tures). Let X be a set of features. We denote:

– P(X) the set of the propositional feature models (F , φ) such that F ⊆ X;
– Pfin(X) the subset of the finite elements of P(X), i.e., (F , φ) such that F ⊆fin

X; and
– Peql(X) the subset of elements of P(X) that have exactly the features X, i.e.,

(F , φ) such that F = X.

We denote by ftrs(φ) the (finite) set of features occurring in a propositional
formula φ, and as usual we say that φ is ground whenever ftrs(φ) is empty. We
recall that an interpretation (a.k.a. truth assignment or valuation) I is a function
which maps propositional logic variables to true or false [7,9]. As usual, dom(I )
denotes the domain of an interpretation I and we write I |= φ to mean that the
propositional formula φ is true under the interpretation I (i.e., ftrs(φ) ⊆ dom(I )
and the ground formula obtained from φ by replacing each feature x occurring
in φ by I (x) evaluates to true). We write |= φ to mean that φ is valid (i.e., it
evaluates to true under all the interpretations I such that ftrs(φ) ⊆ dom(I )).
We write φ1 |= φ2 to mean that φ2 is a logical consequence of φ1 (i.e., for all
interpretations I with ftrs(φ1) ∪ ftrs(φ2) ⊆ dom(I ), if I |= φ1 then I |= φ2),
and we write φ1 ≡ φ2 to mean that φ1 and φ2 are logically equivalent (i.e.,
they are satisfied by exactly the same interpretations with domain including
ftrs(φ1) ∪ ftrs(φ2)). We recall that: (i) I1 is included in I2, denoted I1 ⊆ I2,
whenever dom(I1) ⊆ dom(I2) and I1(x) = I2(x), for all x ∈ dom(I1); (ii) I1

and I2 are compatible whenever I1(x) = I2(x), for all x ∈ dom(I1) ∩ dom(I2);
and (iii) if I1 |= φ then its restriction I0 to ftrs(φ) is such that I0 |= φ and, for
all interpretations I2 such that I0 ⊆ I2, it holds that I2 |= φ.

The following definition gives a name to the interpretations that represent
the products of the feature models with a given set of features.

Definition 10 (Interpretation representing a product). Let (F ,P) be an
extensional feature model and p ∈ P. The interpretation that represents the
product p, denoted by IF

p , is the interpretation with domain F such that: IF
p (x) =

true if x ∈ p; and IF
p (x) = false if x ∈ F \ p.

The following definition gives a name to the mapping that associates each
propositional feature model to its corresponding extensional representation.

Definition 11 (The ext mapping). Let (F , φ) ∈ P(X). We denote by
ext((F , φ)) (or ext(F , φ), for short) the extensional feature model (F ,P) ∈
E(X) such that P = {p | p ⊆ F and IF

p |= φ} . In particular, ext maps Pfin(X)
to Efin(X), and maps Peql(X) to Eeql(X).
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We denote by ≡ the equivalence relation over feature models defined by:
(F1, φ1) ≡ (F2, φ2) if and only if both F1 = F2 and φ1 ≡ φ2. We write [P(X)],
[Pfin(X)] and [Peql(X)] as short for the quotient sets P(X)/≡, Pfin(X)/≡ and
Peql(X)/≡, respectively.

Note that, if X has infinitely many elements and (F , φ) ∈ P(X), then F may
contain infinite many features, while the propositional formula φ is syntactically
finite (cf. Definition 1). Moreover, Pfin(X) has infinitely many elements (even
when X is finite). It is also worth observing that, if X is finite, then P(X)
and Pfin(X) coincide and the quotient set [Pfin(X)] is finite. Moreover, for all
Φ1, Φ2 ∈ P(X), we have that: ext(Φ1) = ext(Φ2) if and only if Φ1 ≡ Φ2.

All the finite feature models have a propositional representation, i.e., if
(F ,P) ∈ Efin(X), then there exists (F , φ) ∈ Pfin(X) such that ext(F , φ) =
(F ,P). Take, for instance, the formula in disjunctive normal form φ =∨

p∈P
(
(∧f∈pf) ∧ (∧f∈F\p¬f)

)
. Given [Φ] ∈ [P(X)], we define (with an abuse

of notation) ext([Φ]) = ext(Φ). Then, we have that ext is an injection from
[P(X)] to E(X), an injection from [Peql(X)] to Eeql(X), and a bijection from
[Pfin(X)] to Efin(X).

As shown by the following example, if X has infinitely many elements, then
there are feature models in E(X)\Efin(X) that have no propositional represen-
tation.

Example 6 (Extensional feature models without a propositional representation).
Consider the natural numbers as features. Then the extensional feature models
(N, {{3}}), (N, {{n | n is even}}) (which has a single product with infinitely
many features) and (N, {{n} | n is even}) (which has infinitely many products
with one feature each) have no propositional representation.

Remark 2 (On Pfin(X)and P(X)). It is worth observing that, since ext(F , φ) =
ext(ftrs(φ), φ) • (F \ ftrs(φ), 2F\ftrs(φ)) and the set ftrs(φ) is finite, then any
infinite propositional feature model (i.e., in P(X)\Pfin(X) with X infinite) is
decomposable into a finite one (i.e., in Pfin(X)) and a “free” one (i.e., one where
all the features are optional). Therefore, if X has infinitely many elements, then
there are infinitely many elements of E(X)\Efin(X) that do not have a proposi-
tional representation.

4.2 Propositional Characterization of the Lattices of Feature
Models

The following theorem states that the feature model fragment relation ≤ corre-
sponds to (the converse of) logical consequence.

Theorem 4 (Propositional characterization of the relation ≤). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write Φ1 ≤ Φ2 to mean that both
F1 ⊆ F2 and φ2 |= φ1 hold. Then: ext(Φ1) ≤ ext(Φ2) holds if and only Φ1 ≤ Φ2

holds.
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Proof. We have: (F1,P1) = ext(Φ1) ≤ ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 ⊇ P2 |F1 (by Lemma 1)
iff F1 ⊆ F2 and {p1 | IF1

p1
|= φ1} ⊇ {p2 ∩ F1 | IF2

p2
|= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, IF2
p |= φ2 implies IF2

p |= φ1

iff F1 ⊆ F2 and φ2 |= φ1

iff Φ1 ≤ Φ2. �
The following theorem shows that the feature model composition operator •

corresponds to propositional conjunction (cf. Sect. 2.2).

Theorem 5 (Propositional characterization of the operator •). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define: Φ1 • Φ2 = (F1 ∪ F2, φ1 ∧
φ2). Then: ext(Φ1) • ext(Φ2) = ext(Φ1 • Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi), for i = 1, 2.
ext(Φ1) • ext(Φ2) = (F3, P3)

iff F3 = F1 ∪ F2 and iff P3 = {p1 ∪ p2 | IF1
p1 |= φ1, IF2

p2 |= φ1, p1 ∩ F2 = p2 ∩ F1}
iff F3 = F1 ∪ F2 and P3 = {p | p1 ∪ p2 ⊆ p and IX

p |= φ1, IX
p |= φ2}

iff F3 = F1 ∪ F2 and P3 = {p | IF3
p |= φ1 ∧ φ2}

iff (F3, P3) = ext(Φ1 • Φ2). �	
In order to provide a propositional characterization of the meet operator

� (introduced in Theorem 1), we introduce an auxiliary notation expressing
a propositional encoding of the existentially quantified formula ∃x1. · · · ∃xn.φ,
where φ is a propositional formula. Given Y = {x1, ..., xn}, we define:

(∨∨∨
Y
φ) =

{
φ if Y = ∅,
( ∨∨∨
Y −{x}

(φ[x := true]) ∨ (φ[x := false])) otherwise.

Theorem 6 (Propositional characterization of the operator �). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we define:

Φ1 � Φ2 =
(F1 ∩ F2, ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)
)
.

Then: ext(Φ1) � ext(Φ2) = ext(Φ1 � Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2.
Since ext(F1, φ1) � ext(F2, φ2) = (F1 ∩ F2,P1 |F2 ∪ P2 |F1), we have that:
ext(Φ1) � ext(Φ2) = (F3,P3)
iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F2 | IF1

p1
|= φ1} ∪ {p2 ∩ F1 | IF2

p2
|= φ2}

iff F3 = F1 ∩ F2 and P3 = {p1 ∩ F3 | IF1
p1

|= φ1} ∪ {p2 ∩ F3 | IF2
p2

|= φ2}
iff F3 = F1 ∩ F2 and P3 = P1 |F3 ∪ P2 |F3

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either ∃p1 s.t. p = p1 ∩ F3 and IF1

p1
|= φ1 or ∃p2 s.t. p = p2 ∩ F3 and IF2

p2
|= φ2

iff F3 = F1 ∩ F2 and, p ∈ P3 implies
either IF3

p |= ( ∨∨∨
ftrs(φ1)\F2

φ1) or IF3
p |= ( ∨∨∨

ftrs(φ2)\F1

φ2)

iff F3 = F1 ∩ F2 and, p ∈ P3 implies IF3
p |= ( ∨∨∨

ftrs(φ1)\F2

φ1) ∨ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff (F3,P3) = ext(Φ1 � Φ2). �
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The following theorem states that the feature models of the form MF =
(F , 2F ) and MF = (F , ∅) correspond to true and false, respectively—recall that
(see Theorem 1) M∅ is the bottom of the lattices (E(X),≤) and (Efin(X),≤),
while MX is the bottom of the Boolean lattice (Eeql(X),≤), and MX is the
top of the lattice (E(X),≤) and of the Boolean lattice (Eeql(X),≤) and, if X is
finite, of the lattice (Efin(X),≤).

Theorem 7 (Propositional characterization of the feature models MF
and MF). Let (F , φ) ∈ P(X).

1. ext(F , φ) = MF = (F , 2F ) if and only if φ ≡ true.
2. ext(F , φ) = MF = (F , ∅) if and only if φ ≡ false.

Proof 1. Immediate, because true is satisfied by all interpretations. 2. Immediate,
because no interpretation satisfies false. �

The following theorem shows that the feature model complement operator ¯
(introduced in Theorem 1) corresponds to logical negation.

Theorem 8 (Propositional characterization of the operator ¯). Given
Φ = (F , φ) in P(X), we define: Φ = (F ,¬φ). Then ext(Φ) = ext(Φ).

Proof. Straightforward. �
Lemma 4 below provides a representation of logical disjunction in terms of

a novel feature model operator, that we denote by +. Then, Lemma 5 sheds
some light on the Boolean lattice Eeql(X), by showing that on Eeql(X) the meet
operator � and the operator + coincide.

Lemma 4 (The operator + and its propositional characterization).
Given two sets of sets Y and Z, we define: Y �Z = {y∪z | y ∈ Y, z ∈ Z}. Given
two feature models M1 = (F1,P1) and M2 = (F2,P2) in E(X), we define:
M1 + M2 = (F1 ∪ F2, (P1 � 2(F2\F1)) ∪ (P2 � 2(F1\F2))). Given Φ1 = (F1, φ1)
and Φ2 = (F2, φ2) in P(X), we define: Φ1 + Φ2 = (F1 ∪ F2, φ1 ∨ φ2). Then:
ext(Φ1) + ext(Φ2) = ext(Φ1 + Φ2).

Proof. Let ext(Fi, φi) = (Fi,Pi) for i = 1, 2. We have that
ext(Φ1) + ext(Φ2) = (F3, P3)

iff P3 = F1 ∪ F2 and P3 = {p1 � 2(F2\F1)) | IF1
p1 |= φ1} ∪ {p2 � 2(F1\F2) | IF2

p2 |= φ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies

either p ∈ {p1 � 2(F2\F1)) | IF1
p1 |= φ1} or p ∈ {p2 � 2(F1\F2) | IF2

p2 |= φ2}
iff P3 = F1 ∪ F2 and, p ∈ P3 implies either IF3

p |= φ1 or IF3
p |= φ2

iff P3 = F1 ∪ F2 and, p ∈ P3 implies IF3
p∩F1

|= φ1 ∨ φ2

iff (F3, P3) = ext(Φ1 + Φ2). �	

Lemma 5 (The operators � and + on Eeql(X)). Given two feature models
M1 = (X,P1) and M2 = (X,P2) in Eeql(X), we have that: M1 � M2 =
M1 + M2 = (X,P1 ∪ P2).

Proof. Straightforward from the definitions of � and +. �
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Given [Φ1], [Φ2] ∈ [P(X)], we define (with an abuse of notation): [Φ1] ≤ [Φ2]
as Φ1 ≤ Φ2, [Φ1] • [Φ2] = [Φ1 • Φ2], [Φ1] � [Φ2] = [Φ1 � Φ2], [Φ1] + [Φ2] = [Φ1 +
Φ2], and [Φ1] = [Φ1]. Recall that a homomorphism is a structure-preserving map
between two algebraic structures of the same type (e.g.., between two lattices), a
monomorphism is an injective homomorphism, and an isomorphism is a bijective
homomorphism.

Theorem 9 (ext is a lattice monomorphism). Given a set X of features:

1. ([P(X)], ≤) is a bounded lattice with join •, meet �, bottom [(∅, true)] and
top [(X, false)]. Moreover, ext is a bounded lattice monomorphism from
([P(X)], ≤) to (E(X), ≤).

2. If X has infinitely many elements, then [Pfin(X)] is a sublattice of [P(X)]
with the same bottom and no top. Moreover, ext is a lattice isomorphism
from [Pfin(X)] to Efin(X).

3. [Peql(X)] is a sublattice of [P(X)] and it is a Boolean lattice with bottom
[(X, true)], same top of [P(X)], complement ,̄ and where the meet behaves
like +. Moreover, ext is a Boolean lattice monomorphism from [Peql(X)] to
Eeql(X) and it is an isomorphism whenever X is finite.

Proof. Straightforward from Theorems 1, 4–8 and Lemmas 2, 4 and 5. �

4.3 Propositional Characterization of Slices and Interfaces

The following theorem provides a propositional characterization of the slice oper-
ator.

Theorem 10 (Propositional characterization of the operator ΠY ).
Let Φ = (F , φ) be in P(X). We define: ΠY (Φ) = (Y ∩ F , ( ∨∨∨

ftrs(φ)\Y
φ)). Then:

ΠY (ext(Φ)) = ext(ΠY (Φ)).

Proof. We have: ΠY (ext(Φ)) = (F0,P0)
iff F0 = F ∩ Y and P0 = {p | IF

p |= φ}|Y
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF

p |= φ}
iff F0 = F ∩ Y and P0 = {p ∩ Y | IF∩Y

p |= φ}
iff F0 = F ∩ Y and, p0 ∈ P0 implies IF∩Y

p0
|= ( ∨∨∨

ftrs(φ)\Y
φ)

iff (F0,P0) = ext(ΠY (Φ)). �
The following corollary provides a propositional characterization of the inter-

face relation M1 � M2 which is the same as the interpretation of the slice
operator M1 = ΠY (M2) when Y are the features of M1 (cf. Theorem 10 and
Remark 1).

Corollary 1 (Propositional characterization of the relation �). Given
Φ1 = (F1, φ1) and Φ2 = (F2, φ2) in P(X), we write Φ1 � Φ2 to mean that both
F1 ⊆ F2 and φ1 ≡ ( ∨∨∨

ftrs(φ2)\F1

φ2) hold. Then: ext(Φ1) � ext(Φ2) holds if and

only Φ1 � Φ2 holds.
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Proof. We have:
(F1,P1) = ext(Φ1) � ext(Φ2) = (F2,P2)
iff F1 ⊆ F2 and P1 = P2 |F1 (by Definition 8)
iff F1 ⊆ F2 and {p1 | IF1

p1
|= φ1} = {p2 ∩ F1 | IF2

p2
|= φ2}

iff F1 ⊆ F2 and, for all p ∈ P2, both φ2 |= φ1 and φ1 |= ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff F1 ⊆ F2 and φ1 ≡ ( ∨∨∨
ftrs(φ2)\F1

φ2)

iff Φ1 � Φ2. �

5 Related Work

Although the propositional representation of feature models is well known in the
literature (see, e.g., Sect. 2.3 of Apel et al. [7]), we are not aware of any work that
(as done in the present paper) provides a formal account of the correspondence
between the algebraic and the propositional characterizations of feature model
operators and relations, and encompasses the general case of feature models with
infinitely many features. The investigation presented in this paper started from
the feature model composition operator • and the induced fragment partial order
relation ≤. In the following we briefly discuss relevant related work on feature
model composition operators and on feature model relations.

Feature-model composition operators are often investigated in connection
with multi software product lines, which are sets of interdependent product
lines [22]. Eichelberger and Schmid [19] present an overview of textual-modeling
languages which support variability-model composition (like FAMILIAR [5],
VELVET [29], TVL [13], VSL [1]) and discuss their support for composition,
modularity, and evolution. Acher et al. [6] consider different feature-model com-
position operators together with possible implementations and discuss advan-
tages and drawbacks.

The feature-model fragment relation introduced in this paper generalizes the
feature-model interface relation introduced by Schröter et al. [31], which (see
Remark 1) is closely related to the feature model slice operator introduced by
Acher et al. [4]. The work of Acher et al. [4] focuses on feature model decompo-
sition. In subsequent work [2], Acher et al. use the slice operator in combination
with a merge operator to address evolutionary changes for extracted variability
models, focusing on detecting differences between feature-model versions dur-
ing evolution. Analyzing fragmented feature models usually requires to compose
the fragments in order to apply existing techniques [21,34]. Schröter et al. [31]
proposed feature model interfaces to support evolution of large feature models
composed by several feature models fragments. Namely, they propose to analyze
a fragmented feature model where some fragments have been replaced by care-
fully chosen feature model interface to obtain results that hold for the original
feature model and for all its evolution where the evolved version of the frag-
ments replaced by the interfaces are still compatible with the interfaces. More
recently, Lienhardt et al. [25] strengthen feature model interfaces to support
efficient automated product discovery in fragmented feature models.
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6 Conclusion and Future Work

The formalization presented in this paper sheds new light on the correspondence
between the algebraic and propositional characterizations of feature model oper-
ations and relations. It aims to foster the development of a formal framework
for supporting practical exploitation of future theoretical developments on fea-
ture models and software product lines. For instance, recent works [25,31] which
introduced novel feature model relations by relying on the extensional represen-
tation for theory and on the propositional representation for experiments, do
not show the propositional representation of the relations.

In future work we would like to extend this picture by considering other
feature model representations [7,8], operators [6] and relations [25]. Moreover,
we would like to investigate whether there are classes of infinite feature mod-
els without a propositional representation (see Remark 2) that have practical
relevance—such feature models might admit convenient representations (e.g., by
first order logic). We are also planning to extend out formalization to encompass
cardinality-based feature models, which can also enable infinitely many products,
without necessarily requiring infinitely many features [15]. Moreover, we want
to investigate more in detail the feature model fragment relation and how it can
be used to decompose large feature models in manageable parts. Recently [17],
we have introduced the notion of software product signature in order to express
dependencies between different product lines, and we have lifted to software
product lines the notions of feature model composition and interface. In future
work we would like to lift to software product lines other feature model operations
and relations and to provide a formal account of the connection between different
software product line implementation approaches [7,30,34]. This formalization
would enable formal reasoning on multi software product lines comprising soft-
ware product lines implemented according to different approaches.

Acknowledgments. We thank the anonymous reviewers for their useful comments.
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Abstract. For a Boolean type of nets τ , a transition system A is syn-
thesizeable into a τ -net N if and only if distinct states of A correspond to
distinct markings of N , and N prevents a transition firing if there is no
related transition in A. The former property is called τ -state separation
property (τ -SSP) while the latter – τ -event/state separation property
(τ -ESSP). A is embeddable into the reachability graph of a τ -net N if
and only if A has the τ -SSP. This paper presents a complete character-
ization of the computational complexity of τ -SSP for all Boolean Petri
net types.

Keywords: Boolean Petri nets · Boolean state separation ·
Complexity characterization

1 Introduction

Providing a powerful mechanism for the modeling of conflicts, dependencies and
parallelism, Petri nets are widely used for studying and simulating concurrent
and distributed systems. In system analysis, one aims to check behavioral prop-
erties of system models, and many of these properties are decidable [7] for Petri
nets and their reachability graphs, which represent systems’ behaviors. The task
of system synthesis is opposite: a (formal) specification of the system’s behavior
is given, and the goal is then to decide whether this behavior can be implemented
by a Petri net. In case of a positive decision, such a net should be constructed.

Boolean Petri nets form a simple yet rich and powerful family of Petri
nets [3,4,8,10,12,13,16], applied in asynchronous circuits design [25,27], con-
current constraint programs [9] and analysis of biological systems models [6]. In
Boolean nets, each place contains at most one token, for any reachable marking.
Hence, a place can be interpreted as a Boolean condition that is true if marked
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and false otherwise. A place p and a transition t of such a net are related by
one of the Boolean interactions that define in which way p and t influence each
other. The interaction inp (out) defines that p must be true (false) before and
false (true) after t’s firing; free (used) implies that t’s firing proves that p is
false (true); nop means that p and t do not affect each other at all; res (set)
implies that p may initially be both false or true but after t’s firing it is false
(true); swap means that t inverts p’s current Boolean value. Boolean Petri nets
are classified by the sets of interactions that can be applied. A set τ of Boolean
interactions is called a type of net, and a net N is of type τ (a τ -net) if it
applies at most the interactions of τ . For a type τ , the τ -synthesis problem
consists in deciding whether a specification given in the form of a labeled tran-
sition system (TS) is isomorphic to the reachability graph of some τ -net N , and
in constructing N if it exists. The complexity of τ -synthesis has been studied
in different settings [17,20,23], and varies substantially from polynomial [16] to
NP-complete [2].

In order to perform synthesis, that is, to implement the behavior specified by
the given TS with a τ -net, two general problems have to be resolved: The τ -net
has to distinguish the global states of the TS, and the τ -net has to prevent actions
at states where they are not permitted by the TS. In the literature [3], the former
requirement is usually referred to as τ -state separation property (τ -SSP), while
the latter – τ -event/state separation property (τ -ESSP). Both τ -SSP and τ -ESSP
define decision problems that ask whether a given TS fulfills the respective prop-
erty. The present work focuses exclusively on the computational complexity of
τ -SSP. The interest to state separation is motivated in several ways. First, many
synthesis approaches are very sensitive to the size of the input’s state space. This
raises the question if some initial, so-called pre-synthesis procedures [5,26] can
be employed as a quick-fail mechanism, i.e., techniques with a small computa-
tional overhead that would gain some helpful information for the main synthesis,
or reject the input if exact (up to isomorphism) synthesis is not possible. Since
τ -synthesis allows a positive decision if and only if τ -SSP and τ -ESSP do [3],
an efficient decision procedure for τ -SSP could serve as a quick-fail pre-process
check. Second, if exact synthesis is not possible for the given TS, one may want
to have a simulating model, i.e., a τ -net that over-approximates [14,15] the spec-
ified behavior with some possible supplement. Formally, the TS then has to be
injectively embeddable into the reachability graph of a τ -net. It is well known
from the literature [3] that a TS can be embedded into the reachability graph
of a τ -net if and only if it has the τ -SSP. Finally, in comparison to τ -ESSP, so
far the complexity of τ -SSP is known to be as hard [1,16,23,24] or actually less
hard [18,19]. On the contrary, in this paper, for some types of nets, deciding
the τ -SSP is proven harder (NP-complete) than deciding the τ -ESSP (polyno-
mial), e.g., for τ = {nop, res, set}. From the contribution perspective, the τ -SSP
has been previously considered only in the broader context of τ -synthesis, and
only for selected types [16,19,22,23]. In this paper, we completely characterize
the complexity of τ -SSP for all 256 Boolean types of nets and discover 150 new
hard types, cf. §1–§3, §6, §9 of Fig. 1, and 4 new tractable types, cf. Fig. 1 §10,
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and comprise the known results for the other 102 types as well, cf. Fig. 1 §4,
§5, §7, §8. In particular, our characterization categorizes Boolean types with
regard to their behavioral capabilities, resulting from the Boolean interactions
involved. This reveals the internal organization of the entire class of Boolean
nets, suggesting a general approach for reasoning about its subclasses.

This paper is organized as follows. In Sect. 2, all the necessary notions and
definitions will be given. Section 3 presents NP-completeness results for the types
with nop-interaction. τ -SSP for types without nop is investigated in Sect. 4.
Concluding remarks are given in Sect. 5. Due to space restrictions, one proof is
omitted but can be found in [21].

Fig. 1. Overview of the computational complexity of τ -SSP for Boolean types of nets
τ . The gray area highlights the new results that this paper provides.

2 Preliminaries

In this section, we introduce necessary notions and definitions, supported by
illustrations and examples, and some basic results that are used throughout the
paper.

Transition Systems. A (finite, deterministic) transition system (TS, for short)
A = (S,E, δ) is a directed labeled graph with the set of nodes S (called states),
the set of labels E (called events) and partial transition function δ : S×E −→ S.
If δ(s, e) is defined, we say that e occurs at state s, denoted by s e . By s e s′ ∈
A, we denote δ(s, e) = s′. This notation extends to paths, i.e., q0

e1 . . . en qn ∈
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A denotes qi−1
ei qi ∈ A for all i ∈ {1, . . . , n}. A TS A is loop-free, if s e s′ ∈ A

implies s �= s′. A loop-free TS A is bi-directed if s′ e s ∈ A implies s e s′ ∈ A.
We say s0

e1 . . . en sn ∈ A is a simple bi-directed path if si �= sj for all i �= j
with i, j ∈ {0, . . . , n}. An initialized TS A = (S,E, δ, ι) is a TS with a distinct
initial state ι ∈ S, where every state s ∈ S is reachable from ι by a directed
labeled path.

Boolean Types of Nets [3]. The following notion of Boolean types of nets
allows to capture all Boolean Petri nets in a uniform way. A Boolean type of net
τ = ({0, 1}, Eτ , δτ ) is a TS such that Eτ is a subset of the Boolean interactions:
Eτ ⊆ I = {nop, inp, out, res, set, swap, used, free}. Each interaction i ∈ I is a
binary partial function i : {0, 1} → {0, 1} as defined in Fig. 2. For all x ∈ {0, 1}
and all i ∈ Eτ , the transition function of τ is defined by δτ (x, i) = i(x). Notice

Fig. 2. All interactions i of I. If a cell is empty, then i is undefined on the respective x.

Fig. 3. Left: τ = {nop, inp}. Right: τ̃ = {nop, set, swap, used}. The red colored area
emphasizes the inside. The only SSP atom of A1 is (s0, s1). It is τ̃ -solvable by R1 =
(sup1, sig1) with sup1(s0) = 0, sup1(s1) = 1, sig1(a) = swap. Thus, A1 has the τ̃ -
separative set R = {R1}. The SSP atom (s0, s1) is not τ -solvable. The only SSP
atom (r0, r1) in A2 can be solved by τ̃ -region R2 = (sup2, sig2) with sup2(r0) = 0,
sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus, A2 has the τ̃ -SSP. The same atom
can also be solved by τ -region R3 = (sup3, sig3) with sup3(r0) = 1, sup3(r1) = 0,
sig3(b) = sig3(c) = inp. Hence, A2 has the τ -SSP, as well. (Color figure online)

Fig. 4. Left: TS A3, a simple directed path. If τ̃ is defined as in Fig. 3, then sup(ι) = 1,
sig(a) = used, sig(b) = swap and sig(c) = set implicitly defines the τ̃ -region R =
(sup, sig) of A3 as follows: sup(s1) = δτ̃ (1, used) = 1, sup(s2) = δτ̃ (1, swap) = 0 and
sup(s3) = δτ̃ (0, set) = 1. Middle: The image AR

3 of A3 (under R). One easily verifies
that δA3(s, e) = s′ implies δτ̃ (sup(s), sig(e)) = sup(s′), cf. Fig. 3. In particular, R is
sound. For event b, the edge defined by δA3(s1, b) = s2 is mapped into δτ̃ (1, swap) = 0
under R, i.e., b makes a state change on the path; similar for sig(c) = set. R is not

normalized, since sup(s0) = sup(s1), but sig(a) = used �= nop. Right: The image AR′
3

of A3 under the normalized τ̃ -region R′ that is similar to R but replaces used by nop.
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that a type τ is completely determined by Eτ . Hence we often identify τ with Eτ ,
cf. Fig. 1. Moreover, since I captures all meaningful Boolean interactions [23,
p. 617] and τ is defined by Eτ ⊆ I, there are 256 Boolean types of nets at all.
For a Boolean type of net τ , we say that its state 1 is inside and 0 is outside. An

interaction i ∈ Eτ exits if 1 i 0, enters if 0 i 1, saves 1 if 1 i 1 and saves 0

if 0 i 0. Accordingly, we group interactions together by exit = {inp, res, swap},
enter = {out, set, swap}, save1 = {nop, set, used}, save0 = {nop, res, free} and
save = save1 ∪ save0.

For a net of type τ (τ -net), the interactions of τ determine relations between
places and transitions of the net. For instance, if a place p and a transition t are
related via inp, then p has to be marked (true) to allow t to fire, and becomes
unmarked (false) after the firing (cf. Fig. 2). Since we are only concerned with
state separation, we omit the formal definition of τ -nets and rather refer to,
e.g., [3] for a comprehensive introduction to the topic.

τ-Regions. The following notion of τ -regions is the key concept for state sepa-
ration. A τ -region R = (sup, sig) of TS A = (S,E, δ, ι) consists of the mappings
support sup : S → {0, 1} and signature sig : E → Eτ , such that for every edge

s e s′ of A, the edge sup(s) sig(e)
sup(s′) belongs to the type τ ; we also say sup

allows (sig and thus the region) R. If P = q0
e1 . . . en qn is a path in A, then

PR = sup(q0)
sig(e1) . . .

sig(en)
sup(qn) is a path in τ . We say PR is the image

of P (under R). For region R and path P , event ei with 1 ≤ i ≤ n is called state
changing on the path PR, if sup(qi−1) �= sup(qi) for qi−1

ei qi in P . Notice
that R is implicitly defined by sup(ι) and sig: Since A is reachable, for every
state s ∈ S, there is a path ι e1 . . . en sn such that s = sn. Thus, since τ is

deterministic, we inductively obtain sup(si+1) by sup(si)
sig(ei+1) sup(si+1) for

all i ∈ {0, . . . , n − 1} and s0 = ι. Hence, we can compute sup and thus R purely
from sup(ι) and sig, cf. Fig. 4. If nop ∈ τ , then a τ -region R = (sup, sig) of a TS
A is called normalized if sig(e) = nop for as many events e as sup allows: for all
e ∈ E, sig(e) �∈ {used, free} and if sig(e) ∈ exit ∪ enter then there is s e s′ ∈ A
such that sup(s) �= sup(s′).

τ-State Separation Property. A pair (s, s′) of distinct states of A defines a
state separation atom (SSP atom). A τ -region R = (sup, sig) solves (s, s′) if
sup(s) �= sup(s′). If R exists, then (s, s′) is called τ -solvable. If s ∈ SA and, for
all s′ ∈ SA \ {s}, the atom (s, s′) is τ -solvable, then s is called τ -solvable. A TS
has the τ -state separation property (τ -SSP) if all of its SSP atoms are τ -solvable.
A set R of τ -regions of A is called τ -separative if for each SSP atom of A there
is a τ -region R in R that solves it. By the next lemma, if nop ∈ τ , then A has
the τ -SSP if and only if it has a τ -separative set of normalized τ -regions:

Lemma 1. Let A be a TS and τ be a nop-equipped Boolean type of nets. There
is a τ -separative set R of A if and only if there is a τ -separative set of normalized
τ -regions of A.
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Proof. The if -direction is trivial. Only-if : Let R = (sup, sig) be a non-
normalized τ -region, i.e., there is e ∈ EA such that s e s′ ∈ A implies
sup(s) = sup(s′). Since τ is nop-equipped, sup(s) nop sup(s′) ∈ τ for all
s e s′ ∈ A. Thus, a τ -region R′ = (sup, sig′) can be constructed from R, where
sig′ is equal to sig except for sig′(e) = nop. Since EA is finite, a normalized
region can be obtained from R by inductive application of this procedure. �	

By the following lemma, τ -SSP and τ̃ -SSP are equivalent if τ and τ̃ are
isomorphic:

Lemma 2 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the τ -SSP if and only if A has the τ̃ -SSP.

In this paper, we consider the τ -SSP also as decision problem that asks
whether a given TS A has the τ -SSP. The decision problem τ -SSP is in NP:
By definition, A has at most |S|2 SSP atoms. Hence, a Turing-machine can
(non-deterministically) guess a τ -separative set R such that |R| ≤ |S|2 and
(deterministically) check in polynomial time its validity if it exists.

In what follows, some of our NP-completeness results base on polynomial-
time reductions of the following decision problem, which is known to be NP-
complete [11]:

Cubic Monotone 1-in-3 3Sat. (CM 1-in-3 3Sat) The input is a Boolean
formula ϕ = {ζ0, . . . , ζm−1} of negation-free three-clauses ζi = {Xi0 ,Xi1 ,Xi2},
where i ∈ {0, . . . , m − 1}, with set of variables X =

⋃m−1
i=0 ζi; every variable

v ∈ X occurs in exactly three clauses, implying |X| = m. The question to decide
is whether there is a (one-in-three model) M ⊆ X satisfying |M ∩ ζi| = 1 for all
i ∈ {0, . . . , m − 1}.

Example 1 (CM 1-in-3 3Sat). The instance ϕ = {ζ0, . . . , ζ5} of CM 1-in-3
3Sat with set of variables X = {X0, . . . , X5} and clauses ζ0 = {X0,X1,X2},
ζ1 = {X0,X2,X3}, ζ2 = {X0,X1,X3}, ζ3 = {X2,X4,X5}, ζ4 = {X1,X4,X5}
and ζ5 = {X3,X4,X5} has the one-in-three model M = {X0,X4}.

3 Deciding the State Separation Property for
nop-equipped Types

In this section, we investigate the computational complexity of nop-equipped
Boolean types of nets. For technical reasons, we separately consider the types
that include neither res nor set (§5–§7 in Fig. 1) and the ones that have at least
one of them (§1–§4 in Fig. 1).

First of all, the fact that τ -SSP is polynomial for the types of §7 in Fig. 1 is
implied by the results of [16] [23, p. 619]. Moreover, for the types of Fig. 1 §5
the NP-completeness of τ -SSP has been shown in [24] (τ = {nop, inp, out}), and
in [19] (τ = {nop, inp, out, used}, there referred to as 1-bounded P/T-nets). Thus,
in order to complete the complexity characterization for the nop-equipped types
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that neither contain res nor set, it only remains to ascertain the complexity of
τ -SSP for the types Fig. 1 §6. The following Subsect. 3.1 proves that τ -SSP is
NP-complete for these types.

Then, we proceed with the types of §1–§4 in Fig. 1. The fact that τ -SSP is
polynomial for the types of §4 follows from [23, p. 619]. The NP-completeness
of τ -SSP for the remaining types (§1–§3) will be demonstrated in Subsect. 3.2.

3.1 Complexity of τ -SSP for nop-equipped Types
Without res and set

The following theorem summarizes the complexity for the types of §5–§7 in
Fig. 1.

Theorem 1. Let τ be a nop-equipped Boolean type of nets such that τ ∩
{res, set} = ∅. The τ -SSP is NP-complete if τ ∩ {inp, out} �= ∅ and swap �∈ τ ,
otherwise it is polynomial.

As just discussed in Sect. 3, to complete the proof of Theorem 1 it remains
to characterize the complexity of τ -SSP for the types of Fig. 1 §6. Since τ -SSP
is NP-complete if τ = {nop, inp, out} [24], by Lemma 1, the τ -SSP is also NP-
complete if τ = {nop, inp, out, free} and τ = {nop, inp, out, free, used}.

Thus, in what follows, we restrict ourselves to the types τ = {nop, inp} ∪ ω
and τ = {nop, out} ∪ ω, where ω ⊆ {used, free}, and argue that their τ -SSP are
NP-complete. To do so, we let τ = {nop, inp} and show the hardness of τ -SSP by
a reduction of CM 1-in-3 3Sat. By Lemma 1, this also implies the hardness of
τ ∪ ω-SSP, where ω ⊆ {used, free}. Furthermore, by Lemma 2, the latter shows
the NP-completeness of τ -SSP if τ = {nop, out} ∪ ω and ω ⊆ {used, free}. The
following paragraph introduces the intuition of our reduction approach.

The Roadmap of Reduction. Let τ = {nop, inp} and ϕ = {ζ0, . . . , ζm−1} be
an input of CM 1-in-3 3Sat with variables X = {X0, . . . , Xm−1} and clauses
ζi = {Xi0 ,Xi1 ,Xi2} for all i ∈ {0, . . . , m − 1}. To show the NP-completeness of
τ -SSP, we reduce a given input ϕ to a TS Aϕ (i.e., an input of τ -SSP) as follows:
For every clause ζi = {Xi0 ,Xi1 ,Xi2}, the TS Aϕ has a directed labeled path Pi

that represents ζi by using its variables as events:

We ensure by construction that Aϕ has an SSP atom α such that if R =
(sup, sig) is a τ -region solving α, then sup(ti,0) = 1 and sup(ti,3) = 0 for all
i ∈ {0, . . . , m − 1}. Thus, for all i ∈ {0, . . . ,m − 1}, the path PR

i is a path from
1 to 0 in τ . First, this obviously implies that there is an event e ∈ {Xi0 ,Xi1 ,Xi2}
such that sig(e) = inp. Second, it is easy to see that there is no path in τ on
which inp occurs twice, cf. Fig. 3. The following figure sketches all possibilities
of PR

i , i.e., sig(Xi0) = inp and sig(Xi1) = sig(Xi2) = nop, sig(Xi1) = inp and
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sig(Xi0) = sig(Xi2) = nop, and sig(Xi2) = inp and sig(Xi0) = sig(Xi1) = nop,
respectively:

Hence, the event e is unique. Since this is simultaneously true for all paths
P0, . . . , Pm−1, the set M = {e ∈ X | sig(e) = inp} selects exactly one variable
per clause and thus defines a one-in-three model of ϕ. Altogether, this approach
shows that if Aϕ has the τ -SSP, which implies that α is τ -solvable, then ϕ has
a one-in-three model.

Conversely, our construction ensures that if ϕ has a one-in-three model, then
α and the other separation atoms of Aϕ are τ -solvable, that is, Aϕ has the τ -SSP.

The Reduction of Aϕ for τ = {nop, inp}. In the following, we introduce
the announced TS Aϕ, cf. Fig. 5. The initial state of Aϕ is t0,0. First of all,
the TS Aϕ has the following path P that provides the announced SSP atom
α = (tm,0, tm+1,0):

Fig. 5. The TS Aϕ originating from the input ϕ of Example 1, which has the one-in-
three model M = {X0, X4}. The colored area sketches the region RM of Lemma 4 that
solves α = (t6,0, t7,0). (Color figure online)

Moreover, for every i ∈ {0, . . . ,m − 1}, the TS Aϕ has the following path Ti

that uses the variables of ζi = {Xi0 ,Xi1 ,Xi2} as events and provides the sub-
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path Pi = ti,0
Xi0 . . . Xi2 ti,3:

Finally, the TS Aϕ has, for all i ∈ {0, . . . , m − 1}, the following path Gi:

Notice that the paths P and T0, . . . , Tm−1 have the same “final”-state ⊥. Obvi-
ously, the size of Aϕ is polynomial in the size of ϕ. The following Lemma 3 and
Lemma 4 prove the validity of our reduction and thus complete the proof of
Theorem 1.

Lemma 3. Let τ = {nop, inp}. If Aϕ has the τ -SSP, then ϕ has a one-in-three
model.

Proof. Let R = (sup, sig) be a τ -region that solves α, that is, sup(tm,0) �=
sup(tm+1,0). By tm,0

k tm+1,0 and τ = {nop, inp}, this implies sig(k) = inp,

sup(tm,0) = 1 and sup(tm+1,0) = 0. If s0
e0 . . . ei si

k si+1
ei+2 . . . en sn is

a path in Aϕ, then, by sig(k) = inp, we get sup(sj) = 1 for all j ∈ {0, . . . , i},
sup(sj) = 0 for all j ∈ {i + 1, . . . , n} and sig(ej) = nop for all j ∈ {1, . . . , i, i +
2, . . . , n}. This implies sup() = 0, sig(v) = nop as well as sig(ui) = nop
and sup(ti,0) = 1 for all i ∈ {0, . . . , m − 1}. Furthermore, by sup() = 0 and
sig(ui) = nop, we get sup(ti,3) = 0 for all i ∈ {0, . . . , m − 1}. Hence, for all
i ∈ {0, . . . , m − 1}, the image PR

i of Pi is a path from 1 to 0 in τ . Hence, as just
discussed above, M = {e ∈ X | sig(e) = inp} selects exactly one variable per
clause and defines a one-in-three model of ϕ. �	
Lemma 4. Let τ = {nop, inp}. If ϕ has a one-in-three model, then Aϕ has the
τ -SSP.

Proof. Let M be a one-in-three model of ϕ.
The following region R1 = (sup, sig) solves (s, s′) for all s ∈ ⋃m−1

i=0 S(Pi)
and all s′ ∈ ⋃m−1

i=0 S(Gi), where s′ �= t0,0: sup(t0,0) = 1; for all e ∈ EAϕ
, if

e ∈ {y0, . . . , ym−1}, then sig(e) = inp, otherwise sig(e) = nop.
Let i ∈ {0, . . . , m − 1} be arbitrary but fixed. The following region RT

i =
(sup, sig) solves (s, s′) for all s ∈ {ti,0, . . . , ti,3} and all s′ ∈ ⋃m−1

j=i+1 S(Tj) ∪
{tm,0, tm+1,0}: sup(t0,0) = 1; for all e ∈ EAϕ

, if e ∈ {wi} ∪ {u0, . . . , ui} ∪
{yi+1, . . . , ym−1}, then sig(e) = inp, otherwise sig(e) = nop.

The following region R2 = (sup, sig) solves (tm+1,) and (gi,0, gi,1) and
(gi,0, gi,2) for all i ∈ {0, . . . , m − 1}: sup(t0,0) = 1; for all e ∈ EAϕ

, if e ∈
{v} ∪ {u0, . . . , um−1}, then sig(e) = inp, otherwise sig(e) = nop.

The following region RM = (sup, sig) uses the one-in-three model M of ϕ
and solves α as well as (gi,1, gi,2) for all i ∈ {0, . . . , m − 1}: sup(t0,0) = 1; for all
e ∈ EAϕ

, if e ∈ {k} ∪ M , then sig(e) = inp, otherwise sig(e) = nop. Note Fig. 5
for an example of RM .
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Let i ∈ {0, . . . , m − 2} be arbitrary but fixed. The following region RG
i =

(sup, sig) solves (s, s′) for all s ∈ {gi,0, gi,1, gi,2} and all s′ ∈ ⋃m−1
j=i+1 S(Gj),

where s′ �= t0,0: sup(t0,0) = 1; for all e ∈ EAϕ
, if e ∈ {yi+1, . . . , ym−1}, then

sig(e) = inp, otherwise sig(e) = nop.
By the arbitrariness of i for RT

i and RG
i , it remains to show that ti,0, . . . , ti,3

are pairwise separable for all i ∈ {0, . . . ,m − 1}. Let i ∈ {0, . . . , m − 1} be
arbitrary but fixed. We present only a region RX

i0
= (sup, sig) that solves (ti,0, s)

for all s ∈ {ti,1, ti,2, ti,3}. It is then easy to see that the remaining atoms are
similarly solvable. Let j �= 	 ∈ {0, . . . , m − 1}\{i} select the other two clauses of
ϕ that contain Xi0 , that is, Xi0 ∈ ζj ∩ ζ�. RX

i0
= (sup, sig) is defined as follows:

sup(t0,0) = 1; for all e ∈ EAϕ
, if e ∈ {Xi0} ∪ {v} ∪ {u0, . . . , um−1} \ {ui, uj , u�},

then sig(e) = inp, otherwise sig(e) = nop.
Similarly, one gets regions where Xi1 or Xi2 has inp-signature. These regions

solve the remaining atoms of S(Ti)\{}. Since i was arbitrary, this completes
the proof. Please note that the technical report [21] that corresponds to this
paper provides graphical representations and examples for the just presented
regions. �	

3.2 Complexity of τ -SSP for nop-equipped Types with res or set

The next theorem states that τ -SSP is NP-complete for the nop-equipped types
that have not yet been considered, cf Fig. 1 §1–§3. Moreover, it summarizes the
complexity of τ -SSP for all types of Fig. 1 §1–§4:

Theorem 2. Let τ and τ̃ be Boolean type of nets and {nop, res} ⊆ τ and
{nop, set} ⊆ τ̃ .

1. The τ -SSP is NP-complete if τ ∩ enter �= ∅, otherwise it is polynomial.
2. The τ̃ -SSP is NP-complete if τ̃ ∩ exit �= ∅, otherwise it is polynomial.

In this section we complete the proof of Theorem 2 as follows. Firstly, we
let τ0 = {nop, inp, out} and, by a reduction of τ0-SSP, we show that the τ -
SSP is NP-complete if τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free} or if
{nop, res, set} ⊆ τ . By Lemma 2, the former also implies the NP-completeness of
τ -SSP if τ = {nop, inp, set} ∪ ω and ω ⊆ {out, used, free}. Altogether, this proves
the claim for all the types listed in §1 and §3 of Fig. 1.

Secondly, we let τ1 = {nop, inp} and reduce τ1-SSP to τ -SSP, where
τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}. Again by Lemma 2, this
also implies the NP-completeness of τ -SSP if τ = {nop, set, swap} ∪ ω and
ω ⊆ {out, used, free}. Hence, this proves the claim for all the types listed in
§2 of Fig. 1 and thus completes the proof of Theorem 2.

For the announced reductions, we use the following extensions of a TS A, cf.
Fig. 6. Let A = (SA, EA, δA, ιA) be a loop-free TS, and let EA = {e | e ∈ EA}
be the set containing for every event e ∈ EA the unambiguous and fresh event
e that is associated with e. The backward-extension B = (SA, EA ∪ EA, δB , ιA)
of A extends A by EA and additional backward edges: for all e ∈ EA and all
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s, s′ ∈ SA, if δA(s, e) = s′, then δB(s, e) = s′ and δB(s′, e) = s. The oneway loop-
extension C = (SA, EA ∪ EA, δC , ιA) of a TS A extends B by some additional
loops: for all x ∈ EA ∪ EA and all s ∈ SA, we define δC(s, e) = δB(s, e) and,
for all e ∈ EA and all s, s′ ∈ SA, if δA(s, e) = s′, then δC(s′, e) = s′. Finally,
the loop-extension D = (SA, EA ∪ EA, δD, ιA) of A is an extension of C, where
for all x ∈ EA ∪ EA and all s ∈ SA, we define δD(s, x) = δC(s, x) and, for all
e ∈ EA and all s, s′ ∈ SA, if δA(s, e) = s′, then δD(s, e) = s.

Depending on the considered type τ , we let τ̃ = τ0 or τ̃ = τ1 and reduce
a loop-free TS A = (SA, EA, δA, ιA) either to its backward-, oneway loop- or
loop-extension and show that sup : SA → {0, 1} allows a τ̃ -region of A if and
only if it allows a τ -region of the extension:

Lemma 5. Let τ0 = {nop, inp, out}, τ1 = {nop, inp}, A a loop-free TS, sup :
SA → {0, 1} and B, C and D the backward-, oneway loop- and loop-extension
of A, respectively.

Fig. 6. Top, left to right: A TS A consisting of a single edge; backward-extension B of
A; oneway loop-extension C of A; loop-extension D of A. Bottom, left to right: images
of A and its extensions B, C, D under regions corresponding to the types of Lemma 5
solving (q0, q1): a {nop, inp}- ({nop, inp, out}-) region of A; a {nop, res, out}-region of B;
a {nop, res, swap}-region of C; a {nop, res, set}-region of D.

1. If τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free}, then sup allows a τ0-
region R = (sup, sig) of A if and only if it allows a normalized τ -region
R′ = (sup, sig′) of B.

2. If τ ⊇ {nop, res, set}, then sup allows a τ0-region R = (sup, sig) of A if and
only if it allows a normalized τ -region R′ = (sup, sig′) of D.

3. If τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}, then sup allows a τ1-
region R = (sup, sig) of A if and only if it allows a normalized τ -region
R′ = (sup, sig′) of C.

Proof. (1): Only-if : Let R = (sup, sig) be a τ0-region of A. Recall that sig(e) =
nop, sig(e) = inp, sig(e) = out imply sup(s) = sup(t), sup(s) = 1 and sup(t) = 0,
sup(s) = 0 and sup(t) = 1 for all edges s e t of A, respectively. Thus, it is easy
to see that R induces a normalized τ -region R′ = (sup, sig′) of B as follows, cf.
Fig. 6: For all e ∈ EA and its associated event e ∈ EA, if sig(e) = nop, then
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sig′(e) = sig′(e) = nop; if sig(e) = inp, then sig′(e) = res and sig′(e) = out; if
sig(e) = out, then sig′(e) = out and sig′(e) = res.

If : Let R′ = (sup, sig′) be a normalized τ -region of B, and let e ∈ EA and
s e t ∈ B and s′ e t′ ∈ B be arbitrary but fixed. First of all, we argue that
if sup(s) �= sup(t), then sup(s) = sup(s′) and sup(t) = sup(t′): By definition of

B, we have that t e s and t′ e s′ are present. If sup(s) = 1 and sup(t) = 0,

then s e t and t e s imply sig′(e) ∈ {inp, res} and sig′(e) = out. By e t′

and e s′, this immediately implies sup(s′) = 1 and sup(t′) = 0. Similarly, if
sup(s) = 0 and sup(t) = 1, then sig′(e) = out and sig′(e) ∈ {inp, res}, which
implies sup(s′) = 0 and sup(t′) = 1. Consequently, since s′ e t′ was arbitrary,
the claim follows. Note that this implies in return that if sup(s) = sup(t), then
sup(s′) = sup(t′). Since both edges were arbitrary, it is easy to see that the
following τ0-region R = (sup, sig) of A is well defined: for all e ∈ EA, if there
is s e t ∈ B such that sup(s) �= sup(t), then sig(e) = inp if sup(s) = 1 and
sup(t) = 0, else sig(e) = out; otherwise, sig(e) = nop.

(2): Only-if : Recall that 0 res 0 and 1 set 1 are present in τ . Consequently,
if R = (sup, sig) is a τ0-region of A, then the region R′ = (sup, sig′), similarly
defined to the one for the Only-if-direction of (1), but replacing out by set, is a
τ -region of D, cf. Fig. 6.

If : If R′ = (sup, sig′) is a normalized τ -region of D, then it holds sig′(e) ∈
{nop, res, set} for all e ∈ ED. This is due to the fact that if s x s′ ∈ D, then
s′ x s′ ∈ D for all x ∈ ED and all s, t ∈ SD. Thus, R = (sup, sig) is obtained
from R′ by the same arguments as the ones presented for the If-direction of (1).

(3): Only-if : Let R = (sup, sig) be a τ1-region of A. Recall that sig(e) = nop
and sig(e) = inp imply sup(s) = sup(t) and sup(s) = 1, sup(t) = 0 for all
edges s e t of A, respectively. Moreover, 1 res 0, 0 res 0 and 0 swap 1 are present
in τ . Thus, we get a normalized τ -region R′ = (sup, sig′) of C as follows, cf.
Fig. 6: For all e ∈ EA and its associated event e ∈ EA, if sig(e) = nop, then
sig′(e) = sig′(e) = nop; if sig(e) = inp, then sig′(e) = res and sig′(e) = swap.

If : Let R′ = (sup, sig′) be a normalized τ -region of C, and let e ∈ EA and
s e t ∈ C and s′ e t′ ∈ C be arbitrary but fixed. We argue that sup(s) �=
sup(t) implies sup(s) = sup(s′) = 1 and sup(t) = sup(t′) = 0: By definition of C

and s e t ∈ C, we get t e t ∈ C. Thus, sig′(e) ∈ {nop, res}. Thus, if sup(s) �=
sup(t), then sig′(e) = res, which implies sup(s) = 1 and sup(t) = 0. Moreover,

by t e s ∈ C, this also implies sig′(e) = swap. Finally, by sig′(e) = res, e t′,

sig′(e) = swap and t′ e s′, we get sup(t′) = 0 and sup(s′) = 1. Consequently,
the following definition of sig yields a well-defined τ1-region R = (sup, sig) of
A: for all e ∈ EA, if sig′(e) = res, then sig(e) = inp, otherwise sig(e) = nop. �	

Notice that the TS Aϕ of Sect. 3.1 is loop-free. Furthermore, in [24], it has
been shown that {nop, inp, out}-SSP is NP-complete even if A is a simple directed
path. Moreover, the introduced extensions of A are constructible in polynomial
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time. Thus, by Lemma 1 and Lemma 2, the following corollary, which is easily
implied by Lemma 5, completes the proof of Theorem 2.

Corollary 1 (Without Proof). Let τ0 = {nop, inp, out} and τ1 = {nop, inp},
and let A be a loop-free TS and B, C and D its backward-, oneway loop- and
loop-extension, respectively.

1. If τ = {nop, out, res} ∪ ω and ω ⊆ {inp, used, free}, then A has the τ0-SSP if
and only if B has the τ -SSP.

2. If τ ⊇ {nop, res, set}, then A has the τ0-SSP if and only if D has the τ -SSP.
3. If τ = {nop, res, swap} ∪ ω and ω ⊆ {inp, used, free}, then A has the τ1-SSP if

and only if C has the τ -SSP.

4 Deciding the State Separation Property for nop-free
Types

The following theorem summarizes the complexity of τ -SSP for nop-free Boolean
types:

Theorem 3. Let τ be a nop-free type of nets and A a TS.

1. If swap �∈ τ or swap ∈ τ and τ ∩ save = ∅, then deciding if A has the τ -SSP
is polynomial.

2. If swap ∈ τ and τ ∩ save �= ∅, then deciding if A has the τ -SSP is NP-
complete.

The tractability of τ -SSP for nop-free types that are also swap-free has been
shown in the broader context of τ -synthesis in [22]. Thus, restricted to Theo-
rem 3.1, it remains to argue that τ -SSP is polynomial if τ = {swap} ∪ ω and
ω ⊆ {inp, out}. The following lemma states that separable inputs of τ -SSP are
trivial for these types and thus proves its tractability:

Lemma 6. Let τ = {swap} ∪ ω, where ω ⊆ {inp, out}, and A = (S,E, δ, ι) be a
TS. If A has the τ -SSP, then it has at most two states.

Proof. If there is s e s ∈ A, then A has no τ -regions. Hence, if such A has more
than one state, then it does not have the τ -SSP.

Let’s consider the case when A is loop-free, that is, s e s′ ∈ A implies
s �= s′. First of all, note that there is at most one outgoing edge ι e s at ι,

since if ι e s, ι e′
s′ and s �= s′, then s and s′ are not separable. This can be

seen as follows: If R = (sup, sig) is a τ -region that solves (s, s′), then sup(s) = 0
and sup(s′) = 1 or sup(s) = 1 and sup(s′) = 0. If sup(s) = 0 and sup(s′) = 1,
then sup(ι) = 0 contradicts sig(e) ∈ τ , and sup(ι) = 1 contradicts sig(e′) ∈ τ .
Similarly, sup(s) = 1 and sup(s′) = 0 yields a contradiction. Thus, a separating

region R does not exist, which proves the claim. Secondly, if ι e s e′
s′′ ∈ A,

then ι = s′′, since otherwise, ι and s′′ are not separable. This can be seen as
follows: If R = (sup, sig) is a τ -region that solves (ι, s′′), then sup(ι) = 0 and
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sup(s′′) = 1 or sup(ι) = 1 and sup(s′′) = 0. If sup(ι) = 0 and sup(s′′) = 1,
then sup(s′) = 0 contradicts sig(e) ∈ τ , and sup(s′) = 1 contradicts sig(e′) ∈ τ .
Similarly, sup(ι) = 1 and sup(s′′) = 0 yields a contradiction. This implies again
that a separating region does not exist, which proves the claim and, moreover,
proves the lemma. �	

To complete the proof of Theorem 3, it remains to prove the NP-completeness
of τ -SSP for the types listed in §9 of Fig. 1, which are exactly covered by Theo-
rem Theorem 3.2. Thus, in the remainder of this section, if not stated explicitly
otherwise, we let τ be a nop-free type such that swap ∈ τ and τ ∩ save �= ∅.
Moreover, we reduce CM 1-in-3 3Sat to τ -SSP again.

Basic Ideas of the Reduction. Similar to our previous approach we build a TS
Aϕ that has for every clause ζi = {Xi0 ,Xi1 ,Xi2}, where i ∈ {0, . . . , m − 1}, a (bi-

directed) path Pi = . . . Xi0 . . . Xi1 . . . Xi2 . . . on which the elements of ζi occur
as events. Together, the corresponding paths P0, . . . , Pm−1 are meant to repre-
sent ϕ. However, the current types are more diverse than {nop, inp}, since they
also allow swap and other interactions. Simultaneously, they are more restricted
than {nop, inp}, since they lack of nop. One of the main obstacles that occur
is that if s e s′ ∈ Aϕ, then the current types basically allow sup(s) = 1 and
sup(s′) = 0 as well as sup(s) = 0 and sup(s′) = 1 for a τ -region R = (sup, sig)
that solves (s, s′). It turns out that this requires a second representation of ϕ. To
do so, we use a copy ϕ′ that originates from ϕ by simply renaming its variables.
That is, ϕ′ originates from ϕ by replacing every variable v ∈ X of ϕ by a unique
and fresh variable v′.

Example 2 (Renaming of ϕ). The instance ϕ′ = {ζ ′
0, . . . , ζ

′
5} that originates

from ϕ of Example 1 is defined by X ′ = {X ′
0, . . . , X

′
5} and ζ ′

0 = {X ′
0,X

′
1,X

′
2},

ζ ′
1 = {X ′

0,X
′
2,X

′
3}, ζ ′

2 = {X ′
0,X

′
1,X

′
3}, ζ ′

3 = {X ′
2,X

′
4,X

′
5}, ζ ′

4 = {X ′
1,X

′
4,X

′
5}

and ζ ′
5 = {X ′

3,X
′
4,X

′
5}.

It is immediately clear that ϕ is one-in-three satisfiable if and only if ϕ′

is one-in-three satisfiable. The TS Aϕ additionally has for every clause ζ ′
i =

{X ′
i0

,X ′
i1

,X ′
i2

}, where i ∈ {0, . . . , m − 1}, of ϕ′ also a (bi-directed) path P ′
i =

. . .
X ′

i0 . . .
X ′

i1 . . .
X ′

i2 . . . on which the elements of ζ ′
i occur as events. Moreover,

by the construction, the TS Aϕ has a SSP atom α = (s, s′) such that if a τ -
region solves α, then either the signatures of the variable events X of ϕ define
a one-in-three model of ϕ or the signatures of the variable events X ′ of ϕ′

define a one-in-three model of ϕ′. Obviously, both cases imply the one-in-three
satisfiability of ϕ.

Conversely, the construction ensures, if ϕ has a one-in-three model then Aϕ

has the τ -SSP.
Similar to our approach for Theorem 1, the TS Aϕ is a composition of several

gadgets. The next Lemma 7 introduces some basic properties of τ -regions in
bi-directed TS for nop-free types that we use to prove the functionailty of Aϕ’s
gadgets. After that, Lemma 8 introduces TS that are the (isomorphic) prototypes
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of the gadgets of Aϕ and additionally proves the essential parts of their intended
functionality.

Lemma 7. Let τ be a nop-free Boolean type of nets and A a bi-directed TS; let
s e s′ be an edge of A, P0 = s0

e1 . . . em sm and P1 = q0
e1 . . . em qm be

two simple paths of A that both apply the same sequence e1 . . . em of events, and
R = (sup, sig) be a τ -region of A.

1. If sig(e) ∈ save, then sup(s) = sup(s′) = sup(q) = sup(q′) for every edge
q e q′ ∈ A.

2. If sup(sm) �= sup(qm), then sig(ei) = swap for all i ∈ {1, . . . , m}.
3. If sup(s0) = sup(sm), then |{e ∈ {e1, . . . , em} | sig(e) = swap}| is even.

Proof. (1): A is bi-directed and i p ∈ τ and i p′ ∈ τ imply p = p′ for all
i ∈ save.

(2): By definition of τ , if sup(sm) �= sup(qm), then, by em sm and em qm, we
get sig(em) = swap. Clearly, by sup(sm) �= sup(qm), this implies sup(sm−1) �=
sup(qm−1). Thus, the claim follows easily by induction on m.

(3): Since sup(s0) = sup(sm), the image PR
0 of P0 is a path of τ that starts

and terminates at the same state. Consequently, the number of changes between
0 and 1 on PR

0 is even. Since A is bi-directed, sup(s) �= sup(s′) if and only if
sig(e) = swap for all s e s′ ∈ P0. Thus, the number of events of P0 with a
swap-signature must be even. Hence, the claim. �	
Lemma 8 (Basic Components of Aϕ). Let τ be a nop-free Boolean type and
A a bi-directed TS with the following paths G, F , T and Q, and let R = (sup, sig)
be a τ -region of A:

1. If R solves α = (g2, g4), then either sig(k0) ∈ save and sig(k1) = swap or
sig(k0) = swap and sig(k1) ∈ save;

2. If sig(k0) ∈ save and sig(k1) = swap or sig(k0) = swap and sig(k1) ∈ save,
then sig(v) = sig(w) = swap;

3. If sig(k0) ∈ save and sig(vi) = swap for all i ∈ {0, . . . , 6}, then there is
exactly one X ∈ {X0,X1,X2} such that sig(X) �= swap.

Proof. Since A is bi-directed, we have sig(e) �∈ {inp, out} for all e ∈ EA.
(1): R solves α, thus sup(g2) �= sup(g4). If sig(k0) �= swap �= sig(k1) or

sig(k0) = sig(k1) = swap, then sup(g2) = sup(g4), a contradiction. Hence the
claim, cf. Fig. 7.
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(2): If sig(k0) ∈ save and sig(k1) = swap, then we have sup(g2) = sup(f3) �=
sup(f2), cf. Fig. 7. By symmetry, the latter is also true if sig(k0) = swap and
sig(k1) ∈ save. Hence, the claim follows from Lemma 7.2.

(3): Since sig(k0) ∈ save, we get sup(t1) = sup(t10). By Lemma 7.3, this
implies that |{e ∈ E(T ) | sig(e) = swap}| is even. Moreover, since sig(v0) =
. . . sig(v5) = swap, this implies |{e ∈ {X0,X1,X2} | sig(e) = swap}| ∈ {0, 2}.
If |{e ∈ {X0,X1,X2} | sig(e) = swap}| = 0 then, we get sup(t3) = sup(t4) �=
sup(t5) = sup(t6) �= sup(t7) = sup(t8) by Lemma 7.1. This particularly implies
sup(t4) = sup(t7) and, again by Lemma 7.1, also sup(t4) = sup(q1) = sup(q2)
and contradicts sig(v6) = swap, cf. Fig. 8. Thus, we have |{e ∈ {X0,X1,X2} |
sig(e) = swap}| = 2, which proves the claim, cf. Fig. 7. �	

Fig. 7. Illustrations for Lemma 8. The images GR, F R, T R and QR, where R =
(sup, sig) is a {swap, free}-region that solves (g2, g4) and satisfies sig(k0) = sig(X0) =
free and sig(k1) = sig(v) = sig(w) = sig(X1) = sig(X2) = sig(vi) = swap for all
i ∈ {0, . . . , 6}.

Fig. 8. Illustration for Lemma 8. A {swap, used, free}-region R = (sup, sig), restricted
to T , where sig(k0) = sig(X0) = sig(X2) = free, sig(X1) = used and sig(vi) = swap
for all i ∈ {0, . . . , 5} and, hence, |{e ∈ {X0, X1, X2} | sig(e) = swap}| = 0. R is not
extendable to a region of a TS that has T and Q such that sig(v6) = swap, since
sig(v6) = swap would contradict sup(q0) = · · · = sup(q3) = 0, which would be required
by sig(X0) = sig(X2) = free.

Let ϕ be an instance of CM 1-in-3 3Sat with the set of variables X =
{X0, . . . , Xm−1} and ϕ′ its renamed copy with event set X ′ = {X ′

0, . . . , X
′
m−1}.

In the following, we introduce the construction of Aϕ.
Firstly, for every i ∈ {0, . . . , 7m − 1}, the TS Ai has the following gadgets Gi,

Fi, G′
i and F ′

i with starting states gi,0, fi,0, g′
i,0 and f ′

i,0, respectively, providing
the atom α = (g0,2, g0,4):
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Secondly, for every i ∈ {0, . . . , m − 1}, the TS Aϕ has the following gad-
gets Ti,0, Ti,1 and T ′

i,0, T
′
i,1 that use the elements of ζi = {Xi0 ,Xi1 ,Xi2} and

ζ ′
i = {X ′

i0
,X ′

i1
,X ′

i2
} as events, respectively; their starting states are ti,0,0, ti,1,0,

t′i,0,0 and t′i,1,0:

Finally, the gadgets are connected via their starting states to finally build Aϕ

as follows:

The following Lemma 9 and Lemma 10 prove the validity of our polynomial-time
reduction and, hence, complete the proof of Theorem 3.

Lemma 9. If Aϕ has the τ -SSP, then ϕ is one-in-three satisfiable.

Proof. Let G, F , T and Q be the paths defined in Lemma 8. First of all, we
observe that G ∼= G7i+j

∼= G′
7i+j and F ∼= F7i+j

∼= F ′
7i+j and T ∼= Ti,0

∼= T ′
i,0 and

Q ∼= Ti,1
∼= T ′

i,1 for all i ∈ {0, . . . , m − 1} and j ∈ {0, . . . , 6}. Let R = (sup, sig)
be a τ -region that solves α = (g0,2, g0,4) (which exists, since Aϕ has the τ -SSP)
and let i ∈ {0, . . . , m − 1} be arbitrary but fixed. By Lemma 8.1, we have either
sig(k0) ∈ save and sig(k1) = swap or sig(k0) = swap and sig(k1) ∈ save. This
implies sig(u7i) = · · · = sig(u7i+6) = sig(u′

7i) = · · · = sig(u′
7i+6) = swap by

Lemma 8.2. If sig(k0) ∈ save and sig(k1) = swap, then by Lemma 8.3, this
implies that there is exactly one event e ∈ {Xi0 ,Xi1 ,Xi2} such that sig(e) �=
swap. Consequently, since i was arbitrary, if sig(k0) ∈ save and sig(k1) = swap,
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then M = {e ∈ X | sig(e) �= swap} selects exactly one variable of every clause
ζi for all i ∈ {0, . . . , m − 1}. Thus, M is a one in three-model of ϕ. Otherwise,
if sig(k0) = swap and sig(k1) ∈ save, then we similarly obtain that M ′ = {e ∈
X ′ | sig(e) �= swap} defines a one-in-three-model of ϕ′, which also implies the
one-in-three satisfiability of ϕ. �	
Lemma 10. If ϕ is one-in-three satisfiable, then Aϕ has the τ -SSP.

Due to space restrictions, the proof of Lemma 10 is omitted but can be found
in the technical report that corresponds to this paper [21].

5 Conclusion

In this paper, we present the overall characterization of the computational com-
plexity of the problem τ -SSP for all 256 Boolean types of nets τ . Our presentation
includes 154 new complexity results (Fig. 1: §1–§3, §6, §9, §10) and 102 known
results (Fig. 1: §4 [23], §5 [19,24], §7 [16,23], §8 [22]) and classifies them in the
overall context of boolean state separation. Besides the new 150 hardness - and
4 tractability-results, this classification is one of the main contributions of this
paper. First of all, it becomes apparent that the distinction between nop-free
and nop-equipped types is meaningful: Within the class of nop-free types, τ -SSP
turns out to be NP-complete if and only if swap ∈ τ and τ ∩ save �= ∅. Within
the class of nop-equipped types, a differentiation between types τ that satisfy
τ ∩ {res, set} = ∅ and the ones with τ ∩ {res, set} �= ∅ is useful: τ -SSP for the
former ones is NP-complete if and only if τ ∩ {inp, out} �= ∅ and swap �∈ τ . In
particular, {swap} ∪ τ -SSP becomes polynomial for all these types. On the other
hand, for the latter ones, which include i ∈ {res, set} such that i ∈ τ , τ -SSP is
NP-complete as long as there is also an interaction in τ that opposes i, that is,
τ ∩ exit �= ∅ if i = set and τ ∩ enter �= ∅ if i = res.

Moreover, our proofs discover that, up to isomorphism, there are essen-
tially four hard kernels that indicate the NP-completeness of τ -SSP, namely
{nop, inp} and {nop, inp, out} for the nop-equipped types and {swap, free} and
{swap, free, used} for the nop-free types. That means, for a nop-equipped type
τ , the hardness of τ -SSP can either be shown by a reduction of {nop, inp}-SSP
or {nop, inp, out}-SSP (or their isomorphic types), which is basically done in the
proof of Lemma 5, or τ -SSP is polynomial otherwise. Similarly, one finds out
that for the nop-free types τ in question, the hardness of τ -SSP can be shown
by a reduction of {swap, free}-SSP or {swap, free, used}-SSP. Due to the space
limitation, a reduction that covers all hard nop-free types on one blow is given
instead of explicit proof.

For future work, it remains to completely characterize the computational
complexity of deciding if a TS A is isomorphic to the reachability graph of a
Boolean Petri net, instead of only being embeddable by an injective simulation
map.
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Abstract. Let τ be a Boolean type of net. For a given transition sys-
tem A and a natural number ρ, the problem occupancy ρ-restricted τ -
synthesis (ORτS) is the task to decide whether there is a Boolean Petri
net N of type τ whose reachability graph is isomorphic to A and, more-
over, every place of N contains a token in at most ρ reachable markings.
In case of a positive decision, N should be constructed. In this paper, we
argue that ORτS is fixed-parameter tractable when parameterized by ρ.

Keywords: Synthesis · Parameterized complexity · Boolean Petri
net · Fixed-parameter tractability · Transition system

1 Introduction

Petri nets are a classical formalism which is widely used for modeling of par-
allel processes and distributed systems. Their concepts of transitions as atomic
actions of the modeled system, and places as conditions for these actions allow
to capture the relations of causal dependency, conflict and concurrency between
system agents on a fine-grained level. This raises the interest to the possibility to
synthesise a Petri net model for a system: Provided a specification of the desired
behavior of the system, one has to construct a Petri net model implementing the
specification. The problem of Petri net synthesis has been extensively studied in
the literature [3], and finds its applications in various domains [1,10]. The vari-
ety of obtained results demonstrates that the computational complexity of this
problem significantly depends on the restrictions which are either implied by the
input specification [14,22,28], or imposed on the target system model [6,23,27],
or both [13], and ranges from quadratic polynomial [12] via NP-complete [30,32]
and up to undecidable [21]. Various formalisms can be used as an input for syn-
thesis: formal languages [16], system event logs [8] or transition systems [7]. The
present paper focuses on the latter case, and assumes the specification to be
c© Springer Nature Switzerland AG 2020
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given as a labeled transition system. The goal of synthesis is then to construct a
Petri net whose reachability graph is isomorphic to the specification. As a target
model class we consider Boolean Petri nets, where each place contains at most
one token, for any reachable marking, i.e., a place can encode at most two local
states of the modeled system. According to this definition, a place p is interpreted
as a Boolean condition which is true if p is marked and false otherwise.

In a Boolean Petri net, a place p and a transition t are related by one of the
Boolean interactions: no operation (nop), input (inp), output (out), uncondition-
ally set to true (set), unconditionally reset to false (res), inverting (swap), test
if true (used), and test if false (free). These interactions define in which way p
and t influence each other: The interaction inp (out) defines that p must be true
(false) before and false (true) after t’s firing; free (used) implies that t’s firing
proves that p is false (true); nop means that p and t do not affect each other at
all; res (set) implies that p may initially be both false or true but after t’s firing
it is false (true); swap means that t inverts p’s current Boolean value.

Boolean Petri nets are classified by the sets of interactions between places and
transitions that can be applied. A set τ of Boolean interactions is called a type
of net. A net N is of type τ (a τ -net) if it applies at most the interactions of τ . A
number of different types of nets have been selectively studied in the literature,
e.g., contextual nets (τ = {nop, inp, out, used, free}) [5,18], inhibitor nets (τ =
{nop, inp, out, free}) [19], trace nets (τ = {nop, inp, out, set, res, used, free}) [4],
flip-flop nets (τ = {nop, inp, out, swap}) [24], with their applications in asyn-
chronous circuits design [33], concurrent constraint programs [17], analyzing of
biological systems models [9]. For a type τ , the τ -synthesis problem consists
in deciding whether a given transition system is isomorphic to the reachabil-
ity graph of some τ -net N , and in constructing N if it exists. The complex-
ity of τ -synthesis varies substantially for different types of nets. Thus, while
τ -synthesis for elementary net systems (τ = {nop, inp, out}) was shown to be
NP-complete [2], the same problem for flip-flop nets is polynomial [24].

Since the notion of a type of net allows to define the plethora of Boolean
nets uniformly, the present paper continues the systematic approach to study
the complexity of τ -synthesis [31] and its parameterized settings [26,28]. Pre-
cisely, the paper addresses the computational complexity of the parameterized
problem Occupancy ρ-restricted τ -synthesis (ORτS): The parameter ρ restricts
the number of reachable markings at which a place can be marked. The problem
of occupancy arises in the applications in different contexts. In the analysis of
fault tolerant systems [15], for each activity its fault rate can be modeled as a
function of the number of times the activity is performed. By modeling the sys-
tem with random Boolean nets [25], the expected value of occupancy rate can be
used to estimate the fault rate of the components. Besides, occupancy rate is of
interest in simulations with Petri nets [20], where it provides important informa-
tion on the system reliability. From the theoretical perspective, if τ -synthesis is
NP-complete, then ORτS is also NP-complete. On the other hand, in this paper,
we show that in terms of parameterized complexity theory, the natural parame-
terization of ORτS is fixed-parameter-tractable for the types which allow places
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and transitions to be independent, i.e., the types that include the interaction
nop. This means that the problem can be solved efficiently for small values of
the parameter. In ORτS, the parameter sets a behavioral limitation on the tar-
get net, unlike the parameterized settings of τ -synthesis studied previously [29]
where the limitations were of a structural nature.

The paper is organized as follows. After introducing of the necessary defini-
tions in Sect. 2, we present the results on fixed-parameter tractability of ORτS
for nop-equipped types in Sect. 3, together with the corresponding algorithm.
Section 4 suggests an outlook of the further research directions.

2 Preliminaries

Transition Systems. A (deterministic) transition system (TS, for short) A =
(S, E, δ) is a directed labeled graph with the set of nodes S (called states), the set
of labels E (called events) and the partial transition function δ : S × E −→ S.
If δ(s, e) is defined, we say that event e occurs at state s, denoted by s e . For
δ(s, e) = s′ (denoted s e s′), we call s a source and s′ a sink of e, respectively.
An initialized TS A = (S, E, δ, ι) is a TS with a distinct initial state ι ∈ S where
every state s ∈ S is reachable from ι by a directed labeled path.

Boolean Types of Nets [3]. The following notion of Boolean types of nets
allows to capture all Boolean Petri nets in a uniform way. A Boolean type of net
τ = ({0, 1}, Eτ , δτ ) is a TS such that Eτ is a subset of the Boolean interactions:
Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. Each interaction i ∈ I is a
binary partial function i : {0, 1} → {0, 1} as defined in Fig. 1. For all x ∈ {0, 1}
and all i ∈ Eτ , the transition function of τ is defined by δτ (x, i) = i(x). Since a
type τ is completely determined by Eτ , we often identify τ with Eτ .

Fig. 1. All interactions i of I. If a cell is empty, then i is undefined on the respective x.

Fig. 2. The type τ = {nop, inp, swap} and a τ -net N and its reachability graph AN .
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τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P, T, f, M0) of type τ (a τ -net) is
given by finite disjoint sets P of places and T of transitions, a (total) flow function
f : P × T → τ , and an initial marking M0 : P −→ {0, 1}. A transition t ∈ T can
fire in a marking M : P −→ {0, 1} if δτ (M(p), f(p, t)) is defined for all p ∈ P . By
firing, t produces the marking M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t))
for all p ∈ P , denoted by M t M ′. The behavior of τ -net N is captured by a
(initialized) transition system AN , called the reachability graph of N . AN has M0
as its initial state, and the states set RS(N) of AN consists of all markings that
can be reached from M0 by sequences of transition firings. A τ -net N is called
occupancy ρ-restricted (or simply ρ-restricted) if for each place p, there are at
most ρ reachable markings M of N such that M(p) = 1.

Example 1. Figure 2 shows the type τ = {nop, inp, swap} and the τ -net
N = ({R1, R2}, {a, a′}, f, M0) with places R1, R2, flow-function f(R1, a) =
f(R2, a′) = inp, f(R1, a′) = nop, f(R2, a) = swap and initial marking M0 defined
by (M0(R1), M0(R2)) = (1, 0). Since 1 inp 0 ∈ τ and 0 swap 1 ∈ τ , the transition
a can fire in M0, which leads to the marking M = (M(R1), M(R2)) = (0, 1).
After that, a′ can fire, which results in the marking M ′ = (M ′(R1), M ′(R2)) =
(0, 0). The reachability graph AN of N is depicted on the right hand side of
Fig. 2.

Let τ ⊆ I The problem of τ -synthesis is formulated as follows:

τ-Synthesis.

Input: transition system A.
Decide: whether there is a Boolean τ -net N such that AN is isomorphic to A.

If an input A of τ -synthesis allows a positive decision, we want to construct
a corresponding τ -net N . TS represents the behavior of a modeled system by
means of global states (states of TS) and transitions between them (events).
Dealing with a Petri net, we operate with local states (places) and their changings
(transitions), while the global states of a net are markings, i.e., combinations of
local states. Since A and AN must be isomorphic, N ’s transitions correspond to
the events of A. The connection between global states in TS and local states in
the sought net is given by the notion of regions of TS that mimic places.

τ-Regions. A τ -region R = (sup, sig) of TS A = (S, E, δ, ι) consists of the
support sup : S → {0, 1} and the signature sig : E → Eτ where every edge
s e s′ of A leads to an edge sup(s) sig(e) sup(s′) of type τ . For the sake of
succinctness, for a region (sup, sig) we will often identify sup with its 1-image,
i.e., the set {s ∈ S | sup(s) = 1}. For S′ ⊆ S, a τ -region (sup, sig) is called S′-
minimal if S′ ⊆ sup and |sup| ≤ |sup′|, for any region (sup′, sig′) with S′ ⊆ sup′.
A τ -region (sup, sig) respects the occupancy parameter ρ, if |sup| ≤ ρ; we will call
such regions ρ-restricted. A region (sup, sig) models a place p and the associated
part of the flow function f . In particular, f(p, e) = sig(e) and M(p) = sup(s), for
marking M ∈ RS(N) that corresponds to s ∈ S. Every set R of τ -regions of A
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Fig. 3. The type τ = {nop, inp, free}, the TSs A1 and A2 and the type τ̃ = {nop, swap,
used, set}.

Fig. 4. The τ̃ -net N (left), where τ̃ is defined according to Fig. 3 and N = NR
A1

according to Example 2, and its reachability graph AN (right).

defines the synthesized τ -net NR
A = (R, E, f, M0) with f((sup, sig), e) = sig(e)

and M0((sup, sig)) = sup(ι) for all (sup, sig) ∈ R, e ∈ E.

State and Event Separation. To ensure that the input behavior is captured
by the synthesized net, we have to distinguish global states, and prevent the
firings of transitions when their corresponding events are not present in TS.
This is stated as so called separation atoms. A pair (s, s′) of distinct states of A
defines a states separation atom (SSP atom). A τ -region R = (sup, sig) solves
(s, s′) if sup(s) �= sup(s′). If every SSP atom of A is τ -solvable then A has the
τ -states separation property (τ -SSP, for short). A pair (e, s) of event e ∈ E and
state s ∈ S at which e does not occur, that is ¬s e , defines an event/state
separation atom (ESSP atom). A τ -region R = (sup, sig) solves (e, s) if sig(e)
is not defined on sup(s) in τ , that is, ¬sup(s) sig(e) . If every ESSP atom of
A is τ -solvable then A has the τ -event/state separation property (τ -ESSP, for
short). A set R of τ -regions of A is called τ -admissible if for each SSP and ESSP
atom, there is a τ -region R in R that solves it. We say that A is τ -solvable if it
has a τ -admissible set. The next lemma establishes the connection between the
existence of τ -admissible sets of A and the existence of a τ -net N that solves A:

Lemma 1 [3]. A TS A is isomorphic to the reachability graph of a τ -net N if
and only if there is a τ -admissible set R of A such that N = NR

A .

Example 2. Let τ , τ̃ , A1 and A2 be defined as in Fig. 3. The TS A1 has no
ESSP atoms. Hence, it has the τ -ESSP and τ̃ -ESSP. The only SSP atom of A1
is (s0, s1). It is τ̃ -solvable by R1 = (sup1, sig1) with sup1(s0) = 0, sup1(s1) = 1,
sig1(a) = swap. Thus, A1 has the τ̃ -admissible set R = {R1}, and the τ̃ -net
NR

A1
= ({R1}, {a}, f, M0) with M0(R1) = sup1(s0) = 0 and f(R1, a) = sig1(a) =

swap is 1-restricted and solves A1. Figure 4 depicts N = NR
A1

and its reachability
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graph AN . The isomorphism ϕ between A1 and AN is given by ϕ(s0) = (0) and
ϕ(s1) = (1). The SSP atom (s0, s1) is not τ -solvable, thus, neither is A1. TS A2
has ESSP atoms (b, r1) and (c, r0), which are both τ̃ -unsolvable. The only SSP
atom (r0, r1) in A2 can be solved by τ̃ -region R2 = (sup2, sig2) with sup2(r0) = 0,
sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus, A2 has the τ̃ -SSP, but not the
τ̃ -ESSP. None of the (E)SSP atoms of A2 can be solved by any τ -region.

By Lemma 1, every τ -admissible set R implies that NR
A τ -solves A. In this

paper, we investigate the complexity of synthezising a solving ρ-restricted τ -
net N for a given transition system. By Lemma 1, there exists such a net N
if and only if there is a ρ-restricted τ -admissible set R, that is, every region
R = (sup, sig) of R is ρ-restricted. This finally leads to the following parameter-
ized problem that is the main subject of the paper:

Occupancy Restricted τ-Synthesis (ORτS)

Input: transition system A, natural number ρ.
Parameter: ρ
Decide: whether there exists a ρ-restricted τ -admissible set R of A.

In particular, we shall prove that ORτS is fixed parameter tractable if nop ∈ τ .

Fixed-Parameter Tractability. A parameterized decision problem (X, κ),
where κ is a parameter, is called fixed-parameter tractable if it can be solved
in running time f(κ) · |X|O(1) for some computable function f . The interest to
the FPT class is motivated by the fact that some of parameterized NP-hard
problems can be solved by algorithms which are exponential only in the size of
the parameter and polynomial in the size of the input. Hence, for fixed parame-
ter values, these problems can be solved efficiently. We refer to [11] for detailed
explanations and formal definitions on parameterized complexity.

3 Fixed-Parameter Tractability of τ -Synthesis with nop

In this section, we argue that (ORτS) parameterized by ρ is fixed-parameter
tractable for the Boolean types that include the interaction nop. This is achieved
by suggesting a synthesis algorithm, which constructs a τ -solving region for
each separation atom, if one exists. For a given separation atom, the algorithm
assumes the minimally necessary information about possible τ -region solving
the atom, and iteratively updates this knowledge until a valid region is defined
completely and consistently. The polynomiality of the algorithm in the size of
the input transition system and its exponentiality in the value of the parameter
ρ yields the result.

When seeking for a τ -region R = (sup, sig) which solves an SSP atom (s, s′),
the initial assumption about R can be sup(s) = 0 ∧ sup(s′) = 1 or sup(s) =
1 ∧ sup(s′) = 0. In this case, we start constructing R using either S = {s′}
or S = {s} as a starting support, respectively. For a given ESSP atom (e, q), a
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region R = (sup, sig) solving it has to define sig(e) as one of the interactions
inp, out, used, free (because all the other interactions are defined for any support
value of the source state). The following initial assumptions about R can be used
then:

– sig(e) = inp, sup(q) = 0: minimal initial support S = {s ∈ SA | s e },
– sig(e) = out, sup(q) = 1: minimal initial support S = {q} ∪ {s ∈ SA | e s},
– sig(e) = used, sup(q) = 0: minimal initial support S = {s, s′ ∈ SA | s e s′},
– sig(e) = free, sup(q) = 1: minimal initial support S = {q}.

The initial assumption is not guaranteed to be a valid τ -support, and may need
to be extended. In order to construct valid minimal regions starting from a given
support-set, the notion of conflict (and conflict-freeness) will be used in what
follows.

Transitions in Conflict. Let τ be a type of nets, A be a TS, S ⊆ SA be a set
of states and e ∈ EA be an event. We say that edge s e s′ of A is in conflict
with S if there is no interaction i ∈ τ such that S(s) i S(s′) ∈ τ . Moreover, we
say that two distinct edges s e s′ and q e q′ are in conflict with S if there is
no interaction i ∈ τ such that S(s) i S(s′) ∈ τ and S(q) i S(q′) ∈ τ .

The next lemma essentially states that a subset S ⊆ SA of states of a TS A
allows a τ -signature if and only if the transitions labeled with the same event
are pairwise not in conflict with S.

Lemma 2. Let A be a TS, τ be a type of nets and S ⊆ SA be a set of states of
A. The set S allows a τ -region (S, sig) of A if and only if for each e ∈ EA, one
of the following conditions holds true:

1. e occurs uniquely in A, say at the edge s e s′, and there is an interaction
i ∈ τ such that S(s) i S(s′) ∈ τ .

2. for any pair of distinct edges s e s′ and q e q′ of A, an interaction i ∈ τ

exists such that S(s) i S(s′) ∈ τ and S(q) i S(q′) ∈ τ .

Proof. The only-if direction follows immediately, for i = sig(e).
If: We have to show that for every e ∈ EA, an interaction i ∈ τ exists such
that s e s′ implies S(s) i S(s′) ∈ τ . Let e ∈ EA be an arbitrary event of
A and define Xe = {(S(s), S(s′)) | s e s′ ∈ A}. If |Xe| = 1, then the sought
interaction exists by the condition, independent of which of items 1 or 2 is
satisfied. Assume |Xe| ≥ 2. Then condition 1 is excluded. If {(0, 0), (0, 1)} ⊆ Xe

or {(1, 0), (1, 1)} ⊆ Xe, then there is a pair of edges s e s′ and q e q′ for
which there is no i ∈ I such that S(s) i S(s′) and S(q) i S(q′) are satisfied
(cf. Fig. 1). Since τ ⊆ I, this contradicts the condition 2. Thus, in accordance to
Fig. 5, we conclude

Xe ∈ T = {{(0, 0), (1, 0)}, {(0, 1), (1, 0)}, {(0, 1), (1, 1)}}
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For all sets X ∈ T , there is exactly one i ∈ I such that x i y ∈ τ for all
(x, y) ∈ X. Thus, i belongs to τ . Since e was arbitrary, for every e ∈ EA, there
is an interaction i ∈ τ such that s e s′ implies S(s) i S(s′) ∈ τ . 
�

Set S ⊆ SA is called conflict-free if the condition of Lemma 2 is satisfied for
every e ∈ EA.

Having an initial assumption S about the support of the sought region, our
goal is to extend S to a conflict-free set, if possible. This will be done by providing
a recursive procedure Sup (Algorithm 1): For a given (E)SSP atom α of a TS
A, the procedure Sup constructs a τ -support of size at most ρ, which allows a
τ -region solving α, if there is one.

The input (A, S, ρ, τ) of Sup consists of a TS A, a set of states S, a natural
number ρ and a type τ . Basically, Sup starts from the set S that is a subset of
the support of some admissible region R = (sup, sig) that solves α. For example,
if α = (s, s′) is an SSP atom to be solved by R, then either sup includes s (and
excludes s′) or it includes s′ (and excludes s). In order to find a solving region,
if one exists, we separately start Sup on S = {s} and on S = {s′}. In every
recursive call, Sup checks if the current value of S allows a fitting signature. To
do so, the procedure looks for an event e ∈ EA and transitions s e s′ and q e q′

of A that are in conflict with S and τ , i.e., sig(e) cannot be defined consistently.
If no transitions are in conflict, then Sup terminates and returns {S}. Otherwise,
S allows no signature and the conflict has to be resolved. For every recursive
call, S contains only minimally necessary states. Hence, if conflicting transitions
s e s′ and q e q′ are present, the only way to potentially get a τ -support
that contains S is to add at least one of the states s, s′, q, q′ to S. Moreover,
since s e s′ and q e q′ are in conflict, there is a state among s, s′, q, q′ that
already belongs to S. Otherwise, S(s) nop S(s′) ∈ τ and S(q) nop S(q′) ∈ τ
would be allowed. Thus, there are at most three states x, y, z of {s, s′, q, q′} that
could possibly extend S. For every such state that does not belong to S, the
procedure branches and calls Sup for the corresponding extension. That is, Sup
recursively calls Sup(A, S ∪ {x}, ρ, τ),Sup(A, S ∪ {y}, ρ, τ),Sup(A, S ∪ {z}, ρ, τ)
and returns the union of their outcomes: Sup(A, S ∪ {x}, ρ, τ) ∪ Sup(A, S ∪
{y}, ρ, τ) ∪ Sup(A, S ∪ {z}, ρ, τ). In particular, Sup has a ternary recursion-tree.
Every extension of S is preceded by a check if this extension does not exceed ρ.
This ensures that Sup terminates. Moreover, Sup adds only “necessary” states.
Thus, if there is a fitting support sup of a solving region (sup, sig) (that contains
at most ρ states), then sup is reached by at most one path of the recursion tree
of Sup. That is, sup ∈ Sup.

Sup has a ternary recursion tree of depth at most ρ. Hence, if there is a
fitting region R = (sup, sig) that solves an atom α, then the algorithm finds sup
in time at most O∗(3ρ)1.

1 We use the O∗-notation to suppress polynomial factors, that is, instead of
O(f(ρ)|A|c), where c is a constant, we write O∗(f(ρ)).
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Algorithm 1: Sup
Input: TS A with states SA and events EA. S ⊆ SA. ρ ∈ N. Type τ .
Result: Set S of τ -supports of A such that S ⊆ sup for all sup ∈ S.

1 if some e occurs uniquely and
[
(s e s′, S(s) = 0, S(s′) = 1,

{out, set, swap} ∩ τ = ∅) or (s′ e s, S(s) = 0, S(s′) = 1,
{inp, res, swap} ∩ τ = ∅)

]
then

2 if |S| ≥ ρ then // extending S exceeds ρ
3 return ∅;
4 else // i ∈ {nop, used}
5 S1 = S ∪ {s};
6 return Sup(A, S1, ρ, τ);
7 end
8 end
9 if there are s e s′, q e q′ ∈ A that are in conflict with S then

10 if |S| ≥ ρ then // extending S exceeds ρ
11 return ∅;
12 end
13 if S(s) = S(s′) = S(q) = 0, S(q′) = 1 then // i ∈ {nop, out, set, swap, used}
14 S1 = S ∪ {s′}; S2 = S ∪ {q}; S3 = S ∪ {s};
15 return Sup(A, S1, ρ, τ) ∪ Sup(A, S2, ρ, τ) ∪ Sup(A, S3, ρ, τ);
16 end
17 if S(s) = 1, S(s′) = 0, S(q) = 1, S(q′) = 1 then // i ∈ {nop, set, used}
18 S1 = S ∪ {s′};
19 return Sup(A, S1, ρ, τ);
20 end
21 if S(s) = 1, S(s′) = 0, S(q) = 0, S(q′) = 1 then // i ∈ {nop, set, used}
22 S1 = S ∪ {s′}; S2 = S ∪ {q};
23 return Sup(A, S1, ρ, τ) ∪ Sup(A, S2, ρ, τ);
24 end
25 if S(s) = 0, S(s′) = 1, S(q) = 1, S(q′) = 1 then // i ∈ {nop, used}
26 S1 = S ∪ {s};
27 return Sup(A, S1, ρ, τ);
28 end
29 if S(s) = 0, S(s′) = 1, S(q) = 0, S(q′) = 1 then // i ∈ {nop, used}
30 S1 = S ∪ {s}; S2 = S ∪ {q};
31 return Sup(A, S1, ρ, τ) ∪ Sup(A, S2, ρ, τ);
32 end
33 if S(s) = 1, S(s′) = S(q) = S(q′) = 0 then // i ∈ {nop, inp, set, swap, used}
34 S1 = S ∪ {s′}; and S2 = S ∪ {q}; and S3 = S ∪ {q′};
35 return Sup(A, S1, ρ, τ) ∪ Sup(A, S2, ρ, τ) ∪ Sup(A, S3, ρ, τ);
36 end
37 if S(s) = 1, S(s′) = 0, S(q) = 1, S(q′) = 0 then // i ∈ {nop, set used}
38 S1 = S ∪ {s′}; and S2 = S ∪ {q′};
39 return Sup(A, S1, ρ, τ) ∪ Sup(A, S2, ρ, τ);
40 end
41 else
42 return {S};
43 end
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Fig. 5. The table shows how distinct states s, s′, q, q′ ∈ SA of a TS A can behave
with respect to S ⊆ SA. With a little abuse of notation, we abridge S(x) = b
by x = b for all x ∈ {s, s′, q, q′} and b ∈ {0, 1}. There are five possibilities such
that |{(S(s), S(s′)), (S(q), S(q′))}| ≥ 2 and S(s) �= S(s′) or S(q) �= S(q′), namely
{(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 1), (1, 0)}, {(0, 1), (1, 1)} and {(1, 0), (1, 1)}.

The following lemma argues that Sup terminates and returns a set of valid
τ -supports, which contains the supports of all S-minimal ρ-restricted regions, if
there is any.

Lemma 3 (Termination, Correctness and Completeness). Let τ be a
Boolean type of nets, A be a TS with states SA and events EA, S ⊆ SA be
a set of states, and ρ ∈ N. For the input (A, S, ρ, τ),

1. Sup terminates and its running time is at most O∗(3ρ);
2. Sup returns a set S of τ -supports of A, and S ⊆ sup holds for all sup ∈ S;
3. for any S-minimal ρ-restricted τ -region (sup, sig) of A, sup ∈ S.

Proof. 1. It is easy to see, that the recursive procedure Sup has a ternary recur-
sion tree: Starting from a fixed recursive call, Sup generates at most three
branches at a time. Every node of this tree is associated with its current input
tuple (A, S, ρ, τ) and the corresponding output of Sup. Moreover, if P is an
arbitrary but fixed path of this tree, starting at the root and terminating at a
leaf, then P has at most length ρ: If neither the if-condition of line 1 nor the
one of line 9 is satisfied, then Sup returns S (line 42) and, thus, terminates.
In particular, by Lemma 2, S is a τ -support. Otherwise, the first if-condition
or the second if-condition is satisfied, and Sup checks if |S| ≥ ρ; if this check
is positive then Sup returns ∅ and terminates, since otherwise the constructed
support would not be ρ-restricted; if this check is negative then S is properly
extended to S1 or S2 or S3 (or several of them). That is, for all i ∈ {1, 2, 3},
if Si exists then |Si| > |S| and Sup is recursively called on (A, Si, ρ, τ). Since
the bound ρ can not be exceeded, S is extended at most ρ times along P . Thus,
after at most ρ + 1 calls (along P), Sup returns ∅ or {S′} where S′ comes from
the input (A, S′, ρ, τ) of the current call. In particular, P has at most length ρ.

Let us consider the running time of Sup: For an arbitrary but fixed call, the
most computationally expensive part is to check whether there are edges which
are in conflict with S. In the worst case, one has to check for all e ∈ EA and
all s e s′, q e q′ ∈ A if s e s′ and q e q′ are in conflict. Since A has at most
|EA| · |SA|2 edges and |S| ≤ |SA|, this can be done in polynomial time in the size
of A. Altogether, we have at most 3ρ+1 different calls of Sup, thus, the running
time is O∗(3ρ).
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2. For the output set S of Sup(A, S, ρ, τ), every sup ∈ S is conflict-free with
EA. Hence, by Lemma 2, sup allows a valid τ -region of A. By the construction,
every set sup ∈ S is an extension of S, hence S ⊆ sup.

3. Let (sup, sig) be an S-minimal τ -region of A that respects ρ. By the
definition of S-minimality, S ⊆ sup. We shall prove by induction on n = |sup\S|,
that sup belongs to the output S of Sup on input (A, S, ρ, τ), for all S and the
corresponding sup. If n = 0, i.e., S = sup, then S is conflict-free, and sup
is returned in line 42 of the algorithm, hence we are done. Assume that the
induction hypothesis is true for all S and sup with |sup\S| ≤ k, k ∈ N. Consider
the case |sup \ S| = k + 1. Without loss of generality, there exists e ∈ EA such
that S is in conflict with some edge r e r′ (or a pair of edges r e r′ and t e t′).
Since sup is conflict-free, for some s ∈ {r, r′, t, t′} we have sup(s) �= S(s). This
means that s ∈ sup \ S, i.e., in the recursive tree of the run of Sup on the input
(A, S, ρ, τ), there is a branching point where an extension S′ = S ∪ {s} has been
constructed (in one of the lines 5, 14, 18, . . . , 38). Thus we have S′ ⊆ sup. We will
now prove that (sup, sig) is S′-minimal. Suppose this is not true, and there is an
S′-minimal τ -region (sup′, sig′) such that |sup′| < |sup|. By the construction S ⊆
S′ ⊆ sup′. This implies that (sup′, sig′) is a valid τ -region extending S, which
contradicts the S-minimality of (sup, sig). Hence, (sup, sig) is S′-minimal. By
the construction |sup\S′| = k. Hence, by the induction hypothesis sup belongs
to the output of Sup(A, S′, ρ, τ). Since Sup(A, S′, ρ, τ) ⊆ Sup(A, S, ρ, τ), we get
the claim. 
�

The completeness of Sup assumes that, when constructing a τ -region which
solves some (E)SSP atom, it is sufficient to start from a minimally required
assumption about the support of the sought region. Since the construction of
Sup implies possible extension(s) of the input set, we have to check the supports
in the output, if the (E)SSP atom still can be solved. This can be done by the
sets of “forbidden” states, i.e., the ones that should not be added. Precisely,
if one seeks for a region R = (sup, sig) that solves an ESSP atom α = (e, q),
the following minimal initial assumptions S about R and the corresponding
forbidding sets F can be utilized:

– sig(e) = inp, sup(q) = 0: minimal initial support S = {s ∈ SA | s e },
the states of F = {q} ∪ {s ∈ Sa | e s} should not be included.

– sig(e) = out, sup(q) = 1: minimal initial support S = {q} ∪ {s ∈ SA | e s},
the states of F = {s ∈ SA | s e } should not be included.

– sig(e) = used, sup(q) = 0: minimal initial support S = {s, s′ ∈ SA | s e s′},
the sates of F = {q} should not be included.

– sig(e) = free, sup(q) = 1: minimal initial support S = {q},
the states of F = {s, s′ ∈ SA | s e s′} should not be included.

For an SSP atom (s, q), the minimal initial support can be either S = {s} or
S = {q}, and the set of states to be disjoint with the support is F = {q}
or F = {s}, respectively. By Lemma 3, if R is ρ-restricted S-minimal then
sup ∈ Sup(A, S, p, τ) in all the cases above. The minimality of R ensures us that
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if there is a τ -region which solves α and respects the occupation parameter ρ,
its support will be constructed by Sup.

If a τ -admissible support sup is given, the signature sig of a valid τ -region
(sup, sig) can be reconstructed in time polynomial in the size of TS A. Indeed, by
Lemma 2, for every event e of the TS, the set Xe = {(sup(s), sup(s′)) | s e s′ ∈
A} is one of the following seven alternatives

{(0, 0)}, {(0, 1)}, {(1, 1)}, {(1, 0)}, {(0, 0), (1, 0)}, {(0, 1), (1, 0)}, {(0, 1), (1, 1)}.

For each of these alternatives, there is a corresponding group of Boolean inter-
actions which can implement them in the type of net τ , videlicet

{nop, res, free}, {out, swap, set}, {nop, set, used}, {inp, swap, res}, {res}, {swap}, {set},

respectively. The particular choice of sig(e) as one of the interactions in the
corresponding set (if there are options) is not important, due to the fact that
all the options are equally valid. This allows to assign some fixed order of choice
within each of the sets of interactions.

For instance, if τ = {inp, out, free, used nop}, and e and sup are such that
Xe = {(0, 0)}, then sig(e) has to be assign to one of {nop, res, free}. Since both
nop and free belong to τ , there is an alternative. But if the priority of the choice
of one interaction over the other is present, e.g., nop has a priority over free,
then the solution is “unique”. Let us notice that such kind of prioritising does
not prevent from finding of a solution if one exists. But the absence of choice
allows to reconstruct a signature for the given support in time of O(|EA| · |SA|2).

Algorithm 2 describes the complete process of solving the ORτS problem.
First, for each SSP atom (s, s′), the algorithm tries to find a ρ-restricted τ -region
which solves the atom. In order to do this, in line 3 all {s}-minimal regions are
constructed, and only the ones that distinguish s and s′ are taken. In line 4,
the same is done for the set of {s′}-minimal regions. If there is no ρ-restricted
τ -region that solves (s, s′), the instance of ORτS is unsolvable, and the empty
set of regions is returned in line 6. Otherwise, the found regions are included into
the sought set R in line 8. If all the SSP atoms are solved, the algorithm deals
with each ESSP atom (e, q) starting from line 10. All four possibilities to solve an
ESSP atom with a region (sup, sig) are checked: in line 11, the case sup(q) = 0
and sig(e) = inp is described; in line 12, the case sup(q) = 0 and sig(e) = used;
in lines 13 and 14, the case sup(q) = 1 and sig(e) = out and the case sup(q) = 1
and sig(e) = free are handled, respectively. If none of the possibilities work,
then there is no region solving the atom (e, q), and the empty set is returned in
line 16, terminating the algorithm. Otherwise, the fitting regions are included in
the sought set R (line 18). If all of the separation atoms are solved successfully,
an admissible set of regions is returned in line 20.

Since there are only up to |SA|2 SSP atoms, and at most |EA||SA| ESSP
atoms, with a constant number of possibilities to solve each atom (2 for SSP and
4 for ESSP), we get a factor polynomial in size of A to the already known runtime
O∗(3ρ) of Sup. Hence, the overall runtime is O∗(3ρ). Thus, the approach proves
the following theorem that states the fixed-parameter tractability of ORτS.
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Algorithm 2: ORτS
Input: Type τ . TS A with states SA and events EA. S ⊆ SA. p ∈ N.
Result: A τ -admissible set R of ρ-restricted regions of A.

1 R = ∅;
2 for every SSP (s, s′) of A do
3 R = {S ∈ Sup(A, {s}, p, τ) | S ∩ {s′} = ∅}∪ // sup(s) = 1, sup(s′) = 0
4 {S ∈ Sup(A, {s′}, p, τ) | S ∩ {s} = ∅}; // sup(s) = 0, sup(s′) = 1
5 if R = ∅ then
6 return ∅;
7 end
8 R = R ∪ R ;
9 end

10 for every ESSP (e, q) of A do
11 R = {S ∈ Sup(A, {s ∈ SA | s e }, p, τ) | S ∩

(
{q} ∪ {s ∈ Sa | e s}

)
= ∅}∪

// sup(q) = 0, sig(e) = inp
12 {S ∈ Sup(A, {s, s′ ∈ SA | s e s′}, p, τ) | S ∩ {q} = ∅}∪

// sup(q) = 0, sig(e) = used
13 {S ∈ Sup(A, {q} ∪ {s ∈ SA | e s}, p, τ) | S ∩ {s ∈ SA | s e } = ∅}∪

// sup(q) = 1, sig(e) = out
14 {S ∈ Sup(A, {q}, p, τ) | S ∩ {s, s′ ∈ SA | s e s′} = ∅};

// sup(q) = 1, sig(e) = free
15 if R = ∅ then
16 return ∅;
17 end
18 R = R ∪ R ;
19 end
20 return R

Theorem 1. The problem ORτS parameterized by ρ is fixed-parameter
tractable.

In the remainder of the section, we consider the application of the described
synthesis algorithm.

Example 3 (Algorithm application). Consider TS A with the set of states SA =
{ι, q, s} and EA = {a, b, c} depicted on the left in Fig. 6. In order to synthesize
a net solving A, one has to solve three SSP atoms: (ι, s), (ι, q), (q, s), and five
ESSP atoms: (c, ι), (a, q), (a, s), (b, s), (c, s). We shall investigate three instances
of ORτS for the TS A: for p = 1 and τ = {nop, set, inp}, for p = 2 and τ =
{nop, set, inp}, for p = 2 and τ = {nop, set, inp, out}; and apply Algorithm 2
(resp. Algorithm 1) in each of these cases.

Case (ρ = 1, τ = {nop, set, inp}): Initially the set of sought regions R is empty.
We begin with the SSP atom (ι, s). According to lines 3–4 of Algorithm 2, for
SSP atom we start Sup with S = {ι} and S = {s}. First, consider the former
case, and run Sup(A, {ι}, 1, τ). The if-condition in line 9 of Sup reports about
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Fig. 6. A 2-restricted τ -solvable TS A (left) and (some) of its valid 2-restricted τ -
regions, for τ = {nop, set, inp, out}.

conflict in S for ι b s and q b s. In line 10, we check that |S| ≥ ρ = 1, i.e., S
cannot be extended, and the run Sup(A, {ι}, 1, τ) returns empty set of supports.
For S = {s}, we run Sup(A, {s}, 1, τ). The checks in line 1 and line 9 ensure
that S is conflict-free, with the signatures sig1(a) = sig1(c) = nop, sig1(b) = set.
Hence, Sup(A, S, ρ, τ) returns S = {s} as a valid support of 1-restricted τ -region
R1 = ({s}, sig1) (see Fig. 6). Since {s} ∩ {ι} = ∅, we add this region to R in
line 8 of Algorithm 2. Thus, the SSP atom (ι, s) is solved.

The atom (q, s) is similar to (ι, s) up to the swap of the roles of q and ι, hence
also solvable.

We now consider the SSP atom (ι, q). The run of Sup(A, {ι}, 1, τ) terminates
at line 11, returning the empty set of valid regions. For the run Sup(A, {q}, 1, τ),
the condition in line 9 is satisfied reporting a conflict for ι b s and q b s. The
termination in line 11 follows with no valid region in output, as well. Thus,
the atom (ι, q) has no 1-restricted τ -solving region. This implies that A is not
1-restricted τ -solvable.

Case (ρ = 2, τ = {nop, set, inp}): Since the parameter ρ is greater than in the
previous case, we can reuse the regions solving atoms (ι, s) and (q, s) constructed
above. Consider now (ι, q). Lines 3–4 of Algorithm 2 call Sup with the initial
supports {ι} and {q}, respectively. The run of Sup(A, {ι}, 2, τ) reports a conflict
in S for ι b s and q b s. Since |S| < ρ = 2, an extension of S is permitted,
and we end up in line 31 which suggests recursive calls of Sup on S ∪ {s} and
S ∪{q}. The support containing both ι and q is conflict-free. Hence, the set {ι, q}
belongs to the output of Sup(A, {ι, q}, 2, τ). The run Sup(A, {ι, s}, 2, τ) finds no
conflict and returns {ι, s} as a valid support of a 2-restricted region. In line 3 of
Algorithm 2, we choose only supports that are disjoint with {q}, i.e., only {ι, s}.
A suitable signature is given by sig2(a) = inp, sig2(b) = sig2(c) = set, yielding a
necessary region R2 = ({ι, s}, sig2). Let us notice that the run of Sup(A, {q}, 2, τ)
returns a different valid region R′

2 = ({q, s}, sig′
2) with sig′

2(a) = sig′
2(b) = set

and sig′
2(c) = inp. Thus, A has a τ -SSP property provided by 2-restricted regions.

We now have to deal with the ESSP atoms of A. Let us first consider (a, q).
Among all the interactions in τ , only inp is of interest when solving ESSP atoms.
Hence, we construct the minimal initial support S = {t ∈ SA | t a } = {ι}. For
the constructed S, we call Sup(A, S, 2, τ) in line 11 of Algorithm 2. This call
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reports a conflict for ι b s and q b s in line 9 of Algorithm 1. Since |S| < 2,
we can extend S according to the line 33, i.e., S ∪ {q} and S ∪ {s}. The former
case returns {ι, q} as a conflict-free support. The recursive call Sup(A, {ι, s}, 2, τ)
finds no conflict and returns {ι, s} as a valid support. We then leave only supports
which are disjoint with {q} (line 11 of Algorithm 2), i.e., only {ι, s}. For sig′(b) =
sig′(c) = set, sig′(a) = inp, this implies a 2-restricted τ -region R′ = ({ι, s}, sig′),
which coincides with R2 constructed above.

The atom (c, ι) is similar to (a, q) up to roles swap between a and c, and
between q and ι.

For the atom (b, s), we start with the initial support S = {t ∈ SA | t b } =
{ι, q}. The run Sup(A, S, 2, τ) ensures that there is no conflict in S, and {ι, q}
is returned as a valid support. Since {ι, q} ∩ {s} = ∅, the support indeed solves
the atom (b, s). With a suitable signature sig3(a) = sig3(c) = nop, sig3(b) = inp,
this yields a 2-restricted τ -region R3 = ({ι, q}, sig3).

For the atom (a, s), the initial support S = {t ∈ SA | t a } = {ι}. The call
Sup(A, S, 2, τ) has to resolve the conflict for the edges ι b s and q b s. This
implies two recursive calls Sup(A, {ι, q}, 2, τ) and Sup(A, {ι, s}, 2, τ) in line 35 of
Algorithm 1. Both these calls ensure conflict-freeness of their starting supports.
But in line 11 of Algorithm 2, both are excluded. Hence, there is no possibility
to solve atom (a, s) with a τ -region.

For the atom (c, s), the situation is analogous to the case of (a, s).

Case (ρ = 2, τ = {nop, set, inp, out}): Since the parameter ρ is not less than in
the cases above, and the set of interactions includes the ones used before, we can
reuse the already constructed regions. Hence, it remains to consider the ESSP
atoms (a, s) and (c, s). We begin with the former. Take the interaction out as the
signature for a, and then construct the initial support S = {t ∈ SA | a t} = {q}
(line 13 in Algorithm 2). The run of Sup(A, S, 2, τ) finds a conflict for ι b s and
q b s, and the line 34 suggests possible extentions of S: S ∪ {ι} and S ∪ {s}. For
both extentions, the recursive runs of Sup ensure the conflict-freeness of {ι, q}
and {q, s}. Since {ι, q} is non-disjoint with {ι}, this support is not collected to
R. For {q, s}, with signature sig4(a) = out, sig4(b) = set, sig4(c) = inp, we get
a 2-restricted τ -region R4 = ({q, s}, sig4) solving the atom (a, s).

The solution for atom (c, s) is similar to the case of (a, s).
Finally, we obtain 2-restricted τ -solvability of A, for τ = {nop, set, inp, out}.

4 Conclusion

In this paper, we provided an algorithm which demonstrates the fixed-parameter
tractability of the problem ORτS, for Boolean types of nets τ that contain the
interaction nop and thus allow independence between places and transitions.
The question for the complexity of ORτS for the types without the interaction
nop is still to be answered. From a different perspective, for the majority of
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Boolean types, the original problem of τ -synthesis is known to be NP-complete.
It is easy to see that if τ -synthesis is NP-complete, then occupancy number
restricted τ -synthesis is NP-complete, too. However, if τ -synthesis is polynomial,
then the tractability of ORτS is not necessarily implied. Hence, it remains an
open question to investigate whether there exist Boolean types τ for which ORτS
is intractable, while the original problem of τ -synthesis is polynomial.
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inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp.
310–327. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63139-9 43

20. Institute for Quality, Safety and Transportation: π-tool (2013). http://www.iqst.
de

21. Schlachter, U.: Bounded Petri net synthesis from modal transition systems is unde-
cidable. In: Desharnais, J., Jagadeesan, R. (eds.) 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23–26, 2016, Québec City, Canada.
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Abstract. A classic result in formal language theory is the equivalence
among aperiodic finite automata, star-free regular expressions, and first-
order logic on words. Extending these results to structured subclasses of
context-free languages, such as tree languages, did not work as smoothly:
there are star-free tree languages that are counting. We argue that inves-
tigating the same properties within the family of operator precedence
languages (OPLs) by going back to string languages rather than tree
languages may lead to equivalences that perfectly match those on regu-
lar languages. We define operator precedence expressions; we show that
they define exactly the class of OPLs and that, when restricted to the
star-free subclass, coincide with first-order definable OPLs and are ape-
riodic.

Since operator precedence languages strictly include other classes
of structured languages such as visibly pushdown languages, the same
results given in this paper hold as trivial corollary for that family too.

Keywords: Operator precedence languages · First-order logic ·
Monadic second-order logic · Star-free languages · Aperiodic
languages · Input-driven languages · Visibly-pushdown languages

1 Introduction

It is well known that regular languages are closed w.r.t. all basic operations
and are characterized also in terms of classic monadic second-order (MSO) logic
[8,17,36], but the same properties do not hold for general context-free (CF) lan-
guages with the exception of structured CF languages. With this term we mean
those various families of languages whose typical tree structure is immediately
visible in their sentences: two first equivalent examples are parenthesis languages
[27] and tree languages [34]. More recently, input-driven languages (IDLs) [7],
later renamed visibly pushdown languages (VPLs) [2], height-deterministic lan-
guages [29] have also been shown to share many important properties of regular
languages. Tree-languages and VPLs, in particular, are closed w.r.t. Boolean
c© Springer Nature Switzerland AG 2020
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operations, concatenation, Kleene *, and are characterized in terms of some
MSO logic, although such operations and the adopted logic language are rather
different in the two cases. For a more complete analysis of structured languages
and how they extend various properties of regular languages, see [26].

In this paper we are interested in an important subfamily of regular lan-
guages and its extension to various types of (structured) CF languages, namely
noncounting (NC) or aperiodic languages. Intuitively, aperiodicity is a property
of a recognizing device which prevents from separating strings that differ from
each other by the number of repetitions of some substring, e.g. odd versus even.
It is well-known [28] that NC regular languages coincide with those expressible
by means of star-free regular expressions or by the first-order (FO) fragment
of MSO. FO definability has a strong impact on the success of model-checking,
thanks to the first-order completeness of linear temporal logic [32].

Various attempts have been done to extend the notion of aperiodicity beyond
regular languages, specifically to some kind of structured CF languages. In facts,
linguists as well as language designers have observed over and over that modulo-
counting features are not present or needed either in natural or in technical
languages.

NC parenthesis languages have been first introduced in [10]; then an equiva-
lent definition thereof has been given in [35]. That paper, however, showed that
the same equivalences holding for regular languages do not extend to tree lan-
guages: e.g., there are counting star-free tree languages. Further investigations
(e.g., [18,21,22,31]) obtained partial results on special subclasses of the involved
families but the complete set of equivalences was lost.

In this paper we pursue a different approach to achieve the goal of restat-
ing the above equivalences in the larger context of structured CF languages.
In essence, we go back to string languages as opposed to the approaches based
on tree languages but we choose a family of languages where the tree struc-
ture is somewhat implicit in the string, namely operator precedence languages
(OPL). OPLs have been invented by Floyd to support efficient deterministic
parsing [19]. We classify them as “structured but semivisible” languages since
their structure is implicitly assigned by precedence relations between terminal
characters which were inspired by the precedence rules between arithmetic oper-
ations: as an early intuition for readers who are not familiar with OPLs, the
expression a + b · c “hides” the parenthetic structure a + (b · c) which is implied
by the fact that multiplicative operations should be applied before the additive
ones. Subsequent investigations characterized OPLs as the largest known family
of structured CFLs that is closed under all fundamental language operations and
can be defined through a natural extension of the classic MSO logic [26].

Our new results on the relations between aperiodicity, star-freeness, and FO-
definability of OPLs are the following. We define Operator precedence expressions
(OPE), as a simple extension of regular expressions and show that they define
exactly OPLs. We prove closure properties of NC OPLs and derive therefrom
that the languages defined by star-free OPEs are NC. We show that star-free
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OPEs and FO formulas define exactly the same subfamily of OPLs. We conjec-
ture that all NC OPLs are FO-definable.

2 Background

For brevity, we just list our notations for the basic concepts we use from formal
language and automata theory. The terminal alphabet is denoted by Σ, and the
empty string is ε. We also take for granted the traditional logic and set theoretic
abbreviations. For a string x, |x| denotes its length. The character #, not present
in the terminal alphabet, is used as string delimiter, and we define the alphabet
Σ# = Σ ∪ {#}.

Definition 1 (Regular expression and language). A regular expression
(RE) over an alphabet Σ is a well-formed formula made with the characters
of Σ, ∅, ε, the Boolean operators ∪,¬,∩, the concatenation ·, the Kleene star ∗

and plus + operators. When neither ∗ nor + are used, the RE is called star-free
(SF). An RE E defines a language over Σ, denoted by L(E). REs define the
language family of regular languages.

A regular language L over Σ is called noncounting or aperiodic if there
exists an integer n ≥ 1 such that for all x, y, z ∈ Σ∗, xynz ∈ L iff xyn+mz ∈ L,
∀m ≥ 0.

Proposition 2. The family of aperiodic regular languages coincides with the
family of languages defined by star-free REs.

Definition 3 (Grammar and language). A (CF) grammar is a tuple G =
(Σ,VN , P, S) where Σ and VN , with Σ ∩ VN = ∅, are resp. the terminal and the
nonterminal alphabets, the total alphabet is V = Σ ∪ VN , P ⊆ VN × V ∗ is the
rule (or production) set, and S ⊆ VN , S 	= ∅, is the axiom set. For a generic
rule B → α, where B and α are resp. called the left/right hand sides (lhs/rhs)
the following forms are relevant:

axiomatic: B ∈ S, terminal: α ∈ Σ+, empty: α = ε,
renaming: α ∈ VN ,
operator: α 	∈ V ∗VNVNV ∗,
parenthesized: α = �β�, with �, � new terminals.

G is called backward deterministic (or BD-grammar) if (B → α,C → α ∈ P )
implies B = C.
If all rules of G are in operator form, G is called an operator grammar or O-
grammar.
G̃ =

(
Σ ∪ {�, �}, VN , P̃ , S

)
is a parenthesis grammar (Par-grammar) if the rhs

of every rule is parenthesized. G̃ is called the parenthesized version of G, if P̃
consists of all rules B → �β� such that B → β is in P . For brevity we take for
granted the usual definition of derivation; the language defined by a grammar
starting from a nonterminal A is LG(A) =

{
x ∈ Σ∗ | A

∗==⇒
G

x
}
. The subscript
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G will be omitted whenever clear from the context. The string x is derivable
from A and we call x a sentence if A ∈ S. The union of LG(A) for all A ∈ S is
the language L(G) defined by G. Two grammars defining the same language are
equivalent. Two grammars such that their parenthesized versions are equivalent,
are structurally equivalent. The language generated by a Par-grammar is called
a parenthesis language, and its sentences are well-parenthesized strings.

From now on we only consider w.l.o.g. [5,20] BD-, unless otherwise stated,
O-grammars without renaming rules, and without empty rules except, if the
empty string is in the language, the axiomatic rule B → ε where B does not
appear in the rhs of any rule.

Definition 4 (Backward deterministic reduced grammar [27,33]). A
context over an alphabet Σ is a string in Σ∗{−}Σ∗, where the character ‘−’ 	∈ Σ
and is called a blank. We denote by α[x] the context α with its blank replaced
by the string x. Two nonterminals B and C of a grammar G are termed equiv-
alent if, for every context α, α[B] is derivable exactly in case α[C] is derivable
(not necessarily from the same axiom). A nonterminal B is useless if there is
no context α such that α[B] is derivable or B generates no terminal string. A
terminal b is useless if it does not appear in any sentence of L(G). A grammar
is clean if it has no useless nonterminals and terminals. A grammar is reduced
if it is clean and no two nonterminals are equivalent. A BDR-grammar is both
backward deterministic and reduced.

From [27], every parenthesis language is generated by a unique, up to an
isomorphism of its nonterminal alphabet, Par-grammar that is BDR.

2.1 Operator-Precedence Languages

Intuitively, operator precedence grammars (OPG) are based on three precedence
relations, called equal, yield and take, included in Σ# × Σ#. For a given O-
grammar, a character a is equal in precedence to b iff some rhs contains as
substring ab or a string aBb, where B is a nonterminal; in fact, when evaluating
the relations between terminal characters for OPG, nonterminals are “transpar-
ent”. A character a yields precedence to b iff a can occur immediately to the
left of a syntax subtree whose leftmost terminal character is b. Symmetrically, a
takes precedence over b iff a can occur as the rightmost terminal character of a
subtree and b is the immediately following terminal character.

Definition 5 [19]. Let G = (Σ,VN , P, S) be an O-grammar. Let a, b denote
elements in Σ, A,B in VN , C in VN or ε, and α, β range over (VN ∪ Σ)∗. The
left and right terminal sets of nonterminals are respectively:

LG(A) =
{

a | ∃C : A
∗==⇒
G

Caα
}

and RG(A) =
{

a | ∃C : A
∗==⇒
G

αaC
}

.

(The grammar name will be omitted unless necessary to prevent confusion.)
The operator precedence relations (OPRs) are defined over Σ# × Σ# as

follows:
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– equal in precedence: a
.= b ⇐⇒ ∃A → αaCbβ ∈ P,# .= #

– takes precedence: a � b ⇐⇒ ∃A → αBbβ ∈ P, a ∈ R(B); a � # ⇐⇒ a ∈
R(B), B ∈ S

– yields precedence: a � b ⇐⇒ ∃A → αaBβ ∈ P, b ∈ L(B);# � b ⇐⇒ b ∈
L(B), B ∈ S.

The OPRs can be collected into a |Σ#| × |Σ#| array, called the operator
precedence matrix of the grammar, OPM(G): for each (ordered) pair (a, b) ∈
Σ# × Σ#, OPMa,b(G) contains the OPRs holding between a and b.

Consider a square matrix: M = {Ma,b ⊆ { .=, �, �} | a, b ∈ Σ#}. Such an
OPM matrix, is called conflict-free iff ∀a, b ∈ Σ#, 0 ≤ |Ma,b| ≤ 1. A conflict-free
matrix is called total or complete iff ∀a, b ∈ Σ#, Ma,b 	= ∅. A matrix is =̇-acyclic
if �ai ∈ Σ such that ai=̇ . . . =̇ai.

In this we assume that an OPM is =̇-acyclic. Such a hypothesis is stated
for simplicity despite the fact that, rigorously speaking, it affects the expressive
power of OPLs. It could be avoided if we adopted OPGs extended by the possi-
bility of including regular expressions in production rhs [12,14], which however
would require a much heavier notation.

We extend the set inclusion relations and the Boolean operations in the
obvious cell by cell way, to any two matrices having the same terminal alphabet.
Two matrices are compatible iff their union is conflict-free.

Definition 6 (Operator precedence grammar). An O-grammar G is an
operator precedence grammar (OPG) iff the matrix OPM(G) is conflict-free,
i.e., the three OPRs are pairwise disjoint. Then the language generated by G is
an operator precedence language (OPL). An OPG is =̇-acyclic if OPM(G) is
so.

It is known that the OPL family is strictly included within the deterministic
and reverse-deterministic CF family and strictly includes the VPL one [12].

Example 7. For the grammar GAE1 (see Fig. 1, left), the left and right terminal
sets of nonterminals E, T and F are, respectively: L(E) = {+, ∗, e}, L(T ) =
{∗, e}, L(F ) = {e}, R(E) = {+, ∗, e}, R(T ) = {∗, e}, and R(F ) = {e}.

Figure 1 (center) displays the conflict-free OPM associated with the grammar
GAE1; for instance OPM∗,e = � tells that ∗ yields precedence to e.

S = {E, T, F}
E → E + T | T ∗ F | e
T → T ∗ F | e
F → e

+ ∗ e #
+ � � � �

∗ � � � �

e � � �

# � � �
.=

# e + e ∗ e + e #

0 1 2 3 4 5 6 7 8

Fig. 1. GAE1 (left) and its OPM (center); the string e + e ∗ e + e, with relation �

(right).
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Unlike the arithmetic relations having similar typography, the OPRs do not
enjoy any of the transitive, symmetric, reflexive properties.

A conflict-free matrix associates to every string at most one structure, i.e.,
a unique parenthesization. This aspect, paired with a way of deterministically
choosing rules’ rhs to be reduced, are the basis of Floyd’s natural bottom-up
deterministic parsing algorithm. E.g., the following BD version of GAE1 (axioms
and OPM are unchanged) drives the parsing of the string e + e ∗ e + e to the
unique structure ���e� + ��e� ∗ �e��� + �e��:

E → E + T | E + F | T + T | F + F | F + T | T + F
T → T ∗ F | F ∗ F F → e.

Various formal properties of OPGs and languages are documented in the
literature, chiefly in [12,13,26]. For convenience, we just recall and collect the
ones that are relevant for this article in the next proposition.

Proposition 8. (Relevant properties of OPGs and OPLs).
Let M be a conflict-free OPM over Σ# × Σ#.

1. The class of OPGs and OPLs compatible with M are:
CM = {G | G is an OPG,OPM(G) ⊆ M}, LM = {L(G) | G ∈ CM}.

2. The class CM contains a unique grammar, called the maxgrammar of M ,
denoted by Gmax,M , such that for all grammars G ∈ CM , the inclusion holds
L(G) ⊆ L(Gmax,M ). L(Gmax,M ) is called max-language. If M is total, then
L(Gmax,M ) = Σ∗.

3. Let M be total. With a natural overloading, we define the function
M : Σ∗ → (Σ ∪ {�, �})∗ as M(x) = y, if A

∗=====⇒
Gmax,M

x, A
∗=====⇒

G̃max,M

y are

corresponding derivations.
E.g. with M such that a � a, a

.= b, b � b, M(aaaabbb) = �a�a�a�ab�b�b��.
4. Let M be total.

– LM is closed under all set operations, therefore it is a Boolean algebra.
– LM is closed under concatenation and Kleene star.

In summary, an OPM assigns a universal structure to strings in Σ∗, thus we
call the pair (Σ,M) an OP alphabet. The following characterizations of OPLs,
in terms of logic and expressions, are bound to the OP alphabet.

Logic Characterization. In [25] the traditional monadic second order logic
(MSO) characterization of regular languages by Büchi, Elgot, and Trakhtenbrot
[8,17,36] is extended to the case of OPL. To deal with the typical tree structure
of CF languages the original MSO syntax is augmented with the predicate �,
based on the OPL precedence relations: informally, x � y holds between the
rightmost and leftmost positions of the context encompassing a subtree, i.e.,
respectively, of the character that yields precedence to the subtree’s leftmost
leaf, and of the one over which the subtree’s rightmost leaf takes precedence.

Unlike similar but simpler relations introduced, e.g., in [23] and [2], the �

relation is not one-to-one. For instance, Fig. 1 (right) displays the � relation
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holding for the sentence e + e ∗ e + e generated by grammar GAE1: we have
0 � 2, 2 � 4, 4 � 6, 6 � 8, 2 � 6, 0 � 6, and 0 � 8. Such pairs correspond to
contexts where a reduce operation is executed during the parsing of the string
(they are listed according to their execution order).

Formally, we define a countable infinite set of first-order variables x ,y , . . .
and a countable infinite set of monadic second-order (set) variables X ,Y , . . . .
We adopt the convention to denote first and second-order variables in boldface
font.

Definition 9 (Monadic Second-order Logic over (Σ,M)). Let V1 be a set
of first-order variables, and V2 be a set of second-order (or set) variables. The
MSOΣ,M (monadic second-order logic over (Σ,M)) is defined by the following
syntax (symbols Σ,M will be omitted unless necessary to prevent confusion),
where c ∈ Σ#, x,y ∈ V1, and X ∈ V2:

ϕ := c(x) | x ∈ X | x < y | x � y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ.

A MSO formula is interpreted over a (Σ,M) string w, with respect to assign-
ments ν1 : V1 → {0, 1, . . . |w| + 1} and ν2 : V2 → ℘({0, 1, . . . |w| + 1}), in this
way:

– #w#,M, ν1, ν2 |= c(x) iff #w# = w1cw2 and |w1| = ν1(x).
– #w#,M, ν1, ν2 |= x ∈ X iff ν1(x) ∈ ν2(X).
– #w#,M, ν1, ν2 |= x < y iff ν1(x) < ν1(y).
– #w#,M, ν1, ν2 |= x � y iff #w# = w1aw2bw3, |w1| = ν1(x), |w1aw2| =

ν1(y), and w2 is the frontier of a subtree of the syntax tree of w.
– #w#,M, ν1, ν2 |= ¬ϕ iff #w#,M, ν1, ν2 	|= ϕ.
– #w#,M, ν1, ν2 |= ϕ1 ∨ ϕ2 iff #w#,M, ν1, ν2 |= ϕ1 or #w#,M, ν1, ν2 |= ϕ2.
– #w#,M, ν1, ν2 |= ∃x.ϕ iff #w#,M, ν′

1, ν2 |= ϕ, for some ν′
1 with ν′

1(y) =
ν1(y) for all y ∈ V1 − {x}.

– #w#,M, ν1, ν2 |= ∃X.ϕ iff #w#,M, ν1, ν
′
2 |= ϕ, for some ν′

2 with ν′
2(Y) =

ν2(Y) for all Y ∈ V2 − {X}.
To improve readability, we drop M , ν1, ν2 and the delimiters # from the

notation whenever there is no risk of ambiguity; furthermore we use some stan-
dard abbreviations in formulas, e.g., ∧, ∀, x + 1, x − 1, x = y, x ≤ y.

A sentence is a formula without free variables. The language of all strings
w ∈ Σ∗ such that w |= ϕ is L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

The above MSO logic describes exactly the OPL family [25]. We denote the
restriction of the MSO logic to the first-order as FO. Whenever we deal with
logic definition of languages we implicitly exclude from such languages the empty
string, according with the traditional convention adopted in the literature (e.g.,
[28]); thus, when talking about MSO or FO definable languages we exclude empty
rules from their grammars.
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2.2 Parenthesis and OPLs and the Noncounting Property

We briefly recall the standard definition of the NC property for CF parenthesis
languages [10] and its decidability, then we apply it to OPLs.

Definition 10 (NC parenthesis language and grammar [10]). A paren-
thesis language L is NC (or aperiodic) iff ∃n > 1 such that, for all strings
x, u, w, v, y in (Σ ∪ {�, �})∗ where w and uwv are well parenthesized, xunwvny ∈
L iff xun+mwvn+my ∈ L, ∀m ≥ 0.

A derivation of a Par-grammar is counting iff it has the form B
∗=⇒ umBvm,

with m > 1, and there is not a derivation B
∗=⇒ uBv. A Par-grammar is NC iff

none of its derivations is counting.

The next proposition ensures the decidability of the NC property.

Theorem 11. [NC language and grammar (Th. 1 of [10])] A parenthesis lan-
guage is NC iff its BDR grammar has no counting derivation.

Definition 12 (NC OPLs and grammars). For a given OPL L with OPM
M , Lp is the language of the parenthesized strings xp uniquely associated to L’s
strings x by M . An OPL L is NC iff its corresponding parenthesized language
Lp is NC.

A derivation of a grammar G is counting iff the corresponding derivation of
the associated Par-grammar Gp is counting.

Thus, an OPL is NC iff its BDR OPG (unique up to an isomorphim of
nonterminal alphabets) has no counting derivations.

In the following, unless parentheses are explicitly needed, we refer to unparen-
thesized strings since their correspondence to parenthesized strings is one-to-one.
It is also worth recalling [11] the following peculiar property of OPLs: such lan-
guages are NC or not independently on their OPM, in other words, although the
NC property is defined for structured languages (parenthesis or tree languages
[27,34]), in the case of OPLs this property does not depend on the structure
given to the sentences by the OPM.

It is important to stress, however, that, despite the above peculiarity of OPLs,
aperiodicity remains a property that makes sense only with reference to the struc-
tured version of languages. Consider the following languages, with the same OPM
consisting of {c�c, c

.= a, c
.= b, a � b, b � a} besides the implicit relations w.r.t.

#: L1 = {c2n(ab)n | n ≥ 1}, L2 = (ab)+. They are both clearly NC and so is
their concatenation L1 ·L2, according to Definition 12, which in its parenthesized
version is {�2(m−n)(�c)2n(a�b�)m | m > n ≥ 1}, (see also Theorem 20); however,
if we applied Definition 10 to L1 · L2 without considering parentheses, we would
obtain that, for every n, c2n(ab)2n ∈ L1 · L2 but not so for c2n+1(ab)2n+1.

3 Expressions for OPLs

Operator Precedence Expressions (OPE) extend traditional REs in a similar way
as in other cases such as, e.g., REs for tree-languages [35]. We show that OPEs
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define exactly the OPL family, so that, by joining this result with the previous
characterizations of OPL in terms of MSO definability and recognizability by
Operator Precedence Automata (OPA) [25], we have that the class OPL can be
defined equivalently as the class of languages generated by OPGs, or described
through MSO formulas, or recognized by OPAs, or defined by OPEs.

As well as for MSO logic and OPA, OPE’s definition is based on an OP
alphabet.

Definition 13 (OPE). Given an OP alphabet (Σ,M), where M is complete,
an OPE E and its language LM (E) ⊆ Σ∗ are defined as follows. The meta-
alphabet of OPE uses the same symbols as REs, together with the two symbols
‘[’, and ‘]’. Let E1 and E2 be OPEs:

1. a ∈ Σ is an OPE with LM (a) = a.
2. ¬E1 is an OPE with LM (¬E1) = Σ∗ − LM (E1).
3. a[E1]b, called the fence operation, i.e., we say E1 in the fence a, b, is an OPE

with
if a, b ∈ Σ: LM (a[E1]b) = a · {x ∈ LM (E1) | M(a · x · b) = �a · M(x) · b�} · b
if a = #, b ∈ Σ: LM (#[E1]b) = {x ∈ LM (E1) | M(x · b) = �M(x) · b�} · b
if a ∈ Σ, b = #: LM (a[E1]#) = a · {x ∈ LM (E1) | M(a · x) = �a · M(x)�}
where E1 must not contain #.

4. E1 ∪ E2 is an OPE with LM (E1 ∪ E2) = LM (E1) ∪ LM (E2).
5. E1 · E2 is an OPE with LM (E1 · E2) = LM (E1) · LM (E2), where E1 does

not contain a[E3]# and E2 does not contain #[E3]a, for some OPE E3, and
a ∈ Σ.

6. E∗
1 is an OPE defined by E∗

1 :=
⋃∞

n=0 En
1 , where E0

1 := {ε}, E1
1 = E1,

En
1 := En−1

1 · E1; E+
1 :=

⋃∞
n=1 En

1 .

Among the operations defining OPEs, concatenation has the maximum prece-
dence; set-theoretic operations have the usual precedences, the fence operation is
dealt with as a normal parenthesis pair. A star-free (SF) OPE is one that does
not use ∗ and +.

The conditions on # are due to the peculiarities of OPLs closure w.r.t. con-
catenation (see also Theorem 20). In 5. the # is not permitted within, say, the
left factor E1 because delimiters are necessarily positioned at the two ends of a
string.

Besides the usual abbreviations for set operations (e.g., ∩ and −), we also use
the following derived operators: aΔb := a[Σ+]b, and a∇b := ¬(aΔb) ∩ a ·Σ+ · b.
It is trivial to see that the identity a[E]b = aΔb ∩ a · E · b holds.

The fact that in Definition 13 matrix M is complete is w.l.o.g.: to state
that for two terminals a and b, Ma,b = ∅ (i.e. that there should be a “hole” in
the OPM for them), we can use the short notations: hole(a, b) := ¬(Σ∗(ab ∪
aΔb)Σ∗), hole(#, b) := ¬(#ΔbΣ∗), hole(a,#) := ¬(Σ∗aΔ#) and intersect
them with the OPE.

The following examples illustrate the meaning of the fence operation, the
expressiveness of OPLs w.r.t. less powerful classes of CF languages, and how
OPEs naturally extend REs to the OPL family.
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Example 14. Let Σ be {a, b}, {a � a, a
.= b, b � b} ⊆ M . The OPE a[a∗b∗]b

defines the language {anbn | n ≥ 1}. In fact the fence operation imposes that any
string x ∈ a∗b∗ embedded within the context a, b is well-parenthesized according
to M .

The OPEs a[a∗b∗]# and a+a[a∗b∗]b ∪ {a+}, instead, both define the language
{anbm | n > m ≥ 0} since the matrix M allows for, e.g., the string aaabb
parenthesized as �a�a�ab�b��.

It is also easy to define Dyck languages with OPEs, as their parenthesis
structure is naturally encoded by the OPM. Consider LDyck the Dyck language
with two pairs of parentheses denoted by a, a′ and b, b′. This language can be
described simply through an incomplete OPM, reported in Fig. 2 (left). In other
words it is LDyck = L(Gmax,M ) where M is the matrix of the figure. Given that,
for technical simplicity, we use only complete OPMs, we must refer to the one
in Fig. 2 (center), and state in the OPE that some OPRs are not wanted, such
as a, b′, where the open and closed parentheses are of the wrong kind, or a,#,
i.e. an open a must have a matching a′.

Fig. 2. The incomplete OPM defining LDyck (left), a possible completion Mcomplete

(center), and the OPM Mint for the OPE describing an interrupt policy (right).

The following OPE defines LDyck by suitably restricting the “universe”
L(Gmax,Mcomplete):

hole(a, b′) ∩ hole(b, a′) ∩ hole(#, a′) ∩ hole(#, b′) ∩ hole(a,#) ∩ hole(b,#).

Example 15. For a more application-oriented case, consider the classical LIFO
policy managing procedure calls and returns but assume also that interrupts
may occur: in such a case the stack of pending calls is emptied and computation
is resumed from scratch.

This policy is already formalized by the incomplete OPM of Fig. 2 (right),
with Σ = {call, ret, int} with the obvious meaning of symbols. For example,
the string call call ret call call int represents a run where only the second call
returns, while the other ones are interrupted. On the contrary, call call int ret is
forbidden, because a return is not allowed when the stack is empty. If we further
want to say that there must be at least one terminating procedure, we can use
the OPE: Σ∗ · callΔret · Σ∗.

Another example is the following, where we state that the run must contain at
least one sub-run where no procedures are interrupted: Σ∗ · hole(call, int) · Σ∗.
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Notice that the language defined by the above OPE is not a VPL since VPLs
only allow for unmatched returns and calls at the beginning or at the end of a
string, respectively.

Theorem 16. For every OPE E on an OPM M , there is an OPG G, compatible
with M , such that LM (E) = L(G).

Proof. By induction on E’s structure. The operations ∪,¬, ·, and ∗ come from
the closures of OPLs (Proposition 8). The only new case is a[E]b which is given
by the following grammar. The function η : Σ# → Σ, such that η(#) = ε,
η(a) = a otherwise, is used to take borders into account. If, by induction, G
defines the same language as E, with axiom set SE , then build the grammar G′

from G by adding the following rules, where A and A′ are new nonterminals of
G′ not in G, A is an axiom of G′, and B ∈ SE :

– A → η(a)Bη(b), if a
.= b in M ;

– A → η(a)A′ and A′ → Bη(b), if a � b in M ;
– A → A′η(b) and A′ → η(a)B, if a � b in M .

The grammar for a[E]b is then obtained by applying the construction for L(G′) ∩
L(Gmax,M ). This intersection is to check that a � L(B) and R(B) � b; if it
is not the case, according to the semantics of a[E]b, the resulting language is
empty. ��

Next, we show that OPEs can express any language that is definable through
an MSO formula as defined in Sect. 2.1. Thanks to the fact that the same MSO
logic can express exactly OPLs [25] and to Theorem 16 we obtain our first major
result, i.e., the equivalence of MSO, OPG, OPA (see e.g., [26]), and OPE.

To construct an OPE from a given MSO formula we follow the traditional
path adopted for regular languages (as explained, e.g., in [30]) and augment it
to deal with the � relation. For a MSO formula ϕ, let xxx1,xxx2, . . . ,xxxr be the
set of first-order variables occurring in ϕ, and XXX1,XXX2, . . . ,XXXs be the set of
second order variables. We use the new alphabet Bp,q = Σ × {0, 1}p × {0, 1}q,
where p ≥ r and q ≥ s. The main idea is that the {0, 1}p part of the alphabet
is used to encode the value of the first-order variables (e.g. for p = r = 4,
(1, 0, 1, 0) stands for both the positions xxx1 and xxx3), while the {0, 1}q part of the
alphabet is used for the second order variables. Hence, we are interested in the
language Kp,q formed by all strings where the components encoding the first-
order variables contain exactly one occurrence of 1. We also use this definition
Ck := {c ∈ Bp,q | the (k + 1)-st component of c = 1}.

Theorem 17. For every MSO formula ϕ on an OP alphabet (Σ,M) there is
an OPE E on M such that LM (E) = L(ϕ).

Proof. By induction on ϕ’s structure; the construction is standard for regu-
lar operations, the only difference is xxxi � xxxj . Bp,q is used to encode inter-
pretations of free variables. The set Kp,q of strings where each component
encoding a first-order variable is such that there exists only one 1, is given
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by: Kp,q =
⋂

1≤i≤p(B
∗
p,qCiB

∗
p,q − B∗

p,qCiB
∗
p,qCiB

∗
p,q). Disjunction and negation

are naturally translated into ∪ and ¬; like in Büchi’s theorem, for OPE ∃xxxiψ
(resp. ∃XXXjψ), first the expression Eψ for ψ on an alphabet Bp,q is built, then E
for ∃xxxiψ is obtained from Eψ by erasing the component i (resp. j) from Bp,q;
xxxi < xxxj is represented by Kp,q ∩ B∗

p,qCiB
∗
p,qCjB

∗
p,q. Last, the OPE for xxxi � xxxj

is: B∗
p,qCi[B+

p,q]CjB
∗
p,q. ��

4 Closure Properties of Noncounting OPLs and Star-Free
OPEs

Thanks to the fact that an OPM implicitly defines the structure of an OPL, i.e.,
its parenthesization, aperiodic OPLs inherit from the general class the same clo-
sure properties w.r.t. the basic algebraic operations. Such properties are proved
in this section under the same assumption as in the general case (see Propo-
sition 8), i.e., that the involved languages have compatible OPMs. As a major
consequence we derive that star-free OPEs define aperiodic OPLs.

Theorem 18. Counting and NC parenthesis languages are closed w.r.t. com-
plement. Thus, for any OPM M , counting and NC OPLs in the family LM

(Proposition 8) are closed w.r.t. complement w.r.t. the max-language defined by
M .

Proof. We give the proof for counting languages which also implies the closure
of NC ones.

By definition of counting parenthesis language and from Theorem 11, if L is
counting there exist strings x, u, v, z, y and integers n,m with n > 1,m > 1 such
that xvn+rzun+ry ∈ L for all r = km > 0, k > 0, but not for all r > 0. Thus,
the complement of L contains infinitely many strings xvn+izun+iy ∈ L but not
all of them since for some i, i = km. Thus, for ¬L too there is no n such that
xvnzuny ∈ L iff xvn+rzun+ry ∈ L for all r ≥ 0. ��
Theorem 19. NC parenthesis languages and NC OPLs in the same family LM

are closed w.r.t. union and therefore w.r.t. intersection.

Proof. Let L1, L2 be two NC parenthesis languages (resp. OPLs). Assume by
contradiction that L = L1 ∪ L2 is counting. Thus, there exist strings x, u, v, z, y
such that for infinitely many m, xvmzumy ∈ L but for no n xvnzuny ∈ L iff
xvn+rzun+ry ∈ L for all r ≥ 0. Hence, the same property must hold for at least
one of L1 and L2 which therefore would be counting. ��

Notice that, unlike the case of complement, counting languages are not closed
w.r.t. union and intersection, whether they are regular or parenthesis or OPLs.
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Fig. 3. An example of paired derivations combined by the concatenation construction.
In this case the last character of u is in

.
= relation with the first character of v.

Theorem 20. NC OPLs are closed w.r.t. concatenation.

Proof. Let Li = L(Gi), i = 1, 2, be NC OPLs with Gi = (Σ,VNi, Pi, Si) BDR
OPGs. Let also Lpi = L(Gpi) be the parenthesized languages and grammars.
We exploit the proof in [12] that OPLs with compatible OPM are closed w.r.t.
concatenation. In general the parenthesized version Lp of L = L1 · L2 is not the
parenthesized concatenation of the parenthesized versions of L1 and L2, i.e., Lp

may differ from �L′
p1 · L′

p2�, where �L′
p1� = Lp1 and �L′

p2� = Lp2, because the
concatenation may cause the syntax trees of L1 and L2 to coalesce.

The construction given in [12] builds a grammar G whose nonterminal alpha-
bet includes VN1, VN2 and a set of pairs [A1, A2] with A1 ∈ VN1, A2 ∈ VN2; the
axioms of G are the pairs [X1,X2] with X1 ∈ S1, X2 ∈ S2.1 In essence (Lemmas
18 through 21 of [12]) G’s derivations are such that [X1,X2]

∗==⇒
G

x[A1, A2]y,

[A1, A2]
∗==⇒
G

u implies u = w · z for some w, z and X1
∗==⇒

G1
xA1, A1

∗==⇒
G1

w,

X2
∗==⇒

G2
A2y, A2

∗==⇒
G2

z. Notice that some substrings of x · w, resp. z · y, may

be derived from nonterminals belonging to VN1, resp. VN2, as the consequence
of rules of type [A1, A2] → α1[B1, B2]β2 with α1 ∈ V ∗

1 , β2 ∈ V ∗
2 , where [B1, B2]

1 This is a minor deviation from [12], where it was assumed that grammars have only
one axiom.
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could be missing; also, any string γ derivable in G contains at most one nonter-
minal of type [A1, A2].2

Suppose, by contradiction, that G has a counting derivation3 [X1,X2]
∗==⇒
G

x[A1, A2]y
∗==⇒
G

xum[A1, A2]vmy
∗==⇒
G

xumzvmy (one of um, vm could be empty

either in L or in Lp) whereas [A1, A2] does not derive u[A1, A2]v: this would
imply the derivations A1

∗==⇒
G1

umA1, A2
∗==⇒

G2
A2v

m which would be counting in

G1 and G2 since they would involve the same nonterminals in the pairs [Ai, Aj ]. If
instead the counting derivation of G were derived from nonterminals belonging
to VN1, (resp. VN2) that derivation would exist identical for G1 (resp. G2).
Figure 3 shows a counting derivation of G derived by the concatenation of two
counting derivations of G1 and G2; in this case neither um nor vm are empty.��
Theorem 21. The OPLs defined through star-free OPEs are NC.

Proof. We need to show that if the language defined by the SF expression E is
NC, so is the language defined by a[E]b. This follows by the identity a[E]b =
aΔb ∩ aEb = a[Σ+]b ∩ aEb. ��

5 FO-Definable OPLs and SF OPEs

We now prove that SF OPE-definable languages coincide with FO-definable
OPLs which are therefore NC as well; a result in sharp contrast with the negative
results for NC tree-languages [35]. In Sect. 5.1 we show that NC linear OPLs are
FO-definable too.

Lemma 22 (Flat Normal Form). Any star-free OPE can be written in the
following form, called flat normal form:

⋃
i

⋂
j ti,j , where the elements ti,j have

either the form Li,jai,jΔbi,jRi,j, or Li,jai,j∇bi,jRi,j, or Hi,j, for ai,j, bi,j ∈ Σ#,
and Li,j, Ri,j, Hi,j star-free REs.

Proof. The lemma is a consequence of the distributive and De Morgan prop-
erties, together with the following identities, where ◦1, ◦2 ∈ {Δ,∇}, and Lk,
1 ≤ k ≤ 3 are star-free REs:

a[E]b = aΔb ∩ aEb

L1a1 ◦1 a2L2a3 ◦2 a4L3 = (L1a1 ◦1 a2L2a3Σ
+a4L3) ∩ (L1a1Σ

+a2L2a3 ◦2 a4L3)

¬(L1a1Δa2L2) = L1a1∇a2L2 ∪ ¬(L1a1Σ
+a2L2)

¬(L1a1∇a2L2) = L1a1Δa2L2 ∪ ¬(L1a1Σ
+a2L2)

2 See Fig. 3.
3 Note that the G produced by the construction is BD if so are G1 and G2, but it

could be not necessarily BDR; however, if a BDR OPG has a counting derivation,
any equivalent BD grammar has also a counting derivation.
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The first two identities are immediate, while the last two are based on the idea
that the only non-regular constraints of the left-hand negations are respectively
a1∇a2 or a1Δa2, that represent strings that are not in the set only because of
their structure. ��
Theorem 23. For every FO formula ϕ on an OP alphabet (Σ,M) there is a
star-free OPE E on M such that LM (E) = L(ϕ).

Proof. Consider the formula ϕ, and its set of first-order variables: like in Sect. 3,
Bp = Σ × {0, 1}p (the q components are absent, ϕ being a first-order formula),
and the set Kp of strings where each component encoding a variable is such that
there exists only one 1.

First, Kp is star-free: Kp =
⋂

1≤i≤p(B
∗
pCiB

∗
p − B∗

pCiB
∗
pCiB

∗
p).

Disjunction and negation are naturally translated into ∪ and ¬; xxxi < xxxj is
covered by the star-free OPE Kp ∩ B∗

pCiB
∗
pCjB

∗
p . The xxxi � xxxj formula is like in

the second order case, i.e. is translated into B∗
pCi[B+

p ]CjB
∗
p , which is star-free.

For the existential quantification, the problem is that star-free (OP and
regular) languages are not closed under projections. Like in the regular case,
the idea is to leverage the encoding of the evaluation of first-order variables,
because there is only one position in which the component is 1 (see Kp), to
use the bijective renamings π0(a, v1, v2, ..., vp−1, 0) = (a, v1, v2, ..., vp−1), and
π1(a, v1, v2, ..., vp−1, 1) = (a, v1, v2, ..., vp−1), where the last component is the
one encoding the quantified variable. Notice that the bijective renaming does
not change the Σ component of the symbol, thus maintaining all the OPRs.

Let Eϕ be the star-free OPE on the alphabet Bp for the formula ϕ, with x a
free variable in it. Let us assume w.l.o.g. that the evaluation of x is encoded by the
last component of Bp; let B = Σ × {0, 1}p−1 × {0}, and A = Σ × {0, 1}p−1 × {1}.

The OPE for ∃xϕ is obtained from the OPE for ϕ through the bijective
renaming π, and considering all the cases in which the symbol from A can occur.

First, let E′ be an OPE in flat normal form, equivalent to Eϕ (Lemma 22).
The FO semantics is such that L(ϕ) = LM (E′) = LM (E′) ∩ B∗AB∗.

By construction, E′ is a union of intersections of elements Li,jai,jΔbi,jRi,j ,
or Li,jai,j∇bi,j Ri,j , or Hi,j , where ai,j , bi,j ∈ Σ, and Li,j , Ri,j , Hi,j are star-free
regular languages.

In the intersection of E′ and B∗AB∗, all the possible cases in which the sym-
bol in A can occur in E′’s terms must be considered: e.g. in Li,jai,jΔbi,jRi,j

it could occur in the Li,j prefix, or in ai,jΔbi,j , or in Ri,j . More precisely,
Li,jai,jΔbi,jRi,j ∩ B∗AB∗ = (Li,j ∩ B∗AB∗)ai,jΔbi,jRi,j ∪ Li,j (ai,jΔbi,j

∩B∗AB∗) Ri,j ∪ Li,jai,jΔ bi,j(Ri,j ∩ B∗AB∗) (the ∇ case is analogous, Hi,j

is immediate, being regular star-free).
The cases in which the symbol from A occurs in Li,j or Ri,j are easy, because

they are by construction regular star-free languages, hence we can use one of the
standard regular approaches found in the literature (e.g. by using the splitting
lemma in [16]). The only differences are in the factors ai,jΔbi,j , or ai,j∇bi,j .

Let us consider the case ai,jΔbi,j ∩ B∗AB∗. The cases ai,j ∈ A or bi,j ∈ A
are like (Li,j ∩ B∗AB∗) and (Ri,j ∩ B∗AB∗), respectively, because Li,jai,j and
bi,jRi,j are also regular star-free (∇ is analogous).
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The remaining cases are ai,jΔbi,j ∩ B+AB+ and ai,j∇bi,j ∩ B+AB+. By
definition of Δ, ai,jΔbi,j ∩ B+AB+ = ai,j [B∗AB∗]bi,j , and its bijective renam-
ing is π0(ai,j)[π0(B∗)π1(A) π0(B∗)]π0(bi,j) = a′

i,j [B
+
p−1]b

′
i,j , where π0(ai,j) =

a′
i,j , and π0(bi,j) = b′

i,j , which is a star-free OPE. By definition of ∇,
ai,j∇bi,j ∩B+AB+ = ¬(ai,j [B+

p ]bi,j)∩ ai,jB
+
p bi,j ∩B+AB+ = ¬(ai,j [B+

p ]bi,j) ∩
ai,jB

∗AB∗bi,j . Hence, its renaming is ¬(π0(ai,j)[π0(B∗
p)π1(Bp)π0(B∗

p)] π0(bi,j))
∩π0(ai,jB

∗)π1(A)π0(B∗ bi,j) = ¬(a′
i,j [B

+
p−1]b

′
i,j) ∩ a′

i,jB
+
p−1b

′
i,j , a star-free

OPE. ��
Theorem 24. For every star-free OPE E on an OP alphabet (Σ,M), there is
a FO formula ϕ on (Σ,M) such that LM (E) = L(ϕ).

Proof. The proof is by induction on E’s structure. Of course, singletons are
easily first-order definable; for negation and union we use ¬ and ∨ as natural.
Like in the case of star-free regular languages, concatenation is less immediate,
and it is based on formula relativization. Consider two FO formulas ϕ and ψ, and
assume w.l.o.g. that their variables are disjunct, and let xxx be a variable not used
in either of them. To construct a relativized variant of ϕ, called ϕ<xxx, proceed
from the outermost quantifier, going inward, and replace every subformula ∃zzzλ
with ∃zzz((zzz < xxx)∧λ). Variants ϕ≥xxx and ϕ>xxx are analogous. We also call ϕxxx,yyy the
relativization where quantifications ∃zzzλ are replaced by ∃zzz((xxx < zzz < yyy) ∧ λ).
The language L(ϕ) · L(ψ) is defined by the following formulas: ∃xxx(ϕ<xxx ∧ ψ≥xxx)
if ε 	∈ L(ψ); otherwise ∃xxx(ϕ<xxx ∧ ψ≥xxx) ∨ ϕ.

The last part we need to consider is the fence operation, i.e. a[E]b. Let ϕ
be a FO formula such that L(ϕ) = LM (E), for a star-free OPE E. Let xxx and yyy
be two variables unused in ϕ. Then the language L(a[E]b) is the one defined by
∃xxx∃yyy(a(xxx) ∧ b(yyy) ∧ xxx � yyy ∧ ϕxxx,yyy). ��

5.1 Linear Noncounting OPLs Are First-Order Definable

Definition 25. Let G = (Σ,VN , P, S) be a linear grammar, i.e., a grammar
where all rule rhs ∈ Σ+VNΣ∗ ∪ Σ∗VNΣ+ ∪ Σ+. The finite state stencil automa-
ton associated to G is AΞ

G = (Q,Ξ, δ, S, {qF }), where Q = VN ∪ {qF } are its
states, Ξ ⊆ (Σ∗ × Σ∗) ∪ Σ+, its input alphabet, is the set of stencils of G,4 and
the transition relation δ ⊆ Q × Ξ × Q is defined as follows:

δ = {A
(x,y)−−−→ B | A → xBy ∈ P} ∪ {A z−−→ qF | A → z ∈ P}.

Lemma 26. Let G be a linear OPG, with OPM M , and Ξ the set of stencils of
G. L(G) is NC iff L(AΞ

G) is a NC regular language.

Proof. By construction, every derivation A0
∗==⇒ x1A1y1

∗==⇒ x1x2A2y2y1∗==⇒ x1x2 . . . xkAk ykyk−1 . . . y1
∗==⇒ x1x2 . . . xk zykyk−1 . . . y1 of G corre-

sponds to a run A0 � A1 � . . . � Ak � qF of AΞ
G, reading the word

(x1, y1)(x2, y2) . . . (xk, yk)z, and vice versa.
4 Ξ := {(x, y) | A → xBy ∈ P} ∪ {z | A → z ∈ P}.
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According to Definitions 10 and 12, if it is x1x2 . . . xkzykyk−1 . . . y1 =
ounwvnp, for some strings o, u, w, v, p, then oun+1wvn+1 p ∈ L(G), i.e., assum-
ing that xi . . . xj = u and yj . . . yi = v, oun+1wvn+1p = x1x2 . . . (xi . . .
xj)2xj+1 . . . xkz ykyk−1 . . . (yj . . . yi)2yi−1 . . . y1.
Hence, (x1, y1)(x2, y2) . . . (xk, yk)z = o′u′nw′, where u′ = (xi, yi) . . . (xj , yj), and
(x1, y1) . . . ((xi, yi) . . . (xj , yj))2 (xj+1, yj+1) . . . (xk, yk)z = o′u′n+1w′ ∈ L(AΞ

G).
The other direction is analogous. ��
Theorem 27. Let G be a linear NC OPG with OPM M , L(G) is expressible in
FO(Σ,M).

Proof. From Lemma 26, we can build AΞ
G, which defines a NC regular language.

It is known from [28] that there exists an equivalent first-order formula ϕ(AΞ
G)

on the alphabet Ξ.
We can build a FO(Σ,M) formula defining L(G) in this way. First, for each

p ∈ Ξ, where p = (u, v), u = u1u2 . . . um, v = v1v2 . . . vn, m,n ≥ 0, m + n > 0,
we introduce the following formula σp:

σp(x ) :=

(
u1(x ) ∧ u2(x + 1)∧
. . . ∧ un(x + m − 1)

)
∧ ∃y

(
x + m − 1 � y ∧ v1(y) ∧ v2(y + 1)∧

. . . ∧ vn(y + n − 1)

)

(the case p ∈ Σ+ is trivial.) E.g. for p = (ε, ab), σp(x ) = ∃y(x � y ∧ a(y) ∧
b(y + 1)).

It is easy to see that σp is a straightforward way to encode a stencil p into a
FO(Σ,M) formula defining its structure.

Let us consider ϕ(AΞ
G), and obtain a trivially equivalent formula ϕ′(AΞ

G) by

substituting each quantified subformula ∃x (ρ) in it with ∃x
((∨

p∈Ξ p(x )
)

∧ ρ
)

.

Hence, we are stating that each quantified variable in ϕ(AΞ
G) correspond to a posi-

tion in which there is a stencil.
To obtain a FO(Σ,M) formula ξ, such that L(ξ) = L(G), we take ϕ′(AΞ

G),
and substitute in it every subformula p(x ) with σp(x ), for each p ∈ Ξ, and
variable x . ��

6 Conclusion

To the best of our knowledge OPLs are the largest family among the many
families of structured CFLs to enjoy closure w.r.t. most fundamental language
operations and to be characterized in terms of a MSO logic that naturally extends
the classic one for regular languages. In this paper we have introduced OPEs as
an extension of Kleene’s REs. We have shown that languages defined by OPEs
coincide with OPLs and that FO-definable OPLs are those defined by SF OPEs
and are NC, in sharp contrast with comparable results framed in the context
of tree-languages [21,35]. Together with previous partial results [15,24] and the
fact that linear NC OPLs are first-order definable (Sect. 5.1), they support our
conjecture that OPLs jointly with our MSO and FO logics, perfectly extend
the classic results of regular languages. Figure 4 summarizes past, present and
“future” results on OPLs and their logics.
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Legend
All boxes denote classes of OPLs with a common
OPM:

– MSO denotes languages defined through
MSO formulas

– FO denotes languages defined through FO
formulas

– OPA denotes languages defined through OP
automata [25]

– OPESF denotes languages defined through
star-free OPEs

– OPGNC denotes aperiodic OPLs, i.e.,
languages defined through NC OPGs

Arrows between boxes denote language family

inclusion; they are labeled by the reference

pointing to where the property has been proved,

either to previous literature or to a section of this

paper. The dashed arrow stands for the inclusion

of linear NC OPLs, and for our conjecture.

Fig. 4. The relations among the various characterizations of OPLs and their aperiodic
subclass.

The figure immediately suggests a first further research step, i.e., making
the internal triangle a square, as well as the external one: we conjecture that
once the concept of NC OPLs has been put in the appropriate framework, a
further characterization thereof in terms of a suitable subclass of OPAs should
be possible but so far we did not pursue such an option.

The further goal that we wish to pursue is the complete reproduction of the
historical path that, for regular languages, lead from the first characterization in
terms of MSO logic to the restricted case of FO characterization of NC regular
languages, to the temporal logic case which in turn is first-order complete, and,
ultimately, to the success of model checking techniques.

Some proposals of temporal logic extension of the classical linear or branching
time ones to cope with the typical nesting structure of CF languages have been
already offered in the literature. E.g., [1,4,6] present different cases of temporal
logics extended to deal with VPLs; they also prove FO-completeness of such
logics but do not afford the relation between FO and MSO versions of their
logics; see also [3]. A first example of temporal logic for OPLs and a related
model checking algorithm have also been provided in [9].

Given that most, if not all, of the CF languages for practical applications are
aperiodic, the final goal of building verification tools that cover a much wider
application field than that of regular languages –and of VPLs too– does not seem
unreachable.

Acknowledgments. We are grateful to the reviewers for their careful reading and
suggestions.



Star-Freeness, First-Order Definability and Aperiodicity of Structured CFLs 179

References
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Abstract. Dedicated many-core processors such as GPGPUs, enable
programmers to design and implement parallel algorithms to optimize
performance. The stream compaction and summed-area table algorithms
are two examples where parallel versions have been proposed in the lit-
erature with substantial speed ups compared to sequential counterparts.

Since these two algorithms are widely used, their correctness is of the
utmost importance, i.e., the algorithms must be functionally correct and
their implementations must be memory safe. These algorithms use the
parallel prefix sum algorithm internally. In our previous work, we verified
two parallel prefix sum algorithms. In this paper, we show how we can
reuse a verified sub-function (i.e., prefix sum) to prove more complicated
algorithms (i.e., stream compaction and summed area table) in a mod-
ular way with less effort. Moreover, we demonstrate that it is feasible in
practice to verify larger case studies by building the verification of the
complicated algorithm on top of the basic one.

To show the correctness of the algorithms, we use deductive program
verification based on permission-based separation logic, which is sup-
ported by the program verifier VerCors. To the best of our knowledge,
we are the first to verify functional correctness of the parallel stream com-
paction and summed-area table algorithms for an arbitrary array size,
using tool support.

Keywords: GPU verification · Deductive verification · Separation
logic

1 Introduction

Many parallel algorithms have been proposed for optimizing performance by
exploiting the new parallel architectures, and parallelizing sequential algorithms
is an active area of research. General Purpose Graphics Processing Units (GPG-
PUs) are one of the promising parallel architectures, where many threads exe-
cute the same instructions, but on different data (known as SIMD). Stream
compaction and summed-area table [11] algorithms are two examples where the
parallel (GPU-based) implementations [3,12–14,24] outperform the sequential
(CPU-based) counterparts.
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Stream compaction reduces an input array to a smaller array by removing
undesired elements. This is an important primitive operation on GPUs, because a
variety of applications such as collision detection and sparse matrix compression
rely on it. The reduction in size by eliminating undesired elements is useful
because (1) the computation can be done more efficiently by not wasting the
computation power on undesired elements and, (2) it greatly reduces the transfer
costs between the CPU and GPU, especially for applications where data transfer
between CPU and GPU is frequent.

A summed-area table is a two-dimensional (2D) table generated from a 2D
input array where each entry in the table is the sum of all values in the square
defined by the entry location and the upper-left corner in the input array. Gen-
erating such a table is useful in computer graphics and image processing [13].

Since these two algorithms are widely used in practice (also as a building
block in other applications), their correctness is of the utmost importance. This
means not only that the algorithms should be memory and thread safe (e.g.,
free of data races1), but also that they should be functionally correct, i.e., they
should actually produce the result we expect. Concretely, functional correctness
for stream compaction means that the result must be the compacted input array
with exactly the desired elements. In case of the summed-area table, functional
correctness means that the result must be a table, the same size as the input,
where each entry contains the sum of all elements in the square defined by the
entry location and the upper-left corner in the input.

The two algorithms exploit the prefix sum algorithm, which takes an array
of integers and, for each element, computes the sum of the previous elements. In
our previous work [23], we verified data race-freedom and functional correctness
of two parallel prefix sum algorithms.

In this paper, we investigate (1) how we can profit from already verified
sub-functions (i.e., prefix sum) to prove the stream compaction and summed-
area table algorithms; i.e., how much effort is needed to adapt the specifications
from [23] for the verification of these two algorithms; and (2) how much time is
needed to verify them in comparison to the verification of our previous work on
prefix sum. We believe such case studies are important to gain more insight in the
effort that is needed to verify complex algorithms and how more automation can
be added to the verification process. In general, proving functional correctness
of parallel algorithms is a challenging task. In particular, proving functional
correctness of these two algorithms is challenging because (1) in the stream
compaction algorithm, the input of the prefix sum sub-function is an array of
flag and the output is used as indices of elements in another array. Therefore,
additional properties should be proved to reason about the prefix sum result
to be safely used as indices; and (2) in the summed-area table algorithm, in
addition to the prefix sum, the transposition operation is used intermittently.
Due to these intermediate steps, we should store the manipulated values and

1 A data race is a situation when two or more threads may access the same memory
location simultaneously, and at least one of them is a write.
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establish a formal relation between the values of each step in order to reason
about the final result (i.e, output).

To prove memory safety and functional correctness of the stream compaction
and summed-area table algorithms, we use VerCors [5], which is a deductive
program verifier for concurrent programs. Deductive program verification is a
static approach to verify program properties by augmenting the source code
with pre- and postconditions. To guide verification, intermediate annotations
are added to capture the intermediate properties of the program. Then, in our
case, the annotated code is translated into proof obligations (via Viper [20]),
which are discharged to an automated theorem prover; the SMT solver Z3 [19].

To the best of our knowledge, this is the only tool-supported verification
of data race-freedom and functional correctness of the two parallel algorithms
for any arbitrary size of input. None of the existing other approaches to ana-
lyze GPU applications is able to verify similar properties. Most approaches are
dynamic [10,18,21,22,25], and only aim to find bugs. Other existing static veri-
fication techniques [2,9,15,17] either require a bound on the input size, or they
do not fully model all aspects of GPU programming, such as the use of barriers.
We show that the verification of larger case studies is feasible, by adding the
verification of the more complex algorithm on top of the basic one, not only
in theory, but also in practice using tool support. Moreover, our work enables
the verification of other parallel algorithms that are built on top of the stream
compaction and summed-area table algorithms, such as collision detection and
box filtering.

Contributions. The main contributions of this paper are:

1. We provide a tool-supported proof of data race-freedom and functional cor-
rectness of the parallel stream compaction algorithm for any input size.

2. We show that the parallel summed-area table algorithm is data race-free and
functionally correct for arbitrary input sizes using tool support.

3. We demonstrate how much effort and time needed in practice to verify com-
plicated algorithms by reusing verified algorithms in a layered manner.

Organization. Section 2 discusses related work and Sect. 3 explains the neces-
sary background. Sections 4 and 5 describe how to specify and verify the correct-
ness of the stream compaction and summed-area table algorithms, respectively.
Section 6 concludes the paper.

2 Related Work

GPGPU programming is becoming more popular because of its potential to
increase the performance of programs. However, it is also highly error-prone due
to its inherent parallization. Therefore, the demand for guaranteeing correctness
of GPGPU programs is growing. There are only a few approaches to reason
about GPGPU programs; most of them focus on finding data races.
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In dynamic analysis, a program is instrumented to record memory accesses.
Then, by running the instrumented program, data races might be identified (e.g.,
cuda-memcheck [21], Oclgrind [22] and GRace [25]). This technique depends
on concrete inputs and cannot guarantee data race-freedom. Dynamic symbolic
execution is a combination of static and dynamic analysis to combine concrete
and symbolic inputs to find data races (e.g., GKLEE [18] and KLEE-CL [10]).

Static approaches analyse the complete state space of a program without
running it. Deductive program verification as in VerCors, is a static approach,
where a program is annotated with intermediate (invariant) properties. Tools
such as PUG [17] and GPUVerify [2] use static analysis, but require less anno-
tations. Except VerCors and VeriFast [15], none of these tools can reason about
functional correctness of parallel programs. VeriFast aims at proving functional
correctness of single-threaded and multi-threaded C and Java programs, but it
is not specifically tailored to reason about GPGPU programs.

There is no previous work on formally verifying the parallel stream com-
paction and summed-area table algorithms on GPUs. To verify these two algo-
rithms, the parallel prefix sum algorithms need to be verified, which has been
done by Chong et al. [9] in addition to our previous work [23]. Chong et al. verify
data race-freedom and propose a method to verify functional correctness of four
different parallel prefix sum algorithms for a fixed input size. They show that if a
parallel prefix sum algorithm is proven to be data race-free, then the correctness
can be established by generating one test case. Then they use GPUVerify to
prove data race-freedom of the parallel prefix sum algorithms for a fixed input
size. In our previous work [23], we prove data-race freedom and functional cor-
rectness of two different parallel prefix sum algorithms using the VerCors verifier
for any arbitrary size of input. We benefit from ghost variables to reason about
in-place prefix sum algorithms. In our opinion, the advantages of our approach
is that our verification approach for the prefix sum can be reused for these two
new algorithms, while Chong would not be able to reuse his prefix sum approach
to verify the parallel stream compaction and summed-area table algorithms.

3 Background

This section describes the program verifier VerCors and the logic behind it by
illustrating an example. It then briefly discusses the parallel prefix sum algo-
rithm which is used in both parallel stream compaction and summed-area table
algorithms.

3.1 VerCors

VerCors2 is a verifier to specify and verify (concurrent and parallel) programs
written in a high-level language such as (subsets of) Java, C, OpenCL, OpenMP
and PVL, where PVL is VerCors’ internal language for prototyping new fea-
tures. VerCors can be used to verify memory safety (e.g., data race-freedom) and
2 The tool is available at: https://github.com/utwente-fmt/vercors.

https://github.com/utwente-fmt/vercors
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List. 1. A simple annotated OpenCL program

1 /∗@ context_everywhere array != NULL && array.length == size;
2 requires tid != size−1 ? Perm(array[tid+1], read) : Perm(array[0], read);
3 ensures Perm(array[tid], write);
4 ensures tid != size−1 ==> array[tid] == \old(array[tid+1]);
5 ensures tid == size−1 ==> array[tid] == \old(array[0]); @∗/
6 __kernel void leftRotation(int array[] , int size ) {
7 int temp;
8 int tid = get_global_id(0); // get the thread id
9 if (tid != size−1) { temp = array[tid+1]; } else { temp = array[0]; }

10
11 /∗@ requires tid != size−1 ? Perm(array[tid+1], read) : Perm(array[0], read);
12 ensures Perm(array[tid], write) ; @∗/
13 barrier(CLK_GLOBAL_MEM_FENCE);
14 array[ tid ] = temp;
15 }

functional correctness of programs. The programs are annotated with pre- and
postconditions in permission-based separation logic [1,7]. Permissions are used
to capture which heap memory locations may be accessed by which threads, and
are used to guarantee thread safety. Permissions are written as fractional values
in the interval (0, 1] (cf. Boyland [8]): any fraction in the interval (0, 1) indicates
a read permission, while 1 indicates a write permission.

Blom et al. [6] show how to use permission-based separation logic to reason
about GPU kernels including barriers. We illustrate this logic by an example.
Listing 1 shows a specification of a kernel that rotates the elements of an array
to the left3. It is specified by a thread-level specification. To specify permissions,
we use predicate Perm(L, π) where L is a heap location and π a fractional value
in the interval (0, 1]4. Pre- and postconditions, (denoted by keywords requires
and ensures, respectively in lines 2–5), must hold at the beginning and the
end of the function, respectively. The keyword context_everywhere is used to
specify an invariant (line 1) that must hold throughout the function. As pre-
conditions, each thread has read permission to its right neighbor (except thread
“size-1” which has read permission to the first index) in line 2. The postconditions
indicate (1) each thread has write permission to its location (line 3) and (2) the
result of the function as a left rotation of all elements (lines 4–5). Each thread
is responsible for one array location and it first reads its right location (line 9).
Then it synchronizes in the barrier (line 13). When a thread reaches a barrier,
it has to fulfill the barrier preconditions, and then it may assume the barrier
postconditions. Thus barrier postconditions must follow from barrier precondi-
tions. In this case, each thread gives up read permission on its right location
and obtains write permission on its “own” location at index tid (lines 11–12).
After that, each thread writes the value read before to its “own” location (line

3 We assume there is one workgroup and “size” threads inside it.
4 The keywords read and write can also be used instead of fractions in VerCors.
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Fig. 1. An example of exclusive and inclusive prefix sum of an input.

14). Note that the keyword \old is used for an expression to refer to the value
of that expression before entering a function (lines 4–5). The OpenCL example
(Listing 1) is translated into the PVL language of VerCors, using two parallel
nested blocks. The outer block indicates the number of workgroups and the inner
one shows the number of threads per workgroup (see [6] for more details). In
this case study, we reason at the level of the PVL encoding directly, but it is
straightforward to adapt this to the verification of the OpenCL kernel.

3.2 Prefix Sum

Figure 1 illustrates an example of the prefix sum operation. This operation is a
basic block used in both stream compaction and summed-area table algorithms,
defined as: given an array of integers, the prefix sum of the array is another array
with the same size such that each element is the sum of all previous elements.
An (inclusive) prefix sum algorithm has the following input and output:

– INPUT: an array Input of integers of size N .

– OUTPUT: an array Output of size N such that Output[i] =
i∑

t=0

Input[t] for

0 ≤ i < N .

In the exclusive prefix sum algorithm, where the ith element is excluded from
the summation, the output is as follows:

– OUTPUT: an array Output of size N such that Output[i] =
i−1∑

t=0

Input[t] for

0 ≤ i < N .

Blelloch [4] introduced an exclusive parallel in-place prefix sum algorithm
and Kogge-Stone [16] proposed an inclusive parallel in-place prefix sum algo-
rithm. These two parallel versions are frequently used in practice (as a primitive
operation in libraries AMD APP SDK5, and NVIDIA CUDA SDK6).

4 Verification of Parallel Stream Compaction Algorithm

This section describes the stream compaction algorithm and how we verify it.
First, we explain the algorithm and its encoding in VerCors. Then, we prove data
5 http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-

parallel-processing-app-sdk.
6 https://developer.nvidia.com/gpu-computing-sdk.

http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk.
http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk.
https://developer.nvidia.com/gpu-computing-sdk.
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Algorithm 1. Stream Compaction Algorithm
1: function stream_compaction(int[] Input, int[] Output, int[] Flag, int[] ExPre, int

N )
2: Par(tid = 0.. N )
3: EXCLUSIVE_PREFIXSUM(Flag, ExPre, tid , N );
4: Barrier(tid);
5: if Flag[tid ] == 1 then
6: Output [ExPre[tid ]] = Input [tid ];

Fig. 2. An example of stream compaction of size 8.

race-freedom and we show how we prove functional correctness of the algorithm.
Moreover, we show how we can reuse the verified prefix sum from our previous
work [23] to reason about the stream compaction algorithm. We explain the
main ideas mostly by using pictures instead of presenting the full specification7.

4.1 Stream Compaction Algorithm

Given an array of integers as input and an array of booleans that flag which
elements are desired, stream compaction returns an array that holds only those
elements of the input whose flags are true. An algorithm is a stream compaction
if it satisfies the following:

– INPUT: two arrays, Input of integers and Flag of booleans of size N .
– OUTPUT: an array Output of size M (M ≤ N ) such that

• ∀j. 0 ≤ j < M: Output[j] = t ⇒ ∃i. 0 ≤ i < N: Input[i] = t ∧ Flag[i].
• ∀i. 0 ≤ i < N: Input[i] = t ∧ Flag[i] ⇒ ∃j. 0 ≤ j < M: Output[j] = t.

• ∀i, j. 0 ≤ i, j < N: (Flag[i] ∧ Flag[j] ∧ i < j ⇐⇒ (∃k, l. 0 ≤ k, l < M:

Output[k] = Input[i] ∧ Output[l] = Input[j] ∧ k < l) ).

Algorithm1 shows the pseudocode of the parallel algorithm and Fig. 2
presents an example of stream compaction. Initially we have an input and a
flag array (implemented as integers of zeros and ones). To keep the flagged ele-
ments and discard the rest, first we calculate the exclusive prefix sum (from [4])
of the flag array. Interestingly, for the elements whose flags are 1, the exclusive
prefix sum indicates their location (index) in the output array. In the implemen-
tation, the input of the prefix sum function is Flag and the output is stored in
ExPre (line 3). Then all threads are synchronized by the barrier in line 4, after
which all the desired elements are stored in the output array (lines 5–6).

7 The full specification is available at https://github.com/Safari1991/Prefixsum-
Applications.

https://github.com/Safari1991/Prefixsum-Applications
https://github.com/Safari1991/Prefixsum-Applications
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4.2 Data Race-Freedom

To prove data race-freedom, we specify how threads access shared resources
by adding permission annotations to the code. In Algorithm 1, we have several
arrays that are shared among threads. There are three locations in the algorithm
where permissions can be redistributed: before Algorithm 1 as preconditions, in
the exclusive prefix sum function as postconditions and in the barrier (redis-
tribution of permissions). Figure 3 visualizes the permission pattern for those
shared arrays, which reflects the permission annotations in the code according
to these three locations. The explanation of the permission patterns in each array
in these three locations is as follows:

– Input : since each thread (tid) only needs read permission (line 6 in Algo-
rithm1), we define each thread to have read permissions to its “own” location
at index tid throughout the algorithm (Fig. 3). This also ensures that the
values in Input cannot be changed.

– Flag : since Flag is the input of the exclusive prefix sum function, its per-
mission pattern at the beginning of Algorithm1 must match the permission
preconditions of the exclusive prefix sum function. Thus, following the pre-
conditions of this function (see [23]), we define the permissions such that
each thread (tid) has read permissions to its “own” location (Fig. 3: left). The
exclusive prefix sum function returns the same permissions for Flag in its
postconditions (Fig. 3: middle). Since, each thread needs read permission in
line 5 of Algorithm1, we keep the same permission pattern in the barrier as
well (Fig. 3: right).

– ExPre: since ExPre is the output of the exclusive prefix sum function, the
permission pattern at the beginning of Algorithm 1 should match the per-
mission preconditions of the exclusive prefix sum function (specified in [23]).
Thus, each thread (tid < half ExPre size) has write permissions to locations
2 × tid and 2 × tid + 1 (Fig. 3: left). As postcondition of the exclusive pre-
fix sum function (specified in [23]), each thread has write permission to its
“own” location in ExPre (Fig. 3: middle). Since each thread only needs read
permission in line 6 of Algorithm 1, we change the permission pattern from
write to read in the barrier (Fig. 3: right).

– Output : it is only used in line 6 of Algorithm1 and its permissions are accord-
ing to the values in ExPre. Thus, the initial permissions for Output can be
arbitrary and in the barrier, we specify the permissions such that each thread
(tid) has write permission in location ExPre[tid ] if its flag is 1 (indicated by
tf in Fig. 3: right).

4.3 Functional Correctness

Proving functional correctness of the parallel stream compaction algorithm con-
sists of two parts. First, we prove that the elements in the exclusive prefix sum
function (ExPre) are in the range of the output, thus they can be used safely
as indices in Output (i.e., line 6 in Algorithm1). Second, we prove that Output
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Fig. 3. Permission pattern of arrays in stream compaction algorithm corresponding
to Fig. 2; Rti/Wti means thread i has read/write permission. Green color indicates
permission changes. (Color figure online)

contains all the elements whose flags are 1, and does not contain any elements
whose flags are not 1. Moreover, the order of desired elements, the ones whose
flags are 1, in Input must be the same as in Output .

To prove both parts, we use ghost variables8, defined as sequences. There are
some advantages of using ghost variables as sequences: (1) it is not required
to define permissions over sequences; (2) we can define pure functions over
sequences to mimic the actual computations over concrete variables; (3) we can
easily prove desired properties (e.g., functional properties) over ghost sequences;
and (4) ghost variables can act as histories for concrete variables whose values
might change during the program. This gives us a global view (of program states)
of how the concrete variables change to their final value. Concretely, we define
two ghost variables, inp_seq and flag_seq as sequences of integers to capture
all values in arrays Input and Flag , respectively. Since values in Input and Flag
do not change during the algorithm9, inp_seq and flag_seq are always the same
as Input and Flag10.

First, to reuse of the exclusive prefix sum specification (line 3 in Algorithm 1)
from our previous work [23], we should consider two points: (1) the input to the
exclusive prefix sum (Flag) in this paper is restricted to 0 and 1; and (2) the
elements in the exclusive prefix sum function (ExPre) should be safely usable
as indices in Output (i.e., line 6 in Algorithm1). Therefore, we use VerCors to
prove some suitable properties to reason about the values of the prefix sum of
the flag. For space reasons, we show the properties without discussing the proofs
here. The first property that we prove in VerCors is that the sum of a sequence
of zeros and ones is non-negative11:

Property 4.1

(∀i.0 ≤ i < |flag_seq|: flag_seq[i] = 0 vee flag_seq[i] = 1) ⇒
intsum(flag_seq) ≥ 0.

8 Ghost variables are not part of the algorithm and are used only for verification
purposes.

9 Note that threads only have read permissions over Input and Flag .
10 Thus, properties for inp_seq and flag_seq also hold for Input and Flag .
11 The intsum operation sums up all elements in a sequence.
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List. 2. The filter function
1 /∗@ requires |inp_seq| == |flag_seq|;
2 requires (\forall int i; 0 ≤ i && i < |flag_seq|; flag_seq[i]==0 || flag_seq[i]==1);
3 ensures |\result| == intsum(flag_seq);
4 ensures 0 ≤ |\result| && |\result| ≤ |flag_seq|; @∗/
5 static pure seq<int> filter(seq<int> inp_seq, seq<int> flag_seq) = |inp_seq|>0 ?
6 head(flag_seq)==1 ? seq<int>{head(inp_seq)} + filter(tail(inp_seq), tail(flag_seq))
7 : filter(tail(inp_seq), tail(flag_seq)) : seq<int>{};

We need Property 4.1 since the prefix sum for each element is the sum of all
previous elements. We benefit from the first property to prove in VerCors that
all the elements in the exclusive prefix sum of a sequence flag_seq (only zeros
and ones) are greater than or equal to zero and less than or equal to the sum of
elements in flag_seq12:

Property 4.2

(∀i.0 ≤ i < |flag_seq|: flag_seq[i] = 0 ∨ flag_seq[i] = 1) ⇒
(∀i.0 ≤ i < |epsum(flag_seq)|: epsum(flag_seq)[i] ≥ 0 ∧
epsum(flag_seq)[i] ≤ intsum(flag_seq)).

This gives the lower and upper bound of elements in the prefix sum, which
are used as indices in Output . This property is not sufficient to prove that the
elements are in the range of Output due to two reasons. First, an element in the
prefix sum can be as large as the sum of ones in the flag. Hence, it might exceed
Output size which is in the range 0 to intsum(flag_seq) − 1 . Second, we only use
the elements in the prefix sum whose flags are 1. Property 4.2 does not specify
those elements explicitly. Therefore, we prove another property in VerCors to
explicitly specify the elements in the prefix sum whose flags are 1 as follows:

Property 4.3

(∀i.0 ≤ i < |flag_seq|: flag_seq[i] = 0 ∨ flag_seq[i] = 1) ⇒
(∀i.0 ≤ i < |epsum(flag_seq)| ∧ flag_seq[i] = 1:

(epsum(flag_seq)[i] ≥ 0 ∧ epsum(flag_seq)[i] < intsum(flag_seq))).

Property 4.3 guarantees that the elements in the prefix sum whose flags are 1
are truly in the range of Output , and can be used safely as indices. Moreover, it
has been proven in [23] that epsum(flag_seq) is equal to the result of the prefix
sum function (i.e., ExPre).

Second, we reason about the final values in Output , using the following steps:

1. Define a ghost variable as a sequence.
2. Define a mathematical function that updates the ghost variable according to

the actual computation of the algorithm.

12 The epsum operation of a sequence returns an exclusive prefix sum of that sequence.
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List. 3. The proof steps to relate out_seq to Output array

1 seq<int> out_seq = filter(inp_seq, flag_seq);
2 assert |out_seq| == intsum(flag_seq); // by line 4 in Listing 2
3 if(flag_seq[tid] == 1)
4 // applying Property 4.4
5 assert inp_seq[tid] == filter(inp_seq, flag_seq)[epsum(flag_seq)[tid]];
6 assert out_seq == filter(inp_seq, flag_seq); // by line 1
7 assert inp_seq[tid] == out_seq[epsum(flag_seq)[tid]]; // by lines 5−6
8 assert Output[ExPre[tid]] == Input[tid]; // by lines 5−6 in Algorithm 1
9 assert Output[ExPre[tid]] == out_seq[epsum(flag_seq)[tid]]; // by lines 7−8

3. Prove functional correctness over the ghost variables by defining a suitable
property.

4. Relate the ghost variable to the concrete variable; i.e., prove that the elements
in the ghost sequence are the same as in the actual array.

Following this approach, we define a ghost variable, out_seq , as a sequence
of integers and a mathematical function, filter , as shown in Listing 2. This func-
tion computes the compacted list of an input sequence, inp_seq , by filtering it
according to a flag sequence, flag_seq (where head returns the first element of
a sequence and tail returns a new sequence by eliminating the first element).
Thus, for each element in inp_seq , this function checks its flag to either add it
to the result (line 6) or discard it (line 7). The function specification has two
preconditions: (1) the length of both sequences is the same (line 1) and (2) each
element in flag_seq is either 0 or 1 (lines 2). The postcondition states that the
length of the compacted list (result) is the sum of all elements in flag_seq (line
3) which is at most the same length as flag_seq (line 4). We apply the filter func-
tion to inp_seq and flag_seq (as ghost statements) at the end of Algorithm 1
to update out_seq .

To reason about the values in out_seq and relate it to inp_seq and flag_seq
we prove the following property in VerCors:

Property 4.4

(∀i.0 ≤ i < |flag_seq|: flag_seq[i] = 0 ∨ flag_seq[i] = 1) ⇒
(∀i.0 ≤ i < |epsum(flag_seq)| ∧ flag_seq[i] = 1:
(inp_seq[i] = filter(inp_seq, flag_seq)[epsum(flag_seq)[i]])).

From Property 4.4, we can prove in VerCors that all elements in inp_seq
(and Input) whose flags are 1 are in out_seq and the order is also preserved.
Since we specify that the length of out_seq is the sum of all elements in the
flag, which is the number of ones (line 4 in Listing 2), we also prove that there
are no elements in out_seq whose flags are not 1.

The last step is to relate out_seq to Output . Listing 3 shows the proof steps
which are located at the end of Algorithm 1. Through some smaller steps, and
using Property 4.4 we prove in VerCors that out_seq and Output is the same
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Algorithm 2. Summed-Area Table Algorithm
1: function summed_area_table(int[][] Input, int[][] Temp, int[][] Output, int N )
2: for(int i = 0; i < N ; i ++)
3: Par(tid = 0.. N ) // First Prefix Sum
4: INCLUSIVE_PREFIXSUM(Input [i ], Temp[i ], inp_seq[i ], tmp1_seq[i ], tid , N );
5: Properties 1 and 2 (Table 1) hold here
6: Par(tidX = 0.. N , tidY = 0.. N ) // First Transposition
7: int temporary = Temp[tidX ][tidY ];
8: Barrier(tidX , tidY );
9: Temp[tidY ][tidX ] = temporary;

10: tmp2_seq = transpose(tmp1_seq, 0, N );
11: Properties 3 and 4 (Table 1) hold here
12: for(int i = 0; i < N ; i ++)
13: Par(tid = 0.. N ) // Second Prefix Sum
14: INCLUSIVE_PREFIXSUM(Temp[i ], Output [i ], tmp1_seq[i ], tmp3_seq[i ], tid , N );
15: Properties 5 and 6 (Table 1) hold here
16: Par(tidX = 0.. N , tidY = 0.. N ) // Second Transposition
17: int temporary = Output[tidX ][tidY ];
18: Barrier(tidX , tidY );
19: Output[tidY ][tidX ] = temporary;
20: out_seq = transpose(tmp3_seq, 0, N );
21: Properties 7 and 8 (Table 1) hold here

(line 9). Note that for each tid, epsum(flag_seq)[tid] is equal to ExPre[tid] as
proven in [23].

As we can see in this verification, we could reuse the specification of the
verified prefix sum algorithm, by proving some more properties. We should note
that the time we spent to verify the stream compaction algorithm is much less
than the verification of the prefix sum algorithm.

5 Verification of Parallel Summed-Area Table Algorithm

This section discusses the summed-area table algorithm and its verification. As
above, after describing the algorithm and its encoding in VerCors, we first prove
data-race freedom and then explain how we prove functional correctness. We
also show how we reuse the verified prefix sum from [23] in the verification of
the summed-area table algorithm. Again, we only show the main ideas13.

5.1 Summed-Area Table Algorithm

Given a 2D array of integers, the summed-area table is a 2D array with the same
size where each entry in the output is the sum of all values in the square defined
by the entry location and the upper-left corner in the input. The algorithm’s
input and output are specified in the following way:
13 The verified specification is available at https://github.com/Safari1991/Prefixsum-

Applications.

https://github.com/Safari1991/Prefixsum-Applications
https://github.com/Safari1991/Prefixsum-Applications
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Fig. 4. An example of summed-area table of size 4 × 4.

Fig. 5. Permission pattern of matrix Temp/Output before and after the barrier in the
transposition phase; Rti , tj/Wti , tj means thread (i, j) has read/write permission.

– INPUT: a 2D array Input of integers of size N × M .
– OUTPUT: a 2D array Output of size N × M such that

Output[i][j] =
i∑

t=0

j∑

k=0

Input[t][k]for0 ≤ i < Nand0 ≤ j < M.

Algorithm2 shows the (annotated) pseudocode of the parallel algorithm and
Fig. 4 shows an example for the summed-area table algorithm. For example, the
red element 38 in Output is the sum of the elements in the red square in Input .
We apply the inclusive prefix sum (from [16]) to each row of Input and store it in
Temp (lines 2–4). Then, we transpose the Temp matrix (lines 6–9). Thereafter,
we apply again the inclusive prefix sum to each row of Temp (lines 12–14).
Finally, we transpose the matrix again, resulting in matrix Output (lines 16–19).
The parallel transpositions after each prefix sum are determined by creating 2D
thread blocks for each element of the matrix (lines 6–9 and 16–19) where each
thread (tidI, tidJ) stores its value into location (tidJ , tidI) by first writing into
a temporary variable (lines 7 and 17) and then synchronizing in the barrier (lines
8 and 18).

5.2 Data Race-Freedom

Since data race-freedom of the parallel inclusive prefix sum has been verified
in our previous work [23], we only show data-race freedom of the transposition
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List. 4. The transpose function

1 /∗@ requires |xs| == N && (\forall int j; 0 ≤ j && j < N ; |xs[j]| == N);
2 requires i ≥ 0 && i ≤ N ;
3 ensures |\result| == N − i;
4 ensures (\forall int j; 0 ≤ j && j < N − i; |\result[j]| == N);
5 ensures (\forall int j; 0 ≤ j && j < N − i;
6 (\forall int k; 0 ≤ k && k < N ; \result[j][k] == xs[k][i+j])); @∗/
7 static pure seq<int> transpose(seq<seq<int>> xs, int i, int N) = i < N ?
8 seq<seq<int>> {transpose_helper(xs, 0, i, N)} + transpose(xs, i+1, N) :
9 seq<int> {};

10
11 /∗@ requires |xs| == |N | && (\forall int j; 0 ≤ j && j < N ; |xs[j]| == N);
12 requires k ≥ 0 && k ≤ N && i ≥ 0 && i < N ;
13 ensures |\result| == N − k;
14 ensures (\forall int j ; 0≤j && j<|\result|; \result[j] == xs[k + j][i]); @∗/
15 static pure seq<int> transpose_helper(seq<seq<int>> xs, int k, int i, int N) =
16 k < N ? seq<int> {xs[k][i]} + transpose_helper(xs, k+1, i, N) : seq<int> {};

phases in Algorithm 2. As an example, Fig. 5 illustrates the permission pattern
in a matrix Temp (and also Output) of size 4 × 4. Before the barrier (lines 7 and
14 in Algorithm2) each thread (tidI, tidJ) has read permission in location (tidI,
tidJ) in Temp (and also Output). In the barrier, the permission pattern changes
such that each thread (tidI, tidJ) has write permission to location (tidJ , tidI).
In this way, each thread (tidI, tidJ) can read its value from location (tidI, tidJ)
(before the barrier) and write that value into location (tidJ , tidI) (after the
barrier) safely.

5.3 Functional Correctness

Next, we discuss functional correctness of the parallel summed-area table algo-
rithm. The approach to verify this algorithm is the same as before. First of all,
we define two ghost variables: inp_seq is a sequence of sequences that captures
the elements in Input , and tmp1_seq stores the inclusive prefix sum of elements
in Input (see Fig. 6: step 1).

After applying the first prefix sum function, Properties 1 and 2 from Table 1
hold (line 5 in Algorithm2). Property 1 specifies that tmp1_seq contains the
inclusive prefix sum of the elements in inp_seq14. Property 2 shows the relation
between tmp1_seq , and the actual array, Temp. We obtain these properties from
the postconditions of the verified inclusive prefix sum (see [23]).

Now, we define a mathematical function transpose, as shown in Listing 4. This
function computes the transposition of a sequence of sequences. The transpose
function creates a sequence for each column i (starting from 0) as a new row i
in the result, using a helper function (transpose_helper) to collect the ith ele-
ments of each row (in the input sequence)15. The preconditions of both functions
14 The ipsum operation of a sequence returns an inclusive prefix sum of that sequence.
15 Both functions are recursive and they are invoked with i and k equal to zero.



Formal Verification of Parallel SC and SAT Algorithms 195

 

 

Fig. 6. An example of phases in the summed-area table algorithm over sequences as
ghost variables. The sequences and functions capture the same arrays and computations
as in Fig. 4.

specify the length of the input sequence and the range of the parameter’s inte-
ger variables (lines 1–2 and 10–11). The postcondition of the transpose_helper
function (lines 12–13) indicates that the result has the same size as each row and
the return sequence contains the ith element of each row in the input sequence.
The postcondition of the transpose function (lines 3–6) indicates that the result
has the same size and indeed is the transposition of the input sequence.

Table 1. List of all properties in the summed-area table algorithm. Even numbers
indicate the relation between the ghost and concrete variables. Odd numbers shows
the relation between the ghost variables before and after each phase of the algorithm.

No. Mathematical description of properties

1

(∀i.0 ≤ i < |inp_seq|: (∀j.0 ≤ j < |inp_seq[i]| :

tmp1_seq[i][j] = ipsum(inp_seq[i])[j] =

j∑

t=0

inp_seq[i][t]))

2 (∀i.0 ≤ i < |tmp1_seq|: (∀j.0 ≤ j < |tmp1_seq[i]|: tmp1_seq[i][j] = Temp[i][j]))

3 (∀i.0 ≤ i < |tmp1_seq|: (∀j.0 ≤ j < |tmp1_seq[i]|: tmp2_seq[i][j] = tmp1_seq[j][i]))

4 (∀i.0 ≤ i < |tmp2_seq|: (∀j.0 ≤ j < |tmp2_seq[i]|: tmp2_seq[i][j] = Temp[i][j]))

5

(∀i.0 ≤ i < |tmp2_seq|:(∀j.0 ≤ j < |tmp2_seq[i]|:

tmp3_seq[i][j] = ipsum(tmp2_seq[i])[j] =
j∑

t=0

tmp2_seq[i][t]))

6 (∀i.0 ≤ i < |tmp3_seq|: (∀j.0 ≤ j < |tmp3_seq[i]|: tmp3_seq[i][j] = Output[i][j]))

7 (∀i.0 ≤ i < |tmp3_seq|: (∀j.0 ≤ j < |tmp3_seq[i]|: out_seq[i][j] = tmp3_seq[j][i]))

8 (∀i.0 ≤ i < |out_seq|: (∀j.0 ≤ j < |out_seq[i]|: out_seq[i][j] = Output[i][j]))

We apply the transpose function to tmp1_seq right after the first transposi-
tion computation of the algorithm (line 10 in Algorithm2). We store the result
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in a different sequence as tmp2_seq . Figure 6: step 2, illustrates this phase of
the algorithm over the sequences. From the postcondition of the transpose func-
tion we have Properties 3 and 4 (Table 1) in line 11 of Algorithm2. Property 3
shows that tmp2_seq is the transposition of tmp1_seq and Property 4 relates
the ghost variable, tmp2_seq to the actual array Temp.

Then we have the second prefix sum function to compute the inclusive prefix
sum of elements in Temp and store it in Output . We define a ghost variable,
tmp3_seq , to store the inclusive prefix sum of elements in tmp2_seq , which is
the same as Temp (lines 14 in Algorithm2). Figure 6: step 3, shows this phase
against the ghost variables. From the postcondition of the verified inclusive pre-
fix sum (see [23]), it follows that Properties 5 and 6 (Table 1) hold in line 15
of Algorithm2. Property 5 specifies that tmp3_seq contains the inclusive pre-
fix sum of the elements in tmp2_seq . Property 6 shows the relation between
tmp3_seq and Output .

The last phase of the algorithm is the second transposition, but this time for
Output . Therefore, we now apply the transposition function to the tmp3_seq
ghost variable and store the result in another ghost variable, out_seq in line
20 of Algorithm2 (see Fig. 6: step 4). At this point (line 21 in Algorithm2)
we have Properties 7 and 8 (Table 1). Property 7 indicates that out_seq is the
transposition of tmp3_seq and Property 8 relates out_seq to Output .

As we can see in Property 8, we relate the final result between the ghost
variable, out_seq and the actual array Output , but we still should reason about
the values in out_seq (and correspondingly Output). To accomplish this, we
prove several corollaries following from the properties in Table 1:

Corollary 1. From Properties 7 and 5 we have:

(∀i.0 ≤ i < |out_seq| : (∀j.0 ≤ j < |out_seq[i]|: out_seq[i][j] =
i∑

t=0

tmp2_seq[j][t])).

Corollary 2. From Corollary 1 and Property 3 we have:

(∀i.0 ≤ i < |out_seq| : (∀j.0 ≤ j < |out_seq[i]|: out_seq[i][j] =
i∑

t=0

tmp1_seq[t][j])).

Corollary 3. From Corollary 2 and Property 1 we have:

(∀i.0 ≤ i < |out_seq| : (∀j.0 ≤ j <|out_seq[i]|:

out_seq[i][j] =

i∑

t1=0

j∑

t2=0

inp_seq[t1][t2])).

Corollary 1 relates out_seq to tmp2_seq (Fig. 6: step 5). Corollary 2 shows
the relation between the ghost variables out_seq and tmp1_seq (Fig. 6: step
6). Corollary 3 proves the relation between inp_seq and out_seq (Fig. 6: step
7). As inp_seq and out_seq are the same as Input and Output (Property 8),
respectively, we conclude functional correctness.

In this verification, we could easily reuse the specification of the verified prefix
sum algorithm in a straightforward way without proving more properties. As a
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consequence, the verification of the summed-area table algorithm takes much
less time than the verification of the prefix sum algorithm. Moreover, we verified
the parallel transposition, which is also a primitive operation in GPGPUs, and
thus its verification can be reused for the verification of other algorithms that
use this operation.

6 Conclusion

In this paper, we have proven data race-freedom and functional correctness of
the parallel stream compaction and summed-area table algorithms, for an arbi-
trary input size by encoding the algorithms into the VerCors verifier. The two
algorithms are widely used as primitive operations in other algorithms (e.g., col-
lision detection and sparse matrix compression). Proving functional correctness
of both algorithms is challenging because both use other parallel algorithms as
sub-routine (e.g., prefix sum and transposition). To overcome these challenges,
we reuse previous work on the verification of parallel prefix sum algorithms. It is
straightforward to reuse the verification of prefix sum in the summed-area table
algorithm. However, the transposition operation is used intermittently in addi-
tion to the prefix sum sub-routine. We should establish a formal relation between
each of these intermediate steps in order to reason about the final result. In the
stream compaction algorithm, since the input to the prefix sum sub-routine is
a flag array, we should prove more properties of the prefix sum. Moreover, we
define ghost variables and suitable functions that mimic the actual computations
in the algorithms.

The complete verification of both algorithms took 2 weeks, whereas in com-
parison the verification of prefix sum took a couple of months. This shows that
less effort is needed to verify complicated algorithms by reusing verified sub-
routines in practice. Therefore, we believe that now it will be a minimal effort
to verify even more complex algorithms that are built on top of the stream
compaction and summed-area table algorithms. As future work, we would like
to investigate how a substantial part of the required annotations, in particu-
lar those related to permissions, can be generated automatically. In addition,
based on our verifications, we plan to develop a library of general properties for
common GPGPU sub-routines in VerCors.
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Abstract. We study guarantees for safe communication in systems of
systems composed of reactive components that communicate through
synchronised execution of common actions. Systems are modelled as
(extended) team automata, in which, in principle, any number of com-
ponent automata can participate in the execution of a communicating
action, either as a sender or as a receiver. We extend team automata
with synchronisation type specifications, which determine specific syn-
chronisation policies fine-tuned for particular application domains. On
the other hand, synchronisation type specifications generate communi-
cation requirements for receptiveness and responsiveness. We propose
a new, liberal version of requirement satisfaction which allows teams to
execute arbitrary intermediate actions before being ready for the required
communication, which is important in practice. Then we turn to the com-
position of systems and show that composition behaves well with respect
to synchronisation type specifications. As a central result, we investigate
criteria that ensure the preservation of local communication properties
when (extended) team automata are composed. This is particularly chal-
lenging in the context of weak requirement satisfaction.

1 Introduction

We study guarantees for safe communication in systems of systems of intercon-
nected, reactive components that communicate through synchronised execution
of shared actions. We focus on the prevention of output actions from not being
accepted (i.e. no message loss) and input actions from not being provided (i.e. no
indefinite waiting). The lack of safe communication in modular system models
may reveal design problems before implementation. To guarantee safe commu-
nication in such models, a characterisation for compatibility of two component
interactions free from message loss and indefinite waiting was given in [15] and
lifted to n-ary interactions in multi-component systems in [16]. Both approaches
support compatibility for synchronous communication. A first exploration on
how to generalise compatibility notions to arbitrary synchronisation policies was
performed in [7] in the framework of team automata.
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Team automata [8,23] are a transition system model for systems of reactive
components differentiating input (passive), output (active), and internal (pri-
vately active) actions, in the line of I/O automata [19,29], interface automata
[20,21], component-interaction automata [14], modal I/O automata [27], and
contract automata [3,4]. The distinguishing feature of team automata is their
very loose nature of synchronisation according to which, in principle, any num-
ber of component automata can participate in the synchronised execution of a
shared communicating action, either as a sender or as a receiver. Team automata
can determine specific synchronisation policies defining when and which actions
are executed and by how many components.

Conditions for safe communication in terms of receptiveness and responsive-
ness were considered in [2,12,18,22] for (web) services and in [6,7,10,16] for team
automata. Output actions not accepted as input by some component are consid-
ered as message loss or as unspecified receptions [13,22]. If any (autonomously
chosen) output action is accepted, we call this receptiveness [7]. Orthogonally, we
recognise indefinite waiting for input to be received in the form of an appropriate
output action provided by another component [15]. Since input relies on external
choice, it is sufficient if only one of the enabled input actions is responded to (by
other components), which we call responsiveness [6].

In [6], a representative set of synchronisation types was defined to classify
synchronisation policies (e.g., binary communication, multi-cast communication,
full synchronisation) realisable in team automata in terms of ranges for the num-
ber of sender and receiver components that can participate in a system commu-
nication. Moreover, a generic procedure was provided to derive requirements
for receptiveness and responsiveness for each synchronisation type. Communica-
tion safety of team automata was expressed in terms of their compliance with
receptiveness and responsiveness requirements. A team automaton is said to
be compliant with a given set of communication requirements if in each reach-
able state of the team the desired communications can immediately occur; if
the communication can eventually occur after some internal actions have been
performed, it is said to be weakly compliant (à la weak compatibility [5,25]).

In the short paper contribution [10], we briefly reviewed our previous app-
roach from [6] and we identified some limitations leading to issues for future
research. A first issue was that the assignment of a single synchronisation type
to a team, as in [6], is too restrictive and that we need to fine tune the number of
synchronising sending and receiving components per action. For this purpose we
introduce, in the current paper, synchronisation type specifications which assign
a synchronisation type individually to each communicating action. Such speci-
fications uniquely determine a team formalised by an extended notion of team
automaton (ETA). On the other hand, any synchronisation type specification
generates communication requirements to be satisfied by the team.

A second issue was that we realised that even the weak compliance notion pro-
posed in [6] is too restrictive for practical applications. In the current paper, we
overcome this problem by introducing a much more liberal compliance notion: if
a group J of components has issued a communication request, then we allow the
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team to execute arbitrary other actions, not limited to internal ones, before being
ready for the required communication (with the components in J ). This leads to
a powerful compliance notion not studied before (as far as we know). This appar-
ently simple generalisation has a significant consequence: among the ‘arbitrary
other actions’ there may be output or input actions open to the environment.
This is a potentially dangerous situation, since in this case local communication
properties can be violated after composition with other teams.

This leads us to the third, perhaps most important, contribution of the cur-
rent paper. We consider composition of systems and of teams. First, we show
that composition behaves well with synchronisation types (Theorem 1). Then
we investigate conditions under which communication properties are preserved
by ETA composition. The principle idea is that for this it should be sufficient to
consider interface actions and to check (global) compliance conditions for them.
We formulate appropriate conditions, first for the case of (strong) receptiveness
and responsiveness (Theorem 2) and then for the weak variant of the two, solving
the problem sketched above (Theorem 3). An intuitive running example guides
the reader through the paper.

Outline. After introducing extended team automata (ETA) in Sect. 2, we con-
sider synchronisation type specifications and ETA determined by them in Sect. 3.
(Weak) compliance of ETA with communication requirements and safe commu-
nication are treated in Sect. 4. In Sect. 5, we define the composition of systems
and of teams, and we show that this works well with synchronisation type spec-
ifications. In Sect. 6, we provide our main compositionality results. Full proofs
and some insightful counterexamples of the results presented in the latter two
sections can be found in [9]. After discussing related work in Sect. 7, we conclude
the paper in Sect. 8.

2 Background and Extended Team Automata

In this section, we summarise the basic notions concerning team automata and
introduce extended team automata. In contrast to the ‘classical’ team automata
from [8,23] and subsequent papers, extended team automata use system labels
which, in addition to the executed action, specify the team members that par-
ticipate in a synchronisation on an action. We start with some technical pre-
liminaries concerning labelled transition systems which will be reused for the
definitions of (local) component automata and (global) team automata.

A labelled transition system (LTS for short) is a quadruple L = (Q,Σ, δ, I)
consisting of a set Q of states, a set Σ of actions such that Q ∩ Σ = ∅, a
transition relation δ ⊆ Q × Σ × Q and a nonempty set I ⊆ Q of initial states.

For an action a ∈ Σ, δa = δ ∩ (Q× {a} ×Q) denotes the set of a-transitions
of L. Instead of (p, a, p′) ∈ δ we may write p

a−→L p′. Action a is enabled in L
at state p ∈ Q, denoted by a enL p, if there exists p′ ∈ Q such that p

a−→L p′.
For Γ ⊆ Σ, we write p

Γ−→∗
L p′ if there exist p0

a1−→L p1, . . . , pj−1
aj−→L pj for
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some j ≥ 0, with p0, . . . , pj ∈ Q, a1, . . . , aj ∈ Γ , p = p0, and p′ = pj . A state

p ∈ Q is reachable if p0
Σ−→∗

L p for some p0 ∈ I. The set of reachable states of
L is denoted by R(L).

Component automata are LTSs with an additional distinction between input
and output actions.1 They form the basic building block of systems.

Definition 1 (Component automaton). A component automaton (CA for
short) is an LTS A = (Q,Σ, δ, I) such that Σ is the union of two disjoint sets
Σinp and Σout of input and output actions, respectively. ��

In figures, we emphasise the role of actions by adding suffix ? to input actions
and ! to output actions.

Systems. A system is a pair S = (N , (Ai)i∈N ), where N is a finite, non-
empty set of component names and (Ai)i∈N is an N -indexed family of CA
Ai = (Qi, Σi, δi, Ii) with actions Σi = Σi,inp ∪ Σi,out. The state space of S is given
by the Cartesian product Q =

∏
i∈N Qi. Hence a global system state is an N -

indexed family q = (qi)i∈N of local component states qi ∈ Qi. The initial states
of S are given by the product I =

∏
i∈N Ii. If ∅ 
= N ′ ⊆ N and q = (qi)i∈N is

a system state, the projection of q to N ′ is defined by projN ′(q) = (qi)i∈N ′ .
We refer to Σ =

⋃
i∈N Σi as the set of actions of S.2 Within Σ, we identify

Σcom =
⋃

i∈N Σi,inp ∩ ⋃
i∈N Σi,out as the set of communicating actions in S.

Hence, an action of S is communicating in S if it occurs in (at least) one of its
CA as an input action and in (at least) one of its CA as an output action.

For an action a ∈ Σ, we let doma,inp(S) = { i | a ∈ Σi,inp } be its input domain
(in S) and doma,out(S) = { i | a ∈ Σi,out } its output domain (in S). Hence a
communicating action of S is such that both its output and input domain in S
are not empty.

Notation. Up to and including Sect. 4, we fix N and S as above. ��
Example 1. Consider a distributed chat system, where buddies can interact once
registered. For now, we consider two types of components: clients and servers,
depicted in Fig. 1 (left and middle, respectively). The arbiter will join only later
when we discuss system compositions. A server controls entries into the chat and
exits from the chat, and coordinates the main activity: forwarding client messages
to the chat. The communicating actions are partitioned into chat access actions
(join, leave, confirmJ , confirmL) and chat messaging (msg , fwdmsg). The non-
communicating actions are currently ask , grant , and reject . Let us assume a chat
system Schat consisting of two clients A1 and A2 and one server A3. Its state
space consists of tuples (p, q, r) with client states p and q and server state r. ��
1 In general, and in the classical team automata approach, a component automaton

can also have a distinguished set of internal actions. Since internal actions are not
really relevant for the scope of this paper, we omit them for the sake of simplicity.

2 If component automata were equipped with internal actions, then a syntactic com-
posability constraint would have to be applied to S requiring that each internal
action of a component automaton is unique to that component automaton.
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Fig. 1. [from left to right] CA for clients, servers, and arbiters [adapted from [10]]

We use extended labels as envisioned in [14] for multi component-interaction
automata, to indicate explicitly which components are actively participating in
system transitions. In the vector team automata of [11], vectors of component
actions are used for this purpose, giving rise to a concurrent semantics.

Definition 2 (System labels). Let a ∈ Σ. A system label for a (in S) is a
triple (out, a, inp) where out, inp ⊆ N are subsets of N such that out ∪ inp 
= ∅

and a ∈ Σi,out for all i ∈ out and a ∈ Σi,inp for all i ∈ inp. The set of system
labels for a in S is denoted by Λa(S), while Λ(S) =

⋃
a∈Σ Λa(S) denotes the set

of all system labels in S. ��
System labels provide an appropriate means to describe which components

in a system execute together a computation step, i.e. a system transition.

Definition 3 (System transitions). A triple (q, σ, q′) ∈ Q × Λ(S) × Q with
system label σ = (out, a, inp) is a system transition on a (in S) if (q(i), a, q′(i)) ∈
δi for all i ∈ out ∪ inp and q(i) = q′(i) for all i ∈ N \ (out ∪ inp).

For a ∈ Σ, the set of all system transitions on a in S is denoted by Ea(S),
while E(S) =

⋃
a∈Σ Ea(S) denotes the set of all system transitions in S. ��

If t = (q, (out, a, inp), q′) ∈ E(S) then any CA Ai for which i ∈ out ∪ inp
is said to participate in t . If i ∈ out, then Ai is a sender in t , otherwise
it is a receiver. Since, by definition of system labels, out ∪ inp 
= ∅, at least
one CA is participating in any system transition in S. Moreover, all system
transitions in Ea(S) are combinations of existing a-transitions from the CA in
S and all possible combinations of a-transitions occur in Ea(S). The elements
of Ea(S) are also referred to as synchronisations on a, even when only one CA
participates. A synchronisation on a communicating action a in which a CA
where a is an output action and a CA where a is an input action participate,
is called a communication. Obviously, for a non-communicating action a ∈ Σ,
either out or inp is empty in any system transition on a.

Example 2. The system transitions Emsg(Schat ) of Schat from Example 1 in
which CA A3 participates are the following: ((2, 2, 0), (∅,msg , {A3}), (2, 2, 3)),
((2, 2, 0), ({A1},msg , {A3}), (2, 2, 3)), ((2, 2, 0), ({A2},msg , {A3}), (2, 2, 3)), and
((2, 2, 0), ({A1,A2},msg , {A3}), (2, 2, 3)). Using this notation, we thus express
whether A1 or A2 participates or not in a synchronisation and hence whether or
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not a communication takes place. Note that not all system transitions are mean-
ingful in applications. For instance, ((2, 2, 0), ({A1,A2},msg , {A3}), (2, 2, 3))
expresses that both clients join to send msg to the server. If we want to rule
out undesired synchronisations we must declare a subset of admissible system
transitions, which is the underlying idea of team automata. ��

Extended Team Automata. The CA combined in a system are meant to
collaborate (form a team) through the simultaneous execution of shared actions.
Such teams are formalised by our notion of extended team automaton. They
are labelled transition systems with set of states Q and set of initial states I.
Their transitions are always a subset ε of E(S) containing the admissible system
transitions. Such subset is called a synchronisation policy . From the software
engineering perspective, it is the task of the team designer to determine an
appropriate synchronisation policy for a given system of components. We use
the system labels (out, a, inp) in Λ(S) as the actions in team transitions. This is
the main difference with the classical team automata from [8,23] and subsequent
papers, where actions a ∈ Σ would have been used in team transitions. However,
to study communication properties and their compositionality, explicit rendering
of the CA that actually participate in a transition of the team seems useful.

Definition 4 (Extended team automaton). An extended team automaton
(ETA for short) over S is an LTS E = (Q,Λ(S), ε, I), where ε ⊆ E(S) is a
synchronisation policy over S. ��

3 Synchronisation Type Specifications

In [6], we proposed synchronisation types to specify in a convenient, syntac-
tic way synchronisation policies. A synchronisation type (snd, rcv) determines
ranges for the number of senders and the number of receivers that may take
part in a communication. Both, the sending multiplicity snd and the receiving
multiplicity rcv are given by intervals. If snd = [o1, o2] (with 0 ≤ o1 ≤ o2) and
rcv = [i1, i2] (with 0 ≤ i1 ≤ i2) then at least o1 and at most o2 senders and at
least i1 and at most i2 receivers are allowed. While o1 and i1 are always natural
numbers, the upper delimiters o2 and i2 can also be given as ∗, which indicates
that no upper limit is imposed. On the other hand, at most one of the lower
delimiters o1 or i1 can be zero. In this case an output (respectively, input) of a
communicating action can be performed by components without a participating
receiver (respectively, sender).

Notable synchronisation types that can be defined include binary communi-
cation ([1, 1], [1, 1]) and multicast communication ([1, 1], [0, ∗]), in which exactly
one CA outputs a communicating action while arbitrarily many CA input that
action. We can also express full synchronisation on an action a by requiring
as a synchronisation type for a (snd, rcv) with snd = [doma,out,doma,out] and
rcv = [doma,inp,doma,inp].
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For the following, recall that S = (N , (Ai)i∈N ) is a composable system with
state space Q, actions Σ and communicating actions Σcom. In [6], we considered
the situation where all synchronisations in S follow a single synchronisation
type used uniformly for all communicating actions of the system. In practice
it is, however, necessary to relax this interpretation and define synchronisation
types individually for each communicating action of the system. This leads to
our new notion of synchronisation type specification.

Definition 5 (Synchronisation type specification). A synchronisation
type specification over S is a mapping st which assigns to all communicating
actions a ∈ Σcom a synchronisation type st(a) = (sndst(a), rcvst(a)). ��

For the non-communicating actions in S no synchronisation type is provided
since this is only relevant when systems are composed; see Sects. 5 and 6. We will
now discuss how a synchronisation policy, and hence an ETA, can be deduced
from a synchronisation type specification.

Let (snd, rcv) be a synchronisation type with snd = [o1, o2] and rcv = [i1, i2].
A system transition (q, σ, q′) ∈ Q × Λ(S) × Q with σ = (out, a, inp) is of type
(snd, rcv) if o1 ≤ #out ≤ o2 and i1 ≤ #inp ≤ i2, assuming n ≤ ∗ for any n ∈ N.

Remark 1. Note that for typing system transitions we use in a crucial way the
information provided by system labels. If we had mere actions as transition labels
of communications, as in team automata, it would not be clear whether a CA
with a ‘self-loop’ participates in a communication or not. Consider, for instance,
the system labels and transition from Example 2. In a team automaton over
Schat there could be a transition ((2, 2, 0),msg , (2, 2, 3)) in which it is not clear
whether one, two, or none of the clients participate, i.e. whether or not msg ! is
actually executed and by whom. In team automata, this is typically resolved by
implicitly assuming that a loop of a CA in a transition implies its execution, a
‘maximal’ interpretation of ambiguous participation. ��

Each synchronisation type specification determines a unique synchronisation
policy and hence a unique ETA in the following way:

Definition 6 (Typed synchronisation policy). Let st be a synchronisation
type specification over S.
1. The synchronisation policy determined by st, denoted by ε(st), is defined by

ε(st)a = { t ∈ Ea(S) | t is of type st(a) } if a ∈ Σcom; and ε(st)a = Ea(S) if
a ∈ Σ \ Σcom.

2. The ETA determined by st is E(st) = (Q,Λ(S), ε(st), I). ��
Note that for non-communicating actions a ∈ Σ \ Σcom for which no syn-

chronisation type is specified, ε(st) is ‘maximal’ in the sense that we set
ε(st)a = Ea(S). This means that we allow all possible synchronisations in S.
This is in contrast with [6], where we allowed arbitrary subsets of Ea(S) rather
than equality. It is, however, needed to get the compositionality results later on.
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Example 3. Consider global state (2, 0, 5) of the chat system Schat from Exam-
ples 1–2, where client A1 can (autonomously) decide to execute either its out-
put action leave or its output action msg . To enforce receptiveness, there
must be at least one other CA ready to execute either action as an input
action. Server A3 only has output action fwdmsg locally enabled. If we set
stchat(fwdmsg) = ([1, 1], [0, ∗]) as synchronisation type for fwdmsg , then the
server is allowed to move to state 0 by executing its output action fwdmsg
on its own (rather than in a communication) after which the server is ready
to accept inputs as required. This synchronisation type is not suitable for the
other actions, e.g. a client should be prohibited to join without acceptance
by the server, thus stchat(join) = ([1, 1], [1, 1]) would be appropriate. There-
fore, we define a synchronisation type specification stchat over Schat such that
stchat(fwdmsg) = ([1, 1], [0, ∗]) and stchat(a) = ([1, 1], [1, 1]) for all other commu-
nicating actions of Schat . The ETA determined by stchat is Echat (stchat). ��

4 Communication Requirements and Compliance

The idea of communication-safety in team automata is as follows. At each reach-
able global state of a team, whenever a communicating action is enabled at the
local states of some components J in accordance with the synchronisation type
of that action, then all components in J can execute this action from their local
states as a communication within the team.

Communication-Safety of ETA in a Nutshell. Before giving formal defi-
nitions, let us explain in a nutshell how our approach works. Consider an ETA
E(st) and a communication action a with, for instance, synchronisation type
st(a) = ([1, 1], [1, ∗]). Let Ai be a component of the system for which a is an
output action and let q be a global state of E(st) such that a is enabled at the
local state q(i) of Ai. Then we wish that a can be received by at least one other
component in the team. We express this by a receptiveness requirement issued by
component Ai and written as rcp({i}, a)@q. If the ETA E(st) is compliant with
this requirement, it is guaranteed that in state q, component Ai can synchronise
with other components in the team taking a as input.

Note that in case Ai could also execute another output action b with the same
synchronisation type at state q(i), subject to the corresponding receptiveness
requirement, then the two requirements would be combined through a conjunc-
tion to rcp({i}, a)@q ∧ rcp({i}, b)@q. The reason for this is that components
control their output actions and thus can internally decide which action to be
sent. Hence, the choice of either of them should lead to a reception. The expres-
sion rcp({i}, a)@q∧rcp({i}, b)@q is called a receptiveness requirement generated
by st. Indeed, the information in the synchronisation type ([1, 1], [1, ∗]) deter-
mines, due to the lower bound 1 of the output multiplicity [1, 1], that already
one component can induce a receptiveness requirement. On the other hand,
the receive multiplicity [1, ∗] tells us that a communication is really needed for
the output of a. Indeed, if the receive multiplicity were [0, ∗], then there would
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be no receptiveness requirement. If, however, the output multiplicity of a were
[2, ∗], then at least two components for which a is enabled in the current local
states would be needed to issue a valid receptiveness requirement of the form
rcp(J , a)@q with J determining the set of output components.

For input actions one could require responsiveness with the intuition that
enabled inputs should be served by appropriate outputs. Unlike output actions,
however, input actions are controlled by the environment, i.e. input choice is
external. Guaranteeing that for a choice of enabled inputs, one of them is sup-
plied with an output of other components suffices for the progress of a com-
ponent waiting for a signal. Hence, if component Aj enables input actions a
and b in its local state q(j), then the responsiveness requirements, denoted
by rsp({j}, a)@q and rsp({j}, b)@q would be combined with a disjunction to
rsp({j}, a)@q ∨rsp({j}, b)@q, which is called a responsiveness requirement gen-
erated by st. Of course, also responsiveness requirements can be issued by several
components J instead of {j}.

In general, a team automaton E(st) over a system S is called receptive (respec-
tively, responsive) if it is compliant with all receptiveness requirements (respec-
tively, responsiveness requirements) generated by st at all reachable states of
E(st). It is communication-safe if it is receptive and responsive.

Weak Compliance. In [6], we relaxed compliance to allow the team to execute
some intermediate internal actions before being ready for the required commu-
nication. As anticipated in the introduction and in [10], in this paper we further
relax the notion of weak compliance from [6]: if a group J of components has
issued a communication request we allow the team to execute, without partic-
ipation of J , some arbitrary other actions before being ready for the required
communication. This is a very flexible interpretation of interaction compatibil-
ity that, to the best of our knowledge, has not yet been studied in a similar
way in the literature, likely because the permission of intermediate actions is
dangerous for obtaining compositionality results. Its formal definition is given in
Definition 9.

Formal Definitions and Examples. In the remainder of this section, we
provide the formal definitions of the concepts explained above, partly illustrated
by examples. The definitions of communication requirements and compliance are
taken from [6], the definition of weak compliance in this general form is new and
the proposal to derive communication requirements from synchronisation type
specifications is inspired by [6], but simplified and at the same time generalised
to fit with synchronisation types per action.

We still assume given a composable system S = (N , (Ai)i∈N ) with state
space Q, actions Σ and communicating actions Σcom.

Definition 7 (Communication requirements). Let a ∈ Σcom and q ∈ Q.

– Let ∅ 
= J ⊆ doma,out(S) be such that a enAj
q(j) for all j ∈ J . Then

rcp(J , a)@q is a receptiveness requirement for a at q.
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– Let ∅ 
= J ⊆ doma,inp(S) be such that a enAj
q(j) for all j ∈ J . Then

rsp(J , a)@q is a responsiveness requirement for a at q.
– A communication requirement at q is either the trivial requirement true or a

receptiveness or responsiveness requirement at q or a conjunction or disjunc-
tion of communication requirements at q. ��
When all non-trivial atomic requirements occurring in a communication

requirement ϕ are receptiveness (respectively, responsiveness) requirements, we
also refer to ϕ as a receptiveness (respectively, responsiveness) requirement.

Definition 8 (Compliance). Let E be an ETA over S with synchronisation
policy ε. Then E is compliant with a communication requirement ϕ at q ∈ Q if
either q /∈ R(E) or ϕ = true, or one of the following holds:

1. ϕ = rcp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists out ⊇ J
and inp 
= ∅ such that q

(out,a,inp)−−−−−−→E q′

2. ϕ = rsp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists out 
= ∅

and inp ⊇ J such that q
(out,a,inp)−−−−−−→E q′

3. ϕ = ψ1 ∧ ψ2 and E is compliant with ψ1 at q and with ψ2 at q
4. ϕ = ψ1 ∨ ψ2 and E is compliant with ψ1 at q or with ψ2 at q ��

Note that when E is compliant with a requirement as in 1. and 2. above,
then the components J can communicate through a synchronisation on a at q
involving more CA from the output and input domains of a.

Recall that Λ(S) denotes the labels of E and let ΛJ (S), with J ⊆ N , denote
the set of labels in which CA from J participate, i.e. system labels (out, a, inp)
such that j ∈ out ∪ inp for some j ∈ J .

Definition 9 (Weak compliance). Let E be an ETA over S with synchro-
nisation policy ε. Weak compliance is defined analogously to Definition 8 but
replacing 1. and 2. by the following items:

1. ϕ = rcp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists p ∈ Q,

out ⊇ J and inp 
= ∅ such that q
Λ(S)\ΛJ (S)−−−−−−−−→∗

E p
(out,a,inp)−−−−−−→E q′

2. ϕ = rsp(J , a)@q for some J ⊆ N and a ∈ Σcom, and there exists p ∈ Q,

inp ⊇ J and out 
= ∅ such that q
Λ(S)\ΛJ (S)−−−−−−−−→∗

E p
(out,a,inp)−−−−−−→E q′ ��

Compliance trivially implies weak compliance. Note that we require that the
CA determined by J do not participate in the intermediate transitions. More-
over, it is possible that also CA not participating in the foreseen communication,
do participate in the intermediate actions that are needed to reach the global
team state where it can occur. This is a phenomenon known as ‘state-sharing’
(cf. [8,24]). It allows CA to influence potential synchronisations through their
local states without participating in the actual transition.

Example 4. We continue Example 3. In global state (2, 0, 5), A2 is locally enabled
to execute its output action join. Recall that stchat(join) = ([1, 1], [1, 1]).
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Then the receptiveness requirement for join at state (2, 0, 5) is rcp({A2},
join)@(2,0,5), i.e. output action join of A2 must be received as input by at
least one other CA. The only CA with join as an input action is the server A3,
but join is not enabled at its local state 5. However, in an ETA E over Schat
where A3 can transit from state 5 to state 0 by a communication with A1 (or
even alone) the CA A3 would subsequently be ready to execute join in a commu-
nication with A2. Since the intermediate move of the server to state 0 is allowed
by our new notion of weak compliance, this E is weakly compliant with the given
requirement. ��

As discussed above, the guidelines for when which choice of communication
requirements is suitable, must consider the synchronisation types of actions. Let
st be a synchronisation type specification over S, q ∈ Q and a ∈ Σcom such that
st(a) = ([o1, o2], [i1, i2]).

A receptiveness requirement rcp(J , a)@q is valid for st(a) if o1 ≤ |J | ≤
o2 and i1 
= 0. The receptiveness requirement for q generated by st is the
conjunction3

∧
{ rcp(J , a)@q | a ∈ Σcom, rcp(J , a)@q is valid for st(a) }

A responsiveness requirement rsp(J , a)@q is valid for st(a) if i1 ≤ |J | ≤ i2,
o1 
= 0 and, for each j ∈ J , q(j) is a state at which only input actions are
enabled.4 The responsiveness requirement for q generated by st is the disjunction5

∨
{ rsp(J , a)@q | a ∈ Σcom, rsp(J , a)@q is valid for st(a) }

In summary, each synchronisation type specification st for a system S of
components determines a synchronisation policy, i.e. an ETA E(st), and gen-
erates at the same time communication requirements. Then E(st) is (weakly)
communication-safe if it is (weakly) compliant with all requirements. This means
that the components in S coordinated by the synchronisation policy determined
by st work properly together.

Definition 10. Let E(st) be an ETA determined by a synchronisation type spec-
ification st. E(st) is (weakly) receptive (respectively, (weakly) responsive) if
it is (weakly) compliant at all q ∈ R(E(st)) with the receptiveness (respec-
tively, responsiveness) requirement for q generated by st. E(st) is (weakly)
communication-safe if it is receptive and responsive. ��
Example 5. We continue Examples 1–4. Let stchat be the chat system’s synchro-
nisation type specification as defined in Example 3. Let Echat(stchat) be the ETA
determined by stchat . An example of a generated receptiveness requirement is
rcp({A1},msg)@(2, 0, 5)∧rcp({A1}, leave)@(2, 0, 5)∧rcp({A2}, join)@(2, 0, 5).

3 We use a conjunction here since outputs are autonomously decided by components.
4 Otherwise the component has already a receptiveness requirement for an output.
5 We use a disjunction here since inputs rely on external choice.
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As explained in Example 4, Echat (stchat) is weakly compliant with the second con-
junct. It is also weakly compliant with the first conjunct as after moving on its
own to state 0, the server can receive msg . Requirement rcp({A1},msg)@(2, 0, 3)
is more tricky, since in state 3 the server already received a msg from client
A1 who wants to send another msg . Due to the new weak compliance notion
this is ok, since the server can execute its non-communicating external actions
ask followed by, e.g., reject to return to state 0 where it can receive msg . An
example of a generated responsiveness requirement is rsp({A3}, join)@(0, 0, 0)∨
rsp({A3}, leave)@(0, 0, 0) ∨ rsp({A3},msg)@(0, 0, 0). Clearly, Echat(stchat) is
only compliant with the first disjunct since either client can provide the required
output action join. It is important to note that requirements generated from
inputs rely on external choice of the environment and therefore it is sufficient
if one of the offered inputs is served, which is expressed by the disjunction. We
could only discuss here a few requirements, but a thorough analysis shows that
indeed Echat (stchat) is weakly receptive and weakly responsive. ��

5 Systems of Systems and ETA Compositions

In this section, we consider systems of systems and the composition of ETA given
for each individual system. This yields ETA over the combined global systems.
We also show how a global synchronisation type specification can be constructed
from the local ones respecting the underlying local ETA composition.

Let n ≥ 1 and let, for k = 1, . . . , n, Sk = (Nk, (Ak,i)i∈Nk
) be a system

with (Ak,i)i∈Nk
an Nk-indexed family of CA Ak,i = (Qk,i, Σk,i, δk,i, Ik,i) where

Σk,i = Σk,i,inp ∪ Σk,i,out. Hence, Σk =
⋃

i∈Nk
Σk,i is the set of actions in Sk and

Σk,com =
⋃

i∈Nk
Σk,i,inp ∩ ⋃

i∈Nk
Σk,i,out is its set of communicating actions.

To compose the single systems we assume that communicating actions within
one system cannot be used to interact with other systems. So, we say that the
family of systems (Sk)k∈[n] is composable if for all k ∈ [n] and for all k 
= l ∈ [n],
Nk ∩ Nl = ∅ and Σk,com ∩ Σl = ∅. Hence, in a composable family of systems,
component names and communicating actions are unique to a system.

Definition 11 (System composition). The composition of a composable
family (Sk)k∈[n] is the system

⊗
k∈[n] Sk = (

⋃
k∈[n] Nk, (Ak,i)(k,i)∈[n]×Nk

). ��

Notation. For the rest of the paper, we fix n ∈ N
>0 and Sk for k ∈ [n], as above.

We moreover assume that (Sk)k∈[n] is composable and that S =
⊗

k∈[n] Sk with
state space Q and initial states I. ��

The set of actions of S is Σ =
⋃

(k,i)∈[n]×Nk
Σk,i =

⋃
k∈[n] Σk and the set of

communicating actions in S is

Σcom =
⋃

(k,i)∈[n]×Nk

Σk,i,inp ∩
⋃

(k,i)∈[n]×Nk

Σk,i,out

Obviously, Σcom contains the communicating actions Σk,com of each sub-
system Sk but also actions which occur as input action in a component of one
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sub-system and as output action in a component of another sub-system. The
latter are called interface actions and defined by Σinf = Σcom \ ⋃

k∈[n] Σk,com.

Example 6. We now add an arbiter to the chat system Schat from Examples 1–4
to regulate message forwarding by composing Schat with the singleton system
{A4}, depicted in Fig. 1 (right). The idea is that the server must ask the arbiter to
grant or reject permission to forward a message. The two systems Schat and {A4}
form a composable family of systems; ask , grant , and reject are the interface
actions. ��

Given the composable family of systems (Sk)k∈[n], we describe how to
compose an extended team automaton over S =

⊗
k∈[n] Sk from given ETA

Ek = (Qk, Λ(Sk), εk, Ik) over Sk, k ∈ [n].
An ETA obtained as a composition of (Ek)k∈[n] is an ETA over S. So it has

state space Q, set of initial states I, and set of actions Σ as defined above.
The essential part concerns the choice of the synchronisation policy ε for the
composed ETA. We proceed as follows to define the system transitions of ε for
each a ∈ Σ:

1. For each non-communicating action a ∈ Σ \ Σcom, we define

εa = { (q, (out, a, in), q′) ∈ Ea(S) | for all k ∈ [n], s.t. Nk ∩ (out ∪ in) 
= ∅ :
(projNk

(q), (out ∩ Nk, a, in ∩ Nk),projNk
(q′)) ∈ εk,a }

Hence, εa is the set of all system transitions for a in S whose projections to
sub-systems Sk having action a belong to εk,a.

2. If a ∈ Σcom (a communicating action in S) we distinguish two cases:
(a) a ∈ ⋃

k∈[n] Σk,com : Then, by composability, there is exactly one k ∈ K
such that a ∈ Σk,com and a is unique to Sk. Fix this k and define

εa = { (q, (out, a, in), q′) ∈ Ea(S) |
(projNk

(q), (out, a, in),projNk
(q′)) ∈ εk,a }

Due to the uniqueness of a to Sk, εa is the set of all extensions of system
transitions in εk,a to the state space of S.

(b) a ∈ Σinf : Now a is an action shared as input and output action of some
components of S but not shared as an input and output action of compo-
nents in any sub-system Sk. Therefore it is the design choice of the overall
system architect to determine a set of system transitions εa ⊆ Ea(S).

This procedure leads to a unique ETA once a set of system transitions is
provided for each interface action a ∈ Σinf .

Definition 12 (Composition of ETA). Let for all k ∈ [n], Ek be an ETA
over Sk with εk its synchronisation policy. Let εinf ⊆ ⋃

a∈Σinf
Ea(S) be a set of

system transitions in S for the interface actions from Σinf .
The extended team automata composition

⊗εinf

k∈[n] Ek of (Ek)k∈[n] w.r.t. εinf
is the ETA over S with synchronisation policy ε such that:
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1. For all a ∈ Σ \ Σcom, εa is defined as in item 1. above.
2. For all k ∈ [n] and a ∈ Σk,com, εa is defined as in item 2.(a) above.
3. For all a ∈ Σinf , εa = (εinf )a.

If n = 2 we write E1 ⊗εinf E2 for
⊗εinf

k∈[n] Ek. ��
The next theorem shows the relationship between ETA composition and

synchronisation types. If a family of ETAs is given, each one determined by a
certain synchronisation type, then it is enough to specify synchronisation types
for the interface actions in order to get the composition of the ETAs as an ETA
generated by a single synchronisation type.

Theorem 1. Let for all k ∈ [n], Ek(stk) be an ETA determined by synchroni-
sation type specification stk and let stinf (a) be a synchronisation type for each
interface action a ∈ Σinf . Then

⊗εinf

k∈[n] Ek(stk) = E(st), where for all a ∈ Σinf ,
(εinf )a = { t ∈ Ea(S) | t is of type stinf (a) } and st is the synchronisation type
specification over S, defined by:

1. st(a) = stk(a) for all k ∈ [n] and a ∈ Σk,com and
2. st(a) = stinf (a) for all a ∈ Σinf .

Proof. (sketch) The proof is straightforward using the (syntactic) composability
assumption for systems and the definition of ETA composition. ��

6 Compositionality of Communication Properties

We now study compositionality of communication properties. The issue here is
to investigate conditions under which communication properties are preserved
by ETA composition. The principle idea is that for this it should be sufficient to
consider interface actions and to check (global) compliance conditions for them.
We start by considering receptiveness and responsiveness.

Theorem 2. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
and a ∈ Σinf .

1. Assume that Ek(stk) is receptive for all k ∈ [n]. If, for all q ∈ R(E(st)) and
a ∈ Σinf , E(st) is compliant with all receptiveness requirements rcp(J , a)@q
that are valid for st(a) = stinf (a), then E(st) is receptive.

2. Assume that Ek(stk) is responsive for all k ∈ [n]. If, for all q ∈ R(E(st)) for
which the responsiveness requirement generated by st has the form6

∨
{ rsp(J , a)@q | a ∈ Σinf , rsp(J , a)@q is valid for st(a) = stinf (a) } (1)

E(st) is compliant with (1), then E(st) is responsive.

6 Thus, (1) involves only responsiveness requirements concerning interface actions.
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Proof. (sketch) The proof relies on the fact that projections projNk
(q) of globally

reachable states q ∈ R(E(st)) to a sub-system Sk are reachable in Ek(stk). Then
one can propagate communication properties concerning communicating actions
a ∈ Σk,com from Ek(stk) to E(st). For interface actions compliance of E(st) with
communication requirements is anyway assumed as a proof obligation. ��

The following corollary reformulates the second case in Theorem2 to make it
symmetric to the first case. This yields, however, a strengthening of the condition
in the second case of Theorem 2 disregarding the fact that for responsiveness
requirements it is always sufficient if just one of the input alternatives is served.

Corollary 1. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
and a ∈ Σinf . Assume that Ek(stk) is responsive for all k ∈ [n]. If, for all q ∈
R(E(st)) and a ∈ Σinf , E(st) is compliant with all responsiveness requirements
rsp(J , a)@q that are valid for st(a) = stinf (a), then E(st) is responsive. ��

Next we consider compositionality of the weak notions of receptiveness and
responsiveness. The idea is to require weak compliance of the global team with
all communication requirements concerning interface actions and then to rely on
weak receptiveness (respectively, weak responsiveness) of the sub-teams. How
this works is demonstrated by the following example.

Example 7. Consider from Examples 1–6 the chat system Schat and the singleton
system {A4} consisting of the arbiter. From Example 3 we take the synchronisa-
tion type specification stchat for the chat system and the ETA Echat (stchat) deter-
mined by stchat . Since {A4} has no communicating actions, there are no syn-
chronisation types and the ETA determined by the empty synchronisation type
specification st∅ is Earbiter (st∅) which coincides with A4 but has system labels
(∅, ask , {A4}), ({A4}, grant , ∅), and ({A4}, reject , ∅) instead of ask , grant , and
reject . The latter are the interface actions. For them we choose the synchronisa-
tion type stinf (ask) = stinf (grant) = stinf (reject) = ([1, 1], [1, 1]).

Now consider the ETA composition Echat(stchat) ⊗ Earbiter (st∅) = E(st),
where st is defined by stchat and stinf as described in Theorem 1. To show how
weak receptiveness of Echat (stchat) (cf. Example 5) can be propagated to E(st), we
consider as an example the receptiveness requirement rcp({A1},msg)@(2, 0, 3, 0)
concerning the communicating action msg of Echat (stchat ) at the global state
(2, 0, 3, 0) of E(st). In state 3 the server already received a msg from client A1 who
wants to send another msg . The weak compliance of the sub-team Echat (stchat)
with rcp({A1},msg)@(2, 0, 3) has shown us (cf. Example 5) that in the scope
of Echat (stchat ) the server can execute the interface action ask followed by, e.g.,
reject to return to state 0 where it can receive msg . The crucial point is now that
in the global scope of E(st) the server can communicate with the arbiter such
that server and arbiter together perform ask followed by, e.g., reject and thus
the server returns to state 0 where it can receive msg . Hence the compliance of
Echat(stchat) with rcp({A1},msg)@(2, 0, 3) is propagated to E(st). ��

The example shows that weak compliance of the overall ETA E(st) with
communication requirements concerning interface actions (ask and reject in the
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example) is a crucial assumption needed for compositionality. But there is still
a subtle point to be taken into account as illustrated in the next example.

Example 8. Let A1, A2, and A3 be the following three component automata:

A1 : p0
a!−→ p1, p0

c?−→ p2 A2 : q0
b!−→ q1

a?−→ q2 A3 : r0
c!−→ r1

b?−→ r2

Let system S1 consist of A1 and A2 and S2 be the system consisting only of A3.
The only communicating action in S1 is a, since b and c are interface actions.
Let E1(st1) be the ETA over S1 determined by st1(a) = ([1, 1], [1, 1]). There are
two receptiveness requirements generated by st1 which are rcp({A1}, a)@(p0, q0)
and rcp({A1}, a)@(p0, q1). Obviously, E1(st1) is weakly compliant with both. For
instance the first one is satisfied by the system transitions

(p0, q0)
({A2},b,∅)−−−−−−−→E1(st1) (p0, q1)

({A1},a,{A2})−−−−−−−−−→E1(st1) (p1, q2)

The intermediate transition before accepting a executes interface action b.
Since S2 has no communicating actions, there are no synchronisation types

and the ETA determined by the empty synchronisation type specification st∅

is E2(st∅) which coincides with A3 when actions are replaced by system labels.
Now we set stinf (b) = stinf (c) = ([1, 1], [1, 1]) and consider the ETA composition
E1(st1) ⊗ E2(st∅) = E(st). For interface action b we get receptiveness require-
ment rcp({A2}, b)@(p0, q0, r0) and for c we get rcp({A3}, c)@(p0, q0, r0). E(st)
is weakly compliant with the first one and compliant with the second one. So all
looks fine. In the first case the weak compliance holds because of the transitions

(p0, q0, r0)
({A3},c,{A1})−−−−−−−−−→E(st) (p2, q0, r1)

({A2},b,{A3})−−−−−−−−−→E(st) (p2, q1, r2)

The subtle point is here that in the first transition A3 ‘calls back’ to a component
in S1, namely A1, before satisfying the receptiveness requirement of A2. This
creates a kind of cycle which makes the overall team E(st) not weakly compliant
with rcp({A1}, a)@(p0, q0, r0). Indeed, if A1 wants to send a then A2 must first
send b to A3 which must first send c to A1. Hence the requirement of A1 to send
b is not satisfiable in the overall team. Therefore we must exclude the possibility
of such ‘call backs’ when checking weak compliance for interface actions. This is
taken into account in the conditions (a) and (b) of Theorem3, where we consider
weak compliance without participation of components of the sub-system where
a requirement stems from. ��

The necessary assumptions discussed so far for obtaining compositionality
in the cases of weak receptiveness and weak responsiveness are summarised in
the following theorem. It additionally requires determinism of the sub-teams in
order to get a unique lifting of intermediate activities in sub-teams when weak
compliance is considered.

Theorem 3. Let Ek(stk), stinf (a), and E(st) be as in Theorem1 for all k ∈ [n]
such that stinf (a) = ([o1,#doma,out(S)], [i1,#doma,inp(S)]) with o1, i1 ∈ {0, 1}
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for all a ∈ Σinf . Let each Ek(stk) be deterministic and weakly receptive (respec-
tively, weakly responsive).

Assume that E(st) is weakly compliant, for all a ∈ Σinf and q ∈ R(E(st)),
with all atomic communication requirements rcp(J , a)@q and rsp(J , a)@q that
are valid for stinf (a). Moreover, assume that if ∅ 
= J ⊆ Nk for some k ∈ [n],
then the weak compliance holds ‘without participation of components in Nk \J ’,
i.e. we assume that:

(a) rcp(J , a)@q holds since there exist p, q′ ∈ Q, out ⊇ J and ∅ ⊆ inp such

that out ∩ Nk = J and q
Λ(S)\ΛNk

(S)−−−−−−−−−→∗
E(st) p

(out,a,inp)−−−−−−→E(st) q′, and
(b) rsp(J , a)@q holds since there exist p, q′ ∈ Q, ∅ ⊆ out and inp ⊇ J such

that inp ∩ Nk = J and q
Λ(S)\ΛNk

(S)−−−−−−−−−→∗
E(st) p

(out,a,inp)−−−−−−→E(st) q′.

Then E(st) is weakly receptive (respectively, weakly responsive).

Proof. (sketch) For interface actions weak compliance of E(st) with communi-
cation requirements is anyway assumed as a proof obligation. For non-interface
actions we have to propagate communication properties concerning communi-
cating actions a ∈ Σk,com from a sub-team Ek(stk) to E(st). The tricky point
is here that the notion of weak compliance in a sub-team is so flexible that it
allows some intermediate actions before a desired output (respectively, input) is
accepted by the sub-team Ek(stk). In particular, the intermediate actions can be
interface actions. Then it must be guaranteed that those interface actions can
be executed as synchronisations in the overall team E(st) which is ensured by
conditions (a) and (b). ��
Example 9. Consider the ETA composition Echat (stchat) ⊗ Earbiter (st∅) = E(st)
of Example 7. The ETA Echat(stchat) is deterministic, weakly receptive, and
weakly responsive (cf. Example 5) and so is, trivially, the ETA Earbiter (st∅).
Then for the interface actions ask , grant , and reject we obtain the receptive-
ness requirements rcp({A3}, ask)@(p, q, 3, 0), rcp({A4}, grant)@(p, q, 4, 1), and
rcp({A4}, reject)@(p, q, 4, 1) for any states p and q of the two clients such that
the given global state is reachable within E(st). Obviously, E(st) is (even) com-
pliant with these requirements. Hence condition (a) of Theorem 3 holds.

Now on the other hand, for the interface actions we obtain the responsive-
ness requirements rcp({A3}, grant)@(p, q, 4, 1), rcp({A3}, reject)@(p, q, 4, 1),
and rcp({A4}, ask)@(p, q, r, 0) for any local states p, q, r such that the given
global state is reachable within E(st). Obviously, E(st) is (even) compliant with
the first two requirements and with the third requirement if r = 3. In all other
possible cases for r, E(st) is weakly compliant with rcp({A4}, ask)@(p, q, r, 0).
For instance, in the initial state (0, 0, 0, 0) there is a path in E(st) without partic-
ipation of the arbiter reaching state (2, 0, 3, 0) (where the server already received
a msg from client A1). Then the input ask of the arbiter can be served by the
server. Since this holds similarly in all other cases, condition (b) of Theorem3
is satisfied. Hence, as a consequence of Theorem 3, E(st) is weakly receptive and
weakly responsive. ��
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7 Related Work

In the literature, compatibility notions are typically restricted to receptiveness
requirements in system models with binary, synchronous commmunication [4,25–
28]. Our approach is generic, generating notions of communication safety for
various kinds of synchronisation types. Concerning receptiveness and synchroni-
sation type st(a) = ([1, 1], [1, 1]) for all actions a, it subsumes, e.g., compatibility
notions of [4,15] and [20] (for closed systems), and, for a limited weak case, those
of [22] and [5].

We are aware of just a few approaches that consider notions of compatibil-
ity with respect to responsiveness. Both [15] and [22] consider system models
with synchronous composition. Notably, in [15] responsiveness is captured by
deadlock-freeness, while in [22] responsiveness is expressed as part of the defi-
nition of bidirectional complementarity compatibility. The latter, however, does
not support a choice of input actions like we do. Finally, [17] can express sending
constraints on partners in an asynchronous environment. It supports two kinds
of communication styles: client/server and peer-to-peer.

Synchronisation types constrain the number of components which can simul-
taneously execute a shared action. There are approaches which do not rely on
shared actions but specify possible interactions by determining which actions
may or must synchronise. This originates already in Winskel’s synchronisation
algebras [31] providing an abstract model to specify different synchronisation
styles for parallel composition. For describing system architectures BIP [1] pro-
poses interaction models using connectors for ports (actions) of components.
Typical architecture styles can be graphically represented [30]. Also composi-
tionality results are provided but the focus is not on the analysis of input and
output compatibilities.

8 Conclusion

We considered ETA, their specification by synchronisation types, and their
(weak) compliance with communication requirements generated from synchro-
nisation type specifications. In this sense our approach is generic, generating
notions of communication safety for various kinds of synchronisation types. An
essential contribution concerns the composition of systems and of ETA, and
the investigation of criteria ensuring preservation of communication properties
by composition. Verification of communication requirements in concrete cases
is still a tedious task, which should be supported by appropriate future tools.
Moreover, the validation of our approach on the basis of larger case studies is
a future goal. From a software engineering perspective we are also interested in
hierarchical designs where sub-teams are first encapsulated into CA by hiding
communicating actions to make analysis of larger systems feasible, e.g., by using
techniques of minimisation with respect to observational equivalence. Moreover,
to support reusability we could also add an explicit notion of system connector to
match actions of different systems by renaming. A further desired extension con-
cerns the introduction of designated states in CA where execution can stop but
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may also continue, in addition to states where progress is required. As sketched
in [10], their addition has significant and useful consequences for the derivation
of communication requirements and compliance.
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Abstract. Prob-solvable loops are probabilistic programs with polynomial
assignments over random variables and parametrised distributions, for which the
full automation of moment-based invariant generation is decidable. In this paper
we extend Prob-solvable loops with new features essential for encoding Bayesian
networks (BNs). We show that various BNs, such as discrete, Gaussian, con-
ditional linear Gaussian and dynamic BNs, can be naturally encoded as Prob-
solvable loops. Thanks to these encodings, we can automatically solve several
BN related problems, including exact inference, sensitivity analysis, filtering and
computing the expected number of rejecting samples in sampling-based proce-
dures. We evaluate our work on a number of BN benchmarks, using automated
invariant generation within Prob-solvable loop analysis.

1 Introduction

Bayesian networks (BNs) are well-established probabilistic models widely adopted to
represent complex systems and to reason about their intrinsic uncertain knowledge.
BNs are graphically depicted as directed acyclic graphs (DAGs) whose nodes represent
random variables and edges capture conditional dependencies. Since the seminal work
of [40], BNs have been extensively employed in several application domains including
machine learning [22], speech recognition [44], sports betting [12], gene regulatory
networks [20], diagnosis of diseases [24] and finance [39]. Part of their success is due to
the inherited Bayesian inference framework enabling the prediction about the likelihood
that one of several known causes is responsible for the evidence of an observed event.

Figure 1 illustrates a simple BN with two events that can cause the grass (G) to be
wet: the rain (R) or an active sprinkler (S). When it rains the sprinkler is usually not
active, so the rain has a direct effect on the use of the sprinkler. This dependency is
provided by a conditional probability table, in short CPT, associated to the sprinkler
random variable S. A CPT lists, for each possible combination of values of the parents’
variables (one for each row of the table), the corresponding probability for the child’s
variable to have a certain discrete value (one for each column of the table). The random
variables G,R, S of Fig. 1 are, for example, binary random variables with Bernoulli
conditional distributions. However, in general BNs allow arbitrary types for their ran-
dom variables and their conditional distributions.
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Fig. 1. Solving probabilistic inference, the expected number of samples and the sensitivity anal-
ysis for a discrete BN (disBN), by encoding the disBN as a Prob-solvable loop and computing
automatically moment-based invariants (MBIs).

Probabilistic Inference. Given the BN in Fig. 1, the following can be asked:

Q1 - What is the probability that it is raining, given that the grass is wet?

The answer to this question can be obtained by solving a probabilistic inference, that
is the problem to optimally estimate the probability of an event given an observed evi-
dence. The works in [13,14] show that both exact and approximated (up to an arbitrary
precision) methods to solve probabilistic inference are NP-hard.

How Many Samples? Approximating solutions for probabilistic inferences can be done
using Monte Carlo sampling techniques [28,43]. For example, rejection sampling is
one of the fundamental techniques for sampling from the joint (unconditional) distri-
bution of the BN: a sample is accepted when it complies with the evidence, otherwise
is rejected. Unfortunately, this method may require many samples before obtaining the
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Fig. 2. Solving probabilistic inference and sensitivity analysis in a conditional linear Gaussian
BN (clgBN), by encoding the clgBN as a Prob-solvable loop and computing MBIs.

first accepted samples, while most of the samples may be wasted simply because they
do not satisfy the observations. Thus, an interesting question, investigated also in [7],
is:

Q2 - What is the expected number of samples until an accepting sample occurs?

Sensitivity Analysis. As BN parameters are often provided manually or estimated from
(incomplete) data, they are most likely to be imprecise or wrong. For example, in Fig. 1
the CPT of the random variable S contains imprecise symbolic parameters a and b. In
this case, sensitivity analysis aims to answer the following question:

Q3 - How much does a small change in BN parameters affect probabilistic inference?
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Probabilistic Programs. Probabilistic programs (PPs) provide a unifying framework to
both encode probabilistic graphical models, such as BNs, and to implement sophis-
ticated inference algorithms and decision making routines that can operate in real-
world applications [21]. Probabilistic programming languages, such as [1,8,42] include
native constructs for sampling distribution, enabling the programmer to mix determin-
istic and stochastic elements. However, the automated analysis of PPs implemented
in these languages is still at its infancy. For example, one of the main challenges in
the analysis of PPs comes with computing invariant properties summarizing PP loops.
While full automation of invariant generation for PPs is in general undecidable, recent
results identify classes of PPs for which invariants can automatically be computed [4,7].
In [4], we introduced a method to automatically generate moment-based invariants of
so-called Prob-solvable loops with polynomial assignments over random variables and
parametrised distributions. Doing so, we exploit statistical properties to eliminate prob-
abilistic choices and turn random updates into recurrence relations over higher-order
moments of program variables.

Analysis of BNs as Prob-solvable Loops. In this paper we extend Prob-solvable loops
with new features essential for encoding BNs and for solving several kind of BN analy-
sis via invariant generation over higher-order statistical moments of Prob-solvable loop
variables. Figure 1(B) shows a Prob-solvable loop encoding the probabilistic behaviour
of the discrete BN (disBN) illustrated in Fig. 1(A). The Prob-solvable loop of Fig. 1(B)
requires one variable for each disBN node, one variable for each row of the CPT tables,
one variable for each unknown parameter and some extra variables that depend on the
particular BN analysis. For example, to solve exact probabilistic inference and sensitiv-
ity analysis, we require an extra variable to store the product of the random variables G
and R. On the other hand, to compute the expected number of samples until an accept-
ing sample occurs, we would need other two auxiliary variables count and continue.
Each row of each CPT is encoded as a probabilistic assignment in the Prob-solvable
loop. Our approach generates moment-based invariants as quantitative invariants over
higher-order moments to solve the three questions (Q1-Q3) of Fig. 1. The required Prob-
solvable loop analysis requires however additional steps (e.g., calculating a limit) that
are not yet supported in [4]. Moreover, while the Prob-solvable programming model
of [4] can model the probabilistic behavior of disBNs, it cannot model other BN vari-
ants, such as BNs with Gaussian conditional dependencies as in Fig. 2(A). We therefore
extend Prob-solvable loops with new features supporting Gaussian and uniform random
variables depending on other random variables (Sect. 3) and show that these extensions
allow us to solve BN problems via Prob-solvable loop reasoning (Sects. 4 and 5).

Our Contributions. (i) We prove that our extended model of Prob-solvable loops admits
a decision procedure for computing moment-based invariants (Sect. 3). (ii) We pro-
vide a sound encoding of BNs as Prob-solvable loops, in particular addressing discrete
BNs (disBNs), Gaussian BNs (gBNs), conditional linear Gaussian BNs (clgBNs) and
dynamic BN (dynBNs) (Sect. 4). (iii) We formalize several BN problems as moment-
based invariant generation tasks in Prob-solvable loops (Sect. 5). (iv) We implemented
our approach in the MORA tool [6] and evaluated it on a number of examples, fully
automating BN analysis via Prob-solvable loop reasoning (Sect. 5.4). Complete proofs
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for the theorems in this work as well as further details are available in the extended
version [5].

2 Preliminaries

We first introduce basic notions from statistics in order to reason about probabilistic
systems (Sect. 2.1), and refer to [35] for further details. We then adopt basic defini-
tions and properties of Bayesian Networks (BNs) from [40] to our setting (Sect. 2.2).
Throughout this paper, let N,R denote the set of natural and real numbers, respectively.

2.1 Probability Space and Statistical Moments

We denote random variables by capital letters X,Y, S,R, . . . and program variables by
small letters x, y, . . ., all possibly with indices.

Definition 1 (Probability Space). A probability space is a triple (Ω,F, P ), where
Ω �= ∅ is a sample space representing the set of outcomes, F ⊂ 2Ω is a σ-algebra rep-
resenting the set of events, and P : F → [0, 1] is a probability measure with P (Ω) = 1.

We now define random variables, together with their higher-order statistical
moments, in order to reason about probabilistic properties.

Definition 2 (Random Variable). A random variable X : Ω → R is a measurable
function from a set Ω of possible outcomes to R. If Ω is countable, the random variable
X is called discrete; otherwise, X is continuous.

In particular, in this paper we will be interested in the following random variables:

– Random variable X with Bernoulli distribution Bern(p), given by probability p,
where Ω = {0, 1} and X(0) = 1 − p and X(1) = p;

– Random variable X with Gaussian distribution G(μ, σ2), given by mean μ and vari-

ance σ2, where Ω = R and probability density function f(x) = 1
σ

√
2π

e− 1
2 ( x−μ

σ )2 .
– Random variable X with uniform distribution U(a, b), given by limits a, b where

Ω = R and probability density function f(x) =

{
1

b−a for z ∈ [a, b]
0 for z �∈ [a, b]

.

Example 1. The variables R,S,G of the BN from Fig. 1(A) are Bernoulli random vari-
ables, with variable R given by probability 0.8. Figure 2(A) features two Bernoulli ran-
dom variables S and D as well as two real-valued random variables W1 and W2 drawn
from a Gaussian distribution. Note that the parameters of the Gaussian distribution of
W1 depend on the values of D, whereas for W2 they depend on D and W1.

For a given random variable X we will denote by Ω(X) the sample space of X .
When working with a random variable X , the most common statistical moment of X
to consider is its first-order moment, called the expected value of X .
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Definition 3 (Expected Value). An expected value of a random variable X defined
on a probability space (Ω,F, P ) is the Lebesgue integral: E[X] =

∫
Ω

X · dP. In the
special case when Ω is discrete, that is the outcomes are x1, . . . , xn with corresponding
probabilities p1, . . . , pn and n ∈ N, we have E[X] =

∑n
i=1 xi · pi. The expected value

of X is often also referred to as the mean or μ of X .

The key ingredient in analyzing and deriving properties of a random variable X is
the so-called characteristic function of X .

Definition 4 (Characteristic Function). The characteristic function of a random vari-
able X , denoted by φX(t), is the Fourier transform of its probability density function
(pdf). That is, φX(t) = E[eitX ], with a bijective relation between probability distribu-
tions and characteristic functions.

The characteristic function φX(t) of a random variable X captures the value dis-
tribution induced by X . In particular, the characteristic function φX(t) of X enables
inferring properties about distributions given by weighted sums of X and other random
variables, and thus also about statistical higher-order moments of X .

Definition 5 (Higher-Order Moments). Let X be a random variable, c ∈ R and k ∈
N. We write Momk[X] to denote the kth raw moment of X , which is defined as:

Momk[X] = E[Xk]. (1)

Remark 1. For a Bernoulli random variable X with parameter probability p, all
moments of X coincide with its probability. Thus, Momk[X] = P (X = 1) = p.

Example 2. Figure 1 lists the first-order moment E[G] of G, as well as the first-order
moment E[GR] of the mixed random variable GR. The second-order moment of W2
is used to compute the variance V ar(W2) of W2 in Fig. 2.

2.2 Probabilistic Graphical Models as Bayesian Networks

Definition 6 (Bayesian Network (BN)). A Bayesian network (BN) is a directed
acyclic graph (DAG) in which each node is a discrete/continuous random variable.
A set of directed links or arrows connects pairs of BN nodes. If there is an arrow from
a BN node Y to a node X , then Y is said to be a parent of X .

For a random variable/node X in a BN, we write Par(X) to denote the set of
parents of X in the BN. Each BN node X has a conditional probability distribution
P (X|Par(X)) that quantifies the effect of the parents Par(X) on the node X . Depen-
dencies in a BN can be given in different forms and we overview the most common
ones. For a discrete variable X , dependencies are often given by a conditional prob-
ability table, by listing all possible values of parent variables from Par(X) and the
corresponding values of X . In the case of a continuous variable X , dependencies can
be specified using Gaussian distributions. Another common dependency in a BN is a
deterministic one, where value of a node X is determined by values of its parents from
Par(X); that is, a binary variable can be true iff all its (binary) parents are true, or if
one of its parents is true. We overview below BN variants, studied further in Sect. 4.
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Definition 7 (Variants of Bayesian Networks).

– A discrete Bayesian Network (disBN) is a BN whose variables are discrete.
– A Gaussian Bayesian Network (gBN) is a BN whose dependencies are given by

Gaussian distributions in which, for any BN node X , we have P (X|Par(X)) =
G(μX , σ2

X), with μX = αX +
∑mX

k=1 βX,kYX,k,, Par(X) = {Y1, · · · , YmX
} and

σ2
X is fixed.

– A conditional linear Gaussian Bayesian Network (clgBN) is a BN in which (i) con-
tinuous nodes X cannot be parents of discrete nodes Y ; (ii) the local distribution of
each discrete node Y is a conditional probability table (CPT); (iii) the local distri-
bution of each continuous node X is a set of Gaussian distributions, one for each
configuration of the discrete parents Y , with the continuous parents acting as regres-
sors.

– A dynamic Bayesian Network (dynBN) is a structured BN consisting of a series of
time slices that represent the state of all the BN nodes X at a certain time t. For each
time-slice, a dependency structure between the variables X at that time is defined by
intra-time-slice edges. Additionally, there are edges between variables from different
slices—inter-time-slice edges, with their directions following the direction of time.

Example 3. A disBN encoding the probabilistic model of the grass getting wet is shown
in Fig. 1(A). Figure 2(A) lists a clgBN, describing a weight loss process in a drug trial
performed on rats. The (Gaussian) random variables encoding weight loss for weeks 1
and 2 are respectively denoted with W1 and W2.

3 Programming Model: Extending Prob-solvable Loops

We introduce our programming model extending the class of Prob-solvable loops [4],
allowing us to encode and analyze BN properties in Sect. 4. In particular, we extend [4]
to support Prob-solvable loops with symbolic random variables encoding dependencies
among other (random) variables, where Gaussian and uniform random variables can
linearly depend on other program variables, encoding this way common BN dependen-
cies. To this end, we consider probabilistic while-programs as introduced in [30,37]
and restrict this class of programs to probabilistic programs with polynomial updates
among random variables. We write x := e1[p]e2 to denote that the probability of the
program variable x being updated with expression e1 is p ∈ [0, 1], whereas the proba-
bility of x being updated with expression e2 is 1 − p. In the sequel, whenever we refer
to a Prob-solvable loop/program, we mean a program as defined below.

Definition 8 (Prob-solvable Loop). Let m ∈ N and x1, . . . , xm denote real-valued
program variables. A Prob-solvable loop with variables x1, . . . , xm is a probabilistic
program of the form

I;while(true){U}, (2)

where:

– (Initialization) I is a sequence of initial assignments over x1, . . . , xm. That is, I is
an assignments sequence x1 := c1;x2 := c2; . . . ;xm := cm, with ci ∈ R repre-
senting a number drawn from a known distribution 1 - in particular, ci can be a real
constant.

1 A known distribution is a distribution with known and computable moments.



228 E. Bartocci et al.

Algorithm 1. Moment-Based Invariants (MBIs) of Prob-solvable Loops
Input: Prob-solvable loop P with variables {x1, . . . , xm}, and k ≥ 1
Output: MBIs of P of degree k
Assumptions: n ∈ N is an arbitrary loop iteration of P

1: Extract moment-based recurrence relations of P , for i = 1, . . . , m:

E[xi(n + 1)] = pi · E[
aixi(n) + Pi(x1(n), . . . , xi−1(n))

]

+(1 − pi) · E[
bixi(n) + Qi(x1(n), . . . , xi−1(n))

]
.

2: MBRecs = {E[xi(n + 1)] | i = 1, . . . , m} � initial set of moment-based recurrences
3: S := {xk

1 , . . . , xk
m} � initial set of monomials of E-variables

4: while S �= ∅ do
5: M :=

∏m
i=1 xαi

i ∈ S, where αi ∈ N

6: S := S \ {M}
7: M ′ = M [xαi

i ← updi], for each i = m, . . . , 1 � replace each xαi
i in M with updi

where updi denotes:
pi · (

aixi + Pi(x1, . . . , xi−1)
)αi + (1 − pi) · (

bixi + Qi(x1, . . . , xi−1)
)αi

8: Rewrite M ′ as M ′ =
∑

Nj for monomials Nj over x1, . . . , xm

9: Simplify moment-based recurrence E[M(n + 1)] = E[
∑

Nj ] using (5)-(6)
� M(n + 1) denotes

∏m
i=1 xi(n + 1)αi

10: MBRecs = MBRecs ∪ {E[M(n + 1)]}
� add E[M(n + 1)] to the set of moment-based recurrences

11: for each monomial Nj in M do
12: if E[Nj ] �∈ MBRecs then � there is no moment-based recurrence for Nj

13: S = S ∪ {Nj} � add Nj to S

14: end while
15: MBI = {E[xi(n)

k] − fxi,k(n) = 0 | i = 1, . . . , m}
� fxi,k(n) is the closed form solution of E[xk

i ]
16: return MBIs of P for the kth moments of x1, . . . , xm

– (Update) U denotes a sequence of m random updates, each update of the form:

xi := aixi + Pi(x1, . . . , xi−1) [pi] bixi + Qi(x1, . . . , xi−1), (3)

or, in case of a deterministic assignment,

xi := aixi + Pi(x1, . . . , xi−1), (4)

where ai, bi ∈ R are constants and Pi, Qi ∈ R[x1, . . . , xi−1] are polynomials over
program variables x1, . . . , xi−1.

– (Dependencies) The coefficients ai, bi and the coefficients of Pi and Qi in the vari-
able assignments (3)-(4) of xi can be drawn from a random distribution as long
as the moments of this distribution are known and either they are (i) Gaussian or
uniform distributions linearly depending on xi and other random variables xj with
j �= i; or (ii) other known distributions independent from x1, . . . , xm .

Note that Prob-solvable loops support parametrised distributions, for example one
may have the uniform distribution U(d1, d2) with arbitrary d1 < d2 ∈ R symbolic
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constants. Similarly, the probabilities pi in the probabilistic updates (3) can be sym-
bolic constants. The restriction on random variable dependencies from Definition 8
extends [4] by allowing parameters of Gaussian and uniform random variables xi in
Prob-solvable loop to be specified using previously updated program variables xj and
to depend on xi linearly. In Theorem 1 we prove that this extension maintains the exis-
tence and computability of higher-order statistical moments of Prob-solvable loops,
allowing us to derive all moment-based invariants of Prob-solvable loops of degree
k ≥ 1.

Definition 9 (Moment-Based Invariants (MBIs)). Let P be a Prob-solvable loop and
n ∈ N denote an arbitrary loop iteration of P . Consider k ∈ N with k �= 0. A moment-
based invariant (MBI) of degree k over xi of P is E[xi(n)k] = fxi,k(n), where fxi,k :
N → R of n is a closed form expression for the kth (raw) higher-order moment of xi,
such that fxi,k(b) depends only on n and the initial variable values of P .

In what follows, we consider an arbitrary Prob-solvable loop P and formalize our
results relative to P . Further, we reserve n ∈ N to denote an arbitrary loop iteration
of P . Note that MBIs of P yield functional representations of the kth higher-order
moments of loop variables xi at n. Hence, the MBIs E[xi(n)k] = fxi,k(n) are valid
and invariant. In Algorithm 1 we show that MBIs of Prob-solvable loops can always be
computed. As in [4], the main ingredient of Algorithm 1 are so-called E-variables for
capturing expected values and other higher-order moments of loop variables of P .

Definition 10 (E-variables of Prob-solvable Loops [4]). An E-variable of P is an
expected value of a monomial over the random variables xi of P .

Using Definition 10, in Algorithm 1 we compute E-variables based on expected
values E[xi(n)] of loop variables xi, as well as using higher-order and mixed moments
of P , such as E[xk

i (n)] or E[xixj(n)] (lines 3 and 9 of Algorithm 1). To this end,
Algorithm 1 resembles the approach of [4] and extends it to handle Prob-solvable loops
with dependencies among random variables drawn from Gaussian/uniform distributions
(line 9 of Algorithm 1). More specifically, Algorithm 1 uses moment-based recurrences
over E-variables from [4], describing the expected values E[xi(n)] of xi as functions
of other E-variables (line 2 of Algorithm 1). To this end, note that Prob-solvable loop
updates from (3)-(4) over xi yield linear recurrences with constant coefficients over
E[xi(n)], by using the following simplification rules over E-variables:

E[expr1 + expr2] → E[expr1] + E[expr2]
E[expr1 · expr2] → E[expr1] · E[expr2], if expr1, expr2 are independent
E[c · expr1] → c · E[expr1]
E[c] → c
E[D · expr1] → E[D] · E[expr1]

(5)

where c ∈ R is a constant, D is a known independent distribution, and expr1, expr2
are polynomial expressions over random variables. Yet, to address our Prob-solvable
loop extensions compared to [4], in addition to (5) we need to ensure that dependencies
among the random variables of P yield also moment-based recurrences. We achieve
this by introducing the following two simplification rules over random variables with
Gaussian/uniform distributions:

G(expr1, σ
2) → expr1 + G(0, σ2),

U(expr1, expr2) → expr1 + (expr2 − expr1)U(0, 1), (6)
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for arbitrary polynomial expressions expr1, expr2 over random variables. Using (6)
in addition to (5), moment-based recurrences of Prob-solvable loops can always be
computed as linear recurrences with constant coefficients over E-variables (line 9 of
Algorithm 1), implying thus the existence of closed form solutions of E-variables and
hence of MBIs of P , as formalized below.

Theorem 1 (Moment-Based Invariants (MBIs) of Prob-solvable Loops). Let P be
a Prob-solvable loop with variables {x1, . . . , xm} and consider k ∈ N with k ≥ 1.
Algorithm 1 is sound and terminating, yielding MBIs of degree k of P .

Proof. We first prove correctness of the simplification rules (6), from which the sound-
ness and termination of Algorithm 1 follows. Recall that there is a one-to-one corre-
spondence between probability distributions and characteristic functions E[eitX ] of a
random variable X . In particular, the characteristic function of a Gaussian distribu-
tion with parameters μ and σ2 is eiμt− 1

2σ2t2 , and thus the characteristic function of
G(expr1, σ

2) is E[eitN (expr1,σ2)]. Then,

E

[
eitN (expr1,σ2)

]
= E

[∫
eitN (y,σ2)f(y)dy

]
=

∫∫
eitx 1√

2πσ2
e− (x−y)2

2σ2 f(y)dxdy

=
∫

eitx 1√
2πσ2

e− (x)2

2σ2 dx

∫
eityf(y)dy

= E

[
eitN (0,σ2)

]
· E [

eit·expr1
]
= E

[
eit(N (0,σ2)+expr1)

]
by change of limits for x ∈ R, where f is the probability density function of the ran-

dom variable expr1. Note that E
[
eit(N (0,σ2)+expr1)

]
corresponds to the characteris-

tic function of expr1 + G(0, σ2), and hence the simplification rule G(expr1, σ
2) →

expr1 + G(0, σ2) of (6) is correct. The correctness of the simplification rule of (6) over
uniform distributions can be established in a similar way.

Further, observe that polynomial expressions remain polynomial after applications
of (6) (line 9 of Algorithm 1). Once Gaussian and uniform distributions depending on
loop variables are replaced using (6), we are left with independent known distributions
and polynomial expressions over random variables for which (5) can further be used,
as in [4]. As Algorithm 1 extends [4] only with (6) (line 9 of Algorithm 1), using results
of [4], we conclude that Algorithm 1 is both sound and terminating. 	

Example 4. Consider the Prob-solvable loop in Fig. 2(B). An example of E-variable
would be E[W22], for which an MBI E[W22] = 4.01408a2+53.83168a+4.01408b+
250.3172 is computed using Algorithm 1.

Remark 2. While Prob-solvable loops are non-deterministic, with trivial loop guards
of true, we note that probabilistic loops bounded by a number of iterations (such as
n := 0;while(n < 1000){n := n + 1}) can be encoded as Prob-solvable loops.

4 Encoding BNs as Prob-solvable Loops

In this section we argue that Prob-solvable loops offer a natural way for encoding BNs,
enabling further BN analysis via Prob-solvable loop reasoning in Sect. 5.
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4.1 Modeling Local Probabilistic Models of BNs as Prob-solvable Loop Updates

A BN is fully specified by its local dependencies. We consider common local proba-
bilistic models and encode these models as Prob-solvable loop instances, as follows.

Deterministic Dependency. We first explore local probabilistic models specifying
deterministic dependency, that is when the values of BN nodes X are determined by the
values of the parent variables from Par(X). For example, when X is binary-valued,
such a deterministic dependency can be a Boolean expression. On the other hand, when
X is continuous, deterministic dependency can be a function over Par(X).

For a continuous variable X whose value is given by a polynomial Q(Par(X)),
encoding deterministic dependencies as a Prob-solvable loop update is straightforward:
we simply set X = Q(Par(X)).

For a discrete random variable X , let [X = x] be the expression such that [X =
x] = 1 if X = x and 0 otherwise. Note that when X is binary-valued, we have [X =
1] = X and [X = 0] = 1−X . It follows that, in general, for a discrete variable X with
possible values x = 0, 1, · · · , k, we have [X = x] =

∏
0≤i<k

i�=x

X−i
x−i . Furthermore, let

[(X,Y ) = (x, y)] = [X = x] · [Y = y]. Then, [(X,Y ) = (x, y)] = 1 iff X = x ∧ Y =
y, and 0 otherwise. Finally, we write [X �= x] to denote 1 − [X = x]. Observe that
[X = x] and [X �= x] are polynomials in X , providing thus a natural way to specify
deterministic dependencies as updates (3)-(4) of Prob-solvable loops (see Algorithm 2).

Conditional Probability Tables – CPTs. As shown in Fig. 1(A), a common way to
specify BN dependencies among discrete variables is CPTs, with each CPT line repre-
senting a possible assignment of values of a BN node X to Par(X). A CPT for X can
be turned into Prob-solvable loop updates, as follows.

We represent values of X with integers. For simplicity, assume that X is binary-
valued. Let Par(X) = {Y1, · · · , Yk} denote the parents of X . For each line L in the
CPT for X we introduce a new variable XL. Each line L specifies values for Par(X);
for example, Y1 = y1, · · · , Yk = yk. Let pL := P (X = 1|L) and define

XL =
∏

0<i≤k

[Yi = yi] [pL] 0, (7)

encoding that the value of XL is 0 if the values of Yi are not specified in the respective
CPT line L; otherwise the value of XL is 1 with probability pL. We then set

X =
∑

L∈CPT

XL. (8)

Example 5. Using (7)-(8), the disBN of Fig. 1(A) is encoded as a Prob-solvable loop
in Fig. 1(B). While the parameters of S and G are not directly visible from the disBN,
these parameters are given by the expected values of S and G in the Prob-solvable
loop of Fig. 1(B). Note that Fig. 1(B) also features a GR variable corresponding to a
Bernoulli random variable depending on G and R, such that GR is 1 iff both G and R
are 1. The program variable continue samples a sequence of Bernoulli random vari-
ables (one for each iteration n), while the random variable count represents a geometric
distribution encoding the sum of continue values.
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Fig. 3. In Fig. 3(B) we give the Prob-solvable loop encoding of the dynBN from Fig. 3(A).

Linear Dependency for Gaussian Variables. A local probabilistic model for a Gaus-
sian random variable with continuous parents (as introduced in Definition 7) can be
encoded as a Prob-solvable loops update, as follows:

X = RV (gauss, αX +
∑

Y ∈Par(X)

βX,Y · Y, σ2
X), (9)

where αX , βX,Y are constants, σ2
X is fixed and RV (gauss, μ, σ2) denotes a Gaussian

random variable drawn from a Gaussian distribution G(μ, σ2).

Conditional Linear Gaussian Dependency. By combining BN dependencies on dis-
crete and continuous variables for a Gaussian random variable X , we can model con-
ditional linear Gaussian dependencies for X . Let D be the joint distribution of the
discrete parents of X and for each d ∈ D let Gd be the Gaussian distribution associated
with condition d (here Gd may depend on the values of continuous parents Par(X) of
X , as discussed in Sect. 3). The conditional linear Gaussian dependency for X can be
modeled as the following Prob-solvable loop update:∑

d∈Ω(D)

[D = d] · Gd. (10)

Example 6. Figure 2(B) shows the Prob-solvable loop encoding of the clgBN of
Fig. 2(A). The random variables, W1 and W2 are given by conditional linear Gaussian
dependency and encoded using (10). For simplicity, W1 and W2 are further split into
variables W1 1 and W1 2, and W2 1 and W2 2, respectively, representing different
values of W1 and W2 based on the value of D. Further, D1 S is a binary variable which
is 1 iff D is 1 and S is 0, and W2D1 S represents the expected value of W2 · D1 S.

Temporal Dependencies in DynBNs. Dependencies in dynBNs are given by intra- and
inter-time-slice edges. While the encoding of these dependencies is similar to the BN
dependencies discussed above, there are two restrictions on the structure of the dynBNs
ensuring that dynBNs can be encoded as Prob-solvable loops. First, dependency of a
dynBN variable X on itself must be represented by a linear function. This restriction
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Fig. 4. BN hierarchy.

could be lifted for discrete variables, as discussed in Lemma 1. Second, a variable X
can only depend on itself in previous time-slice and current time-slice variables.

Example 7. Figure 3(B) lists the Prob-solvable loop corresponding to Fig. 3(A). The
Bernoulli random variables R and U are encoded using (7)-(8). The parameters of R
and U change across iterations, corresponding to parameters in different time-slices of
the dynBN; their concrete values are given by the expected values of R and U .

Algorithm 2. Encoding BN variants as Prob-solvable loops
Input: BN
Output: Prob-solvable program
Notation: LPM denoting a local probabilistic model

1: Nodes := topologically ordered set of BN nodes
2: for X in Nodes do
3: if LPM of X is CPT then
4: for each line L in the CPT do Set XL as in (7)
5: Set X as in (8)
6: if LPM of X is a linear dependency for Gaussian variables then Set X as in (9)
7: if LPM of X is a conditional linear Gaussian dependency then Set X as in (10)

4.2 Encoding BNs as Prob-solvable Loops

Section 4.1 encoded common local probabilistic models of BN dependencies as Prob-
solvable loop updates. Since BNs are DAGs, BN nodes can be ordered in such a way
that each BN node X depends only on previous BN variables— its parents Par(X).
Hence, BNs can be encoded as Prob-solvable loops, as shown in Algorithm 2 and stated
below.

Theorem 2. Every BN and dynBN2 with local probabilistic models given by CPT or
(conditional linear) Gaussian dependencies can be encoded as a Prob-solvable loop.
In particular, disBNs, gBNs and clgBNs can be encoded as Prob-solvable loops.

2 subject to the restriction on structure of dynBN as discussed in Sect. 4.1.
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Based on Algorithm 2 and Theorem 2, we complete this section by defining the
following class of BNs, in relation to Prob-solvable loops.

Definition 11 (Prob-solvable Bayesian Networks). A Prob-solvable Bayesian Net-
work (PSBN) is a BN which can be encoded as a Prob-solvable loop.

The relation and expressivity of PSBNs, and hence Prob-solvable loops, compared
to BN variants is visualized in Fig. 4.

5 Automatic BN Analysis via Prob-solvable Loop Reasoning

We now show that several BN challenges can be automatically solved by generating
moment-based invariants of Prob-solvable loops encoding the respective BNs. To this
end, (i) we consider exact inference, sensitivity analysis, filtering and computing the
expected number of rejecting samples in sampling-based BN procedures and (ii) for-
malize these BN problems as reasoning tasks within Prob-solvable loop analysis. We
then (iii) encode BNs as Prob-solvable loop P using Algorithm 2 and (iv) generate
moment-based invariants of P using Algorithm 1. We address steps (i)-(ii) in Sects. 5.1-
5.3, and report on the automation of our work in Sect. 5.4.

5.1 Exact Inference in BNs

Common queries on BN properties address (i) the probability distributions of BN nodes
X , for example by answering what is P (X = x) or P (X < c); (ii) the conditional
probabilities of BN nodes X,Y , such as P (X = x|Y = y); or (iii) the expected values
and higher-order moments of BN nodes X,Y , for instance E[X],E[X2],E[X|Y = y]
and E[X2|Y = y]. Here we focus on (iii) but show that, in some BN variants, queries
related to (ii) can also be solved by our work.

Exact Inference in disBNs. In the case when a BN node X is binary-valued, we
have E[X] = P (X = true). Furthermore, for any higher-order moment of X we
also have Momk[X] = P (X = true). For non-binary-valued but discrete BN node
X , with values from {0, . . . , m}, the higher-order moments of X are also computable.
Moreover, the first m−1 moments are sufficient to fully specify probabilities P (X = i),
for i ∈ {0, . . . , m − 1}, as proven below.

Lemma 1. The probabilities, and hence the higher-order moments, of a discrete ran-
dom variable X over {0, . . . , m − 1} are specified by the first m − 1 higher-order
moments of X .

Proof. Let pi := P (X = i), for i ∈ {0, . . . , m − 1}. Then,
∑

0≤i<m ikpk =
Momk(X), yielding m−1 linear equations over p0, · · · , pm−1, with k ∈ {1, · · · ,m−
1}. As we also have

∑
0≤i<m pi = 1, we have a linear system of m linearly independent

equations, implying the existence of a unique solution which specifies the distribution
of X . 	


For computing conditional expected values and higher-order moments, we show

next that deriving E[Xk|D = i] is reduced to the problem of computing E[Xk·[D=i]]
E[[D=i]] .
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Lemma 2. If D = i with non-zero probability, we have E[Xk|D = i] = E[Xk·[D=i]]
E[[D=i]] .

Proof. By partition properties for expected values, we have

E[Xk[D = i]] = E[Xk[D = i]|D = i]P (D = i) + E[Xk[D = i]|D �= i]P (D �= i).

As [D = i] = 1 iff D = i, we derive E[Xk[D = i]|D = i] = E[Xk|D = i] and
E[Xk[D = i]|D �= i] = 0. Therefore, E[Xk|D = i] = E[Xk|D = i]P (D = i). Since

P (D = i) �= 0, we conclude E[Xk|D = i] = E[Xk·[D=i]]
E[[D=i]] . 	


Exact Inference in gBNs. Recall that a Gaussian distribution is specified by its first
two moments, that is by its mean μ and variance σ2. As all nodes in a gBN are Gaus-
sian random variables, the first two moments of gBN nodes are sufficient to analyse
gBN behaviour. Further, E[X] and E[X2] of a gBN node X are computable using
Algorithm 1.

Exact Inference in clgBNs. As continuous variables X in clgBNs are Gaussian ran-
dom variables, the means and variance of X are also computable using Algorithm 1.
However, clgBNs might also include discrete variables D, whose (conditional) higher-
order moments can be computed as in Lemmas 1-2. Further, for a continuous variable
X and a discrete variable D in a clgBN, we have

E[X|D = i] =
E[Xk · [D = i]]

E[[D = i]]
,

allowing us, for example, to derive E[W2|D = 1] = 7.25 + 0.89a in Fig. 2.

Exact Inference in dynBNs. As dynBNs are infinite in nature, (infinite) Prob-solvable
loops are suited to reason about dynBN inferences, such as (i) long-term behaviour
or prediction and (ii) filtering and smoothing. A related problem is characterizing the
dynBN behaviour after n iterations, and in particular for n → ∞.

(i) Prediction and long-term behaviour in dynBNs By modeling dynBNs as Prob-
solvable loops, we can compute/predict higher-order moments E[Xk

n] of dynBN nodes
X using Algorithm 1, for an arbitrary n. Further, thanks to the existence of E[Xk

n] for
Prob-solvable loops, we conclude that limn→∞ E[Xk

n] is also computable. Moreover,
Algorithm 1 computes higher-order moments/MBIs in O(1) time w.r.t. n, which is not
the case of the O(n) approach of the standard Forward algorithm.

(ii) Filtering and prediction in dynBNs Predicting next dynBNs states Xt+1 given all
observations e1, . . . , et+1 until time t can be expressed as P (Xt+1|e1, . . . , et+1), which
in turn can be rewritten using Bayes’ rule under the sensor Markov assumption (the evi-
dence et depends only on program variables Xt from the same time-slice), as follows:

P (Xt+1|e1, . . . , et+1) = P (et+1|Xt+1) ·
∑
xt

P (Xt+1|xt) · P (xt|e1, . . . , et),

where P (et+1|Xt+1) and P (Xt+1|xt) are specified by the BN, assuming discrete-
valued observation variables. Filtering and prediction in dynBNs is thus computable
using MBIs of Prob-solvable loops.
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5.2 Number of BN Samples Until Positive BN Instance

As pointed out in [7], an interesting question about BNs is “Given a Bayesian network
with observed evidence, how long does it take in expectation to obtain a single sample
that satisfies the observations?”. A related, though arguably simpler, question would
require giving the expected number of positive instances (samples satisfying the obser-
vation) in N samples of BNs. Both of these questions can be answered using standard
results from probability theory.

Lemma 3. Given the probability p of a BN observation, the expected number of pos-
itive BN instances in N samples is pN . Further, the expected number of BN samples
until the first positive BN instance is 1

p .

Although the lemma can be proven using standard techniques from probability, we
note that the results can also be obtained using Prob-solvable loop reasoning, by relying
on Algorithm 1, as illustrated next.

Example 8. For inferring the expected number of positive instances in N samples in
Fig. 1, we first encode the observation in the BN as a new variable GR = G · R,
capturing the observation that the grass is wet and there was rain. We then transform
the BN into a dynBN adding an inter-time-slice counter update count = count + GR.
The expected number of positive instances is then the prediction E[countn] for n = N .

For answering the question of [7], we again encode the observation first as above,
e.g. GR = G · R. We use a boolean variable to indicate whether there has been a
positive instance continue = continue · [GR = 0], which is initiated as 1 (or true)
and updated to 0 once GR = 1 and stays 0 thereafter. Finally, we update a loop counter
as long as there was no positive instance observed with count = count+continue. The
expected number of samples until the first positive instance is the long-term behaviour
of count, i.e. limn→∞ E[countn].

5.3 Sensitivity Analysis in BNs

As BNs rely on network parameters, a challenging task is to understand to what extent
does a small change in a network parameter affect the outcome of particular BN query.
This task is referred to as sensitivity analysis in BNs. More precisely, we would like to
compute P (X|e) and E[X|e] for a random variable X and evidence e as functions of
a BN parameter(s) θ. For doing so, we note that Prob-solvable loops may use symbolic
coefficients. Thus, replacing concrete BN probabilities with symbolic parameters and
solving BN queries as discussed in Sect. 5.1, allow us to automate sensitivity analysis
in BNs by computing MBIs of the respective Prob-solvable loops, using Algorithm 1.

Example 9. A sensitivity analysis in Fig. 2 could measure the effect of parameters of
weight loss in week 1 on the conditional expectation E[W2|D = 1]. That is, we com-
pute E[W2|D = 1] as a function of parameters of W1. In this case, we introduce sym-
bolic parameters a and b adjusting the parameters of weight loss in week 1 (W1 1) when
the drug was administered. Using Algorithm 1, we compute the MBIs E[W2k·D],E[D],
from which we have, for k = 1, E[W2|D = 1] = E[W2·D]

E[D] = 0.89a + 7.25, answering
the respective sensitivity analysis of Fig. 2.
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Table 1. BN analysis via Prob-solvable loop reasoning within Mora.
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5.4 Implementation and Experiments

We automated BN analysis via Prob-solvable loop reasoning by extending and using our
tool Mora [6]. To this end, we first manually encoded BNs as Prob-solvable loops using
Algorithm 2. We then extended Mora to support our extended programming model
of Prob-solvable loops and integrated Algorithm 1 within Mora3 to generate MBIs of
Prob-solvable loops, solving thus the BN problems of Sects. 5.1–5.3. As benchmarks,
we used 28 BN-related problems for 6 BNs taken from [17,29,34,36,41]. Table 1 sum-
marizes our experiments. For each example of Table 1, we list the BN queries we con-
sidered, that is probabilistic inference (Q1), number of BN samples (Q2) and sensitiv-
ity analysis (Q3) as introduced in Sect. 1 and discussed in Sects. 5.1–5.3. Column 2 of
Table 1 shows the time needed by Mora to compute moment-based invariants (MBIs)
solving the respective BN problems. The last column of Table 1 gives our derived solu-
tions for the considered BN queries. Our experiments were run on a MacBook Pro 2017
with 2.3 GHz Intel Core i5 and 8GB RAM.

6 Related Work

The classical approach to analyze probabilistic models is based on probabilistic model
checking [2]. However, approaches [15,27,33] cannot yet handle unbounded and real
variables that are required for example to encode Gaussian BNs, nor do they support
invariant generation, which is a key step in our work.

In the context of probabilistic programs (PPs), a formal semantics for PPs was first
introduced in [30], together with a deductive calculus to reason about expected running
time of PPs [31]. This approach was further refined and extended in [37], by intro-
ducing weakest pre-expectations based on the weakest precondition calculus of [16].
While [37] infers quantitative invariants only over expected values of program vari-
ables, our moment-based invariants yield quantitative invariants over arbitrary higher-
order moments, including expected values. Further, the setting of [37] considers PPs
where the stochastic inputs are restricted to discrete distributions with finite support. To
encode Gaussian BNs it is however necessary to handle also continuous distributions
with infinite support, as described in our work.

The first semi-automatic and complete method synthesizing the linear quantitative
invariants needed by [37] was introduced in [26]. To this end, PP loops are annotated
with linear template invariants and constraint solving is used to find concrete values
of the template parameters. Further extensions for template-based non-linear quanti-
tative invariant generation have been proposed in [11,18]. A related line of research
is given in [3], where martingales and user-provided hints are used to compute quan-
titative invariants of PPs. The recent work of [32] generalizes the use of martingales
in conjunction with templates for computing higher-order moments of program vari-
ables, with the overall goal of approximating runtimes of randomized programs. Unlike
these works, our approach extends Prob-solvable loops from [4] and provides a fully
automated approach for deriving non-linear invariants over higher-order moments.

Several techniques infer runtimes and expected values of PPs, see e.g. [9,10,19,
23,38]. To the best of our knowledge, however only [7] targets explicitly BNs on the
source code level, by using a weakest precondition calculus similar to [25,37]. The PPs

3 https://github.com/probing-lab/mora.

https://github.com/probing-lab/mora
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addressed in [7] are expressed in the Bayesian Network Language (BNL) fragment of
the probabilistic Guarded Command Language (pGCL) of [37]. The main restriction
of BNL is that loops prohibit undesired data flow across multiple loop iterations: it is
not possible to assign to a variable the value of the same variable or another variable
at the previous iteration. Furthermore, BNL does not natively allow to draw samples
from Gaussian distribution, allowing thus only discrete BNs to be encoded in BNL.
In contrast to [7], in our work we use Prob-solvable loops, as a subclass of PPs, to
allow polynomial updates over random variables and parametric distributions. Variable
updates of Prob-solvable loops can involve coefficients from Bernoulli, Gaussian, uni-
form and other distributions, whereas variable updates drawn from Gaussian and uni-
form distributions can depend on other program variables. Compared to [7], we thus
support reasoning about (conditional linear) Gaussian BNs and our PPs also allow data
flow across loop iterations which is necessary to encode dynamic BNs.

7 Conclusion

We extend the class of Prob-solvable loops with variable updates over Gaussian and uni-
form random variables depending on other program variables. We show that moment-
based invariants (MBIs) in Prob-solvable loops can always be computed as quantitative
invariants over higher-order moments of loop variables. We further encode BN variants
as Prob-solvable loops, allowing us to turn several BN problems into the problem of
computing MBIs of Prob-solvable loops. In particular, we automate the BN analysis
of exact inference, sensitivity analysis, filtering and computing the expected number
of rejecting samples in sampling-based procedures via Prob-solvable loop reasoning.
As future work, we plan to further extend the class of Prob-solvable loops with more
complex flow and arithmetic and address termination analysis of such loops.
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Abstract. We extend the λ-calculus with constructs suitable for rela-
tional and functional–logic programming: non-deterministic choice, fresh
variable introduction, and unification of expressions. In order to be able
to unify λ-expressions and still obtain a confluent theory, we depart from
related approaches, such as λProlog, in that we do not attempt to solve
higher-order unification. Instead, abstractions are decorated with a loca-
tion, which intuitively may be understood as its memory address, and we
impose a simple coherence invariant: abstractions in the same location
must be equal. This allows us to formulate a confluent small-step oper-
ational semantics which only performs first-order unification and does
not require strong evaluation (below lambdas). We study a simply typed
version of the system. Moreover, a denotational semantics for the calcu-
lus is proposed and reduction is shown to be sound with respect to the
denotational semantics.

Keywords: Lambda calculus · Semantics · Relational programming ·
Functional programming · Logic programming · Confluence

1 Introduction

Declarative programming is defined by the ideal that programs should resemble
abstract specifications rather than concrete implementations. One of the most
significant declarative paradigms is functional programming, represented by lan-
guages such as Haskell. Some of its salient features are the presence of first-class
functions and inductive datatypes manipulated through pattern matching. The
fact that the underlying model of computation—the λ-calculus—is confluent
allows one to reason equationally about the behavior of functional programs.

Another declarative paradigm is logic programming, represented by languages
such as Prolog. Some of its salient features are the ability to define relations
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rather than functions, and the presence of existentially quantified symbolic vari-
ables that become instantiated upon querying. This sometimes allows to use
n-ary relations with various patterns of instantiation, e.g. add(3, 2, X) com-
putes X := 3 + 2 whereas add(X, 2, 5) computes X := 5 - 2. The under-
lying model of computation is based on unification and refutation search with
backtracking.

The idea to marry functional and logic programming has been around for a
long time, and there have been many attempts to combine their features grace-
fully. For example, λProlog (Miller and Nadathur [20,22]) takes Prolog as a
starting point, generalizing first-order terms to λ-terms and the mechanism of
first-order unification to that of higher-order unification. Another example is
Curry (Hanus et al. [10,11]) in which programs are defined by equations, quite
like in functional languages, but evaluation is non-deterministic and evaluation
is based on narrowing, i.e. variables become instantiated in such a way as to
fulfill the constraints imposed by equations.

One of the interests of combining functional and logic programming is the
fact that the increased expressivity aids declarative programming. For instance,
if one writes a parser as a function parser : String −→ AST, it should be
possible, under the right conditions, to invert this function to obtain a pretty-
printer pprint : AST −→ String:

pprint ast = ν source . ((ast
•
= parse source) ; source)

In this hypothetical functional–logic language, intuitively speaking, the expres-
sion (νx. t) creates a fresh symbolic variable x and proceeds to evaluate t; the
expression (t •= s) unifies t with s; and the expression (t; s) returns the result of
evaluating s whenever the evaluation of t succeeds.

Given that unification is a generalization of pattern matching, a functional
language with explicit unification should in some sense generalize λ-calculi with
patterns, such as the Pure Pattern Calculus [14]. For example, by relying on uni-
fication one may build dynamic or functional patterns, i.e. patterns that include
operations other than constructors. A typical instance is the following function
last : [a] −→ a, which returns the last element of a non-empty cons-list:

last (xs ++ [x]) = x

Note that ++ is not a constructor. This definition may be desugared similarly as
for the pprint example above:

last lst = ν xs . ν x. (lst
•
= (xs ++ [x])); x

Still another interest comes from the point of view of the proposition-as-types
correspondence. Terms of a λ-calculus with types can be understood as encoding
proofs, so for instance the identity function (λx : A. x) may be understood as
a proof of the implication A → A. From this point of view, a functional–logic
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program may be understood as a tactic, as can be found in proof assistants such
as Isabelle or Coq (see e.g. [29]). A term of type A should then be understood as a
non-deterministic procedure which attempts to find a proof of A and it may leave
holes in the proof or even fail. For instance if P is a property on natural numbers,
p is a proof of P (0) and q is a proof of P (1), then λn. ((n •= 0); p) ⊕ ((n •= 1); q)
is a tactic that given a natural number n produces a proof of P (n) whenever
n ∈ {0, 1}, and otherwise it fails. Here (t ⊕ s) denotes the non-deterministic
alternative between t and s.

The goal of this paper is to provide a foundation for functional–logic
programming by extending the λ-calculus with relational constructs.
Recall that the syntactic elements of the λ-calculus are λ-terms (t, s, . . .), which
inductively may be variables (x, y, . . .), abstractions (λx. t), and applications (t s).
Relational programming may be understood as the purest form of logic pro-
gramming, chiefly represented by the family of miniKanren languages (Byrd
et al. [5,8]). The core syntactic elements of miniKanren, following for instance
Rozplokhas et al. [25] are goals (G,G′, . . .) which are inductively given by: rela-
tion symbol invocations, of the form R(T1, . . . , Tn), where R is a relation symbol
and T1, . . . , Tn are terms of a first-order language, unification of first-order terms
(T1

•= T2), conjunction of goals (G;G′), disjunction of goals (G ⊕ G′), and fresh
variable introduction (νx.G).

Our starting point is a “chimeric creature”—a functional–logic language
resulting from cross breeding the λ-calculus and miniKanren, given by the fol-
lowing abstract syntax:

t, s ::= x variable | c constructor
| λx. t abstraction | t s application
| νx. t fresh variable introduction | t ⊕ s non-deterministic choice
| t; s guarded expression | t

•= s unification

Its informal semantics has been described above. Variables (x, y, . . .) may be
instantiated by unification, while constructors (c,d, . . .) are constants. For exam-
ple, if coin def= (true ⊕ false) is a non-deterministic boolean with two possible
values and not

def= λx. ((x •= true); false) ⊕ ((x •= false); true) is the usual
boolean negation, the following non-deterministic computation:

(λx. λy. (x •= not y);pair x y) coin coin

should have two results, namely pair true false and pair false true.

Structure of This Paper. In Sect. 2, we discuss some technical difficulties
that arise as one intends to provide a formal operational semantics for the infor-
mal functional–logic calculus sketched above. In Sect. 3, we refine this rough
proposal into a calculus we call the λU-calculus, with a formal small-step opera-
tional semantics (Definition 3.1). To do so, we distinguish terms, which represent
a single choice, from programs, which represent a non-deterministic alternative
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between zero or more terms. Moreover, we adapt the standard first-order unifi-
cation algorithm to our setting by imposing a coherence invariant on programs.
In Sect. 4, we study the operational properties of the λU-calculus: we provide an
inductive characterization of the set of normal forms (Proposition 4.1), and we
prove that it is confluent (Theorem 4.4) (up to a notion of structural equiva-
lence). In Sect. 5, we propose a straightforward system of simple types and we
show that it enjoys subject reduction (Proposition 5.2). In Sect. 6, we define a
(naive) denotational semantics, and we show that the operational semantics is
sound (although it is not complete) with respect to this denotational seman-
tics (Theorem 6.2). In Sect. 7, we conclude and we lay out avenues of further
research.

Note. Most proofs have been ommited from this paper. For details, see the
extended version1.

2 Technical Challenges

This section is devoted to discussing technical stumbling blocks that we encoun-
tered as we attempted to define an operational semantics for the functional–
logic calculus incorporating all the constructs mentioned in the introduction.
These technical issues motivate the design decisions behind the actual λU-calculus
defined in Sect. 3. The discussion in this section is thus informal. Examples are
carried out with their hypothetical or intended semantics.

Locality of Symbolic Variables. The following program introduces a fresh
variable x and then there are two alternatives: either x unifies with c and the
result is x, or x unifies with d and the result is x. The expected reduction seman-
tics is the following. The constant ok is the result obtained after a successful
unification:

νx.
(
((x •= c);x) ⊕ ((x •= d);x)

)
→ ((x •= c);x) ⊕ ((x •= d);x) with x fresh

→ (ok; c) ⊕ ((x •= d);x) (�)
→ (ok; c) ⊕ (ok;d)
� c ⊕ d

Note that in the step marked with (�), the variable x becomes instantiated to
c, but only to the left of the choice operator (⊕). This suggests that programs
should consist of different threads fenced by choice operators. Symbolic variables
should be local to each thread.

Need of Commutative Conversions. Redexes may be blocked by the choice
operator—for example in the application ((t ⊕ λx. s)u), there is a potential β-
redex ((λx. s)u) which is blocked. This suggests that commutative conversions
that distribute the choice operator should be incorporated, allowing for instance
a reduction step (t ⊕ λx. s)u → t u ⊕ (λx. s)u. In our proposal, we force in the

1 https://arxiv.org/abs/2009.10929.

https://arxiv.org/abs/2009.10929
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syntax that a program is always written, canonically, in the form t1 ⊕ . . . ⊕ tn,
where each ti is a deterministic program (i.e. choice operators may only appear
inside lambdas). This avoids the need to introduce commutative rules.

Confluence Only Holds Up to Associativity and Commutativity. There
are two ways to distribute the choice operators in the following example:

t1(s1 ⊕ s2) ⊕ t2(s1 ⊕ s2)

��

(t1 ⊕ t2) (s1 ⊕ s2)�� �� (t1 ⊕ t2) s1 ⊕ (t1 ⊕ t2) s2

��
(t1 s1 ⊕ t1 s2) ⊕ (t2 s1 ⊕ t2 s2) ≡ (t1 s1 ⊕ t2 s1) ⊕ (t1 s2 ⊕ t2 s2)

The resulting programs cannot be equated unless one works up to an equivalence
relation that takes into account the associativity and commutativity of the choice
operator. As we mentioned, the λU-calculus works with programs in canonical
form t1 ⊕ . . .⊕ tn, so there is no need to work modulo associativity. However, we
do need commutativity. As a matter of fact, we shall define a notion of structural
equivalence (≡) between programs, allowing the arbitrary reordering of threads.
This relation will be shown to be well-behaved, namely, a strong bisimulation
with respect to the reduction relation, cf. Lemma 3.3.

Non-deterministic Choice is an Effect. Consider the program (λx. x x)(c⊕
d), which chooses between c and d and then it produces two copies of the chosen
value. Its expected reduction semantics is:

(λx. x x)(c ⊕ d) → (λx. x x)c ⊕ (λx. x x)d � c c ⊕ dd

This means that the first step in the following reduction, which produces two
copies of (c ⊕ d) cannot be allowed, as it would break confluence:

(λx. x x)(c ⊕ d) �→ (c ⊕ d) (c ⊕ d) � c c ⊕ cd ⊕ dc ⊕ dd

The deeper reason is that non-deterministic choice is a side-effect rather than a
value. Our design decision, consistent with this remark, is to follow a call-by-
value discipline. Another consequence of this remark is that the choice operator
should not commute with abstraction, given that λx. (t⊕ s) and (λx. t)⊕ (λx. s)
are not observationally equivalent. In particular, λx. (t ⊕ s) is a value, which
may be copied, while (λx. t) ⊕ (λx. s) is not a value. On the other hand, if W
is any weak context, i.e. a term with a hole which does not lie below a binder,
and we write W〈t〉 for the result of plugging a term t into the hole of W, then
W〈t ⊕ s〉 = W〈t〉 ⊕ W〈s〉 should hold.

Evaluation Should Be Weak. Consider the term F
def= λy. ((y •= x);x). Intu-

itively, it unifies its argument with a (global) symbolic variable x and then
returns x. This poses two problems. First, when x becomes instantiated to y,
it may be outside the scope of the abstraction binding y, for instance, the step
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F x = (λy. ((y •= x);x))x → (λy. (ok; y)) y produces a meaningless free occur-
rence of y. Second, consider the following example in which two copies of F are
used with different arguments. If we do not allow evaluation under lambdas,
this example fails due to a unification clash, i.e. it produces no outputs:

(λf. (f c) (f d))F → (F c) (F d)
→ ((c •= x);x) ((d •= x);x)
→ (ok; c) ((d •= c); c) (�)
→ fail

Note that in the step marked with (�), the symbolic variable x has become
instantiated to c, leaving us with the unification goal d •= c which fails. On the
other hand, if we were to allow reduction under lambdas, given that there are no
other occurrences of x anywhere in the term, in one step F becomes λy. (ok; y),
which then behaves as the identity:

(λf. (f c) (f d))F �→ (λf. (f c) (f d)) (λy.ok; y)
→ ((λy.ok; y) c) ((λy.ok; y)d)
� cd

Thus allowing reduction below abstractions in this example would break conflu-
ence. This suggests that evaluation should be weak, i.e. it should not proceed
below binders.

Avoiding Higher-order Unification. The calculus proposed in this paper
rests on the design choice to avoid attempting to solve higher-order unification
problems. Higher-order unification problems can be expressed in the syntax: for
example in (fc •= c) the variable f represents an unknown value which should
fulfill the given constraint. From our point of view, however, this program is
stuck and its evaluation cannot proceed—it is a normal form. However, note
that we do want to allow pattern matching against functions; for example the
following should succeed, instantiating f to the identity:

(c f
•= c(λx. x)); (f •= f) → (λx. x) •= (λx. x) → ok

The decision to sidestep higher-order unification is a debatable one, as it severely
restricts the expressivity of the language. But there are various reasons to explore
alternatives. First, higher-order unification is undecidable [12], and even second
order unification is known to be undecidable [16]. Huet’s semi-decision proce-
dure [13] does find a solution should it exist, but even then higher-order unifica-
tion problems do not necessarily possess most general unifiers [9], which turns
confluence hopeless2. Second, there are decidable restrictions of higher-order uni-
fication which do have most general unifiers, such as higher-order pattern unifi-
cation [19] used in λProlog, and nominal unification [30] used in αProlog. But
2 Key in our proof of confluence is the fact that if σ and σ′ are most general unifiers for

unification problems G and G′ respectively, then the most general unifier for (G∪G′)
is an instance of both σ and σ′. See Example 4.5.
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these mechanisms require strong evaluation, i.e. evaluation below abstractions,
departing from the traditional execution model of eager applicative languages
such as in the Lisp and ML families, in which closures are opaque values whose
bodies cannot be examined. Moreover, they are formulated in a necessarily typed
setting.

The calculus studied in this paper relies on a standard first-order unification
algorithm, with the only exception that abstractions are deemed to be equal
if and only if they have the same “identity”. Intuitively speaking, this means
that they are stored in the same memory location, i.e. they are represented by
the same pointer. This is compatible with the usual implementation techniques
of eager applicative languages, so it should allow to use standard compilation
techniques for λ-abstractions. Also note that the operational semantics does not
require to work with typed terms—in fact the system presented in Sect. 3 is
untyped, even though we study a typed system in Sect. 5.

3 The λU-Calculus—Operational Semantics

In this section we describe the operational semantics of our proposed calculus,
including its syntax, reduction rules (Definition 3.1), an invariant (coherence)
which is preserved by reduction (Lemma 3.2), and a notion of structural equiv-
alence which is a strong bisimulation with respect to reduction (Lemma 3.3).

Syntax of Terms and Programs. Suppose given denumerably infinite sets
of variables Var = {x, y, z, . . .}, constructors Con = {c,d, e, . . .}, and locations
Loc = {�, �′, �′′, . . .}. We assume that there is a distinguished constructor ok.
The sets of terms t, s, . . . and programs P,Q, . . . are defined mutually inductively
as follows:

t ::= x variable | c constructor
| λx. P abstraction | λ�x. P allocated abstraction
| t t application | νx. t fresh variable introduction
| t; t guarded expression | t

•= t unification

P ::= fail empty program
| t ⊕ P non-deterministic choice

The set of values Val = {v, w, . . .} is a subset of the set of terms, given by the
grammar v ::= x | λ�x. P | c v1 . . . vn. Values of the form c v1 . . . vn are called
structures.

Intuitively, an (unallocated) abstraction λx. P represents the static code to
create a closure, while λ�x. P represents the closure created in runtime, stored
in the memory cell �. When the abstraction is evaluated, it becomes decorated
with a location (allocated). We will have a rewriting rule like λx. P → λ�x. P
where � is fresh.

Notational Conventions. We write C,C′, . . . for arbitrary contexts, i.e. terms
with a single free occurrence of a hole �. We write W,W′, . . . for weak contexts,
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which do not enter below abstractions nor fresh variable declarations, i.e. W ::=
� | W t | tW | W; t | t;W | W •= t | t

•= W. We write ⊕n
i=1ti or also t1 ⊕ t2 . . .⊕ tn

to stand for the program t1 ⊕ (t2 ⊕ . . . (tn ⊕ fail)). In particular, if t is a term,
sometimes we write t for the singleton program t⊕fail. The set of free variables
fv(t) (resp. fv(P )) of a term (resp. program) is defined as expected, noting that
fresh variable declarations νx. t and both kinds of abstractions λx. P and λ�x. P
bind the free occurrences of x in the body. Expressions are considered up to
α-equivalence, i.e. renaming of all bound variables. Given a context or weak
context C and a term t, we write C〈t〉 for the (capturing) substitution of � by
t in C. The set of locations locs(t) (resp. fv(P )) of a term (resp. program) is
defined as the set of all locations � decorating any abstraction on t. We write
t{� := �′} for the term that results from replacing all occurrences of the location
� in t by �′. The program being evaluated is called the toplevel program. The
toplevel program is always of the form t1 ⊕ t2 . . .⊕ tn, and each of the ti is called
a thread.

Operations with Programs. We define the operations P ⊕ Q and W〈P 〉 by
induction on the structure of P as follows; note that the notation “⊕” is over-
loaded both for consing a term onto a program and for concatenating programs:

fail ⊕ Q
def= Q

(t ⊕ P ) ⊕ Q
def= t ⊕ (P ⊕ Q)

W〈fail〉 def= fail

W〈t ⊕ P 〉 def= W〈t〉 ⊕ W〈P 〉

Substitutions. A substitution is a function σ : Var → Val with finite support,
i.e. such that the set supp(σ) def= {x | σ(x) �= x} is finite. We write {x1 	→
v1, . . . , xn 	→ vn} for the substitution σ such that supp(σ) = {x1, . . . , xn} and
σ(xi) = vi for all i ∈ 1..n. A renaming is a substitution mapping each variable
to a variable, i.e. a substitution of the form {x1 	→ y1, . . . , xn 	→ yn}.

If σ : Var → Val is a substitution and t is a term, tσ denotes the capture-
avoiding substitution of each occurrence of a free variable x in t by σ(x). Capture-
avoiding substitution of a single variable x by a value v in a term t is written
t{x := v} and defined by t{x�→v}. Subsitutions ρ, σ may be composed as follows:
(ρ · σ)(x) def= ρ(x)σ. Substitutions can also be applied to weak contexts, taking
�σ def= �. A substitution σ is idempotent if σ · σ = σ. A substitution σ is more
general than a substitution ρ, written σ � ρ if there is a substitution τ such that
ρ = σ · τ .

Unification. We describe how to adapt the standard first-order unification algo-
rithm to our setting, in order to deal with unification of λ-abstractions. As men-
tioned before, our aim is to solve only first-order unification problems. This
means that the unification algorithm should only deal with equations involv-
ing terms which are already values. Note that unallocated abstractions (λx. P )
are not considered values; abstractions are only values when they are allocated
(λ�x. P ). Allocated abstractions are to be considered equal if and only if they
are decorated with the same location. Note that terms of the form x t1 . . . tn
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are not considered values if n > 0, as this would pose a higher-order unification
problem, possibly requiring to instantiate x as a function of its arguments.

We expand briefly on why a naive approach to first-order unification would
not work. Suppose that we did not have locations and we declared that two
abstractions λx. P and λy.Q are equal whenever their bodies are equal, up to
α-renaming (i.e. P{x := y} = Q). The problem is that this notion of equality
is not preserved by substitution, for example, the unification problem given by
the equation λx. y

•= λx. z would fail, as y �= z. However, the variable y may
become instantiated into z, and the equation would become λx. z

•= λx. z, which
succeeds. This corresponds to the following critical pair in the calculus, which
cannot be closed:

fail ← (λx. y
•= λx. z); (y •= z) → (λx. z

•= λx. z);ok → ok;ok

This is where the notion of allocated abstraction plays an important role. We will
work with the invariant that if λ�x. P and λ�′

y.Q are two allocated abstractions
in the same location (� = �′) then their bodies will be equal, up to α-renaming.
This ensures that different allocated abstractions are still different after substi-
tution, as they must be decorated with different locations.

Unification Goals and Unifiers. A goal is a term of the form v
•= w. A

unification problem is a finite set of goals G = {v1 •= w1, . . . , vn
•= wn}. If σ

is a substitution we write Gσ for {v1σ •= w1σ, . . . , vn
σ •= wn

σ}. A unifier for
G = {v1 •= w1, . . . , vn

•= wn} is a substitution σ such that vi
σ = wi

σ for all
1 ≤ i ≤ n. A unifier σ for G is most general if for any other unifier ρ one has
σ � ρ.

Coherence Invariant. As mentioned before, we impose an invariant on pro-
grams forcing that allocated abstractions decorated with the same location must
be syntactically equal. Moreover, we require that allocated abstractions do not
refer to variables bound outside of their scope, i.e. that they are in fact closures.
Note that the source program trivially satisfies this invariant, as it is expected
that allocated abstractions are not written by the user but generated at runtime.

More precisely, a set X of terms is coherent if the two following conditions
hold. (1) Consider any allocated abstraction under a context C, i.e. let t ∈ X
such that t = C〈λ�x. P 〉. Then the context C does not bind any of the free
variables of λ�x. P . (2) Consider any two allocated abstractions in t and s with
the same location, i.e. let t, s ∈ X be such that t = C〈λ�x. P 〉 and s = C′〈λ�y.Q〉,
Then P{x := y} = Q.

We extend the notion of coherence to other syntactic categories as follows.
A term t is coherent if {t} is coherent. A program P = t1 ⊕ . . . ⊕ tn is coherent
if each thread ti is coherent. A unification problem G is coherent if it is coherent
seen as a set. Note that a program may be coherent even if different abstractions
in different threads have the same location. For example, (λ�x. x x

•= λ�y. c) ⊕
(λ�′

y. y) is not coherent, whereas (λ�x. x x
•= λ�y. y y) ⊕ (λ�y. c) is coherent.

Unification Algorithm. The standard Martelli–Montanari [17] unification
algorithm can be adapted to our setting. In particular, there is a computable
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function mgu(−) such that if G is a coherent unification problem then either
mgu(G) = σ, i.e. mgu(G) returns a substitution σ which is an idempotent most
general unifier for G, or mgu(G) = ⊥, i.e.mgu(G) fails and G has no unifier. More-
over, it can be shown that if the algorithm succeeds, the set Gσ ∪{σ(x) | x ∈ Var}
is coherent. The algorithm, formal statement and proofs are detailed in the
appendix .

Operational Semantics. The λU-calculus is the rewriting system whose
objects are programs, and whose reduction relation is given by the union of
the following six rules:

Definition 3.1 (Reduction rules).

P1 ⊕ W〈λx. P 〉 ⊕ P2
alloc−−−→ P1 ⊕ W〈λ�x. P 〉 ⊕ P2 if � �∈ locs(W〈λx. P 〉)

P1 ⊕ W〈(λ�x. P ) v〉 ⊕ P2
beta−−→ P1 ⊕ W〈P{x := v}〉 ⊕ P2

P1 ⊕ W〈v; t〉 ⊕ P2
guard−−−→ P1 ⊕ W〈t〉 ⊕ P2

P1 ⊕ W〈νx. t〉 ⊕ P2
fresh−−−→ P1 ⊕ W〈t{x := y}〉 ⊕ P2 if y �∈ fv(W)

P1 ⊕ W〈v •
= w〉 ⊕ P2

unif−−→ P1 ⊕ W〈ok〉σ ⊕ P2 if mgu({v •
= w}) = σ

P1 ⊕ W〈v •
= w〉 ⊕ P2

fail−−→ P1 ⊕ P2 if mgu({v •
= w}) fails

Note that all rules operate on a single thread and they are not closed under any
kind of evaluation contexts. The alloc rule allocates a closure, i.e. whenever a
λ-abstraction is found below an evaluation context, it may be assigned a fresh
location �. The beta rule applies a function to a value. The guard rule proceeds
with the evaluation of the right part of a guarded expression when the left part
is already a value. The fresh rule introduces a fresh symbolic variable. The
unif and fail rules solve a unification problem, corresponding to the success
and failure cases respectively. If there is a unifier, the substitution is applied to
the affected thread. For example:

(λx. x ⊕ (νy. ((x
•
= c y); y))) (cd)

alloc−−−→ (λ�x. x ⊕ (νy. ((x
•
= c y); y))) (cd)

beta−−→ cd ⊕ νy. ((cd
•
= c y); y)

fresh−−−→ cd ⊕ ((cd
•
= c z); z)

unif−−→ cd ⊕ (ok;d)
guard−−−→ cd ⊕ d

Structural Equivalence. As already remarked in Sect. 2, we will not be able to
prove that confluence holds strictly speaking, but only up to reordering of threads
in the toplevel program. Moreover the alloc and fresh rules introduce fresh
names, and, as usual the most general unifier is unique only up to renaming.
These conditions are expressed formally by means of the following relation of
structural equivalence.

Formally, structural equivalence between programs is written P ≡ Q and
defined as the reflexive, symmetric, and transitive closure of the three following
axioms:
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1. ≡-swap: P ⊕ t ⊕ s ⊕ Q ≡ P ⊕ s ⊕ t ⊕ Q.
2. ≡-var: If y �∈ fv(t) then P ⊕ t ⊕ Q ≡ P ⊕ t{x := y} ⊕ Q.
3. ≡-loc: If �′ �∈ locs(t), then P ⊕ t ⊕ Q ≡ P ⊕ t{� := �′} ⊕ Q.

In short, ≡-swap means that threads may be reordered arbitrarily, ≡-var means
that symbolic variables are local to each thread, and ≡-loc means that locations
are local to each thread.

The following lemma establishes that the coherence invariant is closed by
reduction and structural equivalence, which means that the λU-calculus is well-
defined if restricted to coherent programs. In the rest of this paper, we always
assume that all programs enjoy the coherence invariant.

Lemma 3.2. Let P be a coherent program. If P ≡ Q or P → Q, then Q is also
coherent.

The following lemma establishes that reduction is well-defined modulo struc-
tural equivalence (i.e. it lifts to ≡-equivalence classes):

Lemma 3.3. Structural equivalence is a strong bisimulation with respect to →.
Precisely, let P ≡ P ′ x−→ Q with x ∈ {alloc, beta, guard, fresh, unif, fail}.
Then there exists a program Q′ such that P

x−→ Q′ ≡ Q.

Example 3.4 (Type inference algorithm). As an illustrative example, the follow-
ing translation W[−] converts an untyped λ-term t into a λU-term that calculates
the principal type of t according to the usual Hindley–Milner [21] type inference
algorithm, or fails if it has no type. Note that an arrow type (A → B) is encoded
as (f AB):

W[x] def= ax W[λx. t] def= νax. f ax W[t] W[t s] def= νa. ((W[t] •= f W[s] a); a)

For instance, W[λx. λy. y x] = νa. f a (νb. f b (νc. (b •= f a c); c)) � f a (f (f a c) c).

4 Operational Properties

In this section we study some properties of the operational semantics. First, we
characterize the set of normal forms of the λU-calculus syntactically, by means
of an inductive definition (Proposition 4.1). Then we turn to the main result of
this section, proving that it enjoys confluence up to structural equivalence (The-
orem 4.4).

Characterization of Normal Forms. The set of normal terms t�, s�, . . .
and stuck terms S, S′, . . . are defined mutually inductively as follows. A normal
term is either a value or a stuck term, i.e. t� ::= v | S. A term is stuck if the
judgment t� is derivable with the following rules:

n > 0
stuck-var

x t�
1 . . . t�

n	
t�
i 	 for some i ∈ {1, 2, . . . , n}

stuck-cons

c t�
1 . . . t�

n	
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t�
1 	 n ≥ 0

stuck-guard

(t�
1; t

�
2) s�

1 . . . s�
n	

t�
i 	 for some i ∈ {1, 2} n ≥ 0

stuck-unif

(t�
1

•
= t�

2) s�
1 . . . s�

n	

t� 	 n ≥ 0
stuck-lam

(λ�x. P ) t� s�
1 . . . s�

n	
The set of normal programs P �, Q�, . . . is given by the following grammar:

P � ::= fail | t� ⊕ P �. For example, the program (λ�x. x
•= x) ⊕ ((y c •= d); e) ⊕

z (z c) is normal, being the non-deterministic alternative of a value and two stuck
terms. Normal programs capture the notion of normal form:

Proposition 4.1. The set of normal programs is exactly the set of →-normal
forms.

Confluence. In order to prove that the λU-calculus has the Church–Rosser prop-
erty, we adapt the method due to Tait and Martin-Löf [4, Sect. 3.2] by defining
a simultaneous reduction relation ⇒, and showing that it verifies the diamond
property (i.e. ⇐⇒⊆⇒⇐) and the inclusions →⊆⇒⊆�, where � denotes
the reflexive–transitive closure of →. Actually, these properties only hold up to
structural equivalence, so our confluence result, rather than the usual inclusion
��⊆��, expresses the weakened inclusion ��⊆�≡�.

To define the relation of simultaneous reduction, we use the following nota-
tion, to lift the binary operations of unification (t •= s), guarded expression (t; s),
and application (t s) from the sort of terms to the sort of programs. Let 
 denote
a binary term constructor (e.g. unification, guarded expression, or application).
Then we write (

⊕n
i=1 ti) 
 (

⊕m
j=1 sj)

def=
⊕n

i=1

⊕m
j=1(ti 
 sj).

First, we define a judgment t
G=⇒ P of simultaneous reduction, relating a

term and a program, parameterized by a set G of unification goals representing
pending constraints:

Var

x
∅

=⇒ x
Cons

c
∅

=⇒ c
Fresh1

νx. t
∅

=⇒ νx. t

t
G
=⇒ P x fresh

Fresh2
νx. t

G
=⇒ P

AbsC1
λx. P

∅

=⇒ λx. P

� fresh
AbsC2

λx. P
∅

=⇒ λ�x. P

AbsA

λ�x. P
∅

=⇒ λ�x. P

t
G
=⇒ P s

H
=⇒ Q

App1
t s

G∪H
==⇒ P Q

App2
(λ�x. P ) v

∅

=⇒ P{x := v}
t

G
=⇒ P s

H
=⇒ Q

Guard1
t; s

G∪H
==⇒ P ; Q

t
G
=⇒ P

Guard2
v; t

G
=⇒ P

t
G
=⇒ P s

H
=⇒ Q

Unif1
t

•
= s

G∪H
==⇒ P

•
= Q

Unif2

v
•
= w

{v•
=w}

====⇒ ok
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As usual, most term constructors have two rules, the rule decorated with “1” is
a congruence rule which chooses not to perform any evaluation on the root of
the term, while the rule decorated with “2” requires that there is a redex at the
root of the term, and contracts it. Note that rule Unif2 does not perform the
unification of v and w immediately; it merely has the effect of propagating the
unification constraint.

Using the relation defined above, we are now able to define the relation of
simultaneous reduction between programs:

Fail

fail ⇒ fail

t
G
=⇒ P Q ⇒ Q′ P ′ =

{
P σ if σ = mgu(G)

fail if mgu(G) fails
Alt

t ⊕ Q ⇒ P ′ ⊕ Q′

The following lemma summarizes some of the key properties of simultaneous
reduction. Most are straightforward proofs by induction, except for item 3.:

Lemma 4.2 (Properties of simultaneous reduction).

1. Reflexivity. t
∅=⇒ t and P ⇒ P .

2. Context closure. If t
G=⇒ P then W〈t〉 G=⇒ W〈P 〉.

3. Strong bisimulation. Structural equivalence is a strong bisimulation with
respect to ⇒, i.e. if P ≡ P ′ ⇒ Q then there is a program Q′ such that
P ⇒ Q′ ≡ Q.

4. Substitution. If t
G=⇒ P then tσ

Gσ

==⇒ P σ.

The core argument is the following adaptation of Tait–Martin-Löf’s tech-
nique, from which confluence comes out as an easy corollary. See in the appendix
for details.
Proposition 4.3 (Tait–Martin-Löf ’s technique, up to ≡).
1. → ⊆ ⇒≡
2. ⇒⊆ �≡
3. ⇒ has the diamond property, up to ≡, that is:

If P1 ⇒ P2 and P1 ⇒ P3 then P2 ⇒≡ P4 and P3 ⇒≡ P4 for some P4.

Theorem 4.4 (Confluence). The reduction relation → is confluent, up to ≡.
More precisely, if P1 � P2 and P1 � P3 then there is a program P4 such that
P2 �≡ P4 and P3 �≡ P4.

Example 4.5. Suppose that σ = mgu(v1
•= v2) and τ = mgu(w1

•= w2). Con-
sider:

(v1τ •= v2
τ )ok tτ ← (v1

•= v2) (w1
•= w2) t → ok (w1σ •= w2

σ) tσ

Then both σ′ = mgu(v1τ •= v2τ ) and τ ′ = mgu(w1σ •= w2σ) must exist, and the
peak may be closed as follows:

(v1τ •= v2
τ )ok tτ → okok (tτ )σ′ ≡ okok (tσ)τ ′ ← ok (w1σ •= w2

σ) tσ

the equivalence relies on the fact that τ ′ ◦ σ and σ′ ◦ τ are both most general
unifiers of {v1 •= v2, w1

•= w2}, hence (tτ )σ′ ≡ (tσ)τ ′
, up to renaming.
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5 Simple Types for λU

In this section we discuss a simply typed system for the λU-calculus. The system
does not present any essential difficulty, but it is a necessary prerequisite to be
able to define the denotational semantics of Sect. 6. The main result in this
section is subject reduction (Proposition 5.2).

Note that, unlike in the simply typed λ-calculus, reduction may create free
variables, due to fresh variable introduction. For instance, in the reduction step
c(νx. x) → cx, a new variable x appears free on the right-hand side. There-
fore the subject reduction lemma has to extend the typing context in order to
account for freshly created variables. This may be understood only as a matter of
notation, e.g. in a different presentation of the λU-calculus the step above could
be written as c(νx. x) → νx. (cx), using a scope extrusion rule reminiscent of
the rule to create new channels in process calculi (e.g. π-calculus), avoiding the
creation of free variables.

Types and Typing Contexts. Suppose given a denumerable set of base types
α, β, γ, . . .. The sets of types Type = {A,B, . . .} and typing contexts Γ,Δ, . . . are
given by:

A,B, . . . ::= α | A → B Γ ::= ∅ | Γ, x : A

we assume that no variable occurs twice in a typing context. Typing contexts
are to be regarded as finite sets of assumptions of the form (x : A), i.e. we work
implicitly modulo contraction and exchange. We assume that each constructor
c has an associated type Tc.

Typing Rules. Judgments are of the form. “Γ � X : A” where X may be a
term or a program, meaning that X has type A under Γ . The typing rules are
the following:

(x : A) ∈ Γ
t-var

Γ � x : A

t-cons

Γ � c : Tc

Γ, x : A � P : B
t-lam(l)

Γ � λ(�)x. P : A → B

Γ � t : A Γ � s : A
t-unif

Γ � t
•= s : Tok

Γ � t : Tok Γ � s : A
t-guard

Γ � t; s : A

Γ, x : A � t : B
t-fresh

Γ � νx. t : B
t-fail

Γ � fail : A

Γ � t : A Γ � P : A
t-alt

Γ � t ⊕ P : A

Note that all abstractions are typed in the same way, regardless of whether
they are allocated or not. A unification has the same type as the constructor
ok, as does t in the guarded expression (t; s). A freshly introduced variable of
type A represents, from the logical point of view, an unjustified assumption of
A. The empty program fail can also be given any type. All the threads in a
program must have the same type. The following properties of the type system
are routine:
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Lemma 5.1. Let X stand for either a term or a program. Then:

1. Weakening. If Γ � X : A then Γ, x : B � X : A.
2. Strengthening. If Γ, x : A � X : B and x �∈ fv(X), then Γ � X : B.
3. Substitution. If Γ, x : A � X : B and Γ � s : A then Γ � X{x := s} : B.
4. Contextual substitution. Γ � W〈t〉 : A holds if and only if there is a type

B such that Γ,� : B � W : A and Γ � t : B hold.
5. Program composition/decomposition. Γ � P ⊕ Q : A holds if and only

if Γ � P : A and Γ � Q : A hold.

Proposition 5.2 (Subject reduction). Let Γ � P : A and P → Q. Then
Γ ′ � Q : A, where Γ ′ = Γ if the step is derived using any reduction rule other
than fresh, and Γ ′ = (Γ, x : B) if the step introduces a fresh variable (x : B).

Proof. By case analysis on the transition P → Q, using Lemma 5.1. The interest-
ing case is the unif case, which requires proving that the substitution σ returned
by mgu(G) preserves the types of the instantiated variables.

6 Denotational Semantics

In this section we propose a naive denotational semantics for the λU-calculus. The
semantics is naive in at least three senses: first, types are interpreted merely as
sets, rather than as richer structures (e.g. complete partial orders) or in a more
abstract (e.g. categorical) framework. Second, since types are interpreted as
sets, the multiplicities of results are not taken into account, so for example
[[x ⊕ x]] = [[x]] ∪ [[x]] = [[x]]. Third, and most importantly, the denotation of
abstractions (λx. P ) is conflated with the denotation of allocated abstractions
(λ�x. P ). This means that the operational semantics cannot be complete with
respect to the denotational one, given that for example λ�x. x and λ�′

x. x have
the same denotation but they are not observationally equivalent3. Nevertheless,
studying this simple denotational semantics already presents some technical chal-
lenges, and we regard it as a first necessary step towards formulating a better
behaved semantics4.

Roughly speaking, the idea is that a type A shall be interpreted as a set
[[A]], while a program P of type A shall be interpreted as a subset [[P ]] ⊆ [[A]].
For example, if [[Nat]] = N, then given constructors 1 : Nat, 2 : Nat with their
obvious interpretations, and if add : Nat → Nat → Nat denotes addition, we
expect that:

[[(λf : Nat → Nat. νy. ((y •= 1); add y (f y)))(λx. x ⊕ 2)]] = {1 + 1, 1 + 2} = {2, 3}

3 E.g. λ�x. x
•
= λ�x. x succeeds but λ�x. x

•
= λ�′

x. x fails.
4 We expect that a less naive semantics should be stateful, involving a memory, in

such a way that abstractions (λx. P ) allocate a memory cell and store a closure,
whereas allocated abstractions (λ�x. P ) denote a memory location in which a closure
is already stored.
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The soundness result that we shall prove states that if P � Q then [[P ]] ⊇ [[Q]].
Intuitively, the possible behaviors of Q are among the possible behaviors of P .

To formulate the denotational semantics, for ease of notation, we work with
an à la Church variant of the type system. That is, we suppose that the set of
variables is partitioned in such a way that each variable has an intrinsic type.
More precisely, for each type A there is a denumerably infinite set of variables
xA, yA, zA, . . . of that type. We also decorate each occurrence of fail with its
type, i.e. we write failA for the empty program of type A. Sometimes we omit
the type decoration if it is clear from the context. Under this assumption, it is
easy to show that the system enjoys a strong form of unique typing, i.e. that if
X is a typable term or program then there is a unique derivation Γ � X : A,
up to weakening of Γ with variables not in fv(X). This justifies that we may
write � X : A omitting the context.

Domain of Interpretation. We suppose given a non-empty set Sα for each
base type α. The interpretation of a type A is a set written [[A]] and defined
recursively as follows, where P(X) is the usual set-theoretic power set, and Y X

is the set of functions with domain X and codomain Y :

[[α]] def= Sα [[A → B]] def= P([[B]])[[A]]

Note that, for every type A, the set [[A]] is non-empty, given that we require
that Sα be non-empty. This decision is not arbitrary; rather it is necessary for
soundness to hold. For instance, operationally we have that xA; yB guard−−−→ yB, so
denotationally we would expect [[xA; yB ]] ⊇ [[yB ]]. This would not hold if [[A]] = ∅

and [[B]] �= ∅, as then [[xA; yB ]] = ∅ whereas [[yB]] would be a non-empty set.

Another technical constraint that we must impose is that the interpretation
of a value should always be a singleton. For example, operationally we have
that (λx : Nat. x + x) v � v + v, so denotationally, by soundness, we would
expect that [[(λx : Nat. x + x) v]] ⊇ [[v + v]]. If we had that [[v]] = {1, 2} is not
a singleton, then we would have that [[(λx. x + x) v]] = {1 + 1, 2 + 2} whereas
[[v + v]] = {1 + 1, 1 + 2, 2 + 1, 2 + 2}.

Following this principle, given that terms of the form c v1 . . . vn are values,
their denotation [[c v1 . . . vn]] must always be a singleton. This means that con-
structors must be interpreted as singletons, and constructors of function type
should always return singletons (which in turn should return singletons if they
are functions, and so on, recursively). Formally, any element a ∈ [[α]] is declared
to be α-unitary, and a function f ∈ [[A → B]] is (A → B)-unitary if for each
a ∈ [[A]] the set f(a) = {b} ⊆ [[B]] is a singleton and b is B-unitary. Sometimes
we say that an element a is unitary if the type is clear from the context. If f is
(A → B)-unitary, and a ∈ [[A]] sometimes, by abuse of notation, we may write
f(a) for the unique element b ∈ f(a).

Interpretation of Terms. For each constructor c, we suppose given a Tc-
unitary element c ∈ [[Tc]]. Moreover, we suppose that the interpretation of con-
structors is injective, i.e. that c(a1) . . . (an) = c(b1) . . . (bn) implies ai = bi for
all i = 1..n.
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An environment is a function ρ : Var →
⋃

A∈Type[[A]] such that ρ(xA) ∈ [[A]]
for each variable xA of each type A. If ρ is an environment and a ∈ [[A]], we write
ρ[xA 	→ a] for the environment that maps xA to a and agrees with ρ on every
other variable. We write Env for the set of all environments.

Let � t : A (resp. � P : A) be a typable term (resp. program) and let ρ be an
environment. If � X : A is a typable term or program, we define its denotation
under the environment ρ, written [[X]]ρ as a subset of [[A]] as follows:

[[xA]]ρ
def
= {ρ(xA)}

[[c]]ρ
def
= {c}

[[λxA. P ]]ρ
def
= {f} where f : [[A]] → P([[B]]) is given by f(a) = [[P ]]ρ[xA �→a]

[[λ�xA. P ]]ρ
def
= {f} where f : [[A]] → P([[B]]) is given by f(a) = [[P ]]ρ[xA �→a]

[[t s]]ρ
def
= {b | ∃f ∈ [[t]]ρ, ∃a ∈ [[s]]ρ, b ∈ f(a)}

[[t
•
= s]]ρ

def
= {ok | ∃a ∈ [[t]]ρ, ∃b ∈ [[s]]ρ, a = b}

[[t; s]]ρ
def
= {a | ∃b ∈ [[t]]ρ, a ∈ [[s]]ρ}

[[νxA. t]]ρ
def
= {b | ∃a ∈ [[A]], b ∈ [[t]]ρ[xA �→a]}

[[failA]]ρ
def
= ∅

[[t ⊕ P ]]ρ
def
= [[t]]ρ ∪ [[P ]]ρ

The denotation of a toplevel program is written [[P ]] and defined as the union
of its denotations under all possible environments, i.e. [[P ]] def=

⋃
ρ∈Env[[P ]]ρ.

Proposition 6.1 (Properties of the denotational semantics).

1. Irrelevance. If ρ and ρ′ agree on fv(X), then [[X]]ρ = [[X]]ρ′ . Here X stands
for either a program or a term.

2. Compositionality.
2.1 [[P ⊕ Q]]ρ = [[P ]]ρ ∪ [[Q]]ρ.
2.2 If W is a context whose hole is of type A, then [[W〈t〉]]ρ = {b | a ∈ [[t]]ρ, b ∈

[[W]]ρ[�A �→a]}.
3. Interpretation of values. If v is a value then [[v]]ρ is a singleton.
4. Interpretation of substitution.

Let σ = {xA1
1 	→ v1, . . . , xAn

n 	→ vn} be a substitution such that xi /∈ fv(vj) for
all i, j. Let [[vi]]ρ = {ai} for each i = 1..n (noting that values are singletons,
by the previous item of this lemma). Then for any program or term X we
have that [[Xσ]]ρ = [[X]]ρ[x1 �→a1]...[xn �→an].

To conclude this section, the following theorem shows that the operational
semantics is sound with respect to the denotational semantics.

Theorem 6.2 (Soundness). Let Γ � P : A and P → Q. Then [[P ]] ⊇ [[Q]].
The inclusion is an equality for all reduction rules other than the fail rule.

Example 6.3. Consider the reduction νx.
(
(λz. νy. ((z •= t 1 y); (t y x))) (tx2)

)

� t 2 1. If [[Tuple]] = [[Nat]]× [[Nat]] = N×N, the constructors 1 : Nat, 2 : Nat are
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given their obvious interpretations and t : Nat → Nat → Tuple is the pairing
function5, then for any environment ρ, if we abbreviate ρ′ := ρ[x 	→ n][z 	→
p][y 	→ m], we have:

[[νx.
(
(λz. νy. ((z

•
= t 1 y); (t y x))) (tx2)

)
]]ρ

= {[[(λz. νy. ((z
•
= t 1 y); (t y x))) (tx2)]]ρ[x �→n] | n ∈ N}

= {r | n ∈ N, f ∈ [[λz. νy. ((z
•
= t 1 y); (t y x))]]ρ[x �→n], p ∈ [[tx2]]ρ[x �→n], r ∈ f(p)}

= {r | n, m ∈ N, p ∈ [[tx2]]ρ[x �→n], r ∈ [[(z
•
= t 1 y); (t y x)]]ρ′}

= {r | n, m ∈ N, p ∈ {(n, 2)}, r ∈ [[(z
•
= t 1 y); (t y x)]]ρ′}

= {r | n, m ∈ N, p ∈ {(n, 2)}, b ∈ [[z
•
= t 1 y]]ρ′ , r ∈ [[t y x]]ρ′}

= {r | n, m ∈ N, p ∈ {(n, 2)}, p = (1, m), r ∈ [[t y x]]ρ′}
= {r | n ∈ {1}, m ∈ {2}, p ∈ {(1, 2)}, r ∈ [[t y x]]ρ′}
= {(2, 1)}
= [[t 2 1]]ρ

An example in which the inclusion is proper is the reduction step λ�x. x
•=

λ�′
x. x

fail−−−→ fail. Note that [[λ�x. x
•= λ�′

x. x]] = {ok} � ∅ = [[fail]],
given that our naive semantics equates the denotations of the abstractions, i.e.
[[λ�x. x]]=[[λ�′

x. x]], in spite of the fact that their locations differ.

7 Conclusion

In this work, we have proposed the λU-calculus (Definition 3.1) an extension of
the λ-calculus with relational features, including non-deterministic choice and
first-order unification. We have studied some of its operational properties, pro-
viding an inductive characterization of normal forms (Proposition 4.1), and
proving that it is confluent (Theorem 4.4) up to structural equivalence, by
adapting the technique by Tait and Martin-Löf. We have proposed a system of
simple types enjoying subject reduction (Proposition 5.2). We have also pro-
posed a naive denotational semantics, in which a program of type A is interpreted
as a set of elements of a set [[A]], for which we have proven soundness (Theo-
rem 6.2). The denotational semantics is not complete.

As of the writing of this paper, we are attempting to formulate a refined
denotational semantics involving a notion of memory, following the ideas men-
tioned in footnote (See Footnote 4). One difficulty is that in a term like
((x •= λz. z); y)((y •= λz. z);x), there seems to be a cyclic dependency between
the denotation of the subterm on the left and denotation of the subterm on the
right, so it is not clear how to formulate the semantics compositionally.

We have attempted to prove normalization results for the simply typed sys-
tem, until now unsuccessfully. Given a constructor c : (A → A) → A, a self-
looping term ω(cω) with ω

def= λxA. νyA→A. ((cy •= x); y x) can be built, so
some form of positivity condition should be imposed. Other possible lines for
future work include studying the relationship between calculi with patterns and
λU by means of translations, and formulating richer type systems. For instance,

5 Precisely, t(n) = {fn} with fn(m) = {(n, m)}.
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one would like to be able to express instantiation restrictions, in such a way that
a fresh variable representing a natural number is of type Nat− while a term of
type Nat+ represents a fully instantiated natural number.

Related Work. On functional–logic programming, we have mentioned
λProlog [20,22] and Curry [10,11]. Other languages combining functional and
logic features are Mercury [28] and Mozart/Oz [31]. There is a vast amount of
literature on functional–logic programming. We mention a few works which most
resemble our own. Miller [18] proposes a language with lambda-abstraction and a
decidable extension of first-order unification which admits most general unifiers.
Chakravarty et al. [6] and Smolka [27] propose languages in which the functional–
logic paradigm is modeled as a concurrent process with communication. Albert
et al. [1] formulate a big-step semantics for a functional–logic calculus with nar-
rowing. On pure relational programming (without λ-abstractions), recently
Rozhplokas et al. [25] have studied the operational and denotational semantics
of miniKanren. On λ-calculi with patterns (without full unification), there
have been many different approaches to their formulation [2,3,14,15,23]. On
λ-calculi with non-deterministic choice (without unification), we should
mention works on the λ-calculus extended with erratic [26] as well as with prob-
abilistic choice [7,24].

Acknowledgements. To Alejandro Dı́az-Caro for supporting our interactions. To
Eduardo Bonelli, Delia Kesner, and the anonymous reviewers for their feedback and
suggestions.
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Abstract. Hybrid programs combine digital control with differential
equations, and naturally appear in a wide range of application domains,
from biology and control theory to real-time software engineering. The
entanglement of discrete and continuous behaviour inherent to such pro-
grams goes beyond the established computer science foundations, produc-
ing challenges related to e.g. infinite iteration and combination of hybrid
behaviour with other effects. A systematic treatment of hybridness as
a dedicated computational effect has emerged recently. In particular, a
generic idealized functional language HybCore with a sound and ade-
quate operational semantics has been proposed. The latter semantics
however did not provide hints to implementing HybCore as a runnable
language, suitable for hybrid system simulation (e.g. the semantics fea-
tures rules with uncountably many premises). We introduce an impera-
tive counterpart of HybCore, whose semantics is simpler and runnable,
and yet intimately related with the semantics of HybCore at the level
of hybrid monads. We then establish a corresponding soundness and ade-
quacy theorem. To attest that the resulting semantics can serve as a firm
basis for the implementation of typical tools of programming oriented to
the hybrid domain, we present a web-based prototype implementation to
evaluate and inspect hybrid programs, in the spirit of GHCi for Haskell
and UTop for OCaml. The major asset of our implementation is that
it formally follows the operational semantic rules.

1 Introduction

The Core Idea of Hybrid Programming. Hybrid programming is a rapidly
emerging computational paradigm [26,29] that aims at using principles and
techniques from programming theory (e.g. compositionality [12,26], Hoare cal-
culi [29,34], theory of iteration [2,8]) to provide formal foundations for developing
computational systems that interact with physical processes. Cruise controllers
are a typical example of this pattern; a very simple case is given by the hybrid
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program below.

while true do {
if v � 10 then (v′ = 1 for 1) else (v′ = −1 for 1)

}
(cruise controller)

In a nutshell, the program specifies a digital controller that periodically measures
and regulates a vehicle’s velocity (v): if the latter is less or equal than 10 the
controller accelerates during 1 time unit, as dictated by the program statement
v′ = 1 for 1 (v′ = 1 is a differential equation representing the velocity’s rate
of change over time. The value 1 on the right-hand side of for is the duration
during which the program statement runs). Otherwise, it decelerates during the
same amount of time (v′ = −1 for 1). Figure 1 shows the output respective to
this hybrid program for an initial velocity of 5.

Fig. 1. Vehicle’s velocity

Note that in contrast to stan-
dard programming, the cruise con-
troller involves not only classical
constructs (while-loops and condi-
tional statements) but also differ-
ential ones (which are used for
describing physical processes). This
cross-disciplinary combination is
the core feature of hybrid program-
ming and has a notably wide range
of application domains (see [29,
30]). However, it also hinders the
use of classical techniques of programming, and thus calls for a principled exten-
sion of programming theory to the hybrid setting.

As is already apparent from the (cruise controller) example, we stick to an
imperative programming style, in particular, in order to keep in touch with the
established denotational models of physical time and computation. A popular
alternative to this for modelling real-time and hybrid systems is to use a declar-
ative programming style, which is done e.g. in real-time Maude [27] or Model-
ica [10]. A well-known benefit of declarative programming is that programs are
very easy to write, however on the flip side, it is considerably more difficult to
define what they exactly mean.

Motivation and Related Work. Most of the previous research on formal
hybrid system modelling has been inspired by automata theory and Kleene alge-
bra (as the corresponding algebraic counterpart). These approaches led to the
well-known notion of hybrid automaton [17] and Kleene algebra based languages
for hybrid systems [18,19,28]. From the purely semantic perspective, these for-
malizations are rather close and share such characteristic features as nondeter-
minism and what can be called non-refined divergence. The former is standardly
justified by the focus on formal verification of safety-critical systems: in such con-
texts overabstraction is usually desirable and useful. However, coalescing purely
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hybrid behaviour with nondeterminism detaches semantic models from their pro-
totypes as they exist in the wild. This brings up several issues. Most obviously,
a nondeterministic semantics, especially not given in an operational form, can-
not directly serve as a basis for languages and tools for hybrid system testing
and simulation. Moreover, models with nondeterminism baked in do not provide
a clear indication of how to combine hybrid behaviour with effects other than
nondeterminism (e.g. probability), or to combine it with nondeterminism in a
different way (van Glabbeek’s spectrum [36] gives an idea about the diversity
of potentially arising options). Finally, the Kleene algebra paradigm strongly
suggests a relational semantics for programs, with the underlying relations con-
necting a state on which the program is run with the states that the program
can reach. As previously indicated by Höfner and Möller [18], this view is too
coarse-grained and contrasts to the trajectory-based one where a program is asso-
ciated with a trajectory of states (recall Fig. 1). The trajectory-based approach
provides an appropriate abstraction for such aspects as notions of convergence,
periodic orbits, and duration-based predicates [5]. This potentially enables anal-
ysis of properties such as how fast our (cruise controller) example reaches the
target velocity or for how long it exceeds it.

The issue of non-refined divergence mentioned earlier arises from the Kleene
algebra law p ; 0 = 0 in conjunction with Fischer-Ladner’s encoding of while-
loops while b do { p } as (b ; p)∗;¬b. This creates a havoc with all divergent
programs while true do { p } as they become identified with divergence 0, thus
making the above example of a (cruise controller) meaningless. This issue is
extensively discussed in Höfner and Möller’s work [18] on a nondeterministic alge-
bra of trajectories, which tackles the problem by disabling the law p ; 0 = 0 and
by introducing a special operator for infinite iteration that inherently relies on
nondeterminism. This iteration operator inflates trajectories at so-called ‘Zeno
points’ with arbitrary values, which in our case would entail e.g. the program

x := 1 ; while true do { wait x ; x := x/2 } (zeno)

to output at time instant 2 all possible values in the valuation space (the expres-
sion waitt represents a wait call of t time units). More details about Zeno points
can be consulted in [14,18].

In previous work [12,14], we pursued a purely hybrid semantics via a simple
deterministic functional language HybCore, with while-loops for which we used
Elgot’s notion of iteration [8] as the underlying semantic structure. That resulted
in a semantics of finite and infinite iteration, corresponding to a refined view of
divergence. Specifically, we developed an operational semantics and also a deno-
tational counterpart for HybCore. An important problem of that semantics,
however, is that it involves infinitely many premisses and requires calculating
total duration of programs, which precludes using such semantics directly in
implementations. Both the above examples (cruise controller) and (zeno) are
affected by this issue. In the present paper we propose an imperative language
with a denotational semantics similar to HybCore’s one, but now provide a
clear recipe for executing the semantics in a constructive manner.
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Overview and Contributions. Building on our previous work [14], we devise
operational and denotational semantics suitable for implementation purposes,
and provide a soundness and adequacy theorem relating both these styles of
semantics. Results of this kind are well-established yardsticks in the program-
ming language theory [37], and beneficial from a practical perspective. For exam-
ple, small-step operational semantics naturally guides the implementation of
compilers for programming languages, whilst denotational semantics is more
abstract, syntax-independent, and guides the study of program equivalence, of
the underlying computational paradigm, and its combination with other compu-
tational effects.

As mentioned before, in our previous work [14] we introduced a simple func-
tional hybrid language HybCore with operational and denotational monad-
based semantics. Here, we work with a similar imperative while-language, whose
semantics is given in terms of a global state space of trajectories over Rn, which
is a commonly used carrier when working with solutions of systems of differen-
tial equations. A key principle we have taken as a basis for our new semantics is
the capacity to determine behaviours of a program p by being able to examine
only some subterms of it. In order to illustrate this aspect, first note that our
semantics does not reduce program terms p and initial states σ (corresponding
to valuation functions σ : X → R on program variables X ) to states σ′, as usual
in classical programming. Instead it reduces triples p ,σ ,t of programs p, ini-
tial states σ and time instants t to a state σ′; such a reduction can be read as
“given σ as the initial state, program p produces a state σ′ at time instant t”.
Then, the reduction process of p ,σ ,t to a state only examines fragments of p or
unfolds it when strictly necessary, depending of the time instant t. For example,
the reduction of the (cruise controller) unfolds the underlying loop only twice
for the time instant 1 + 1/2 (the time instant 1 + 1/2 occurred in the second
iteration of the loop). This is directly reflected in our prototype implementation
of an interactive evaluator of hybrid programs Lince. It is available online and
comes with a series of examples for the reader to explore (http://arcatools.org/
lince). The plot in Fig. 1 was automatically obtained from Lince, by calling on
the previously described reduction process for a predetermined sequence of time
instants t.

For the denotational model, we build on our previous work [12,14] where
hybrid programs are interpreted via a suitable monad H, called the hybrid monad
and capturing the computational effect of hybridness, following the seminal app-
roach of Moggi [24,25]. Our present semantics is more lightweight and is naturally
couched in terms of another monad HS , parametrized by a set S. In our case,
as mentioned above, S is the set of trajectories over Rn where n is the number
of available program variables X . The latter monad is in fact parametrized in
a formal sense [35] and comes out as an instance of a recently emerged generic
construction [7]. A remarkable salient feature of that construction is that it can
be instantiated in a constructive setting (without using any choice principles) –
although we do not touch upon this aspect here, in our view this reinforces the
fundamental nature of our semantics. Among various benefits of HS over H, the

http://arcatools.org/lince
http://arcatools.org/lince
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former monad enjoys a construction of an iteration operator (in the sense of
Elgot [8]) as a least fixpoint, calculated as a limit of an ω-chain of approxima-
tions, while for H the construction of the iteration operator is rather intricate
and no similar characterization is available. A natural question that arises is: how
are H and HS related? We do answer it by providing an instructive connection,
which sheds light on the construction of H, by explicitly identifying semantic
ingredients which have to be added to HS to obtain H. Additionally, this results
in “backward compatibility” with our previous work.

Document Structure. After short preliminaries (Sect. 2), in Sect. 3 we intro-
duce our while-language and its operational semantics. In Sects. 4 and 5, we
develop the denotational model for our language and connect it formally to
the existing hybrid monad [12,14]. In Sect. 6, we prove a soundness and ade-
quacy result for our operational semantics w.r.t. the developed model. Section 7
describes Lince’s architecture. Finally, Sect. 8 concludes and briefly discusses
future work. Omitted proofs and examples are found in the extended version of
the current paper [15].

2 Preliminaries

We assume familiarity with category theory [1]. By R, R+ and R̄+ we respec-
tively denote the sets of reals, non-negative reals, and extended non-negative
reals (i.e.R+ extended with the infinity value ∞). Let [0, R̄+|) denote the set
of downsets of R̄+ having the form [0, d] (d ∈ R+) or the form [0, d) (d ∈ R̄+).
We call the elements of the dependent sum

∑
I∈[0,R̄+|) XI trajectories (over X).

By [0,R+], [0,R+) and [0, R̄+) we denote the following corresponding subsets of
[0, R̄+|): {[0, d] | d ∈ R+}, {[0, d) | d ∈ R+} and {[0, d) | d ∈ R̄+}. By X � Y
we denote the disjoint union, which is the categorical coproduct in the cate-
gory of sets with the corresponding left and right injections inl : X → X � Y ,
inr : Y → X � Y . To reduce clutter, we often use plain union X ∪ Y in place of
X � Y if X and Y are disjoint by construction.

By a � b � c we denote the case distinction construct: a if b is true and c
otherwise. By ! we denote the empty function, i.e. a function with the empty
domain. For the sake of succinctness, we use the notation et for the function
application e(t) with real-value t.

3 An Imperative Hybrid While-Language and Its
Semantics

This section introduces the syntax and operational semantics of our language.
We first fix a stock of n-variables X = {x1, . . . , xn} over which we build atomic
programs, according to the grammar

At(X ) � x := t | x′
1 = t1, . . . , x

′
n = tn for t

LTerm(X ) � r | r · x | t + s
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where x ∈ X , r ∈ R, ti, t, s ∈ LTerm(X ). An atomic program is thus either a
classical assignment x := t or a differential statement x′

1 = t1, . . . , x′
n = tn for t.

The latter reads as “run the system of differential equations x′
1 = t1, . . . , x′

n = tn
for t time units”. We then define the while-language via the grammar

Prog(X ) � a | p ; q | if b then p else q | while b do { p }

where p, q ∈ Prog(X ), a ∈ At(X ) and b is an element of the free Boolean
algebra generated by the terms t � s and t � s. The expression wait t (from
the previous section) is encoded as the differential statement x′

1 = 0, . . . , x′
n =

0 for t.

Remark 1. The systems of differential equations that our language allows are
always linear. This is not to say that we could not consider more expressive sys-
tems; in fact we could straightfowardly extend the language in this direction, for
its semantics (presented below) is not impacted by specific choices of solvable
systems of differential equations. But here we do not focus on such choices regard-
ing the expressivity of continuous dynamics and concentrate on a core hybrid
semantics instead on which to study the fundamentals of hybrid programming.

In the sequel we abbreviate differential statements x′
1 = t1, . . . , x′

n = tn fort
to the expression ¯x′ = t̄ for t, where x̄′ and t̄ abbreviate the corresponding
vectors of variables x′

1 . . . x′
n and linear-combination terms t1 . . . tn. We call func-

tions of type σ : X → R environments; they map variables to the respective
valuations. We use the notation σ�[v̄/x̄] to denote the environment that maps
each xi in x̄ to vi in v̄ and the rest of variables in the same way as σ. Finally, we
denote by φx̄′=t̄

σ : [0,∞) → Rn the solution of a system of differential equations
x̄′ = t̄ with σ determining the initial condition. When clear from context, we
omit the superscript in φx̄=t̄

σ . For a linear-combination term t the expression tσ
denotes the corresponding interpretation according to σ and analogously for bσ
where b is a Boolean expression.

We now introduce a small-step operational semantics for our language. Intu-
itively, the semantics establishes a set of rules for reducing a triple 〈program
statement, environment, time instant〉 to an environment, via a finite sequence
of reduction steps. The rules are presented in Fig. 2. The terminal configuration
〈skip, σ, t〉 represents a successful end of a computation, which can then be fed
into another computation (via rule (seq-skip→)). Contrastingly, 〈stop, σ, t〉 is
a terminating configuration that inhibits the execution of subsequent compu-
tations. The latter is reflected in rules (diff-stop→) and (seq-stop→) which
entail that, depending on the chosen time instant, we do not need to evaluate
the whole program, but merely a part of it – consequently, infinite while-loops
need not yield infinite reduction sequences (as explained in Remark 2). Note
that time t is consumed when applying the rules (diff-stop→) and (diff-seq→)
in correspondence to the duration of the differential statement at hand. The
rules (seq) and (seq-skip→) correspond to the standard rules of operational
semantics for while languages over an imperative store [37].
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Fig. 2. Small-step Operational Semantics

Remark 2. Putatively infinite while-loops do not necessarily yield infinite reduc-
tion steps. Take for example the while-loop below whose iterations have always
duration 1.

x := 0 ; while true do { x := x + 1 ; wait 1 } (1)

It yields a finite reduction sequence for the time instant 1/2, as shown below:

x := 0 ; while true do { x := x + 1 ; wait 1 } ,σ ,1/2 →
{by the rules (asg→) and (seq-skip→)}

while true do { x := x + 1 ; wait 1 } ,σ�[0/x] ,1/2 →
{by the rule (wh-true→)}

x := x + 1 ; wait 1 ; while true do { x := x + 1 ; wait 1 } ,σ�[0/x] ,1/2 →
{by the rules (asg→) and (seq-skip→)}

wait 1 ; while true do { x := x + 1 ; wait 1 } ,σ�[0 + 1/x] ,1/2 →
{by the rules (diff-stop→) and (seq-stop→)}

stop ,σ�[0 + 1/x] ,0

The gist is that to evaluate program (1) at time instant 1/2, one only needs
to unfold the underlying loop until surpassing 1/2 in terms of execution time.
Note that if the wait statement is removed from the program then the reduction
sequence would not terminate, intuitively because all iterations would be instan-
taneous and thus the total execution time of the program would never reach
1/2.

The following theorem entails that our semantics is deterministic, which is instru-
mental for our implementation.
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Theorem 1. For every program p, environment σ, and time instant t there is
at most one applicable reduction rule.

Let →� be the transitive closure of the reduction relation → that was
previously presented.

Corollary 1. For every program term p, environments σ, σ′, σ′′, time instants
t, t′, t′′, and termination flags s, s′ ∈ {skip, stop}, if p ,σ ,t →� s, σ′, t′ and
p ,σ ,t →� s′ ,σ′′ ,t′′, then the equations s = s′, σ′ = σ′′ and t′ = t′′ must hold.

Proof. Follows by induction on the number of reduction steps and Theorem1.
�
As alluded above, the operational semantics treats time as a resource. This is
formalised below.

Proposition 1. For all program terms p and q, environments σ and σ′, and
time instants t, t′ and s, if p ,σ ,t → q ,σ′ ,t′ then p ,σ ,t+ s → q ,σ′ ,t′ + s;
and if p ,σ ,t → skip ,σ′ ,t′ then p ,σ ,t + s → skip ,σ′ ,t′ + s.

4 Towards Denotational Semantics: The Hybrid Monad

A mainstream subsuming paradigm in denotational semantics is due to Moggi
[24,25], who proposed to identify a computational effect of interest as a monad,
around which the denotational semantics is built using standard generic mecha-
nisms, prominently provided by category theory. In this section we recall neces-
sary notions and results, motivated by this approach, to prepare ground for our
main constructions in the next section.

Definition 1 (Monad). A monad T (on the category of sets and functions) is
given by a triple (T, η, (–)�), consisting of an endomap T over the class of all
sets, together with a set-indexed class of maps ηX : X → TX and a so-called
Kleisli lifting sending each f : X → TY to f� : TX → TY and obeying monad
laws: η� = id, f� · η = f , (f� · g)� = f� · g� (it follows from this definition that T
extends to a functor and η to a natural transformation).

A monad morphism θ : T → S from (T, ηT, (–)�T) to (S, ηS, (–)�S) is a natural
transformation θ : T → S such that θ · ηT = ηS and θ · f�T = (θ · f)�S · θ.
We will continue to use bold capitals (e.g. T) for monads over the corresponding
endofunctors written as capital Romans (e.g. T ).

In order to interpret while-loops one needs additional structure on the monad.

Definition 2 (Elgot Monad). A monad T is called Elgot if it is equipped with
an iteration operator (–)† that sends each f : X → T (Y � X) to f† : X → TY
in such a way that certain established axioms of iteration are satisfied [2,16].

Monad morphisms between Elgot monads are additionally required to preserve
iteration: θ · f†T = (θ · f)†S for θ : T → S, f : X → T (Y � X).
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For a monad T, a map f : X → TY , called a Kleisli map, is roughly to be
regarded as a semantics of a program p, with X as the semantics of the input,
and Y as the semantics of the output. For example, with T being the maybe
monad (–) � {⊥}, we obtain semantics of programs as partial functions. Let us
record this example in more detail for further reference.

Example 1. (Maybe Monad M). The maybe monad is determined by the follow-
ing data: MX = X � {⊥}, the unit is the left injection inl : X → X � {⊥} and
given f : X → Y �{⊥}, f� is equal to the copairing [f, inr] : X�{⊥} → Y �{⊥}.

It follows by general considerations (enrichment of the category of Kleisli
maps over complete partial orders) that M is an Elgot monad with the following
iteration operator (–)�: given f : X → (Y �X)�{⊥}, and x0 ∈ X, let x0, x1, . . .
be the longest (finite or infinite) sequence over X constructed inductively in such
a way that f(xi) = inl inr xi+1. Now, f �(x0) = inr⊥ if the sequence is infinite or
f(xi) = inr⊥ for some i, and f �(x0) = inl y if for the last element of the sequence
xn, which must exist, f(xn) = inl inl y.

Other examples of Elgot monad can be consulted e.g. in [16].

The computational effect of hybridness can also be captured by a monad, called
hybrid monad [12,14], which we recall next (in a slightly different but equivalent
form). To that end, we also need to recall Minkowski addition for subsets of the
set R̄+ of extended non-negative reals (see Sect. 2): A+B = {a+b | a ∈ A, b ∈ B},
e.g. [a, b] + [c, d] = [a + c, b + d] and [a, b] + [c, d) = [a + c, b + d).

Definition 3. (Hybrid Monad H). The hybrid monad H is defined as follows.

– HX =
∑

I∈[0,R+] X
I � ∑

I∈[0,R̄+|) XI , i.e. it is a set of trajectories valued
on X and with the domain downclosed. For any p = inj〈I, e〉 ∈ HX with
inj ∈ {inl, inr}, let us use the notation pd = I, pe = e, the former being the
duration of the trajectory and the latter the trajectory itself. Let also ε = 〈∅, !〉.

– η(x) = inl〈[0, 0], λt. x〉, i.e. η(x) is a trajectory of duration 0 that returns x.
– given f : X → HY , we define f� : HX → HY via the following clauses:

f�(inl〈I, e〉) = inj〈I + J, λt. (f(et))0e � t < d � (f(ed))t−d
e 〉

if I ′ = I = [0, d] for some d, f(ed) = inj 〈J, e′〉
f�(inl〈I, e〉) = inr〈I ′, λt. (f(et))0e 〉 if I ′ �= I

f�(inr〈I, e〉) = inr〈I ′, λt. (f(et))0e 〉

where I ′ =
⋃ {

[0, t] ⊆ I | ∀s ∈ [0, t]. f(es) �= inrε
}

and inj ∈ {inl, inr}.
The definition of the hybrid monad H is somewhat intricate, so let us comple-
ment it with some explanations (details and further intuitions about the hybrid
monad can also be consulted in [12]). The domain HX constitutes three types
of trajectories representing different kinds of hybrid computation:

– (closed) convergent : inl〈[0, d], e〉 ∈ HX (e.g. instant termination η(x));
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– open divergent : inr〈[0, d), e〉 ∈ HX (e.g. instant divergence inrε or a trajectory
[0,∞) → X which represents a computation that runs ad infinitum);

– closed divergent : inr〈[0, d], e〉 ∈ HX (representing computations that start to
diverge precisely after the time instant d).

The Kleisli lifting f� works as follows: for a given trajectory inj〈I, e〉, we first
calculate the largest interval I ′ ⊆ I on which the trajectory λt ∈ I ′.f(et) does
not instantly diverge (i.e. f(et) �= inrε) throughout, hence I ′ is either [0, d′] or
[0, d′) for some d′. Now, the first clause in the definition of f� corresponds to the
successful composition scenario: the argument trajectory 〈I, e〉 is convergent, and
composing f with e as described in the definition of I ′ does not yield divergence
all over I. In that case, we essentially concatenate 〈I, e〉 with f(ed), the latter
being the trajectory computed by f at the last point of e. The remaining two
clauses correspond to various flavours of divergence, including divergence of the
input (inr〈I, e〉) and divergences occurring along f · e. Incidentally, this explains
how closed divergent trajectories may arise: if I ′ = [0, d′] and d′ is properly
smaller than d, then we diverge precisely after d′, which is possible e.g. if the
program behind f continuously checks a condition which did not fail up until d′.

5 Deconstructing the Hybrid Monad

As mentioned in the introduction, in [14] we used H for giving semantics to a
functional language HybCore whose programs are interpreted as morphisms of
type X → HY . Here, we are dealing with an imperative language, which from
a semantic point of view amounts to fixing a type of states S, shared between
all programs; the semantics of a program is thus restricted to morphisms of
type S → HS. As explained next, this allows us to make do with a simpler
monad HS , globally parametrized by S. The new monad HS has the property
that HSS is naturally isomorphic to HS. Apart from (relative to H) simplicity,
the new monad enjoys further benefits, specifically HS is mathematically a better
behaved structure, e.g. in contrast to H, Elgot iteration on HS is constructed as
a least fixed point. Factoring the denotational semantics through HS thus allows
us to bridge the gap to the operational semantics given in Sect. 3, and faciliates
the soundness and adequacy proof in the forthcoming Sect. 6.

In order to define HS , it is convenient to take a slightly broader perspective.
We will also need to make a detour through the topic of ordered monoid modules
with certain completeness properties so that we can characterise iteration on HS

as a least fixed point.

Definition 4. (Monoid Module, Generalized Writer Monad [14]). Given
a (not necessarily commutative) monoid (M,+, 0), a monoid module is a set E
equipped with a map 	 : M×E → E (monoid action), subject to the laws 0 	 e = e,
(m + n) 	 e = m 	 (n 	 e).
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Every monoid-module pair (M,E) induces a generalized writer monad T =
(T, η, (–)�) with T = M× (–) ∪ E, ηX(x) = 〈0, x〉, and

f�(m,x) = (m + n, y) where m ∈ M, x ∈ X, f(x) = 〈n, y〉 ∈ M× Y

f�(m,x) = m 	 e where m ∈ M, x ∈ X, f(x) = e ∈ E

f�(e) = e where e ∈ E

This generalizes the writer monad (E = ∅) and the exception monad (M = 1).

Example 2. A simple motivating example of a monoid-module pair (M,E) is the
pair (R+, R̄+) where the monoid operation is addition with 0 as the unit and the
monoid action is also addition.

More specifically, we are interested in ordered monoids and (conservatively)
complete monoid modules. These are defined as follows.

Definition 5 (Ordered Monoids, (Conservatively) Complete Monoid
Modules [7]). We call a monoid (M, 0,+) an ordered monoid if it is equipped
with a partial order �, such that 0 is the least element of this order and + is
right-monotone (but not necessarily left-monotone).

An ordered M-module w.r.t. an ordered monoid (M,+, 0,≤), is an M-module
(E, 	 ) together with a partial order � and a least element ⊥, such that 	 is
monotone on the right and (− 	⊥) is monotone, i.e.

⊥ � x

x � y

a 	 x � a 	 y

a ≤ b

a 	⊥ � b 	⊥
We call the last property restricted left monotonicity.

An ordered M-module is (ω-)complete if for every ω-chain s1 � s2 � . . . on E
there is a least upper bound

⊔
i si and 	 is continuous on the right, i.e.

∀i. si �
⊔

i si

∀i. si � x
⊔

i si � x a 	
⊔

i si �
⊔

i a 	 si

(the law
⊔

i a 	 si � a 	
⊔

i si is derivable). Such an M-module is conservatively
complete if additionally for every ω-chain a1 � a2 � . . . in M, such that the least
upper bound

∨
i ai exists,

(∨
i ai

)
	⊥ =

⊔
i ai 	⊥.

A homomorphism h : E → F of (conservatively) complete monoid M-modules
is required to be monotone and structure-preserving in the following sense:
h(⊥) = ⊥, h(a 	 x) = a 	 h(x), h(

⊔
i xi) =

⊔
i h(xi).

The completeness requirement for M-modules has a standard motivation coming
from domain theory, where � is regarded as an information order and complete-
ness is needed to ensure that the relevant semantic domain can accommodate
infinite behaviours. The conservativity requirement additionally ensures that the
least upper bounds, which exist in M agree with those in E. Our main example
is as follows (we will use it for building HS and its iteration operator).
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Definition 6 (Monoid Module of Trajectories). The ordered monoid of
finite open trajectories

(
TrjS , u, 〈∅, !〉,≤)

over a given set S, is defined as follows:
TrjS =

∑
I∈[0,R+) SI , the unit is the empty trajectory ε = 〈∅, !〉; summation is

concatenation of trajectories u, defined as follows:

〈[0, d1), e1〉u〈[0, d2), e2〉 = 〈[0, d1 + d2), λt. et
1 � t < d1 � et−d1

2 〉.

The relation ≤ is defined as follows: 〈[0, d1), e1〉 ≤ 〈[0, d2), e2〉 if d1 ≤ d2 and
et
1 = et

2 for every t ∈ [0, d1). We can additionally consider both sets
∑

I∈[0,R̄+) SI

and
∑

I∈[0,R̄+|) SI as TrjS-modules, by defining the monoid action 	 also as
concatenation of trajectories and by equipping these sets with the order �:
〈I1, e1〉 � 〈I2, e2〉 if I1 ⊆ I2 and et

1 = et
2 for all t ∈ I1.

Consider the following functors:

H ′
SX =

∑

I∈[0,R+)

SI × X ∪
∑

I∈[0,R̄+)

SI (2)

HSX =
∑

I∈[0,R+)

SI × X ∪
∑

I∈[0,R̄+|)
SI (3)

Both of them extend to monads H′
S and HS as they are instances of Definition 4.

Moreover, it is laborious but straightforward to prove that both H ′
SX and HSX

are conservatively complete TrjS-modules on X [7], i.e. conservatively complete
TrjS-modules, equipped with distinguished maps η : X → H ′

SX, η : X → HSX.
In each case η sends x ∈ X to 〈ε, x〉. The partial order on H ′

SX (which we will
use for obtaining the least upper bound of a certain sequence of approximations)
is given by the clauses below and relies on the previous order � on trajectories:

〈〈I, e〉, x〉 � 〈〈I, e〉, x〉
〈I, e〉 � 〈I ′, e′〉

〈I, e〉 � 〈〈I ′, e′〉, x〉
〈I, e〉 � 〈I ′, e′〉
〈I, e〉 � 〈I ′, e′〉

The monad given by (2) admits a sharp characterization, which is an instance
of a general result [7]. In more detail,

Proposition 2. The pair (H ′
SX, η) is a free conservatively complete TrjS-

module on X, i.e. for every conservatively complete TrjS-module E and a map
f : X → E, there is unique homomorphism f̂ : H ′

SX → E such that f̂ · η = f .

Intuitively, Proposition 2 ensures that H ′
SX is a least conservatively complete

TrjS-module generated by X. This characterization entails a construction of an
iteration operator on H′

S as a least fixpoint. This, in fact, also transfers to HS

(as detailed in the proof of the following theorem).

Theorem 2. Both H′
S and HS are Elgot monads, for which f† is computed as

a least fixpoint of ω-continuous endomaps g �→ [η, g]� ·f over the function spaces
X → H ′

SY and X → HSY correspondingly.
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In this section’s remainder, we formally connect the monad HS with the
monad H, the latter introduced in our previous work and used for providing
a semantics to the functional language HybCore. In the following section we
provide a semantics for the current imperative language via the monad HS .
Specifically, in this section we will show how to build H from HS by considering
additional semantic ingredients on top of the latter.

Let us subsequently write ηS , (–)�
S and (–)†

S for the unit, the Kleisli lifting
and the Elgot iteration of HS . Note that S,X �→ HSX is a parametrized monad
in the sense of Uustalu [35], in particular HS is functorial in S and for every
f : S → S′, Hf : HS → HS′ is a monad morphism.

Then we introduce the following technical natural transformations ι :
HSX → X � (S � {⊥}) and τ : HS�Y X → HSX. First, let us define ι:

ι(I, e, x) =
{
inr inl e0, if I �= ∅
inlx, otherwise ι(I, e) =

{
inr inl e0, if I �= ∅
inr inr⊥, otherwise

In words: ι returns the initial point for non-zero length trajectories, and otherwise
returns either an accompanying value from X or ⊥ depending on that if the given
trajectory is convergent or divergent. The functor (–) � E for every E extends
to a monad, called the exception monad. The following is easy to show for ι.

Lemma 1. For every S, ι : HS → (–) � (S � {⊥}) is a monad morphism.

Next we define τ : HS�Y X → HSX:

τ(I, e, x) =
{ 〈I, e, x〉, if I = I ′

〈I ′, e′〉, otherwise τ(I, e) = 〈I ′, e′〉

where 〈I ′, e′〉 is the largest such trajectory that for all t ∈ I ′, et = inle′t.

Fig. 3. Denotational semantics.

Lemma 2. For all S and Y , τ : HS�Y → HS is a monad morphism.

We now arrive at the main result of this section.
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Theorem 3. The correspondence S �→ HSS extends to an Elgot monad as fol-
lows:

η(x ∈ S) = ηS(x),

(f : X → HSS)� = HXX
Hι′·f id−−−−→ HS�{⊥}X

τ−→ HSX
f�

S−−→ HSS ,

(f : X → HS�X(S � X))† = X
f

†
S�X−−−→ HS�XS

H[inl,(ι′·f)�] id−−−−−−−−→ HS�{⊥}S
τ−→ HSS .

where ι′ = [inl, id] · ι : HSS → S � {⊥} and (–)� : (X → (S � X) � {⊥}) →
(X → S � {⊥}) is the iteration operator of the maybe-monad (–) � {⊥} (as in
Example 1). Moreover, thus defined monad is isomorphic to H.

Proof (Proof Sketch). It is first verified that the monad axioms are satisfied using
abstract properties of ι and τ , mainly provided by Lemmas 1 and 2. Then the
isomorphism θ : HSS ∼= HS is defined as expected: θ([0, d), e, x) = inl〈[0, d], ê〉
where et = êt for t ∈ [0, d), êd = x; and θ(I, e) = inr〈I, e〉. It is easy to see
that θ respects the unit. The fact that θ respects Kleisli lifting amounts to a
(tedious) verification by case distinction. Checking the formula for (–)† amounts
to transferring the definition of (–)†, as defined in previous work [13], along θ.
See the full proof in [15]. 
�

6 Soundness and Adequacy

Let us start this section by providing a denotational semantics to our language
using the results of the previous section. We will then provide a soundness and
adequacy result that formally connects the thus established denotational seman-
tics with the operational semantics presented in Sect. 3.

First, consider the monad in (3) and fix S = RX . We denote the obtained
instance of HS as Ĥ. Intuitively, we interpret a program p as a map [[p]] : S → ĤS
which given an environment (a map from variables to values) returns a trajectory
over S. The definition of [[p]] is inductive over the structure of p and is given
in Fig. 3.

In order to establish soundness and adequacy between the small-step opera-
tional semantics and the denotational semantics, we will use an auxiliary device.
Namely, we will introduce a big-step operational semantics that will serve as
midpoint between the two previously introduced semantics. We will show that
the small-step semantics is equivalent to the big-step one and then establish
soundness and adequacy between the big-step semantics and the denotational
one. The desired result then follows by transitivity. The big-step rules are pre-
sented in Fig. 4 and follow the same reasoning than the small-step ones. The
expression p, σ, t ⇓ r, σ′ means that p paired with σ evaluates to r, σ′ at time
instant t.
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Fig. 4. Big-step Operational Semantics

Next, we need the following result to formally connect both styles of opera-
tional semantics.

Lemma 3. Given a program p, an environment σ and a time instant t

1. if p ,σ ,t → p′ ,σ′ ,t′ and p′ ,σ′ ,t′ ⇓ skip ,σ′′ then p ,σ ,t ⇓ skip ,σ′′;
2. if p ,σ ,t → p′ ,σ′ ,t′ and p′ ,σ′ ,t′ ⇓ stop ,σ′′ then p ,σ ,t ⇓ stop ,σ′′.

Proof. The proof follows by induction over the derivation of the small step rela-
tion. 
�
Theorem 4. The small-step semantics and the big-step semantics are related
as follows. Given a program p, an environment σ and a time instant t

1. p ,σ ,t ⇓ skip ,σ′ iff p ,σ ,t →� skip ,σ′ ,0;
2. p ,σ ,t ⇓ stop ,σ′ iff p ,σ ,t →� stop ,σ′ ,0.

Proof. The right-to-left direction is obtained by induction over the length of the
small-step reduction sequence using Lemma 3. The left-to-right direction follows
by induction over the proof of the big-step judgement using Proposition 1. 
�
Finally, we can connect the operational and the denotational semantics in the
expected way.

Theorem 5 (Soundness and Adequacy). Given a program p, an environ-
ment σ and a time instant t
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1. p ,σ ,t →� skip ,σ′ ,0 iff [[p]](σ) = (h : [0, t) → RX , σ′);
2. p ,σ ,t →� stop ,σ′ ,0 iff either [[p]](σ) = (h : [0, t′) → RX , σ′′) or [[p]](σ) =

h : [0, t′) → RX , and in either case with t′ > t and h(t) = σ′.

Here, “soundness” corresponds to the left-to-right directions of the equivalences
and “adequacy” to the right-to-left ones.

Proof. By Theorem 4, we equivalently replace the goal as follows:

1. p ,σ ,t ⇓ skip ,σ′ iff [[p]](σ) = (h : [0, t) → RX , σ′);
2. p ,σ ,t ⇓ stop ,σ′ iff either [[p]](σ) = (h : [0, t′) → RX , σ′′) or [[p]](σ) = h :

[0, t′) → RX , and in either case with t′ > t and h(t) = σ′.

Then the “soundness” direction is obtained by induction over the derivation of
the rules in Fig. 4. The “adequacy” direction follows by structural induction over
p; for while-loops, we call the fixpoint law [η, f†]� · f = f† of Elgot monads. 
�

7 Implementation

This section presents our prototype implementation – Lince – which is available
online both to run in our servers and to be compiled and executed locally (http://
arcatools.org/lince). Its architecture is depicted in Fig. 5. The dashed rectan-
gles correspond to its main components. The one on the left (Core engine)
provides the parser respective to the while-language and the engine to evalu-
ate hybrid programs using the small-step operational semantics of Sect. 3. The
one on the right (Inspector) depicts trajectories produced by hybrid programs
according to parameters specified by the user and provides an interface to evalu-
ate hybrid programs at specific time instants (the initial environment σ : X → R
is assumed to be the function constant on zero). As already mentioned, plots are
generated by automatically evaluating at different time instants the program
given as input. Incoming arrows in the figure denote an input relation and out-
going arrows denote an output relation. The two main components are further
explained below.

Core Engine. Our implementation extensively uses the computer algebra tool
SageMath [31]. This serves two purposes: (1) to solve systems of differential
equations (present in hybrid programs); and (2) to correctly evaluate if-then-else

Fig. 5. Depiction of Lince’s architecture

http://arcatools.org/lince
http://arcatools.org/lince
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statements. Regarding the latter, note that we do not merely use predicate func-
tions in programming languages for evaluating Boolean conditions, essentially
because such functions tend to give wrong results in the presence of real num-
bers (due to the finite precision problem). Instead of this, Lince uses SageMath
and its ability to perform advanced symbolic manipulation to check whether a
Boolean condition is true or not. However, note that this will not always give an
output, fundamentally because solutions of linear differential equations involve
transcendental numbers and real-number arithmetic with such numbers is unde-
cidable [20]. We leave as future work the development of more sophisticated
techniques for avoiding errors in the computational evaluation of hybrid pro-
grams.

Inspector. The user interacts with Lince at two different stages: (a) when
inputting a hybrid program and (b) when inspecting trajectories using Lince’s
output interfaces. The latter case consists of adjusting different parameters for
observing the generated plots in an optimal way.

Event-Triggered Programs. Observe that the differential statements x′
1 =

t, . . . , x′
n = t for t are time-triggered : they terminate precisely when the instant

of time t is achieved. In the area of hybrid systems it is also usual to consider
event-triggered programs: those that terminate as soon as a specified condition
ψ becomes true [6,11,38]. So we next consider atomic programs of the type
x′
1 = t, . . . , x′

n = t until ψ where ψ is an element of the free Boolean alge-
bra generated by t � s and t � s where t, s ∈ LTerm(X ), signalling the ter-
mination of the program. In general, it is impossible to determine with exact
precision when such programs terminate (again due to the undecidability of
real-number arithmetic with transcendental numbers). A natural option is to
tackle this problem by checking the condition ψ periodically, which essentially
reduces event-triggered programs into time-triggered ones. The cost is that the
evaluation of a program might greatly diverge from the nominal behaviour, as
discussed for instance in documents [4,6] where an analogous approach is dis-
cussed for the well-established simulation tools Simulink and Modelica. In
our case, we allow programs of the form x′

1 = t, . . . , x′
n = t untilε ψ in the tool

and define them as the abbreviation of while ¬ψ do { x′
1 = t, . . . , x′

n = t for ε }.
This sort of abbreviation has the advantage of avoiding spurious evaluations of
hybrid programs w.r.t. the established semantics. We could indeed easily allow
such event-triggered programs natively in our language (i.e. without recurring
to abbreviations) and extend the semantics accordingly. But we prefer not to do
this at the moment, because we wish first to fully understand the ways of limiting
spurious computational evaluations arising from event-triggered programs.

Remark 3. Simulink and Modelica are powerful tools for simulating hybrid
systems, but lack a well-established, formal semantics. This is discussed for
example in [3,9], where the authors aim to provide semantics to subsets of
Simulink and Modelica. Getting inspiration from control theory, the language
of Simulink is circuit-like, block-based; the language of Modelica is acausal
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Fig. 6. Position of the bouncing ball over time (plot on the left); zoomed in position
of the bouncing ball at the first bounce (plot on the right).

and thus particularly useful for modelling electric circuits and the like which are
traditionally modelled by systems of equations.

Example 3 (Bouncing Ball). As an illustration of the approach described above
for event-triggered programs, take a bouncing ball dropped at a positive height
p and with no initial velocity v. Due to the gravitational acceleration g, it falls to
the ground and bounces back up, losing part of its kinetic energy in the process.
This can be approximated by the following hybrid program

(p′ = v, v′ = g until0.01 p � 0 ∧ v � 0) ; (v := v×−0.5)

where 0.5 is the dampening factor of the ball. We now want to drop the ball
from a specific height (e.g. 5 m) and let it bounce until it stops. Abbreviating the
previous program into b, this behaviour can be approximated by p := 5 ; v :=
0 ; while true do { b }. Figure 6 presents the trajectory generated by the ball
(calculated by Lince). Note that since ε = 0.01 the ball reaches below ground,
as shown in Fig. 6 on the right. Other examples of event- and time-triggered
programs can be seen in Lince’s website.

8 Conclusions and Future Work

We introduced small-step and big-step operational semantics for hybrid programs
suitable for implementation purposes and provided a denotational counterpart
via the notion of Elgot monad. These semantics were then linked by a soundness
and adequacy theorem [37]. We regard these results as a stepping stone for
developing computational tools and techniques for hybrid programming; which
we attested with the development of Lince. With this work as basis, we plan to
explore the following research lines in the near future.

Program Equivalence. Our denotational semantics entails a natural notion of
program equivalence (denotational equality) which inherently includes classical
laws of iteration and a powerful uniformity principle [33], thanks to the use
of Elgot monads. We intend to further explore the equational theory of our
language so that we can safely refactor/simplify hybrid programs. Note that
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the theory includes equational schema like (x := a ; x := b) = x := b and
(wait a ; wait b) = wait (a + b) thus encompassing not only usual laws of
programming but also axiomatic principles behind the notion of time.

New Program Constructs. Our while-language is intended to be as simple as
possible whilst harbouring the core, uncontroversial features of hybrid program-
ming. This was decided so that we could use the language as both a theoretical
and practical basis for advancing hybrid programming. A particular case that we
wish to explore next is the introduction of new program constructs, including e.g.
non-deterministic or probabilistic choice and exception operations raise(exc).
Denotationally, the fact that we used monadic constructions readily provides a
palette of techniques for this process, e.g. tensoring and distributive laws [22,23].

Robustness. A core aspect of hybrid programming is that programs should
be robust : small variations in their input should not result in big changes in
their output [21,32]. We wish to extend Lince with features for detecting non-
robust programs. A main source of non-robustness are conditional statements
if b then p else q: very small changes in their input may change the validity of
b and consequently cause a switch between (possibly very different) execution
branches. Currently, we are working on the systematic detection of non-robust
conditional statements in hybrid programs, by taking advantage of the notion of
δ-perturbation [20].
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22. Lüth, C., Ghani, N.: Composing monads using coproducts. In: Wand, M., Jones,
S.L.P. (eds.) 7th ACM SIGPLAN International Conference ICFP 2002: Functional
Programming, Pittsburgh, USA, October 04–06, 2002, pp. 133–144. ACM (2002)

23. Manes, E., Mulry, P.: Monad compositions I: general constructions and recursive
distributive laws. Theory Appl. Categories 18(7), 172–208 (2007)

24. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 1989), Pacific
Grove, California, USA, June 5–8, 1989, pp. 14–23. IEEE Computer Society (1989)

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
26. Neves, R.: Hybrid programs. Ph.D. thesis, Minho University (2018)
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Abstract. Replicated Data Types (rdts) have been introduced as an
abstraction for dealing with weakly consistent data stores, which may
(temporarily) expose multiple, inconsistent views of their state. In the
literature, rdts are usually presented in set-theoretical terms: Only
recently different specification flavours have been proposed, among them
a denotational formalism that inter alia captures specification refinement.
So far, however, no abstract model has been proposed for the implemen-
tations and their correctness with respect to specifications. This paper
fills the gap: We first give categorical constructions for distilling an oper-
ational model from a specification, as well as its implementations, and
then we define a notion of implementation correctness via simulation.

Keywords: Replicated data types · Specification · Operational
semantics · Functorial characterisation · Implementation correctness

1 Introduction

Replicated data types (rdts) are abstractions for building distributed systems
on top of weak-consistent stores, i.e., systems that tolerate temporary data incon-
sistencies to favour availability. Different specification approaches for rdts have
been proposed in the literature [2–5,7,8,10,11,14,16]. Despite stylistic differ-
ences, they abstractly represent the state of a system in terms of two relations
defined on executed operations: visibility, which explains the partial view of the
state over which each operation is executed, and arbitration, which totally orders
operations and is used for resolving conflicting effects of concurrent operations.
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Fig. 1. Counter specification.

Consider an rdt Counter , which has 0 as initial value and the operations
inc to increment it and rd to read its value. By following the functional app-
roach proposed in [7,8], the rdt Counter is specified as a function SCtr that
maps visibilities into sets of arbitrations, both of them represented as directed
graphs labelled by pairs 〈operation, result〉. Figure 1 illustrates two cases for the
definition of SCtr . The left-most equation considers the case in which the state
consists of four operations: two incs that return ok and two rds that respectively
returns 1 and 2. The arrows in the visibility (i.e., the graph on the left-hand side
of the equation) denotes the fact that the execution of one rd sees the effects of
the execution of the two incs while the other sees just one of them. Intuitively,
the arrows justify the values returned by each rd. In this case, SCtr maps that
visibility graph into a non-empty set of arbitrations, i.e., a set of total orders of
executed operations. While the leftmost arbitration is immediate, the rightmost
one shows that arbitrations do not necessarily preserve the order of the visibility
graph: While this may seem counterintuitive, it is a design choice that allows
more flexibility and is adopted by most of the current proposals for rdts. The
situation illustrated by the equation on the right is different, because the result
of rd is defined as 0, which is deemed inconsistent with the fact that the execu-
tion of that rd sees one inc. For this reason, SCtr maps such visibility into an
empty set of arbitrations (i.e., the visibility describes an unreachable state).

As shown in [9], a large class of functional specifications, dubbed coherent,
can be characterised as functors between the categories PIDag(L) of visibilities
and SPath(L) of sets of arbitrations, where L is a fixed set of operations labels.
In this paper, we take advantage of the functorial characterisation of specifica-
tions to develop a notion of implementation and implementation correctness for
rdts. We first provide a systematic way for recovering an operational semantics
out of a specification. This is achieved by constructing the category of elements
E(F) of the functor F associated with a specification. Objects in E(F) are pairs
〈G, P〉 describing the states of the rdt in terms of a visibility G and an arbitra-
tion P. Arrows of E(F) stand for computations. Then, by following the approach
in [12], we recover an LTS from E(F) by assigning labels to the computations
(arrows) of E(F): The labels provide the contextual information that explains
the way in which a local computation is embedded into a global context. The
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obtained semantics is then an operational specification for the implementation of
the rdt. Usually, rdts are implemented by several replicas that keep their own
local state and propagate changes asynchronously. Such behaviour can be under-
stood in terms of two labelled transition systems (LTSs): One that describes the
behaviour of a single replica, and another one, obtained by composition, that
accounts for the concurrent execution of several interacting replicas. Our first
observation is that usual implementations of well-known rdts exhibit a pre-
ordered monoidal structure on states, where the order accounts for the evolution
of the system and the monoidal operator for state composition. Consequently,
the computation space of a replica can be defined in terms of the power-domain
construction over the corresponding monoid. Then, the behaviour of a replica
can be represented by a functor that maps sequences of operations into compu-
tations. The category of elements associated with the implementation functor is
used again to recover a contextual LTS, in this case, for an implementation. Con-
sequently, implementation correctness can be straightforwardly stated in terms
of contextual simulation between the recovered LTSs. In this way, we reframe
previous ad-hoc formulations of implementation correctness by applying well-
known notions in concurrency theory, thus paving the way for the application of
more standard techniques in the analysis of rdts.

The paper is structured as follows. Section 2 recalls the functorial presen-
tation of rdts specifications [9]. Section 3 presents the basics of state-based
implementation of rdts and the running examples. Section 4 recasts the set-
theoretical presentation [7] of the operational semantics of rdts in terms of
categories of elements and introduces contextual LTSs. Section 5 illustrates a
categorical model for implementations and characterises their correctness via
simulation relations.

2 Background

Notation. Given a finite set E, a (binary) relation ρ over E, written 〈E, ρ〉, is a
subset ρ ⊆ E×E. We write ∅ for the empty relation and e ρ e′ to mean (e, e′) ∈ ρ.
A subset E′ ⊆ E is downward closed with respect to ρ if e ρ e′ implies e ∈ E′, for
all e′ ∈ E′. We write �e�ρ for the smallest downward closed set with respect to ρ
including e ∈ E, omitting the subscript ρ if clear from the context.

Let L be a finite set of labels. A labelled graph is a triple 〈E ,≺, λ〉, where
E is the set of vertices (they actually stand for “events”, hence the notation),
≺ ⊆ E × E is the (directed) connectivity relation, i.e., e ≺ e′ means that there
is an edge from e to e′, and λ : E → L is a labelling function, assigning a label
to each vertex. A graph is acyclic if the transitive closure of ≺ is a strict partial
order. We write EG, ≺G and λG for the corresponding component of a specific
graph G. A path 〈E ,≤, λ〉 is a graph where ≤ is a total order. Given a graph
G = 〈E ,≺, λ〉 and a subset E ′ ⊆ E , we denote by G|E′ the obvious restriction
(and the same applies to a path P).

We denote with G(L) and P(L) the collections of (finite) graphs and (finite)
paths, respectively, labelled on L and with ε the empty graph. Also, when the set
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SmvR

⎛
⎜⎜⎜⎜⎜⎜⎝

〈wr(1), ok〉 〈wr(3), ok〉

〈wr(2), ok〉

〈rd, {2}〉 〈rd, {2, 3}〉

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈wr(3), ok〉

〈rd, {2, 3}〉

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉

〈rd, {2, 3}〉

〈wr(3), ok〉

〈rd, {2, 3}〉 · · ·

〈wr(3), ok〉 · · ·

〈wr(1), ok〉 · · ·

〈wr(2), ok〉 · · ·

〈rd, {2}〉 · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Specification of a multi-value Register

of labels L is chosen, we let G(E , λ) and P(E , λ) be the collections of graphs and
paths, respectively, whose vertices are those in E and are labelled by λ : E → L.

2.1 Replicated Data Types

We briefly recall the functional model of rdts introduced in [7].

Definition 1 (Specifications). A specification S is a function S : G(L) →
2P(L) such that S(ε) = {ε} and ∀G. S(G) ∈ 2P(EG,λG).

A specification S maps a graph (interpreted as the visibility relation of a rdt)
to a set of paths (that is, the admissible arbitrations of the events). Indeed, each
P ∈ S(G) is a path over EG, hence a total order of the events in G.

Example 1 (Multi-value Register). A common abstraction of a memory cell in
a replicated system is given by a multi-value Register . Differently from a tradi-
tional register, a multi-value one may contain several values when it is updated
concurrently. Hence, we can fix the following set of labels

LmvR = {〈wr(k), ok〉 | k ∈ N} ∪ ({rd} × 2N)

where 〈wr(k), ok〉 stands for an operation that writes the integer k and 〈rd, S〉 for
a read that retrieves the (possibly empty) set of values S stored in the register.
The return value of every write operation is ok since they always succeed.

The specification is given by SmvR : G(LmvR) → 2P(LmvR) defined as follows

P ∈ SmvR(G) iff

⎧
⎨

⎩

∀e ∈ EG.
λ(e) = 〈rd, S〉 ⇒ S = {k | ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧

(∀e′′ ≺G e, k
′. e′ ≺G e

′′ ⇒ λ(e′′) �= 〈wr(k′), ok〉)}
The condition on the right requires that any event e in G associated with a
read (i.e., labelled by 〈rd, S〉) returns a set S that contains all values written by
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maximal (according to ≺G) concurrent updates seen by it. If this is the case, all
arbitrations are admissible, i.e., P ∈ SmvR(G) for all P, otherwise SmvR(G) = ∅.

An instance of SmvR is shown in Fig. 2, where G consists of three writes:
wr(2) overwrites wr(1), and both are concurrent with wr(3). Additionally, there
are two reads: One observes all writes (right-most at the bottom), the other
does not see wr(3) (left-most one). Both reads return the set of values written
by the maximal observed events: None of them returns 1 because it has been
overwritten by 2. A graph is mapped by SmvR to ∅ if it describes an inconsistent
configuration, e.g., if the return value of one read in Fig. 2 were changed to {1}.

According to SmvR, events can be arbitrated in any order, allowing read
events to happen before observed writes (as in the second and third path in
Fig. 2). This a common approach in the specification of rdts [4] because it allows
permissive strategies for implementation (we refer to [7] for details). If needed,
a specification can explicitly exclude arbitrations (as illustrated in Example 2).

Example 2 (Last-write wins Register). An alternative to the multi-value Register
is the last-write wins Register , in which every read returns the last written value
according to arbitration. We take the following set of labels

LSlwwR = {〈wr(k), ok〉, 〈rd, k〉 | k ∈ N} ∪ {〈rd,⊥〉}

where ⊥ is the initial value of a register. Its specification SlwwR is given by

P ∈ SlwwR(G) iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀e ∈ EG.

λ(e) = 〈rd,⊥〉 ⇒ ∀e′ ≺G e, k
′. λ(e′) �= 〈wr(k′), ok〉∧

λ(e) = 〈rd, k〉 ⇒ ∃e′ ≺G e. λ(e′) = 〈wr(k), ok〉∧
(∀e′′ ≺G e, k

′. e′ <P e
′′ ⇒ λ(e′′) �= 〈wr(k′), ok〉)

According to SlwwR, a read returns ⊥ when it does not observe any write. On
the contrary, a read e returns a natural number k when it observes some event
e′ that writes k. In such case, the arbitration P must order e′ as the maximal
event (accordingly to <P) among all write operations seen by e. In this way, the
specification constrains the allowed arbitrations of a graph.

We now restrict our attention to coherent specifications, which suffice for the
standard specification of rdts [7] and are amenable to categorical characteri-
sation, as illustrated in the next section. Coherence expresses that admissible
arbitrations of a visibility graph are obtained by composing the admissible arbi-
trations corresponding to smaller visibilities. Its formal definition relies on an
auxiliary operation for composing sets of paths. We say that the paths of a set
X = {Pi}i∈I are compatible if we have λj(e) = λk(e) for all e ∈ Ej ∩ Ek.

Definition 2 (Product). The product of a set X of compatible paths is
⊗

X = {P | P is a path over
⋃

i

Ei and P|Ei
∈ X }
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The product of paths is analogous to the synchronous product of transition
systems: Common elements are identified and the remaining ones can be freely
interleaved, as long as the original orders are respected. A set of sets of paths
X1,X2, . . . is compatible if

⋃
i Xi is so, and we can define

⊗
i Xi as

⊗ ⋃
i Xi.

Definition 3 ((Past-)Coherent Specification). Let S be a specification. We
say that S is past-coherent (briefly, coherent) if ∀G �= ε. S(G) =

⊗
e∈EG

S(G|�e�).

In a coherent specification S the arbitrations of a configuration G (i.e., the
set of paths S(G)) are the composition of the arbitrations of its sub-graphs G|�e�.
It can be shown that the specifications in Example 1 and 2 are coherent.

2.2 Categorical Model of Specifications

We now recall important definitions and results from [9]. We start off by intro-
ducing the category of binary relations.

Definition 4 ((Binary Relation) Morphisms). A (binary relation) mor-
phism f : 〈E, ρ〉 → 〈T, γ〉 is a function f : E → T such that e ρ e′ implies
f(e) γ f(e)′ for all e, e′ ∈ E. A morphism f : 〈E, ρ〉 → 〈T, γ〉 is past-reflecting
(shortly, pr-morphism) if t γ f(e) implies that there is e′ ∈ E such that e′ ρ e
and t = f(e′) for all e ∈ E and t ∈ T.

Past-reflecting morphisms are known under various names in different con-
texts, e.g. as bounded morphisms in modal logic. The intuition is that morphisms
add no dependencies in the past of an event, hence the chosen name.

Both classes of morphisms are closed under composition: Bin denotes the
category of relations and their morphisms and PBin the sub-category of pr-
morphisms. The category Bin has both finite limits and finite colimits, which
are computed point-wise as in Set. The structure is largely lifted to PBin: Finite
colimits and binary pullbacks in PBin are computed as in Bin. Yet there is no
terminal object, as morphisms into the singleton are clearly not past-reflecting.

Given a set of labels L, the category of labelled relations is Bin(L).

Definition 5 (Category of labelled relations). The category Bin(L) is
defined as the comma category Ur ↓ L, where Ur : Bin → Set is the inclu-
sion into Set. Explicitly, an object in Bin(L) is a triple (E, ρ, λ) for a labeling
function λ : E → L. A label-preserving morphism (E, ρ, λ) → (E′, ρ′, λ′) is a
morphism f : (E, ρ) → (E′, ρ′) such that λ(s) = λ′(f(s)) for all s ∈ E.

The category PBin(L) is defined analogously, with the requirement that
the morphisms are also past-reflecting. In both categories, finite colimits and
binary pullbacks always exist and are essentially computed as in Bin. Two sub-
categories are used for both the syntax and the semantics of specifications.

Definition 6 (PDag/Path). PDag is the full sub-category of PBin whose
objects are acyclic graphs, and the same for Path with respect to Bin and paths.
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〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉
(a) G1

〈wr(1), ok〉

〈wr(2), ok〉

〈rd, {2}〉
(b) P1

〈wr(1), ok〉 〈wr(3), ok〉

〈wr(2), ok〉

〈rd, {2}〉
(c) G2

〈wr(1), ok〉 〈wr(3), ok〉

〈wr(2), ok〉

〈rd, {2}〉 〈rd, {2, 3}〉
(d) G3

Fig. 3. Some labelled graphs

As for relations, suitable comma categories capture labelled paths and graphs,
which are respectively called PDag(L) and Path(L). Once more, finite colimits
and binary pullbacks always exist and are essentially computed as in Bin.

Example 3. We illustrate some labelled graphs in Fig. 3 and remark that P1 is
the only path in the figure. Note that G1 is not a path because the relation is not
transitive. There is an obvious label-preserving morphism f1 : G1 → P1, but this
is not a pr-morphism because the edge from 〈wr(1), ok〉 to 〈rd, {2}〉 in P1 is not
matched in G1. On the contrary, there is no morphism from P1 to G1. Note that
the label-preserving morphisms f2 : P1 → G2 and f3 : G2 → G3 are pr-morphisms
(and consequently, f2; f3 : P1 → G3 is so).

Model of Specifications. Specifications are modelled as functors from graphs
to sets of paths. Saturation is used to define morphisms between sets of paths.

Definition 7 (Path saturation). Let P be a path and f : (EP, λP) → (E , λ) a
label-preserving function. The saturation of P along f is defined as

sat(P, f) = {Q | Q ∈ P(E , λ) and f induces a morphism f : P → Q in Path(L)}
Saturation is generalised to sets of paths X ⊆ P(E , λ) as

⋃
P∈X sat(P, f).

Definition 8 (ps-morphism). Let X1 ⊆ P(E1, λ1) and X2 ⊆ P(E2, λ2) be sets
of paths. A path-set morphism (shortly, ps-morphism) f : X1 → X2 is a label-
preserving function f : (E1, λ1) → (E2, λ2) such that X2 ⊆ sat(X1, f).

There is a ps-morphism from set of paths X1 to set of paths X2 if any path in
X2 can be obtained by adding events to a path in X1. This notion captures the
idea that arbitrations of larger visibilities are extensions of smaller visibilities.

Example 4. Consider the label-preserving function f2 : (EP1 , λP1) → (EG2 , λG2)
in Example 3. Then sat(P1, f2) contains four paths, all of them an extension
of P1 obtained by inserting a new event labelled by 〈wr(3), ok〉 at any arbitrary
position. Moreover, there exists a ps-morphism f : {P1} → X for any X ⊆
sat(P1, f2).

Definition 9 (Sets of Paths Category). SPath(L) is the category whose
objects are sets of paths labelled over L and arrows are ps-morphisms.
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PIDag(L) is the sub-category of acyclic graphs and monic pr-morphisms: It
lacks pushouts, but these can be computed in PDag(L). We say that a functor
F weakly preserves colimits if any diagram in PIDag(L) that is a colimit (via
the inclusion functor) in PDag(L) is mapped by F to a colimit in SPath(L).

We now summarise the completeness results presented in [9], albeit slightly
rephrased for the sake of simplicity and technical convenience in our develop-
ments. We characterise pr-morphisms that add a single event � to a graph.

Definition 10 (Extension). Let f : 〈E1,≺1, λ1〉 → 〈E2,≺2, λ2〉 be a mono pr-
morphism. It is an extension along � (shortly, �-extension) if E2 = E1 + {�},
f : E1 → E1 + {�} is the associated injection, and λ2(�) = �.

A graph G is rooted if there is an event e ∈ EG such that G = G|�e�. An
extension f : G1 → G2 is a root extension if G2 is rooted. It is analogously defined
when a mono ps-morphism f : X1 → X2 is a ps-extension (along �).

Example 5. Assuming f2 and f3 in Example 3 are mono, then the former is
an extension along 〈wr(3), ok〉 and the latter is an extension along 〈rd, {2, 3}〉.
Since G3 is rooted, f3 is a rooted extension; however, f2 is not rooted because
G2 is not. Note that f2; f3 is a pr-morphism but not an extension because the
target G3 adds two new events to the source P1. Moreover, the ps-morphisms in
Example 4 induced by f2 are ps-extensions (along 〈wr(3), ok〉).
Definition 11. A functor F : PIDag(L) → SPath(L) is coherent if it maps
root �-extensions to �-extensions and weakly preserves finite colimits.

Coherent functors thus preserve monos. Combined with the simpler definition
of extension, now easily applied to paths, it allows for a more general presentation
of a key result in previous work [9, Theorem 33] (and an immediate instantiation
to Propositions 34 and 35 therein), as stated below.

Theorem 1. Coherent functors induce coherent specifications, and vice versa.

The core of the result above can be immediately derived from the lemma
below, which will have an interest of its own in the following pages. Intuitively,
it says that, for each graph G, a coherent functor gives a set of paths which is the
product of paths for sub-graphs of G, as required by coherence (Definition 3).

Lemma 1. Let F be a coherent functor and fi : G ↪→ Gi (i = 1, 2) mono pr-
morphisms such that EG = EG1 ∩ EG2 . Then there exists a pushout in SPath(L)

F(G) F(G1)

F(G2) F(G1) ⊗ F(G2)

F(f1)

F(f2)
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r2

r1
〈wr(1), ok〉

1

〈wr(2), ok〉
3

〈rd, {2}〉
5

rcv
6

〈rd, {2, 3}〉
7

〈wr(3), ok〉
2

snd
4

Fig. 4. Execution

(read) 〈r, S〉 rd,π1S−−−−→ 〈r, S〉 (write) 〈r, S〉 wr(a),ok−−−−−→ 〈r, {(a, π2S � r)}〉
(send) 〈r, S〉 snd,〈r,S〉−−−−−→ 〈r, S〉 (rcv) 〈r, S〉 rcv,〈r′,S′〉−−−−−−→ 〈r, S ⊕ S′〉

Fig. 5. Implementation of data type multi-value Register

3 State-Based Implementations of Replicated Data Types

An rdt is implemented on top of a set of replicas, which serve requests from
clients according to their local state and communicate asynchronously their local
changes. Figure 4 illustrates a scenario involving two replicas, namely r1 and r2,
that implement a multi-value Register (as specified in Example 1). A horizontal
line corresponds to a replica and shows the relative order (from left to right)
in which events occur in that replica. The depicted scenario shows a concrete
execution that generates the visibility graph in Fig. 2. The two writes on r1 are
totally ordered (events 1 and 3); consequently, 2 overwrites 1. The remaining
write takes place on r2 (event 2) and is unknown to r1 until r2 propagates its
changes. Hence, the first read on r1 (event 5) returns 2, which is the last written
value in r1.note Replicas communicate their local changes by using primitives
snd and rcv. Event 6 in r1 denotes the synchronisation of its local state with the
state of r2, i.e., r1 becomes aware of the written value 3 (depicted by the dashed
line between events 4 and 6). Since writes in r1 and r2 are concurrent, the last
read on r1 returns the set of maximal concurrent updates, i.e., {2, 3}.

A crucial aspect in the implementation of rdts concerns the information
exchanged through snd and rcv. Under the state-based approach, replicas com-
municate their own local states [4] while they only communicate operations (or
their effects) under the operation-based approach [14]. Hereafter, we will focus on
state-based implementations. We write Σ for the set of possible states σ, σ0, . . .
of a replica, and define the behaviour of a replica implementing a specification
S : G(L) → 2P(L) with a labelled transition system (Σ,AS ,→), where

AS = L ∪ ({rcv, snd} × Σ)

is the set of labels that, in addition to the rdt operations, includes 〈snd, σ〉 and
〈rcv, σ〉 for replica synchronisation.

Example 6. We present an implementation for a multi-value Register based on
version vectors in [6,15], in which each replica maintains a set with all maximal
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(read) 〈r, (t, a)〉 rd,a−−→ 〈r, (t, a)〉 (write) 〈r, (t, a)〉 wr(b),ok−−−−−→ 〈r,max{(t, a), (t′, b)}〉
(send) 〈r, (t, a)〉 snd,〈r,(t,a)〉−−−−−−−→ 〈r, (t, a)〉 (rcv) 〈r, (t, a)〉 rcv,〈r′,(t′,b)〉−−−−−−−−→ 〈r,max{(t, a), (t′, b)}〉

Fig. 6. Implementation of data type last-write wins Register.

concurrent written values. The implementation associates a version vector to
each written value to determine if two writes are concurrent or causally ordered.
A version vector is just a mapping from replicas to natural numbers. Given a set
of replicas R, (NR,≤) is the poset of version vectors, where ≤ is the standard
partial order of a function space, i.e., ∀v, v′ ∈ N

R. v ≤ v iff ∀r ∈ R. v(r) ≤ v(r).
We equip version vectors with an operation 
 : 2N

R × R → N
R that takes a

set of version vectors V and a replica r and generates a new version vector that
dominates all elements in V , defined as

(V 
 r)(r′) =

{
1 + max0{v(r′) | v ∈ V } if r′ = r

max0{v(r′) | v ∈ V } if r′ �= r

where max0 denotes the maximum of a set with the provision that max0 ∅ = 0.
Each replica maintains a set S ∈ 2N×N

R
of pairs (n, v), where n is a written

value and v is a version vector. We write πi for the i-th projection of a product
(and also for its obvious extension to sets of tuples), and consider N × N

R ordered
by ≤, where e ≤ e′ iff π2e ≤ π2e

′. Consequently, the maximal concurrent written
values in a set S ∈ 2N×N

R
are the maximal elements ‖S‖ defined as {u ∈ S |� ∃v ∈

S, u ≤ v}. The combination S1 ⊕ S2 of two sets S1 and S2 is ‖S1 ∪ S2‖.
The behaviour of a replica implementing a multi-value Register is defined by

the LTS 〈Σ,ASmvR ,→〉 where

– Σ = R × {‖S‖ | S ∈ 2N×N
R}, i.e., each state consists of the identifier of the

replica and a set of maximal concurrent written values;
– ASmvR = LSmvR ∪ ({snd, rcv} × Σ), i.e., the set of labels accounts for the

operations of the rdt;
– → is given by the inference rules in Fig. 5. A read returns the set of locally-

stored values (π1 discards all version vectors), while a write updates the local
state with a singleton containing the written value and a version vector that
dominates all known values. Rule (send) propagates the local state while (rcv)

combines the local state with the one received from another replica.

Example 7. We now describe the implementation based on timestamps proposed
in [15] for the last-write wins Register in Example 2. Let (T, <) be the totally-
ordered set of timestamps. Then, the implementation is the LTS 〈Σ,ASlwwR ,→〉
where

– Σ = R × (T × (N ∪ {⊥})), i.e., the state 〈r, (t, a)〉 of a replica r contains the
current value a of the register and its associated timestamp. We establish that
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⊥ < n for all n ∈ N and consider T × (N ∪ {⊥}) lexicographically ordered,
i.e., (t, a) ≤ (t′, a′) when either t < t′ or t = t′ and a ≤ a′.

– ASlwwR = LSlwwR ∪ ({snd, rcv} × Σ) is the set of the data type operations;
– → is given by the inference rules in Fig. 6. As for the multi-value Register, a

read just retrieves the value stored in the replica but does not alter its state.
A write may change the state of the replica by picking the maximum pair
according to lexicographic order. The timestamp t′ on the right-hand-side of
the rule (write) should be understood as any t′ ∈ T. Rules (send) and (rcv) are
analogous to the previous example.

4 From Specifications to LTS

We can exploit the structure of coherent functors to recover an operational
interpretation of specifications. In the following, we consider a coherent func-
tor F : PIDag(L) → SPath(L). We construct its category of elements, which is
reminiscent of the category of elements for a presheaf (see e.g. [13, Chapter 5]).
Following this analogy, given a pr-morphism f : G → G1 and P ∈ F(G), we denote
F(f)(P) the set of paths in F(G1) that are in the “image” of P via F(f), formally
specified as F(G1) ∩ sat(P, f).

Definition 12 (Category of elements). The category of elements E(F) of
F is obtained as follows

– objects are pairs 〈G, P〉, such that G ∈ PIDag(L) and P ∈ F(G);
– arrows f : 〈G, P〉 → 〈G1, P1〉 are pr-morphisms f : G → G1 such that P1 ∈

F(f)(P).

Intuitively, arrows in E(F) stand for the possible ways a path in F(G) can
evolve according to F(f). The category E(F) is clearly an LTS, since each cat-
egory is so. We note that our way of distilling an LTS is similar to how one
obtains an LTS from a relation presheaf [17, Definition 4.1].

Example 8. Consider the functor M(SmvR) induced by the coherent specification
SmvR in Example 1. An object 〈G, P〉 of the category of elements E(M(SmvR))
represents a state of the rdt where the events in the visibility graph G are arbi-
trated according to P ∈ SmvR(G). An arrow f : 〈G, P〉 → 〈G1, P1〉 in E(M(SmvR))
describes a computation where the visibility G is extended to G1 and the
arbitration P to P1. For instance, take the graphs G2 and G3 in Fig. 3c and
Fig. 3d, and the unique pr-morphism f : G2 → G3. If P2 is a total order of the
events in G2, then there is a ps-morphism f : {P2} → sat(P2, f). Moreover,
SmvR(G3) ∩ sat(P2, f) = sat(P2, f) because SmvR imposes no constraint on the
admissible arbitrations of a consistent visibility. Therefore, there is a morphism
f : 〈G2, P2〉 → 〈G3, P3〉 for any P3 ∈ sat(f, P2) in E(M(SmvR)).

A pr-morphism may not induce an arrow in the category of elements, as
f : G2 → G4 with G2 from Fig. 3c and G4 its root extension along 〈rd, {1}〉. Indeed,
SmvR(G4) = ∅, and hence M(SmvR)(f)(P) = ∅ for any P ∈ SmvR(G2).
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An analogous situation occurs when the specification restricts the allowed
arbitrations, as SlwwR in Example 2. Consider the root extension f : G → G1
along 〈rd, {2}〉, with G1 as in Fig. 3a and G is G1 without the event 〈rd, {2}〉.
Then we have SlwwR(G1) = {P1}, and SlwwR(G) contains two paths: P, which
keeps the order of writes as in P1, and P′, which inverts it. The latter cannot
be extended to any path in SlwwR(G1), as writes are in the wrong order. In fact,
there is no f : 〈G, P′〉 → 〈G1, P1〉 in E(M(SlwwR)). Contrastingly, we have that
f : 〈G, P′〉 → 〈G1, P′′〉 is an arrow of E(M(SmvR)) for any P′′ ∈ sat(f, P′), as the
order of writes is irrelevant for SmvR.

4.1 One- and Multi-replica LTSs

In [7, Definition 16] an LTS modelling the operational behaviour of a single
replica – one-replica in short – is derived from a specification as follows

〈G, P〉 �−→ 〈G1, P1〉 ⇐⇒ G1 = G�, P1|EG
= P

where G� is the root extension along � of G. That is, a pair evolves to one where
the visibility relation is augmented with a top event labelled � and the path is
obtained by adding the new event to P. This way of augmenting the visibility
can be formalised as a root �-extension. In fact, the one-replica LTS precisely
corresponds to a sub-category of E(F) consisting only of such extensions.

Lemma 2. Let Eo(F) be E(F) restricted to root �-extensions, for all � ∈ L.
Then the one-replica LTS coincides with the LTS for Eo(F).

This is easily seen: Each root �-extension corresponds uniquely to a �-labelled
one-replica transition, and between any two graphs there is at most one root
extension, so that also the label is implicitly recovered.

The next step is to characterise multi-replica LTS as in [7, Definition 20],
which model multiple replica evolving concurrently. We recall the main concepts.
Suppose we have two replica, and the current state for each is 〈Gi, Pi〉. Let us
further assume that G1 and G2 are compatible [7, Definition 19], i.e., there is a
span fi : G → Gi of mono pr-morphisms such that EG = EG1 ∩ EG2 (thus, shared
nodes have the same labels). Finally, let G1 � G2 (which is just set-theoretical
union) and the obvious morphisms be the pushout. Then a replicated state is of
the form 〈G1 � G2, P〉, where P ∈ P1 ⊗ P2, i.e., P is obtained by “synchronising”
the individual arbitrations. The multi-replica LTS is derived from the one-replica
LTS by adding the following inference rule

(Comp)
〈G1, P|EG1

〉 �−→ 〈G′
1, P

′
1〉 P′ ∈ P ⊗ P′

1

〈G1 � G2, P〉 �−→ 〈G′
1 � G2, P′〉

Intuitively, global computations are derived from computations of single replica.
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We can recover the multi-replica LTS by exploiting the structure of coherent
functors. We need two technical lemmata. The first says that certain pushouts in
SPath(L) can be decomposed as pushouts over singleton path sets. The second
says that every extension is determined by a root extension along the same label.

Lemma 3 (Decomposition). Consider the following diagrams in SPath(L)

X X2

X1 X1 ⊗ X2

f2

f1 f3

f4

{P} {P2}

{P1} P1 ⊗ P2

f2

f1 f3

f4

If the diagram on the left is a pushout, then for all P1 ∈ X1 and P2 ∈ X2 there
are pushouts as shown on the right such that fi and fi have the same underlying
function on events.

Lemma 4. Let f : G → G1 be a pr-morphism in PIDag(L). Then it is an
�-extension if and only if there exists a pushout in PDag(L)

G G1

G G1

f

f

such that f is a root �-extension.

We now show that transitions of the multi-replica LTS are precisely those
corresponding to �-extensions. Intuitively, an �-extension describes a “local” aug-
mentation of a graph, corresponding to a step of computation of a single replica.

Proposition 1. Let Em(F) be E(F) restricted to �-extensions, for all � ∈ L.
Then the multi-replica LTS coincides with the LTS for Em(F).

Example 9. Consider once more the category M(SmvR) discussed in Example 8.
By Lemma 2, the behaviour of a single replica is characterised by morphisms
associated with root extensions. The morphism f : 〈G2, P2〉 → 〈G3, P3〉 described
in Example 8 corresponds to a one-replica transition with label 〈rd, {2, 3}〉.
In fact, its underlying pr-morphism f : G2 → G3 is a root extension, account-
ing for the occurrence of the event 〈rd, {2, 3}〉 that sees any other event in
the configuration; this may happen locally if all events in other replicas have
been already propagated. Contrastingly, the extension f′ : P1 → G2 accounts for
a new event 〈wr(3), ok〉 that is unaware of any other event, and hence, exe-
cuted in a completely different replica. This corresponds to multi-replica tran-
sitions f′ : 〈P1, P〉 → 〈G2, P′〉, where P′ arbitrates the additional event 〈wr(3), ok〉
anywhere in P. The local one-replica execution originating this transition is
obtained via Lemma 4: It is f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 (here we write
〈wr(3), ok〉〉 for the one-node graph/path), with the underlying pr-morphism
∅ → 〈wr(3), ok〉 a root morphism.
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4.2 Contextual LTS

So far, the category of elements allowed to recast the set-theoretical presentation
of one- and multi-replica LTSs. However, its strength is in allowing to obtain a
new LTS that is reminiscent of the category of contexts à la Leifer-Milner [12],
where arrows represent contexts enabling a transition from the source to the
target of the arrow. Here, observations are pairs of an event plus an embedding
that records how the resulting local visibility embeds into the global one. These
additional observations will be needed for defining a correct notion of simulation.

Definition 13. The context LTS is obtained by taking elements 〈G, P〉 of E(F)
as states, and by labelled transitions triples

〈G, P〉 〈f,f〉−−−→ 〈G1, P1〉

such that f : 〈G, P〉 → 〈G1, P1〉 and f : 〈G1, P1〉 → 〈G1, P1〉 are arrows of E(F) and
there exists a pushout in PDag(L)

G G1

G G1

f

f

Note that each arrow f : 〈G, P〉 → 〈G1, P1〉 of E(F) induces at least one labelled
transition (it suffices to consider for f the identity of G1), but they could actually
be more. In fact, all labels can be constructively obtained, since in PDag(L)
pushouts along monos are also pullbacks, and the arrow [f, f] : G + G1 → G1
uniquely induced by the coproduct must be epi.

Also note that if we restrict to consider only injections, the pair 〈f, f〉 is
uniquely characterized by 〈G1, P1〉. In order to simplify some definitions, in the
following we abuse notation and denote as 〈G1, P1〉 such a label 〈f, f〉.

Finally, it is noteworthy that the context LTS includes also the one- and
multi-replica, as stated by the result below.

Lemma 5. The LTS for Eo(F) (Em(F)) coincides with the restriction of the
contextual LTS to transitions whose labels are pairs 〈f, id〉, where f is a root
extension (an extension, respectively).

For the former, note that if f is a root extension, then a mono pr-morphism
forming a pushout square has to be an isomorphism. Instead, should f be an
extension, a few alternatives for the second component of the label are available,
such as taking for G1 the smallest graph such that G�G1 = G1. However, the choice
is immaterial for our later results on simulation, and further abusing notation
we simply denote as � a label 〈f, id〉 such that f is an �-extension.
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Example 10. Consider the multi-replica transition arrow f′ : 〈P1, P〉 → 〈G2, P′〉 of
Example 9. Since we have the arrow f : 〈∅, ∅〉 → 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 in the
category of elements, f′ yields the following context LTS transition

〈P1, P〉 〈f′,f′〉−−−−→ 〈G2, P′〉

where f
′ is the embedding of the one-node graph 〈wr(3), ok〉 into G2. As men-

tioned, we can just use 〈〈wr(3), ok〉, 〈wr(3), ok〉〉 as label, since this is uniquely
determined. This label conveys the information about the resulting visibility and
arbitration pair for the acting replica.

5 Implementation Model

In this section we present our model for implementations. Similarly to what we
have done for specifications, the aim is to obtain implementation LTSs as the cat-
egory of elements of suitable functors. Our models are based on a power-domain
construction, modelling non-determinism. We will show that we can capture
several rdts, and characterise implementation correctness via simulation.

5.1 Implementations as Functors over Power-Domains

Our model for implementations is inspired by [17], where LTSs are modelled
as functors from the free monoid over labels, represented as a one-object cate-
gory, to a suitable category of non-deterministic computations. This allows mod-
elling sequences of transitions as compositions of computations. In our setting,
we introduce a one-replica category representing the free monoid of labels of a
replica.

Definition 14 (One-replica category). The one-replica category IR is the
category with one object, and where morphisms are words over L ∪ {rcv}.

In order to capture the behaviour of a set of replicas R, we need to account
for the fact that single replicas must show the “same” behaviour. For instance,
in the multi-value Register implementation LTS (see Example 6), the (Write)
operation on two replicas r and s have to return exactly the same set of version
vectors N

R, up to a swapping of r and s in their domain.
We formalise this constraint by introducing the category IR(R), containing

#R isomorphic copies of IR. That is, that category comes equipped with iso-
morphisms ιr,s : r → s for each r, s ∈ R such that ιr,r = idr = ιr,s; ιs,r. Further-
more, we require a naturality condition, namely, for all words w over L ∪ {rcv}
we have ιr,s;w = w; ιr,s. This constraint precisely enforces the requirement on
the behaviour of the single replicas, which are now the same up to naturality. For
the sake of clarity, we usually suffix arrows associated to elements of L ∪ {rcv}
with the replica they belong to, e.g. � : r → r is denoted as �r.
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We now move to define a category where the arrows of IR(R) are interpreted
as non-deterministic computations. Here we assume a category M where objects
are states and arrows stand for sets of deterministic computations. We shall see
later how to instantiate M for rdts.

Definition 15 (Power-domain category). Let M be a small category. Then,
its power-domain P(M) is the category whose objects are sets of objects of M
and arrows are pairs (R, {fi}i∈R) : X → Y such that R ⊆ X×Y is a relation and
{fi}i∈R is a family (indexed by pairs 〈x, y〉 in R) of non-empty sets of arrows in
M such that f〈x,y〉 ⊆ HomM[x, y]. If M is (symmetric) monoidal, so is P(M).

An element of f〈x,y〉 is thus an arrow in M from x to y. For simplicity, we
often denote {fi}i∈R as fR. Also, given element x ∈ X and morphism (R, fR) :
X → Y , we denote as (R, fR)(x) the set {y | 〈x, y〉 ∈ R}.

Definition 16 (Implementation). Let M be a category. An implementation
of R in M is a functor I : IR(R) → P(M) such that I(r) = I(s) for all r, s ∈ R.

An implementation functor thus maps each replica into the same set of pos-
sible states S, and the arrows of a replica are (morally) mapped to relations
over S × S. More precisely, I(g)(x) is the set of states that are reachable from x
after observing g; this will be used later on to synthesise the corresponding LTS.
The naturality of the isomorphisms ιr,s guarantees that the replicas exhibit the
“same” behaviour, yet only up to isomorphism, which takes care of the possible
permutations among replicas.

5.2 From Implementations to Replica LTSs

We now define the category of elements E(I) for an implementation I as in
Definition 12. It is rewritten here for the sake of clarity.

Definition 17 (Category of elements, II). The category of elements E(I)
of I is obtained as

– states are pairs 〈r, x〉, such that r ∈ R and x ∈ I(r);
– arrows g : 〈r, x〉 → 〈s, y〉 are arrows g : r → s such that y ∈ I(g)(x).

It now suffices to apply the machinery used for obtaining context LTSs.

Definition 18 (Implementation LTS). The implementation LTS is obtained
by taking elements 〈r,m〉 of E(I) as states, and by labelled transitions triples

〈r,m〉 〈g,g〉−−−→ 〈r, n〉
such that g : 〈r,m〉 → 〈r, n〉 and g : 〈s, o〉 → 〈r, n〉 are arrows of E(I).

We restricted to transitions over the same replica, but of course this is just
for convenience, since all our examples fit into this pattern. Also, note that each
arrow g : 〈r,m〉 → 〈r, n〉 of E(I) induces at least one labelled transition.
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5.3 Deterministic Computations

Given a state, what we need is the possibility for it to a) evolve towards a
different state and b) be combined with other states. We formalise these ideas
via pre-ordered monoids, i.e., structures M = 〈M,≤,⊗, 1〉 consisting of a set M ,
a pre-order ≤⊆ M×M , and an associative binary operation ⊗ : M×M → Mwith
an identity element 1 ∈ M such that 1 ≤ x and x ≤ y implies x ⊗ w ≤ y ⊗ w1.

Remark 1. In order to take into account the isomorphic behaviour of distinct
replicas, the pre-ordered monoid M should come equipped with a group action
that preserves both the order and the monoidal structure of M. However, all
our cases will fit the bill. First of all note that given a set N , the cartesian
product M × M and the function space MN are pre-ordered monoids, with
M a sub-monoid of MN and MN × MN equal to (M × M)N . Also, MN is
equipped with a group action Π(N) × MN → MN given by the permutation
group Π(N) on N , and if X,Y are sub-monoids of MN that are closed under
the group action, then also the sub-monoid X ×Y of (M×M)N is closed. Thus,
all of our examples fit into the shape MR, for R the set of replicas at hand.

Example 11. Let us consider the multi-value Register from Example 1. Recall
that states of a replica r consist of a sets of pairs (n, v) ∈ N × N

R, where n is a
written value and v is a version vector. In the implementation (Fig. 5) these sets
can evolve to: a) themselves (rules (Read) and (Send); b) to a set containing
a pair dominating the source state (rule (Write)) and to a set obtained as the
combination of the source state and the received one (rule (Rcv)).

These evolutions can be modeled as a pre-ordered monoid structure over
2N×N

R
, namely M = 〈2N×N

R
,≤,⊕, ∅〉, where ≤ and ⊕ are defined as in Exam-

ple 6.

Example 12. Consider the implementation of last-write wins Register in Exam-
ple 7. The current state of replica r consists of a timestamp t ∈ T and the value
in the register a ∈ N ∪ {⊥}. The evolution of pairs 〈t, a〉 in the implementa-
tion is captured via the pre-ordered monoid 〈T × N⊥,≤,max, 〈⊥,⊥〉〉, where ≤
stands for lexicographic order and max{p, q} = q if and only if p ≤ q. This max
operation is precisely what is used to define the rules (Write) and (Rcv) in
Fig. 6.

Given a pre-ordered monoid M modelling the deterministic behaviour of
replicas, we can easily derive a category of deterministic computations. This
is intended to be used as base category for the power domain construction of
Sect. 5.1.

Definition 19 (Category of deterministic computations). The category
C(M) has objects the elements of M and arrows are defined for all m,n elements
of M as follows: fm,n : m → n if m ≤ n, with fm,m = idm and fn,m; fm,o = fn,o.
1 Note that this is more general than the lattice of states proposed in [14]. First of

all, we consider a pre-order instead of a partial order, and furthermore we do not
require ⊗ to be induced by ≤. This weakening results in an algebraic structure that
allows for modelling a large family of rdts.
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Note that C(M) is a strict monoidal category, inheriting its structure from
M. It is a thin category (for each pair of objects there is at most one arrow)
and it is strictly symmetric if ⊗ is commutative, yet it is not skeletal, since
isomorphisms are not identities. All arrows are mono as well as epi, and 1 is the
initial object, while pushouts and pullbacks do not necessarily exist.

Example 13. The corresponding category of computations C(M) for the imple-
mentation of a multi-value Register (Example 11) has sets S ∈ 2N×N

R
as objects

and arrows fS,S′ : S → S′ with S ≤ S′. We may attempt to interpret labels
as arrows of C(M), which would work for the operations of the data type, i.e.,
wr and rd, even if the latter might be partial. For rcv, however, the target of
each arrow would depend on the received state. We avoid considering different
receive operations, and we describe them non-deterministically via the power-
domain construction. In fact, the objects of P(C(M)) are sets of sets of pairs, i.e.,
X ⊆ 2N×N

R
. Each arrow (R, fR) : X → Y represents a computation in which a

replica starting on some state S ∈ X will end up in some state S′ ∈ (R, fR)(S).

With the monoidal structure in place, we instantiate our development of the
previous section and obtain an implementation LTS better suited for our notion
of simulation. Implementation functors are of the form I : IR(R) → P(C(M)),
with M a pre-ordered monoid, and the derived replica LTS has transitions

〈r,m〉 〈g,g〉−−−→ 〈r, n〉

where m and n are elements of the monoid. We impose the further requirement
that rcv must accept any possible state that it receives, so that I(r) is a sub-
monoid of M and I(rcvr)(m) = m ⊗ I(r) for all r ∈ R and m ∈ I(r). This
implies that I(rcvr) = I(rcvs) for all r, s ∈ R and that the operation behaves
symmetrically, i.e. m⊗o ∈ I(rcvr)(m)∩ I(rcvr)(o) for all r ∈ R and m, o ∈ I(r).

Finally, with an abuse of notation, we denote as � the label 〈�, idr〉 and as
〈s, o〉 the label 〈rcv, g〉 such that g : 〈s, I(ιr,s)(o)〉 → 〈r,m ⊗ o〉 is obtained by
composing the arrows ιs,r : 〈s, I(ιr,s)(o)〉 → 〈r, o〉 and rcvr : 〈r, o〉 → 〈r,m ⊗ o〉
(noting that there is no ambiguity since I(ιr,s)(o) is a singleton).

Example 14. We now consider the implementation functor I for the multi-value
Register. We have I(r) = {‖S‖ | S ∈ 2N×N

R}, i.e., a set containing all sets of
maximal pairs. An arrow in IR(R) (i.e., a sequence of operations) is mapped
by I to an arrow I(r) → I(r). For instance, I(〈wr(a), ok〉r) is defined such that
I(〈wr(a), ok〉r)(S) = {{(a, π2S
r)}} for all S ∈ I(r), i.e., wr(a) can be performed
over any state S, and this operation (deterministically) changes the state by a
set containing just a pair with the written value and a dominating version vector.
Analogously, I(〈rd, V 〉r) is defined such that I(〈rd, V 〉r)(S) = {S} if π1S = V
and I(〈rd, V 〉r)(S) = ∅ otherwise, i.e., a read operation that returns V can be
performed only over a state S that contains exactly the values V , otherwise such
an operation cannot occur. Finally, I(rcvr)(S) = {S ⊕ S′ | S′ ∈ I(r)}, i.e., a
receive can augment the state S with any received state S′.
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Now, the category of elements for the functor I introduced above generates
the transition system in Fig. 5, if we disregard labels. Labels are actually recov-
ered by the corresponding implementation LTS; in particular the label 〈rcv, g〉
makes the connection between the received state and the target of the arrow,
which is analogous to rule (Rcv).

5.4 Implementation Correctness via Simulation

We are now ready to characterise implementation correctness as a simulation
relation between the context LTS and the implementation LTS for a given rdt.
The starting point is what usually occurs in higher-order calculi: Since the label
of a transition may be a process, the notion of simulation has to take also labels
into account. Thus, our proposal is the following.

Definition 20 (Implementation correctness). Let S be a specification, CS
the context LTS, and IS the implementation LTS. An implementation relation
RS is a relation between states in IS and CS such that if (σ, 〈G, P〉) ∈ RS then

1. if σ
�−→ σ′ then ∃G′, P′ such that 〈G, P〉 �−→ 〈G′, P′〉 and (σ′, 〈G′, P′〉) ∈ RS ;

2. if σ
σ′
−→ σ′′ then ∃G′, G′′, P′, P′′ such that 〈G, P〉 〈G′,P′〉−−−−→ 〈G′′, P′′〉, (σ′, 〈G′, P′〉) ∈

RS , and (σ′′, 〈G′′, P′′〉) ∈ RS .

We write ∼S for the largest implementation relation.

Given the way we distilled labels, the definition above does coincide with the
notion of implementation correctness as given in [7, Definition 21]. A distinction
between one- and multi-replica simulation can be recovered just by suitably
restricting the context LTS, that is, item 1 above, by requiring � to be arising
from either a root extension or an extension, respectively.

6 Conclusions and Further Works

In our paper we considered rdts, and we laid out the basis for an algebraic
characterisation of their operational semantics as well as of their implementation
correctness in terms of (higher-order) simulation. The core of our contribution
lies precisely in the formalism behind such characterisations. Our proposal builds
on [9] and improves [7] and similar set-theoretical characterisations, which are
now made precise and recast into standard notions from the literature, thus
allowing for the use of a large body of methods and techniques in the analysis of
rdts. We offered a few examples for showing the adequateness of our proposal,
even if its strength needs to be further checked by a larger number of case studies.

In order to stress the methodological points, we adopted some simplifications.
The most notable is the removal of the snd label from our transition systems.
Indeed, in our examples, and, in in fact, in most case studies we are aware of,
a replica always spawns a full copy of itself, thus from the point of view of
simulation it is irrelevant, and it would be in any case captured by the identity
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arrow on the category of replicas. The modelling of replica communication [7],
where the action of sending will play a larger role, is the subject of ongoing work.

Our construction of transition systems out of a category of elements follows
an already established pattern for pre-sheaves and simulation, most notably
in [17]. The distilling of labels is clearly reminiscent of the contexts as labels
paradigm advanced by Leifer and Milner [12], and it would fit in its less con-
strained version proposed in [1]. Since this was not the main methodological
issue of the paper, we adopted a presentation requiring some ingenuity.
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Abstract. Qsimulation is a tool for simulating quantum computation
on classical computers, which allows a user to write quantum programs
in a simple quantum programming language, draw quantum circuits, and
view the results of executing them. Similar to many other quantum simu-
lation tools, the performance of Qsimulation largely depends on its capac-
ity of dealing with matrix operations. In this paper we present Qsimu-
lation V2.0, an optimized quantum simulator that implements a new
algorithm for accelerating matrix-vector multiplications. The algorithm
is based on matrix decomposition using tensor products and suitable for
simulating the execution of quantum circuits. Experimental results show
that Qsimulation V2.0 outperforms the open source frameworks Qiskit
and ProjectQ.

Keywords: Quantum computation · Quantum simulator ·
Optimization

1 Introduction

Quantum computation has been a topic of great interest for the last two decades
[10]. Benefiting from the superposition of quantum states, quantum computers
can accelerate computation remarkably compared with classical computers [7,9,
12]. While a lot of experimental physicists and computer scientists are currently
trying to build scalable quantum computers, e.g. [1], it appears that simulation of
quantum computation will be at least as critical as circuit simulation in classical
VLSI design [16].

As early as in 1980s Richard Feynman observed that simulating quantum
processes on classical hardware seems to require super-polynomial (in the number
of qubits) memory and time [16]. With the rapid development of hardware, the
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simulation of more and more qubits becomes gradually possible. Using quantum
circuits to simulate quantum computation has become the mainstream. Up to
now, a large number of quantum languages are springing up to simulate quantum
computing, such as Quipper [6], Q# [15], Qiskit [3], and ProjectQ [14].

State-of-the-art algorithms for simulating quantum computation on classi-
cal computers can be mainly divided into two categories: (i) the state-vector
approach stores a quantum state as a vector and lets it evolve during quantum
computation; (ii) the tensor-based approach represents quantum states as tensors
and specifies the input and output states as rank-1 Kronecker projectors [8]. The
first approach is limited by the number of qubits due to the exponential growth
of the Hilbert space, and the second one is less sensitive to the number of qubits
and has been pursued more actively. However, if a quantum state is entangled, it
is impossible to decompose the state into the form of a product of states of indi-
vidual subsystems. Therefore, an entangled state still needs to be represented
by a vector. When the number of qubits in an entangled state is very large, the
consumption of space and time grows exponentially. For example, in the cases
of major interest – Shor’s and Grover’s algorithms – quantum simulation is still
performed with straightforward linear-algebraic tools and requires astronomic
resources [16].

Qsimulation [4] is a quantum simulator designed with the first approach. The
bottleneck of its performance lies in manipulating large matrices. We observe
that a quantum circuit consists of many steps, and in each step the common
pattern is to apply some quantum gates in parallel to a number of qubits. Very
often, a relatively small number of qubits are involved in the computation of
each step while many other qubits remain idle, though the whole circuit could
be large in both width and depth. Since the computation in each step can be
viewed as the multiplication of a unitary matrix with a state vector, the above
observation inspires us to decompose the unitary matrix as a tensor product of
smaller matrices representing the parallel gates applied to some qubits together
with identity matrices representing the idleness of other qubits. To some extent,
we combine the state-vector and the tensor-based approaches. We implement
this idea in an optimized algorithm for matrix-vector multiplication, exploit
multithreaded programming, and incorporate the new algorithm in Qsimulation
V2.0. We have conducted experiments on various quantum algorithms, such as
Grover’s algorithm [7,10], Simon’s algorithm [13], Bernstein-Vazirani algorithm
[2]. It turns out that Qsimulation V2.0 has almost doubled the number of qubits
that can be handled by Qsimulation V1.0. It outperforms Qiskit in most cases by
taking almost one-third the time, and it is nearly 30 times faster than ProjectQ
when the number of qubits is large.

The rest of the paper is organized as follows. In Sect. 2, we give the necessary
notations about quantum bits and gates. A brief introduction to Qsimulation is
given in Sect. 3. In Sect. 4 we explain the main idea for our new algorithm of com-
puting matrix-vector multiplication. The algorithm itself is presented in Sect. 5.
In Sect. 6 we use several typical quantum algorithms to show the performance
of Qsimulation before and after the optimization, and we compare Qsimulation
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V2.0 with Qiskit and ProjectQ. In Sect. 7, we discuss further optimization with
multithreaded programming. Finally, we conclude in Sect. 8.

All the Java code and supplementary materials are available at the link
https://github.com/coconutoe/quantum.

2 Notations About Quantum Bits and Gates

Bit is a fundamental concept of classical computation and classical information.
Quantum computation and quantum information are built upon an analogous
concept, the quantum bit, or qubit for short [10]. For a qubit, there are two
possible states, which correspond to the states 0 and 1 for a classical bit. The
qubit states are expressed as |0〉 and |1〉, in which notation like ’| 〉’ is called the
Dirac notation and it is the standard notation for states in quantum mechanics.
The difference between bits and qubits is that a qubit can be in a state other than
|0〉 or |1〉. The state of a qubit can be linear combinations of other states, often
called superpositions: |ψ〉 = α |0〉 + β |1〉, where α and β are complex numbers
and the normalization condition |α|2 + |β|2 = 1 must be satisfied. Put another
way, the state of a qubit is a unit vector in a two-dimensional complex vector
space. The special states |0〉 and |1〉 form an orthonormal basis for this vector
space. Multiple qubits can be similarly denoted. For example, we write |00〉+|11〉√

2

for the state of a two-qubit system such that both qubits are in the same states
|0〉 and |1〉 with equal chance. More detailed account can be found in [10].

Quantum gates are also analogous to gates in classical circuits, in which
logic gates are used to process classical bits. The function of a quantum gate in
quantum circuits is to convert the states of qubits. For example, quantum gate
NOT can change quantum state |0〉 to |1〉. In fact, a quantum gate is essentially a

unitary matrix. For example, the Hadamard gate is defined as H ≡ 1√
2

(
1 1
1 −1

)
,

and the NOT gate mentioned earlier is X ≡
(

0 1
1 0

)
.

3 A Brief Introduction to Qsimulation

Qsimulation [4] is a lightweight quantum simulator intended to be used by
instructors and novices to design and test simple quantum programs and cir-
cuits. It contains three main ingredients:

– an imperative language for writing simple quantum programs;
– an interpreter that can translate a quantum program into a quantum circuit;
– an interactive user interface that allows a user to simulate the execution of a

quantum program or a circuit.

As a domain-specific high-level language, the imperative language of Qsimu-
lation follows Selinger’s slogan of “quantum data, classical control” [11]. Besides

https://github.com/coconutoe/quantum
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assignments, sequential composition, and conditionals, it has quantum initial-
ization, unitary operations, and measurements to deal with quantum data. It
also has auxiliary assemblies, including quantum types and a series of reentrant
encapsulated functions to simplify programming.

The interpreter accepts a quantum program and translates it into a quantum
circuit. Furthermore, the interpreter is also designed as an execution engine. It
conforms to the rules of quantum mechanics [10], represents a quantum state
as a complex vector and a quantum gate as a complex matrix. In the current
work, we propose an algorithm about decomposing matrices into blocks so to
accelerate matrix-vector multiplication and an engineering method to optimize
the linear algebra calculation inside the simulator.

The graphic user interface facilitates a user to design quantum programs
and circuits. In Fig. 1, we show the interface with a quantum circuit whose
input quantum state is |110〉. By making use of the buttons in the left part of
the panel, we can easily drag and drop built-in gates to the quantum circuit
in the middle of the panel. A user can also write a quantum program in the
coding editor and then run it. The results are displayed in the lower part of
the middle panel. By clicking the icons above the panel, we can perform some
general operations such as importing and saving files. The graphic user interface
is convenient and intuitive for a user to better understand the circuit model of
a quantum algorithm. It is a useful assistant for an instructor to teach simple
quantum algorithms. With the help of Qsimulation, students can have a more
intuitive understanding of quantum circuits.

Fig. 1. Interface of Qsimulation V2.0
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4 Main Idea of the Optimization Algorithm

The evolution process of a quantum state can be described by a quantum circuit.
A unitary gate in the circuit corresponds to a unitary matrix, say U , and a
quantum state to a unit vector, say |ψ〉. After applying the unitary matrix to
the state, we obtain a new state given by the vector U |ψ〉. For example, consider
a quantum circuit made up of n qubits. The size of the unitary matrix U is
N × N , where N = 2n. The size of the unit vector |ψ〉 is N , so is the size
of the resulting vector U |ψ〉. It is easy to see that the time complexity of the
matrix-vector multiplication is O(N2), when addition and multiplication are
considered as basic operations of cost O(1). In practice, however, a quantum
algorithm consists of a series of quantum gates, most of which are Pauli gates
or CNOT gates in typical quantum algorithms such as Deutsch-Jozsa algorithm
[5,10], Grover’s algorithm [7,10], Simon’s algorithm [13], and Bernstein-Vazirani
algorithm [2]. Fortunately, the dimension of the matrix corresponding to each
gate is usually no more than four. That is, most quantum operations may just be
applied to a few qubits, resulting in a large number of zero entries in the unitary
matrix U . We will decompose matrix U into some blocks, and then perform
matrix multiplication for blocks. We aim to reduce the time complexity to nearly
O(N) in the optimized approach of matrix multiplication. The discussion will
be carried out in three cases: (1) U = I ⊗Ue, (2) U = Ue ⊗I, (3) U = I ⊗Ue ⊗I,
where each I represents an identity matrix and ⊗ stands for the tensor product
operation of matrices, according to different positions of the quantum operation
represented by the matrix Ue. The first two cases are special forms of the last
case. We separate them out for the convenience of presentation.

Let us start with a general discussion of the mathematical tools needed in
the above three cases, regardless of concrete quantum circuits. In the following
discussion, we assume that the matrix Ue has dimension M and is expressed as
Ue = (ui,j)M×M with 0 ≤ i, j ≤ M − 1. Analogously, the dimension of U is
assumed to be N , and the vector |ψ〉 is (c0, c1, . . . , cN−1)T.

4.1 Case U = I ⊗ Ue

The dimension of I is L = N/M in this case. Then, we have

U |ψ〉 =

⎛
⎜⎜⎜⎝

Ue

Ue

. . .
Ue

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...

cN−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Ue |ψ0〉
Ue |ψ1〉

...
Ue |ψL−1〉

⎞
⎟⎟⎟⎠ (1)

where |ψi〉 =
(
cM ·i, cM ·i+1, . . . , cM ·(i+1)−1

)T is a segment of |ψ〉, for i =
0, . . . , L − 1. We can see that the multiplication of the N × N matrix by the
N -dimensional vector is decomposed into L multiplications of M × M matrices
by M -dimensional vectors. The overall time complexity becomes O(M2 · L) =
O(M · N). In many applications, the dimension of Ue is far smaller than that
of U so that M can be regarded as a fairly small constant. Thus the final time
complexity is nearly O(N).
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4.2 Case U = Ue ⊗ I

The dimension of I is also L = N/M in this case. Then, we have

U |ψ〉 =

⎛
⎜⎜⎜⎝

u0,0I u0,1I · · · u0,M−1I
u1,0I u1,1I · · · u1,M−1I

...
...

. . .
...

uM−1,0I uM−1,1I · · · uM−1,M−1I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...

cN−1

⎞
⎟⎟⎟⎠ . (2)

For any 0 ≤ i, j ≤ M − 1, the (i · L + j)-th element of the resulting U |ψ〉 is∑M−1
k=0 ui,k · cj+k·L. As in the first case, we regard M as a fairly small constant.

Thus the time complexity of the matrix multiplication becomes O(N), which is
far less than the original O(N2).

4.3 Case U = I ⊗ Ue ⊗ I

Let Ll be the dimension of I on the left of Ue, and Lr the dimension of I on
the right. Again, the dimension of Ue is M . That is, the dimension of U is
N = Ll · M · Lr. Then, we have

U |ψ〉 =

⎛
⎜⎜⎜⎝

Ue ⊗ I
Ue ⊗ I

. . .
Ue ⊗ I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

c0
c1
...

cN−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(Ue ⊗ I) |ψ0〉
(Ue ⊗ I) |ψ1〉

...
(Ue ⊗ I) |ψLl−1〉

⎞
⎟⎟⎟⎠ (3)

where |ψi〉 =
(
cM ·Lr·i, cM ·Lr·i+1, . . . , cM ·Lr·(i+1)−1

)T is a segment of |ψ〉, for
i = 0, . . . , Ll − 1. Here (Ul ⊗ I) |ψi〉 can be obtained through the method in the
second case. As in the previous cases, M is usually a small constant. So the time
complexity is O(N) in total, far less than the original O(N2).

5 The Optimization Algorithm

We introduce the sub-procedure UTensorI given in Algorithm 1 that will be
called in the main procedure ITensorUTensorI given in Algorithm 2.

The essence of UTensorI is actually the decomposition of matrices according
to the formula (2) in Sect. 4.2. Regard the whole matrix I as a block. Then
U = Ue ⊗ I becomes a matrix of M2 unit matrices with different coefficients.
In order to calculate U |ψ〉, we divide |ψ〉 into M blocks, each of which has
the same dimension as matrix I and is multiplied by a coefficient. In this way,
the calculation of a large complex matrix multiplied by a vector becomes the
calculation of many smaller unit matrices multiplied by vectors.

The pseudo code in Algorithm 1 describes the details of the procedure. The
outermost for loop traverses the block matrix of U = Ue ⊗ I by block lines.
The middle for loop traverses each row of the decomposed matrix and records
the final result. The innermost for loop accumulates the values of the entries in
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Algorithm 1: Procedure UTensorI
Input: (1) IDimension: the dimension of matrix I;
(2) uGate: the matrix Ue;
(3) qsIn: a vector representing the quantum state before the evolution.
Output: qsOut: a vector representing the quantum state after the evolution.

1 for i = 0 → (uGate.dimension − 1) do
2 for j = 0 → (IDimension − 1) do
3 temp ← Complex.ZERO;
4 for k = 0 → (uGate.dimension − 1) do
5 temp ← temp+ uGate[i][k] ∗ qsIn[j + k ∗ IDimension];
6 end
7 qsOut[i ∗ IDimension+ j] ← temp;

8 end

9 end

Algorithm 2: Procedure ITensorUTensorI
Input: (1) IlDimension: the dimension of the left matrix I;
(2) IrDimension: the dimension of the right matrix I;
(3) uGate: the matrix Ue;
(4) qsIn: a vector representing the quantum state before the evolution.
Output: qsOut: a vector representing the quantum state after the evolution.

1 i ← 0;
2 m ← IrDimension ∗ uGate.dimension;
3 while i < IlDimension do
4 vectorTemp[0 : m] ← qsIn[i ∗ m : (i+ 1) ∗ m];
5 qsOut[i ∗ m : (i+ 1) ∗ m] ← UTensorI(IrDimension, uGate, vectorTemp);
6 i ← (i+ 1);

7 end
8 Notation: v2[i2 : i2 + j1 − i1] ← v1[i1 : j1] denotes the assignment of the i2-th

to the (i2 + j1 − i1)-th elements of v2 by the i1-th to the j1-th elements of v1.

the result vector. We regard uGate.dimension as a small constant, so the time
complexity of Algorithm 1 is O(IDimension).

The main procedure ITensorUTensorI is described by the pseudo code in
Algorithm 2. Since Ue ⊗ I has already been solved by Algorithm 1, we can treat
Ue ⊗ I as a larger unitary matrix with a calculation cost of O(IrDimension)
without caring about its internal details. The following discussion will only focus
on I ⊗Ue. Note that I ⊗Ue can be partitioned into diagonally identical matrices
Ue, and other elements are all zero as discussed in Sect. 4.1. Then the calculation
is simplified to the form of IlDimension Ue’s right multiplied by vectors. The
procedure ITensorUTensorI has only one layer of while loop, which is used to
control the number of times that Ue is multiplied by a vector on the right, and
puts the corresponding results into the final position of the result vector. The
total time complexity of Algorithm 2 is O(IlDimension · IrDimension).
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6 Experimental Results

We have carried out experiments in Qsimulation on various quantum algorithms
such as Deutsch-Jozsa algorithm, Bernstein-Vazirani algorithm, Grover’s algo-
rithm, and compared the running time of those algorithms before and after the
optimization. As we can see from Table 1, the efficiency in Qsimulation V2.0
has been greatly improved. For example, the running time of Deutsch-Jozsa
algorithm (11 qubits) is about 59 times less after the optimization. Since Qsim-
ulation V1.0 can simulate quantum circuits up to 11 qubits in a laptop, our
experimental settings are all within 11 qubits. In fact, Qsimulation V2.0 allows
us to simulate quantum circuits up to 22 qubits in the same laptop. In addition,
we run the same algorithms with two other software tools: Qiskit and ProjectQ,
where Qiskit is an open source quantum programming library developed by IBM
and ProjectQ was developed by ETH Zurich and has been open-sourced since
2006. When the running time exceeds 30000 ms, we force the termination of
the programs. It can be seen that Qsimulation V2.0 outperforms Qiskit by tak-
ing almost one-third the time, and it performs bettern than ProjectQ in most
cases. As a matter of fact, ProjectQ merely performs well when the number of
qubits is small. Its performance decreases drastically when the number of qubits
increases.

Table 1. The running time of various algorithms

Algorithms Qubits Time(ms)

Qsimulation V1.0 Qsimulation V2.0 Qiskit ProjectQ

Deutsch-Jozsa [5,10] 11 8277 138 8811 ≥30000

Simon [13] 10 635 7.5 15.1 9

Bernstein-Vazirani [2] 10 1148 9 15.5 9.3

Superdense Coding [10] 2 1.25 1.125 5.5 1

Teleportation [10] 3 3.5 1.625 5.875 1.125

Grover [7,10] 9 5978 172 669 ≥30000

We then compare Qsimulation V2.0 with Qiskit and ProjectQ on quantum
circuits with more qubits. We first prepare an entangled state with 18 qubits:
1√
2
(|00 . . . 0〉 + |11 . . . 1〉). More specifically, we apply the Hadamard gate H on

the first qubit, and then use that qubit to control the NOT gate X acted on
each of the other 17 qubits. Then in different cases we apply different gates on
the 18 qubits. For example, in the case 18H, the gate H is applied on each qubit;
in the case 9H 9Y , we apply the H gate on 9 qubits and the Pauli-Y gate on
9 other qubits. We record the running time on Qsimulation V2.0, Qiskit and
ProjectQ, respectively.

It can be seen from Table 2 that the running time of Qsimulation V2.0 is
close to one-third of that of Qiskit in most cases, and the efficiency of ProjectQ
is the worst, with the running time being about 10 times of Qiskit.
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Table 2. Quantum gates acted on entangled states (ms)

Gates 18H 18X 18Y 18Z 9H 9X 9H 9Y 9H 9Z 6X 6Y 6Z

Qsimulation V2.0 830 782 824 790 786 831 812 823

Qiskit [3] 2229 2221 2198 2217 2298 2193 2201 2254

ProjectQ [14] 21198 20565 19725 27286 21016 22145 21803 18220

7 Further Optimization by Multithreading

The mathematical description of a quantum evolution is essentially a matrix-
vector multiplication. In the first stage of optimization, we divided the matrix
into blocks for calculation. On this basis, we will introduce multi-threaded par-
allel computation. The reason why parallel computation is feasible is that cal-
culating each element of the resulting matrix is independent. For example, for
any matrices A and B, with the sizes r × s and s × t, respectively, we can cal-
culate the product of A and B like C = AB = (cij), where cij =

∑s
k=1 aik · bkj

(1 ≤ i ≤ r, 1 ≤ j ≤ t). It can be seen that calculating each cij is mutually inde-
pendent. That is, no matter which element is calculated first, the calculation of
other elements will not be affected. So we can use multithreading to calculate
each element in parallel. Theoretically, the time complexity will decrease from
O(r · s · t) to O(s). If r = s and t = 1, the matrices operation will be reduced to
a matrix-vector multiplication, and the time complexity will drop from O(s2) to
O(s) by the multithreading optimization.

Since our tool is developed in Java, our multithreaded parallel computation
is implemented by the fork/join framework. In the actual experiments, parallel
computation with three threads and quantum circuits with 21 qubits are used.
When the number of qubits is less than 20, almost no optimization can be
observed in that it takes time to start multithreading and the greater the amount
of computation, the greater the advantage of multithreading. We just use a
simple quantum circuit to verify the idea. We first initialize 21 qubits, and then
apply quantum operations on the 21 qubits respectively. We record the running
time of single-thread version and 3-thread version in Table 3. It can be seen that
the running time of multithreaded programming indeed decreases.

Table 3. The running time of single-thread and multi-threads (ms)

Gates 21H 21X 21Y 21Z 7X 7Y 7Z

Single-th 22778 22499 21997 22179 22573

3-ths 13439 13329 13886 13919 13323
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8 Conclusion

We have presented Qsimulation V2.0 that uses a new algorithm to compute
matrix-vector multiplication. We have conducted experiments and found that it
has almost doubled the number of qubits that can be handled by Qsimulation,
and it outperforms Qiskit in most cases by taking almost one-third the time,
let alone ProjectQ, which turns out to be 10 times slower than Qiskit when the
number of qubits is large. From the engineering point of view, we have used
multithreading to further optimize our algorithm and shown its effectiveness by
experiments. Note that the space complexity is also reduced, which is reflected
from the fact that more qubits can be simulated.
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