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Statistical Downscaling of GCM Output
and Simulation of Rainfall Scenarios
for Brahmani Basin

Lasyamayee Lopamudra Sahoo and Kanhu Charan Patra

Abstract The change in climate threatens the abundance of usable water across the
globe. Most of the river basins are unable to cope up with the impact of climate
change. Hence, assessing the future scenario has become the need of today. General
Circulation Model (GCM) provides information at a course grid resolution. Down-
scaling can help in getting the information at a local scale level fromGCMdata,which
helps the researchers to work on a regional level. Statistical downscaling method is
preferred over dynamic downscaling method due to its less complex calculations.
Statistical downscaling model (SDSM) is widely used in prediction of future climate
scenarios. Here Brahmani–Baitarani river basin is selected as a case study for the
downscaling of precipitation in the monthly time scale. SDSM version 4.2 is used as
the model and precipitation is taken as the predictand. Predictors are chosen from the
NCEP global variables like air temperature, geopotential height, specific humidity,
zonal and meridional wind velocities, precipitable water and surface pressure data.
The outcome of the study shows an increasing trend in the rainy season of the year.
The mean rainfall increases significantly in 2040s than other epoches.

Keywords Climate change · GCMs · Statistical downscaling model (SDSM) ·
Brahmani–baitarani river system

27.1 Introduction

Climate change has adverse impact on the surface of earth starting from forest
ecosystem to flood plain of rivers. Surface hydrology, forestry, floods, soil erosion,
land use changes, ground water, environment, living beings and their ecosystems;
all are affected by the climate change. Its adverse effect on water resources threatens
the abundance of usable water availability. Water is the basis of lifeline on earth.
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Population explosion associated with various anthropogenic activities like per capita
use, industrialization and others require more water in coming decades. Increase in
demand of water with population explosion but possible decrease in availability of
usable water creates a critical situation for the water resources planners (Chiew et al.
2010).

Study by researchers indicates that “the central India has been found to be the
most vulnerable to climate change. Parts of north western, north eastern and southern
India appear to be resilient to cope with droughts while the rest of the country is non
resilient” (Sharma et al. 2017). Therefore, a proper assessment of past and prediction
of probable future precipitation and the resulting run off over time is necessary for
hydrologist (Anandhi et al. 2008).

General circulation models (GCMs) are considered as the most effective tools
to simulate climatic conditions on earth. They provide information at a coarse grid
resolution (usually 1°–2°). But data at a finer grid are required to work on a smaller
study area like a smaller catchment. To manage the gap between the lower resolu-
tion and higher resolution, downscaling is used. It tries to link between the GCM
information and information needed by the hydrologists (Walsh 2011).

Downscaling methods can be broadly classified into two groups; dynamical
and statistical. Statistical downscaling method is preferred to dynamic down-
scaling method because of less computational work. Again it is classified into three
subgroups; regression methods, weather generators and weather typing schemes. All
the methods deal with the basic concept that regional climates (predictand) are the
function of the large scale atmospheric state (predictor). This relationship between
predictor and predict and can be deterministic or probabilistic function.

SDSM (statistical downscaling model) is the most commonly used model for
this purpose. SDSM combine uses a conceptual water balance model and a mass-
balance water quality model to investigate climate change impact assessment (Wilby
and Harris 2006). Many authors have compared SDSM with other statistical down-
scalingmodels. Harpham andWilby (2005) concluded that SDSM yields better daily
precipitation quantiles and intersite correlation when compared with artificial neural
networks (ANNs). Khan et al (2006) also concluded that SDSM is very efficient in
reproducing various statistical parameters of data set in the downscaled results with
a confidence level of 95%. Rath et al. concluded that future trends in precipitation
for annual and seasonal period from the SDSM indicates a decrease in precipitation
pattern for the time period 2020s and 2080s while an increase in 2050s for both A2
and B2 scenarios (Rath et al. 2016).

The present work focuses on the application of SDSM to the Brahmani–Baitari
river basin in India to simulate the future scenarios of the precipitation and other
parameters.
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Fig. 27.1 Schematic diagram of Brahmani–Baitarani river basin

27.2 Study Area

Brahmani and Baitarani river basin is situated in the central-east India between
latitude 20° 28′ to 23° 35′ N and longitude 83° 52′ to 87° 30′ E. The basin extends
over the states of Odisha, Jharkhand and Chhattisgarh draining an area of 51, 822
Sq.km which is 1.7% of total geographical area of the country. Major part of its
catchment area is situated in the state of Odisha. Both the rivers are seasonal in
nature. They are rejuvenated at the onset of monsoon as they are fed by rain. At
the time of summer, their discharge is significantly decreased. Though 90% of the
basin receives an average annual rainfall of between 1400 and 1600mm, some places
like Dhenkanal and Jashpur district are drought prone areas. Two hydro-observation
stations Jenapur and Gomlai are taken for this study. Jenapur station has a drainage
area of 33,955 km2 andGomlai has a drainage area of 21,950 km2. Figure 27.1 shows
the two stations in the considered river basin.

27.3 Data

The observed large-scale predictors have been derived from theNCEP reanalysis data
sets that contain 41 years of daily observed predictor data normalized over the period
1961–1990. These data have been interpolated into the grid size of 2.5 latitude *3.75
longitude before the normalization is implemented. The HadCM3 (Hadley center for
climate and prediction and research, UK) model output both for A2 and B2 scenarios
are directly downloaded from website http://climate-scenarios.canada.ca. The long-
term meteorological data from the period 1981–2016 are obtained from the central
water commission (CWC) India on daily basis at the Gomlai and Jenapur in the state

http://climate-scenarios.canada.ca
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of Odisha. A total 36 years of data are taken as baseline period, out of which 25 years
are used for calibration and 11 years are needed for validation of the model.

27.4 Methodology

27.4.1 SDSM

Among the handful models that are available for downscaling, the SDSM is very
popularly used. Statistical downscaling model (SDSM) is a statistical weather gener-
ator based on linear multiple regression. It is used to predict the climate parameters
such as the precipitation or temperature in long time duration. It uses large-scale
atmospheric variables to condition the local scale weather generators. It also uses
stochastic techniques in variance of daily time series. In fact it is the combination of
transfer function and stochastic weather generator methods.

27.4.2 Multiple Linear Regressions

Multiple linear regressions are used to explain the relationship between one contin-
uous dependent variable (predictand) with one or more than one independent vari-
ables (GCM outputs). For a given data set, a linear regression model assumes a
linear relationship between the variables. The equation used for the multiple linear
regressions is written as:

(
y
/
x
) = a + b1x1 + b2x2 + · · · bnxn. (1)

where, y is the dependent predictant variable with respect to x, x1, x2, x3…. xn the
independent predictor variables, a, b1, b2…bn the intercepts or parameters of the
equation. Figure 27.2 shows the flowchart of climate scenario generation in SDSM.

27.5 Results and Discussion

Any error in the observed data may result the model to fail in the prediction of future
climate scenario. Hence, before the simulations, the observed data are subjected to
quality control in order to check for any missing data codes or gross data errors. For
selecting a set of predictors, it is necessary to access the effect of predictors on the
precipitation at that particular station. A correlation matrix is generated among the
large scale global predictors and user specified predictand. Predictors are selected
based on the highest correlation value. Partial r, p values and scatter plots are also
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Fig. 27.2 Climate scenario generation in SDSM (Source SDSM user manual)

considered in screening of the predictors. Predictor variables selected for each station
after the screening test are given in Table 27.1.

For calibration of the model, 25 years of precipitation data (collected fromCWC),
between 1980 and 2005, are considered. A multiple linear regression is established
between theNCEPvariables and precipitation at that particular station. The intercepts
of the regression equation are calculated by the forced entry method. Synthetic daily
weather series is created by weather generation using the observed predictors. When
a calibrated model is selected, SDSM automatically relates all necessary predictors
to regression model weights. In the present study, monthly time scale is taken for
analysis and no conditional factors are added. An ensemble size of 20 is used for the
analysis. Results of model calibration for Gomlai station are shown in Fig. 27.3.
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Table 27.1 Predictors selected for each station and their correlation values

Station name NCEP codes Predictor variable Correlation value Partial r P value

Jenapur Shumas Surface specific
Humidity

0.265 0.056 0.0000

Jenapur rhumas Near surface relative
humidity

0.229 0.011 0.2729

Jenapur r850as Relative humidity at
850hpa

0.212 – 0.015 0.1412

Jenapur p5thas 500hpa wind
direction

0.177 0.018 0.0703

Jenapur p-uas Surface zonal
velocity

0.174 – 0.001 0.5632

Gomlai shumas Surface specific
humidity

0.323 – 0.092 0.0000

Gomlai r850as Relative humidity at
850hpa

0.277 0.021 0.0274

Gomlai rhumas Near surface relative
humidity

0.287 – 0.029 0.0023

Fig. 27.3 Calibration of model

Remaining 11 years data (2006–2016) are used for validation of the model. The
statistical plot between observed and simulated value is plotted to compare themodel
output. Figure 27.4 shows the plot for validation of the model.

It is quite clear from Fig. 27.4 that the model operates efficiently for calibra-
tion and validation. Hence future scenario is generated using this calibrated model.
Scenario A2 experiment results show a very heterogeneous world with continuously
increasing global population and regionally oriented economic growth that is more
fragmented and slower than in other experiments; while that of B2 scenario exper-
iment represents a world in which the emphasis is on local solutions to economic,
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Fig. 27.4 Validation of the model

social, and environmental sustainability, with continuously increasing population
(lower than A2) and intermediate economic development. Both the scenarios are
considered for the present study.

Outcomeof climatemodelHadCM3 is used for scenario generation for six decades
(2030–2090) in two subgroups as 2030–2060 and 2060–2090. These GCM outputs
are normalized to 360 days, 12 months with 30 days of each duration. Results are
presented in Tables 27.2 and 27.3.

Table 27.2 Simulated future precipitation for A2 and B2 scenarios at Jenapur station

Months Observed
values
(1981–2016)

Predicted values
2030-60-A2

Predicted values
2030-60 B2

Predicted values
2060-90-A2

Predicted values
2060-90 B2

January 15.218 2.465 2.431 2.416 2.440

February 16.126 4.894 4.864 4.907 4.858

March 11.978 4.211 4.293 4.213 4.266

April 12.219 6.787 6.733 6.798 6.736

May 10.165 12.441 12.455 12.475 12.524

June 12.459 19.477 19.548 19.249 19.361

July 13.828 20.513 20.361 20.447 20.561

August 15.225 22.139 21.972 22.093 21.966

September 15.670 18.176 17.777 17.901 18.042

October 15.742 16.768 16.925 16.901 16.963

November 16.787 6.376 6.432 6.401 6.323

December 14.468 1.809 1.809 1.812 1.807

Annual
total

169.615 136.056 135.6 135.613 135.847
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Graphical representation of the mean monthly precipitation of baseline period
(observed period) and forecasted period are shown in Fig. 27.5, (a) Jenapur station,
(b) Gomlai station; which provides a comparative analysis of change in precipitation
in future time period.

a) At Jenapur station 

Fig. 27.5 Comparison of monthly mean precipitation in forecasted period with that of baseline
period
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b) At Gomlai station 

Fig. 27.5 (continued)

27.6 Conclusions

As the model is statistical in nature, the accuracy is highly dependent on the selec-
tion of predictors and user’s expertise. The predictor selection process is based on
the correlation values, for which, sometimes the model underperforms for condi-
tional predictands like precipitation. The performance of model was satisfactory
for the two stations considered in this study; however analysis at more number of
stations is required to evaluate model performance in complete river basin. Based
on the present study on the statistical downscaling of GCM outputs and simulation
of rainfall scenarios for Brahmni–Baitarani River basins in Odisha, the quantity of
mean monthly precipitation shows an increasing graph with time for all epoches. It
can also be noted that the increase is more in the rainy season (June, July, August)
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with respect to other time of the year, which might be indicating increase in runoff
as well leading to flood events. But no conclusion can be drawn regarding increase
in discharge without considering other factors like temperature, land-use, land-cover
change etc.
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