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Preface

This volume of Lecture Notes in Computer Science (LNCS) constitutes the proceedings
of the 17th International Symposium on Neural Networks (ISNN 2020), held during
December 4–6, 2020, in Cairo, Egypt, and over the Internet. Thanks to the success
of the previous events, ISNN has become a well-established series of popular and
high-quality conferences on the theory and methodology of neural networks and their
applications. This year’s symposium was postponed for more than two months due to
the COVID-19 pandemic. But it still achieved great success. ISNN aims at providing a
high-level international forum for scientists, engineers, educators, and students to
gather, present, and discuss the latest progress in neural network research and appli-
cations in diverse areas. This symposium encouraged open discussion and exchange of
ideas. We believed that it would extensively promote research in the fields of neural
networks and applications.

This year, the conference received 39 submissions, much less submissions than
previous years, due to an obvious reason. Each submission was reviewed by at least
three, and on average, four Program Committee members. After the rigorous peer
reviews, the committee decided to accept 26 papers for publication in the LNCS
proceedings with an acceptance rate of two thirds. These papers cover many topics of
neural network-related research, including computational intelligence, neurodynamics,
stability analysis, deep learning, pattern recognition, image processing, and so on. In
addition to the contributed papers, the ISNN 2020 technical program included two
plenary speeches by world renowned scholars: Prof. Tingwen Huang (IEEE Fellow)
from the Texas A&M University, Qatar, and Prof. Dongbin Zhao (IEEE Fellow) from
the Institute of Automation, Chinese Academy of Sciences, China.

Many organizations and volunteers made great contributions toward the success of
this symposium. We would like to express our sincere gratitude to the British
University in Egypt and The City University of Hong Kong for their sponsorship, as
well as the International Neural Network Society and the Asian Pacific Neural Network
Society for their technical co-sponsorship. We would also like to sincerely thank all the
committee members for their great efforts in organizing the symposium. Special thanks
to the Program Committee members and reviewers whose insightful reviews and timely
feedback ensured the high quality of the accepted papers and the smooth flow of the
symposium. We would also like to thank Springer for their cooperation in publishing
the proceedings in the prestigious LNCS series. Finally, we would like to thank all the
speakers, authors, and participants for their support.

October 2020 Min Han
Sitian Qin

Nian Zhang
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Parameters Identification of Solar Cells Based
on Classification Particle Swarm Optimization

Algorithm

Haijie Bao1, Chuyi Song1, Liyan Xu1, and Jingqing Jiang1,2(B)

1 College of Mathematics and Physics, Inner Mongolia University for Nationalities,
Tongliao 028000, China

3089484347@qq.com, songchuyi@sina.com, 389736834@qq.com,
jiangjingqing@aliyun.com

2 College of Computer Science and Technology, Inner Mongolia University for Nationalities,
Tongliao 028000, China

Abstract. As a new type of clean energy, solar energy has been widely used
in many fields. The core component of photovoltaic power generation system,
photovoltaic module, is composed of solar cells in series connection and parallel
connection. Photovoltaic module directly converts the light energy of the sun into
electric energy. The construction of solar cell model needs precise parameters
to support. This paper proposes using classification particle swarm optimization
algorithm (CPSO) to identify the parameters of the solar cell for single diode
equivalent circuit model and the double diode equivalent circuit model. The simu-
lation results show that the performance of CPSO is better than or similar to other
algorithms.

Keywords: Solar cell model · Parameter identification · Classification particle
swarm optimization algorithm

1 Introduction

With the rapid deterioration of the global environment and the depletion of non-
renewable energy, the global energy structure has been changed and transformed. The
demand for renewable energy is continuing increase. Solar energy is an important renew-
able energy. Photovoltaic power generation system is the main part of solar energy, and
solar cell plays an important role in photovoltaic power generation system. Scholars have
proposed many equivalent circuit models to simulate the I-V curve of solar cell in dif-
ferent ways [1]. Two models are practically used. The first one is the single diode circuit
model which contains five parameters

(
Iph, ISD, n,Rs,Rsh

)
. The second model is a dou-

ble diode circuit model which contains seven parameters (Iph,ISD1, ISD2, n1, n2,Rs,Rsh).
These parameters can be used to understand the intrinsic characteristics of the cell model.

Nowadays, there are many ways to optimize the parameters of the equivalent circuit
model of solar cells. Themethods are classified into traditional algorithms and intelligent

© Springer Nature Switzerland AG 2020
M. Han et al. (Eds.): ISNN 2020, LNCS 12557, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-64221-1_1
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4 H. Bao et al.

algorithms. The traditional algorithm includes analytic method [2], numerical solution
method [3]. The intelligent algorithms includes artificial bee swarm optimization algo-
rithm [4] (ABSO), simulated annealing algorithm [5] (SA), genetic algorithm [6] (GA)
and particle swarm optimization algorithm [7] (PSO). The intelligent algorithms are
meta-heuristic algorithms. They are suitable for solar cell parameter extraction because
the derivative is not required. The particle swarm optimization algorithm is a swarm
intelligence algorithm developed by Kennedy and Eberhart in 1995 [8]. Lately, many
different versions of particle swarm algorithms have been proposed. In this paper, the
classification particle swarm algorithm is applied to identify the commercial silicon cell
parameters with a diameter of 57 mm.

2 Solar Cell Models

There are two practical equivalent circuit models: single and double diode models.

2.1 Single Diode Model

The solar single diode equivalent circuit consists of a current source, a diode, a shunt
resistor and a series resistor, as shown in Fig. 1:

Fig. 1. Equivalent circuit model for single diode solar cell

According to Fig. 1, the I-V characteristic equation of the single diode model of
solar cells can be expressed as follows:

IL = Iph − ISD

{
exp

[
q(VL + ILRs)

nKT

]
− 1

}
− VL + ILRs

Rsh
(1)

In this formula, IL is the output current, VL is the output voltage, Iph is the Cell-
Generated photocurrent, ISD is the reverse saturation current of diode, n is the diode
ideality factor, Rs is the series resistors, Rsh is the shunt resistors, K is the Boltzmann’s
constant (1.381×10−23J/K), q is the Electronic charge (1.602×10−19C), T is the cell
temperature.

2.2 Double Diode Model

The solar double diode equivalent circuit consists of a current source, two parallel diodes,
a shunt resistor and a series resistor, as shown in Fig. 2.
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Fig. 2. Equivalent circuit model for double diode solar cell

According to Fig. 2, the I-V characteristic equation of the double diode model of
solar cells can be expressed as follows:

IL = Iph − ISD1

{
exp

[
q(VL + ILRs)

n1KT

]
− 1

}
− ISD2

{
exp

[
q(VL + ILRs)

n2KT

]
− 1

}
− VL + ILRs

Rsh
(2)

In this formula, IL is the output current, VL is the output voltage, Iph is the Cell-
Generated photocurrent, ISD1and ISD2 are the diode reverse saturation current of diode,
n1and n2 are the diode ideality factor, Rs is the series resistors, Rsh is the shunt resistors,
K , q and T have the same meaning as the single diode model.

2.3 Solar Cell Parameter Identification Problem

The five parameters involved in the single diode equivalent circuit of solar cells and
the seven parameters involved in the double diode equivalent circuit of solar cells are
particularly important. Through these parameters, we can understand the intrinsic char-
acteristics of the cell model and make the use of solar cells more efficient. Identifying
these parameters is the problem that should be solved.

3 Classification Particle Swarm Optimization Algorithm (CPSO)

The particle swarm optimization algorithm converges slowly. An improved algorithm
based on classification was proposed by Tong [9]. This algorithm is used to identify the
parameters of solar cell in this paper.

3.1 Particle Swarm Optimization Algorithm (PSO)

PSO algorithm initializes the position and velocity of particles, and then each particle
changes its velocity V and position X according to its current best position (Pbest) and
the current global best position (Gbest) of the population. The optimal solution (the
global best position) is found by iteration. In each iteration, each particle updates its
position X and velocity V by formula (3) and formula (4).

V i+1 = ω × V i + c1 × rand ×
(
pbest − X i

)
+ c2 × rand ×

(
gbest − X i

)
(3)

X i+1 = X i + V i+1 (4)

Where ω is the inertia coefficient.c1and c2 are the learning factor. Pbest is the indi-
vidual optimal position and Gbest is the global optimal position. i is the number of
iteration.
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3.2 Steps for Classification Particle Swarm Optimization Algorithm

The PSO algorithm has some disadvantages such as slow convergence speed and falling
into local optimum easily. So, the PSO algorithm can’t achieve better performance in
the parameters identification of solar cell model. An improved particle swarm algo-
rithm based on classification idea (Classification Particle Swarm Optimization, CPSO)
is proposed [9].

The searching region is divided into three domains: the rejection domain, close
proximity domain and reasonable domain. The division criteria is the comparison of the
difference between the fitness function values fi of the particle i and the mean fitness
function value fV of all particles with the standard deviation Oi of all particles’ fitness
function values. If fi − fV > Oi, then ω = 0.9, c1 = 3, c2 = 1. The particle locates
on the rejection domain. If fi − fV < −Oi, then ω = 0.4, c1 = 1, c2 = 3. The particle
locates on close proximity domain. If |fi − fV | < |Oi|, then ω = (ωmax − ωmin − d1)×
exp

(
1

1+d2× t
ger

)
, c1 = 3 cos

(
π t
2ger

)
, c2 = 3 sin

(
π t
2ger

)
. The particle locates on the rea-

sonable domain. Where ωmax = 0.9, ωmin = 0.4, d1 = 0.2, d2 = 0.7, t is the number
of current iteration number, ger is the maximum iteration number [10]. It is found that
the updating formula of inertia weight adopts the nonlinear decreasing strategy in a
reasonable region could improve the performance of PSO.

The steps of the classification particle swarm optimization are as follows:
Step 1: Initialize the parameters of particle. The position range refers to [11–13] and

the velocity range is Vmax = 0.15× (Xmax − Xmin), Vmin = −Vmax.
Step 2: Initialize the position and velocity of each particle randomly according to the

position range and velocity range. The initialization formula of position and velocity are
X = Xmin+ (Xmax − Xmin)× rand(N , 1) and V = Vmin+ (Vmax − Vmin)× rand(N , 1).
The fitness function value of each particle is calculated using the initial position.

Step 3: Initializes the individual optimal position pbest, the individual optimal fitness
value, and the global optimal position gbest and the optimal fitness value according to
the fitness function.

Step 4:Update inertia coefficientω and learning factor c1, c2 according to the location
of the particle.

Step 5: Update the velocity and position according to the formula (3) and (4). Calcu-
late thefitness functionvalue again.Update the individual optimal position, the individual
optimal fitness value, the global optimal position and the optimal fitness value.

Step 6: If the maximum number of iterations is reached, the global optimal fitness
value and the global optimal position are output, and the algorithm ends. Otherwise goto
step 4.

3.3 Objective Function

The purpose of solar parameter identification is to obtain more accurate current value.
So the measured current value is compared with the calculated current value. In order
to minimize the error, a fitness function is established. In this paper, the RMSE formula
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is used as the fitness function. The fitness function is shown as follows:

fitness(θ) = RMSE(θ) =
√√√√ 1

N

N∑

i=1

f (VL, IL, θ)2 (5)

Where θ is the unknown parameter vector, N is the number of measured data, the
error function f is shown in formula (6) and (7). (6) is the error function of the single
diode model, and (7) is the error function of the double diode.

fSDM (VL, IL, θ) = Iph − ISD

{
exp

[
q(VL + ILRs

KnT

]
− 1

}
− VL + ILRs

Rsh
− IL (6)

fDDM (VL, IL, θ) = Iph − ISD1

{
exp

[
q(VL + ILRs

n1KT

]
− 1

}
− ISD2

{
exp

[
q(VL + ILRs

n2KT

]
− 1

}
− VL + ILRs

Rsh
− IL (7)

4 Simulation Results and Analysis

Some simulation experiments have done to verify the performance of using the CPSO
to identify the parameters of the solar cell model.

4.1 Parameters for CPSO

Before using particle swarm optimization algorithm to identify the parameters of solar
cells, some parameters should be determined. These parameters include the population
size, space dimension, maximum number of iterations, position and velocity range, iner-
tia coefficient ω and learning factor c1, c2 and initial position and velocity, the historical
optimal position of each individual pbest and the historical optimal position of the pop-
ulation gbest, the historical optimal fitness of each individual and the optimal fitness of
the population. In this paper, when identifying the parameters of solar cell single diode
model, the population size of particle swarm optimization algorithm is 100, the space
dimension is 5. The position of particle represents the parameters of solar cells, which
are Iph, ISD, n,Rs,Rsh. The maximum number of iterations is 500, the position range
is defined by reference [11–13], and the velocity range is set according to the position
range. The corresponding formula is Vmax = 0.15 × (Xmax − Xmin), Vmin = −Vmax.
The inertia coefficient and the learning factor are updated according to the description in
3.2. There are also three constants in fitness function, which are Boltzmann’s constant
K = 1.381× 10−23 J/K, electronic charge q = 1.602× 10−19 C, solar cell kelvin tem-
perature T = 306K. In the identification of solar cell double diode model parameters,
the space dimension is 7. The position of particle represents the parameters of solar cells,
which are Iph,ISD1,ISD2,n1,n2,Rs,Rsh. The others are the same as the single diode model.

4.2 Parameter Range for Solar Cell Model

The ranges of the parameters in this paper are set according to references [11–13] shown
in Table 1 and Table 2.
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Table 1. Parameters range of single diode model

Rs/� Rsh/� Iph/A ISD/A n

Minimum
value

0 0 0 0 1

Maximum
value

0.5 100 1 1 × 10−6 2

Table 2. Parameters range of double diode model

Rs/� Rsh/� Iph/A ISD1/A ISD2/A n1 n2

Minimum value 0 0 0 0 0 1 1

Maximum value 0.5 100 1 1 × 10−6 1 × 10−6 2 2

Table 3. Experimental measurements IL-VL data

Number VL/V IL/A Number VL/V IL/A

1 −0.2057 0.7640 14 0.4137 0.7280

2 −0.1291 0.7620 15 0.4373 0.7065

3 −0.0588 0.7605 16 0.4590 0.6755

4 0.0057 0.7605 17 0.4784 0.6320

5 0.0646 0.7600 18 0.4960 0.5730

6 0.1185 0.7590 19 0.5119 0.4990

7 0.1678 0.7570 20 0.5265 0.4130

8 0.2132 0.7570 21 0.5398 0.3165

9 0.2545 0.7555 22 0.5521 0.2120

10 0.2924 0.7540 23 0.5633 0.1035

11 0.3269 0.7505 24 0.5736 −0.0100

12 0.3585 0.7465 25 0.5833 −0.1230

13 0.3873 0.7385 26 0.5900 −0.21

4.3 Experimental Date

A commercial silicon cell with a diameter of 57 mm is used in this paper. The measured
IL and VL refer to references [14]. They are shown in Table 3.
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4.4 Experimental Result

We compared the parameters and the root mean square error (RMSE) obtained by clas-
sification particle swarm optimization algorithm (CPSO) with the simulation results of
other algorithms in [12] which are shown in Table 4 and Table 5:

Table 4. Parameter identification results of single diode model

Rs/� Rsh/� Iph/A ISD/A n RMSE

CPSO 0.0363771 53.7185 0.760776 3.23021 × 10−7 1.48137 9.8602 × 10−4

FPSO 0.03637 53.71852 0.76077552 3.2302 × 10−7 1.48110817 9.8602 × 10−4

PSO 0.0354 59.18 0.7607 4.0 × 10−7 1.5033 1.3 × 10−3

ABSO 0.03659 52.2903 0.76080 3.0623 × 10−7 1.47583 9.9124 × 10−4

SA 0.0345 43.1034 0.7620 4.798 × 10−7 1.5712 1.9 × 10−2

Table 5. Parameter identification results of double diode model

Rs/� Rsh/� Iph/A ISD1/A ISD2/A n1 n2 RMSE

CPSO 0.0367403 55.4845 0.760781 2.25971 × 10−7 7.48632 × 10−7 1.4512 2.0000 9.8249 × 10−4

FPSO 0.036737 55.3923 0.76078 2.2731 × 10−7 7.2786 × 10−7 1.45160 1.99969 9.8253 × 10−4

PSO 0.0325 43.1034 0.7623 4.767 × 10−7 0.1 × 10−7 1.5172 2.0000 1.660 × 10−2

ABSO 0.03657 54.6219 0.76078 2.6713 × 10−7 3.8191 × 10−7 1.46512 1.98152 9.8344 × 10−4

SA 0.0345 43.1034 0.7623 4.767 × 10−7 0.1 × 10−7 1.5172 2.0000 1.664 × 10−2

From Table 4, we can see that RMSE obtained by the classification particle swarm
optimization algorithm is the same as that obtained by flexible particle swarm algo-
rithm in reference [12], and it is obviously superior to other intelligent algorithms. From
Table 5, we can see that the RMSE obtained by the classification particle swarm opti-
mization algorithm is smaller than that obtained by the flexible particle swarm algorithm
in reference [12], and it is better than that obtained by other intelligent algorithms. Com-
pared with the same type of intelligent algorithm can highlight the advantages of the
algorithm used in this paper. And literature [12] was published in 2019, which has a high
comparative value.

Therefore, the classification particle swarm optimization algorithm has a better
performance on identification parameters of double diode model.

The left and right sides of Fig. 3 are the convergence diagram of the parameter
identification process use CPSO for the single diode model and the double diode model,
respectively. It can be seen that both the single diode model and the double diode model
convergent rapidly.

Tables 6 and Table 7 are the current values of the single diode model and the double
diodemodel calculated using the explicit calculation current equation [15] obtained from
the Taylor expansion. Compared with the measured experimental values in Table 3, it
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Fig. 3. Convergence curve for Single Diode (left) and Double Diode (right)

can be found that the current values calculated using the simulation parameters are close
to the measured values.

Table 6. Calculation of current by single diode model

Number VL/V ILc/A Number VL/V ILc/A

1 −0.2057 0.764088 14 0.4137 0.727523

2 −0.1291 0.762663 15 0.4373 0.707155

3 −0.0588 0.761355 16 0.4590 0.675577

4 0.0057 0.760155 17 0.4784 0.631222

5 0.0646 0.759056 18 0.4960 0.572419

6 0.1185 0.758044 19 0.5119 0.499764

7 0.1678 0.757092 20 0.5265 0.413664

8 0.2132 0.756143 21 0.5398 0.317293

9 0.2545 0.75509 22 0.5521 0.212118

10 0.2924 0.753672 23 0.5633 0.102718

11 0.3269 0.751404 24 0.5736 −0.00925

12 0.3585 0.747384 25 0.5833 −0.12438

13 0.3873 0.740167 26 0.5900 −0.20916

The left and right sides of Fig. 4 are the I-V fitting curves of the single diode model
and the double diode model. From the image, the calculated I-V curve is almost exactly
consistent with the measured I-V curve.
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Fig. 4. I-V Fitting curve for single diode model (left) and double diode model (right)

Table 7. Calculation of current by double diode model

Number VL/V ILc/A Number VL/V ILc/A

1 −0.2057 0.763983 14 0.4137 0.727395

2 −0.1291 0.762604 15 0.4373 0.707045

3 −0.0588 0.761337 16 0.4590 0.675525

4 0.0057 0.760174 17 0.4784 0.631242

5 0.0646 0.759108 18 0.4960 0.572496

6 0.1185 0.758122 19 0.5119 0.49986

7 0.1678 0.757189 20 0.5265 0.413738

8 0.2132 0.756245 21 0.5398 0.317321

9 0.2545 0.75518 22 0.5521 0.212097

10 0.2924 0.75373 23 0.5633 0.102667

11 0.3269 0.751412 24 0.5736 −0.0093

12 0.3585 0.747332 25 0.5833 −0.12439

13 0.3873 0.740063 26 0.5900 −0.20912

5 Conclusion

It is particularly important to develop the renewable energy for protecting environment.
Many intelligent algorithms have been used to identifying the parameters of solar cell.
The improvement of particle swarmoptimization algorithm, classificationparticle swarm
optimization algorithm, achieves better performance on these parameters simulation. It
converges rapidly and the calculated current values using parameters obtained by CPSO
are almost exactly consistent with the I-V curve of the measured experimental values.

Acknowledgement. This work was supported by The National Natural Science Foundation of
China (Project No. 61662057, 61672301).
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Abstract. K-means is a widely used classical clustering algorithm in pattern
recognition, image segmentation, bioinformatics and document clustering. But, it
is easy to fall into local optimum and is sensitive to the initial choice of cluster
centers. As a remedy, a popular trend is to integrate the swarm intelligence algo-
rithm with K-means to obtain hybrid swarm intelligence K-means algorithms.
Such as, K-means is combined with particle swarm optimization algorithm to
obtain particle swarm optimization K-means, and is also combined with genetic
mechanism to obtain Genetic K-means algorithms. The classical K-means clus-
tering algorithm requires the number of cluster centers in advance. In this paper,
an automatic quantum genetic K-means algorithm for unknown K (AQGUK) is
proposed to accelerate the convergence speed and improve the global convergence
of AGUK. In AQGUK, a Q-bit based representation is employed for exploration
and exploitation in discrete 0–1 hyperspace using rotation operation of quantum
gate as well as the genetic operations (selection, crossover andmutation) of Q-bits.
The length of Q-bit individuals is variable during the evolution, which is Different
from the typical genetic algorithms. Without knowing the exact number of clus-
ters beforehand, AQGUK can obtain the optimal number of clusters and provide
the optimal cluster centroids. Five gene datasets are used to validate AQGUK,
AGUK and K-means. The experimental results show that AQGUK is effective
and promising.

Keywords: Quantum computing · Genetic algorithm · Gene clustering ·
K-means

1 Introduction

Clustering analysis plays an important role in data mining areas, such as, pattern recog-
nition, image segmentation, bioinformatics and document clustering. Clustering is the
process of grouping a set of n objects into K groups according to some standard. There-
fore, similar objects will be classified into the same cluster and dissimilar objects willt be
in different clusters. Clustering is an unsupervised machine learning algorithm without
a training process. Clustering analysis does not need the cluster labels of any samples in
advance and utilizes an algorithm to divide a group of samples with unknown categories
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into several categories. Clustering analysis clusters similar things together and does not
care too much what is it.

K-means is proposed by Steinhaus [1] andMacqueen [2] from different fields. Then,
MacQueen summarized the previous researcher’s achievements and gave the detailed
steps of the K-means algorithm. K-means is widely used in various research fields
because of it’s simplicity and fast convergence. But, the disadvantages of K-means
is easy fall into local optimum resulting in poor clustering results and is sensitive to
initial cluster centers. In order to improve the shortcomings of K-means, researchers
usually combined the K-means with swarm intelligence algorithm to obtain intelligence
K-means algorithms. The hybrid intelligence K-means algorithms can help to avoid K-
means trapping into local optimum. To accelerate the convergence speed and improve the
global convergence of intelligence K-means algorithms, researchers usually combined
intelligence K-means with quantum computing. For example, CS capabilities [3] is
extended by using nonhomogeneous update inspired by the quantum theory in order
to deal with the cuckoo search clustering problem in terms of global search ability. A
quantum inspired genetic algorithm for k-means clustering (KMQGA) is proposed in
[4]. KMQGA employed a Q-bit based representation for exploration and exploitation in
discrete 0–1 hyperspace using rotation operation of quantum gate as well as the typical
genetic algorithm operations of Q-bits.

In this paper, we attempt to combine the quantum computing with genetic K-means
algorithm to remedy the drawbacks of the k-means mentioned above. An improved
automatic genetic K-means clustering algorithm based on quantum-inspired algorithm
(AQGUK) is proposed. AQGUK employed variable length of Q-bit individuals in the
evolution and used rotation operation of quantum gate as well as the genetic operations
(selection, crossover andmutation) ofQ-bits.AQGUKaccelerates the convergence speed
and improves the global convergence of AGUK by introducing quantum computing,
and attempts to obtain the optimal number of clusters and provides the optimal cluster
centroids.

The rest part of this paper is structured as follows. Section 2 first briefly introduced
K-means clustering technique and the background of quantum computing. Section 3
described the proposed hybrid algorithm (AQGUK) in detail. In Sect. 4, Experimental
results and analysis are shown on K-means, AGUK and AQGUK. In Sect. 5, some short
conclusions are drawn.

2 Related Works

In this Section, first,wemainly introduced the genetic algorithmwith clonal reproduction
employed in this paper, K-means clustering method and quantum computing theory.
Then, the common clustering evaluation criteria are described.

2.1 K-Means Clustering Technique

An important branch of unsupervised machine learning is clustering analysis. In which,
the samples without category mark is divided into several subsets according to some cri-
teria, so the clustering analysis groups the similar samples together as much as possible,
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groups dissimilar samples into different clusters. K-means is a well-known partitioning
method on account of its simplicity and fast convergence speed. Which minimize (or
maximize) the certain criterion function’s values in the iteration process.

In the classical K-means, K points are randomly selected as the initial clustering
center. Then the distance between each data and each clustering center are calculated.
Finally, the samples are grouped into the cluster that is closest to it. Therefore, the new
clustering centers are calculated, and the samples are reassigned into the new clusters.
The iteration process is repeated until termination condition is met. The main steps of
the K-means are described as follows (Table 1):

Table 1. Main steps of K-means

Input parameters:
K: the number of cluster, T: the maximum number of
iterations
Output parameters: the partition of samples’ set

For i = 1, 2, · · ·, T
For every xi(for all samples)
calculate the distance (xi , ck );
group the xi into the cluster that is nearest to it;
end For
update all cluster centers;
if(i ≤ T )
continue;
else
break;
end For

The classical K-means requires users input number of cluster K in advance, and some
hybrid K-means clustering algorithm also require the number of cluster in advance. Such
as, GKA [5] and PK-means [6]. In this article, we proposed a quantum automatic genetic
algorithm based K-means for unknown K called (AQGUK).

2.2 Quantum Computing

Before describing AQGUK, we briefly introduce the basic concept of quantum comput-
ing. In which, the smallest information representation is called quantum bit (Q-bit) [7].
The quantum bit will have three state, “0” state, “1” state or any superposition of the
two respectively. Therefore, the state of Q-bit can be represented as follows:

|ψ >= α|0 > +β|1 >, (1)

where α and β are complex numbers that specify the probability amplitudes of the
corresponding states. Thus, |α|2 and |β|2 denote probabilities that the Q-bit will be
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found in the “0” state and the “1” state, respectively. Normalization of the state is as
follows:

|α|2+β|2=1 (2)

Therefore, a Q-bit can represent the linear superposition of the two binary genes (0
and 1). The following is a representation of m Q-bits individual.[

α1

β1

∣∣∣∣∣ α2

β2

∣∣∣∣∣ · · ·
· · ·

∣∣∣∣∣ αm

βm

]
(3)

Thus, string of m Q-bits can represent 2m states. Quantum gate operation can change
the state of Q-bit, such as, the NOT gate, the rotation gate, etc. However, the super-
position of “0” state and “1” state must be collapse to a single state in the action of
quantum state, that is, a quantum state have to be the “0” state or “1” state. In the evo-
lutionary computing, the Q-bit representation can enhance the diversity of population
than other representations because of it’s linear superposition of states probabilistically.
More examples of Q-bit representation can be found in [8]. AQGUK is designed with
this novel Q-bit representation.

3 The Proposed Algorithm (AQGUK)

In this Section, we described main process of our proposed algorithm (AQGUK). The
specific steps of AQGUK are as follows:

3.1 Main Operation of AQGUK

Genetic algorithm is an intelligent heuristic search algorithm based on Darwin’s evolu-
tionary theory of survival of the fittest. Genetic algorithm includes threemain operations:
selection, crossover and mutation. The detailed description of main operators employed
in this paper is as follows:

Selection. Selection operator can select good individuals from the current population
according to selection probability. Therefore, selection operator gives opportunities for
good individuals to be parents then breed next generation population. The criterion for
judging the individual’s good or bad is their fitness. The higher fitness of individuals, the
greater the chance be selected. The frequently used selection method includes roulette
wheel selection, stochastic universal selection, local selection, truncation selection and
tournament selection. In this paper, we employed the roulette wheel selection operations.
The roulette wheel selection method can also be called proportional selection, in which
the probability of an individual being selected is related to its fitness. Specific steps of
roulette wheel selection are as follows:

(1) Calculate the fitness value of each individual.
(2) Calculate the probability of each individual being selected according to the fitness

value.
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P(Ii) = f (Ii)/
N∑
j=1

f (Ij) (4)

where, f (Ii) is fitness value of individual Ii.

(3) Calculate the cumulative probability of each individual according to the following
formula.

q(Ii) =
i∑

j=1

P(Ij) (5)

(4) Generate a random number r in the interval [0,1].
(5) If r < q[1], individual 1 is chosen, otherwise, individual k is chosen according to

q[k − 1] < q[k].
(6) Repeat (4) and (5) N times.

Clonal Reproduction. This is main process of clonal selection algorithm. The main
purpose of introducing the clonal reproduction operation in our proposed algorithm
(AQGUK) is to further enhance diversity of population. The central idea of clonal repro-
duction is proportional replication of individuals based on it’s fitness values. Namely,
individuals with large fitness values are copied more than individuals with small fitness
values.

Crossover Operation. In this stage, first, the individuals are randomly paired in the
pairing pool, and then set a crossover point for paired individuals. Finally, the paired
individuals exchange geneswith each other. Crossovermethods commonly used includes
single-point crossover, multiple-point crossover, uniform crossover, shuffle crossover
and crossover with reduced surrogate. The crossover operation employed in this paper
is simple single-point crossover operation.

Mutation. Individuals in current population change the value of one or more genes
with mutation probability. In order to explore different good solutions, the proposed
algorithm randomly changes some chromosomes of current population according to
mutation probability.
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The basic idea of the mutation operation employed in this paper is described as
follows. Chromosomes with a low fitness have a high probability of getting a random
change, while, chromosomes with a high fitness have a low probability. The mutation
probability of i-th chromosome is calculated according to following formula.

MIi =

⎧⎪⎨
⎪⎩
k1 ∗ fmax−fi

fmax−−
f
, fi >

−
f

k2, fi ≤ −
f

(6)

where, k1 and k2 are equal to 0.5, fmax is the maximum fitness of a chromosome in

current population,
−
f is average fitness of the chromosomes of current population, and fi

is the fitness of the i-th chromosome. Each gene of chromosome be selected for mutation
is changed and modified the attribute value randomly.

Rotation Operation. Themain purpose of rotation operation is to adjust the probability
amplitudes of each Q-bit. A rotation gate U (θ) is employed to update a Q-bit individual
as follows: [

α
′
i

β
′
i

]
= U (θ) ×

[
αi

βi

]
=

[
cos θi

sin θi

− sin θi

cos θ

]
×

[
αi

βi

]
, (7)

where

[
αi

βi

]
is the i-th Q-bit and θi is the rotation angle of each Q-bit toward either 0 or

1 state depending on its sign. Quantum gate U (θ) is a function of θi = s(αi, βi) × �θi,
where s(αi, βi) is the sign of θi, which determines the direction and�θi is the magnitude
of rotation angle [8].

Catastrophe Operation. When the best individual does not change in a certain number
of consecutive generations, the Catastrophe operation is performed. AQGUK records
the fitness of best individual for each iteration and compares the best fitness in current
iteration with the best fitness.

3.2 Evaluation Strategies

In our numerical experiments, we will use the sum squared error (SSE), the Xie–Beni
index (XB) [9], the Davies–Bouldin index (DB) [10, 17], and the separation index (S)
[11]. Choosing the optimal centers ck’s and the optimal label matrix W are the aim of
the clustering algorithms discussed in this paper.

SSE is defined by

SSE =
K∑

k=1

n∑
i=1

wik ||xi − ck ||2 (8)
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Generally speaking, the lower the SSE value, the better the clustering result.
The XB index [9] is defined as follows:

XB = SSE

n ∗ dmin
, (9)

where, dmin is the shortest distance between cluster centers. Higher dmin implies better
clustering result and SSE is the lower the better, as we mentioned above. Therefore, the
lower XB value, the better clustering results.

To define the DB index [10], we first defined the within-cluster separation Sk and Rk
as follows:

Sk = (
1

|ck |
∑
xi∈ck

||xi − ck ||2) 1
2 , (10)

where ck (resp. |ck |) denotes the set (resp. the number) of the samples belonging to the
cluster k.

Rk = max
j,j �=k

Sk + Sj
||ck − cj|| . (11)

Then, the DB index is defined as

DB = 1

K

K∑
k=1

Rk . (12)

Generally speaking, lower DB implies better clustering results.
The separation index S [11] is defined as follows:

S = 1
K∑

k,j=1;k �=j
|ck ||cj|

K∑
k,j=1;k �=j

|ck |
∣∣cj∣∣∥∥ck − cj

∥∥ (13)

Generally speaking, the higher S values, the better clustering results .

3.3 Main Steps of Proposed Algorithm

See Table 2.
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Table 2. Main steps of proposed algorithm

Input: the maximum number of iterations T
Output: the number of cluster center and the result of cluster

1. Initialization: Set the population size N, the maximum number of iterations T, the mutation
probability Pm and the error tolerance Etol . Let t = 0, and choose the initial population P(0).

In addition, choose the best individual from P(0) and denote it as super individual L∗(0).
2. Selection: Select a new population from P(t) according to formula (1), and denote it by P1(t).
3. Clonal reproduction: Perform a clone operation based on the fitness value of the individuals

and get a new population denoted by P2(t).
4. Crossover: Paired individuals exchange genes with each other, and get a new population

denoted by P3(t).
5. Mutation: Mutate each individual in P2(t) according to formula (3), and get a new

population denoted by P(t + 1).
6. Update the super individual with the quantum rotation operation: choose the best individual

from P(t + 1) and compare it with L∗(t) to get L∗(t + 1). If the best individual does not
change in a certain number of consecutive generations, perform catastrophe operation.

7. Stop if either t = T, otherwise go to 2 with t ← t + 1.

4 Experimental Evaluation and Results

4.1 Data Sets and Parameters

Four gene expression data sets shown in Table 3 are used for evaluating our algorithms.
The first three data sets are Sporulation [12], Yeast Cell Cycle [13], Lymphoma [14],
and the other two are Yeast and Ecoli.

As shown in Table 3, there are some sample vectors with missing component values
inYeast Cell Cycle, Sporulation and Lymphoma data sets. To rectify these defective data,
the strategy adopted in this paper is as follows: First, the sample vectors with more than
20% missing components are removed from the data sets. Then, for the sample vectors
with less than 20% missing components, the missing component values are estimated
by the KNN algorithm with the parameter k = 15 as in [16], where k is the number of
the neighboring vectors used to estimate the missing component value (see [15, 16, 17]
for details).

The values of the parameters used in the computation are set as follows:
Population size N = 30, Crossover probability Pc = 0.3,
Mutation probability Pm = 0.1, T = 150.

4.2 Experimental Results and Discussion

This section is divided into two parts. The first part is the performances of the algorithms
in terms of SSE, S, DB and XB. The second part demonstrates the clustering accuracy
of three algorithms for five data sets.

Each of the three algorithms conducted fifty trials on the five data sets. The averages
over the fifty trials for the four evaluation criteria (SSE, S, DB and XB) are listed in
Tables 4. We shall pay our attention mainly on the comparison of AGUK and AQGUK,
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Table 3. Data sets used in experiments

Data sets No. of
vectors n

No. of vectors with
missing
components <20%

No. of vectors with
missing
components ≥20%

No. of
attributes D

No. of
classes K

Sporulation 6023 413 198 7 16

Yeast cell
cycle

6078 5498 680 77 256

Lymphoma 4022 3166 3 96 150

Yeast 1484 0 0 8 10

Ecoli 336 0 0 8 7

so as to show the benefit of the introduction of Q-bit representation of individuals and
quantum gate operation. The clustering accuracy of three algorithms for five data sets is
shown in Fig. 5.

Table 4. Average SSE, S, DB and XB on the five gene data sets

Data sets Algorithm SSE
(lower the
better)

S
(higher the
better)

DB
(lower the
better)

XB
(lower the better)

Sporulation K-means 5.413 × 103 3.162 2.678 5.019 × 10−4

AGUK 5.392 × 103 3.254 2.653 4.901 × 10−4

AQGUK 5.218 × 103 3.381 2.638 4.725 × 10−4

Yeast cell
cycle

K-means 1.413 × 104 2.732 1.569 3.085 × 10−4

AGUK 1.392 × 104 2.785 1.542 2.765 × 10−4

AQGUK 1.381 × 104 2.801 1.467 2.542 × 10−4

Lymphoma K-means 1.948 × 104 7.192 2.846 7.462 × 10−4

AGUK 1.865 × 104 7.345 2.436 6.766 × 10−4

AQGUK 1.541 × 104 7.422 2.137 4.346 × 10−4

Yeast K-means 238.923 0.321 1.692 9.642 × 10−4

AGUK 229.452 0.332 1.564 8.564 × 10−4

AQGUK 221.343 0.343 1.465 7.432 × 10−4

Ecoli K-means 97.234 3.312 0.936 7.800 × 10−3

AGUK 96.321 3.436 0.921 7.543 × 10−3

AQGUK 94.387 3.509 0.876 6.781 × 10−3
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From Tables 4, we can see that the proposed algorithm AQGUK achieves the lowest
SSE, DB, XB and highest S, for all the five gene data sets. Therefore, AQGUK performs
better than the two four algorithms.

Figures 1, 2, 3, 4 show clearly the overall performance for SSE, DB, XB and S eval-
uations respectively. Four figures clearly show that the proposed AQGUK outperforms
the other two algorithms, in the sense of average performance.

Fig. 1. Average SSE on five data sets

Fig. 2. Average S on five data sets

From Fig. 5, we can see clearly the clustering accuracy based on SSE for five data
sets respectively, and it shows that AQGUK outperforms AGUK and K-means, in the
sense of clustering accuracy.
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Fig. 3. Average DB on five data sets

Fig. 4. Average XB on five data sets

Fig. 5. Average clustering accuracy on five data sets

5 Conclusions

Numerical experiments are carried out on the comparison of K-means, AGUK and
AQGUK algorithm. The evaluation tools include the sum squared error (SSE), the
Davies–Bouldin index (DB), Xie–Beni index (XB) and the separation index (S).
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The conclusions we draw from the simulation results are as follows: the overall
performances of AGUK in terms of the four indexes outperform those of K-means,
and the overall performances of AQGUK outperform those of AGUK and K-means.
This shows the effectiveness of the utilization of the quantum Q-bit representation for
individual, clonal reproduction and quantum gate operation.
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Abstract. For the air compressor system in iron and steel enterprises, an optimal
schedulingmethod for itwas proposed,where the predicted value of the production
load and the equipment capacity are treated as the model constraints, aiming to
reduce the optimal economic cost and improve the energy conversion efficiency.
In addition, an optimization method, combining the hierarchical search and the
adaptive particle swarm optimization algorithm, was proposed to fully consider
the performance of the air compressors, resulting in the great improvement of
the search efficiency. In order to further accelerate the computation process of
the model, a parallel acceleration algorithm based on Spark framework was also
designed. The experimental results show that the proposed method exhibits good
performance in the optimization of the air compressor group scheduling problem.
In addition, under the premise of algorithm stability, good acceleration effect could
be obtained by the Spark parallel algorithm.

Keywords: Air compressor · Optimal scheduling · Hierarchical search · Spark
parallel acceleration

1 Introduction

The steel industry has always been a high-energy-consuming industry in China, whose
energy consumption accounts for more than 10% of China’s total energy consumption
[1]. Compressed air, as one of the important power sources of iron and steel enterprises,
plays an important role in iron and steel enterprises. It is estimated that the energy con-
sumption of the compressed air system of China’s iron and steel enterprises accounts for
about 10% to 15% of the total industrial energy consumption [2]. Therefore, the optimal
scheduling of compressed air energy systems in iron and steel enterprises urgently needs
to be resolved.

In recent years, researchers havepaidmore andmore attention to the energy efficiency
evaluation of com-pressed air systems and the optimal scheduling of equipment and
systems. In [3], an optimal control method was proposed for oxygen generators based
on dynamic programming algorithm, which effectively reduced the operating cost, while
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this method suffered from the low calculation efficiency with large-scale air compressor
group.Reference [4] reported amixed integer nonlinear programming for the compressed
gas storage operation in traditional gas power generation companies. In [5], an improved
particle swarm optimization algorithm with nonlinear dynamic adjustment of inertia
weightswasproposed,which achieved thegoals of energy saving, emission reduction and
balanced scheduling of the air compressor control system. In addition, themethods in the
above literature did not consider the difference on the performance of the air compressors.
The air compressors participating in the scheduling are all manually confirmed, resulting
in the fact that the optimality of the solution cannot be ensured.

In practice, enterprises have put forward higher requirements for the computation
efficiency. In recent years, the parallel acceleration algorithms have gradually shifted
from the Hadoop framework [6] to the Spark [7] framework based on in-memory com-
puting. Since the latter one can effectively avoid frequent I/O access, the algorithm has a
good performance on parallel acceleration. In [8] and [9], the K-nearest neighbormethod
and Bayesian network based on the Spark computing framework were studied respec-
tively, which were used to solve the big data classification problem. In [10] and [11],
the iterative calculation acceleration of genetic algorithm and ant colony algorithm were
studied respectively in the Spark framework. At present, the Spark is mostly applied
in data mining for users by Internet companies, but there are few applications in the
traditional industrial enterprises.

By determining the constraint boundary with the predicted value of total compressed
air demand and the production capacity of the equipment, we established the schedul-
ing model, whose objective function is the economic cost or energy conversion effi-
ciency. Considering that the traditional method does not take the performance of each
air compressors into account, a hierarchical search algorithm is proposed to determine
the optimal group combination of the air compressor by production plan, air compressor
maintenance plan and compressed air demand as constraints. On this basis, in order to
improve the accuracy and convergence speed of the solution, we employed an improved
adaptive particle swarm algorithm (APSO) to solve the optimization problem under dif-
ferent open combinations. Besides, an APSO parallel acceleration algorithm based on
the Spark framework is also designed. Through experiments on the scheduling problem
of the air compressor system of a domestic iron and steel enterprise, the effectiveness of
the proposed method is verified. On the premise of meeting the needs of the enterprise,
the operating cost of the enterprise’s air compressor group is reduced.

2 Problem Description and Optimization Model

2.1 Problem Description

The compressed air system of iron and steel enterprises is mainly composed of three
parts, including generating system, storage system and consuming users. Generally, the
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air compressor unit can be divided into multiple air compressor stations according to
the area and their functions. A schematic diagram of the structure of a compressed air
system of a steel enterprise is shown in Fig. 1. Compressed air is generated via an air
compressor station and transported along the pipe network to various parts of the steel
plant. It contains four air compressor stations. Each station comprises of 6 sets of air
compressor equipment and one set of auxiliary equipment. Each set of air compressor
equipment includes an air compressor, a gas storage tank, a dryer and a filter. Compressed
air consumption equipmentmainly includes a sinteringworkshop, a rotary hearth furnace
and a blast furnace.

Chemical product

Torpedo car Sintering

Refining

Coal fines

Raw materials

1 32

54 6

1# Electric stove

2# Electric stove

1 32

54 6

Seawater desalinaƟon Boiler Pellet Lime Rotary hearth 
furnace

1 32

54 6

1 32

54 6

Blast 
furnace

Blower

4200 Thick plate

Slag treatment

2200 hot rolled

2000 cold rolled

Fig. 1. Schematic diagram of the compressed air system of a steel company

At present, in most of the iron and steel enterprises in China, the air compressor
systems are basically dispatchedmanually, according to the actual production conditions
of the enterprise. The status of the air compressor in the process is completely determined
manually, based on the equipment maintenance plan, however, the performance of the
equipment has not been involved as an evaluation condition. It can be seen that themanual
scheduling method has the disadvantages of large error and low degree of automation.
In addition, as for the scheduling methods in the existing literature, the performance
difference of air compressor equipment is not considered.

2.2 Optimal Scheduling Model

In view of the many shortcomings of the manual scheduling method, in this paper,
the safe operation of air compressor equipment is treated as a constraint to establish
an optimal scheduling model of the economically optimal air compressor cluster. The
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objective function is generally composed of the sum of the operating cost and the start-
stop cost of the air compressor in the period t1 ∼ t2. The objective function is given
by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

Jcos t = ς
(
JAir + JDrying + Jothers

)

JAir = ∫ t2
t1

∑m
i=1

∑Si
j=1W

run
ij

dt+
∑m

i=1
∑Si

j=1

(
Wstart

ij
+ Wstop

ij

)

JDrying = ∫ t2
t1

∑m
i=1 W̃

run
ij (QS′′)dt

W run
ij = αij ∗ xij + βij,

i = 1, 2, . . . , m; j = 1, 2, . . . , |Sj|

(1)

where JAir , JDrying and Jothers denote the energy consumption of the air compressor, the
combined drying unit and other auxiliary facilities during the t1 ∼ t2 period respectively,
Jothers is generally set to a fixed value; ς is the electricity price; m is the number of air
compressor stations; Si and S ′′

i are the number of open compressors and combined drying
units of the i-th air compressor station;Wstart

ij andWstop
ij denote the energy consumption

of starting and stopping the j-th air compressor in the i-th station respectively, both of
which are a fixed value; W̃ run

ij (QS ′′) is the relationship between the outlet flow QS ′′ of
the air compressor station and the energy consumption of the combined dryer unit when
the i-th air compressor station combined drying unit working at opening strategy S ′′. In
actual working conditions, in order to facilitate calculation, it is generally set to a fixed
value; αij and βij are the parameters of the curve between opening degree and energy
consumption of the j-th air compressor in the ith station; xij is the opening value, and it
is also the only independent variable of the optimization problem.

The constraints of the objective function are described as follows:

(2)

The meaning of each constraint is listed as below.

➀ Air compressor intake valve opening constraints: Rij and Rij are the maximum and
minimum constraints of air compressor intake valve flow opening.
➁ Air compressor capacity constraints: Qmax and Qmin represent the maximum and
minimum constraints of air compressor capacity, respectively.
➂Gas production and gas consumptionmatching constraints:

∑m
i=1

∑Si
j=1 Qij is the total

gas production of m air compressors, and Qneed is the user’s air demand.

3 Hierarchical Search and APSO Algorithm Based on Spark
Framework

Without taking the performance difference of individual air compressor into account,
the solution of the model in Sect. 2.2 cannot be guaranteed to be the optimal solution.
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The performance of an air compressor can be described by a curve of the opening value
and energy conversion efficiency which is fitted by the curve of opening value and flow
value and the curve of opening value and energy consumption. It can be seen from Fig. 2
that the performance of each air compressor is different under different opening values,
thus it is necessary to select an optimal configuration of the air compressor group.

Fig. 2. Performance curves of 1#, 3# and 5# air compressors of 1# station

Considering the difference on the performance of air compressors, we propose to
employ the hierarchical search to determine the combination set of air compressors.
Then, the APSO algorithm based on the Spark framework is designed to solve the
optimal problemwith less computational burden. Finally, the optimal solution is obtained
by evaluating the optimal value under different combinations. The general flow of the
optimized dispatch of compressed air system is shown in Fig. 3.

3.1 Hierarchical Search

The hierarchical search mainly determines the combination set of the air compressor
through the information of the air compressor equipment and the demand for compressed
air, which is divided into three layers, i.e., a human-computer interaction layer, a strategy
search layer, and a device selection layer.

(1) Human-computer interaction layer: Determine the status information of the air
compressor equipment based on the database and manual correction.

(2) Strategy search layer: According to the state of the air compressor determined by the
human-machine interaction layer, determine the opening strategy {S1, S2, . . . , Sm}
of the air compressor unit, where Si is the number of air compressors opened at the
i-th air compressor station. The opening strategy must satisfy the condition that the
maximum gas production is not less than the predicted value of the compressed air
demand, otherwise continue to search for a newopening strategy until the conditions
are met.
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start

Read equipment informaƟon and compressed air demand 
forecasts from the database

Hierarchical search to determine the open combinaƟon set of 
air compressor

Solve opƟmizaƟon problems by APSO based on Spark in each 
combinaƟon

Collect and evaluate to get the best soluƟon

End

Solve the opƟmal load of each air compressor staƟon with 
the goal of energy conversion efficiency

Fig. 3. Schematic diagram of the manual scheduling method of the air compressor system

(3) Equipment selection layer: According to the search results of the air compressor
station opening strategy, all possible combinations are arranged and combined.
For example, if the number of air compressors in the air compressor station is
{Q1,Q2, . . . ,Qm}, the number of open compressor combinations for each air com-

pressor station is
{
CS1
Q1

,CS2
Q2

, . . . ,CSm
Qm

}
, the total is n, and the i-th combination

is πi = {
π i
1, π

i
2, . . . , π

i
m

}
. Among them, the opening combination must meet the

following load balance constraints:
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∣
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∣
∣
∣
∣
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≤ 1, i = 1, 2, . . . , m (3)

σij =
{
1, compressor(i, j) participate in
0, otherwise

(4)

where compressor (i, j) is the j-th air compressor in the i-th station.
After the combination is determined, in order to ensure the load balance between

the air compressor stations, the load between the stations must also be distributed. The
upper limit of the output of each air compressor station is also determined, and the
load distribution between air compressor stations can be described as the following
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optimization problem:

max
Q(πi,t)

m∑

i=1
λ1λ2 ∫ t2

t1
Q(πi,t)+h(πi,t)dt

m∑

i=1
∫ t2
t1

x(πi,t)dt

s.t.

⎧
⎨

⎩

m∑

i=1
Q(πi, t) ≥ Q

0 ≤ Q(πi, t) ≤ Qmax
πi

, i = 1, 2, . . . ,m

(5)

where λ1 and λ2 are the standard coal conversion coefficient and the equivalent electric
conversion coefficient respectively;Q(πi, t), h(πi, t) and x(πi, t) are the output, residual
energy recovery and input quantity (electric energy) of the i-th air compressor station
when taking the combination πi at time t; x(πi, t) = g(Q(πi, t)), The specific expression
of g(•) is determined according to the air compressor equipment parameters under πi;
Q is the measured value of the total compressed air demand; Qmax

πi
is the upper limit of

the output of the ith air compressor station under πi. To simplify the calculation in actual
operation, the value of t2 − t1 can be fixed to unit time.

The difference between the load distribution of the air compressor station and the
actual output of each station is added as a penalty term to the original objective function.
Therefore, the formula (1) is converted as:

min
x

Jcos t = ς1
(
JAir + JDrying + Jothers

)

+
m∑

i=1

∣
∣
∣
∣
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∣
Qπi −

Si∑

j=1

Qij

∣
∣
∣
∣
∣
∣

2

2

(6)

The proposed optimization model is solved by using the APSO algorithm for deter-
mining the i-th combination πi in N combinations. The objective function is the sub-
optimization problem of formula (6), after aggregating N results, the air compressor’s
opening value xij under πi with formula (1) as the objective function are selected.

3.2 Adaptive Particle Swarm Optimization

Since the PSO algorithm has the advantages of fast search speed and easy implemen-
tation, this algorithm based on adaptive inertia weight is used to solve the optimization
problem, and the Gaussian mutation mechanism [12] is introduced to improve the global
search capability for the premature convergencephenomenon.Thepositionof theparticle
is composed of the opening value a of the air compressor xij, which is a one-dimensional
vector. The update formula of the particle is given by:

xi(t + 1) = xi(t) + vi(t + 1) (7)

vi(t + 1) = ωtvi(t) + r1c1(pid − xi(t)) + r2c2(pgd − xi(t)) (8)
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where ωt is the inertia weight of the t-th iteration; r1 and r2 are a random number within
0 ~ 1; c1 and c2 are the acceleration constant, generally 0.5; pgd is the global optimal
particle; pid is the historical optimal particle.

We set the inertia weight as a function of the fitness of the current optimal value in t
iterations, as follows:

ωt = 0.5 ×
[

1 + tanh(
F(Pt

gd)

F(P1
gd)

)

]

(9)

where tanh(·) is the hyperbolic tangent function; F(·) is the fitness function. From
formula (9), one can see that 0 ≤ ωt ≤ 1. If the adaptability of the current optimal
solution is not significantly improved, the inertia weight decreases slowly since it still
requires global search capabilities, otherwise it is conducive to better local search.

For enhancing the global search ability, the Gaussian random disturbance is added
to the particles in the mutation mechanism:

xij = xij + M × βij (10)

where xij is the j-th component of the i-th particle; βij ∼ N (0, 1);M is a variable step.
From formula (10), M determines the strength of the mutation operator’s global

search ability and local search ability. The variable asynchronous length in this paper
can be adaptively changed according to the fitness value of particles. Therefore, M is
based on the fitness of the current optimal solution. During the t-th iteration it is defined
by:

Mt = xmax × tanh(
F(Pt

gd)

F(P1
gd)

) (11)

where xmax is the maximum value of the particle component. As the iteration process
progresses, Mt will gradually decrease as the global optimal particle adaptation value
decreases.

3.3 Optimized Scheduling Algorithm Based on Spark Parallel Acceleration

Hierarchical search will generate a large number of combinations, and the APSO algo-
rithm is executed for each combination needs, which suffers from the extremely high
calculation costs. The core process of the APSO algorithm is particle speed and posi-
tion update. The update path of each particle is completely independent, and the update
method is iterative calculation, which is suitable for the Spark framework. Therefore,
we use the Spark calculation framework to accelerate APSO calculations. We mainly
use map () and mapPartition () in Transformation functions and other methods in Action
functions.

In this study, the particles are encapsulated into an RDD, and the update process
of the particles is executed in parallel. Using the map function provided by Spark, a
series of conversion operations are per-formed on the particles in the RDD according to
the algorithm, and the optimal solution is finally obtained. The procedure is shown in
Algorithm 1, in which the steps 4, 5, 7 and 8 are executed in the map function.
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Under the traditional programming method, for the global variables required in the
update process of the APSO algorithm, such as the mutation operator step, inertia factor,
and global optimal particle, the Driver passes to each Executor is only their copy. And
the modification made by each Executor is only valid for this Executor, and cannot be
shared with other. To address it, this study uses the Spark broadcast variables, Broadcast
and Redis database, to store and share global variables in the algorithm. One can define
the Broadcast variable on the Driver side as the address and account password of the
Redis database. The Redis database stores the global variables of the algorithm in the
form of key-value pairs, and then connect to the database to update when it needs to be
updated.

4 Experiments and Analysis

To verify the advantage of the hierarchical search method and the acceleration effect
of the Spark-based APSO algorithm. This study uses Virtual Box to build 6 virtual
machines on a physical machine to form a Spark cluster, and compares the acceleration
effect through experiments on a single virtual machine and a Spark cluster.

4.1 Experimental Environment and Calculation Examples

The performance parameters of the air compressor used in the experiment in this paper
are all from the actual measured data of an iron and steel enterprise in China. The
structure of the compressed air system is shown in Fig. 1.
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In order to facilitate the calculation, the energy consumption of some equipment
is set to a fixed value. The energy consumption and power of some equipment in the
experiment are shown in Table 1. In the experiment, the total compressed air load of the
steel company in April 2019 was used as the predicted value of compressed air demand.
The maintenance schedule of the air compressor during this period was treated as a
manual intervention item.

Table 1. Energy consumption and power of some equipment

Param Description Value

ς Electricity price 0.56 yuan/kWh

	

W
run

ij

(
QS ′′

) Combined drying unit power 450 kW

Wstart
ij

Start-up energy consumption of air compressor 10 kWh

Wstop
ij Stopping energy consumption of air compressor 10 kWh

Jothers Power of auxiliary equipment of air compressor station 300 kW

4.2 Optimal Scheduling of Air Compressor Group

The manual scheduling method always uses the current combination. If the current
combination is not optimal, the optimal solution will never be obtained, and when the
current air compressor is maintained, the selection of the replacement air compressor is
usually based on human experience. We verify that the solution of the APSO algorithm
based on the hierarchical search method is superior to the APSO algorithm.

The operating cost of each scheme is shown in Table 2. It can be seen that the
APSO algorithm reduces the electricity cost of the air compression system, however,
since its opening combination is the opening combination of the manual scheme, the
cost reduction is not large. The APSO algorithm of the hierarchical search method can
search the optimal scheduling scheme of the entire air compressor group.

Table 2. Operating costs of various schemes

Manual APSO Ours

yuan/hour 17 421 17 118 16 121

4.3 Spark Parallel Accelerated Experiment

We first analyze the effect of the Spark frame-work on the stability of the solution.
For the same optimal scheduling problem, serial experiments and Spark parallel exper-
iments were conducted. It can be concluded from the results of the Spark accuracy
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verification experiment that the opening combination of the parallel experiment and the
serial experiment is consistent, and the maximum deviation of the opening value of
the air compressor is 1.11%. Considering the random search characteristics of swarm
intelligence algorithms, the Spark framework exhibits an acceptable performance on the
stability of the solution.

Fig. 4. Time-consuming under different combinations

In order to compare the efficiency of single machine solution and Spark parallel
acceleration, we designed experiments based on the same parameters and number of
iterations when the total number of open combinations is 25, 100, 400 and 1600.

As can be seen from Fig. 4, when the number of open combinations is small, because
of the communication consumption caused by the Spark Driver sending tasks and data
to the Executer and the data shuffle after the task is executed, the parallel mode is slower
than the stand-alone mode. When the number of open combinations gradually increases,
the running time of Spark is significantly reduced compared to that of stand-alone, and
the acceleration ratio gradually increases. When the total number of combinations is
1600, the speedup of the parallel algorithm is close to 4.5 times.

5 Conclusion

From the perspective of the actual operating conditions of iron and steel enterprises,
considering the difference of the performance of the individual air compressors, a hier-
archical search method is designed to generate combinations that satisfy the production
plan and production constraints, and the APSO is employed to solve the optimization
problem. For speeding up the calculation, we designed a parallel acceleration algorithm
based on the Spark framework considering the characteristics of the iterative update of
the APSO algorithm. Experimental results show that the proposed hierarchical search
method can find a better air compressor group scheduling scheme than that of the tra-
ditional methods. On the premise of satisfying the stability of the solution, the use of
Spark has contributed to a significant acceleration.
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Abstract. Integrating renewable energy distributed generation (REDG) into the
existing power distribution grid has become a significantly exercise to carry out.
This is because of several technical, economic and environmental benefits accru-
ing from it. However, optimal location and sizing of REDGespecially photovoltaic
(PV) andwind turbine (WT), is still a difficult task due to the natural dependency of
these renewable source on meteorological conditions. In this paper, we proposed
a technique based on particle swarm optimization (PSO) to solve the location and
sizing of REDG problem. The proposed PSO algorithm is used to minimize the
power losses and maximize the voltage stability of the power grid distribution sys-
tem integrated with REDG. The paper also presents a comparison of the proposed
method and other related techniques for REDG sizing and location. The proposed
method is validated using the IEEE 33 bus systems.

Keywords: Distribution power grid system · Particle swarm optimization ·
Power loss minimization

1 Introduction

The global electricity and load demand have increased rapidly over the years and this has
extensity the pressure on the power generation utilities to increase the supply capacity
to meet the demand. The existing distribution system infra-structure is not capable to
support a huge demand of electricity [1]. Moreover; the traditional method of electricity
generation is depended on fossil fuels such as coal which has environmental impacts [2].
This has detrimental effects on the environment and has contributed negatively to the
global warming [3]. Furthermore, large power plants used for electricity generation are
usually located far from the load centers,which result in about 15% losses of active power
long the transmission and distribution lines. Therefore, there has been a significant drive
to find alternative solutions for electricity generation to meet the required demand with
minimum impacts on various aspects. This need has led to the exploitation of renewable
energy sources (RES) as alternative source of electricity to meet the projected increase
in load demand and to solve ecological environmental issues [4].

Distributed generations (DGs) by definition are generation units located at distri-
bution power grid systems close to the load centers. These units are primarily used to
abruptly meet the load demand, reduce operating costs during peak time, reduce power
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losses, reduce distribution loading, improve system reliability and increase power qual-
ity [5, 6]. Optimal planning of DGs location and sizing is a critical to achieving the
maximum technical and economic benefits. The non-optimal location and sizing of DGs
may result in increase in power loss and affect the system voltage stability [7]. There has
been a great significant research work proposed to finding an optimal solution to REDGs
sizing and location in distribution systems. In [8], an analytical method was proposed
to determine the optimal position and size of DG to minimize active power losses. An
intelligent search technique based on the backtracking search optimization algorithm
(BSOA) was proposed by [9]. The BSOA was used to find the optimal location and size
of the DG to be connected into the power grid to minimize power losses and improve
the voltage profile. A technique based on artificial bee colony (ABC) was proposed in
[10], for optimal DG’s size and location for minimization of active power losses. In [11],
a technique-based firefly algorithm (FA) was proposed to find the optimal location and
size of DG to reduce the active power losses. The lengthy discussion of determining the
optimal location and size of the REDGs in distribution networks indicates the impor-
tance of finding an optimal solution to satisfy technical, environmental and economic
benefits. In this paper a technique base on particle swarm optimization (PSO) is pro-
posed to determine the best location and size of REDGs to be connected into the power
distribution grid. The paper is organized in the following structure. Section 2, discuss
the mathematical modelling of REDGs. Section 3 discuss the problem formulation; this
includes technical constrains and objective functions. The results of power loss mini-
mization and voltage improvement are discussed in Sect. 4 and lastly the conclusion and
recommendations are presented in Sect. 5.

2 Mathematical Modelling of REDGs

In this section, the mathematical modelling of PV and WT is discussed. Generally, the
PV andWTenergy sourcesmainly depend onweather conditions (i.e., temperature, wind
speed and heat emission). These conditions bring uncertainties and must be considered
when developing the planning and optimization problem of REDGs integration into the
distribution power grid.

2.1 Photovoltaic Systems

The generation of electricity usingPVhas proven to be an effective alternativemethod for
energy sustainability with a benefit of reduction in fossil fuel [12]. The power generated
by the PV plant is represented as:

PPV (G) =
{(

PPVr × G2
)
/(SSTC × R) for G < RC

(PPVr × G)/SSTC for G > RC
(1)

where, PPVr is the rated output power of the PV unit,G is the solar irradiance probability,
SSTC is the solar irradiance at standard test conditions, and RC is a certain irradiance
point.
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2.2 Wind Turbine Energy Systems

Generating electricity from (WT) has become one of the most popular and efficient
technology widely used [13, 14]. The electrical power generated from the WT is
mathematically defined as:

PWT (VW ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for vw ≤ vci[
(vw − vci)/(vr − vco)

] × Pwtr for vi < vw ≤ vn
Pwtr for vw ≤ vci
0 for vw ≤ vco

(2)

where, PWT is the output power generated by the WT, vw is the wind speed at the hub
height of the WT, Pwtr is the rated power of the WT, vci is the cut-in wind speed of the
WT, vco is the cut-out wind speed of the WT and vn is the nominal speed of the WT.

3 Problem Formulation

In this section, the proposed methodology for power loss minimization and voltage
improvement is discussed. The voltage sensitivity index (VSI) technique proposed in
[15] is used to determine the weakest voltage at a specific bus bar of a power distribution
grid. The VSI technique can be mathematically defined as:

VSI = |Vs|4 − 4 × {
PrXij − QrXij

}2 − 4 × {
Prrij + QrXij

}2 × �VS�2 ≥ 0 (3)

where, VS is the sending bus bar voltage, Pr and Qr represents the active and reactive
power at the receiving end respectively, rij and Xij are the resistance and reactance
parameters of the i− j line. If VSI > 0 at all busses of the power system grid the system
would be termed to be stable. The highest VSI value indicates an optimal location for
connecting the REDG (PV and WT).

3.1 Objective Functions

In this study the main objective is to find an optimal location and size of the REDGs
to be integrated into the power distribution grid. In order to achieve this objective,
the following objective fitness functions OF1, and OF2 represents the, power loss, bus
voltage sensitivity and line voltage stability respectively, and must be considered:

• Minimisation of active power losses: this is mathematically represented as:

OF1 = Min

{
Pa =

nbr∑
a=1

|Ia|2Ra

}
(4)

where, Ia is the total current flowing in the network, Ra is the total resistance of the
network and nbr is the number of branches in the network.

• Improve bus voltage: this is achieved by minimising the voltage sensitive index:

OF2 = min{VSI} (5)
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The normalized overall fitness function (OFF) is the summation of all individual
objective fitness functions:

OFF = min(power loss) + min(VSI) (6)

3.2 Technical Constrains

In order to optimally locate the correct REDG size certain constrains must be satisfied.
Constrains are critical in engineering design as they permit the operational applicability
of a system. In thiswork power flow, voltage limits and capacity constrain are considered.

• The power balance in an electrical power system is mathematically defined as:

Pslak =
nb∑
i=1

PREDG,i +
nbr∑
a=1

PLOSS,a +
nredg∑
m=1

PREDG,m (7)

where, Pslak is the active power injected by the slack bus, PREDG,i is the active power
injected by the ith REDG, PLOSS,a is the active power losses of branch ath, PREDG,m is
the active power injected by the mth REDG, nb is the set of the bus system, nbr is the
set of branches and nredg is the set of system buses.

• The variation of voltage may affect the performance of the system. It is therefore
imperative that the voltage is maintained within permissible limits.

Vmin ≤ Vi ≤ Vmax i ∀nb (8)

3.3 Particle Swarm Optimization

Particle swarm optimization (PSO) was initially developed in 1995 by Eberhart and
Kennedy [16]. The PSO technique is based on the social behavior demonstrated by
various species to fill their needs in the search space. The PSO algorithm is for-
mulated by the personal experience (pbest) and overall experience (gbest). The par-
ticle Xi (i = 1, 2, . . . ,N ) is given by Xi = [

Xi,1,Xi,2, . . .Xi,d
]
, d is the dimen-

sion of the search space. Furthermore, the initial velocity of the particle is given by
Vi = [

Vi,1,Vi,2, . . .Vi,d
]
. The position and velocity of the particles are updated during

each iteration process using Eqs. (9) and (10) respectively.

X (t+1)
id = X (t)

id + V (t+1)
id (9)

V (t+1)
id = W .V (t)

id + C1r1.(pbestid − Xid ) + C2r2.(gbestid − Xid ) (10)

where, t is the number of iterations, C1 and C2 are constants r1 and r2 are random
numbers, W is the inertia weight given by:

W = Wmin + Wmax − Wmin

itermax
× t (11)
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where, Wmin = 0.3, Wmax = 0.7, C1 = C2 = 0.5. In the present work PSO algorithm
is utilised to determine the fitness function. This problem is considered to be a multi-
objective problem and is mathematically represented as:

min(f ) = w1 × F1 + w2 × F2 (12)

where, f is the fitness function, and the weight factors are represented by w1 and w2 and
both equal to 0.5.

4 Results and Discussions

In order to validate the efficiency of the proposed PSO algorithm, the IEEE 33 bus system
is utilized. The IEEE network parameters and the initial power flow results are presented
in Tables 1 and 2 respectively.

Table 1. Different power systems specifications

Parameters 69 IEEE bus system

nr 69

nbr 68

Vsys(kV ) 22

SBase(MVA) 100

ZBase(�) 3.12 + j2.8

Table 2. Initial power flow analysis results

Parameters 69 IEEE bus system

PLoss(kW ) 245.6

QLoss(kW ) 110.7

Vmax(p.u) 1.0191

Vmin(p.u) 0.9205

Voltage drop (p.u) 1.8872

TheproposedPSO technique is applied to resolve the problemof optimal location and
sizing of REDGs integration into the power grid considering the technical constrains. To
evaluate the reliable performance of the proposedmethod, different penetration scenarios
REDGs levels are considered. These scenarios consist of the single and multiple REDGs
(WT&PV) to be integrated into the power distribution grid. Due to non-rotational effects
from the PV energy only the active power is injected on the system, however the WT
injects both the active and reactive power. To achieve power balancing at all load terminal
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of the power grid, it is assumed that only one REDG is connected into the bus bar. The
main objective is to determine the position and size of the REDGs units to minimize
power losses and improve the voltage profile ad stability.

To evaluate the performance of the proposed PSO technique, a standard IEEE 33
bus system is used to study different cases (i.e., integration of single and multiple PV
and WT generating units). In the first scenario, single REDG units are integrated into
the 33 bus IEEE-system. The optimal bus number 6 is selected as an optimal location
for connecting the PV and WT. the size of the PV and WT units are 2.56 MW and
3.72 MVAwith 0.92 lagging power factor. The results of the optimal location and sizing
of REDGs using the proposed PSO technique are presented in Table 3. The proposed
PSO technique significant decreases the active power losses when integrating the PV
and WT single REDGs units. The losses are decreased from 230.145 kW of the system
without REDGs to 100.57 kW and 75.145 KW when the PV and WT are connected
respectively. Furthermore, the line and voltage stability index are improved significantly.
This improvement enhances the technical performance of the overall power distribution
grid. The integration of multiple REDGs (i.e. two PV and two WT units) is considered,
and its impacts are examined. In a case of two PV units the optimal bus location of
the REDGs is 12 and 32, with the capacity of 0.960 MW and 1.142 MW respectively.
From the results obtained, the active power losses have decreased significantly from
230.145 kW to 75.145 kW. The 33 IEEE bus system is presented in Fig. 1.
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Fig. 1. 33 IEEE bus system

Moreover, the bus voltage and line voltage stability indexes are improved by opti-
mally locating REDGs using the proposed PSO technique. Subsequently, the optimal
bus location of the two WT units is 12 and 32, with the capacity of 1.0551 MVA and
1.7030 MVA, with power factor of 0.9055 and 0.825 lagging respectably. From the
results obtained the active power losses is drastically reduced from 230.145 kW to
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36.15 kW. The WT units inject reactive power on the system which results in a signif-
icant improvement on the line and bus voltage compared to the PV units in both single
and multiple cases. The general results presented in Table 3, shows that increasing the
PV andWT units improve the technical performance of the system. However, it is worth
mentioning that the improvements are as a result of optimally selecting the best location
and size of REDGs to be integrated into the power grid. This means that an increase
of un-optimum external energy sources will not improve the technical performance of
the system. Hence, PSO is utilized to determine the optimal solution for best technical
performance. The voltage profile, voltage stability and active power losses of a 33 bus
IEEE system are presented in Figs. 2, 3 and 4 respectively.

Table 3. Optimal location and sizing of REDGs using PSO (33 IEEE bus system)

Description Without any REDGs Single REDG Multiple REDGs

PV WT 2 PV 2 WT

Ploss(kW ) 230.145 100.57 75.145 89.145 36.15

Vminbus(p.u) 0.9321 0.9522 0.9715 0.9621 0.9875

Vmaxbus(p.u) 1.02 0.9921 1.0253 0.9983 1.0452

REDG size (MW, MVA) NA 2.560 3.720 0.960 1.0551

1.142 1.703

REDG location NA 6 6 12 12

32 32

LSVI 19.221 26.223 31.042 28.112 34.257

VSI 15.332 18.201 21.225 22.052 24.063

Voltage drop (p.u) 0.821 0.327 0.441 0.528 0.152
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Fig. 2. Voltage profile of a 33 IEEE bus system

Fig. 3. Voltage stability index of a 33 bus IEEE system
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Fig. 4. Active power losses

5 Conclusion

In this presentwork, an optimal planning technique forREDGs integration into the power
grid is proposed. The proposed technique uses the PSO algorithm to evaluate the impact
of REDGs and subsequently determine the appropriate size and location which must be
connected into the grid. The proposed PSO technique is validated using a 33 IEEE bus
system. Various scenarios of REDGs are analyzed and the results are presented. From
the presented results the following conclusion may be highlighted:

• Optimising the location and size of the REDG is practically essential for the efficient
technical and financially viable performance.

• The increase in the penetration levels of REDGs increases the complexity of the
network analysis, it is therefore imperative that the uncertainty of both the PV and
WT sources are modelled as accurately as possible to improve the overall model
efficiency.

• There is a significant decrease of the active power losses recorded when using PSO
compared to the other methods presented.

Future research work will entail the optimization of economic aspects of REDGs
integration as-well as the impact of introducing the storage systems.
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Abstract. Traffic flow optimization is an important and challenging
problem in handling traffic congestion issues in intelligent transporta-
tion systems (ITS). As the simulation and prediction of traffic flows
are time-consuming, it is inefficient to apply evolution algorithms (EAs)
as the optimizer for this problem. To address this problem, this paper
aims to introduce surrogate-assisted EAs (SAEAs) to solve the traffic
flow optimization problem. We build a traffic flow model based on cellu-
lar automata to simulate the real-world traffic and a surrogate-assisted
particle swarm algorithm (SA-PSO) is presented to optimize this time-
consuming problem. In the proposed algorithm, a surrogate model based
on generalized regression neural network (GRNN) is constructed and
local search particle swarm algorithm is applied to select best solutions
according to the surrogate model. Then candidate solutions are evalu-
ated using the original traffic flow model, and the surrogate model is
updated. This search process iterates until the limited number of func-
tion evaluations (FEs) are exhausted. Experimental results show that
this method is able to maintain a good performance even with only 600
FEs needed.

Keywords: Online data-driven · Traffic flow problem · Surrogate ·
Particle Swarm Optimization

1 Introduction

With the rapid development of urbanization as well as the revolution of automo-
biles, the number of vehicles in cities grows explosively. Traffic congestion has
been a key concern in almost all big cities in the world. Compared to the grow-
ing number of automobiles, the development of traffic facilities is much slower,
which leads to the limited traffic capacity and vehicle speed. How to efficiently
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manage the traffic flows in road network so that the utilization of road network
facilities can be optimized has become a crucial problem in ITS.

In general, there are two steps in traffic flow management. The first step is to
simulate traffic conditions in road networks by modeling. To build traffic simu-
lation models, researchers have developed mechanistic models like the petri net
[1], data-driven models like Kalman filters [2], autoregressive integrated mov-
ing average (ARIMA) [3] and neural networks [4]. Traffic simulation software
like VISSIM [5] have also been developed. These models and tools can provide a
good simulation of the real-world traffic flow under the given condition even with
limited traffic data. Then, the second step is to optimize the traffic flow based
on the model constructed. Many global search algorithms, like genetic algorithm
[6], water flow algorithm [7] and particle swarm optimization algorithms (PSO)
[8] have applied to optimize the traffic flow problem. The popularity of evolution
algorithm (EAs) in this area is probably due to the NP-hard characteristic of
the traffic flow problem. EAs, which are inspired by natural phenomenon and
biological behaviors, are able to handle multi-modal problems even without an
analytical model.

Despite the popularity of EAs, there remains some challenges for them to
handle real-world traffic control problems. EAs assume that a mathematical
analytical evaluation function is provided for evaluating and assessing the can-
didate solutions generated during the process of the algorithms. However, in
many applications, the evaluations of candidate solutions are time-consuming.
In the traffic flow problem considered in this paper, the prediction and simu-
lation of traffic flows in existing models and tools are usually computational
expensive. Since EAs require a population of individuals to evolve iteratively,
time-consuming FEs will make the execution of EAs become unaffordable.

To overcome this challenge, surrogate-assisted EAs (SAEAs) have been intro-
duced in the literature [9,20], where a model is trained as an approximation of the
original model to provide extra information for the searching algorithm. In this
method, a proportion of the expensive FEs performed by the original model is
replaced by the approximation model often known as the surrogate model. There-
fore, the computational expense for solving computational-intensive optimiza-
tion problems can be significantly reduced. In an online data-driven surrogate-
assisted optimization process, FEs are conducted during the process and the
surrogate model are updated to gain higher accuracy [10]. Usually, machine
learning methods like polynomial regression [11], radio basis function neural
networks [12], Kriging models [13], are commonly used in SAEAs as surrogate
models.

This paper aims to introduce SAEAs into the optimization of the classic
traffic flow problem to overcome the problem of large computation expense dur-
ing the optimization. A traffic flow model based on cellular automata is con-
structed to simulate real-world traffic according to the problem. Then, an online
surrogate-assisted particle swarm optimization algorithm (SA-PSO) is proposed
to optimize the average vehicle velocity based on this model. During the opti-
mization process, local-search PSO (LS-PSO) will be applied on the surrogate
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model repeatedly and FEs provided by the original traffic flow model will update
the surrogate. By bringing SAEAs into this question, we significantly reduce the
computational expense and can still gain a good performance during the opti-
mization and find a good configuration of the road net.

The rest of this paper is organized as follows. In Sect. 2, a traffic flow model
based on cellular automata is introduced. In Sect. 3, the structure and detailed
processing of the surrogate-assisted particle swarm optimization algorithm is
proposed. Section 4 shows the experiment results of the algorithm on the traffic
flow model. Section 5 concludes the paper.

2 Definition of the Traffic Flow Problem

2.1 Problem Description

With the rapid development of urbanization, urban traffic pressure has been
increasing. How to optimize urban road net management, improve the utilization
of transportation facilities, and ultimately improve the efficiency of travel are the
core problems in urban traffic management.

Traditionally, the timing scheme of traffic lights was fixed. However, in recent
years, with the development of intelligent urban traffic management, the use of
urban road net resources becomes more flexible. This enables people to optimize
the road net configuration in an unconventional way, like adjusting the signal
timing scheme. Our goal is to obtain the optimal traffic signal timing scheme
which maximizes the average vehicle speed. As a result, a traffic flow model based
on a specific road net which can accurately reflect the relationship between the
signal timing scheme and the average vehicle speeds should be constructed.

2.2 Basic Structure

A traffic flow model based on cellular automata was established by converting an
urban road network into square grids by means of topological equivalence [14].
This cellular automata model can represent a local road network with entrances
and intersections. Cellular automata, which is used to construct the traffic flow
model, can be viewed as a basic cluster consists of various individual segments
(cells). The interaction between particles (vehicles) in the cells is restricted to its
nearby neighbors. Every individual cell is in a particular state, which updates
after some time subject to the conditions of its nearby neighbors [15]. The vehi-
cle’s motion algorithm is based on the CA-184 rule [15]. The CA-184 rule can
reasonably represent the real situation of vehicles moving in road network.

2.3 Road Network Establishment

We consider an urban area of l× l meters divided into two-dimensional grids and
each cell (grid) is given a label Cij . Cij can be a number from 0 to 8, where 0
represents a unreachable cell, 1 means a cell in a lane with direction eastbound
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driveway, 2 means a cell in a lane with direction westbound driveway, 3 represents
north and 4 represents south, and 5, 6, 7, 8 are special cells that make up a
complete intersection. Take Fig. 1 as an example, in the i–j coordinate system,
the cell highlighted at the bottom-left is (0, 0) and C00 is 0, which represents
an unreachable cell. In the middle of the figure, cell with label 5, 6, 7, 8 form
an intersection. 1, 2, 3, 4 are four lanes with different directions, the lanes and
intersections form a simple road net.

In the traffic flow model, we set l as 3020 and each cell as a 5 × 5m2 grid, so
there are in total 364816 cells in this model. The road net inside this model has
3 bidirectional single-lanes from south to north, 3 bidirectional single-lanes from
east to west. Each lane is 200 cells away from the nearest lanes with the same
direction and in total there are twelve entrances (exits) in this road net. Those
6 lanes form 9 intersections in the road net and the distance from an entrance
to the nearest intersections is also 200 cells. Two variables are assigned for the
traffic lights in each intersection, one for the cycle time of the signal and one
for the proportion of the time of green light in east-west direction. If the second
parameter is negative, the traffic light in east-west direction will be initialized
with red (in default). All traffic lights are initialized at the same time, and they
start their cycle at the beginning of the simulation.

Fig. 1. Example of a two-dimensional grid of road net

2.4 Motion Algorithm

We set the time unit of this model to be seconds and the maximum speed to be
72 km/h, which means each particle (vehicle) can move at most 4 cells per time
unit. Each particle will stop and wait if there is a particle in the next cell or the
cell in front is with label 5, 6, 7, 8 if the traffic light is red. Once the red light
becomes green, the particles that waiting will start to move one after one (in
different time unit) and their speed will increase to maximum in only one time
unit. There is no acceleration and deceleration in this model for simplicity, and
no accidental events to affect the traffic flow inside the road net.

The probability of a vehicle to turn left or right randomly at the intersection is
20% and the probability of going straight is 60%. A random vehicle will enter the
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road network from a random entrance every time unit and will be removed when
it reaches an exit. The random number in this model is fixed as a representation
of traffic conditions outside the road net, and it also keeps the output unchanged
with the same configuration of signal timing.

2.5 Problem Definition

The fitness function of the model is:

f(x) =

∑t
i=t0

v̄i

t − t0
(1)

which is the average vehicle velocity in the road net after t0. In the formula, x
represents signal timing settings with 18 dimensions (2 for each of the 9 intersec-
tions), v̄i represents the average vehicle speed in the ith time unit, t represents
the total counting time of the model, t0 means the time that the recording starts.
Because the road net is empty in initial, we set t0 = 50 to let vehicles fill the
road net. The total counting time is t = 350, a 5-min simulation of the whole
road net. Because the average speed is determined by the given traffic light cycle,
therefore, a higher fitness value represents a better traffic signal configuration.

3 Surrogate-Assisted Particle Swarm Optimization

Because the simulation process of the model is time-consuming, conventional
EAs are unsuited for optimizing this problem. As a result, an online surrogate-
assisted particle swarm optimization algorithm is proposed.

3.1 Overall Framework

Initially, a dataset D0 is created to store the FEs generated by the expensive
original model, where the subscript of D represents the number of FEs is per-
formed by the original traffic flow model. Then, Latin hypercube sampling (LHS)
[16] is applied to initialize the data set with M FEs, these data point with con-
figuration xi, fitness value yi and default particle velocity vi = 0 are stored into
the dataset as the initial data to construct the surrogate model.

y = f(x) (2)

DM = {< x1, v1, y1 >,< x2, v2, y2 >, ..., < xM , vM , yM >} (3)

Then, the algorithms switch to the surrogate model management part to
generate a surrogate model f̂ based on the dataset. After that, local search PSO
(LS-PSO) is conducted to find candidate solutions based on the surrogate model.
Once a candidate solution xt+1 is returned, it will be evaluated by the original
traffic flow model to get yt+1 and added into the dataset accompany with the
particle velocity vt+1 in the LS-PSO and the solution itself.

y = f̂(x) (4)
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Dt+1 = Dt ∪ {< xt+1, vt+1, yt+1 >} (5)

This process will continue iterating until the maximum number of FEs N during
the whole process is reached. In final, the best solution is obtained by:

xbest = argmaxxi
yi (6)

where xi represents an arbitrary data in the dataset DN (Fig. 2).

Fig. 2. Generic diagram of surrogate-assisted particle swarm optimization algorithm.

3.2 Surrogate Model Management

The surrogate model management consists of two parts, data selection and model
construction. In the data selection part, several data points from the dataset
will be selected according to their fitness value. Firstly, the best P solutions
will be extracted from the dataset into the training set Dtrain, then M − P
solutions will be extracted with the same interval in their rank of the fitness in
the candidate solutions remain. With proper parameters setting, the surrogate
model constructed will have a good approximation on the peak part of the
solution space and still maintain a good overview of the global of the function.
It is a balance of exploration and exploitation.

In the model construction part, a surrogate model is generated by general-
ized regression neural network (GRNN), which is a kind of radio-based function
(RBF) network. The data selected by the strategy above will be used and a
multimodal surrogate will be constructed as an approximation of the original
model to provide information to the search algorithm. For further exploitation,
a local model management strategy is able to be involved when the size of the
dataset becomes larger in the second half process of the algorithm.
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3.3 Local Search Particle Swarm Algorithm

Conventional particle swarm optimization algorithms are unsuitable for the
search on the surrogate model because the model is inaccurate, a strong exploita-
tion search will result in huge uncertain. Therefore, local search particle swarm
optimization algorithm adapted from social learning PSO [17] is applied on the
surrogate model.

The particles are initialized at the positions of the training data with their
velocity given. This provides a high certainty of the initial data. The update
function of the LS-PSO is:

vnew = c1r1v + c2r2(xl − x) + c3r3(xm − x) (7)

xnew = x + v (8)

where x and v represent the old position and velocity of the particle, xnew and
vnew represent the new position and the velocity of the particle; xl is the position
of a random particle that has a better fitness value than the particle itself and
xm is the mean position of all the particles. The particle with the best fitness
value will not be updated. r1 and r2 are two random numbers in [0,1], c1 and c2
are set to 1. There is a quadratic adaptation on c3, which is increased from 0 to
0.4 with generation g, where gmax is the maximal number of the iteration.

c3 = 0.4 × (
g

gmax
)2 (9)

Different from conventional PSOs, LS-PSO performs only one local search,
updates only once during the one LS-PSO search. After the update is finished,
the best 2 solutions (in which 2 is set to improve fault tolerance) are selected
according to the fitness of the surrogate model are returned with their position
and velocity.

xbest = argmaxxt
f̂(xt) (10)

According to this strategy, LS-PSO can make full use of the surrogate model
but not highly rely on it according to its uncertainty.

3.4 Local Model Management Strategy

Because of the complicated structure of the traffic flow model, it is difficult to get
an accurate approximation by a single surrogate model. Therefore, we introduce
a hybrid model, a global model is trained using the strategy above and local
models are trained with niching strategy [18]. Then we can get a comprehensive
general surrogate model for global and accurate surrogate models for local.

In local surrogate construction, we split existing solutions into multiple sets
using K-means, establish an independent local model for each sets and use the
local model to compute the fitness which has the shortest Euclidean distance
between the position of solution x and cluster center cj . The formula of local
model is shown as follow:

f̂2(x) = gj(x) (11)
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j = argmini=1...K ||x − cj ||2 (12)

where, K represents the cluster centers of K-means and gj(x) represents the
local model trained by a separated data set clustered by K-means. Both the
global and the local model are trained by GRNN, and the formula of the total
surrogate model is defined as follow:

f̂(x) = w1 × f̂1(x) + w1 × f̂2(x) (13)

where f̂1, f̂2 represent the global and local surrogate model; w1, w2 are weights
that change with FEs that have already performed. Due to the fact that the
construction of local model requires more data, we set w1, w2 to 1, 0 in initial,
and switch their value to 0, 1 after L FEs have already performed during the
optimization. Figure 3 shows the process of surrogate model construction after
involving local surrogate model.

Fig. 3. Model management after involving local model

4 Experimental Results

In this section, we empirically analyze the performance of SA-PSO on the traffic
flow model. We select classic method as well as some surrogate-assisted methods
to optimize the traffic flow model and compare the performance between them.
In total 4 algorithms are tested in experiment: Classic PSO, 2 variants of SA-
PSO without local model (SA-PSO-I and SA-PSO-II), and SA-PSO with local
model (SA-PSO-L). Through the comparison of these methods we can see the
significance of modifications and some characteristics of SA-PSO.

4.1 Experimental Settings

The maximum number of FEs, parameter N is set to 600 for all four algorithms,
which is based on the real-world situation of the time constraint because the
majority computational expense of the algorithm are the FEs of the original
model.
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For classic PSO, both the cognitive and social parameters are set to 1.49445
as suggested in [19]. The number of particle and iteration are adjusted to 20 and
29 according to the constraint of 600 FEs. PSO is selected as a simple contrast
to evaluate the effect of involving surrogate model into traffic flow optimization.

As for the 3 kinds of SA-PSO, the training size M is set to 100, which enable
the surrogate model to construct a fine global surrogate of the original model,
then further search can perform on it. The two variants of SA-PSO have no local
model constructed. In SA-PSO-I, the parameter P , which is the best candidate
solutions that extracted into the training set, is set to 100, which is same as the
value of M . In SA-PSO-II, P is set to 80, and M − P is 20. These two tests is
held to examine the importance of maintaining a balance between exploration
and exploitation with only the global model constructed. As for the case with
local surrogate constructed, SA-PSO-L has the parameter P set to 80; cluster
number K set to 4, parameter L (the numbers of FEs performed before the
weight w1, w2 changes) is set to M + 160 (260).

In order to make fair comparison and for better assessment, SA-PSO-I, SA-
PSO-II and SA-PSO-L are initialized with the same M data extracted by LHS.

4.2 Result Comparisons

The statistic of the result obtained by algorithms on 20 independent runs are
shown in the Table 1.

Table 1. Results of 4 algorithms

Algorithm Best Worst Average Std

PSO 67.41991206 64.8815123 66.3521579 0.70478528

SA-PSO-I 68.02472452 65.9117196 66.8293796 0.48916306

SA-PSO-II 67.52465329 66.31099015 67.02550605 0.30397467

SA-PSO-L 67.69284148 65.87936601 66.88648851 0.440627011

PSO behaves poorly on this problem. This unsurprising result is due to the
characteristic of EAs. Without enough FEs, it is hard for EAs to explore and
exploit. Moreover, the std of PSO is the highest among the four algorithms
because of the relative few particle number. If particles are initialized with bad
fitness value, they will do a series of pointless search and waste their FEs.

Compared to PSO, SA-PSO-I has a significant increase in final outcome
in average contribute to the surrogate model constructed in the algorithm. Its
standard deviation is lower, and its best and worst case are better. The surrogate
model brings stability to the result of this optimization problem.

Figure 4 is a typical case of convergence of SA-PSO-I, where the orange line
represents the fitness value of the better candidate solution returned by LS-PSO
and the blue line represents the best fitness value of all the data point been
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examined. Initially, surrogate is constructed and some solutions around fitness
value 64 are evaluated. Then a better surrogate is constructed according to these
newly added data, which results in a candidate solution with a better fitness value
(65.5) been evaluated. This newly added data point updates the surrogate model
significantly and then new points around the better fitness value are evaluated.
This process repeatedly continues until the number of FEs runs out. In contrast
to PSO, SA-PSO-I significantly reduce the amount of FEs with a low fitness
value. In this way, the information that facilitates the optimization is provided
in a more effective way. That’s why SA-PSO-I still maintains a good performance
under the strict limitation of FEs.

Fig. 4. A typical case of convergence of SA-PSO-I

However, there is still limitations of SA-PSO-I. We can see that in Fig. 4,
around iteration 140, the fitness values of candidate solutions are significantly
lower. This phenomenon is result from the error of the surrogate model. Because
SA-PSO-I selects only the best solutions in the data set and the points selected
may gather around some peaks in the solution spaces, which leads to a high
uncertainty of the region with spare data. The error of the surrogate in these
regions leads to a bad performance of LS-PSO, and the algorithm might use
the bad surrogate for several iterations because its training set could remain
unchanged when the outcomes of LS-PSO are not the best P solutions.

Therefore, we propose SA-PSO-II, where M − P �= 0. This strikes a balance
between exploitation at local and approximation of global. According to Table 1,
SA-PSO-II gains the best average outcome and the smallest standard deviation
by eliminating the abrupt decrease happens in SA-PSO-I.

In SA-PSO-L, a local surrogate model is involved to separate global approx-
imation and local exploitation. According to Table 1, SA-PSO-L outperforms
SA-PSO-I, but underperforms SA-PSO-II. This is probably due to the incompat-
ible elements in this search method. LS-PSO has a trend of converging together
and exploiting a single peak in the solution spaces, which is a conflict to the
assumption of the local model based: several peaks are in the solution spaces.
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From the above results, we can conclude that the performance of SA-PSO-II
is the best among the algorithms given on the traffic flow optimization problem
with a strict FEs constraint.

5 Conclusion

This paper introduces a surrogate-assisted EA for solving the traffic flow prob-
lem. In the proposed SA-PSO, a surrogate model is constructed and LS-PSO is
used to search the best candidate solution on the surrogate model. The exper-
imental result shows that under the same constraints, SA-PSO performs the
best compared to conventional EAs. In further work, it is interesting to consider
using other swarm intelligence techniques like ant colony optimization [21,25] for
the traffic flow optimization problems. It is also promising to apply cooperative
co-evolutionary approaches [22–24] to solve large-scale traffic flow optimization
problems.
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Abstract. Switching policy has been considered in many biological sys-
tems and can exhibit rich dynamical behaviors which include different
types of the bifurcations and deterministic chaos. The Chialvo neuron
model analyzed in this article illustrates how bifurcations and multiple
attractors can arise from the combination of the switching mechanism
acting on membrane potential. The elementary dynamics of the system
without the switching policy are analyzed firstly using phase plane meth-
ods. The comparisons of the bifurcation analysis with or without switch-
ing mechanism near the fixed points are provided. It can be concluded
that the switching policy can be prone to give rise to the coexistence of
multiple periodic attractors, which indicates there exist abundant firing
modes in the switching system with the same system parameters and dif-
ferent initial values. More complex bifurcation and dynamical behaviors
can be observed since applying the switching policy.

Keywords: Chialvo neuron model · Switching mechanism ·
Bifurcation analysis · Multiple attractors coexistence

1 Introduction

Dynamics of neuronal excitability have been extensively studied since Hodgkin
and Huxley introduced the Hodgkin-Huxley model (H-H) in 1952 [9–13]. In these
articles, Hodgkin and Huxley have proved the existence of ionic movements by
experiments, revealed the excitation mechanism, the form and the rate of action
potential. However, owing to the higher dimension of H-H model, scholars have
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been committed to simplify the neuronal model, which can not only retain the
most characteristics of the biological neurons, but also make the calculation and
simulation easier. Consequently, many simplified models were put forward in
the following decades, such as FitzHugh-Nagumo model [6], Morris-Lecar model
[19], Hindmarsh-Rose model [8], Chialvo model [2] and etc. The Chialvo model
is a two-dimensional discrete-time nonlinear equation [2], the map-based model
is as follows

x(n + 1) = x2(n) exp (y(n) − x(n)) + k,
y(n + 1) = ay(n) − bx(n) + c,

(1)

where x(n) and y(n) represent the membrane potential variable and the recov-
ery variable, respectively. Symbol n represents the iteration step of the dis-
crete equation (1) and the parameter k act as a constant bias or as a perturba-
tion. Other three positive parameters a, b, and offset c can determine the fixed
point of the recovery variable. Dynamical behaviors such as fixed point, bifurca-
tion and chaos of the Chialvo model have been analyzed in relevant literatures
[2,17,23].

Recently, the spiking neuron models with state variables threshold resetting
have been proposed [14–16], they use these simple models to build networks of
spiking neurons capable of exhibiting collective dynamics and rhythms similar
to those of the mammalian cortex. One of the discrete-time Izhikevich model
[16] used Eulier method take the form of

x(n + 1) = 0.04x2(n) + 6x(n) + 140 − y(n) + I(n),
y(n + 1) = 0.004x(n) + 0.98y(n), (2)

with the auxiliary after-spike resetting, if x(n) ≥ xTH = 30mv

x(n + 1) = c,
y(n + 1) = y(n) + d,

(3)

where xTH is the resetting membrane potential threshold, c and d are con-
stants, I(n) is the external excitation current. After the spike reaches its apex
(+30 mV), the membrane voltage and the recovery variable are reset accord-
ing to the rules (3). The mapping can produce a variety of bursting patterns
and most fundamental neuro-computational properties. It also provided a useful
classification scheme for studying the dynamical mechanisms of most possible
bursters. Subsequently, this type of state variables reset issue has been discussed
in literatures [7,20,21,24]. Gang Zheng and Arnaud Tonnelier [7] consider an
adaptive quadratic integrate-and-fire model with the modified reset rules based
on Izhikevich’s work, which can exhibit a chaotic behavior under a constant
current which significantly differs from those in previous literatures that report
chaos in IF models with periodic forcing and nonlinear term. Sou Nobukawa et al.
[21] have examined the chaotic behaviors of Izhikevich neuron model incorpo-
rating the resetting process by using Lyapunov exponent with saltation matrix
and Poincare section methods in two representative parameter regions. That
is, the chaotic state appears through the period-doubling bifurcation route or
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through the intermittent route. In [20] they further reveal the emergence of the
chaotic states through tangent bifurcation in continuous FHN neuron model with
the resetting process. Yang et al. [24] considered two-dimensional Hindmarsh–
Rose model with state variable resetting process, the period-adding bifurcation
phenomena can be induced by the bifurcation parameter of auxiliary resetting
process, the emergence of irregular limit cycle manifests the spiking and bursting
both in abnormal discharge mode with the truncated firing peak.

Inspired by Izhikevich and the followers’ work, in order to improve the pattern
that the membrane potential varies dramatically in the resetting process in the
literatures [7,14–16,20,21] and to study how the threshold xTH in 1 influences
the firing mode of the system, we change the membrane potential indirectly by
adjusting the coefficient of recovery variable in the resetting process. For this
purpose, we consider a discrete Chialvo neuron model guiding by the following
switching policy based on model (1).

⎧
⎪⎪⎨

⎪⎪⎩

x(n + 1) = x2(n) exp (y(n) − x(n)) + k,
y(n + 1) = αy(n) − bx(n) + c,

}

if x(n) < xTH ,

x(n + 1) = x2(n) exp (y(n) − x(n)) + k,
y(n + 1) = βy(n) − bx(n) + c,

}

if x(n) ≥ xTH ,
(4)

where b, c, k are control parameters, α < β account for the resetting strategy that
when the membrane potential reaches and exceeds the xTH , the corresponding
recovery variable take the larger value than the recovery variable in the sub-
system when x(n) < xTH . The membrane potential is often reset to a certain
constant value below the resetting threshold in the previous resetting process. In
our resetting process, the membrane potential change indirectly through recov-
ery variable. The threshold control policy is also referred to as an on-off control
introduced by Filippov [5] and applied in mechanic system [1], biological systems
[3,4,18], electro-mechanical system [22], neuronal system [25]. The main purpose
of this paper is to formulate complex dynamical behaviors such as bifurcation,
multiple attractors and chaos of the Filippov Chialvo system in which membrane
potential threshold control is implemented.

The rest of the paper is structured as follows. After providing the existence
and stability of fixed points of system (1) in Sect. 2, the bifurcation analysis of
system (4) is introduced in Sect. 3 and we focus on the issue of multiple attrac-
tors induced by switching mechanism in the fourth part. Finally, the conclusion
remarks are illustrated in Sect. 5.
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Fig. 1. Graphs of the roots of F (x), (a) three fixed points, where a= 1.11, b= 0.1,
c = 0.15, k = 0.9, (b) two fixed points, the parameters are a = 1.05, b = 0.1, c= 0.3,
k = 0.9, (c) one fixed point, where a = 0.88, b = 0.1, c = 0.3, k = 0.9, (d) without fixed
point, a = 1.1, b= 0.1 c = 0.1, k = 0.9.

2 Fixed Point and Its Stability

2.1 Existence of Fixed Points

The fixed point (x∗, y∗) of system (1) should satisfy the following equations

x∗ = x2
∗ exp (y∗ − x∗) + k � F (x∗, y∗),

y∗ = ay∗ − bx∗ + c � G(x∗, y∗),
(5)

that is to say, x∗ should satisfy the equation x = x2 exp
(

−bx+c
1−a − x

)
+ k. Let

F (x) = x2 exp
(

−bx+c
1−a − x

)
+k−x, y = ay−bx+c, the fixed points of system (1)

have four cases. The two nullclines and their intersections are plotted in Fig. 1 by
fixing b = 0.1, k = 0.9. There exists three red dots where a = 1.11, c = 0.15 and
each dot represents a fixed point in Fig. 1(a). Figure 1(b) shows two fixed points
when a = 1.05, c = 0.3, it is clear that when a = 0.88, c = 0.3 there is only one
fixed point at Fig. 1(c). Notice that subtle changes of a and c result in a change
in the number of fixed points, the two nullclines of Fig. 1(d) have no intersection
when a = 1.1, c = 0.1. In a neuronal system, a fixed point means that the system
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Fig. 2. Bifurcation curve of the fixed points about parameter c, the other parameters
are fixed as b = 0.1, k = 0.9. (a) one fixed point for a = 0.88, (b) two fixed points for
a = 1.04, (c) three fixed points for a = 1.11. (Color figure online)

state is in a relative resting state. A small disturbance may produce bifurcation
at the fixed point if it is unstable, but if the fixed point is stable, then when the
disturbance disappears, the system will enter the resting state again.

2.2 Stability of Fixed Points

The Jacobian matrix J of system (5) at the fixed point P = (x∗, y∗) is presented
as follows:

J =

(
∂F (x∗,y∗)

∂x∗
∂F (x∗,y∗)

∂y∗
∂G(x∗,y∗)

∂x∗
∂G(x∗,y∗)

∂y∗

)

=
((

2x∗ − x2
∗
)
exp (y∗ − x∗) x2

∗ exp (y∗ − x∗)
−b a

)

,

(6)
the eigenvalues of system (5) can be expressed by trace and determinant

λ1,2 =
Tr(J) ± √

[Tr(J)]2 − 4Det(J)
2

,

where Tr and Det represent the trace and the determinant of the Jacobian
matrix J , respectively. The fixed point P is stable if the eigenvalues |λ1,2| < 1.
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Fig. 3. Parameter regions about a, c for different fixed points cases, b = 0.1, k = 0.95,
(a) parameter regions for I, II, III, IV, (b) parameter regions for I-1, I-2, (c) parameter
regions for II-1, II-2, (d) parameter regions for III, IV

Stability range of fixed points corresponding to Fig. 1 about parameter c is illus-
trated in Fig. 2. According to Fig. 1, fixed b = 0.1, k = 0.9, when a = 0.88,
system (5) has only one fixed point. The fixed point is stable when c ∈ (0, 0.585)
but unstable if c > 0.585, the red curve indicates that the fixed point is stable
while the green curve means unstable and two areas separated by dashed lines
which is plotted in Fig. 2(a). The portrait provided in Fig. 2(b) are the cases
of two fixed points and no fixed point where a = 1.04. There is no fixed point
when c is in a small range at the left side of the first dashed line. There exists
one stable fixed point and one unstable fixed point when c is located between
the first dashed line and the second dashed line. Similarly, we use the red curve
represents the stable fixed point and the green curve represents the unstable
fixed point. But once c is over 0.27, the stable fixed point becomes unstable.
Compared with the above three cases, there exists three fixed points when a
increases at 1.11 which is shown in Fig. 2(c). When c locates in the first dot-
ted line and the second dotted line of (0.12, 0.14), one fixed point is stable and
two fixed points are unstable, and till c cross the second dotted line, the stable
fixed point turns to an unstable fixed point and all the fixed points are under
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Fig. 4. Bifurcation diagrams of system (4). The parameters are fixed as b = 0.1, k = 0.9,
(a) bifurcation diagram of the subsystem of system (4) where α = 0.88, (b) bifurcation
diagram of the subsystem of system (4) where β = 1.04, (c) bifurcation diagram of
system (4) where α = 0.88, β = 1.04, xTH = 2.5. (Color figure online)

unstability. Once c crosses the third dotted line, two unstable fixed points dis-
appear and there’s only one unstable fixed point left. It can be concluded from
Fig. 2 that with the increase of the number of fixed points and a, the range of
offset parameter c with stable fixed points becomes smaller.

In order to further explain the relationship between fixed points and parame-
ters. Parameter regions about a, c for the existence of fixed points are elaborated
in Fig. 3. Here b = 0.1 and k = 0.95, we use Roman alphabet I, II, III, IV repre-
sent the parameter regions of one fixed point, two fixed points, three fixed points
and without fixed point at the region of a ∈ (0.85, 1.25) and c ∈ (0.1, 0.5). From
Fig. 3(a) it is obviously that the region of one fixed point is the largest (region I),
followed by the region of two fixed points (region II). The region of three fixed
points is very small (region III), and the region without a fixed point is almost
negligible (region IV). In Fig. 3(b), I-1 and I-2 indicate the stable region of one
fixed point and the unstable region of one fixed point, respectively. Similarly,
II-1 denotes the coexistence region of a stable fixed point and an unstable fixed
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Fig. 5. Bifurcation diagrams of system (4).The parameters are fixed as b = 0.1, k = 0.9,
(a) bifurcation diagram of the subsystem of system (4) where β = 1.11, (b) bifurcation
diagram of system (4) where α = 0.85, β = 1.11, xTH = 2.5. (Color figure online)

point while II-2 reflects the region of two unstable fixed points. Figure 3(d) is an
enlargement of the region of three fixed points and the region of no fixed point in
Fig. 3(a), the stable and unstable regions are not subdivided due to their small
sizes.

3 Bifurcation Analysis

The second part analyzes the existence and stability of the fixed points of system
(1) in detail. The switching dynamical behaviors of system (4) will be discussed
in this section. Bifurcation structures involved in the firing activities of neurons
are viewed in the subsystem of system (4) and the whole system. In Fig. 4(a)
when α = 0.88, and c locates between 0 and 0.59, there exists one stable fixed
point which represented by the red dotted line. At the same time, we use solid
black lines to denote the system’s solutions(just membrane potential x), it is
obvious that the solution of subsystem is coincident with the fixed point when
the fixed point is stable. That is, the subsystem trajectory will be attracted
to the fixed point eventually. When c ∈ (0.59, 0.9), the fixed point is unstable
and denoted by green dotted line. Accordingly, the subsystem of system (4)
undergoes a series of bifurcations including period doubling bifurcation, and
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Fig. 6. Time series of membrane potential x corresponding to Fig. 4(c) when c = 0.52.
The other parameters are fixed as α = 0.88, β = 1.04, b = 0.1, k = 0.9. (Color figure
online)

chaotic states. From Fig. 4(b) there exists two fixed points when β = 1.04 and
c ∈ (0.15, 0.275), where one fixed point represented by red line is stable and the
other represented by green line is unstable, the subsystem trajectory and the
stable fixed point overlap together. However, when c > 0.275, the stable fixed
point becomes an unstable fixed point, period doubling bifurcation is generated
instead of the stable solution. In addition to the period doubling bifurcation,
we also note that multiple attractors may coexist between the two blue dashed
lines D and E where c belong to the range of (0.5, 0.7). Panel (a) and (b) of
Fig. 4 show the bifurcation diagrams of the subsystems of system (4) where there
exists one fixed point and two fixed points, respectively. The switching dynamical
behaviors of system (4) is depicted in Fig. 4(c) supposing α = 0.88 and β = 1.04,
xTH = 2.5. For Fig. 4(a), (b), (c), the first 1101 simulated values are omitted
to remove the initial transients and only the next 100 values are plotted. Note
that the membrane potential are different for the same parameter c compared
with Fig. 4(a), (b), (c). For instance, the coexistences of multiple attractors are
emerged when c is between dotted lines D and B, E and F , the number and
the time series diagram of attractors will be introduced later. Switching strategy
induce the system produce more multiple attractors coexistence regions.

Analogously, if the subsystems of one fixed point and three fixed points are
placed in the same switching system, the qualitative properties of switching sys-
tem will change greatly. As shown in Fig. 5(a) where β = 1.11, there exists
three fixed points in the subsystem of system (4) and the subsystem undergoes
a series of bifurcations including period doubling bifurcation and period-halving
phenomena. Besides bifurcation it is also observed that several attractors may
coexist as c increases beyond 0.3 and 0.4. Instead, it appears that the attrac-
tors of the switching system shown in Fig. 5(b) are relatively scattered and the
bifurcation and chaos become more complex, where the parameters are fixed as
α = 0.85, β = 1.11 and xTH = 2.5.
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4 Multiple Attractors

The coexistence of multiple attractors is a phenomenon that with the same
parameters the trajectory of the system will be attracted to distinct attractors if
the initial value is in different attraction domain. It is noted from Fig. 4(c) when
c = 0.52 there exists three periodic attractors, the time series diagrams of these
periodic attractors are shown in Fig. 6(a), (b), (c), respectively. In other words, if
the initial values of membrane potential and recovery variable are different within
a certain range, the trajectory of the system will be stable on one of three periodic
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Fig. 7. Time series of membrane potential x corresponding to Fig. 5(b) when c = 0.38.
The other parameters are fixed as α = 0.85, β = 1.04, b = 0.1, k = 0.9. (Color figure
online)

attractors which denoted by magenta, green and blue color curves. Similarly,
when c = 0.38, the time series diagrams of four attractors of the switching
system in Fig. 5(b) are shown in Fig. 7(a), (b), (c), (d), respectively, the four
attractors are denoted by green, red, magenta, blue color curves. It can be seen
from Fig. 4 and Fig. 5 that the system may have multiple attractors coexistence
by choosing some suitable parameters, nevertheless it does not signify that there
exists multiple attractors under any initial values, only when the initial values in
a certain range this phenomenon can occur. The attraction basins are defined as
the set of the initial conditions whose trajectories asymptotically approach that
attractor as time evolves. The attraction basin shown in Fig. 8(a) indicates that
the two attractors of the subsystem of system (4) emerged in Fig. 4(b) when
c = 0.52 can coexist if the initial values (x(0), y(0)) ∈ (1, 3.5). For example,
when (x(0), y(0)) = (2, 3) locates in the cyan color area of Fig. 8(a), the system
trajectory will be attracted to the one of two attractors(time series diagrams are
omitted). Suppose the initial values (x(0), y(0)) = (2, 2.5) locates in the magenta
color area of Fig. 8(b), the system trajectory will be attracted to the one of three
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Fig. 8. Attraction basins of multiple attractors, (a) attraction basins of attractors
shown in Fig. 4(b) when c = 0.52, (b) attraction basins of attractors shown in Fig. 4(c)
when c = 0.52.

Fig. 9. Attraction basins of multiple attractors, (a) attraction basins of attractors
shown in Fig. 5(b) when c = 0.38, (b) attraction basins of attractors shown in Fig. 5(b)
when c = 0.3.

attractors corresponding to Fig. 6(a). When the parameters of the subsystem
and the switching system are the same except for the switching threshold xTH ,
the number and attraction regions of attractors are distinct. In the switching
system, the attraction regions of multiple attractors undergo dramatic changes
near the switching line. The attraction basins shown in Fig. 9(a) indicates that
the four attractors of system (4) emerged in Fig. 5(b) when c = 0.38 can coexist
if the initial values (x(0), y(0)) start from (1, 3.5). The attraction basins shown
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in Fig. 9(b) indicate that the two attractors of system (4) emerged in Fig. 5(b)
when c = 0.3 can coexist if x(0) start from (1, 3.5) and y(0) start from (1, 2.5).

5 Conclusion Remarks

The research on hybrid neuron models such as state impulse (state resetting
process) or switching neuron model have been discussed in recent years. The
dynamic behaviors of these neuron models such as fixed points, bifurcation and
chaos have been studied. However, most of such systems did not pay attention to
the issue of multiple attractors coexistence. In this article, the switching Chialvo
neuron model with membrane potential threshold has been proposed. There are
at most three fixed points for the system, the corresponding parameter areas
of the fixed points are plotted which show the area of one fixed point is much
larger than that of two fixed points and three fixed points. If the trajectory of the
system will be stable at the fixed point eventually, that is to say, the membrane
potential stay in a resting state. If the fixed point is unstable, a small disturbance
may cause the system to deviate from the fixed point and then bifurcate or enter
into chaos. The bifurcation diagrams about switching neuron system compare
with the neuron system without applying switching policy indicate that the
switching strategy is more prone to generate multiple attractor coexistence and
induce the system enter into chaos. Moreover, the number and area of multiple
attractors in switching systems are more than those in non-switching systems.
From a biophysical perspective, the switching control can be designed such that
the membrane potential can be stabilized at a desirable range and the firing
mode of switching system is more abundant than that of non-switching system.
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Abstract. Statistical shapemodels (SSMs) are widely used inmedical image seg-
mentation. However, traditional SSM methods suffer from the High-Dimension-
Low-Sample-Size (HDLSS) problem in modelling. In this work, we extend the
state-of-the-art multi-resolution SSM approach from two dimension (2D) to three
dimension (3D) and from single organ to multiple organs. Then we proposed
a multi-resolution multi-organ 3D SSM method that uses a downsampling-and-
interpolation strategy to overcome HDLSS problem.We also use an inter-surface-
point distance thresholding scheme to achieve multi-resolution modelling effect.
Our method is tested on the modelling of multiple mouse abdominal organs from
mousemicro-CT images in three different resolution levels, including global level,
single organ level and local organ level. The minimum specificity error and gen-
eralization error of this method are less than 0.3 mm, which are close to the pixel
resolution of mouse micro-CT images (0.2 mm) and better than the modelling
results of traditional principal component analysis (PCA) method.

Keywords: Multi-resolution multi-organ SSM · PCA · HDLSS · Mouse
micro-CT image

1 Introduction

Over the last three decades, SSM modelling approaches, as one of the most important
methods, have been widely used to segment and register organs for medical image
analysis [1]. The applications of SSMs includes but not limit to the following fields: 1)
Medical image segmentation and registration [2–4]. 2) Clinical diagnosis and treatment
[5, 6]. 3) Analysis of organ contraction [7].

Due to the complexity of medical images, SSMs of 3D organs are playing an increas-
ingly important role in medical image segmentation. To represent 3D organ shapes,
landmarks are sampled from organ surfaces. However, a challenging problem of the
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construction for a 3D SSM is that the number of training samples is small while the
number of landmarks is large [8]. To fully capture the great variability of a 3D shape,
traditional PCA modelling methods need to provide a large number of representative
training samples to achieve a good modelling effect, which is usually labor-intensive
and is even impossible to complete. This problem is later called HDLSS problem, which
leads to insufficient and inaccurate expression of the model.

In order to solve the HDLSS problem, Wilms et al. [9] proposed a multi-resolution
SSM modelling method with the traditional PCA method based on local distance con-
straints in 2017, and they used this method to construct 2D multi-resolution SSMs of
human hand shapes and cardiopulmonary shapes respectively. The method is an impor-
tant extension of traditional SSMmethods, which can be used to obtain variation modes
of SSMs at different resolution levels. In addition, it makes the resulting models achieve
better generalization and specificity based on fewer training samples. However, one lim-
itation of this method is that it takes up a lot of computer memory and is not suitable for
cases where there are many sampling vertices. Therefore, Wilms et al. only modelled
simple 2D shapes in their study. Unfortunately, the 3D shape vectors of multiple organs
usually contain thousands or even tens of thousands of sampling vertices. Moreover,
since the modelling method usually requires more sampling vertices for multiple organs
than a single organ, this method is not applicable for the modelling of multiple organs
as well. These drawbacks limit the application of this method in multi-organ 3D shape
modelling.

In this study, we propose a solution to extend the multi-resolution SSM approach
to 3D shape modelling of multiple organs with large number of surface vertices. Our
method combines down-sampled 3D object surface with a Laplacian smoothing function
to construct amulti-resolutionmulti-organ 3DSSM.We obtain deformation components
in three resolution levels, which are the “global level”, “single organ level” and “local
organ level”. The models obtained from the above three resolution levels are compared
quantitatively with the traditional PCA modelling methods in terms of model general-
ization and specificity performances, and we obtain better modelling performances than
the traditional methods for “global level”.

2 Materials and Methods

2.1 Description of Mouse Micro-CT Data

The multi-organ training samples of mouse micro-CT images are taken from the Molec-
ular Imaging Centre of the University of California, Los Angeles [10, 11]. During the
imaging process,mice are injectedwith liver contrast agent Fenestra LC (ART,Montreal,
QC, Canada) for clear imaging of abdominal organs. The weights of tested mice range
from 15 to 30 grams, and the data are selected according to the following principles for
modelling: (1) Boundaries of the abdominal organs (i.e., liver, spleen, left kidney and
right kidney) of each mouse micro-CT image are clear. (2) There are no motion artefacts
in each mouse micro-CT image. (3) There are no cases where the liver, spleen and kid-
neys of a mouse deviate from the normal shape. Mice are imaged in a multi-mode indoor
prone position that provides anesthesia and heating [12]. Although the imaging room
limits the possible postures of the mice, these postures are not strictly normalized. The
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random body bending postures in the left, right, and backward directions are included in
the data set. The imaging system is MicroCAT II Small Animal CT (Siemens Preclini-
cal Solutions, Knoxville, TN). Equipment acquisition parameters for imaging: exposure
setting 70 kVp, 500 mAs, 500 ms and 360 step rotation, 2.0 mm aluminum filter. In the
image acquisition process, an improved Field Kamp process is used to reconstruct the
image so that the isotropic voxel size is 0.2 mm, the image matrix size is 256 × 256 ×
496, and the pixel resolution is 0.2 mm.

In this study, 98 mouse micro-CT images are collected as training samples for model
construction. Small animal imaging experts are invited to segment the 3D regions of
livers, spleens, left kidneys, and right kidneys from the images, and then use the moving
cube algorithm [13] to convert the segmented label maps to meshes. According to these
principles, first, one of the 98 sample meshes is selected as the template. Second, the
point cloud registration algorithm [14, 15] is used to register the template to all other
training samples, so that different meshes have the same number of vertices, and each
vertex corresponds to the same anatomical position in different meshes, thus completing
the preparation of all training data. Figure 1 illustrates the entire training data preparation
process.

Fig. 1. The construction process of training data

2.2 Description of Algorithms

The Construction of Multi-resolution SSM

1. Given Nd(d = 3) dimensional mouse abdominal multi-organ training data {Si}N1 ,

where Si = {
X1,i, . . . ,Xj,i, . . . ,XM,i

}
contains M vertices Xj,i = (

xj,i, yj,i, zj,i
)T

which are distributed on the surface of the training data. Then calculate the mean
model of these training data, the calculation formula is shown as follows:

�μ = 1

N

∑N

i=1
Si (1)
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2. After normalization, the covariance matrix of the coordinates of different dimen-
sional vertices is calculated, and the calculation formula is shown in formula
(2):

C = 1

N − 1

∑N

i=1
(Si − �μ)(Si − �μ)T (2)

3. Calculate the point-to-point geodesic distance dgeo
(
Xi,Xj

)
on mean model �μ, and

use rule (3) to set the values of the two sides of the covariance matrix C symmetrical
to 0:

ρi,j =
{

cov(Xi,Xj)
σiσj

if dgeo
(
Xi,Xj

) ≤ τ

0 else
(3)

where σi and σj are the standard deviations of the i-th and j-th dimensions, respect
tively, and τ

(
0 ≤ τ ≤ maxi,jdgeo

(
Xi,Xj

))
is the threshold given in the experiment,

so that a simplified symmetric matrix R1 =
⎛

⎜
⎝

ρ1,1 · · · ρ1,M
...

. . .
...

ρM ,1 · · · ρM ,M

⎞

⎟
⎠.

4. SinceR1 is not positive semi-definite and cannot be implemented eigenvalue decom-
position, it is necessary to use the approximation method [16] to find an approximate
positive semi-definite matrix R2 replacing R1 with formula (4):

R2 = min
A

A − R1F

det(A) ≥ 0

diag(A) = 1 (4)

5. Compute the eigenvector matrix Uτ and the corresponding eigenvalue matrix Λτ ,
as shown in formula (5):

⎛

⎜
⎝

σ1 · · · 0
...

. . .
...

0 · · · σdM

⎞

⎟
⎠R2

⎛

⎜
⎝

σ1 · · · 0
...

. . .
...

0 · · · σdM

⎞

⎟
⎠ = UτΛτUT

τ (5)

where the eigenvector set included in Uτ is represented as P, and the corresponding
eigenvalue vector on the diagonal of Λτ is represented as �λ.

6. When different values of distance threshold τ are selected in Eq. (3), the model will
show different deformation capabilities locally. When τ ≥ maxi,jdgeo(�xi, �yi), the
constructed model is a traditional SSM; when τ = 0, the vertice coordinates on all
training data lose their relevance, and the constructed model is useless. By defining
a series of thresholds τ 1 > τ 2 > . . . > τL, a multi-resolution scheme is defined

to obtain a set of shape models
{
�μ,P1, . . . ,PL, �λ1, . . . , �λL

}
that vary from global
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to local. However, these models are highly dependent and redundant, and do not
form a single shape space. Therefore, it is necessary to combine these models into a
subspace, so that the deformation components/eigenvectors provided by local SSMs
can optimally represent deformation information. Based on step 1 to 6, the algorithm
for constructing a multi-resolution shape model is derived as follows:

Suppose that there are N training data matrices X = (−→s1
∣∣−→s2 . . .

−→sN
) ∈ Rm×N , the

thresholds of geodesic distance on each model surface are τ 1 > τ 2 > . . . > τL. Com-
pute themeanmodel �μ = 1

N

∑NN
i=1

−→si of the training data. And define the distancematrix
dgeo on the mean model. Assuming that the iteration index r ranges from 1 to L in the
calculation process, where r represents the number of models, the deformation coeffi-
cient of the local SSM is defined as

−→
λτ r , and the deformation components corresponding

to the coefficients are defined as Pτr .
When r = 1, it means that there is only one shape model space, and the global multi-

organ SSM can be obtained by directly using the traditional PCA method; when r > 1,
it means that there are multiple shape spaces, and these spaces need to be combined for
singular value decomposition. The decomposition process is as follows:

U(cos θ)VT ← svd
(
PT
MRPτr

)
(6)

S =
⎛

⎜
⎝

cos θk×k · · · 0
... .

...

0 · · · I(l−k)×(l−k)

⎞

⎟
⎠ (7)

where svd() represents singular value decomposition and the transform base B̂ is
calculated (i.e.,B̂ = PτrVS

T ). Then, calculate the covariance matrix after spatial
transformation:

Σ̂τMR =
(
σ

τMR
i,j

)
= UT

⎛

⎜
⎝

λτMR,1 · · · 0
...

. . .
...

0 · · · λτMR,k

⎞

⎟
⎠U (8)

Σ̂τr =
(
σ

τr
i,j

)
= VT

⎛

⎜
⎝

λτr ,1 · · · 0
...

. . .
...

0 · · · λτr ,l

⎞

⎟
⎠V (9)

Σ̂MR,r =
(
σ

τMR,τr
i,j

)
, where σ

τMR,τr
i,j =

⎧
⎪⎨

⎪⎩

σ
τMR
i,j if i, j ∈ [1, k]

σ
τr
i,j if i, j ∈ [k + 1, l]

0 else

, finally calculate

the uncorrelated eigenvectors and the corresponding eigenvalues:
[
PMR, λ̂MR

]
← eig

(
B̂Σ̂MR,rB̂

T
)

(10)
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where eig() represents eigenvalue decomposition. And the multi-resolution SSM μ is
represented as follows:

μ = �μ + PMRλ̂MR (11)

Multi-resolution Multi-organ SSMs
Since the original approach of Wilms et al. [9] did not specifically consider the problem
of modelling multiple organs, but only imposed geodesic distance constraints on the
range of local deformation to generate multi-resolution models. However, in the case of
multi-organ modelling, a simple geodesic distance cannot properly describe the distance
relationship between two vertices belonging to different organs. For example, if the
Euclidean distance between a vertex at the bottom of a lung and another vertex at the top
of the liver is very close, these two vertices should have strong correlation in terms of
common deformation. But these two vertices belong to different organs, and the geodesic
distance will be farther, so that the correlation between them in a model becomes smaller
and does notmeet the deformation regulation of adjacent organs according to themethods
of Wilms et al. In this study, we use Euclidean distance instead of geodesic distance as
a constraint.

Based on the locally deformed multi-resolution SSM constructed in steps 1 to 6,
the distances of surface vertices are computed by combining the modified Euclidean
distance between different organs with the geodesic distance expressed in Eq. (3).
This article specifies that the geodesic distance of vertices on different organ mod-
els is infinite, and the Euclidean distance of vertices on different organ models can
be calculated. Given a model vector �s containing O target calibration vertices, and

�s =
(
�xT1,1, . . . , �xT1,M1

, �xT2,1, . . . , �xT2,M2
, . . . , �xTO,1, . . . , , �xTO,MO

)T
, where Mi represents

the number of landmarks of the i-th model, i ∈ {1, . . . ,O}. Define the undirected graph
Gg

(
V ,Eg

)
,V = {�xi,j|i ∈ {1, . . . ,O}, j ∈ {1, . . .Mi}

}
represents the vertices of theundi-

rected graph,Eg = {(�xi,j, �xi,k
)|i ∈ {1, . . . ,O}, j ∈ {1, . . . ,Mi}, k ∈ N

(�xi,j
)}
, N

(�xi,j
)
is

the direct neighbourhood of vertex �xi,j on target i. The weight wg
i,j,k of edge

(�xi,j, �xi,k
)
is

represented by the Euclidean distance between two vertices and the distance d between
two vertices is computed by:

d =
{
wg
i,j,k = ∥∥�xi,j − �xl,k

∥∥ if i �= l,

dgeo
(�xi,j, �xl,k

)
if i = l.

(12)

There is no connection between different targets in Gg , so the geodesic distance
between vertices on different targets is infinite and the Euclidean distance is wg

i,j,k . If
two vertices are on the same target, their distance is represented by geodesic distance
dgeo

(�xi,j, �xl,k
)

In order to extend the modelling method [9] to the construction of 3D multi-organ
models with a large number of vertices, the idea adopted in this study is to first down-
sample the vertices on the training data. Then we train the down-sampled data to obtain
an initial multi-resolution multi-organ SSM. Finally, we interpolate the eigenvectors of
the down-sampled vertices to generate eigenvectors of all vertices on the mean model
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and obtain the final multi-resolution multi-organ SSM. Laplacian smoothing function
realizes the interpolation process:

�Xi(n+1) = �Xin + λ

M

M∑

j=0

( �Xjn − �Xin

)
(13)

where n represents the number of iterations, i is the vertex index, �xin represents the
eigenvector of the i-th vertex coordinate at the n-th iteration,M is the number of vertices
that share a common edge with vertex i, λ represents the smooth intensity coefficient.
For n = 0, the eigenvector �xi0 of a down-sampled vertex is set as a vector PMR, and
the eigenvector of the other vertices is 0. In the iteration process, keep the eigenvectors
of down-sampled vertices always in PMR, and the eigenvectors of other vertices are
computed by Eq. (13). In order to obtain the desirable interpolation effect, through
repeated testing, the maximum number of iterations is set to 1000, and the value of λ is
set to 0.8.

There are 3759 vertices in four kinds of organs (liver, spleen, left kidney and right
kidney) in this study, and 375 vertices are obtained after 10 times down sampling, which
can be used to construct a model in a computer with 16 G memory. Figure 2 shows the
idea of this improved process, where Fig. 2-a shows the down-sampled vertices (marked
in red) on the surface of the model. Figure 2-b shows the deformation components
(represented by black arrows) on the down-sampled vertices of the model, and Fig. 2-c
shows the deformation components on all vertices by interpolating the eigenvectors of
down-sampled vertices over the entire model surface. From Fig. 2-c, we know that after
interpolation, the deformation components on a small number of down-sampled vertices
smoothly spread to the entire model surface. Although the deformation components
are obtained by interpolation instead of by training all vertices, in the case of limited
memory, this method can obtain reasonable deformation components for a large number
of vertices of multiple organs. After observation and quantitative measurement (see this
in Results section), the modelling results are better than the traditional global shape
model.

Fig. 2. Schematic diagram of improved method based on down-sampling training and eigenvec-
tors interpolation. (a) Down-sampled vertices; (b) Deformation components of the down-sampled
vertices; (c) The interpolated deformation components of all vertices on the mean model.
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From above analysis, we set the ratio σ of the distance threshold τ to 1, 0.99 and 0.5
respectively. A multi-resolution multi-organ SSM with traditional global level model
(σ = 1, constructed by the traditional PCA modelling method), the single organ level
model (σ = 0.99) and the local organ level model (σ = 0.5) is constructed. This
modelling method well reflects the different levels of deformation in a multi-organ com-
bination system and describes the deformation of multiple organs better than traditional
global models.

3 Results

Figure 3 shows the modelling effect of the deformation components of the multi-
resolution multi-organ SSM constructed in this work. Due to the limited space of this
article, the model of each resolution level only shows the results of the first three defor-
mation components on the mean model. Deformation components are denoted by PC1,
PC2 and PC3, respectively. λ1, λ2, λ3 are the corresponding eigenvalues, and α1, α2, α3,

are the shape coefficients of the multi-resolution multi-organ SSM. For each resolution
level, the first row shows the mean models (the mean models of the three resolution lev-
els are the same), and the second to fourth rows show the variation modes of the mean
model through the first three deformation components. Figure 3-a, -b and -c show differ-
ent shapes when shape coefficients of a deformation component takes different values,
and the parts with obvious deformation are circled in the right column. From Fig. 3-a,
we know that the organ deformation reflected by different deformation components all
occur together among multiple organs. For example, PC1 reflects the change in the dis-
tance between the left lower lobe of the liver and the spleen, which is most likely caused
by the size change of the stomach between them. PC2 reflects the closeness between
the anterior half of the spleen and the left kidney, and PC3 reflects the change in the
distance between the liver and the two kidneys. Figure 3-b reflects the deformation of
a single organ level, in which PC1, PC2 and PC3 correspond to the deformation of the
livers, left kidneys and spleens, respectively. Figure 3-c Reflects the local deformation
of each organ, such as PC1 reflects the deformation of the left lower lobe of the liver,
PC2 reflects the deformation of the anterior half of the spleen, PC3 reflects changes in
the anterior curvature of the right kidney. When local deformation is performed, other
parts of the same organ keep unchanged. These results show that the method in this study
can effectively model the deformation of organs at different resolution levels. We also
employ generalization and specificity [3] to evaluate the accuracy of model construction
in the study.

The generalization of the model is used to measure the model’s ability to repre-
sent new shapes (that is, shapes not included in the training samples). Generalization
is measured by using Leave-One-Out (LOO) method: assuming there are N train-
ing samples, one sample is left as the test sample Sj, and the other N − 1 samples
{Si|i = 1, 2, . . . ,N , i �= j} are used to train the model M∗. Then fit Sj through the
deformation of M∗, and compute the average distance between the fitting result and Sj
as the fitting error ej. This process is repeated N times (i.e. j = 1, 2, . . . ,N ), and set the

average error eg =
∑N

j=1 ej
N of N times as a measure of model generalization ability, the

smaller the value of eg is, the better the model generalization ability is.
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Fig. 3. Deformation components in multi-resolution multi-organ SSM. (a) Deformation compo-
nents at the global resolution level; (b) Deformation components at the single organ resolution
level; (c) Deformation components at the local organ level.

The specificity of the model is used to measure the model’s ability to represent its
own training samples. The specificity of the SSM is tested by randomly generating shape
samples: when we get the model based on N training samples, the shape coefficient
vectors

{�αj|j = 1, 2, . . . ,K
}
of K group models is randomly generated based on the

normal distribution. The mean value of the normal distribution is 0, and the standard
deviation is obtained by eigenvalue decomposition. Based on each randomly generated
coefficient �αj, obtain its corresponding 3D shape, and find a sample whose surface
distance is closest to this shape in the training sample set. Set this surface distance as

the error ej of the j-th random sample. Then calculate the average error es =
∑K

j=1 ej
K of

K random samples as a measure of model specificity, the smaller the value of es is, the
better the model specificity ability is.

In order to reflect the improvement effect of the multi-resolution multi-organ SSM
on the generalization error eg and the specificity error es, this experiment computes the
results of eg and es at different resolution levels, as shown in Fig. 4. Both for generaliza-
tion error and specificity error, the mean value and standard deviation of the three model
errors from global resolution level to local organ resolution level are within 1.0 mm.
When the model changes from global level to local organ level, the mean value and
variance of the errors are gradually decreasing, which indicates that this SSM with local
organ resolution level is more accurate for boundary registration. This means that the
multi-resolution multi-organ SSM constructed in this study has better generalization
and specificity than the global model with global level constructed by traditional PCA
method. Encouragingly, even for generalization errors, the minimum mean value of the
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multi-resolution multi-organ SSM has reached about 0.3 mm, which is close to the mini-
mummean value of the specificity error of 0.25 mm.More importantly, it is also close to
the pixel resolution of mouse micro-CT images of 0.2 mm, and is lower than the average
specificity error of the traditional global model of 0.31 mm.

Fig. 4. Quantitative evaluation for modelling effect of the multi-resolution multi-organ SSM (a)
Generalization error; (b) Specificity error

4 Conclusion

This paper proposes a multi-resolution multi-organ SSM construction method and we
use it to model multiple abdominal organs of mouse micro-CT images. Compared to the
recently state-of-the-art 2D multi-resolution SSMmethod proposed byWilms et al., our
method solves the shortcomings ofmemory occupation and thus extend themethod to 3D
space. On the other hand, this work extend the method to multi-organ modelling and can
be used for modelling the inter-subject shape changes of multiple organs, single organ
and local organ levels. This method surpasses the traditional PCA modelling method in
terms of both generalization and specificity. It should be pointed out that although this
work builds a model based on the abdominal organs of mouse, the method in this study
is also applicable to the multi-organ modelling of human or other animal bodies. The
model constructed in this work lays the foundation of shape prior knowledge for further
multi-organ image segmentation.

Since the model constructed by the method in this paper has better deformation
effects, we will use this method to construct a multi-resolution multi-organ model of
human abdomen in the future, and further segment the organs in human CT images. The
current results of the preliminary segmentation of human internal organs have gradually
shown better results, and these results need to be further validate by our future work.
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Abstract. This paper is concerned with a distributed optimization
problem with inequality constraint over a multiagent network. The objec-
tive function is the sum of multiple local convex functions, which can be
nonsmooth. Based on graph theory and nonsmooth analysis, we propose
a neural network with a time-varying auxiliary function. The bounded-
ness of the state solution is demonstrated by using the properties of the
auxiliary function. Moreover, it is proved that the designed neural net-
work with any initial conditions reaches a consensus and converges to
the global optimal solution. Finally, a numerical simulation is discussed
to verify the theoretical results.

Keywords: Distributed optimization · Multiagent system ·
Neurodynamic approach

1 Introduction

In recent years, the distributed optimization has been widely used in science and
engineering problems, including sensor networks, source location and distributed
data regression (see [3,5,15]). Taking advantage of the properties of multiagent
networks, many scholars begin to study the distributed optimization problem
over multiagent networks.

Generally speaking, the main algorithms for distributed optimization can
be divided into discrete-time and continuous-time algorithm. In the mid-1980s,
for linear programming problems, Tank and Hopfield [6] proposed a novel opti-
mization method. Then Kennedy and Chua [8] proposed a nonlinear optimiza-
tion method based on recurrent neural networks, which is called neurodynamic
optimization approach. Since then, neurodynamic approach has been widely
researched (see [11,13,14]).

In recent years, in order to solve various distributed optimization problems,
scholars have designed many neural networks. Liu et al. [12] proposed a collec-
tive neurodynamic network to solve distributed convex optimization problem.
c© Springer Nature Switzerland AG 2020
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Jiang et al. [7] designed a neural network based on a penalty-like method for a
class of nonsmooth distributed optimization problem.

Drived by the above researches, a neural network to solve the nonsmooth dis-
tributed optimization problem with inequality constraint is presented. Different
from references [9,14], this paper does not depend on the additional assumption
that the objective function is bounded from below. And we avoid utilizing the
projection operator for distributed optimization problem. Besides, the existence
and boundedness of the state solution of the neural network are guaranteed,
which have not written about in [12].

2 Preliminaries

In this paper, denote the set of non-negative real numbers by R+. Denote n+m-
dimensional vector (yT, zT)T ∈ R

n+m by col(y, z) ∈ R
n+m. ‖ · ‖ indicates the

Euclidean norm, 1n = (1, . . . , 1)T ∈ R
n, 0n = (0, . . . , 0)T ∈ R

n, In is the
identity matrix in R

n×n. Let diag{A1, A2, . . . , Ak} be the block-diagonal matrix
of A1, A2, . . . , Ak. For ỹ ∈ R

n and r > 0, B(ỹ, r) = {y ∈ R
n : ‖y − ỹ‖ < r}.

PΩ(x) denotes the projection of x on Ω. Let ⊗ be Kronecker product.

2.1 Graph Theory

Let G = (V,E,A) be a weighted undirected graph. V = (v1, v2, · · · , vn) is a
vertex set and E ⊆ V × V is an edge set. A = (aij) ∈ R

n×n
+ is the adjacent

matrix, where aij > 0 if (vi, vj) ∈ E and aij = 0 otherwise. The weighted
degree of vertex vi is defined as dw(vi) =

∑n
j=1 aij . The weighted degree matrix

D = diag{d11, . . . , dnn} ∈ R
n×n
+ with dii = dw(vi). The Laplacian matrix is

L = D − A and L1n = 0n.

2.2 Nonsmooth Analysis

Assume that Ψ : [0, T )×R
n → R

n is a set-valued mapping. Consider the follow-
ing differential inclusion: {

ẋ(t) ∈ Ψ(t, x(t))
x(0) = x0

(1)

Definition 1 [1]. x : [0, T ) → R
n is a state solution of differential inclusion

(1) on [0, T ), if x is an absolutely continuous function and satisfies (1) almost
everywhere on [0, T ).

Definition 2 [2]. If ϕ : Rn → R is a convex function, then the subdifferential
of ϕ at x is defined by

∂ϕ(x) = {ξ ∈ R
n : ϕ(x) − ϕ(y) ≤ 〈ξ, x − y〉,∀y ∈ R

n}
According to [2], we get that ∂ϕ(·) is upper semicoutinuous and monotone, i.e.,
〈y − y0, x − x0〉 ≥ 0, for any y ∈ ∂ϕ(x) and y0 ∈ ∂ϕ(x0). In addition, ∂ϕ(x) is a
nonempty convex compact set of Rn.
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Lemma 1 [2]. Assume that F : R
n → R is regular at y(t), y : R → R

n is
differentiable at t and Lipschitz at t, then for a.e. t ∈ [0,+∞), we have

d
dt

F(y(t)) = 〈ξ, ẏ(t)〉, ∀ξ ∈ ∂F(y(t))

3 Problem Description and Optimization Algorithm

Consider the following distributed optimization problem:

min
k∑

i=1

fi(x)

s.t. gi(x) ≤ 0, i ∈ {1, 2, . . . , k}
(2)

where x ∈ R
n, fi : R

n → R is the objective function of the ith agent, and
gi = (gi1, . . . , gimi

) : Rn → R
mi is the inequality constraint of the ith agent.

Assumptions:

– (i) Communication graph G is undirected and connected.
– (ii) Function fi is strictly convex, but not necessarily differential. All compo-

nents of function gi are convex and not necessarily differential.
– (iii) There exists x∗ ∈ R

n, such that gi(x∗) < 0 (i = 1, 2, . . . , k).
– (iv) For i = 1, 2, . . . , k, inequality constraint set {x ∈ R

n : gi(x) ≤ 0} is
bounded, i.e., there is r̂ satisfying {x ∈ R

n : gi(x) ≤ 0} ⊂ B(0, r̂).

Denote x = col(x1, x2, . . . , xk), g(x) = col(g1(x1), g2(x2), . . . , gk(xk)). Let
Lk be the Laplacian matrix of graph G and L = Lk ⊗ In ∈ R

kn×kn. By the
connectedness of undirected graph, we know Lx = 0 is equivalent to x1 = . . . =
xk. According to [4], we obtain the following lemma.

Lemma 2 [4]. If (i) in Assumptions is satisfied, problem (2) is equivalent to
the following problem,

min f(x) =
k∑

i=1

fi(xi)

s.t. g(x) ≤ 0, Lx = 0
(3)

Let I = {x ∈ R
kn : g(x) ≤ 0} be the inequality constraint set of (3).

Denote

g̃ij(xi) = gij(xi) + max{‖xi‖, r̂} − r̂

Gi(xi) =
mi∑

j=1

max{g̃ij(xi), 0}, G(x) =
k∑

i=1

Gi(xi)

where r̂ is from (iv) in Assumptions. It is obvious that G(x) is convex.

Lemma 3 [10]. If (ii)-(iv) in Assumptions hold, then lim
‖xi‖→∞

Gi(xi) = +∞.
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Lemma 4 [16]. Assume that (ii)-(iv) in Assumptions hold, there is a constant
ω > 0 such that for any x /∈ I, one has

〈ξ, x − x∗〉 > ω, ∀ξ ∈ ∂G(x)

where x∗ = 1k ⊗ x∗ and x∗ is (iii) in Assumptions.

Based on the above analysis, we propose a neural network:

ẋ(t) ∈ −E(x(t))
(
Lx(t) + γ(t)∂f(x(t))

) − (t + 1)∂G(x(t)) (4)

where E(x) = diag{e(G1(x1)), e(G2(x2)), . . . , e(Gk(xk))} ⊗ In ∈ R
kn×kn. And

e(y) is a time-varying auxiliary function which is defined as

e(y) =
{

1 − y, 0 ≤ y ≤ 1
0, y > 1

Furthermore, γ : R+ → R+ is defined with the following properties:

lim
t→+∞ γ(t) = 0, γ̇(t) ≤ 0,

∫ ∞

0

γ(t)dt = ∞

For example, γ(t) can be defined as γ(t) = γ0
(t+1)r , where γ0 > 0 and r ∈ (0, 1].

The distributed implementation of neural network (4) can be described as:

d
dtx

i(t) ∈ −e
(
xi(t)

)( ∑

j∈Ni

aij

(
xi(t) − xj(t)

)
+ γ(t)∂fi

(
xi(t)

))

−(t + 1)∂Gi

(
xi(t)

)
, i = 1, 2, . . . , k

(5)

where aij indicates the connection weight between the agents {i, j} and Ni rep-
resents the index set of neighbors of the ith node.

4 Main Results

In this section, the consensus and convergence of the neural network in (4) is
analyzed. Firstly, we prove the boundedness of the state solution.

Theorem 1. Under (i)-(iv) in Assumptions described above, for any initial
point x(0) ∈ R

kn, the state solution of neural network (4) is bounded.

Proof. Since the r.h.s of differential inclusion (4) is nonempty multifunction with
compact convex values, according to [4], we know for any initial point x(0), there
exist T > 0 and a local solution x(t) such that (4) holds for a.e. t ∈ [0, T ).
Therefore, there are ηi(t) ∈ ∂fi(xi(t)) and ξi(t) ∈ ∂Gi(xi(t)) satisfying

d
dt

xi(t) = −e
(
xi(t)

)( ∑

j∈Ni

aij

(
xi(t) − xj(t)

)
+ γ(t)ηi(t)

)
− (t + 1)ξi(t)
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for a.e. t ∈ [0, T ). By Lemma 3, it implies that there is ri > 0 satisfying

{xi(0)} ∪ {xi ∈ R
n : 0 ≤ Gi(xi) ≤ 1} ⊂ B(x∗, ri) (6)

where x∗ is from (iii) in Assumptions.
Next, we will prove that for any i = 1, 2, . . . , k, xi(t) ∈ B(x∗, ri), ∀t ∈ [0, T ).

If not, then there exist t1 and ρ > 0, such that

‖xi(t1) − x∗‖ = ri, ‖xi(t) − x∗‖ > ri, ∀t ∈ (t1, t1 + ρ] (7)

From (6) and (7), we have Gi(xi(t)) > 1, e(Gi(xi(t))) = 0, ∀t ∈ (t1, t1 + ρ].
Then for a.e. t ∈ (t1, t1 + ρ], the neural network (5) can be described as

d
dt

xi(t) = −(t + 1)ξi(t) (8)

Differentiating 1
2‖xi(t) − x∗‖2 along the solution of (8), for a.e. t ∈ (t1, t1 + ρ],

we have
1
2

d
dt‖xi(t) − x∗‖2 = −(t + 1)(xi(t) − x∗)Tξi(t)

≤ −(t + 1)Gi(xi(t)) ≤ 0

Then, it implies that ‖xi(t1 + ρ) − x∗‖ ≤ ‖xi(t1) − x∗‖ ≤ ri, which contradicts
with (7). Thus, xi(t) ∈ B(x∗, ri) for any i = 1, 2, . . . , k. The proof is complete.

Remark 1. From Theorem 1, we have the local state solution of neural network
(4) is bounded. Thus, by the extension theorem of solution in [1], the global
solution x(t) of neural network (4) with any initial point x(0) ∈ R

kn exists.

Theorem 2. Under (i)-(iv) in Assumptions, for the state solution x(t) of
neural network (4) starting from any initial point x(0) ∈ R

kn, there exists T̃ ≥ 0
such that x(t) ∈ I, ∀t ∈ [T̃ ,+∞).

Proof. For the state solution of neural network (4), there are η(t) ∈ ∂f(x(t))
and ξ(t) ∈ ∂G(x(t)) satisfying

ẋ(t) = −E(x(t))
(
Lx(t) + γ(t)η(t)

) − (t + 1)ξ(t), a.e. t ≥ 0 (9)

Taking the derivation of G(x(t)) along the state solution of (4), we have

d
dt

G(x(t)) = −〈
ξ(t), E(x(t))

(
Lx(t) + γ(t)η(t)

)
+ (t + 1)ξ(t)

〉
, a.e. t ≥ 0

Based on Lemma 4, for any x(t) /∈ I, one has ‖ξ(t)‖ ≥ ω
R .

In the following content, we show that there is a T̃ > 0 such that x(T̃ ) ∈ I. If
not, we assume that x(t) /∈ I, ∀t > 0. Noting that ∂f(·) is upper semicontinuous,
then η(t) is bounded. Then, for a.e. t ≥ 0, there are constant M1,M2 > 0 such
that

d
dtG(x(t)) ≤ ‖ξ(t)‖(M1 + M2 − (t + 1)‖ξ(t)‖)

≤ ω
R

(
M1 + M2 − (t + 1) ω

R

) (10)
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Choosing T0 = 1
ω (M1 + M2)R − 1, then there exists constant τ > 0 satisfying

d
dt

G(x(t)) ≤ −τ (11)

for a.e. t ≥ T0. By integrating (11) from T0 to t(≥ T0), it gives that

G(x(t)) ≤ G(x(T0)) − τ(t − T0)

When t → ∞, we have G(x(t)) → −∞, which is a contradiction with the fact
that G(x(t)) ≥ 0. Hence, there exists T̃ > 0 satisfying x(T̃ ) ∈ I.

Finally, we claim that x(t) ∈ I, ∀t ∈ [T̃ ,∞). If it does not hold, then there
are t1, t2 such that t2 ≥ t2 ≥ T̃ and x(t1) ∈ I, x(t) /∈ I, ∀t ∈ (t1, t2], which
deduces that G(x(t1)) = 0. Then based on the analysis above, we know that
(11) holds for ∀t ∈ (t1, t2]. Taking the integral of (11) from t1 to t2, one has

G(x(t2)) ≤ G(x(t1)) − τ(t2 − t1) = −τ(t2 − t1) < 0

which contradicts with G(x(t2)) ≥ 0. The proof is complete.

Definition 3 [2]. The neural network achieves consensus, if for any initial con-
ditions, one has lim

t→∞ ‖xi(t) − xj(t)‖ = 0, ∀i, j ∈ 1, 2, . . . , k.

Theorem 3. Under (i)–(iv) in Assumptions, the state solution x(t) of neural
network (4) with any initial point x(0) ∈ R

kn converges to the feasible region of
problem (3), which means that the state reaches consensus ultimately.

Proof. By Theorem 1, there is r > 0 satisfying x(t) ∈ B(x∗, r), ∀t ≥ 0. Let
mf = infx∈B(x∗,r) f . From Theorem 2, we can assume that x(t) ∈ I for t ≥ 0,
consequently E(x(t)) = Ikn×kn. Thus, for a.e. t ≥ 0, (9) can be rewritten as

ẋ(t) = −Lx(t) − γ(t)η(t) − (t + 1)ξ(t) (12)

Next, we construct the following Lyapunov function:

V (x, t) =
1
2
x(t)TLx(t) + (t + 1)G(x(t)) + γ(t)

(
f(x(t)) − mf

)
(13)

Taking the derivation of V (x, t) along the state solution of (4), one has

d
dt

V (x(t), t) =
〈
Lx(t) + (t + 1)ξ(t) + γ(t)η(t), ẋ(t)

〉
+ γ̇(t)

(
f(x(t)) − mf

)
(14)

Combining (12) with (14), we have

d
dt

V (x(t), t) = −‖ẋ(t)‖2 + γ̇(t)
(
f(x(t)) − mf

) ≤ −‖ẋ(t)‖2 ≤ 0

which means that V (x(t), t) is nonincreasing. Since V (x(t), t) ≥ 0, we get
lim

t→+∞
1
2x(t)TLx(t) = lim

t→+∞ W (x(t), t) exists.
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Next, we will prove that lim
t→+∞

1
2x(t)TLx(t) = 0. If not, suppose that there

is t > T1 satisfying 1
2x(t)TLx(t) ≥ ε

2 . Let X be the optimal solution set of (3),
consider the following function

V1(x, t) =
1
2
‖x − PX (x)‖2 + V (x, t)

Differentiating V1(x, t) along the state solution of (4), for a.e. t ≥ 0, one obtains

d
dtV1(x(t), t) =

〈
x(t) − PX (x(t)) + Lx(t) + (t + 1)ξ(t) + γ(t)η(t), ẋ(t)

〉

+ γ̇(t)
(
f(x(t)) − mf

)
+ G(x(t))

≤ 〈
Lx(t) + (t + 1)ξ(t) + γ(t)η(t), ẋ(t)

〉
+

〈
ẋ(t),x(t) − PX (x(t))

〉

= −‖ẋ(t)‖2 − γ(t)
〈
η(t),x(t) − PX (x(t))

〉

+
〈
Lx(t) + (t + 1)ξ(t),x(t) − PX (x(t))

〉

≤ −γ(t)〈η(t),x(t) − PX (x(t))〉 − 1
2x(t)TLx(t)

Based on lim
t→+∞ γ(t) = 0, we have lim

t→+∞ γ(t)
〈
η(t),x(t) − PX (x(t))

〉
= 0. That

is, there exists T2 > T1, such that
∣
∣γ(t)

〈
η(t),x(t) − PX (x(t))

〉∣
∣ ≤ ε

4 , ∀t > T2.
Hence

d
dt

V1(x(t), t) ≤ ε

4
− ε

2
= −ε

4
, ∀t ∈ [T2,+∞) (15)

Taking the integral of (15) from T2 to t, we obtain

V1(x(t), t) − V1(x(T2), T2) ≤ −ε

4
(t − T2), ∀t ∈ [T2,+∞)

As t → ∞, V1(x(t), t) → −∞, which leads to the contradiction with V1(x(t), t) >
0. Then, we have lim

t→+∞
1
2x(t)TLx(t) = 0. Therefore, lim

t→+∞Lx(t) = 0 holds, that

is, x(t) converges to the feasible region. It follows that x1(t) = . . . = xk(t) as
t → ∞, which means that the state solution reach consensus ultimately.

Theorem 4. Suppose (i)–(iv) in Assumptions are satisfied, the state solution
x(t) of neural network (4) with any initial point x(0) ∈ R

kn converges to the
global optimal solution of optimization problem (2) (i = 1, 2, . . . , k).

Proof. From Theorem 3, we have

d
dt

V1(x(t), t) ≤ −γ(t)
〈
η(t),x(t) − PX (x(t))

〉
(16)

In the following content, we will consider three cases to prove that x(t) converges
to the optimal solution set X of (3).

Case 1: There is T ≥ 0, such that f(x(t)) ≤ f(x̄), ∀t ≥ T , where x̄ ∈ X .
Based on Theorem 3, we know that the state solution x(t) converges to the

feasible region of (3). Combined with f(x(t)) ≤ f(x̄), ∀t ≥ T , it follows that
x(t) converges to X .

Case 2: There is T ≥ 0, such that f(x(t)) > f(x̄), ∀t ≥ T , where x̄ ∈ X .
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By the convexity of f , we have

〈ηx(t),x(t) − x̄〉 ≥ f(x(t)) − f(x̄) > 0, ∀ηx(t) ∈ ∂f(x(t)) (17)

Letting ηx(t) := η(t) in (17) and combining with (16), one has

d
dt

V1(x(t), t) ≤ −γ(t)
(
f(x(t)) − f(PX (x(t)))

)
= −γ(t)

(
f(x(t)) − f(x̄)

)
< 0

which means that lim
t→∞ V1(x(t), t) exists. Then, we know lim

t→∞ ‖x(t) − PX (x(t))‖
exists. By (17), we get lim inf

t→∞
〈
η(t),x(t) − PX (x(t))

〉 ≥ 0.
Next, we will prove that

lim inf
t→∞

〈
η(t),x(t) − PX (x(t))

〉
= 0 (18)

If not, assume that lim inf
t→∞

〈
η(t),x(t) − PX (x(t))

〉
= ε > 0. Then, there exists

T3 > T satisfying
〈
η(t),x(t) − PX (x(t))

〉 ≥ ε
2 , ∀t > T3. By (16), one has

d
dt

V1(x(t), t) ≤ −ε

2
γ(t), ∀t > T3 (19)

By integrating from T3 to t, we have

V1(x(t), t) − V1(x(T3), T3) ≤ −
∫ t

T3

ε

2
γ(s)ds

Base on the definition of γ(t), we get lim
t→∞ V1(x(t), t) = −∞, which contradicts

with V1(x(t), t) ≥ 0. Therefore, (18) holds. It follows that there exists a subse-
quence {tn}, such that lim

t→∞ tn = ∞ and lim
t→∞

〈
η(tn),x(tn) − PX (x(tn))

〉
= 0.

From the boundedness of {x(tn)}, there is a subsequence {tnk
} ⊆ {tn},

such that x(tnk
) → x̂ as k → ∞. Owing to the upper semi-continuity of ∂f

and the continuity of projection operator, there exists η̂ ∈ ∂f(x̂) satisfying
〈η̂, x̂ − PX (x̂)〉 = 0. By the convexity of f , we have

f(x̂) − f(PX (x̂)) ≤ 〈η̂, x̂ − PX (x̂)〉 = 0

By Theorem 3, we know x̂ ∈ X . That is, lim
t→∞ ‖x(tnk

) − PX (x(tnk
))‖ = 0. Since

lim
t→∞ ‖x(tn) − PX (x(tn))‖ exists, we have lim

t→∞ ‖x(tn) − PX (x(tn))‖ = 0. Hence,

for case 2, x(t) converges to X .
Case 3: Both Δ1 = {t ∈ [0,+∞) : f(x(t)) ≤ f(x̄)} and Δ2 = {t ∈ [0,+∞) :

f(x(t)) > f(x̄)} are unbounded.
Since Δ2 is an open set, we have Δ2 =

⋃
k∈N

(t2k+1, t2k+2). Therefore, Δ1 =
[0,+∞)\Δ2 =

⋃
k∈N

[t2k, t2k+1].
For any t ∈ [t2k, t2k+1] ⊆ Δ1, after a similar analysis in case 1, we get

lim
t→∞
t∈Δ1

‖x(t) − PX (x(t))‖ = 0
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For any t ∈ (t2k+1, t2k+2) ⊆ Δ2, we set ρ(t) = sup s≤t
s∈[t2k,t2k+1]

s. Then, ρ(t) ∈
[t2k, t2k+1]. Since the unboundedness of Δ2, it follows that ρ(t) → ∞ as t → ∞.
Since V1(x(t), t) is nonincreasing, it follows

lim sup
t→∞

V1(x(t), t) ≤ lim sup
t→∞

V1(x(ρ(t)), ρ(t)) = 0

Then lim sup
t→∞
t∈Δ2

V1(x(t), t) = 0, which means that lim
t→∞
t∈Δ2

‖x(t) − PX (x(t))‖ = 0.

Therefore, for case 3, x(t) converges to the global optimal solution set X .
Finally, from Lemma 2, we know x(t) also converges to the global optimal

solution set of problem (2). According to (ii) in Assumptions, we know f is
strictly convex, which has a unique minimizer. Hence, the state solution x(t)
converges to the global optimal solution of problem (2).

5 Numerical Examples

Example 1. Consider the following distributed optimization problem:

min
4∑

i=1

fi(x)

s.t. gi(x) ≤ 0, i ∈ {1, 2, 3, 4}
(20)

where x = (x1, x2)T, f1(x) = |x1|, f2(x) = |x1 + x2|, f3(x) = 1
2x2

1 + 1
2x2

2,
f4(x) = x2

1+x2, g1(x) = x2
1+(x2−2)2−4, g2(x) = x1− 1

2 , g3(x) = (x1−1)2+x2
2−1,

g4(x) = −x2.
The communication graph G is shown in Fig. 1, where we can know local

constraints of each agent. We can verify that (i)-(iv) in Assumptions hold.
Hence, we can apply neural network (4) to solve problem (20). Figure 2 displays
the state solution of the neural network (4). It shows the state solution reaches
consensus and converges to the optimal solution x̄ = (0.471, 0.055)T.

Fig. 1. Communication graph with 4 agents in Example 1.
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Fig. 2. The state trajectories of neural network (4) in Example 1.

6 Conclusions

For a distributed convex optimization problem with inequality constraint, this
paper presents a neural network over multiagent systems. Then it is proved that
the state solution of the neural network is bounded and reaches a consensus
output at the global optimal solution. We also give a numerical example to show
the efficiency of the proposed neural network.
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Abstract. This paper discusses dynamically weighted model predic-
tive control based on two-timescale neurodynamic optimization. Minimax
optimization problems with dynamic weights in objective functions are
used in the model predictive control. The minimax optimization prob-
lems are solved by using a two-timescale neurodynamic optimization
approach. Examples on controlling HVAC (heating, ventilation, and air-
conditioning) and CSTR (cooling continuous stirred tank reactor) systems
are elaborated to substantiate the efficacy of the control approach.

Keywords: Model predictive control · Neurodynamic optimization ·
HVAC · CSTR

1 Introduction

Model predictive control (MPC), also known as receding horizon control, refers
to control via solving rolling horizon optimization problems with predictions on
finite horizons. It is an optimal control approach with online adaptation and
prediction capability. It is widely used in process control [18], vehicle control [4],
CSTR control [42], and HVAC control [1].

A key step in MPC is solving optimization problems with various constraints
effectively and efficiently. Neurodynamic approaches based on recurrent neural
networks are suitable for optimization. For example, many neurodynamic mod-
els are available for solving various optimization problems [2,5,7,8,12,12–17,23,
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27,29–35,37,41,45]. In addition, many neurodynamics-based control approaches
are available [3,6,9,10,19–22,24,36,38–40,42–44,46]. For example, a nonlinear
MPC method based on neurodynamic optimization is proposed in [44]. A robust
nonlinear MPC approach based on collective neurodynamic optimization is pre-
sented in [43].

In this paper, MPC of affine systems is formulated as sequential minimax
optimization problems with dynamic weights in the objective function. A two-
timescale neurodynamic approach is used for solving the minimax optimiza-
tion problem sequentially. Simulation results on HVAC and CSTR systems are
reported to substantiate the efficacy of the neurodynamics-based dynamically-
weighted MPC approach.

2 Neurodynamics-Based MPC

2.1 Problem Formulation

Consider a discrete-time affine system:

x(k + 1) = a(x(k)) + b(x(k))u(k), (1)

where k is a time step, x and u are system state and input vectors, respectively,
a and b are differentiable functions. The control objective is to regulate x(k)
such that it tracks a given target xd by using the system input u(k).

To achieve the control objective, MPC of system (1) is formulated as a
sequential minimax optimization problem as follows for k = 0, 1, . . . :

min
u(·|k)

max
λ∈[0,1]

λ

T∑

t=1

‖x(t + k|k) − xd‖2
Q + (1 − λ)

T−1∑

t=0

‖Δu(t + k|k)‖2
R (2a)

s.t. x(t + k + 1|k) = a(x(t + k|k − 1)
+ b(x(t + k|k − 1))u(t + k|k), t = 0, ..., T − 1 (2b)

u ≤ u(t + k|k) ≤ ū, t = 0, ..., T − 1 (2c)
x ≤ x(t + k|k) ≤ x̄, t = 1, ..., T (2d)
x(k|k − 1) = x(k), (2e)

where u(t|k) and x(t|k) denote respectively the predictions of u and x at step
t with known information at step k, x(k) is the state at step k, Δu(t + k|k) =
u(t + k|k) − u(t − 1 + k|k), T is the prediction horizon, Q and R are positive
definite matrices, ‖x‖2

Q = xT Qx, u, ū, x, and x̄ are bound vectors satisfying
u ≤ ū and x ≤ x̄, λ is a dynamic weight.

The objective function in (2a) is a dynamically weighted sum of the tracking
errors and the variations of control variables with a dynamic weight λ. Equation
(2b) is the system dynamic equation in a predicted form same as that in [39].
Equations (2c) and (2d) are control and state constraints, respectively. Equation
(2e) is the initial state condition of the system.

As usual in MPC, u(k) = u∗(k|k) is used to control system (1) at time k
(k = 0, 1, 2, ...).
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2.2 Two-Timescale Neurodynamic Optimization

Let u = [u(k|k)T , u(k + 1|k)T , ..., u(k + T − 1|k)T ]T , J(u, λ) = λ
∑T

t=1 ‖x(t +
k|k) − xd‖2

Q + (1 − λ)
∑T−1

t=1 ‖Δu(t + k|k)‖2
R, u = col(u, ..., u), ū = col(ū, ..., ū),

and

g(u) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a(x(k|k − 1) + b(x(k|k − 1))u(k|k) − x̄
x − a(x(k|k − 1) − b(x(k|k − 1))u(k|k)

a(x(k + 1|k − 1) + b(x(k + 1|k − 1))u(k + 1|k) − x̄
x − a(x(k + 1|k − 1) − b(x(k + 1|k − 1))u(k + 1|k)

· · ·
a(x(k + T − 1|k − 1) + b(x(k + T − 1|k − 1))u(k + T − 1|k) − x̄
x − a(x(k + T − 1|k − 1) − b(x(k + T − 1|k − 1))u(k + T − 1|k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Problem (2) is rewritten as follows:

min
u

max
λ

J(u, λ)

s.t. g(u) ≤ 0
u ∈ [u, ū], λ ∈ [0, 1],

(3)

where u and λ are decision variables.
A few neurodynamic models can be used for solving problem (3). In particu-

lar, a two-timescale neurodynamic model is proposed in [11] with the following
dynamic equation:

ε1
du
dt

= −u + PU (u − (∇uJ(u, λ) + ∇ug(u)μ)

ε2
dλ

dt
= −λ + PΛ(λ − ∇λJ(u, λ))

ε2
dμ

dt
= −μ + (μ + g(u))+,

(4)

where ε1 and ε2 are time constants, u, λ, and μ are neuronal states, ∇ug(u) =
[∇ug1(u),∇ug2(u) , ...], μ+

i = max(μi, 0), U = [u, ū], Λ = [0, 1],

PU (ui) =

⎧
⎪⎨

⎪⎩

ūi ui > ūi,

ui ui ≤ ui ≤ ūi,

ui ui < ui,

PΛ(λ) =

⎧
⎪⎨

⎪⎩

1 λ > 1,

λ 0 ≤ λ ≤ 1,

0 λ < 0.

3 Simulation Results

3.1 Neurodynamics-Based HVAC Control

Consider a discrete-time HVAC system in (1) with its dynamic equation being
defined as follows [25,28]:

a(x) =
[

x1

x2 + τ
Vts

ql
ρcp

]
, b(x) =

[
τ

Vheρcp
τ

Vhe
(x2 − x1) τ

Vhe
(T0 − x2)

0 τ
Vts

(x1 − x2) 0

]
,
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Fig. 1. Neurodynamics-based HVAC control: (a) a snapshot of transient neuronal states
of the neurodynamic model with ε1 = 10−6 and ε2 = 0.5 × 10−6 at k = 0; (b) HVAC
states with T = 20. (Color figure online)

where x1 and x2 are temperature states, u1, u2, and u3 are control variables, 1/τ
is a sampling frequency, Vhe, T0, Vts, ql, ρ, and cp are HVAC system parameters.

The HVAC system parameters in [25] are adopted. Q = R = I, T = 20,
x̄ = [14.5, 30], x = [5, 10], ū = [4000, 2, 2], u = [−4000, 0.0354, 0.0354]. Same as
[28], the sampling rate is set to 0.1Hz. xd = [14.5, 14.5]T , x(0) = [14, 13.5]T .

Figures 1, 2, 3 and 4 depict the simulation results on the HVAC system.
Specifically, Fig. 1(a) depicts a snapshot of transient neuronal states of the two-
timescale neurodynamic model at k = 0, where the green line depicts the tran-
sient behavior of λ converging to one. Figure 1(b) depicts the controlled HVAC
system states for dynamic and fixed weights. It shows that x1 and x2 are reg-
ulated to the reference temperature 14.5◦C. In addition, it shows that MPC
with dynamic weights reaches steady state faster than that with fixed weight.
Figure 2 depicts the computed control inputs to the HVAC system for dynamic
and fixed weights. Figure 3(a)–(b) depict the states of the neurodynamics-based
HVAC MPC system with prediction horizons T = 10 and 100, where little dif-
ferences appear in the state variables. Figure 4(c)–(d) depict respectively λ in
HVAC control system with T = 20, T = 5 and T = 100.

3.2 Neurodynamics-Based CSTR Control

Consider a discrete-time CSTR system with a and b in (1) being defined as
follows [26,42]:

a(x) =
[

x1 + τ [−x1 + Da(1 − x1) exp( x2
1+0.05x2

)]
x2 + τ [−x2 + BDa(1 − x1) exp( x2

1+0.05x2
) − 0.3x2]

]
, b(x) =

[
0

0.3τ

]
,

where x1 and x2 are the reactant concentration and reactor temperature, respec-
tively, B and Da are CSTR system parameters.
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Fig. 2. Control inputs to the HVAC system with T = 20.

Fig. 3. States of the HVAC control system with prediction horizons T = 10 and 100:
(a) x1, (b) x2.

Same as [42], B = 1, Da = 0.072, xd = [0.4472, 2.7520]T , the sampling rate
is set to 10Hz. Q = R = I, T = 20, x̄ = [0.85, 5], x = [0, 0], ū = 18, u = 7. The
initial state is x(0) = [0, 0]T .

Figures 5, 6 and 7 depict the simulation results on the CSTR system. Specif-
ically, Fig. 5(a) depicts a snapshot of neuronal states of the two-timescale neu-
rodynamic model, where the red line depicts the transient behaviors of λ con-
verging to one. Figure 5(b) depicts the dynamic weights and fixed weight in the
CSTR control. Figure 6(a) depicts the controlled CSTR states for dynamic and
fixed weights, which shows that states x1 and x2 are regulated to the references
0.4472 and 2.7520, respectively. In addition, it shows that dynamically weighted
MPC CSTR system reaches steady state faster than that with fixed weight.
Figure 6(b) depicts the control inputs to the CSTR MPC system for dynamic
and fixed weights. Figure 7 depicts the states and weights in the neurodynamics-
based CSTR MPC system with predction horizons of 10 and 50, where a little
improvements appear in the state variables with a shorter prediction horizon.
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Fig. 4. Dynamic weight λ in the HVAC control system: (a) prediction horizon T = 20,
(b) T = 10 and 100.

Fig. 5. Neurodynamics-based in CSTR control: (a) A snapshot of transient neuronal
states of the neurodynamic model with ε1 = 10−6 and ε2 = 0.5×10−6 at k = 0, (b) λ.

Simulation results on a two-mass-spring linear system [11] show that the
dynamically weighted MPC approach achieves comparable performances com-
pared to that with fixed weight. However, no obvious advantage is observed on
controlling the two-mass-spring system.
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Fig. 6. (a) System states of CSTR with T = 20. (b) Control inputs to the CSTR
system with T = 20.

Fig. 7. States and dynamic weights in neurodynamics-based CSTR control with pre-
diction horizons T = 5 and 50: (a) x; (b) λ.

4 Conclusions

In this paper, a two-timescale neurodynamic model is used for dynamically
weighted model predictive control (MPC) of affine nonlinear systems. The MPC
problem is formulated as a sequential minimax optimization problem, and solved
by using a two-timescale neurodynamic model. Simulation results on setpoint
regulation for HVAC and CSTR MPC systems are presented to substantiate the
efficacy of the neurodynamics-based MPC approach.
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Abstract. How to advertise in online social networks is a hot and open
research topic. In short, the main goal is to post the advertisement on a
few of most influential users’ profiles to spread the advertising informa-
tion to the potential suitable recipients. Typical research works about
this topic are limitedly involved with two aspects: one is Spreading Max-
imization problem and the other is Centrality measures. The Spread-
ing Maximization is proven to be an NP-hard problem, which means
the corresponding method is mostly inefficient to exactly find the most
influential spreaders. Second, traditional centrality measures, such as
degree centrality, closeness centrality etc., roughly take the geometric
information (degree or distance) to calculate the potentially most influ-
ential users, rather than considering online users’ personal interests or
preference which are more likely to determine the set of people whether
read/accept the advertising contents or not. In this paper, we put closed-
related labels for each individual’s profile in the online social network
and assign particularly set-up scores to these attribute labels. Based on
these labels, we apply the weighted k-shell decomposition method to
identify the core users in the networks, which is also regarded as the
most influential users in this paper. The experimental results show that
the proposed method is sufficient to identify the most influential users in
some artificial networks. More importantly, the proposed method shows
good discrimination degree of influence ranking.

Keywords: Advertising · Online social networks · K-Shell
decomposition · Susceptible-infected model · Centrality measure

1 Introduction

With the advent of popular Web destinations such as Facebook and Twitter, a
new kind of online community now occupy the center stage in e-commerce, that
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is, social networking communities. The rapid growth of online social networking
communities has caught the attention of advertisers that hope to find new ways
to harness these communities for their advertising purposes. The effectiveness of
targeting a small portion of customers for advertising has long been recognized
by businesses [1]. Traditional approach to targeted advertising is to analyze a
historical database of previous transactions and the features associated with the
customers, possibly with the help of some statistical tools and identify a list of
customers most likely to respond to the advertisement of the product. With the
advent of new online social networks, it is advocated that mining more data to
identify potential customers [2]. Hence, many recommender systems, whose basic
idea is to advertise products based on users’ preferences which can be obtained
by ratings either explicitly stated by the users or implicitly inferred from previous
transaction records, Web logs, or cookies, have emerged over the past few years.
One of the recommendation technique was called the content-based approach [3].
The other is collaborative approach [4]. Both recommendation systems consider
individuals’ preference to recommend products to them. However, in this paper,
we take another way to advertise on online social networks. First, we focus on
how to quickly and efficiently identify potential users who might show interest
in the advertising information, and based on these potential users, we want to
find out the most influential users who can be considered as initial spreaders of
the advertisement in order to save resources such as money and time.

Intuitively, the topic about advertising in online social networks is closely
related to the problem of maximizing the spreading of influence through a social
network. Both want to maximize the spreading range of information in a short
time. In the work [5,6], Domingos and Richardson posed a fundamental algo-
rithmic problem for such systems [5,6]. Suppose that we have data on a social
network, with estimates for the extent to which individuals influence one another,
and we would like to market a new product that we hope will be adopted by a
large fraction of the network. The premise of viral marketing is that by initially
targeting a few influential members of the network − say, giving them free sam-
ples of the product − we can trigger a cascade of influence by which friends will
recommend the product to other friends, and many individuals will ultimately
try it. But how should we choose the few key individuals to use for seeding
this process? In Refs [5,6], this question was considered in a probabilistic model
of interaction; heuristics were given for choosing customers with a large overall
effect on the network, and methods were also developed to infer the influence
data necessary for posing these types of problems. In this paper, we consider the
issue of choosing influential sets of individuals as a problem in discrete optimiza-
tion. The optimal solution is NP-hard for most models that have been studied,
including the model of [5]. However, we are fortunate and don’t need to solve
this NP-hard problem mathematically. Instead, if we can empirically figure out
a way to identify several potentially most influential online social network users
and then spread the advertising information through them. We can definitely
save a lot of time and money. This is one of main purpose why our research
works are given in this paper.
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On the other hand, how to identify most influential nodes in networks is
closely related to the topic of this paper. Various centrality measures have been
proposed over the years to capture network individuals meanings − influence [7],
importance [8–10], popularity [11], recommendation [12–14], controllability [15],
spreading efficiency [16] and so on [17–19], according to their degree and weight
strength of each node and topological importance in the network structure [20].

The methods commonly used in binary networks are Degree centrality (DC),
Betweenness centrality (BC) [21] and Closeness centrality (CC) [22]. The DC
method is very simple but of little relevance, since it does not take into account
the global structure of complex network. BC and CC are well-known metrics
which can better capture the global structure of a network, but are difficult to
be applied in large-scale networks due to the computational complexity. Mean-
while, another limitation of CC is the lack of adjustability to networks with
disconnected components: two nodes that belong to different components but
do not have a finite distance between them. These three centrality measures
have already been extended to be applied in weighted networks [21]. In 2011,
Chen et al. [7] proposed a effective Semi-local Centrality which can give better
result in low computational complexity than other method, such as BC and CC,
but is incapable to be applied in weighted networks. Several spectral central-
ity measures are also available, such as eigenvector centrality (EC) [23], Katz’s
centrality [24], subgraph centrality [25], PageRank [26], LeaderRank [27]. Some
centrality measures have been extended to weighted networks [21,28–30]. In a
word, the design of an effective ranking method to identify influential nodes is
still an open issue.

To sum up, in this paper we avoid treating the problem as the same with the
maximization spreading problem. Instead, by the weighted k-shell decomposition
method, we efficiently find a set of core users in the network which can be
regarded as the most influential users. Before applying this method, each user
in the networks is put on labels with values to measure its individual interests
or preference on the content of the advertisement so as to filter those who have
no interest. The rest parts of this paper are organized as follows. Some basic
knowledge about k-shell decomposition and degree centrality are introduced.
Then, we introduce the proposed method in Sect. 3. In Sect. 4, the performance
of the proposed method is shown through several numerical examples. Section 5
concludes the paper.

2 Basic Knowledge

In this section, we introduce some basic knowledge about the original K-shell
decomposition for binary networks and the extended K-shell decomposition for
weighted networks, and also degree centrality and closeness centrality.

2.1 K-Shell Decomposition for Binary Networks

As shown in Fig. 1, nodes are assigned to k shells according to their remaining
degree, which is obtained by successive pruning of nodes with degree smaller than
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the kS value of the current layer. We start by removing all nodes with degree
k = 1. After removing all the nodes with k = 1, some nodes may be left with
one link, so we continue pruning the system iteratively until there is no node left
with k = 1 in the network. The removed nodes, along with the corresponding
links, form a k shell with index kS = 1. In a similar fashion, we iteratively remove
the next k shell, kS = 2, and continue removing higher-k shells until all nodes
are removed. As a result, each node is associated with one kS index, and the
network can be viewed as the union of all k shells. The resulting classification of
a node can be very different than when the degree k is used.

Fig. 1. Illustration of the layered structure of a network, obtained using the k-shell
decomposition method. The nodes between the two outer rings compose shell 1 (ks =
1), while the nodes between the two inner rings compose shell 2 (ks = 2). The nodes
within the central ring constitute the core, in this case ks = 3.

2.2 K-Shell Decomposition for Weighted Networks

This method applies the same pruning steps that is described above. Instead,
this measure considers both the degree of a node and the weights of its links,
and we assign for each node a weighted degree k′. The weighted degree of a node
i is defined as

k′ = [kα
i (

ki∑

j

ωij)β ]
1

α+β (1)

where α = β = 1, which treats the weight and the degree equally.

2.3 Degree Centrality

A weighted network can generally be represented as a set G = (V,E,W ) [22].
Here, V and E are the sets of all nodes and edges, respectively. Let ki and ωi
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be the corresponding degree and weight of node i with its neighbors. W is the
weight set of E, i.e., the link Eij from nodes i to j has a weight ωij ∈ W .

Definition 1 (Degree Centrality in a weighted network). The DC of node
i, denoted as Cω

d (i), is defined as

Cω
d (i) =

N∑

j

ωij (2)

where ωij is the weighted of the edges between node i and j, which is greater than
0 when the node i is connected to node j. Here, N is the number of neighbors
of node i.

3 Formulation of the Proposed Method

In the proposed method, we integrate analytics data of users’ profiles within a
social network with targeted advertising campaigns. We collect analytics data of
users’ profiles and utilizes the data to filter through the users’ profiles to select
desired user profiles for delivery of advertisements targeted the interests and
personality of the desired user profiles. Utilization of the analytics data includes
assigning labels with ranking values compared with other users.

Step 1: put labels for each user and assign values, Lij , which represents the
value of the i-th users’ j-th label. In this step, we construct a networks in which
individuals are labeled with different attribute values. For example, if there is
a company trying to advertise selling basketball shoes, all the users should be
labeled closely related to sports, sports shoes, basketball etc. For those who have
no interest in these labels or are never talking about these labels, we can consider
drop these users to avoid sending advertisement to them. This could incur less
size of networks.

Step 2: weights are assigned to each label. In this step, each type of labels
should be assigned with possibly different weights since they are inequally con-
tributed to the advertisement.

Si =
n∑

j

λjLij , 0 < λj < 1 (3)

where λj is the weight of j-th label and n is the number of labels. Until now, we
sum up weighted label scores for each user profile to produce a profile score.

Step 3: identify a few of most influential users by weighted k-shell decomposi-
tion method. Before applying the weighted k-shell decomposition method, there
is one question that need to be solved. Typically, the links of online social net-
works are directed. But both the unweighted k-shell decomposition and weighted
k-shell decomposition methods avoid dealing with this problem. In this paper,
we analyze and solve this problem as below. If there is a user located in the
periphery of a network, it has only one link related to another user. No matter
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Table 1. There are ten labels for each user (here, we only list 21 users’ labels). For
each label, it has been assigned integer value from 1 to 10. The high the value, the
more the user are interested in the advertisement. Otherwise, the user has less interest
in the advertising information.

Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 Label 8 Label 9 Label 10

1 3 9 8 8 7 7 9 5 10 5

2 9 3 8 1 5 4 10 3 6 6

3 8 9 5 4 9 1 1 8 2 9

4 7 8 8 3 6 9 4 10 7 2

5 3 10 5 10 7 6 7 6 3 10

6 6 3 10 2 8 10 1 2 8 8

7 2 9 6 9 4 5 4 4 2 2

8 6 2 8 4 4 6 3 3 10 10

9 3 6 10 9 1 10 6 9 7 9

10 3 2 1 2 10 6 5 1 2 8

11 6 9 4 4 1 1 1 10 8 10

12 6 10 5 1 7 4 4 1 8 2

13 9 4 10 4 8 7 3 1 4 8

14 3 2 2 4 5 2 5 8 3 1

15 5 6 7 2 7 5 5 5 10 6

16 7 8 5 2 2 5 7 10 1 2

17 7 1 10 8 5 7 5 1 4 10

18 3 7 10 8 1 4 7 9 4 3

19 3 1 8 1 7 8 9 6 6 1

20 1 2 8 1 1 8 9 8 10 10

21 8 8 9 10 1 1 9 9 4 1

this link is in-degree link or out-degree one, it won’t change the fact that this
user is marginalized. Therefore, in this paper we regards the directed networks
as undirected one during assigning weighted degree when applying the weighted
k-shell decomposition method (Table 1).

Step 4: output the most influential users (core-positioned nodes).

4 Experiments and Results

In order to evaluate the performance of the proposed method and other centrality
measures, we explore to employ SI model [32] to examine the spreading ability
of the top ranked nodes. Although SI model cannot identify the influence of
nodes, it reflects the spreading ability of nodes, which has been widely used for
epidemic dynamics on networks. In the SI model, every node has two discrete
states: (i) susceptible and (ii) infected, in which the infected nodes stay infected
and spread the infection to the susceptible neighbors with rate Iθ. For epidemic
spreading on networks, Iθ determines the range or scale over which a node can
exert influence. Note that, in weighted networks, node i infects node j with
probability Iθ = ( wij

wM
)θ, where θ is a positive constant and wM is the largest
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value of wij in the network [33]. In this paper, F(t) denotes the number of
infected nodes after the time of t, which can be described as spreading ability.

4.1 Zachary Network

The data of Zachary’s Karate Club Network are collected from the members of
a university karate club by Wayne Zachary over two years [34]. Zachary con-
structed a weighted network by denoting each member in the club as a node.
Each edge in the network represents the connected two members are friends
outside the club activities and its weight indicates the relative strength of the
associations (number of situations in and outside the club in which interactions
occurred).

Fig. 2. Comparison of spreading ability of top-L nodes by three different methods. X-
axis represents the time step and Y-axis represents the cumulative number of infected
nodes with 15 steps in Zachary, which are obtained by averaging over 1000 implemen-
tations. Here θ = 6.

In both Figs. 2(a) and (b), nodes identified by Weight k-shell decomposi-
tion (W K-Shell), LeaderRank and Degree Centrality (DC) have nearly equal
influence, which are better than those identified by Unweighted k-shell (U K-
Shell) decomposition method. Since the size of this network is quite small, we
can just identify this for the purpose of illustration. In Fig. 3, it is obvious that
the proposed method can assign relatively larger-scale values to than the other
two methods, which discriminate the difference of influence between nodes more
remarkably. Obviously, LeaderRank has the worst ability to discriminate its
ranking value.

4.2 Artificial Networks

In this part, an Erdos and Renyi random network with 5000 nodes and 10000
edges is taken.
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Fig. 3. Comparison of discrimination degree of ranking. X-axis represents the ranking
of each node and Y-axis represents the values assigned by three different methods.

Fig. 4. A Erdos and Renyi random network with 5000 nodes and 10000 edges. Com-
parison of spreading ability of three methods. X-axis represents the time step and For
(a) and (c), Y-axis represents the cumulative number of infected nodes with 30 steps
in Zachary, which are obtained by averaging over 1000 implementations. Here θ = 4.
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As we can see in Fig. 4, DC performs better than our method and unweighted
k-shell decomposition method. However, the value discrimination shown by our
method is the best. The assigned values for nodes decrease gradually, but the
rest two methods have poor performance in discriminate the difference between
the values of different ranks. Furthermore, the Unweighted K-Shell method has
the worst ability to spread its influence, which means in large-scale cases, it
becomes less useful than other methods.

5 Conclusions

In this paper, we propose a method to help advertise efficiently in online social
networks. However, according to the present experimental results, the proposed
method hasn’t shown any outstanding performance, which is out of our expec-
tation. We construct artificial networks in which there are only nodes and link
relationship. Then assign attribute labels with random values to change the
weight of the links in the network. If our method performs well based on the
constructed networks assigned with different label values, which means from the
identified most influential nodes the spreading of information is faster than other
methods. However, the fact is not.

Even with not-so-good results, we can still get some significant insights. First,
the ranking value discrimination shown by our method is significant when com-
pared with other methods. Second, all the foregoing networks are not real online
social networks. In fact, we need to recollect the data from real online networks,
and if possible, advertising on real social networks is definitely the best way to
test our method. In fact, all other test data is empirical and need to be substan-
tiated by real data.

This paper gives rather than a good result, but need to be improved in other
dimensions, such as collecting new data and revising weights of labels by training
on real social network data.
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Abstract. Temporal language queries grounding in video aims to
retrieve one specific moment in a long, untrimmed video by a query
sentence. This is a challenging issue as a video may contain multiple
moments of interests which have complex temporal dependencies with
other temporal moments. To preserve the original video moment infor-
mation during the multiple layers convolution operations, this paper
introduces residual learning into the issue and proposes a novel semantic
modulation based residual network (SMRN) that incorporates dynami-
cal semantic modulation and multiple prediction maps in a single-shot
feed-forward framework. Semantic modulation mechanism dynamically
modulates the residual learning by assigning where to pay the visual
attention. And the mechanism is able to adjust the weights given to
different video moments with the guide of query sentence. Additionally,
the network combines multiple feature maps from different layers to nat-
urally captures different temporal relationships for precisely matching
video moment and sentence. We evaluate our model on three datasets,
i.e., TACoS, Charades-STA, and ActivityNet Caption, with significant
improvement over the current state-of-the-arts. Furthermore ablation
experiments were performed to show the effectiveness of our model.

Keywords: Language queries grounding in video · Residual learning ·
Semantic modulation · Single-shot feed-forward network

1 Introduction

Detecting activities in videos is a fundamental issue of video understanding.
Several researches such as video captioning, temporal action localization, video
summarization and temporal language queries grounding in videos have been
proposed for different scenarios. Temporal Language Queries Grounding in
Videos (TLQG) aims to retrieve the start and end timestamps of one specific
moment which best matches the language query in a long, untrimmed video.
As untrimmed videos usually contain complex temporal activities and the lan-
guage queries are flexible, it’s challenging to model the fine-grained interactions
between the two modalities. For example, The video shown in Fig. 1 mainly
c© Springer Nature Switzerland AG 2020
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Fig. 1. Example of temporal language queries grounding in video.

contains two distinct activities with complex temporal dependencies, the contex-
tual information is crucial for distinguishing the two activities and localizing the
start point of the second activity. Recently, some methods [5,13] are proposed,
they designed a single-shot Convolutional Neural Network (CNN) to aggregate
video information. In these models, they only take into account the last CNN
layer which highly integrate a large range of context information within the video.
Although these models can capture temporal relationships, they are still suffer-
ing from inferior effectiveness. First, imagine that we are looking for a target
segment in the video. The first thing we will do is to remember the information
of one segment, then we will judge it with context segments information. As a
CNN aggregate video information through a hierarchy of visual abstractions by
stacking the layers, the last CNN layer almost ‘forgets’ the information of the
original segments. Second, as showing in Fig. 1, a target segment only relates to
partial regions of a video, without the guide of the query semantic meaning, it’s
not easy for a CNN to classify where to pay more attention. So it is crucial to
make full use of the query semantics for finding the semantic-related regions.

In this paper, we propose a novel semantic modulation based residual network
(SMRN). As the shortcut connection within the hierarchical residual network
allows the information from low-level feature maps directly flows into high-level
feature maps, the SMRN can effectively aggregates original video segment and
contextual segment information for more accurate results. To better attend to
the query-related video contents, semantic modulation is leveraged to modu-
late the temporal convolution processes by weighting different regions of video
feature maps with referring to the query semantics. Additionally, our SMRN
combines predictions from multiple feature maps with different ranges of tem-
poral context information to naturally handle moments of complex temporal
dependencies. Considering them as whole, SMRN is able to precisely summarize
contextual video information, leading to an effective architecture for TLQG task.
Our contributions are as follows:

(1) We introduce residual learning into the temporal language queries ground-
ing in videos and propose a novel semantic modulation based residual net-
work. The shortcut connection within the residual network can preserve the
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information of the original video moment. On the other hand, the semantic
modulation is able to help the model pay more attention to the sentence-
related video contents.

(2) We combine predictions from different levels of feature maps to utilize the hier-
archical structure of Convolution Neural Networks, gaining useful and effec-
tive information for better capture different ranges of temporal relationships.

(3) Extensive experiments were performed on three benchmarks: TACoS [3],
Charades-STA [2], and ActivityNet Captions [1], the results show every com-
ponent is effective for localizing precise temporal boundaries and the SMRN
significantly outperform the state-of-the-art methods.

2 Proposed Method

2.1 The Framework of Semantic Attention Based Residual
Networks

In the following, We first introduce the basic temporal residual convolution block
and then incorporate semantic modulation to residual network. Afterward, the
details of multiple prediction maps will be described.

Temporal Residual Convolution Block. As shown in Fig. 2, a video was
first composed to a sequence of clips V = {vi}Ti=0, each clip consisting of N
frames is represented as a tensor f ∈ Rdv

(dv is the feature dimension) which
was extracted from a pre-trained CNN model (i.e., C3D model [6], VGG model),
see Experiment section for details). By maxpooling the clips over a specific time
span, corresponding moment candidates are obtained. Specifically, the moment
candidate feature fM

a,b (a and b respectively represents the start and end time of
the moment) is obtained by maxpool(fV

a , fV
a+1, ..., f

V
b ). And the sentence repre-

sentation fs can be obtained by sequentially feeding the word embedding (we use
GloVe word2vec model to generate word embedding) into a three-layer LSTM.
The moment candidates features and sentence feature serve as the basic elements
for 2D video feature map.

Follow 2D-TAN [5] we restructure the whole moments sampled from video clips
to a 2D-temporal feature map, denoted as FM ∈ R

T×T×dV

. The first two dimen-
sions represent the coordinate indexes of the start and end clips of the moments,
and dV denoted the feature dimension. Different locations in the 2D-temporal fea-
ture map represent moments of different start and end timestamps. Given the 2D
video feature map, we first fused it with sentence representation fs as:

F f =
∥
∥(ws · fs) � (WM · FM )

∥
∥
F

, (1)

where ws and W f are the learnable parameters, ‖·‖F is Frobenius normaliza-
tion, and � is Hadamard product. With such a cross modal fusion processing,
the fused feature map Ff ∈ R

T×T×df

is able to capture fine-grained interactions
between query and video moments. As aforementioned, localizing one moment
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Fig. 2. The framework of our proposed Semantic Modulation based Residual Network
(Color figure online).

needs to remember the information of the moment first, and then judge it with
adjacent moment candidates. Inspired by the efficient residual learning, we estab-
lished the hierarchical temporal residual network to perceive more context infor-
mation though the large receptive filed of the network. Deeper in the network,
moment candidates at each location of the feature map are deeper blended with
other locations. Moreover, each location is able to remember the information of
itself even in the deepest feature map with the shortcut connection in the resid-
ual network. Taking the fused feature map F, the standard residual temporal
convolution block in this paper is defined as:

y = F(x, {Wi}) + x, (2)

where x and y denote the input 2D video feature map and the output feature
map of the layer considered. F(x, {Wi}) are the standard convolution operation,
F + x is performed by a shortcut connection and element-wise addition. The
convolution operation is denoted as Conv(Θk, Θs, dh), where Θk,Θs,dh are the
kernel size, stride size and channel numbers, respectively. By setting the Θk as 3
and Θs as 1, each residual temporal convolution block will preserve the temporal
dimension of the 2D feature map and meanwhile introduce more context infor-
mation of adjacent moment candidates to each location within the feature map.
Moreover, the shortcut connection in the residual block will preserve lower layers
information during convolution without introducing computation complexity.

Semantic Modulation Based Residual Network. As aforementioned, a
target moment described by a language query only relates to partial regions of
a video. Therefore, considering each location in the feature map equally may
lead to sub-optimal result. To full exploit the semantic of the query sentence,
semantic modulation attempts to adjust the weights given to the regions in the
shortcut feature map.

Specifically, as shown in Fig. 2, given the feature map Ff extracted from one
residual convolution block (without loss of generality, the block number is omit-
ted here) and the sentence representation fs, we first reshape Ff = [ff

1 , ff
2 ...ff

m]
(Orange cube in Fig. 2) by flattening the original Ff along the temporal
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dimension, where ff
i ∈ df and m = T · T , here ff

i is the fused video feature
of the i − th moment candidates, then we attentively weight the regions in the
feature map adaptive to the sentence context:

β = softmax(Wb tanh(WfFf + Wsfs + b)), (3)

where Wb,Wf ,Ws and b are learnable parameters, β is the semantic modulation
weights. Based on the weights, the video feature Ff is then modulated as:

Ff
m = f(Ff , β), (4)

and f(·) denotes element-wise multiplication here. As Fig. 2 shows, the modula-
tion feature maps FM

m are then applied to the shortcut connection in the residual
block. And the basic residual blocks are then updated to:

y = F(xM , {Wi}) + xM
m , (5)

where xM is the original feature map and xM
m is the modulated feature map. As

such, each video feature map will absorb the prior feature map information with
the guide of sentence, and further activate the following semantic modulation
based residual block to pay more attention to the sentence related regions.

Multiple Feature Maps for Prediction. As the temporal convolution oper-
ations preserve the temporal dimension of the 2D feature maps and meanwhile
gradually expand the scope of context-aware information at each location within
the maps, different feature maps can be used to predict activities that require dif-
ferent scopes of context information. Given a feature map Ff

m from the semantic
modulation residual block, we use a fully connected layer followed by a sigmoid
function to produce the confidence score map:

CM = sigmoid(WmFM
m + bm). (6)

As such, N score maps are generated through once forward propagation, here N
denotes the number of residual block within the SMRN. The value si of the ith
valid location on the score map represents the similarity between the moment
candidate and the language query.

In practice, we use weighting parameter λl, λs to combine the last two blocks
score maps, which could result in better performance. The final score map is
calculated by:

CM
f = λlCM

l + λsCM
s , (7)

where CM
l and CM

s represents the last, the second last score map, respectively,
and the CM

f is final score map. λl and λs are set to 0.5 through cross-validation.

Training and Inference. During the training of SMRN, the training sample
consists of three part: a language query, a input untrimmed video, and the ground
truth moment. We first compute tIoU ti (temporal Intersection-over-Union) of
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each moment candidates within different feature maps with the ground truth
moment. Then scale the tIoU by two thresholds omin and omax as:

g i =

⎧

⎨

⎩

0, ti ≤ omin,
ti−omin

omax−omin
, omin < ti < omax,

1, ti ≥ omax.
(8)

The overlap prediction loss for each score map is realized as a binary cross
entropy loss as:

Loss =
1
N

N∑

i=1

gi log pi + (1 − gi) log(1 − pi), (9)

where N is the total number of valid candidates within a score map and pi is
the predicted overlap score of a moment. As the network utilizes the last two
score maps for prediction, the final training loss is defined as Ll + LS , here Ll

and LS is the prediction loss calculated by the last and second last score map,
respectively.

At inference time, the final confidence score map CM
f can be generated

in one forward pass. The moment candidates within the map are filtered by
non-maximum suppression(NMS) according to the scores. Afterwards, the top n
moments in each video are obtained.

3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments to evaluate the proposed SMRN model on three public
large-scale datasets: TACoS [3], Charades-STA [2], and ActivityNet Captions [1].
As previous works [2–5], we adopt Rank@n, IoU@m to evaluate our model. The
metric is defined as the percentage of the testing queries having at least one
hitting retrieval (with IoU large than m) in the top-n retrieved results.

3.2 Implementation Details

For fair comparisons, we use the same video encoder as the previous methods.
Specifically, C3D features for ActivityNet Captions and TACoS, VGG features
for Charades-STA. The time dimensions of the 2D video feature map is set to
128 for TACoS, 64 for ActivityNet Captions and 16 for Charades-STA accord-
ing to the video duration statistics. For SMRN network architecture, 12 layers
convolution networks for TACoS and Charades-STA, and 16 layers convolution
networks for ActivityNet Captions, each residual block contains two layers of
convolution networks so 6 residual blocks for TACoS and Charades-STA, and 8
residual blocks for ActivityNet Captions. The semantic modulation mechanism
is performed on the second residual block and the fourth residual block. The
dimension of video, sentence and fused features (i.e. dV , fs) is set to 512. The
whole framework is optimized in an end-to-end way with Adam.
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3.3 Comparison to State-of-the-Art Methods

We compare our SMRN with recently proposed state-of-the-art baseline
methods:

• Sliding window based methods: CTRL [2], ACRN [7], ACL [4] and MCN [3].
• Reinforcement learning based methods: SM-RL [8] and TripNet [9].
• RNN-based methods: CBP [10], TGN [11], and CMIN [12].
• Others: 2D-TAN [5], MAN [13] QSPN [14], ROLE [15], ABLR [16], and

SAP [17]. Tables 1, 2 and 3 summarize the results on the aforementioned
three benchmarks. Among all four evaluation metrics, our model achieves the
highest accuracy on most datasets. Notably, for localizing moment in TACoS,
Ours-SMRN outperform the recent state-of-art, i.e. 2D-TAN and CMIN by
around 7 points and 9 points in the Rank@1, IoU@0.5 and Rank@5, IoU@0.3
metrics, respectively. As the videos is very long (around 7 min), and the activ-
ities take place in the same kitchen scenarios with some slightly varied cook-
ing object in TACoS. The improvement in TACoS demonstrates that our
model is able to learn the fine-grained differences between different moments.
Moreover, SMRN ranks the first on Charades-STA which contains complex
human activities from different scenarios. For large-scale ActivityNet Cap-
tions, SMRN also outperforms the state-of-art methods in the strict metric
Rank@1, IoU@0.7 and Rank5 IoU@0.5.

Table 1. Performance comparisons on TACoS. The top-2 results are highlighted by
bold and italic fonts, respectively

Methods Rank@1 Rank@5

IoU@0.1 IoU@0.3 IoU@0.5 IoU@0.1 IoU@0.3 IoU@0.5

CTRL 24.32 18.32 13.30 48.73 36.69 25.42

MCN 14.42 - 5.58 37.35 - 10.33

TGN 41.87 21.77 18.9 53.40 39.06 31.02

ACRN 24.22 19.52 14.62 47.42 34.97 24.88

ROLE 20.37 15.38 9.94 45.45 31.17 20.13

ACL 31.64 24.17 20.01 57.85 42.15 30.66

CMIN 32.48 24.64 18.05 62.13 38.46 27.02

SM-RL 26.51 20.25 15.95 50.01 38.47 27.84

CBP - 27.31 24.79 - 43.64 37.40

2D-TAN 47 .59 37 .29 25 .32 70 .31 57 .81 45 .04

SAP 31.15 - 18.24 53.51 - 28.11

Ours− SMRN 50.44 42.49 32.07 77.28 66.63 52.84

3.4 Ablation Studies

In this section, we perform ablation studies to evaluate the effects of each
components in our proposed SMRN. Specifically, we re-train our model on
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Table 2. Performance comparisons on
Charades-STA.

Method Rank@1 Rank@5

IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

CTRL 23.63 8.89 58.92 29.52

MCN 17.46 8.01 48.22 26.73

MAN 41 .24 20.54 83.21 51 .85

ACRN 20.26 7.64 71.99 27.79

ROLE 21.74 7.82 70.37 30.06

ACL 30.48 12.20 64.84 35.13

2D-TAN 40.94 22 .85 83 .84 50.35

SM-RL 24.36 11.17 61.25 32.08

TripNet 36.61 14.50 - -

CBP 36.80 18.87 70.94 50.19

ABLR 24.36 9.01 - -

SAP 27.42 13.36 66.37 38.15

QSPN 35.60 15.80 79.40 45.40

SMRN 43.58 25.22 86.45 53.39

Table 3. Performance comparisons on
Activity Captions.

Method Rank@1 Rank@5

IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

CTRL 29.01 10.34 59.17 37.54

MCN 21.36 6.43 53.23 29.70

CBP 35.76 17.80 65.89 46.20

2D-TAN 44.14 26 .54 77.13 61.96

ACRN 31.67 11.25 60.34 38.57

CMIN 43 .40 23.88 67.95 50.73

TripNet 32.19 13.93 - -

QSPN 33.26 13.43 62.39 40.78

ABLR 36.79 - - -

SMRN 42 .97 26.79 76 .46 60 .51

Charades-STA with the following four settings: Base: The shortcut connections
and Semantic modulation mechanism are removed. Only the last score map is
used to prediction. Base + SC: Two convolutional layers are used to construct
a residual block, the short connections between the blocks are connected. The
network only uses the last score map for prediction. Base + SC + MP: Based
on the residual block, the last two score maps are combined for prediction.
Base + SC + SM: Semantic modulation mechanism is integrated to modulate
the residual learning, and only the last score map is used for prediction.

As shown in Table 4, the Base+SC significantly outperforms the baseline Base,
it indicates the importance of the information from low convolutional layers. Com-
paring Base+SC with Base+SC+MP, we can find that combining multiple feature
map is beneficial for improving performance. This comparison validates that dif-
ferent layers in the hierarchical residual network have different capabilities for cap-
turing temporal dependencies. With semantic modulation introducing sentence
information to the residual block, Base+SC+SM outperform the original network
in all metrics. The full model SMRN gets highest results in all metrics.

Table 4. Ablation studies on Charades-STA dataset

Method Rank1@ Rank5@

IoU@0.5 IoU@0.7 IoU@0.5 IoU@0.7

BASE 40.91 23.63 84.46 49.89

BASE+SC 43.09 24.78 85.73 51.61

BASE+SC+MP 43.31 25.03 86.05 53.20

BASE+SC+SM 43.49 25.19 85.81 52.69

SMRN 43.58 25.22 86.45 53.39
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3.5 Qualitative Result

We illustrate some qualitative examples of our model in Fig. 3. Evidently, com-
bining score maps from different residual block can produce more accurate result.
For example, in the first video, the person first begins to play on his phone and
then starts fixing the doorknob. The two activities are very similar. It is very
difficult for the model to predict the temporal boundary without proper refer-
ence to the context adjacent moment. As our model exploits multiple context
information from different residual block and modulates the residual learning by
sentence feature. It performs better than the baseline.

One score map :
Ground Truth: 7.0s

Multiple score maps :

19.03s

11.02s
19.3s

8.81s
22.03s

Ground Truth: 0.4s
One score map : 15.83s

9.8s

25.73s

Multiple score 
maps :

0s 9.89s

19.83s

Fig. 3. Prediction examples from one score map and multiple score maps.

4 Conclusion

In this paper, we study temporal language queries grounding in video. A novel
Semantic Modulation based Residual Network is proposed to tackle the issue. We
introduce residual learning into the temporal language queries grounding in video
for making full use of the original video moment information. To better select the
target moment related moment candidates, sentence semantics are leveraged to
modulate the short connections within the residual blocks. An important feature
of SMRN is using multiple score maps attached to multiple feature maps at the
top of the hierarchical residual network. This representation allows the model
to precisely capture different temporal relationships. The experimental results
obtained on three datasets show the superiority of our proposed model.
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Abstract. This paper focuses on the application of vehicle recognition in foggy
weather, and proposes a two-step recognition algorithm based on deep learning,
hoping to still have a good recognition result under the influence of fog. In AlOne,
we use the current popular defogging algorithms: adaptive histogram equalization,
single-scaleRetinex, dark channel priori for imagedefogging. InAlTwo,webuild a
convolutional neural network model based on AlexNet to recognize vehicle image
and obtain prediction accuracy. By comparing different performance indicators,
the best performing dark channel prior algorithm is selected as the defogging
algorithm. In the end, we improved the accuracy of vehicle recognition under the
influence of low, medium and high fog concentrations to more than 97% .

Keywords: Vehicle recognition · Image defogging · Adaptive histogram
equalization · Single-scale Retinex · Dark channel prior · AlexNet

1 Introduction

According to data as of the end of 2019, the number of motor vehicles in China had
reached 348 million [1]. The increasing number of cars year by year makes the con-
struction and improvement of Intelligent Traffic Systems (ITS) more and more urgent.
Vehicle recognition is an important part of ITS, and it has important applications in
driverless technology, intelligent parking lot construction, and intelligent vehicle traffic
statistics.

Since the operating environment of ITS is mainly located outdoors, it is inevitable to
encounter some complicated weather conditions. In the process of vehicle recognition,
it is necessary to rely on outdoor monitoring to collect images. Under rain, snow, fog
and other weather, the collected images often appear degraded. In this paper, we take
the foggy weather as an example to study how to improve the universality of vehicle
recognition algorithms in complex weather.

In real life, the number of complexweather conditions is oftenmuch less than normal
weather, so we cannot affect the recognition model during processing images to avoid
affecting the accuracy of vehicle recognition under normal weather.

© Springer Nature Switzerland AG 2020
M. Han et al. (Eds.): ISNN 2020, LNCS 12557, pp. 130–141, 2020.
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At this stage, there is no systematic or perfect vehicle dataset in the foggy weather,
so we choose to use the normal vehicle dataset and use the method of building a convolu-
tional neural network to complete the task of vehicle recognition. Performance of image
defogging algorithms based on image enhancement and image restoration is compared
and studied.

2 Dataset

2.1 Vehicle Dataset Collection

We chose to use the GTI vehicle dataset as the dataset to complete vehicle recognition.
The dataset was provided by Universidad Politécnica deMadrid (UPM) and widely used
in computer vision research. Because the original data set is relatively large, we only used
part of the original data set. Among them, there are 881 vehicle images, including images
taken in multiple directions such as front, back, and near and far directions and there
are 898 non-vehicle images, including driving-related non-vehicle objects including
highways, greening, and traffic signs. The image size is 64 × 64. We randomly divide
the dataset into training set and test set in a 3: 2 ratio. The training set consists of 1067
images and the test set has a total of 712 images (Figs. 1 and 2).

Fig. 1. Examples of vehicle images in the dataset

Fig. 2. Example of non-vehicle images in the dataset
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2.2 Fog Image Synthesis

Due to the lack of relevant fog image data sets, we can only obtain foggy weather images
through artificial synthesis. In the atmospheric scattering model [2], we observe that the
images have the following relationships:

I(x, y) = J (x, y)t(x, y) + A(1 − t(x, y)) (1)

Among them, I(x, y) is the image after imaging, that is the fog image we observed.
J(x, y) is the object image, that is the image without fog. t(x, y) is the refractive index of
the corresponding pixel, that is the impact of fog on the imaging of the object.AndA is the
atmospheric illumination strength. According to Formula (1), as long as an appropriate
refractive index is determined, a fog image can be obtained from the original image.
Here we complete it according to the estimation formula:

t(x, y) = e−βd(x,y) (2)

Among them d(x, y) is the pixel depth, β ∈ (0, 1) is a parameter and the larger the
value, the lower the visibility. According to the formulas (1) and (2), we can complete
the fogging process of the image. By adjusting the parameter β, we can simulate the
foggy weather of various visibility encountered in life. We use β to take 0.05, 0.10, 0.15
to simulate low fog concentration, medium fog concentration and high fog concentration
respectively. The effect of fogging is shown in Figs. 3 and 4.

Fig. 3. Synthesis of vehicle fog images with different concentrations

Fig. 4. Synthesis of non-vehicle fog images with different concentrations

From the above images, we find that the edges of objects with fog images are blurred,
the colors are dim, and the image features are reduced. Thismakes the difference between
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the vehicle image and the non-vehicle image smaller, which brings great challenges to the
recognition process. As the fog concentration increases, the image degradation becomes
more and more serious.

3 Method

3.1 AlOne: Image Defogging

There are two main types of image defogging algorithms at this stage, one is the tradi-
tional defogging method based on image processing, and the other is the artificial neural
network defoggingmethod based on deep learning. The defoggingmethod based on deep
learning mainly adopts the method of generative adversarial network for defogging. In
reference 3, the author proposed the use of superposition conditional generative adver-
sarial network for image defogging [3], but the process of training generative adversarial
network is complex and unstable, and the success rate of training is not high. In terms
of vehicle recognition, our goal is to make the trained network model better complete
the task of vehicle recognition in foggy weather, and optimize the robustness of the
model. Considering comprehensively, the feasibility of defogging algorithms based on
deep learning is lower than the traditional defogging algorithms. Therefore, we choose
three methods based on the traditional algorithms for comparative research.

Adaptive Histogram Equalization Algorithm
The boundary between the foreground and background of an image captured in foggy
weather often becomes blurred, and the contrast is low. Adaptive histogram equalization
defogging algorithm is a defogging algorithm based on image enhancement. As the
name suggests, the core idea of the algorithm is to divide the image into many small
subregions, and redistribute the brightness based on the calculation of the histogram of
the subregion to improve the contrast of the image and achieve the purpose of image
defogging [4]. The algorithm flow is shown below.

Algorithm: Adaptive Histogram Equalization Algorithm
Input: Image taken in foggy weather
Output: Defogging image
Step1: Convert the RGB image to the YUV space
Step2: Separate brightness channel Y
Step3: Redistribute the brightness
Step4: Merge the YUV channels and convert to RGB image

Single-Scale Retinex Algorithm
The single-scaleRetinex algorithm is basedonRetinex theory.Retinex theory is proposed
by American physicist Edwin Land, who believes that the color of objects observed by
humans is only related to the reflective property of the object itself, and has nothing to
do with the external lighting situation [5].

For a color picture, it is determined by the original object image and the reflective
property of the object. Our job is to estimate the reflective property of objects reasonably
through the obtained images.
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Jobson et al. proposed single-scale Retinex algorithm [6], which combines Gaus-
sian Wrapping Function and Convolution Operation to estimate reflective property. The
algorithm flow is shown below.

Algorithm: Single-scale Retinex Algorithm
Input: Image taken in foggy weather
Output: Defogging image
Step 1: Separate RGB channels
Step 2: Perform logarithmic operation
Step 3: Determine the parameter
Step 4: Process according to the formula
Step 5: Perform antilogarithmic operation
Step 6: Merge RGB channels

Dark Channel Prior Algorithm
The dark channel prior algorithm is a defogging algorithm based on image restoration.
Based on the atmospheric scattering model, the defogging is performed based on the
imaging principle on the foggy day and the dark channel prior theory.

Therefore, our task in the defogging algorithm is to reasonably estimate t(x, y) and
solve J (x, y) through I(x, y) and A. The dark channel prior theory [7] is a theoretical
model proposed by He et al. Based on a large number of fog images and no fog images.
The dark channel prior algorithm is also the most common defogging algorithm at
this stage. The theoretical model states that for object image J (x, y), the following
relationships always exist:

J dark(x, y) = min
(xi,yj)∈�(x,y)

(
min

c∈ {R,G,B}(J
c(x, y))

)
→ 0 (3)

Where J dark(x, y) is the dark channel image, � (x, y) is the area centered at (x, y),
and J c(x, y) is one of R, G, B channel images. According to the form of Eq. (3), we can
transform Eq. (1) and get the t(x, y) estimation formula:

t̃(x, y) = 1 −
min

(xi ,yj)∈ �(x,y)

(
min

c∈ {R,G,B}(I
c(x,y))

)

A

(4)

The algorithm flow is shown below.

Algorithm: Dark Channel Prior Algorithm
Input: Image taken in foggy weather
Output: Defogging image
Step 1: Separate RGB channels
Step 2: Solve for dark channel
Step 3: Calculate the top 0.1% pixel of the brightness of the dark
channel
Step 4: Take the highest brightness point as A
Step 5: Estimated refractive index t
Step 6: Process according to the formula
Step 7: Merge RGB channels
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3.2 AlTwo: Alexnet-Based Convolutional Neural Network

There are two main types of algorithms currently used in the field of image recognition:
one is traditional machine learning methods, and the other is deep learning methods. In
reference 8, the author uses traditional machine learning methods, extracts the image
feature by the HOG feature extraction algorithm, and completes the classification of
vehicle signs by using the SVM classifier to classify the extracted feature vectors [8]. In
reference 9, the author uses deep learning to complete the classification of CT images
of medical cerebral hemorrhage by building a convolutional neural network and directly
training the network [9]. Compared with traditional methods, the method of building
a convolutional neural network eliminates the need for manual feature extraction, is
simpler, and performs better in accuracy. Here we choose to build a convolutional neural
network to complete the vehicle recognition.

Among the convolutional neural network models, the more classic network models
include LeNet, AlexNet, VGG and other models [10–12]. These network models all
perform well. In this paper, we choose to complete the task of vehicle recognition based
on the AlexNet structure. The Alexnet structure is the winner of the 2012 ImageNet
competition, and it is far ahead of the artificial feature extraction method in accuracy.

Fig. 5. AlexNet network structure

4 Experimental Design

4.1 Experiment Procedure

Combined with the technical route of the recognition process, we designed a simulation
experiment flow is shown in the figure.

Use Python3.6 as the programming language, use tensorflow 1.15.0, keras 2.2.0
framework to build the neural network model structure shown in Fig. 5. the operating
system CentOS, GPU model GeForce GTX 1080 (Fig. 6).
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Fig. 6. Two-step recognition experiment flow

4.2 Evaluation Criterion

Recognition Accuracy
The recognition accuracy rate is the most intuitive indicator for evaluating the quality
of the model. It measures the proportion of the model that is correctly classified on the
test set and can intuitively reflect the generalization ability of the model.

Loss Function
The loss function is an important indicator of the neural network training process, and
it is a criterion for measuring whether the network converges. When the loss of the
neural network is in a state of dynamic equilibrium, the network model reaches a state
of convergence. There are many ways to calculate the loss function. Here we choose the
most commonly used cross entropy function.

Runtime
The processing speed of the defogging algorithm in practical applications also has a
certain impact on vehicle recognition. If the time complexity of the algorithm running is
too high, the collected images cannot be recognized in time, so we include the running
time of AlOne as one of the evaluation criteria.

5 Results and Discussion

5.1 Recognition of Vehicle Images Under Normal Conditions

The neural network is trained 100 times, the loss function value of the training process
is recorded, and a line chart of the loss function is drawn. The line chart is shown in
the figure. From the image, it can be seen that during the early stages of training, the
network loss function decreased steadily, and a small amplitude oscillation occurred at
the 10th iteration, but did not affect the entire descent process. At the 45th training, the
loss function began to be in a dynamic equilibrium state, and the network is close to
convergence; at the end of 100 trainings, the network loss has dropped to very small,
indicating that the network training was successful. According to the accuracy formula,
the accuracy of the model in the test set is 99.27%, which indicates that the model can
well complete the task of vehicle recognition under normal circumstances (Fig. 7).
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Fig. 7. Line chart of neural network training loss function

Experiments show that under normal conditions, the existing classic convolutional
neural network structure can already complete the task of vehicle recognition well. The
model has good generalization ability and can realize the recognition of various types
of vehicles. Simulate the effects of smog on vehicle recognition. Next, we will simulate
the impact of fog on vehicle recognition.

5.2 Impact of Fog on Vehicle Recognition

After fogging the test set images, we use the fog image as a test set to test the network
model. The recognition accuracy of the three different fog concentrations is shown in
the following Table 1:

Table 1. The recognition accuracy of different fog concentrations

Normal image Low fog concentration Medium fog
concentration

High fog concentration

99.27% 79.63% 55.47% 49.43%

According to the experimental results, we find that in the foggy weather, the gen-
eralization ability of the model is reduced, the recognition accuracy of the vehicle is
significantly reduced, and the lower the visibility, the lower the recognition accuracy. At
low fog concentrations, the accuracy of the model recognition has been lower than 80%,
indicating that the model can no longer be directly applied to the recognition of foggy
weather vehicles recognition; under medium and high fog concentrations, the model
recognition rate has decreased It is about 50%, indicating that the model has lost its
recognition ability in this case. This further illustrates the impact of foggy weather on
vehicle recognition.
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5.3 Performance Comparison of Defogging Algorithm

Subjective Evaluation of Defogging Effect
We run different defogging algorithms on the fogged data set, and select different degrees
of fog images of the same image for comparative analysis (Figs. 8, 9 and 10).

Fig. 8. Comparison of fogging effect at low fog concentration: (a) low fog concentration image
(b) adaptive histogram equalization algorithm (c) single-scale Retinex algorithm (d) dark channel
prior algorithm

Fig. 9. Comparison of fogging effect at medium fog concentration: (a) medium fog concentration
image (b) adaptive histogram equalization algorithm (c) single-scale Retinex algorithm (d) dark
channel prior algorithm

Fig. 10. Comparison of fogging effect at high fog concentration: (a) high fog concentration image
(b) adaptive histogram equalization algorithm (c) single-scale Retinex algorithm (d) dark channel
prior algorithm

The defogging effect of the adaptive histogram equalization algorithm has a good
defogging effect at low fog concentrations, but when the fog concentration becomes
larger, the defogging effect becomes inconspicuous, and a local detail loss phenomenon
occurs; single-scale Retinex algorithm does not perform well in the intuitive effect of
defogging, and even the phenomenon of blurred and halo appears, but the single-scale
Retinex algorithm is relatively complete for the preservation of image specific details
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and will be helpful for the subsequent recognition process; dark The channel a priori
algorithm has the most obvious defogging effect, but when processing images with high
fog density, artifacts and dark colors appear. Through the comparison of the images, we
can find that no matter the low fog density or the high fog density, the dark channel prior
algorithm has better defogging effect.

Vehicle Recognition Accuracy
In order to better observe the generalization ability of the model, the impact on recog-
nition accuracy is the performance index that we should pay most attention to. We use
the trained vehicle model to test the recognition accuracy of the data set after running
the AlOne defogging algorithm. The test results are as follows (Table 2 and Fig. 11):

Table 2. Comparison of the accuracy of defogging image recognition

Fogging
image

Normal image Adaptive
histogram
equalization
algorithm

Single scale
Retinex
algorithm

Dark channel
prior algorithm

Low fog
concentration

79.63% 99.27% 95.36% 93.67% 98.17%

Medium fog
concentration

55.47% 99.27% 78.08% 92.69% 97.89%

High fog
concentration

49.43% 99.27% 59.55% 90.58% 97.19%

Fig. 11. Comparison of accuracy of defogging image recognition

In three foggy weathers with different concentrations, the three algorithms have cer-
tain improvement effects on the recognition accuracy. At low fog concentrations, the
recognition accuracy of the three algorithms after defogging all exceeds 90%, which
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can meet the application requirements; but at medium fog concentrations and high fog
concentrations, the adaptive histogram equalization algorithm is not obvious. The per-
formance is improved, and the recognition accuracy is only 78% and 59%, but the recog-
nition accuracy of the other two algorithms can still remain above 90%. By comparison,
we find that the dark channel prior algorithm has the most significant improvement in
accuracy, followed by the single-scale Retinex algorithm, and the improvement effect
of the adaptive histogram equalization algorithm is poor.

Algorithm Runtime
We recorded the running time of the three defogging algorithms on the test set and
calculated the average running time of a single picture. Table 3 is the time taken by the
three algorithms to complete processing a 64 × 64 picture.

Table 3. Comparison of running time of defogging algorithm

Adaptive histogram
equalization algorithm

Single scale Retinex
algorithm

Dark channel prior
algorithm

RunTime 3.31 ms 47.61 ms 21.72 ms

By comparison, we find that the adaptive histogram equalization algorithm has the
fastest processing speed and takes only 3.31 ms. The dark channel prior algorithm runs
about 7 times as long as the adaptive histogram equalization algorithm. The single-scale
Retinex algorithm reaches 15 times. It is obvious that the running time of the single-
scale Retinex algorithm has not reached the real-time requirements when processing
larger-scale images.

6 Conclusion

The AlexNet-based convolutional neural network has a vehicle recognition accuracy
rate of 99.27% under normal conditions, which can be applied as a solution, but the
generalization ability of themodel in foggyweather is reduced, and the recognition effect
is poor. Therefore, an appropriate defogging algorithm must be selected to preprocess
the image, and then perform recognition of vehicle. Combining the intuitive defogging
effect, recognition accuracy, and algorithm runtime, the dark channel prior algorithm
performs the most prominently in the defogging process of vehicle recognition in foggy
weather. The average recognition accuracy is 97.75%, which can be combined with a
convolutional neural network model to complete recognition task.
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Abstract. As streamflow quantity and drought problem become increasingly
severe, it’s imperative than ever to seek next generation machine learning models
and learning algorithms which can provide accurate prediction. Reliable predic-
tion of drought variables such as precipitation, soil moisture, and streamflow has
been a significant challenge for water resources professionals and water manage-
ment districts due to their random and nonlinear nature. This paper proposes a long
short-term memory networks (LSTM) based deep learning method to predict the
historical monthly soil moisture time series data based on theMERRA-Land from
1980 to 2012. The proposed LSTM model learns to predict the value of the next
time step at each time step of the time sequence. We also compare the predication
accuracy when the network state is updated with the observed values and when the
network state is updated with the predicted values. We find that the predictions are
more accurate when updating the network state with the observed values instead
of the predicted values. In addition, it demonstrated that the proposed method
has much lower MSE than the autoregressive integrated moving average model
(ARIMA) model and autoregressive model (AR) model.

Keywords: Convolutional neural networks · Long short-term memory networks
(LSTM) · Deep learning · Time series prediction · Drought prediction

1 Introduction

The streamflows of a river basin may be near or below normal, influenced by lower than
normal precipitation and much below normal soil moisture contents. If below average
rainfall continues then further degradation is expected to occur. Monthly monitoring of
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a river basin will prepare for the possibility that serious drought conditions may develop
in the future [1]. As drought and streamflow quantity problem become increasingly
severe, it’s imperative to provide an effective drought early warning system which uses
the historical data to make prediction of the probability of flows dropping below drought
trigger levels [2]. Reliable estimation of streamflow has been a significant challenge for
water resources professionals and water management districts. This is very much essen-
tial to manage water supply, floods, and droughts efficiently. Streamflow characteristics
are primarily governed by climatic and watershed characteristics. Over the last decade
it has been recognized that climate is changing and there can be significant impacts
on the streamflow. The hydraulic consequences of a climate change can cause natural
disaster, such as drought that occurs when there is a significant deficit in precipitation. It
will also have serious impact to flooding, water quality, and ecosystems that are closely
related to the society of human beings. Accurate estimation of streamflow quantity from
a watershed will provide important information to determine urban watershed modeling,
water quantity management, development of legislation, and strategies on water supply.
In addition, drought prediction is one of most complicated and difficult hydrological
problems because the nature of the drought variables is random and unpredictable and
the physical processes underneath the phenomenon are too complex. It is also because of
the insufficient knowledge on the driving factors and their impact on streamflow, as well
as the lack of reliable prediction and design methodologies. Therefore, accurate drought
prediction including streamflow quantity prediction, precipitation and soil moisture pre-
diction are all critical to enhance the water resource management plan and operational
performance assessment.

Recently some deep learning algorithms have been successfully applied to the water
quantity prediction and drought prediction problems. A deep Belief Network layered by
coupled Restricted BoltzmannMachines was proposed for long-term drought prediction
across the Gunnison River Basin [3]. By using time lagged standardized streamflow
index (SSI) sequence, it demonstrated lower error rate than multilayer perceptron neural
network and support vector regression. A long short-term memory (LSTM) network
was presented for streamflow prediction using previous streamflow data for a particular
period [4]. It showed that the LSTM model can not only predict the relatively steady
streamflow in the dry season, but can also capture data characteristics in the rapidly
changing streamflow in the rainy season. However, the performance of LSTM hasn’t
been proved on the effect of drought variables, such as precipitation, soil moisture,
streamflow for long-term drought prediction.

The novelty of this paper is the inclusion of a wider ranged hydrological variables
to predict soil moisture content (%) for a higher elevation of interest using existing
regressionmodels,which differentiates thiswork frompreviously done researchworks as
described in the literature. In addition, this paper presents how to design the architecture
of the model and layer specifications to the time series prediction problem. Further it
customizes the LSTM based time series model to solve the drought prediction problem.
It describes the proposed long short-termmemory networks (LSTM) based deep learning
method to predict the historical monthly soil moisture time series data.

The rest of this paper is organized as follows. Section 2 describes the methodol-
ogy including deep learning approach, deep neural network, and convolutional neural
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network. In Sect. 3, time series prediction using LSTM network is discussed. Perfor-
mance evaluation metrics are presented in Sect. 4. In Sect. 5, the Modern-Era Retro-
spective analysis for Research and Applications (MERRA)-Land data set is described.
The simulations and experimental results are demonstrated. In Sect. 6, the conclusions
are given.

2 Methodology

Many state-of-the-art machine learning techniques, such as neural network, support
vector machine, radial basis function, naive Bayes, decision tree, k-nearest neighbors,
and deep learning have been applied to the time series prediction. However, few of
them has been applied to the forecast of the probability of streamflows. These machine
learning methods have been proven effective in predicting time series. Since streamflow
prediction is a special case of time series prediction, therefore, they should be very
promising in the streamflow prediction problems.

2.1 Deep Learning Approach

Deep learning algorithms are nowapplied to solve problems of a diverse nature, including
prediction [5]. Therefore, we are considering deep learning algorithms for this research.
Firstly, wewould like to review a fewbasics of deep learning. The building blocks of deep
learning or artificial neural networks are called perceptron, which mimics an equivalent
functionality (in computation) as neuron (a biological cell of the nervous system that
uniquely communicates with each other) [6].

Now, perceptron or artificial neurons receive input signals (x1, x2, . . . , xm), multiply
input by weight (w1,w2, . . . ,wm), add them together with a pre-determined bias, and
pass through the activation function, f (x). The signal goes to output as 0 or 1 based on
the activation function threshold value. A perceptron with inputs, weights, summation
and bias, activation function, and output all together forms a single layer perceptron.
However, in common neural network diagrams, only input and output layers are shown.
In a practical neural network, hidden layers are added between the input and output
layers. The number of hidden layers is a hyperparameter and usually determined by
evaluating the model performance. If the neural network has a single hidden layer, the
model is called a shallow neural network, while a deep neural network consists of several
hidden layers. In this research, we have considered DNN, convolutional neural network,
and recurrent neural network in the form of long short-term memory, all of which will
be discussed in the following sections.

2.2 Deep Neural Network (DNN)

DNN is composed of three neural network layers, namely an input layer, hidden layers,
and an output layer. The number of hidden layers is tuned through trial and error [6].
Figure 1 illustrates such a model structure with two hidden layers consisting of three
neurons each, five input neurons, and one output neuron. The number of neurons depends
on the number of inputs and outputs. In Fig. 1,
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Fig. 1. Simplified architecture of a deep neural network

Inputs: [x1, x2, x3, x4, x5]
Hidden layer weights: h
Output: ŷ

f (x;W , c,w, b) = wTmax(0,WT + c) + b (1)

h = g(WTx + c) (2)

f (x) = max(0, x) (3)

A simplified DNN kernel is formulated in (1) that considers linear modeling. x, W,
and c symbolize input, weights, and bias, respectively, while w and b are linear model
parameters. The hidden layer parameter h is shown in (2), where g is the activation
function. For DNN modeling, ReLu (3) is used as the hidden layer activation function.

3 Proposed Method

This section describes the proposed long short-term memory networks (LSTM) based
deep learning method to predict the historical monthly soil moisture time series data. It
presents how to design the architecture of the model and layer specifications to the time
series prediction problem. Further it customizes the LSTM based time series model to
solve the drought prediction problem.

3.1 Time Series Prediction Using LSTM Network

An LSTM network inherits the characteristic of memory from the recurrent neural net-
work (RNN) [7]. This memory unit enables long-term feature retention between time
steps of sequence data [8]. Figure 2 illustrates the flowchart of a time series X with C
features of length S through an LSTM layer. The output layer will generate the predicted
values, which contains D features of length S. In the diagram, for the tth LSTM block, ht
and ct denote the output, i.e. the hidden state and the cell state at time step t, respectively.

Initially, the states of all the LSTM blocks will be initialized to all zeros. The first
LSTM block to the left most uses the initial state of the network and the first time step
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Fig. 2. Unfolded single layer of LSTM network

of the sequence to compute the first output, h1 and the updated cell state, c1. At time
step t, the tth LSTM block uses the current state of the network (ht−1, ct−1) and the tth
time step of the sequence to compute the output state, ht , and the cell state, ct .

An LSTM layer contains an array of LSTM blocks. For each LSTM block, it is
represented by two states, including an output state, i.e. the hidden state and a cell state.
The hidden state at time step t not only contains the output of the current LSTMblock for
the time step, but also serves as the input for the LSTM block at the next time step. The
cell state contains time dependent information extracted from the previous time steps.

Different from the classic RNN, the LSTM is a recurrent neural network equipped
with gates [9]. At each time step, the LSTM layer can choose either add information to
or removes information from the cell state. The layer controls these updates using gates.
The gated circuit of the LSTM is proposed to implement the flow of data at time step t,
as illustrated in Fig. 3. LSTM introduces self-loops to produce paths where the gradient
can flow for a long duration; thus, it is capable of learning long-term dependencies [6].

The equations describing the operations are listed below.

f (t) = σg(Wf xt + Uf ht−1 + bf ) (4)
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Fig. 3. Block diagram of LSTM operations on a time series sequence

it = σg(Wixt + Uiht−1 + bi) (5)

ot = σg(Woxt + Uoht−1 + bo) (6)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (7)

ht = ot ◦ σh(ct) (8)

where,

xt ∈ �d : Input vector to the LSTM unit
ft ∈ �h: Forget states activation vector
it ∈ �h: Input/update gate’s activation vector
ot ∈ �h: Output gate’s activation vector
ht ∈ �h: Hidden state vector
ct ∈ �h: Cell state vector
W ∈ �h×d ,U ∈ �h×h, b ∈ �h: Weight matrices and bias vector parameters which will
be adjusted during the training
σg : Sigmoid function
σc, σg : hyperbolic tangent function

In the performance evaluation, some commonly used accuracy parameters, such
as root mean square error are employed to evaluate how well a model is performing
to predict the intended parameter. Root mean square error (RMSE) is considered to
investigate the model performances on the test set by comparing the differences between
the predicted values by a model and the actual values. RMSE is the square root of the
mean of the square of error terms (the difference between actual response (yi) and
predicted response (ŷi). n is the number of total input sets. The lower this value is, the
better the model performance, while the desired is 0 or close value for this term. The
formula for this measure is in (9).

RMSE =

√
√
√
√
√

n∑

i=1
(yi − ŷi)2

n
(9)



148 N. Zhang et al.

4 Experimental Results

The Modern-Era Retrospective analysis for Research and Applications (MERRA) data
set is used to use the historical soil moisture (total profile soil moisture content) from
1980 to 2012 to predict the future soil moisture [10]. The data set is plotted in Fig. 4.
We train on the first 90% of the time series sequence and test on the last 10%. In order
to obtain the identical data scale for different features, it is necessary to pre-process the
raw data by standardizing the data to a normalized distribution. Within the scope of zero
mean and unit variance, we prevent the training data, test data, and predicted responses
from diverging.
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Fig. 4. Monthly soil moisture (total profile soil moisture content) fromMERRA-Land from 1980
to 2012

To forecast the values of a sequence at future time steps, we use the responses with
values lagged by one time step to be the training sequences. The nonlinear autoregressive
(NAR) model can be represented mathematically by predicting the values of a sequence
at future time steps, ŷ from the historical values of that time series, as shown in Fig. 5.
Time series without the final time step are used as the training sequences. The form of
the prediction can be expressed as follows:

ŷ(t) = f (y(t − 1), . . . , y(t − d)) (10)

LSTM   
Model )(ˆ ty

Fig. 5. Nonlinear autoregressive LSTM prediction model

We set up a LSTM network in the sequence-to-one regression mode. The output
of the LSTM layer is the last element of the sequence and will be fed into the fully
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connected layer. For example, if the input sequence is {x1, x2, x3, x4}, the output of the
LSTM layer will be the hidden state,h4. In this LSTM network, it consists of a sequence
input layer, an LSTM layer, a fully connected layer, and a regression output layer. In
the LSTM layer array, a sequence input layer inputs one sequence data to a network
at a time. This LSTM layer contains 200 hidden units. We use the adam optimization
algorithm featured with adjustable learning rate to train the dynamic neural networks for
600 epochs. To ensure a steady gradient change, we limit the threshold of the gradient
to 1.

After several trials, we decide to set the initial learning rate to 0.005 to gain better
performance. We slow down the learning rate to 20% of its original value when it has
elapsed 150 epochs. Then we train the LSTM network with these parameter selections.
The training progress is plotted in Fig. 6. The top subplot reveals the root-mean-square
error (RMSE) calculated from the standardized data. The bottom subplot displays the
error between the actual values and the predicted values.

Fig. 6. Training progress on the monthly soil moisture using LSTM network

Once the LSTM network has been trained, we will predict time steps one at a time
and update the network state at each prediction. Therefore, we can forecast the values of
multiple time steps in the future. Like what we did for the training data, we standardize
the test data using the same mean of the population, μ and the standard deviation of the
population, σ . In order to initialize the network state, h, we first predict on the training
data. Then we use the value at the last time step of the training response to make the
very first prediction. We then use Eq. (10) to use the previous prediction to predict value
at the next time step one at a time for the remaining predictions. We un-standardize the
predictions in order to observe the realworld values of the soilmoisture. The combination
of training time series (in blue) with the forecasted values (in red) is shown in Fig. 7.

In order to visually compare the forecasted values with the actual data, we plot the
first 40 predicted values at the time steps over the actual values, as shown in Fig. 8. We
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Fig. 7. Training time series with the forecasted values (Color figure online)

also display the difference between them at each time step and the RMSE, i.e. 0.019717
from the unstandardized predictions in the lower subplot in Fig. 8.
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Fig. 8. Comparison of predicted monthly soil moisture with the test data when updating the
network state with previous predictions

We further explore the prediction performance by updating network state with
observed values. Unlike the previous study where we used the previous prediction to
predict value, we update the network state with the actual (observed) values instead of
the predicted values. We first initialize the network state by resetting the network state
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to an initial state of zeros. Therefore, previous predictions will not affect the predictions
on the new time sequence. We then initialize the network state by start predicting on
the training data. At each time step, we predict the value on the next time step using the
observed value of the previous time step. In order to retrieve the soil moisture informa-
tion, we un-standardize the predictions using the same mean and the standard deviation
of the population as before.

Similarly, we compare the forecasted values with the actual test data for the first
40 time steps, as shown in Fig. 9. We also demonstrate the difference between them at
each time step, as well as the RMSE, i.e. 0.0087584 from the unstandardized predictions
in the bottom subplot. After comparing Fig. 8 and Fig. 9, we find that the prediction
accuracy is much higher when we update the network state with the observed values
instead of using the predicted values.
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Fig. 9. Comparison of predicted monthly soil moisture with the test data when updating the
network state with the observed values

We also compare the performance of the proposed LSTM deep learning model with
other popular predictivemodels, such as autoregressive integratedmoving averagemodel
(ARIMA) and autoregressive model (AR). Table 1 depicts the root mean squared error
(RMSE) for each algorithm on the test data. We found that our proposed algorithm has
the lowest error rate.
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Table 1. Comparative model performances

Algorithm Root Mean Squared Error (MSE)

Autoregressive Integrated Moving Average model
(ARIMA)

0.0950

Autoregressive model (AR) 0.0246

Proposed LSTM model 0.0088

5 Conclusions

This paper proposes a long short-term memory networks (LSTM) based deep learning
method to predict the historical monthly soil moisture time series data based on the
MERRA-Land from 1980 to 2012. The proposed LSTM model learns to predict the
value of the next time step at each time step of the time sequence. We customize the
dynamic LSTM model to solve the soil moisture prediction problem. We also compare
the predication accuracy when the network state is updated with the observed values and
when the network state is updated with the predicted values. We find that the predictions
are more accurate when updating the network state with the observed values instead of
the predicted values. Furthermore, we also compare the proposed method with other
time series prediction methods. We find that it has much lower MSE than the autoregres-
sive integrated moving average model (ARIMA) model and autoregressive model (AR)
model. The future study will to obtain the soil moisture index, and use it to predict the
Drought index. The drought prediction system will have profound impact to the water
resources management, agriculture, and urban construction.
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Abstract. Deep learning-based methods have attracted more attention
to the pose estimation research that plays a crucial role in location and
navigation. How to directly predict the pose from the point cloud in a
data-driven way remains an open question. In this paper, we present a
deep learning-based laser odometry system that consists of a network
pose estimation and a local map pose optimization. The network con-
sumes the original 3D point clouds directly and predicts the relative pose
from consecutive laser scans. A scan-to-map optimization is utilized to
enhance the robustness and accuracy of the poses predicted by the net-
work. We evaluated our system on the KITTI odometry dataset and
verified the effectiveness of the proposed system.

Keywords: Pose estimation · 3D point clouds · Deep learning

1 Introduction

Laser odometry is widely used for autonomous driving and robot localization,
which has been achieved great success. Classic laser odometry systems estimate
poses by the laser registration methods, such as Iterative Closest Point (ICP)
[1], Normal Distribution Transform (NDT) [11], and their variants [16,17,19].
Registration methods tend to be unreliable in some challenging scenarios, e.g.,
featureless places and motion with significant angular changes. Because of the
sparsity of the point clouds caused by the low resolution of the laser scanner,
the matching algorithm may not find the corresponding points or features, which
may bring the drifts or even errors to the pose estimation.
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In recent years, the deep learning-based methods have attracted much atten-
tion in the research of geometry problems such as localization, relative pose esti-
mation and odometry system. Many learning-based works are achieving state-
of-the-art results in the field of visual odometry. Zhou et al. [24] presented a
unsupervised training method to estimate the ego-motion from video. A novel
Recurrent Convolutional Neural Network based VO system is proposed by Wang
et al. [21] for dealing with the sequences data. [10] developed a unsupervised
visual odometry which can estimate absolute scale and dense depth map simul-
taneously. Moreover, there are also a few laser odometry systems achieved in a
data-driven fashion. [12] utilized the vanilla CNN (Convolutional Neural Net-
work) for a laser odometry. Deep learning based 2D scan matching method is
proposed by Li et al. [8] and [22] integrated deep semantic segmentation for the
pose estimation.

Unlike regular data formats like images, the point cloud is unordered and
sparse, which makes it difficult for the laser odometry to use the verified pipeline
of the data-driven visual odometry. Some methods convert the point clouds
into a structured representation for using the 2D or 3D convolution to extract
the feature to estimate the ego-motion. [20] transformed the spare point clouds
into the multi-channel dense matrix and employed the CNN to achieved the
IMU assisted laser odometry. Qing Li et al. encoded the point clouds into the
image-like formats by cylindrical projection and constructed a learning-based
laser odometry. [9] DeepLO [2] proposed a deep LiDAR odometry via supervised
and unsupervised frameworks using the regular point cloud representation. The
projection lost the information of the original point cloud, so it is worth exploring
to use point clouds to directly estimate odometry. Some works, like PointNet
[14,15], have made deep learning based on point cloud directly become a research
hotspot.

In this paper, we propose a deep learning-based laser odometry using the
point clouds as the input. Our main contributions are as follows: 1) We propose a
scan-to-scan laser pose estimation network that directly consumes the irregular
point clouds. 2) We use local map optimization to improve the robustness of
network estimation, which makes up the laser odometry.

The rest of this paper is organized as follows. Section 2 shows an overview
of the system. In Sect. 3, the proposed the system is presented. Experimental
results are given in Sect. 4. The conclusions are drawn in Sect. 5.

2 System Overview

In this section, we briefly show our system, which is composed of a relative pose
estimator and a local map pose optimizer, as shown in Fig. 1.
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Fig. 1. System overview of the proposed deep point cloud odometry. The laser point
cloud input into a network directly, and relative pose prediction of the network is
further optimized by a local map matching.

The pose estimator is a PointNet-based CNN architecture, which is used to
process the point cloud directly. It takes two consecutive point clouds as input
and predicts the relative 6-DoF pose between them.

The pose optimizer is based on the ICP algorithm, which is used for point
registration. The inputs of it are the relative pose predicted by pose estimator,
the current point cloud, and the local map, and then it fine-tunes the pose by
matching the point cloud to the local map.

Pose estimation only accumulating the scan-to-scan estimation tends to bring
the errors over time, so the local map optimization is utilized to reduce the
impact of cumulative errors.

Fig. 2. Architecture of the network in proposed laser odometry system.
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3 Pose Estimation with the Point Clouds

This section presents the proposed point clouds odometry composed of the deep
pose estimation and local map pose optimization in detail.

3.1 Relative Pose Regression Through Convolutional Neural
Networks

To estimate the relative pose of two consecutive laser scans, we train a network
consisted of CNN-based feature extraction and a pose regression. The original
points are used as the input of the network because they contain all the infor-
mation which is needed to match.

The PointNet-like CNN architecture is employed to extract the feature of the
point cloud, and then the features from different scans are combined and sent
to the regressor to estimate the relative pose. As the Fig. 2 shows, the network
takes two point clouds from consecutive laser scans: target point cloud Pt and
source point cloud Ps as inputs and produce the 6-DoF relative pose: translation
t = [tx, ty, tz]T and rotation in the form of Euler angle θ = [θroll, θpitch, θyaw]T

as output
t,θ = F(Pt,Ps). (1)

We use Lt and Lr as the loss function to train the network.

Lt = ‖t̂ − t�‖22
Lr = ‖θ̂ − θ�‖22

(2)

where t̂ and θ̂ are the output of the network, t� and θ� are the ground truth.
We use the �2-norm in this work.

For training the network to learn the translation and rotation simultane-
ously, it is necessary to use a weight regularizer λ to balance the rotational loss
with translational loss, because the scale and units between the translational
and rotational pose components are different. To learn translation and rotation
without including any hyperparameters, [6] presented a loss function that can
learn the weight regularizer.

Lpose = Lt exp(−st) + st + Lr exp(−sr) + sr (3)

where st and sr are the learnable parameters to regularize the scale between the
translational and rotational losses.

3.2 Pose Optimization with Local Map

The pose optimization employs a scan-to-map matching with the geometry
method to fine-tune the poses predicted by the network.

If the scan-to-scan matching creats errors, the rest of the trajectory will be
affected by the errors. We propose maintaining a local map that can be used
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to match the current scan for geometric constraints to modify the errors. The
local map can improve the robustness of the odometry when some scan-to-scan
matching creates errors.

An ICP is designed to register the current scan to the local map in the pose
optimization, which takes the current scan, local map, and relative pose as input
and computes the refined pose as output.

ΔT̂ = arg min
ΔT

1
2

N∑

j=1

‖ΔTpj − pm(j)‖22 (4)

where pj ∈ Ps is the point in the source point cloud, pm(j) ∈ Pm is pi’s corre-
sponding point in the local map, and ΔT̂ is the refined relative pose in the form
of the special Euclidean group SE(3) of transformations. The pose predicted by
the network is used as the initial pose of the ICP. The ICP uses Eq. (4) as the
cost function to match the scan to the local map iteratively and estimates the
refined pose.

The local map contains historical point clouds over time, which needs to be
maintained and updated. The local map updating comprises two steps: one step
is removing the points that are outside the field of view from the local map which
keeps the number of points in the local map not large, thereby map points culling
can improve computational efficiency by reducing the computational complexity
of searching for corresponding points, the other one is to add the points of the
current scan to the local map, so that makes the local map has more extra
feature points.

Table 1. Absolute translation errors (RMSE) of the test data from KITTI

03 04 05 07 10

Ours 4.873021 1.258067 5.221578 1.186617 14.592466

LeGO-LOAM 2.965074 0.511566 9.223725 0.921545 9.844019

FGR+ICP 3.173614 1.608129 29.039456 4.574337 14.550793

4 Experimental Results

In this section, we evaluate the performance of the proposed point cloud odome-
try. The network model is trained and tested by using publicly available datasets,
KITTI odometry dataset [4]. The experimental results of local map optimization
are also given in this section.
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4.1 Implementation

We implemented the proposed system using PyTorch [13] and PyTorch Geomet-
ric [3], and trained the network with an NVIDIA RTX 2080ti. The optimizer
employed the Adam Optimizer [7] to train the network with parameter β1 = 0.9
and β2 = 0.99. The learning rate was initialized with 0.001 and decreased by 0.1
every 10 epochs until 1 ∗ 10−6. The parameters st and sr in Eq. (3) were set 0.0
and −2.0 respectively.

4.2 Dataset

The KITTI odometry dataset is a well-known public dataset of odometry bench-
mark. The dataset provides camera images, point clouds, Inertial Measurement
Unit and other sensor data. We mainly use the point clouds which are captured
by a Velodyne HDL-64E laser sensor. The dataset includes many driving scenar-
ios, such as urban, streets, and highways. Sequence 00–10 of all 22 sequences of
the dataset provide the ground-truth pose collected by the GPS/IMU sensor.

Our network was trained on sequences 00, 01, 02, 06, 08, and 09 and tested
on sequences 03, 04, 05, 07, and 10. The point clouds inputted to the network
were removed the grounds that may bias the evaluation results.

(a) (b)

Fig. 3. Trajectories of KITTI sequence 07. The left figure (a) plots in XY plane. The
right one (b) shows trajectories on the X, Y and Z axis respectively.
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(a) Sequence 03 (b) Sequence 05 (c) Sequence 10

Fig. 4. Trajectories on test datasets.

4.3 Odometry Evaluation

We use averaged Root Mean Square Errors (RMSEs) of the pose errors to eval-
uate our system’s performance. The results of the evaluation of test datasets are
shown in Table 1. The algorithms used to compare are LeGO-LOAM [18] and
Fast global registration [23] with ICP fine-tuning, and all of the algorithms do
not implement the loop closure detection. LeGo-LOAM is a state-of-the-art laser
odometry system, which is the variant of LOAM, the top laser-based method in
the KITTI odometry dataset. Fast global registration (FGR) is a global matching
algorithm that is insensitive to an initial value and combines the local matching
algorithm, ICP, to improve the pose estimation accuracy. We use the Evo tool
[5], a python package for the evaluation of odometry and SLAM, to evaluate the
experimental results of odometry.

Figures 3 and 4 show the predicted trajectories of the test datasets, in which
the black dashed line is ground truth, the blue line is the proposed method, the
green line is the LeGO-LOAM, and the red one is the FGR + ICP. It can be
seen that the proposed system can provide nice results on the test datasets. This
proves the proposed point cloud odometry is capable of learning to estimate the
poses. From the details of the results in Table 1, we can see our system is not the
best of all methods, so our algorithm also needs to improve performance, which
can be achieved by training with more data.

4.4 Pose Optimization Evaluation

Figure 5 shows the comparisons of the pose predicted by the network with and
without the local map optimization on the test dataset. The trajectories are on
the top row, where the black dashed line is ground truth, the blue line is the
result of after pose optimization, and the purple line is the output of the network.
We utilized the box plot to show the error statistics on the bottom row. The top
and bottom of the box are the 25th and 75th percentiles; the centerline is the
median, and whiskers show the minimum and maximum errors.

From Fig. 5, it can be seen that the trajectories after optimization are more
accurate than before optimization. Meanwhile, pose optimization also improves
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(a) 03 (b) 05 (c) 07 (d) 10

Fig. 5. Top row: trajectories of the pose estimation with and without local map opti-
mization. Bottom row: box plot of the pose estimation without and with local map
optimization which show the error statistics.

the system’s robustness. This proves that pose optimization is useful for the
whole system and can help the network improve performance.

5 Conclusions

In this paper, we have presented deep point cloud odometry, a deep learning-
based odometry with the point clouds. It estimated the poeses by using the irreg-
ular point clouds directly and employed the local map optimization to improve
the accuracy and robustness of odometry estimation. The results of the exper-
iment showed that the proposed system could estimate the trajectories on the
public dataset. In our future work, we plan to improve the generalization ability
of the network to adapt to different resolution of the laser sensors and implement
the deep learning-based method to map the point clouds.
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Abstract. The problem of missing values is often encountered in tasks such
as machine learning, and imputation of missing values has become an impor-
tant research content in incomplete data analysis. In this paper, we propose an
attribute cross fitting model (ACFM) based on auto-associative neural network
(AANN), which enhances the fitting of regression relations among attributes of
incomplete data and reduces the dependence of imputation values on pre-filling
values. Besides, we propose a model training scheme that takes missing values as
variables and dynamically updates missing value variables based on optimization
algorithm. The imputation accuracy is expected to be gradually improved through
the dynamic adjustment of missing values. The experimental results verified the
effectiveness of proposed method.

Keywords: Incomplete data · Auto-associative neural network · Missing value ·
Imputation

1 Introduction

There are various factors in the process of data collection, transmission and storage,
etc., that may cause data loss in different degrees. The incompleteness of the data leads
to the result that most of the computational intelligence technologies cannot be applied
directly [1]. In cases where incomplete records cannot be deleted directly, an effective
method is needed to fill the missing values.

The neural network is flexible in construction and can mine complex association
relationships within data attributes efficiently. Sharpe and Solly propose to construct a
multi-layer perceptron (MLP) for each missing pattern, which is used to fit the regres-
sion relation between missing attributes and existing attributes [2]. Ankaiah and Ravi
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propose an improved MLP imputation method that takes each missing attribute as out-
put and the rest as input respectively [3]. The MLP imputation model can fit regression
relations among data attributes, but model training is time-consuming when there are
many missing patterns.

AANN is a type of network structure with the same number of nodes in output layer
and input layer. One model can impute the data in all missing patterns [4]. Marwala
et al. propose an imputation method combining AANN and genetic algorithm, then
apply to real dataset [5]. Nelwamondo et al. use principal component analysis to select
a reasonable number of nodes in hidden layer based on Marwala’s framework [6]. Ravi
and Krishna put forward four improved models based on AANN [7], in which the
general regression auto-associative neural network not only improves the efficiency of
imputation, but also outperforms MLP and three other models in most datasets. Gautam
et al. propose a counter propagation auto-associative neural network [8] and find that
the method of local learning can get better imputation results.

The number of complete records is small when the missing rate of dataset is high,
we will lose a lot of information about the existing data in incomplete records if we only
use complete records to train network. Silva-Ramírez et al. impute a fixed value into
each missing value so that incomplete records can participate in the process of model
training [9]. García-Laencina et al. initialize missing values by zero then apply all data
to train a multi-tasking network [10].

As mentioned above, the training efficiency of AANN-based method is higher than
that of MLP-based method in the multi-missing patterns. Consequently, this paper mod-
els incomplete dataset based on the AANN architecture, and fits regression relations
among attributes of incomplete data. There will be an initial estimation error if the
pre-filling process is used when incomplete records are input into the model. Hence,
this paper proposes a model training scheme that takes missing values as variables
and updates missing values iteratively during model training process (UMVDT). The
improved model and training scheme make optimal use of the existing data in incom-
plete records, and gradually reduce the estimation error of missing value variables. The
accuracy of imputation is improved by local learning and global approximation.

The rest of this paper is organized as following. Section 2 introducesMLPandAANN
imputation models. Section 3 proposes ACFM based on AANN and a model training
scheme named UMVDT. Section 4 analyzes the imputation performance of ACFM and
UMVDT. And the full text is summarized in Sect. 5.

2 MLP and AANN Imputation Models

The imputation method based on MLP needs to build a subnet for each missing pattern.
If the indices of missing attributes are Pt at the t missing pattern, the cost function of
the subnet will be

Ek = 1

2

∑

xi∈XC

∑

j∈Pt

⎛

⎝fij

⎛

⎝
∑

k /∈Pt
wjk · xik

⎞

⎠ − xij

⎞

⎠
2

, (1)

where xi = [xi1, xi2, · · · , xis]T represents the i - th record, s represents the dimension of
attributes, XC represents the subset of complete records, fij(·) represents the nonlinear



Imputation of Incomplete Data Based on Attribute Cross Fitting Model 169

mapping of the model, and wjk represents the weight of the model. Each model fits the
regression relation between missing attributes and existing attributes in each missing
pattern.

The AANN model requires that the number of nodes in output layer are equal to
that in input layer. The imputation method based on AANNmakes one structure impute
incomplete records at all missing patterns. The cost function can be expressed as

E = 1

2

∑

xi∈XC

s∑

j=1

(
fij

(
s∑

k=1

wjk · xik
)

− xij

)2

, (2)

Each output neuron of the AANN model is calculated by all input neurons. The
output values are easier to learn the input values at the same position with the model
training. As a result, the quality of imputation values depends on the quality of pre-filling
ones. The MLP model takes missing attributes as output and takes existing attributes as
input, and fills missing values through this regression network. Hence, compared with
the MLP model, AANN lacks an explicit regression relation to guide the training of
model and the imputation of missing values.

3 Proposed Architecture

3.1 AANN-Based ACFM

The AANN imputation model implements the imputation of multiple missing patterns
through one network architecture, but it does not establish a clear regression relation
among data attributes. Inspired by AANN, this paper fits all regression relations between
one of attributes and the rest of attributes in incomplete dataset by one network archi-
tecture, so that the output value of the model no longer depends on the input value at the
same position. The cost function of the proposed model is

E = 1

2

∑

xi∈X

∑

j/∈Mi

⎛

⎝fij

⎛

⎝
s∑

k=1,k �=j

wjk · xik
⎞

⎠ − xij

⎞

⎠
2

, (3)

where X represents an incomplete dataset and Mi represents indices of missing values
in record xi. Pre-filling processing is required when incomplete records are input into
the model. Since pre-filling value has estimation error compared with original data, the
model should limit the training error between pre-filling data and its predicted data to
optimize the model parameters. We define this error as the missing value error. In the
formula (3), j /∈ Mi means that missing value error is no more used to optimize model
parameters. The model based on this cost function can fit regression relations among
data attributes at a network architecture, thus the model is called attribute cross fitting
model.

The data transmission process for output neurons in ACFM is shown in Fig. 1. An
incomplete record with two missing values is input into ACFM. ACFM does not use the
missing value error to optimize model parameters, hence the output values yi1 and yi2
will not be calculated. And the output value yi3 of ACFM is calculated by input values
except for xi3. Meanwhile, the output values from yi4 to yis have a similar calculation
rule as yi3.
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Fig. 1. Schematic diagram of data transmission for output neurons in ACFM

3.2 A Novel Training Scheme

The missing value error has been limited to optimize the ACFM model, but there is
still pre-filling data with estimated errors when incomplete records are input into the
model. We propose a model training scheme that takes missing values as variables
and dynamically adjusts missing value variables during model training. The missing
value variables can gradually match the fitting relationship determined by existing data.
The principle of UMVDT is shown in Fig. 2. Firstly, the missing values in incomplete
records are initialized as variables, and then incomplete records are input into ACFM for
calculating the errors between network output and input. Finally, the backpropagation
algorithm is used to update missing value variables and network parameters.

Fig. 2. Schematic diagram of UMVDT training scheme

Suppose that the input layer of ACFM is layer 1 and the output layer is layer n+ 1,wl

and bl represent weights and thresholds from layer l to layer l+1 of ACFM respectively
(1 ≤ l ≤ n). For the model output j′, the output of the j - th neuron in the hidden layer
of ACFM is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

alij = g
(
zlij

)
= g

(
bl−1
j +

sl−1∑
k=1

wl−1
jk · al−1

k

)
2 < l ≤ n

alij = g
(
zlij

)
= g

(
bl−1
j +

sl−1∑
k=1,k �=j′

wl−1
jk · xik

)
l = 2

, (4)
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where g(·) is the activation function, zlij is the linear summation of the j - th neuron in
layer l, and sl is the number of neurons in layer l. The output of ACFM is linear, so the
output value yij = zn+1

ij . We define the intermediate variable δn+1
ij as

⎧
⎨

⎩
δn+1
ij = ∂ei

∂zn+1
ij

= ∂eij
∂zn+1

ij
= (

yij − xij
)

j /∈ Mi

δn+1
ij = 0, j ∈ Mi

, (5)

where ei is the error between the i - th sample xi and the network output yi. When
2 ≤ l ≤ n, δlij is

δlij = ∂eij

∂zlij
=

sl+1∑

k=1

δl+1
ik · wl

kj·g′(zlij
)
, (6)

Assuming the learning rate is η, when the gradient descent method is used to optimize
the model, the update rule of model parameters is

⎧
⎨

⎩

wl
jk = wl

jk − η · ∂ei
∂wl

jk
= wl

jk − η · δl+1
ij · alk

blj = blj − η · ∂ei
∂blj

= blj − η · δl+1
ij

, (7)

Missing value variables are updated with model parameters during model training.
When k ∈ Mi, the update rule of missing value variable x̂ik is

x̂ik = x̂ik − η · ∂ei
∂ x̂ik

= x̂ik − η ·
s2∑

j=1

δ2ij · w1
jk , (8)

4 Experiment

4.1 Experimental Design

In order to verify the imputation performance of proposed method, our experiment uses
four complete datasets obtained from the UCI database [11], and the description of
datasets is shown in Table 1. We select the continuous features in the dataset, which are
described in detail on the official website. For the sake of forming incomplete datasets,
partial data are deleted randomly according to specified deletion rates which are set as
5%, 10%, 15%, 20%, 25%, and 30%. It is generally believed that data sets with higher
missing rate are not of great value.

We implement five kinds of imputation methods based on MLP, AANN and ACFM
models, which are MLP-I, AANN-I, ACFM-I, AANN-UMVDT and ACFM-UMVDT.
The imputation method based on MLP model adopts traditional training scheme (MLP-
I), i.e. the model is trained by complete data, then the model output is used to fill
missing values. Based onAANN andACFMmodels, we implement the traditional train-
ing scheme (AANN-I, ACFM-I) and the UMVDT training scheme (AANN-UMVDT,
ACFM-UMVDT). All models are optimized by gradient descent with momentum. The
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Table 1. Description of datasets

Datasets Records Attributes Datasets Records Attributes

Blood 748 4 Iris 150 4

Seeds 210 7 Abalone 4177 7

learning rate is set to 0.2 and the momentum is set to 0.9. For each missing rate, all
imputation methods are repeated 10 times, and the average values of errors are used as
experimental results. The mean absolute percentage error (MAPE) is used to evaluate
imputation error:

MAPE = 1

|M |
∑

xi∈X

∑

j∈Mi

∣∣∣∣
yij − xij

xij

∣∣∣∣, (9)

where |M | represents the number of missing values.

4.2 Experimental Results

Experimental results are shown inTable 2, 3, 4 and 5. The suboptimal results are indicated
in bold font, and the optimal results are indicated in underline and bold font.

Table 2. The MAPE values of Blood dataset

Missing rates MLP-I AANN-I AANN-UMVDT ACFM-I ACFM-UMVDT

5% 1.113 0.983 0.941 0.488 0.449

10% 1.122 1.087 0.968 0.537 0.510

15% 0.872 1.274 1.005 0.620 0.599

20% 0.680 1.114 0.974 0.671 0.633

25% 0.861 1.188 1.026 0.728 0.754

30% 0.985 1.212 1.124 0.764 0.800

4.3 Experimental Discussion

Imputation Performance of ACFM. It can be seen from experimental that the impu-
tation results of MLP-I are better than those of AANN-I. The imputation results of
ACFM-I are better than those of MLP-I and AANN-I. And ACFM-UMVDT are better
than AANN-UMVDT. Because MLP establishes an exclusive regression network for
each missing attribute, it can describe the regression relation in the data more accurately.
ACFM enhances the ability to fit the regression relation among attributes of incom-
plete data compared with AANN. At the same time, ACFM fits regression relations on
a network architecture compared with MLP, which increases the generalization of the
model.



Imputation of Incomplete Data Based on Attribute Cross Fitting Model 173

Table 3. The MAPE values of Iris dataset

Missing rates MLP-I AANN-I AANN-UMVDT ACFM-I ACFM-UMVDT

5% 0.157 0.298 0.150 0.153 0.139

10% 0.150 0.358 0.158 0.139 0.128

15% 0.237 0.376 0.190 0.219 0.167

20% 0.234 0.386 0.188 0.217 0.173

25% 0.272 0.401 0.189 0.237 0.186

30% 0.335 0.455 0.234 0.272 0.234

Table 4. The MAPE values of Seeds dataset

Missing rates MLP-I AANN-I AANN-UMVDT ACFM-I ACFM-UMVDT

5% 0.071 0.083 0.067 0.067 0.062

10% 0.093 0.096 0.077 0.077 0.068

15% 0.104 0.095 0.072 0.076 0.067

20% 0.114 0.109 0.084 0.090 0.081

25% 0.096 0.097 0.076 0.083 0.076

30% 0.151 0.122 0.085 0.090 0.088

Table 5. The MAPE values of Abalone dataset

Missing rates MLP-I AANN-I AANN-UMVDT ACFM-I ACFM-UMVDT

5% 0.155 0.567 0.133 0.145 0.119

10% 0.219 0.547 0.114 0.163 0.137

15% 0.352 0.605 0.154 0.196 0.125

20% 0.499 0.633 0.189 0.223 0.168

25% 0.451 0.632 0.191 0.243 0.171

30% 0.631 0.535 0.337 0.246 0.193

Comparison Between UMVDT and Traditional Training Scheme. The UMVDT
training method is superior to the traditional training scheme except for the imputa-
tion results of Iris dataset at the missing rates of 25% and 30%. The UMVDT training
schememakes full use of thewhole existing data in incomplete records and takesmissing
values as variables to make missing values gradually match the fitting relationship. The
missing value variables and model parameters are updated alternately, so the imputation
effect can be improved significantly. The imputation of ACFM-I, ACFM-UMVDT and
the variation of the missing value variables (MVV) of ACFM-UMVDT in each round of
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training are shown in Fig. 3. It can be found that not only the MAPE values calculated
by missing value variables are more accurate than those of original model, but also the
imputation accuracy can be further improved by the model which is trained by the data
updated iteratively.

Fig. 3. The imputation and updating results of ACFM-I, ACFM-UMVDT, and missing value
variables on Iris dataset

5 Conclusion

In this paper, we propose an imputation method of incomplete data based on ACFM
and UMVDT. ACFM enhances the fitting of regression relation of AANN and reduces
the dependence of output value on input value in the corresponding position. When
incomplete records are input into the model, the missing values are set as variables,
which can not only increase the imputation accuracy, but also reduce the deviation of
the model. Experimental results show that, ACFM model can obtain more accurate
imputation results compared with MLP and AANN models. UMVDT improves the
accuracy of imputation on AANN and ACFMmodels compared with traditional training
scheme. Moreover, the combination of ACFM and UMVDT achieve the most optimal
imputation result. Despite these findings, the portability of UMVDT on other models
and the practicability of proposed method need to be further proved.

Acknowledgement. This work was supported by National Key R&D Program of China under
Grant 2018YFB1700200.
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Abstract. We propose whiteout, a family of Noise injection (NI)
regularization techniques through injecting adaptive Gaussian noises.
Through theoretical analysis, we 1) establish the regularization effect
of whiteout in the framework of generalized linear models with a broad
range of closed-form penalty terms, including lγ (for γ ∈ (0, 2]), the adap-
tive lasso, the group lasso, among others; 2) show that whiteout stabilizes
the training of NNs with robustness or decreased sensitivity to small per-
turbations in the input; 3) prove that the noise-perturbed loss function
with whiteout converges almost surely to the ideal loss function, and the
minimizer of the former is consistent for the minimizer of the latter; 4)
derive the tail bound on the noise-perturbed loss function to establish the
practical feasibility for optimization. The superiority of whiteout over the
Bernoulli NI techniques (dropout and shakeout) in prediction accuracy
(up by 2∼3%) in relatively small-sized training data and comparability in
large-sized training data are demonstrated thorough experiments. This
work is the first in-depth theoretical and methodological examination of
the regularization effects of Gaussian NI in NNs in general.

Keywords: Regularization · Sparsity · Stability · Adversarial
robustness · Consistency · Convergence

1 Introduction

1.1 Background

Neural networks (NNs) are prone to over-fitting given their complex structures
and the large amount of parameters. Earlier techniques for regularizing NN
estimation include weight decay, early stopping, l1 and l2 regularizations, etc.
Examples of recent developments include the input gradient regularization [1],
l0.5 regularization for smoothing interval NNs [2], regularization that lowers the
parameter magnitude with low sensitivity [3], regularization using the Frobenius
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norm of the Jacobian of the NN [4], information-theory-based regularization [5],
among others.

Most of the above mentioned work has explicit regularization terms for NN
parameters. In this paper, we focus on the implicit noise injection (NI) regular-
ization that has also been proven effective against overfitting. Early work of NI
in NNs appeared in the 1980’s and 1990’s [6–10]. A recent popular NI regulariza-
tion approach is dropout or the Bernoulli noise injection [11,12], where nodes in
the input and hidden layers are randomly “dropped” from a NN with some fixed
probabilities during its training. Various extensions to dropout have been pro-
posed. Maxout facilitates optimization and improves the accuracy of dropout
with a new activation function [13]. Fast dropout speeds up the computation
of dropout via a Gaussian approximation [14]. Dropconnect applies Bernoulli
noises to weights instead of nodes [15]. Partial dropout regularizes restricted
Boltzmann machines (RBMs) by combining weight decay, model averaging, and
network pruning [16]. Standout trains NNs jointly with a binary belief network
that selectively sets nodes to zero [17]. Shakeout applies multiplicative adaptive
Bernoulli noises to input and hidden nodes during training [18].

1.2 Our Contributions

We propose whiteout that injects adaptive Gaussian noises to input and hidden
nodes during the training of NNs. “Adaptive” here refers to that the variance
of the injected noises in whiteout differs by NN weight parameters and gets
continuously updated during training. To the best of our knowledge, this is the
first in-depth work that explores the regularization effects and robustness of
Gaussian NI techniques. Our contributions are summarized as follows.

1. Whiteout offers a wide range of regularizers. We establish theoretically that
with properly designed variance for the injected noise, whiteout is equivalent
to minimizing penalized loss functions with closed-from penalty terms for
model complexity such as the lγ regularization (γ ∈ (0, 2]) including l1 and
l2 as special cases, l1 + l2, adaptive lasso, group lasso, among others. By
offering more sparsity regularization types, whiteout can effectively discount
noisy and irrelevant input and hidden features in prediction, especially for
small-sized training data.

2. We show whiteout improves adversarial robustness and decreases the sensi-
tivity of a learned NN to external perturbation in the input features.

3. We provide a thorough investigation of the asymptotic properties of the white-
out noise perturbed loss function and its minimizer when the size of training
data n and the number of epochs k go to infinity, and derive the tail bound for
the perturbed loss function with finite n and k. Some of the conclusions are
also applicable to other NI techniques under the same regularity conditions.

4. We show empirically that whiteout outperforms Bernoulli NI (dropout and
shakeout) when the training size is small, given its effectiveness in imposing
flexible sparsity regularization on NN parameters.
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5. We develop a back propagation procedure that can easily accommodate the
whiteout NI during training. We also show that whiteout can be applied to
unsupervised learning, such as RBMs and auto-encoders.

1.3 Related Work

[6] and [7] demonstrate experimentally that adding noise to the input during the
training of a NN has a remarkable effect on the generalization capability of the
network. [9] formulates NI to input layers as a way of decreasing the sensitiv-
ity of a learned NN to small perturbations (adversarial attacks). [8] examines
the theoretical properties and offers an explanation on the generalizability of
constant-variance Gaussian NI to input layers by connecting NI with heat ker-
nels. [10] examines feedforward NNs and suggests that injecting noises to input
layers can be regarded as drawing samples from the kernel density estimator
of the true density; but does not establish that NI decreases the generalization
error of a trained NN.

Dropout is shown to yield the l2 regularization on the NN parameters in
the framework of generalized linear models (GLMs) [11]. [12] empirically com-
pares the performance of multiplicative Gaussian NI with mean 1 and a constant
variance with Bernoulli NI and shows that the former is comparable or slightly
better; but provides minimal theoretical exploration. [18] demonstrates empir-
ically that multiplicative Gaussian NI with a constant variance yields similar
performance as dropout in NN regularization. Shakeout achieves l1 and l2 regu-
larization [18]. The l1 and l2 regularization can also be realized by imposing the
Laplace and Gaussian priors on NN parameters, respectively, in a variational
Bayesian framework [19]. Gaussian NI in NNs is briefly discussed in [19] from a
Bayesian perspective.

In summary, existing research on Gaussian NI focus on Gaussian noises with a
constant variance and is limited in scope and depth. There also lacks a theoretical
explanation on how Gaussian NI or NI in general regularizes NN estimation.
We examine a much broader range of Gaussian noises the variance of which
is adaptive to trained parameters in Sect. 2. Our theoretical analysis provides
insights on why Gaussian NI or NI in general is an effective overfitting mitigation
technique (Sect. 3) and is robust to adversarial attacks (Sect. 4). In addition,
we present in Sect. 5 the asymptotic properties of whiteout noise-perturbed loss
functions, which should hold for other NI techniques under the same regularity
conditions, and investigate the tail bound of the loss function distribution to
understand its practical trainability.

2 Whiteout: Adaptive Gaussian Noise Injection

Let l be the index for layers (l = 1, . . . , L − 1; L is the output layer), and j be
the index for the nodes in layer l (j = 1, . . . , m(l)). The weight connecting the
j-th node X

(l)
j in layer l and the k-th node X

(l+1)
k in layer l + 1 is denoted by

w
(l)
jk , where X

(l+1)
k =f (l)

(
u
(l+1)
k

)
with u

(l+1)
k =b

(l)
k +

∑m(l)

j=1 w
(l)
jk X

(l)
j and f (l) is the
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activation function connecting layers l and l + 1. During the updating of w
(l)
jk in

training, whiteout replaces X
(l)
j with noise-perturbed X̃

(l)
j(k); that is,

u
(l+1)
k = b

(l)
k +

∑m(l)

j=1 w
(l)
jk X̃

(l)
j(k), where (1)

additive: X̃
(l)
j(k)=X

(l)
j +ejk, where ejk

ind∼ N
(
0,V

(
|w(l)

jk |,λ
))

, (2)

multiplicative: X̃
(l)
j(k)=X

(l)
j ejk, where ejk

ind∼ N
(
1,V

(
|w(l)

jk |,λ
))

, (3)

where V(|w(l)
jk |,λ) is the variance of the injected noise to Xj to obtain X̃

(l)
j(k) in

Eq. (1), and λ contains the tuning parameters. In other words, the variance is
not a constant term but varies by w

(l)
jk . Since w

(l)
jk is unknown, its estimate will be

used, after an initialization, which is continuously updated during training until
convergence. With properly designed V(|w(l)

jk |,λ), we get different regularization
effects on w. Some examples are

V(|w(l)
jk |,λ) = σ2|w(l)

jk |−γ+λ, (4)

V(|w(l)
jk |,λ) = σ2(|w(l)

jk |)−1|ŵ(l)
jk |−γ , (5)

V(|w(l)
jk |,λ) = σ2(w(l)T

g Kgw(l)
g )1/2

(
pgw

(l)2
jk

)−1

, (6)

where σ2 ≥ 0, λ ≥ 0, and γ ∈ (0, 2) are hyperparameters; ŵ
(l)
jk is a reasonable

estimate on wjk in Eq. (5) obtained, through, such as weight decay or early
stopping or dropout; and g is the index of groups that nodes in layer l belong
to, pg is the size of group g, and Kg is a positive definite matrix in Eq. (6). We
will establish the closed-form regularizers associated with different noise types
in Eqs. (4) to (6) in Sect. 3.

3 Whiteout Leads to Closed-Form Model Regularization

A common framework where NI is established as a regularization technique is
through GLMs and the exponential family distribution [18,20–22]. In a GLM,
the conditional distribution of output Y given inputs X ∈ Rp is

f(Y |X,w) = h(Y, τ) exp ((ηT(Y ) − A(η))/d(τ)) , (7)

where η = Xw is the natural parameter, w captures the relation between X
and Y , and τ is the dispersion parameter. The loss function is often defined as
the negative log-likelihood of the GLM given independent training cases (xi, yi)
for i = 1, · · · , n

l(w|x,y)=
∑n

i=1(A(ηi) − ηT(yi))/d(τ)−log(h(yi, τ)). (8)

Whiteout injects noises defined in Eqs. (2) or (3) to xi to obtain x̃i and works
with the noise-perturbed loss function

lp(w|x̃,y) =
∑n

i=1 l(w|x̃i, yi). (9)
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Lemma 1 establishes that the expected lp(w|x̃,y) over the distribution of
injected noises e is a penalized loss function given (x,y) with a closed-form
regularization term.

Lemma 1 (regularized loss function with whiteout for GLMs). The
expectation of Eq. (9) over the distribution of injected noise is

Ee (
∑n

i=1 lp(w|x̃i, yi))=
∑n

i=1l(w|xi, yi)+
R(w)
d(τ) , (10)

where R(w) �
∑n

i=1 Ee(A(x̃iw)) − A(ηi) ≈ 1
2

∑n
i=1 A′′(ηi)Var(x̃iw). (11)

The proof is provided in the supplementary materials to this paper. The approx-
imation in Eq. (11) is obtained via the second-order Taylor-expansion of the
expected perturbed loss function around ηi = 0 (and is exactly “=” for linear
models). A(ηi) = A(xiw) is convex and smooth in w in GLMs [23], and R(w) is
always positive per the Jensen’s inequality [22]. Based on Lemma 1, we explore
further the regularization term R(w)/d(τ) in Eq. (11) for some specific types of
the noise variance, and the results are given in Corollary 2, which are easy to
obtain based on Lemma 1.

Corollary 2 (regularization on w with whiteout NI). Define Λ(w) �
diag(A′′(x1w), · · ·, A′′(xnw)) and Γ (w) � diag(xTΛ(w)x) in the GLM frame-
work. Whiteout NI can realize the following regularizers for the noise variance
terms in Eqs. (4) to (6).

a). l2−γ bridge regularizer for γ ∈ [0, 2): Let λ = 0 in Eq. (4), then V (ejk) =
σ2|wjk|−γ and

additive: R(w) ≈ (σ2/2)1T Λ(w)1
∣∣∣∣|w|2−γ

∣∣∣∣
1
, (12)

multiplicative: R(w) ≈ (σ2/2)
∣∣∣∣Γ (w)|w|2−γ

∣∣∣∣
1
, (13)

where 1n×1 is a column vector of 1. The penalty term R(w) is similar to the
bridge penalization [24], which reduces to the l1 (lasso) penalty [25] when
γ = 1, and to the l2 (ridge) penalty when γ = 0.

b). l1+l2 elastic net regularizer : Let γ=1 in Eq. (4), then V (ejk)=σ2|wjk|−1+λ,

additive: R(w) ≈ 1
21

T Λ(w)1
(
σ2||w||1+λ||w||22

)
, (14)

multiplicative: R(w)≈ σ2

2

∣∣∣∣Γ(w)|w|∣∣∣∣
1
+ λ

2

∣∣∣∣Γ (w)|w|2∣∣∣∣
1
. (15)

The penalty term R(w) contains similar norm on w as in the elastic net
(l1 + l2) regularization [26].

c). adaptive lasso regularizer : Given Eq. (5), then

additive: R(w) ≈ (σ2/2)1TΛ(w)1
∣∣∣∣|w||ŵ|−γ

∣∣∣∣
1
, (16)

multiplicative: R(w)≈(σ2/2)
∣∣∣∣Γ (w)|w||ŵ|−γ

∣∣∣∣
1
, (17)

which contain a similar norm on w as the adaptive lasso regularization [27].
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d). group lasso regularizer : Given Eq. (6), then

additive: R(w) ≈ σ2

2 1TΛ(w)1
(∑G

g=1

∣∣∣∣(w′
gKgwg)

1
2 p−1

g

∣∣∣∣), (18)

multiplicative: R(w)≈ σ2

2

∑G
g=1

∣∣∣∣Γg(w)
∣∣∣∣(w′

gKgwg)
1
2
∣∣∣∣p−1

g

∣∣∣∣
1
. (19)

The penalty terms contain a similar norm on w as the group lasso penaliza-
tion [28]. If every node in layer l is its own group, then it reduces to the lasso
regularizer l1 on w; if every node belongs to one group, then it reduces to
ridge regularizer l2 on w. Since there often lacks motivation or instruction
to group hidden nodes, it make sense that the group lasso NI is applied to
the predefined groups of input nodes only.

For additive noises, besides the various norms on w, R(w) also involves Λ(w).
If A′′(xiw) does not depend on w (e.g., in linear models), R(w) leads to the
nominal regularization as defined by the norm on w. Otherwise, the regulariza-
tion effects on w through R(w) are not exact as defined by the norms on w
due to the scaling of Λ(w). For example, in the logistic regression with binary
outcomes, A(ηi) = ln(1 + eηi), A′′(ηi) = pi(w)(1 − pi(w)) with pi(w) = Pr(yi =
1|xi) = (1+exp(−xiw))−1, and R(w) ≈ σ2

2

∑n
i=1(pi(w)(1− pi(w)))

∣∣∣∣|w|2−γ
∣∣∣∣
1
;

that is, the norm on w is scaled by the total variance of the binary outcome.
For multiplicative noise, the norms are on Γ (w)w, a scaled version of w, rather
than on w. Plugging in the optimizer of the loss function in Eq. (8) ŵ, which
is the MLE in the case of GLMs, n−1xT Λ(ŵ)x = n−1

∑n
i=1 ∇2l(ŵ|xi, yi) is an

estimator of the Fisher information matrix. Since Γ (w) = diag(xT Λ(w)x) per
its definition, the multiplicative whiteout noise can then be regarded as regular-
izing w after it is scaled by the diagonal Fisher information matrix, similar to
the interpretation on dropout offered by [22].

The hyperparameters in Eqs. (2) and (3) determine the type and degree of
the regularization. For example, in Eq. (4), when λ = 0, sparsity regularization
l2−γ will be imposed for γ ∈ (0, 2), and which type specifically depends the
value of γ; when σ2 �= 0 and λ �= 0, the ratio of σ2 and λ determines the
relative regularization between sparsity l2−γ and l2 on w. Our empirical studies
suggest that a good γ can often be found in the neighborhood of (0.5, 1.5).
For practical implementation, the hyperparameters can be chosen by the cross
validation (CV), or be integrated into the Bayesian optimization process for
specifying NN hyperparameters.

4 Whiteout Improves Robustness of Learned NNs

Denote the training data by zi = (xi,yi) for i=1, . . . , n, where xi =(xi1, · · · , xip)
refers to p input nodes. Let d denote the external perturbation (adversarial
attacks) on xi with E(dij) = 0 and V(dij) = 	2 for j = 1, . . . , p. If a trained
NN is sensitive to external perturbation, then the predicted ȳi given xi and
ȳ∗

i given xi + di via the trained NN can be very different. We show that the
predictions from the NN trained with whiteout NI are more robust to external
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perturbations, as the loss function minimized by whiteout takes into account the
sensitivity of the NN.

Let f denote the NN with L layers. Suppose there are q output nodes, let
f = f (L−1) ◦f (L−2) ◦· · ·◦f (1) = f (L−1):1 be a vector of q compound functions over
the sequence of active functions connecting the layers 1 to L − 1. Denote by ŷi

the prediction given xi via the NN trained with whiteout and ŷ∗
i the prediction

given xi + di from the NN. Define

Δi = ŷ∗
i −ŷi. (20)

Let m(l) denote the number of nodes in layer l ≥ 2,
∂f

(1)
j

∂xi
=

(
∂f

(1)
j

∂xi1
,· · · ,

∂f
(1)
j

∂xip

)T

for j = 1, . . . , m(2), h(l)
i denote the hidden nodes in layer l,

∂f
(l)
j

∂h
(l)
i

=
(

∂f
(l)
j

∂h
(l)
i1

,· · · ,

∂f
(l)
j

∂h
(l)

i,m(l)

)T

for j = 1, . . . , m(l+1) for l = 2, . . . , L − 1, and Ψi,q′(w) =
(∂f (L−1):1[q′]

∂f
(1)
1

∂f
(1)
1

∂xi
, · · · ,∂f (L−1):1[q′]

∂f
(1)

m(2)

∂f
(1)

m(2)

∂xi
, ∂f (L−1):2[q′]

∂f
(2)
1

∂f
(2)
1

∂h
(1)
i

, · · ·, ∂f(L−1)[q′]
∂h

(L−1)
i

, · · ·, ∂f(L−1)[q′]
∂h

(L−1)
i

)
for

q′ = 1, . . . , q, and nT
q′,i = (di + e(1)i1 , . . . ,di + e(1)ip , e(2)i , . . . , e(L−2)

i , e(L−1)
q′,i ). Each

element in Δi in Eq. (20) can be approximated through the first-order Taylor
expansion around nq′,i = 0; that is,

Δi[q′] ≈ Ψi,q′(w) · nq′,i for q′ = 1, . . . , q. (21)

Note that Ψi,q′(w) and nq′,i are of length pm(2) +
∑L−2

l=2 m(l)m(l+1) + m(L−1)q,
so Δi[q′] is a scalar. We can now define sensitivity of a learned NN, on which
the results on the stability and robustness of the trained NN, is based on.

Definition 3. The sensitivity of a NN is defined as the summed ratio over all
cases i = 1, . . . , n between the variance of Δi and the variance of di,

S(w)=
∑n

i=1

∣∣V(Δi)
∣∣
1∣∣V(di)

∣∣
1

≈p−1
∑n

i=1

∑q
q′=1Ψi,q′(w)

(
R+A 0

0 Bq′

)
ΨT

i,q′(w), (22)

where R is a symmetric matrix with Ri,i+1 = · · · = Ri,i+p−1 = Ri+1,i = · · · =
Ri+p−1,i =1 for i=1, . . . , p(m(2)−1)+1, and 0 otherwise; A=diag

(
1

	2 + 1
)

for j =

1, . . . , p and k = 1, . . . , m(2), Bq′ = diag
(
D(2), . . . , D(L−2),D

(L−1)
q′

)
with D(l) =

diag
(

1
	2 V(|w(l)

jk |,λ)
)

for l=2, . . . , L − 2 and D
(L−1)
q′ =diag

(
1

	2 V(|w(L−1)
jq′ |,λ)

)
.

The sensitivity quantifies the expected fluctuation in outcome prediction via
the NN when there is external perturbation (adversarial attack), relative to the
degree of the perturbation. It is desirable to have a robust system with low
sensitivity to adversarial attacks when it comes to prediction. The smaller the
sensitivity, the more robust the NN model and its outcome prediction are to
adversarial attacks. Theorem 4 states whiteout helps to achieve that goal, as it
minimizes the sum of the original loss function and the sensitivity of the NN.
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Theorem 4 (Adversarial robustness with whiteout NI). Let l(w,b|
x,y)=

∑n
i=1|yi−ȳi|22 and lp(w,b|x, e,y)=

∑n
i=1|yi−ŷi|22. The expectation of lp

over the distribution of e∗ is

Ee(l(w,b|e,x,y)) ≈ l(w,b|x,y) + aS(w), (23)

where S(w) is the sensitivity defined in Eq. (22) in Definition 3.

The proof of Theorem 4 is given in the supplementary materials to this paper.
Equation (23) suggests minimizing the perturbed loss function with whiteout
noise is approximately equivalent (via the first-order Taylor expansion) to min-
imizing the original loss function with a penalty term for the instability (sensi-
tivity) of the NN to adversarial attacks. The tuning parameter a quantifies how
much weight assigned to the sensitivity of the NN. When a is close to 0, there is
the sensitivity of the NN does not carry a lot of weight during the optimization
and can be arbitrarily large, which is unwelcome from a learning perspective.
With non-zero a, whiteout automatically minimizes the sensitivity-adjusted loss
function in Eq. (23) and delivers a trained NN of greater stability and robustness.

5 Theoretical Properties for Noise Perturbed Loss
Function and Its Minimizer

We present in this section the asymptotic properties of noise-perturbed loss
functions with whiteout and the estimates of NN parameters from minimizing
the perturbed loss function. The main results are presented in Theorems 7 and
8, which eventually establishes that the minimizer of the perturbed loss function
is consistent for the minimizer of the loss function if the distribution of X and Y
were known (as n → ∞) and the epoch number k → ∞ for a given optimization
algorithm. Note the proofs do not require the injected noises to be Gaussian.
Therefore, the asymptotic conclusions and results presented in this section should
hold for other NI techniques under the same regularity conditions. To show
the perturbed loss function is trainable for practical implementation, we also
investigate the tail bound with finite n and k. The proofs of all theoretical
results in this section are provided in the supplementary materials to this paper.

We begin with defining and differentiating several types of loss functions to
facilitate the investigation of theoretical properties in NI techniques in general
(Table 1). WLOG, we present the definitions in terms of the l2 loss, but the
definitions are general to be applicable to any type of loss function (e.g., the l1
loss and negative log-likelihood). Let p(X,Y) denote the unknown underlying
distribution from which training data (x,y) are sampled. Let f(Y|X,w,b) be
the NN that models the relation between X and Y.
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Table 1. Loss functions

Loss function Definition

Ideal loss function (ilf) l(w,b)=Ex,y|f(x|w,b)−y|22
Empirical loss function (elf) l(w,b|x,y)=n−1

∑n
i=1|f(xi|w,b)−yi|22

Noise perturbed empirical loss
function (pelf)

lp(w,b|x,y, e)
=(kn)−1

∑k
k′=1

∑n
i=1|f(xi, eik′ |w,b)−yi|22

Noise-marginalized pelf (nm-pelf) lp(w,b|x,y) = Ee(lp(w,b|x,y, e))
Fully marginalized pelf (fm-pelf) lp(w,b)=Ex,y(lp(w,b|x,y))= Ex,y,e(lp(w,b|x,y, e)))

In an ideal world, one would minimize the ilf to obtain the estimation on
w and b; however, it is not computable in real life since p(X,Y) is unknown.
The empirical version of the ilf is the elf, the original loss function without
any regularization, and elf→ ilf as n → ∞. NI regularization (e.g., dropout,
shakeout, whiteout) minimizes the pelf (eik′ in the pelf definition in Table 1
represents the collective noise injected into case i in the k′-th epoch during
training). The nm-pelf can be interpreted as training a NN by minimizing the
pelf with a finite n and infinite epochs (k → ∞) and is approximately equal to
the elf plus a penalty term to mitigate over-fitting. All the asymptotic properties
below are established in NNs with one hidden layer. Extending to multiple layers
is technically challenging; but it is a subject we will continue to explore.

Lemma 5 (almost sure convergence of pelf to nm-pelf, and of nm-pelf
to fm-pelf). In a NN with one hidden layer and the hidden nodes are uniformly
bounded, for any δ>0 (1). | inf

w,b
lp(w,b|x,y, e) − inf

w,b
lp(w,b|x,y)|<δ as k→∞

with probability 1 and convergence rate ∝ O(e−kn); (2). | inf
w,b

lp(w,b|x,y)−
inf
w,b

lp(w,b)|<δ as n→∞ with probability 1 and convergence rate ∝ O(e−n).

Lemma 5 suggests the almost sure (a.s.) convergence of the pelf to the nm-pelf,
and the nm-pelf to the fm-pelf, which, taken together with the triangle inequal-
ity | inf

w,b
lp(w,b|x,y, e) − inf

w,b
lp(w,b)| ≤ | inf

w,b
lp(w,b|x,y, e) − inf

w,b
lp(w,b|x,y)|

+| inf
w,b

lp(w,b|x,y)− inf
w,b

lp(w,b)|, lead to the a.s. convergence of the pelf to the

fm-pelf (Corollary 6).

Corollary 6 (almost sure convergence of pelf to fm-pelf). | inf
w,b

lp(w,

b|x,y, e) − inf
w,b

lp(w,b)| < δ as k → ∞, n → ∞ for any δ > 0 with probability 1

and convergence rate ∝ O(e−kn).

The main results presented in Theorems 7 and 8 are based on Lemma 5
and Corollary 6; that is, the a.s. convergence of the pelf to the ilf and that the
minimizer of the former is consistent for the minimizer of the later as n → ∞
and k → ∞. The consistency of the minimizer is a desirable asymptotic property
and justifies NI theoretically as an approach for learning NNs.
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Theorem 7 (almost sure convergence of pelf to ilf). Let σmax(n) be the
maximum noise variance among all injected noises. If σmax(n) → 0 as n → ∞,
then | inf

w,b
lp(w,b|x,y, e)− inf

w,b
l(w,b)| < δ as k → ∞, n → ∞ for any δ > 0 with

probability 1.

With finite n, the pelf always deviates from the ilf given the former has
a regularization term. On the other hand, if the injected noise diminishes as
n → ∞ (e.g., if the variance of the noise goes to 0), so do the injected noise and
the regularization, then the pelf will eventually get arbitrarily close to the ilf per
Theorem 7. Regarding the condition σmax(n) → 0 as n → ∞, [29] shows that
additive NI can be interpreted as generating kernel distribution estimate for the
training data; and for the infima of two loss functions (pelf and ilf in our case)
to get arbitrarily close as n → ∞, it is sufficient (though not necessary) that
the l1 distance between the true density g from which x (of dimension p) are
sampled and its kernel density estimate ĝ with bandwidth h=O(n−(p+4)−1

) has
the minimum expected upper bound. By recasting whiteout as a kernel estimate
problem, then σmax(n) = O(n−(p+4)−1

).

Theorem 8 (consistency of minimizer of pelf to minimizer of ilf). Let
ŵr,n

p and w0 denote the optimal weights from minimizing the pelf and the ilf
respectively. Let W be the weight space, assumed to be compact. Define Ŵ0=
{w0 ∈ W|lp(w0,b) ≤ l(w,b) for all w ∈ W} that consists the minimizers of
the ilf and is a non-empty subset of W. Define the distance of w from Ŵ0 as
d(w,Ŵ0) = min

w0∈Ŵ0
||w − w0|| for any w ∈ W. Let r be the reciprocal of step

length in an iterative weight updating algorithm (e.g., the learning rate in the
BP algorithm) and r → ∞ (i.e., infinite noises are generated and injected during

the weight training). If Pr
(

sup
f∈Fn

∣∣l(w,b) − lp(w,b|x,y, e)
∣∣ > t

)
→ 0 as r →∞,

n → ∞, then Pr
(

lim
n→∞

(
lim sup

r→∞
d(ŵr,n

p ,Ŵ0)
)

= 0
)

= 1.

The optimization in NNs is a non-convex problem. Theorem 8 shows that the
minimizer of the pelf converges to a parameter set that minimizes the ilf rather
than a single parameter value. The condition r → ∞ is a stronger requirement
than k→∞ since r→∞ indicates k→∞, but not vice versa.

When implementing whiteout in practice, one minimizes the pelf with a finite
number of epochs k given a training set with finite n. It is thus important to
examine the fluctuation of the pelf around its expectation and the tail bound of
its distribution to ensure that it is trainable in practice.

Theorem 9 (tail bound on pelf). Assume Y is bounded, the loss function is
uniformly bounded, and the activation functions employed by a NN are Lipschitz
continuous. Then ∃B > 0, such that lp(w,b|x,y, e) : Rk → R, which is a
function of injected Gaussian whiteout noise ek×1, is B/

√
kn-Lipschitz with

respect to the Euclidean norm, for any δ > 0,
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Pr(
∣∣lp(w,b|x,y, e) − Ee (lp(w,b|x,y, e))

∣∣ > δ) ≤ 2 exp
(−knδ2/(2B2)

)
.
(24)

Equation (24) suggests that the fluctuation of the pelf around its expectation
is bounded in that the distribution on the difference between the two has a tail
that decay to 0 exponentially fast in k, providing assurance on the plausibility
of minimizing the pelf for practical applications.

6 Experiments

We compare the prediction performance of whiteout with dropout, shakeout, and
no regularization (referred to as “no-reg” hereafter) in 4 experiments. In the Lee
Silverman Voice Treatment (LSTV) experiment, we predict a binary phonation
outcome post LSTV from 309 dysphonia attributes in Parkinson’s patients. The
employed NN has two fully connected hidden-layers (9 and 6 nodes) with the
sigmoid activation function. We used a 10-fold CV to select hyper-parameters σ,
and set λ = σ2 and γ = 1 to yield the l1 + l2 regularization for the multiplicative
whiteout. We set τ at τ = 2σ2/(1 + 2σ2) in dropout, and c = 0.5 and τ =
2σ2/(1 + 2σ2) in shakeout to make the l2 regularization in dropout and the
regularization effect in shakeout comparable to whiteout. We calculated the mean
prediction accuracy on the validation set over 100 repetitions. In the LIBRAS
experiment, we predict 15 hand movements in the Brazilian sign language from
90 attributes. We randomly chosen 240 samples as the training set and used
the rest 120 samples as the testing set. The applied NN has two fully connected
hidden layers NN (with 20 and 10 nodes) with the sigmoid and softmax activation
functions. We set γ = 1 in whiteout, c = 0.5 in shakeout, and applied a 4-fold
CV to select σ2 = λ in τ in shakeout, and τ in dropout. The mean prediction
accuracy was summarized over 50 repetitions. For the MNIST and CIFAR-10
experiments, we employed the same NNs as used in [18]. The three NI techniques
were applied to hidden nodes in the fully connected layers, and a 4-fold CV was
applied to select the tuning parameter in each NI technique. The prediction
accuracy rates in the testing sets were averaged over 50 repetitions.

The results are given in Table 2. Overall, whiteout has the best performance
with the highest prediction accuracy in the LSTV and LIBRAS experiments
(small training sets) and similar accuracy in the MNIST and CIFAR-10 exper-
iment (large training sets). Due to space limitation, the empirical distributions
of the final weight estimates in the LSRV and LIBRAS experiments are not pre-
sented. More weight estimates fall within the neighborhood of 0 with whiteout
due the sparsity regularization compared to dropout and shakeout.
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Table 2. Mean (SD) prediction accuracy (%) on testing or validation data

Experiment (n∗) No-reg Dropout Shakeout Whiteout

LSTV (126) 73.93 (12.13) 84.17 (10.37) 84.66 (8.98) 87.27 (9.84)

LIBRAS (240) 62.15 (5.73) 66.35 (3.60) 66.85 (3.56) 69.04 (2.08)

MNIST (50,000) 99.19 (0.03) 99.23 (0.03) 99.24 (0.05) 99.22 (0.08)

CIFAR-10 (40,000) 75.22 (0.16) 77.97 (0.22) 77.85 (0.58) 78.57 (0.39)
∗n is the number of samples in the training data.

7 Discussion

We have proposed whiteout for regularizing the training of NNs. Whiteout has
connections with a wider range of regularizers due to the flexible and adaptive
nature of the whiteout noise variance terms.

We have also worked out the back-propagation algorithm to incorporate the
whiteout NI that is provided in the supplementary materials to this paper.
Whiteout can also be applied to unsupervised learning (e.g., dimension reduction
and pre-training of NNs). The supplementary materials to this paper illustrates
the regularization effects of whiteout in RBMs and auto-encoders, where the
expected perturbed loss functions with regard to the distribution of injected
noises can be written as the sum of the regular loss function and a penalty term
on model parameters.

Supplementary materials

The supplementary materials can be found at https://arxiv.org/abs/1612.
01490v4.
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29. Holmström, L., Klemelä, J.: Asymptotic bounds for the expected L1 error of a
multivariate kernel density estimator. J. Multivar. Anal. 42, 245–266 (1992)



Pattern Recognition Based on an
Improved Szmidt and Kacprzyk’s

Correlation Coefficient in Pythagorean
Fuzzy Environment

Paul Augustine Ejegwa1,2, Yuming Feng1(B), and Wei Zhang3

1 Key Laboratory of Intelligent Information Processing and Control,
Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China

ejegwa.augustine@uam.edu.ng, yumingfeng25928@163.com
2 Department of Mathematics/Statistics/Computer Science,

University of Agriculture, P.M.B. 2373, Makurdi, Nigeria
3 Chongqing Engineering Research Center of Internet of Things

and Intelligent Control Technology, Chongqing Three Gorges University,
Wanzhou, Chongqing 404100, China

cqec126@163.com

Abstract. Correlation measure is an applicable tool in Pythagorean
fuzzy domain for resolving problems of multi-criteria decision-making
(MCDM). Szmidt and Kacprzyk proposed a correlation coefficient in
intuitionistic fuzzy domain (IFSs) by considering the orthodox parame-
ters of IFSs. Nonetheless, the approach contradicts the axiomatic descrip-
tion of correlation coefficient between IFSs in literature. In this paper we
modify the Szmidt and Kacprzyk’s approach for measuring correlation
coefficient between IFSs to satisfy the axiomatic description of correla-
tion coefficient, and extend the modified version to Pythagorean fuzzy
environment. Some numerical illustrations are considered to ascertain
the merit of the modified version over Szmidt and Kacprzyk’s approach.
Finally, the proposed correlation coefficient measure is applied to resolve
some pattern recognition problems. In recap, the goal of this paper is to
modify Szmidt and Kacprzyk’s correlation coefficient for IFSs, extend it
to Pythagorean fuzzy context with pattern recognition applications.

Keywords: Correlation coefficient · Intuitionistic fuzzy set · Pattern
recognition · Pythagorean fuzzy set

1 Introduction

Pattern recognition is the act of detecting arrangements of characteristics or data
that produce information about a given system or data set. In a technological
setting, a pattern is a recurrent of sequences of data over time that can be useful
for forecast tendencies, alignments of features in images that ascertain objects,
among others. The process of identifying patterns by using machine learning
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procedure is referred to pattern recognition. In fact, pattern recognition has a
lots to do with artificial intelligence and machine learning. The idea of pattern
recognition is important because of its application potential in neural networks,
software engineering, computer vision, etc. However, the potential areas of appli-
cation of pattern recognition are greeted with uncertainties and imprecisions.
Thus fuzzy sets [52] is key in resolving/curbing the embedded uncertainties in
pattern recognition. The theory of fuzzy sets has been applied to resolve some
problems involving uncertainties [4,6,24].

In real life, some decision-making problems could not be handled with
fuzzy set approach because fuzzy set only considered membership degree (MD)
whereas, many real life problems have the component of both MD and non-
membership degree (NMD) with the possibility of hesitation. This scenario can
best be captured by a concept called intuitionistic fuzzy sets (IFSs) [1,2]. This
concept is described with MD μ, NMD ν and hesitation margin (HM) π with
the property that their aggregate is one and μ + ν is less than or equal to one.
Due to the resourcefulness of IFS, it has been applied to tackle pattern recog-
nition problems [30,44] and other multi-criteria decision-making (MCDM) cases
[3,5,22,23,33,38,39].

The idea of IFS is not applicable in a situation whenever a decision-maker
wants to take decision in a multi-criteria problem in which μ + ν is greater than
one. In fact assume μ = 0.5 and ν = 0.6, clearly the notion of IFS cannot
model such a case. This prompted [45,48] to generalize IFS as Pythagorean
fuzzy set (PFS) such that μ + ν is also greater than one and μ2 + ν2 + π2 = 1.
In a nutshell, PFS is a special case of IFS with additional conditions and thus
has more capacity to curb uncertainties more appropriately with higher degree
of accuracy. The concept of PFSs have been sufficiently explored by different
authors so far [12,17,47]. Many applications of PFSs have been discussed in
pattern recognitions and other multi-criteria problems [11,13–16,18,21,26–28,
45,46,48,53–55].

Correlation coefficient was first studied in statistics by Karl Pearson in 1895
to measure the interrelation between two variables or data. Since then, it has
become widely used by statisticians, engineers, scientists, etc. As correlation
coefficient is very proficient, it has been since strengthened to curb impreci-
sions/uncertainties in predictions, pattern recognitions, and medical diagnosis
among others. And as such, correlation coefficient has been studied in fuzzy envi-
ronment [7,9,10,36,51]. To equip correlation coefficient to better handle fuzzy
data, the idea was encapsulated into intuitionistic fuzzy context and applied to
many MCDM problems [29,31,32,34,35,40,41,43,50,53]. By extension, authors
have started to study correlation coefficient in Pythagorean fuzzy setting with
applications in several multi-criteria problems [19,25,37,42].

This work is motivated to strengthen the correlation coefficient in [40] to
enhance its satisfaction of the axiomatic definition of correlation coefficient in
intuitionistic fuzzy setting as presented in literature, and subsequently extend
the improved version to Pythagorean fuzzy context. The objectives of this paper
are to
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– revisit Szmidt and Kacprzyk’s correlation coefficient of IFSs,
– modify Szmidt and Kacprzyk’s correlation coefficient of IFSs to satisfy the

axiomatic description of correlation coefficient,
– extend the modified version of the correlation coefficient to Pythagorean fuzzy

environment for better output,
– numerically show the superiority of the novel correlation coefficient in both

intuitionistic/Pythagorean fuzzy contexts over Szmidt and Kacprzyk’s app-
roach, and

– demonstrate the applicability of the modified method in Pythagorean fuzzy
environment to cases of pattern recognition.

The paper is outlined thus; Sect. 2 briefly revises the fundamentals of PFS
and Sect. 3 discusses Szmidt and Kacprzyk’s correlation coefficient for IFSs, its
modification and numerical verifications. Section 4 extends the modified ver-
sion of Szmidt and Kacprzyk’s correlation coefficient to PFSs and numerically
verifies its authenticity. Section 5 demonstrates the application of the novel cor-
relation coefficient in pattern recognition cases captured in Pythagorean fuzzy
environment. Section 6 gives conclusion and area for further research.

2 Basic Notions of Pythagorean Fuzzy Sets

Assume X is a fixed non-empty set and take PFS(X) to be the set of all PFSs
defined in X throughout the paper.

Definition 1 [1]. An IFS Â of X is characterized by

Â = {〈μÂ(x), νÂ(x)
x

〉 | x ∈ X}, (1)

where

μÂ(x) : X → [0, 1] and νÂ(x) : X → [0, 1]

define MD and NMD of x ∈ X to Â in which,

0 ≤ μÂ(x) + νÂ(x) ≤ 1. (2)

For every Â of X,

πÂ(x) = 1 − μÂ(x) − νÂ(x)

is the IFS index or HM of x ∈ X. Then, πÂ(x) is the grade of non-determinacy
of x ∈ X, to Â and πÂ(x) ∈ [0, 1]. πÂ(x) explains the indeterminacy of whether
x ∈ X or x /∈ X. It follows that

μÂ(x) + νÂ(x) + πÂ(x) = 1. (3)
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Definition 2 [48]. A Pythagorean fuzzy set Â of X is defined by

Â = {〈μÂ(x), νÂ(x)
x

〉 | x ∈ X}, (4)

where

μÂ(x) : X → [0, 1] and νÂ(x) : X → [0, 1]

define MD and NMD of x ∈ X to Â where

0 ≤ (μÂ(x))2 + (νÂ(x))2 ≤ 1. (5)

Taking μ2
Â
(x) + ν2

Â
(x) ≤ 1, we have an indeterminacy grade of x ∈ X to Â

given as

πÂ(x) ∈ [0, 1] =
√

1 − [(μÂ(x))2 + (νÂ(x))2]. (6)

Clearly,
(μÂ(x))2 + (νÂ(x))2 + (πÂ(x))2 = 1. (7)

Suppose πÂ(x) = 0 then μ2
Â
(x) + ν2

Â
(x) = 1.

Example 1 Assume Â ∈ PFS(X). If μÂ(x) = 0.7 and νÂ(x) = 0.5 for X = {x}.
Then, 0.72 +0.52 ≤ 1. Thus πÂ(x) = 0.5099, and so μ2

Â
(x)+ ν2

Â
(x)+π2

Â
(x) = 1.

Definition 3 [48]. Suppose Â, B̂ ∈ PFS(X), then

(i) Â = {〈νÂ, μÂ

x
〉|x ∈ X}.

(ii) Â ∪ B̂ = {〈max(
μÂ(x), μB̂(x)

x
),min(

νÂ(x), νB̂(x)
x

)〉|x ∈ X}.

(iii) Â ∩ B̂ = {〈min(
μÂ(x), μB̂(x)

x
),max(

νÂ(x), νB̂(x)
x

)〉|x ∈ X}.

It follows that, Â = B̂ iff μÂ(x) = μB̂(x), νÂ(x) = νB̂(x)∀x ∈ X, and Â ⊆ B̂

iff μÂ(x) ≤ μB̂(x), νÂ(x) ≥ νB̂(x) ∀x ∈ X. We say Â ⊂ B̂ iff Â ⊆ B̂ and Â 
= B̂.

3 Correlation Coefficient for Pythagorean Fuzzy Sets

To start with, we reiterate the axiomatic description of correlation coefficient for
IFSs. Assume Â and B̂ are IFSs of X = {x1, x2, ..., xn}.

Definition 4 [29]. The correlation coefficient for Â and B̂ denoted by ρ(Â, B̂)
is a measuring function ρ : IFS × IFS → [0, 1] which satisfies the following
conditions;

(i) ρ(Â, B̂) ∈ [0, 1],
(ii) ρ(Â, B̂) = ρ(B̂, Â),
(iii) ρ(Â, B̂) = 1 if and only if Â = B̂.

On the strength of this description, we present Szmidt and Kacprzyk’s cor-
relation coefficient for IFSs and check whether it satisfies Definition 4.
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3.1 Szmidt and Kacprzyk’s Correlation Coefficient for IFSs

Now, we present the correlation coefficient for IFSs in [40] as follows. This cor-
relation coefficient completely described IFSs.

Definition 5 [40]. The correlation coefficient ρ(Â, B̂) between IFSs Â and B̂ of
X is

ρ(Â, B̂) =
Δ1(Â, B̂) + Δ2(Â, B̂) + Δ3(Â, B̂)

3
, (8)

where

Δ1(Â, B̂) =
Σn

i=1(μÂ(xi) − μÂ)(μB̂(xi) − μB̂)√
Σn

i=1(μÂ(xi) − μÂ)2
√

Σn
i=1(μB̂(xi) − μB̂)2

Δ2(Â, B̂) =
Σn

i=1(νÂ(xi) − νÂ)(νB̂(xi) − νB̂)√
Σn

i=1(νÂ(xi) − νÂ)2
√

Σn
i=1(νB̂(xi) − νB̂)2

Δ3(Â, B̂) =
Σn

i=1(πÂ(xi) − πÂ)(πB̂(xi) − πB̂)√
Σn

i=1(πÂ(xi) − πÂ)2
√

Σn
i=1(πB̂(xi) − πB̂)2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

and

μÂ =
Σn

i=1μÂ(xi)
n

, μB̂ =
Σn

i=1μB̂(xi)
n

νÂ =
Σn

i=1νÂ(xi)
n

, νB̂ =
Σn

i=1νB̂(xi)
n

πÂ =
Σn

i=1πÂ(xi)
n

, πB̂ =
Σn

i=1πB̂(xi)
n

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (10)

3.2 Numerical Verifications

Now we consider some examples to illustrate the validity of the Szmidt and
Kacprzyk’s correlation coefficient for IFSs. The examples are as in [40]. For the
sake of simplicity in computations, let

(μÂ(xi) − μÂ) = α1, (μB̂(xi) − μB̂) = β1,

(νÂ(xi) − νÂ) = α2, (νB̂(xi) − νB̂) = β2,

(πÂ(xi) − πÂ) = α3, (πB̂(xi) − πB̂) = β3,

(μÂ(xi) − μÂ)(μB̂(xi) − μB̂) = γ1,

(νÂ(xi) − νÂ)(νB̂(xi) − νB̂) = γ2,

(πÂ(xi) − πÂ)(πB̂(xi) − πB̂) = γ3.

Example I. Assume Â and B̂ are IFSs of X = {x1, x2, x3}, let

Â = {〈0.1, 0.2, 0.7
x1

〉, 〈0.2, 0.1, 0.7
x2

〉, 〈0.3, 0.0, 0.7
x3

〉},
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and

B̂ = {〈0.3, 0.0, 0.7
x1

〉, 〈0.2, 0.2, 0.6
x2

〉, 〈0.1, 0.6, 0.3
x3

〉}.

It follows that (Tables 1, 2, 3, 4, 5 and 6)

μÂ = μB̂ = 0.2, νÂ = 0.1, νB̂ = 0.2667, πÂ = 0.7, πB̂ = 0.5333.

Table 1. Computation for membership grades

X α1 β1 α2
1 β2

1 γ1

x1 −0.1000 0.1000 0.0100 0.0100 −0.0100

x2 0.0000 0.0000 0.0000 0.0000 0.0000

x3 0.1000 −0.1000 0.0100 0.0100 −0.0100

Thus Δ1(Â, B̂) =
−0.0200√

0.0200 × 0.0200
= −1.

Table 2. Computation for non-membership grades

X α2 β2 α2
2 β2

2 γ2

x1 −0.1000 −0.2667 0.0100 0.0711 0.0267

x2 0.0000 −0.0667 0.0000 0.0004 0.0000

x3 −0.1000 0.3333 0.0100 0.1111 −0.0333

Thus Δ2(Â, B̂) =
−0.0600√

0.0200 × 0.1822
= −9939.

Table 3. Computation for hesitation grades

X α3 β3 α2
3 β2

3 γ3

x1 0.0000 0.1667 0.0000 0.0278 0.0000

x2 0.0000 0.0667 0.0000 0.0044 0.0000

x3 0.0000 −0.2333 0.0000 0.0544 0.0000

Thus Δ3(Â, B̂) =
0.0000√

0.0000 × 0.0866
= 0.0000. Hence ρ(Â, B̂) = −0.6646.

Example II. Assume Â and B̂ are IFSs of X = {x1, x2, x3}, let

Â = {〈0.1, 0.2, 0.7
x1

〉, 〈0.2, 0.1, 0.7
x2

〉, 〈0.29, 0.0, 0.71
x3

〉},
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and

B̂ = {〈0.1, 0.3, 0.6
x1

〉, 〈0.2, 0.2, 0.6
x2

〉, 〈0.29, 0.1, 0.61
x3

〉}.

It follows that

μÂ = μB̂ = 0.1967, νÂ = 0.1, νB̂ = 0.2, πÂ = 0.7033, πB̂ = 0.6033.

Table 4. Computation for membership grades

X α1 β1 α2
1 β2

1 γ1

x1 −0.0967 −0.0967 0.0094 0.0094 0.0094

x2 0.0033 0.0033 0.0000 0.0000 0.0000

x3 0.0933 0.0933 0.0087 0.0087 0.0087

Thus Δ1(Â, B̂) =
0.0181√

0.0181 × 0.0181
= 1.

Table 5. Computation for non-membership grades

X α2 β2 α2
2 β2

2 γ2

x1 0.1000 0.1000 0.0100 0.0100 0.0100

x2 0.0000 0.0000 0.0000 0.0000 0.0000

x3 −0.1000 −0.1000 0.0100 0.0100 0.0100

Thus Δ2(Â, B̂) =
0.0200√

0.0200 × 0.0200
= 1.

Table 6. Computation for hesitation grades

X α3 β3 α2
3 β2

3 γ3

x1 −0.0033 −0.0033 0.00001 0.00001 0.00001

x2 −0.0033 −0.0033 0.00001 0.00001 0.00001

x3 −0.0067 0.0067 0.00004 0.00004 −0.00004

Thus Δ3(Â, B̂) =
0.00006√

0.00006 × 0.00006
= 1. Hence ρ(Â, B̂) = 1.

Limitations of Szmidt and Kacprzyk’s Correlation Coefficient for IFSs.
From Examples I and II, we observe the following drawbacks viz; (i) In Example
I, ρ(Â, B̂) /∈ [0, 1] in opposition to Definition 4. (ii) In Example II, ρ(Â, B̂) = 1
even when Â 
= B̂.

Modification of Szmidt and Kacprzyk’s Correlation Coefficient for
IFSs. To remedy some of the limitations of Szmidt and Kacprzyk’s correlation
coefficient for IFSs, we give the following definition.
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Definition 6 The correlation coefficient ρ(Â, B̂) between IFSs Â and B̂ of X is

ρ(Â, B̂) =
|Δ1(Â, B̂)| + |Δ2(Â, B̂)| + |Δ3(Â, B̂)|

3
, (11)

where Δ1(Â, B̂), Δ2(Â, B̂) and Δ3(Â, B̂) are as in Eq. (9). Applying Eq. (11) to
Examples I and II, we get

ρ(Â, B̂) = 0.6646, ρ(Â, B̂) = 1.

While ρ(Â, B̂) ∈ [0, 1] in Example I, we see that ρ(Â, B̂) = 1 even when Â 
= B̂
(Example II). This is also a limitation, because ρ(Â, B̂) = 1 iff Â 
= B̂. Now, we
extend the modified Szmidt and Kacprzyk’s correlation coefficient to PFSs to
see whether the remaining drawback will be remedied.

4 Modification of Szmidt and Kacprzyk’s Correlation
Coefficient in PFSs

The definition of correlation coefficient of PFSs is the same as that of IFSs in
Definition 4, the difference is the setting. Now, we extend the modified Szmidt
and Kacprzyk’s correlation coefficient to PFSs as follows.

Definition 7 The correlation coefficient ρ(Â, B̂) between two PFSs Â and B̂ of
X is

ρ(Â, B̂) =
|Δ1(Â, B̂)| + |Δ2(Â, B̂)| + |Δ3(Â, B̂)|

3
, (12)

where Δ1(Â, B̂), Δ2(Â, B̂) and Δ3(Â, B̂) are as in (9) with the peculiarity of π
in PFS.

Theorem 1 The function ρ(Â, B̂) is a correlation coefficient of PFSs Â and B̂.

Proof We show that condition (i) of Definition 4 holds, i.e., ρ(Â, B̂) ∈ [0, 1] =⇒
0 ≤ ρ(Â, B̂) ≤ 1. But ρ(Â, B̂) ≥ 0 since

|Δ1(Â, B̂)| ≥ 0, |Δ2(Â, B̂)| ≥ 0 and |Δ3(Â, B̂)| ≥ 0.

Now, we show that ρ(Â, B̂) ≤ 1. Recall that

ρ(Â, B̂) =
|Δ1(Â, B̂)| + |Δ2(Â, B̂)| + |Δ3(Â, B̂)|

3
.

Assume that |Δ1(Â, B̂)| = η, |Δ2(Â, B̂)| = κ and |Δ3(Â, B̂)| = λ. Then

ρ(Â, B̂) =
η + κ + λ

3
.
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Thus,

ρ(Â, B̂) − 1 =
η + κ + λ

3
− 1

=
(η + κ + λ) − 3

3

= − [−(η + κ + λ) + 3]
3

.

Thus ρ(Â, B̂) − 1 ≤ 0 =⇒ ρ(Â, B̂) ≤ 1. Hence 0 ≤ ρ(Â, B̂) ≤ 1.
Condition (ii) is trivial, so we omit its proof. Suppose Â = B̂, then

Δ1(Â, B̂) =
Σn

i=1(μÂ(xi) − μÂ)(μÂ(xi) − μÂ)√
Σn

i=1(μÂ(xi) − μÂ)2
√

Σn
i=1(μÂ(xi) − μÂ)2

= 1.

Similarly, Δ2(Â, B̂) = 1 and Δ3(Â, B̂) = 1. Therefore ρ(Â, B̂) = 1, so condition
(iii) holds. These complete the proof. ��
Remark 1 It follows that Δ1(Â, B̂), Δ2(Â, B̂) and Δ3(Â, B̂) satisfy the condi-
tions in Definition 4.

4.1 Numerical Verification of the Modified Correlation Coefficient
in PFS Context

Now, we verify the authenticity of the modified Szmidt and Kacprzyk’s corre-
lation coefficient in PFS context and compare the results with the method of
Szmidt and Kacprzyk [40] also in PFS context taking into account the peculiarity
of the hesitation margin.

Example III. Suppose Ĉ and D̂ are PFSs of X = {x1, x2, x3} for

Ĉ = {〈0.1, 0.2, 0.9747
x1

〉, 〈0.2, 0.1, 0.9747
x2

〉, 〈0.3, 0.0, 0.9539
x3

〉},

and

D̂ = {〈0.3, 0.0, 0.9539
x1

〉, 〈0.2, 0.2, 0.9592
x2

〉, 〈0.1, 0.6, 0.7937
x3

〉}.

We have

μĈ = μD̂ = 0.2, νĈ = 0.1, νD̂ = 0.2667, πĈ = 0.9678, πD̂ = 0.9023.

Since the MD and NMD in Example I are same with that in Example III,
we get Δ1(Ĉ, D̂) = −1 and Δ2(Ĉ, D̂) = −0.9939.

For the sake of simplicity in computations, let (Table 7)

(πĈ(xi) − πĈ) = α3, (πD̂(xi) − πD̂) = β3,
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Table 7. Computation for hesitation grades

X α3 β3 α2
3 β2

3 γ3

x1 0.0069 0.0516 0.00005 0.00266 0.00036

x2 0.0069 0.0569 0.00005 0.00324 0.00039

x3 −0.0139 −0.1086 0.00019 0.01179 0.00151

(πÂ(xi) − πÂ)(πB̂(xi) − πB̂) = γ3.

Thus Δ3(Ĉ, D̂) =
0.00226√

0.00029 × 0.01769
= 0.9978. Hence ρ(Ĉ, D̂) = 0.9972.

While using Szmidt and Kacprzyk’s approach, we have

Δ1(Ĉ, D̂) = −1, Δ2(Ĉ, D̂) = −0.9939 and Δ3(Ĉ, D̂) = 0.9978.

Hence ρ(Ĉ, D̂) = −0.3320.

Example IV. Suppose Ĉ and D̂ are PFSs of X = {x1, x2, x3} for

Ĉ = {〈0.1, 0.2, 0.9747
x1

〉, 〈0.2, 0.1, 0.9747
x2

〉, 〈0.29, 0.0, 0.9570
x3

〉},

and

D̂ = {〈0.1, 0.3, 0.9487
x1

〉, 〈0.2, 0.2, 0.9592
x2

〉, 〈0.29, 0.1, 0.9518
x3

〉}.

It follows that

μĈ = μD̂ = 0.1967, νĈ = 0.1, νD̂ = 0.2, πĈ = 0.9688, πD̂ = 0.9532.

Because the MD and NMD in Example II equal that in Example IV, we
get Δ1(Ĉ, D̂) = Δ2(Ĉ, D̂) = 1. For the sake of simplicity in computations, let
(Table 8)

(πĈ(xi) − πĈ) = α3, (πD̂(xi) − πD̂) = β3,

(πÂ(xi) − πÂ)(πB̂(xi) − πB̂) = γ3.

Table 8. Computation for hesitation grades

X α3 β3 α2
3 β2

3 γ3

x1 0.0059 −0.0045 0.000030 0.000020 −0.000027

x2 0.0059 0.0060 0.000030 0.000036 0.000035

x3 −0.0118 −0.0014 0.000140 0.000002 0.000017
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Thus Δ3(Ĉ, D̂) =
0.000025√

0.000058 × 0.00020
= 0.2321. Hence ρ(Ĉ, D̂) = 0.744.

The Szmidt and Kacprzyk’s approach gives the same value.

Advantages of the Modified Szmidt and Kacprzyk’s Approach. The
examples considered using Szmidt and Kacprzyk’s approach and its modified
approach in intuitionistic fuzzy context and Pythagorean fuzzy context, respec-
tively show that PFS curbs fuzziness more accurately than IFS. This can been
seen in Examples II and IV; while the correlation coefficient between two dif-
ferent IFSs gives a perfect relation contradicting the axiomatic description of
correlation coefficient, the correlation coefficient between the same IFSs gener-
alized as PFSs does not give a perfect correlation coefficient in corroboration to
the given axiomatic description of correlation coefficient. In fact, the modified
Szmidt and Kacprzyk’s approach of measuring correlation coefficient between
PFSs is very consistent in satisfying the axiomatic description of correlation
coefficient unlike the Szmidt and Kacprzyk’s approach.

5 Applicative Examples of Pattern Recognition Problems

Supposing we have m alternatives exemplified in PFSs Ii for i = 1, . . . , m, defined
in a universal set X. If there is an alternative sample exemplified in PFS J to be
associated with any of Ii. The value

ρ(Ii, J) =
∨[

ρ(I1, J), . . . , ρ(Im, J)
]
,

where ρ(Ii, J) states the grade of correlation index between (Ii, J). The maximum
of ρ(I1, J), . . . , ρ(Im, J) indicates that the alternative J is associated with any of
such Ii for i = 1, . . . , m.

Now, we consider two cases of pattern recognition in kinds of mineral fields
and classifications of building materials as in [15], to establish the application
of the modified Szmidt and Kacprzyk’s approach of correlation coefficient in
contrast to the Szmidt and Kacprzyk’s approach.

5.1 Applicative Example I

Assume we have five mineral fields characterized by six minerals represented by
five Pythgorean fuzzy sets,

K̂ = {K̂1, K̂2, K̂3, K̂4, K̂5}

in the feature, X = {x1, ..., x6} as seen in Table 9. Suppose there is another kind
of hybrid mineral, Ŝ. Our aim is to categorize Ŝ into any of K̂1, K̂2, K̂3, K̂4

and K̂5.
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Table 9. Kinds of mineral fields

Feature space

PFSs x1 x2 x3 x4 x5 x6

μK̂1
(xi) 0.739 0.033 0.188 0.492 0.020 0.739

νK̂1
(xi) 0.125 0.818 0.626 0.358 0.628 0.125

μK̂2
(xi) 0.124 0.030 0.048 0.136 0.019 0.393

νK̂2
(xi) 0.665 0.825 0.800 0.648 0.823 0.653

μK̂3
(xi) 0.449 0.662 1.000 1.000 1.000 1.000

νK̂3
(xi) 0.387 0.298 0.000 0.000 0.000 0.000

μK̂4
(xi) 0.280 0.521 0.470 0.295 0.188 0.735

νK̂4
(xi) 0.715 0.368 0.423 0.658 0.806 0.118

μK̂5
(xi) 0.326 1.000 0.182 0.156 0.049 0.675

νK̂5
(xi) 0.452 0.000 0.725 0.765 0.896 0.263

μŜ(xi) 0.629 0.524 0.210 0.218 0.069 0.658

νŜ(xi) 0.303 0.356 0.689 0.753 0.876 0.256

After applying Eq. (6), to determine the hesitation margin values we thus
find the mean values of the three parameters in Table 10.

Table 10. Mean values of μ, ν, π

PFSs μ ν π

K̂1 0.368 0.447 0.705

K̂2 0.125 0.736 0.644

K̂3 0.852 0.114 0.249

K̂4 0.415 0.515 0.685

K̂5 0.398 0.517 0.542

Ŝ 0.385 0.539 0.665

Employing Szmidt and Kacprzyk’s correlation coefficient and its modification
to find the correlation between the mineral fields K̂i (i = 1, 2, 3, 4, 5) and the
sample Ŝ in Table 9 with regards to Table 10, we obtain the values in Table 11.

Table 11. Correlation coefficient values

ρ ρ(K̂1, Ŝ) ρ(K̂2, Ŝ) ρ(K̂3, Ŝ) ρ(K̂4, Ŝ) ρ(K̂5, Ŝ)

Szmidt and Kacprzyk’s method 0.0202 0.2236 0.1902 0.6528 0.4882

Modified method 0.5893 0.2236 0.5994 0.6528 0.5724
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From Table 11, it follows that the correlation coefficient value between K̂4

and Ŝ is the greatest. Hence, we infer that the hybrid mineral Ŝ can be associated
with the mineral field K̂4. Also, the modified method of Szmidt and Kacprzyk’s
approach yields a consistent results when compare to the Szmidt and Kacprzyk’s
approach.

5.2 Applicative Example II

Here, we consider a problem of pattern recognition in classification of build-
ing materials. Suppose there are four classes of building materials symbolize by
Pythagorean fuzzy sets, Ĉ1, Ĉ2, Ĉ3, Ĉ4 in X = {x1, ..., x10}, where X is the fea-
ture space, as shown in Table 12. Assume there is another class of building mate-
rial yet to be classified, say B̂. The task is to determine which of Ĉ1, Ĉ2, Ĉ3, Ĉ4

can be associated with B̂.

Table 12. Classes of building materials

Feature space

PFSs x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μĈ1
(xi) 0.173 0.102 0.530 0.965 0.420 0.008 0.331 1.000 0.215 0.432

νĈ1
(xi) 0.524 0.818 0.326 0.008 0.351 0.956 0.512 0.000 0.625 0.534

μĈ2
(xi) 0.510 0.627 1.000 0.125 0.026 0.732 0.556 0.650 1.000 0.145

νĈ2
(xi) 0.365 0.125 0.000 0.648 0.823 0.153 0.303 0.267 0.000 0.762

μĈ3
(xi) 0.495 0.603 0.987 0.073 0.037 0.690 0.147 0.213 0.501 1.000

νĈ3
(xi) 0.387 0.298 0.006 0.849 0.923 0.268 0.812 0.653 0.284 0.000

μĈ4
(xi) 1.000 1.000 0.857 0.734 0.021 0.076 0.152 0.113 0.489 1.000

νĈ4
(xi) 0.000 0.000 0.123 0.158 0.896 0.912 0.712 0.756 0.389 0.000

μB̂(xi) 0.978 0.980 0.798 0.693 0.051 0.123 0.152 0.113 0.494 0.987

νB̂(xi) 0.003 0.012 0.132 0.213 0.876 0.756 0.721 0.732 0.368 0.000

After computing the values of HM using Eq. (6), the mean values of the PFSs
are given in Table 13.

Table 13. Mean values of μ, ν, π

PFSs μ ν π

Ĉ1 0.418 0.465 0.585

Ĉ2 0.537 0.345 0.565

Ĉ3 0.475 0.448 0.537

Ĉ4 0.544 0.395 0.390

B̂ 0.537 0.381 0.511
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By applying Szmidt and Kacprzyk’s correlation coefficient and its modifica-
tion to find the correlation between Ĉj (j = 1, 2, 3, 4) and the unknown building
material B̂ using the information in Tables 12 and 13, we obtain the results in
Table 14.

Table 14. Correlation coefficient values

ρ ρ(Ĉ1, B̂) ρ(Ĉ2, B̂) ρ(Ĉ3, B̂) ρ(Ĉ4, B̂)

Szmidt and Kacprzyk’s method −0.1932 −0.0568 0.4827 0.9802

Modified method 0.1932 0.1098 0.4827 0.9802

From Table 14, it is observed that the correlation coefficient value between
the building material Ĉ4 and the unknown building material B̂ is the greatest.
So, it is meet to say that the unclassified building material B̂ belongs to Ĉ4.
Although the results of Szmidt and Kacprzyk’s method and its modification
give the same recognition, the first two correlation coefficient values of Szmidt
and Kacprzyk’s method do not satisfy the axiomatic definition of correlation
coefficient. But, the modified method of Szmidt and Kacprzyk’s approach yields
a valid/reliable results when compare to the Szmidt and Kacprzyk’s approach.

6 Conclusions

In this paper we have modified Szmidt and Kacprzyk’s correlation coefficient
for IFSs, extended it to Pythagorean fuzzy context and used it to determine
problems of pattern recognition. The method of computing correlation coeffi-
cient between IFSs proposed by Szmidt and Kacprzyk was reviewed, and it was
discovered that; (i) the correlation coefficient violated the axiomatic descrip-
tion of correlation coefficient for IFSs, (ii) the correlation coefficient does not
give a reliable result because it asserted that two IFSs have a perfect relation
although the two IFSs are not equal in crass opposition to reality (see Example
II). After modifying the approach in [40] and tested using IFSs, we found that
while the first limitation was resolved, the second remains. Then, the modified
Szmidt and Kacprzyk’s approach was extended to Pythagorean fuzzy context
since PFS is more reliable than IFS. After authenticating the validity of the
modified Szmidt and Kacprzyk’s approach in Pythagorean fuzzy environment,
it was found to completely overcome the hitherto limitations. Mathematically,
the modified Szmidt and Kacprzyk’s approach in Pythagorean fuzzy setting was
also proven to be a reasonable correlation coefficient. Finally, some pattern recog-
nition problems were discussed via the proposed correlation coefficient measure.
Incorporating this approach in Pythagorean fuzzy domain with clustering algo-
rithm could be a resourceful research area for future consideration.
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Abstract. The flapping wing micro-air vehicle (FWMAV) is a new type
of aerial vehicle which uses mechanical structure to simulate bird flight.
The FWMAV possesses the characteristics of small size, light weight,
high flight efficiency and no occupation of runway. Firstly, we calculate
the aerodynamic lift and drag on the wing surface. Then, through the
analysis and summary of the existing FWMAV control technology, the
attitude control model of the aerial vehicle is obtained. Besides, the con-
trol system based on STM32F103 is designed, which is equipped with a
communication module and thus controls the position and flight attitude
through the control signals received wirelessly. Finally, the feasibility of
the system is verified by MATLAB and Simulink simulation.

Keywords: Flapping wing micro-aerial vehicle (FWMAV) ·
STM32F103 · Controller · Position and attitude

1 Introduction

Recently, according to the unique flight mode of insects and humming-
birds, researchers have successfully developed flapping wing micro-aerial vehi-
cle (FWMAV), in order to serve human beings better [1]. Bionic research shows
that flapping wing flight is better than fixed wing and rotor flight for micro-aerial
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vehicles with characteristic size equivalent to birds or insects [2]. Compared with
fixed wing and rotor aerial vehicle, FWMAV has the main characteristics of inte-
grating lifting, hovering and propulsion functions into a flapping wing system,
which has strong maneuverability and flexibility [3]. At low Reynolds number, it
is better than fixed wing and rotor aircraft, and more suitable for miniaturization
[4]. The strengths of such aerial vehicles are small size, low energy consumption,
and great flexibility during the flight [5]. Furthermore, they possess excellent
performances about hovering as well as the low altitude flight and are widely
used in defense and civil fields. Thus, advanced FWMAV technologies draw wide
attention from researchers around the world [6].

At present, some remarkable achievements have been made in the research of
the position and attitude of the FWMAV [7]. More and more advanced technolo-
gies have been introduced into the position and attitude research of FWMAV,
such as widely used neural networks, adaptive controllers, fuzzy control and so on
[8–12]. At the same time, distributed control and effective mathematical model
prevailing in other fields provide a reference for FWMAV research [13–15]. In
the actual production process, it is difficult to fully achieve the flapping action
of insects or birds because of the weight of the aerial vehicle. Therefore, in the
design of the micro flapping mechanism, the flapping action on the basis of simu-
lating the flight of birds is simplified. Furthermore, this paper designs a controller
with STM32F103 as the core. The controller has a wireless transceiver module,
which connects the mobile application (APP) with the esp8266WiFi module to
obtain the real-time flight status of the aircraft at any time. The correspond-
ing control instructions are sent through the mobile APP, so as to realize the
attitude and position control of the FWMAV.

2 Aerodynamic Lift and Drag

At present, the unsteady aerodynamic theory under low Reynolds coefficient is
not fully mature, so we can only use the experimental method for reference to
study the aerodynamic force of FWMAV [16]. In order to facilitate the analysis,
the coordinate system as shown in Fig. 1 is set.

Figure 1(a) is the frame coordinate system. Specifically, the origin of coor-
dinates is fixed at the center of gravity of the fuselage; Fig. 1(b) is a rotating
coordinate system set by the right wing of the body as the research object,
in which plane XOY and X́ÓÝ coincide. The delayed stall mechanism is that
birds will form leading edge vortex attached to the wing surface in the process
of flutter, which can increase the lift coefficient and lift thrust [17]. The rotating
circulation effect refers to the torsion of the wing around the axis in the span
direction while flapping [18]. In [19], the forces produced by the instantaneous
aerodynamic delay stall and rotation cycle are obtained as

Ft = Ct(α(t))ρφ̇(t)2
∫ R

0

c(r)r2 dr/2,

Fn = Cn(α(t))ρφ̇(t)2
∫ R

0

c(r)r2 dr/2 + Crotρφ̇(t)
∫ R

0

c(r)r2 dr/2,

(1)
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(b) Rotating coordinate system.

Fig. 1. Aerodynamic diagram of the FWMAV.

where Ft is the tangential force parallel to the plane of the wing; Fn is the normal
force perpendicular to the plane of the wing; ρ is the air density; c(r) is the wing
chord length; φ(t) is the flutter angle; angle of attack α(t) = π/2 − ϕ with ϕ
being the rotation angle; R is the wing length; the dimensionless force coefficients
Ct(α(t)) and Cn(α(t)) are functions of attack angle α, of which Ct(α(t)) =
0.4 cos2(2α) for 0 ≤ α ≤ π/4 and otherwise Ct(α(t)) = 0, and Cn(α(t)) =
3.4 sin α in view of most insects; Crot = π. Moreover, by observing the movement
of insect wings, the flapping angle φ(t) of FWMAV and the rotation angle ϕ can
be expressed as follows:

φ = φmax cos(2πft),
ϕ = ϕmax cos(2πft − θ),

where ϕmax ∈ [0, π/2] is the flapping amplitude; φmax denotes the rotation
angle amplitude; θ is the rotation phase angle; f is the flapping frequency. Sub-
sequently, the aerodynamic lift and drag caused by the right wing motion are
studied. The aerodynamics are divided into lift FL along the Z axis and resis-
tance FD along the X axis, which are calculated as follows:

FL(t) = Fn cos α − Ft sinα,

FD(t) = Fn sin α + Ft cos α.

In the body coordinate system XOY Z, the lift along Z axis is represented by
FLZ(t) = 2FL(t). Decompose the drag and then the drag components of the two
wings along the Y axis are formulated as FDY (t) = 2FD(t) cos φ with that along
the X axis are offset. The above analysis shows that when the flapping surface
is horizontal, the wings of the bionic micro flapping aerial vehicle are flapping
on the inclined plane when flying. Assuming that the angle between the flapping
surface and the horizontal plane is shown in Fig. 2, lift F́L and resistance F́D of
the flapping wing can be obtained:
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F́L(t) = FLZ cos γ + FDY sin γ,

F́D(t) = −FLZ sin γ + FDY cos γ.
(2)

Fdy

Fd

Flz

Fl

G

Fig. 2. Tilting and flapping of FWMAV.
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Fig. 3. Schematic diagram of attitude
angle.

3 Attitude Control of FWMAV

To build the basis for FWMAV attitude control, attitude angle is introduced.
The attitude control model is also given.

3.1 Control Strategy

The dynamic system of FWMAV not only has the characteristics of nonlin-
earity, strong coupling and time-varying, but also has many uncertain factors,
which brings great difficulties to the research of control technology. In the design
of fuzzy controller, developing a control algorithm is essential [20]. In [21], an
adaptive fuzzy logic controller is proposed to solve the problem of spacecraft
attitude control. The main feature is that there is no need for a clear model
to explain the control relationship between output and input. Li proposed an
adaptive fuzzy controller for a class of nonlinear multiple-input-multiple-output
(MIMO) systems. Such controller has stability and good tracking performance
[22]. Yu further designed an adaptive fuzzy PID controller [23]. Attitude control
is always the most important and widely used control method in aerial vehicle
control. Pitch angle, yaw angle and roll angle are collectively referred to as the
attitude angle of the body. Therefore, in order to describe the motion attitude
of the aircraft, the attitude angle is introduced, as shown in Fig. 3.
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3.2 Attitude Control Model

The angular velocity of the aerial vehicle around the center of mass should be
equal to the vector sum of the angular velocity of the aerial vehicle around each
axis:

ω = ψ̇ + ϑ̇ + γ̇, (3)

where ω is the angular velocity of the aircraft around the center of mass and
ω = [ωx ωy ωz]T with the symbol T being the transpose operation of a vector
or a matrix; ϑ̇ is the pitch angular velocity and ϑ̇ = [0 0 ϑ̇]T; ψ̇ is the yaw
rate and ψ̇ = [0 ψ̇ 0]T; γ̇ is the roll angle speed and γ̇ = [γ̇ 0 0]T. Further,
the components of the rotational angular velocity ω along each axis of the body
coordinate system are ωx, ωy and ωz respectively:
⎡
⎣ωx

ωy

ωz

⎤
⎦ = L(ϑ)L(γ)

⎡
⎣0

0
ψ̇

⎤
⎦ + L(γ)

⎡
⎣0

ϑ̇
0

⎤
⎦ +

⎡
⎣γ̇

0
0

⎤
⎦

=

⎡
⎣1 0 0

0 cos γ sin γ
0 − sin γ cos γ

⎤
⎦

⎡
⎣ cos ϑ 0 sinϑ

0 1 0
− sin ϑ 0 cos ϑ

⎤
⎦

⎡
⎣0

0
ψ̇

⎤
⎦ +

⎡
⎣1 0 0

0 cos γ sin γ
0 − sin γ cos γ

⎤
⎦

⎡
⎣0

ϑ̇
0

⎤
⎦ +

⎡
⎣γ̇

0
0

⎤
⎦

=

⎡
⎣ ψ̇ sin ϑ + γ̇

ψ̇ cos ϑ sin γ + ϑ̇ cos γ

ψ̇ cos ϑ cos γ − ϑ̇ sin γ

⎤
⎦ =

⎡
⎣1 0 sin ϑ

0 cos γ cos ϑ sin γ
0 − sin γ cos ϑ cos γ

⎤
⎦

⎡
⎣γ̇

ϑ̇

ψ̇

⎤
⎦ ,

(4)

Transform Eq. (4) to obtain
⎡
⎣ϑ̇

ψ̇
γ̇

⎤
⎦ =

⎡
⎣1 − sin γ tan ϑ − cos γ tan ϑ

0 cos γ − sin γ
0 sin γ/ cos ϑ cos γ/ cos ϑ

⎤
⎦

⎡
⎣ωx

ωy

ωz

⎤
⎦ . (5)

The above formula is the attitude control model of the aerial vehicle, which
establishes the corresponding relationship between the rotation angular velocity
and the attitude angle of the aerial vehicle in flight.

3.3 Space Description of FWMAV Attitude Control System

Since the aerial vehicle is symmetrical, its product of inertia is zero. Newton-
Euler principle is used to establish the dynamic equation. According to the
moment of momentum theorem, we can get:

⎡
⎣Mx

My

Mz

⎤
⎦ =

⎡
⎣Ixdωx/dt

Iydωy/dt
Izdωz/dt

⎤
⎦ +

⎡
⎣ωyωz(Iz − Iy)

ωxωz(Ix − Iz)
ωxωy(Iy − Ix)

⎤
⎦ , (6)

where Mx, My and Mz are the closing external torque of the aerial vehicle in the
rolling, yawing and pitching directions; Ix, Iy and Iz are the moment of inertia
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of the aerial vehicle on the axes of the body coordinate system; dωx/dt, dωy/dt
and dωz/dt is the component of the rotational angular acceleration vector on
each axis of the body coordinate system. In addition, according to formula (6),
we can get: ⎡

⎣dωx/dt
dωy/dt
dωz/dt

⎤
⎦ =

⎡
⎣(Mx − ωyωz(Iz − Iy))/Ix

(My − ωxωz(Ix − Iz))/Iy
(Mz − ωxωy(Iy − Ix))/Iz

⎤
⎦ (7)

Further, the space description of FWMAV attitude control system is
introduced: {

ẋ = f(x) + g(x)u,

y = [ϑ ψ γ]T,
(8)

where f(x) = [ϑ ψ γ dωx/dt dωy/dt dωz/dt]T; x = [ϑ̇ ψ̇ γ̇ ωx ωy ωz]T is the
state vector; Mwx, Mwy, Mwz are the average aerodynamic moment of the wing
in a beat period, and u = [Mwx Mwy Mwz]T is the control input vector, the
details of parameters refer to [24],

g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

1/Ix 0 0
0 1/Iy 0
0 0 1/Iz

⎤
⎥⎥⎥⎥⎥⎥⎦

.

4 FWMAV Flight Control System Design and Attitude
Control Method

In this section, the main components of the FWMAV control system and the
attitude control method used in this paper are introduced.

4.1 Overall Design Scheme

The microprocessor STM32F103 controls the direct current (DC) motor and
steering engine according to the real-time flight status of the aerial vehicle and
the control command from the mobile APP, so as to realize flapping flight. The
control system block diagram is shown in Fig. 4.

4.2 Actuator

The actuator is mainly composed of DC motor and steering engine. The flapping
of aerial vehicle wings is mainly realized by DC motor. The speed of DC motor is
adjusted by changing the duty cycle of input signal, so as to change the flapping
frequency of aerial vehicle. The driving circuit is shown in Fig. 5. The steering
gear is a position servo actuator suitable for use in a control system that requires
constant change of angle. This paper uses the steering gear to change the force
on the body, so as to realize the attitude control of the FWMAV.
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Fig. 4. Flight control system block diagram.
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4.3 Communication Module

In the control system, esp8266WiFi module is used for communication. WiFi
technology is selected in wireless communication because of its long signal trans-
mission distance. The main function of the communication module is that the
control command sent by the mobile APP is transmitted to the microprocessor
through the WiFi module, so as to control the flight status of the FWMAV. The
circuit diagram of the esp8266WiFi communication module is shown in Fig. 6.

4.4 Attitude Control Method

In order to achieve different flight attitudes during FWMAV flight, PID con-
trol with simple structure and stable performance is adopted in this paper. We
propose the control rule of PID controller as follows:

u(t) = Kp(e(t) +
1
Ti

∫ t

0

e(t) dt + Td
de(t)
dt

), (9)

Where u(t) is the output of the controller; Kp is the proportional coefficient;
e(t) is the deviation between the system output and the system output; Ti is the
integral time constant; Td is the differential time constant.

The control law of attitude angle can be written as

e(k) = εd(k) − ε(k), (10)
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Fig. 7. The simulation control curves of yaw angle, pitch angle and roll angle are shown
in Figs. 7(a), 7(b) and 7(c) respectively. (Color figure online)

δ(k) = Kpe(k) + Ki

k∑
n=0

e(n) + Kd(e(k) − e(k − 1)) + Kqq(k), (11)

where Ki is the integral coefficient; Kd is the differential coefficient; Kq is the
angular velocity gain of the attitude; εd is the expected value of the attitude
angle; ε is the actual value of the attitude angle; q is the angular velocity of the
actual attitude angle.

5 Simulation Study

To obtain better simulation results, after many experiments, the final control
parameters are selected as Kp = 43, Kd = 0.0001. The initial values of the
attitude angles are 0◦. The expected values of yaw angle, pitch angle and roll
angle are set to 1◦, 2◦ and 3◦ respectively. The simulation time is set to 3000 s.
It is assumed that the FWMAV in this paper needs to keep the flapping wing
aerial vehicle level flying at a pitch angle of. The deviation between the actual
pitch angle and the expected pitch angle is taken as the input of PID controller,
and the output is the deflection of the tail. The simulation results are shown in
Fig. 7(a), 7(b) and 7(c).
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There are two curves in each figure. The red dashed line represents the
expected value of the attitude angle, and the blue implementation represents
the actual value of the attitude angle. When the flight attitude of the aerial
vehicle changes, the system can respond in time and make the actual value of
attitude angle gradually equal to the expected value. Therefore, this system can
effectively control the FWAMV to fly smoothly.

6 Conclusion

In this paper, we have established the ground coordinate system and the body
coordinate system, and have described the space attitude of the aerial vehicle
by combining the ground coordinate system and body coordinate system, in
order to control and study the position and attitude of FWMAV. Then, we have
presented the attitude control model and state space description of FWMAV.
Furthermore, the control system based on STM32 has been designed and the
flight control board of the aerial vehicle has been made to realize real-time control
of the aerial vehicle. We introduced the attitude control method of FWMAV.
Finally, the simulation of attitude angle by MATLAB and Simulink has verified
the feasibility of the system.
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Abstract. With respect to a two-level supply chain which is comprised of a core
retailer and a capital-constrained manufacturer under the background of digital
economy, this paper use the Stackelberg game model and data simulation analysis
to investigated the influence of the third-party partial guarantee on the decision-
making of accounts receivable financing in the supply chain. With the consid-
eration of retailer’s financing risk, this paper points out that the guarantee cost
undertaken by the manufacturer can reduce the financing interest rate provided
by the financial institution and improves the loan-to-value ratio of the financial
institution. Meanwhile, retailer under-taken the guarantee cost will reduce the
double marginalization effects to the supply chain financing operation, and then
promoting the coordination of the supply chain. When the third-party guarantee
company is introduced to the supply chain accounts receivable financing, the opti-
mal decision is that the guarantee cost is undertaken by the retailer. Finally, the
simulation analysis is conducted to verify the results of this research.

Keywords: Financial engineering · Big data · Supply chain finance · Simulation

1 Introduction

Capital constraint is a key factor that commonly affects firms’ operations, especially for
the development of small- and medium-sized enterprises (SMEs). Due to the appearance
and development of supply chain finance, financing of SMEs has gained a new driving
force to address their financing difficulty. Specifically, due to easily diffusible and struc-
tured, accounts receivable financing has obtained a rapidly development in recent years.
The total net amount of accounts receivable of industrial enterprises in China was 14.34
trillion yuan in August 2018. However, there also appeared a variety of defaults and loan
frauds. For example, the 61 transactions betweenChengxing andNuoya in 2019 involved
around 3.4 billion yuan of accounts receivable in total. Facts showed that Chengxing
fabricated the contract with companies, including JD.com, thus resulting in defaults of
Nuoya. To discover the financing risk control strategies that should be taken to guarantee
supply chain accounts receivable financing and minimize the losses of the supply chain
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finance market, this paper studies the impact of the third-party guarantee on the accounts
receivable financing.

As a typical supply chain financingmethod, many literatures focused on the accounts
receivable financing [1, 2]. Koch gives an economic model based on inventory and
accounts receivable financing method [3]. Burman and Dunham put forward the oper-
ation process and monitoring of financing based on inventory and accounts receivable,
respectively [4, 5]. Poe introduced that asset-based financing is an important realization
model of the logistics finance [6]. Czternasty and Mikołajczak shows that non-recourse
factoring plays a positive role in improving the financial structure of SMEs [7]. Lu et al.
investigated two supply chain finance models with partial credit guarantee provided by
a third-party or a supplier when a retailer borrows from a bank [8]. However, all these
literatures do not research the effect of loan-to-value ratio to the financing model.

As to scholars studying risk management of supply chain finance, scholars include
Kouvelis, Cai Olson, etc., have studied risk control of supply chain finance from the
perspective of the bankruptcy risks, credit rating and tax [9–13]. Nevertheless, above
research focuses on bank credit and trade credit. So far, little attention has been paid to the
impact of guarantee on the supply chain financial risk management. Lai and Yu analyzed
the guarantee pricing, considering the bankruptcy risk and preferred debt [14]. Cossin
and Hricko assumed endogeneity of breach of contract, and discussed the loan to value
and the discount rate of the pledge [15]. Gan et al. established the credit line decision-
making model of banks resorting to downside risk avoidance [16]. Yan et al. found that
some credit guarantee contracts can realize maximization of profits and coordination of
channels in the supply chain finance system [17].

As to the accounts receivable model of the supply chain finance, the above scholars
mainly focused on the optimal decision-making and then to optimize the benefits of the
supply chain through the adjustment of the guarantee coefficient, loan rate, financing
limit, etc. However, only a few literatures have investigated the influence of external
guarantee enterprises on the supply chainfinancingbehaviors. In response to this research
gap, this paper studies a two-level supply chain comprised of a core retailer and a
capital-constrained manufacturer through model and simulation analysis. According to
the retailer’s default probability, this paper established a Stackelberg game model to
analyze the influence of the third-party partial guarantee on the decision-making of
accounts receivable financing in the supply chain.

The remainder of this paper is organized as follows. Section 2 discusses the notations,
assumptions, and sequence of events. Section 3 provides analysis of the financing model
with third-party guarantee. Section 4 enumerates the impact of third-party guarantee
on the financing model and conducts some simulations. Finally, Sect. 5 presents the
conclusions.

2 Model

This paper researched a two-level supply chain which is comprised of a core retailer
and a capital-constrained manufacturer. The retailer purchases single products from the
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manufacturer at certain wholesale price to a random market and delays the payment.
After providing goods for the retailer, the capital-constrained manufacturer does not
have adequate funds to support its own purchase for further manufacturing. As a result, it
needs to borrow funds fromfinancial institutions, such as banks and factoring companies,
using receipts of accounts receivable. Considering the guarantee provided by the third-
party guarantee company for the financing of the accounts receivable, the guarantee
fees should be undertaken by the manufacturer or the retailer. Once the manufacturer
(retailer) fails to pay the loan interest on the due date, the financial institutions have the
right to ask for compensations from the company providing the guarantee.

2.1 Notations and Assumptions

Notations are summarized in Table 1 below.

Table 1. Parameters and variables.

Parameters Decision variables

p: Market selling price per unit product w: Wholesale price

c: Manufacturing cost per unit product q: Order quantity

θ: loan-to value ration of accounts receivable to
be paid by the financial institution, where
θ ∈ (0, 1)

r: Financing interest rate of the financial
institution

α: Probability of retailer’s breach of contract
(referring to not paying the loans)

Function

Abbreviations

rf : Average rate of return of the financing
market (under the condition of risk-free rate)
rf ∈ (0, 1)

R: Retailer

D: Random market demand M : Manufacturer

f (D), F(D): Probability density function and
cumulative distribution function of the random
market demand

FI : Financial institution

SC: Supply chain

h(D), H (D): Increase failure rate (IFR) and
increasing generalized failure rate (IGFR)

h(D) = f (D)
1−F(D)

, H (D) = Df (D)
1−F(D)

0, 1, 2: Refer to no guarantee, guarantee cost
undertaken by the manufacturer, and
guarantee cost undertaken by the retailer

This study’s assumptions are as follows.

(1) The retailer faced the randommarket demand, whose probability density function is
f (D) and cumulative distribution function is F(D), and the randommarket demand
is consistent with the nature of the increasing generalized failure rate (IGFR);

(2) The supplier has limited liability, and the internal capital level after providing goods
for the retailer is zero;
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(3) The information is symmetric in financing, and all financing participants are risk-
neutral;

2.2 Sequence of Events

The sequence of events is summarized in Fig. 1, Fig. 2, and Fig. 3 below, respectively.
Figure 1 summarized the supply chain accounts receivable financing flow chart when
there is no external guarantee. Figure 2 shows the decision sequence when the manu-
facturer covering the guarantee cost. Figure 3 shows the sequence of events when the
retailer covering the guarantee cost.

Fig. 1. Accounts receivable financing flow chart (without the guarantee)

Fig. 2. Accounts receivable financing flow chart (manufacturer undertaken the guarantee cost)

3 Financing Model with Third-Party Guarantee

3.1 Benchmark-Without Guarantee (Issue 0)

Thefinancingdecision-making sequencewhen there is no third-party guarantee company
provides partial credit guarantee (PCG) is shown in Fig. 1. First of all, the manufacturer
announces thewholesale pricew0. Then the retailer decides the order quantity q0. Finally,
the financial institution announces its financing interest rate r0. We proceed backwards
to derive the optimal decisions.
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Fig. 3. Accoutns receivable financing flow chart (retailer undertaken the guarantee cost)

First, the problem of financial institution can be used to solve following problem:

θ0w0q0
(
1 + rf

) = (1 − α)(w0q0 + w0q0r0 − (1 − θ0)w0q0) + αw0q0r0 (1)

Second, the retailer decides its optimal order quantity q0 based on Eq. (2):

max
q0≥0

�R
0 (q0) = pED min{D, q0} − w0q0(1 − α) (2)

Finally, the manufacturer decides the wholesale price w0 based on Eq. (3):

max
w0≥c

�M
0 (w0) = θ0w0q0 + (1 − α)(1 − θ0)w0q0 − cq0 − w0q0r0 (3)

We derive Lemma 1 below by integrating Eq. (1), (2), and (3).

Lemma 1: The optimal decisions are as follows:

(1) The optimal order quantity is:
(
p(1−α−θ0rf )

1−α

)(
F̄

(
q∗
0

) − q∗
0f

(
q∗
0

)) = c;

(2) The optimal wholesale price is: w∗
0 = p

1−α
F̄

(
q∗
0

)
;

(3) The optimal financing interest rate is: r∗0 = θ0
(
rf + α

)
.

(Hereinafter, for all proofs please refer to the Appendix. In addition, we use
superscript “*” for the final optimal solutions).

Proposition 1: Under the condition of no guarantee, if θ0 remains unchanged, then
α ↑⇒ w∗

0 ↑, q∗
0 ↓, r∗0 ↑. If α remains unchanged, then θ0 ↑⇒ w∗

0 ↑, q∗
0 ↓, r∗0 ↑.

Proposition 1 reveals that the financing interest rate of the financial institutions, such
as banks and factoring companies, will increase correspondingly when the retailer’s
probability of default increases. When financial institutions such as banks show a grow-
ing willingness to the loan-to-value ratio, they will improve their financing interest rate
correspondingly. In the process of accounts receivable financing, the manufacturer usu-
ally expects the financial institution to provide a higher loan-to value, thus reduce their
financing risks that brought by the retailer’s default. But Proposition 1 points out that a
high loan-to-value ratio will cause a high wholesale price, thus resulting in the decrease
of the order quantity and the supply chain’s operation efficiency. The rationale behind
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Proposition 1 is the financial institution will set a higher financing interest rate to avoid
financing risks when providing a higher loan-to-value ratio. Then will improve the man-
ufacturer’s financing. Hence, the manufacturer will set a high wholesale price and the
retailer will decide a lower order quantity. Therefore, the financing efficiency of supply
chain will be reduced. Besides, Proposition 1 also indicates that the financing efficiency
and the operation efficiency of the supply chain will both fall when the retailer’s default
possibility increases.

3.2 Manufacturer Undertaken the Guarantee Cost (Issue 1)

When the guarantee cost is undertaken by the manufacturer, the financing decision-
making flow chart is shown in Fig. 2. First of all, the manufacturer announces the
wholesale pricew1. Second, the retailer decides the order quantity q1. Third, the financial
institution announces the financing interest rate r1. Finally, the guarantee announces its
guarantee coefficient λ1 and the guarantee cost rate β1. We also proceed backwards to
derive the optimal decisions.

First, the third-party guarantee’s problem can be formulated as Eq. (4):

β1w1q1 = λ1w1q1α (4)

Then, the problem of financial institution can be used to solve following problem:

θ1w1q1
(
1 + rf

) = (1 − α)(w1q1 + w1q1r1 − (1 − θ1)w1q1) + α(w1q1r1 + λ1w1q1)
(5)

Next, the retailer decides its optimal order quantity q1 based on Eq. (6):

max
q1≥0

�R
1 (q1) = pED min{D, q1} − w1q1(1 − α) (6)

At last, the manufacturer decides the wholesale price w1 based on Eq. (7):

max
w1≥c

�M
1 (w1) = θ1w1q1 + (1 − α)(1 − θ1)w1q1 − cq1 − w1q1r1 − β1w1q1 (7)

We derive Lemma 2 below by integrating Eq. (4), (5), (6) and (7).

Lemma 2: When the third-party guarantee cost is undertaken by the manufacturer, the
optimal decisions of each part are as follows:

(1) The optimal order quantity is:
(
p(1−α−θ1rf )

1−α

)(
F̄

(
q∗
1

) − q∗
1f

(
q∗
1

)) = c;

(2) The optimal wholesale price is: w∗
1 = p

1−α
F̄

(
q∗
1

)
;

(3) The optimal financing interest rate is: r∗1 = θ1
(
rf + α

) − αλ1;
(4) The guarantee cost rate and guarantee coefficient satisfies: β1 = λ1α.

Lemma 2 points out that the guarantee coefficient and guarantee cost rate of the third-
party guarantee will not affect the optimal decisions of the manufacturer and the retailer
when the manufacturer undertaken the guarantee cost. As shown in Proposition 2 below,
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this is due to that the increase of the guarantee coefficient will lead to the decrease of
the financial institution’s financing interest rate or increase of the financial institution’s
loan-to-value ratio when there is third-party providing the guarantee. It will cover the
manufacturer’s guarantee cost. Lemma 2 also points out that both the guarantee cost and
guarantee coefficient are consistent with the retailer’s default probability. It means that
the higher retailer’s default probability, the higher guarantee coefficient of the third-party
guarantee and the guarantee cost.

Proposition 2: When the third-party guarantee cost is undertaken by the manufacturer,
if α and θ1 remains unchanged, then λ1 ↑⇒ r∗1 ↓, w∗

1 and q∗
1 remains unchanged. If α

and the optimal financing interest rate r∗1 remain unchanged, then λ1 ↑⇒ θ1 ↑, w∗
1 ↑

and q∗
1 ↓.

Proposition 2 points out that, when the third-party guarantee company provides
guarantee for accounts receivable financing and the guarantee cost is undertaken by
the manufacturer, the third-party guarantee will reduce the financing interest rate of
the financial institution when the loan-to-value ratio remains unchanged. But it has no
effect to the manufacturer or the retailer. The rationale behind this is as follows. The
decrease of the financing interest rate caused by guarantee will decrease the manufac-
turer’s financing cost, then the manufacturer will maintain its optimal wholesale price
and the retailer maintain its optimal order quantity. If the financing interest rate of the
financial institution remains unchanged, then the manufacturer undertaken the guaran-
tee cost can improve the financial institution’s loan-to-value ratio, and the manufacturer
can maintain a high wholesale price. It is interesting that the manufacturer’s profits will
increase with the guarantee coefficient even the manufacturer undertaken the guarantee
cost. This is because that a higher guarantee coefficient can reduce the financing interest
rate or increase the loan-to-value ratio, then it can offset the manufacturer’s guarantee
cost and improve the manufacturer’s profits.

3.3 Retailer Undertaken the Guarantee Cost (Issue 2)

The sequence of events under this issue is shown in Fig. 3. First of all, the manufacturer
announces the wholesale price w2. Second, the retailer decides the order quantity q2.
Third, the financial institution announces the financing interest rate r2. Finally, the third-
party guarantee announces its guarantee coefficient λ2 and the guarantee cost rate β2.
We also proceed backwards to derive the optimal decisions.

First, the third-party guarantee’s problem can be formulated as Eq. (8):

β2w2q2 = λ2w2q2α (8)

Then, the problem of financial institution can be used to solve following problem:

θ2w2q2
(
1 + rf

) = (1 − α)(w2q2 + w2q2r2 − (1 − θ2)w2q2)

+ α(w2q2r2 + λ2w2q2) (9)

Next, the retailer decides its optimal order quantity q2 based on Eq. (10):

max
q2≥0

�R
2 (q2) = pED min{D, q2} − w2q2(1 − α) − β2w2q2 (10)
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Finally, the manufacturer decides its wholesale price w2 based on Eq. (11):

max
w2≥c

�M
2 (w2) = θ2w2q2 + (1 − α)(1 − θ2)w2q2 − cq2 − w2q2r2 (11)

Lemma 3: When the third-party guarantee cost is undertaken by the retailer, the optimal
decisions of each part are as follows:

(1) The optimal order quantity is:
(
p(1−(1−λ2)α−θ2rf )

1−(1−λ2)α

)(
F̄

(
q∗
2

) − q∗
2f

(
q∗
2

)) = c;

(2) The optimal wholesale price is: w∗
2 = p

1−(1−λ2)α
F̄

(
q∗
2

)
;

(3) The optimal financing interest rate is: r∗2 = θ2
(
rf + α

) − αλ2;
(4) The guarantee cost rate and guarantee coefficient satisfies: β2 = λ2α.

Different from the manufacturer undertaken the guarantee cost, Lemma 3 points out
that the retailer’s undertaken the guarantee cost will affect the optimal wholesale price
and order quantity, which is shown in Proposition 3 below:

Proposition 3: When the third-party guarantee cost is undertaken by the retailer, and
if α and θ2 remains unchanged, then λ2 ↑⇒ w∗

2 ↓, q∗
2 ↑, r∗2 ↓. If α and the optimal

financing interest rate r∗2 remain unchanged, then λ2 ↑⇒ θ2 ↑, w∗
2 ↓, q∗

2 ↑.
When the guarantee cost is undertaken by the retailer, Lemma 3 and Proposition

3 reveals that the financing interest rate of the financial institution will decrease and
the loan-to-value ratio will increase when the guarantee coefficient of the third-party
guarantee increase. Specially, Different from the manufacturer undertaken the guarantee
cost, the guarantee cost undertaken by the retailer will decrease the manufacturer’s
wholesale price, and then increase the retailer’s order quantity. Due to the retailer’s
default risk is the main source of financing risk in the process of accounts receivable
financing, retailer undertaking the guarantee cost can better avoid the financing risk and
improve the supply chain financing and supply chain operation efficiency.

4 Impact of Third-Party Guarantee and Simulation Analysis

4.1 Impact of Third-Party Guarantee: Model Analysis

Above we analyzed the optimal decisions of supply chain under the issue that without
guarantee, manufacturer undertaken the guarantee cost and retailer undertaken the guar-
antee cost. Then we analyze how the guarantee cost affects the supply chain accounts
receivable financing.

Proposition 4: If λ1 = λ2 = λ ∈ (0, 1), θ0 = θ1 = θ2 = θ ∈ (0, 1), then r∗0 > r∗1 =
r∗2 , w∗

0 = w∗
1 > w∗

2, and q∗
0 = q∗

1 < q∗
2. Besides, �

R
0 = �R

1 < �R
2 , �

M
0 = �M

1 > �M
2 ,

�SC
0 = �SC

1 < �SC
2 .

Proposition 4 reveals that manufacturer or retailer undertaken the guarantee cost
can reduce the financing interest rate when the guarantee coefficient of the third-party
guarantee and the loan-to-value ratio of the financial institution keep unchanged, but
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has different effects to the financing decisions. When the manufacturer undertaken the
guarantee cost, the manufacturer’s financing costs will decreased due to the decrease
of financing interest rate. Nevertheless, since the financing guarantee cost is undertaken
by the manufacturer, the optimal wholesale price remains unchanged. When the retailer
undertaken the guarantee cost, the financing interest rate keeps unchanged. Proposition 4
points out that the guarantee cost undertaken by the retailer can reduce themanufacturer’s
wholesale price, then improve its own profits and supply chain operation efficiency.
The rationale behind this is as follows. When the guarantee cost is undertaken by the
retailer, the expected profits and financing interest rate of the financial institution remains
unchanged, but the third-party guarantee reduced the manufacturer’s financing risk and
financing cost. Consequently, the manufacturer will set a lowwholesale price to improve
the supply chain operation efficiency.

Proposition 4 indicates that the manufacturer undertaken guarantee cost has low
effect to supply chain financing efficiency when the third-party guarantee is introduced
to provide guarantee in the process of accounts receivable financing. However, retailer
undertaken guarantee cost can reduce manufacturer’s financing risk and cost, and then
improving the supply chain financing and operation efficiency. Therefore, it is important
to let the retailer pay the guarantee cost to the third-party guarantee in the process of
the supply chain accounts receivable financing. Then the financing risk and cost will
decrease, and then improve financing risks.

4.2 Simulation Analysis

Concerning the issue that without the third-party guarantee (issue 0), we conduct Case 1
below for simulation. All parameters are summarized from real company’s operations,
such as “Xi’an Wuxiu commercial factoring Co., Ltd”.

Case 1: Assume that the random market demand of products sold by the retailer obeys
the normal distribution with the mean as 300 and the variance as 120; the market price
of products as p = 1; the internal fund level of the capital-restrained manufacturer as 0;
the unit product cost as c = 0.2.

(1) Assume that the loan-to-value ratio paid by the financial institution is θ = 0.8. The
financing interest rate is rf = 0.1. Then the optimal decisions of each part changes
with the retailer’s default probability is shown in Fig. 4(a) and 4(b) below.

(2) Suppose that the probability of retailer’s default probability is α = 0.12, The
financing interest rate is rf = 0.2. Then the optimal decisions of each part changes
with the financial institution’s loan-to-value ratio is shown in Fig. 5(a) and 5(b)
below.

Analysis of Case 1 reveals that the increase of retailer’s default probability will increase
he manufacturer’s financing cost, thus leading to a higher wholesale price (Fig. 4(a))
and a lower supply chain operation efficiency (Fig. 4(b)) when there is no third-party
guarantee. In addition, the manufacturer will undertake a high financing cost and risk
if wants a higher loan-to-value ratio, which will financially result in the decrease of
financing and supply chain operation efficiency (Fig. 5).
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(a) Optimal wholesale price ( )  
and financing rate (

(b) Retailer’s optimal order quantity ( )

Fig. 4. Impact of retailer’s default probability under without guarantee

(a) Optimal wholesale price ( ) and fi-
nancing rate ( )

(b) Retailer’s optimal order quantity ( )

Fig. 5. Impact of loan-to-value ratio under without guarantee

Regarding the situation where the manufacturer and the retailer pay the guarantee
cost (namely issue 1 and issue 2), we conduct Case 2 below for simulation.

Case 2: Assume that the random market demand of products sold by the retailer obeys
the normal distribution with the mean as 300 and the variance as 120; the market price
of products as p = 1; the internal fund level of the manufacturer is 0; the unit product
cost is c = 0.2. The average yield of the financing market is rf = 0.1. The retailer’s
default probability is α = 0.1. The loan-to-value ratio paid by the financial institution is
θ = 0.8. Then the optimal decisions of each part changes with the guarantee coefficient
are shown in Fig. 6(a) (financing interest rate), Fig. 6(b) (wholesale price), Fig. 7(a)
(order quantity), and Fig. 7(b) (profit) below.
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(a) Financial institution’s 
optimal financing rate

 (b) Manufacturer’s optimal 
wholesale price

Fig. 6. Financing decisions under different situations (interest rate and wholesale price)

(a) Retailer’s optimal order quantity (b) Supply chain’ profits

Fig. 7. Financing decisions under different situations (order quantity and supply chain profits)

Analysis of Case 2 shows that the financing interest rate provided by the finan-
cial institution will be decreased when there a third-party guarantee for the accounts
receivable financing. And results show that the impact of manufacturer undertaken the
guarantee cost on the financing interest rate is consistent with retailer undertaken the
guarantee cost (Fig. 6(a)). However, the manufacturer’s guarantee cost and financing
cost will be decreased if the guarantee cost is undertaken by the retailer. Then the man-
ufacturer will set a lower wholesale price (Fig. 6(b)) and reduce the retailer’s order cost.
Therefore, the retailer’s order quantity will be increased (Fig. 7(a)) and then improve
the supply chain operation efficiency (Fig. 7(b)).
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5 Conclusions

This paper analyzed the effect of the partial guarantee behavior provided by the third-
party guarantee on the decisions of the accounts receivable financing in the supply chain.
Under the background of retailer’s default, this paper compared three issues: without
guarantee, manufacturer undertaken the guarantee cost and retailer undertaken the guar-
antee cost through model and simulation analysis. The main results are as follows: (1)
manufacturer undertaken the guarantee cost can reduce the financing interest rate or
improve the loan-to-value ratio of the financial institution, but it cannot improve the
supply chain financing efficiency; (2) retailer undertaken the guarantee cost can reduce
the financing interest rate of the financial institution and the wholesale price of the man-
ufacturer. Then weak the double marginalization effects of the supply chain operation
and improve retailer’s and whole supply chain’s profits; (3) it is important to let the
retailer undertaken the guarantee cost to the third-party guarantee in the process of the
supply chain accounts receivable financing.

This paper also has some limitations. For example, this paper assumes that the third-
party guarantee is risk-neutral, and not considers the salvage value of unsold products
at the end of the sales period.
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Detecting Apples in Orchards Using YOLOv3
and YOLOv5 in General and Close-Up Images
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Abstract. A machine vision system for apple harvesting robot was developed
based on the YOLOv3 and the YOLOv5 algorithms with special pre- and post-
processing and the YOLOv3 equipped with special pre- and post-processing pro-
cedures is able to achieve an a share of undetected apples (FNR) at 9.2% in the
whole set of images, 6,7% in general images, and 16,3% in close-up images. A
share of objects mistaken for apples (FPR) was at 7.8%. The YOLOv5 can detect
apples quite precisely without any additional techniques, showing FNR at 2.8%
and FPR at 3.5%.

Keywords: Machine vision · Apple harvesting robot · YOLO

1 Introduction

Mechanization and the use of chemical fertilizers have increased labor productivity in
agriculture significantly. However, manual labor is still the main cost component in
agriculture [1, 2]. In horticulture, fruits are picked manually, and the share of manual
labor exceeds 40% in the total value of grown fruits while the crop shortage reaches
40–50% [3].

The development of intelligent robots for fruit harvesting can increase labor pro-
ductivity significantly, reducing both crop shortages and the proportion of heavy routine
manual harvesting operations.

Prototypes of fruit harvesting robots are being developed since the late 1960s. How-
ever, nowadays, not a single prototype is used in agricultural enterprises. The cost of
such robots reaches hundreds of thousands of dollars, even though the speed of fruit
picking is deficient, and a lot of fruits are left on trees.

The low fruit harvesting speed and the high share of unhandled fruits result from the
machine vision systems’ insufficient quality [4, 5].

During the last few years, many deep learning models have been trained to detect
different fruits on trees, including apples. However, the computer vision systems based
on these models in the existing prototypes of fruit-picking robots work too slowly. These
systems also take yellow leaves for apples, do not detect apples with a lot of overlapping
leaves and branches, darkened apples, green apples on a green background, etc.
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To solve these problems arising in apple detection in orchards, we propose to use the
YOLOv3 algorithmwith special pre- and post-processing of images taken by the camera
placed on the manipulator of the harvesting robot with a special pre- and post-processing
procedure.

2 Literature Review

2.1 Color-, Shape-, and Texture-Based Algorithms for Fruits Detection in Images

The first fruit detection algorithmswere based on color. Setting the color thresholdmakes
it possible to determine which pixels in the image belong to the fruit. In [6], citrus fruits,
in [7–9] apples were detected based on color. The obvious advantage of fruits detection
by color is the ease of implementation, but this method detects green and yellow-green
apples very poorly. Also, bunches of red apples merge into one large apple.

Spherical fruits (including apples, citrus fruits, etc.) can be detected in images using
the analysis of geometric shapes. In [10–12], variousmodifications of theHough circular
transformation were applied to detect fruits. In [13, 14], fruits were detected in images
by identifying convex objects. Systems based on such algorithms work very fast, but
complex scenes, especially when fruits are overlapping by leaves or other fruits, as a
rule, are not recognized effectively in such systems. Many authors combined color and
geometric shapes analysis,which led to an improvement in the quality of fruit detection in
uneven lighting, overlapping of fruits by leaves and other fruits, etc. The main advantage
of the analysis of geometric shapes is the low dependence of the quality of recognition
of objects on the level of lighting [12]. However, this method gives significant errors,
since not only apples have a round shape, but also gaps between leaves, leaf silhouettes,
spots, and shadows on apples.

Fruits photographed outdoors differ from the leaves and branches in texture, and
this can be used to facilitate the separation of fruits from the background. Differences in
texture play a particularly important role in fruit detection when the fruits are grouped
in clusters or overlapped by other fruits or leaves. In [15], apples were detected using
texture analysis combinedwith color analysis. In [16], appleswere detected using texture
analysis combined with geometric shapes analysis. In [17, 18], to detect citrus fruits,
simultaneous analysis of texture, color, and shape was carried out. Fruit detection by
texture only works in close-up images with fair resolution and works very poorly in
backlight. The low speed of texture-based fruit detection algorithms and a too-high
share of not detected fruits lead to the inefficiency of such techniques in practical use.

2.2 Using Machine Learning for Fruits Detection in Images

The first prototype of a fruit-picking robot that detects red apples against green leaves
using machine learning was presented in 1977 [19]. In [20–22], linear and KNN-
classifiers were used to detect apples, peaches. bananas, lemons, and strawberries. In
[23], apples were detected in images using K-means clustering. All these early-stage
machine learning techniques for fruit detection were tested on very limited datasets of
several dozens of images, so the results cannot be generalized for practical use. For
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example, in [24], 92% apple detection accuracy was reported based on a test set of just
59 apples.

Since 2012, with the advent of deep convolutional neural networks, in particular,
AlexNet [25], machine vision and its use for detecting various objects in images, includ-
ing fruits, received an impetus in development. In 2015, VGG16 neural network was
developed as an improved version of AlexNet [26]. In 2018, the authors of [27] built
a robot for harvesting kiwi fruits with a machine vision system based on VGG16. In
the field trials, 76% of kiwi fruits were detected. In 2016, a new algorithm was pro-
posed – YOLO (You Look Only Once) [28]. Before this, in order to detect objects in
images, classification models based on neural networks were applied to a single image
several times – in several different regions and/or on several scales. The YOLO app-
roach involves a one-time application of one neural network to the whole image. The
model divides the image into regions and immediately determines the scope of objects
and probabilities of classes for each item. The third version of the YOLO algorithm
was published in 2018 as YOLOv3 [29]. The YOLO algorithm is one of the fastest, and
it has already been used in robots for picking fruits. In [30, 31] published in 2019, a
modification of the YOLO algorithm was used to detect apples. The authors made the
network tightly connected: each layer was connected to all subsequent layers, as the
DenseNet approach suggests [32]. The IoU (Intersection over Union) indicator turned
out to be 89.6%, with an average apple recognition time equal to 0.3 s.

In [33], DaSNet-v2 algorithm was developed to detect apples. This neural network
detects objects in images in a single pass, taking into account their superposition, just
like YOLO. The IoU in this model was at 86%.

The authors of [34] compared the standard Faster R-CNN algorithm, the proposed by
them modification of Faster R-CNN, and YOLOv3 for the detection of oranges, apples,
and mangoes. The modification proposed in this paper reveals about 90% of the fruits,
which is 3–4% better than the standard Faster R-CNN on the same dataset and at about
the same level as YOLOv3. However, the average recognition time for YOLOv3 was
40 ms versus 58 ms for the modified Faster R-CNN network and 240 ms for the standard
Faster R-CNN network.

Now the new version of the YOLO algorithm was released, the YOLOv5 [35]. In
the next section, we will compare the apple detection efficiency of the YOLOv3 and
YOLOv5.

3 Research Methodology

3.1 Basic Pre- and Post-processing of Images for YOLOv3-Based Apple Detection
Efficiency Improving

The Department of data analysis and machine learning of the Financial University under
theGovernment of theRussian Federation, togetherwith theLaboratory ofmachine tech-
nologies for cultivating perennial crops of the VIM Federal Scientific Agro-Engineering
Center, is developing a robot for harvesting apples.

TheVIMCenter develops themechanical component of the robot,while theFinancial
University is responsible for the intelligent algorithms for detecting fruits and operating
the manipulator for their picking.
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To detect apples,we compare the use of theYOLOv3 [29] and theYOLOv5 [35], both
trained on the COCO dataset [36], which contains 1.5 million objects of 80 categories
marked out in images.

Using the standard YOLOv3 algorithm without pre- and post-processing to detect
apples in this set of images showed that not all apples in images are detected successfully
(Fig. 1).

Fig. 1. Examples of apple detection results without pre- and post-processing.

To improve the detection efficiency of apples, first, we pre-processed images by
means of adaptive histogram alignment, thickening of the borders, and slight blur. This
led to themitigation of such negative effects as shadows, glare, minor damages of apples,
and overlapping apples by thin branches. During pre-processingwe detected imageswith
backlight by the prevailing average number of dark pixels and strongly lightened these
images. Images with spots on apples, perianth, as well as thin branches were improved
during pre-processing by replacing pixels of brown shades by yellow pixels.

During post-processing, in order to prevent the system from taking yellow leaves
for apples, we discarded recognized objects whose ratio of the greater side of the cir-
cumscribed rectangle to the smaller one was more than 3. In order not to take the gaps
between the leaves for apples, during post-processing, objects were discarded whose
area of the circumscribed rectangle was less than the threshold.
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The algorithm was tested on a set of apple images of various varieties, including red
and green, made by employees of the VIM Federal Scientific Agro-Engineering Center.
Among these photographs were both close-up images with one or more apples, and
general images with several dozen apples.

In general, the YOLOv3 algorithm, supplemented by the described pre- and post-
processing procedures, quite precisely detects both red and green apples [37] (Fig. 2,
3). Green apples are better detected if the shade of the apple is at least slightly different
from the shade of the leaves (Fig. 3).

Fig. 2. Examples of red apples detection. (Color figure online)

3.2 Pre-processing for YOLOv3-Based Apple Detection in General Images

In the apple harvesting robot we are developing, the machine vision system is a com-
bination of two stationary Sony Alpha ILCE-7RM2 cameras with Sony FE24-240 mm
f/3.5-6.3 OSS lenses, and one Logitech Webcam C930e camera mounted on the second
movable shoulder of the manipulator before the grip.

The first two cameras take general shots for detecting apples and drawing up the
optimal route for the manipulator to collect them. The camera on the manipulator adjusts
the position of the grip relative to the apple during the apple-picking process.

Therefore, it is essential to efficiently detect apples both in general images and in
close-up images. It turned out that in general images a lot of apples remain undetected.
For example, in the two images shown in Fig. 4 and 5, only 2 and 4 apples were detected
respectively among several dozens.
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Fig. 3. Examples of green apples detection. (Color figure online)

Fig. 4. 2 apples detected in the general image without special general image pre-processing.

Fig. 5. 4 apples found in the general image without special general image pre-processing.
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Dividing general plan images into nine regionswith the subsequent application of the
algorithm separately for each region made it possible to increase the number of detected
apples [38]. So, after applying this procedure to the image presented in Fig. 5, 57 apples
were detected (Fig. 6), and after applying this technique to the image in Fig. 5 made it
possible to detect 48 apples (Fig. 7).

Fig. 6. 57 apples found in the general image after special general image pre-processing.

3.3 Using YOLOv5 for Apple Detection in General and Close-Up Images

Applying the standard YOLOv5 algorithm to detect apples in the test set of images have
shown extremely promising results. Without any pre- and post-processing, the YOLOv5
detected 97.2% of apples in images (Fig. 8).

3.4 Using YOLOv5 for Apple Detection in General and Close-Up Images

Applying the standard YOLOv5 algorithm to detect apples in the test set of images have
shown extremely promising results. Without any pre- and post-processing, the YOLOv5
detected 97.2% of apples in images (Fig. 8).

4 Results

The apple detection quality was evaluated on a test dataset of 878 images with red and
green apples of various varieties (5142 apples in total):
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Fig. 7. 48 apples found in the general image after special general image pre-processing.

Fig. 8. YOLOv5 for apple detection without image pre- and post-processing.

• 553 general images (4365 apples);
• 274 close-up images (533 apples).
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On average, it takes 19 ms to detect one apple, considering pre- and post-processing.
To assess the fruit detection quality, it is essential to understand what proportion of

objects is mistaken by the system for apples (False Positive Rate):

FPR = 1− Precision = FP

TP + FP
,

and what proportion of apples remains undetected (False Negative Rate):

FNR = 1− Recall = FP

TP + FN
.

Here TP (True Positives), FP (False Positives), and FN (False Negatives) are respec-
tively real apples detected by the algorithm in images, objects mistaken by the algorithm
for apples, and undetected apples.

The results of these metrics calculation for YOLOv3 with pre- and post-processing
are presented in Table 1.

Table 1. Apple detection quality metrics.

Whole set of images General images Close-up images

No of
images

No of
apples

FNR FPR No of
images

No of
apples

FNR FPR No of
images

No of
apples

FNR FPR

878 5142 9,2% 7,8% 552 4358 6,7% 7,8% 274 533 16,3% 6,3%

Both the FPR and the FNR are quite small.
The standard YOLOv5, without any special pre- and post-processing, was able to

detect 4998 of 5142 apples in general and close-up images. FNR was at the 2.8% level,
FPR was equal to 3.5%. It means that the YOLOv5 is not able to detect only 2.8% of
apples, and only 3.5% of detections are false.

5 Conclusion

The proposed technique made it possible to adapt the YOLOv3 for apple picking robot,
gividing an average apple detection time of 19 ms with FPR at 7.8% and FNR at 9.2%.
Both speed and error fractions were less than in all known similar systems.

But technology is developing, and the YOLOv5 can detect apples quite precisely
without any additional techniques: only 2.8% of apples were not detected, and only
3.5% of objects detected as apples actually belong to the background.
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Abstract. Non-negative matrix factorization and its variants have been
utilized for computer vision and machine learning, however, they fail
to achieve robust factorization when the dataset is corrupted by out-
liers and noise. In this paper, we propose a roust graph regularized
non-negative matrix factorization method (RGRNMF) for image cluster-
ing. To improve the clustering effect on the image dataset contaminated
by outliers and noise, we propose a weighted constraint on the noise
matrix and impose manifold learning into the low-dimensional represen-
tation. Experimental results demonstrate that RGRNMF can achieve
better clustering performances on the face dataset corrupted by Salt and
Pepper noise and Contiguous Occlusion.

Keywords: Noise · Graph regularization · Dimensionality reduction ·
Non-negative matrix factorization

1 Introduction

Clustering for computer vision and subspace learning is a challenging work.
Many clustering methods were proposed for image retrieval [1], image indexing
[2] and image classification [3]. To achieve image clustering effectively, a widely
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used approach is to discover an effective low-dimensional representation for the
original data. Therefore, a lot of researches were presented to dig out the geo-
metrical structure information of the original data, which can lead to a more
discriminative representation.

In the past decades, many dimensionality reduction techniques were proposed
including principal components analysis (PCA) [4] and non-negative matrix fac-
torization (NMF) [5]. Among these methods, the non-negative property of the
learned representation leads to be more meaningful in image representation.
NMF decomposes the original data matrix into two low-dimensional matrices
(i.e. a basis matrix and an encoding matrix), whose product can be best approx-
imate to the original data matrix. Due to the excellent property of NMF, some
variants [6–19] were proposed to improve the clustering accuracy from different
views.

Although traditional NMF performs very well in learning a parts-based rep-
resentation for clustering, it fails to achieve clustering while the original data is
heavily corrupted. In the view of recent researches, the loss function of traditional
NMF are very sensitive to outliers. In other words, the Frobenius norm enlarges
the approximation error between the original data matrix and the product of the
decomposed matrices. To address this issue, some studies [6–12] proposed some
robust loss functions to minimize the reconstruction error. These proposed meth-
ods can reduce outliers of the representation, but they cannot remove outliers.
Moreover, the learned representation cannot respect the geometrical structure
of the original data contaminated by outliers and noise.

To address above-mentioned problems, we present a robust graph regularized
non-negative matrix factorization (RGRNMF) for image clustering. Firstly, we
propose a robust framework to measure the approximation error. Secondly, we
construct a weighted graph to encode the geometrical information of the original
data. Our achievements are as follows:

– We propose a robust non-negative matrix factorization framework to remove
outliers, and we incorporate the geometrical information of the original data
into the learned representation.

– Extensive experiments demonstrate that our proposed framework can achieve
image clustering from the original data corrupted by Salt and Pepper noise
or Contiguous Occlusion.

2 Related Works

Supposed that there are n sample images {xi}ni=1 and any image xi has m fea-
tures. Thus, we denote the original data matrix by V ∈ Rm×n. Due to the
high-dimensional property of V , it is a challenging task to achieve image cluster-
ing. Generally, NMF is utilized to find two low-dimensional matrices W ∈ Rm×r

and H ∈ Rr×n such that the product of W and H can be approximately equal
to V . There, we have

V ≈ WH, (1)
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where r is a factorization rank and r << min{m,n}. Generally, problem (1) can
be transformed into a non-convex optimization problem as follows:

min
W,H

Error(V,WH)

s.t. W ≥ 0,H ≥ 0.
(2)

where the loss function Error can be the Frobenius norm, L1 norm, L2,1

norm or Huber. Recently, Guan et al. [12] proposed a Truncated Cauchy loss
(CauchyNMF) to reduce outliers, which can be summarized as follows:

min
W≥0,H≥0

F (W,H) =
m∑

i=1

n∑

j=1

g(
(V − WH)ij

γ
), (3)

where g(x) =

{
ln(1 + x), 0 ≤ x ≤ σ

ln(1 + σ), x > σ
; σ and γ denote the scale parameter and

the truncation parameter. σ can be obtained by three-sigma-rule, and γ is given
by the Nagy algorithm [12]. Traditional NMF utilizes the different loss functions
to reduce outliers, but they cannot remove outliers. Therefore, a robust NMF
framework was proposed to eliminate outliers as follows:

min
W,H,E

loss(M,WH,E) + λΩ(E,W,H)

s.t. W ≥ 0,H ≥ 0,
(4)

where M is the original data matrix corrupted by noises, E is an error matrix,
λ is a hyper-parameter, and the function Ω is the constraint term. Zhang et al.
[11] proposed the Frobenius norm as the loss function and the L1 norm as the
constraint on E, which can be described as follows:

min
W,H,E

‖ M − WH − E ‖2F +λ ‖ E ‖M
s.t. W ≥ 0,H ≥ 0,

(5)

where ‖ E ‖M=
∑

ij |eij |.

3 Robust Graph Regularized Non-negative Matrix
Factorization

3.1 Model Formulation

Previous NMF models have some defects: 1) They cannot remove outliers from
the dataset corrupted by Salt and Pepper noise or Contiguous Occlusion. 2)
While the dataset is corrupted by noises, the learned representation H cannot
preserve the geometrical structure information.

In (5), Zhang et al. [11] supposed that the error matrix E is sparse, but the
outliers in E are neglected. If the error matrix contains some outliers, then the
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constraint ‖ E ‖M is not inappropriate for outliers. Supposed that all outliers
of the corrupted image matrix M ∈ Rm×n produced by Salt and Pepper noise
or Contiguous Occlusion are detected. A weight graph S can be utilized to label
these outliers as follows:

Sij =

{
0, if the pixel Mij is an outlier,
1, otherwise,

(6)

Thus, we propose the constraint on E by the following form:

‖ E ⊗ S ‖M (7)

To learn the geometrical structure information of the original data, manifold
regularization is proposed to construct the relation between the original data
and the low-dimensional representation. A widely used manifold regularization
term [20] can be described as follows:

tr(H(D − U)HT ), (8)

where Ujl = e− ‖xj−xl‖2

σ and Dii =
∑

j Wij . In summary, combining (7), (8) and
(5) results in our robust graph regularized non-negative matrix factorization
(RGRNMF), which can be summarized into the following optimization problem

min
W,H,E

F (W,H,E)

= ‖ M − WH − E ‖2F +λ ‖ E ⊗ S ‖2F
+ γtr(H(D − U)HT )
s.t. W ≥ 0,H ≥ 0,

(9)

where λ and γ are hyper-parameters.

4 Optimization Scheme

It is obvious that problem (9) is non-convex. Therefore, the global optimal
solution cannot be searched. Supposed that the k−th solution of problem (9)
is obtained. We can have the k + 1−th solution by optimizing the following
problems

Ek+1 = arg minE ‖ M − W kHk − E ‖2F
+ λ ‖ E ⊗ S ‖2F

(10)

and
W k+1 = arg minW ‖ M − WHk − Ek+1 ‖2F
s.t. W ≥ 0

(11)

and
Hk+1 = arg minH ‖ M − W k+1H − Ek+1 ‖2F
+ γtr(H(D − U)HT )
s.t. H ≥ 0.

(12)
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It is easy to obtain the solution of problems (10), (11) and (12) as follows:

eij ← mij − (WH)ij
1 + λsij

. (13)

wil ← wil
(MHT )il − (EHT )il

(WHHT )il
, (14)

hlj ← hlj

(WTM)lj − (WTE)lj + γHUlj

(WTWH)lj + γHDlj
. (15)

5 Experimental Results

We compare our proposed method (RGRNMF) with NMF [5], RNMF [9], Mah-
NMF [8] and CauchyNMF [12] on the clustering performances of the ORL
dataset. To verify the clustering ability on the corrupted data, we propose two
corruptions including Salt and Pepper noise and Contiguous Occlusion. For Salt
and Pepper noise, there are several percentages of corrupted pixels from 1% to
25%. Similarly, we vary the corrupted block size for Contiguous Occlusion from
1 to 16.
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Fig. 1. The clustering performances on the ORL dataset corrupted by Salt and Pepper
noise.

To evaluate the clustering effect of all methods, we propose Accuracy (AC)
and Normalized Mutual Information (NMI) [21]. Let λ = 100 and γ = 100.
Figure 1 and 2 show the clustering performances on the ORL dataset contami-
nated by Salt and Pepper noise and Contiguous Occlusion. From these figures,
we observe that:

– CauthyNMF achieves satisfactory clustering ACs and NMIs from the ORL
dataset corrupted by Salt and Pepper noise and Contiguous Occlusion in the
beginning, however, it obtains the poor clustering effect finally. This phe-
nomenon indicates that CauthyNMF cannot handle heavy outliers.
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Fig. 2. The clustering performances on the ORL dataset corrupted by Contiguous
Occlusion.

– NMF, PCA Kmeans and GNMF fail to achieve clustering. This means that
They cannot handle outliers.

– RGRNMF has relatively stable clustering performances on the Salt and Pep-
per noise and Contiguous Occlusion, that is to say, RGRNMF is more robust
to outliers.

6 Conclusion

This paper proposed robust graph regularized non-negative matrix factorization
(RGRNMF) to handle Salt and Pepper noise and Contiguous Occlusion. Clus-
tering results demonstrate that our proposed NMF framework has the follow-
ing properties. Firstly, RGRNMF can learn a more effective and discriminative
parts-based representation from the ORL dataset corrupted by handle Salt and
Pepper noise or Contiguous Occlusion. Secondly, RGRNMF is more robust to
outliers than existing NMF methods.
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Abstract. A good object segmentation should contain clear contours and com-
plete regions. However, mask-based segmentation can not handle contour fea-
tures well on a coarse prediction grid, thus causing problems of blurry edges.
While contour-based segmentation provides contours directly, but misses con-
tours’ details. In order to obtain fine contours, we propose a segmentation method
named ContourRend which adopts a contour renderer to refine segmentation con-
tours.Andwe implement ourmethodon a segmentationmodel based ongraph con-
volutional network (GCN). For the single object segmentation task on cityscapes
dataset, the GCN-based segmentation contour is used to generate a contour of a
single object, then our contour renderer focuses on the pixels around the contour
and predicts the category at high resolution. By rendering the contour result, our
method reaches 72.41%mean intersection over union (IoU) and surpasses baseline
Polygon-GCN by 1.22%.

Keywords: Image segmentation · Convolution neural networks · Contour
renderer · Graph convolutional network

1 Introduction

Convolutional neural network (CNN) methods bring various breakthroughs to the field
of computer vision, improve the accuracy in the tasks of image classification [1, 2],
image classification and location [3], object detection [4], image segmentation [5], and
even surpass the human performance. More and more image processing tasks begin to
rely on the rich features provided by CNN.
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In image segmentation task, semantic segmentation predicts the label of every pixel.
And CNN can also easily provide the encoding of segmentation information for kinds
of usages. Full convolution network (FCN) [6] uses a fully convolutional structure for
segmentation and builds a skip architecture to connect semantic information in different
depth of the convolution layers. In FCN, the features 8×, 16×, 32× smaller than the
input are used by the transposed convolution to predict mask result. U-Net [7] is also a
fully convolutional network and has a symmetric architecture in encoding and decoding
feature maps. U-Net concatenates the feature maps with the same resolution in the
encoder and decoder and uses transposed convolution to restore these features to output
mask results at a higher resolution. In instance segmentation task, segmentation focuses
on distinguishing between pixel regions of different objects. Mask R-CNN [8] as the
baseline of this task, adds a CNN segmentation branch on Faster R-CNN [9]. Faster
R-CNN provides the feature map of the object in a 14 × 14 grid for the CNN branch,
and the CNN branch predicts a 28 × 28 mask result.

Although these methods utilize the excellent feature extraction ability of the con-
volution operator, the feature maps with 8 times or 16 times smaller than the input
are too coarse for segmentation. While upsampling or resizing these coarse masks to
the results with the same size of the input images, there are blurry edges on the mask
results’ contours which limits the segmentation performance. To reduce this limitation,
some methods focus on modifying the convolutional operator and pooling operator to
lessen the down-sampling effect in the mask-based models. Pyramid scene parsing net-
work (PSPNet) [10] uses pyramid pooling module to fuse the global context information
and reduces false positive results. DeepLab family [11–13] and DenseASPP [14] use
dilated convolution to expand the size of receptive field and improves the resolution of
segmentation.

To avoid down-sampling effect in the mask-based models, some contour-based seg-
mentation models that distinguish the object by the contour formed by the contour
vertices are proposed. These models can obtain clear contours at the same resolution as
the input image by determining the coordinates of the contour vertices. PolarMask [15]
learns to predict dense distance regression of contour vertices from the object’s cen-
ter position in a polar coordinate. Polygon-RNN [16] and Polygon-RNN++ [17] utilize
recurrent neural network (RNN) to find contour vertices one by one. Curve-GCN [18]
implements graph convolutional network (GCN) to obtain the coordinates of the contour
vertices by regression. Curve-GCN can simultaneously adjust the coordinates of a fixed
number of vertices from the initial contour to the target.

Although the above contour-based segmentation methods avoid the effect by down-
sampling and directly restore the resolution, they are unable to provide complex edges
due to the limitation of the fixed number of contour vertices. To this end, we propose
a segmentation method to reconsider the segmentation process. The proposed method
focuses on improve the contour-based segmentationmodels by adding a contour renderer,
so it is called ContourRend. Rendering on the segmentation results has been learned in
thework PointRend [19], which usingmask scores to select the unclear points around the
contour. Different from PointRend, the contour renderer of our method directly obtains
rendering points by offsetting the contour vertices from the contour-based model, and
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directly renders on the mask with the same resolution as the input image. ContourRend
achieves an effective way to refine an object’s contour in instance segmentation task.

Our contributions in this paper are two folds,

1. We propose a segmentation method to improve the accuracy of contour-based
segmentation models by adding a contour renderer, named ContourRend.

2. The experimental results of ContourRend on the single object segmentation taskwith
cityscapes dataset show the improvement both in training and testing. ContourRend
reaches 72.41% mean IoU, and surpasses baseline Polygon-GCN by 1.22%.

2 Method

Our method ContourRend consists of a contour generator and a contour renderer, com-
pletes the segmentation problem in two steps as shown in Fig. 1. First, the contour
generator generates an initial contour prediction; then, the contour renderer optimizes
the contour prediction in pixel level. The contour generator is a contour-based segmen-
tation models which provides the backbone feature map and the initial contour vertex for
the contour renderer. The contour renderer optimizes the initial contour like rendering
and outputs the mask results with refined edges. Section 2.1 introduces the architecture
and the function of the generator, and Sect. 2.2 details how the contour render module
refines the initial contour.

Backbone
feature map

Contour
results

Mask
results

Contour Renderer

Sampling points’
features

Sampling
points

MLP

Pasting

Refined
mask

(224, 224)

Contour
Generator

Rendering
points

Input image
(224, 224)

Fig. 1. Inference process of ContourRend. The contour generator provides contour results and
the backbone feature map for the contour renderer, and the contour renderer optimizes the contour
results by using a MLP to classify the sampled points around the contour.

2.1 Contour Generator

Contour generator aims to generate the backbone feature map and contour vertices
for contour renderer. And the contour generator is built according to Tian’s GCN-
based segmentation model [20] which is similar to Curve-GCN. Graph neural network
(GNN) is powerful at dealing with graph structure data and exploring the potential
relationship, and using GCN in the mask-based model could improve the features’
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expression [21, 22] and the result’s accuracy [23]. Tian and Curve-GCN utilize GCN
to predict contour vertices, and Tian’s model implements DeepLab-ResNet to provide
the backbone feature map. Tian uses the model on magnetic resonance images and out-
performs several state-of-the-art segmentation methods. Figure 2 shows the architecture
of our contour generator. The DeepLab-ResNet provides a 512 × 28 × 28 backbone
feature map, and two branches of the networks consist of a 3 × 3 convolution layer and
a fully connected layer after the backbone, respectively. The two branches provide a 1×
28 × 28 edge feature map and a 1 × 28 × 28 vertex feature map, and concatenate the
backbone feature map. Before the GCN modules, a 3 × 3 convolution layers processes
the 514 × 28 × 28 feature map provided by the backbone and the two branches, and
outputs the 320 × 28 × 28 feature map.

Fig. 2. Contour generator’s architecture.

The GCN module use a fixed topology graph to represent the contour as same as
the Curve-GCN. The relationship between nodes and edges can be regarded as a ring
composed of nodes. Each node is connected to two adjacent nodes on the left side and
two on the right side. Figure 3 illustrates the graph by an example with eight nodes.

Fig. 3. Example of GCN’s fixed topology graph. Every node connects with other four adjacent
nodes.

Node features are composed of corresponding coordinate positions on the contour
and the contour vertex features extracted from the 320× 28× 28 featuremap, the contour
vertex features are extracted by bilinear interpolation according to their 0–1 positions.
After GCN propagates and aggregates nodes’ features on the graph, the output of the
nodes are offsets of the contour vertices. By scaling result points’ coordinates from 0–1
to the input size, the contour generator simply obtains contour segmentation results with
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the same resolution as the input. And the contour generator is trained by point matching
loss (MLoss) according to Curve-GCN. During the training, the L2 loss is calculated as
MLoss, and the predicted contour vertices and the target vertices are both sampled to
K points in a clockwise order. And the p and p′ are the sets of K predicted points and
K target points represented by the x and y coordinates from 0 to 1. The loss function is
shown as:

Lmatch = (
p, p′) = min

j∈[0,··· ,K−1]

K−1∑

i=0

∥∥∥pi − p′
(j+i)%K

∥∥∥
2

(1)

where pi represents the i th predicted points, p
′
(j+i)%K represents the matching point of

pi while the index offset is j, the % indicates modulus operation, and
∥
∥pi − p(j+i)%K

∥
∥
2

indicates the L2 distance between pi and p
′
(j+i)%K .

Finally, the contour generator provides 60 contour vertices and the 512 × 28 × 28
backbone feature map for the contour renderer.

2.2 Contour Renderer

The contour renderer samples points based on the contour vertices provided by the
contour generator, extracts the points’ features by bilinear interpolation according to
their positions, then predicts the category scores of these sampled points by a multilayer
perceptron (MLP) consisted of a 1× 1 convolution layer, and finally gets the refinemask
result by pasting the sample point categories to the initial contour.

For the process of sampling points, we develop two methods to select points for the
contour renderer during training and testing respectively. During the training, contour
vertices are used to represent segmentation results, as opposed to the case of mask
scores, the random points around edges can be naturally obtained by offsetting the
contour results. The output of the contour generator is a fixed number of points in the
range 0–1. By randomly offsetting the x and y coordinates by −0.09–0.09, n offset
points for each output points are generated. Then the points’ targets are sampled from
the mask represented by contour results and cross entropy loss is used as the loss of the
renderer. The contour generator and the contour renderer both use points’ features, and
the renderer loss can be viewed as an auxiliary loss. Figure 4 shows the process of the
contour renderer during the training. During the testing, there is no need to calculate the
gradient, so more points are used to obtain a dense prediction. For every contour vertex,
anN ×N (N ≥ 1) grid is generated, and the contour vertex is located at the center of the
grid. N 2 points evenly cover a s × s (s ∈ [0, 1]) square area with the gap of s/(N − 1)
in both x and y coordinates.

Then, the renderer optimizes segmentation results by reclassifying single points
around the output contour vertices of the generator. Specifically, the input of the MLP
are (60 × N × N, 512) point features, and MLP predicts the (60 × N × N, 2) category
scores (background and foreground scores) of the corresponding points. After changing
the contour result of the contour generator into a mask result with the same size as input
and pasting the contour renderer’s generated points to the mask, the renderer restores
the high resolution while retain the complex edge’s details. Figure 5 shows the process
of the contour renderer during the testing.



256 J. Chen et al.

Sampling points’
features

1×1 Conv

Ground truth mask
(2, 224, 224)

Sampling
points (60×n, 2)

(60×n, 512)

Cross entropy
loss Loss

(60×n, 2)

Contour results
(60, 2)

Backbone
feature map
(512, 28, 28)

Sampling points’
targets

Fig. 4. Contour renderer in training. The ground truth mask has two categories (background and
foreground).
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Fig. 5. Contour renderer in testing.

3 Experiments

We conduct a contrast experiment and an ablation experiment to verify the advantages
of our method and test the contour renderer’s effect in single object segmentation task on
cityscapes dataset. In the contrast experiment, we train our ContourRend and compare
with other contour-based segmentation methods. Furthermore, we train our contour
generator separately as an ablation experiment to explore the contour renderer’s effect.

3.1 Dataset

For single object segmentation task, we use the cityscapes dataset and have the same data
preprocessing as Curve-GCN [18]. The input is a 224 × 224 single object image with
background, and the object is in the center of the image. The dataset is divided into train
set 45984 images, validation set 3936 images and test set 9784 images. And our contour
generator’s goal is to match the target contour vertices of the single object, our contour
renderer’s goal is to correctly classify the sampled points’ categories (background and
foreground).

3.2 Implementation

For the contour renderer, 3 (n = 3) rendering points are randomly sampled around every
vertex of the contour generator’s result in training process, and use a 1 × 1 convolution
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layer to classify the 512 dimension features to 2 categories (background and foreground).
In testing process, 15 × 15 (N = 15) grid rendering points with the size of 0.09 × 0.09
(s = 0.09) are used to improve the contour, and if the foreground’s scores of the renderer’s
result points are higher than 0.3, the points are considered as the foreground points.

We train the entire network end-to-end on four GTX 1080 Ti GPUs with batch size
of 8, set the learning rate begin with 3e−4, and 0.1 learning rate decay every 10 epochs.
And we use 1e−5 weight decay [24] to prevent overfitting.

3.3 Results

3.3.1 Contrast Experiment

In the contrast experiment, we train our ContourRend and compare the IoU by categories
and the mean IoU with other contour-based methods, Polygon-RNN++ and Polygon-
GCN. Table 1 shows the results. Lines 1, 2 refer to Polygon-RNN++ [17], Line 3 refers
to Curve-GCN’s Polygon-GCN [18]. Our contour generator is similar to Curve-GCN’s
Polygon-GCN, so we choose Polygon-GCN as our experiment’s baseline. From the
results, our method surpasses the Polygon-GCN by 1.22%.

Table 1. This table shows the mean IoU of some contour-based methods and our method in the
single object segmentation task on cityscapes dataset.

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Polygon-RNN++
[17]

57.38 75.99 68.45 59.65 76.31 58.26 75.68 65.65 67.17

Polygon-RNN++
(with BS) [17]

63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

Polygon-GCN
[18]

63.68 81.42 72.25 61.45 79.88 60.86 79.84 70.17 71.19

CountourRend
(ours)

65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41

Figure 6 shows some of the results to visualize the renderer’s effect. The first column
is the 224 × 224 input image, the second column is the contour result of the contour
generator which is trained separately, the third column is the ground truth contour, the
fourth column is the contour result of the contour generator in ContourRend which
is trained with the contour renderer, the fifth column is the mask result predicted by
the contour renderer in ContourRend, the sixth column is the ground truth mask and
which is use to calculate IoU, the last column is a visualization of the contour renderer’s
output. For the man in the first line’s pictures, the separately trained contour generator
can not fit the man’s feet and back well (column 2), and the contour generator trained in
ContourRend predicts a better contour result (column 4), then after the contour renderer,
the man’s shoes can also be segmented (column 5). Besides, ContourRend can also
predict the women’s bag in line 2 column 4, 5 and the truck’s tyre in line 3 column 4,
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5. ContourRend improves the original contour generator’s performance and also refines
the details by the contour renderer.

Fig. 6. Contrast experiment results. Column 1: Input image, column 2: Contour generator’s con-
tour result (trained separately), column 3: Ground truth contour, column 4: ContourRend’s contour
result, column 5: Rendered mask, column 6: Ground truth mask, column 7: Contour Renderer’s
point results. ContourRend improves the segmentation result by refining the details around the
contour.

3.3.2 Ablation Experiment

In the ablation experiment, we train the contour generator separately and calculate the
IoU by converting the contour result to mask result, then split the contour generator in
ContourRend which has been trained in the contrast experiment and also calculate the
IoU by it’s contour result. Table 2 line 1 shows the result of the contour generator which
is not trained with our contour renderer, and line 2 is the result of ContourRend’s contour
generator which is trained with our contour renderer in the contrast experiment, line 3 is
ContourRend’s result after the contour renderer improves the contour. From the results
of line 1 and line 2, the contour renderer improves the contour generator’s mean IoU by
2.67% in the training, and compare with the line 1 and line 3, ContourRendmakes 7.16%
improvement on the mean IoU by improving the contour in the testing. According to the
ablation experiment, our method improves both the contour-based model’s accuracy in
the training and testing.

The contour renderer can improve the accuracy during training, because the renderer
resamples the segmented pixels and makes the model focus on the object’s contour. This
phenomenon has also led to a conjecture that the evenly participation of all pixels in
the original image in the training may cause computational waste and even lead to the
decline of segmentation accuracy. The renderer loss reset the weights of the pixels to
participate the segmentationwhich improves the performance of the baselinemodel. This
can deduce that the pixels around contour play more important role in segmentation than
other pixels.
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Table 2. This Table shows the effect of the contour renderer in ContourRend, the result is the
mean IoU in the single object segmentation task on cityscapes dataset.

Methods Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Contour generator 57.74 73.71 66.76 56.52 71.70 56.14 75.42 64.02 65.25

ContourRend-ablation 59.69 76.67 69.93 59.77 75.14 57.03 77.19 67.91 67.92

ContourRend 65.18 80.90 74.16 64.40 78.26 63.30 80.69 72.36 72.41

4 Conclusion

In order to tackle the problem of blurry edges in mask-based segmentation models’
results and improve the accuracy of contour-based segmentation models, we propose
a segmentation method by combining a contour-based segmentation model and a con-
tour renderer. In the single object segmentation task on cityscapes dataset, our method
reaches 72.41% mean IoU and surpasses Polygon-GCN by 1.22%. And the proposed
contour renderer enhanced contour-based segmentation mechanism is also effective to
improve the performanceof other kinds of contour based segmentationmethods, as Polar-
Mask and Curve-GCN, in the future work, the combinations between these methods and
ContourRend are expect to study.
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Abstract. In the microscopic fields of materials, biology, etc., the research based
on the images under the optical microscope is an important part in experiments.
Because of the specific characteristics along with various materials, the automatic
identification, calculation and statistical techniques of particles in the microscope
imaging are facing barriers. Though a number of methods have been invented for
edge segmentation, the watershed algorithm tends to display good performance
in image feature analysis. However, its result of processing the fiber edge images
under the microscope does not meet the requirements based on the experiments.
This paper aims to propose an improved watershed algorithm in order to better
solve the problem of over-segmentation and insufficient segmentation in the field
of overlapping optical fiber images. The morphological algorithm is essentially
processed as a pretreatment in the beginning. Then after the reinforcement, the
OTSU algorithm is demanded as a more accurate binarization process in order to
better distinguish the images. On this basis, the distance between the feature pixels
is supposed to be calculated aiming to reconstruct the pixel value corresponding
to each point. Experimental results are compared with the version obtained by the
foreground background marking watershed algorithm.
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1 Introduction

In many microscopic fields such as materials, biology, etc., the target image under the
optical microscope is regarded as a crucial link in the research process, which includes
the identification of targets in the image, the number of targets, and the measurement of
sizes [1]. However, as for the optical fiber edge image in the actual experimental process,
the target usually has problems of relatively complicated shape, high degree of overlap,
and weak boundary information [2]. In most cases nowadays, such problems can only be
effectively screenedbymanual recognition [3], but thismethodnot only consumes a lot of
manpower and time, but also usually has problems such as inaccurate recognition. Based
on the problems above, assisting target edge segmentation algorithm through computer
image processing technology has important practical significance [4]. Edge segmenta-
tion plays an important role in image analysis, and the watershed algorithm is one of the
most representative methods for edge segmentation. However, the traditional watershed
algorithm exists the disadvantages of segmentation phenomenon which includes error
segmentation of noise and small particles [5–7]. Li.G, Shuyuan.Y [8] proposed a new
improved marker-based watershed image segmentation algorithm, which can mark the
object segmentation more quickly and accurately compared with traditional watershed
algorithm, but in the calculation of the gradient, it takes no consideration of the texture
gradient which leads to the unsatisfactory segmentation results for image with rich tex-
ture details [9]. At present, except from the foreground background marking watershed
algorithm, even though there are more mature edge segmentation algorithms includ-
ing morphological methods Sobel, Prewitt, Roberts first-order differential operator edge
detection algorithm, Canny second-order differential operator edge detection algorithm
Hough transform, etc. [9], which aremostly applied in edge segmentation, thesemethods
have the shortcomings of long time, complicated steps, low measurement accuracy and
great influence on the objective factors. Furthermore, they have poor performance when
processing the optical fiber images. Considering many factors from the perspective of
image processing, with the inspiration from some of the previous image segmentation
algorithm and the characteristics of the optical fiber images, an improved watershed
algorithm based on the distance pixel value reconstruction has been invented.

The remainder of this paper is organized as follows. The instruction of the materials
used for the experiments and the theorem of the methods in the paper are presented
in Sect. 2. The experiments and the comparison are presented in Sect. 3. Finally, the
conclusion based on this paper is in Sect. 4.

2 Materials and Methods

2.1 Materials

The materials chosen in the experiment are fiber optical microscope imaging in the form
of cross-section. Most of them are seriously overlapped with each other, it turns out
that the edge boundary is hard to be distinguished. In addition, the cross-section of the
fibers almost cover the entire picture and their distribution is uneven, which increases
the recognized difficulty. In order to show the rigor and diversity of the experiment,
the images are chosen including typical and untypical characteristics, which aims to
illustrate the complexity that the improved watershed algorithm is able to process.
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2.2 Theory of the Traditional Watershed Algorithm

The traditional watershed segmentation algorithm mainly adopts the idea of “simulated
flooding method”, and with the continuous improvement of the watershed algorithm and
the widespread use of the watershed algorithm, the “raindrop method” and the process
of “overflow” are now mainly used [10].

Fig. 1. Processing flow

The calculation idea of the watershed algorithm is to first find the gradient image,
and then use the obtained gradient image as the input image of the watershed algorithm,
and finally perform the corresponding processing. The gradient image solution formula
is as follows [11]:

g(x, y) = grad(f (x, y))

g(x, y) =
{[
f (x, y) − f (x − 1, y)

]2 + [
f (x, y) − f (x, y − 1)

]2}0.5 (1)

where f (x, y) is the input image, grad(.) is expressed as the gradient operator of the
gradient image, and g(x, y) is the output image after the gradient operator calcula-
tion. Because the image processed in practice is often more complicated, there are
more gray-scale minimum points in the image, which leads to over-segmentation of the
image. Therefore, the above shortcomings need to be improved to reduce the existence
of pseudo-minimum values.

2.3 Watershed Algorithm Based on Background and Background Markers

This method is one of the most effective watershed improvement methods so far. The
basic principle is to distinguish the foreground and background of the image from each
other [12].

The selection of concrete material has great influence on the characteristics of con-
crete images in late stage. Therefore, the Watershed Algorithm based on Background
and Background Markers adopts the method combining AFCM algorithm with marked
watershed algorithm, and the two algorithms could learn from each other to get better
image segmentation, the detail steps are shown above in Fig. 1. The method is tried to
identify the image edges of the optical fiber cross-section. Through the specific experi-
ment, the algorithm makes effective segmentation for adhesion particles in image. And
do a crucial step for statistics of particle size.With this improvedmarking-basedmethod,
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the differences among the background and foreground are able to distinguished as well
as the boundaries. Consequently, when trying to analyze the edge between the fibers with
the watershed algorithm after the marking process, it tends to be better take advantage
of the marking information in order to achieve the segmentation operation.

2.4 Improved Watershed Segmentation Algorithm Based on Distances

In order to better improve the over-segmentation problem, especially for the correspond
different overlapping cases, this paper uses an algorithm based on the combination of
OTSU algorithm [13] and pixel distance process to improve the watershed algorithm.
The basic steps can be divided into four specific parts, and the algorithm flow chart is as
follows (Fig. 2):

Fig. 2. Improved watershed segmentation algorithm flow figure.

The specific description of each step of the algorithm is as follows.
Step 1. The morphological step is not complicated which includes the basic ero-

sion operation and open operation. After this step, the image will complete a relatively
effective but not comprehensive separation, laying the foundation for the subsequent
steps.

Step 2. The OTSU algorithm is used to determine the optimal threshold through the
grayscale characteristics of the image, so that the variance between the two classes of the
target and the background takes the maximum value to ensure the maximum variance
between the classes and minimize the probability of misclassification [13]. Set the target
and background segmentation threshold of the picture as t; the average gray value of the
target pixels is μ1, which accounts for the entire image pixel ratio ω1; the average gray
value of the background pixels is μ2, which accounts for the entire image pixel ratio ω2;
The average gray value of all pixels in the image is μ, and the variance between classes
is σ 2. The mathematical expression is shown in (2) [14].

σ 2 = ω1(μ1 − μ)2 = ω1ω2(μ2 − μ1)
2

s.t. ω1 + ω2 = 1, ω1μ1 + ω2μ2 = μ
(2)
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Since the larger the variance between the classes, the larger the difference between
the image target and the background pixels, so the threshold t corresponding to when
σ 2 takes the maximum value is the optimal threshold.

Step 3. Through mathematical operation, calculate the distance from the pixel point
with a pixel value of one to its nearest pixel whose value is zero, and transform to its
opposite value. And then set the pixel whose value is zero to positive infinity. The value
of each pixel is reset in this way. Definite the horizontal coordinate of the i-th pixel in
the white area be Xi and the vertical coordinate of Yi; its original pixel value is Wi; its
updated pixel value is Vi; the horizontal coordinate of the black pixel closest to it is X0;
the ordinate is Y0, then the expression of Vi is as shown in (3):

Vi = −(

√
(Xi − X0)

2 + (Yi − Y0)2)

s.t. i ∈ {i|1 ≤ i ≤ n,Wi = 1} (3)

Take a part of the binarized image in the sample, and express its pixel values in a
matrix, further explain the algorithm, as shown in (4)

⎛
⎝

1 0
1 1

0 1
1 0

1 1 0 0

⎞
⎠ →

⎛
⎝

−1 ∞
−√

2 −1
∞ −1
−1 ∞

−2 −1 ∞ ∞

⎞
⎠ (4)

In (4), the first matrix exemplifies the pixel value corresponding to each part of the
binary image, and the pixel value corresponding to the second matrix is obtained by
distance transformation. In the second matrix, the pixel located at (3, 1) has the smallest
pixel value in its connected area, and it gradually expands outward as the source pixel
of the watershed.

Step 4. The watershed algorithm is used to process the new image after each pixel
is updated: the image is regarded as the terrain surface, the edge area (high gradient)
represents the “watershed”, and the low gradient area represents the “water basin”. All
pixels located in the same catchment basin decrease monotonously along the path to the
minimum point of gray value in the catchment basin [10].

This process is a recursive process, defined as follows:

Xhmin = Thmin(I)

∀h ∈ [hmin, hmax − 1] (5)

Xh+1 = minh+1 ∪ Cxh(Xh ∩ Xh+1) (6)

Equation (6) is a recursive process, and Eq. (5) is the initial condition of the recursive
process. h, hmin and hmax represent the range of gray value, minimum gray value and
maximumgray value,Xh+1 represents all pixels with gray value h+ 1,minh+1 represents
the minimum point, Xh∩Xh+1 represents the intersection of Xh and Xh+1,Cxh represents
the basin where Xh is located, Cxh (Xh ∩ Xh+1) represents the point where Xh ∩ Xh+1 is
in the same basin Cxh. Through this iterative process, all pixels in image I are assigned
to basins, where points belonging to more than two basins are points in the watershed.
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3 Experiment and Simulation

In this paper, the cross-sectional imaging of the fiber under the microscope is selected
as the experimental target. A large number of experimental studies have been performed
on images with different characteristics which includes the characteristics of different
dense arrangement, special shapes, and different overlapping methods.

The following is the original image of the sample (Fig. 3).

Fig. 3. Several representative optical overlapped images

3.1 Implementation Effect of Traditional Watershed Algorithm

Traditional Watershed Algorithm is based on the gradient of the gray image. After an
image is converted into the gray image, it is common that a great number of uncontrollable
pixel values exist. Due to the severe over-segmentation of the algorithm, the accuracy
of the experimental results obtained is very low, like what is shown in Fig. 4.

3.2 Experimental Simulation of Improved Watershed Segmentation Algorithm

With the help ofMATLABsoftware, the experimental simulation is carried out according
to the improved watershed algorithm, and the experimental results were obtained. Here,
five representative sample pictures are selected for display. Each of these pictures has its
own distinct internal characteristics, making the results more authentic and convincing.

Following the flow figure shown in Fig. 5, the result is as shown in the figure below.
The MATLAB software is used to calculate the number of fibers based on the suc-

cessful segmentation graph obtained in Fig. 5, and the accuracy of the algorithm is
checked by this method. The results are shown in Table 1:
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Fig. 4. Comparison between the original gray image and method of the traditional watershed
algorithm.

(c) Sample 3(a) Sample 1 (b) Sample 2

(d) Sample 4 (e) Sample 5

Fig. 5. The final result of the improved watershed segmentation algorithm of the five samples

Table 1. Statistics of the quantities of the cells calculated by MATLAB

Test quantity Actual quantity Error Absolute error percentage (%)

Sample1 90 87 3 3.4482759

Sample2 122 119 3 2.5210084

Sample3 275 289 14 4.8442906

Sample4 396 396 0 0

Sample5 180 ± 8 202 ± 5 9–35 4.3478261–17.7664975

Overall (average) 211–214 218–220 6–11 2.7272727–5.0458716
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In addition, the overall average result based on the whole dataset is calculated in
order to figure out the advance more clearly.

Based on the image after watershed segmentation, the above table counts the number
of fiber filaments of each sample picture, and calculates the difference between the
computer statistics and the actual number of fiber filaments in the third column of the
table, and finally calculates the absolute error. Judging from the results, although there
are still errors, the errors can be controlled within a certain range, and the expected effect
is achieved. The time required for the algorithm to complete the above picture is around
0.2 s, which shows that the algorithm is acceptable at the time level.

3.3 Comparison with Watershed Algorithm Based on Background
and Foreground Markers

The results of the modified watershed algorithm based on the background and back-
ground markers are shown in Fig. 6 below, here only one sample is shown since the
simulation result is not good enough to be displayed for the other samples.

Fig. 6. The result of the watershed algorithm based on marker. The red rectangles show the
unexpected segmentation places. (Color figure online)

Through the horizontal comparison of Fig. 5 and Fig. 6, although the improved
watershed algorithm based on the foreground and background markers can divide most
connected regions, there are still many regions in the result graph obtained by this
method that cannot be clearly divided. Therefore, the processing effect of the improved
watershed algorithm based on background markers in this experiment is not as good as
the improved watershed algorithm in this paper.

4 Conclusion

In this paper, an improved watershed algorithm based on the distance reconstruction
is invented in order to overcome the edge recognition difficulties in optical overlapped
cross-sectional fibers. Combined with the OTSU algorithm, the original watershed algo-
rithm and the distances construction, the recognition effect is greatly enhanced. More-
over, the time complexity of this method is not high, and the desired result can be quickly
obtained. However, it was found from the subsequent image test of a large number of
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fiber microscope images that this method still has a little certain error for the adhe-
sion of a large number of densely connected areas. In the future, further research and
improvement are needed.
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Abstract. In Hong Kong, over 2.4% of the total population suffered
from visual impairment. They are facing many difficulties in their daily
lives, such as shopping and travelling from places to places within the
city. For outdoor activities, they usually need to have an assistant to
guide their ways to reach the destinations. In this paper, a mobile appli-
cation assisting visually impaired people for outdoor navigation is pro-
posed. The application consists of navigation, obstacle detection and
scene description functions. The navigation function assists the user
to travel to the destination with the Global Positioning System (GPS)
and sound guidance. The obstacle detection function alerts the visually
impaired people for any obstacles ahead that may be avoided for colli-
sion. The scene description function describes the scene in front of the
users with voice. In general, the mobile application can assist the people
with low vision to walk on the streets safely, reliably and efficiently.

Keywords: Visually impaired · Neural network · Image recognition ·
Navigation

1 Introduction

According to the statistics in the year 2015, Vos stated in [1] that over 940
million people around the world are classified as visually impaired or blind. In
Hong Kong, over 174,800 are considered as visually impaired, which is 2.4% of
the Hong Kong population [2]. They are facing many difficulties in their daily
lives, such as daily consumption and travelling. Due to the disability problem,
visually impaired people are seldom to have outdoor activities. The main reason
is the unfamiliar routes and the traffic conditions that lead to the destinations.
Although there is a cane to assist visually impaired people for outdoor activities,
they need to tap everywhere to detect any obstacles around them. Hence, it
has chances to hit other pedestrians accidentally and may in turn annoy other
peoples. For people who are with low vision, they may not have a cane to assist

c© Springer Nature Switzerland AG 2020
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them for outdoor activities. As they are hard to see, they may hit obstacles
like temperate traffic signs or fire hydrants easily. For this group of disabilities,
they like to stay at home all the time because of insufficient support to them.
Moreover, visually impaired people are unable to have “sightseeing” activities
because they need a tour guide to “describe” the actual landscape or scenes to
them.

To solve the above issues, this paper proposes an intelligent application
installed on mobile devices for visually impaired people to assist their outdoor
activities. By applying neural network and image recognition technologies, an
obstacle detector has been developed to alert the user for any obstacles close
to them. Furthermore, the application can describe the conditions around the
user so that they can make their right decisions easier. With this function, the
application can act as a “tour guide” to describe the actual scenes in front of
the users. Also, navigation is an important function for visually impaired peo-
ple. With the use of navigation guidance, visually impaired people can reach the
destinations safely, reliably and more efficiently.

2 The Existing Solutions

To provide a safe outdoor travelling assistance for visually impaired people, the
navigation and detection functions are essential to satisfy their specific needs.
Due to the development of artificial intelligence (AI) and derived technologies,
there are several solutions in the market [7–10]. Although those applications are
performing well, those applications contain different scopes of weaknesses, espe-
cially in costs, language support, and compatibilities that they are not applicable
in Hong Kong [3–6]. There are two main types of programs currently available in
the market to assist the visually impaired. One is a simple mobile phone appli-
cation, and the other one is to combine hardware such as a blind cane to interact
with the users.

Eye-D. Eye-D1 is a mobile application. Its main function is to assist visually
impaired people to find where they are, search nearby facilities, and describe
their surroundings. The advantage of this application is that it gives users a
clear idea of where they are and allows the visually impaired know what is in
front of them. But the disadvantage is that there is no voice indication, relying
upon an on-screen text, and only describes the object ahead, does not explain the
action, making it difficult for the visually impaired to know what is happening
ahead.

WeVoice. WeVoice2 is a mobile application proposed by InnoTech Association3.
The main function is to read the text aloud. Users need to take a picture with
their phone, and the software will then read the text in the photo. The disadvan-
tage is that it is difficult for the visually impaired to target objects accurately.
1 https://eye-d.in/.
2 https://play.google.com/store/apps/details?id=hk.com.redso.read4u&hl=zh HK.
3 https://www.facebook.com/InnoTechAssociation/.

https://eye-d.in/
https://play.google.com/store/apps/details?id=hk.com.redso.read4u&hl=zh_HK
https://www.facebook.com/InnoTechAssociation/
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Smart City Walk. Smart City Walk4 is proposed by Hong Kong Blind Union5.
The main function is to display the current location, search nearby facilities with
voice input, and navigate the user to the destination via voice and text. Although
it can be accurately positioned indoors, it can only be used in several buildings
with iBeacon [11] installed.

WeWalk. WeWalk6 is a mobile application with a blind cane. It has a built-in
ultrasonic detector that alerts the user to obstacles in front of them. Besides, it
has voice navigation to guide visually impaired people to their destinations. But
its disadvantages are expensive, and only in English and Turkish, and language
navigation is limited to Sweden and parts of Europe.

Although many enterprises developed different types of applications for the
visually impaired with the advanced technologies for travelling, the users are
still inconvenient to perform outdoor activities with no application describing
the environment ahead, prompting with obstacles, and providing navigation at
once. The existing applications have many functions, but they are not fulfill-
ing the needs of the visually impaired in Hong Kong. For example, some of the
applications require the users to take photographs, and it is difficult for the visu-
ally impaired to know the exact location of the objects. These applications also
cannot remind the visually impaired before there are obstacles. The applications
with these functions do not support Chinese or cater for the Hong Kong market.

According to the insufficient supports to visually impaired people, this paper
proposes an application with low-cost hardware that uses voice to communi-
cate with visually impaired people by describing the scene in front of them and
providing obstacles prompt with navigation.

3 The System Design

The system has three main parts: image processing, navigation, and voice inter-
action. The image processing part is done on a Raspberry Pi 3 Model B+ and
a machine learning server. The image comes from the Raspberry Pi 3 Model
B+, with the camera attached which is put on by the user to allow hand-free
video capturing feature. The image processing part includes scene description
system and obstacle prompt system based on the latest convolutional neural
networks (CNN), which will identify the objects from the camera and output
as the description in a sentence, the object names, and the object location on
the image. The navigation part is processed on a smartphone, which will pro-
vide a way to get to the destination based on the existing global positioning
system (GPS) on the smartphone. The voice interaction part is processed on
a smartphone and using an existing speaker and microphone, which is using
offline voice recognition and text-to-speech technology to have interaction for
the visually impaired user.
4 https://play.google.com/store/apps/details?id=com.hkblindunion.smartcitywalk.

android&hl=zh HK.
5 https://www.hkbu.org.hk/.
6 https://wewalk.io/en/.

https://play.google.com/store/apps/details?id=com.hkblindunion.smartcitywalk.android&hl=zh_HK
https://play.google.com/store/apps/details?id=com.hkblindunion.smartcitywalk.android&hl=zh_HK
https://www.hkbu.org.hk/
https://wewalk.io/en/
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Fig. 1. Components of the system.

The application is supported by client and server devices as shown in Fig. 1
and Fig. 2. The operations of each component are listed below.

1. Mobile device (Android client)
– Perform voice interaction with the user.
– Return navigation information upon user request.
– Use MQTT7 clients to connect the Raspberry Pi and prompt the user

when dangerous information or scene description is received.
– Open a WIFI hotspot for Raspberry Pi connection.

2. Raspberry Pi (Operation component)
– Connected to Raspberry Pi WIFI hotspot.
– Host an MQTT server for data transferring between Android client.
– Be a hands-free camera device that can easily be installed on the walking

stick or worn on the neck since the user may have to pick up the walking
stick.

– Host a video streaming server which will do motion detection and serve
images to clients by MJPEG.

3. Machine Learning Server (Server)
– Serve the request through Flask8 framework.
– Process the request of object detection and image caption separately due

to the inference time of deep neural networks (DNN) is relatively large.
– Response the object name and relative direction from the object detection

server when the confidence of the object in the image is high enough and
the object may be dangerous to users.

– Return the description in understanding sentences from the image caption
server.

7 http://mqtt.org/.
8 https://flask.palletsprojects.com/en/1.1.x/.

http://mqtt.org/
https://flask.palletsprojects.com/en/1.1.x/
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Fig. 2. Hardware components of the application system.

4 The System Implementation

4.1 Overview of the Mobile Application System

The application uses both hardware and software to achieve the goal. The device
can be mounted into the walking stick or mounted into the neck ring. In terms
of software, the user interface will be a mobile application that connects to the
hardware (Raspberry Pi) via WIFI and searches Raspberry Pi using multicast
DNS. This program is mainly responsible for interacting with the user. After the
program starts, it will connect with the hardware and then start obstacle recog-
nition, environment description, and map functions at the same time. The user
can activate the speech recognition function through buttons to give instruc-
tions to the system, such as navigation. The system will convert the results of
the three functions into speech, as shown in Fig. 3 based on the priority order
as shown in Fig. 4.

Figure 4 shows the judgment process when the text-to-speech function
receives instruction. This process ensures the system reads one type of infor-
mation only to the user at the same time without overlapping. The system will
handle the obstacle detection at first because it will directly affect the safety of
the user if the user is close to the obstacle. After that, the user will receive the
navigation instruction when the user arrives at the intersection, and the naviga-
tion system will suitably prompt the user. In general, the system will describe
the surrounding environment for the user, but it will only describe the environ-
ment when the message is received within five seconds, avoiding to describe the
environment that has passed.
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Fig. 3. Active diagram of the application.

Fig. 4. Priority order for the text to speech function.



276 O.-C. A. Liu et al.

4.2 Voice Navigation

Voice navigation aims to make map navigation easier for the visually impaired
people through the voice recognition function that allows users to confirm the
destination by voice instead of typing through the keyboard. To achieve the
goal, the cloud speech recognition service provided by Google9 is applied, which
is built into all Android devices by default. Through the cloud technology, it
can convert the speech from the user into text within two seconds, and it has an
automatic debugging function to revise the possible errors in speech recognition.

This feature uses dialog flow to analyze and filter the voice input by the
user, such as the user saying “Take me to the Open University of Hong Kong”
or “Go to the Open University of Hong Kong” and dialog flow responds the
action “navigation” and the destination “The Open University of Hong Kong”.

Three-Dimensional (3D) Direction Prompt. To let the visually impaired
users know the correct direction, rather than the turn left or turn right of a
traditional navigation service like Google Map, the 3D direction prompt was
implemented. 3D direction prompt applies the latitude and longitude of the
user and the next navigation point to calculate the correct direction. Then, it
determines whether the user is oriented in that direction by using a gyroscope on
the mobile phone. Figure 5 shows that the Mapbox10 API will return the route
and the next navigation point on the route (redpoint). The yellow-green-blue
circle represents the user, where blue and the red line represents the user, where
blue and the red line represents the direction the user is oriented in heading to
the place.

Figure 6 shows that the user is facing the wrong direction since the right (or
left) direction is the yellow line, but the face direction of the user is the red
line. When the yellow line falls into the green (or yellow) area, the right (or
left) channel of the earpiece will alert the user that turns back to the correct
direction.

The volume of the left or right channels of the 3D direction prompt is linear
as shown in Fig. 7, a reminder and different levels of “beep” sound in left-right
channels to navigate the user back to the correct path. To avoid excessive volume,
the maximum volume is set to 50, as shown in Fig. 8. Since it is impossible for
the user exactly facing the correct direction, there is a buffer of 50◦ in the correct
direction to prevent the user from still hearing the beep when facing the correct
direction. To keep the user facing the correct direction, the system uses beep
sound on the left-right channels and the small-large volume to inform the user.

9 https://cloud.google.com/speech-to-text.
10 https://www.mapbox.com/.

https://cloud.google.com/speech-to-text
https://www.mapbox.com/
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Fig. 5. A sample output of the Mapbox route API service. (Color figure online)

Fig. 6. A sample output of the user facing the wrong direction. (Color figure online)

Fig. 7. Volume track for the direction indicator.

4.3 Obstacles Prompt and Scene Description

The design of the obstacles prompt and scene description system as shown in
Fig. 9. Fast detection of obstacles is a definite criterion for the users to avoid
any dangerous situation. To provide the accurate information to the users, the
captioned function includes the following procedures:
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Fig. 8. The 3D direction prompt design.

Step 1. Capture the scene of the road.
Step 2. Filter irrelevant information and adjust the confidence of objects.
Step 3. Sort out the obstacles based on depth estimation algorithm.
Step 4. Illustrate the results to the user with voice.
Step 5. Repeat Step 1 to Step 4 to provide the updated information.

Figure 10 shows a sample image after depth estimation. For example, if an
obstacle is detected as shown in Fig. 11, the obstacle prompt will give an imme-
diate warning to the user with the scene description in voice. By post-processing
the result of object detection, users will be prompted with the upfront obsta-
cles. Scene description using image caption technology can produce a humanized
text description, which can help the users know the scenes ahead. For example,
a possible scene description can be “a group of people standing around a bus
stop.” The processes are similar to obstacle detection, while the application is
kept responding to the scene captured from time to time.

Scene description using image caption technology can produce a humanized
text description, which can help the visually impaired to know what the world
is. For example, a possible scene description can be “a group of people standing
around a bus stop.” The processes are similar to obstacle detection, while the
application is kept responding to the scene captured from time to time.

When the user faces the wrong direction at first, the user is prompted by
the voice “You are in the wrong direction, please adjust the facing direction
according to the beep sound”. And when the user is facing the right direction,
the system will also use the voice prompt “You are now in the right direction”.

To describe the obstacles ahead, the system will detect the objects on the
captured images from the camera as fast as possible.
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Fig. 9. Obstacles prompt and scene description design.

Fig. 10. Image after depth estimation.
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Fig. 11. Image after obstacle detection.

5 Evaluation Results

Observation tests will be used to assess whether the solution helps the users
go out and reach the destinations efficiently and safely. A number of the visu-
ally impaired people are invited to the observation test by using the usual way,
and the application proposed in this paper to walk from Fat Kwong Street (at
Homantin) to The Open University of Hong Kong. It will be evaluated by count-
ing the number of objects and people that collided with the users, and the time
taken for the users reach the destination. Table 1 shows the average results of
user evaluation.

Table 1. Average result of user evaluation.

Using the usual way Using our solution

Average number of times colliding with
objects

23.5 15.5

Average number of times colliding with
people

5 0.5

Time to find the correct direction (in
seconds)

8.5 4

Time taken to reach the destination (in
minutes)

3.4 2.5

According to the results, the number of object collisions has been reduced
by about one-third (from 23.5 to 15.5), and the number of human collisions
has dropped significantly to one-tenth (from 5 to 0.5). The data indicated that
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the use of the new application can reduce the chance of accidents and thus
improve the user safety during outdoor activities. Besides, the users can reach the
destination more efficiently (from 3.4 minutes to 2.5 minutes) when the proposed
application with 3D direction prompts is used.

6 Conclusions

This paper introduces a mobile application as an outdoor assistant to help peo-
ple with low vision go outside efficiently and safely. On this basis, a real-time
environment description system has been developed to let the users know the
surrounding in front of them through the voice description. An obstacle prompt
system has been implemented for avoiding the users to collide with any object in
front of them during the journeys. The 3D direction prompts of the navigation
system have been designed to allow the users to recognize the correct direction
by using sound from the left-right channels. From the evaluation results, it is
shown that the use of the proposed mobile application can assist the people in
need with visual disability to travel outside in a safe and efficient way.
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