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Abstract. Deep learning-based methods have attracted more attention
to the pose estimation research that plays a crucial role in location and
navigation. How to directly predict the pose from the point cloud in a
data-driven way remains an open question. In this paper, we present a
deep learning-based laser odometry system that consists of a network
pose estimation and a local map pose optimization. The network con-
sumes the original 3D point clouds directly and predicts the relative pose
from consecutive laser scans. A scan-to-map optimization is utilized to
enhance the robustness and accuracy of the poses predicted by the net-
work. We evaluated our system on the KITTI odometry dataset and
verified the effectiveness of the proposed system.
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1 Introduction

Laser odometry is widely used for autonomous driving and robot localization,
which has been achieved great success. Classic laser odometry systems estimate
poses by the laser registration methods, such as Iterative Closest Point (ICP)
[1], Normal Distribution Transform (NDT) [11], and their variants [16,17,19].
Registration methods tend to be unreliable in some challenging scenarios, e.g.,
featureless places and motion with significant angular changes. Because of the
sparsity of the point clouds caused by the low resolution of the laser scanner,
the matching algorithm may not find the corresponding points or features, which
may bring the drifts or even errors to the pose estimation.
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In recent years, the deep learning-based methods have attracted much atten-
tion in the research of geometry problems such as localization, relative pose esti-
mation and odometry system. Many learning-based works are achieving state-
of-the-art results in the field of visual odometry. Zhou et al. [24] presented a
unsupervised training method to estimate the ego-motion from video. A novel
Recurrent Convolutional Neural Network based VO system is proposed by Wang
et al. [21] for dealing with the sequences data. [10] developed a unsupervised
visual odometry which can estimate absolute scale and dense depth map simul-
taneously. Moreover, there are also a few laser odometry systems achieved in a
data-driven fashion. [12] utilized the vanilla CNN (Convolutional Neural Net-
work) for a laser odometry. Deep learning based 2D scan matching method is
proposed by Li et al. [8] and [22] integrated deep semantic segmentation for the
pose estimation.

Unlike regular data formats like images, the point cloud is unordered and
sparse, which makes it difficult for the laser odometry to use the verified pipeline
of the data-driven visual odometry. Some methods convert the point clouds
into a structured representation for using the 2D or 3D convolution to extract
the feature to estimate the ego-motion. [20] transformed the spare point clouds
into the multi-channel dense matrix and employed the CNN to achieved the
IMU assisted laser odometry. Qing Li et al. encoded the point clouds into the
image-like formats by cylindrical projection and constructed a learning-based
laser odometry. [9] DeepLO [2] proposed a deep LiDAR odometry via supervised
and unsupervised frameworks using the regular point cloud representation. The
projection lost the information of the original point cloud, so it is worth exploring
to use point clouds to directly estimate odometry. Some works, like PointNet
[14,15], have made deep learning based on point cloud directly become a research
hotspot.

In this paper, we propose a deep learning-based laser odometry using the
point clouds as the input. Our main contributions are as follows: 1) We propose a
scan-to-scan laser pose estimation network that directly consumes the irregular
point clouds. 2) We use local map optimization to improve the robustness of
network estimation, which makes up the laser odometry.

The rest of this paper is organized as follows. Section 2 shows an overview
of the system. In Sect. 3, the proposed the system is presented. Experimental
results are given in Sect. 4. The conclusions are drawn in Sect. 5.

2 System Overview

In this section, we briefly show our system, which is composed of a relative pose
estimator and a local map pose optimizer, as shown in Fig. 1.
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Fig. 1. System overview of the proposed deep point cloud odometry. The laser point
cloud input into a network directly, and relative pose prediction of the network is
further optimized by a local map matching.

The pose estimator is a PointNet-based CNN architecture, which is used to
process the point cloud directly. It takes two consecutive point clouds as input
and predicts the relative 6-DoF pose between them.

The pose optimizer is based on the ICP algorithm, which is used for point
registration. The inputs of it are the relative pose predicted by pose estimator,
the current point cloud, and the local map, and then it fine-tunes the pose by
matching the point cloud to the local map.

Pose estimation only accumulating the scan-to-scan estimation tends to bring
the errors over time, so the local map optimization is utilized to reduce the
impact of cumulative errors.

Fig. 2. Architecture of the network in proposed laser odometry system.
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3 Pose Estimation with the Point Clouds

This section presents the proposed point clouds odometry composed of the deep
pose estimation and local map pose optimization in detail.

3.1 Relative Pose Regression Through Convolutional Neural
Networks

To estimate the relative pose of two consecutive laser scans, we train a network
consisted of CNN-based feature extraction and a pose regression. The original
points are used as the input of the network because they contain all the infor-
mation which is needed to match.

The PointNet-like CNN architecture is employed to extract the feature of the
point cloud, and then the features from different scans are combined and sent
to the regressor to estimate the relative pose. As the Fig. 2 shows, the network
takes two point clouds from consecutive laser scans: target point cloud Pt and
source point cloud Ps as inputs and produce the 6-DoF relative pose: translation
t = [tx, ty, tz]T and rotation in the form of Euler angle θ = [θroll, θpitch, θyaw]T

as output
t,θ = F(Pt,Ps). (1)

We use Lt and Lr as the loss function to train the network.

Lt = ‖t̂ − t�‖22
Lr = ‖θ̂ − θ�‖22

(2)

where t̂ and θ̂ are the output of the network, t� and θ� are the ground truth.
We use the �2-norm in this work.

For training the network to learn the translation and rotation simultane-
ously, it is necessary to use a weight regularizer λ to balance the rotational loss
with translational loss, because the scale and units between the translational
and rotational pose components are different. To learn translation and rotation
without including any hyperparameters, [6] presented a loss function that can
learn the weight regularizer.

Lpose = Lt exp(−st) + st + Lr exp(−sr) + sr (3)

where st and sr are the learnable parameters to regularize the scale between the
translational and rotational losses.

3.2 Pose Optimization with Local Map

The pose optimization employs a scan-to-map matching with the geometry
method to fine-tune the poses predicted by the network.

If the scan-to-scan matching creats errors, the rest of the trajectory will be
affected by the errors. We propose maintaining a local map that can be used
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to match the current scan for geometric constraints to modify the errors. The
local map can improve the robustness of the odometry when some scan-to-scan
matching creates errors.

An ICP is designed to register the current scan to the local map in the pose
optimization, which takes the current scan, local map, and relative pose as input
and computes the refined pose as output.

ΔT̂ = arg min
ΔT

1
2

N∑

j=1

‖ΔTpj − pm(j)‖22 (4)

where pj ∈ Ps is the point in the source point cloud, pm(j) ∈ Pm is pi’s corre-
sponding point in the local map, and ΔT̂ is the refined relative pose in the form
of the special Euclidean group SE(3) of transformations. The pose predicted by
the network is used as the initial pose of the ICP. The ICP uses Eq. (4) as the
cost function to match the scan to the local map iteratively and estimates the
refined pose.

The local map contains historical point clouds over time, which needs to be
maintained and updated. The local map updating comprises two steps: one step
is removing the points that are outside the field of view from the local map which
keeps the number of points in the local map not large, thereby map points culling
can improve computational efficiency by reducing the computational complexity
of searching for corresponding points, the other one is to add the points of the
current scan to the local map, so that makes the local map has more extra
feature points.

Table 1. Absolute translation errors (RMSE) of the test data from KITTI

03 04 05 07 10

Ours 4.873021 1.258067 5.221578 1.186617 14.592466

LeGO-LOAM 2.965074 0.511566 9.223725 0.921545 9.844019

FGR+ICP 3.173614 1.608129 29.039456 4.574337 14.550793

4 Experimental Results

In this section, we evaluate the performance of the proposed point cloud odome-
try. The network model is trained and tested by using publicly available datasets,
KITTI odometry dataset [4]. The experimental results of local map optimization
are also given in this section.
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4.1 Implementation

We implemented the proposed system using PyTorch [13] and PyTorch Geomet-
ric [3], and trained the network with an NVIDIA RTX 2080ti. The optimizer
employed the Adam Optimizer [7] to train the network with parameter β1 = 0.9
and β2 = 0.99. The learning rate was initialized with 0.001 and decreased by 0.1
every 10 epochs until 1 ∗ 10−6. The parameters st and sr in Eq. (3) were set 0.0
and −2.0 respectively.

4.2 Dataset

The KITTI odometry dataset is a well-known public dataset of odometry bench-
mark. The dataset provides camera images, point clouds, Inertial Measurement
Unit and other sensor data. We mainly use the point clouds which are captured
by a Velodyne HDL-64E laser sensor. The dataset includes many driving scenar-
ios, such as urban, streets, and highways. Sequence 00–10 of all 22 sequences of
the dataset provide the ground-truth pose collected by the GPS/IMU sensor.

Our network was trained on sequences 00, 01, 02, 06, 08, and 09 and tested
on sequences 03, 04, 05, 07, and 10. The point clouds inputted to the network
were removed the grounds that may bias the evaluation results.

(a) (b)

Fig. 3. Trajectories of KITTI sequence 07. The left figure (a) plots in XY plane. The
right one (b) shows trajectories on the X, Y and Z axis respectively.
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(a) Sequence 03 (b) Sequence 05 (c) Sequence 10

Fig. 4. Trajectories on test datasets.

4.3 Odometry Evaluation

We use averaged Root Mean Square Errors (RMSEs) of the pose errors to eval-
uate our system’s performance. The results of the evaluation of test datasets are
shown in Table 1. The algorithms used to compare are LeGO-LOAM [18] and
Fast global registration [23] with ICP fine-tuning, and all of the algorithms do
not implement the loop closure detection. LeGo-LOAM is a state-of-the-art laser
odometry system, which is the variant of LOAM, the top laser-based method in
the KITTI odometry dataset. Fast global registration (FGR) is a global matching
algorithm that is insensitive to an initial value and combines the local matching
algorithm, ICP, to improve the pose estimation accuracy. We use the Evo tool
[5], a python package for the evaluation of odometry and SLAM, to evaluate the
experimental results of odometry.

Figures 3 and 4 show the predicted trajectories of the test datasets, in which
the black dashed line is ground truth, the blue line is the proposed method, the
green line is the LeGO-LOAM, and the red one is the FGR + ICP. It can be
seen that the proposed system can provide nice results on the test datasets. This
proves the proposed point cloud odometry is capable of learning to estimate the
poses. From the details of the results in Table 1, we can see our system is not the
best of all methods, so our algorithm also needs to improve performance, which
can be achieved by training with more data.

4.4 Pose Optimization Evaluation

Figure 5 shows the comparisons of the pose predicted by the network with and
without the local map optimization on the test dataset. The trajectories are on
the top row, where the black dashed line is ground truth, the blue line is the
result of after pose optimization, and the purple line is the output of the network.
We utilized the box plot to show the error statistics on the bottom row. The top
and bottom of the box are the 25th and 75th percentiles; the centerline is the
median, and whiskers show the minimum and maximum errors.

From Fig. 5, it can be seen that the trajectories after optimization are more
accurate than before optimization. Meanwhile, pose optimization also improves
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(a) 03 (b) 05 (c) 07 (d) 10

Fig. 5. Top row: trajectories of the pose estimation with and without local map opti-
mization. Bottom row: box plot of the pose estimation without and with local map
optimization which show the error statistics.

the system’s robustness. This proves that pose optimization is useful for the
whole system and can help the network improve performance.

5 Conclusions

In this paper, we have presented deep point cloud odometry, a deep learning-
based odometry with the point clouds. It estimated the poeses by using the irreg-
ular point clouds directly and employed the local map optimization to improve
the accuracy and robustness of odometry estimation. The results of the exper-
iment showed that the proposed system could estimate the trajectories on the
public dataset. In our future work, we plan to improve the generalization ability
of the network to adapt to different resolution of the laser sensors and implement
the deep learning-based method to map the point clouds.
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