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Abstract. Non-negative matrix factorization and its variants have been
utilized for computer vision and machine learning, however, they fail
to achieve robust factorization when the dataset is corrupted by out-
liers and noise. In this paper, we propose a roust graph regularized
non-negative matrix factorization method (RGRNMF) for image cluster-
ing. To improve the clustering effect on the image dataset contaminated
by outliers and noise, we propose a weighted constraint on the noise
matrix and impose manifold learning into the low-dimensional represen-
tation. Experimental results demonstrate that RGRNMF can achieve
better clustering performances on the face dataset corrupted by Salt and
Pepper noise and Contiguous Occlusion.

Keywords: Noise · Graph regularization · Dimensionality reduction ·
Non-negative matrix factorization

1 Introduction

Clustering for computer vision and subspace learning is a challenging work.
Many clustering methods were proposed for image retrieval [1], image indexing
[2] and image classification [3]. To achieve image clustering effectively, a widely
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used approach is to discover an effective low-dimensional representation for the
original data. Therefore, a lot of researches were presented to dig out the geo-
metrical structure information of the original data, which can lead to a more
discriminative representation.

In the past decades, many dimensionality reduction techniques were proposed
including principal components analysis (PCA) [4] and non-negative matrix fac-
torization (NMF) [5]. Among these methods, the non-negative property of the
learned representation leads to be more meaningful in image representation.
NMF decomposes the original data matrix into two low-dimensional matrices
(i.e. a basis matrix and an encoding matrix), whose product can be best approx-
imate to the original data matrix. Due to the excellent property of NMF, some
variants [6–19] were proposed to improve the clustering accuracy from different
views.

Although traditional NMF performs very well in learning a parts-based rep-
resentation for clustering, it fails to achieve clustering while the original data is
heavily corrupted. In the view of recent researches, the loss function of traditional
NMF are very sensitive to outliers. In other words, the Frobenius norm enlarges
the approximation error between the original data matrix and the product of the
decomposed matrices. To address this issue, some studies [6–12] proposed some
robust loss functions to minimize the reconstruction error. These proposed meth-
ods can reduce outliers of the representation, but they cannot remove outliers.
Moreover, the learned representation cannot respect the geometrical structure
of the original data contaminated by outliers and noise.

To address above-mentioned problems, we present a robust graph regularized
non-negative matrix factorization (RGRNMF) for image clustering. Firstly, we
propose a robust framework to measure the approximation error. Secondly, we
construct a weighted graph to encode the geometrical information of the original
data. Our achievements are as follows:

– We propose a robust non-negative matrix factorization framework to remove
outliers, and we incorporate the geometrical information of the original data
into the learned representation.

– Extensive experiments demonstrate that our proposed framework can achieve
image clustering from the original data corrupted by Salt and Pepper noise
or Contiguous Occlusion.

2 Related Works

Supposed that there are n sample images {xi}ni=1 and any image xi has m fea-
tures. Thus, we denote the original data matrix by V ∈ Rm×n. Due to the
high-dimensional property of V , it is a challenging task to achieve image cluster-
ing. Generally, NMF is utilized to find two low-dimensional matrices W ∈ Rm×r

and H ∈ Rr×n such that the product of W and H can be approximately equal
to V . There, we have

V ≈ WH, (1)
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where r is a factorization rank and r << min{m,n}. Generally, problem (1) can
be transformed into a non-convex optimization problem as follows:

min
W,H

Error(V,WH)

s.t. W ≥ 0,H ≥ 0.
(2)

where the loss function Error can be the Frobenius norm, L1 norm, L2,1

norm or Huber. Recently, Guan et al. [12] proposed a Truncated Cauchy loss
(CauchyNMF) to reduce outliers, which can be summarized as follows:

min
W≥0,H≥0

F (W,H) =
m∑

i=1

n∑

j=1

g(
(V − WH)ij

γ
), (3)

where g(x) =

{
ln(1 + x), 0 ≤ x ≤ σ

ln(1 + σ), x > σ
; σ and γ denote the scale parameter and

the truncation parameter. σ can be obtained by three-sigma-rule, and γ is given
by the Nagy algorithm [12]. Traditional NMF utilizes the different loss functions
to reduce outliers, but they cannot remove outliers. Therefore, a robust NMF
framework was proposed to eliminate outliers as follows:

min
W,H,E

loss(M,WH,E) + λΩ(E,W,H)

s.t. W ≥ 0,H ≥ 0,
(4)

where M is the original data matrix corrupted by noises, E is an error matrix,
λ is a hyper-parameter, and the function Ω is the constraint term. Zhang et al.
[11] proposed the Frobenius norm as the loss function and the L1 norm as the
constraint on E, which can be described as follows:

min
W,H,E

‖ M − WH − E ‖2F +λ ‖ E ‖M
s.t. W ≥ 0,H ≥ 0,

(5)

where ‖ E ‖M=
∑

ij |eij |.

3 Robust Graph Regularized Non-negative Matrix
Factorization

3.1 Model Formulation

Previous NMF models have some defects: 1) They cannot remove outliers from
the dataset corrupted by Salt and Pepper noise or Contiguous Occlusion. 2)
While the dataset is corrupted by noises, the learned representation H cannot
preserve the geometrical structure information.

In (5), Zhang et al. [11] supposed that the error matrix E is sparse, but the
outliers in E are neglected. If the error matrix contains some outliers, then the
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constraint ‖ E ‖M is not inappropriate for outliers. Supposed that all outliers
of the corrupted image matrix M ∈ Rm×n produced by Salt and Pepper noise
or Contiguous Occlusion are detected. A weight graph S can be utilized to label
these outliers as follows:

Sij =

{
0, if the pixel Mij is an outlier,
1, otherwise,

(6)

Thus, we propose the constraint on E by the following form:

‖ E ⊗ S ‖M (7)

To learn the geometrical structure information of the original data, manifold
regularization is proposed to construct the relation between the original data
and the low-dimensional representation. A widely used manifold regularization
term [20] can be described as follows:

tr(H(D − U)HT ), (8)

where Ujl = e− ‖xj−xl‖2

σ and Dii =
∑

j Wij . In summary, combining (7), (8) and
(5) results in our robust graph regularized non-negative matrix factorization
(RGRNMF), which can be summarized into the following optimization problem

min
W,H,E

F (W,H,E)

= ‖ M − WH − E ‖2F +λ ‖ E ⊗ S ‖2F
+ γtr(H(D − U)HT )
s.t. W ≥ 0,H ≥ 0,

(9)

where λ and γ are hyper-parameters.

4 Optimization Scheme

It is obvious that problem (9) is non-convex. Therefore, the global optimal
solution cannot be searched. Supposed that the k−th solution of problem (9)
is obtained. We can have the k + 1−th solution by optimizing the following
problems

Ek+1 = arg minE ‖ M − W kHk − E ‖2F
+ λ ‖ E ⊗ S ‖2F

(10)

and
W k+1 = arg minW ‖ M − WHk − Ek+1 ‖2F
s.t. W ≥ 0

(11)

and
Hk+1 = arg minH ‖ M − W k+1H − Ek+1 ‖2F
+ γtr(H(D − U)HT )
s.t. H ≥ 0.

(12)
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It is easy to obtain the solution of problems (10), (11) and (12) as follows:

eij ← mij − (WH)ij
1 + λsij

. (13)

wil ← wil
(MHT )il − (EHT )il

(WHHT )il
, (14)

hlj ← hlj

(WTM)lj − (WTE)lj + γHUlj

(WTWH)lj + γHDlj
. (15)

5 Experimental Results

We compare our proposed method (RGRNMF) with NMF [5], RNMF [9], Mah-
NMF [8] and CauchyNMF [12] on the clustering performances of the ORL
dataset. To verify the clustering ability on the corrupted data, we propose two
corruptions including Salt and Pepper noise and Contiguous Occlusion. For Salt
and Pepper noise, there are several percentages of corrupted pixels from 1% to
25%. Similarly, we vary the corrupted block size for Contiguous Occlusion from
1 to 16.
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Fig. 1. The clustering performances on the ORL dataset corrupted by Salt and Pepper
noise.

To evaluate the clustering effect of all methods, we propose Accuracy (AC)
and Normalized Mutual Information (NMI) [21]. Let λ = 100 and γ = 100.
Figure 1 and 2 show the clustering performances on the ORL dataset contami-
nated by Salt and Pepper noise and Contiguous Occlusion. From these figures,
we observe that:

– CauthyNMF achieves satisfactory clustering ACs and NMIs from the ORL
dataset corrupted by Salt and Pepper noise and Contiguous Occlusion in the
beginning, however, it obtains the poor clustering effect finally. This phe-
nomenon indicates that CauthyNMF cannot handle heavy outliers.



Robust Graph Regularized Non-negative Matrix Factorization 249

2 4 6 8 10 12 14 16

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Different block sizes

A
C

RGRNMF
NMF
PCA
CauchyNMF
GNMF
Kmeans

(a) Clustering AC

2 4 6 8 10 12 14 16

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Different block sizes

N
M

I

RGRNMF
NMF
PCA
CauchyNMF
GNMF
Kmeans

(b) Clustering NMI

Fig. 2. The clustering performances on the ORL dataset corrupted by Contiguous
Occlusion.

– NMF, PCA Kmeans and GNMF fail to achieve clustering. This means that
They cannot handle outliers.

– RGRNMF has relatively stable clustering performances on the Salt and Pep-
per noise and Contiguous Occlusion, that is to say, RGRNMF is more robust
to outliers.

6 Conclusion

This paper proposed robust graph regularized non-negative matrix factorization
(RGRNMF) to handle Salt and Pepper noise and Contiguous Occlusion. Clus-
tering results demonstrate that our proposed NMF framework has the follow-
ing properties. Firstly, RGRNMF can learn a more effective and discriminative
parts-based representation from the ORL dataset corrupted by handle Salt and
Pepper noise or Contiguous Occlusion. Secondly, RGRNMF is more robust to
outliers than existing NMF methods.
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