
Water Science and Technology Library

Ramakar Jha · Vijay P. Singh · 
Vivekanand Singh · L. B. Roy · 
Roshni Thendiyath   Editors

Climate Change 
Impacts 
on Water 
Resources
Hydraulics, Water Resources and 
Coastal Engineering



Water Science and Technology Library

Volume 98

Editor-in-Chief

V. P. Singh, Department of Biological and Agricultural Engineering & Zachry
Department of Civil and Environmental Engineering, Texas A&M University,
College Station, TX, USA

Editorial Board

R. Berndtsson, Lund University, Lund, Sweden

L. N. Rodrigues, Brasília, Brazil

Arup Kumar Sarma, Department of Civil Engineering, Indian Institute of
Technology Guwahati, Guwahati, Assam, India

M. M. Sherif, Department of Anatomy, UAE University, Al-Ain, United Arab
Emirates

B. Sivakumar, School of Civil and Environmental Engineering, The University of
New South Wales, Sydney, NSW, Australia

Q. Zhang, Faculty of Geographical Science, Beijing Normal University, Beijing,
China



The aim of the Water Science and Technology Library is to provide a forum for
dissemination of the state-of-the-art of topics of current interest in the area of water
science and technology. This is accomplished through publication of reference
books and monographs, authored or edited. Occasionally also proceedings volumes
are accepted for publication in the series. Water Science and Technology Library
encompasses a wide range of topics dealing with science as well as socio-economic
aspects of water, environment, and ecology. Both the water quantity and quality
issues are relevant and are embraced by Water Science and Technology Library.
The emphasis may be on either the scientific content, or techniques of solution, or
both. There is increasing emphasis these days on processes and Water Science and
Technology Library is committed to promoting this emphasis by publishing books
emphasizing scientific discussions of physical, chemical, and/or biological aspects
of water resources. Likewise, current or emerging solution techniques receive high
priority. Interdisciplinary coverage is encouraged. Case studies contributing to our
knowledge of water science and technology are also embraced by the series.
Innovative ideas and novel techniques are of particular interest.

Comments or suggestions for future volumes are welcomed.
Vijay P. Singh, Department of Biological and Agricultural Engineering & Zachry

Department of Civil and Environment Engineering, Texas A &M University, USA
Email: vsingh@tamu.edu

More information about this series at http://www.springer.com/series/6689

mailto:vsingh@tamu.edu
http://www.springer.com/series/6689


Ramakar Jha · Vijay P. Singh · Vivekanand Singh ·
L. B. Roy · Roshni Thendiyath
Editors

Climate Change Impacts
on Water Resources
Hydraulics, Water Resources and Coastal
Engineering



Editors
Ramakar Jha
Department of Civil Engineering
National Institute of Technology Patna
Patna, India

Vivekanand Singh
Department of Civil Engineering
National Institute of Technology Patna
Patna, India

Roshni Thendiyath
Department of Civil Engineering
National Institute of Technology Patna
Patna, India

Vijay P. Singh
Department of Biological and Agricultural
Engineering
Texas A&M University
College Station, TX, USA

L. B. Roy
Department of Civil Engineering
National Institute of Technology Patna
Patna, India

ISSN 0921-092X ISSN 1872-4663 (electronic)
Water Science and Technology Library
ISBN 978-3-030-64201-3 ISBN 978-3-030-64202-0 (eBook)
https://doi.org/10.1007/978-3-030-64202-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-64202-0


Preface

Climate change has been emerging as one of the major challenges in the world.
Changes in climate may lead to adverse negative impacts on both natural and
human systems. Continued emissions of greenhouse gases would further amplify
the existing risks and create new complications for people and ecosystems. Climate
change impact on water resources is an important aspect of effective water
resources management. Increasing temperature, intense precipitation, and
development of heat islands are causing hydrologically extreme events in the
Indian subcontinent. To analyze the possible impacts of climate change on a river
basin, it is required to predict the impact of future climate changes, which in turn,
will help in the planning and management of water resources in the basin. General
Circulations Models (GCMs) and statistical downscaling of GCM output are one of
the most credible tools presently available for modeling climate change.
Downscaling is one of the approaches where GCM outputs are interpolated to the
scale of hydrological modeling or local scale requirements.

Over the years, a number of books on climate change impact have been brought
out. Most of the books published so far are theoretical, with a limited number of
examples and case studies. This book is an amalgamation of available resources and
is divided into various sub-themes.

In the present book, different climate scenarios have been evolved using different
soft computing techniques and statistical downscaling models. The seasonal and
inter-annual variability of sea surface temperature and its correlation with maximum
sustained wind speed; trend analyses of temperature series; trend analysis of rainfall
series and gridded rainfall; analysis of intensity-duration-frequency and
depth-duration-frequency curve projections under climate variability; and trend
analysis of evapotranspiration and reference crop evapotranspiration are discussed
for many river basins of India, including Tapi basin, Godavari river basin, Eastern
Ganga Canal command, Naini river basin, western Maharashtra, Kerela,
Chattisgarh, Ganga basin and other basins.

Observed spatiotemporal trends of precipitation and temperature overAfghanistan
is an interesting study in the book. The climate change impacts on water resources
in Ethiopia is also an interesting inclusion in the book.
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vi Preface

Different case studies indicating the impact of climate change in water resources
at varying climatic conditions are demonstrated effectively. Assessment of climate
change on crop water requirement and on hydrological regime and other studies are
described for Narmada basin and other river systems of India.

Some of the improved algorithms and mathematical formulations include
statistical downscaling of GCM output and simulation of rainfall scenarios,
identification of rainfall trends using singular spectral analysis, use of EM
algorithm for missing data on monthly maximum and minimum temperatures,
characteristics of GLDAS evapotranspiration and its response to climate variability,
fuzzy maximum likelihood segmentation and trend analyses, adaptive neuro-fuzzy
inference system, comparison of CMIP5 wind speed from global climate models,
comparison of selection of predictors for statistical downscaling of precipitation
using different statistical techniques, neural network techniques, and neuro-fuzzy
techniques, forecasting reference evapotranspiration using artificial neural
networks, and error analysis of TMPA near-real-time precipitation will be of
interest.

The book will help understand the climate change phenomenon in the basins of
India, Afghanistan, and Ethiopia. Also, the book highlights the impact of climate
changes on rivers and flood plains with respect to floods and droughts.

Patna, India
College Station, TX, USA

Ramakar Jha
Vijay P. Singh
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Chapter 1
Trend Analyses of Seasonal Mean
Temperature Series Pertaining
to the Tapi River Basin Using Monthly
Data

Ganesh D. Kale

Abstract Information about climate change on the scale of basin is very crucial for
development, planning and utilization of water. The Tapi basin is climatically respon-
sive. One of the most crucial parameters of the climate is temperature. Alterations
in climate at regional scales influence rudimentary aspects of our life. It is important
for policymakers that individual seasonal alterations are illuminated. Therefore, in
the current work, trend detection analysis of regional seasonal (four seasons) mean
temperature (Tmean) series (1971–2004) appertaining to the Tapi basin is conducted.
Evaluation of trend magnitude is performed by using Sen’s slope (SS) test. Identi-
fication of dependence of data is performed by using correlogram. Assessment of
trend significance for independent and dependent data is performed by using Mann–
Kendall (MK) test and block bootstrapping approach with MK test (MKBBS test),
respectively. The results showed the presence of statistically significant increasing
trend only in regional winter Tmean series of the basin.

Keywords Regional series · Seasonal series · Mean temperature · Tapi basin ·
Trend detection

1.1 Introduction

Warming of climate system is definite, which is now recognizable through observa-
tions of incrementing globalmean temperatures of ocean and air, extensive defrosting
of ice and snow and ascending global mean sea level (IPCC 2007). Thus, it is clear
that, there is impact of climate change on temperature. Information about climate
change on the scale of basin is very crucial for development, planning and utilization
of water (Singh et al. 2008a). Significant increase is noticed in maximum and mean
temperatures of the Narmada–Tapi basin for the post-monsoon season (Deshpande
et al. 2016). For the Tapi basin, which is located in the Central region of India, 2 °C

G. D. Kale (B)
Civil Engineering Department, SV NIT, Surat 395007, Gujarat, India
e-mail: gdk@ced.svnit.ac.in
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2 G. D. Kale

rise in surface temperature is observed over the period 1990–2010 (Bhamare and
Agone 2011). Thus, it can be inferred that Tapi basin is climatically sensitive.

One of the most crucial parameters of the climate is temperature. Temperature
affects hydrologic processes occurring in a basin (Singh et al. 2008b). Alterations in
climate at regional scales influence rudimentary aspects of our life, containingwelfare
and health, natural ecosystems and economy (Fahad et al. 2017). It is important for
policymakers that individual season alterations are illuminated, as various seasons
are vital for different aspects of management of water (Hannaford and Harvey 2010).

In the preparation of regional seasonal data of Tmean, if average of monthly values
of months in given season is considered as value of seasonal Tmean for given season,
then there may be possibility of loss of climate change signal because of averaging.
But, if Tmean values of individual months in respective season are contemplated then
aforementioned possibility may be averted. Thus, in the current work, trend analysis
of regional seasonal Tmean series appertaining to the Tapi basin is conducted by
contemplating individual month Tmean values in the given season.

1.2 Data

Trend analysis of regional Tmean series appertaining to the Tapi basin is carried out
in the current study. For the aforesaid analysis, Climate Research Unit Timeseries
(CRU TS) 3.22 data set of Tmean (1901–2013) is downloaded. The aforesaid data is
monthly gridded data having lat/long resolution of 0.5° × 0.5° which is available
at “http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_3.22/” (“last accessed on January
14, 2018”). The analysis period used in this study is 1971–2004 (34 years). For each
month of every year of analysis period, mean of monthly Tmean values of all grids
over the Tapi basin is taken as regional monthly Tmean value for given month to
get the regional monthly Tmean series. Regional seasonal Tmean series are prepared
from regional monthly Tmean series. For example, regional pre-monsoon Tmean series
consists of monthly Tmean values of March to May months of every year in analysis
period. Sonali and Nagesh Kumar (2013) stated that majority of the trend both in
minimum and maximum temperature commence after 1970 either in seasonal or
annual levels. Thus, 1971 is the beginning year of analysis period. In Sonali and
Nagesh Kumar (2013), it was also stated that, for trend detection, minimal tally of
years needed is 34. In the current work, analysis period is also 34 years.

1.3 Study Area

The Tapi basin is extended over the states of Gujarat, Maharashtra and Madhya
Pradesh (MP) covering 65,145 km2 area. The basin has maximum width and length
of 196 and 534 km, respectively. Basin is situated between north latitudes 20°9′
to 21°50′ and east longitudes of 72°33′ to 78°17′. Tapi river is the second largest

http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_3.22/
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Fig. 1.1 Tapi Basin. (Source http://india-wris.nrsc.gov.in/wrpinfo/index.php?title=Tapi)

river of the peninsula, draining toward the west. It emerges at 752 m elevation,
near Multai reserve forest located in Betul district, MP. Important tributaries of the
Tapi river joining from the left are Amravati, Vaghur, Panjhra, Buray, Girna, Bori,
Purna, Sipna and Mona, while those joining from the right are Gamai, Suki, Aner
and Arunavati. Plain areas of the basin are fertile, broad and proper for cultivation,
while hilly area of the basin is well timbered. The total river length is 724 km,
from start to way out into the Arabian Sea. The dominant part of the basin is
covered by agriculture which accounts for 66.19% of the basin area. Water bodies
covered 2.99% area of the basin (http://india-wris.nrsc.gov.in/wrpinfo/index.php?
title=Tapi). The Tapi basin is shown in Fig. 1.1.

1.4 Methodology

In the current work, SS test (Sen 1968) is used for evaluation of trend magnitude,
while MK test (Mann 1945) or MKBBS test is applied for evaluation of trend’s
statistical significance for independent or dependent data, respectively. Sonali and
Nagesh Kumar (2013) and Khaliq et al. (2009) among others have also used the
aforesaid three tests.

http://india-wris.nrsc.gov.in/wrpinfo/index.php%3ftitle%3dTapi
http://india-wris.nrsc.gov.in/wrpinfo/index.php%3ftitle%3dTapi
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Existence of serial correlation at one or more than one lags shows that data
is dependent (Kundzewicz and Robson 2000). Kundzewicz and Robson (2004)
proposed the use of autocorrelation plots as one amongst the usual types of graph
which can be useful for hydrologic data. So, autocorrelation plot/correlogram is used
in this study for identifying dependent or independent data. Innovative trend analysis
(ITA) (Sen 2012) is utilized for assessment of nature of trend (non-monotonous or
monotonous).

When smoothing curve is plotted for seasonal data, the purpose is generally to
find changes in long term and not only seasonal variation (Kundzewicz and Robson
2000). Thus, smoothing curve is also used in the current work to identify changes in
long term. Window 12 is utilized in the current work for smoothening of data. The
detailed information about aforesaid tests and graphicalmethods (ITA and smoothing
curve) is available in papers cited above.

1.5 Results

In the current work, trend analysis of regional seasonal Tmean series appertaining to
the Tapi basin is conducted. For MKBBS test, data resampling is conducted for 2000
times by using ‘k+1’ block size, where ‘k’ is the number of significant conterminous
lag correlations as given in Khaliq et al. (2009).

1.5.1 Trend Analysis of Regional Winter Tmean Series
Corresponding to the Period 1971–2004

Significant increasing trend is found in regional winter Tmean series by application
of MKBBS test. The trend magnitude as evaluated by SS test is 0.0122 °C/month.
The correlogram, smoothing curve and ITA plot corresponding to regional winter
Tmean series are shown in Fig. 1.2a, b and c, respectively. Correlogram shown in
Fig. 1.2a shows that data is not independent, thus MKBBS test is applied on given
data. Statistically significant increasing trend present in regional winter Tmean series
is aided by increasing pattern of data present in smoothing curve and ITA plot of
given series as shown in Fig. 1.2b and c, respectively.

1.5.2 Trend Analysis of Regional Pre-monsoon Tmean Series
Corresponding to the Period 1971–2004

Significant trend is not found in regional pre-monsoon Tmean series on application
of MKBBS test. Trend magnitude as evaluated by SS test is 0.0037 °C/month. The



1 Trend Analyses of Seasonal Mean Temperature Series Pertaining … 5

Fig. 1.2 Correlogram, smoothing curve and ITA plot of regional winter Tmean series appertaining
to the Tapi basin are shown in (a), (b) and (c), respectively

small magnitude of SS supports the non-existence of statistically significant trend in
the given series.

1.5.3 Trend Analysis of Regional Monsoon Tmean Series
Corresponding to the Period 1971–2004

Significant trend is not detected in regional monsoon Tmean series on application of
MKBBS test. Trend magnitude as evaluated by SS test is 0.0013 °C/month. The
small magnitude of SS supports the non-existence of statistically significant trend in
the given series.
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1.5.4 Trend Analysis of Regional Post-monsoon Tmean Series
Corresponding to the Period 1971–2004

Significant trend is not found in regional post-monsoon Tmean series on application
of MKBBS test. Trend magnitude as assessed by SS test is 0.0053 °C/month. The
small magnitude of SS supports the absence of significant trend in the given series.

1.6 Conclusion

Significant increasing trend is found in regional winter Tmean series (1971–2004)
of the Tapi basin. So, if the same trend is followed in future, it will lead to more
evaporation and consequently less availability of water during the winter season,
which will increase the burden on management of water resources in given area in
corresponding season.

Acknowledgement The author is grateful to the Climate Research Unit, UK for making available
the required data for the current work, on their website.
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Chapter 2
Dry Spell and Wet Spell Characterisation
of Nandani River Basin, Western
Maharashtra, India

Abhijit Mohanrao Zende and Prashant Basavaraj Bhagawati

Abstract Soil and water conservation measures are necessary to know the sequence
of dry and wet periods along with the onset and withdrawal of rainy season for
successful agricultural management and planning. Daily observed rainfall (1998–
2017) are analysed to compare and contrast the large-scale duration characteristics of
rainfall over semi-arid region. This paper analyses the trend of rain spell frequency in
terms of duration by using standard statistical methods. The analysis has been carried
out at four locations, namely Kadegaon, Karad, Vaduj and Vita, in and nearby the
Nandani river basin. In the Nandani river basin, the duration of dry spell varies from
69 to 119 days, and wet spell varies from 34 to 87 days. In this study, the rain
spells were classified into low, medium, high, very high and extreme rain spells.
The important results have been found through analysis of this study. These results
are: the spells were examined only for the monsoon season (June–October) because
all the above categories of rain spells occur only in this monsoon season. The rain
spells help to coordinate various activities, like water effect on crop growth, supple-
mentary irrigation, water release schedule and so on. The maximum dry spell (DS)
was 119 days at Vaduj in 2003 and minimum 69 days at Kadegaon in 2006. The
maximum wet spell (WS) was 87 days at Karad in 2005 and minimum 34 days at
Vaduj in 2003.

Keywords Crop growth · Dry and wet spell · Supplementary irrigation · Water
release schedule
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2.1 Introduction

Global water resources are highly sensitive to both climate change and climate vari-
ation. Rainfall, the main input to the global hydrological cycle and an important
indicator of water resources availability, has shown significant change and varia-
tions over the years both globally and regionally (Zende et al. 2012). Drought is
the interruption of the rainy season by a so-called dry spell (DS). Dry spell (DS)
can be defined as a sequence of dry days including days with less than a threshold
value of rainfall. The information of spell is extremely useful for planning and design
applications in agriculture and environment and many other sectors (Atal and Zende
2015). Rainfall is a seasonal phenomenon in tropical monsoonal climate. The start
and end of rainy season, rainfall amount, rainfall intensity and duration of wet spells
(WS) and duration and severity of intervening dry spells (DS) are characterised by
large spatial and temporal variations. Climatology and unevenness of the parame-
ters of rainy season and wet and dry spells are valuable information for planners,
scientists, engineers andmanagers working in water-related sectors (water resources,
agriculture, ecology, hydrology etc.). Crucial issue of rainfall spell is determination
of year-wise starting and ending dates of the rainy season and identification of wet
and dry spells in the rainfall and its time distribution. In this study, we attempt to
demonstrate that demarcation of start and end of rainy season, and identification
of wet/dry spells are fundamentally one problem, and single-objective criterion can
serve both the purposes (Atal and Zende 2015).

Recently, Ranade et al. (2008) applied this criterion to determine year-wise start
and end of the hydrological wet season (HWS) over 11 major and 36 minor river
basins as well as the West Coast Drainage System (WCDS) and studied the vari-
ability of HWS parameters (starting and ending dates and duration, seasonal rain-
fall/rainwater and surplus rainfall/rainwater potential) over the period of longest
available instrumental records (1813–2006). Dash et al. (2009) applied the IMD
criteria of rainy day (rainfall equal to or greater than 2.5 mm per day) to identify wet
and dry events across India. Parts of India experience considerably longer duration
of rainy season than the summer monsoon period as they get considerable rainfall
from other systems also in the pre- and post-monsoon periods. To identify wet spells
across China, Bai et al. (2007) used the following criteria: (i) In a wet spell (WS), the
number of rainy days (rainfall≥ 0.10mm/day) should not be less than 4 days, and the
first three days should not include a dry day. (ii) A wet spell (WS) is over whenever
there are two consecutive dry days. The duration of a wet spell (WS) is defined as the
number of days between the two consecutive dry days. They have also documented
different definitions attempted earlier in different geographical locations of China. A
sophisticated hydrological scheme, the available water resources index (AWRI), has
been developed by Byun andWilhite (1999) for detecting the onset, end and accumu-
lated stress of drought. In the AWRI, the accumulated precipitation, the duration of
accumulation and the daily reduction of water by runoff, evapo-transpiration, infil-
tration and so on are taken into account quantitatively. Using this scheme, the onset
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and ending dates, and intensities of the three rainy seasons in Korea were determined
for each year and each station, and also climatologically (Byun and Lee 2002).

For Peninsular Malaysia, Deni et al. (2008) defined a wet day with rainfall of at
least 0.1 mm. A wet (dry) spell is defined as a period of consecutive days of exactly,
say x, wet (dry) days immediately preceded and followed by a dry (wet) day. Aviad
et al. (2004) studied the variation in beginning, end and length of the rainy season
along a Mediterranean-arid climate transect with the change in rainfall threshold.
They changed the thresholds from 0.1 to 80 mm with interval of 2.5 mm, and from
80 to 200 mm with intervals of 5 mm, and found that as the threshold increased the
rainy season began later, ended earlier, and consequently its length was shortened.
Cook and Heerdegen (2001) defined rainy season as that period when the probability
of 10-day dry spells was less than 0.5, and the wet season (monsoonal influence)
as that period within the rainy season when the probability of dry spells was less
than 0.1. A dry-day was defined with rainfall less than 5 mm. This definition was
essentially meant for ecological purposes.

Understanding climatic and hydroclimatic features of wet and dry spell is essen-
tial for effective agricultural and hydrological operations. On the face of global
climate change background and scenario projections, the problem assumed greater
importance; therefore attempts have been made in recent decades world-wide to
understand the problem on regional/local scales. This comprehensive study of the
wet and dry spells (including their extremes) in a semi-arid region is undertaken with
the following main objective.

2.2 Objective

Theobjective of this study is analysis of dry spell (DS) andwet spell (WS) tominimise
unexpected damage due to long dry spells and to have effective and efficient planning
for various stakeholders.

2.3 Study Area and Methodology

The study area is Nandani river basin located at upper Yerala river basin, a trib-
utary of Krishna river basin India. Nandani river originates at Jaigoan and flows
from Aundh, Khatav tahsil, Satara district and confluence to Yerala river at Shivani,
Kadegaon tahsil, Sangli district. Nandani river flows through plateau region. There
are high agricultural lands, including approximately 70% natives of Nandani river
basin as cultivators. Moreover, the crop practice at Nandani river basin includes
rainy season crops (Kharif) which includes soyabean, ginger, potato and groundnut.
Geology of the area is covered by basaltic rocks. In this region temperature ranges
from 10–42 °C. The coordinates are latitude 17°13′28′′N to 17°33′53′′N longitude
74°14′16′′E to 74°25′19′′E (Fig. 2.1). Basin is appx. 20 km away from main town
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Fig. 2.1 Location of Nandani river basin

Karad. Average elevation of study area is 660–840m. June to October is themonsoon
season in the study area. The river basin experiences tropical monsoon weather with
normal temperature, humidity and evaporation throughout a year. The study area
falling under Survey of India (SOI) topographical sheet nos. 47 K/6/SE, 47 K/6/NW,
47 K/6/SW, 47 K/6/NE, 47 K/7/NE, 47 K/7/SE, 47 K/7/NW, 47 K/7/SW, 47 K/8/SE,
47 K/8/NW, 47 K/8/SW, 47 K/8/NE on a scale of 1:25000.With the help of Arcgis 10
GIS software, first all toposheets were georeferenced, mosaic, and marked particular
region river basin boundary (by cropping study area). Also, the following features get
achieved like drainage pattern of basin, location of settlement/roads/railway, location
of existing water bodies and contours lines and so on.

2.3.1 Data Used

Nandani river is one among the tributaries of the Yerala river basin. The total length
of the river is 39 km and its area is 420 km2. It starts from Jaigaon located at 914 m
above MSL and confluence Yerala river at 551 m above MSL. 60% rainfall occurs
during June to September due to South-West monsoon, 18% during September to
December due to North-East monsoon and 12% after December. Most of the areas
of this basin receive rainfall less than 700 mm. The highest annual of rainfall of
1038.4 mm was recorded during 2006 at Kadegaon and the lowest of 175.3 mm
during 2003 at Khatav. It is expected that the characteristics of wet and dry spells on
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basin/watershed scales would provide useful information for science (to understand
physics and dynamics of rain-producing weather systems) and society (hydrology
and water resources, ecology and agriculture).

Rainfall data of four stations operated by the meteorological organisation of
Western Maharashtra were used to evaluate rainfall variability in semi-arid zones
(Table 2.1).

These stationswere selected because they have rainfall records for 20 years (1998–
2017) (Fig. 2.2). The data set has included annual rainfall, number of rainy days per
year and monthly rainfall. The number of rainy days per year was defined as the
number of days in a year with a rainfall amount greater than 1 mm. Following
physico-climatological factors are also qualitatively considered for detailed analysis

Fig. 2.2 Raingauge stations location in Nandani river basin
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Table 2.1 Details of Rainguage stations

S. No. Rainguage
station

Latitude Longitude Sample size
(Year)

Altitude (m)

01 Kadegaon 74°19′56.40′′E 17°18′7.58′′N 20 675

02 Karad 74°13′33.01′′E 17°18′11.73′′N 20 580

03 Khatav 74°27′14.37′′E 17°35′24.82′′N 20 720

04 Khanapur 74°32′16.04′′E 17°16′27.70′′N 20 680

of rain spell. (a) Topographic features; (b) Spatial pattern of the mean annual/South-
West monsoon rainfall; (c) Drainage pattern; (d) Pre and post-monsoon ground water
level across the river basin; and (e) Daily rainfall data.

2.3.2 Method

In the wet/dry spell approach, the time-axis is split up into intervals called wet
periods and dry periods. A rainfall event is an interval in which it rains continuously
(it is an uninterrupted sequence of wet periods). The definition of event is associated
with a rainfall threshold value which defines wet. Rainfall information from four
raingauge stations was collected. Four stations are within or on the periphery of
the basin. Yearly, monthly and daily rainfall information were collected. Maximum
evaporation is 236 mm as of May and minimum is 102 mm as of December. Though
average rainfall is not more, total annual evaporation is also not more in comparison
with other low rainfall areas. But since less rainfall is spread over 7 months in
overall, this area does not receive rainfallmore than natural evaporation in anymonth.
Generally, annual evaporation is thrice the annual rainfall. During any of the months,
evaporation is more than the naturally occurring rainfall. The scenario lasts for all the
four monsoon months. Especially during September, the deficit is quite appreciable
from this count. The annual total evaporation is 1833 mm. It varies between 108 and
134 mm during June to September, 126 and 120 mm during October to February,
and 219 and 234 mm during March to May.

2.3.3 Identification of Wet and Dry Spell

Rainfall threshold used in the criterion is derived from local rainfall climatology that
is ‘daily mean rainfall’ (DMR) of the climatological (long-term mean or normal)
summer monsoon period over the area of interest.

Computational steps of the schemes are as follows:

1. Calculation of daily mean rainfall (DMR) of the normal summermonsoon period
(mm/day).
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2. Identification of continuous period with normalised, smoothed daily rainfall
values equal to or greater than 1.0 mm as wet spell (WS) and less than 1.0 mm
as dry spell (DS).

Climatological and fluctuation features of the following parameters of actual wet
and dry spells have been studied.

i.Number ofwet/dry spells; ii. Total rainfall of thewet/dry spells; iii. Total duration
of the wet/dry spell; iv. Starting date of first wet/dry spell; v. Ending date of last
wet/dry spell; vi. Rainfall amount of individual wet/dry spell; vii. Rainfall intensity
of individual wet/day spell; viii. Duration of individual wet/dry spell.

Farming in most parts of Nandani basin depends on rainfall. With other environ-
mental factors assumed to be fair and good, dry spells are considered to be the major
cause of poor crop production, hence a study on dry spell analysis is important. The
success and failure in crop production during rainy seasons are dependent on the
frequency and length of dry spells. Knowledge on dry spell distribution within a
rainy season plays a vital role in trying to maximise benefits in rainfed agricultural
regions.

2.4 Results and Discussion

To comprehend broad spatial climatological features of the dry and wet spells across
the country, a generalised description of the parameters in five categories is provided.

a. Number and total duration of wet/dry spells and duration of actual and different
extreme wet/dry spells.

b. Total rainfall of wet/dry spells and rainfall amount and rainfall intensity of actual
and extreme wet/dry spells.

c. Start of the first wet spell.
d. End of the last wet spell.
e. Occurrence of different extreme wet/dry spells.

If the series of successive precipitations do not form independent events, the waiting
time follows a gamma distribution with two parameters instead of an exponential
distribution. For planning purposes, the longest dry spells associated with different
return periods are of fundamental importance.

Weekly rainfall analysis was carried out for the months of June to October, in
understanding the adequacy rainfall during the 24th to 46th meteorological weeks
for rainfed cultivation (Sudhishri, 2004). 25 mm of rainfall in a week will be able
to meet 0.5–0.75 times the evaporation demand. During the early stages of growth,
the crop water requirement will be about half of the evaporation demand and would
increase during the reproductive stage of crop growth. Therefore, a weekwith rainfall
less than 25 mm was considered as dry and additional water is (other than rainfall)
demanded for this week. However, during dry week, the crops may meet their insuf-
ficient water requirements through the moisture (stored) available in the soil. If the
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rainfall is less than 25 mm per week for two or more consecutive weeks, the crops
will be subjected to moisture stress due to lack of adequate stored soil moisture.
Supplementary irrigation is to be provided for those weeks. It was observed that the
rainfall starts in the 23rd week and continues up to 41th meteorological week. The
dry spell is the period between two rainy events, in which no rainfall is reported. Dry
spells in all the raingauge station are shown in Fig. 2.3.

Dry and wet spell duration of raingauge stations is given in Table 2.2.
The number of dry spell ranges between 2 and 5. Hence, 2–5 or more than 5

supplementary irrigation iterations are required. The details of crop calendar are
shown in Table 2.3. Hence, the crops that totally depend on rainfall could not yield.

Sowing Vegetation Growth + Flowering + grain formation Harvest.

Fig. 2.3 Duration of dry spell within monsoon event

Table 2.2 Duration of dry and wet spell days at various raingauge stations

Raingauge station Dry spell (Days) Wet spell (Days) No. of dry spell Year

Kadegaon 114 40 29 2003

69 84 16 2006

Karad 96 55 23 2015

102 87 12 2005

Vaduj 119 34 28 2003

94 57 21 2009

Vita 99 48 20 2003

85 68 14 1998
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Table 2.3 Crop calendar

Sr. No. Crops
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

01 Sorghum (Kharif)

02 Sorghum (Rabbi)

03 Groundnut (Kharif)

04 Groundnut (HW)

05 Wheat

06 Pearl Millet

07 Soya bean

08 Gram

09 Sunflower

10 Turmeric Or Ginger

11 Sugarcane

 Sowing  Vegetation Growth +Flowering + grain formation         Harvest 

2.5 Conclusion

Spatial and temporal variability of rainfall for 1998–2017 indicates no systematic
trend and correlation between the stations. Dry spell (DS) of themonsoonwas used in
the identification of ground water supplementary irrigation. Weeks receiving rainfall
about 25mmare not able tomeet 0.5–0.75 times the evaporation demand. Irrespective
of the increase or decrease in rainfall and days, the number of dry spells ranges
between 2 and 5. Hence, 2–5 or more than 5 supplementary irrigation iterations are
required to prevent the crop failure due to water stress. These results also indicated
that for the analysed time period, there was no significant climate change in the semi-
arid region of Western Maharashtra. The results also suggest the need for further
investigation on local anthropogenic intervention in the environment, which could
be one of the major causes of climate change in semi-arid regions.
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Chapter 3
Assessment of Climate Change on Crop
Water Requirement in Tandula
Command of Chhattisgarh (India)

Rahul Kumar Jaiswal, H. L. Tiwari, and Anil Kumar Lohani

Abstract India is an agrarian country where more than 70% of population depend
largely on agriculture and agro-related business. The projected scenarios of precip-
itation from climate models predict decrease in some region and increase in others,
albeit with large uncertainty in most of the places. The Chhattisgarh state which
is called rice bowl of India has number of water resources projects where climate
change can change crop water requirement. The present study has been carried out in
the command of Tandula reservoir using statistical downscaling of climatic parame-
ters for computation of crop water requirement using RCP2.6, RCP4.5 and RCP8.5
scenarios of coupled model inter-comparison project 5 (CMIP5). For calibration
and validation, 26 NCEP rescaled climatic variables from 1971 to 2003 have been
used with minimum and maximum temperature and rainfall for concurrent period.
The percentage reduction and k-fold cross-validation techniques have been used for
selection of best-suited climatic parameters for statistical downscaling and used to
generate multiple ensembles of temperature and rainfall for three future assessment
periods, namely near century period as FP-1 (2020–2035), mid-century period as FP-
2 (2046–2064) and far century period as FP-3 (2081–2099). The projected multiple
series of climatic variables were further used to compute evapotranspiration using
CLIMWAT and then crop water requirement in the command and compared with
corresponding requirement during the base period (BP: 1971–2014). The results of
analysis suggested that the mean monthly maximum temperature showed a rising
trend in all the months, while significant increase of minimum temperature during
winter and rainy season. The average crop water requirement for designed crop-
ping pattern of 82089 ha of kharif paddy during base period under present overall
efficiency of 51% during base period may be about 473.7 Mm3 and will increase to
479.0Mm3 during near century period (2020–2035), 492.7Mm3 duringmid-century
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period and reduce to 387.9 Mm3 during far century period (2018–2099). The mid-
century period may be the most critical among all and it is recommended to develop
adaptation measures to combat climate change especially in mid-century period.

Keywords Climate change · Global circulation model · Representative
concentration pathways · Downscaling · Crop water requirement ·
Evapotranspiration

3.1 Introduction

One of the major challenges for scientific community is to develop appropriate adap-
tation strategies for water resources management which is adversely affected by
changing demand and supply scenarios due to plausible climate change. The different
reports of Intergovernmental Panel on Climate Changes (IPCC 2012, 2013) and other
independent researches has confirmed that climate is changing on global and regional
scale, which is likely to affect precipitation, runoff availability and supply of water
(Tabari et al. 2016); in addition, irrigation water demand (Rosenzweig et al. 2004)
must be evaluated to assess demand–supply scenarios due to future climate change.
For simulation of future climate on the earth, General Circulation Models (GCMs)
are the most advanced tools used in different hydrologic and other studies (Anandhi
et al. 2008). These models can predict climate for future hundreds of years based on
probable greenhouse gas (GHG) concentrations in the atmosphere under different
development conditions. However, the GCMs are the most credible tools to simulate
time series of climate variables (Ghosh and Mujumdar 2008), but unable to resolve
significant sub-grid scale features including topography and land use, as needed in
hydrologic modelling and impact assessment. This problem of coarse grid data can
be solved by downscaling GCMs to local and basin scale with the help of dynamic or
statistical downscaling techniques that bridge the large-scale atmospheric conditions
with local-scale climatic data (Tisseuil et al. 2010). Both these techniques have their
own advantages or disadvantages in future projection due to climate change (Tukimat
and Harun 2013). The dynamic downscaling techniques use physically based model
run in time-slice mode and limited area having major drawback of complexity and
high computation cost (Anandhi et al. 2008) and propagation of systematic bias from
GCM to RCM (Salathe 2003).

The statistical downscaling techniques reasonably accurate in developing relation-
ships between GCM predictors and regional/station climatic data are simple, flexible
in adjustment and movement to different regions, less costly and computationally
undemanding in comparison to dynamic downscaling and proved its reliability and
compatibility in future projections (Fowler et al. 2007; Lopes 2009; Sharma et al.
2011; Ethan et al. 2011). Wilby et al. (2002) explained application of statistical
downscaling model (SDSM) for prediction of future climatic variables using GCMs
data. Mahmood and Babel 2014 applied SDSM for prediction of future scenarios of
extreme temperature in trans-boundary region of India and Pakistan. In the study, bias
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correction has been applied to make generated data de-biased, and then eight inten-
sity and four frequency indices were determined to examine the change in climate in
three future periods of 2011–2040, 2041–2070 and 2071–2099 s at the Jhelum basin.
The results of the study confirmed increase of hot days and hot nights and decrease
of cold days and cold nights in all three future periods in comparison to base period
(1961–1990). Similarly, several other researchers (Wilby et al. 2002; Jaiswal and
Tiwari 2015 etc.) applied user-friendly and convenient SDSM for downscaling of
climatic parameters.

3.2 Study Area and Data Used

The study area selected for the study is Tandula command that receives water from
Tandula and Gondli reservoirs situated in Chhattisgarh state of India. The location
map of Tandula command is presented in Fig. 3.1. The designed cropping pattern of
Tandula command consists of 82095 ha, kharif paddy. As complete cropping area
cannot be shown at once, the total cropping area of paddy has been divided into
two equal parts grown on second and third 10-daily period of June each year. The
cropping pattern of Tandula command is given below.

Fig. 3.1 Location map of Tandula command in Chhattisgarh (India)
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Crop June July August September October November

 D-1 D-2 D-3 D-1 D-2 D-3 D-1 D-2 D-3 D-1 D-2 D-3 D-1 D-2 D-3 D-1 D-2 

Paddy-1 
41048 ha 

 
S         

     H  

Paddy-2 
41047 ha 

 
 S        

      H 

The daily time series of minimum and maximum temperature of Raipur from
1971 to 2014 and rainfall of Balod R.G. station from 1981 to 2014 have been used.
Twenty-six rescaled NCEP predictors and projected predictors from three different
scenariosRCP2.6, RCP4.5 andRCP8.5 fromCanadianGCMCANESMwere used in
the analysis for generation of multiple ensembles of climatic parameters and rainfall.

3.3 Methodology

The methodology for computation of crop water requirement under climate change
proposed under the study consists of statistical downscaling of maximum and
minimum temperature and precipitation for Tandula command for three future
periods, namely near century period from 2020–2035 as FP-1, mid-century period
from 2046–2064 as FP-2 and far century period from 2081–2099. The multiple
projected climatic series were used for computation of evapotranspiration using ETo

calculator and crop water requirement under present efficiency condition.

3.3.1 Statistical Downscaling

The SDSM is a user-friendly software developed under sponsorship of A Consor-
tium for Application of Climate Impact Assessments (ACACIA), Canadian Climate
Impacts Scenarios (CCIS) Project and Environment Agency of England and Wales.
The SDSM can develop multiple, low-cost scenarios of daily surface weather vari-
ables under present and future climatic forcing. Presently, SDSM version 5.2 is
available where the following seven key functions are required to perform the task
of daily weather downscaling and forecasting (Fig. 3.2).

1. Quality control and data transformation
2. Selection of downscaling predictor variables
3. Model calibration
4. Weather generator
5. Data analysis
6. Graphical analysis
7. Scenarios generation.

The steps involved in statistical downscaling consist of quality control, selection
of set of predictors, calibration and validation of model, uncertainty analysis, and
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Fig. 3.2 Workflow in SDSM-DC (Reproduced from Wilby et al. 2014)

generation of series and statistical analysis/comparison. The selection of a set of
appropriate predictors is an important task in downscaling process and proper under-
standing of physical process and knowledge of physically sensible predictors that
can represent atmospheric process are essential (Huang et al. 2011). Several methods
were propagated by different researchers for selection of appropriate set of predic-
tors (Benestad et al. 2007; Shongwe et al. 2006; Tripathi et al. 2006 etc.) and in
the present study, percentage reduction method (Mahmood and Babel 2014; Jaiswal
et al. 2018) along with scatter diagram were used where the correlation coefficient
between predictand (precipitation for present study) and 26 NCEP rescaled predic-
tors on monthly, seasonal and annual basis have been computed using unconditional
approach for temperature and conditional for rainfall. The predictor ranked first was
termed as super predictor (SP) and using it, absolute correlation coefficient, absolute
partial correlation and percentage reduction (PR) can be computed for remaining
predictors using the following equation.

PR = Pr − R

R
(3.1)

where Pr and R are the partial and absolute correlation coefficient, respectively. The
predictor having lowest PR value has been recognised as second super predictor. The
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second super predictor along with remaining predictors was used again to get third
super predictors. In general, one to three predictors are enough tomodel climatic vari-
ability (Chu et al. 2010). After selecting a set of appropriate predictors, k-fold cross-
validation (Casanueva et al. 2014) has been used. In this technique, the complete
data series is divided in two parts, where first ((K−1)/K) part is taken for calibration
to develop statistical relationships with appropriate transformation and model type
while remaining (1/K) part of series is used for validation purpose. The series gener-
ated during calibration and validation was de-biased using appropriate correction
and used to compute efficiency and other goodness-of-fit statistics of the proposed
model. After successful calibration and validation, the developed models were used
to generate multiple ensembles of climatic parameters and rainfall using predictors
of RCP2.6, RCP4.5 and RCP8.5 scenarios from CANESM GCM for three future
assessment periods as near century period as FP-1 (2020–2035), mid-century period
as FP-2 (2046–2064) and far century period as FP-3 (2081–2099).

3.3.2 Reference Crop Evapotranspiration (ETo)

The evapotranspiration for reference crop is computed using ETo calculator software
which uses PenmanMonteith equation for computation of long-term reference evap-
otranspiration. The ETo calculator is a software developed by the Land and Water
Division of Food andAgricultureOrganization to calculate reference evapotranspira-
tion (ETo) according to FAOstandards. TheETo calculator usesminimum,maximum
temperature, sunshine hours, wind speed and relative humidity for computation of
evapotranspiration. Alternatively, only temperature data along with location can be
used to compute evapotranspiration. A screenshot of ETo calculator is presented in
Fig. 3.3.

3.3.3 Computation of Irrigation Water Requirement

The crop water requirement can be defined as the total amount of water needed to
be supplied from source to meet all the requirements of a crop, including evapo-
transpiration, field preparation, nursery, leaching and losses during conveyance and
application. The paddy in kharif season is the only crop in design cropping pattern
where water is supplied from Tandula reservoir. The crop water requirement at dam
head has been computed using present overall efficiency as 51% (conveyance effi-
ciency as 75% and application efficiency as 68%). The results of crop water require-
ments for three future assessment periodswere comparedwith base period cropwater
requirement during as BP (1971–2014).



3 Assessment of Climate Change on Crop Water Requirement … 25

Fig. 3.3 Screenshot of ETo calculator

3.4 Analysis of Results

The assessment of crop water requirement in a command is an essential step for
development of adaptationmeasures to cope up the harmful effects of climate change.
For computation of cropwater requirement in Tandula command, climate and rainfall
have been projected for three future assessment periods and used for computation of
crop water requirement with the help of ETo calculator, prevailing norms and present
efficiencies.

3.4.1 Future Projection of Climate Parameters and Rainfall

The statistical downscaling technique has been used in k-fold cross-validation tech-
nique where minimum and maximum temperatures were modelled with uncon-
ditional, while rainfall in conditional approach. In the analysis, three-fold cross-
validation technique has been used where depending on availability of at-site and
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NCEP rescaled data, the period 1971–1990 was selected for calibration and 1991–
2003 for validation. During calibration, different combinations of transformations
and model types were tested and a series of climatic parameters for calibration
period was generated and de-biased using linear difference and scaling techniques.
The generated and observed climatic data were taken outside of SDSM and the
coefficient of correlation (R), adjusted R2 and Nash-Sutcliffe efficiency (ï) for cali-
bration period were computed onmonthly basis for all the combinations. Few best-fit
combinations of predictors were selected during calibration and were used for gener-
ation of series with independent series of predictors for validation periods, and after
de-biasing goodness-of-fit measures were determined. The graphical representation
of computed and observed monthly mean of minimum and maximum temperature
during calibration and validation has been presented in Fig. 3.4a andmonthly rainfall
of Balod during similar periods in Fig. 3.4b. The list of selected predictors, model
type, transformation and goodness-of-fit measures for climatic variables and rainfall
at Balod R.G. station has been presented in Table 3.1.
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Fig. 3.4 a Mean monthly minimum and maximum temperature during calibration and validation.
bMonthly rainfall at Balod R.G. station during calibration and validation
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From the analysis, it has been found that the Nash-Sutcliffe efficiencies are 98.5
and 99.8% for minimum temperature, 91.3 and 91.5% for maximum temperature
and 85.9 and 75.3% for rainfall at Balod R.G. station during calibration and valida-
tion, respectively. From the analysis of different goodness-of-fit tests and graphical
representation, it may be concluded that the suggested models perform satisfactory
during calibration and validation periods and can be used for further projection.
Multiple series of climate and rainfall were generated and de-biased for three future
assessment periods and used for computation of crop water requirement. The mean
monthly values and ranges of projections of minimum and maximum temperature
have been presented in Fig. 3.5a, while the same for rainfall at Balod in Fig. 3.5b.

The results from multiple projected series from RCP2.6, 4.5 and 8.5 scenarios
confirmed the increase of monthly minimum temperature in the months of March,
April andOctober toDecember. The annualminimum temperature for the base period
(BP: 1971–2105) is 19.8 °C, which may increase to 20.1, 20 and 20.3 °C during
early, mid and far century periods, respectively. The monthly maximum temperature
showed an increasing trend in all the months except December in all three assess-
ment periods. The annual maximum temperature for the base period (1971–2105) is
32.7 °C which may increase to 34.3, 35.1 and 35.6 °C, respectively, during near, mid
and far century periods. The more intense heat wave in summer months may create
several health as well as water-related problems and request more water for crops in
rabi and kharif seasons in the region. The increase of temperature, in general, may
intense the water requirement in the region, and appropriate management and adap-
tation option should be planned to cope up the adverse impact of rising temperature
due to global warming. The temporal and spatial distribution of rainfall plays an
important role for irrigation supply and projected reduced rainfall on an average of
943, 874 and 836 mm, respectively, during near, mid and far century periods with
respect to 936mm seasonal rainfall during base period. The June and Julymonthmay
receive lower rainfall which will have adverse impact on water supply for planting
and nursery operation.

3.4.2 Evapotranspiration and Irrigation Water Requirement

The observed and multiple future projected climate data (3 series) for future assess-
ment period have been used to compute crop evapotranspiration. The evapotranspira-
tion and rainfall series were further used in excel programming considering require-
ment of nursery, plantation, leaching alongwith conveyance and application losses to
determine gross water required at the head of reservoir. As per the prevailing norms
in the region, 100 mm each has been used in first two 10-daily periods for nursery
and 150 mm for plantation during third 10-daily period. The present conveyance
efficiency as 75% and application efficiency as 68% have been used to compute
gross water requirement of the command. The average yearly future requirements
computed in thiswaywere comparedwith average base period requirement (Fig. 3.6).
The computed average yearly gross water requirement (GWR) for the base period is
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Fig. 3.5 (continued)

437.3 MCM. The computed average yearly crop water requirement for near century
period may be in the range of 424–587.4 MCM where RCP 8.5 projected higher
water demand. During mid-century period, all projections except RCP 2.5 predicted
more requirement of water than present-day requirement. The far century periodmay
be safe for irrigation water requirement point of view, where multiple series from all
three scenarios projected comparatively less water (336.4–407.9 MCM) demand.

3.5 Conclusions

The impacts of climate change on water resource are inevitable and can be solved by
future assessment of demand and supply analysis using future projection of climate
data. In the present study, crop water requirement for design cropping pattern of
Tandula command using RCP2.5, 4.5 and 8.5 scenarios data of CNESMGCMdown-
scaled with the help of statistical downscaling. The analysis has been carried out
for near (FP-1: 2020–2035), mid (FP-2: 2046–2064) and far century (FP-3: 2081–
2099) periods and found that minimum andmaximum temperature in the region may
increase, and rainfall at Balod R. G. station filled in command area may get reduced
rainfall duringmid and far century periods. The cropwater requirement under present
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Fig. 3.6 Projection of average crop water requirement for Tandula command

51%efficiencymaybemore or less similar during near century, higher inmid-century
and less during far century period for Tandula command. The mid-century period
may be more critical where demand may be higher than present water need, and it is
necessary to take adaptive management options along with precision irrigation and
efficient operation of reservoir.
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Chapter 4
Impact of Climate Change
on Hydrological Regime of Narmada
River Basin

Deepak Kumar Tiwari, H. L. Tiwari, Raman Nateriya, and Satanand Mishra

Abstract The predicted climate change may introduce more stress and need various
adaptation strategies to be implemented. Climate change in the Indian context has
caused an increase in surface temperature at the rate of 0.2 °C per decade from 1971
to 2007. The present work is done to assess the impact of climate change through
review of literatures pertaining to it.

4.1 Introduction

The per capita annual water resource (AWR) has been used to classify countries with
respect to the water scarcity. Countries with an AWR per capita of 1700 cum and
above have been termed as countries where shortage will be rare; those with an AWR
per capita of less than 1000 cum as water-stressed countries; and those with an AWR
per capita of 500 cum and below as countries where availability of water is a primary
constraint to life. In 1955, only seven countries were found to be with water-stressed
conditions. In 1990, this number rose to 20 and it is expected that by the year 2025
another 10–15 countries shall be added to this list. It is further predicted that by 2050,
two-thirds of the world population may face water-stressed conditions. It is worth
noting that this assessment has been made without taking into account the possible
impact due to predicted changes in global climate. Such considerationmay aggravate
the situation of AWR further (Ministry of Water Resources of India 1999).
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The predicted climate change may introduce more stress and need various adapta-
tion strategies to be implemented. The strategies may range from land use, cropping
pattern, flood warning system, and so on (Gosain et al. 2006). The rise in surface air
temperature and subsurface ocean temperature, which are perceived to be the primary
cause of sea level rise resulting from a continuously warming climate and increased
moisture content associated with expected higher rainfall amounts, are considered
to be strongly affecting the temporal and spatial pattern of Indian Summer Monsoon
Rainfall (ISMR) (Goswami et al. 2006; Dash et al. 2011). Climate change in the
Indian context has caused an increase in surface temperature at the rate of 0.2 °C per
decade from 1971 to 2007 (Kothawale et al. 2010). Such an increase in temperature
is expected to bring out a change in the hydrological cycle mainly due to an increase
in average evaporation, water vapour and precipitation. Recently, an increase in the
intensity and frequency of extreme rainfall events has been reported over Central
India (where the basin is located), which makes these areas susceptible to flash
floods and drought at the same time. So, this raises the most important question on
whether the climate change is a treat to human water security and increased severity
to hydrological disasters. Previous studies have shown that simulated climate change
impacts vary substantially depending upon climate model and emission scenario of
greenhouse gases used (Arnell 1999; Bronstert 2004; Hurkmans et al. 2008).

The objective of the study is to assess the impact of climate change through review
of literatures pertaining to it. A detailed literature review is conducted followed by
methodology involving study area and description ofmethodologies used previously,
data details and followed by conclusion.

4.2 Literature Review

Hosseinizadeh et al. (2015) tudied the impact of climate change on the severity,
duration and frequency of drought in a semi-arid agricultural basin in Khuzestan,
Iran. The study applied the Standardized Precipitation Index (SPI) along with a
combination of GCM scenarios to create the severity–duration–frequency (SDF)
curves of drought for the period 2020–2044. An average period of sixmonths (ending
in May) was used for the SPI, corresponding to the agricultural growing season of
the region, to assess drought conditions fewer than five plausible climate scenarios.
The selected GCM scenarios were GISS-ER A1B (warmer and drier), CSIROMk3.5
B1 (cooler and drier), INGV-SXG A1B (median conditions), ECHO-G A2 (warmer
and wetter) and ECHAM5 B1 (cooler and wetter) and they were downscaled with an
artificial neural network (ANN) approach. Results reveal that most scenarios exhibit
an increase in the duration of extreme droughtwhile the duration ofmoderate drought
decreases under all scenarios (Hosseinizadeh et al. 2015).

Shamir et al. (2015) studied the stream flow events in Upper Santa Cruz River
in Arizona. They analysed climate change projections of precipitation for the Upper
Santa Cruz River from eight dynamically downscaled global circulation models
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(GCMs). Our analysis indicates an increase (decrease) in the frequency of occur-
rence of dry (wet) summers. The winter rainfall projections indicate an increased
frequency of both dry and wet winter seasons, which implies lower chance for
medium-precipitation winters. The climate analysis results were also compared
with resampled coarse GCMs, bias adjusted and statistically downscaled CMIP3
and CMIP5 projections readily available for the contiguous U.S. The impact of the
projected climatic change was assessed through a water resources management case
study (Shamir 2015).

Dan (2015) conducted study on Pearl river located in South of China which has
second largest stream flow in China. They projected that due to global warming emis-
sion of greenhouse gases increased, which affects the precipitation, run-off processes
and water resources, and can also alter the hydrological extremes. In the end, it was
concluded that the effect of climate change can be assessed by model simulations.
There are substantial differences in results between the different climate models, for
example, all the models point to the same direction in terms of flow changes with
the exception of HadGEM2-ES. This model shows much higher precipitation and
thus runoff compared to the other four GCMs. The main conclusion of their work
is that dry seasons are projected to become drier throughout the basin. Wet seasons
projected to become drier in the upper reach and wetter in the middle and lower
reaches of the Pearl river basin (Dan 2015).

Devkota and Gyawali (2015) studied the middle hilly region of the Koshi river
basin in Nepal. Hydrological impact simulations conducted using two models
(PRECIS-HADCM3Q0 and PRECIS-ECHAM05) based on IPCC-SRES A1B
scenario and also usingSWATmodel.Designflood estimationwas done after extreme
value analysis based on annual flow maxima. New hydrological insights for the
region: The study found that climate change does not pose major threat on average
water availability. However, temporal flow variations are expected to increase in the
future (Devkota and Gyawali 2015).

Pandey et al. (2016) studied hydrology Godavari river basin. A GIS-based semi-
distributed hydrological model, soil and water assessment tool (SWAT), has been
used to estimate the water balance components on the basis of unique combinations
of slope, soil and land cover classes for the baseline (1961–1990) and future climate
scenarios (2071–2100). Sensitivity analysis of the model has been performed to
identify the most critical parameters of the watershed. Coefficient of determination
(R2), Nash–Sutcliffe efficiency (ENS) and root mean square error (RMSE)were used
to evaluate the model performance. Calibrated SWAT setup has been used to evaluate
the changes in water balance components of future projection over the study area.
HadRM3, a regional climatic data, has been used as input of the hydrological model
for climate change impact studies. The study is useful in decision-making for the
application of best management practices (Pandey et al. 2016).

Nepal (2015) studied the climate trends in Koshi river basin using statistical anal-
ysis. The study had objectives of identifying the present climatic trends from historic
data and to assess the projected impact of climate change on hydrological regime.
The hydrological system dynamics were analysed in the Dudh Koshi (sometimes
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written as Kosi) sub-basin using the process-oriented distributed J2000 hydrolog-
ical model, which includes both hydrological and cryospheric processes (snow and
glacier melt). Finally, the projectedmeteorological data from the PRECISRCMA1B
scenario (research period 1995–2096; baseline 2000–2010) were used as an input in
the hydrological model to assess the impact on the hydrological regime. This type of
systematic approach contributes to improved understanding of the effect of projected
climate change on different watershed components, and the potential influence on
water distribution in the basin, including future water availability downstream (Nepal
2015). Thomas et al. (2015) studied the Narmada basin in Central India for the trend
analysis of 1-day maximum rainfall series. Drought duration estimated by the stan-
dardized precipitation index for the periods 1951–1970 and 1989–2008 indicated that
the entire basin has experienced frequent droughts during the recent two decades,
with the middle zone of the basin being more prone to droughts. The analysis also
suggested that appropriate measures may be proposed for better management of the
water resources in the basin, and also for mitigation of floods and droughts, consid-
ering the increased risk of the high-intensity storms aswell as the increased frequency
of drought occurrence during the recent two decades (Thomas et al. 2015).

4.3 Methodology

4.3.1 Study Area

Narmada starts from Amarkantak in Annupur district in Madhya Pradesh and flows
towards Arabian Sea in Gulf of Khambhat. Its total length is of 1312 km, out of
which first 1079 km in MP, rest in Maharashtra and Gujarat. It has a stretch of
159 km. The basin spreads over 20 parliamentary constituencies (2009) comprising
15 of Madhya Pradesh, 3 of Gujarat, and 1 each of Chhattisgarh and Maharashtra.
Table 4.1 describes the salient features of Narmada river at a glance. It has average
water resource potential of 45639 MCm, out of which 75% was used by Madhya
Pradesh. Also, Central Water Commission has made 26 hydrological observation
stations for its monitoring. Total catchment area is approximately one lac km2 and 4
flood-forecasting stations available presently.

Thick blue indicates themain course ofNarmada river basin.Also,major barrages,
Sardar Sarovar dam and sites of hydrological importance have been shown in Fig. 4.1.
The boundary of basin is lined in red colour. Salient features of Narmada river have
been tabulated in Table 4.1.

Narmada river basin has huge potential for water storage. The Master Plan on the
utilization of Narmada waters was submitted to Khosla Committee by the Madhya
Pradesh Government. It proposed that by constructing 19 dams on Narmada and
its tributaries, irrigation can be provided to 3.1 million ha area by utilizing 29,295
MCM of water. Out of these 31 projects only five are completed. So, it shows that a
lot of potential exploitation can be achieved by proper modelling of its hydrological
characteristics.
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Table 4.1 Salient features of
Narmada basin

Basin extent

Longitude 72°38′ to 81°43′ E
Latitude 21°27′ to 23°37′ N
Length of Narmada river (km) 1312

Catchment area (sq. km) 98796

Average water resource potential
(million cubic metre-MCM)

45639

Utilizable surface water resource
(MCM)

34500

Live storage capacity of
completed projects (MCM)

17806.0

Live storage capacity of projects
under construction (MCM)

6835.00

Total live storage capacity of
projects (MCM)

24641.0

No. of hydrological observation
stations of CWC

26 (including 8 Gauge site)

No. of flood forecasting stations
of CWC

4

Fig. 4.1 Narmada basin along with main CWC stations
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Fig. 4.2 Grid and rain gauge station information of the Narmada basin

4.3.2 Data and Methodology

The 1 W × 1 W daily gridded rainfall data prepared by the India Meteorolog-
ical Department (IMD) for the Indian land mass (6.5WN–38.5WN and 66.5WE–
100.5WE) will be used in the proposed study (Rajeevan et al. 2011). All the rain
gauge stations concerned with the project along with 90%minimum data availability
will be used for the period of 50 years at least. The data interpolation method is based
on Shepherd method (Shepard 1968) and the weighted sum of the observations will
be considered at surrounding rain gauge stations that lie within predetermined radius
of influence. Also, to validate the possibilities and usefulness of data used in present
studies, daily gridded interpolated rainfall data will be compared with direct observa-
tions for gridswhere rainfall data is available (in this caseHosangabad). TheNarmada
basin is covered by 23 grid cells (1 W × 1 W) as per the IMD interpolated informa-
tion (Maxey et al. 2012), of which the lower zone (72WE–76WE and 21WN–24WN)
constitutes sevengrid cells, themiddle zone (76WN–79WNand21WN–24WN)eight
grid cells and the upper zone (79WE–82WE and 21WN–24WN) eight grid cells as
shown in Fig. 4.2 (Smith et al. 2012).

4.3.3 Model Working Flowchart

Digital elevation model (DEM) represents a topographic surface in terms of a set of
elevation values derived at a finite number of points. DEM has been generated using
contours taken from 1:250,000 scale topographic maps (Mekonnen and Jayawardena
2009). After getting DEM automatic delineation of the river basins is done by using
the DEM as input and the final outflow point on the drainage of the river basin as
the final pour/drainage point (self-delineating with the help of GIS). The total area
of the river basin as obtained from the automatic delineation has also been used for
forecasting. Classified land cover data (13 categories) produced by the University
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Fig. 4.3 Steps involved in
calculation of surface runoff

of Maryland Global and cover facility using remote sensing with resolution of 1 km
grid cell has been used. Soil map adapted from FAO digital soil map of the world
and derived soil properties with a resolution of 1:5,000,000 have been used. Here, a
flowchart for the model construction is given for better understanding. It represents
steps involved in estimation of runoff of the river. Artificial neural network will be
applied for data correction and forecasting of the discharge and precipitation (Smith
et al. 2010) (Fig. 4.3).

4.4 ANN Used in Runoff Modelling

Fundamentally, stream-flow forecasting is mainly classified into two main temporal
categories, namely short-term (real-time) forecasting (hourly and daily) is critical for
reliable operation of flood andmitigation systems and secondly long-term forecasting
(weekly, monthly and yearly) which is important for planning and operations of
irrigationmanagement decisions, scheduling releases of reservoir water, hydropower
generation, sediment transport andmany other applications. Time series models such
as auto regressive (AR) moving average (MA), auto regressive integrated moving
average (ARIMA), auto regressive integrated moving average with exogenous input
(ARIMAX), linear regression (LR) and multiple linear regression (MLR) are used
vastly for stream flow forecasting since 1970s. Early artificial neural networks were
inspired by perceptions of how the human brain operates. In the recent years, ANN
technological developments havemade itmore of a technique of appliedmathematics
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Fig. 4.4 Simple
three-layered artificial neural
network

with some similarities to the human brain. ANNs retain two characteristics of the
brain as primary features: the ability to (1) ‘learn’ and (2) generalize from limited
information. A general neural network is depicted in Fig. 4.4.

The hidden layer receives signals from input and uses one activation function
for output generation. Once a network is modelled, for a specific application, it is
ready to be trained. To start this, initial weights and training parameters are chosen at
random. After that training or learning begins. There are two approaches to learning:
supervised and unsupervised. In supervised trainingmechanism, network is provided
with desired output either bymanually or by providing desired out with input. In case
of unsupervised one, network has to itself predict the input without being helped by
outside.

4.5 Wavelet Transform: A Data Processing Technique

Data pre-processing technique is an essential alteration to be smeared before giving
the data input to ANN networks. It has been found to increase the efficiency of the
network amazingly. Mostly methods used for data gathering are casually controlled,
results in outliers, impossible data combination, missing values, human errors,
improper calibration of recording instruments, and so on. Interpreting the data which
has not been carefully separated may result in confusing results. Thus, depiction and
quality of data is of prime importance to run any analysis of dataset. The perfor-
mance of wavelet-AI models was found to be superior to the standard-AI models.
This is due to the advantages of wavelet transform, which are de-noising the time
series to improve the AI-based modelling performance and extracting dynamic and
multi-scale features of non-stationary time series.

One-dimensional discrete wavelet function is best for stream flow forecasting
mathematically represented as
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where Wϕ( j0, k) = discrete wavelet transforms functions
ƒ(x) and ϕ jo,k(x) = functions of discrete variables.
M = number of vales.

4.6 Efficiency Parameters

The author is intended to use coefficient of determination (R2), Nash–Sutcliff effi-
ciency (ENS) and root mean square error as efficiency parameters for validation and
testing of model. Coefficient of determination (R2) measures the dispersion between
observed value and simulated value from model (Mellor et al. 2000). It is given as:
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where
Qobs = observed value of discharge
Qsim = simulated value of discharge
n = number of observations
The range of R2 lies between 0 and 1, which represents no correlation and perfect

correlation between observed and simulated value.

Nash–Sutcliffe efficiency (Castro et al. 2014): It is defined as the one minus the sum
of absolute squared differences between the predicted and observed value normalized
by the variance of the observed values during the period under investigation. It is
calculated as follows:

Nash−Sutcliffe efficiency, N =
∑T

t=1

(
Qt

m − Qt
o

)2

∑T
t=1

(
Qt

o − Qt
mo

)2 (4.3)

where Qt
m = modelled discharge at time t

Qt
o = observed discharge at time t

Qt
mo = mean of observed discharges.

Root mean square error: RMSE is very commonly used and makes for an excellent
general-purpose error metric for numerical predictions. Compared to the similar
mean absolute error, RMSE amplifies and severely punishes large errors. The RMSE
represents the sample standard deviation of the differences between predicted values
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and observed values. These individual differences are called residuals when the
calculations are performed over the data sample that was used for estimation, and
are called prediction errors when computed out-of-sample. The RMSD serves to
aggregate the magnitudes of the errors in predictions for various times into a single
measure of predictive power. RMSE is ameasure of accuracy, to compare forecasting
errors of different models for a particular data and not between datasets, as it is
scale-dependent (Seo et al. 2014). It is given by:

RMSE =
√∑N

n=1(Pi − Ai )
2

N
(4.4)

4.7 Conclusion

At present, the performance of many flood-forecasting system in an operational
context is sub-optimal and often below expectation. The information they designed
to provide fail to reach much of the target audience. Existing flood-warning systems
even with their manifest deficiencies can be effective in the mitigation of flood
damage. It is very likely that if they are recast in terms of completeness, carefully
planned and kept alive, their effectiveness can be augmented considerably. In India
most of the techniques for formulating the real-time flood forecast are based on statis-
tical approach. For some projects, network model and multi-parameter hydrological
model are used. Conventional systems of communication are normally used for trans-
mitting the data in real time. Flash floods are usually experienced. As such there is no
system for formulating the flash flood forecast. It results in heavy losses of lives and
properties. There is a need for improvement of the real-time flood-forecasting system
in India. Efficient automatic communication systems are required to be established
for transmitting the data in real time. The forecasting techniques such as determin-
istic models, stochastic models, ANN and fuzzy logic techniques are required to be
studied, and a suitable method may be recommended for field applications based on
the performance evaluation criteria and considering the data availability. The infor-
mation about the flood have to be disseminated well in advance to the people likely
to be affected so that an emergency evacuation plan may be developed for the river
basin.
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Chapter 5
Climate Change Impacts on Water
Resources in Ethiopia

Abiot Ketema and G. S. Dwarakish

Abstract The impact of climate change on water resource is a primary concern.
The focus of this review was to recognize how climate change affects the water
resource of Ethiopia and to identify gaps that can be addressed through research.
The result revealed that the peoples living in the country already suffered from the
extreme events of climate change, like drought and flood. The nature and magnitude
of how global change will affect the Ethiopian water resource is not yet adequately
understood. Besides, the studies of climate change impacts on water resources in
Ethiopia are concentrated in northern part of the country, based on old climate change
emission scenarios and limited number of global climate models (GCM). Making
a conclusion based on a single GCM output may not give a clear representation
of the future changes, and it is most likely will mislead the decision makers and
policy developers. A comprehensive study is highly needed, and the issue has to be
addressed at a scale relevant to decision-making based on multiple GCMs under new
climate change emission scenarios for better understanding of the potential impacts,
informed decision-making, and effectively respond and adapt to projected changes,
otherwise the consequences becoming awful.

Keywords Climate change · Ethiopia · Potential impacts ·Water resource

5.1 Introduction

The relationship between water and climate change is a primary subject. The most
important outcomeof climate change is the alteration of the availablewater.Awarmer
climate will speed up the hydrological cycle, varying the amount and timing of both
rainfall and runoff. Increased rainfall variability and intensity are projected to enhance
the possibility of drought and flooding in many areas (Bates et al. 2008). Climate
change impacts are location-specific. Its magnitude is not the same throughout the
world and the extent of the undesirable outcomes of climate change will vary notably
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across regions, nations and socioeconomic groups. Usually, developing nations like
Ethiopia are more likely vulnerable for the climate extremes than developed coun-
tries because of their competence to execute mitigation and adaptation techniques to
alleviate its harmful impacts (Intergovernmental Panel on Climate Change [IPCC]
2014).

Climate-associated natural hazards such as drought and flood happen everywhere
in the planet, however, its consequences are very serious in Africa and particularly in
Ethiopia (National Meteorological Agency [NMA] 2007). Ethiopia is a developing
country in Africa and its development is extremely reliant on rain-fed farming (NMA
2007; World Bank 2007; Ethiopian Panel on Climate Change [EPCC] 2015a). In a
country with a predominantly rain-fed agricultural system like Ethiopia, variation in
a rainfall may unfavourably have an effect on crop yield as the rainfall is very critical
climatic determinants of crop production (NMA 2007). Ethiopia has implemented
somewater development programs,watershedmanagement activities, andmitigation
and adaptationmeasures to safeguard the country from the undesirable repercussions
of global change and enhance the level of water security. However, water shortage
is one of the greatest problems of the country. The nature and magnitude of how
global change affects the Ethiopian water resource is poorly understood. This review
assessed climate change impacts on water resources in Ethiopia and identifies gaps
that can be addressed through research.

5.2 Water Resources of Ethiopia

Ethiopia is located in East Africa between 3°–15° north and 33°–48° east, just north
of the equator. Its area is around 1.13× 106 km2 (Berhanu et al. 2014). The climate of
Ethiopia ranges from temperate in highlands to tropical in the lowlands (Fazzini et al.
2015). The yearly average rainfall of the country is about 744 mm (Awulachew et al.
2007). Lowlands are vulnerable to increasing temperatures and prolonged droughts,
whereas highlands are prone to intense and irregular rainfall (USAID 2016). Bega,
Belg, and Kiremt are the three seasons in Ethiopia. The Bega is the period from
October to January. It is a dry and harvesting period for various parts of Ethiopia.
The Belg is a squat rainy period from February toMay, and in this season rainfalls are
very erratic in nature. The Kiremt is the major rainy period from June to September;
50–80% of the country’s annual rainfall is measured in this period (NMA 2013;
Fazzini et al. 2015; USAID 2016).

Ethiopia has copious surface water resources with estimated yearly average flows
from the country’s 12 river basins at 122 billion cubic meters per annum (MoWR
2002) and has lake water from 12 main lakes at 70 billion cubic meters (Berhanu
et al. 2014). The accurate potential of the country’s groundwater is not yet known;
however, it is reported that Ethiopia has a groundwater potential of approximately
up to 30 billion cubic meters (MoWR and GW-MATE 2011). Despite the fact that
Ethiopia has considerable water resource potential, the spatio-temporal distribution
ofwater is highly uneven (EPCC2015a), andEthiopians facewater-related problems.
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In spite of plenty in some parts, Ethiopia is highly water scarce due to poor water
management and shortage of storage infrastructure.

The availability of surface water and rainfall in Ethiopia is erratic and extremely
varies with space and time (Robinson et al. 2013; EPCC 2015a). Spatially, 80–90%
of the water resources are found in western parts of Ethiopia where no more than
30–40% of Ethiopia’s population lives. In contrast, more than 60% of the populations
were living in the eastern and central part of Ethiopia where the available surface
water resource is only 10–20%. Temporally, the majority of the rivers in Ethiopia
become full in June, July and August within the duration of the Kiremt season
(Berhanu et al. 2014). The amount of rainfall varies spatially within the country
and within different regions in the country. As an example, within Amhara national
regional state, yearly precipitation ranges from 770 mm in the eastern part to greater
than 1660mmwestern part of the region (Bewket andConway2007).An increment in
rainfall from the northeast to the western portion of Tigray region was also recorded.
A study by Gebrehiwot and Van der Veen (2013) reported that the yearly rainfall
ranges from 300 mm in the northeast to 1260 mm in the west of Tigray.

Too little has been done to date in utilizing the water resources in Ethiopia as
engines to boost country’s socioeconomic development. Even though the water
resource of the country has a capacity to develop an irrigation area of 3.8 × 106

ha (Berhanu et al. 2014), only less than 5% is developed (World Bank 2006).
Hydropower potential has been estimated to 45,000 MW per annum (Berhanu et al.
2014), of which the country developed only 3813 MW (International Hydropower
Association [IHA] 2017). Currently, the country pays more attention to generate
electric energy from hydropower. As an example, 6000 MW hydropower project is
under construction from a single project called Great Ethiopian Renaissance Dam
(GERD). Inadequate finance for investment to control water, technical challenge like
having less number of hydrological gauging stations, hydro-politics, and lack of good
authority and skilled experts in the water sector are some of the reasons for not fully
using the water resource potential in Ethiopia (Berhanu et al. 2014; Mosello et al.
2015).

5.3 Ethiopian Contribution to Global Greenhouse Emission

Ethiopia’s contribution to global annual greenhouse gas (GHG) emission is negli-
gible. According to EPCCb report, GHG emission from the country was 48Mt CO2e
(0.9 tone CO2e per capita) in 1994, 150 MtCO2e in 2010 (1.8 tone CO2e per capita)
and will increase to 400 MtCO2e (3 tone CO2e per capita) by 2030. Agriculture is
the main GHG emission sector in Ethiopia. In 2010, land use change and agriculture
account for 87% of the national emissions. The rest 13% is from industry, transport
and energy sectors (EPCC 2015b). Although the country contributes little to GHG
emission, Ethiopians already suffered from the extreme events of climate change like
drought and flood (NMA 2007).
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5.4 Climate Change Impacts on Water Resources
in Ethiopia

5.4.1 Observed (Historical) Impacts on Water Resource

In Ethiopia floods and droughts occur repetitively as an outcome of climate change
(Robinson et al. 2013; EPCC 2015a). These events can lead to famine and disruption
of socioeconomic well-being. Yearly the country loses up to 6% of the entire crop
yield as a result of rainfall variability (EPCC 2015b). Too much surface water runoff
in some parts of Ethiopia results in flood, and at the same time, other parts of the
country suffer from drought.

The principal and direct consequence of climate change would be the changes
in water availability. A decline of soil moisture, reduction of freshwater availability,
repeated droughts and floods are some of the negative impacts observed in Ethiopia
due to rise in temperature, and changing the amount and pattern of rainfall (USAID
2016). According to theUSAID report, the occurrence of flood and drought increased
since 1960 in Ethiopia (USAID 2016). As the Ethiopian socioeconomic develop-
ment is extremely dependent on rain-fed agriculture, Ethiopia suffered a lot from
climate variability and weather extremes. The global warming resulted in repeated
droughts and heavy rainfall in different parts of Ethiopia, and decreasing crop produc-
tivity. Yearly many Ethiopians are exposed to famine, serious health problem, flood
hazard and drought due to rainfall variability in response to ongoing climate change
(NMA 2007; EPCC 2015a). Drought is very critical climate-associated disaster in
Ethiopia. For example, as a result of drought, 7.75million people in 1983, 2.1million
in 1996, 13.2 million in 2003 and 7.1 million in 2004 were exposed to famine
(Dorosh and Rashid 2013; EPCC 2015b). Few years back, in 2015/16 more than
10,000,000 people were affected by drought in Ethiopia (Cochrane and Singh 2017).
Like drought, flood has a considerable impact in different parts of Ethiopia. For
instance, the 2006 flood occurred in Gambella regional state that damaged 1650 ha of
maize and decreased agricultural production by 20% in the region (Gambella Region
Disaster Prevention and Preparedness Agency 2007). In addition, 364 people were
killed and 6000–10,000 people were displaced, in South nation nationality people
region (South Omo zone) (World Food Program [WFP] 2006). In the same year, as a
result of the flash flood, 256 people died, more than 9956 people displaced and more
than 1000 traders’ property were damaged in Dire Dawa city (Alemu 2015). The
spatio-temporal variability of rainfall is more important than total rainfall deficits for
water-related problems in Ethiopia.

5.4.2 Potential Impacts on Water Resource

Long-term climate change impacts in Ethiopia is primarily linked to the rise in
temperature and rainfall variability (EPCC 2015a). So, recognition and analysis of
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their pattern in the country are highly needed. Future prediction of temperature
and rainfall patterns in Ethiopia shows a high degree of uncertainty. Most GCMs
and regional projections of climate models agreed that yearly average temperature
is estimated to raise by between 1 and 2 °C (USAID 2016) and between 1.4 and
2.9 °C (Cochrane and Singh 2017) by 2050. It is uncertain whether rainfall will
rise/drop in Ethiopia, and its projections varies between − 25% and + 30% by
2050s. The percentage of extreme total rainfall rises up to 18%. Studies suggest a
30% decrease in the runoff on several Nile tributaries by 2050 (USAID 2016). The
increase in temperature results in an increasing water stress, whereas an increment
of extreme rainfall results in increasing flood. As an outcome, climate change affects
the development of the country by reducing Ethiopia’s gross domestic product (GDP)
nearly 10% in the upcoming (2045) (USAID2016). The followings are the summaries
of the studies in Ethiopia related to future climate change impact on water resources.

Serur and Sarma (2016) studied the climate change effects on water resource of
Weyib watershed, Ethiopia. They used CanESM2 of CMIP5 climate change model
with three RCPs emission scenarios to predict the future rainfall and temperature,
and soil and water assessment tool (SWAT) to estimate the availability water until
2100. They detected that both precipitation and temperature showed an increasing
trend in the upcoming periods. As well, they identified that, a rising trend of yearly
average daily water availability in the ranges of 11.82–12.68% (RCP 2.6), 3.98–
20.40% (RCP 4.5), and 9.18–24.49% (RCP 8.5), and a decreasing trend of potential
evapotranspiration (PET) in all the three RCPs climate change scenarios compared
to reference period (1984–2004). They also estimated the seasonal variation of water
availability in the basin. The results showed an increase of water availability in the
rainy and transitional season,whereas a decline in the dry season.Gebre andLudwing
(2015) used five GCMoutputs of CMIP5 based on high and stabilization scenarios to
appraise climate change impacts on water resource of Giligel Abay, Ribb, Gummer,
andMegech catchments of Lake Tanawatershed in Ethiopia. The result revealed that,
in all months and seasons, and in all five GCMs, both temperature and PET increases.
Although it varies in bothmagnitude and direction, precipitation shows an increasing
trend in the future. The average yearly runoffmay raise about+ 55.7% (RCP 4.5) and
+ 74.8% (RCP 8.5) for the period of 2035–2064, and by + 73.5% (RCP 4.5) and +
127.4% (RCP 8.5) for the period (2071–2100) as compared to baseline period (1960–
2005). They concluded that the increase in runoff may have a positive contribution
to existing development projects and crop productivity based on rain-fed agriculture
in the basin on the conditions that appropriate mitigation and adaptation measures
are applied to diminish harmful possible impacts. The effect of climate change on
the water availability in Lake Tana watershed in Ethiopia for early (2010–2039), mid
(2040–2069) and late (2070–2099) twenty-first century was studied by Nigatu et al.
(2016) using HadCM3 GCM output of A2 and B2 emission scenarios under SRES.
Their result revealed that for both emission scenarios and all the three future periods,
the water storage of Lake Tana increases constantly relative to the baseline period
(1981–2010) due to the increase in rainfall noticeably from 9 to 11%. A study by
Kim et al. (2008) showed that water resource of UBNRB in northern Ethiopia may
not be adversely affected by climate change. They used the ensemble mean of six
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GCMs under A2 of SRES. The result revealed that both rainfall and runoff showed
an increasing trend within the period (2040–2069) compared to (1961–1990). The
increasing trend of rainfall in the UBNRB implies the water availability for crop
production, the reduction of severe drought events and a slight increase in flood risk
by 2050s.

According to Dile et al. (2013), both rainfall and discharge of Gilel Abay River
basin in Ethiopia are decreased for the period 2010–2039, and increases for the period
2070–2100. They usedHadCM3GCMoutput based onA2 andB2 scenarios of SRES
to project the future temperature and precipitation, and SWAT for simulation of its
effect on discharge. They concluded that the rise in rainfall in the wet period (Belg
and Kiremt) in the future enhances crop production in the basin, which is rainfall
dependent, even though the rise in ET is expected due to an increase in temperature.
Depending on adaptationmeasures implemented in the area, the increase in flowmay
have positive impacts (on water development projects) or negative impacts (recurrent
flooding problems) in the area. Mekonnen and Disse (2016) examined the effect of
climate change on water resource of Blue Nile River basin in Ethiopia based on
both CMIP3 and CMIP5 GCMs. The ensemble mean result showed an increasing
pattern in rainfall ranging from 1.0 to 14.4%, maximum temperature from 0.4 to
4.3°, and minimum temperature from 0.3 to 4.1 °C. Wagesho et al. (2013) examined
the climate change impacts on runoff of Blate and Hare watersheds in Ethiopia by
using two GCM outputs under CMIP3 based on A2 and A1B emission scenarios as
an input to SWAT hydrological model. Results revealed that extreme events of daily
rainfall and temperature will be increasing in the future compared to observed events.
The stream flow varies from −4 to 18% and − 4 to 14% for Hare and Blate river
basins, respectively, during the simulation period (2081–2090) compared to baseline
period (1990–1999).

Setegn et al. (2011) analysed future temperature and precipitation in Lake Tana
basin of Ethiopia by using A1B, A2 and B1 emission scenarios. Then, they applied
the temperature and precipitation generated from the 15 GCMs as an input to the
SWAT model to predict stream flow and other hydrological components in the two
future periods. They found that, for the period of 2070–2100 and for the three emis-
sion scenarios, the temperature increases 2–4.4 °C and 2.2–4.9 °C in the wet and
dry period, respectively. For the same period and scenarios, the precipitation varies
from −13 to + 12% and −14 to + 16%, respectively. Also, they observed that
statistically significant decline in the magnitude of stream flow following the same
direction as rainfall compared to the baseline period (1980–2000). Both soil moisture
and groundwater also show a reduction in the future. They concluded that, unless
ample irrigation water is available, the basin may be exposed to a great agricultural
drought. A study was carried out by Chaemiso et al. (2016) in Omo-Gibe basin in
southern Ethiopia to spot the impact of global change on water resource. They used
ArcSWAT model and A1B emission scenario under SRES. The result indicated that
both temperature and the annual PETwill increase in the future (the 2030s and 2090s)
and rainfall varies considerably relative to the base period (1980–2005). The surface
water availability is declining within the dry period and rising within the wet period
in the basin.
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As revealed byAbraham et al. (2018) there is a high reduction of water availability
in the future in the Katar and Meki sub-watersheds of Lake Ziway, Ethiopia. They
applied the outputs of multiple/three GCMs under stabilization (RCP4.5) and high
(RCP8.5) climate change emission scenarios and HBV hydrological model. They
reported that temperature (maximum andminimum)will rise for the above scenarios.
Rainfall shows a decreasing trend by up to 51.19% within the 2050s (2041–2070).
Annual runoff depth reduced by up to 19.45% and 20.28% in Katar and Meki sub-
watersheds, respectively, by 2080s (2071–2099) compared to base period (1980–
2005). Another study in the same watershed by Zeray et al. (2006) also indicates
that the water resources in the watershed are greatly affected by climate change
in the future. They used B2A and A2A scenarios and SWAT hydrological model to
analyse the future interaction between climate change and water resource in the Lake
Ziwaywatershed. They reported that average inflow volume to Lake Ziway decreases
notably by about 19.47 and 27.43% for A2A and B2A scenarios, respectively, for
the time of 2001–2099 relative to 1981–2000, even though the average monthly
and annual rainfall will increase in Lake Zeway watershed by up to 29 and 9.4%,
respectively. The rise in rainfall is concealed by the rise in temperature (minimum
and maximum) in the region.

Previously, most of the climate change studies in Ethiopia were based on CMIP3
climate change models (such as Zeray et al. 2006; Setegn et al. 2011; Dile et al.
2013; Wagesho et al. 2013; Chaemiso et al. 2016; Nigatu et al. 2016), and had been
relied on a particular/finite number of climate models (such asDile et al. 2013; Serur
and Sarma 2016; Nigatu et al. 2016). If the simulation is based on a particular/finite
number of GCMs, the results will be highly uncertain. It is alsomost likely tomislead
the decision makers and policy developers (IPCC 2007; Taye et al. 2011). Thus,
predicting climate change impacts based on multiple GCMs under CMIP5 is quite
important in Ethiopia for well perceptive of the potential climate change effects,
informed decision-making for proper water resource management, and effectively
respond and adapt to projected changes, otherwise the consequences becoming awful.

5.5 State Reaction for Threats of Climate Change
in Ethiopia

In Ethiopia, a number of strategies were implemented to reduce the detrimental
outcomes of climate change and to maximize the adaptive capability of the country.
The country has signed some of global and regional environmental agreements asso-
ciated with global warming. Ethiopia also approved the UNFCCC (United Nations
Framework Convention on Climate Change) and the Kyoto Protocol on 31May 1994
and on 21 February 2005, respectively. The 1992 Rio Convention on Environment
andDevelopment guide to design conservation strategy of the country in 1993 (EPCC
2015b). The 1995 Constitution of Ethiopia provides for environmental rights and a
policy of promoting sustainable development. Environmental right is stipulated in
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the constitution under Article 44 (1), which states the citizens have the right to a
clean and healthy environment.

Ethiopia has prepared the National Adaptation Programme of Action (NAPA) in
June2007 (Tadege2007). TheNAPA includes the following11projects: Encouraging
crop/drought coverage package, reinforcement flood and drought timely caution
structures, implementation of small-scale irrigation techniques and wise utilization
of water, pasture management measures, sustainable usage of wetlands, capacity
building program for climate change adaptation, multipurpose large-scale water
development project, community-based carbon sequestration project, establishing of
state research centre for climate change, strengthening malaria control package and
upgradeof agroforestry practices in selectedparts of the country. In addition toNAPA,
based on the Copenhagen’s agreement Ethiopia submitted Nationally Appropriate
Mitigation Actions (NAMAs) to UNFCCC. The document lists about 88 projects
(EPCC 2015b).

For long, emergency food aid was the principal response to challenges of food
insecurity in the country. However, the delivery of emergency support repeatedly as
food for work had not solved the hitch lastingly. It is this observation that influenced
the launching of a productive safety net program (PSNP) in 2005. PSNP is cred-
ited for improvements in natural resource management and environment through
the conservation measures (watershed management techniques) executed by the
beneficiary households. PSNP builds households resilience to climate variability
and weather extremes (EPCC 2015b). On the other hand, Weldegebriel and Prows
(2013) reported that despite the fact that the PSNP has been effective in protecting
farmers frommalnutrition and safeguard farmers for squat period, it is not developing
resilience to hazards lastingly (Cochrane and Singh 2017). Presently, it is supported
by climate smart initiative project to enhance its contribution to climate resilience.

Ethiopia launched a Sustainable LandManagement Program in 2008. The second
phase of the program aims to introduce methods to tackle climate variability/change
interrelated hazards and to take advantage of the reduction of GHG emission with
a view to meeting the growth and transformation plan (GTP) and climate resilience
green economy (CRGE) targets. The current GTP has a section entitled “Environ-
ment and Climate Change”. The CRGE, which predates GTP II, provides a blueprint
for achieving middle-income status by 2025 with no net increases in greenhouse gas
emissions relative to 2010 levels (USAID 2016). The CRGE approach concentrates
on both climate change adaptation and mitigation objectives. Having a policy frame-
work is important, but it is also equally noteworthy to have a structure for monitoring
the implementation of policies. In this regard, it is reported that there is a problem
of implementation and enforcement capacity. The country has already started imple-
mentation of some of the key CRGE components. The policy framework is not yet
complete. Literature and studies on the country’s policy and institutional response
for threats of ongoing climate change are limited.
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5.6 Adaptation and Mitigation Techniques in Ethiopia

There are two general approaches to control the undesirable impacts of ongoing
climate change: adaptation and mitigation; to slow of GHGs emissions and to reduce
their consequences, respectively. Concerning to water resource and crop produc-
tion, adaptation measures consist of using varieties and drought-resistant crops;
using water-efficient irrigation techniques like drip irrigation; implementing water
harvesting technology, and adjustment of crop calendar (Bates et al. 2008). Hedgu
et al. (2015) point out that alteration in crop type/variety, watershed management
measures, crop diversifications, adjustment in planting calendar and water-efficient
irrigation practices are adaptationmeasures thatwere implemented inTigray regional
state in Northern Ethiopia. Another report by Ahmed (2016) showed that the above-
listed strategies of adaptations are commonly implemented by farmers in central Rift
valley of Ethiopia.

5.7 Conclusions and Recommendations

The followings are the main conclusions and recommendations based on the review:

• Ethiopia’s contribution to global annual greenhouse gas (GHG) emission is
negligible.

• Historically drought, flood and rainfall variability have a great impact onEthiopian
agricultural productivity and livelihood.

• The spatio-temporal variability of rainfall is more important than total rainfall
deficits for water-related problems in Ethiopia.

• Landuse change and agriculture are themain drivers ofGHGemission inEthiopia.
• The rise in temperature and variability of rainfall are the major features of climate

change; those climate elements have an effect on almost all other hydrological
processes, and the long-term climate change impacts in Ethiopia is mainly linked
to these two climate elements. So, recognition and analysis of their pattern in the
watershed are highly needed.

• Climate change impacts are location-specific and adaptation measures are imple-
mented at watershed level, recognizing the effects of climate change at a water-
shed level that is sensibly imperative. However, the exact impact at watershed
level in Ethiopia is poorly understood. The potential impacts because of these
changes on water resources at applicable level are not examined in most parts
of Ethiopia and particularly in southern region. Studies on climate change in
Ethiopia are concentrated on UBNRB or Lake Tana Watershed and others areas
were neglected.

• Various previous climate change studies carried out in the nation are based on old
emission scenarios under SRES and single or finite number of GCMs. Forming an
inference regarding the impacts of climate change on the water resources based
on a single GCM may not provide a graspable picture of the coming changes.
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• SWAT model is widely used in climate change impact assessments in Ethiopia
and has good performance to predict an interaction of climate change and water.

• The nature and magnitude of how global change will affect the Ethiopian water
resource is not yet adequately understood and there are a lot of knowledge gaps
related to climate and water interface even though the water sector is listed under
the most vulnerable sectors in Ethiopia. This is a current challenge for planners
and policy makers to develop long-term water resource management and climate
change adaptation strategies in the water sector. Therefore, comprehensive study
is highly needed and the issue has to be addressed at a scale relevant to decision-
making to improve the level of water security, watermanagement and the planning
for mitigation and adaptation practices of climate change.
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Chapter 6
Spatio-Temporal Trend Analysis
of Long-Term IMD-Gridded
Precipitation in Godavari River Basin,
India

C. H. Praveenkumar and V. Jothiprakash

Abstract The study aims to analyze spatio-temporal variations in India Meteoro-
logical Department (IMD) gauge-based gridded rainfall data over Godavari river
basin, India. A total of 502 rainfall grid stations which covers the entire Godavari
basin and 53 years long-term daily rainfall data from 1961 to 2013 is used in the
present study. The study focused on trend analysis of individual rainfall grid stations
in Godavari basin rather than averaged at sub-basin level to check the internal charac-
teristics of IMD-gridded rainfall. Trend analysis is carried out for three rainfall time
scales, namely daily, monthly and annual. As this region receives major contribution
of rainfall during South-west monsoon period from June to September, the trend
analysis is separately carried out for monsoon time series. To overcome the assump-
tion of normality of input rainfall data, a widely used nonparametric trend analysis
test, Mann–Kendall (MK), is adopted in the present study. From the results of trend
analysis, a decreasing trend is observed at majority of the stations in all sub-basins
of Godavari both for daily and monsoon daily time series data. However, monthly
rainfall is observed to be free from trend except for very few stations scattered all over
the basin. Further, the annual rainfall, monsoon monthly rainfall and monsoon total
rainfall showed an increasing trend of the rainfall stations at sub-basins of Godavari
Upper, eastern portion of the Indravati and Godavari Lower. It is worth to mention
that all increasing rainfall stations observed at three time scales discussed above are
located either at foothills of Western Ghats or foothills of Eastern Ghats along the
Coast of Bay of Bengal. Therefore, the present study analysis reveals that except
in the hill shadow regions and coastal areas, IMD grid rainfall is free from trend in
Godavari river basin during the study period.

Keywords Spatio-temporal variations · Trend analysis · India Meteorological
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6.1 Introduction

Climate change refers to the drastic variations in the weather phenomenon that leads
to an extreme weather events over the long duration of time. Rainfall, being a key
meteorological variable, changes in the local weather process can be addressed by
analyzing its internal characteristics both spatially and temporally within the river
catchment. Trends of rainfall data pertaining to large river catchments may directly
indicate the changes in the climate; therefore, it is possible to take necessary actions
while making new policies and further efficient management of available natural
resources.Manyworks in the past literature also reported that rainfall is the promising
meteorological variable, and changes in its internal characteristics such as trend
directly indicate the climate change (Tomozeiu et al. 2000; Jhajharia et al. 2012;
Minaei and Irannezhad 2018).

There exist various methods to assess the trend in a given time series data (Pingale
et al. 2014; Bisht et al. 2018). Among all the availablemethods,Mann–Kendall (MK)
test by Mann (1945) and Kendall (1975) is the widely used method for analyzing
trends of hydrological time series data. Several studies have been carried out to find
the trends of rainfall data in various river catchments of India (Jhajharia et al. 2012;
Pingale et al. 2014; Bisht et al. 2018; Praveenkumar and Jothiprakash 2018). The
advantage of adopting MK test in the present study is to overcome the normality
of input rainfall data, since nonparametric methods can be applied without passing
though the normality of input data. This is the major obstacle in other methods
because daily rainfall time series data never follows this normality assumption, espe-
cially countries having complex weather processes like India due to most of the river
catchments receive major quantity of rainfall only during monsoon season from
June to September in recent times. Therefore, MK test is one of the best methods to
quantify the trend in the rainfall time series data and has been used in the present
study.

The daily gauge-based gridded rainfall time series data available from 1961 to
2013 (53 years), obtained from India Meteorological Department (IMD), is used in
the present study and the trend is examined for different time scales, namely daily,
monthly and annual. Bisht et al. (2018) also carried out the trend analysis of all Indian
river basins using IMD grid rainfall from 1901 to 2015. But their study focused on
trend analysis of rainfall which is average at sub-basin level in all catchment rather
than each grid station. Thus, the present study is aimed to analyze the long-term trend
of IMD-gridded precipitation data in Godavari river basin, India at each individual
grid station rather than averaged over a sub-basin level. The detailed explanation of
study area, data analysis and results are given in the following sections.
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6.2 Study Area and Datasets Used

Godavari river basin, the second longest river in India and first largest river catchment
in peninsular India, is considered as study area in the present study. The catchment
lies within the global coordinates of 73° 28′ 4′′ to 83° 9′ 33′′ E and 16° 18′ 10′′ to
22° 44′ 27′′ N. The Godavari catchment covers a geographical area of 312,812 km2.
The highest elevation is 1067 m (Source: SRTM Digital Elevation Model with 30 m
resolution) and the lowest elevation where it joins with Bay of Bengal is 8 m below
MSL. The location map of Godavari river basin along with IMD grid stations is
shown in Fig. 6.1. The Godavari river catchment, being a largest in Peninsular India,
flows through eight different states of India, namelyMaharashtra, Telangana, Andhra
Pradesh, Chhattisgarh, Madhya Pradesh, Odisha, Karnataka and Puducherry.

This basin is divided into eight sub-catchments, namely Godavari Upper and
Godavari Middle located in the west side, Wardha and Weinganga in the north side,
Indravati and Godavari Lower in the east side, andManjira and Pranahita with others
in the south side of the river catchment. The Godavari main river originates in the
Western Ghats and flows toward east. The other tributaries of river Godavari are
Purna, Manjira and Manyar which flow toward east, Weinganga and Wardha flow
toward south, and Indravati and Sabari flow toward west direction.

The daily 0.25° x 0.25° gauge-based gridded rainfall data provided by IMD (Pai
et al. 2014) is used in the present study. There exist 502 grid stations which cover
the entire river basin as shown in Fig. 6.1. The study period considered is from
1961 to 2013. This basin receives the majority of its rainfall during the South-west
monsoon period (June–Sept). The average annual rainfall in this river basin as per
IMD grid rainfall during the study period is 2900 mm highest at Western Ghats

Fig. 6.1 Location map of Godavari river basin along with IMD grid rainfall stations
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region and 520 mm lowest in the downstream area of Upper Godavari sub-basin.
The methodology adopted in the present study is discussed in the following section.

6.3 Methodology

The methodology applied in the present study includes trend analysis of IMD grid
rainfall from 1961 to 2013. All the analysis of trendwas carried out for daily, monthly
and annual time scales. As Godavari river basin receives its major contribution of
rainfall during the monsoon period from June to September, trend analysis is carried
out separately for this monsoon period also. The MK test proposed by Mann (1945)
and Kendall (1975) is a non-parametric test, which is a widely used method for trend
analysis of rainfall, and hence considered in the present study. The results of trend
analysis are discussed below.

6.4 Results and Discussion

The trend analysis of the IMD grid rainfall data at all three time scales, namely daily,
monthly and annual, is analyzed using the MK test and the results are shown in
Table 6.1. From Table 6.1, it can be clearly observed that at daily time scale, sub-
basinsWardha andWeinganga located in the north side of the basin showed decrease
in rainfall trend at 43 and 41 grid stations, respectively. Similarly, sub-basins namely
Indravati and Godavari Lower also showed decrease in rainfall trend at 36 and 15
stations, respectively (Table 6.1). However, the number of stations with an increase
in rainfall trend at daily time scale is observed at very few stations in all sub-basins
except Godavari Lower, which has 17 stations with increasing trend in daily grid
rainfall. It is worth to mention from Fig. 6.2a that all the increasing rainfall grid
stations at daily time scale is located either at foothills of Eastern Ghats, along Coast
of Bay of Bengal or at the foothills of Western Ghats. Overall, at daily time scale,
there exist 200 decreasing trend stations, 44 increasing trend stations and 258 no
trend stations of IMD grid rainfall in Godavari river basin.

Further, it is observed from Fig. 6.2(b) that the monthly IMD grid rainfall is free
from trend in entire river catchment. Very few significant stations are observed with
increasing trend (three stations in Weinganga) and decreasing trend (four stations in
Godavari Lower) at monthly time scale analyzed withMK test (Table 6.1). However,
surprisingly, annual rainfall time series data showedmore stations of increasing trend
(51 stations) in Godavari basin. It is also observed again from Fig. 6.3a that all the
increasing rainfall grid stations located either at foothills of Eastern Ghats, along the
coast of Bay of Bengal, or at the foothills of Western Ghats, which is also observed
in case of daily rainfall time series data.

As the Godavari river basin receives major quantity of rainfall during monsoon
season, trend analysis is separately carried out for monsoon alone time series data.
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Fig. 6.2 Spatial distributionmaps of trend for IMDgrid rainfall inGodavari basin at 95%confidence
level. a Daily rainfall and b Monthly rainfall

Fig. 6.3 Spatial distributionmaps of trend for IMDgrid rainfall inGodavari basin at 95%confidence
level. a Annual rainfall and b Monsoon total rainfall

From Fig. 3(b), it can be observed that monsoon total rainfall showed exactly similar
behavior of annual full time series data. It is also observed from our analysis that
monsoon monthly rainfall, monsoon total rainfall and annual full time series rainfall
showed exactly similar rainfall trends in Godavari river basin.

Therefore, it can be concluded that the IMD grid rainfall in Godavari river basin
is free from trend at majority of the grid stations (Figs. 6.2b, 6.3a and b). Stations
located at the foothills of Eastern andWesternGhats are showed an increase in rainfall
trend. The reason behind receiving more rainfall at above-mentioned areas may be
due to high altitude and presence of hill shadows. Generally, hill shadow regions
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with higher altitudes receive more rainfall magnitudes compared to low-level areas
due to orographic precipitation.

6.5 Conclusions

The long-term trend analysis of IMD gauge-based gridded rainfall is carried out
using MK test. The results of daily rainfall trend indicate that stations located at
the foothills of both Western and Eastern Ghats have an increasing trend, whereas
majority of stations located in the Godavari basin is observed with decreasing trend
for daily time scale analyzed with MK test. The monthly rainfall time series data is
observed to be free from trend in Godavari basin except at very few increasing trend
stations located in Weinganga and Godavari Lower sub-basins. Further, the annual,
monsoon monthly and monsoon total rainfall time series show an increasing trend
stations at sub-basins Upper Godavari, Indravati and Godavari Lower. Surprisingly,
all the increasing trend stations observed in above-mentioned three time scales are
exactly located either at foothills of Western Ghats in Upper Godavari sub-basin or
foothills of EasternGhats in Indravati andGodavari Lower sub-basins as similar trend
is observed in case of daily time scale also. It is also observed from annual, monsoon
monthly andmonsoon total rainfall trend analysis that other than hill shadow regions,
no trend is observed in entire basin. Therefore, it can be concluded that IMD grid
rainfall in Godavari river basin has increasing trend nature only at hill shadow regions
and it is the trend free from other regions.

Acknowledgements The authors would like to thank the India Meteorological Department (IMD)
for providing gridded rainfall data for carrying the present study.
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Chapter 7
Forecasting Reference
Evapotranspiration Using Artificial
Neural Network for Nagpur Region

Nikhil Band, Aniruddha Ghare, and Avinash Vasudeo

Abstract There are different methods of forecasting, such as time series anal-
ysis, genetic programming regression analysis, wavelet transform, support vector
machines, etc. In the present study, forecasting of reference evapotranspiration has
been attempted for Nagpur region, Maharashtra State, India so that it can be used
to take decisions for reservoir planning. The past meteorological information, such
as relative humidity, temperature, wind velocity, solar rays were used for the calcu-
lation of reference evapotranspiration (ET0) value by using the Penman-Monteith
method, which is recommended as the standardmethod for determining ET0 by Food
and Agricultural Organization (FAO). The data has been trained in artificial neural
network (ANN) and the two learning techniques, namelyLevenberg–Marquardt algo-
rithm and quasi-Newton algorithm, were compared with the untrained data. Sum
square error (SSE), mean square error (MSE) and regression value (R2) have been
used as criteria for the performance assessment. Levenberg–Marquardt algorithm is
found to be better among the two, for the study area under consideration.
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7.1 Introduction

Management and planning of water resource system demands the investigation of
different hydrological entities like rainfall, evaporation, infiltration/seepage from the
reservoir, requirement for generation of electricity, domestic water supply and irri-
gation, etc. Operational research of reservoir systems might also need diffusion of
partial historical facts to calculate the feasible future performance. For the conve-
nient operation of irrigation system, prediction of reference evapotranspiration is
very important. For forecasting the evapotranspiration (ET) there are different tech-
niques. Traey et al. (1992) developed time series model to forecast irregularity of
ET obtained by yearly difference or month-to-month average models. In most of the
existing techniques in time series analysis, linear connection is considered among
variables. Since temporal/spatial variation in the data shows irregularities, there-
fore it is hard to analyse the forecasting accurately. Since this world has drastic
temporal problem, the artificial neural network (ANN), a nonlinear model, can be
used for complicated nonlinear system. Neural networks have so many applications
in water resources. Prediction is considered as the challenging application area for
artificial neural network. ANN had been employed for ET0 prediction; a sequen-
tially adaptive radial basis function network was applied (Trajkovic et al. 2003).
Landeras et al. (2009) compared the forecasted weekly ET using ARIMA and ANN
model for Alava region situated in the northern Spain. Chauhan and Shrivastava
(2009) applied different ANN algorithms for the prediction of ET0. Perera et al.
(2014) forecasted daily ET0 in Australia with the help of climate prediction outputs.
Kisi and Ozturk (2007) estimated ET0 with the help of Levenberg–Marquardt (LM)
algorithm for different input combinations of existing meteorological data. Zanetti
et al. (2007) employed artificial neural network for evapotranspiration estimation
using minimum and maximum temperature, and Levenberg–Marquardt algorithm
had used it for training the network.

This study represents the capability of a feed-forward NN for ET0 prediction. Two
distinct algorithms of ANN based on various key patterns have been considered. In
this study, quasi-Newton (QN) and Levenberg–Marquardt (LM) algorithms have
been employed for training algorithms. This has been carried out to determine the
algorithm that gives good outcome for the study area.

7.2 Study Area

For the current study, monthly average meteorological information of maximum and
minimum temperature, wind velocity, relative humidity and solar radiation inNagpur
region were collected for the duration January 1990 to July 2014. This climatic
parameter information is available onGlobalWeather Data for SWATwebsite, which
is under Texas University. Average monthly ET0 values were calculated by FAO
Penman-Monteith (PM) method, which is considered as the standard method for
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ET0 estimation (Allen 1986). The computed ET0 values were considered for training
and testing of distinct ANN algorithms. The location of the study area is Nagpur
region (21.1458° N, 79.0882° E) in the State of Maharashtra, India.

7.3 Methodology

Revised form of FAO 56 PM equation (Allen 1986) was used for estimation of
reference evapotranspiration values for the study area, which is shown in Eq. (7.1)

ET0 =
0.408�(Rn − G) + γ 900

T+273 U2(es − ea)

� + γ (1+ 0.34 U2)
(7.1)

where ET0 represents reference evapotranspiration [mm/day], T represents mean
daily air temperature measured at elevation of 2 m [°C], G represents soil heat flux
density [MJ/m2/day] (generally very small and assumed to be zero), U2 represents
wind velocity at elevation of 2 m [m/s], Rn represents net radiation at the crop surface
[MJ/m2/day], es represents saturation vapour pressure [kPa], ea represents actual
vapour pressure [kPa], es-ea represents saturation vapour pressure deficit [kPa], γ is
the psychrometric constant [kPa°C−1], and� represents slope vapour pressure curve
[kPa °C−1].

The calculated ET0 values were employed for the training of the neural network.
After the completion of training stage, testing of data was done using ANN. To
obtain the greatest ANN configuration, a variety of possibilities were considered.
Feed-forward single hidden layer ANNs has been carried out in this study. Different
models were developed from the combination of input variables which are shown in
Table 7.1.

There are five input variables, and six combinationsweremade by taking these five
climatic parameters. For each input parameter, two training algorithms (QNalgorithm
and LM algorithm) were used to train ANN models. This was practiced to obtain
an optimum number of hidden neurons for every model. Usually number of trials
are performed to determine the hidden layer nodes inside the neural networks. For

Table 7.1 Input variable
combinations considered for
the development of ANN
models

Model Input Parameters

Model 1 Relative humidity, maximum temperature

Model 2 Relative humidity, maximum temperature, wind
velocity

Model 3 Minimum temperature, relative humidity

Model 4 Relative humidity, wind velocity, solar radiation

Model 5 Minimum temperature, relative humidity, wind
velocity

Model 6 Relative humidity, solar radiation
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training a network, the overall performance indices considered were mean squared
error, coefficient of regression and sum square error. Utilizing the input test data, the
performance of ET0 prediction for each network had been assessed. With the help
of test dataset, linear regression analysis has been carried out with estimated ET0 as
a dependent variable and artificial neural networks forecasted values as independent
variables.

In this study, linear regression (LR) was employed to fit the relationship between
the inputs (x), viz., solar radiation, wind speed, relative humidity and minimum–
maximum air temperature and the targeted outputs (y), as:

yi = wi xi + a + Ei (7.2)

where

yi ET0 fitted value
xi weather variable
wi slope
a intercept
Ei instantaneous error

Figure 7.1 explains the linear regression analysis used in this study. If the value
of coefficient of regression is near to 1, it shows very well correlation between
the two considered variables. After linear regression, the input values of reference
evapotranspiration have been fed to neural network and forecasted using Levenberg–
Marquardt algorithm. For forecasting, the values from 1990 to 2010 are used for
predictive model and it is validated for the years 2011–2014.

x1

xi

xn

Y=ET0

w1

wi

wn

Input layer Output layer

Fig. 7.1 Diagram representing a linear regression network
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7.4 Results and Discussions

The meteorological data utilized for the validation and training of the ANNs were
used for calibration of estimated ET0 equations. QN and LM algorithms of ANN
models have been trained for 100 epochs (training iterations) with three consecutive
runs. On abscissas ET0 values by PM are plotted, while ordinate consists of ET0

values by ANN. The training and testing errors of all considered ANN configurations
are presented in the Figs. 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7 for each model. It was
observed that MSE reduces with increase in number of training iterations only up
to a certain value (depending upon ANN models), thereafter remains constant with
further increase in iterations.

Figure 7.2 shows scattered plots between estimated ET0 by PM method and
predicted model 1 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

Figure 7.3 shows scattered plots between estimated ET0 by PM method and
predicted model 2 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

Fig. 7.2 Plots of predicted PM values with ANN Model 1



72 N. Band et al.

Fig. 7.3 Plots of predicted PM values with ANN Model 2

Figure 7.4 shows scattered plots between estimated ET0 by PM method and
predicted model 3 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

Figure 7.5 shows scattered plots between estimated ET0 by PM method and
predicted model 4 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

Figure 7.6 shows scattered plots between estimated ET0 by PM method and
predicted model 5 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

Figure 7.7 shows scattered plots between estimated ET0 by PM method and
predicted model 6 ET0 for a trial epoch with the network configuration of 3-10-1
using the LM algorithm.

During the period of training, the objective was to attain minimum MSE value
and maximum regression value. When the objective was achieved, training stopped.
ET0 values forecasted by LM algorithm were close to the actual one. The validation
graph is shown in Fig. 7.8. The observed MSE values for all models are shown in
Table 7.2 using LM algorithm for ANN model 1 to model 6, respectively.



7 Forecasting Reference Evapotranspiration Using Artificial … 73

Fig. 7.4 Plots of predicted PM values with ANN Model 3

With the help of testing dataset, ET0 values calculated by PM and forecasted
ET0 values using LM algorithm were compared for year January 2011 to July 2014.
All configurations of ANN models 1, 3, 4, 5 and 6 showed poor performance as
compared to model 2, so these have been neglected for the remaining analysis. The
entire network configuration ofmodel 2 of ANNdisplayed superior results. Owing to
this, it was selected for further analysis of forecasting. From two training algorithms,
each model was chosen based on SSE, MSE and coefficient of regression (R2). The
ANN forecasted ET0 values were compared with PM estimated values and imitated
the same pattern. Figure 9 shows the comparison of forecasted ET0 values and ET0

values calculated by Penman-Monteith equation. The forecast was prepared for a
period of three and half years, from January 2011 to July 2014.

As the natural phenomenon is complicated, evapotranspiration prediction can be
a difficult and extensive work. In this operation, the usage of ANN as a tool allows in
the betterment of consistency and simplicity of this work as it is capable of carrying
huge quantities of data for processing. Figures 7.2 and 7.7 also show that ANNmodel
1 and model 6 evinced the poorest performance, with an MSE of 0.631 and 0.673,
respectively, while regression coefficient of 0.914 and 0.909, respectively. These
results demonstrated the potential of the ANN to detect a nonlinear input and output
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Fig. 7.5 Plots of predicted PM values with ANN Model 4

connection. For the perfect estimation of ET0 using an artificial neural network,
wind speed, humidity and temperature are considered to be the most important input
variables.

7.5 Conclusions

This study shows the capability of an artificial neural network for forecastingET0. For
the prediction of reference evapotranspiration, a good quality of meteorological data
is required. For accurate evaluation of ET0 using ANN, solar radiations, humidity
and temperature are the most important input variables. Based on the techniques and
concept of ANNs, different types of model have been utilized for forecasting ET0

for Nagpur region, India. Two training algorithms have been used for the training
of each model. The obtained results from ANN model with less number of input
data used for testing and training are very encouraging, since it gave fairly accurate
results as compared with PM values of reference evapotranspiration. The model 2 of
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Fig. 7.6 Plots of predicted PM values with ANN Model 5

ANN with training configuration of 3-10-1 using Levenberg–Marquardt algorithm
was found better based on the performance criteria. It is observed that the learning
performance generally increases by increasing number of hidden neurons. Trained
architecture using the Levenberg–Marquardt algorithm is found to be better, based
on the least mean square error (0.191) and highest coefficient of regression (0.975)
among the comparedmodels.Also, it is found that the forecasted reference evapotran-
spiration values are approximately equal to PM reference evapotranspiration values.
The results indicate that ANN algorithms such as Levenberg–Marquardt and quasi-
Newton can be applied to evaluate the forecasting of reference evapotranspiration
values in different study areas.
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Fig. 7.7 Plots of predicted PM values with ANN Model 6

Fig. 7.8 Comparison of forecasted ET0 values and calculated PM values for the year 2011 to July
2014
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Table 7.2 Mean square error,
regression coefficient and
sum square error of all ANN
models for testing data using
LM

Model no. Mean square
error (MSE)

Regression
coefficient (R2)

Sum square
error (SSE)

1 0.631 0.914 878.174

2 0.191 0.976 274.886

3 0.683 0.915 869.55

4 0.262 0.967 375.72

5 0.415 0.953 501.237

6 0.673 0.909 846.155
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Chapter 8
Time-Varying Downscaling Model
(TVDM) and its Benefit to Capture
Extreme Rainfall

Subbarao Pichuka and Rajib Maity

Abstract The focus of this chapter is to explore the benefits of time-varying down-
scaling model (TVDM) to preserve the characteristics of extreme rainfall in the
downscaled products. The TVDM was developed based on the hypothesis that the
relationship between causal and target variables is non-stationary in the context of
climate change. The TVDMutilizes the skill of the Bayesian approach in updating its
parameters and thus, incorporates the time-varying relationship between the causal
variables and the target variable to be downscaled. In this study, the potential of the
TVDM to replicate the extremes in the downscaled precipitation field is explored.
The entire Indian landmass is considered as the study area. The output of TVDM
is compared with the existing statistical downscaling model (SDSM) and regional
climate model (RCM) outputs procured from the coordinated regional climate down-
scaling experiment (CORDEX). It may be noted that the SDSM assumes the causal–
target relationship is time-invariant, whereas the TVDM considers the time-varying
relationship since it is based on the non-stationarity assumption. Causal variables
from the coupled Hadley centre Global Environmental Model (version-2)—Earth
System model (HadGEM2-ES) general circulation model are considered as input to
the TVDM and SDSM. Downscaled precipitation field is compared with (i) 0.25° ×
0.25° gridded observed precipitation data, procured from the India Meteorological
Department (IMD), (ii) output of SDSM at selected locations, and (iii) RCM down-
scaled precipitation field obtained from CORDEX. Observed precipitation field is
found to best correspond to the TVDMdownscaled precipitation field as compared to
CORDEX and SDSM outputs. This analysis reveals that the TVDM is a promising
downscaling technique for the assessment of extreme values. Overall, the TVDM
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is found to be potential in a changing climate due to its time-varying characteris-
tics considering the non-stationarity issue that exists in the relationship between the
causal–target variables.

Keywords Climate change · Extreme events · TVDM · GCM · CORDEX

8.1 Introduction

The extreme rainfall values are the natural disasters and affect large spatial extent.
Recent studies concluded that the climate change has a significant impact on the
hydrological extremes (Arnell, 1999, Haddeland et al. 2014; Pichuka and Maity
2020a). Moreover, the impact varies spatio-temporally because of global hydrocli-
matic teleconnection (Maity et al. 2007) and local physical features like topography
and climatology of the location (Maity and Kashid 2011; Pichuka and Maity 2016;
Silverman andManeta 2016). There are many studies around the world that assessed
different hydrological extreme events. For instance,Mishra et al. (2011) have investi-
gated the changes in extreme precipitation in Texas. Lindström andBergström (2004)
explore the annual and seasonal flood peaks in Sweden. Tofiq and Guven (2014)
attempted to identify the peak monthly discharge through statistical downscaling
approach at a dam site in Iraq. Pichuka et al. (2017) assessed the extreme stream
flow events over theBhadra basin using downscaled rainfall as input to rainfall-runoff
(RR)model. Jiang et al. (2007) concluded that the change in amount of average water
availability causes change in the extreme rainfall values. Pichuka and Maity (2020a)
assessed the future variation of extreme rainfall events over the Bhadra basin. The
occurrence of extremes often causes loss of lives, agriculture and can also change
the fate of country’s economy. Therefore, assessment of extreme values owing to
climate change is of utmost importance.

The outputs of the general circulation models (GCMs) have a too poor spatial
resolution (~250 km × 250 km) to use for local-scale hydrologic assessment. The
technique to improve the spatial resolution of GCM outputs to finer scale is known
as downscaling. It is accomplished either by establishing the statistical relationship,
i.e., statistical downscaling (Hessami et al. 2008; Wilby and Wigley 1997) between
causal variables and target variable to be downscaled or by regional climate model
(RCM), i.e., dynamical downscaling. The GCM outputs are used as boundary condi-
tions of the RCMs in the dynamical downscaling (Chirivella et al. 2016; Giorgi et al.
2015). However, the usage of dynamic downscaling technique is restricted because
of the requirement of high computational facilities. On the other hand, the statis-
tical downscaling method assumes the relationship between causal–target variable
as time-invariant, which is not true. Therefore, the applicability of statistical down-
scaling is debatable as it is a stationary-based approach (Merkenschlager et al. 2017;
Sachindra and Perera 2016; Pichuka and Maity 2016).
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Recently, Pichuka andMaity (2018) have developed a non-stationary-basedmodel
for statistical downscaling of various hydroclimatic variables and named it as time-
varying downscaling model (TVDM). The TVDM was found to perform better in
downscaling the monthly and seasonal precipitations as compared to existing statis-
tical downscaling model (SDSM) and regional climate model (RCM). The objective
of this chapter is to explore the ability of TVDM to represent stochastic features of
observed rainfall including extremevalues and its comparisonwithSDSM(stationary
approach) and RCM downscaled data.

8.2 Study Area

The entire Indian landmass is considered as the study area (Fig. 8.1). A wide range
of climate is noticed across India. For instance, dry region (low rainfall) in the West
side to wet region (high rainfall) in the East. The South-west monsoon contributes
to the principal portion (~80%) of total annual rainfall. The North-west part of India
experiences drought whereas North-east part is a flood-prone region. Hence, India
consists of a variety of climatology that offers an ideal study region to compare the

Fig. 8.1 Study area map showing 10 key locations
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downscaled products from different models. In this study, ten key locations (Fig. 8.1)
are selected, which are well-spread and represent the variation of Indian climate.
The location-specific assessment is carried out at these locations and the results are
explored.

8.3 Materials and Methodology

8.3.1 Data Used

8.3.1.1 Observed Data

The daily observed rainfall data is procured from the India Meteorological Depart-
ment (IMD) at a horizontal resolution of 0.25° × 0.25° for the study region. Further,
the monthly precipitation values are calculated at all the grid intersections. Part of
the observed data is used for calibrating the models and named as calibration period
(1951–1990) and other part of data is used for validating the downscaled results and
named as validation period (1991–2005).

8.3.1.2 GCM Data

The coupled Hadley centre Global Environmental Model (version-2)—Earth System
model (HadGEM2-ES) is used in this study. It is developed at theHadley centre in the
UKmeteorological office and has 38 pressure levels in the atmosphere (vertical). The
spatial resolution is 1.25° (lat.) by 1.875° (long.). The outputs of HadGEM2-ES are
used in the IPCC Fifth Assessment report. Caesar et al. (2013) presented the details
of HadGEM2-ES. The historical monthly data (causal variables) were downloaded
from the fifth phase of Coupled Model Intercomparison Project (CMIP5) supplied
through IPCCData Distribution Centre (IPCCDDC) website (http://www.ipcc-data.
org/sim/gcm_monthly/AR5/Reference-Archive.html).

8.3.1.3 RCM Data

The outputs of regional climate model, version-4 (RegCM4) monthly precipitation
are obtained from coordinated regional downscaling experiment (CORDEX) data
portal. The spatial resolution of RegCM4 is 0.5° × 0.5° (Li et al. 2015). The outputs
of RegCM4 were utilized in many projects to assess the impact of climate change
on extreme values and other purposes. The Indian Institute of Tropical Meteorology
(IITM), Pune provides the outputs fromRegCM4. This data for the SouthAsia region
is downloaded from IITM for the historical period (1951–2005) (URL: http://cccr.
tropmet.res.in/home/ftp_data.jsp).

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html
http://cccr.tropmet.res.in/home/ftp_data.jsp
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8.3.2 Methodology

In this study, two models, i.e., TVDM and SDSM version-5.2 (SDSM-5.2) are
adopted to downscale the monthly precipitation using GCM data as input to the
model. SDSM is developed by considering causal–target relationship as time-
invariant (stationary). The methodological details of SDSM are presented in Wilby
et al. (2002).

8.3.2.1 Outline of TVDM Methodology

TVDMwas developed by Pichuka andMaity (2018), which is based on the Bayesian
approach (West and Harrison 1997). It considers the relationship between causal–
target variables as time-varying (non-stationary). In this chapter, the methodology
of TVDM is explained using key equations.

The first step is to standardize all the causal variables by subtracting the mean (μ)
and dividing the difference with standard deviation (σ ). It ensures all the variables
are in similar range. Then the target variable is downscaled at time step t using the
following equation.

(
Yt

/
Dt−1

) ∼ Tn[Ft , Qt ] (8.1)

where Yt is the target variable to be downscaled at time step t, Dt−1 is the information
of model parameters at time step t-1 and n is the degree of freedom. The value of n
for tth time step is given as

n = t − 1 (8.2)

The equations for Ft and Qt are given as

Ft = Yt + x1t × m1
t−1 + x2t × m2

t−1 + x3t × m3
t−1 + · · · + xzt × mz

t−1 (8.3)

Qt = (
x1t

)2 × R1
t + (

x2t
)2 × R2

t + (
x3t

)2 × R3
t + · · · + (

xzt
)2 × Rz

t + St−1 (8.4)

where Yt is the climatological mean value of the target variable at tth time
step. x1t , x

2
t , x

3
t , . . . x

z
t are the standardized causal variables at the tth time step.

m1
t−1, m2

t−1, . . .m
z
t−1 are the model parameters supplied by the modeler at initial

time step. Rt is expressed as

Rt = Ct−1
/

δ (8.5)

where δ is known as discount factor which ranges between 0 and 1. The value of
δ indicates the presence of uncertainty in the future information. The lower value
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of δ denotes the higher rate of decay in past information and vice versa (West and
Harrison 1997). Therefore, the optimum value of δ is estimated on the basis of model
performance.

St−1 is expressed as

St−1 = dt−1

nt−1
(8.6)

The parameters m0, C0, n0 and d0 are to be supplied to the TVDM as the initial
information for all the causal variables. Next, the parameter values (m-values) are
updated using a set of equations until the model calibration. Then the target vari-
able is downscaled at every time step using these updated m-values and causals data
in Eq. 8.3. However, the parameter updation is possible only when observed data is
available, and for future period it cannot be updated using set of equations. The target
variable during future period is downscaled by considering the temporal evolution of
model parameters and its regeneration. It is achieved by projecting the deterministic
and stochastic components of historical m-values. The trend and periodic compo-
nents are the deterministic part of historical time series which are removed from
the m-values and the residual left is purely random in nature which can be modeled
using auto-regressive (AR) model. Using these deterministic (trend and periodicity)
and stochastic (AR1) components, ensemble of realizations (any number) can be
generated. Each time one realization (set of regenerated m-values) is considered for
downscaling the target variable during future period. It can be achieved by substi-
tuting the regenerated m-values and the causal variables obtained from the CMIP-5
portal in Eq. 8.3. The detailed procedure of regeneratingm-values, set of equations to
update thesem-values and their regeneration during the future period are presented in
Pichuka and Maity (2018). The 75th, 90th and 95th percentile values are considered
as extreme values to compare the observed and downscaled products.

8.4 Results and Discussion

8.4.1 Calibration Period

The monthly precipitation is downscaled using TVDM and SDSM-5.2 and it is
also obtained from RegCM4 RCM (CORDEX). The TVDM is calibrated at all the
grid (0.25° × 0.25°) intersections and the SDSM is calibrated at each of the 10 key
locations using the observed data for 40 years (1951–1990). Then the extreme values
of downscaled precipitation aremodeled at 75th, 90th and 95th percentiles. These are
presented in Fig. 8.2. The correspondence between TVDM and the observed data is
found better as compared to that between TVDMand the RCM (CORDEX) data. The
RCM seems to be overestimating the 75th percentile values and underestimating the
95th percentiles in the North-east region, whereas the association between observed
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Fig. 8.2 Comparison of extreme events obtained using TVDM and CORDEX outputs with respect
to observed data during calibration period

and TVDM downscaled precipitation is found better in these regions. In fact, the
observed and downscaled precipitation maps look almost similar in case of TVDM,
whereas discrepancies at places are noticed in case of maps developed with the RCM
data (Fig. 8.2). It is worth mentioning that Pichuka andMaity (2020b) carried out the
analysis on the applicability of CORDEX data in representing the observed extreme
rainfall events (75th, 90th and 95th percentiles). They concluded that the CORDEX
data is unable to model the extreme events in some parts (especially high rainfall
regions) of the country. Similar result is noticed from the analysis carried out in this
chapter and shown in Table 8.1. The performance measures during calibration period
at ten key locations are presented in Table 8.1 for all three models. The differences
between observed and TVDM downscaled extreme values are found to be minimum
as compared to the other cases, i.e., observed-SDSM and observed-RCM. These
observations indicate the best performance of TVDM as compared to other two
models.
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Table 8.1 Extreme values at different quantiles for different models during calibration period
(1951–1990)

Loc
no.

Observed TVDM SDSM CORDEX

75th 90th 95th 75th 90th 95th 75th 90th 95th 75th 90th 95th

1 60.7 202.4 300.2 62.2 205.4 284.6 72.9 150.6 188.2 73.2 187.3 239.2

2 143.9 330.2 438.8 156.0 332.2 389.3 87.7 233.7 306.7 171.0 299.4 352.9

3 256.3 377.0 429.4 262.5 361.6 407.8 240.4 346.7 389.1 278.4 392.0 461.8

4 61.0 196.7 279.7 71.6 193.2 275.3 57.0 126.3 170.6 48.9 192.6 245.5

5 121.7 340.6 465.3 133.5 348.5 456.5 87.1 329.4 503.2 110.5 342.6 428.5

6 169.2 409.0 497.9 184.5 416.8 475.9 112.5 261.6 397.8 202.6 384.1 435.0

7 235.1 363.7 465.0 231.8 357.5 408.2 247.4 324.5 385.0 241.6 358.0 393.2

8 214.6 479.2 721.5 229.0 481.9 738.0 174.7 473.4 794.4 181.5 402.6 696.2

9 142.4 257.0 367.0 136.3 252.6 360.0 109.6 268.6 423.1 137.6 213.6 351.6

10 420.9 631.6 812.3 386.6 630.0 794.4 304.3 621.3 915.5 377.8 650.9 782.4

8.4.2 Validation Period

The calibrated TVDMandSDSMmodels are used for validation. It can be noted from
Pichuka andMaity (2018) that in case of TVDM, the time series of model parameters
during the calibration period are utilized to regenerate by considering deterministic
(trend and periodicity) and stochastic (auto-regressive component) components of the
time series. The regenerated parameters are utilized alongwith the causals data (GCM
variables downloaded from IPCC data portal) to obtain the monthly downscaled
precipitation. Then the extreme values are computed at different percentile for all
three cases, i.e., observed data, TVDM downscaled data and RCM (CORDEX) data.
The magnitudes of these extreme values are presented in Fig. 8.3.

It can be noticed from Fig. 8.3 that the TVDM outputs are more or less matching
alike with the observed data. The RCM outputs seem to be underestimated in the
North-east and Western Ghat regions. The specific values at ten key locations are
presented in Table 8.2 for observed data and downscaled values using TVDM, SDSM
and RCM.

The best performance of TVDM can be noticed from the values shown in
Table 8.2. Almost for all the cases, the difference between observed and TVDM
outputs are minimum. It can be worth mentioning that the performance of RCM
is found to be better than that of SDSM at majority of the key locations. These
results reflect a fact that the time-varying or dynamic approaches (TVDM and RCM)
are performing better when compared to the time-invariant (SDSM) downscaling
approach. However, the superiority of TVDM is found to perform even better than
RCM in assessing the extreme values. It is achieved due to the incorporation of
time-varying component between the causal–target relationships which is essential
to consider in a changing climate.
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Fig. 8.3 Comparison of extreme events obtained using TVDM and CORDEX outputs with respect
to observed data during validation period

Table 8.2 Extremevalues at different quantiles for differentmodels during validation period (1991–
2005)

Loc
no.

Observed TVDM SDSM CORDEX

75th 90th 95th 75th 90th 95th 75th 90th 95th 75th 90th 95th

1 64.9 192.8 271.9 62.2 199.9 269.9 69.5 153.6 261.0 73.2 187.3 259.2

2 143.6 248.0 317.6 163.2 255.1 323.1 111.5 230.7 365.9 171.0 239.4 352.9

3 256.3 411.4 467.3 277.1 378.4 463.7 230.1 343.3 426.9 278.4 392.0 461.8

4 48.8 184.3 264.9 64.1 181.7 259.1 71.3 165.5 214.0 48.9 192.6 275.5

5 120.1 284.6 456.0 124.4 299.0 453.2 126.6 366.5 520.1 110.5 342.6 456.5

6 166.0 369.4 439.6 179.2 377.4 428.3 124.1 308.2 414.6 202.6 384.1 474.0

7 256.1 362.7 407.5 252.0 368.9 410.6 300.6 342.8 373.2 261.6 358.0 393.2

8 332.6 518.6 616.3 272.1 475.5 609.8 229.9 588.0 982.5 261.5 402.6 586.2

9 112.2 284.8 359.2 114.8 261.9 356.2 115.6 256.3 422.5 117.6 213.6 351.6

10 458.5 672.6 783.8 387.2 661.1 758.0 288.9 655.7 841.2 376.8 650.9 812.4
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8.5 Conclusions

This study establishes the ability of a newly developed time-varying downscaling
model, i.e., TVDM to capture extreme rainfall values. Considering the entire India
as study region and ten key locations for comparison, the outputs of TVDM are
compared with the SDSM (a time-invariant approach) and RCM data (obtained
fromCORDEX portal). Then the correspondence between observed and downscaled
(using TVDM, SDSM and RCM) extreme rainfall values is explored during the
calibration (1951–1990) and validation (1991–2005) periods. The TVDM performs
much better in representing the extreme rainfall values during both calibration and
validation periods as compared to the othermodels. The difference between observed
and downscaled extreme values is found minimum in case of TVDM.

In brief, TVDMis a promising downscaling technique in a changing climate due to
its time-varying characteristics considering the non-stationarity issue that exists in the
relationship between the causal–target variables. It is effective for the assessment of
extreme values of any climatic region in the world and computationally less intensive
as compared to RCM.
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Chapter 9
An Assessment of Impact of Land
Use–Land Cover and Climate Change
on Quality of River Using Water Quality
Index

Manisha Jamgade and Shrikant Charhate

Abstract Globally rapid population, urbanization and industrialization are posing
problems such as changes in the land use pattern and climate and contamination
of surface waters. Land use changes have potentially large impacts on river water
quality, e.g., adaptation of cropland to urban area, crop rotations, establishment of
new industries, commercial and residential areas etc. Unplanned developments asso-
ciated with land use change have notably influenced the river water quality. Further
due to climatic changeability such as increased temperature, rainfall change affects
surfacewater quality and aquatic environment. The purpose of this study is to analyze
river water quality related to spatial land use in river basin using GIS analysis. To
manage riverwater quality in themost effective and efficient way, the cause and effect
relationship of the river basinmust be identified.Water quality indices are an effective
and easy assessment method to analyze the effect of land use and climate change on
streamwater quality. The present study focused on development of improved surface
water quality indices considering various water quality parameters affected by land
use–land cover and climate change scenarios. These indices will help to classify the
river and will provide simple interpretation of the monitoring data to aid citizens and
managers for decision making to improve river water quality.

Keywords Land use–land cover · Climate change · Water quality index · River
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9.1 Introduction

9.1.1 Land Use–Land Cover

Land use–land cover has become an environmental issue worldwide due to changes
in forestland, agricultural land, waterways and air. It is well known that there is a
close relationship between the land use type and water quality (Pullanikkatil et al.
2015). Some researches focus on this relationship from the perspective of the spatial
configuration of land use in the recent years (Gazzaz et al. 2012). Several research
studies have been conducted related to the change in investigation of watersheds,
which are important in developing effective management strategies to protect water
resources.

Wan et al. (2014) showed the influence of land use and land cover (LULC) changes
on soil properties, geomorphology, hydrological processes and quality of water at
local, regional and global scales. Land use and land cover changes are known to be
main drivers of water quality deterioration in watercourses (Yong and Chen (2002).
Knowledge of the spatial and temporal variability of land use change characteristics
and its linkage to water quality parameters in basins is limited. Land use changes
have the capability to affect the land cover and vice versa.

Ahearn et al. (2005) correlated the impact of land use and land cover and climate
changes on streamwater quality throughmixed effects model considering the param-
eters like nitrate and total suspended solids loading between dry and average water
years 1999 and 2001. In their study they contrast to the TSSmodel, the nitrate loading
model was more complex with agriculture, grassland, and the presence or absence
of waste water treatment plants. Juan Huang et al. (2013) indicated that there was
considerable negative correlation between grassland, forest land and built-up area
on the water quality, while the influence of the cultivated land on the water quality
was very intricate. Moreover, the impact of the landscape variety on the indicators
of water quality within the basin was also analyzed, which indicated the significant
negative relationship between them. Land use and land cover (LULC) changes affect
geomorphology, soil properties, hydrological processes and water quality at global,
regional and local scales (Wan et al. 2014).

Many research studies investigating the linkages between LULC and streamwater
quality have concluded that a significant relationship exists between land use and
water quality parameters at a catchment level (du Plessis et al. 2014; Kibena et al.
2014; Teixeira et al. 2014), while others have shown complex relationships, varying
from one region in the world to another and which are dependent on the depth of
analysis (Miserendino et al. 2011; Dabrowski and de Klerk 2013). Wan et al. (2014)
emphasized the importance of temporal and spatial variations and distinguished that
upstream river reaches are subject to fewer impacts, compared to those downstream.
Geographic information system (GIS) has the capability for capture, storage, manip-
ulation, analysis and retrieval of multiple layer resource information occurring both
in spatial and non-spatial forms (Mishra and Patel 2001). du Plessis et al. (2014)
found that LULC changes have various negative impacts on the water quality of a
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watercourse, as they lead to both increases and declines in the concentration of water
quality variables. Fewer studies have considered the effects of spatial patterns of
land use on the water quality, which could provide suggestion on landscape planning
and land use management. Therefore, this paper outlines a study aimed to assess
the long-term association between land cover/land use change, climate change and
water quality changes that occurred in the Indian river basin. The water quality and
quantity data available for the analysis in this study belong to the river gauge station
located at the outlet of the catchment.

9.1.2 Climate Change

Climate change is one important factor that is known to affect ecosystems. The main
impact of climate change on water quality is attributed to changing air tempera-
ture and hydrology (Alam et al. 2013). Water temperature is directly affected by
ambient air temperature (Akomeah et al. 2015) and is expected to increase as a
result of global warming. Variations in water temperature govern physico-chemical
equilibriums (e.g., nitrification, mineralization of organic matter, etc.) in rivers and
hence change transport and concentration of contaminants. Increases inwater temper-
ature result in reduced oxygen solubility, thus reducing dissolved oxygen (DO)
concentrations at which saturation occurs. Reduced DO concentration of contam-
inants increases in water temperature and result in reduced oxygen solubility, thus
reducing dissolved oxygen (DO) concentrations at which saturation occurs. Temper-
ature alone can decrease the volume of surface waters through increase in ET. The
south-eastern United States has little seasonal variability in precipitation, but signif-
icant variability in streamflow because of seasonal changes in rates of ET (Murdoch
et al. 2000). Increased water temperature is anticipated to result in increased anoxia
of already eutrophied waters of the south-eastern United States if global warming
occurs. The duration and intensity of stratification in surface waters is a major factor
in determining seasonal changes in surface water quality. The interaction of several
factors includes the initial temperature of surface and ground water inputs to a lake,
lake trophic state and the physical geometry (Whitehead et al. 2009).

9.1.3 Water Quality Index

Water quality index is an important way to assess the quality of water in recent years.
WQI is a superior way of understanding water quality issues by integrating complex
data and generating a score, which ultimately describes the water quality status
(Mishra and Patel 2001). GIS is a computer system for capturing, storing, querying,
analyzing and displaying all types of geographical data. It permits observing, under-
standing, enquiring, interpreting and visualizing data in several ways which reveal
relationships, patterns and trends in the form of maps, globes, reports and charts. GIS
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is not only an effective tool for collection, storage, management and retrieval of an
assembly of spatial and non-spatial data but also for spatial analysis and integration
of the data to arise useful outputs and modeling (Gupta and Srivastava 2010).

A water quality index offers a single number that represents overall water quality
of a particular water sample (time and location) for several water quality parameters
(Singh et al. 2013). It is an important factor to judge environment changes, which
are strongly associated with social and economic development. The index allows
a general analysis of water quality on many levels that affect a stream’s ability of
hosting life. WQI is the rating which reflects the composite influence of different
water quality parameters. The major objective of the study is to provide an overall
picture of the river water quality using WQI.

9.2 Study Area

The Patalganga River is situated between the Western Ghats and the Arabian
Sea. The effluent of the Khopoli power project is discharged into this river
near Khopoli in Maharashtra, India. It comes at foremost in terms of pollution.
It is known to be one of the most polluted rivers of Maharashtra. It is the significant
source of intake water and raw water for the nearby industries and drinking water
for neighboring villages. The sewage from the towns and villages along the river is
directly disposed into the river without any treatment. Mainly textile, pharmaceu-
ticals and dye intermediate manufacturing industries are located in the catchment
of the Patalganga River. It is, therefore, of vital importance to monitor the water
quality parameters of the Patalganga River to ascertain whether the water quality is
still suitable for various purposes. So far no systematic study has been undertaken to
assess the water quality of Patalganga River.

Nowadays, local villagers nearby Patalganga River complain regarding the
poisoning caused by consuming fishes. Biodiversity of this river basin is facing
serious threat due to the harmful chemicals from the fertilizer, dyeing, insecticides,
pesticides and alkyl amines industries. The stretch of the study area of the river is
shown in Fig. 9.1.

9.3 Methodology

The land use data was extracted from the Landsat TM images. The land types are
classified as the cultivated (agricultural) land, forest land, grassland, water area, built-
up area and unused (barren) land. Proportion or fraction of each land type is found
out.

Organizing and presentation of the data sets: The data sets for water quality
parameters like temperature, dissolved oxygen, pH, conductivity, BOD, COD, and
faecal coliform etc. are some of the data obtained for sampling and experimentation.
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Fig. 9.1 Stretch of Patalganga River understudy

The data sets were organized in spread sheets for further analysis and illustrative
presentation. The standard deviation values were calculated and have been presented
along with the data sets in the spread sheets.

9.3.1 Estimation of Water Quality Index (WQI)

Water quality parameters, i.e., pH, dissolved oxygen (DO), biochemical oxygen
demand (BOD), turbidity, faecal coliform (FC), temperature, total carbon (TC),
nitrate, total solids were selected for calculating the index. TheWQI is calculated for
the river stretch near Patalganga MIDC area using the formula provided by National
Sanitation Foundation (NSF) and the relative weights modified by Central Pollution
Control Board. To present the data in a spatial format, geographical information
system (GIS) maps were generated. The expression for calculating the NSFWQI is
expressed as Eq. (9.1). Table 9.1 is used as a reference for assessing the river water

Table 9.1 Relation between
water quality index and
surface water pollution

S. no. Water quality status WQI Remark

1 Bad to very bad 38 and less Heavily polluted

2 Bad 39–50 Polluted

3 Medium to good 51–63 Not polluted

4 Good to excellent 64–100 Not polluted
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Table 9.2 Analysis of water quality data from the experimentation

S. no. Particulars pH DO BOD Ammonia TC Nitrate FC

1 Mean 7.5 5.8 24 0.56 485 0.75 144

2 Std. deviation 0.35 0.55 0.80 0.65 450.2 0.87 155.4

3 No. of samples 25 20 20 25 20 20 25

quality status.

WQI =
∑P

i=1
Wi ∗ I i (9.1)

where Ii = sub-index for ith water quality parameter; Wi = weight (in terms of
importance) associated with water quality parameter; P = number of water quality
parameters.

9.3.2 Analysis of WQI and Data

TheWQI evaluation of the available data of Patalganga River indicated that the water
quality was good to excellent at all the stations except at Turade where it varied from
moderately good to good and then to excellent. The reason for such variation could
be release of some domestic waste from Turade village. Mean and standard deviation
are shown for different water quality parameters in Table 9.2.

The descriptive statistics of Patalganga River showed that the pH value and
dissolved oxygen complied with the MPCB standards at some of the stations near
MIDCwaterworks intakes. The BOD value exceeded the standards in the range of 7–
20% at most of the stations. Percent exceedance for ammonical nitrogen was 7, 7 and
31% at Shilphata Bridge, near intake of MIDC waterworks and at D/s of Kharpada
Bridge, respectively. The reason for exceedance could be the effluent discharged
from MIDC, HOC Ltd, HIL, domestic waste and fishing.

9.3.3 Relationship Between Land Use, Climate Change
and Water Quality

Therewas a positive relationship between the cultivated land area (%) and the concen-
tration of ammonia and DO. This is mainly due to the developed agriculture in area
and emission of ammonia from the exposure of soil surface resulting from the agri-
cultural practices and the application of chemical fertilizers. The fertilizers used in
the agricultural land will be dissolved into the runoff of river ultimately polluting
the river water. Also, the vegetation in the surface soil of agricultural land absorbs
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and retain the various pollutants. As a result, the cultivated land plays a complicated
role in influencing the water quality. The forest land and grassland both have signif-
icant positive influence on the water quality. The forest land and grassland played
a key role in reducing the nitrogen pollutants and phosphorus pollutants and played
a controlling role in re-grading the water quality. The forest vegetation and forest
grass land effectively reduce the nutrient salts brought to the river by the surface
runoff because they play a significant role in reducing the surface runoff and its
concentration helping in the conservation of water and soil. Therefore, the increase
of the forest land and grassland area will reduce the concentration of ammonia and
oxygen-consuming substances, increase the concentration of dissolved oxygen and
consequently improve the water quality. The built-up land has negatively influenced
the water quality as a whole. The built-up area was positively related to TDS, nitrate,
ammonia, and BOD and was negatively related to DO, indicating that the increase
of the built-up area tends to degrade the water quality. It is due to the increase of the
nutrient concentration. The population density and economic events both are focused
in the built-up area which causes serious pollution. Furthermore, increase in paved
road will contribute to increase of surface runoff and may increase the concentra-
tion of nutrient. More runoff will reach the river and consequently de-grading in the
water quality happens within the basin. There was a positive relationship between
the built-up area and total dissolved solids and BOD. Since the vegetation can protect
the soil from raindrops and tend to slow down the movement of runoff and allow the
excessive surface water to infiltrate into the soil, the conversion of land with vegeta-
tion into built-up area will aggravate the soil erosion and consequently increase the
amount of TDS into the runoff.

9.4 Discussion

The analysis revealed that with the exception of pH (no trend) and sulfate (negative
trend), all other water quality variables including total dissolved solids and hardness
show significant increased value (positive trends). The study indicated that there was
a significant negative correlation between forest land and grassland and the water
pollution, and the built-up area had negative impacts on the water quality, while the
influence of the agricultural land on the water quality was very complex.

According to the result mentioned previously and the current conditions of the
local water quality, it is necessary to increase the area of forest land, grassland and
water area in the local land use planning. Since the forest land proportion influences
the local river water quality, it is particularly important to increase the area of forest
land. Landscape diversity should be increased.
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9.5 Conclusion

1. A decline of the natural vegetation occurs, relative to large increases of
urban/built-up, cultivation and other land uses. These changes in LULC have
direct negative or positive impacts on runoff and water quality of surface water,
due to alteration of hydrological system.

2. The pledge between increasing trends of developed areas (infrastructural devel-
opment such as residential, roads etc.) and increasing trends of most of the water
quality variables reveals that land use change influences the river water quality.

3. Increases in water temperature decreases the oxygen-holding capacity of surface
waters, which can decrease productivity in surface waters already stressed by
biological oxygen demand (BOD).

4. Changes in water quality anticipated from increased global temperature, global
increases in air temperature and the associated increases in water temperature
can cause measurable changes in water quality that are independent of changes
in moisture.

5. Significant changes in water quality have occurred as a direct result of short-term
changes in climate.

References

Akomeah E, ChunKP, Lindenschmidt KE (2015) Dynamic water quality modelling and uncertainty
analysis of phytoplankton and nutrient cycles for the upper South Saskatchewan River. Environ
Sci Pollut 22:18239–18251

Alam A, Badruzzaman ABM, Ali MA (2013) Assessing effect of climate change on the water
quality of the Sitalakhya river using WASP model. J Civil Eng 41:21–30

Boori MS, Vozenilek V (2014) Land cover disturbance due to tourism in Jeseniky mountain
region: a remote sensing and GIS based approach. In: Earth resources and environmental remote
sensing/GIS applications, proceedings of SPIE, international society for optics and photonics,
Amsterdam, The Netherlands, vol 9245

Dabrowski JM, de Klerk LP (2013) An assessment of the impact of different land use activities on
water quality in the upper Olifants River catchment. Water SA 39(2):231–244

Ahearn DS, Sheibley RW, Dahlgren RA, Anderson M, Johnson J, Tate KW (2005) Land use and
land cover influence on water quality in the last free-flowing river draining the western Sierra
Nevada, California. J Hydrol 313(3–4):234–247

Du Plessis A, Harmse T, Ahmed F (2014) Quantifying and predicting the water quality associated
with land cover change: a case study of the Blesbok Spruit Catchment, South Africa. Water
6(10):2946–2968

Gazzaz NM,YusoffMK, RamliMF, Aris AZ, Juahir H (2012) Characterization of spatial patterns in
river water quality using chemometric pattern recognition techniques.Mar Pollut Bull 64(4):688–
698

GuptaM, Srivastava PK (2010) IntegratingGIS and remote sensing for identification of groundwater
potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245

Huang J, Zhan J, YanH,WuF,DengX (2013) Evaluation of the impacts of land use onwater quality:
a case study in the Chaohu Lake Basin. Hindawi Publ Corp Sci World J Article ID 329187



9 An Assessment of Impact of Land Use–Land Cover and Climate … 99

Kibena J, Nhapi I, Gumindoga W (2014) Assessing the relationship between water quality parame-
ters and changes in land use patterns in the Upper Manyame River, Zimbabwe. Phys Chem Earth
Parts A/B/C 67–69 (0):153–163

Miserendino ML, Casaux R, Archangelsky M, Di Prinzio CY, Brand C, Kutschker AM (2011)
Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiver-
sity in Patagonian northwest streams. Sci Total Environ 409(3):612–624

Mishra PC, Patel RK (2001) Study of the pollution load in the drinking water of Rairangpur, a small
tribal dominated town of North Orissa. Indian J Environ Ecoplanning 5(2):293–298

Murdoch PS, Baron JS, Miller TL (2000) Potential effects of climate change on surface-water
quality in North America. J Am Water Resour Assoc 36(2)

Pullanikkatil D, Palamuleni LG, Ruhiiga TM (2015) Impact of land use on water quality in the
Likangala catchment, southern Malawi. Taylor and Francis. Afr J Aquat Sci 40(3):277–286

Singh PK, Tiwari AK, Mahato M K (2013) Qualitative assessment of surface water of West Bokaro
Coalfield, Jharkhand by using water quality index method. Int J Chem Tech Res 5(5)

Teixeira Z, Teixeira H, Marques JC (2014) Systematic processes of land use/land cover change to
identify relevant driving forces: implications on water quality. Sci Total Environ 470–471:1320–
1335

Wan R, Cai S, Li H, Yang G, Li Z, Nie X (2014) Inferring land use and land cover impact on stream
water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed,
China. J Environ Manag 133:1–11

Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential
impacts of climate change on surface water quality. Hydrol Sci J 54:101–123

Yong TY, Chen W (2002) Modeling the relationship between land use and surface water quality. J
Environ Manag 66:377–393



Chapter 10
Assessment of Tail Behavior
of Probability Distributions of Daily
Precipitation Data Over India

Neha Gupta and Sagar Rohidas Chavan

Abstract Reliable estimation of extreme precipitation is of utmost importance to
ensure the structural safety of major civil engineering infrastructures (e.g., urban
storm drainage network, spillways of major water control structures, etc.). Conven-
tional practice for designof those infrastructures includes determinationofmagnitude
and frequency of extreme precipitation events. The extreme events usually lie in the
tail part of the probability distribution of daily precipitation data. Based on the nature
of the tails, different distributions are classified into two categories: heavy-tailed and
light-tailed distributions. The tails of heavy-tailed distributions tend to approach zero
less rapidly when compared to those of light-tailed distribution (which are having
exponential tails). Heavier tails implymore frequency of extreme precipitation events
as compared to lighter tails. There is a dearth of attempts to assess the tail behavior
of probability distributions of daily precipitation data over India. In this paper, we
compare the tails of empirical distributions of daily precipitation data and tails of
fitted theoretical distributions (e.g., pareto, lognormal, Weibull and gamma distribu-
tions). Gridded precipitation data prepared by the India Meteorological Department
(IMD) having a resolution of 0.25° was used for the analysis. The results indicated
that heavy-tailed distributions describe the observed precipitation extremes more
effectively than the light-tailed distributions. This result shows that the light-tailed
distributions, which are widely adopted for the determination of extreme precipita-
tion events, are inadequate to capture the tail behavior of precipitation data accurately.
This study reveals the importance of considering heavy-tailed distributions for reli-
able estimation of extreme precipitation events required for the design of major civil
engineering infrastructure. The results from the study can find use in the design of
urban storm drainage network, spillways of major water control structures.
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10.1 Introduction

Catastrophic rainfall events can lead to flooding which results in harm to human
life, damage to buildings and infrastructure, loss of crops and livestock. Such rain-
fall events having less frequency of occurrence are characterized by adjectives like
“abnormal”, “rare” or “extreme”. Generally, an event is pronounced as “extreme”
event based on the necessity of infrastructure design and human losses. The infras-
tructure design like urban storm drainage network and spillways of major water
control structures are based on long-term rainfall prediction as against to the short-
term prediction for their efficient operation. It is infeasible to determine the long-term
rainfall prediction accurately. Hence the rainfall is treated as a random variable (RV)
which has some associated probability and follows some distribution laws. Those
laws enable us to find themagnitudes of rainfall event that could be viewed as extreme
based on the return period, e.g., rainfall event with return period 500 or 1000 years
or more is indeed an extreme (Koutsoyiannis 2004a; b). Often, the question which
is yet debatable is, which and how the distribution law should be chosen?

The selection of distribution law for rainfall could bemade either by trying one out
of the many distributions from parametric families of distributions or by parameters
estimation according to one of many existing fitting methods (e.g., rank regres-
sion, maximum likelihood estimation, Bayesian estimation methods, etc.). Since the
selection of the distribution requires curve fitting, we can also choose best-fitted
one according to some metric or fitting test. The estimated fitting parameters always
point toward the distribution that describes the most significant portion of the data,
by definition which does not belong to the tail part. The tail of the distribution, in
general, refers to the upper part of the distribution that controls both the magnitude
and frequency of extreme events (Papalexiou and Koutsoyiannis 2013). Unless a
very large sample of data is available, a very small portion of the empirical dataset
belongs to the tail. Hence these procedures do not guarantee the modeling of the
tail accurately, as all fitting methods are “biased” against the tail. An ill-fitted tail
results in severe errors for modeling the extreme event having severe consequences
in hydrological design. The distributions based on the asymptotic behavior of their
tail can be classified into two general classes: (a) the subexponential class with tails
decreasing more slowly than any exponential tail (it is a special case of heavy-tailed
distribution) (Klüppelberg 1988, Goldie and Klüppelberg 1998), and (b) the hyper-
exponential or the superexponential class, with tails approaching zero more rapidly
than an exponential tail (Teugels 1975).

Mathematically, let F be a distribution function on (0, ∞) for which F(0 +) = 0,
F(x) < 1 for all x >0,F(∞)= 1. The distributionF is said to belong to subexponential
class if:

lim
x→∞

1 − F (2)(x)

1 − F(x)
= 2 (10.1)
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Furthermore, different terms like “heavy tails”, “fat tails”, “thick tails” or “long
tails” have been used in the literature for tails “heavier” than the exponential. El
Adouni et al. (2008) deduced the classification for subexponential distribution, class
I contains distributions for which the tail is a power function of the return period.
Class II contains the lognormal distribution. The tail of the distributions in class III
is a power function of the logarithm of the return period. The last class (class IV)
contains distributions with an upper bounded support. Terms like “light tail” and
“thin tail” are used in the literature for superexponential distributions having thinner
tails than an exponential distribution. A heavy tail implies that large values can occur
in a samplewith nonnegligible probabilitiesmaking themmore suitable formodeling
extreme events as compared to light tails.Hence, the usual approach of adopting light-
tailed models (e.g., the gamma distribution) and fitting them on the whole sample
of empirical data would result in a significant underestimation of risk with potential
implications for human lives. Availability of large datasets of rainfall has allowed us
to check which distribution fits data better and also investigate the appropriateness
of light or heavy tails for modeling extreme events. “India is highly vulnerable to
floods, out of the total geographical area of 329 million hectares (Mha), more than
(40 Mha) is flood prone” according to the National Disaster Management Authority,
a government body. Witnessing such situations, it becomes more important to have
a reliable estimation of extreme events over India. This paper contributes toward a
better understanding of extreme events by assessing the tail behavior of probability
distributions of daily precipitation data over India.

10.2 The Dataset

The data used in the study are 0.25° × 0.25° resolution daily rainfall data product
procured from India Meteorological Department (IMD) which was prepared based
on extensive coverage of 6955 actual observation sites. The data is archived at the
National Data Centre, IMD, Pune. The gridded data was prepared using interpolation
based on Shepard’s method (Pai et al. 2014). There are 4949 grids/stations with a
uniform record length of 109 years (1901–2010) with no suspicious value even for
a single day over entire India. The locations of all stations can be seen in Fig. 10.1.

10.3 Methodology

10.3.1 Defining the Tail

The marginal distribution of daily rainfall has a discrete part describing the proba-
bility of zero rainfall (no rain, dry period), or the probability dry, and a continuous
part expressing the magnitude of the nonzero (wet/day) rainfall. We focus on the
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Fig. 10.1 Locations of the grids/stations over India (a total of 4949 daily rainfall records with time
series length of 109 years)

behavior of the distribution’s right tail for studying extreme rainfall as it governs the
frequency and the magnitude of extremes.

If we denote the rainfall with X, and the nonzero rainfall with X|X > 0, then
the exceedance probability function (EPF; also known as survival function, comple-
mentary distribution function, or tail function) of the nonzero rainfall is defined
as:

P (X > x |X > 0) = FX |X>0 (x) = 1 − FX |X>0(x) (10.2)

where FX |X > 0(x) is any valid probability distribution function chosen to describe
nonzero rainfall.

We focus only on the upper part of the EPF, as it contains “right tail” which
describes the extremes. Generally, a lower threshold value xL is set (Cunnane 1973;
Ben-Zvi 2009) and the values above it are considered as the “upper part”.Nouniversal
method is yet accepted to choose this threshold. In this study we use the standard
method of studying extremes in hydrology (known as partial duration seriesmethod),
determining the threshold indirectly based on the empirical distribution, in such a
way that the number of values above the threshold equals the number of years of
record N (Cunnane 1973). The resulting series, defined in this way, is known as
annual exceedance series (Gupta 2011).
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We prefer the N largest daily values of the record over the maximum value of
each year. The method of annual maxima may distort the tail behavior by taking into
account only one of the n-largest daily values that occur within a single year. Thus,
the approach adopted by us in the study has the advantage of better representing the
exact tail of the parent distribution (Papalexiou and Koutsoyiannis 2013).

Given that each station has an N-year record of daily values and a total number
n of nonzero values, the probability of exceedance EPF FN (xi ) (according to the
Weibull plotting position) is defined as:

FN (xi ) = 1 − r(xi )

n + 1
(10.3)

where r(xi ) is the rank of the rainfall data xi in the ordered sample as x(1)≤…≤ x(n)
of the nonzero values. Thus, the empirical tail is determined by the N largest nonzero
rainfall values of FN (xi ) with n− N + 1 ≤ i ≤ n (note that xL = x(n−N+1)). The
number of nonzero daily rainfall values is n = (1 − p0)nd N , where nd = 365.25
is the average number of days in a year. According to the Weibull plotting position
given in Eq. (10.3), the exceedance probability p(xL) xL will be

p(xL) = 1 − n − N + 1

n + 1
= N

(1 − p0)nd N + 1
≈ 1

(I − p0)nd
(10.4)

This equation shows that the dependency of the exceedance probability of the
threshold xL on the probability dry p0. The average dry probability p0 of the record
comes out to be approximately 0.6961, which implies that the exceedance probability
of is on average as low as 0.0090. This value set a threshold and the values above this
can be assumed to belong to the tail of the distribution. Beguería et al. 2009 chose
the threshold value corresponding to the 90th percentile, a value much smaller than
our choice of threshold.

10.3.2 Fitting Method

The fitting method followed in the study directly fits and compares the tails of empir-
ical distributions and fitted theoretical distributions estimated from the daily rainfall
records already described. It provides the best possible description of the tail and
is not affected by lower values. The theoretical tails are fitted to the empirical ones
by minimizing a modified mean square error (MSE) norm N1 using the genetic
algorithm (GA).

N1 = 1

N

n∑

i = n−N+1

(
F(x(i))

FN (x(i))
− 1

)2

(10.5)
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As shown in Eq. (10.5), the modified MSE considers the relative error between
the values of the theoretical and empirical distribution rather than using the daily
precipitation values themselves. An advantage of not considering daily precipitation
values is that the error measure MSE would not get affected by the large deviations
in daily precipitation values.

Goldberg (1989) and Michalewicz (1992) developed a heuristic, stochastic,
combinatorial, optimization technique based on the biological process of natural
evolution. Three heuristic processes of reproduction, crossover and mutation are
applied probabilistically to discrete decision variables that are coded into binary or
real numbers strings. In this study, GA has been used effectively by minimizing the
norm given in Eq. (10.5) in two ways: (a) by fitting all the points of the empirical
distribution, and (b) in only the largest N points. It is also used to estimate the param-
eters of candidate distributions (Papalexiou and Koutsoyiannis 2013). Figure 10.2
depicts (a)Weibull, (b) gamma, (c) lognormal and (d) pareto distribution of a station,
randomly selected (stations code given in the figure). It is clear that the first approach
where distribution is fitted to the whole empirical distribution points (black dashed
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(a) Weibull distribution (station code: 1018)
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(b) Gamma Distribution (station code: 3567)
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(c) Lognormal  Distribution (station code: 422)
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(d) Pareto  Distribution (station code: 4013)

Fig. 10.2 Explanatory diagram of the fitting approach followed
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line) does not adequately describe the tail, while solid red line depicts the distribu-
tion fitted only to the tail points shows the tail behavior efficiently. Least MSE value
of the proposed method indicated the best fit. However, other fitting methods like
lognormal maximum likelihood and the log-probability plot regression (Kroll and
Stedinger 1996), and the partial L-moments (Wang 1996) require estimation of an
additional measure to compare the performance of the fitted distributions.

10.3.3 The Fitted Distribution Tails

In this study, the tails of four commonly used distribution in hydrology, i.e., the
tails of the Weibull (W), lognormal (LN), pareto type II (PII) and the gamma (G)
distributions are fitted and compared for the performance. The reason behind the
selection of the above probability distributions is their simplicity, superiority and
popularity in the literature for frequency analysis of extreme events (tail-equivalent
with complicated distributions). The pareto and the lognormal distributions belong
to the subexponential class and are considered heavy-tailed distributions; Weibull
distribution is a versatile distribution. Based on the value of shape parameter (α) it
can take on the characteristics of other types of distributions.

The Weibull distribution, also known as extreme value type III distribution (a
generalization of exponential distribution), is a commonly used two-parameter distri-
bution in the field of hydrology (Heo et al. 2001a, b). It is defined by scale parameter
(β > 0) and shape parameter (α > 0). The PDF and EPF are given, respectively, as

fW (x) = α

β

(
x

β

)α−1

exp

(
−

(
x

β

)α)
(10.6)

FW (x) = exp

(
−

(
x

β

)α)
(10.7)

This distribution is categorized into a subexponential family with a tail heavier
than the exponential one for (α < 1), while for (α > 1) it belongs to hyperexponential
family with a tail thinner than the exponential.

Lognormal distribution, as may be summarized by the name, has certain simi-
larities to the normal distribution. A random variable is lognormally distributed if
the logarithm of the random variable is normally distributed. The PDF and EPF for
lognormal distribution specifically with scale (β > 0) and shape parameter (α > 0)
are given by,

fLN (x) = 1√
παx

exp

(
− ln2

(
x

β

) 1
α

)
(10.8)
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FLN (x) = 1

2
er f c

(
ln

(
x

β

) 1
α

)
(10.9)

where the complementary error function is denoted as er f c(x) = 2π−1/ 2
∞∫

0
e−t2dt .

This distribution can approximate power law distributions for a large portion of
distribution body (Mitzenmacher 2004).

Pareto distribution is a probability distribution of power law, which is used in the
description of many types of observations. The hierarchy of pareto distribution is
as follows: Pareto types I, II, III, IV and Feller-Pareto distributions. Pareto type II
distribution is the simplest power-type distribution defined by the scale parameter
(β) > 0 and the shape parameter (α) ≥ 0 in the range [0,∞) (Zhanling et al. 2014)
with PDF and EPF given by

fP I I (x) = 1

β

(
1 + α

x

β

)− 1
α
−1

(10.10)

Fpii (x) =
(
1 + α

x

β

)− 1
α

(10.11)

For α = 0, pareto tail degenerates to the exponential tail, while it becomes heavier
as the value for shape parameter increases. Burr type XII (Burr 1942), the two- and
three-parameter Kappa (Mielke 1973), the log-logistic (e.g., Ahmad et al. 1988) are
some of the other power-type distributions that have asymptotic behavior similar to
pareto type II tail.

The gammadistribution is a commonly used two-parameter distribution, distinctly
skewed to the right. It suits the distribution of daily rainfall and accommodates the
lower limit of zero, which constrains rainfall values (Stacy 1962). Its PDF and EPF
are given, respectively, by

fG(x) = 1

βΓ (α)

(
x

β

)α−1

exp

(
− x

β

)

FG(x) = Γ

(
α,

x

β

)
/Γ (α)

where Γ (α) is a standard mathematical function called the gamma function and is
defined by:

Γ (α) =
∞∫

0

tα−1e−t dt
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The shape parameter (α > 0) essentially determines the level of positive skew. For
0 < α < 1, the gamma distribution has a “slightly lighter” tail than the exponential tail
as it decreases faster. For α = 1, the gamma tail behaves similar to the exponential
tail, while for α > 1 it exhibits a “slightly heavier” tail as it decreases more slowly
than the exponential tail (Embrechts and Goldie 1982). The scale parameter (β)
determines the spread of values, stretching or squeezing the distribution when large
or small, respectively.

The four distributions which we compared in this study have two parameters,
namely, one-scale parameter (β) and one-shape parameter (α). Despite of same
parameter structure, these distributions differ in terms of flexibility. A quantitative
measure for flexibility includes a comparison of various shape measures (e.g., skew-
ness, kurtosis, etc.). With a feasible range of (−1.14, ∞) Weibull distribution seems
to be the most “flexible”, while pareto with skewness range of (2, ∞) is the least
flexible. However, this argument is not valid when we focus on the tail because the
general shape of the tail is basically similar and what differs is the rate at which the
tail approaches zero.

10.4 Results and Discussion

The basic statistical results obtained by fitting the four distribution tails to the 4949
daily rainfall records after following the methodology described in Sect. 10.3 are
given in Table 10.1. The MSE is calculated by forming a fitness function (known as
modifiedmean square error) and then optimizing the parameter associatedwith distri-
bution using genetic algorithm. The MSEs of these distributions are then compared
to reveal the overall performance of the fitted tails. The best fitted tail is found in
each record based on their average rank. The tails with smaller MSE is ranked as 1,
while the one with the largest is ranked as 4. Figure 10.3 depicts the best-fitted tails
based on various distributions for 4949 grids. The figure indicates that there is no
regular pattern regarding the best-fitted distribution.

Out of 4949 daily rainfall record, the lognormal fits on a maximum number of
stations, followed by pareto, Weibull, and gamma. The percentages of each distribu-
tion tail that was best fitted are 44.27% for lognormal, 33.21% for pareto, 18.51% for
Weibull and 4.01% for gamma. The lognormal distribution comes out to be the best
according to these percentages, and gamma distribution, the most popular model for
rainfall, performed the worst.

Figure 10.4 depicts the histogram (empirical distributions) of the shape parameters
of the different fitted tails. It is well known that the most probable values are the
ones around the mode, which for the pareto shape parameter is 0.18. It implies
the nonexistence of moments higher than the fifth order (Papalexious et al. 2013).
Regarding the Weibull tail, the estimated mode of its shape parameter is 0.740,
implying a much heavier tail compared to the exponential one. The shape parameter
of gamma distribution mainly controls the behavior of the left tail; the right tail
mainly behaves like the exponential tail. A low mode value of 0.076 results in a
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Table 10.1 Summary statistics from the fitting of the four distribution tails into the 4949 tail-
samples of daily rainfall (expressed in mm)

Pareto Lognormal

MSE β α MSE β α

Min 0.0022 0.8120 0.0150 0.0025 0.0346 0.5774

Mean 0.0879 8.7492 0.2424 0.0490 10.1954 1.2534

Max 0.7299 26.0950 0.6195 0.5769 23.2873 4.0090

Median 0.0355 8.2975 0.2292 0.0267 9.8432 1.2199

SD 0.1134 4.1463 0.1076 0.0619 4.6165 0.2544

Skew 2.0359 0.5325 0.5284 3.1640 0.2774 0.8938

Weibull Gamma

MSE β α MSE β α

Min 0.0029 0.5187 0.3100 0.0024 5.3317 0.0766

Mean 0.1047 12.2512 0.8641 0.1527 17.9654 1.0916

Max 0.9911 28.5969 15.7427 0.6253 31.7335 8.9049

Median 0.0794 12.7321 0.8295 0.1413 18.2577 0.9144

SD 0.0991 4.9375 0.5183 0.0875 4.1906 0.7343

Skew 2.8237 0.2171 18.8477 0.7728 0.2060 2.4030

Fig. 10.3 The best-fitted tail showed at every station. Out of 4949 stations the best fit for
(a) lognormal is 2191, (b) pareto is 1644, (c) Weibull is 916, and (d) gamma is 198
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Fig. 10.4 Histograms of the shape parameters of the fitted tails

J- or bell-shaped densities which is inconsistent in describing the whole body of
distribution of daily rainfall. Since most of the extreme events are associated with
the right tail of the distribution, gamma distribution will probably underestimate the
behavior of extremes.

10.5 Conclusions

In this paper, we compared the tails of empirical distributions of daily precipitation
data and tails of fitted theoretical distributions (e.g., pareto, lognormal, Weibull and
gamma distributions). Gridded precipitation data prepared by the India Meteoro-
logical Department (IMD) having a resolution of 0.25° was used for the analysis.
In general, the results indicated that heavy-tailed distributions describe the observed
precipitation extremesmore effectively than the light-tailed distributions. In addition,
the following observations are inferred from the analysis.
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(i) The ranking of distributions from best to worst in terms of their performance
to adequately capture the response of extreme events is (a) the lognormal, (b)
pareto, (c) the Weibull and (d) the gamma distributions.

(ii) Heavy-tailed distributions adequately capture the tail behavior of precipitation
data than their counterpart light-tailed distributions. Hence, we recommend
using heavy-tailed distributions to model extreme rainfall events worldwide.

(iii) Gamma distribution, in general, underestimates the frequency and the magni-
tude of extreme events. Hence, we should reconsider using it for modeling
extreme events.

This study reveals the importance of considering heavy-tailed distributions for reli-
able estimation of extreme precipitation events required for the design of major civil
engineering infrastructure. The results from the study can find use in the design of
urban storm drainage network, spillways of major water control structures, etc.
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Chapter 11
Benefit of Time-Varying Models
Developed Using Graphical Modeling
Approach for Probabilistic Prediction
of Monthly Streamflow

Riya Dutta and Rajib Maity

Abstract Hydroclimatic systems consist of various interacting processes/
components. The variables influencing a process and the interaction among the vari-
ables is dynamic in nature. Streamflow is one such component of the hydrologic cycle
influenced by a large pool of several influencing hydroclimatic variables in different
complex ways. There is a plethora of models for streamflow prediction; however,
temporal variation in cause–effect relationship may lead to a decaying performance
of the developed model. Existing prediction models are mostly stationary in nature
or at most update the model parameters retaining the same predictors. This study
demonstrates a recently developed concept of time-varying models using graphical
modeling (GM) approach to capture the temporal variation in streamflow modeling
considering theUpperMahanadi river basin. This approach provides a detailed condi-
tional independence structure and quantifies the association of the predictors with
the predictand that can be utilized for the development of prediction models. The
time-varying, GM-based approach shows the need to update the set of input variables
for streamflow. The performance of the time-varyingmodel is contrasted with a time-
invariant model and support vector regression (SVR)-basedmodels, well-established
in the field of hydroclimatology. For the considered study area, the proposed model
is found to capture the anomaly in streamflow variation and provides satisfactory
prediction performance, at a lead time of one month, for normal as well as extreme
flow events. Updating the set of potential predictors and the corresponding model
parameters help to improve the predictability of monthly streamflow.
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11.1 Introduction

Spatio-temporal variations of hydrologic variables, such as streamflow, soil mois-
ture, precipitation, evapotranspiration etc., are associatedwith numerous inter-related
hydrologic and climatic (collectively known as hydroclimatic) processes as well as
several geomorphological characteristics of the watershed. The dependence among
all the associated variables needs to be taken into account to develop effective predic-
tion models, which necessarily involves a multivariate approach. Inclusion of all
possible hydroclimatic variables may lead to a prohibitively large number of vari-
ables in the predictor set resulting in highly complex prediction models and poses
serious challenges in parameter estimation. Thereby, selection of competent predic-
tors is a vital part for the development of prediction models and poses a challenge for
statistical modeling. There is a plethora of approaches to tackle the problem of multi-
dimensionality, including dimensionality reduction of the input variables such as data
compression using principal component analysis (PCA) and supervised PCA (Byrne
et al. 1980; Bair et al. 2006; Price et al. 2006; Maity et al. 2013; Kim and Park 2015)
and importance analysis technique of input variables (Wood et al. 1992; Ouarda et al.
2001; Burn and Hag Elnur 2002; van Griensven et al. 2006; Maity and Kashid 2011).
In the process of dimensionality reduction, PCA or importance analysis techniques
are not capable of revealing the true dependence structures; rather compress the
information (in case of PCA) or ignore/declare the so-called important/unimportant
variables (in case of importance analysis). In addition to these, gamma test (GT) and
forward selection (FS) are other popular techniques employed to reduce the dimen-
sionality of an input variable set (Moghaddamnia et al. 2009; Noori et al. 2011).
These techniques are good in case of predefined set of input variables. However,
in many cases knowledge on the set of input variables is vaguely known or incom-
plete. Moreover, it also remains unknown whether the same information is provided
by more than one variable or not, which is known as redundancy in information.
Such information can be obtained through the conditional independence between
two variables given another (other) variable(s). Thus, complete information on the
dependence structure is essential in order to develop a parsimonious multivariate
model. Here lies the potential of graphical model (GM) approach, as it provides
a means of representing dependence structure among variables (Ihler et al. 2007).
The most distinctive feature of GM approach is formulating probabilistic models
of complex phenomena in applied fields with detailed dependence structure, while
reducing the complexity of the models (Jordan 2004). When multiple predictors are
likely to govern the response of the hydrological systems, the probabilistic GMs offer
a conditional independence structure for parsimonious predictor selection.

Some recent studies in the field of hydrology and hydroclimatology utilize the
concepts of GM (Robertson andWang 2009; Nagarajan et al. 2010; Dyer et al. 2014;
Morrison and Stone 2014; Ramadas and Govindaraju 2015; Avilés et al. 2016; Dutta
and Maity 2018, 2020a). GM has been used in combination with the latest linear
regression techniques to develop prediction models. However, literature suggests,
as explored in other fields of study, using copula for development of the prediction
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model after identification of the competent set of predictors can drastically improve
the performance of the statistical models as it can capture the nonlinear relation
among the variables (Dutta and Maity 2018, 2020b).

In the context of climate change, an important aspect is the time-variability in the
association of the predictors and the predictand. This could be the reason behind the
frequent forecast failure despite advancement in physical understanding and devel-
opment of advanced statistical models. Some major issues and inherent problems
in the statistical models such as variation in the predictor–predictand relationship
over time and conditional independence among the predictors show the necessity
for constant scrutiny and updating of the models (Rajeevan 2001; Rajeevan et al.
2007, 2012; Wang et al. 2015). In this context, it is vital to consider two important
issues: (i) identifying the most influencing predictors and (ii) time-varying nature of
predictor–predictand association (Dutta and Maity 2018, 2020a). Addressing these
issues considering different regions and time period of analysis forms the motivation
of this study.

The objective of this study is to explore the benefit of the time-varying GM
approach in the field of hydrology and hydroclimatology. A time-varying prediction
model is developed for 1-month aheadprediction of streamflow, generally influencing
by numerous hydrologic and climatic variables for the Upper Mahanadi river basin.
The input variables (identified using GM) and parameters (identified using vine
copula) of the model are updated to capture the dynamic nature of interaction among
the variables. The results are compared with the same obtained using a time-invariant
GM approach and a time-varying SVR approach.

11.2 Methodology

The methodology consists of several important aspects. First, it starts with the
identification of the time-varying dependence/association of the predictors (pool
of influencing variables) with the target variable. The GM approach is used for
selection/identification of the conditional independence structure among the input
variables and target variable using maximum likelihood approach. The appropriate
deviance for testing if any edge can be eliminated from the saturated model (Whit-
taker 2009) is the edge exclusion deviance (EED). The EED can be considered to
follow chi-squared distribution with one degree of freedom (Whittaker 2009), as one
edge is removed at a time. At 95% confidence level for one degree of freedom the
p-value for chi-squared distribution is 3.84, so the edges for which the EED does not
reach the value of 3.84 (threshold value) are to be excluded. The obtained graph struc-
ture represents the conditional dependence structure among the random variables and
can be used for the development of conditional probabilistic model. The joint prob-
ability distributions associated with a given graph can be parameterized as product
over functions associated with subsets of nodes. For directed graphs, the function
turns out to be the conditional probability of a node given its parent nodes (Ihler et al.
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2007). The joint probability distribution can be further used to calculate the condi-
tional probability distribution of Xi given rest. There could be multiple predictors
directly associated with the target variable, complicating the evaluation of the condi-
tional distribution of the target variable. Multivariate copulas, like nested copula or
vine copula, are the best choice to develop amultivariate probabilistic model. Among
different alternatives in vine copulas, canonical vine (C-Vine) is used in this study to
develop the probabilistic model. C-Vine can be used for prediction of the predictand
given a set of predictors by a sequence of trees (Xiao 2011; Bauer et al. 2012; Righi
et al. 2015; Liu et al. 2015; Dalla Valle et al. 2016; Dutta and Maity 2018). These
trees are referred as C-Vine and the corresponding multivariate distribution is called
C-Vine distribution. The conditional distribution of the target variable given the input
variables (potential predictors) is obtained using the final C-Vine tree, which can be
utilized for the prediction of target variable.

Secondly, a prediction time horizon (n in years) after which the model needs to be
updated to impart the time-varying characteristics needs to be identified. First step is
to identify the optimum prediction time horizon (denoted by τ in years) after which
the model needs to be updated. Thereby, the time-varying association between the
predictors and the predictand is captured by updating the potential predictor after
each τ year(s). In order to identify the value of τ , the entire analysis is carried
out for different values of n depending on the problem in hand. Development of
the time-varying model and optimization of n are described as follows, let d years
be the model development period which is considered as a moving window in the
time-varying approach and t be the first year from which the analysis is to be started.
Considering these, the first model development period is from t to t+d−1 and the
model testing period is from t+d to t+d+(n−1). As the model is updated after n
years the next model development period is shifted by n years. Thereby, the second
model development period is considered from t+n to t+d−1+n and the model testing
period is from (t+d−1+n)+1 to (t+d−1+n)+1+(n−1). Similarly, themodel is updated
after every n year for the entire time period of the study. This value of n should be
optimized such that the time-varying model is capable of capturing major temporal
variations that affect the target variable and avoiding the small variations that may
overcomplicate the model without adding valuable information. An optimum value
of n will ensure the best possible prediction results. For detailed description of each
step mentioned in this section, refer to Dutta and Maity (2018, 2020a).

11.3 Application of the Time-Varying GM Approach

11.3.1 Study Area and Data Source

The Upper Mahanadi basin, a part of the Mahanadi river basin in India, is considered
as the study area (Fig. 11.1). The spatial extent of the study area is approximately
29,645km2.The approximate location of the study area is 20 to 23°N latitude and80.5
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Fig. 11.1 Study area used
for the prediction of
streamflow at Jondhra
gauging site in the Upper
Mahanadi basin along with
the grid locations of different
hydroclimatic data

to 82.5°E longitude. The time-period considered for the study is from January 1980 to
December 2005. For this study, streamflow at lead of 1month (Y ) is used as the target
variable and the input variables, based on the physical understanding, include rainfall
(X1), precipitable water (X2), soil moisture (X3), pressure (X4), relative humidity
(X5), potential evapotranspiration (X6), temperature (X7), U-wind (X8), V-wind (X9),
geo-potential height (X10) and streamflow (X11). It may be noted that all the input
variables are used from the current time-step and 1-month ahead streamflow is the
target variable.

Daily streamflowdata at the outlet of the basin (Jondhra station) are collected from
theWaterResources InformationSystem (India-WRISversion42014) in India.Daily
rainfall data for the study area are obtained from India Meteorological Department
(IMD) (Rajeevan et al. 2008). Daily rainfall data at each grid point is converted
to monthly rainfall depth by accumulating it over the month. The data for rest of
the input variables are obtained from the Climate Prediction Centre (CPC) of the
National Oceanic and Atmospheric Administration (NOAA) (Fan and van den Dool
2004; CPC 2014). All the data are taken from grid points lying within the study basin
as shown in Fig. 11.1.

11.3.2 Model Performance and Discussion

At the outset, optimum prediction time horizon (τ in years) has to be decided for
the development of the time-varying model. Toward this, a range of prediction time
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horizons (n in years), starting from 0.5 to 2.5 years (i.e. n = 6, 12, 18, 24 and 30
months) are utilized. For each case, the model development period is considered as a
moving 15 years (180 data points) window. The conditional independence structure
is developed for each model development period. Next, the probabilistic model is
developed using the conditional independence structure to predict rainfall anomaly
during the model testing period. Finally, the prediction results are obtained for all
the testing periods that constitute 11 years of the study (1995–2005) using the time-
varying model. The analysis is repeated for each prediction time horizons and the
results are compared for identification of the optimum value of n. Correlation coeffi-
cient (R), index of agreement (Dr),Nash–Sutcliffe efficiency (NSE) and coefficient of
determination (R2) are used as performance statistics to identify the value of optimum
prediction time horizon (τ ). The performance statistics comparing the observed and
the predicted streamflow for different prediction time horizons are shown in Fig. 11.2.
It is noticed that the model performance becomes poorer with an increase in the value
of n beyond 1 year.

On the other hand, the model performance does not show any improvement for a
6-month prediction time horizon (Fig. 11.2). The optimum value of n, i.e. τ , for the
time-varying model is obtained as 1 year. Thus, the association between predictor
set of hydroclimatic variables and streamflow is recommended to check and update
the model parameter after every year.

Considering the value of τ as 1 year, the different model development periods
and corresponding testing periods are shown in Table 11.1. Based on the obtained
graph structure, the monthly streamflow for the first model development period is

Fig. 11.2 Comparison of the performance statistics for selection of τ
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Table 11.1 Details of the probabilistic models developed considering the different model
development periods

S. No. Development period Testing period Probabilistic model with inputs

1 1980–1994 1995 f (Y/X1, X3, X11)

2 1981–1995 1996 f (Y/X1, X3, X7, X11)

2 1982–1996 1997 f (Y/X3, X7, X11)

3 1983–1997 1998 f (y/X1, X3, X11)

4 1984–1998 1999 f (y/X1, X3, X5, X11)

5 1985–1999 2000 f (y/X1, X5, X11)

6 1986–2000 2001 f (y/X1, X4, X11)

7 1987–2001 2002 f (y/X4, X7, X11)

8 1988–2002 2003 f (y/X2, X4, X7, , X11)

9 1989–2003 2004 f (y/X4, X5, X11)

10 1990–2004 2005 f (y/X1, X4, X5, X11)

found to be directly dependent on X1, X3 and X11 (parents of Y ) and conditionally
independent of other variables.

Thereby, the conditional independence structure for the first model development
period suggests that the information of rainfall, soil moisture and streamflow from
the current month is perhaps sufficient for 1-month ahead streamflow prediction. It
is further noticed that lagged streamflow and soil moisture have stronger association
with streamflow as compared to rainfall as reflected by the edge strength. These
results can be mainly associated with the memory characteristics of streamflow and
soil moisture. Precipitable water, relative humidity and temperature are condition-
ally independent to streamflow and can be ignored if the information of rainfall, soil
moisture and streamflow are available. Thus, it is not only the parsimonious model;
GM ensures a better performance avoiding the presence of potentially “unwanted”
or “conditionally independent” variables in the input set. Similar graph structures
are obtained for each model development period, and the conditional distributions of
the target variable for each model development period are shown in Table 11.1. It is
interesting to note that the association among the hydroclimatic variables and stream-
flow changes with time. For instance, the conditional independence structure for the
last model development period shows precipitable water, pressure, temperature and
streamflow from the current month as the parents of the target variable. Thereby, it is
expected that the time-varying characteristics of the model will improve the predic-
tive performance. To assess the improvement gained through the time-varying GM
approach against time-invariant approach, the model developed for the time period
of 1980–1994 is used for prediction of streamflow during the entire testing period
(1995–2005). Further, the time-varying concept is also used in a linear regression-
based model to determine the benefit of adopting C-Vine copula as a probabilistic
prediction model. The scatter plot for the observed versus predicted streamflow at
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lead time of 1 month obtained using the above-mentioned methodologies is shown
in Fig. 11.3.

The first row of the plots shows the results obtained using the proposed approach
and the second and third rows show the results obtained using the time-varying SVR
approach and time-invariant GM approach, respectively. These plots depict good
performance of the proposed approaches in predicting monthly streamflow as the
majority of the observed/predicted data are distributed around the 1:1 line. The scatter
plots between anomaly values are also presented in Fig. 11.3. It can be observed that
the proposed approach is able to capture the actual range of anomaly values. The
model performance clearly depicts that compared to the time-varying SVR approach
and time-invariant GM approach, significantly better performance is obtained using
the proposed approach during model testing period. It may further be noted that the
(time-varying)model performance using prediction time horizon of 30months is also
better than the time-invariant model. Thereby even a higher prediction time horizon
may also be selected that allow less frequent model updating. Figure 11.4 presents
the predicted uncertainty intervals obtained using the time-varyingGMapproach and
the observed streamflow. The plots also show the estimated 90% confidence band
(5th to 95th percentile) of predicted streamflow. Results reveal that the uncertainty
intervals can capture the variations of actual monthly flow during the model testing
period.

11.4 Conclusions

In the context of climate change, time-varying modeling approaches are found to be
more suitable to capture the relationship that vary with time considering the Upper
Mahanadi river basin.Moreover, hydrologists often come across situations where the
knowledge of conditional independence becomes very important to develop a parsi-
monious prediction model. In these contexts, the study focuses on the effectiveness
of the GM approach in many applications. It helps to develop a parsimonious prob-
abilistic prediction model using the effective information from the large set of input
variables. The time-varying nature of such association that may throttle the consis-
tency of any prediction model in the context of climate change may also be tackled
using the time-varying GM approach. In this study, time-variation in the predictand–
predictor relationship is considered for the proposed time-varying model. It is found
that the model should be re-calibrated after an optimum prediction time horizon of
1 year after which the input set and model parameters need to be updated to account
for the time-varying characteristics. This study sheds light on temporal variation
in the association of different hydroclimatic variables with streamflow and the role
of conditional independence structure for selection of predictors for a time-varying
model. Better performance of the time-varying GM approach is realized as compared
to its time-invariant counterpart. These finding are in line with the finding made by
Dutta and Maity (2018; 2020b) considering Indian Summer Monsoon Rainfall and



11 Benefit of Time-Varying Models Developed Using Graphical … 123

Anomaly values Actual values
Ti

m
e-

va
ry

in
g 

G
M

Ti
m

e-
va

ry
in

g 
SV

R
Ti

m
e-

in
va

ri
an

t G
M

  
  

Best Fit Line 45o Line

Fig. 11.3 Scatter plot between observed and predicted monthly streamflow during model testing
period (1995–2005). The first to third row shows plots obtained using three different approaches
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Fig. 11.4 Uncertainty band of the predicted streamflow for model testing period using the time-
varying GM approach. The upper limit shows the predicted value at the 95th quantile and the lower
limit shows the same at the 5th quantile

Ropero et al. (2017) and Dutta and Maity (2020a) considering reservoir manage-
ment and monthwise streamflow for the Bhadra river basin, respectively. Thus, the
time-varying GM approach ensures a parsimonious model by avoiding the presence
of potentially “unwanted” or “conditionally independent” variables in the input set
and capturing time-variability in the association for different hydroclimatic vari-
ables. Further, the robustness of the time-varying GM-based modeling approach
is proven by a better or significantly better performance across different regions of
analysis. This information in hydrologic or hydroclimatic problems is very important
where the possible pool of influencing variables could be numerous in the absence
of clear knowledge of dependence. Thus, the time-varying GM approach seems
to be promising in many similar studies to achieve insights and for better model
performance by avoiding the unimportant/less important/conditionally independent
variables.
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Chapter 12
Determination of Effective Discharge
Responsible for Sediment Transport
in Cauvery River Basin

Shobhit Maheshwari and Sagar Rohidas Chavan

Abstract Themechanismof sediment transport ismainly governed by surfacewater
flow within the river basins. Excessive sediment transport plays an important role
in reducing the carrying capacity of channel networks and storage capacity of reser-
voirs/dams. An important task formost of the hydrologists is to determine the reliable
stream flow estimate which causes majority of the sediment transport within river
basins/stream channels. The transport effectiveness of a stream flow event of partic-
ular magnitude in carrying a sediment load is defined as the product of the effect of
that event (i.e. sediment transport rate corresponding to the streamflow event) and the
frequency with which the event occurs. This approach is famously known as magni-
tude frequency analysis (MFA). MFA has been widely used to compute “effective
discharge” which is considered as the stream flow that is responsible for transporta-
tion of majority of the sediments from a river basin or catchment over a long period
of time. In MFA, the stream flow at a location is assumed to follow a continuous
probability distribution (e.g., normal, lognormal, exponential, gamma, generalized
pareto and Poisson) whereas the sediment transport is described by a power law func-
tion between stream flow and sediment rate. Subsequently, a transport effectiveness
function is constructed by taking product of stream flow distribution with power law
function. Finally, the effective discharge can be obtained bymaximizing the transport
effectiveness function with respect to stream flow. In this paper, effective discharge
estimates were determined for 12 stream gauges in Cauvery river basin by fitting
appropriate continuous probability distributions (normal, lognormal, exponential,
gamma, generalized pareto and Poisson) and assuming power law relationship for
sediment transport. Kolmogorov–Smirnov test (KS test) at 1% significance level
was tested for fitting probability distributions to daily stream flow data at each of the
gauges. Results indicated that all of the above distributions failed to fit stream flow
data at all the gauges. However, following the previous literature, the daily stream
flow data at every gauge was assumed to follow lognormal distribution and the
corresponding effective discharge was determined. Further, recurrence interval was
calculated for the effective discharge estimate at the each of the gauge. The results
from this study can find use in effective planning and functioning of dams/reservoirs.
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analysis · KS test · Cauvery river basin

12.1 Introduction

Reservoirs/dams are usually used as a consistent source of water in arid as well as
semiarid areas and their sustainability is of huge importance for the society (Araújo
et al. 2006). However, various natural and anthropogenic changes in the river basin
lead to affect the sediment transport in the stream flow. Excess sediment transport
can affect the carrying capacity of channel networks as well as the storage capacity
of reservoirs/dams and reduce the availability of water in the reservoirs. In addi-
tion, the sediment content in water affects the quality of river water. An important
task for most of the hydrologists is to determine the reliable stream flow estimate
which causes majority of the sediment transport within river basins/stream channels.
Hudson and Mossa (1997) proposed that stream flow magnitude and its frequency
can help in calculating the timing and fluctuation of sediment transports from river
basins. Marginal changes in stream flow to sediment transport ratio over the channel
networks modify the channel morphology considerably which alters the stream flow
event.

Wolman andMiller (1960) presented the concept of effective discharge, which can
be described as a product of the loadof sediment carried by a given streamflowand the
frequency of the stream flow. They introduced the concept of magnitude frequency
analysis (MFA) to determine effective discharge. The effective discharge is consid-
ered as the stream flowwhich is responsible for transportation of majority of the sedi-
ments from a river basin or catchment over a long period of time. In MFA, the stream
flow at a location is assumed to follow a continuous probability distribution (e.g.,
normal, lognormal, exponential, gamma, generalized pareto and Poisson) whereas
the sediment transport is described by a power law function between stream flow
and sediment rate. Subsequently, a transport effectiveness function is constructed
by taking product of stream flow distribution with power law function. Finally,
the effective discharge can be obtained by maximizing the transport effectiveness
function with respect to stream flow. The determination of this effective discharge
can help in assessment of stream flow for the consistency of channel networks and
reservoirs/dams (Wahl et al. 1995; Hester et al. 2006), water structures construc-
tion, ecological refurbishment and environmental augmentation of rivers (Shields
et al. 2003). Leopold (1994) advocated that small stream flow events have higher
frequency, but these events do not have sufficient capacity to transport higher quan-
tity of sediments. Contrary to this, catastrophic or large stream flow events have
enough capacity to transport higher quantities of sediments but have less probability
of occurrence. Consequently, the effective discharge is the stream flow that is in-
between the small and large stream flows, which are capable of transporting most of
the sediment loads on long-term basis (Wolman and Miller 1960; Lenzi et al. 2006;
Ma et al. 2010). Many researchers have also suggested that stream flow events of a
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particular recurrence interval cannot be considered to be characteristic of effective
discharge for all rivers because stream flow values are influenced by basin geology,
catchment area, hydrologic system and sediment transportation (Ashmore and Day
1988; Nash 1994; Whiting et al. 1999; Phillips 2002; Lenzi et al. 2006). The aim of
the present study is to check the validity of various probability distributions to calcu-
late the frequency of stream flow event and provide estimates of effective discharge
and recurrence interval based on MFA for stream gauges in Cauvery river basin.

12.2 Methodology

12.2.1 Goodness-of-Fit Test for Stream Flow Data

In this study, the stream flow data corresponding to various gauges in Cauvery basin
were assessed to follow different frequency distributions using the Kolmogorov–
Smirnov test (KS test) at 1% significance level. It is a nonparametric check of the
equality of continuous probability distributions which can be used to compare data
samples with a reference continuous probability distribution. Various probability
distributions considered in the study are normal, lognormal, exponential, gamma,
generalized pareto and Poisson.

12.2.2 Determination of Effective Discharge Using MFA

MFA involves assumptions about daily stream flow frequency and sediment trans-
port rate. For stream flow, log transformed daily stream flow is assumed to follow
continuous normal distribution as shown in Eq. (12.1).

f (Ql) = 1

β
√
2π

e−(Ql − α)2/2β2

(12.1)

where Ql is the log transformed daily stream flow, α and β are the mean and standard
deviation of the log transformed stream flow, respectively.

On the other hand, the sediment load is assumed to exhibit a power law function
of daily stream flow as given by Eq. (12.2).

S = aQb

(12.2)

where S and Q are sediment load and daily stream flow, respectively; a and b are
empirically calculated coefficient and exponent.
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Based on stream flow frequency and empirically derived sediment load, sediment
transport effectiveness (E) is determined as,

E = aQb

β
√
2π

e−(Ql−α)2/2β2

(12.3)

Bymaximizing the effectiveness functionwith respect to streamflowQ, “effective
discharge”, Qe is obtained (Nash 1994).

For, dE
dQ = 0 and Ql = ln(Q)

d
dQ

[
a

β
√
2π

{
Qb.e−(ln Q−α)2/2β2

}]
= 0

a
β
√
2π

[
Qb.e−(ln Q−α)2/2β2

.
{

−2(ln Q−α)

2β2 . 1Q

}
+ e−(ln Q−α)2/2β2

.bQb−1
]

= 0

Qb.e−(ln Q−α)2/2β2
.
{

−2(ln Q−α)

2β2 . 1Q

}
= −e−(ln Q−α)2/2β2

.bQb−1

Qb

Qb−1.Q

{
(ln Q−α)

β2

}
= b

(ln Q − α) = bβ2 ⇒ ln Q = bβ2 + α

Qe = exp(bβ2 + α)

(12.4)

12.2.3 Recurrence Interval Prediction

Recurrence interval of effective discharge Qe is defined as the inverse of probability
of stream flow equal or greater than the effective discharge. The predicted recurrence
interval TP of a particular stream flow Q, in years, is given as,

TP = 1/365.25

1 − φ
[
Ql−α

β

]

(12.5)

where φ[·] represents the cumulative distribution function (CDF) of an assumed
standard normal variable.
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12.3 Study Area and Data Considered for MFA

The Cauvery river is one of the major rivers of the peninsula (Fig. 12.1). The river is
also the main source for drinking, irrigation and electricity facilities to most part of
southern Karnataka specifically Mysore region. Several dams have been built on the
river. The Cauvery river originates from Brahmagiri Range of hills in the Western
Ghats at an elevation of 1341m (aboveMSL) at Talakaveri near Cherangala village of
Kodagu District of Karnataka and has catchment area of 81,155 km2 which is nearly
2.7% of the total geographical area of the country. The basin lies between 10°9′ to
13°30′ N latitudes and 75°27′ to 79°54′ E longitudes. It is circumscribed on the west
by the Western Ghats, on the east by the Eastern Ghats and in north by the ranges
separating it fromKrishna River basin and Pennar River basin. The total length of the
river from source to drain is 800 km. It has important tributaries joining from the left
are the Arkavati, the Harangi, the Hemavati and the Shimsha. The river drains into
the Bay of Bengal. Most of the basin is covered by agricultural land which accounts
up to 66.21% of the total area, and waterbodies also have considerable coverage
accounting for 4.09% of the total area (http://www.india-wris.nrsc.gov.in/wrpinfo/
index.php?title=Cauvery).

Gauge-discharge data and sediment concentration data were obtained fromWater
Resources Information System (WRIS), Government of India. Sediment load in
terms of tons per day was calculated from sediment concentration (gram per liter)
and gauge-discharge (cubic meter per second) using a suitable constant factor (86.4).
In order to evade the problemof gaps in the data, only yearswith complete accounts of
gauge-discharge and sediment concentrations were included in the analysis. Finally,
gauge-discharge and sediment concentrations data of 12 gauges were selected for
the study. River basin and stream flow characteristics are presented in Table 12.1.

Fig. 12.1 Locations of the 12 gauges of Cauvery river basin considered in this study (numbers
correspond to IDs of the stream gauges)

http://www.india-wris.nrsc.gov.in/wrpinfo/index.php%3ftitle%3dCauvery
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Table 12.2 KS test for fitting different probability distributions

ID
#

River Gauge Normal Lognormal Exponential Gamma Generalized
Pareto

Poisson

4 “Biligundulu” Fail Fail Fail Fail Fail Fail

11 “Kodumudi” Fail Fail Fail Fail Fail Fail

12 “Kollegal” Fail Fail Fail Fail Fail Fail

13 “Kudige” Fail Fail Fail Fail Fail Fail

17 “Musiri” Fail Fail Fail Fail Fail Fail

18 “Muthankera” Fail Fail Fail Fail Fail Fail

25 “Savandapur” Fail Fail Fail Fail Fail Fail

27 “Tbekuppe” Fail Fail Fail Fail Fail Fail

28 “Tnarasipur” Fail Fail Fail Fail Fail Fail

29 “Tkhalli” Fail Fail Fail Fail Fail Fail

31 “Thengumarahada” Fail Fail Fail Fail Fail Fail

36 “Urachikottai” Fail Fail Fail Fail Fail Fail

12.4 Results and Discussions

12.4.1 KS Test for Fitting Probability Distributions to Daily
Stream Flow Data

In this study, KS test at 1% significance level was considered for fitting probability
distributions to daily stream flow data at each of the gauges. The distributions consid-
ered included normal, lognormal, exponential, gamma, generalized pareto, Poisson,
etc. The stream flow at each of the gauges failed to pass the KS test for all distribu-
tions. Results are presented in Table 12.2. However, following the previous literatures
(Ashmore and Day 1988; Nash 1994; Whiting et al. 1999; Phillips 2002; Vogel et al.
2003; Lenzi et al. 2006, Sichingabula 1999), the daily stream flow data was assumed
to follow lognormal distribution.

12.4.2 Stream Flow Distribution and Sediment Transport
Analysis

As discussed earlier, log-transformed stream flow data was considered in this study.
Subsequently, that transformed streamflow data of each gaugewas fittedwith normal
probability distribution. Sediment transport rate and the streamflow data was found
to exhibit power law as shown in Fig. 12.2. Log–log plot of discharge and sediment
transport rate for each of the 12 gauges was prepared. The plots are found to be fairly
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Fig. 12.2 Power law relationship between sediment transport rate and discharge observed at two
typical stream gauges

Table 12.3 Effective discharge and recurrence intervals determined for 12 stream gauges

River Gauge a b R2 Predicted Qe
(m3/s)

Predicted
RI (years)

Observed
Qe
(m3/s)

Observed
RI (years)

“Biligundulu” 0.15 1.53 0.891 739.9 0.055 739.9 0.065

“Kodumudi” 0.32 1.32 0.930 1484.6 0.074 1485.0 0.587

“Kollegal” 0.15 1.44 0.923 657.3 0.057 657.4 0.092

“Kudige” 0.60 1.22 0.983 656.2 0.124 656.0 0.783

“Musiri” 0.19 1.46 0.863 9544.8 0.640 6400.0 34.999

“Muthankera” 0.97 1.30 0.964 6378.4 0.922 2050.0 38.999

“Savandapur” 0.69 1.29 0.957 32.9 0.017 32.9 0.087

“Tbekuppe” 4.87 1.00 1.000 6.4 0.008 6.4 0.019

“Tnarasipur” 0.35 1.41 0.938 379.0 0.073 379.1 0.128

“Tkhalli” 0.51 1.38 0.938 1211.0 0.727 971.2 17.999

“Thengumarahada” 0.74 1.48 0.868 22.0 0.024 22.0 0.038

“Urachikottai” 0.13 1.10 0.988 37030426837.5 8957.526 5854.5 10.999

where a and b are empirically calculated constant coefficient and exponent

linear for all the gauges. The correlation coefficients (R2) for power function of daily
stream flow and sediment transport rate are provided in Table 12.3.

12.4.3 Effective Discharge and Recurrence Interval
Determination

Based on MFA, effective discharge, Qe, was determined for 12 stream gauges in the
Cauvery basin based on effectiveness function at each of the gauges (Fig. 12.3). In
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Fig. 12.3 Transport effectiveness curves of two typical stream gauges

addition, the effective discharge estimates were also computed by finding the peak of
transport effectiveness function and designated as observed Qe. Finally, recurrence
intervals were calculated for predicted Qe and observed Qe (by ranking the daily
stream flows, dividing the rank of observed Qe by the length of record in years).
Theywere named as predicted RI and observedRI, respectively. Results are tabulated
in Table 12.3. Predicted effective discharges and observed effective discharges are
found to have significant correlation. This implies fit between the observed daily
stream flow frequency and the log-transformed normal distribution is good.

12.4.4 Duration of Effective Discharge

Duration curves for discharge and sediment load show that they are quite similar in
shape. The curves indicate that most of the discharges are able to transport sediments
through the channels at each gauge, but the magnitude of sediment transport varies
with the varying discharges consistently. The steep portion of the duration curve is
the zone of effective sediment transport. Sediment load duration curves show that the
extreme low discharges do not have the capacity for sediment transport (Fig. 12.4).

12.5 Conclusions

In this paper, effective discharge and recurrence interval based on MFA were deter-
mined for 12 stream gauges in Cauvery river basin. The major observations from this
study are as follows:

1. None of the (normal, lognormal, exponential, gamma, generalized pareto and
Poisson) probability distribution was able to pass the KS test at 1% significance
level.
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Fig. 12.4 Discharge and sediment load duration curves of two typical stream gauges

2. Predicted effective discharges and observed effective discharges are found to
be in good correlation. This implies fit between the observed daily stream flow
frequency and the log-transformed normal distribution is good.

3. The correlation coefficients (R2) for power function of daily stream flow and
sediment transport rate were found to be in the range 0.86–0.99. So, the assump-
tion that sediment transport rate is a power function of daily stream flow is also
valid.
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Chapter 13
A Comparative Study of Potential
Evapotranspiration in an Agroforestry
Region of Western Ghats, India

Pandu Narayana and K. Varija

Abstract Evapotranspiration accounts for a major part of the water budget. Estima-
tion of the evapotranspiration is complex because it involves too many parameters.
Over many decades various methodologies have been introduced and applied to the
wide range of climatic conditions to predict the water loss from vegetation. Among
them FAO-56 Penman-Monteith equation is known to be the widely accepted and it
has been validated to the wide range of vegetation and climatic conditions across the
globe. Agroforestry is an important and one of the high water-demanding agricul-
tural practices. Due to the presence of multiple crops, the rate of evapotranspiration
is generally expected to be high. Therefore, it is important to understand the evap-
orative demand in the agroforestries to reduce the water consumption in irrigation
planning. Due to the lack of measured meteorological data with many parameters,
it is important to compare the performances of the methods which are less data-
intensive in nature. For this purpose, alternatively Priestley-Taylor, Hargreaves and
Turc methods have been used and compared with Penman-Monteith equation. A
study carried out in Seegodu watershed consists of coffee plantation, which is one of
the major practices in agroforestries to compare the estimates of different methods.
The results showed that the Hargreaves and Turc method predicts better results on a
temporal scale with only temperature data.

Keywords Evapotranspiration · Priestley-Taylor · Hargreaves · Turc ·
Penman-Monteith

13.1 Introduction

Evapotranspiration (ET) is amajor component of thewater balance than the discharge
in many watersheds (Bevan Beven 2011). In agriculture and irrigation planning it
becomes important to know the water loss that occurs due to the atmospheric demand
for the loss of water from the agricultural fields. The actual ET occurring from the
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fields can be estimated from two steps. First step is to determine the atmospheric
demand for the water to vaporize from the plant and water surface and the next
step is the behavior or response from the crops to the atmospheric demand through
their plant physiological mechanisms such as stomatal conductance and the available
water content from the soil. To find out the atmospheric demand is an important step
in calculating the total water loss from the crops. Observed climatic parameters can
be used to estimate the atmospheric demand for ET. Various methods have been
proposed to determine the atmospheric demand for different climatic and vegetation
in theworld.Among themPenman-Monteith equation is taken as the standardmethod
for determining the crop water requirements. The atmospheric demand is determined
for any climatic conditions in terms of a reference crop, i.e., a standard grass with
sufficient availability of water, and the water demand for any other crop is compared
with the suitable crop coefficient to the reference crop. Penman-Monteith method is
a physically based and data-intensive method. It can be applied only when there is
availability of meteorological data with all the four basic climatic parameters. The
calculation procedures are difficult as compared to other methods (Xu and Singh
2002). But meteorological data with all the basic parameters (George et al. 2002)
are often difficult to measure under strict instrumentation. So, it becomes important
to validate the alternative methods with minimum meteorological parameters which
results in similar results to that of the standard Penman-Monteith method. Many
researches have been carried out as an alternative; among them Hargreaves, Turc
and Priestley-Taylor methods were analyzed for the study. The main agroforestries
are coffee, tea, rubber and arecanut in the humid regions of theWesternGhats. Coffee
plantation has been chosen for the present study.

13.2 Materials and Methods

13.2.1 Penman-Monteith Method (PM)

Crop evapotranspiration depends on the climatological parameters and each crop
behaves based on soil moisture content, nature of vegetation and management prac-
tices. To determine the crop evapotranspiration, FAO-56 Penman-Monteith (Allen
et al.) equation is widely accepted and validated for wide range of climatic condi-
tions. In the FAO-56 the atmospheric demand of evapotranspiration is referenced to
a hypothetical grass of 0.12 m height, surface resistance of 70 sm−1 and an albedo
of 0.23. Reference evapotranspiration is given by

ETo =
0.408�(Rn − G) + γ 900

T+273u2(es − ea)

� + γ (1+ 0.34u2)

ETo = reference evapotranspiration [mm day−1]
Rn = net radiation at the crop surface [MJ m−2 day−1],
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G = soil heat flux density [MJ m−2 day−1],
T=mean daily air temperature at 2 m height [°C], u2 is wind speed at 2 m height
[m s−1],
es = saturation vapor pressure [kPa],
ea = actual vapor pressure [kPa],
es–ea = saturation vapor pressure deficit [kPa],
� = slope of vapor pressure curve [kPa °C−1] and
γ = psychrometric constant [kPa °C−1].

13.2.2 Priestley-Taylor Method (PT)

Priestley and Taylor (1972) suggested an equation for wet regions. It is the simpli-
fied version of the combination equation which satisfies the condition for potential
evaporation. The aerodynamic component was ignored and the energy component
was multiplied by a factor, α = 1.26, when the general surrounding areas were wet
or under humid conditions.

ET = α
�

� + γ

Rn

λ

where Rn = the net radiation (cal/cm2 day) is the difference between the net short-
wave and long-wave radiations. The equations pertaining to the calculation of net
radiation is presented in Chap. 3 of FAO-56 (Allen et al. 1998).

13.2.3 Hargreaves Method (HG)

The Hargreaves method (Hargreaves and Samani 1982) estimates ETo based on
maximum and minimum air temperature, and is written as

ETo = 0.0023Ra

[
Tmax + Tmin

2
+ 17.8

]√
(Tmax − Tmin)

where Tmax =maximum air temperature (°C), Tmin =minimum air temperature (°C),
Ra = extra-terrestrial radiation (MJ·m−2), and 0.408 is a factor to convert MJ m−2

to mm of water. Extra-terrestrial radiation, Ra, is estimated based on the location’s
latitude and the calendar day of the year by

Ra = 24(60)

π
Gscdr [ωs sin(φ)sin(δ) + cos(φ)cos(δ)sin(ωs)]

where
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Ra= extra-terrestrial radiation (MJ m−2 day−1);
Gsc= solar constant = 0.0820 MJ m−2 min−1;
dr = inverse relative distance Earth–Sun;
ωs= sunset hour angle;
φ= latitude (rad);
δ= solar decimation.

Further equations for calculating the parameters dr, ωs, φ and δ are given in
Chap. 3 of FAO-56 (Allen et al. 1998).

13.2.4 Turc’s Method (TC)

The Turc’s method estimates monthly ETo based on measurements of maximum and
minimum air temperature and solar radiation using the equation

ETo = 0.40

[
Tmean

Tmean + 15

]
(Rs+ 50)

where ETo = reference evapotranspiration (mm·mon−1), Rs = solar radiation
(MJ·m−2), and Tmean = average air temperature (°C) calculated as (Tmax+ Tmin)/2.
To estimate ETo on a daily basis, the factor 0.40 is divided by 30 (average days per
month), and the equation can be written as

ETo = 0.0133

[
Tmean

Tmean + 15

]
(Rs+ 50)

where ETo = reference evapotranspiration (mm·day−1).
The relationship to determine solar radiation from maximum and minimum

temperature is given by

Rs = 0.16(Tmax − Tmin)
0.5Ra

Rs and Ra have the same notations as in Hargreaves equation.

13.3 Study Area

The Seegodu climatological station in the state of Karnataka in India was used in
this study. It is in the Western Ghats region of the west coast of the Deccan Plateau,
which separates the coastal plain along the Arabian Sea. The region falls under trop-
ical monsoon climate in Köppen climate classification. Weather data from 2012 to
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Fig. 13.1 Study Area

2015 was obtained from Central Coffee Research Institute Seegodu, a coffee plan-
tation area. Coffee plantation under the tree shade is major practice in agroforestry
and patches of arecanut plantations are common. Various climatological parameters
including air temperature, sunshine hours and wind speed are used for the analysis.
The location map of study area is presented in Fig. 13.1.

13.4 Results and Discussion

13.4.1 Comparisons of Daily ETo Methods

The meteorological data from 2012 to 2015 for the study were used to estimate
the evapotranspiration by four ETo methods on daily basis. In order to compare the
results, themean daily ETo values were obtained by averaging daily results across the
period of record and are tabulated in Table 13.1. Calculations on a daily basis showed
that Hargreaves method makes better prediction of the reference ETo than the other

Table 13.1 Mean daily ETo
estimates

Methods Mean daily ETo Estimates
(mm/day)

Penman-monteith method
(PM)

4.19

Hargreaves method (HG) 4.04
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two methods. In order to have the comparison between the methods, regression and
error statisticswere carried out to thewhole set of data from all the threemethodswith
Penman-Monteith method. Three error matrices, namely standard error of estimate
(SEE),

standard deviation of the estimates (STDEV) and coefficient of determination
(R2), were computed for both daily andmonthly estimates. Standard error of estimate
(SEE) is a measure of precision, and standard deviation represents the dispersion
of the estimates from FAO-56 method. Coefficient of determination represents the
covariance between the two variables (Shreedhar et al. 2016). Maximum coefficient
of determination R2 of 0.63 for both Hargreaves and Turc method and a minimum
of 0.36 were observed for Priestley-Taylor method. Standard errors of 1.51 and
1.58 mm/day were observed for Hargreaves and Turc method, respectively. Standard
deviation of estimates (STDEV) of 1.69 and 0.91 mm/day were observed for HG and
TC methods. In both the cases PT method predictions were not near to the standard
PM method. Ranking of the equations for different methods are done based on least
standard error of estimates (SEE), standard deviation of the estimates and highest
coefficient of determination (Nandagiri and Kovoor 2006). Least average value of all
the rankings is considered to be the best predictor of the ETo values and the methods
are ranked according to their average rank. Scatter plots for different methods are

Fig. 13.2 Scatter plot of ETo values of PM method with Hargreaves method

Fig. 13.3 Scatter plot of ETo values of PM method with Turc method
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Fig. 13.4 Scatter plot of ETo values of PM method with Priestley-Taylor method

Table 13.2 Regression statistics for daily ETo comparisons

Station Method R2 STDEV SEE Rank

Seegodu HG 0.63(1) 1.69(3) 1.51(1) 1

N = 1461
(days)

PT 0.36(3) 1.09(2) 1.70(2) 3

TC 0.63(2) 0.91(1) 1.58(3) 2

shown in Figs. 13.2, 13.3 and 13.4 and regression statistics for the daily values are
presented in Table 13.2.

13.4.2 Comparisons of Monthly ET0 Methods

Monthly predictions made by the other methods are very near to the standard method
during the rainy seasons and vary to a large extent during the non-rainy seasons.
This can be related to the effects of the other parameters which are not considered
in the alternative methods, namely wind speed, sunshine hours and the dew point
temperature. Overall monthly variations are shown in Fig. 13.5 and average monthly
variations are presented in Fig. 13.6. The correlation between Penman-Monteith
equation and other three methods is presented in Figs. 13.7, 13.8 and 13.9. In most of
themonthly values, all the threemethods underestimated the ETo values compared to
Penman-Monteith method. Regression statistics for the monthly values are presented
in Table 13.3.
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Fig. 13.5 Comparison of monthly ETo (2012–2015) computed by four different methods

Fig. 13.6 Comparison of mean monthly ETo computed by four different methods

Fig. 13.7 Scatter plot of ETo values of PM method with Hargreaves method
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Fig. 13.8 Scatter plot of ETo values of PM method with Priestley-Taylor method

Fig. 13.9 Scatter plot of ETo values of PM method with Turc’s method

Table 13.3 Regression statistics for monthly ET0 comparisons

Station Method R2 STDEV SEE Rank

Seegodu HG 0.80(1) 1.32(3) 0.77(3) 2

N = 48 PT 0.48(3) 0.84(2) 0.42(2) 3

TC 0.55(2) 0.75(1) 0.26(1) 1

13.5 Conclusion

The present study was carried out in Seegodu coffee plantation area which is a major
agroforestry in the region to identify the best alternative method to FAO-56 Penman-
Monteith method with least climatological parameters. The observed data from 2012
to 2015 were used to estimate ETo values from three different alternative methods.
The following observations were made from the study:
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1. Hargreaves method makes better prediction of ETo near to Penman-Monteith
method than other two methods on a daily scale and Turc method makes better
prediction for the monthly values than other two methods.

2. In the summer and winter season, the estimates of the other methods are less
than that of the Penman-Monteith method. Therefore, the other climatological
parameters such as wind speed and sunshine hours play a major role in ETo of
Penman-Monteith equation.

In conclusion, one can choose either Hargreaves or Turc’s method based on the
temporal scale in the study area considered.
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Chapter 14
Influence of Air Temperature on Local
Precipitation Extremes Across India

Sachidanand Kumar, Kironmala Chanda, and Srinivas Pasupuleti

Abstract In the present study, the influence of maximum temperature on rainfall
events at the daily scale is explored at four locations—Chennai, Kolkata, Mumbai
and New Delhi, which represent different climatic regions across India. The widely
accepted binning technique is used to pair the daily temperature and rainfall (95th and
50th percentile). Two different data products—global gridded data (1979–2017) and
station-based global dataset (1991–2017) are used and the scaling relationships are
compared alongside the Clausius-Clapeyron scaling of 6.8% K−1. Results indicate
negative scaling, ranging from −0.4 to 22% per degree Celsius (for 95th percentile
rainfall) and −3 to −41% per degree Celsius (for 50th percentile rainfall) at all
studied locations. It is also noticed that rainy days (> 0.3 mm rainfall) are mostly
observed when temperature is above 30 °C in Kolkata and NewDelhi, but in Chennai
and Mumbai, rainy days are fairly common even when the temperature is below 30
°C. The evolution of the scaling relationship is studied considering four sequential
time periods: 1979–1988, 1989–1998, 1999–2008 and 2009–2017. All the locations
indicate negative scaling for all decades except New Delhi which indicates a very
mild positive scaling during 1979–1988. Moreover, the relationship of daily rainfall
with preceding days’ maximum temperature is also studied for Kolkata and Chennai,
with the former showing positive scaling at three-day lag and beyond.

Keywords Extreme precipitation · Atmospheric temperature · Clausius-clapeyron
scaling · India
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14.1 Introduction

Globally, extreme precipitation and hydrological events are on the rise over the past
50 years. Such increase in extreme events is often linked to global warming which
causes an increase in the atmospheric moisture-holding capacity (Trenberth et al.
2003; Shaw et al. 2011; Utsumi et al. 2011; Shiu et al. 2012; Mishra et al. 2012;
Panthou et al. 2014; Westra et al. 2012, 2014; Wasko and Sharma 2014; Wasko
et al. 2015; Ali and Mishra 2017; and Mukherjee et al. 2018). As per the Clausius-
Clapeyron (C-C) relationship, atmosphericmoisture content increases approximately
by 6.8% K−1 increase in temperature at a constant relative humidity (Hardwick
Jones et al. 2010). Moreover, the entire atmospheric moisture content is generally
considered to be converted to rain in case of extremes in rainfall. Hence, the rela-
tionship of rainfall extremes with temperature may be expected to be similar to
Clausius-Clapeyron (C-C) scaling. However, the C-C scaling is found to decrease
with temperature: 7.3% K−1 at 0 °C, 6.4% K−1 at 15 °C and 6.0% K−1 at 25 °C
(Panthou et al. 2014). In fact, C-C scaling values could range between 7% K−1

(Lenderink and van Meijgaard 2008, 2010; Lendrink et al. 2011; Shaw et al. 2011;
Trenberth 2011; Shiu et al. 2012; and Panthou et al. 2014), 6–7% K−1 (Schneider
et al. 2010) and 6.8% K−1 (Hardwick Jones et al. 2010). Further, the relationship
between rainfall and temperature may vary substantially depending on the range of
temperature, latitude and convection characteristics among other factors (Hardwick
Jones et al. 2010; Lenderink and van Meijgaard 2010).

For example, a decreasing scaling relationship was observed between the median
rainfall intensity and temperature inAustralia and Europe but for heavy rainfall inten-
sity, an increasing scaling was observed (Hardwick Jones et al. 2010; Lenderink and
van Meijgaard 2008, 2010 and Wasko et al. 2015). The scaling may vary seasonally
also as observed inAustralia (Wasko and Sharma 2014) and Europe (Berg et al. 2009;
Shaw et al. 2011; andMishra et al. 2012). TheC-C scalingwas found to decreasewith
increase in the duration of rainfall events in Canada (Panthou et al. 2014). Similar
findings were also reported in Japan (Utsumi et al. 2011), Hong Kong (Lenderink
et al. 2011), India (Vittal et al. 2016; Ali and Mishra 2017) and the USA (Shaw et al.
2011; Mishra et al. 2012). In Australia, the rainfall-temperature relationship is found
very strong for shorter duration rainfall events but weakens for longer duration events
(Herath and Sarukkalige 2018). At higher temperature in the tropics, a negative C-
C scaling relationship between rainfall extreme and surface air temperature is often
attributed to local cooling effect (Vittal et al. 2016; Ali andMishra 2017; Zhang et al.
2017; Wang et al. 2017; Mukherjee et al. 2018). Such decrease in C-C scaling could
also be accounted for inadequate availability of moisture in the atmosphere which is
evident from the decreasing relative humidity at such temperatures (Hardwick Jones
et al. 2010). In addition to surface air temperature, the dew point temperature is also
sometimes used for temperature-extreme rainfall scaling in the tropics (Lenderink
and van Meijgaard 2010; Ali and Mishra 2017).

In the present study, the influence of maximum temperature on extreme precipita-
tion events at the daily scale is explored for a number of locations over different
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climatic zones in India. Apart from the same-day relationship, the influence of
preceding days’ temperature on rainfall extremes is also investigated. The evolu-
tion of the scaling relationship over time is studied by splitting the available dataset
decade-wise. Two different data products—global gridded data and station-based
global dataset are used to perform the analysis and compare the scaling relationships.

14.2 Study Area and Data

The four locations—Chennai, Kolkata, Mumbai and New Delhi—are chosen as the
study locations to represent different climatic regions across India. Figure 14.1 shows
a map of India with approximate positions of the study locations.

Gridded daily maximum temperature data (°C/day) and daily rainfall data
(mm/day) are acquired from the Climate Prediction Center (CPC), National Oceanic
and Atmospheric Administration (NOAA), Earth System Research Laboratory
(ESRL), Physical Sciences Division (PSD), Boulder, Colorado, USA, for the period
1979–2017 at a spatial resolution of 0.5° latitude × 0.5° longitude. Apart from the
gridded data, station-based daily rainfall along with daily maximum temperature are
also acquired from the Global Summary of the Day (GSOD) dataset which is derived
from the Integrated Surface Hourly (ISH) obtained from the United States Air Force
(USAF) climatology data. This station-based data is used for the period 1991–2017
as the data was found to be inconsistent before 1991 with several days data missing
in each month. For Chennai and Kolkata, the analysis is performed with both gridded
dataset and the GSOD station-based data for a comparison. However, the same was
not performed for Mumbai and New Delhi as the GSOD data was unavailable for
several months for these two locations. The details of the data used for the analysis
are summarized in Table 14.1.

Fig. 14.1 Study locations
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14.3 Methodology

14.3.1 Pairing the Maximum Daily Temperature and Daily
Rainfall of Wet Days

For each location, the days recording a daily rainfall value of greater than 0.3 mm is
considered as wet days and these are identified for the analysis. The corresponding
daily maximum temperature is also noted and these are paired together and then
the pairs are sorted based on the ascending order of the daily maximum tempera-
tures. This sorted dataset is then segregated into several bins considering a certain
range of temperature interval for each bin. This technique is known as the binning
technique and has been used in several studies (Panthou et al. 2014; Lenderink and
Van Meijgaard 2008, 2010; Hardwick Jones et al. 2010; Herath and Sarukkalige
2018). The aforementioned studies used equal-width bins which tend to produce
very less number of data points in the bins at the extreme ends. This limitation was
addressed byWasko and Sharma (2014) who proposed unequal bin sizes, keeping the
number of datapoints equal in each bin. This modified approach has been adopted
in the present study. The temperature-rainfall pairs are sorted and segregated in a
suitable number of bins and the median temperature of the datapoints from each bin
is considered as the representative temperature from that bin. Within each bin, the
rainfall intensities are fitted to an empirical cumulative distribution function and the
extreme rainfall (95th percentile) and median rainfall (50th percentile) are obtained
for each temperature bin.

In order to analyze the influence of the preceding day’s maximum daily tempera-
ture on daily rainfall, the aforementioned technique is also applied to pairs consisting
of daily rainfall and preceding day’s (1-day, 3-day, 7-day and 14-day) maximum
temperature. This is explained further in Sect. 14.4.3.

14.3.2 Clausius-Clapeyron (C-C) Scaling

As per the Clausius-Clapeyron (C-C) relationship, the atmospheric moisture content
increases approximately by 6.8% K−1 at a constant relative humidity. Though some
studies report the C-C scaling to range from 6 to 7%, we use the generally accepted
value of 6.8% K−1 in the present study. Since the intensity of rainfall is expected
to increase with available moisture content, their relationship with temperature may
be expected to be similar to C-C scaling. Literature (Hardwick Jones et al. 2010;
Utsumi et al. 2011) suggests that the precipitation-temperature relationship may be
given by:

P2 = P1(1+ α)�T (14.1)
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Table 14.1 Details of study locations and data records used

S. no. Station name Coordinates Gridded NOAA data
period

Station-based GSOD
data period

1 Chennai 13.08 °N, 80.27 °E 1979–2017 1991–2017

2 Kolkata 22.57 °N, 88.36 °E 1979–2017 1991–2017

3 Mumbai 19.07 °N, 72.87 °E 1979–2017 –

4 New Delhi 28.70 °N, 77.10 °E 1979–2017 –

where P1 and P2 represent the precipitation percentiles and T1 and T2 denote corre-
sponding temperatures in degree Celsius. α is the precipitation-temperature scaling
coefficient which is considered 6.8% °C−1 at 25 °C as per C-C scaling. �T is the
temperature difference between T1 and T2.

In the present study, the extreme precipitation is represented by 95th percentile
and the median precipitation is represented by 50th percentile. The relationships of
these with maximum daily temperature are determined (Table 14.1).

14.4 Results and Discussions

14.4.1 Relationship Between Rainfall and Daily Maximum
Temperature

14.4.1.1 Using CPC Gridded Dataset

TheCPCgridded daily temperature and rainfall data for the period 1979–2017 is used
for this analysis. Figure 14.2 shows the variation in the logarithms of 95th and 50th
percentiles of daily precipitation with paired daily maximum temperature for each of
the four study locations. The linear regression line (in solid red and blue for 95th and
50th percentile, respectively) is indicated alongside the C-C relationship (in dashed
red and blue for 95th and 50th percentile, respectively). Negative scaling is evident
for all the studied locations. The slope of the regressed line is slightly negative for
New Delhi, whereas the negative slope is quite strong for the remaining locations,
varying between 11 and 22% in case of 95th percentile rainfall and between 19 and
41% in case of 50th percentile rainfall. These are summarized in Table 14.2.

Another feature to be noted from the plots in Fig. 14.2 is that altogether 14 bins
(not necessarily equal temperature intervals) are considered for each location to allow
equal number of datapoints in each bin. The distribution of scatter points indicates
that the rainy days are mostly observed when temperature is above 30 °C in Kolkata
and New Delhi, but in Chennai and Mumbai, rainy days are fairly common even
when temperature is below 30 °C.
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(a) Chennai (b) Kolkata

(c) Mumbai (d) New Delhi

Fig. 14.2 Relationship between logarithm of extreme daily rainfall (95th percentile) andmaximum
daily temperature are shown in red while the relationship between logarithm of median rainfall
(50th percentile) and maximum daily temperature are shown in blue for the locations a Chennai,
b Kolkata, c Mumbai and d New Delhi. The C-C scaling is represented by the dashed red line for
95th percentile and dashed blue line for 50th percentile. The CPC gridded dataset is used for all the
plots
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Table 14.2 Comparison of scaling relationship

Location Scaling relationship

CPC gridded data Station-based GSOD data

95th Percentile 50th Percentile 95th Percentile 50th Percentile

Chennai −0.111 −0.194 −0.135 −0.179

Kolkata −0.119 −0.144 −0.126 −0.143

Mumbai −0.222 −0.414 – –

New Delhi −0.004 −0.036 – –

14.4.1.2 Using GSOD Data

Using the station-based GSOD dataset, the variation of the logarithms of 95th and
50th percentiles of daily precipitation with paired daily maximum temperature for
Kolkata and Chennai is presented in Fig. 14.3. In general, the relationships are in
agreement with the corresponding ones in Fig. 14.2. Negative scaling with similar
scaling values as in the case of CPC gridded data is also observed for GSOD data.
As observed earlier, rainy days are mostly detected when temperature is above 30
°C in Kolkata. As mentioned before, the GSOD data was not found to be consistent
for Mumbai and New Delhi and hence these are not included in the analysis.

(a) Chennai (b) Kolkata

Fig. 14.3 Relationship between logarithm of extreme daily rainfall (95th percentile) andmaximum
daily temperature is shown in red, while the relationship between logarithm of median rainfall
(50th percentile) and maximum daily temperature is shown in blue for the locations a Chennai and
b Kolkata. The C-C scaling is represented by the dashed red line for 95th percentile and dashed
blue line for 50th percentile. The station-based GSOD dataset is used for all the plots
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14.4.2 Evolution of the Scaling Relationship Over Time

The evolution of the scaling relationship between rainfall and maximum temperature
is studied considering four sequential time periods: 1979–1988, 1989–1998, 1999–
2008 and 2009–2017. The CPC dataset is used for this analysis as it has sufficiently
long and consistent records. The decade-wise scaling relationships for the study
locations are presented in Fig. 14.4 and summarized in Table 14.3. All the locations
indicate negative scaling for all decades except New Delhi which has a very mild
positive scaling during 1979–1988. In general, the scaling coefficients are small
(between 0.03% and −5.9%) for New Delhi and the strongest for Mumbai (in the
range of−19% to−48%). It is observed that in Chennai scaling relationship is most
strong (about−19% for 95th percentile and−24% for 50th percentile) during 1989–
1998, while in Kolkata it is least strong (about−7.6% for 95th percentile and−9.6%
for 50th percentile) during the same decade.

14.4.3 Relationship Between Rainfall and Maximum
Temperature of Preceding Days

The scaling relationships between daily rainfall with daily maximum temperature of
preceding days (1, 3, 7 and 14-day) are investigated. The station-based GSOD data
is used for this analysis. The plots are presented in Fig. 14.5 (Chennai) and Fig. 14.6
(Kolkata) and the scaling coefficients are summarized in Table 14.4. For Chennai,
negative scaling relationship is observed with all preceding day temperatures and the
coefficients generally decrease with increase in lag. However, in Kolkata, the scaling
relationship turns positive at 3-day lag and continues to be so till 14 days lag.

14.5 Concluding Remarks

In this study, the relationship between rainfall and daily maximum temperature is
examined at four study locations representing different climatic regions across India
using two global datasets: gridded CPC data and station-based GSOD data. The
scaling relationship is found to deviate substantially from the Clausius-Clapeyron
scaling of 6.8% K−1. In fact, negative scaling is observed at all locations, with
scaling coefficients as high as −22% for 95th percentile daily rainfall and −41%
for 50th percentile daily rainfall for Mumbai. It is also noticed that rainy days (>
0.3mm rainfall) aremostly observedwhen temperature is above 30 °C inKolkata and
New Delhi, but in Chennai and Mumbai, rainy days are fairly common even when
temperature is below 30 °C. The observations using CPC data and GSOD data are
found to be in agreement with each other. Using the CPC dataset, the evolution of the
scaling relationship is studied considering four sequential time periods: 1979–1988,
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  (a) Chennai (1979-1988)   (b) Chennai (1989-1998)   (c) Chennai (1999-2008)   (d) Chennai (2009-2017)

  (e) Kolkata (1979-1988)   (f) Kolkata (1989-1998)   (g) Kolkata (1999-2008)   (h) Kolkata (2009-2017)

  (i) Mumbai (1979-1988)   (j) Mumbai (1989-1998)   (k) Mumbai (1999-2008)   (l) Mumbai (2009-2017)

  (m) New Delhi (1979-
1988)

  (n) New Delhi (1989-
1998)

  (o) New Delhi (1999-
2008)

  (p ) New Delhi (2009-
2017)

Fig. 14.4 Relationship between extremedaily rainfall (95th percentile) andmaximumdaily temper-
ature is shown in red, while the relationship betweenmedian rainfall (50th percentile) andmaximum
daily temperature is shown in blue for the locations Chennai (topmost panel), Kolkata (2nd panel
from top), Mumbai (3rd panel from top) and New Delhi (bottom-most panel). The C-C scaling is
represented by the dashed red line for 95th percentile and dashed blue line for 50th percentile. The
CPC gridded dataset is used for all decadal time periods: 1979–1988 (left most), 1989–1998 (2nd
from left), 1999–2008 (3rd from left) and 2009–2017 (right most)

1989–1998, 1999–2008 and 2009–2017. All locations (except New Delhi, during
1979–1988) show negative scaling for both 95th and 50th percentile daily rainfall.
However, the scaling coefficients fluctuate during the different temporal windows.
While studying the scaling relationship between daily rainfall and maximum daily
temperature of preceding days, it is observed that for Kolkata, the relationship is
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Table 14.3 Comparison of scaling relationship for different temporal windows

1979–1988 1989–1998 1999–2008 2009–2017

95th 50th 95th 50th 95th 50th 95th 50th

Chennai −0.082 −0.172 −0.186 −0.240 −0.095 −0.177 −0.112 −0.178

Kolkata −0.106 −0.061 −0.076 −0.097 −0.135 −0.195 −0.135 −0.196

Mumbai −0.120 −0.427 −0.249 −0.488 −0.250 −0.437 −0.203 −0.342

New Delhi 0.0003 −0.029 −0.032 −0.038 −0.011 −0.060 −0.010 −0.046

(a)  1 Day lag (95th

percentile)
(b) 3 Day lag (95th

percentile)
(c) 7 Day lag (95th

percentile)
(d) 14 Day lag (95th

percentile)

(e) 1 Day lag (50th

percentile)
(f) 3 Day lag (50th

percentile)
(g) 7 Day lag (50th

percentile)
(h) 14 Day lag (50th

percentile)

Fig. 14.5 Relationship between extremedaily rainfall (95th percentile) andmaximumdaily temper-
ature as well as the relationship between median rainfall (50th percentile) and maximum daily
temperature are shown in red for the location Chennai. The C-C scaling is represented by the dashed
blue line. The station-based GSOD dataset is used. The lag considered is mentioned alongside each
subplot

negative up to 1-day lag but turns positive at 3-day lag and beyond. However, in
Chennai, the scaling continues to be negative at all lags considered.

While some of the aspects of the temperature-precipitation scaling are assessed in
this study, further analysis may be interesting, particularly the investigation of sub-
daily storm events. These studies are expected to help in estimating the uncertainty
in the frequency and intensity of extreme precipitation events due to anthropogenic
climate change.
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(a) 1 Day lag (95th

percentile)
(b) 3 Day lag (95th

percentile)
(c) 7 Day lag (95th

percentile)
(d) 14 Day lag (95th

percentile)

(e) 1 Day lag (50th

percentile)
(f) 3 Day lag (50th

percentile)
(g) 7 Day lag (50th

percentile)
(h) 14 Day lag (50th

percentile)

Fig. 14.6 Relationship between extremedaily rainfall (95th percentile) andmaximumdaily temper-
ature as well as the relationship between median rainfall (50th percentile) and maximum daily
temperature are shown in red for the location Kolkata. The C-C scaling is represented by the dashed
blue line. The station-based GSOD dataset is used. The lag considered is mentioned alongside each
subplot

Table 14.4 Comparison of the scaling relationship between rainfall and maximum temperature of
preceding days

Preceding days Chennai Kolkata

95th 50th 95th 50th

1-Day lag −0.101 −0.141 −0.096 −0.098

3-Day lag −0.089 −0.068 0.008 0.034

7-Day lag −0.071 −0.073 0.0010 0.046

14-Day lag −0.057 −0.030 0.016 0.033
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Chapter 15
Effect of Spatial and Temporal Land
Use-Land Cover Change on the Rainfall
Trend: A Case Study in Kerala

Lini R. Chandran and P. G. Jairaj

Abstract Climate change is a global phenomenon which is mainly caused due to
anthropogenic activities. Land use-land cover (LULC) changes occur in river basins
due to human interventions and change in climate. The change in LULC causes
change in evapotranspiration and contributes to further climatic change in the area.
Hydrologic extremes occur in a river basin due to the combined effect of climatic
extremes and LULC changes. Both climate and LULC change scenarios are usually
used for estimating the variation in the hydrological response of a watershed. Hence
LULC change detection and estimation is very essential for any watershed prior
to the estimation of hydrologic response variation from it. The influence of LULC
change on the rainfall variability of a region was studied taking the Bharathapuzha
river basin which is spread over Tamil Nadu and Kerala. Bharathapuzha river is the
second longest river in Kerala. Drastic changes have taken place in the river basin
which caused the degradation of the river. Hence the study of the effect of LULC
change in the study region on the rainfall trend is of great significance. The LULC
change in the area was estimated both spatially and temporally using remote sensing-
based techniques. The LANDSAT1 and LANDSAT8 satellite images for the years
1973 and 2018 were used for determining the land cover change in the study region.
Necessary corrections were applied on the mosaicked images and these satellite
images were classified using supervised classification. The land use change analysis
was done on the classified images and the land use classes used were waterbodies,
mixed vegetation, agricultural field, cultivable land, dense trees, barren land/rocky
outcrop, built-up area and sandy area. It is seen that there has been severe reduction
in dense trees and large increase in barren land and built-up areas over time. The
rainfall trend in the study region was estimated using the data obtained from India
Meteorological Department. The study indicates that LULC change is associated to
the decrease in the rainfall over the area. It denotes the necessity of controlling the
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LULC changes in the basin for preventing further deterioration of the basin. The
rainfall trend analysis also helps to devise proper management plans for the basin.

Keywords Climate change · Land use-land cover change · Rainfall trend ·
Mann–kendall test · Sen’s slope estimator

15.1 Introduction

Climate change is of great concern during present time. Even though there are many
factors that affect the climate change in a region, many anthropogenic activities
leading to land use-land cover change are seen to have an impact in the climate change
of an area. Understanding the rainfall pattern in a local scale is important for water
resources planning in an area. It is of great importance in a region where agriculture
and many hydroelectric projects are dependent on the rainfall. The land use-land
cover (LULC) in an area is seen to influence the local climate. Even though the LULC
change is largely attributed to urbanization, the change in the climatic conditions is
also seen to influence the land cover in a region. Urbanization transforms land use
from agriculture and forests into industry, residential and commercial buildings and
associated infrastructure. Land use change also takes place when forest areas are
cleared and converted to other types of vegetation. These changes bring about change
in the local rainfall pattern, thereby providing a cyclic effect by further altering the
land cover of the region.

Severe water shortage is being experienced in regions where land cover change
has resulted in reduction in forest areas. The forests are referred to as the lungs
of the earth: taking in carbon dioxide and providing oxygen, whereas wetlands are
referred to as kidneys of the landscapes absorbing harmful pollutants like carbon
dioxide and nitrogen. They help in controlling the local climate and hydrological
processes.Drastic reductionof themaffects thewater-retention capacity of soils of the
river basins (Nikhil Raj and Azeez 2010). India’s agricultural output, economy and
industrial activities depend considerably on the variability and extremes of summer
monsoon rainfall. 80% of the rainfall received by the southern parts of India is
contributed by the Indian summer monsoon rainfall (ISMR) during the months of
June, July, August and September (Webster et al. 1998). Kerala is the southernmost
state of India, bounded on the east by a geological escarpment running roughly
northwest to southeast parallel to the coast known as the Western Ghats and on the
west by the Arabian Sea. Kerala is characterized by an asymmetrical topography
with three distinct elevation zones known as the lowland, midland and highland
regions. Major land use changes have taken place in Kerala, and even though it
is claimed that the forest area have not changed much, the remote sensing images
shows that thick vegetation has reduced across the state (George and Chattopadhyay
2001). Studies in the river basins of south Kerala have revealed that the area under
forests and agriculture drastically decreased since 1970 (Krishnakumar and Dhanya
2017; Chattopadhyay 1985). The land use-land cover change is seen to impact the
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rainfall characteristics of watersheds (Xue et al. 1996). Urbanization-induced rainfall
change is also investigated by many researchers (Shepherd 2005). Remote sensing-
based techniques are usually used for preparing the land use-land cover map of the
areas and assessing their changes (Dewan and Yamaguchi 2009; Mamun et al. 2013;
Islam et al. 2018).

Indian summer monsoon rainfall trends and their spatial variability over India
have been studied and found that significant decrease is found in monsoon rainfall in
many water surplus basins over India (Ghosh et al. 2009). The land use-land cover
change in the Western Ghats has also altered the rainfall pattern along the region
(Kale et al. 2016).

In this context this study is aimed at understanding the land use-land cover changes
that has taken place over the Bharathapuzha river basin of Kerala state since 1973. An
attempt is made to understand the rainfall trend over the basin and how it is impacted
by the change in land cover of the area.

15.2 Study Area and Description

The Bharathapuzha river also known as the River Nila is the second longest west-
flowing river in Kerala state that drains into the Arabian Sea. The basin lies approx-
imately between 10° 26’ and 11° 13’ North latitudes and 75° 53’ to 77° 13’ East
longitudes. The study area is shown in Fig. 15.1. About 5818 km2 area drains into
the river of which about 70% is in Kerala and remaining 30% is in Tamil Nadu. It
rises in the eastern slopes of Anamalai hills of the Western Ghats at an elevation

Fig. 15.1 Map of Bharathapuzha basin
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of 2,250 m above MSL. The total length of the river from its origin to outfall is
about 209 km. It enters the Palghat district of Kerala state through the Palghat gap.
The Gayathripuzha, the Kalpathipuzha and the Pulanthode are the three important
tributaries. All the three tributaries rise in the Western slopes of the different ranges
of theWestern Ghats and drains major parts of the Palghat, Trichur and Malappuram
districts.

The Bharathapuzha river is extensively dammed. The river has undergone exten-
sive degradation due to sand mining and large-scale environmental changes brought
about by human intervention.

15.3 Data and Methodology

15.3.1 Rainfall Data

The rainfall data used for the study is the daily rainfall data prepared by the India
MeteorologicalDepartment for the entire Indian region. It is the griddeddata provided
at a resolution of 0.25° × 0.25°. The daily gridded data for the study region was
extracted and the monthly rainfall for the study region was computed. The rainfall
data for the period from 1973 to 2013 was used for the study.

15.3.2 Land Use-Land Cover Maps

The land use-land cover maps were prepared from the satellite images of LANDSAT
series for the years 1973 and 2018. LANDSAT 1 series for the year 1973 and
LANDSAT 8 series for the year 2018 were used. The images covering the study area
were downloaded, layer stacked and mosaicking of images were done. The shape
file for the region was prepared and used for generating area of interest. Necessary
corrections were performed on the image. Classification of the images was done
using supervised classification. Training sites were created using signature editor
and maximum likelihood rule was used to prepare the output file.

15.3.3 Rainfall Trend

The temporal trend in the rainfall was calculated using simple linear regression,
which is a parametric test. The regression was performed taking year (time) as the
independent variable and rainfall as the dependent variable. Slope of the trend line
shows the decrease or increase in the rainfall over time. The trend in the annual
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precipitation aswell as the precipitation for various seasons like pre-monsoon, South-
west monsoon, post-monsoon and winter rainfall was estimated. The pre-monsoon
period is fromMarch to May, South-west monsoon contributes maximum rainfall to
the state from June to September, post-monsoon period is fromOctober to November
and winter rainfall is from December to February.

15.4 Results and Discussion

15.4.1 Land Use-Land Cover Change

The land use-land cover (LULC) maps were prepared for the periods 1973 and
2018 from the LANDSAT images. The classification of LULC was done under the
following categories: waterbody,mixed vegetation, agricultural field, cultivable land,
dense trees, barren land/rocky outcrop and built-up areas. The classified image for
the year 1973 is given in Fig. 15.2. Similarly, the LULC map for the year 2018 was
prepared from the LANDSAT 8 image and the classified image is shown in Fig. 15.3.

The LULC change statistics for the period computed from the maps is detailed
in Table 15.1. A comparison of these maps shows significant changes in the land
use-land cover pattern in this region. The most predominant change seen during this
period is that the built-up area has increased by 13.1% and that the dense trees has
decreased by 10.5%. This may be attributed to the increased population and related
urbanization. The waterbodies have reduced by 2.2%. Even though the agricultural
field areas have almost remained constant, the cultivable land area has been reduced

Fig. 15.2 LULC during 1973
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Fig. 15.3 LULC during 2018

Table 15.1 LULC change
statistics during study period

Description 1973
Area (in sq
km)

2018
Area (in sq
km)

% change in
area

Waterbody 211.94 85.38 −2.2

Mixed
vegetation

1733.68 1732.66 0.0

Agricultural
field

258.79 255.76 −0.1

Cultivable
land

1541.88 1341.34 −3.4

Dense trees 967.39 357.59 −10.5

Barren
land/rocky
outcrop

900.35 1127.85 3.9

Built-up 148.20 910.70 13.1

Sandy area 42.79 6.48 −0.6

Clouds 12.93 0.00

Total area 5818 5818

by 3.4%. The Bharathapuzha river basin is alleged to have undergone degradation
due to uncontrollable sand mining. The LULC change statistics shows that the sandy
areas have reduced from 42.786 to 6.48 km2. The increase in barren land is the result
of human interference with the natural vegetation and ecology.
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15.4.2 Rainfall Trend Estimation

The rainfall data obtained from the India Meteorological Department for the period
1973–2012 was used for calculating the trend. Even though the land use change was
calculated for the year 2018, the rainfall data was available only up to 2012. Hence
rainfall up to 2012 was used for calculating the trend. The trend in the annual rainfall
over the study region was estimated using simple linear regression. The trend line
fitted over the annual rainfall data and the regression equation is shown in Fig. 15.4.
It is evident that there are wide variations in the annual rainfall over time. The fitted
trend line shows that there is a decreasing trend in the annual rainfall over the region.

Kerala experiences moderate climate with the South-west summer monsoon rain-
fall as the predominant rainfall over the region. The rainfall for the entire year was
categorized as pre-monsoon rainfall, South-west monsoon rainfall, post-monsoon
rainfall and winter rainfall. It is seen that the South-west (SW) monsoon rainfall
contributed to about 64% of the total rainfall in the region followed by post-monsoon
or North-east monsoon contributing to about 21%. The winter rainfall is only about
3% of the total rainfall. The pre-monsoon rainfall fromMarch toMay, post-monsoon
rainfall fromOctober toNovember and thewinter rainfall fromDecember toFebruary
are having slightly increasing trend. The trend in the rainfall during the pre-monsoon,
SW monsoon, post-monsoon and winter season are shown in Figs. 15.5, 15.6, 15.7
and 15.8, respectively. Rainfall trends for all the four seasons plotted in Fig. 15.9 show
that the increase in rainfall trends for these seasons are negligible when compared to
SW monsoon trend.

The nonparametric trend detection method was also used for identifying the rain-
fall trends for all the seasons.Mann–Kendall testwas done to test the trend of seasonal
rainfall. It indicated that there is a significant decreasing trend for the South-west
monsoon in the river basin during 1973–2012. No significant trend in rainfall is
shown in all the other seasons. The Theil–Sen estimator, also known as Sen’s slope
estimator or the Kendall robust line-fit method is a method for linear regression that

Fig. 15.4 Variation of
annual rainfall with time
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Fig. 15.5 Pre-Monsoon
rainfall trend

Fig. 15.6 South-West
monsoon rainfall trend

Fig. 15.7 Post-Monsoon
rainfall trend



15 Effect of Spatial and Temporal Land Use-Land Cover … 169

Fig. 15.8 Winter rainfall trend

Fig. 15.9 Rainfall trend over various seasons

chooses the median slope among all lines through pairs of two-dimensional sample
points. The Theil–Sen line is a nonparametric alternative to the parametric ordinary
least square regression line. It is considered as the most popular nonparametric tech-
nique for estimating a linear trend. Sen’s slope was estimated for both annual rainfall
and SW monsoon rainfall over these years. The slope values computed by ordinary
linear regression and Kendall robust line-fit method are given in Table 15.2.

Table 15.2 Comparison of
the slope of the trend lines

Method Annual rainfall SW monsoon rainfall

Simple linear
regression

−2.9 −5.8

Kendall robust line-fit
method

−3.2 −5.5
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15.4.3 Relating LULC Modification to Rainfall Change

The exchange of greenhouse gases and sensible heat between the land surface and
the atmosphere and the roughness of the land surface associates the land cover in a
region with the weather and climate of the region. The change in the rainfall pattern
over the Kerala state is found to be due to the change in the biophysical resources
of the state which was the result of unplanned anthropogenic activities in recent
years. These activities indirectly affect the physical processes between the earth-
atmosphere continuum and influences the distribution of local rainfall during winter
and pre-monsoon season (Krishnakumar et al. 2009).

As discussed in Sect. 15.4.1, there has been reduction in the areal extent of dense
trees and an increase in the built-up area during the years from 1973 to 2018. The
reduction of the thick forests is found to bemore on the upstream reaches of the study
region which is mainly part of the Western Ghats. Many researches have shown that
there has been considerable reduction in thick forests in Kerala especially along the
Western Ghats. Feedback of dense vegetation along theWestern Ghats on the South-
west monsoon rainfall had been studied by performing regional climate simulations
and found that evapotranspiration from the vegetation of Western Ghats contributes
moisture for about 25–40% of the South-west monsoon rainfall (Paul et al. 2018).
Hence, it is inferred that the reduction in the dense trees coupled with the increase in
the built-up area is attributed to the decreasing trend in the rainfall over the region.

15.5 Conclusion

The land use-land cover change over the Bharathapuzha river basin which had been
undergoing many environmental changes due to urbanization and unplanned activ-
ities over a period of 40 years was studied. The study revealed that the areal extent
of dense trees has diminished over the region and built-up area has increased. The
findings match similar studies performed over the Western Ghats region that states
that considerable reduction in dense forest has taken place over the area and that it
has altered the hydrological cycle in the region. The rainfall pattern and trend over
the area during the study period was also analyzed both annually and seasonally. It
is seen that the annual rainfall shows a decreasing trend. Seasonal split-up of the
rainfall indicates that the predominant SW monsoon rainfall has a decreasing trend,
whereas the rainfall over the other seasons has a marginal increasing trend.

It is inferred that the rainfall decrease over the region is attributed to the land
use changes that have happened in the region over the period. It also suggests the
significance of devising proper developmental plans for the watershed by protecting
the biodiversity of the region.
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Chapter 16
Innovations and Application
of Operational Ocean Data Products
for Security of Marine Environment

Madhulika Sinha and Shrikant Charhate

Abstract The rapid development of operational oceanography in recent years has
led to improved access to real-time data and products generated from in situ and
satellite observations as well as ocean modelling. Operational oceanography is like
weathermonitoring and forecasting for the ocean. It can provide estimates of essential
ocean variables, for example, sea level, temperature and currents. Ocean observations
are required in real time and near real time (within a fewdays orminutes of collection)
and sourced from various national and international programs. A number of large
open data sets and metadata from observations (in situ and remote sensing) and from
model outputs exist which have application in real-time problem solutions in coastal
environments. However, these resources have not been used optimally due to limited
capacities, and lack of information on their availability and applicability. In this study
attempt has beenmade to discuss available information to improve safety of life at sea,
help create wealth and assist in the security and protection of the marine environment
through good measuring networks, and systems for making data available swiftly.
Timely prediction of storms and other unfavourable weather can be done by having
knowledge of meteorological conditions, and how they are developing above the
oceans. Outputs can be used to generate data products, applications and services
through national authorities, as well as in some cases through other organizations
such as metocean service providers and environmental consultants and for these
measurements to be of use, good data management, quality control and fast data
availability are essential.
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16.1 Introduction

Operational oceanography is an activity of conducting regular oceanographic studies
towards providing information services to various sectors, viz., fisherman, shipping,
ports, disaster management, environment, coastal states, navy, coast guard, offshore
industries for conducting their day-to-day operations. It depends on availability of
ocean observations systems and super-computer facilities. It uses computer models
and mathematical techniques and is designed to deliver stakeholder-defined outputs
and products on a routine basis, using robust and fully supported production and
dissemination techniques. As per Schiller and Brassington (2011), ocean observa-
tions are required in real time and near real time (within a few days or minutes
of collection) and sourced from various national and international programmes;
therefore, a systematic approach to secure and disseminate in situ observations is
required. Ocean observing system, data management, ocean modelling and deriving
different products and services are the essential elements of operational oceanog-
raphy (Fig. 16.1). In this paper an effort is made to provide the status of the various
in situ as well as satellite observing programmes that can supply information about
the ocean surface and interior in near real time and that can be used in various oper-
ational systems and services. Nowadays, operational oceanography has many appli-
cations; it is continuously used to improve safety of life at sea, help create wealth,
and assist in the security and protection of the marine environment. Some of the
services are providing warnings about coastal floods, storm impacts, harmful algal
blooms and contaminants, electronic charts, sea state conditions, optimum routes for
ships, prediction of primary productivity, ocean currents, ocean climate variability,
and modelling of and response to oil spills and dredging. Operational oceanographic
programs are well established in countries such as USA, Japan and France, and

Fig. 16.1 Essential components of operational oceanography (www.incois.gov.in)

http://www.incois.gov.in
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Fig. 16.2 Argo national contributions, as of January 2017; colour coded according to country
(Source JCOMMOPS)

now in India also this programme is continued at INCOIS. The European compo-
nent of the Global Ocean Observing System (EuroGOOS) has defined operational
oceanography ‘as the activity of systematic and long-term routine measurements of
the seas and oceans and atmosphere, and their rapid interpretation and dissemina-
tion’. The real-time in situ observing system has been reviewed many times before.
The two most recent reviews by Legler et al. (2015) and Ravichandran (2011) show
that this is a rapidly changing field and an update is required continuously. The
need for careful monitoring of climate and ocean research and changing condi-
tions over time have motivated for the development of the Global Ocean Observing
System. In situ ocean observations available at present address these needs as well
as are vital to ocean, marine, weather and climate forecasts to initialize today’s fore-
casts, verify previous forecasts, improve forecasting systems to be used in the next
decade, calibrate remote-sensing data and contribute towards tailored analyses, prod-
ucts and services. Thus, today’s ocean observations are critical to many aspects of
the operational oceanography enterprise (Figs. 16.2 and 16.3).

Our Earth consists of 70% of ocean, and they are the vital sources for resources.
Monsoon driving force acts as medium of transport and land of oceanic disasters.
The occurrence of 1982/1983 El Niño was the alarm that provided the motivation
to monitor the oceans globally, including weather above the oceans as given by
McPhaden et al. (2010) although the development of the ocean observing system had
started in the early 1980s. Observations of sea level have been available for centuries,
but it was only in 1985 that the Global Sea-Level Observing System (GLOSS)
was established. GLOSS was established by the Intergovernmental Oceanographic
Commission (IOC) to provide oversight and coordination for sea-level networks and
now supplies data from 70-member states. The design of GOOS addresses two broad
areas, i.e., oceans and climate, and coastal ocean. The objectives include monitoring
and detection of climate change, seasonal to inter-annual climate prediction, marine
and weather forecasts, short-range ocean forecasts, understanding decadal varia-
tions, routine ocean state determination and scientific research. The climate module
of GOOS is the ocean module of the Global Climate Observing System (GCOS) of
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Fig. 16.3 Global drifter as on June 4, 2018 (Source JCOMMOPS)

WMO. The Joint WMO/IOC Technical Commission for Oceanography and Marine
Meteorology (JCOMM) is a panel for implementation of an operational, integrated
ocean observing and data management system for climate. The Ocean Information
Bank provides information on physical, chemical, biological and geological parame-
ters of ocean and coasts on spatial and temporal domains that is vital for both research
and operational oceanography. In India, INCOIS receives voluminous oceanographic
data in real time, from a variety of in situ and remote-sensing observing systems and
serves as the central repository for marine data in the country. Further, INCOIS has
been designated as the National Oceanographic Data Centre by the International
Oceanographic Data Exchange Programme (IODE) of International Oceanographic
Commission (IOC). INCOIS also serves as the National Argo Data Centre, Regional
Argo Data Centre, and also the regional data centre and clearing house for the Indian
Ocean region for the IOGOOS programme.

16.1.1 Argo Floats

As per (Argo Science Team 1998), the primary goal of Argo was to create a system-
atic global network of instruments, integrated with other elements of the Global
Ocean Observing System, for a broad range of applications including climate-
relevant variability on seasonal to decadal time-scales, multi-decadal climate change,
and improved initialization of ocean and coupled ocean/atmosphere climate models
(Freland et al. 2016). The first Argo float was deployed in 1999. The International
Argo programme is a collaborative partnership of more than 30 nations to provide
a unique opportunity to map ocean temperature, salinity and biogeochemical struc-
ture on 3° × 3° coverage. To monitor the thermohaline field of the upper ocean for
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seasonal, annual and decadal time scale, it is important to sustain the Argo float array,
and they are important constituents of the Global Ocean Observing System (GOOS).

In IndianOcean there is plan to deploy 450floats by various participating countries
out of which India committed to deploy 150 floats. TheAICwebsite gives the general
information on the Argo project (participating countries, contacts, real-time status
of the network, status of DACs developments, maps, news, etc.). The application is
also used for deployment strategy. The Argo Data Management System, as finalized
by the International Argo Science Team (IAST) and its Data Management Group,
constitutes three levels of data centres, i.e., National Data centres, Regional Data
Centres and Global Data Centres located in France and USA.

The Climate Variability and Predictability (CLIVAR) is the most recent and
broadest component of the World Climate Research Programme (WCRP) aimed
at extending the range and accuracy of seasonal and inter-annual climate predic-
tion through the collection and analysis of observations as well as development and
application of models of the coupled climate system.

16.1.2 Drifter Program

The displacement of ships by ocean currents had been used even earlier. In 1852,
Maury work on ‘the Wind and Current Chart of the North Atlantic’ helped sailors to
decrease the length of their journey by observing the ocean’s currents and winds. In
1982, the World Climate Research Program (WCRP) recognized that a global array
of drifting buoys (‘drifters’) would be invaluable for oceanographic and climate
research, but there were large differences in the costs and water-following properties
of various designs (World Climate Research Program 1988). The Tropical Ocean
Global Atmosphere (TOGA) and World Ocean Circulation Experiment (WOCE)
projects required a standardized, low-cost, lightweight, easily deployed drifter as per
WCRP recommendations. According to Niiler (2001) the standardized design uses a
holey-sock drogue at 15 m depth to follow mixed-layer currents with little influence
from the winds. The surface drifters are largely deployed from ships of opportunity
(SOOP). Different parts of the ocean show differing characteristics for dispersal. It is
well known (because of Ekman layer divergence) that it is extremely hard to sustain
an array of surface drifters close to the equator. Lumpkin and Elipot (2010) studied
and concluded that the dispersion of surface drifters has yielded a major insight into
the eddying and dispersion characteristics of the ocean surface layers. The main
purpose of drifting buoys is to collect surface meteorological (atmospheric pressure
and winds) and oceanographic (SST, surface velocities, and subsurface temperature)
data using the satellite tracked drifting buoys and provide near real time data (SST,
sea level pressure and surface winds on GTS) for operational weather analysis and
prediction. It also develops monthly meanmixed-layer velocities in the Indian Ocean
on 1° × 1° resolution as well as provide data sets as ‘sea truths’ for validation of
remotely sensed ocean surface parameters. INCOIS aims to build an Indian Ocean
drifter data archival.
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16.1.3 Soop/XBT

The XBT network constituted more than 50% of the global ocean thermal obser-
vations before the introduction of Argo profiling floats. With the Argo array now
in place, currently XBT observations represent approximately 15% of temperature-
profile observations. Levitus et al. (2012) in his paper has informed about the upper-
ocean heat content, and global heat content variability before the Argo array was
implemented. Goni et al. (2014) in his work mentioned that after the full implemen-
tation of the Argo array, XBT transects are mostly used to monitor and investigate
variability of surface and subsurface currents and the Meridional Overturning Circu-
lation. XBT/XCTD observations are long-term monitoring of upper-ocean thermal
fields in the seas around India and is supported by ESSO-INCOIS. The major XBT
transects are Mumbai–Mauritius, Chennai–Port Blair, Port Blair–Kolkata, Chennai–
Singapore, and Kochi–Lakshadweep. The data from this system transfer to ESSO-
INCOIS and made available to the public in user-friendly data format. In the last one
year, a total of 257 XBT profiles and 92 XCTD profiles pertaining to Indian Ocean
have been archived at ESSO-INCOIS.

16.1.4 Moored Buoy

This is critical element of the ocean observing system, may be floating or submerged
platforms equipped with measurement sensors, moored to anchors on the seafloor
through cables. Global Tropical Moored Buoy Array (GTMBA) is a coordinated
and sustained multi-national programme to develop and implement moored buoy
observing systems for climate research and forecasting throughout the tropics
(McPhaden et al. 2009a). It comprises theTAO/TRITONarray in Pacific, the PIRATA
in the Atlantic and RAMA in the Indian Ocean. The TRITON array has also declined
with sites being decommissioned owing to lack of research funding and changes in
JAMSTEC priorities. The status of PIRATA is much better, with data return main-
taining historical levels. TheNationalDataBuoyProgramme (NDBP) of India started
in 1996 for in situ meterological-ocean measurements in Arabian Sea and Bay of
Bengal (DOD/NIOT). It provides data on hourly basis for pressure, temperature,
wind, water temp, salinity, currents and wave from August 1997. At present there
are 47 buoys maintained by NIOT. The Moored buoy observations are stable and
have proven their reliability: (N * 24 * 365 * × ~ 106) of data messages per year.
It gives high-quality, real-time data in scheduled time, having unlimited lifespan,
and can be recovered and refurbished. The drawbacks of buoys are high oper-
ating costs, expensive to build a network with no contingency and rapid deploy-
ment. Ocean moored buoy network for northern Indian Ocean (OMNI) buoys is
managed by ESSO-INCOIS. There are 12 active deep sea met-ocean buoys deployed
in northern Indian Ocean by the INCOIS and NIOT (5 in Arabian Sea and 7 in Bay of
Bengal) giving data fromOctober 2010 to present. The variables measured by OMNI
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buoys are surface meteorological, surface ocean parameters, subsurface parame-
ters. 98Research Moored Array for African-Asian-Australian Monsoon Analysis
and Prediction (RAMA) in the Indian Ocean is an observational network designed to
address outstanding scientific questions related to the Indian Ocean variability and
the monsoons. As per the MoU between MoES/ESSO-INCOIS and NOAA/PMEL,
38 operations at 18 sites were carried out, which include deployments, recovery and
repair of the ATLAS, CONE type and ADCP moorings, during the past one year. At
present, 31 out of 46 (67%) RAMA sites were covered. Approximately 13 cruises
(320 sea days) for RAMAmooring operations for deployment, recovery and mainte-
nance are available. All data from RAMA are available in GTS and INCOIS website
in near real time. RAMA data is utilized for data assimilation, validation of ocean
model output and satellite parameter (SST, wind etc.), bias corrected ocean model
forcing field (Tropflux), to understand air–sea interaction processes in the Tropical
Indian Ocean.

16.1.5 Satellite Oceanography

Satellite oceanography is a key component of operational oceanography. Satellites
provide long-term, continuous, global, high space and time resolution data for key
ocean parameters such as sea level and ocean circulation, sea surface temperature
(SST), ocean colour, sea ice, waves and winds. These are the core variables observa-
tions required to constrain global, regional and coastal ocean monitoring and fore-
casting systems. They are also needed to validate them. Only satellite measurements
can, in particular, provide observations at high space and time resolution to partly
resolve the mesoscale variability and coastal variability. Schiller and Brassington
(2011) has specified that satellite data can be directly used for applications such
as SAR for sea ice and oil pollution monitoring, ocean colour for water quality
monitoring. Remote sensing data are received and processed at ground station by
Oceansat-2, NOAA 18&19, METOP A&B, Terra and Aqua (MODIS), NPP 3.

16.2 Ocean Data and Information System (ODIS)

ODIS is a fully automated system for data reception, processing, quality control,
database loading and dissemination. It is having a unique integrated in situ database
for heterogeneous data received from variety of platforms through various commu-
nication channels and assists in data discovery, on-the-fly visualization and data
downloads in different formats. It has been developed using open source software.
Figure 16.4 shows the flowchart of ocean data and information system. The ODIS is
supported by the data received from both the in situ platforms and satellites, global
telecommunication system (GTS), projects/experiments, data from other sources and
the data exclusively retrieved for the Indian Ocean from historical data sets. INCOIS
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Fig. 16.4 Flowchart showing ocean data and information system (www.incois.gov.in)

is having active collaboration with IODE, Indian Ocean Global Ocean Observation
System (IOGOOS) and Open Geospatial Consortium (OGC) programmes on data
and information management-related activities. It is estimated that about 5 TB per
year of both in situ and remote sensing data is managed by ODIS. It is important to
blend the data in standard formats, apply quality control procedures, generate meta-
data and database, while adopting international standards for continuous exchange
of data to make it available for different types of users.

16.3 Ocean Information and Advisory Services

The data received from various observing systems in real time at different commu-
nication systems are assembled and standardized. The data go through the quality
control procedures for each of the observing system separately as per the interna-
tionally adopted quality control procedures and standards. The quality-controlled
data are then loaded to the database for providing web-based data services. A
number of web-based services are provided after analysis of the ocean informa-
tion. The Marine Fishery Advisory Service provides daily advisories on operational
basis except during fishing ban period, inclusion of altimeter data for detection of
eddies, fronts and surface currents, potential fishing zone advisory services. Ocean
State Forecast and Information Services/System: It gives quantitative, location-
specific, user-customised, multi-parameter, multi-lingual, impact-based, and end-
to-end ocean state forecast and information operational daily and package-based
services, ocean forecasts (general, daily) (wave, swell, SST, currents, MLD, D20,
tides [5–7 days]) and specific products (HWA, Joint IMD-INCOIS bulletins, oils

http://www.incois.gov.in
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pill trajectory, search and rescue aid, etc.). High-wave alerts specifically notify the
areas along the Indian coast that will experience the high waves (i.e. >3.0 m or rapid
increase in wave heights) due to bad weather, approaching cyclone or freak waves
originated elsewhere and traveling towards the Indian coast. The Indian Tsunami
Early Warning Centre (ITEWC) services for an event commence whenever an earth-
quake is recorded with M ≥ 6.5 within the Indian Ocean and M ≥ 8.0 outside of the
Indian Ocean.

16.4 Conclusions

From the above discussion, we conclude that operational oceanography is very young
relative to weather forecasting. It has many products and applications and is growing.
Recent developments and pattern change in oceanography have been stimulated by
observations of various processes; in particular, theories and models have typically
been developed to explain, quantify, incorporate or parameterize these processes
using balance equations. The individual networks of the present sustained ocean
observing system for climate, including tropical moorings, XBTs, surface drifters,
ship-based meteorology, tide gages, Argo floats, repeat hydrography, and satellite
observations, have been developed largely independent of one another. Satellite data
also play a fundamental role for operational oceanography. Operational oceanog-
raphy is both a national and international endeavour, benefits from partnerships
and collaboration and provides an array of societal and economic benefits. By inte-
grating developments in data quality, coverage, and delivery and from addition of
multi-disciplinary measurements, the present global observing system will be more
benefitted.
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Chapter 17
Statistical Downscaling of Sea Level
by Support Vector Machine
and Regression Tree Approaches

S. Sithara, S. K. Pramada, and Santosh G. Thampi

Abstract Projections of future climate from various climate models indicate that
global temperatures are continuously rising. This, in turn, may result in a significant
rise in the water levels in the oceans, adversely impacting coastal aquifers. Apart
from temperature, some other climatic variables also influence sea level. For better
management of coastal aquifers, it is necessary to predict the sea level with a reason-
able degree of accuracy. The repercussions of projected climate change on sea level
rise can be investigated by projecting future sea level values for different represen-
tative concentration pathways (RCPs) using global climate models (GCMs). GCMs
are run at a coarser scale; hence for regional-scale studies these projections have to be
downscaled before being input into hydrologicmodels. This paper presents the details
and results of a study in which support vector regression (SVR) and regression tree
(RT) techniques were applied for statistical downscaling of sea level using climatic
variables. The results of both these techniques were compared. It was observed that
the performance of the SVR model was better than that of the RT technique.

Keywords Climate change · Sea level rise · Global climate models · Statistical
downscaling · Support vector regression · Regression tree

17.1 Introduction

The importance of climate has increased with the realization that climate change
has serious repercussions on the environment. Human activities can also change
climate, which is referred to as anthropogenic climate change. Some of the examples
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of anthropogenic changes are ozone hole, acid rain, and global warming (David
Neelin 2010). Climate change has serious repercussions on various components
of the environment including the oceans. The Intergovernmental Panel on Climate
Change (IPCC) has reported rise in sea level due to globalwarming.Climate change is
the consequence of increased greenhouse gas emissions, which in turn causes global
warming and consequent thermal expansion of water, and melting of ice caps and
glaciers (Mimura 2013). Relative to 1850–1900, global surface temperature change
by the end of the twenty-first century (2081–2100) is projected to likely exceed 1.5 °C
(IPCC 2014). Among the various greenhouse gases, CO2 is the major contributor
to this rise in temperature (Maddah 2016). Emissions of CH4 and other short-lived
anthropogenic greenhouse gases such as CFCs, HCFCs, and HFCs also contribute
to sea level rise (Zickfeld et al. 2017). Apart from temperature, there are many other
climatic variables which influence the sea level. Li et al. (2016) and Sturges and
Douglas (2011) observed that wind also contributes to sea level changes.

GCMs are the main tools used to assess climate change under different scenarios
of greenhouse gas emissions (Haylock et al. 2006). Since GCM projections run at
coarser resolution, it is necessary to downscale the GCM output to obtain regional-
scale information. Approaches adopted for downscaling are broadly classified into
two, viz., dynamical and statistical downscaling. Dynamical downscaling refers to
the nesting of high-resolution regional climate models (RCMs) in the GCMs. Statis-
tical downscaling involves establishing statistical relationships between large-scale
(predictors) variables and small-scale variables (predictands) of the current climate
and then applying it to derive regional-scale information (Boé et al. 2007; Haylock
et al. 2006). Awide variety of statistical downscaling techniques are available. SDSM
is a widely used downscaling technique, which is a hybrid of the conditional weather
generator and regression-based methods (Elhakeem et al. 2015).

Classical regression techniques are extensively used for statistical downscaling
of local variables from GCM projections. Machine learning techniques have far-
reaching applications in the field of water resources. It is possible to extend its
applications to the field of climate change for statistical downscaling of climate
variables. In this background, the following goals were set for this study: (i) to
identify climatic variables which influences sea level the most, (ii) to statistically
downscale sea level projections from GCMs using SVR and RT techniques and (iii)
to compare the performance of both these methods.

17.2 Methods

The overall methodology consists of three phases. In the first phase, the predictors are
identified. The second phase involves establishing statistical relationships between
the predictors and the predictand. In the last phase, the predictand is downscaled from
bias correctedGCMoutputs. The predictorswere identified using correlation analysis
between the dependent variable (sea level) and the independent variables (climatic
variables). Machine learning algorithms such as SVR and RT were employed for
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statistical downscaling of sea level from the GCM output. Support vector machine
(SVM) is a widely used machine learning algorithm for classification analysis; later
it was realized that the same principle can be adopted for regression also, resulting in
the so-called support vector regression (SVR) technique. SVM has been employed
for downscaling projections of precipitation (Tripathi et al. 2006) and is reported
to be a powerful tool which can be employed in prediction problems (Voyant et al.
2017). Regression tree is a data mining technique which can also be employed in
prediction problems; this technique is a better replacement for statistical regression
(Mangai andGulyani 2016). In this study, the GCMoutput was corrected for inherent
biases by linear scaling technique.

17.2.1 Support Vector Regression

The objective function is to minimize

J = C
N∑

n=1

E[y(xn) − ydn] + 1

2
‖w2‖ (17.1)

where C is the inverse weight penalty parameter, E is an error function and 1
2‖w2‖

is a weight penalty term.y(xn) is the estimator output and ydn is the target data. In
order to retain the sparseness property of the SVM classifier, E is defined as:

Eε(z) =
{ |z| − ε, if|z| > ε

0, Otherwise
(17.2)

This is called ε-insensitive error function; it ignores errors of size smaller than ε.
Two slack variables ξn and ξn

′
are introduced such that ξn ≥ 0 and ξn

′ ≥ 0. ξn > 0
denotes data points above the ε-tube and ξn

′ ≥ 0 denotes those below the ε-tube.

ydn > y(xn) + ε, if ξn > 0

ydn < y(xn) + ε, if ξn > 0

The objective function can be written as

MinimizeJ = C
N∑

n=1

(ξn + ξn
′
) + 1

2
‖w2‖ (17.3)

subject to ξn ≥ 0, ξn
′ ≥ 0, ydn ≤ y(xn) + ε + ξn , ydn ≥ y(xn) − ε − ξn

′
.
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In order to handle the constraints, Lagrange multipliers are introduced.
SVR is performed in a feature space,

y(x) = wTΦ(x) + w0 (17.4)

where F is the feature map and w0 is the bias

w =
N∑

n=1

(λn − λn
′
)Φ(xn) (17.5)

where λn and λn
′
are the Lagrangian multipliers.

Substituting (17.5) into (17.4), we get

y(x) =
N∑

n=1

(
λn − λn

′)
K (x, xn) + w0 (17.6)

K (x, xn) = ΦT (x)Φ(xn), which is the kernel function. The data points which
contribute in the above summation (Eq. 17.6) are called support vectors (Hsieh 2009).
The commonly used kernel functions are linear, polynomial, sigmoid, splines, and
radial basis function (RBF) (Tripathi et al. 2006). Polynomial kernel was used in this
study.

17.2.2 Regression Tree

These are piecewise-constant regression models in the form of a decision tree with
leaf nodes. These leaf nodes give numerical values, whereas classification trees give
categorical values. Regression trees are constructed based on the recursive partition
algorithm. A set of training data was recursively partitioned into smaller sets till
certain termination criteria are satisfied. A suitable local criterion was chosen to
obtain the optimum split at each of the nodes. The usual approach is to build the tree
in such a way that the parameters minimize the least squares error (Cichosz 2014;
Mangai and Gulyani 2016).

Least Square error = 1

n

n∑

i=1

(
yi − ŷi

)2
(17.7)

where n is the number of training data points, yi is the actual value, and ŷi is the
predicted value. The value of leaf node 1 is the mean of the target values of all data
points that meet this node as given by Eq. (17.8)
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Value1 = 1

n1

n1∑

i=1

y1 (17.8)

where n1 is the number of data points in the leaf node 1. The error at leaf node 1 can
be computed as

Error(1) = 1

n1

n1∑

i=1

(yi − Value1)
2 (17.9)

Let the probability of a leaf node be P(1) and the number of leaf nodes be n1,
then the error of a tree T can be computed as the weighted mean of the error in all
its leaves as given in the following equation

Error(T ) =
n1∑

i=1

P(1) × Error(1) (17.10)

The error of split ‘s’ at a node ‘t’ is given by Eq. (17.11).

Error(s, t) = ntleft
nt

× Error(tleft) + ntright
nt

× Error
(
tright

)
(17.11)

where tleft and tright are the left and right subtrees of node ‘t’ after the split. ntleft and
ntright are the cardinality of tleft and tright, respectively. The best split is the one which
maximizes

�Error(s, t) = Error(t) − Error(s, t) (17.12)

This criterion is employed to choose the best split for all internal nodes. The
recursive partition algorithm selects the one with the best �Error.

After building the tree, in order to check the goodness of fit of the tree, the RT
algorithm employs its pruning algorithm by either cross-validation or an independent
test sample. Mean squared error (MSE) is the commonly adopted pruning criterion.
Once a minimal-cost tree (tree with least MSE) is identified, an optimal tree is
selected by applying the one-standard-error rule to the minimal-cost tree (Yohannes
and Webb 1999).

17.3 Data Collection

Data were retrieved for the grid point (9.75° N, 76.25° E), which is close to the
Willingdon island (Cochin) tidal gauge station, Ernakulam, Kerala. Both reanalysis
and satellite data were used for the analysis. Reanalysis data were obtained from
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the European Centre for Medium-Range Weather Forecasts (ECMWF) and satellite
data were acquired from the Copernicus Marine Environment Monitoring Service
(CMEMS) for the period 2000 to 2014. Sea level (ssh) is the predictand and the
independent variables are sea surface temperature (sst), mean sea level pressure (psl),
surface pressure (sp), evaporation (e), ocean current (oc), and sea surface salinity
(ss). Data pertaining to sea surface temperature, mean sea level pressure, surface
pressure, and evaporation were retrieved from ECMWF, whereas data regarding sea
level, ocean current, and salinity were from satellite altimetry observations obtained
from CMEMS. The GCM data for the historical period (2000–2005) were acquired
from Coupled Model Intercomparison Project (CMIP) phase 5.

17.4 Identification of Predictors

In order to identify the predictors, correlation analysis was performed between the
dependent (sea level) and independent variables (sea surface temperature, mean
sea level pressure, surface pressure, evaporation, ocean current, and sea surface
salinity). From this analysis, the variables which are more correlated to sea level
were identified. These variables which influence sea level the most were subse-
quently employed as predictors for sea level. Results of the correlation analysis are
presented in Table 17.1.

From the correlation matrix, it is evident that the variables most correlated to sea
level are mean sea level pressure, surface pressure, sea surface temperature, ocean
current, and sea surface salinity. Apart from this, surface pressure reveals a strong
correlation with the mean sea level pressure. Similarly, ocean current exhibits good
correlation with sea surface temperature and mean sea level pressure. These inter-
correlated variables were discarded from the list of predictors. Thus, the variables
which influence sea level the most are sea surface temperature, sea level pressure,
and sea surface salinity.

Table 17.1 Correlation matrix

Variables ssh sst psl sp e ss oc

ssh 1 0.552 0.622 0.618 −0.378 −0.743 −0.644

sst 0.552 1 0.036 0.049 −0.540 −0.384 −0.565

psl 0.622 0.036 1 0.999 −0.088 −0.484 −0.497

sp 0.618 0.049 0.999 1 −0.088 −0.495 −0.510

e −0.378 −0.540 −0.088 −0.088 1 0.179 0.152

ss −0.743 −0.384 −0.484 −0.495 0.179 1 0.369

oc −0.644 −0.565 −0.497 −0.510 0.152 0.369 1
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17.5 Development of Statistical Downscaling Model

The first step in the development of the downscaling model is to establish a statistical
relationship between the predictand and predictors. The present study employed two
machine learning techniques, viz., SVR and RT. The SVR downscaling model was
trained using 70% of the data (January 2000 to June 2010) and tested using the
remaining 30% data (July 2010 to December 2014). First-degree polynomial was
used as the kernel function. Model parameters obtained after training are C = 10 and
ε = 0.001. Root mean square error was taken as the validation criteria. In order to
test the model, the remaining data were input to the trained model to predict sea level
values. The sea level values obtained from satellite altimetry and SVR downscaling
model during the testing period were compared (Fig. 17.1).

In order to develop the RT downscaling model, 70% of the data (January 2000
to June 2010) was used to train the model. MSE was adopted as the split criterion.
Additional constraints imposed on the model were a minimum parent size of 10,
minimum leaf size of 1, and maximum splits of 125. During training, the dataset was
recursively divided according to the split criterion until the optimal condition was
attained. In order to avoid overtraining, pruning was employed, and the criterion used
being MSE. During testing, the remaining 30% of the data was input to the trained
RTmodel. Sea level values obtained from satellite altimetry and the RT downscaling
model during the testing period were compared (Fig. 17.2).

The performance of these downscaling models was evaluated by statistical
measures such as coefficient of determination (R2) and percentage bias (PBIAS). R2

> 0.5 are considered acceptable. Percentage bias measures the average tendency of
the computed data to be larger or smaller than their observed counterparts. Positive
values represent underestimation, while negative values represent overestimation.
For a good model, the PBIAS value should be between ±10 and ±15% (Moriasi
et al. 2007). Results of performance evaluation are presented in Table 17.2.

It is evident that the predictions of the SVR downscaling model are closer to the
altimeter observations when compared to predictions of the RT downscaling model.
Also, the R2 value is larger for the SVR model. Therefore, the SVR model was

Fig. 17.1 Altimeter versus
SVR sea levels during
testing period
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Fig. 17.2 Altimeter versus
RT sea levels during the
testing period

Table 17.2 Model
performance

Parameter R2 PBIAS (%)

Model

SVR 0.839 13.4

RT 0.763 13.27

identified as a better performing downscaling model. This model can be used to
predict the sea level for future years.

The GCM data of predictors for the historical period (2000–2005) were acquired
from CMIP5. These data were corrected for inherent biases by linear scaling tech-
nique. Then, the bias-corrected data pertaining to predictors such as mean sea level
pressure, sea surface temperature, and sea surface salinity were input to the SVR
model to predict sea level values during the historical period (Fig. 17.3).

From Fig. 17.3, it is clear that a reasonably good match is obtained between the
SVR-downscaled sea level and the altimeter observations. Hence, this model can be

Fig. 17.3 Downscaled
versus altimeter sea levels
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used for future projection of sea level under different representative concentration
pathways (RCPs).

17.6 Conclusions

Climate change can have serious repercussions on sea level changes. In this study,
climatic variables which influence sea level the most were identified; these are mean
sea level pressure, sea surface temperature, and sea surface salinity. The performances
of two statistical downscaling models, viz., SVR and RT models, were compared
based on standard statistical measures. It was observed that support vector regression
performed better than the regression tree technique. Results indicated a reasonably
good match between the altimeter and downscaled sea level values. Based on the
results, it is observed that the SVR technique can be used for statistical downscaling
of sea level projections from GCMs.
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Chapter 18
Assessing the Impacts of Climate Change
on Crop Yield in Upper Godavari River
Sub-basin Using H08 Hydrological Model

Pushpendra Raghav and T. I. Eldho

Abstract World population is growing continuously that lead to increase in demand
for food. Despite of increase in land area under agriculture production since last
decades, one-seventh of people today still do not get sufficient nutrients in their diet.
Climate change is well recognized by the scientific community and it further threats
the food security for the society. Different parts of the world undergo different level
of warming, so it becomes more important to know the regional impact of climate
change on the food production. This study aims to find out the impact of climate
change on the crop yield of wheat, sorghum, and millet in the upper Godavari river
sub-basin using H08 hydrological model. For future simulations, the bias-corrected
climate data were taken from five CMIP5 GCMs for RCP4.5 climate scenario from
Inter-Sectoral Impact Model Intercomparison Fast Track (ISIMIP-FT) data archive.
Our results show that under RCP4.5, wheat yield is projected to decrease by ~37.0%
by the end of mid-future (2040–2059) period with respect to present (1980–2001)
period. The wheat yield is projected to decrease by ~49.23% by the end of twenty-
first century (2080–2099) under RCP4.5. No significant change was observed for the
yield of millet and sorghum under RCP4.5. So, sorghum and millet were found to
be the crops having no or less impact due to global warming, and wheat production
was found to be affected badly due to change in climate. This study demonstrates
the impact of climate change on the yield of major crops in the upper Godavari river
sub-basin due to temperature stress and water stress in the basin, which is very useful
to implement the adaptive means to deal with the possible climate scenarios.

Keywords Crop yield · Climate change · Regional impact · H08 hydrological
model · RCP · GCM · CMIP5
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18.1 Introduction

The change in the global average temperature and precipitation rates was observed
during the twentieth century, and this change is accelerating in the twenty-first century
also globally (Alexander et al. 2006; Oki and Kanae 2006; Pachauri et al. 2014).
The greenhouse gases (e.g. CO2, CH4, N2O, O3, H2O, CFCs, etc.) drive the global
climate, and due to increase in GHGs concentration in the atmosphere, it becomes
important to yearn for change in future climate and its possible impacts on water
availability for humanity and agricultural production (Rosenzweig and Parry 1994;
Fischer et al. 2002). Different parts of the world are experiencing different rates of
climate change, hence it becomes essential to find out the regional impacts of climate
change on agriculture production so that the required adaptive measures could be
implemented for the food security of the people living in that region (Watson et al.
1998; Pachauri et al. 2014).

The crop growth is driven by various factors (e.g. CO2 concentration in atmo-
sphere that is related to stomatal conductance and photosynthesis efficiency of plant,
decisions on fertilizer applications, irrigationmanagement, climate, technology, etc.)
that makes plant growth a very complex process (Lawlor et al. 2004). Among these
factors, weather and climate are prominent factors affecting the agricultural produc-
tion and despite advancement in technology and other fronts, it has been observed
that recent trends in change in climate variables may be responsible for significantly
affecting crop yield trends (Kukal and Irmak 2018). Various studies have been carried
out to get insight about how these factors correlatewith the plant growth (Rosenzweig
and Parry 1994; Siebert and Ewert 2014; Donatelli et al. 2015; Heino et al. 2018).

In this paper, we analyze the impact of water stress and temperature stress on
the yield of three major crops in the upper Godavari river basin, namely sorghum,
millet, and wheat. Although nitrogen and phosphorous play a very important role
in plant growth but due to non-availability of data on fertilizer application, these
factors were not considered in the present study. To reduce uncertainties in the future
projections of hydro-meteorological variables, the hydrologicalmodel known asH08
was forced with climate data obtained from ISIMIP-FT project where bias-corrected
climate data from five CMIP5 GCMs are available. Representative concentration
pathway 4.5 (RCP4.5) is taken as a possible climate scenario for the present study.
The present study has been carried out in three time slices, namely historical period
(1980–2001), mid-future period (2040–2059), and far–future period (2080–2099).

18.2 Study Area and Database Development

The river Godavari ranks 32nd and 34th in terms of water flow and catchment area,
respectively, among the 60 major rivers worldwide and flows through six states,
viz., Madhya Pradesh, Maharashtra, Karnataka, Andhra Pradesh, Chhattisgarh, and
Orissa. The river Godavari originates at the Sahyadri hills near Triambakeshwar in
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Fig. 18.1 Geographical settings of upper Godavari river basin

Nasik district of Maharashtra state in India at an altitude of 1,065 m in the Western
Ghats, about 80 km east of Arabian Sea. After descending from Western Ghats,
it traverses with a south-easterly course across the southern part of Indian penin-
sula, and after flowing about 1,230 km, it drains into Bay of Bengal. About 49%
(~152,199 km2) of total drainage area of Godavari basin falls into Maharashtra and
in Maharashtra Godavari basin is divided into 27 sub-basins. Figure 18.1 shows the
location map of the present study region: upper Godavari river sub-basin (UGRSB).
UGRSB is a sub-basin of Godavari river basin having its whole catchment area in
Maharashtra state. Generally, the catchment area upstream of Paithan dam where
rivers Mula, Pravara and all other tributaries which joins the Godavari river is been
designated as UGRSB. UGRSB is one of the developed basins in terms of industry,
urban, and agriculture. Its total catchment area is ~21,774 km2 and about 8.6 million
population lives in 45 towns and 1883 villages. The Godavari basin has a tropical
climate characterized by cold weather, hot weather, Southwest monsoon, and post
monsoon. The UGRSB receives major part of its rainfall (around 85%) during July to
September months during Southwest monsoon period. The sub-basin can be shared
into two regions, the upstream reaches in higher elevation areas along the Western
Ghats, and the downstream reaches with lower elevation where Jayakwadi reservoir
and its command zones lie. When spatial variations are considered, the upstream
reaches receive heavy rainfall while lower reaches lie in rain shadow zone with
much lower rainfall. The average annual rainfall in the UGRSB is 760 mm. The
mean annual surface temperature in the Western Ghats side is about 24 °C, and it
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increases gradually toward the east. The land use in UGRSB is dominated by barren
land and agricultural land.

Table 18.1 describes different types of input data used in this study. Meteoro-
logical input data include rainfall, air temperature, specific humidity, air pressure,
wind speed, long-wave downward radiation, and short-wave downward radiation.
For historical simulations, these variables were taken from the WFD (Weedon et al.
2011) which is an ERA-40 reanalysis product of the European Centre for Medium
Range Weather Forecasting (ECMWF). The albedo values were taken from the
Second Global Soil Wetness Project (GSWP2). Data on harvested area was down-
loaded from http://www.ramankuttylab.com/data.html where inventory on contem-
porary and historical global land use practices is available. For detailed informa-
tion on this data, see Ramankutty et al. (2008) and Monfreda et al. (2008). The
model parameters related to soil and vegetation were calibrated catchment-wise.
The gauged streamflow records were collected from Central Water Commission
of India (http://www.cwc.nic.in/, Accessed on: 25/08/2017). For impact analysis,
bias-corrected climate data from five CMIP5 GCMs, namely MIROC-ESM-CHEM,
HadGEM2-ES, GDFL-ESM2M, IPSL-CM5A-LR, and NorESM1-M were down-
loaded from ISIMIP-ft archives (http://dataservices.gfz-potsdam.de/pik/showshort.
php?id=escidoc:1478169). ISIMIP is a community-drivenmodeling effort that brings
together impact models across sectors and scales to generate consistent and compre-
hensive projections and impacts on the agriculture, water, health, biome, and infras-
tructure sectors at different level of global warming. For detailed information on bias
correction methodology applied to different variables, see Hempel et al. (2013).

18.3 Methodology and Hydrological Model: H08

H08 is a grid-based, distributed hydrological model developed by Hanasaki et al.
(2008). It consists of six sub-models of major human activities: land surface
hydrology, river routing, crop growth, anthropogenic water withdrawal, crop growth,
reservoir operation, and environment flow requirement. For this study, only three
modules, the land surface module, river routing module, and crop growth module
were used. Land surface module simulates water balance components and energy
balance components above and beneath the land surface when forced by the high-
temporal-resolution climate data. As a water balance component, runoff (surface
and sub-surface runoff), evapotranspiration, and potential evapotranspiration are the
outputs and soil moisture acts as state variable. River routing module routs the runoff
from upstream to downstream. Crop growth module calculates crop calendar, crop
yield, and irrigation water requirement.

The land surface hydrologymodule is based on a bucket model (Manabe 1969 and
Robock et al. 1995) but differs from original formulation in the following aspects.
First, soil temperature is calculated using the force restore method (Bhumralkar
1975;Deardorff 1978) to simulate the diurnal cycle of surface temperature reasonably
using three-hourlymeteorological forcing inputs. Second, a simple subsurface runoff

http://www.ramankuttylab.com/data.html
http://www.cwc.nic.in/
http://dataservices.gfz-potsdam.de/pik/showshort.php%3fid%3descidoc:1478169
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parameterization scheme is added to the model. Third, two independent land surface
conditions can be simulated within a single grid that is intended to separate irrigated
cropland from other land types.

Potential evaporation EP is calculated as

EP(TS) = ρCDU (qSAT (TS) − qa) (37.1)

where ρ is the air density,CD is the bulk transfer coefficient, U is the wind speed,
qSAT (TS) is the saturated specific humidity at surface temperature, and qa is the
specific humidity.

Evaporation from the surface is calculated as

E = βEP(TS) (37.2)

where

β =
{

1 i f 0.75W f ≤ W
W
Wf

i f W < 0.75W f

where W is the soil water content and W f is the soil water content at field capacity.
Surface runoff is calculated as

QS =
{
W − W f i f W f < W

0 i f W ≤ W f
(37.3)

Subsurface runoff is calculated as

Qsb = W f

τ

(
W

W f

)γ

(37.4)

where τ and γ are time constant and shape parameter, respectively, and these two
parameters were calibrated in the present study.

River routing module is based on Oki et al. (1999) and crop growth module is
based on soil and water integrated model (Krysanova et al. 2000).

The crop growthmodule estimates the cropping period necessary to obtainmature
total plant biomass and crop yield and estimates crop growth using heat unit theory.

During the cropping period, plant biomass is calculated using a simple photosyn-
thesis model as

�B = BE × PAR × REGF (37.5)

PAR = 0.02092RAD
[
1 − exp(−0.65L AI )

]
(37.6)
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REGF = min(T S,WS, NS, PS) (37.7)

where �B is the daily increase in total biomass, BE is a crop-specific parameter,
PAR is photosynthetically active radiation, REGF is the crop-regulating factor,
RAD is short-wave radiation, and L AI is leaf area index. The four stress factors
which affect crop growth are temperature stress (TS), water stress (WS), nitrogen
stress (NS), and phosphorous stress (PS). The NS and PS were not considered in
the present study because of the lack of information on fertilizer application.

The crop yield is estimated as

Y LD = HV ST I × WSF

WSF + exp(6.117 − 0.086 × WSF)
× BAG (37.8)

where

BAG = 1 − (0.4 − 0.2 × I HUN )
∑

�B (37.9)

I HUN =
∑

t (T − TB)

PHUN
(3.10)

WSF = SWU

SW P
× 100 (3.11)

HV ST I is a crop-specific parameter, PHUN is potential heat units required for
the maturity of the crop, TB is plant’s specific base temperature, SWU (SW P) is the
accumulated actual (potential) plant transpiration in the second half of the growing
season.

Figure 18.2 shows the flowchart of methodology used in the present study from
model setup to future simulations. Four model parameters, namely root-zone soil
depth (d), bulk transfer coefficient (CD), time constant (τ), and shape parameter
(γ) were calibrated in the present study. WFD forcing data is given as the input to
the land surface module that outputs gridded runoff that is further routed to get a
hydrograph at desired locations by using river routing module of H08 model. Crop
growth model takes potential evapotranspiration (PET), actual evapotranspiration
(AET), downward short-wave radiation, and temperature as an input to simulate
crop biomass. PET and AET are simulated by land surface module of H08 model.
Once the model is calibrated and validated, then forcing data of the GCMs is given
as the input to the model to investigate the impact of climate change on crop yield.
The model is run for five GCMs individually for both historical period and future
periods. The results were averaged over the five GCMs to deal with the uncertainty
due to each GCM’s unique structure.
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Fig. 18.2 Flowchart of methodology used for the study

18.4 Results and Discussion

Table 18.2 presents themodel performance indices for both calibration and validation
period which indicate that model simulated streamflow is in good agreement with
the historical observed streamflow for all two stations.

Figures 18.3 and 18.4 plot the comparison of simulated and observed streamflow
at Mula and Bhandardara stations, respectively. The Nash–Sutcliffe efficiency varies
between 0.80 and 0.84 for calibration period and 0.71 and 0.75 for validation period.
Other model performance indices like refined index of agreement (dr), percentage

Table 18.2 Model calibration and validation

Routing station Time period NSE dr PBIAS (%) RMSE (m3/s) R2

Mula 1984–1994 0.84 0.87 −5.2 16.7 0.84

1995–2001 0.75 0.82 −14.1 17 0.79

Bhandardara 1985–1993 0.80 0.87 17.4 10.1 0.85

1994–2001 0.71 0.82 32.1 14.1 0.83
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Table 18.3 Annual mean and
percentage change of yield of
major crops with respect to
historical period in UGRSB
under RCP4.5

Crops Time period Annual mean
(kg/ha)

% change

Millet Historical
(1980–2001)

8704 –

Mid-future
(2040–2059)

8678 −0.30

Far-future
(2080–2099)

8856 1.75

Sorghum Historical
(1980–2001)

7582 –

Mid-future
(2040–2059)

7586 0.05

Far-future
(2080–2099)

7764 0.02

Wheat Historical
(1980–2001)

2584 –

Mid-future
(2040–2059)

1628 −37.0

Far-future
(2080–2099)

1312 −49.23

bias (PBIAS), and coefficient of determination (R2) were also within satisfactory
limits.

Table 18.3 shows the annual mean and percentage change in yield of various crops
with respect to historical period. It was observed that yield of wheat was adversely
affected due to change in USRSB climate that is attributed to the increase in future
temperature. Millet and sorghum production was also not affected much. Generally,
millet and sorghum are considered photoperiodic and belong to the Hatch-Slack
(or C4) class of photosynthesis which allows photosynthesis to continue at higher
temperatures. Millet also has high level of resistance to drought; because of that
millet has high potential productivity and millet is capable of adjusting to changing
climate.

Figure 18.5 shows the inter-annual variations in the yield of major crops in
UGRSB. It is clear from Figure 18.5 that yield of wheat is decreasing in the
near-future to end of twenty-first century.

18.5 Conclusions

This study attempted to investigate on the impact of climate change on the yield
of major crops in the UGRSB. Water and temperature are considered the only crop
growth deciding factors. Following are the main findings of this study:
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Fig. 18.5 Inter-annual variations in yield of major crops in UGRSB under RCP4.5. Yield of each
crop in each panel represents the mean of yields from five GCMs used in this study

1. The H08 model performed very well during calibration and validation periods
at all stations with Nash–Sutcliffe efficiency ranging from 0.80 to 0.84 during
calibration period and 0.71–0.75 during validation period.

2. Yield of wheat crop was projected to change by −37.0 and −49.23% by the
mid-future and end of twenty-first century, respectively under RCP4.5 climate
scenario.

3. No significant trend was observed in case of millet and sorghum’s yield because
of their ability to adjust their biomass in changing climate.
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Chapter 19
Evaluation of Time Discretization
of Daily Rainfall From the Literature
for a Specific Site

R. Harshanth, Saha Dauji , and P. K. Srivastava

Abstract Design of hydraulic structures involves usage of the hydrographs, which
are derived from the information of rainfall history at the site. It is well recognized
that the shape of the design hydrograph depends on the hyetograph used to generate it.
However, for derivation of hyetograph, information regarding temporal distribution
of rainfall should be available. It remains a fact that in many places of India and
other developing countries, the information on temporal discretization of rainfall
is not available. This has led to the adoption of curves from the literature, using
which the time distribution of rainfall is derived. Recently, IMD-CWC had published
temporal distribution curves for various river basins in India. The curves considered
for purposes of comparison in this study include those provided by the NRCS-TR55,
US Army Corps and IMD-CWC. The study indicates that the time distribution curve
derived for the site from the recorded continuous hourly rainfall data for many years
is significantly different from those obtained for the existing curves in the literature.
It is also shown that this difference leads to either over-design or under-design of
hydraulic elements. The study underlines the importance of obtaining the site-specific
curves for important projects so as to carry out economical and safe designs.
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19.1 Introduction

For design of hydraulic structures such as weirs, check dams, culverts and storm
water drainage systems, it is required to arrive at the design discharge at the point
of interest. The importance of the structure defines the mean recurrence interval,
also known as return period, which needs to be considered for the evaluation of
the extreme rainfall for that purpose. In India, most of the rainfall records are daily
records, from 08:30 h on a day to 08:30 h the next day, and this is recorded as the
rainfall for that day. Extremevalue analysis of this data yields the desired daily rainfall
extreme. However, for hydraulic structures having much less time of concentration,
information about finer discretization in time is required to arrive at the deign rainfall
extreme, and subsequently runoff calculations.

Time distribution curves illustrate the variation of the hourly rainfall as a func-
tion of time. This distribution is valuable for hydrologic design of structures as it is
possible to obtain the maximum rainfall value corresponding to the time of concen-
tration specified for the structure. It may also be recognized here that the design
hyetograph directly depends on the hyetograph used to generate it. Time distribu-
tion curves also form a basis of generating the time distribution of an n-hour rainfall
hyetograph when the maximum daily rainfall value is known. Knowledge of the time
distribution is useful for analyzing the rainfall characteristics and forms a rational
basis for runoff prediction. In the absence ofwell-established time distribution curves
for India, designers mostly resort to such curves from foreign locations.

Recently, IMD-CWC had published such time distribution information for few
river basins in India. In this paper, the time distribution curves available in the liter-
ature are applied to a western coastal site in India and the results are compared to
those obtained from site-specific analysis. Details on the site, rainfall data and the
methodology are presented in the sections to follow.

19.2 Site Description

The site under consideration is located about 200 km northwards of Mumbai. The
rainfall season is dominated by the South-west monsoon. The average rainfall of
about 2000 mm occurs between the months of June to September. The rainfall data
was obtained in a chronological manner in the form of hourly rainfall for a period
of 17 years from 1997 to 2013. The unit of measurement of rainfall depth was in
millimeters. This data was used for further analysis.
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19.3 Time Distribution Curves from the Literature

In USA, research was carried out by several agencies like NRCS—National
Resources Conservation Services TR 55 (NRCS TR-55 1986) and the USAC
(EM1110-2–1411 1965) to provide design basis spatial rainfall distribution. The
results were provided in the form of dimensionless curves for various regions of the
country. The zonation of the country was based on the hydro-meteorological char-
acteristics and rainfall patterns of USA. The curves in TR-55 also include hourly
rainfall intensities for selected design frequency arranged in a sequence that would
produce the maximum runoff. The TR-55 curves are shown in Fig. 19.1.

But it is well recognized that preparation of such curves requires continuous rain-
fall data over many years. However, most countries, due to the lack of continuous
rainfall information, resort to these models for arriving at the design rainfall hyeto-
graph. As TR-55 curves were originally obtained by denaturing the rainfall so that its
maximumvalue of rainfall occurs toward themid time of the total duration of rainfall,
it is imperative that its suitability in Indian monsoon rainfall conditions, particularly
for this site is yet to be established. In order to assess the applicability of methods
for a western coastal site in India, the dimensionless rainfall time distribution curves
were evaluated from several established curves obtained from the literature, namely
TR55, SPS and IMD-CWC (PMPAtlas 2015). Herein, the maximum n-hour fraction
of 24-h rainfall obtained from these curves are compared with the maximum n-hour
fraction of the 24-h devised from continuous rainfall data of several years recorded
at the site. In case of SPS curves, it is required to select the index rainfall in inches for

Fig. 19.1 NRCS TR-55 dimensionless urves (NRCS TR-55 1986)
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the site under consideration. This is normally done as per the guidelines suggested by
EM1110-2–1411 (1965). It is presented Fig. 19.2. However, the guideline is appli-
cable only for USA. In order to assess its applicability in India, the extreme values
(minimum and maximum) of index rainfall are chosen to arrive at the possible range
of values for comparison.

Studies were also conducted by the India Meteorological Department and the
Central Water Commission (PMP Atlas 2015) for different catchments in India
subjected to monsoon rainfall through the probable maximum precipitation or the
PMP method using the physical or meteorological approach. This involves the anal-
ysis of the maximum rainfall events in the given catchment area along with the
neighboring catchments. Consequently, the depth-area-duration (DAD) curves are
developed to understand the temporal and areal distribution of extreme storms in the
catchment. This is followed by application of statistical techniques like frequency
analysis to determine the maximum storm. There are separate sets of documents for
Brahmaputra basin, Cauvery basin, Ganga basin, Godavari basin, Mahanadi basin,
Narmada basin and for the west-flowing basin. For west-flowing rivers, PMP Atlas
(2015) has been developed by IMD-CWC for two different catchments, the northern
and the southern, and time distribution of rainfall for different durations of storm
events is suggested, such as 12 h, 24 h, 48 h, etc. with the temporal axis in hours. For
intermediate duration of storms, choice of the time distribution is left to the judicious
decision of the designer. For example, the 24 h time distribution applicable for the
site from PMP Atlas (2015) is reproduced in Fig. 19.3.

The methodology adopted for arriving the maximum n-hour fraction of 24-h
rainfall from NRCS and SPS curves is described in the following sections. Also,

Fig. 19.2 US Army Corps curves (EM1110-2–1411 1965)
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Fig. 19.3 IMD-CWCcurve for 24-h rainfall for theCatchment 102:Northern basin forwest-flowing
rivers (PMP Atlas 2015)

the results of its comparison with the results obtained with Tarapur site data and
IMD-CWC curves for western coastal site are presented.

19.4 Data and Methodology

The data for the study was continuous hourly rainfall records for 17 years, from 1997
to 2013. The maximum fraction of daily rainfall occurring in 1 h, continuous 2 h,
continuous 3 h, and so on till continuous 24 h was calculated from these data. In
India, for most of the stations where daily rainfall data is recorded, hydrologic data
begins at 08:30 h on a particular and ends at 08:30 h on the next day. Calculations
are carried out to find out the maximum 1 h, maximum continuous 2 h, and so on
up to maximum continuous 24-h rainfall value of a hydrologic day. The calculated
values are normalized with respect to the total rainfall value of that particular day.

In case of NRCS TR-55 curves, the graphs are available in the form of dimension-
less continuousmass curves for a periodof 24h. In order to obtain the timedistribution
curves, hyetographs are sought. So initially, the mass curves were converted to corre-
sponding hyetographs by taking the derivative of the mass curve. Once the digitized
data of hyetograph were available, it was observed that the data was available in the
form of distinct peaks for discrete time instants. These time instants range from 0
to 24 h with spacing between each time instant being maintained between 0.05 and
0.1 h. In order to make the data comparable with other curves in literature, the values
of rainfall were lumped so as to obtain hourly rainfall values. This means that the
total amount of rainfall in the interval 0 to 1 h is lumped at 1st hour. Similarly, the
total rainfall occurring in the interval 1 to 2 h is lumped at the 2nd h and so on. The
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hyetographs so obtained for each of the TR-55 curves are shown in Figs. 19.4, 19.5,
19.6 and 19.7.

Fig. 19.4 Hyetograph of TR-55 Curve I (NRCS TR-55 1986)

Fig. 19.5 Hyetograph of TR-55 Curve IA (NRCS TR-55 1986)
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Fig. 19.6 Hyetograph of TR-55 Curve II (NRCS TR-55 1986)

Fig. 19.7 Hyetograph of TR-55 Curve III (NRCS TR-55 1986)

It can be observed from these hyetographs that most of the rainfall is concentrated
toward the mid duration of the entire rainfall. The typical hyetograph for tropical
monsoon, applicable for India, is from Curve III as depicted in Fig. 19.7. Later,
this will be compared with the typical hyetographs obtained from the site. Once
the hyetograph is obtained, the values of continuous n-hour maximum rainfall as a
fraction of 24-h rainfall were calculated for each of the NRCS TR-55 hyetograph.
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Table 19.1 Hourly rainfall distribution for 6-h segment (EM1110-2–1411 1965)

Rainfall period (sub-division of 6-h
period)

Time distribution of 6-h SPS rainfall, expressed in
percent of total 6-h rainfall

Selected unit rainfall duration

6-h 3-h 2-h 1-h

1st 100 33 26 10

2nd 67 53 12

3rd 21 15

4th 38

5th 14

6th 11

Total 100 100 100 100

In the case of SPS (Standard Project Storm) curves, the original curve is presented
in the form of various curves corresponding to different 6-h periods of a 24-h storm as
shown in Fig. 19.2.Having analyzed various storms in theUSA, theUSAC (EM1110-
2–1411 1965) concluded that for maximum runoff the maximum proportion of rain-
fall should occur in the third 6-h period (13–18 h). The USAC also provides the 1-h
distribution of rainfall in each 6-h rainfall period as a percentage of 24-h rainfall (see
Table 19.1 for reference).

However, as already mentioned earlier, in order to develop the hyetograph, it
is required to give the index rainfall in inches as input. This index rainfall is site
specific. The USAC presents the value of index rainfall for various sites in USA.
Thus, index rainfall values are not available for Indian sites. However, only the
hyetographs corresponding to extreme values of index rainfall (8 inches: SPSmin
and 20 inches: SPSmax) are generated. This is done to capture the range of curves
that can be generated through the USAC method. Hyetographs corresponding to the
aforementioned index values are shown in Figs. 19.8 and 19.9.

In case of Tarapur site, data was obtained in the form of hourly data for 17 years.
The continuousmaximumn-hour rainfall (where n= 1, 2, 3,…, 24) normalized to the
maximum 24-h rainfall was calculated for all hydrologic days in a year. The plot of
the variation of the maximum fraction of 24-h rainfall in continuous n-hour rainfall is
shown in Fig. 19.10. Along with this, such fractions for the area under consideration
developed by IMD-CWC (PMP Atlas 2015) were also compared. From Fig. 19.10,
it can be inferred that for the maximum 2-h continuous rainfall contributes to about
40% of the 24-h rainfall. Similarly, we have about 65% in continuous 6 h and about
80% in continuous 9 h.
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Fig. 19.8 Hyetograph of SPS index rainfall of 8 inches (EM1110-2–1411 1965)

Fig. 19.9 Hyetograph of SPS index rainfall of 20 inches (EM1110-2–1411 1965)
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Fig. 19.10 Maximum n-hour fraction of 24-h rainfall for the site

19.5 Results and Discussion

The results of comparative analysis of maximum n-fraction obtained from the above-
mentioned sources with Tarapur site data are presented in the form of column plots
of percentage deviation of Tarapur calculated values. The percentage deviation of
Tarapur site values from the values predicted by different curve types of TR-55
(NRCS TR-55 1986) are shown in Figs. 19.11, 19.12, 19.13 and 19.14. Similarly,
the percentage deviation of Tarapur site values from those predicted by SPS 8 inches
and SPS 20 inches (EM1110-2–1411 1965) are shown in Figs. 19.15 and 19.16,
respectively. Finally, considering the available Indian temporal distribution curve, the
percentage deviation of Tarapur values from IMD-CWC (PMP Atlas 2015) values
for catchment in an applicable region is presented in Fig. 19.17.

In case ofTR-55Curve I, the values are slightly over-predicted up to 5h continuous
rainfall and slightly under-predicts thereafter as can be seen in Fig. 19.11. It can be
observed in Fig. 19.12 that the values obtained from site data is much higher than
those predicted TR-55 Curve IA especially in the initial hours. Amaximum deviation
of as much as 40% is observed. However, as can be seen in Fig. 19.13, it is observed
that TR 55 Curve II grossly over-predicts the values up to about 45%. It can also
be seen from Fig. 19.14 that TR55 Curve III, the applicable curve for India, mostly
over-predicts the n-hour maximum fraction with the maximum deviation of about
30%. As the typical time distribution patterns were developed for USA, they fail to
capture the rainfall characteristics of the Indian site adequately, resulting in these
deviations.
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Fig. 19.11 Percentage deviation of Tarapur site values from TR-55 Curve I

Fig. 19.12 Percentage deviation of Tarapur site values from TR-55 Curve IA

Similarly, it can be inferred from Figs. 19.15 and 19.16 that while SPS (8 inches)
over-predicts of the n-hour continuous maximum of about 25%, SPS (20 inches)
under-predicts by an amount of 30%. Since index rainfall values have not been
defined in (EM1110-2–1411 1965) for Indian conditions, this variation is expected.
Interestingly, the IMD-CWC predicted values for a similar western coastal site are
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Fig. 19.13 Percentage deviation of Tarapur site values from TR-55 Curve II

Fig. 19.14 Percentage deviation of Tarapur site values from TR-55 Curve III

also lower than Tarapur site calculated values by a maximum of 35%, as shown
in Fig. 19.17. This could be due to the areal averaging performed for the entire
catchment-2 to arrive at the time distribution given in IMD-CWC curve (PMP Atlas
2015). This deviation, in similar fashion to other curves in literature, is especially
pronounced for smaller time of concentration.
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Fig. 19.15 Percentage deviation of Tarapur site values from SPS-8 inches

Fig. 19.16 Percentage deviation of Tarapur site values from SPS 20-inches
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Fig. 19.17 Percentage deviation of Tarapur site values from PMP Atlas (2015)

19.6 Conclusions

Thus, to summarize, results indicate that the site-specific n-hour fraction of 24-h
rainfall is quite different in nature when compared to those from the literature, even
when the applicable generic curve for the particular region developed by IMD-CWC
is considered. The American curves depict a rainfall over the storm duration such
that the maximum proportion of the rainfall occurs about the mid time of the total
rainfall duration. For Indianmonsoon rainfall, it could be very different. The analysis
carried out also indicated that the values tabulated by IMD-CWC for western coasts
provide a less conservative estimate than the site-specific curve warranting the need
for detailed location-focused study. Thus, it can be stated that usage of literature that
provided generalized curves may lead to either unsafe or uneconomical designs.

Future work would be directed toward the development of time distribution curve
for the site, which would be applicable for the surrounding region as well. The
site-specific time distribution curve would be better suited to represent the temporal
distribution of rainfall at the site under consideration, and would be very useful for
planning and design of the hydraulic structures such as stormwater drainage systems,
culverts, bridges, etc. and would facilitate safe hydraulic designs when compared to
the time distribution curves from literature.
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Chapter 20
Quality Checks on Continuous Rainfall
Records: A Case Study

R. Harshanth, Saha Dauji , and P. K. Srivastava

Abstract The records obtained from the rain gauge stations may contain missing
information or other forms of human or machine errors, which might hamper with
analysis or lead to incorrect inferences drawn from the data. It is pertinent that the
data should be screened and suitable quality checks be applied on the records before
using them for hydrological analysis. In this paper, the statistical quality checks
suitable for checking the quality of hourly time history of rainfall from a site are
discussed along with example applications as a case study.

Keywords Quality checks · Hourly rainfall · Screening · Statistical tests

20.1 Introduction

For many hydrological studies, the data is obtained in the form of time series infor-
mation. For example, we generally obtain the rainfall information in the form of
daily data (in mm of rainfall) for several years. In certain cases, hourly data is also
available for analysis. However, this data cannot be used for the study before certain
statistical quality checks are conducted on the entire dataset in order to ensure the
stationarity, homogeneity and consistency of the data (Tung and Yen 2005). In order
to study the characteristics of rainfall at a particular site, the rainfall data obtained is
in the form of large time series information, consisting of hourly storm value for a
period of 17 years (1997–2013).
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This storm data was obtained from the observed recordings of a tipping bucket-
type rain gauge. It works on the principle that the rainfall collection bucket tips over
when it collects the rainfall and returns back to its position. Each tip corresponds to a
pre-calibrated amount of rainfall. The total rainfall falling in 1 h is calculated based
on total number of tips in 1 h. Thereby we obtain continuous rainfall information.
Since the data is obtained digitally, the data need to be screened before being put
into further use. This is because of the possibility of missing information and human
or machine errors during the process of recording of data.

Since we obtain the data in the form of large time series, specific statistical quality
checks are employed to study them. Passing such statistical screening tests provides
the necessary confidence that the data is free of any instrumental or human errors.
Only after screening and correcting the data would the data be used for any further
analysis. The procedures used for screening the data are described in the following
sections.

20.2 Site Description

The site under consideration is located about 200 km northwards of Mumbai. The
rainfall season is dominated by the South-west monsoon. The average rainfall of
about 2000 mm occurs between the months of June and September. The rainfall data
was obtained in a chronological manner in the form of hourly rainfall for a period
of 17 years from 1997 to 2013. The unit of measurement of rainfall depth was in
millimeters. This data was used for further analysis.

20.3 Screening of Hydrological Data

In order to check the consistency, homogeneity and stationery properties of the time
series data, statistical tests were conducted according to Dahmen and Hall (1990).
The test procedures along with their results obtained from the data under study are
elucidated in paragraphs that follow.

20.3.1 Check for Trend: Spearman’s Rank Correlation
Method

This test is carried out to check the absence of trend in time series data (Dahmen and
Hall 1990). This test is also conducted to ensure that the data collected is uncorrelated
to the order in which they have been collected. The test is conducted on annual total
rainfall values. Trend characteristics are noted by testing the null hypotheses Rsp =
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Table 20.1 Results of Spearman’s test for trend

Parameter Value Remark

Sigma 334 Standard deviation

N 17 No of years

d.o.f. 15 Degrees of freedom

Rsp 0.591 Rank correlation coefficient

ti 2.835 Test statistic

tul 2.02 Limits for ti to accept the null hypothesis, i.e., there is no trend

tll −2.02

Since ti > tul the test shows an increasing trend of the time series data

0 (which indicates absence of trend), where Rsp is the Spearman’s rank correlation
coefficient, against the test statistic tt. Here, tt has a double-tailed Student’s t distribu-
tion with n − 2 degrees of freedom. These tests were conducted with a significance
value of 5%. The test conducted on the time series data indicated a slightly increasing
trend as shown in Table 20.1. This nature, however, was also confirmed by several
other studies conducted across the country indicating an increasing rainfall trend
over the years.

20.3.2 Check for Trend: Kendall’s Tau Test

This test also performs the check on presence of trend in the total annual rainfall
data. In this test, the Mann Kendall test parameter S, defined as the sum of number
of positive and negative deviations of the subsequent value from the current value is
determined (Spiegel 1961). From this the test statistic Zs is calculated. This statistic
is tested against the standard test statistic Z0.025, considering a significance level of
5% and two-tailed distribution. The null hypothesis is that there is no trend in the
dataset, i.e., the data is random. The result of the calculation is shown in Table 20.2. It
can be thus inferred from the results that the total annual rainfall values are random,
i.e., there is no significant trend in the data.

Table 20.2 Results of Mann
Kendall’s test for trend

Parameter Value Remark

No of data points 17 17 years data

Mann Kendall Test parameter, S 0 Calculated values

Zs 0

Z0.025 1.96 5% Significance

Since |Zs| is less than Z0.025, the null hypothesis is accepted, i.e.,
there is no trend in the data
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Fig. 20.1 Variation of cumulative deviation from mean curve of yearly and monsoon rainfall
through the years

20.3.3 Test for Change Point: Cumulative Deviation
from the Mean

This test also evaluates the stability of mean of the time series data (Dahmen and Hall
1990). Here, the deviation from mean of each data is calculated and their cumulative
values are calculated. Then these values are plotted against time. Calculations are
carried out for total annual rainfall and monsoon rainfall and the curve is shown in
Fig. 20.1. It can be seen that there is a break point between the years 2002 and 2004.

20.3.4 Check for Stability of Variance: Fisher’s Test

This test is carried out to assess the stability of variances between smaller subsets of
a larger time series data. The time series data can be used for further analysis only
if the variances are stable. Similar to earlier tests, the time series data used in this
study corresponds to the annual rainfall values and subsequently the subsets refer
to chronological groupings of annual rainfall values. The choice of number of such
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Table 20.3 Results of Fisher’s test for two subsets of annual rainfall

Subsets 2

Lower limit (LL) 0.221

Upper limit (UL) 4.9

Statistic, Ft 0.945

Result Thus, the variance is stable

Table 20.4 Results of Fisher’s test for two subsets of annual rainfall

Between subsets 1 and 2 Between subsets 3 and 2 Between subsets 3 and 1

Ft 0.873 F 1.737 F 1.989

UL 7.15 UL 7.39 UL 7.39

LL 0.14 LL 0.107 LL 0.107

Since LL < F < UL, the
variance is stable

Since LL < F < UL, the
variance is stable

Since LL < F < UL, the
variance is stable

subsets is arbitrary. However, Dahmen and Hall (1990) advise against very small
subsets, i.e., subsets with very small number of values.

In view of the same, the present study adopts a procedure where the annual rainfall
valueswere divided intomaximumof three subsetswith the condition that the number
of values in all subsets be maintained almost to be equal. Thus, we have 17 annual
rainfall values corresponding to 17 years.

These 17 annual rainfall values (corresponding to years 1997–2013) were split
further into smaller subsets of rainfall, say 9 values in one set (corresponding to years
1997–2006) and 8 values in another (corresponding to years 2007–2013). In case of
three subsets as well, the whole time series were split so as to maintain almost equal
number of annual rainfall values, i.e., subset 1 (1997–2002), subset 2 (2003–2008),
and subset 3 (2009–2013).

The test statistic calculates the ratio of variances of two split datasets, the null
hypotheses being the equality of variances. The test is carried out with a confidence
level of 95%. Tests were conducted on two subsets and three subsets of the larger
dataset, i.e., the values of annual rainfall. Results are presented in Tables 20.3 and
20.4. They indicate that the variances between split datasets are stable.

20.3.5 Check for Stability of Means: T-Test

This test is carried out on the same split datasets used in Fisher’s test (see Sect. 20.3.4)
and is used for checking the stability of means (Dahmen and Hall 1990). This test is
conducted to assess the stability of means between two datasets. The groupings of
the data into subsets were carried out in similar fashion to Fisher’s test for stability
of variance. The null hypothesis tests the equality of means between two datasets
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against the alternative that they are unequal. The test statistic has a t-distribution.
The results are shown in Tables 20.5 and 20.6. The calculations were carried out
with a statistical significance level of 5%. Results of the test indicate that the means
are unstable when the number of subdivisions of data is 2. Whereas the results also
indicate that means are stable for three subdivisions of data. This instability in mean
in the larger dataset can be attributed to increasing rainfall pattern over the years.

Fisher’s test and t-test were also carried out on annual monsoon rainfall data,
wherein the total rainfall occurring through themonsoonmonths of June toSeptember
each year was used for statistical calculations and they yielded similar results. The
variation of monsoon rainfall when compared to annual rainfall through the years is
shown in Fig. 20.2.

It can be observed from Fig. 20.2 that the difference in the values of total
and monsoon rainfall is very less, suggesting that the bulk of the annual rainfall
occurs during the months of June to September. Understandably, the statistical tests
performed on monsoon rainfall alone did not alter the results of analysis.

Table 20.5 Results of t-test for two subsets of annual rainfall

Parameter Value Remarks

tt −2.495 Test statistic

V 15 Degrees of freedom

UL 2.12 Limits for acceptance of null hypothesis, i.e., mean is stable

LL −2.12

Since tt < LL, the mean is marginally unstable
Note LL: Lower limit; UL: Upper limit

Table 20.6 Results of t-test for three subsets of annual rainfall

Between subsets 1 and 2 Between subsets 2 and 3 Between subsets 1 and 3

V 8 v 7 v 7

UL 2.31 UL 2.36 UL 2.36

LL −2.31 LL −2.36 LL −2.36

tt −1.327 tt −1.284 tt −2.396

Since LL < tt < UL, mean is
stable

Since LL < tt < UL, mean is
stable

Since tt < LL, mean is
marginally unstable

Note LL: Lower limit; UL: Upper limit
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Fig. 20.2 Comparison of monsoon rainfall and annual rainfall over the years

20.3.6 Check for Persistence of Data: Lag 1 Serial
Correlation Coefficient Test

This test is carried out as a check for absence of persistence in the dataset (Dahmen
and Hall 1990). Essentially, this test also checks the randomness of data. Since it
is a possibility that field measurements can lead to patterns in the dataset due to
malfunction of the instrument or due to persistent human error, it is obvious we test
for the same. Here the null hypothesis is that consequent values of annual rainstorm
values are uncorrelated with each other. The test statistic is lag 1 serial correlation
coefficient, r1 as defined by Box et al. (2013). From Table 20.7, it can be seen that
the data is non-persistent, i.e., the data is random.

20.3.7 Check for Randomness: Wald–Wolfowitz Test

Wald–Wolfowitz test for randomness (also known as Runs test) was also carried out
for individual rainstorms (Spiegel 1961). Around 15 salient rainstorms were picked
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Table 20.7 Results of Lag Serial 1 coefficient test

Parameter Value Remarks

r1 0.164 Serial correlation coefficient

LL −0.537 Limits for acceptance of the null hypothesis, i.e., the dataset is random

UL 0.412

Since LL < r1 < UL, the data is non-persistent, i.e., the dataset is random
Note LL: Lower limit; UL: Upper limit

at random and were subjected to the Runs test. The typical characteristics of the
storms, such as duration, average rainfall intensity, maximum rainfall intensity, and
total rainfall for each of the selected rainstorms are also listed in Table 20.8 (salient
values in boldface).

The maximum average intensity was 42.13 mm/h, whereas the maximum hourly
intensity was 167.7 mm/h, which coincided with the maximum total rainfall of
764mm.Theminimumaverage rainfall intensitywas about 5mm/h and theminimum
total rainfall was 21 mm in any rainstorm. The results of the Run test indicate that the
rainstorms pass the test, which means the null hypothesis that the values are random
cannot be rejected with a confidence level of 95%. A sample hyetograph passing the
Runs test is shown in Fig. 20.3 for completeness.

Table 20.8 Charateristics of the selected storms for Wald–Wolfowitz test (Runs test) for
randomness

S. No Year Date Time Storm characteristics

Duration
(hours)

Average
(mm/h)

Max (mm) Total (mm)

1 2009 14-Jul 1900 h 34 9.75 29 331.5

2 2002 26-Jun 0100 h 28 27.28 167.7 764

3 2009 22-Jul 0200 h 24 16.08 36 386

4 2012 28-Jun 0600 h 2 58.9 74.8 117.8

5 2000 12-Jul 0700 h 8 6.11 104 368.9

6 2006 04-Sep 0600 h 4 42.13 66.5 168.5

7 2012 03-Sep 1100 h 21 21.32 64.3 447.8

8 2004 03-Aug 2200 h 13 9.43 38.9 122.6

9 2008 14-Jun 1300 h 4 8.25 16 33

10 2012 28-Jun 0600 h 3 7 10 21

11 2013 15-Jun 1800 h 8 28.31 56 226.5

12 1999 19-Jun 0600 h 6 5.7 9.5 34.2

13 1998 28-Jun 0500 h 11 18.2 73 200.2

14 2001 13-Jun 2300 h 3 11.13 19.4 33.4

15 2010 01-Aug 0000 h 6 5.16 9 31



20 Quality Checks on Continuous Rainfall Records: A Case Study 231

Fig. 20.3 A sample storm hyetograph

20.4 Conclusions

The screening of the rainfall records and statistical checks for quality are important
prerequisite for useful inferences from thedata. In this paper, few such tests applicable
for hourly rainfall records were discussed and their application was presented as a
case study. From the results of statistical tests presented in the previous section, it can
be concluded that the data follows an increasing trend in rainfall which is consistent
with other similar studies carried out across the country. It can also be concluded that
the data is mostly stable and homogeneous for most cases. Further, the randomness
of the rainfall data was established for the annual rainfall, as well as the individual
rainstorms from different years. Hence, the same data may be employed for further
analysis without implementing any corrections.
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Chapter 21
Assuring Water Intake Sustainability
Under Changing Climate

Gaurav Talukdar and Arup Kumar Sarma

Abstract River carrying sediments is a crucial component of the geochemical cycle
and depending on the local factors, the sedimentsmay be beneficial or detrimental for
the society. Thus,management of river sediment is a challenging task from economic,
social and environmental perspective. In today’s world due to changing climate the
policy makers must come out with a more efficient and better management technique
of these problems. The present study involves construction of a channel through
huge sandbar developed in the Brahmaputra River of Assam in the Guwahati region,
over the time leading to serious water extraction problem to an intake supplying
water to its locality. The river has shifted north over time and there aroused a water
scarcity problem on the south bank. In the present work, MIKE 21C model is used
to simulate the water flowing through a channel constructed between the sandbars
linking the main river. Initially, based on the field survey, the grid is generated and
the bathymetric data are fed into the model. Surface elevation, discharge and water
level are introduced as the initial conditions, and boundary conditions with other
parameters like the roughness coefficients and eddy viscosity. The simulated velocity
was calibrated at the downstream section with the observed one obtained through
survey during that period. After the calibration, the vector plots of the velocity and
water depth are produced. Combining the knowledge derived from the hydrodynamic
model study and geoinformatics study, it has been found that a 10 m wide channel
dredged through the sandbars connecting the river with the intake will be able to
draw sufficient water from the main river to the intake. Thus, it can be found that
MIKE 21C has performed well in handling the complex situation of water scarcity
to sustain its availability for the benefit of the society.

G. Talukdar (B) · A. K. Sarma
Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
e-mail: gauravt@iitg.ac.in

A. K. Sarma
e-mail: aks@iitg.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Jha et al. (eds.), Climate Change Impacts on Water Resources, Water Science
and Technology Library 98, https://doi.org/10.1007/978-3-030-64202-0_21

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64202-0_21&domain=pdf
mailto:gauravt@iitg.ac.in
mailto:aks@iitg.ac.in
https://doi.org/10.1007/978-3-030-64202-0_21


234 G. Talukdar and A. K. Sarma

21.1 Introduction

Water being the most essential substance on Earth is a vital component and the basic
prerequisite for all living beings in general. Out of the total availablewater, only 2.5%
are freshwater and of that, roughly one-third is available to human use and ecosystem.
Rivers are lifeline of a nation and its exploitation can lead to serious impact on human
life. The Brahmaputra river is one among the large braided rivers and seventh largest
in the world (Tandon and Sinha 2007) flowing through China, India and Bangladesh.
The river is governed by high and low flow resulting in tremendous modifications in
the bed form and is characterized by its high discharge, varying morphology, high
bed aggradations and severe erosion. The dwellers residing in the floodplains rely
on the normal flood to bring fresh sediments to the floodplains favoring agriculture
and farming. The people living in the floodplains and chars utilize these sandbars for
cultivating crops during various seasons and make their living. However, the river
can be widening and changing its course with slow migration significantly with time
(Gilfellon et al. 2003) because of climate change. The morphodynamic behavior of
the rivers in terms of plan form and land use change is crucial and affects various
processes like the ecological activities, sedimentation and erosion processes.

Although flood and river bank erosion are the major problems in the river, high
seasonal variation creates drought-like situation during the non-monsoon period.
These leads to the formation of large masses of sandbar in certain reaches in the
entire river. During the lean period in the months of January to May, the water level
in the river recedes and exposed areas can be observed. This situation leads to a
problem of extracting the surface water. Though utilizing the surface water of the
river is essential for meeting the water need (Sarma 2005), the problem of sandbar
formation has led to several inconveniences to the daily cycle of human activities.
During this period, the interruption of the regular water supply, water requirement for
agriculture, diminished industrial goods and so on are some of the major problems
faced by the community. A study needs to be done to understand these problems and
come up with a suitable and practical alternative. This study presents the planform
analysis of the study area to identify spatiotemporal changes of the river in the
study area that has affected the water intake for supply to various organizations
and individuals. Based on the understanding we have applied MIKE 21C model to
identify the portion where a guide channel can be dredged to overcome the problem
of flow into the intake location.

21.2 Motivation and Objective

The global climate change has seen some adverse effects on the environment in
several parts of the globe. The glaciers have shrunk, ice started melting earlier, accel-
erating sea level rise, untimed drought situations and intense heat waves. According
to the United States, National Climate Assessment, the intensity of extreme events
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like the sea level rise, ice and snow melt has already disrupting and damaging the
live and sectors in the U.S. economy (Karl et al. 2009). Climate change encircles
the shifts in precipitation, increasing and decreasing trend of temperature leading to
changes in several features of the climatic system. As a society, we are habituated to
the normal day-to-day situations but are sensitive to extremes. These extremes lead to
tremendous loss of lives, property and economy. The rivers, lakes and reservoirs have
depleted due to its overuse. The crisis of water has prevailed globally, where people
do not have sufficient access to water for their basic needs. WHO and UNICEF has
reported that, worldwide, around 2 billion people still do not have access to clean
drinking water in their homes and nearly 1 billion defecate outside. In India, the
undersupply of water will be increasing with the growing population of 1.4 billion
at a rate of 1%. According to Niti Aayog, the demand for water is projected to be
twice the available supply. In account of those effects, the problem of water supply to
various organizations is also of utmost importance, since the industries are expanding
and the need for water is speeding up at a higher rate. Keeping all the prospects in
view, it necessitates the importance of a mathematical model study that will help in
understanding the processes taking place in the rivers and will contribute in knowing
few aspects associated with it.

21.3 Methodology

To study the spatiotemporal variation of the bed forms of the river through model
study, and to have a proper understanding of the river course, sediment deposition and
movement, satellite data are required. Topographic maps and satellites imageries are
very much helpful in understanding the area and relative changes in the plan form.
Hence, for the study, U.S. Army topographic map (1955), SOI topographic map
(1972), Landsat MSS and TM, Google imagery and LISS IV imageries (2018) have
been used. From the imageries (Fig. 21.1), it can be seen that there is formation of a
sandbar in the study area and also shifting of sandbars toward the point of interest, i.e.,
the intake point. From the cycle of changes, it is observed that for the Brahmaputra
river, due to high sediment yield and deposition, there are sandbar formations in
different locations during different time period. Therefore, for analyzing the problem
aroused due to the formation of huge sandbars converging near the intake, the need
and scope of creating an artificial cross channel needs to be explored through model
study. Themodel will help in understanding different situations that may arise during
the practical application in the field.

In view of the model development, the bathymetry of the river is essential, and
hence a field survey within the river reach is carried out. A detailed hydrographic
survey has been conducted in the Brahmaputra river for about 11 km upstream and
downstream of the intake location to determine the bathymetry of the river. Bench-
marks were installed near the bank and water level is monitored daily. The instru-
ments used during survey were a DGPS, total station and echo sounder. With the
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Fig. 21.1 Satellite imageries from a 1955, U.S. Army topographic map to b 2018, Google Earth
Image, showing the formation of sandbars near the intake point resulting in restricting the normal
flow toward the point

acquired data, a model study was carried out to examine the situation. The hydrody-
namic model, MIKE 21C (Guide 2005) was applied and simulated for the conditions
representing different seasons. Based on the points surveyed through the reach, the
computational grid is generated in the curvilinear grid generator and the boundary
conditions are specified at the upstream and downstream portion.

21.4 Basic Governing Equations

With the advancement in mathematical modeling technique and computational
facility, governing equations of two-dimensional unsteady flow can now be solved in
its fully dynamic form considering all significant forces that governs river hydraulic.
2D hydrodynamic model available in MIKE 21C has been found to give acceptable
result, and the design carried out on the basis of these results was found to give
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successful solution to a real problem of Brahmaputra river (Sarma and Rao 2005).
Therefore, MIKE 21C has been used for flow simulation in this study.

The hydrodynamic model solves the fully dynamic and vertically integrated equa-
tions of conservation of mass and momentum in two-dimensional form (MIKE 21C,
2011). The curvature of the grid lines gives rise to additional terms in the partial
differential equations for the flow. The equations solved in MIKE 21C are:
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where s, n = coordinates in the curvilinear coordinate system; p, q = mass fluxes in
the s and n direction, respectively; H=water level; h=water depth; g= gravitational
acceleration; C= Chezy roughness coefficient; Rs, Rn = radii of curvature of s- and
n-lines, respectively, and RHS describes the Reynold stresses.

The curvilinear MIKE 21C model requires less computational points and hence
smaller capacity than the rectilinear grid, thus providing better flow resolutions. In
application to river study, an accurate boundary resolution is required and hence the
curvilinear grid is favorable in such situations.

21.5 Results and Discussion

The HD model study has revealed that in the absence of an artificial channel, the
water will not reach the intake portion during the lean period of the year. This is
because through the satellite images we have found that the sandbar is developing
in the specified location and growing and moving southwest near the intake, giving
no sign of river flowing near it. Hence, a channel of 10 m wide and 1.2 km long is
dredged between the sandbars and flow simulated through the channel. The model
output comprised the 2D water depth, flux, current speed and flow velocity in both
the directions. The validation of themodel has been donewith the observed velocities
at the downstream portion. The observed and simulated velocities were found to be
in good agreement (Fig. 21.2). The simulated depth along with the velocity vectors
computed through MIKE 21C model are shown in Fig. 21.3.
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Fig. 21.2 Comparison of computed velocity and observed velocity

Fig. 21.3 Flow depth simulation usingMIKE 21C (left) and velocity vectors in the dredged channel
shown as animated view (right)

21.6 Conclusions

From the simulation study it has been found that with the dredged channel between
two sandbars, the flow passes near the intake point. The simulation was done for a
10 m wide channel with a length approximately 1.2 km from the main channel to the
intake. The mouth of the entry has been made wider to draw sufficient water to the
proposed excavated channel. Based on the simulation study, the channel is dredged
and through the satellite imagery (Fig. 21.4), it has been found that with the dredged
channel, the water has taken diversion and started flowing through it. Thus, it can be
concluded that the model study performed using MIKE 21C has been successful in
simulating the flow.
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Fig. 21.4 Satellite imagery of the dredged channel (2019) constructed after conducting the model
study which shows the flow of water in the channel passing through the intake point
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Chapter 22
Characteristics of Gldas
Evapotranspiration and Its Response
to Climate Variability Across Ganga
Basin, India

Lalit Pal , C. S. P. Ojha, and Amit Kumar

Abstract Evapotranspiration is a key component of hydrological cycle which
together with precipitation determines the water availability within a region. The
present study aims to investigate spatiotemporal patterns in evapotranspiration (ET)
over the period 1981–2015. The monthly time series of ET obtained from Noah
Land Surface Model of GLDAS was aggregated to seasonal and annual time series
to carry out the analyses. The response of ET to climate variability is examined by
analysing the relationship between trend in ET and key climate parameters (temper-
ature and precipitation) at annual and seasonal timescale. The significance of trend is
tested using nonparametric Mann–Kendall test at 5% significance level. Magnitude
of trends is defined by slope parameter of linear regression line. The results show an
increase in ET over major portion of the basin except for the upper reaches for all
the seasons. In the upper reaches (Himalayan region), negative trends prevail in ET
at both seasonal and annual temporal scale. However, the trends in precipitation and
mean temperature are found to be increasing over the upper Ganga basin. The results
reveal the existence of factors other than climate parameters controlling the varia-
tions in ET, especially in the upper reaches of Ganga basin located in the Himalayan
region.
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basin
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22.1 Introduction

Evapotranspiration (ET) is an important component of hydrological cycle as it consti-
tutes major fraction of total water loss to the atmosphere. ET, together with precip-
itation, is a primary determinant of water availability within a region (Long et al.
2014). Accurate knowledge of ET plays a crucial role in understanding water budget
and developing efficient water resource management plans. In recent times, the
focus of hydrologic modelers has shifted from mere rainfall-runoff modelling to
accurate estimation of all major water balance components. Accurate estimation of
water balance components, especially ET, requires validation with ground observed
datasets. However, limited network of ET monitoring stations limits the quantifi-
cation of actual ET worldwide. In such scenario, alternate sources such as global
ET dataset simulated using land surface models (LSMs) (e.g., Noah, VIC, Mosaic
and CLM) available from Global Land Data Assimilation System (GLDAS) and ET
datasets generated using satellite remote sensing (e.g., MODIS ET dataset) provides
an opportunity to monitor spatiotemporal variability in ET for various basin of the
world (Xu et al. 2006; Mueller et al. 2011). ET varies both regionally and seasonally
controlled by various hydro-meteorological factors such as precipitation, vegeta-
tion index, temperature, soil moisture, sunshine hours, etc. Knowledge of spatial
and temporal variations in evapotranspiration provides an insight to the changes in
outgoingwater flux,whichmay serve as an indicator of climate change (Peters-Lidard
et al. 2011; Park and Choi 2015).

Ganga river basin is the largest river basin in India which is nurturing a population
of about 165 million people. A major fraction of this population depends on agricul-
ture for its livelihood. Subsequently, fate of these people is dependent on the state of
water availability in the region. Variability in ET in combination with precipitation
provides an estimate of variability in water availability. The present study aims to
analyse spatial and temporal patterns in ET obtained from Noah LSM simulations
of GLDAS over Ganga basin in India. An attempt has been made to identify rela-
tionship between observed variations in ET estimates with the variations in rainfall
and temperature. The study outcomes help in determining the existing patterns in ET
over the study region and identifying dominant hydro-climatic parameter controlling
the observed changes.

22.2 Study Area

Ganga river basin is the largest river basin in India extending over an area of about
0.86 Mkm2 (in India), originates in the western Himalayas and finally meets the
Bay of Bengal in the east. The basin covers the latitudes of 22°30′ and 31°30′ North
and the longitudes of 73°30′ and 89°00′ East. The total basin area in India is shared
among 11major states, viz., Himachal Pradesh, Uttarakhand, Uttar Pradesh,Madhya
Pradesh, Chhattisgarh, Bihar, Jharkhand, Punjab, Haryana, Rajasthan, West Bengal
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Fig. 22.1 Location map of study area

and theUnion Territory of Delhi. Precipitation and snowmelt fromHimalayas are the
major sources of water in the river. The basin experiences a gradient in precipitation
along east to west with eastern parts receiving higher precipitation than the western
parts of the basin. Major fraction of total rainfall is received during monsoon months
(June–September) with annual rainfall values ranging between 300 and 2000 mm.
The temperature during winter season ranges from 2 to 15 °C, while that during
summer season varies from 25 to 45 °C. The annual ET values lies in the range from
236 to 1271 mm. The geographical location and other details of the study area of the
Uttarakhand state are given in Fig. 22.1.

22.3 Datasets

22.3.1 Evapotranspiration

ET output from Noah LSM in GLDAS was used in the study to carry out
various analyses over the period 1981–2015. In GLDAS, datasets from four LSMs
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are available for various parameters such as atmospheric pressure, atmospheric
radiation, atmospheric temperature, precipitation, evapotranspiration, etc. In the
study, ET dataset for the period 1981–2000 was obtained from Noah LSM V2.0
(GLDAS_NOAH025_M.2.0) and for the period 2001–2015 ET values were obtained
from Noah LSM V2.1 (GLDAS_NOAH025_M.2.1) outputs at monthly time steps.
In the dataset, monthly ET values are available at a resolution of 0.25°× 0.25° resolu-
tion. Originally, ET values are provided as flux with unit kg/m2/s which is converted
to monthly ET values in mm for the study period. The dataset can be downloaded
from the link: https://disc.sci.gsfc.nasa.gov/datasets?keywords=GLDAS.

22.3.2 Rainfall

Daily rainfall gridded dataset at the resolution of 0.25° × 0.25° was collected from
India Meteorological Department (IMD). Daily rainfall values were aggregated to
monthly rainfall for the grids fallingwithin the study region for the period 1981–2015.

22.3.3 Temperature

Daily temperature dataset acquired from IMDat a resolution of 1°× 1°was converted
to monthly mean temperature data to carry out the analyses. All monthly time series
of ET, precipitation and temperature were aggregated to seasonal (pre-monsoon,
monsoon, post-monsoon and winter) and annual time series to carry out various
analyses.

22.4 Methods

The present work aims to analyse spatial and temporal trends in ET over Ganga
river basin. Since precipitation and temperature are the two most dominant climatic
parameters which controls ET in a region, spatiotemporal patterns are also anal-
ysed in precipitation and temperature. An attempt has been made to identify the
parameter controlling behaviour observed in ET. Temporal trends in various time
series were computed using nonparametric Mann–Kendall (MK) test (Mann 1945;
Kendall 1975). Series effectedwith the presence of serial correlationwas tested using
modified version of MK test proposed by Hamed and Rao (1998).

https://disc.sci.gsfc.nasa.gov/datasets?keywords=GLDAS
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22.4.1 Mann–Kendall Test

S =
n−1∑

i=1

n∑

j=i+1

sgn(x j − xi ) (22.1)
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At 5% significance level, the null hypothesis of no trend is rejected, if |ZS | > 1.96.

22.4.2 Modified Mann–Kendall Test

The empirical variance of test statistic S is computed as:

V ∗(S) = Var(S).
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The n
n∗
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is calculated as:
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(n − i)(n − i − 1)(n − i − 2)ρs(i) (22.6)

22.5 Results and Discussion

The present study focuses on understating the patterns in spatial and temporal distri-
bution evapotranspiration over Ganga basin using its global estimates from GLDAS
Noah land surface model. Figure 22.2 shows the spatial variation of annual and
seasonal (monsoon, pre-monsoon, post-monsoon and winter) ET over Ganga basin
for the period 1981–2015. As can be seen in the figure, portion of basin along
Himalayan ranges experiences higher ET losses as compared to parts of basin with
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Fig. 22.2 Spatial distribution of annual and seasonal accumulated evapotranspiration across Ganga
basin

flatter terrain. A high variability in annual ET can be observed in Ganga basin
with northern and eastern parts having higher ET (700–1000 mm) than western and
southern parts of the basin (200–500 mm). However, the observed spatial variability
in ET is not consistent across all the seasons as in winter season, and higher ET losses
are experienced over middle parts compared to rest of the basin. In Fig. 22.2, it can
also be observed that highest amount of ET occurs during monsoon season, followed
by post-monsoon, pre-monsoon and winter season, respectively. This high seasonal
variability in ET is possibly due to seasonal variability in rainfall in terms of Indian
summer monsoon (ISM) rainfall over the Indian sub-continent. Due to ISM rainfall,
major portion of annual rainfall over the basin is received during monsoon season,
i.e., from June to September. A variation in space of annual rainfall over the Ganga
basin is shown in Fig. 22.3. As can be seen in the figure, northern and eastern parts
of the basin receive higher rainfall than the other, which is evidently reflected in the
spatial variation of ET across the basin. However, the spatial patterns in distribution
of rainfall received over the basin are more or less the same for different seasons.
On the other hand, significant variations in distribution of ET across different season
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Fig. 22.3 Spatial distribution of annual and seasonal accumulated rainfall across Ganga basin

can be observed, which shows the existence of factors than precipitation and thus
resulting in altered ET response of the basin.

Seasonal and annual time series of ET obtained from GLDAS over Ganga river
basin were analysed for trend over the period 1981–2015. Figure 22.4 shows the
spatial distribution of trend in annual time series of ET fromMK test at different grid
points over Ganga basin. As can be seen from the figure, ET over majority of Ganga
basin is following an increasing trend (significant at most grids) expect for the upper
region. In the upper region, trends in ET are found to be decreasing. The analysis of
trends in ET for different season has shown that spatial distribution of these trend
changes across different season. As evident form Fig. 22.4, spatial variations of
trend are fairly similar for annual, monsoon and pre-monsoon ET, whereas space
distribution of trend in post-monsoon and winter ET is significantly inconsistent.

The trends in annual and seasonal time series of rainfall at various grid points
falling in Ganga basin are shown in Fig. 22.5. Results show no uniform spatial
pattern in temporal trend of rainfall for annual and seasonal time series except for
post-monsoon season. For post-monsoon season, a consistent negative trend has been
noticed in rainfall for western half portion of the basin. On the other hand, a few grid
points falling along the eastern coastal belt are found to be experiencing significant
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Fig. 22.4 Spatial distribution ofMK-Zvalues; annual and seasonal accumulated evapotranspiration
across Ganga basin

increasing trend. Trends in annual rainfall over central region are decreasing, whereas
upper and lower reaches of basin are experiencing an increasing trend. Figure 22.6
presents the trend in annual mean temperature over the basin. As evident from the
figure, the upper and lower middle regions of basin are experiencing an increasing
trend inmean temperature. On the other hand, themiddle and lower reaches of Ganga
basin is found to be experiencing a falling trend in annual mean temperature. The
observations for upper Ganga basin are contradictory as both rainfall and temperature
in the upper region are found to be increasing with time, yet negative trends are
observed in annual ET time series. Also, no definite relationship can be observed
in spatial distribution of trends in ET with rainfall and temperature. However, the
spatial patterns in temperature trends are correlating with the patterns in rainfall
trends (Fig. 22.6). The results show the time lag in response of ET to the variations
in temperature and rainfall. It is possible due to the dependence ofETon soilmoisture.
The seasonal variations observed in spatial distribution of ET and trends in ET may
be attributable to the different land cover classes that exist in Ganga basin. Various
land cover classes existing in Ganga basin are shown in Fig. 22.7.
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Fig. 22.5 Spatial distribution of MK-Z values; annual and seasonal accumulated rainfall across
Ganga basin

22.6 Conclusions

The study aims to analyse spatiotemporal patterns in seasonal and annual time series
of ET dataset obtained from GLDAS Noah model simulations. The observed vari-
ations in ET are also analysed for relationship with changes in precipitation and
temperature over Ganga river basin. Study results show increasing trend in ET over
majority of region except for upper reaches of Ganga basin.Moreover, a definite rela-
tionship can be seen between patterns in ET and patterns in rainfall and temperature.
Further, decreasing trend in annual ET in the upper reaches of Ganga basin may not
be attributable to the either precipitation or temperature. This could be due to fact
that the upper reaches of basin are located in Himalayan region where the interac-
tion between climatic and hydrologic parameters are much more complex and their
relationships are yet not well established. Moreover, land use-land cover patterns
may majorly affect the ET response of the basin. The seasonal variations observed
in spatial distribution of ET and trends in ET may be attributable to the different land
cover classes exist in Ganga basin. Overall, the study provides the trends observed
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Fig. 22.6 Spatial distribution ofMK-Z values; annual and seasonalmean temperature acrossGanga
basin

Fig. 22.7 Land use-land cover map of Ganga basin for the year 2015
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in ET over Ganga basin and its spatial distribution which may prove to be a useful
input for efficient planning and execution sustainable water resources management
in the basin.
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Chapter 23
Seasonal and Inter-Annual Variability
of Sea Surface Temperature and Its
Correlation with Maximum Sustained
Wind Speed in Bay of Bengal

Jiya Albert and Prasad K. Bhaskaran

Abstract Sea surface temperature (SST) and oceanic heat content (OHC) play a
significant role in tropical cyclogenesis formation as well as in the intensification
of tropical cyclones. Prior studies over the recent past indicate the intensification of
tropical cyclones as well as increased cyclone size, which has a strong correlation
with increased SST over the global ocean basins. In the context of tropical cycloge-
nesis, the Bay of Bengal basin, a semi-marginal sea in the North Indian Ocean, is
quite active. Many tropical cyclones form over this basin and make landfall either
as severe or very severe cyclones in the countries surrounding the Bay of Bengal
rim. The SST and sub-surface temperature in the Bay of Bengal basin also showed
an increasing trend over the recent past. Interestingly, unlike the other ocean basins,
the dynamics in the Bay of Bengal region is primarily governed by the reversing
monsoon wind system and enormous freshwater influx through primary riverine
sources that regulates the transport and distribution of water mass characteristics and
the overall circulation characteristics. Differential circulation characteristics can, in
turn, lead to spatial and temporal variability of SST and oceanic heat content respon-
sible for tropical cyclone formation and intensification. The present study performed
a comprehensive evaluation on the seasonal and inter-annual variability of SST and
determines its correlation to maximum sustained wind speed (Vmax) for the past two
decades. Strategically, keeping in view thewatermass distribution characteristics, the
geographical domain in the Bay of Bengal region was sub-divided into four sectors
(box of 5° × 5°) and the dependence of SST versus Vmax across these sub-domains
was investigated. The study considered 124 cyclonic events that include depressions,
cyclonic storms, and severe cyclonic storms from 1996 through 2016. Overall an
increasing SST trend was observed in climatological SST obtained from the CMIP5
models ACCESS 1.3 and HadGEM2-ES. The above statement substantiated by the
correlation factor and increasing trend in all sub-domains was noticed between Vmax
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obtained from the Joint Typhoon Warning Centre (JTWC) and SST in ERA-Interim
data. Interestingly, the central sector in the Bay of Bengal region showed a different
correlation, unlike the other sub-domains. Basin-scale SST anomaly varied between
2 °C (maximum) and 1.7 °C (minimum) during the post-monsoon and between 2.4 °C
(maximum) and 1.6 °C (minimum) during the pre-monsoon seasons. The findings
from the study indicate a definite increase in Vmax correlated with SST over the
recent years. SST variability showed an in-phase correlation with Vmax, and that is
consistent over all the four sub-domains in the study area. A closer examination and
analysis of both SST and oceanic heat content is warranted, and their mutual trends
need to be evaluated with Vmax to better understand the process of tropical cyclone
intensification. The study is believed to have importance in the research activity of
tropical cyclone modelling.

Keywords Sea surface temperature · Tropical cyclogenesis · Ocean heat content

23.1 Introduction

Coupled dynamics of cyclonic formation and its intensification in a changing climate
is mostly influenced by the essential factor of sea surface temperature. The pre- and
post-monsoon climatology of the recent past have shown that cyclones have grown
in both size as well as intensity. Intensification of cyclones is connected to the large
thermal inertia of ocean and on the background of its direct reaction response towards
the greenhouse forcing which is enormously capturing distant peaks in last decadal
periods, and it is going to grow in coming decades too. There are furthermore pieces
of evidence of the mutual increase in SST along with landfall rates of cyclonic
events and statistically proven to have 45% increment of more TC formation during
a study in the Atlantic basin. In this warming world, the indicators and evidence of
the strengthening of cyclonic wind speeds along with the rising SST in Northern
Hemisphere reported by Arora and Dash (2016) uses an enthalpy exchange process.
This projected the importance of a detailed study for the Northern Indian Ocean
in which the large land mass cover and high vicinity to tropical and Pacific warm
waters can build up the risk in noticeable increment of cyclonic activity having direct
socio-economic impacts. In the current study, we perform composite analysis of
maximum sustained cyclonicwind velocity (Vmax) statistics using the SST variability
over Bay of Bengal (BoB) domain during the past two decades (1996–2016) as an
analogue for climate change. The geographical division of BoB into four square sub-
domains (Fig. 23.1) gives out the indirect way to determine the physical response
of water mass characteristics under the surface of the ocean towards the formation
and intensification of tropical cyclones. However, it also provides an opportunity to
explain the influence of various category of water masses especially that differ in
their physical properties of temperature and salinity to the cyclonic wind velocity
and frequency of cyclonic event generated within the sub-domains.
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Fig. 23.1 Domain for SST study (Left)

In the context of tropical cyclogenesis, the BoB basin, a semi-marginal sea in the
North Indian Ocean, is quite active. Many tropical cyclones form over this basin and
make landfall either as severe or very severe cyclones in the countries surrounding
the Bay of Bengal rim (numbers shown in Table 23.1). The SST and sub-surface
temperature in theBayofBengal basin also showedan increasing trendover the recent
past. The uppermost sub-domain at head bay is a representation for water masses in
which the accumulation andmixing of a considerable quantity of freshwater from the
peninsular rivers and rivers from head BoB exists. It represents less saline and low-
temperaturewater characteristics in general. Bottom2 sub-domain portion represents

Table 23.1 Number of tropical cyclone activities in the domain (Right)

Section D CS SCS

1 21 13 6
2 9 5 0
3 8 4 5
4 16 7 4

***D- Depression
CS-Cyclonic Storm
SCS- Severe Cyclonic Storm 

***Corner and center points in each box 
(1-4) marked with a, b, c, d and e
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the body of water mass influenced by the warm water from the Pacific. But mostly
the influence is there to box number 3 and box number 2 that has open access to the
equatorial waters both higher in temperature and salinity. Middle domain (numbered
1) is expected to have one mixed characteristic of all the boxes from 2 to 4. Both
cold freshwater from the top and warm saline water from down and side portions
can influence the sub-domain 1. The complex current system prevailing on the area
also can further remix the water mass and make the water properties differential.
The correlation between Vmax and SST over these boxes can accurately project out
the impact of warming climate along with the influence of subsurface water mass
characteristics towards the intensification of cyclones over the past decades.

23.2 Data and Methodology

The sequence of approaches adopted to solve the problem is detailed in this section.
Several data resources are used in this study at its different stages (Table 23.2). In
the initial analysis to understand the mechanism of intensification and its correlation
to the ocean heat content and SST, a historical analysis of 20 years was done for the
period 1996–2016 in BoB using ERA-Interim daily data. For comparison purpose
climatological SST data obtained from three independent datasets of SST, namely
Era-Interim real-time data and two CMIP5 (coupled model inter-comparison project
phase 5) models ACCESS 1.3 and HadGEM2-ES, are also used for the study.

a. CMIP5: This is multi-climate model dataset based on the CMIP5 archived
at the Intergovernmental Panel on Climate Change (IPCC) Data Distribution
Centre (DDC). Parts of the CMIP5 multi-model dataset are used in the Fifth
Assessment Report (AR5) of the IPCC. This dataset is analyzed by the scien-
tific community worldwide and continues to be available for studying climate,
its variability and change, and the societal and environmental implications of
climate change regarding impacts, adaptation, and vulnerability (Emori et al.
2016). These models are produced considering the recently presented Represen-
tative Concentration Pathways (RCPs) for four distinct scenarios such as RCP
2.6, RCP 4.5, RCP 6.0, and RCP 8.5. In light of these four scenarios, the climate
projections for the future accessed from various models are accessible under the
CMIP5 venture.

b. HadGEM2-ES: HadGEM2-ES is a coupled earth system model that was used
by the Met Office Hadley Centre, U.K. for the CMIP5 centennial simulations.
HadGEM2 is a configuration of the Met Office Unified Model (UM) developed

Table 23.2 Description of
model

Model ERA-Interim HadGEM2-ES ACCESS-1.0

Data type Daily Monthly Monthly

Resolution 0.25 × 0.25 1.25 × 1.875 1.25 × 1.875
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from UM version 6.6. HadGEM2-ES was the first Met Office Hadley Centre
model to include earth system components as standard. The unifiedmodel is used
by some institutions around the world for both operational weather forecasting
and climate research. The HadGEM2 family of model configurations includes
atmosphere, ocean, and sea-ice components,with andwithout a vertical extension
in the atmosphere model to include a well-resolved stratosphere and earth system
components including the terrestrial and oceanic carbon cycle and atmospheric
chemistry. The various processes include:

• Troposphere, land surface and hydrology,
• Aerosols, ocean and sea-ice, terrestrial carbon cycle,
• Ocean biogeochemistry, chemistry.

c. ACCESS-1.0: The ACCESS-CM uses the Met Office Unified Model (UM) as
its atmospheric component. The atmospheric configuration in ACCESS-1.0 is
designed to be the same as that of HadGEM2 version r1.1, which is necessarily
the same as that in the HadGEM2 model versions used for CMIP5.

On a monthly basis, data are taken during the period, including historical
(1996–2005) and projection (2006–2016) of the model. For the study, the datasets
are grouped into post-monsoon (March–April–May) and pre-monsoon (October–
November–December) periods. Strategically, keeping in view the water mass distri-
bution characteristics, the geographical domain in the Bay of Bengal region was
further divided into four sectors (box of 5° × 5°) and the dependence of SST versus
Vmax across these sub-domains was investigated. The study considered 124 cyclonic
events that include depressions, cyclonic storms and severe cyclonic storms that
occurred between 1996 and 2016. As per the cyclonic events including the depres-
sions, cyclonic storms and super cyclonic storms that occurred in Bay of Bengal
domain during the past 20 years, a total of 125 events have occurred (IMD). Out of
that considering the formation location of these, central sections of BoB as shown in
Fig. 23.1 hold about 98 events. Section 1 encompassing 85° E–90° E, 10° N–15° N
reported 21 depressions along with 13 cyclonic storms and 6 severe cyclonic storms
during the past two decades. In Section 2 (85° E–90° E, 5° N–10° N), there has been
an occurrence of nine depressions and five cyclonic storms. Section 3 (90° E–95°
E, 10° N–15° N) reported eight depressions, four cyclonic storms and five severe
cyclonic storms. Section 4 (85° E–90° E, 15° N–20° N) which is near to the head bay
region has reported 16 depressions, 7 cyclonic storms, and 4 severe cyclonic storms.
The findings obtained are discussed in detail in the next section.

23.3 Results and Discussion

Using the various datasets available for SST, the evaluation was carried out to deter-
mine the overall variability exhibited across different sub-domains. The values are
examined on a seasonal basis and averaged for pre-monsoon and post-monsoon
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seasons. Era-Interim data gives out the real-time cyclone-induced SST over the four
domains (Table 23.3).

Basin-scale SST anomaly varied between 2 °C (maximum) and 1.7 °C (minimum)
during the post- and between 2.4 °C (maximum) and 1.6 °C (minimum) during the
pre-monsoon seasons. However, in relation to the freshwater influence, Section 4
showed the maximum variability in the rate of difference between the maximum
and minimum set for all the three data but comparatively the average increase is
about 30% in pre-monsoon and 35% in case of post-monsoon based on the CMIP5
models, ACCESS-1.0 (Table 23.4) and HadGEN2-ES (Table 23.5). The increment
of marginal difference in lower and upper values of SST is bound to be more during
post-monsoon because of the 80% of rainfall that occurs in association with the
temporal asymmetry of annual mean monsoonal winds over North Indian Ocean and
the Indian subcontinent (Parekh and Konwar 2017).

In the proceeding phase, a correlation study of cyclone-induced SST and Vmax

(Fig. 23.2) is performed across the sub-domain and along the corner points for each
of the sub-domains. The overall increment in the Vmax is evident during both the
pre- and post-monsoon seasons correlation results even though comparing to pre-
monsoon the post-monsoon exhibits a minor hike in the value of trend line slope.
Further, a detail evaluation of cyclone-induced SST pattern and its trend across the
domain over the past two decades is also studied. Interestingly, the central sector
in the Bay of Bengal region showed a different correlation, unlike the other sub-
domains. The findings from the study indicate an apparent increase in Vmax that
correlated with SST over the recent years and the cooling of sea surface temperature
by the post-cyclonic events. SST variability showed an in-phase correlation with
Vmax, and that is consistent over all the four sub-domains in the study area. Sector-
wise correlation values are determined, and all of them are within 0.5 (Table 23.6). It
provides a clear indication that alongwith SST there aremore disregarded supporting
parameters which can induce theVmax to change. Sector 4 negative correlation during
pre-monsoon season along with the negative mutuality of post-monsoon season at
Sector 1 decipher a clear indication of the freshwater influx from the rivers of the head
bay region which in turn cools the domain, and the other sufficient parameters other
than SST will dominate to generate the cyclones (Fig. 23.3). A closer examination
and analysis of both SST and oceanic heat content is warranted, and their mutual
trends need to be evaluated with Vmax to understand the process of tropical cyclone
intensification better. The study is believed to have importance in the research activity
of tropical cyclone modelling.

Finally, the overall trend of SST values of the domain, sub-domains and specific
points inside the sub-domains for the last two decades are determined based on Era-
Interim real-time daily data and findings explained below. All the points in Section 1
(Fig. 23.4, set 1) showed an increasing trend of SST during the 20 years in which
the point ‘d’ showed the maximum increasing rate followed by the middle point
‘e.’ All the points in Section 2 (Fig. 23.4, set 2) showed an increasing trend of SST
during the 20 years in which middle point ‘e’ showed the maximum increasing rate
followed by the first corner point ‘a.’ All the points in Section 3 (Fig. 23.4, set 3)
have shown an increasing trend of SST during the 20 years in which both corner
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Fig. 23.2 SST~Vmax for a whole domain on pre- and post-monsoon

Table 23.6 The correlation
coefficient of sections in pre-
and post-monsoon

Domain Correlation coefficient R

Pre-monsoon Post-monsoon

Combined 0.30961 0.1302

Sub-domain 1 0.32616 −0.1098

Sub-domain 2 0.33127 0.52370

Sub-domain 3 0.26640 0.11999

Sub-domain 4 −0.05896 0.29204

Fig. 23.3 SST~Vmax for each section from 1 to 4 on pre and post monsoons

points, point ‘c’ and point ‘b’ showed the maximum increasing rate followed by the
bottom corner point. All the points in Section 4 (Fig. 23.4, set 4) have shown a mild
growing trend for SST during the 20 years and the slope is almost horizontal. During
the analysis of post-monsoon seasons, all the points in Section 1 (Fig. 23.5, set 1)
showed an increasing trend of SST during the 20 years except point ‘a’ shows least
variation and trend line is almost horizontal. Every point in Section 2 (Fig. 23.5, set
2) had shown an increasing trend of SST in which bottom corner points, point ‘d’
showed the maximum increasing rate followed by the middle point ‘e.’ All other
points show a similar increase in trend. The recent study for SST over BoB and its
mutual dependency towards cyclone-induced cooling along with forwarding motion
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Fig. 23.4 SST yearly averaged pre-monsoon over Sections 1–4 (top to bottom) for points a(indigo),
b(green), c(yellow), d(blue) and e(red)



264 J. Albert and P. K. Bhaskaran

Fig. 23.5 SSTyearly averaged post-monsoonover Sections 1–4 (top to bottom) for points a(indigo),
b(green), c(yellow), d(blue) and e(red)
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speed has quoted a unique behavior of northern part of BoB which corresponds to
the sub-domain number four with highly stratified saline characteristics. The reason
stated is due to the larger freshwater influx after the monsoon rains in this region, and
comparatively, it exhibits a different pattern other than the remaining three regions.
Substantiate reason for the anomalous behavior of Section 4 in SST trends in pre- and
post-monsoons over the past two decades is explained that has a strong established
control from ocean saline stratification (Li et al. 2017).

23.4 Conclusions

Overall, an increasing SST trend was observed in climatological SST obtained from
the CMIP5 models ACCESS-1.3 and HadGEM2-ES. The correlation factor substan-
tiates this, a rising trend in all sub-domains noticed between Vmax obtained from
Joint TyphoonWarning Centre (JTWC) and SST in ERA-Interim data. Interestingly,
the central sector in the Bay of Bengal region showed a different correlation, unlike
the other sub-domains. Basin-scale SST anomaly varied between 2 °C (maximum)
and 1.7 °C (minimum) during the post-monsoon and between 2.4 °C (maximum)
and 1.6 °C (minimum) during the pre-monsoon seasons. In relation with Section 4
which is under the direct freshwater influence from head bay, exhibits the maximum
variability in the value of SST evaluated based on all the three data, but comparatively
it has an average increase of 30% in pre-monsoon and 35% in case of post-monsoon
based on the CMIP5models, ACCESS-1.0 andHadGEN2-ES. It gives a clear indica-
tion on the enormous cooling during the lifetime of cyclonic events during both pre-
and post-monsoon seasons. The findings from the study indicate a definite increase in
Vmax correlated with SST over the recent years. SST variability showed an in-phase
correlation with Vmax, and that is consistent over all the four sub-domains in the
study area. A closer examination and analysis of both SST and oceanic heat content
is warranted, and their mutual trends need to be evaluated with Vmax to understand
the process of tropical cyclone intensification better. The study is believed to have
potential importance in research activity related to tropical cyclone modeling.
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Chapter 24
Comparison of CMIP5 Wind Speed
from Global Climate Models with In-Situ
Observations for the Bay of Bengal

Athira Krishnan and Prasad K. Bhaskaran

Abstract Realistic estimates of surface wind speed form an essential prerequisite
for process-based air-sea studies and also numerical modeling needs. In this context,
historical and projected wind speed estimates obtained from global climate and
regional models warrant proper assessment and necessary bias corrections before
it can be optimally used for rigorous analysis and research needs. Adequate evalua-
tion and bias correction of wind speed estimates are therefore crucial to understand
the extremes. For example, they have direct implications on extreme wind waves
that can influence the coastal zone. The present study performed a detailed eval-
uation of wind speed obtained from the Coupled Model Inter-comparison Project
Fifth Phase (CMIP5) products to assess their projections for the Bay of Bengal
region. A suite of global climate models is employed to generate the CMIP5 prod-
ucts under four Representative Concentration Pathways (RCPs) of 2.6, 4.5, 6.0, and
8.5 and based on differential CO2 emission scenarios. The present study also used
the Research Moored Array for African–Asian–Australian Monsoon Analysis and
Prediction (RAMA) buoys located in the central Bay of Bengal in order to vali-
date and skill assess the CMIP5 wind products under varying RCPs. In addition,
an intercomparison exercise that was performed between RAMA buoys data and
merged satellite altimeter data from the French Research Institute for Exploitation
of the Sea/Laboratory of Oceanography from Space (IFREMER/CERSAT) provided
necessary confidence to ascertain the quality of CMIP5 wind speed products. The
study signifies that a reasonably good correlation was noticed in the wind speed
comparison between CMIP5 GCM products and RAMA buoys (maximum correla-
tion of 0.64), and the correlation factor varied between the suite of models used in
CMIP5 experiments. This exercise would provide a detailed know-how on the perfor-
mance of various GCMs and also provide a basis to select the best-performingGCMs
for the Bay of Bengal region. Analysis of the upper 10% (90th percentile) showed a
maximum under-estimation/over-estimation of 2.5 m s−1 and 1.5 m s−1, respectively
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for wind speed comparison between CMIP5 and RAMA buoys data. Although the
CMIP5 GCMs are not able to represent the contemporary wind speed climatology
satisfactorily, the models such as HadGEM2-ES, HadGEM2-CC, CanESM2, and
ACCESS-1.3 showed the best performance concerning near-surface wind speed for
the Bay of Bengal region.

Keywords CMIP5 · Wind speed · Merged satellite altimeter · RAMA buoys · Bay
of Bengal

24.1 Introduction

Climate change can affect the wind patterns and consequently its magnitude and
frequency of occurrence. Knowledge of extreme wind and wave climatology are
required for practical applications in themarine industries. Therefore, a proper assess-
ment on the potential impact of climate change on the variation ofwind regime is very
essential (Alinejhad-Tabrizi et al. 2017). The latest findings and knowledge about the
scientific, technical and socioeconomical aspects of climate change are well docu-
mented in the Fifth Assessment Report by the Intergovernmental Panel on Climate
Change (IPCC AR5). Natural as well as anthropogenic factors are contributing to
the climate change and subsequent global warming. Human-induced climate change
is mainly dominated by the greenhouse gas emissions (mainly CO2) to the atmo-
sphere. IPCC AR5 relies on the World Climate Research Programme (WCRP) Fifth
CoupledModel Inter-comparisonProject (CMIP5), a coordinate set of global coupled
atmosphere-ocean general circulation model (AOGCM) simulations (Taylor et al.
2012). RCPs represent the socioeconomic pathways that reach a specific radiative
forcing by the year 2100, and fourRCPs are nowavailable:RCP2.6,RCP4.5,RCP6.0,
and RCP8.5 (van Vuuren et al. 2011). RCP-based climate projections are now freely
available frommany climate models under the CMIP5 family. CMIP5 data allow the
evaluation of how the models realistically simulate the recent past and present and
provide the projections of future climate changes from the present date up to 2100
(and beyond for some models and experiments).

Climate change mitigation and adaptation strategies are formulated based on the
climate model projections of the global mean temperature responses to greenhouse
gas emissions in the future (Cowtan et al. 2015). He also pointed out on the ability of
models to simulate the transient evolution of climate identified by comparing model
projections against the observations. A study by Marena Lin and Peter Huybers
(2016) reported on the agreement of recent surface trends with the CMIP5 ensemble
and found a model observation consistency at the global scale accompanied by
regional discrepancies. From the mean and 90 percentile wind speeds over the global
oceans, Young et al. (2011) found an increase by 0.25–0.5% per year in wind speeds
over themajority ofworld’s oceans. They also noticed a stronger trend in the Southern
hemisphere than the Northern hemisphere. Debernard et al. (2002) assessed the
impact of climate change on the regional design winds over the northeast Atlantic
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based on control climate of 1980–2000 and projected climate of 2030–2050. The
climate change caused by global warming has changed the wind conditions at global
as well as regional scales noticed by Kulkarni et al. (2013). Their study concluded a
rising trend of wind speeds about 6–8% along the Arabian Sea and 2–4% along the
Bay of Bengal. The ResearchMooredArray for African–Asian–AustralianMonsoon
Analysis and Prediction (RAMA) buoy network over the Indian Ocean, part of the
Tropical Atmosphere Observation (TAO) program helps to validate the model data
to a good extent over the Bay of Bengal domain. Indira Rani and Das Gupta (2013)
used RAMA buoy data to validate sea surface winds from Oceansat-2 scatterometer
over the Indian Ocean region. The comparison for 1 year showed that wind speed and
direction derived from OSCAT agreed with RAMA buoy winds. Another compar-
ison of RAMA buoy winds with OSCAT winds was reported by Sudha and Prasada
Rao (2013) for the Indian and the Pacific Ocean basins. This study aims to compare
the wind speeds from CMIP5 GCMs with in-situ data from RAMA buoys in order
to obtain the statistics of the two datasets and thereby choose the best-performing
RCP for research use.

24.2 Data

The study was conducted for the Bay of Bengal domain. The climate variable consid-
ered in this study was the near-surface wind speed. We used observed data as well as
the data from global climate models. Observed data obtained fromRAMA (Research
Moored Array for African–Asian–Australian Monsoon Analysis and Prediction)
buoys for Bay of Bengal was available at https://www.pmel.noaa.gov/tao/drupal/
disdel/. RAMA surface floats measure the wind speed at a height of 4 m above
the mean sea level. Daily averages of the data were used for this study. The Fifth
Phase of Coupled Model Inter-comparison Project (CMIP5) and archived at the
Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre at the
Program for Climate model diagnosis and Inter-comparison (PCDMI) provides the
state-of-art multimodel dataset designed to advance our knowledge of climate vari-
ability and climate change. Projected wind speed data from Global Climate Models
representing four RCPs, 2.6, 4.5, 6.0, and 8.5 with a temporal resolution of daily
means were extracted for the analysis available from https://esgf-node.llnl.gov/pro
jects/esgf-llnl/. The spatial resolution of each model as well the number of models
under each RCP were different in number. Table 24.1 provides more details on the
family of models under each RCP.

More details regarding the experiments and corresponding models including the
participating institutions, model resolutions are available from the URL link https://
cmip.llnl.gov/cmip5/guide_to_cmip5.html. The study area and location of RAMA
buoys are represented in Fig. 24.1 and Table 24.2 provides information on the period
of data available from RAMA buoys.

https://www.pmel.noaa.gov/tao/drupal/disdel/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://cmip.llnl.gov/cmip5/guide_to_cmip5.html
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Table 24.1 Details of the models available under each RCP

RCP 2.6 RCP 4.5 RCP 6.0 RCP 6.5

• CanESMZ
• CNRM-CMS
• CSIRO-Mk3.6.0
• GFDL-CM3
• GFDL-ESM2G
• GFDL-ESM2M
• HadGEM2-A0
• HadGEM2-ES
• IPSL-CM5A-LR
• IPSL-CMSA-MR
• MIR0C5
• MIROC-ESM
• MIROC-ESM-
CHEM

• MPI ESM LR
• MPI-ESM-MR
• MRI-CGCM3

• CanESM2
• ACCESS 1.0
• ACCESS1.3
• CANCM4
• CMCC-CM
• CMCC-CMS
• CNRM-CM5
• CSIRO Mk3.6.0
• GFDL-CM3
• GFDL-ESM2G
• GFDL-ESM2M
• HadGEM2-AO
• HadGEM2-CC
• HadGEM2-ES
• INMCM4
• IPSL-CM5A-LR
• IPSL-CMSA-MR
• IPSL-CM5B-LR
• MIR0C4h
• MIROC5
• MIROC-ESM
• MIROC-ESM-
CHEM

• MPI ESM-LR
• MPI-ESM-MR
• MRI-CGCM3

• C5IRO-Mk3.6,0
• GF0L-CM3
• GFDL-ESM2G
• GFDL-ESM2M
• HadGEM2-AO
• HadGEM2-ES
• IP5L-CM5A-LR
• IPSL-CM5A-MR
• MIROC5
• MIROC-ESM
• MIROC-ESM-
CHEM

• MRKGCM3

• CANESM2
• ACCESS1.0
• ACCESS1.3
• CMCC-CESM
• CMCC CM
• CMCC-CMS
• CNRM-CM5
• CSIRO Mk3.6.0
• GFDL-CM3
• GFDL-ESM2G
• GFDL-ESM2M
• HadGEM2-AO
• HadGEM2-CC
• HadGEM2 ES
. INMCM4
• IPSL-CM5A-LR
• IPSL-CM5A MR
• IPSL-CM56-LR
• Ml ROCS
• MIROC ESM
• MIROC-ESM-
CHEM

• MPI-ESM-LR
• MPI-ESM-MR
• MRI-CGCM3
• MRI-ESM1
• Nor ESM1M

24.3 Methodology

Projected 10mwind speed available as respective u and v componentswere converted
into resultant wind speed. Since the family of models under CMIP5 has different
spatial resolutions, all the datasets were interpolated to a uniform grid of 0.5°× 0.5°.
This study considered the climate data from only one ensemble “r1i1p1.” Apart from
the model data, RAMA buoy data measure the winds over the ocean surface at the
height of 4 m, which is converted to 10 m to conform to the universally accepted
standard level. The logarithmic wind profile relation (Manwell et al. 2009) was used
to extrapolate the speed using the following relationship:

U (z)

U (Zr)
= ln

(
Z
Zo

)

ln
(
Zr
Zo

)

where

U(z) = velocity to be estimated at height z
Z = height above the mean level for velocity v
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Fig. 24.1 Map of the study
area

Table 24.2 Details of the
buoy data used

Description Location Period of data used

RAMA 1 15° N, 90° E 01 January 2013–31 December
2015

RAMA 2 12° N, 90° E 01 January 2011–31 December
2012

RAMA 3 8° N, 90° E 01 January 2009–31 December
2009

U(Zr) = known velocity at height level Zr
Zr = reference height where vref is known
Z0 = roughness length in the current wind direction (0.0002 for water surface).

Statistical parameters like model mean wind speed, buoymean wind speed, corre-
lation coefficient,wind speedbias between themodel andbuoydata, rootmean square
difference for wind speed were estimated. The statistical parameters are calculated
as follows:

Model wind speed =
√
Mu2 + Mv2

Buoywind speed =
√
Bu2 + Bv2
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whereMu,Mv and Bu, Bv are the northeast and southwest components of wind speed
from CMIP5 models and RAMA buoy respectively.

Bias = 1

n

n∑

i=1

(Ym − Yb)2

RMSE =
√√√√1

n

n∑

i=1

(Ym − Yb)2

where Ym represents the modeled value, Yb is the observed value (from buoy). The
CC (Pearson correlation coefficient) is estimated using the relation:

CC =
∑n

i=1

(
Y i − Y ′)(Zi − Z ′)

√∑n
i=1 (Y i − Y ′)

√∑n
i=1 (Zi − Z ′)

where Y and Z correspond to the two-time series having equal number of values.

24.4 Results and Discussions

Figure 24.2 illustrates the time series of wind speed from CMIP5 models compared
with the buoy observations at representative locations shown in Fig. 24.1. A total of
16 models represent RCP 2.6, 25 for RCP 4.5, 12 for RCP 6.0, and 26 models for
RCP 8.5 scenarios. Data from the three buoys for a total duration of 6 years were
compared with the time-series data obtained from CMIP5 models corresponding to
each RCPs. Statistical parameters were calculated in order to obtain their dependence
with observations and also to understand the existing emission scenario in the Bay
of Bengal region.

The time-series data obtained from GCMs and RAMA buoy observations for the
period of 2009–2015 clearly showed a close match for mean wind speed between
GCMs and RAMA data. The maxima and minima in wind speed simulated by the
models do not match well with the observations, however, four of the RCPs showed
a higher minimum and lower maximum values as compared with RAMA buoys.
This variation can be attributed due to bulk parameterization of the drag by climate
models. Fitch et al. (2013) analyzed the drag parameterization for wind farms in
climate models and observed that for an increase in surface roughness the flow drag
was maximum during the day when the near-surface wind is most active.

The variations in wind speed were also examined for the study period. RAMA
buoy observations demarcate an increase in mean wind speed from 2009 to 2013
and a sudden decrease toward 2015. Furthermore, all RCPs follow the same trend as
seen in the observations. The year 2013 indicates a maximum value for mean wind



24 Comparison of CMIP5 Wind Speed from Global Climate Models … 273

Fig. 24.2 Histograms representing the values of correlation coefficient of GCMswith RAMAbuoy
data for three locations (blue, green, and yellow) RAMA1, RAMA2, and RAMA3, respectively,
for the four RCPs a RCP 2.6, b RCP 4.5, c RCP 6.0, and d RCP 8.5

speed among all the years resulting from the formation of eight cyclonic events (sum
of depression, cyclonic storm, and severe cyclonic storm) that occurred in the Bay
of Bengal during 2013, which is the highest in number considered during the period
of study (Cyclone E-Atlas, IMD).

Figures show the comparison of wind speed for CMIP5 models and RAMA buoy
observations in the Bay of Bengal. A maximum correlation value of ~0.65 was seen
from this study. Considering different locations in the study region that represents
the period from 2009 to 2015, the correlation values varied considering different
models and various RCPs. The year 2009 showed a maximum correlation for the
model CSIRO-Mk3.6.0 (CC~0.60) corresponding to the scenario RCP 8.5. For 2011
and 2012, the correlation value ~0.64 is typical for both RCPs 4.5 and 8.5. For
the period 2013–2015, RCP 4.5 has a lead correlation of 0.63 against the RAMA
buoy observation.Models fromHadGEM2 family showed relatively high correlation
values in all RCPs, with no much difference between each RCP. From data analysis,
it is evident that MIROC-ESM and MIROC-ESM-CHEM are the least correlated
models common in four RCPs. Therefore, these models are not suitable for further
analysis in the Bay of Bengal. The study also deciphers the fact that by considering
multiple years of data, the HadGEM2-ES, HadGEM2-AO, and ACCESS-1.0 are
the models that exhibited maximum correlation irrespective of the individual RCP.
Figures 24.3 and 24.4 show the error statistics of wind speed data represented as
bias error, and root mean square error. Bias calculation helps to identify the under-
estimation or over-estimation in model data compared with the measurements. The
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Fig. 24.3 Representation of bias error for each GCMs with RAMA buoy for three locations and
four RCPs a RCP 2.6, b RCP 4.5, c RCP 6.0, and d RCP 8.5

Fig. 24.4 Representation of root mean square error (RMSE) for each GCMs with RAMA buoy for
three locations and four RCPs a RCP 2.6, b RCP 4.5, c RCP 6.0, and d RCP 8.5
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RMSE measures the residuals between the modeled values and observations, where
larger numbers indicate a higher variance in the data.

Calculated bias error values from the CMIP5 model predicted wind speed and
the one obtained from RAMA buoy explains about the different performance of
models in the study domain. Among the total 35 models representing four RCPs, we
could find models that overestimate as well as underestimate the buoy observations.
Positive values in the diagram indicate an over-estimation by models against RAMA
buoy and negative values indicate an under-estimation of wind speed simulated by
the climate models. In either case, the bias error highlights the deviation of model
predicted data from actual observations.

The overall bias estimate for the period of study in the comparison of wind speed
ranges between−2.5 and 2m/s.Maximumover-estimation ofwind speed is observed
in models under RCP 8.5, which is believed to be the extreme emission scenario
with 8.5 W/m2 by the end of the year 2100 (van Vuuren et al. 2011). The other
three RCPs (2.6, 4.5, and 6.0) performed almost similar with no much difference
in bias value for climate models under different RCPs. The models that exhibited
higher correlation with observations are those with the least bias. CSIRO-Mk3.6.0,
HadGEM2-AO, and HadGEM2-ES are some of the models with least bias error and
also overestimate the observations in the order of 0.3–1 m/s. IPSL-CM5A-LR and
IPSL-CM5A-MR represent least bias and under-estimates the buoy observations up
to−1m/s. From the overall analysis of wind speed and the bias error between GCMs
and RAMA buoy observations, it is evident that RCP 4.5 showed a lead with less
bias among the models ACCESS 1.3, HadGEM2-AO, and CNRM-CM5. Besides,
the models MIROC-ESM and MIROC-ESM-CHEM exhibited higher bias error for
wind speeds in the Bay of Bengal. The root mean square error distribution of various
GCMs implies there is no much variation among different models. Similar to the
values of bias error, the estimated RMSE shows RCP 8.5 deviated the maximum
as compared with observation. Wind speed simulated by the global climate model
NorESM1M has maximum RMSE of 4.5 m/s in the study domain. HadGEM2-ES,
HadGEM2-AO, and CNRM-CM5 showed less error with values less than 3 m/s
compared with observations and irrespective of the emission scenarios.

The study also examined to understand the temporal variability of near-surface
wind speeds from climate models and in situ observations using the 90th percentile
of wind speed. Young et al. (2011) utilized 23 years of satellite altimeter data to
calculate the wind speed and surface gravity significant wave height. There was an
increase in mean wind speed, but more pronounced increases were seen in the 90th
and 99th percentiles. In the present analysis, the upper 10% (90th percentile) of wind
speed from the time series data obtained from RAMA buoy were 10.27, 9.5, 9.94,
10.16, 9.61, and 10.16 m/s for the years 2009, 2011, 2012, 2013, 2014, and 2015
respectively. Figure 24.5 illustrates the 90th percentile wind speed for the CMIP5
models from the four RCPs. The RAMA buoy observation showed an alternate
increase and decrease of the 90th percentile wind speed during the period from 2009
to 2015. The study also investigated whether the GCMs followed the observed trend
of 90th percentile in wind speed as seen in the RAMA buoy observation. For this
period of study, few models were able to replicate the values of 90th percentiles of
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Fig. 24.5 The 90th percentile wind speed distribution by various GCMs under four RCPs a RCP
2.6, b RCP 4.5, c RCP 6.0, and d RCP 8.5. (The multiple line segments in figure represent the
respective year of analysis)

wind speed similar to the RAMA buoy. It is noted that few models (CNRM-CM5,
MRI-CGCM3, CMCC-CM, and MIROC4h) showed a close match compared with
observations. It is seen for the RCP 4.5 scenario during the year of 2009. For the
same period, RCP 6.0 and RCP 8.5 showed comparatively high values. The increase
in 90th percentile wind speed observed in RAMA buoy data from 2011 to 2012 is
well represented by ACCESS-1.0 and INMCM4models that belong to RCP 4.5. For
the period of 2013–2015, the RCP 4.5 showed much closer wind speed percentiles
against buoy data as indicated by themodelsGFDL-CM3,MIROC4h,MRI-CGCM3,
CNRM-CM5, and IPSL-CM5A-LR. Mean wind speed trend is consistent with the
annual mean wind speed percentiles. The study brings to light that the global climate
models could represent well the 90th percentile wind speed with a better accuracy.
Annual wind speed trends could be attributed to processes that are internal to the
climate system.

24.5 Conclusions

The performances of GCMs that participated in the CoupledModel Inter-comparison
Phase 5 (CMIP5) were evaluated by comparing the model simulated near-surface
wind speed with in-situ observations from RAMA buoy over the Bay of Bengal
domain. A fair agreement for wind speed comparisons with a correlation of 0.65,
bias error of 0.2 m/s and RMSE of 2.5 m/s was observed in the study domain.
Based on statistical analysis and inferences, the best-performing GCMs identified
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wereHadGEM2-ES,HadGEM2-AO,CNRM-CM5,ACCESS1.0,ACCESS-1.3, and
CNRM-CM5. However, the identification of a suitable RCP in the study domain was
difficult as all the RCPs almost performed in similar way, with an exception in the
extreme value for bias and RMSE found in RCP 8.5. On the other hand, the 90th
percentile wind speed from few of the GCMs is found in close proximity with obser-
vations. Models that represented well the 90th percentile in wind speed are CNRM-
CM5,MRI-CGCM3, andMIROC4h. The discrepancy in surfacewind speed between
models andobservationsmayarise due to differences in the parameterization schemes
used by different models. This is evident by the disparity in surface wind trend as
represented by various models used in this study. Thus, there remains considerable
uncertainty in the projection of surface wind speeds from CMIP5 models. Although
the CMIP5GCMs are not able to represent the contemporarywind speed climatology
satisfactorily, this study can be used as a first-order assessment of near-surface wind
speed for the Bay of Bengal region.
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Chapter 25
Trend Analysis of Temperature
for Eastern Ganga Canal Command

Radha Krishan, Bhaskar R. Nikam, and Deepak Khare

Abstract Temperature and its analysis play a significant role in planning any irriga-
tion project. However, expeditious climate change and shift have evolved with such
footings,whichwere implausible earlier.On this respect, in the present study, analysis
of temperature trend has been carried out over the command area of Eastern Ganga
Canal (EGC) project for pre-climate shift period and post-climate shift period. Non-
parametric Mann–Kendall and Sen’s methods have been applied to study the trends
in annual and seasonal temperature (Kharif , Rabi and Summer). Results showed
significant decreasing trends in annual,Kharif, Rabi and Summer season temperature
with−0.03 °C/year, −0.02 °C/year,−0.04 °C/year, and −0.02 °C/year respectively,
during pre-climate shift period; whereas the significant increasing trend has been
observed in all the four parameters during post-climate shift periodwith 0.02 °C/year.
This rise in temperature is directly affecting the water requirement of crops, by
rise in reference crop evapotranspiration (ET0). The ET0 showed decreasing trends
for above-mentioned period during pre-climate shift whereas significant increasing
trends have been observed during post-climate shift. These results will help project
managers and farmers in understanding the climate shift and manage them to the
development of alternative water management strategies.

Keywords Climate shift · Temperature trend · Mann–Kendall test · Sen slope
estimator · Eastern Ganga Canal (EGC) command

25.1 Introduction

Sound scrutiny ofwater resource potential is very valuable for profitablemanagement
of water resources, for which study of temperature is the starting point. Data referring
spatio-temporal variability in temperature are quite significant from the scientific
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perspective (Basistha et al. 2009). Analysis has demonstrated that global warming
has occurred at the pace of 0.74 ± 0.18 °C, over 1906–2005 (IPCC WG II 2007;
Basistha et al. 2009). Air temperature is noticed as a positive signal for assessing the
prominence of global climate (Jhajharia and Singh 2011). A rise of 0.8 °C/decade in
the upper Danube basin, Europe, during summertime temperature was observed by
Reiter et al. (2012).Vose et al. (2005) have reported that boost in the heat of theEarth’s
surface is because of surging minimal temperature than the maximal temperature.
Sen and Balling (2005) observed rise in temperature in the Deccan Plateau region
of India, however, the periodic temperature series observed in the country was not
momentous except for Kashmir region. Arora et al. (2005), Kothawale and Rupa
(2005), Dash et al. (2007), Pal and Al-Tabbaa (2011) and Mondal et al. (2015) have
observed an increase in temperature over India and the subcontinent.

Intergovernmental Panel for Climate Change (IPCC WG II 2007) has described
spatial, interseasonal and interannual instability in precipitation trends over Asia.
It was observed that varying precipitation pattern has a remarkable brunt on water
and agricultural sector of the Asia–Pacific region (Kundu et al. 2015). The decadal
change in precipitation pattern has turned feeble since the late 1970s over East Asia
(Zhou et al. 2009; Li et al. 2010; Kundu et al. 2015). Decrease in rainfall with increase
in temperature and evapotranspiration have induced drying and added droughts in
many regions. The tropics are getting extremely afflicted from the droughts (Mondal
et al. 2015).

Rising global surface temperatures are expected to affect the rainfall due to vari-
ations in atmospheric circulation (Dore 2005). Nitta and Yamada (1989) observed
that the tropical sea surface temperature (SST) in the Pacific and Indian Ocean has
been increasing since the late 1970s. They have recorded 0.3–0.4 °C rise in average
SST of tropical region during 1980s in comparison to 1970s. Folland et al. (1984)
scrutinised inter-annual fluctuations of global SST and near-surface temperature of
marine air for the period 1856–1981 and got various number of inter-decadal varia-
tions. Folland et al. (1986) have demonstrated that wet and dry periods in the Sahel
region of Africa are linked to the SST anomalies on a global scale. Hsiung and
Newell (1983) have analysed the global SST for the period 30 years (1949–1979)
and obtained the El Ninõ mode as the important non-seasonal pattern. ‘A pattern
of basin wide SST anomalies involved with a transition to the positive phase of the
Inter-decadal Pacific Oscillation (IPO), occurred in the mid-1970s with effects that
extended globally’ (Power et al. 1999; Mantua et al. 1997). This integral decadal
capriciousness linked with the IPO existed till 1970s and must have forced climate
shift in the 1970s from a negative to the positive phase of the IPO. People have
viewed this change as natural phenomena caused by internally generated decadal
variability of the Pacific climate system. However, during the mid-1970, there has
been an increase in the global temperature due to changes in external forcing in the
Pacific Ocean and other metrological parameters have also undergone changes. It
was argued that the increase in the temperature is caused by the increase of green-
house gases from the burning of fossil fuel along with external forcing. But later
on, IPCC report in 2011 revealed that the change in climate in the twentieth century
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was because of the shift of climate in the mid of 1970s rather than the burning fossil
fuels. Varying effects of this climate shift are observed globally (Power et al. 1999).

A very important cycle that draws the attention of the researchers is the deep study
of the atmosphere andhow it contributes to climate variability. This climate variability
also affects the food chain and food web causing severe threats to various valuable
species of plants and animals. In the recent years, there has been a lot of research
going on related to temperature variability but at local scales (Singh 2013; Suhas
and Goswami 2008; Trenberth et al. 2003; Konwar et al. 2012). India’s climate is
generally outlined by temperature. Therefore, change in temperature pattern between
pre-climate and post-climate shift periods may incomparably affect the economy of
the nation. The analysis of impact of climate shift on water resources is mandatory in
all agricultural zones of India. Agriculture being the backbone of Indian economy, it
is extremely important to study the distribution of climatic parameters that govern the
output from the agriculture sector. Much of research has been carried out in context
of climate change but very few works are done regarding climate shift. To analyse
the impact of the climate shift on status and trends of climatic parameters, an attempt
is being made in the present study, to quantify the long-term trend of air temperature
for both pre-climate and post-climate shift periods across the agricultural dominated
command area of Eastern Ganga Canal project. Kothyari and Singh (1996) observed
rising annualmaximum temperature over theGanga basin. In this regards, the present
study has been carried out to check the shifts in climate during pre-implementation
and post-implementation of EGC command.

Incidentally, the Eastern Ganga Canal (EGC) project was operationalised during
1970s and the data used for designing the project belong to pre-climate shift era
and actual implementation of this project belongs to post-climate shift period. This
is the reason that makes EGC project an ideal location for analysing the impact of
climate shift on climatic availability and demand for water. Keeping this in mind, an
effort has been made in the present study to analyse and discuss the trends in annual
and seasonal temperature during pre-climate shift and post-climate shift periods over
Eastern Ganga Canal (EGC) command area, India.

25.2 Study Area and Data Used

Eastern Ganga Canal (EGC) system is a part of Ganga Canal system, which is one of
the Asia’s longest canal systems. EGC originates from the left bank of Bhimghorda
Barrage at Haridwar, India. Command area of EGC project covers major part of
two districts, i.e. Haridwar (in Uttarakhand) and Bijnor (in Uttar Pradesh), which
extends from 29° to 30° N and from 78° to 78°45′ E. EGC project was implemented
1970 onwards to utilise the surplus water of River Ganga during monsoon period
for the development of Kharif cultivation in the districts of Bijnor, Haridwar and a
very small part of Moradabad. The project has a gross command area (GCA) of 3.01
lakh ha, among which 2.33 lakh ha is culturable command area (CCA) and ultimate
irrigation potential (IP) of the project is around 1.05 lakh ha. In the period other than



282 R. Krishan et al.

Kharif season, the command area is mainly depended on precipitation occurred in
the region, as the EGC project is designed to supply water only in Kharif season.
The location map of the study area is shown in Fig. 25.1.

Daily gridded temperature data of 1° × 1° spatial resolution were collected from
Indian Meteorological Department (IMD), Pune for the EGC command area. The
daily temperature data (1951–2012) were extracted for the EGC command and
surrounding area, which covers two grids of IMD data. The daily mean tempera-
ture data were converted into seasonal (Kharif , Rabi and Summer) and annual scale
in two time periods as discussed above, however, the time span of pre-climate and
post-climate shift periods is modified to 1951–1976 and 1977–2012, respectively
due to non-availability of gridded temperature data prior to 1951 and after 2012. The
conversion of daily temperature data into seasonal temperature data is done by using
the weighted temporal average of 4 months i.e. July to October for Kharif season;
November to March for Rabi season, and April to June for summer season.

25.3 Analysis of Trend

Attempts for the disclosure of significant trends in climatologic time series can
be formulated as parametric and non-parametric approaches. Parametric trend tests
require data to be independent and normally distributed, while non-parametric trend
tests work with the assumption of data is sovereign (Gocic and Trajkovic 2013). In
this study, two non-parametric techniques, e.g. Mann–Kendall (MK) test and Sen’s
slope estimator technique, were used to detect and quantify the trends in the annual
temperature and seasonal temperature (Kharif , Rabi and Summer season). Before
employing the MK test, all the data series were proven for serial correlation using
Lag-1 autocorrelation (Anderson 1941; Duhan and Pandey 2013) at 1, 5, and 10%
significance level to eliminate the effect of serial correlation. All the series were
found to be serially absolute, hence, MK test was directly enforced to original data
series to disclose the trend using the two-sided hypothesis at 5% significant level.
The value of statistically significant trend was calculated using Sen’s estimator. The
statistical and qualitative tests/methods used in the present study to analyse the trend
are briefly described below:

(i) Mann–Kendall Test

The Mann–Kendall test (Mann 1945; Kendall 1975) searches for a trend in a time
series without specifying whether the trend is linear or non-linear. The trend test is
applied to a time series xi ranked from i = 1, 2… n − 1, and xj ranked from j = i +
1, 2, … n. Each data point xi is used as a reference point and is compared with all
other data points xj such that
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Fig. 25.1 Location map of the study area with the coverage of IMD rainfall data grids
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The Kendall statistics S is estimated as

S =
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i=1

n∑

j=i+1

sgn(x j − xi ) (25.2)

The variance of the statistic S is defined by

Var(S) = n(n − 1)(2n + 5) − ∑n
i=1ti(i)(i − 1)(2i + 5)

18
(25.3)

where, ti denotes the number of ties up to sample i.
The test statistics Zc is estimated as
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⎧
⎪⎨

⎪⎩

S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(25.4)

where, Zc follows a standard normal distribution. The null hypothesis, H0, meaning
that no significant trend is present, is accepted if the test statistic (Zc) is not statisti-
cally significant, i.e. −Za/2 < Z < Za/2, where Za/2 is the standard normal deviate. A
significance level (α) is also used to test for either an upward or downward monotone
trend (a two-tailed test). If Zc is greater than Zα/2 where α denotes the significance
level, then the trend is significant.

(ii) Sen’s Slope Estimator Test

In cases where a linear trend is present in a time series, then the true slope can be
predicted by employing a simple non-parametric operation developed by Sen (1968).
The slope estimate of N pairs of data is first measured by

Qi = x j − xk
j − k

for i = 1. . . . N (25.5)

where, xj and xk are data values at times j and k (j > k), respectively. The meridian
of these N values of Qi is Sen’s estimator of slope. If N is odd, then Sen’s estimator
is calculated by Qmed = Q(N+1)/2 and if N is even, then Sen’s estimator is calculated
by Qmed = [QN /2 + Q(N+2)/2]/2 (Partal and Kahya 2006). Finally, Qmed is tested by a
two-sided test at 100(1 − α)% confidence interval and true slope may be achieved
by the non-parametric test.
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25.4 Results and Discussion

The trend in temperature at various time scales has been studied for critical irrigation
command area of EGC project with the objective of quantifying the change in trends
of temperature during pre and post climate shift periods, which coincides with pre-
and post-implementation periods of the project. Trends in annual mean temperature,
seasonal mean temperature, annual ET0 and Seasonal ET0 for Kharif , Rabi and
Summer seasons were estimated for both the time periods (e.g. pre-climate shift
and post-climate shift) using MK test and Sen’s slope estimator. For the qualitative
analysis, the spatial pattern before and after the climate shift periods has been assessed
for temperature time series. The results obtained in the present study are deliberated
subsequently.

Temperature analysis

Analysis of trend in average of annual temperature and average of seasonal (Kharif ,
Rabi and summer) temperature has been carried out for 27 years data (1951–1976)
for pre-climate shift period and 36 years data (1977–2012) for post-climate shift
period over EGC command area. Trends are plotted for average annual and seasonal
temperature for whole EGC command area in Fig. 25.2a–h.

Annual average temperature in the region varies from 22.07 to 23.66 °C during
pre-climate shift period while it reduces to 21.83–23.64 °C during post-climate shift
period. Kharif season temperature varies from 25.66–27.84 °C for pre-climate shift
while 25.63–28.07 °C for post-climate shift period in the EGC command area. Pre-
and post-climate shift period temperature in Rabi season varies from 15.40 °C to
17.58 °C and 15.29 °C to 17.74 °C, respectively. During summer season temperature
varies from 27.11 °C to 30.39 °C during pre-shift and 26.56 °C to 30.43 °C in
post-shift periods, respectively.

Trends result at 5% significance level for annual temperature, Kharif season
temperature, Rabi season temperature and summer season temperature for pre- and
post-climate shift within EGC command are shown in Fig. 25.2a–h, respectively. The
results of trend analysis for the pre-climate shift period (1951–1976) showed that
average annual temperature, average Kharif season temperature and average Rabi
season temperature have significant decreasing trend at 95% confidence level with
Sen’s slope value of−0.03 °C,−0.02 °C and−0.04 °C respectively.Average summer
season temperature shows decreasing trend with Sen’s slope value of −0.02 °C,
however, this trend appears to be statistically insignificant at 95% confidence level.
On the contrary to the trends observed during pre-climate shift period, the average
annual and seasonal (Kharif and Rabi) temperature during post-climate shift period
(1977–2012), exhibits increasing trend of 0.02 °C in each case respectively, which
is statistically significant at 95% confidence level as listed in Tables 25.1 and 25.2.
The trend in summer temperature is increasing with Sen’s slope value of 0.02 °C,
however, here too this slope value is statistically insignificant at 95% confidence
level, which may be due to high variability in summer temperature data.
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Fig. 25.2 Trend in pre- and post-climate shift period in annual temperature (a and b),Kharif season
temperature (c and d), Rabi season temperature (e and f), summer season temperature (g and h) of
EGC
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Fig. 25.2 (continued)

Table 25.1 Sen’s estimator test values for pre- and post-climate shift for temperature

Shift Average annual
temperature

Average Kharif
temperature

Average Rabi
temperature

Average
summer
temperature

Pre-climate
shift

−0.03 −0.02 −0.04 −0.02

Post-climate
shift

0.02 0.02 0.02 0.02

Table 25.2 Trend result using Mann–Kendall and Sen’s estimator test at 5% significance level for
temperature

Shift Average annual
temperature

Average Kharif
temperature

Average Rabi
temperature

Average
summer
temperature

Pre-climate
shift

Yes Yes Yes No

Post-climate
shift

Yes Yes Yes No

ET0 Analysis

From the above-mentioned tables, it is clear that there is decreasing trend for all the
four parameters considered (i.e. annual temperature,Kharif season temperature,Rabi
season temperature and summer season temperature) during pre-climate shift period
while these parameters exhibit increasing trend during post-climate shift period;
which may lead to increased evapotranspiration loss. So, trend for ET0 is analysed
for annual and seasonal ET0.
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Results showed that annual average ET0 in the region varies from 235.90 to
290.95 mm during pre-climate shift period while it increases from 237.41 to
293.13 mm during post-climate shift period. Kharif season ET0 varies from 103.98
to 132.89 mm for pre-climate shift while 106.46 to 138.24 mm for post-climate shift
period in the EGC command area. Pre- and post-climate shift period ET0 in Rabi
season varies from 33.46 mm to 47.76 mm and 32.78 mm to 45.75 mm, respectively.
During summer season, ET0 varies from 91.53 mm to 120.92 mm during pre-shift
and 89.06 mm to 133.15 mm in post-shift periods, respectively.

Trends results at 5% significance level for annual ET0, Kharif season ET0, Rabi
season ET0 and summer season ET0 for pre- and post-climate shift within EGC
command is carried out. The results of trend analysis for the pre-climate shift period
(1951–1976) showed that average annual ET0, average Kharif season ET0 and
average Rabi season ET0 have significant decreasing trend at 95% confidence level
with Sen’s slope value of −3.33, −2.03 and −1.83 respectively. Average summer
season ET0 shows decreasing trend with Sen’s slope value of −1.83, however, this
trend appears to be statistically insignificant at 95% confidence level. While signifi-
cant increasing trends observed during post-climate shift period at 95% confidence
level with Sen’s slope value of 2.41, 2.67 and 2.22 for average annual ET0, average
Kharif season ET0 and average Rabi season ET0. Average summer season ET0 for
post-climate shift shows increasing trend with Sen’s slope value of 0.18, however,
this trend appears to be statistically insignificant at 95% confidence level which may
be due to high variability in summer temperature data (Tables 25.3 and 25.4).

Increase in annual and seasonal evapotranspiration loss is leading in reducing
water availability in the spatial or temporal domain in the command area. On one side,
water availability is decreasing, simultaneously population is increasing, resulting in
increased water demand leading to adverse cumulative effect. In such situation, the
knowledge of annual and seasonal assured water availability (rainfall) and conjunc-
tive use may help decision-makers in proper planning of optimum utilisation of the
existing water resources. Proper operation of canal system should be done to get the
maximum benefit of the canal water considering these inputs.

Table 25.3 Sen’s estimator test values for pre- and post-climate shift for ET0

Shift Average annual
ET0

Average Kharif
ET0

Average Rabi
ET0

Average summer
ET0

Pre-climate shift −3.33 −2.03 −1.83 −1.83

Post-climate shift 2.41 2.67 2.22 0.18

Table 25.4 Trend result using Mann–Kendall and Sen’s estimator test at 5% significance level for
ET0

Shift Average annual
ET0

Average Kharif
ET0

Average Rabi
ET0

Average summer
ET0

Pre-climate shift Yes Yes Yes Yes

Post-climate shift Yes Yes Yes No
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25.5 Conclusions

The trend analysis for temperature showed opposite trends between pre-climate shift
and post-climate shift periods for annual average temperature, averageKharif season
temperature, average Rabi season temperature, and average summer season tempera-
ture.During pre-climate shift period (1951–1976), the temperature is showing signifi-
cant decreasing trends at 95% confidence level in case of annual average temperature,
average Kharif season temperature and average Rabi season temperature. Whereas,
in post-climate shift period (1977–2012), there are significant increasing trends in
these variables. In a case of average summer season temperature, same opposite
trends are observed during pre- and post-climate shift periods, however, both the
trends were found to the statistically insignificant at 95% confidence level.

A significant increasing trend in post-climate shift period (also known as post-
implementation phase of EGC), poses questions on the irrigation distribution strate-
gies. These irrigation distribution strategies have been designed during project design
phase, which coincides with pre-climate shift phase. The data and trends (trends in
data) used to design these irrigation water distribution strategies have now changed
in post-implementation phase of the project (post-climate shift period), especially
the trends. The increasing trend in annual and seasonal temperature with increased
losses through evapotranspiration from the command area will reduce natural water
availability for agriculture in the command area. The reduction in natural water
availability has to be compensated by increased irrigation supply in the area. To plan
the increase/change in irrigation supply spatially or temporally, the knowledge of
existing and future natural water availability and losses is the prerequisite. Based on
this study, various policies can be derived for the bettermanagement ofwater resource
in the command area. Furthermore, there is a need of an unified governmental plan
for change detection, impact assessment, adaptation and mitigation pertaining to
changes in climatic parameters. This particular study highlights the climatic variable
along with their trends were changed from pre- to post-climate shift periods with in
the EGC command region, so for better implementation of long-termwater resources
management, proper planning should be incorporated to overcome the effect of the
climate shift in the EGC command area.
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Chapter 26
Analysis of Long-Term Rainfall Trends
in Rajasthan, India

Darshan Mehta and S. M. Yadav

Abstract The climatic variability for an area is referred to the long-term change
in precipitation, temperature, humidity, evaporation, wind speed and other meteoro-
logical parameters. In order to identify the change, quantification of environmental
change is essential that has occurred already and will be further helpful to make
forecast for future. This will result into a better awareness for natural disasters. The
objective of the study is to examine the rainfall variability in east as well as in west
Rajasthan state in India. This will give an understanding about rainfall trends or
changes. In this study, trend analysis has been carried out on monthly, seasonal and
annual scale for the 33 districts of the arid as well as semiarid east andwest Rajasthan
state, India. Mann–Kendall test and Sen’s slope estimator (statistical trend analysis
techniques) used to detect trends at the 5% significance level on time series data
of the east and west Rajasthan state for the time period, 1871–2016. This test was
applied to identify the change in magnitude and direction of existing trend over the
time. Trend detection of rainfall using techniques over 146 years shows increasing
trend in premonsoon, southwest monsoon and annual precipitation in west Rajasthan
while in east Rajasthan, it shows increasing trend in premonsoon, postmonsoon and
annual precipitation. For proper water resource management and its planning, the
analysis of climatic variables like heavy rainfall, temperature and humidity is helpful
in adverse climatic conditions.
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26.1 Introduction

Water resource has come to be a major concern for any change and develop-
ment including food manufacture, controlling of flood and effective management.
Universal change in climate might affect rainfall trend, which affects water obtain-
ability alongside the drought risk as well as floods increases. Panel of intergov-
ernmental on climate change demonstrates that the temperature has expanded by
0.74 °C ± 0.18 °C throughout the most recent 100 years (1905–2005), also rainfall
is probably going to raise by 0.2–0.3% every period over zones of land in twenty-first
century (IPCC 2007). To detect environmental changes and its effects on the various
parts, the impact of climate change on agriculture, increased water shortage, rapid
melting of glaciers and decrease in stream flows should be properly justified. Rain-
fall is the most important variable among other climatic variables, which involves
spatial and temporal water availability patterns. The trend detection of rainfall is
a vast topic in the field of water resource management, which deserves vital and
methodical attention, as it affects freshwater availability and the production of food
(Jain et al. 2012). Trend magnitude of India among the most recent century is equiv-
alent to the worldwide situation (Kumar et al. 2010). Severe hydrological parameter
changes such as rainfall, humidity, temperature and stream-flow are impelling the
stream regimes significantly (Wani et al. 2017). Hydrologic parameters such as rain-
fall are reliant on factors of atmospheric. It is important to set up the associations
among climatic and hydrological factors, which gives valuable intuitions into the
conceivable changes in the area of hydrology and furthermore can help in the issues
related to water resources management (Basistha et al. 2009). Detection of trends
of rainfall in various scales will give an improved understanding to issues related
with flood inundations and scarcities of water for utilizing as for climatic condi-
tions. Temperature of air demonstrates a decent sign of the climatic condition as a
result of its capacity to characterize the process in exchange of energy above the
surface of world with sensible precision (Roy et al. 2015). Assessment of rainfall
and analysis of annual maximum daily precipitation would upgrade the management
of water resource applications as well as the viable usage of water resources (Pingale
et al. 2016). Probability and occurrence investigation of precipitation data enables
us to evaluate the expected rainfall at various chances (Mondal et al. 2012). Several
scientists contributed to the study of environmental change (Hajani et al. 2014) with
rainfall data of long term. Various series data are studied and have demonstrated that
there is either decreasing or increasing in trend, both if there should be an occurrence
of temperature and precipitation. Human interfering is also prompting to environ-
mental change with changing area usage from the effect of rural and water system
practices (Kalnay et al. 2003). To detect the variations in any series of time, it is basi-
cally important to do quality check furthermore series length due to their substantial
impact in the analysis. For detecting trends, wrong and missing data records may
lead to unauthentic interpretations. High-quality and informatory data consideration
is basic for trend analysis correlated to perception of changes in series of time. In this
paper, various methodologies are utilized to check all the changes, commencement
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of trend and trend changes over the series of time (Sonali and kumar 2013). The
precipitation dispersion in Rajasthan is most uneven and differs substantially after
region to region. The proper understanding and efficient utilization of the natural
resources particularly precipitation are therefore, of great concern for the upgrading
and manageability of agriculture in rain nourished region. The objective of this study
is to explore the changeability of the rainfall in east and west Rajasthan state, India.
Uncertainties associatedwith rainfall patternwill offer an information for betterwater
resource management, farming, generation of hydropower and activities related to
the water in the study area.

26.2 Objective of Study

The objective of study is to carry out long-term trend analysis of rainfall on monthly,
seasonal and annual scale for the 33 districts of the parched and semidry east and
west Rajasthan state, India.

26.3 Study Area

Rajasthan is a state in the north western region of India covering a widespread area
of 342,239 km2 (10.4% of the country). According to census 2011, population is
about 68 million and 75% of it lives in provincial zone and reliant on availability of
precipitations for farming furthermore for other utilizes. Out of 33 districts, 4 can be
clearly delineated in the state, west with desolate hills, north east with sandy plains,
Aravali slopes extending from north to south in the center, and south eastern plateau.
The Aravalli goes equivalent to the cloud bearing breezes and neglects to make some
orographic precipitation throughout the months of monsoon in Rajasthan state. High
temperature when tropic of cancer goes through the southern regions throughout the
late spring (Qin et al. 2007). The arid and semiarid regions of the state experience
high diurnal and seasonal differences in temperature. The temperature of summer is
around 26 °C to 46 °C and 8 °C to 28 °C in winter. The annual rainfall totals to just
100mm in the western parts and around 600mm in the whole eastern parts. Variation
in climate from semiarid to damp in the part of south east. Less as well as irregular
rainfall describes, as one of the parched state in India, it gets around 574 mm normal
yearly precipitation which diverges from 100 mm in Jaisalmer which is lowest to
550 mm in Ajmer and highest (1638 mm) in Mount Abu (Sirohi district) located on
southeast districts.

Mean annual rainfall indicates extensive variation, as the outrageouswestern parts
of Rajasthan, i.e. Jaisalmer region get precipitation under 100mm (low) in compared
with 900 mm (high) in the eastern parts of Jhalawar and Banswara (Pingale et al.
2014, 2016). East and west Rajasthan have mean yearly rainfall of about 64.9 cm
and 66.7 cm. South-eastern region receives extreme rainfall in the state (Singh et al.
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Fig. 26.1 Administrative
Map of Rajasthan

2016).Whereas, Pali and Jalore areas of west part get highest volume of rain of about
50 cm and 43 cm. Annual rainfall of Bikaner, Ganganagar, Jaisalmer is about 26 cm,
24 cm and 17 cm respectively. The adjacent parts of these regions found the parched
region. Figure 26.1 shows the administrative map of Rajasthan.

Based on the variations in climatic, soil and physiographic conditions, Rajasthan
has additionally been classified into different agro climatic regions: arid western
plain, irrigated north western plains, transitional plain of inland drainage, semiarid
eastern plain, flood-prone eastern plains, subhumid southern plains and the Aravalli
hills which govern the agro-pastoral livelihood of the people, the cropping pattern
and water demand conditions.

26.4 Data Collection

Subdivisional monthly rainfall data of east andwest Rajasthanwere used in the study,
which is prepared by the tropical meteorology of Indian Institute. To see the trends
of rainfall in recent decades only 1871–2016, 146 years are considered in the study.
Analysis was assessed on month wise, season wise and on annual basis. Seasons
are considered as per classification of Indian Meteorological Department (IMD) as
winter (January–February), pre-monsoon (March–May), southwest-monsoon (June–
September) and post-monsoon (October–December).
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26.5 Methodology

In the present study, rainfall trend analysis for 33 centers of east and west Rajasthan
were aggregated to prepare month wise, season wise and on annual series of time.
Statistical parameters like mean, standard deviation and coefficient of variation were
computed for monthly, seasonal and annual time series of rainfall data. To analyze
the trend of rainfall, rank-based nonparametric Mann–Kendall (MK) test and slope-
based Sen’s slope (SS) estimator were conducted on rainfall time series of 146 years
using the XLSTAT 2016 software.

26.5.1 Nonparametric Mann–Kendall Test

For trend analysis statistical test, i.e.Mann–Kendall (M-K) test is commonly used for
time series ofmeteorological and hydrological data. Two important benefits are using
for this test. First, for distributing normally, it does not require any data. Second, the
test has little affectability to sudden disruptions because of in homogeneous series
of time. Various records described as “nondetects” are involved by assigning them a
generalized significance which is less than the minimum estimated in the data series.
From this test, if the hypothesis is null, i.e. H0 then it shows “no trend.” It is again
tested with another hypothesis h1, which shows that there is a trend. Mann–Kendall
(MK) test statistics is calculated by the given below equations:

S =
n−1∑

i=1

n∑

j=i+1

sign
(
xj − Xi

)

Sign
(
xi − Xj

) =
⎧
⎨

⎩

−1; (xj − Xi
)
< 0

0; (xj − Xi
) = 00; (xj − Xi

) = 0
1; (xj − Xi

)
> 0

The MK tests adopt the two hypotheses; null hypothesis (h0) and alternative
hypothesis (ha), in which null hypothesis assumes that there is no trend in time
series or in other words the data values are independent and randomly ordered while
alternative hypothesis assumes that there is a trend in time series. By performing
trend analysis by XLSTAT 2016, the value of MK statistic is denoted by value p.
Two-tailed test was performed at 95% level of confidence interval for rainfall series
of time.

Performing theMann–Kendall test by XLSTAT onemore statistic Kendall’s tau is
obtained, which shows the correlation between the two variables in time series. Same
as the Mann–Kendall test and Spearman rank correlation test Kendall’s tau is also a
rank-based correlation test. Values of Kendall’s tau lies between the −1 and +1. In
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which positive correlation indicates that the ranks of two variables increase together
while negative values of correlation imply that the rank of one variable increases and
other one decreases.

26.5.2 Sen’s Slope Estimator Test

Sen (1968), a method for robustly fitting a line to sample points in the plane,
magnitude of the slope using this method can be obtained by using as follows:

Sen’s slope = med

[
yi − Yj

(i− j)

]
; j < i

Yi and yj are the values at period of time i and j. Positive value shows increasing
trendwhile negative value recommends a decreasing trend. If data points having total
number in the series is n, then there will be n(n−1)

2 slope and the test statistics bsen is
the intermediate of all estimated slope. Value obtained positive as well as negative
of statistics test shows increasing and decreasing trends.

26.6 Result and Discussion

26.6.1 Rainfall Statistics Characteristics

Statistical characteristics of rainfall over the east and west Rajasthan state for
146 years (1871–2016) were carried out monthly, seasonal and annual time
series. Statistical parameters like mean, standard deviation, coefficient of variation,
maximum and minimum values are described in Table 26.1 for east Rajasthan and
Table 26.2 for west Rajasthan.

The statistical analysis of rainfall characteristics for the period of 146 years (1871–
2016) indicated that the mean annual rainfall for east Rajasthan is 693.70 mm with a
standard deviation of 168.7 mm and a coefficient of variation of 24.3% whereas for
west Rajasthan is 298.9 mm with a standard deviation of 107.9 mm and a coefficient
of variation of 36.1%. The high CV denotes that the variability of rainfall of that area
is not equally distributed and the amount of rainfall is lowest.
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Table 26.1 Rainfall statistics over east Rajasthan (1871–2016) for monthly, seasonal and annual
rainfall

Month Rainfall (mm) for east Rajasthan

Mean SD CV (%) % contribution
to annual

Maximum
(mm)

Minimum (mm)

January 6.8 8.2 120.6 1.0 37.1 0.0

February 5.98 8.3 138.8 0.9 38.8 0.0

March 4.74 9.2 194.1 0.7 68.1 0.0

April 3.54 6.3 178.0 0.5 44.7 0.0

May 13.06 13.4 102.6 1.9 87.7 0.0

June 74.33 48.4 65.1 10.7 227.5 3.1

July 231.81 84.7 36.5 33.4 428.8 20.6

August 223.80 101.5 45.4 32.3 465.3 5.8

September 104.83 76.2 72.7 15.1 344.3 2.5

October 14.39 25.1 174.4 2.1 179.6 0.0

November 5.21 12.4 238.0 0.8 79.1 0.0

December 5.19 12.2 235.1 0.7 120.6 0.0

Annual 693.70 168.7 24.3 100.0 1336.8 275.7

Pre-monsoon 21.33 17.9 83.9 3.1 101 0.5

S-W monsoon 634.77 163.2 25.7 91.5 1118 194.2

Post-monsoon 24.79 30.3 122.2 3.6 185.2 0.0

Winter 12.80 12 93.8 1.8 56.8 0.0

26.6.2 Trend Analysis of Rainfall

26.6.2.1 Long-Term Rainfall Trends for East Rajasthan

To identify trend detection Mann–Kendall (nonparametric rank) two-tailed assess-
ment and slope-based Sen’s slope estimator (SS)were performed overRajasthan state
on rainfall time series. Test is carried out on monthly seasonal and annual time scale
for 1871–2016 (146 years). Rainfall trend detection is carried out on month wise,
season wise and on annual basis. Time series of rainfall plots on annual basis and
season wise of east Rajasthan are presented in Figs. 26.2 and 26.3. Trend analysis for
individual month was tested at 95% significance level (Table 26.3). Slope (s) positive
value shows an increasing trend while negative value shows a decreasing trend. By
performing trend analysis, results show that the month wise rainfall of June shows an
insignificant decreasing trend (p = 0.78), while July month shows increasing trend
(p = 0.874). Annual rainfall shows an insignificant increasing trend (p = 0.895).
Trend analysis for seasonal rainfall shows insignificant decreasing trend for winter
rainfall and southwest monsoon (p = 0.465 and 0.66) while for premonsoon and



300 D. Mehta and S. M. Yadav

Table 26.2 Rainfall statistics over west Rajasthan (1871–2016) for monthly, seasonal and annual
rainfall

Month Rainfall (mm) for west Rajasthan

Mean SD CV (%) % contribution
to annual

Maximum (mm) Minimum (mm)

January 4.1 5.5 134.1 1.4 26.4 0.0

February 5.5 8.6 156.4 1.8 43.7 0.0

March 4.3 8 186.0 1.4 64.7 0.0

April 3.6 6.5 180.6 1.2 45.7 0.0

May 11.4 12.9 113.2 3.8 61.2 0.0

June 30.7 25.1 81.8 10.3 172.7 0.0

July 93.4 49.5 53.0 31.2 220.2 0.2

August 94.9 64.3 67.8 31.7 370.6 0.7

September 40.4 39.1 96.8 13.5 185 0.0

October 5.5 11.9 216.4 1.8 74.9 0.0

November 2.0 5.4 270.0 0.7 37.7 0.0

December 2.5 5.2 208.0 0.8 30.6 0.0

Annual 298.9 107.9 36.1 100.0 722.3 36.6

Pre-monsoon 19.4 18.2 93.8 6.5 123.7 0.1

S-W monsoon 259.7 98.3 37.9 86.9 572.8 33.4

Post-monsoon 10.1 14 138.6 3.4 81.1 0.0

Winter 9.6 10.1 105.2 3.2 43.7 0.0

Fig. 26.2 Time series of annual rainfall (1871–72 to 2015–16) over East Rajasthan
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Fig. 26.3 Rainfall series of time during a winter b pre monsoon c southwest monsoon d post
monsoon for period of 146 years (1871–72 to 2015–16) over East Rajasthan

postmonsoon, shows an insignificant increasing trend (p = 0.586 and p = 0.832)
which is shown in Table 26.3 respectively.

Rejection of h0, if value of p is less than the level of significance i.e. A = 0.05
and shows that there is a trend, while accepting h0 shows no trend was identified.
Rejection of null hypothesis results to be statistically significant. The analysis using
Mann–Kendall test shows annual basis increasing trend of rainfall in east Rajasthan
with Mann–Kendall tau coefficient shows rising (0.007) with Sen’s slope (0.895)
respectively. The decreasing trend was found in winter and south west monsoon with
Mann–Kendall tau coefficient (−0.041)with Sen’s slope (−0.011) and (−0.025)with
Sen’s slope (−0.151). Value of Sen’s slope shows zero value defines no trend in the
time series of the data value.

26.6.2.2 Long-Term Rainfall Trends for East Rajasthan

Trend analysis of rainfall time series is assessed on month wise, season wise and on
annual basis. Time-series data plots on annual and seasonal scales of west Rajasthan
are presented in Figs. 26.4 and 26.5. Trend analysis for individual month was carried
out by Mann–Kendall two-tailed test and Sen’s slope estimator at 95% significance
level (Table 26.4).Byperforming trend analysis, results show that themonthly rainfall
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Table 26.3 Results of the Mann–Kendall test for trends in rainfall data (1871–72 to 2015–16) over
east Rajasthan

Rainfall period Kendall’s
tau

Trend
interpretation

P-value
(Mann–Kendall
test)

Sen’s
slope

Test
interpretation

January −0.053 Falling 0.345 −0.005 Insignificant
decreasing
trend

February 0.014 Rising 0.802 0 No trend

March 0.031 Rising 0.59 0 No trend

April 0.103 Rising 0.069 0.004 Insignificant
increasing
trend

May −0.023 Falling 0.688 −0.006 Insignificant
decreasing
trend

June −0.016 Falling 0.78 −0.026 Insignificant
decreasing
trend

July 0.009 Rising 0.874 0.022 Insignificant
increasing
trend

August 0.066 Rising 0.241 0.23 Insignificant
increasing
trend

September −0.027 Falling 0.631 −0.053 Insignificant
decreasing
trend

October 0.039 Rising 0.496 0.004 Insignificant
increasing
trend

November 0.034 Rising 0.573 0 No trend

December −0.103 Falling 0.077 0 No trend

Annual 0.007 Rising 0.895 0.038 Insignificant
increasing
trend

Winter −0.041 Falling 0.465 −0.011 Insignificant
decreasing
trend

Premonsoon 0.031 Rising 0.586 0.012 Insignificant
increasing
trend

Southwest
monsoon

−0.025 Falling 0.66 −0.151 Insignificant
decreasing
trend

(continued)
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Table 26.3 (continued)

Rainfall period Kendall’s
tau

Trend
interpretation

P-value
(Mann–Kendall
test)

Sen’s
slope

Test
interpretation

Postmonsoon 0.012 Rising 0.832 0.005 Insignificant
increasing
trend

Significant at 0.05 level
Note if p < 0.05 (statistically significant); p > 0.05 (statistically insignificant); (ii) Sen’s slope = +
ve increasing trend, Sen’s slope = −ve decreasing trend, Sen’s slope = 0 no trend

Fig. 26.4 Time series of annual rainfall (1871–72 to 2015–16) over West Rajasthan

of January indicates an insignificant decreasing trend (p= 0.331), while April month
shows increasing trend (p = 0.016). Significant increasing trend obtained in annual
rainfall (p= 0.12). Trend analysis for seasonal rainfall shows no trend for postmon-
soon, while in winter rainfall shows an insignificant decreasing trending (p= 0.359)
and for premonsoon and southwest monsoon, shows an insignificant increasing trend
(p = 0.139 and p = 0.282) which is shown in Table 26.4 respectively.

Rejection of h0, if value of p is less than the level of significance i.e. A = 0.05
which shows that there is a trend, while accepting h0 shows no trend was identified.
Rejection of null hypothesis results to be statistically significant. The analysis using
Mann–Kendall test shows annual basis increasing trend of rainfall in west Rajasthan
with Mann–Kendall tau coefficient shows rising (0.12) with Sen’s slope (0.324)
respectively. The decreasing trendwas found inwinter and postmonsoonwithMann–
Kendall tau coefficient (−0.051) with Sen’s slope (−0.011) and (−0.005) with Sen’s
slope (0).
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Fig. 26.5 Rainfall series of time during a winter b premonsoon c southwest monsoon and
d postmonsoon of 146 years (1871–72 to 2015–16) over West Rajasthan

26.7 Summary and Conclusion

Trend analysis of rainfall during the winter, premonsoon season, and south-west
monsoon season, postmonsoon and on annual basis was carried out for period of
1871–2016 over Rajasthan. Estimation of Sen’s slope and percentage change in
variables of climate were assessed for the period of 146 years. There is a variation
of rainfall between dissimilar months with the difference ranging through decades.
It reveals slight decreasing rainfall trend over Rajasthan. From the rainfall analysis
of trend, it tends to be inferred that despite the fact that insignificant variation in
rainfall pattern occurs over the couple of decades in many portions of the Rajasthan,
there is suggestion of about changes in trend of rainfall in monsoon months. More
investigationmight be taken up for this area to examine the existing farming practices,
patterns of land use, erosion as well as sedimentation levels and levels of reaction
to existing hydrological system parameters in the area. Increasing rate of rainfall
may help in improving productivity of farming and satisfy the demand of irrigation.
At last, this will assist policy manufacturers and technologists to concentrate on
district-wise planning with some methods for impact of climate change as well as
environmental change variation and alleviation, by considering regional and local
scale unpredictable trends as compared with worldwide climatic patterns.
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Table 26.4 Results of the Mann–Kendall test for trends in rainfall data (1871–72 to 2015–16) over
West Rajasthan

Rainfall
period

Kendall’s tau Trend
interpretation

Mann–Kendall
test p-value (two
tailed test)

Sen’s slope Test
interpretation

January −0.055 Falling 0.331 −0.002 Insignificant
decreasing
trend

February 0.025 Rising 0.664 0 No trend

March 0.099 Rising 0.086 0.003 Insignificant
increasing
trend

April 0.138 Rising 0.016 0.006 Significant
increasing
trend

May −0.001 Falling 0.984 0 No trend

June 0.065 Rising 0.249 0.044 Insignificant
increasing
trend

July 0.068 Rising 0.222 0.131 Insignificant
increasing
trend

August 0.029 Rising 0.601 0.054 Insignificant
increasing
trend

September −0.006 Falling 0.919 −0.005 Insignificant
decreasing
trend

October 0.05 Rising 0.388 0 No trend

November −0.018 Falling 0.779 0 No trend

December −0.102 Falling 0.088 0 No trend

Annual 0.087 Rising 0.12 0.324 Insignificant
increasing
trend

Winter −0.051 Falling 0.359 −0.011 Insignificant
decreasing
trend

Premonsoon 0.083 Rising 0.139 0.034 Insignificant
increasing
trend

Southwest
monsoon

0.06 Rising 0.282 0.212 Insignificant
increasing
trend

(continued)
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Table 26.4 (continued)

Rainfall
period

Kendall’s tau Trend
interpretation

Mann–Kendall
test p-value (two
tailed test)

Sen’s slope Test
interpretation

Postmonsoon −0.005 Falling 0.931 0 No trend

Significant at 0.05 level
Note if p < 0.05 (statistically significant); p > 0.05 (statistically insignificant); (ii) Sen’s slope = +
ve increasing trend, Sen’s slope = −ve decreasing trend, Sen’s slope = 0 no trend
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Chapter 27
Statistical Downscaling of GCM Output
and Simulation of Rainfall Scenarios
for Brahmani Basin

Lasyamayee Lopamudra Sahoo and Kanhu Charan Patra

Abstract The change in climate threatens the abundance of usable water across the
globe. Most of the river basins are unable to cope up with the impact of climate
change. Hence, assessing the future scenario has become the need of today. General
Circulation Model (GCM) provides information at a course grid resolution. Down-
scaling can help in getting the information at a local scale level fromGCMdata,which
helps the researchers to work on a regional level. Statistical downscaling method is
preferred over dynamic downscaling method due to its less complex calculations.
Statistical downscaling model (SDSM) is widely used in prediction of future climate
scenarios. Here Brahmani–Baitarani river basin is selected as a case study for the
downscaling of precipitation in the monthly time scale. SDSM version 4.2 is used as
the model and precipitation is taken as the predictand. Predictors are chosen from the
NCEP global variables like air temperature, geopotential height, specific humidity,
zonal and meridional wind velocities, precipitable water and surface pressure data.
The outcome of the study shows an increasing trend in the rainy season of the year.
The mean rainfall increases significantly in 2040s than other epoches.

Keywords Climate change · GCMs · Statistical downscaling model (SDSM) ·
Brahmani–baitarani river system

27.1 Introduction

Climate change has adverse impact on the surface of earth starting from forest
ecosystem to flood plain of rivers. Surface hydrology, forestry, floods, soil erosion,
land use changes, ground water, environment, living beings and their ecosystems;
all are affected by the climate change. Its adverse effect on water resources threatens
the abundance of usable water availability. Water is the basis of lifeline on earth.
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Population explosion associated with various anthropogenic activities like per capita
use, industrialization and others require more water in coming decades. Increase in
demand of water with population explosion but possible decrease in availability of
usable water creates a critical situation for the water resources planners (Chiew et al.
2010).

Study by researchers indicates that “the central India has been found to be the
most vulnerable to climate change. Parts of north western, north eastern and southern
India appear to be resilient to cope with droughts while the rest of the country is non
resilient” (Sharma et al. 2017). Therefore, a proper assessment of past and prediction
of probable future precipitation and the resulting run off over time is necessary for
hydrologist (Anandhi et al. 2008).

General circulation models (GCMs) are considered as the most effective tools
to simulate climatic conditions on earth. They provide information at a coarse grid
resolution (usually 1°–2°). But data at a finer grid are required to work on a smaller
study area like a smaller catchment. To manage the gap between the lower resolu-
tion and higher resolution, downscaling is used. It tries to link between the GCM
information and information needed by the hydrologists (Walsh 2011).

Downscaling methods can be broadly classified into two groups; dynamical
and statistical. Statistical downscaling method is preferred to dynamic down-
scaling method because of less computational work. Again it is classified into three
subgroups; regression methods, weather generators and weather typing schemes. All
the methods deal with the basic concept that regional climates (predictand) are the
function of the large scale atmospheric state (predictor). This relationship between
predictor and predict and can be deterministic or probabilistic function.

SDSM (statistical downscaling model) is the most commonly used model for
this purpose. SDSM combine uses a conceptual water balance model and a mass-
balance water quality model to investigate climate change impact assessment (Wilby
and Harris 2006). Many authors have compared SDSM with other statistical down-
scalingmodels. Harpham andWilby (2005) concluded that SDSM yields better daily
precipitation quantiles and intersite correlation when compared with artificial neural
networks (ANNs). Khan et al (2006) also concluded that SDSM is very efficient in
reproducing various statistical parameters of data set in the downscaled results with
a confidence level of 95%. Rath et al. concluded that future trends in precipitation
for annual and seasonal period from the SDSM indicates a decrease in precipitation
pattern for the time period 2020s and 2080s while an increase in 2050s for both A2
and B2 scenarios (Rath et al. 2016).

The present work focuses on the application of SDSM to the Brahmani–Baitari
river basin in India to simulate the future scenarios of the precipitation and other
parameters.
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Fig. 27.1 Schematic diagram of Brahmani–Baitarani river basin

27.2 Study Area

Brahmani and Baitarani river basin is situated in the central-east India between
latitude 20° 28′ to 23° 35′ N and longitude 83° 52′ to 87° 30′ E. The basin extends
over the states of Odisha, Jharkhand and Chhattisgarh draining an area of 51, 822
Sq.km which is 1.7% of total geographical area of the country. Major part of its
catchment area is situated in the state of Odisha. Both the rivers are seasonal in
nature. They are rejuvenated at the onset of monsoon as they are fed by rain. At
the time of summer, their discharge is significantly decreased. Though 90% of the
basin receives an average annual rainfall of between 1400 and 1600mm, some places
like Dhenkanal and Jashpur district are drought prone areas. Two hydro-observation
stations Jenapur and Gomlai are taken for this study. Jenapur station has a drainage
area of 33,955 km2 andGomlai has a drainage area of 21,950 km2. Figure 27.1 shows
the two stations in the considered river basin.

27.3 Data

The observed large-scale predictors have been derived from theNCEP reanalysis data
sets that contain 41 years of daily observed predictor data normalized over the period
1961–1990. These data have been interpolated into the grid size of 2.5 latitude *3.75
longitude before the normalization is implemented. The HadCM3 (Hadley center for
climate and prediction and research, UK) model output both for A2 and B2 scenarios
are directly downloaded from website http://climate-scenarios.canada.ca. The long-
term meteorological data from the period 1981–2016 are obtained from the central
water commission (CWC) India on daily basis at the Gomlai and Jenapur in the state

http://climate-scenarios.canada.ca
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of Odisha. A total 36 years of data are taken as baseline period, out of which 25 years
are used for calibration and 11 years are needed for validation of the model.

27.4 Methodology

27.4.1 SDSM

Among the handful models that are available for downscaling, the SDSM is very
popularly used. Statistical downscaling model (SDSM) is a statistical weather gener-
ator based on linear multiple regression. It is used to predict the climate parameters
such as the precipitation or temperature in long time duration. It uses large-scale
atmospheric variables to condition the local scale weather generators. It also uses
stochastic techniques in variance of daily time series. In fact it is the combination of
transfer function and stochastic weather generator methods.

27.4.2 Multiple Linear Regressions

Multiple linear regressions are used to explain the relationship between one contin-
uous dependent variable (predictand) with one or more than one independent vari-
ables (GCM outputs). For a given data set, a linear regression model assumes a
linear relationship between the variables. The equation used for the multiple linear
regressions is written as:

(
y
/
x
) = a + b1x1 + b2x2 + · · · bnxn. (1)

where, y is the dependent predictant variable with respect to x, x1, x2, x3…. xn the
independent predictor variables, a, b1, b2…bn the intercepts or parameters of the
equation. Figure 27.2 shows the flowchart of climate scenario generation in SDSM.

27.5 Results and Discussion

Any error in the observed data may result the model to fail in the prediction of future
climate scenario. Hence, before the simulations, the observed data are subjected to
quality control in order to check for any missing data codes or gross data errors. For
selecting a set of predictors, it is necessary to access the effect of predictors on the
precipitation at that particular station. A correlation matrix is generated among the
large scale global predictors and user specified predictand. Predictors are selected
based on the highest correlation value. Partial r, p values and scatter plots are also
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Fig. 27.2 Climate scenario generation in SDSM (Source SDSM user manual)

considered in screening of the predictors. Predictor variables selected for each station
after the screening test are given in Table 27.1.

For calibration of the model, 25 years of precipitation data (collected fromCWC),
between 1980 and 2005, are considered. A multiple linear regression is established
between theNCEPvariables and precipitation at that particular station. The intercepts
of the regression equation are calculated by the forced entry method. Synthetic daily
weather series is created by weather generation using the observed predictors. When
a calibrated model is selected, SDSM automatically relates all necessary predictors
to regression model weights. In the present study, monthly time scale is taken for
analysis and no conditional factors are added. An ensemble size of 20 is used for the
analysis. Results of model calibration for Gomlai station are shown in Fig. 27.3.
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Table 27.1 Predictors selected for each station and their correlation values

Station name NCEP codes Predictor variable Correlation value Partial r P value

Jenapur Shumas Surface specific
Humidity

0.265 0.056 0.0000

Jenapur rhumas Near surface relative
humidity

0.229 0.011 0.2729

Jenapur r850as Relative humidity at
850hpa

0.212 – 0.015 0.1412

Jenapur p5thas 500hpa wind
direction

0.177 0.018 0.0703

Jenapur p-uas Surface zonal
velocity

0.174 – 0.001 0.5632

Gomlai shumas Surface specific
humidity

0.323 – 0.092 0.0000

Gomlai r850as Relative humidity at
850hpa

0.277 0.021 0.0274

Gomlai rhumas Near surface relative
humidity

0.287 – 0.029 0.0023

Fig. 27.3 Calibration of model

Remaining 11 years data (2006–2016) are used for validation of the model. The
statistical plot between observed and simulated value is plotted to compare themodel
output. Figure 27.4 shows the plot for validation of the model.

It is quite clear from Fig. 27.4 that the model operates efficiently for calibra-
tion and validation. Hence future scenario is generated using this calibrated model.
Scenario A2 experiment results show a very heterogeneous world with continuously
increasing global population and regionally oriented economic growth that is more
fragmented and slower than in other experiments; while that of B2 scenario exper-
iment represents a world in which the emphasis is on local solutions to economic,
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Fig. 27.4 Validation of the model

social, and environmental sustainability, with continuously increasing population
(lower than A2) and intermediate economic development. Both the scenarios are
considered for the present study.

Outcomeof climatemodelHadCM3 is used for scenario generation for six decades
(2030–2090) in two subgroups as 2030–2060 and 2060–2090. These GCM outputs
are normalized to 360 days, 12 months with 30 days of each duration. Results are
presented in Tables 27.2 and 27.3.

Table 27.2 Simulated future precipitation for A2 and B2 scenarios at Jenapur station

Months Observed
values
(1981–2016)

Predicted values
2030-60-A2

Predicted values
2030-60 B2

Predicted values
2060-90-A2

Predicted values
2060-90 B2

January 15.218 2.465 2.431 2.416 2.440

February 16.126 4.894 4.864 4.907 4.858

March 11.978 4.211 4.293 4.213 4.266

April 12.219 6.787 6.733 6.798 6.736

May 10.165 12.441 12.455 12.475 12.524

June 12.459 19.477 19.548 19.249 19.361

July 13.828 20.513 20.361 20.447 20.561

August 15.225 22.139 21.972 22.093 21.966

September 15.670 18.176 17.777 17.901 18.042

October 15.742 16.768 16.925 16.901 16.963

November 16.787 6.376 6.432 6.401 6.323

December 14.468 1.809 1.809 1.812 1.807

Annual
total

169.615 136.056 135.6 135.613 135.847
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Graphical representation of the mean monthly precipitation of baseline period
(observed period) and forecasted period are shown in Fig. 27.5, (a) Jenapur station,
(b) Gomlai station; which provides a comparative analysis of change in precipitation
in future time period.

a) At Jenapur station 

Fig. 27.5 Comparison of monthly mean precipitation in forecasted period with that of baseline
period
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b) At Gomlai station 

Fig. 27.5 (continued)

27.6 Conclusions

As the model is statistical in nature, the accuracy is highly dependent on the selec-
tion of predictors and user’s expertise. The predictor selection process is based on
the correlation values, for which, sometimes the model underperforms for condi-
tional predictands like precipitation. The performance of model was satisfactory
for the two stations considered in this study; however analysis at more number of
stations is required to evaluate model performance in complete river basin. Based
on the present study on the statistical downscaling of GCM outputs and simulation
of rainfall scenarios for Brahmni–Baitarani River basins in Odisha, the quantity of
mean monthly precipitation shows an increasing graph with time for all epoches. It
can also be noted that the increase is more in the rainy season (June, July, August)
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with respect to other time of the year, which might be indicating increase in runoff
as well leading to flood events. But no conclusion can be drawn regarding increase
in discharge without considering other factors like temperature, land-use, land-cover
change etc.
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Chapter 28
Impact of Land Use–Land Cover
Changes on the Streamflow of the Kolab
River Basin Using SWAT Model

Partha Sarathi Bhunia and Kanhu Charan Patra

Abstract Hydrological parameters are affected by many factors, including long-
term effects such as climate change that alter rainfall–runoff relationships, and short-
term effects related to human intervention (e.g., dam construction, land-use and
land-cover change (LUCC)). The consequential impacts of human-induced climate
changes and land-use changes on hydrological parameters have become a big chal-
lenge and convinced to give great attention of many researchers. The Kolab river
watershed, Odisha is an important watershed supporting drinking water and recre-
ational activities. In this paper, it is assessed the long-term impacts of LULC change
and climate changes on hydrological parameters using the Soil andWaterAssessment
Tool (SWAT) and a detailed LULC record from 1995–2013.

Keywords Arc GIS · LUCC pattern · SWAT modelling · SWAT-CUP · SUFI2
algorithm

28.1 Introduction

Land use refers to the purpose the land serves, for example, recreation, wildlife
habitat, or agriculture. Land cover refers to the surface cover on the ground, whether
vegetation, urban infrastructure, water, bare soil or other. Human activities and few
natural processes are the principal influences of land use–land cover changes. As
agriculture is the prime sector of India’s economic system and the population of
this country is growing up abruptly, the existing land cover has to be processed.
Land-use changes are often non-linear and might trigger feedbacks to the system,
stress living conditions, and threaten people with vulnerability. A comprehensive
knowledge is required for effectivewatershedmanagement and ecological restoration
of the hydrological process of the watershed. Land use–land cover changes are one
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of predominant influences on hydrological parameters and soil erosion including
climate change.

Many studies have taken into consideration the impact of land use–land cover
changes on streamflow (Matheussen and Kirschbaum 2000; Hurkmans et al. 2009).
Few studies have carried out to investigate the impact of land use–land cover changes
due to urbanization on surface microclimate and hydrology: a satellite perspec-
tive (Carlson and Arthur 2000). Though a lot of hydrological models are avail-
able, likeWater Erosion Prediction Project (WEPP), Hydrologic Simulation Program
Fortran (HSPF), the Soil and Water Assessment Tool (SWAT) and the physically-
based distributed hydrological model Systeme Hydrologique Européen TRANsport
(SHETRAN), that could be used in simulating the runoff. But we have taken the
SWAT for the current study because it is widely used and it is user friendly in terms
of handling input data (Arnold et al. 1998).

The objective this study was to assess the impact of past land-use change on
streamflow of the Kolab river basin. The results obtained from this study will be
helpful for understanding the interactions between the streamflow and land-use
change which is required for water resource planning.

28.2 Study Area

The present study was conducted for the Kolab river basin (See Fig. 28.1). The
Kolab river originates from the western slopes of Eastern Ghats in Odisha state from
Sinkaram hill ranges at 1370 mMSL. It is also known as Sabari river and it is one of
the tributaries of Godavari river. Sileru river and Pateru river are the tributaries of this
river. The annual average rainfall over this entire basin is approximately 1250 mm.
The basin extends over states of Chhattisgarh, Odisha and Andhra Pradesh having a
basin area of 20,427 Sq. km. which is approximately 1.6% of the total area of India
with a maximum length of 418 km. It lies between 81°15′37′′ E and 83°E longitudes
and 17°34′13′′ N and 19˚°N latitudes. The topography of this region is undulating
and highly dissecting. The climate of the region is tropical. Late December and
early February are the coldest months. Mainly four seasons are there in the region
throughout a single year. They are HotWeather, South-west monsoon, post-monsoon
and Cold Weather. December and February are the coldest months with minimum
average temperature of 11.5 °C. The average annual maximum temperature of the
basin is 30.57 °C. while the average annual minimum it is 18 °C. April and May
months are the hottest months with average temperature of 34.5 °C. Location of the
study area is given below (see Fig. 28.1).
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Fig. 28.1 Location map of Kolab river Basin, India

28.3 Materials and Methodology

28.3.1 SWAT Model

SWAT, a semi-distributed, encyclopaedic, physical-based continuous hydrological
model, which is developed to predict the effects of land management on the
hydrology, agricultural chemical yields and sediment yields in different watersheds
under varying land use and soil conditions (Neitsch et al. 2009). To achieve this, the
model needs specific climatic input parameters such as temperature, rainfall, solar
radiation, relative humidity andwind speed.Alongwith theseweather data, themodel
requires some spatial data such as DEM, soil map, land-use map and hydrological
data such as streamflow.

The framework of thismodel is to project the digital elevationmodel, land use/land
cover and soil map into a standard projection system. The delineation process takes
place in the model with the help of DEM data of the basin and the whole basin
can be divided into several number of sub-basins. The grid formats of the soil map,
land use- land cover map and the slope categories were overlaid and reclassified into
hydrological response units (HRUs). HRUs are used for simplification of the model
run by uniting all identical soils and land-use areas into a single response unit. The
model evaluates different hydrological parameters such as evapotranspiration, peak
rate of runoff, surface runoff and other components by individual HRU using water
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balance equation. The SCS curve number procedure (USDA-SCS 1972) and Green
and Ampt. infiltration method (Green and Ampt. 1911) are two basic methods of the
model for estimating the surface runoff and modified rational method for estimating
peak runoff rate. The estimation of hydrologic cycle at individual HRU was carried
out using water balance equation as follows.

SWt = SW◦ +
t∑

i=1

(
Rday − Qsur f − Ea − wseep − Qgw

)
(28.1)

where SWt is the final soil water content in mm H2O, SW◯ is the initial soil water
content on day i in mm H2O, t is the time of days, R day the amount of precipitation
on day i in mm H2O, Qsurf is the amount of surface runoff on day i in mm H2O, Ea is
the amount of evapotranspiration on day i in mm H2O, wseep is the amount of water
entering the vadose zone from soil profile on day i in mm H2O, Q is the amount of
return flow on the day i in mm.

28.3.2 SWAT Model Input Data

The major inputs for the model required for simulation are land-use map, soil cover
map, digital elevation model, rainfall and temperature data (Table 28.2). Shuttle
radar topographicmission (SRTM) provides the digital elevationmodel data (DEMs)
having a 90 m resolution. These DEM data are available in the form of square-
shaped tiles with a specific dimension. The DEM downloaded from SRTM website
has projection system of WGS 1984 UTM, zone 44 N at 90 m resolution. These
DEMs were used for watershed delineation and those were also used to depict the
streamflow, drainage pattern, flow accumulation and networks of the basin area.

Landsat 8 and Landsat 5 satellite images (spatial resolution 30 m) for 2013 and
1995 were obtained from earth explorer in the form of tiles. Figure 28.2c and d
shows, the land-use maps, used in SWAT simulation. Soil map was prepared using
FAO digital soil map of the world having a scale of 1:5,000,000. The meteorological
parameters (precipitation, maximum and minimum temperature, relative humidity,
solar radiation, wind speed etc.) control the hydrological cycle. The meteorological

Table 28.1 Different land use and cover area in Kolab basin

ID Land cover specification 1995 Area(km2) 2013 Area(km2) Change (%)

1 Built up 8460.21 10463.36 (+) 0.09

2 Forest 5820.38 4129.23 (−) 0.08

3 Barren Land 4314.67 3450.04 (−) 0.04

4 Agriculture 1387.56 1929.89 (+) 0.02

5 Water 239.48 250.04 (+) 0.0005
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(a) (b)

(c) (d)

Fig. 28.2 a Digital Elevation Model of the Basin. b Soil map of the basin. c Landuse land cover
map (1995). d Landuse land cover map (2013)

data for 1979 to 2013 were collected from The National Centers for Environmental
Prediction (NCEP).

28.3.3 SWAT Model Setup and Simulation

Arc SWAT 12, an interface of SWAT model in ArcGIS 10.1, was used to simu-
late the streamflow of the Kolab basin. To develop the model, the following five
steps are needed: (1) sub-basin discretization; (2) HRU definition; (3) climate station
formation; (4) parameter sensitivity analysis; and (5) calibration and validation.

The digital elevation model data were used to delineate the area of Kolab basin
along with the stream networks using Arc SWAT 12. The Kolab basin had produced
20 HRUs based on soil and land use–land cover data. The simulation of the model
was done for the year of 1979–2013 on daily time step with a warm-up period of
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Fig. 28.3 Schematic diagram of methodology

5 years. Figure 28.3 shows the schematic diagram of complete methodology of this
study.

28.3.4 Sensitivity Analysis, Calibration and Validation

Sensitivity analysis can identify the dominant parameters, which affect the SWAT
output using global sensitivity approach of Sequential Uncertainty Fitting (SUFI2)
algorithm inSWAT-CUP (Calibration andUncertaintyProcedure) (Abbaspour 2007).
In this study, 14 parameters were taken initially to investigate their sensitiveness,
ranges were set from SWAT-CUP user manual. After an initial iteration run, Global
sensitivity approach checks the sensitivity of one parameter relative to another and
arrange the parameters by ranks according to their t-stat and p-values. Sensitivity
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Table 28.2 Spatial model
input data for the Kolab River
catchment

Data type Description Resolution Sources

Topographic
map

Digital
elevation map
(DEM)

90 m SRTM

Land-use map Land-use
classification

30 km Landsat 8 & 5

Types 10 km FAO (USGS) Soil
map

Weather Daily
precipitation

– NCEP

Hydrological
data

Discharge – WRD,
Koraput

analysis gives the allowable ranges and the best-fitted values. In this study, 14
streamflow influencing parameters were tested for sensitivity (Table 28.5).

Calibration is examining the precision of ameasurement instrument by comparing
it to reference standards. In this present study, only selected sensitive parameterswere
used for calibration and validation process. For 1995, land-use scenario, the model
was calibrated for the period of 1986–1992 andvalidated for the period of 1993–1995.
Similarly, 2013 land-use scenario model was calibrated for the period of 2004–2010
and validated for the period of 2011–2013. To evaluate the model performance, four
statistical standards, Nash-Sutcliffe efficiency (NSE), Coefficient of determination
(R2) and the percent bias (PBIAS) were used (Moriasi et al. 2007).

NSE = 1 −
∑n

i=1(Oi − Si )2∑n
i=1(Oi − O)2

(28.2)

PBIAS =
∑n

i=1 (Oi − Si ) ∗ 100∑n
i=1 (Oi )

(28.4)

RSR =
√∑n

i=1 (Oi − Si )
2

√∑n
i=1 (Oi − Oi )

2
(28.5)

R2 =
[∑n

i=1 (Oi − O)(Si − S)
]2

[∑n
i=1 (Oi − O)2

] ∗ [∑n
i=1 (Si − S)2

] (28.6)

where Oi is the observed daily discharge, Si is the simulated daily discharge, O is the
average measured discharge, S is the average simulated discharge, n is the number
of observations.

NSE illustrates the prediction ability of hydrological model by comparing the
simulated output to the observed data. It ranges from −∞ to 1. NSE value close
to 1, indicates the model is accurate. R2 is used to understand how well-observed
output is replicated by the model, on the basis of the proportion of total variance of
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the simulated output data. The range of R2 varies from 0 to 1. An R2 value close to
1 specifies the model is precise. RSR is the ratio of the root mean square error to
the standard deviation of measured data. It standardizes RMSE (root-mean-square
error) using the observation standard deviation. RSR varies from 0 to large positive
values. The lower value of RSR indicates better the model fit. A model simulation
can be accepted satisfactory if NSE is greater than o.4, PBIAS is ± 25% and R2 is
greater than 0.5 for streamflow (Arnold et al. 2012).

28.4 Result and Discussion

Using the Maximum Likelihood Classification tool in Arc-GIS the change in the
LULC area for 1995 and 2013 were estimated (Table 28.1). It showed that the
built-up area and agricultural field were increased by 0.09% and 0.02% respec-
tively. Therefore, the forest area and barren land were reduced by 0.08% and 0.04%
respectively. The calibration and validation of the SWAT-CUP model based on two
different land-use scenarios showed that only five parameters out of fourteen were
very sensitive in Global sensitivity analysis (Tables 28.4 and 28.6). Based on the
sensitiveness, the sensitive parameters are presented for 1995 land use (LU) scenario
model (Table 28.3). The sensitivity analysis indicates the most sensitive parameter
for the streamflowwas Base-flow alpha factor for bank storage (ALPHA_BNK). The
other parameters that were sensitive were SCS runoff curve number (CN2), avail-
able water capacity of the soil layer (SOL_AWC), effective hydraulic conductivity
in main channel alluvium (CH_K2), saturated hydraulic conductivity (SOL_K), soil
evaporation compensation factor (ESCO). Rest of all the parameters were found
not sensitive to streamflow in the catchment as their p-values were greater than
5% (Anaba et al. 2016). The best-fitted values and ranges obtained after sensitivity
analysis of these five most sensitive parameters are presented in Table 28.4.

In the second case, the result was shown with the help of land-use scenario model
(2013). The sensitive parameters for 2013 land use (LU) scenario model are listed
below (see Table 28.3). Here in this study, only five parameters were sensitive to
streamflow. The most sensitive parameter for the streamflow was effective hydraulic
conductivity in main channel alluvium (CH_K2). The other parameters which were
sensitive were SCS runoff curve number (CN2), Base-flow alpha factor for bank
storage (ALPHA_BNK), Saturated hydraulic conductivity (SOL_K), Groundwater
revap coefficient (GW_REVAP). Rest of all were found very less sensitive to the
streamflow in the catchment as their p-values were greater than 5% (Anaba et al.
2016). The best-fitted values and ranges obtained after sensitivity analysis of these
five most sensitive parameters are presented in Table 28.6.



28 Impact of Land Use–Land Cover Changes on the Streamflow … 327

Table 28.3 Sensitivity Analysis of streamflow parameters for 1995 scenario model

SL. No. Parameter name t-stat p-value

1 CH_K2 (Effective hydraulic conductivity in main channel
alluvium)

9.205 0.000

2 CN2 (SCS runoff curve number) 5.921 0.000

3 ALPHA_BNK (Base-flow alpha factor for bank storage) 5.266 0.000

4 SOL_K (Saturated hydraulic conductivity) 2.320 0.000

5 GW_REVAP (Groundwater “revap” coefficient) −1.922 0.044

6 REVAPMN (Threshold depth of water for revap or
percolation to occur)

1.877 0.061

7 GWQMN (Threshold depth of water in the shallow aquifer
required for return flow to occur)

−1.583 0.114

8 HRU_SLP (Average slope steepness) 1.347 0.179

9 CH_N2 (Manning’s “n” value for the main channel) 1.273 0.204

10 SOL_AWC (Available water capacity of the soil layer) 0.963 0.334

11 ESCO (Soil evaporation compensation factor) −0.912 0.362

Table 28.4 Ranges and best-fitted values of flow calibration parameters

Rank Parameter name Fitted value Minimum value Maximum value

1 v_GW_DELAY.gw 171.539 30.000 440.000

2 r_CN2.mgt 0.070 −0.200 0.200

3 r_SOL_K.sol 0.097 −0.800 0.800

4 v_ALPHA_BF.gw 0.463 0.000 1.000

5 v_GW_REVAP.gw 0.016 0.000 0.200

28.4.1 SWAT Model Calibration and Validation Result

The calibrated (Fig. 28.4a) and validated (Fig. 28.4b) results for 1995 LU model
show the graphical representations of the streamflow. Figure 28.5a and b shows
the graphical representation of calibrated and validated streamflow for 2013 LU
scenario respectively. It also depicts the calibration results showed a good match
compare to the validated streamflow results in both cases (Table 28.7). Besides that,
the statistical objective functions in SWAT-CUP evaluated the model performance
was good (Moriasi et al. 2007).
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Table 28.5 Sensitivity Analysis of streamflow parameters for 2013 scenario mode

SL. No. Parameter name t-stat p-value

1 K2 (Effective hydraulic conductivity in main channel
alluvium

−2.986 0.001

2 CN2 (SCS runoff curve number) 11.001 0.000

3 ALPHA_BNK (Base-flow alpha factor for bank storage) 13.536 0.000

4 SOL_K (Saturated hydraulic conductivity) 3.020 0.002

5 GW_REVAP (Groundwater “revap” coefficie −1.556 0.120

6 REVAPMN (Threshold depth of water for revap or
percolation to occur)

−1.129 0.259

7 GWQMN (Threshold depth of water in the shallow aquifer
required for return flow to occur)

0.983 0.326

8 HRU_SLP (Average slope steepness) 0.805 0.414

9 CH_N2 (Manning’s “n” value for the main channel) −1.301 0.193

10 SOL_AWC (Available water capacity of the soil layer) −3.129 0.000

11 ESCO (Soil evaporation compensation factor) −2.035 0.042

12 ALPHA_BF (Base-flow alpha factor) 0.707 0.479

13 GW_DELAY (Groundwater delay) 0.397 0.691

14 SLSUBBSN (Average slope length) 1.668 0.095

Table 28.6 Ranges and best-fitted values of flow calibration parameters

Rank value Parameter name Fitted value Minimum value Maximum

1 v_ALPHA_BNK.rte 0.949 0.000 1.000

2 r_CN2.mgt 0.150 −0.200 0.200

3 r_SOL_K.sol 0.063 −0.200 0.400

4 v_CH_K2.r 117.625 5.000 130.000

5 v_ESCO.hru 0.875 0.800 0.100

Table 28.7 SWAT model calibration and validation statistical objective functio

Stages of model Statistical parameters

R2 NSE RSR PBIAS

Calibration (1986–1992) 0.700 0.661 0.512 −15.0

Validation (1993–1995) 0.677 0.623 0.551 −17.0

Calibration (2004–2010) 0.685 0.621 0.560 −14.0

Validation (2011–2013) 0.637 0.611 0.574 −17.0
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(a) (b)

Fig. 28.4 a Observed and simulated daily discharge during calibration period (1986–1992) for
1995 LU model. b Observed and simulated daily discharge during validation period (1993–1995)
for 1995

(a) (b)

Fig. 28.5 aObserved and simulated daily discharge during calibration period (2004–2010) for 2013
LU model 2013) b Observed and simulated daily discharge during calibration period (2011–2013)
for 2013 LU model

28.4.2 Modelling Streamflow Response to Land-Use
Dynamics

Establishing scenarios to assess the impacts of land use.
The impact assessment of land-use changes on streamflow under different

scenarios was done by using SWAT 2012. The one factor at a time approach (Li et al.
2009) was taken into consideration. In this study, we have taken two scenarios based
on different land use and land cover condition (for 1995 & 2013) and showed the
difference in mean annual streamflow. It shows that the mean annual streamflow
increased by 3.75% due to change in land use and land cover area (Table 28.8).

Scenario I: Climate of 2008–2013 and land use of 2013.
Scenario II: Climate of 2008–2013 and land use of 1995.
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Table 28.8 Difference in
mean annual stramflow based
on scenario I and II

Scenario Mean annual Streamflow
(m3/s)

I 229.69

II 221.33

Change (I–II) with respect to
scenario II

+3.75%

28.5 Conclusion

The present study analyzed the LULC changes and their impacts on the streamflow.
It showed that the Kolab river basin had experienced a remarkable change in eigh-
teen years (1995–2013). With substantial changes in land-use/land-cover patterns in
different areas of the Kolab basin, the effect of land-use/land-cover change deserves
more attention when evaluating the impacts of different factors on the streamflow.
Therefore, to estimate the changes in streamflow we should not eliminate the effects
of land use and land cover changes along with climate change. Key findings from the
study can be summarized as follows: i) This study showed that an increment in the
built-up area (0.09%), agricultural area (0.02%), and decrement of the area covered
by the forests (0.08%), barren land (0.04%) altered the overall mean annual stream-
flow by 3.75%. ii) The calibration of the SWAT model was good and it produced a
convenient result for the streamflow simulation in this region, and this model can be
very useful to predict the streamflow in future scenarios. iii) Since the land use and
land cover changes are explicitly related to the streamflow, this study will be helpful
for better management of this watershed.
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Chapter 29
Statistical Downscaling of Climatic
Variables in Indo-Gangatic Alluvial Plain

Prabhakar Shukla and Raj Mohan Singh

Abstract Climate change influences events such as droughts, floods, extreme
temperatures and rainfall. The changes in climatic conditions may adversely affect
food production, energy generation, and water resources. Rising greenhouse gas
(GHG) concentrations in the atmosphere are considered the dominant cause of
climate change. General circulation models (GCMs) are used for the projection of
climate into future, accounting for the GHG concentrations. However, the coarse
spatial resolution of GCMoutputs does not permit their direct use in catchment-scale
studies. Therefore, either dynamic or statistical downscaling techniques are used for
linking GCM outputs to catchment scale hydroclimatic variables. In the present
study, beta regression-based statistical downscaling of daily scale climatic variables
(precipitation, minimum temperature, andmaximum temperature) is performed. The
daily frequency climatic variables obtained from Hadley global environment model
2—earth system (HADGEM2-ES) of CMIP 5 project is statistically downscaled
for future period (2016–2095) using NCEP potential variables in MATLAB. The
methodology is performed for Sai–Gomti interfluve region, Uttar Pradesh, India.
The statistical analysis of observed and simulated hydro-climatic variables shows
that the average maximum temperature may rise by 4 °C while average minimum
temperature may fall by 4.5 °C during 2016–2095.

Keywords Statistical downscaling · HADGEM2-ES · CMIP 5 · NCEP · Climate
change
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29.1 Introduction

The variations in the distribution of surface and groundwater resources are governed
by the changes in the climatic variables such as precipitation, temperature and evap-
oration (Chew et al. 2008). The global climate is expected to change throughout
the twenty-first century (Dessai et al. 2005). Impacts of climate change on health of
humans (Thomas et al. 2012), agricultural food production (Ziska et al. 2012), floods
(Prudhomme et al. 2013) and water resources (Arnell and Gosling 2013) are major
aspects discussed by researchers. Since the climate is highly influential on the water
resources within a catchment in many different ways as described earlier, knowledge
of changing climate into the future is imperative for the effective management of
water resources in a catchment.

General circulationmodels (GCMs) are used to simulate the effect of rising green-
house gas (GHG) concentrations on the global climate. The simulations produced by
GCMs are often in the order of a fewhundred kilometers and hence cannot explain the
local-scale variability of climate in a catchment (Tripathi et al. 2006). Downscaling
is implemented to produce fine-scale hydro-climatic information derived fromGCM
simulations at coarse resolution via the application of various statistical numerical
models. There are two types of downscaling techniques: (i) dynamical downscaling
(DD) and (ii) statistical downscaling (SD). In dynamic downscaling, an atmospheric
physics-based model called a regional climate model (RCM) is nested in a GCM
for the simulation of regional climate (murphy 1998). The high computational cost
associated with the implementation of dynamic downscaling is considered to be a
major drawback (Haas And Pinto 2012). Statistical downscaling techniques attempt
to develop empirical relationships between the GCMoutputs and the catchment scale
hydroclimatic variables (Sachindra 2014). The SD models are considerably depen-
dent on the predictors that are used as inputs to these models (Fowler et al. 2007).
The simulations produced by a statistical downscaling model are sensitive to the
atmospheric domain for which the inputs are extracted (Wilby and Wigly 2000).

The prime objective of the present study is to perform beta regression-based statis-
tical downscaling of daily scale GCM climatic variables (precipitation, minimum
temperature, and maximum temperature) for future period (2016–2095) using
national centers for environmental prediction (NCEP) predictors.

29.2 Study Area

The study area is shown in Fig. 29.1. The study area is part of Uttar Pradesh in India
comprising districts of Barabanki, Raebareli, Sultanpur, Pratapgarh and Jaunpur,
India. The study area lies between latitude 250 41′6′′ n and 260 45′36′′ n, and
longitude 810 6′36′′ e to 820 49′12′′ e is estimated to be 8287.50 km2. The area
is representative of the whole Sarda Sahayak canal command. It is expected that
the methodology adopted and conclusions arrived, would be applicable elsewhere
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Fig. 29.1 Location map of study area a India, b Uttar Pradesh and c Sai–Gomti Interfluve

in the canal command area. The study area is interfluve bounded by Gomti and Sai
rivers in north and west directions respectively. The confluence of Sai–Gomti River
in Jaunpur district forms extremity of the area.

29.3 Methodology

29.3.1 Selection of Potential Predictors

The predictor data are extracted from the national centers for environmental predic-
tion/national center for atmospheric research (NCEP/NCAR) reanalysis dataset
(Kalnay et al. 1996). The eight climate variables (predictors) namely air temperature,
precipitable water, relative humidity, sea level pressure, u wind, v wind, precipita-
tion rate, and pressure obtained from NCEP reanalysis are analyzed over the period
1965–2012 (47 years) on daily frequency. Table 29.1 shows summary of correlation
analysis performed between NCEP variables and observed rainfall data obtained
from India meteorological department (IMD), Pune.

Table 29.1 Correlation analysis of NCEP variables and observed rainfall data

Air
temperature

Precipitable
water

Relative
humidity

Sea
level
pressure

U
wind

V
wind

Precipitation
rate

Pressure

Raebareli −0.31 −0.201 0.211 0.328 0.016 0.044 −0.239 0.333

Barabanki −0.275 −0.177 0.189 0.301 0.017 0.058 −0.219 0.309

Sultanpur −0.318 −0.199 0.213 0.326 0.017 0.057 −0.240 0.332

Thiessen
polygon
method

−0.378 −0.017 0.288 0.335 0.017 0.053 −0.218 0.308

Average
of stations

−0.357 −0.214 0.262 0.395 0.016 0.052 −0.283 0.405
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The threshold value for selection of potential variables (predictors) is kept as 0.3
(Bhowmik 2012). Based upon analysis, following four NCEP variables have been
selected as potential predictors: air temperature, relative humidity, sea level pressure,
and surface pressure. Furthermore, these four potential predictors are applied for
statistical downscaling of climatic variables (precipitation, minimum temperature,
maximum temperature).

29.3.2 Beta Regression-Based Statistical Downscaling

In the present study, daily scale climatic variables such as precipitation, minimum
temperature and maximum temperature are downscaled using multisite downscaling
method based on the beta regression (BR) developed by Mandal et al. (2016). This
regression method based on the beta distribution has proven to be very versatile and
flexible to model exogenous variables (Ferrari And Cribari-Neto 2004) and is novel
in its application as a statistical downscaling technique. The BR model is developed
in MATLAB. Both, the historical observed values of climatic variables, as well as
historical and future GCM output datasets are utilized for the BR model. The BR
model is developedbased on a statistical relationship betweenpotentialNCEPpredic-
tors (air temperature, relative humidity, sea level pressure, and surface pressure) and
a predictand (precipitation, minimum temperature, and maximum temperature). The
climatic data from Hadley center global environment model version 2 [HADGEM-
2] GCM for representative concentration pathway-2.6 (RCP2.6) are extracted and
applied for both historical period. HADGEM2-ES is a coupled atmosphere–ocean
GCMwith interactive land and ocean carbon cycles and dynamic vegetation (Martin
et al. 2011). The observed values of daily scale precipitation, minimum tempera-
ture, and maximum temperature are obtained from India meteorological department
(IMD), Pune. The BR model is calibrated for the duration 1965–2012. Further, the
calibratedmodel is validatedwith observed values of climatic variables for the period
2013–2015 (Fig. 29.2).

The comparison between observed and simulated climatic variables showed satis-
factory results at all stations in study area. The Sultanpur district (R2 = 0.82) showed
best correlation for maximum temperature while Raebareli (R2 = 0.84) showed high
correlation between observed and simulated minimum temperatures. Also, the best
correlation between observed and simulated rainfall is found at Raebareli (R2 =
0.73). The statistics of comparative results between observed and simulated climatic
parameters is shown in Table 29.2.

Further, the calibrated and validated BR model is applied for statistical down-
scaling of daily scale climatic variables (rainfall, maximum temperature, minimum
temperature) for the future period up to 2095 (Fig. 29.3a–i)

The results show that the average maximum temperature may rise by 4 °C while
average minimum temperature may fall by 4.5 °C during 2016–2095. The high
frequencyof peak events in rainfall is observed. This is possible due to over estimation
of rainfall events usingNCEP/NCARreanalysis andGCMdatasets (Sachindra 2014).
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 (a): validation of max. Temp. At Barabanki   (b): validation of max. Temp. At Raebareli

 (c): validation of max temp. At sultanpur  (d): validation of min. Temp. At barabanki

 (e): validation of min. Temp. At Raebareli  (f): validation of min. Temp. At Sultanpur

 (g): validation of rainfall at Barabanki  (h): validation of rainfall at Raebareli

 (i): validation of rainfall at Sultanpur

Fig. 29.2 Validation of downscaled climatic variables
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Table 29.2 Statistics of observed and simulated climatic variables

statistical parameters Climatic variables Barabanki Raebareli Sultanpur

R2 Maximum temperature 0.73 0.80 0.82

Minimum temperature 0.75 0.84 0.76

Precipitation 0.67 0.63 0.78

Average % error Maximum temperature 13.88 27.75 12.89

Minimum temperature 11.71 22.45 25.85

Precipitation 23.77 29.36 39.5

Nash–Sutcliffe efficiency Maximum temperature 0.60 0.73 0.72

Minimum temperature 0.63 0.67 0.54

Precipitation 0.39 0.35 0.35

(a): downscaled max. Temp. At Barabanki   (b): downscaled max. Temp. At Raebareli

(c): downscaled max. Temp. At Sultanpur (d): downscaled min. Temp. At Barabanki

 (e): downscaled min. Temp. At Raebareli   (f): downscaled min. Temp. At Sultanpur

Fig. 29.3 Downscaled climatic variables for future period
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(g): downscaled precipitation at   Barabanki   (h): downscaled precipitation at Raebareli

 (i): downscaled precipitation at Sultanpur

Fig. 29.3 (continued)

29.4 Conclusion

In the present study, maximum temperature, minimum temperature, and rainfall are
statistically downscaled using beta-regression [BR] technique for future period [up to
2095] by incorporating potentialNCEPpredictors [air temperature, relative humidity,
sea level pressure, and surface pressure]. TheBR technique is employed inMATLAB
platform using future HADGEM2-ES GCMmodel outputs for Sai–Gomti interfluve
region, Uttar Pradesh, India. The model performance statistics (Table 29.2) shows
that developed model is satisfactorily able to capture the maximum temperature,
minimum temperature, and rainfall. The calibrated and validated BRmodel is further
applied for statistical downscaling of aforementioned climatic variables for future
period (up to 2095). During the period 2016–2095, increase of 4 °C and 4.5 °C is
observed in maximum temperature and minimum temperature, respectively.
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Chapter 30
Comparing Global High-Resolution
Precipitation Data with Rain Gauge Data
in Assam, India

Pulendra Dutta, Dipsikha Devi, and Arup Kr. Sarma

Abstract Rainfall is the main driving variable to impact the hydrologic model
results. In the context of unavailability of actual rainfall data, researchers use global
data, derived from the satellite for hydrologic assessment of a watershed. In this
study, Climate Forecast System Reanalysis (CFSR) precipitation data are tested for
its reliability in regard to Assam, India; which is characterized by a wide spatial
variation of rainfall. Based on the observed wet days’ records, the CFSR precipita-
tion datasets are compared with two sets of actual gauge rainfall data, viz. Indian
Meteorological Department (IMD) data and Tea Garden data. From the results of
this study, the CFSR data are found to be 34.94% deficient in annual rainfall volume
than the actual gauge measurements.

Keywords Hydrologic model · Global data · Gauge data ·Watershed

30.1 Introduction

In the present era, there are numerous tools available for assessment of hydrologic
response from a watershed. With the advent of computer-based software, the hydro-
logical models are found to be much capable to provide necessary information about
the ground response. However, it is difficult to generate accurate water resource
availability information without adequately accurate climate (temperature, rainfall,
evaporation, etc.) input information.

The ground observations for weather variables are bare, especially in developing
and under-developed countries due to lack of available resources (Hughes 2006).
The observed rainfall records are often inadequate, irregular and frequently contain
discrepancies (Koutsouris et al. 2016). It is, therefore, the researchers undergo diffi-
culties in watershed modeling due to the data scarcity situations. However, these
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difficulties are overcome with the advancement of the remote-sensing techniques
through which monitoring rainfall over large land areas including mountainous and
oceanic regions has become possible. These data providemore homogeneous quality,
although the time series accuracy is lower than the existing and the corresponding
rain gauge-based observations datasets (Schulz et al. 2009).

In the event of sufficient available data, it is necessary to statistically analyze the
datasets (Nyatuame et al. 2014), especially for variability and trend characteristics
before using forwater resources studies. In a study, Bora andBorah (2017) carried out
some statistical analysis on 12 IMD stations rainfall data over Northeast India. Using
l-moment test, they found low values of discordancy measure for all the stations’
data than a critical value of 2.757 (Hosking and Wallis 1993); and concluded that
development of regional maximum rainfall estimation was required for all the IMD
stations data. Besides, the use of statistical analysis has been forwarded in some
region-specific studies (Elamir and Sheult 2003; Trefry et al. 2005) for investigating
the extreme rainfall events. Whereas, Shabri et al. (2011) investigated the extreme
value distribution of rainfall data over Malayasia using two different approaches viz.
L-Moment and TL-Moment methods, and they found the second method as more
efficient in the estimation of rainfall statistics.

In the absenceof actualmeasureddata, the researchers are bound to adopt synthetic
weather data, which need analysis in terms of its evaluation and inter-comparison
to test its applicability of use for a particular watershed (Koutsouris et al. 2016).
There have been numerous region-specific statistical analyses in order to check the
applicability of synthetic weather data (Todd et al. 1999; Thorne et al. 2001; Grimes
and Diop 2003). The application of different statistical methods was described in
many kinds of literatures (Sapiano and Arkin 2008; Dinku et al. 2011; Romilly
and Gebremichael 2011; Liechti et al. 2012; Guo and Liu 2016; Rossi et al. 2017)
to evaluate and compare the global, gridded rainfall with respect to the actually
measured data at gauge level. So, it is important to analyze the global rainfall datasets
prior to applying for a watershedmodeling since it may not possess a good agreement
to the gauge observations. As for example, the radar estimated rainfall significantly
differs from the gauge rainfall (Barnston and Thomas 1983; Masunga et al. 2002). In
another study by Espinosa et al. (2015), a large amount of disagreement was observed
in the radar estimated data, while compared with the actually observed rainfall over
South California, USA.

Rainfall is the main influencing factor for the hydrologic assessment from a
basin. The hydrologic models cannot provide desired water availability informa-
tion without the use of adequately correct rainfall values as input data. As there are
insufficient actual observed rainfall data to represent temporal and spatial variations
across Assam, India; the use of global precipitation data becomes popular. In this
study, the global CFSR (Climate Forecast System Reanalysis) precipitation data are
analyzed by comparing with IMD as well as Tea-Garden data to justify whether these
data are reasonably applicable towards hydrologic assessment over Assam, India.
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30.2 Study Area, Materials, and Methods

Assam, one of the eight Northeast India’s states is situated toward the south of the
eastern Himalayas covering an area of 78,438 km2 (Fig. 30.1). It is located toward
the west of 96 °E and toward the south of 28 °N and lies in the middle reach of the
Brahmaputra and Barak rivers. The maximum temperature of Assam is 35–38 °C
during summer, whereas the minimum temperature during winter falls to 6–8 °C.
Moreover, the state of Assam experiences heavy rainfall that is more than many parts
of India.

The present study aims to test acceptance of CFSR precipitation data over Assam,
India so as to help the hydrologic community in studying watershed response. The
three sources of data used in this analysis are: (i) Global precipitation provided by
https://globalweather.tamu.edu, as the CFSR data, (ii) Gauge rainfall data (station
codes: s1, s2, s3, s4) collected from Indian Meteorological Department (IMD), and
(iii)Gauge rainfall data (station codes: s5, s6, s7, s8) collected fromvarious tea estates
across Assam. The eight global weather stations are chosen at the most proximity to
the corresponding gauge weather stations.

Fig. 30.1 Study area showing locations of rain gauge stations

https://globalweather.tamu.edu
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For our analysis, we used daily rainfall values of the global datasets and then
compared with respect to the corresponding values of the gauge datasets during
2006–2011. Due to the lack of continuous data in the gauge records, longer periods
could not be taken up for this study. No gap filling was required for the gridded global
data, however very fewdays if foundwithmissing values in gauge records are ignored
and omitted in this study. Since the observed stations suffer to record continuous data
over a long period, due tomalfunctioning of rainmeasuring instrument or due to some
other reasons, more stations could not be taken up in this study, though one station
is considered outside the boundary of the study area.

The statistical parameters of rainfall values are calculated separately for each year
and then averaged over 6 years during 2006–2011, for both the gauge and global
datasets. The rainfall values of the wet days only are taken up in this study, since
global datasets contain more homogeneous and continuous daily records. Wet days
are considered as those days which actually experience rainfall events according to
the gauge observations. The total annual rainfall at a station is obtained by summing
up the wet days’ rainfall values in a year, and then averaged over the entire duration
of the study period.

30.3 Results and Discussion

30.3.1 Statistical Analysis

Table 30.1 shows statistical parameters at different stations for wet days rainfall over
6 years of data, during 2006–2011. The amount of annual precipitation at the global
stations widely varies from the corresponding gauge stations’ values. Dhekiajuli
station suffers the highest difference in the annual average rainfall between the two
data sets, the global one being less than half of the observed values. The significant
variation in the standard deviation values indicates wide disagreement between the
two datasets. Moreover, different skewness values represent large temporal variation
between the duos.

30.3.2 Scatter Plot

Scatter plot of global rainfall values with respect to the corresponding rainfall values
that are actually measured at rain gauges is shown for only two stations for the year
2006 (Fig. 30.2) as for example. Whereas similar trends were also observed for the
other years at these two stations, and for the other six stations during 2006–2011.
A perfect match between the values of the two datasets forms a straight line. But, it
is clear from the figure that the values are highly scattered, and hardly concentrate
along the 1:1 straight line. This implies that the CFSR values for precipitation are
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Table 30.1 Summary of Rainfall statistics indicating average values over 6 years Daily Rainfall
data during 2006–2011

Station
Name
(code)

Source Annual
(mm)

Mean
(mm)

Maximum
(mm)

Standard
Deviation
(mm)

Variance Skewness

Guwahati
(S1)

Gauge 1854 13.26 113.62 18.69 349.31 3.44

Global 2492.4 17.82 116.41 23.52 547.75 1.72

Passighat
(S2)

Gauge 3895.3 22.69 186.34 30.72 943.72 2.87

Global 3577.8 19.13 131.56 21.65 468.93 1.81

Silchar (S3) Gauge 3328.3 17.81 127.40 21.20 449.44 3.63

Global 3263.2 17.46 152.93 24.67 608.44 3.61

Tezpur (S4) Gauge 1738.3 11.86 91.73 16.45 270.60 3.04

Global 1721.2 11.74 109.42 17.85 318.62 3.85

Dhekiajuli
(S5)

Gauge 1563.1 15.16 70.25 14.49 209.96 2.55

Global 709.6 6.88 80.67 12.09 146.17 2.91

Golaghat
(S6)

Gauge 1398.5 13.74 78.84 15.20 231.04 2.08

Global 831.2 8.17 76.36 13.67 186.86 1.97

Mangaldoi
(S7)

Gauge 1612.9 12.99 95.73 15.86 251.22 3.03

Global 1436.3 11.56 123.67 17.30 299.29 1.45

Dibrugarh
(S8)

Gauge 1409 10.61 63.75 11.31 127.91 3.02

Global 725 5.45 53.29 9.06 82.01 3.34

1:1 Line

Best Fit
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Fig. 30.2 Scatter plot of global precipitation versus gauge precipitation during 2006 at weather
stations: a Guwahati, and b Passighat

different from the corresponding observed values. Since the daily records are highly
scattered, hence the comparison and the analysis is further forwarded on the basis of
annual rainfall volumes.
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30.3.3 Comparison of Annual Rainfall

The annual average rainfall at each weather station is shown in Fig. 30.3a. Here,
the wet days’ rainfall is summed up during the individual years and then averaged
over 6 years of data at the corresponding stations. It is evident from the results that
the annual average rainfall as recorded by the CFSR global stations falls below the
corresponding records at the actual gauge observations, except Guwahati station.
While considering all the stations as a lump (Fig. 30.3b), the average annual rainfall
is only 1844.6 mm for the global data sets against 2104.5 mm at the gauge level.

Table 30.2 shows the calculation for percent variation in annual rainfall of the
global datasets over the gauge measurements by considering all the stations over the
entire duration of this study. The annual rainfall values at all the global stations are
found to be lesser than the actual measurements, except the Guwahati station where
the gauge observation is found 25.61% deficient than the global annual rainfall. The
actual gauge values fall higher than the global rainfall, even more than cent percent
for Dhekiajuli station. While averaging over all the stations’ values, it is evident that
the global measurement is sufficiently lower than the gauge measurements.

30.4 Conclusions

Theclimate forecast system reanalysis (CFSR)data, designedby theNationalCenters
for Environmental Prediction (NCEP), include all conventional and satellite obser-
vations. There are only few IMDweather stations across Assam, a majority of which
lack continuous daily records over a long period. Tea garden stations are therefore
added for the present study to cover better spatial representations. It is obvious from
the results that the CFSR precipitation values fall below the actual gauge precipi-
tation measurements. While considering all stations across the present study area,
the average annual precipitation values at the CFSR global stations are found to be
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Table 30.2 Comparison of datasets based on annual rainfall variations

Particulars Guwahati Passighat Silchar Tezpur Dhekiajuli Golaghat Mangaldoi Dibrugarh

Gauge
stations’
annual
rainfall
(mm) i

1854 3895.3 3328.3 1738.3 1563.1 1398.5 1612.9 1409

Global
stations’
annual
rainfall
(mm) ii

2492.4 3577.8 3263.2 1721.2 709.6 831.2 1436.3 725

Difference.
(mm) (i–ii)

−638.4 +317.5 +65.3 +26.1 +853.5 +567.3 +176.6 +684

Variation
of gauge
data over
global data
(%)

−25.61 +8.87 +2.00 +1.52 +120.23 +65.87 +12.30 +94.34

Average
variation
of gauge
data over
global data
(%)

+34.94

34.94% deficient than the gauge observations. However, the tea garden datasets are
seen to provide more disagreement to the global rainfall values than that of the IMD
stations datasets. This may be due to the fact that references to IMD datasets were
probably made while generating the global datasets. This analysis may be helpful to
the research community while assessing hydrologic response from a watershed over
the present study area.
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Chapter 31
Variability of Rainfall, Temperature
and Potential Evapotranspiration
at Annual Time Scale Over Tapi to Tadri
River Basin, India

Prem Mahyavanshi, V. D. Loliyana, and Priyank J. Sharma

Abstract The change in the meteorological variables is one of the most important
factors that affect crop water requirements, and subsequently, water allocation for
food production in agriculture-based countries like India. Present study evaluates
the application of statistical trend detection tests and examines the magnitude slope
of trends in climatic variables viz., rainfall, potential evapotranspiration (PET) and
temperature over the west-flowing rivers in the Tapi to Tadri basin, India. In the
present study, high-resolution daily gridded rainfall dataset of India Meteorological
Department (IMD) at 0.25° × 0.25° resolution, while the PET and temperature data
of Climate Research Unit (CRU) at 0.5° × 0.5° resolution have been analyzed for
period of 116 years (1901–2016) at annual scale. The trends in aforesaid climate
variables have been detected using nonparametric Mann–Kendall (MK) and Modi-
fied Mann–Kendall (MMK) tests, and the slope of trend magnitude is computed
from Sen’s Slope (SS) test. The results indicated increasing trend in annual rainfall
across 61% grids, while decreasing across 37% grids and no trends were observed at
remaining grids out of 119 grids. Further, increasing trend in potential evapotranspi-
ration,maximum,mean andminimum temperatures were observed at all the 40 grids.
Thus, increase in temperature was greatly responsible for increasing trends in poten-
tial evapotranspiration across the study region. The outcomes of the present study
provide insight of the climate variability and interaction among the meteorological
variables across the Tapi to Tadri basin for the study period.
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31.1 Introduction

The climate variability and its dynamics are the basis of several researches on
climate change and their impacts. The variability in precipitation and temperature
results in climate changes that require consideration owing to their impact on the
water–energy–nexus (Dore 2005). Numerous trends and indices of climatic vari-
ables obtained from the empirical data indicate upward trend of average surface
global temperature since the 1950s, and the highest rate of changes was detected
since the middle of 1970s (Kundu et al. 2016; Quirk 2012; Alexander et al. 2006;
Frich et al. 2002). Besides the basic meteorological variables viz., precipitation and
temperature, evapotranspiration (ET) is an important climate variable and essential
element of the hydrological cycle that has substantial implications in the agricul-
tural fields. The determination of evapotranspiration is necessary for effective water
resources management in an agriculturally based country like India. The changing
patterns of potential evapotranspiration (PET) have consequences on crop produc-
tion and different hydrological processes (Hobbins et al. 2004). As perDoorenbosand
and Pruitt’s (1977), “the PET takes place when the ground is completely covered by
actively growing uniformgreen grass of 8 to 15 cm tall in abundance of soilmoisture.”
PET could rise in most parts of the globe in near future as a result of water-retaining
capacity of atmosphere maximizes with higher temperature such as 7% increase per
1 °C warming (Trenberth 2011). Subsequently, evapotranspiration rate is expected to
intensify due to water vapor deficit. The factors affecting PET are the meteorological
parameters, crop factor and soil moisture content. The meteorological parameters
are humidity, windspeed, rainfall, temperature, duration of sunshine hours, vapor
pressure, station level pressure, etc. Therefore, long-term analysis of historical data
of climatic variables is substantially required in understanding the basin behavior
from hydro-climatological perspective.

In recent past, number of researchers analyzed trends inmean and extreme precip-
itation as well as temperature (Zhai et al. 2005; Alexander et al. 2006; Martinez et al.
2012; Zhang et al. 2012; Boccolari andMalmusi 2013; Song et al. 2014; Sharma and
Babel 2014; Soltani et al. 2016; Soro et al. 2016; Liu et al. 2016; Xiao et al. 2016; He
et al. 2017; Caloiero 2017; Ye and Li 2017; Sharma et al. 2017), and largely reported
their increasing trends across the globe. Few researchers reported trends in PET
across various parts of world (Goyal 2004; Helfer et al. 2012; Huo et al. 2013; Liu
et al. 2013, 2014; Haijun et al. 2014; Sonali and Kumar 2016). The Indian summer
monsoon rainfall (ISMR) exhibits wide spatial and temporal variability across India
because of influence of numerous local scale factors like variation in growth rate
of population, rapid urbanization, deforestation, etc. Their study analyzed data at
finer scale, demonstrating high spatial variability in climate variables due to local
level changes (in terms of population and urbanization), which contradicts in results
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analyzed at larger scales (Ghosh et al. 2009; Sharma et al. 2017). Despite changing
climate conditions, it is observed that very few studies are focusing on change detec-
tion in meteorological variables other than rainfall, viz., PET and temperature, at
basin scale in India. The present study focuses on detection of long-term spatio-
temporal changes in meteorological variables at finer spatial scales for west-flowing
river basins from Tapi to Tadri. Further, short length of meteorological data may
exhibit to specious inferences in trend analysis, hence, data set of 116 years (1901–
2016) has been used in the present study. In this paper, the following objectives were
studied out for Tapi to Tadri river basin, India using high resolution daily gridded
rainfall data (119 grids) at 0.25° × 0.25° resolution, while the PET (40 grids) and
temperature (40 grids) data at 0.5° × 0.5° resolution: (a) computation of the primary
statistical parameters (mean, standard deviation, coefficient of variation, skewness,
kurtosis) of the annual time series for 116 years (1901–2016), (b) trend detection
of annual series by application of non-parametric methods namely Mann-Kendall,
Modified Mann-Kendall and Sen’s slope tests.

31.2 Study Area

The Tapi to Tadribasin, see Fig. 31.1 (area ≈55,940 km2), exhibits an array of topo-
graphic elements ranging from laterite platforms, alluvial tracts along lagoons or
estuary or rivers, coastal sand dunes or flats of mud, sandy beaches and erosional
surfaces in the residual hills or hard basement rock. With respect to physiographical
nature, entire basin is distinct corridor of low land, having hills whose elevations rise
up to 150 m at places to an excess of 300 m. The steep face of Sahyadris runs parallel
to the basin and unveils an elevation between 760 m and 1220 m. Along the western
coast, plains of eroded marines and elevated beaches which were formed in earlier
times are found at height varying from 30 to 90m respectively. It can be observed that
the highest recorded elevation of the basin is at 1402 m (Jain et al. 2007). The water-
shed area showcases a humid and moist atmosphere climate along the coastal belt
which is relatively hot with higher degree of humidity reaching an apex of 90%. The
south-west and north-east monsoons control the summer andwinter climate, with the
winter beginning by December. The rainfall in the region is directly influenced by
south-west monsoon, which is usually heavy and assured between June and August
periods. Between the months of June and November, 90% of the rainfall is received.
The peak rainfall received around Vasisthi was 2539.76 mm in 1975, whereas the
minimum annual rainfall in entire basin was 1601.7 mm in year 2002. Out of all,
Tillari dam, an interstate project between Goa and Maharashtra; Damanganga dam,
an interstate project between Gujarat, Daman and Diu, and Dadra and Nagar Haveli;
Surya Dam in Thane district of Maharashtra and Anjunem Irrigation Project, located
over Costi Nadi, Goa are some of the important projects in the basin. Also, the
Koynaand Kalinadi hydroelectric projects are two of the most important hydroelec-
tric projects in the Tapi to Tadri basin. The agricultural land (44%) is dominant land
use in the basin followed by forest land (35%) (India-WRIS report 2014).
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Fig. 31.1 Index map of study area

31.3 Materials and Methods

The daily rainfall data procured from India Meteorological Department (IMD),
distributed in a gridded format (0.25° × 0.25°), over the basin were used as input
data for the study. The daily temperature and potential evapotranspiration data down-
loaded from Climate Research Unit (CRU) website (https://climatedataguide.ucar.
edu/ accessed on June 13, 2018), distributed in a gridded format (0.5° × 0.5°), over
the basin were also considered for the analysis, see Fig. 31.2.

31.3.1 Preliminary Statistical Analysis

The primary statistical parameters such as maximum, minimum, mean, standard
deviation, coefficient of variation, skewness, and kurtosis were computed for annual
rainfall, temperature, and PET time series at each grid for period 1901–2016. It is
observed that overall mean and standard deviation of total annual rainfall in the Tapi
to Tadri basin are 2396.8 mm and 654.3 mm, respectively, indicating it as a zone of
high rainfall compared with other parts of the country.

https://climatedataguide.ucar.edu/
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Fig. 31.2 IMD and CRU data grids for Tapi to Tadri river basin

The Tapi to Tadri basin receives heavy rainfall due to orographic influence of the
Western Ghats which bring heavy rainfall in the region. The average temperature in
the basin varies from 21.9 to 32.5 °C during the entire year, while the highest and
lowest temperatures recorded in the basin have been in May and January months
respectively. The mean PET is about 1568 mm within the Tapi to Tadri basin. As
per Koppen-Geigger climate classification (Peel et al. 2007), the Tapi to Tadri basin
falls in Monsoon climate (Am). This region receives rainfall principally during the
monsoon season and has short dry winter season.

31.3.2 Methodology

The stepwise procedure adopted to ascertain the long-term temporal and spatial
variability in rainfall, temperature and PET data is included in Fig. 31.3. Before
applying the trend test, the data were examined for the presence of serial correlation,
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Fig. 31.3 Methodology adopted in the present study

which needs to be removed before applyingMann–Kendall test (Mann 1945; Kendall
1975).Autocorrelation is a commonproblem in time-series analysis and can cause the
data to bebiased to an extent. If there exists significant serial correlation, prewhitening
process has to be performed on time series to remove autocorrelation. The modified
Mann–Kendall test (Hamed and Rao 1998) has a distinct advantage over the Mann–
Kendall test that it can be applied to correlated data also. After detecting the nature
of trends, the Sen’s slope estimator method (Hirsch et al. 1982) is applied to estimate
the slope of trend magnitude.

31.4 Results and Discussions

31.4.1 Trends in Rainfall

The nonparametric tests such asMK,MMKand Sen’s slope estimator tests have been
applied on total annual rainfall series at each grid. The results indicated increasing
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trend in annual rainfall across 61% grids (72 grids), while decreasing across 37%
grids (44 grids) and no trends were observed at remaining three grids out of 119
grids. Further, fromMMKZ-statistic values, 49 grids exhibited significant increasing
trends at 5% significance level, of which 43 grids exhibited significant increasing
trend at 1% significance level also, see Table 31.1. On other hand, 17 grids exhibited
significant decreasing trend at 5% significance level, of which 13 grids showed
significant decreasing trend at 1% significance level also, see Table 31.1. Moreover,
the interior grids (i.e., away from the Arabian Sea and close to the Western Ghats)
exhibited larger decreasing trends vis-à-vis the exterior grids (i.e., near to theArabian
Sea), see Fig. 31.4a. These might have resulted due to deforestation activities in the
forest area along the Western Ghats and rapid pace of urbanization in the basin.
The Tapi to Tadri basin being an agriculture dominated basin depends largely on
monsoon rainfall for its water needs. The decrease in rainfall would affect the water
requirements for the Kharif crops being cultivated in the basin. The maximum and
minimumvalues of Sen’s slope for total annual rainfall are found to be 35.36mm/year
and −20.50 mm/year at Grid-80 and Grid-50 respectively, see Table 31.1.

31.4.2 Trends in Temperature

The maximum mean and minimum average temperature series of each grids at
annual time scales were investigated for the presence of trends. The trend detec-
tion carried out using MK, MMK and, Sen’s slope estimator tests yielded results
which agreedwith each other. From the trend analyses ofmaximum,mean,minimum
annual average temperature, increasing all 40 grids exhibited increasing trend across
the basin (except at Grid-11 for mean temperature which exhibited no trend), see
Table 31.2 and Fig. 31.4c–e. The increasing trend in maximum, mean and minimum
temperature at all the grids has been found to be significant at 1% significance level.
Thus, the temperature in the basin is found to severely rise over the past 116 years.
The Tapi to Tadri river basin, located nearer to the ocean in the west–south core of
India, this increase in temperature would affect the water availability in the basin.
The overall increase in temperature implies increase in water vapor and its circu-
lation pattern in the atmosphere and, which could increase the frequency of occur-
rence of extreme events in the basin. However, the linkages of increase in tempera-
ture and their impact on frequency of extreme events in Tapi to Tadri basin are not
discussed in present study and would form an interesting hypothesis for exploration
by the research community. The maximum and minimum values of Sen’s slope
for maximum, mean and minimum temperatures are found to be 0.0076°C/year
and 0.0050°C/year at Grid-40 and Grid-18;0.0071°C/year and 0.0052°C/year at
Grids-38 &40 and Grid-18; 0.0073°C/year and 0.0054°C/year at Grid-6 and Grid-18
respectively, see Table 31.2.
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Fig. 31.4 Trends in annual time series of a total rainfall, b PET, c maximum temperature, d mean
temperature and e minimum temperature over Tapi to Tadri river basin

31.4.3 Trends in PET

The MK, MMK, and Sen’s slope estimator tests have been applied on PET series
of each grids at annual time scales. The trends in annual PET exhibited increasing
trend at all 40 grids across the basin, see Fig. 31.4b. Further, from MMK Z-statistic
values, 23 out of 40 exhibited significant increasing trend at 5% significance level, of
which 17 grids showed significant increasing trend at 1% significance level also. The
increase in PET is directly influenced by significant increase in temperature across the
basin over the period of 116 years. Themaximum andminimumvalues of Sen’s slope
for annual average PET are found to be 0.279 mm/year and 0.018 mm/year at Grids-
36 & 40 and Grid-18 respectively, see Table 31.2. The highest increase in PET is
observed in the southern part of the basin, likemaximum andmean temperature, with
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Fig. 31.4 (continued)

agricultural and forest land. The interrelationship of rainfall, PET and temperature
indicates that in areas of lower rainfall away from ocean, higher PET and temperature
are reported across the basin, which might require attention in terms of the supply
and demand of available water resources.

31.5 Conclusions

The trends and long-term variability in rainfall, PET and temperature have been
analyzed for Tapi to Tadri basin, India for period 1901–2016. The key conclusions
resulting from present study are outlined underneath:

(1) The Tapi to Tadri basin experiences Monsoon climate and the average annual
rainfall over the basin for period 1901–2016 is found to be 2400 mm. The
maximum and minimum rainfall was found to be 5039.8 mm and 626.5 mm at
Gird-60 and Grid-16 respectively. Thus, the basin experiences wide spatial and
temporal rainfall variability.

(2) The annual total rainfall has been found to increase and decrease at, respectively,
72 and 44 grids out of 119 grids across Tapi to Tadri basin. This nonuniformity
could exhibit to complications in management of the water resources within the
basin.
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Table 31.2 Results of trend analysis of annual PET and temperature series

Potential evapotranspiration Maximum temperature

Grid MKZ MMKZ Sen β (mm/year) Grid MKZ MMKZ Sen β (°C/year)

1 2.58 3.51 0.141 1 6.36 5.86 0.0069

2 1.62 1.49 0.091 2 5.91 8.56 0.0063

3 1.44 1.70 0.065 3 5.83 5.45 0.0061

4 1.64 1.64 0.093 4 6.33 9.87 0.0066

5 1.24 1.12 0.067 5 6.08 11.69 0.0063

6 1.38 1.24 0.074 6 6.56 9.17 0.0069

7 0.99 0.84 0.052 7 6.45 7.54 0.0066

8 1.76 2.20 0.097 8 6.71 6.71 0.0069

9 1.47 1.47 0.079 9 6.38 6.38 0.0066

10 2.45 3.23 0.145 10 6.78 9.17 0.0069

11 1.29 1.24 0.073 11 6.46 6.97 0.0065

12 0.98 1.92 0.045 12 6.39 9.36 0.0064

13 2.04 2.37 0.117 13 6.58 6.58 0.0067

14 1.76 1.72 0.087 14 6.23 6.23 0.0062

15 1.49 1.54 0.074 15 5.92 7.33 0.0059

16 1.31 1.31 0.075 16 6.22 4.98 0.0061

17 1.00 1.64 0.055 17 5.92 5.61 0.0056

18 0.42 0.39 0.018 18 5.25 4.74 0.0050

19 1.53 1.33 0.082 19 6.19 8.73 0.0060

20 1.68 2.10 0.079 20 6.06 5.21 0.0057

21 1.86 1.63 0.077 21 6.15 7.51 0.0057

22 1.99 1.99 0.102 22 6.43 6.85 0.0059

23 1.83 1.83 0.070 23 6.11 6.11 0.0057

24 2.60 2.40 0.136 24 6.45 6.45 0.0060

25 2.15 2.15 0.100 25 6.52 5.86 0.0060

26 3.45 3.82 0.174 26 6.74 7.78 0.0062

27 3.25 2.63 0.161 27 6.71 6.71 0.0061

28 4.66 3.91 0.261 28 6.85 6.85 0.0062

29 4.81 4.34 0.256 29 6.86 11.42 0.0062

30 4.62 4.98 0.254 30 7.21 11.59 0.0065

31 4.70 4.70 0.242 31 7.31 7.80 0.0065

32 4.93 4.33 0.258 32 7.52 9.29 0.0068

33 5.03 5.31 0.267 33 7.58 7.23 0.0068

34 5.52 7.13 0.268 34 7.67 7.67 0.0070

35 4.91 5.74 0.224 35 7.78 7.32 0.0071

(continued)



31 Variability of Rainfall, Temperature and Potential … 361

Table 31.2 (continued)

Potential evapotranspiration Maximum temperature

Grid MKZ MMKZ Sen β (mm/year) Grid MKZ MMKZ Sen β (°C/year)

36 5.25 6.45 0.279 36 7.76 7.76 0.0071

37 5.51 5.63 0.267 37 7.80 9.44 0.0072

38 5.43 6.02 0.257 38 7.84 7.33 0.0075

39 5.03 4.15 0.247 39 7.70 7.05 0.0074

40 5.46 5.96 0.279 40 7.87 24.21 0.0076

Mean temperature Minimum temperature

Grid MKZ MMKZ Sen β (°C/year) Grid MKZ MMKZ Sen β (°C/year)

1 7.03 9.13 0.0070 1 6.77 6.77 0.0072

2 6.68 7.38 0.0065 2 6.38 6.38 0.0068

3 6.51 6.51 0.0063 3 6.27 10.79 0.0066

4 7.07 6.87 0.0066 4 6.79 6.79 0.0070

5 6.81 8.21 0.0063 5 6.45 6.45 0.0066

6 7.24 12.04 0.0070 6 6.95 6.95 0.0073

7 6.99 6.99 0.0065 7 6.70 5.95 0.0069

8 7.28 0.00 0.0069 8 7.01 8.67 0.0071

9 7.15 7.15 0.0067 9 6.74 10.93 0.0069

10 7.33 8.97 0.0070 10 7.06 7.06 0.0072

11 7.21 9.10 0.0067 11 6.74 8.13 0.0069

12 6.98 10.23 0.0065 12 6.65 9.96 0.0067

13 7.27 7.27 0.0068 13 6.89 6.73 0.0071

14 6.94 6.94 0.0063 14 6.54 6.05 0.0066

15 6.74 6.74 0.0061 15 6.19 8.27 0.0063

16 6.86 5.90 0.0061 16 6.57 10.26 0.0064

17 6.44 6.44 0.0057 17 6.28 7.41 0.0060

18 5.79 8.07 0.0052 18 5.47 4.79 0.0054

19 6.95 9.81 0.0062 19 6.47 7.28 0.0063

20 6.70 8.18 0.0059 20 6.23 8.53 0.0061

21 6.71 8.30 0.0058 21 6.24 5.58 0.0061

22 7.08 8.18 0.0061 22 6.53 6.71 0.0064

23 6.89 8.45 0.0060 23 6.21 7.23 0.0062

24 7.19 7.19 0.0062 24 6.50 13.66 0.0064

25 7.17 7.17 0.0063 25 6.43 6.43 0.0064

26 7.45 7.45 0.0065 26 6.65 6.65 0.0067

27 7.41 7.41 0.0065 27 6.55 7.15 0.0066

(continued)
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Table 31.2 (continued)

Mean temperature Minimum temperature

Grid MKZ MMKZ Sen β (°C/year) Grid MKZ MMKZ Sen β (°C/year)

28 7.61 6.92 0.0066 28 6.64 9.19 0.0067

29 7.44 7.97 0.0065 29 6.50 9.18 0.0067

30 7.43 9.96 0.0066 30 6.42 7.48 0.0065

31 7.46 6.92 0.0065 31 6.38 7.00 0.0065

32 7.64 10.96 0.0068 32 6.31 6.31 0.0067

33 7.51 9.35 0.0067 33 6.24 5.36 0.0065

34 7.59 7.59 0.0068 34 6.31 7.13 0.0067

35 7.59 8.58 0.0069 35 6.33 6.59 0.0066

36 7.64 11.22 0.0070 36 6.31 5.46 0.0066

37 7.73 9.50 0.0069 37 6.34 5.66 0.0065

38 7.75 9.14 0.0071 38 6.42 6.42 0.0065

39 7.75 9.30 0.0070 39 6.28 7.19 0.0066

40 7.85 8.28 0.0071 40 6.45 8.67 0.0066

(3) From the results, it is clear that increase in PET in the study area is mainly due
to a significant increase in the air temperature. A marginal increase in PET due
to climate change would put enormous pressure on the existing water resources
within the catchment. However, analyses at seasonal, monthly and extreme
indices may give better understating of interrelationship of climatic variables.

(4) For planning and management of agriculture and water resources is impor-
tant to understand the distribution and changing trend of rainfall, temperature
and potential evapotranspiration under climate variability. Therefore, the agro
scientists, planners and water resources managers shall formulate strategies to
counter this effect, and, implement them to ensure better water management
practices in the basin.

Acknowledgments The authors are also thankful to India Meteorological Department (IMD) for
providing necessary data to conduct the present study. The third author gratefully acknowledges the
financial support received from Department of Science and Technology (DST), Ministry of Science
andTechnology,Government of Indiavide their letter no.DST/INSPIREFellowship/2015/IF150634
dated January 11, 2016.



31 Variability of Rainfall, Temperature and Potential … 363

References

Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins
D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent
L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M,
Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature
and precipitation. J Geo Res 111(5):D05109-1-22

Boccolari M, Malmusi S (2013) Changes in temperature and precipitation extremes observed in
Modena, Italy. Atmos. Res. 122:16–31

Caloiero T (2017) Trend of monthly temperature and daily extreme temperature during 1951–2012
in New Zealand. Theor Appl Climtol 129(1–2):111–127

Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. Irrigation and
Drainage Paper No 24, 2nd edn., Food and Agriculture Organization, Rome, p 156

Dore MHI (2005) Climate change and changes in global precipitation patterns: what do we know?
Environ Int 31:1167–1181

Frich P, Alexander LV, Gleason B, Haylock M, Tank AMGK, Peterson T (2002) Observed coherent
changes in climatic extremes during the secondhalf of the twentieth century.ClimRes 19:193–212

Ghosh S, Luniya V, Gupta A (2009) Trend analysis of Indian summer monsoon rainfall at different
spatial scales. Atmos Sci Lett 10(4):285–290

Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of
Rajasthan (India). Agric Water Manage 69:1–11

Haijun L, Yan L, Tanny J, Ruihao Z, Guanhua H (2014) Quantitative estimation of climate change
effects on potential evapotranspiration in Beijing during 1951–2010. J Geogr Sci 24:93–112

Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol
204:182–196

He Y, Tian P, Mu X, Gao P, Zhao G, Wang F, Li P (2017) Changes in daily and monthly rainfall in
the Middle Yellow River, China. Theor Appl Climtol 129(1–2):139–148

Helfer F, Lemckert C, Zhang H (2012) Impacts of climate change on temperature and evaporation
from a large reservoir in Australia. J Hydrol 475:365–378

Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality
data. Water Resour Res 20(6):727–732

Hobbins MT, Ramírez JA, Brown TC (2004) Trends in pan evaporation and actual evaporation
across the conterminous U.S.: paradoxical or complementary? Geophys Res Lett 31:L13503

Huo Z, Dai X, Feng S, Kang S, Huang G (2013) Effect of climate change on reference
evapotranspiration and aridity index in arid region of China. J Hydrol 492:24–34

India-WRIS report (2014)West flowing rivers from Tapi to Tadri basin. CentralWater Commission,
Government of India

Jain SK, Agarwal PK, Singh VP (2007) Hydrology and water resources of India, vol 57. Springer
Science & Business Media

Kendall MG (1975) Rank correlation methods. Charles Griffin, London
Kundu S, Khare D, Mondal A (2016) Interrelationship of rainfall, temperature and reference evap-
otranspiration trends and their net response to the climate change in Central India. Theor Appl
Climtol 1–22

Liu M, Tian H, Yang Q, Yang J, Song X, Lohrenz SE, Cai WJ (2013) Long-term trends in evapo-
transpiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water
Resour Res 49:1988–2012

Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G,
Melillo J (2014) Response of evapotranspiration and water availability to the changing climate
in Northern Eurasia. Clim Change 1–15

Liu B, Chen J, LuW, ChenX, LianY (2016) Spatiotemporal characteristics of precipitation changes
in the Pearl River Basin, China. Theor Appl Climtol 123(3–4):537–550

Mann HB (1945) Nonparametric tests against trend. Econometrica J Econom Soc 245–259



364 P. Mahyavanshi et al.

Martinez CJ, Maleski JJ, Miller MF (2012) Trends in precipitation and temperature in Florida,
USA. J Hydrol 452–453:259–281

Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate
classification. Hydrol Earth Syst Sci Dis 4(2):439–473

Quirk T (2012) Did the global temperature trend change at the end of the 1990s? Asia-Pac J Atmos
Sci 48:339–344

Sharma D, Babel MS (2014) Trends in extreme rainfall and temperature indices in the western
Thailand. Int J Climatol 34(7):2393–2407

Sharma PJ, Loliyana VD, Resmi SR, Timbadiya PV, Patel PL (2017) Spatio-temporal trends in
extreme rainfall and temperature indices over Upper Tapi Basin, India. Theor Appl Climatol
1–26

Soltani M, Laux P, Kunstmann H, Stan K, Sohrabi MM, Molanejad M, Zawar-Reza P (2016)
Assessment of climate variations in temperature and precipitation extreme events over Iran.
Theor Appl Climatol 126(3–4):775–795

Sonali P, Kumar DN (2016) Spatio-temporal variability of temperature and potential evapotranspi-
ration over India. J Water Climate Change 7(4):810–822

Song X, Zhang J, AghaKouchak A, Roy SS, Xuan Y, Wang G, He R, Wang X, Liu C (2014) Rapid
urbanization and changes in spatiotemporal characteristics of precipitation inBeijingmetropolitan
area. J Geophy Res: Atmos 119(19)

Soro GE, Noufé D, Goula Bi TA, Shorohou B (2016) Trend analysis for extreme rainfall at sub-daily
fand daily timescales in Côte d’Ivoire. Climate 4(3):37

Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47(1/2):123–138
Xiao C,Wu P, Zhang L, Song L (2016) Robust increase in extreme summer rainfall intensity during
the past four decades observed in China. Sci Rep 6

Ye Z, Li Z (2017) Spatiotemporal variability and trends of extreme precipitation in the Huaihe River
basin, a climatic transitional zone in East China. Adv. Met. Article ID 3197435

Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily
precipitation extremes over China. J. Climate 18(7):1096–1108

Zhang Q, Singh VP, Peng J, Chen YD, Li J (2012) Spatial–temporal changes of precipitation
structure across the Pearl River basin, China. J Hydrol 440:113–122



Chapter 32
Climate Change and Water Resources:
Emerging Challenges, Vulnerability
and Adaptation in Indian Scenario

Y. Shiva Shankar, Abhishek Kumar, and Devendra Mohan

Abstract Global warming has adversely affected the climatic systems on the earth.
Long-term alterations in global weather patterns, particularly rise in global tempera-
ture have been significantly influencing the hydrological patterns leading to climate
change. One of the biggest challenges posed by the global warming-induced climate
change is its direct effect on the well-being of humans through the changes in hydro-
logical cycle affecting the sectors such as agriculture, industrial growth, hydropower
generation, domestic water supply etc. Subsequently, the researchers have predicted
that impacts of climate change such as the melting of glaciers, increased frequency
of floods and droughts, changes in evapotranspiration, variations in surface runoff
and rising sea level have significant implications to water resources. Developing
economies like India are highly vulnerable to these changes as the majority of its
population is dependent on agriculture. In addition to the above the increasing water
needs for domestic and industrial purposes, depleting groundwater levels and surface
water pollution have been stressing the policymakers for sustainable water resource
management. The present research exhaustively reviews the influence of climate
change on hydrological components, its qualitative and quantitative implications to
surface and groundwater resources in Indian scenario through various case studies.
The research also proposes the corrective measures for the impact minimization on
the available water resources in the present context.
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32.1 Introduction

Accelerated increase in the greenhouse gases (GHG) like carbon dioxide, nitrous
oxide, methane, Chlorofluoro carbon’s etc. in the atmosphere is the major cause for
global warming resulting in climate change. Though both the natural and anthro-
pogenic factors control the climate change, anthropogenic factors have been impor-
tant due to the rapid alterations in average weather. The impacts of climate change
were significant in this century due to the rapid industrialization, increased use of
fossil fuels, urbanization, excessive agriculture and land-use changes. As per the
IPCC report, the maximum growth in the emission of greenhouse gases (GHG) has
occurred between 1970 and 2004. The sectorial contribution for the growth of GHG’s
is as follows: 145% increase from energy supply sector, 120% from transport, 65%
from industry, 40% from change in land-use patterns and during this period global
population increased by 69%. Enhanced concentration of GHGdue to these activities
into the earth’s atmosphere is responsible for global warming and consequent climate
change ultimately affecting the natural cycles (Panwar and Chakrapani 2013; Misra
2014; Ministry of Statistics and Programme Implementation (MSPI) 2013).

Water resources and food security are the key areas that are highly vulnerable
due to climate change. These two sectors have a significant impact on economic and
social development of the country. Water is essential for sustaining all forms of life,
food production, economic development, and for general wellbeing. The surface
water and groundwater resources of the country play a major role in agriculture,
hydropower generation, livestock production, industrial activities, forestry, fisheries,
navigation, recreational activities, etc. (Kumar et al. 2005, 2013; National Academy
of Agricultural Sciences (NAAS) 2013). For agrarian nation like India, agriculture
contributes to 18.5% of GDP and two-thirds of population depends upon agriculture,
changing climatic scenarios pose a bigger threat to this sector affecting the livelihood
of major population (Khan et al. 2009; Singh et al. 2009).

32.1.1 Impacts on Water Resources

Water remains the key factor globally in attainment of Sustainable Development
Goals (SDG’s). Attainment of SDG’s aiming at elimination of poverty, supplying
clean energy, health and sanitation, clean water supply, sustainable cities etc. are
directly or indirectly associated with water. Hence water remains the vital compo-
nent in planning of framework for achieving SDG’s. Nations have been focusing
on broader perspective, i.e., water nexus constituting the interactions between food,
water, cities, energy and environment; that have been detrimental for their sustain-
able development. In the Indian scenario, the issues are much more complex and
vulnerable due to rapid economic progress in the last two decades exerting pressure
on existing water resources. In this context, forecasting the future water requirements
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in the era of climate change for devising the adaptation strategies without compro-
mising the present needs is of prime importance. Sustainable water resources plan-
ning andmanagement is very critical for combating global warming-induced climate
change (World Bank Group (WBG) 2016; Kumar et al. 2013; Nath and Behera 2011;
Madhusoodhanan et al. 2016).

Water resource sector has been facing several issues due to the excessive utiliza-
tion and human interventions, for satisfying the growing water demands. There are
12major river basins in the country.Major perennial rivers like Ganga, Brahmaputra,
Indus, etc. flow through the northern part of the country originating from Himalayas,
whereas the river basins flowing in southern part of India are Krishna, Godavari,
Penna etc. Ganga–Brahamputra–Meghna river basin is the largest in the country
with catchment area of about 11.0 lakh km2 (more than 43% of the total catch-
ment area of all the major rivers in the country). Ganges basin has been supporting
population more than 650 millions living in countries such as China, Nepal, India
and Bangladesh. Other major river basins with catchment area more than one lakh
km2 are Indus, Mahanadi, Godavari and Krishna. On the other hand, India has been
severely dependent on its potential of annually replenishable groundwater sources
for satisfying its water requirements. Surface runoff is the major component that is
responsible for groundwater recharge (Ministry of Water Resources (MOWR) 2008;
Jeuland et al. 2013).

The reports of Inter Governmental Panel on Climate Change (IPCC) indicated
that the average global surface air temperature has increased by 0.2–0.6 °C since the
late nineteenth century and it is projected to increase by 1.4–5.8 °C over the period
1990–2100 (Indian Meteorological Department (IMD) 2009; Inter Governmental
Panel on Climate Change (IPCC) 2008). All India mean annual temperature has
shown warming trend of 0.05 °C/10 years during 1901–2003, but warming trend
was observed to be on rise during 1971–2003 with a rise of 0.22 °C/ 10 years. The
temperature data between 2001 and 2016 suggest that 12 of its 15 hottest years were
experienced during this period. Increased temperature coupled with air pollution due
to aerosols, enhancing the humidity has been aggravating the health effects even
causing the deaths due to hot waves. These hot days also have an economic impact
due to loss of human productivity (Kothawale and Kumar 2005; Oldenborgh et al.
2018; Burgess et al. 2017). Temperature rise has direct influence on meteorological
disasters (hurricanes, storms etc.), hydrological events (floods) and climatological
events (heat and cold waves, drought, wild fire etc.) (Visser et al. 2014).

The impacts of global warming induced climate change on water resources could
be either qualitative or quantitative. Quantitative effects are melting of glaciers,
increased frequency of floods and droughts, effect on groundwater quantity due
to decreased runoff and rising sea level. Quantitative effects are important for agri-
cultural output as major freshwater resources in our country are glacier fed, non
perennial rivers are dependent on runoff and country is surrounded long coastal line.
The qualitative effects include increase in sediment load due to the flash floods,
variation in dissolved oxygen levels, growth of algal blooms, saltwater intrusion,
increase in concentration of pollutants, etc. (National Water Mission (NWM) 2011).
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The present work discusses about the impacts of climate change on water resources,
emerging vulnerabilities and adaptive measures for Indian scenario.

32.2 Quantitative Effects of Climate Change

32.2.1 Melting of Glaciers in the Himalayas

Himalayas constitute the largest sources of freshwater with major perennial rivers
of the subcontinent like Ganga, Brahmaputra and Indus; originating from these
glaciers. Glacial retreat in the Himalayan region poses multiple threats such as
increasing magnitude of floods and droughts, decreasing the water quality, changes
in hydropower generation, influence on biodiversity etc.; that has a strong hold on
lives of millions of people in that region. Glacial lakes in Himalayas causing the
outburst floods in this region have been increasing in the last few decades resulting
in catastrophic damages and fatalities. It has been observed that there has been change
in the nature of glacial lakes in the region, with significant numbers of them have
disappeared and certain proglacial lakes have expanded. But the emerging threat
was observed to be due to the formation of glacial lakes at higher elevation due to
the temperature rise that could increase the probability of flash floods in the loca-
tion. Additionally, these retreating glaciers have negative effects such as soil erosion
and contamination in the downstream rivers. Increased frequency of extreme rainfall
events acts as a medium for transportation of nutrients and chemicals leading to the
formation of biomass blooms affecting the nearby habitat’s (Nie et al. 2017; Pritchard
2017; Zhang et al. 2017; Kumar et al. 2005; Wheatley et al. 2017).

32.2.2 Modifications in Rainfall Pattern

Monsoon rainfall in India displayed annual variability considerably lower and higher
than normal rainfall over large areas of Indian subcontinent during a period of several
years leading to wide spread of droughts and floods. The year-to-year variability in
monsoon rainfall leads to extreme hydrological events (large-scale droughts and
floods) resulting in serious reduction in agricultural output causing food security and
economic loss. Rainfall fluctuations in India have been largely randomover a century,
with no systematic change detectable on either annual or seasonal scale but significant
changes were observed on regional scale. However, areas of increasing trend in the
seasonal rainfall have been found along the West Coast, North Andhra Pradesh and
Northwest India and those of decreasing trend over East Madhya Pradesh, Orissa
and Northeast India during recent years. The randomness of the rainfall pattern is
presented inFig. 32.2 (Auffhammer et al. 2012;Mall et al. 2006b, 2007;Guhathakurta
et al. 2011).
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The changes observed in temperature and precipitation during 2000–2015 were
significant in comparison to previous century. The last two decades have witnessed
a devastating extreme weather events, drought of 2016 spread over 10 states has
affectedpopulationof 330million (Goyal andRao2018).Changes in the precipitation
could result in different type of droughts such as meteorological drought (due to
rainfall shortage), agricultural drought (due to lesser soil moisture), hydrological
drought (due to water shortage in the water bodies) and socioeconomic drought (due
to reduction in water for societal utility) (Mukherjee et al. 2018).

Utilization of groundwater resource for irrigation and drinking water needs has
been increasing due to the improper water management in the past combined with
population growth, industrialization and urbanization. Groundwater accounts for
about 80% of domestic water requirement and more than 45% of the total irrigation
in the country (Chakraborti et al. 2011; Kumar et al. 2005). It is a replenishable
resource and has inherent advantages over the surface water as it is comparatively
pure, less evaporation loss and wide distribution (Senthilkumar and Elango 2013).
Increased utilization for domestic, irrigation and industrial water supply has resulted
in overexploitation of groundwater affecting the groundwater in terms of the quality
and quantity (Raju et al. 2009). Most of the groundwater recharge occurs due to the
rainfall only. Recharge of an aquifer depends mostly on the type of soil, vegetation,
amount of precipitation, surface temperature, wind speed, evapotranspiration, runoff
and discharge patterns. The increase of global temperature affects the major compo-
nent of groundwater recharge, i.e. by rainfall and seepage, through various sources
(Panwar and Chakrapani 2013; Russell et al. 2013).

32.2.3 Change in Evapotranspiration

Evapotranspiration is the water lost to the atmosphere by two processes evapora-
tion and transpiration. Evaporation is the loss of water from surface water bodies,
wetlands, bare soil, and snow cover while transpiration is the loss from living-plant
surfaces. As evapotranspiration is dependent on the vegetation, soils types and on the
amount of water available. With the rising surface temperature, rate of evapotranspi-
ration is expected to show spatio-temporal changes due to solar radiation and wind
speed. The major reason behind this influence was observed to be due to its effect
on hydrologic cycle due to the evaporation and consumption of solar radiation. In
the current scenario of temperature rise, the effects were predicted to aggravate that
would result in changes in precipitation affecting the water management in future.
Groundwater is directly affected by changes in the rate of precipitation and evapo-
transpiration. Higher temperature leads to higher evapotranspiration rates, resulting
in lesser moisture content and increases dryness in the soils. The high precipitation
in wet climate will increase surface runoff causing soil erosion (Pan et al. 2015; King
et al. 2015; Chattopadhyay and Hulme 1997; Panwar and Chakrapani 2013; Mall
et al. 2007).
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32.2.4 Sea-Level Rise

Sea-level rise due to climate change has been a serious global threat in recent days.
The rate of global sea-level rise was faster from 1993 to 2003, about 3.1 mm per
year, as compared with the average rate of 1.8 mm per year from 1961 to 2003
as reported in IPCC report and significantly higher than the average rate of 0.1–
0.2 mm/yr increase recorded by geological data over the last 3000 years (Dasgupta
and Meisner 2009). Surface water at prevailing temperature expands when the water
temperature rises, with raising surface temperature due to global warming, these
phenomena may to lead to floods in coastal area. This will cause potentially direct
consequences for many highly populated areas located near sea level. Melting of
glaciers and icecapswill accelerate this phenomenon further.With rising deglaciation
at Antarctica, Intergovernmental Panel on Climate Change suggests that average sea
level may rise by 15–95 cm by the year 2100. Decrease in levels of water table
in surface and subsurface waters can cause seawater intrusion into the surface and
groundwater, which increases the salinity of the water, making it unsuitable for
drinking purpose. In the Indian context, this problem could be more evident due to
the long coastline supporting millions of population and metropolitan cities such as
Mumbai, Chennai andKolkata (Panwar andChakrapani 2013;Mall et al. 2007; IPCC
2008). Sea-level rise has been detrimental to biodiversity on coastal islands housing
more than 20% of the terrestrial plant and vertebrate species in the world, within 5%
of the global terrestrial area. Climate change causing tidal ranges has been leading
to periodic floods affecting the nonsaline habitats. Sea-level rise also contributes
to coastal erosion and salt water intrusion affecting the aquifers (Courchamp et al.
2004).

32.2.5 Challenges to Indian Agriculture

Climate change impacts agriculture both directly and indirectly. The type andmagni-
tude of impact will vary depending on the degree of change in climate, geograph-
ical region and nature of crop. The following are the areas vulnerable to climate
change that affect the agricultural productivity: variation in meteorological param-
eters effecting hydrologic cycle, effect on soil composition (fertility, erosion, mois-
ture content, salinity, biological process), change in the water use and application of
fertilizers and growth of pests (NAAS 2013; Kang et al. 2009; Khan et al. 2009). On
the other hand, population is increasing at an unprecedented rate, with increasing
glacier melting, changing rainfall patterns, seawater rise, decreased surface runoff
and groundwater recharge; will have serious implications on water availability in the
future. Studies have predicted that water is likely to be scarce by 2050. The water
requirement in India by 2050 will be in the order of 1450 km3, which is significantly
higher than the estimated water resources of 1122 km3 per year (Misra 2014).
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There are twomajor crop growing season in India, summer or kharif crop growing
season (June–September) and winter or rabi crop growing season starts after the
summer monsoon, and continues till early summer. The major kharif crops are rice,
maize, sugarcane, cotton, jute, groundnut, soybean and Bajra etc. The major rabi
crops are wheat mustard, Barley, potato, onion and gram etc. Depending on crop
duration, kharif crops can be harvested during the autumn or winter months also. The
southwest monsoon is critical to the kharif crop, which accounts for more than 50%
of the food-grain production and 65% of the oilseeds production in the country. The
variations in the monsoon rainfall annually in India lead to large-scale droughts and
floods, resulting in a major effect on Indian food grain production. Rainfall occurring
at the end of the monsoon season provides stored soil moisture and often irrigation
water for the rabicrop. Climate change is projected to have serious implications for
these major crops. The greater losses in rabi season have a significant impact on
wheat yield and interannual variability of monsoon affects the kharif crops like rice
(Kumar et al. 2014; Mall et al. 2006a; Ranuzzi and Srivastava 2012; NAAS 2013).

Statistical analyses of state-level data confirm that drought and extreme rainfall
adversely affected rice yield in predominantly rainfed areas during 1966–2002. The
drought has been found to have much greater impact than extreme rainfall events. On
an aggregated scale, the mean of all emission scenarios indicates that climate change
is likely to reduce irrigated rice yields by ~4% in 2020 (2010–2039), ~7% in 2050
(2040–2069), and by~10% in 2080 (2070–2099) climate scenarios.Modeling studies
on wheat indicated that with every rise of 1 °C in mean temperature, India could lose
4–5 million tons of wheat. Maize production has also been projected to decrease
due to variations in climate (NAAS 2013; Kang et al. 2009). Similarly increase in
temperature may reduce yields of soybean, mustard, groundnut, and potato by 3–7%.
Losses were also significant in other crops, such as mustard, peas, tomatoes, onion,
garlic and other vegetable and fruit crops. Climate change is predicted to have amajor
impact on horticulture also melting of ice cap in the Himalayan regions affecting the
production of apple, saffron, rhododendron, orchid, etc. Commercial production of
horticultural plants particularly grown under open field conditions will be severely
affected. High temperature and air pollution have significant effect on their growth
(Datta 2013). With the varying meteorological conditions due to climate change,
impact on food security is expected to be higher in future.

32.3 Qualitative Effects of Climate Change

Quality of water is affected adversely by the Climate Change, changes in amount
or pattern of precipitation will change the residence time of water in the watershed,
thereby changing its quality (Eckhardta and Ulbrich 2003). These impacts depend
on magnitude of changes created in the environment and the consequences can be
different according to type of water body (rivers, lakes, dams, ponds, wetlands,
etc.) and characteristics (water residence times, size, shape, depth, etc.). In case
of streams, main parameters affected are dissolved organic matter and nutrients.
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Pathogens and cyanobacteria/cyanotoxins are more important in case of lakes. In
addition, micropollutants concentration, both inorganic and organic, may also be
frequently affected (Jackson et al. 2007).

All the physico-chemical, biochemical and biological reactions are controlled by
temperature. According to Arrhenius equation, kinetics of a given chemical reac-
tion may be doubled for a temperature increase of 10 °C (Wolfenden et al. 1999).
This phenomenon globally has increased the concentrations of dissolved substances
in water, affecting the content of dissolved gases like oxygen. Increase in surface
water temperature combinedwith reduced dissolved oxygen content, changesmixing
patterns affect the self-purification capacity and favors the growth of algal blooms
(Komatsu et al. 2007; Jöhnk et al. 2008). Solar irradiation can also alter water quality
and especially characteristics of natural organic matter in freshwater systems both by
warming and Ultraviolet (UV) radiation (increasing photolysis) (Delpla et al. 2009;
Tu 2009). In case of droughts, groundwater recharge decreases significantly. Hence
over-extraction of water will lead to degradation in water quality leading to problems
like saltwater intrusion (Ranjan et al. 2006). The climate change impacts on surface
water quality can be summarized as shown in Fig. 32.1, which is themodified version
of figure taken from Delpla et al. 2009. Figure 32.1 considers the effects droughts
and floods of the two main factors (temperature and rainfall). These impacts depend
on natural or artificially created environment and the consequences can be different
according to type of water body (rivers, lakes, dams, ponds, wetlands, etc.) and
characteristics (water residence times, size, shape, depth, etc.). In case of streams,
main parameters affected are dissolved organic matter and nutrients. Pathogens and
cyanobacteria/cyanotoxins are more important in case of lakes. In addition, microp-
ollutants, both inorganic and organic, may also be frequently affected (Jackson et al.
2007). These changes could lead to the outbreak of various infectiouswater borne and
vector-borne diseases such as yellow fever, diarrhoea, malaria, cholera etc. (Moors
et al. 2013).

32.4 Vulnerability

The following have been the major vulnerabilities in the Indian scenario due to
the global warming-induced climate causing changes in economical, ecological and
social scenarios in the country, enhancing the stress on available water resources:

• Proportion of urban and rural populations is 31.2% and 68.8%, respectively, (as
per 2011 census) projected to rise to 55% by 2050 (Lohani et al. 2016).

• Rapid alterations in the ecologically sensitive Himalayan glaciers due to large
scale deforestation, mining and quarrying, cultivation and grazing, urbanization
and tourism (Tiwari and Joshi 2012).

• Larger number of marginal and small-scale farmers in the agricultural sector
(Poddar et al. 2014).

• Larger threat to biodiversity (Pecl et al. 2017).
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• Increase of crimes in the society due to the competition over the available resources
fostering the conflicts,migrations, economic downfall etc. aggravating the poverty
increasing the crimes in the society (Agnew 2011).

• Migrations and larger populations in coastal areas of the country (Bhagat 2014).

32.5 Adaptation in the Indian Scenario

Themajor initiative in the Indian scenario for combating the effects of climate change
is enhancing the adaptive capacity and building of climate-resilient infrastructure.
The implementation should be enhanced with proper good governance, coordination
among stakeholders, smart infrastructure in the urban areas, adaptation of clean
technologies for pollution prevention, capacity building for translating the ideas into
reality, sustainable use of resources, incentives for green practices, vulnerability and
risk analysis, education and enhanced research for analyzing the future threats.
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Chapter 33
Observed Spatio-Temporal Trends
of Precipitation and Temperature Over
Afghanistan

S. Rehana, P. Krishna Reddy, N. Sai Bhaskar Reddy, Abdul Raheem Daud,
Shoaib Saboory, Shoaib Khaksari, S. K. Tomer, and U. Sowjanya

Abstract Afghanistan is a semi-arid country and most vulnerable to climate
extremes related hazards, including droughts and floods that have caused huge
impact on the socioeconomic development of the country. The present study
analyzed the observed precipitation and temperature trends for seven agro-climatic
zones of Afghanistan over the period 1951–2007 with Asian Precipitation-Highly-
Resolved Observational Data Integration towards Evaluation of Water Resources
(APHRODITE). Change in themagnitude of precipitation and temperatures in recent
years with reference to distant past was assessed by dividing the historical data into
two parts as 1951–1990 and 1991–2006. Further, the trend analysis was performed
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on daily data to test the increasing or decreasing rainfall and temperature trends using
Mann–Kendall trend test for each zone of Afghanistan. The maximum precipitation
occurrence months were observed as January–May for all zones of Afghanistan.
Whereas, June–December and generally considered as dry months. The maximum
temperature was observed in the months of May–August, with hottest month as
July for all seven zones of Afghanistan. The annual total precipitation has shown
an increasing trend for the zones of South, South–West, East and Central, whereas,
a decreasing trend has been observed for the zones of North, North–East and West
zones. The trend analysis of the precipitation with gridded data sets reveals for the
most part of the Afghanistan region the rainfall has been observed as decreasing.
Whereas, for all seven agro-climatic zones of Afghanistan, an increasing trend of
temperature in recent years of 2004–2016 was observed. Overall, the North, North–
East and West zones of Afghanistan are more vulnerable with decreasing precip-
itation and increasing temperatures indicating more dry and warm periods indi-
cating increasing drought conditions. Whereas, the South, South–West, East, and
Central zones are more vulnerable with increasing trends of both precipitation and
temperatures indicating increase of more wet and warm climates.

Keywords Climate extremes · APHRODITE · Afghanistan · Trend analysis ·
Mann–Kendall test

33.1 Introduction

An increase in the number and magnitude of extreme climate events has been
observed globally in recent years causing huge loss of lives, extensive damages
to crops, properties and immeasurable misery to millions of people (Hartmann et al.
2013). The issue of management of risks of extreme events and disasters under
climate change adaptation has been the main focus by the Intergovernmental Panel
on Climate Change (IPCC) in the Special Report on Extremes (SREX) (IPCC 2012).
Globally, understanding past changes in the characteristics of extreme climate events
became critical for reliable projections of future changes (Donat et al. 2013; Panda
et al. 2017). Hence, understanding the variability of precipitation and temperature
extreme events in the historical data is essential. Moreover, the study of historical
trends of climate extremes will serve as the basis for understanding the possible
physical vulnerabilities and adaptive measures. To this end, the study of climate
events has gained higher scientific and societal interest over the last few decades
(e.g. Zhang et al. 2005; Donat et al. 2013; Curry et al. 2014; Razavi et al. 2016).
The study of such climate trends may be critical for any arid to semiarid coun-
ties such as Afghanistan as it can directly impact the droughts, floods, heat waves
etc. and can be more intense under climate change. Afghanistan is a landlocked
semi-arid country and most vulnerable to precipitation extremes related hazards,
including droughts, floods and heatwaves that cause huge losses in life and property
impacting the socio-economic development of the country. Currently, Afghanistan
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is among the countries with low levels of greenhouse gas (GHG) emissions. The
Global Adaptation Index ranked Afghanistan as the most vulnerable countries in the
world under climate change. There is a limitation over the climate extremes studies
over Afghanistan due to limited weather data availability. More than three decades
of war in Afghanistan that started in the late 1970s caused a huge interruption in
water-resources data collection and destroying many of the older records of meteo-
rological and hydrological data (Campbell 2015). Specifically, only a few (e.g. Aich
et al. 2017) climate change assessment studies have been carried out in the literature.
In this context, the present study tried to use the open source data sets to analyze the
current trends in the precipitation and temperatures.We report the changes and trends
in precipitation and temperature extremes in the recent years for seven agro-climatic
zones of Afghanistan.

33.2 Case Study and Data

Afghanistan is a landlocked country and geographically highly heterogeneous with
the glaciated peaks of the Hindukush and arid deserts of the South, located between
29 and 39° N and 60–75° E (Fig. 33.1). Entire Afghanistan is divided into seven agro-
climatic zones following to climate classification scheme of Köppen-Geiger system
(Köppen and Wladimir 1884), Beekeeping survey report (2014) and Ministry of

Fig. 33.1 Seven agro-climatic zones of Afghanistan with provinces
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Agriculture, Irrigation and Livestock (MAIL) as Central, Eastern, Northern, North–
East, Southern, South–West, and Western agro-climatic zones (Fig. 33.1). The parts
ofCentral,North,North–East andSouth agro-climatic zones havemid-latitude steppe
climate, desert climate and Mediterranean climate. The parts of East and South–
West agro-climatic zones haveMediterranean climate; and tropical and subtropical—
steppe and desert climates. The parts of South–West and West agro-climatic zones
have mid-latitude steppe, and desert climate; tropical and subtropical desert climate;
and Mediterranean climate.

One of the major challenges in the initiation of the present study is the avail-
ability of long time-series historical weather station meteorological data sets.
Therefore, to understand the spatial variation of precipitation and temperature
extremes, the study used a long time series fine-scale gridded dataset, Asian
Precipitation-Highly-Resolved Observational Data Integration towards Evaluation
of Water Resources (APHRODITE) datasets for a 48-year period from 1951
to 2007 for analysing the spatial trends in the precipitation over Afghanistan.
APHRODITE daily gridded precipitation is the long-term continental-scale datasets
which considered a dense network of daily rain-gauge data (about 5000–12,000)
with 14 quality control processes, such as controlling for erroneous values, repe-
tition, homogeneity etc. (Hamada et al. 2011). The APHRODITE data are mainly
developed for Asia including Himalayas, South and Southeast Asia andmountainous
areas in the Middle East at 0.5° resolution. The details of the data can be found
at: https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-hig
hly-resolved-observational-data-integration-towards. The APHRODITE data set is
first extracted covering entire Afghanistan and further cropped to each agro-climatic
zone to study the recent changes in the daily precipitation and temperature trends
spatially.

33.3 Analysis Approach

The present study estimated the changes in each of the precipitation extreme statistics
using linear and Mann–Kendall trend tests.

33.3.1 Linear Regression

One of the simplest methods to calculate the trend of the data is linear regression.
The equation of linear regression line is given by:

Y = a + bX (33.1)

https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-observational-data-integration-towards
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where, X is the explanatory variable and Y is the dependent variable, b is the slope
of the line and a is the intercept. The slope of the regression describes the trend, with
positive as increasing and negative as decreasing trend. The observed trend study is
conducted by considering the rainfall and temperatures as dependent variables and
time as explanatory variable.

33.3.2 Mann–Kendall Trend Test

The Mann–Kendall (Mann 1945; Kendall 1975) trend test is a non-parametric trend
test, which has been widely used for trend detection in hydrologic and climate data
to assess if there is an upward (positive) or downward (negative) trend of a variable
of interest over time. The test compares the relative magnitudes of sample data rather
than the data values themselves (Gilbert 1987). The following procedure explains
the Mann–Kendall trend test:

• The time series, xi , of the variable, for which the trend test to be applied is
considered as an ordered time series.

• Each of the data point, xi , is compared with the all subsequent data values to
estimate the Mann-Kendall statistic, S, as follows:

Si =
n∑

i=2

i−1∑

j=1

sign(xi − x j ) (33.2)

where sign(xi − x j ) =
⎧
⎨

⎩

1 if xi > x j

0 if xi = x j

−1 if xi < x j

(33.3)

• A very high positive value of S is an indicator of an increasing trend, and a very
low negative value indicates a decreasing trend.

• From the Mann–Kendall statistic, S, the normalized test statistics, Z, is computed
as follows:

if S > 0, Z = S − 1

[VAR(S)]1/2 (33.4)

if S = 0, Z = 0 (33.5)

if S < 0, Z = S + 1

[VAR(S)]1/2 (33.6)

where VAR(S) is the variance of S. According to Kendall (1975) VAR(S) can be
written as follows:
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VAR(S) = 1

18

⎡

⎣n(n − 1)(2n + 5) −
g∑

p=1

tp(tp − 1)(2tp + 5)

⎤

⎦ (33.7)

where n is the number of data points, g is the number of tied groups (a tied group
is a set of sample data having the same value), and tp is the number of data points
in the Pth group. The Z-value follows a standard normal distribution. For testing
the decreasing or increasing trend a significance level α is used. The probability
associated with the computed test statistics, Z-value is estimated. The trend is
identified as decreasing if Z-value is negative and the computed probability is less
than the level of significance and the trend is identified as increasing if the Z-value
is positive and the computed probability is less than the level of significance. If
the computed probability is greater than the level of significance, there is no trend.

The trend analysis is performed on APHRODITE daily data to test the increasing
or decreasing rainfall trends using Mann–Kendall trend test for each zone spatially.
To estimate the rainfall trends in terms of increasing or decreasing, theMann–Kendall
trend test is carried out at each grid point. Changes in the daily precipitation trends
in recent years with reference to distant past are assessed by dividing the historical
data into two-time slices as 1951–1990 and 1991–2007. The period of 1951–1990 is
considered as base period as followed by several studies in the literature (Sharma and
Mujumdar 2017), which often depend on the availability of the climate data. Further,
the period 1961 to 1990 is likely to have larger anthropogenic trends embedded
in the climate data (https://www.ipcc.ch/ipccreports/tar/wg1/483.htm). Throughout
the manuscript, the study considered a trend as being significant if it is statistically
significant at the 5% level (p-value < 0.05).

33.4 Results and Discussion

The spatial average monthly precipitation from 1951 to 2007 for seven agro-climatic
zones of Afghanistan is shown in Fig. 33.2. The maximum precipitation occurrence
months are observed as January–May for all zones of Afghanistan. Whereas, June–
December and generally considered as dry months. To study the precipitation trends
at annual scale, the annual total precipitation for each zone is estimated for a period
of 1951–2007 with APHRODITE data. Zone wise annual precipitation is calculated
from the mean precipitation of all valid gridded points of APHRODITE data encom-
passing each zone. The annual total rainfall has decreased over North zone at a rate
of 0.5 mm/decade, whereas for North–East zone as 17.3 mm/decade, the West zone
at a rate of 6.3 mm/decade. However, the annual total rainfall over South zone has
increased at a rate of 2.8mm/decade, the South–West zone at a rate of 1.7mm/decade,
the East zone at a rate of 10.7mm/decade, theCentral zone at a rate of 6.3mm/decade.
Overall, the annual total rainfall has shown an increasing trend for the zones of South,
South–West, East and Central, whereas, a decreasing trend has been observed for the

https://www.ipcc.ch/ipccreports/tar/wg1/483.htm
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North North-East 

South 

East 

South-West 

West 

Central 

Fig. 33.2 The spatial average monthly precipitation from 1951 to 2007 for seven agro-climatic
zones of zones of Afghanistan

zones of North, North–East and West zones based on linear regression trend test as
shown in Fig. 33.3. Further, the trend analysis was performed on daily data to test
the increasing or decreasing rainfall trends using Mann–Kendall trend test for each
grid point for various zones of Afghanistan. The change in the rainfall variability in
recent years with reference to distant past was assessed by dividing the historical data
into two time slices as 1951–1990 and 1991–2007. Figure 33.4a–g shows the trend
analysis results with Mann–Kendall trend test at 5% significance level for each zone
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Fig. 33.3 The spatially averaged annual total rainfall trend over seven agro-climatic zones of
Afghanistan for the observed periodof Afghanistan for the observed period of 1951 to 2007 with
APHRODITE data

of Afghanistan for two time slices of 1951–1990 and 1991–2007. Figure 33.4a–g
shows the spread of increasing (positive trend), decreasing (negative tend) and no
trend at 5% significance level over North zone and most of the grid points shown a
decreasing trend in rainfall in recent years over Afghanistan. The trend analysis of
the rainfall with gridded data sets also reveals that for most part of the Afghanistan
region the rainfall has been observed as decreasing.

The spatial average monthly temperature from 1961 to 2006 for seven agro-
climatic zones of Afghanistan is shown in Fig. 33.5. The maximum temperature
can be observed in the months of May–August, with hottest month as July for
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Fig. 33.4 Rainfall trend analysis for a North b North–East c South d South–West e East f West
g Central zones with daily data of rainfall for two time slices of period of 1951–1990 and 1991–
2007 with Mann–Kendall trend test. Positive Trend—Increasing rainfall trend; Negative Trend—
Decreasing rainfall trend; No Trend—no trend at 5% significance level
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Fig. 33.4 (continued)

all seven zones of Afghanistan. The annual average temperatures from 1961 to
2006 are studied for the possible trend in the temperature with spatially averaged
annual average temperature with APRODITE data (Fig. 33.6). Figure 33.6 shows
the spatially averaged annual average temperature trends over seven agro-climatic
zones of Afghanistan for the observed period of 1961 to 2006 with APRODITE data.
The annual average air temperature has increased over the North zone at a rate of 0.4
°C/decade, the North–East zone at a rate of 0.3 °C/decade, the South zone at a rate
of 0.02 °C/decade, the South–West zone at a rate of 0.4 °C/decade, the East zone at
a rate of 0.1 °C/decade, the West zone at a rate of 0.4 °C/decade, the Central zone
at a rate of 0.2 °C/decade. All seven agro-climatic zones of Afghanistan have shown
an increasing trend of temperatures in recent years. The spatio-temporal trends of
temperature for the time periods of 1961–1990 and 1991–2006 for each agro-climatic
zone are shown in Fig. 33.7a–g.

33.5 Conclusions

The study has investigated the spatio-temporal analysis of precipitation and temper-
atures for seven agro-climatic zones of Afghanistan using gridded daily long time
series datasets of APHRODITE from 1951 to 2007. The maximum precipitation
occurrence months were observed as January–May for all zones of Afghanistan.
Whereas, June–December and generally considered as dry months. The annual total
precipitation has shown an increasing trend for the zones of South, South–West,
East and Central, whereas, a decreasing trend has been observed for the zones of
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Fig. 33.5 The spatial average monthly temperature from 1961 to 2006 for seven agro-climatic
zones of Afghanistan
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Fig. 33.6 The spatially averaged annual average temperature trend over seven agro-climatic zones
of Afghanistan for the observed period of 1961 to 2006 with APHRODITE data
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Fig. 33.7 Temperature trend analysis for a North b North–East c South d South–West e East
f West g Central zones with daily data of rainfall for two time slices of period of 1951 to 1990 and
1991 to 2007 with Mann–Kendall trend test. Positive Trend—Increasing rainfall trend; Negative
Trend—Decreasing rainfall trend; No Trend—no trend at 5% significance level
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Fig. 33.7 (continued)

North, North–East and West zones. The changes in the magnitude of daily gridded
precipitation in recent years (1991–2007) with reference to distant past (1951–1990)
were analysed with significant decreasing trends (p-value < 0.05) for most parts of
Afghanistan. The temperature was observed as maximum in the months of May,
June, July and August, with hottest month as July for all seven zones of Afghanistan.
The daily temperature trend analysis has revealed positive trends of temperatures for
two time periods of 1951–1990 and 1991–2007 with Mann–Kendall trend test at 5%
significance level. Overall, the North, North–East andWest zones of Afghanistan are
more vulnerablewith decreasing precipitation and increasing temperatures indicating
more dry and warm periods indicating increasing drought conditions. Whereas, the
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South, South–West, East, and Central zones are more vulnerable with increasing
trends of both precipitation and temperatures indicating increase of more wet and
warm climates. The zonal level climate analysis carried in the present study has
a benefit to the stakeholders and farmers in the agricultural water availability and
demands perspective.
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Chapter 34
Identification of Historical Shift,
Dispersion, and Trend of the Monsoon
Season for Guwahati City Using Fuzzy
Segmentation and Trend Analyses

Amrutha Suresh and Pekkat Sreeja

Abstract Climate change has a potential impact on the water resources of a region
as well as the occurrences of extreme events. Present study critically investigates the
shift, dispersion, and trend of themonsoon season of urbanGuwahati, India, using the
historical climate data. The climatic variables considered in this study are the rain-
fall, maximum temperature, and the minimum temperature, collected over a period
of 30 years (1980–2009). In this study, instead of considering the crisp boundaries for
seasons, the time-series data were partitioned into internally homogeneous segments
comprising comparable climatic conditions. The present study utilizes the fuzzy sets
to segment the time-series climate data into different seasons. The homogeneity of
the climatic variables within each segment/season was confirmed by simultaneous
identification of the local probabilistic principal component analysis (PPCA)models.
The algorithm facilitates a contiguous clustering in time by detecting changes in the
hidden structure ofmultivariate time series. The present study defines and determines
the shift or creep of the seasons as the movement of the center of the segment/season
with time, whereas the dispersion as the variation in the length of the segment/season
with time. The rainfall trend of the monsoon season was investigated by averaging
the climatic variables for each segment of length μ ± 1.5 × σ , where μ is the
center of a season and σ is the standard deviation at the timescale. The present study
noticed an early occurrence of the premonsoon and monsoon seasons and a late
occurrence of the postmonsoon season that indicates the shift of the seasons. This
study has observed a spread of the period of premonsoon, monsoon, and postmon-
soon seasons after analyzing the dispersion characteristics. Similarly, the rainfall has
shown a decreasing trend for all the seasons. Conclusively, this study has evidenced
the historical variations in the monsoon season for urban Guwahati regarding shift,
dispersion, and the reduction in the rainfall intensity.
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34.1 Introduction

Climate change poses a fundamental threat to the existence of life on the planet.
Several researchers have shown much evidence of climate change. One of the
evidence is the alteration of the climate pattern and the associated creep and disper-
sion of the seasons. Seasons can be defined as the time-series segments of similar
climatic characteristics in a year. Generally, for the convenience of meteorological
purposes, the seasons are defined with crisp boundaries based on the climatolog-
ical normal. Indeed, the climate is not static hence the season may vary over a
more extended period, called dispersion and creep of the seasons. Determination
of the shift and dispersion of season is essential for appropriate decision-making
to handle the climate change or to minimize its impact. The identification of the
variations in the monsoon season is essential for the agronomic countries like India
since the agricultural activities have a direct dependence on the monsoon season.
Thus agriculture-related decision-making requires a detailed understanding of the
seasons and their variations. Studying the shift and dispersion of seasons needs the
knowledge of the temporal variations of the seasons. However, consideration of the
crisp boundaries of the season may not be suitable for such analysis since it only
implies the variations in the intensities of climatic variables. For studying the shift
and dispersion of the seasons, it is important to segment the days in a year with
similar climatic conditions as seasons, keeping a constant number of the season over
the years. The present study emphasizes the time-series segmentation-based analysis
of the historical climate data for a better understanding of the drift, dispersion, and
the trend of the climatic variables over time.

Seasonality is a result of tilting of the Earth, while the monsoon weather systems
are caused by the differences in land-sea temperature due to the solar radiation
(Huffman et al. 1997). Earths’ rotation and revolution around theSun and the different
land masses of the northern and southern hemispheres cause a difference in the
climatic conditions over a year. The annual oscillation in the apparent position of
the Sun between the tropics of Cancer and Capricorn causes the annual oscillation
in the position of the thermal equator (region of maximum heating) on the Earth’s
surface. Such annual oscillation of the thermal equator causes the annual oscillation
of temperature, pressure, wind, cloudiness, rain, and so on. The entire process results
in the monsoon wind and regional variations in the intensity of monsoon. Figure 34.1
shows the monsoon map for India. It is to be noted that India receives 70% of its
rainfall during the monsoon season. Table 34.1 shows the meteorological seasons
considered in northeast India.

The present study emphasizes the importance of segmenting the time-series data
to seasons based on a data-driven method instead of defining the crisp bounds. Time
series segmentation is the clustering of the time series data with a time-ordered
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Fig. 34.1 India southwest summer monsoon onset map (Source Saravask 2007)

Table 34.1 The
meteorological seasons of
India

Season Period

Winter December–February

Premonsoon March–May

Southwest Monsoon June–September

Postmonsoon October–November

structure. The clustering method considered in this study is the modified Gath-Geva
clustering algorithm (Abonyi et al. 2005), which can also be referred to the Fuzzy
Maximum Likelihood clustering with probabilistic principal component analysis.
The clusters obtained from this method would be multivariate Gaussian functions.
A Gaussian membership function is defined for homogeneous segmentation of the
time-series data. The present study defines the shift or creep of the seasons as the
movement of the center of the segment/season with time, whereas the dispersion as
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the variation in the length of the segment/season with time. The trend in the monsoon
season over time was also investigated by averaging the climatic variables for each
segment with a length μ ± 1.5 × σ , where μ is the center of a season and σ is the
standard deviation at the timescale.

The remainder of the paper is organized as follows. Details of the Monsoon
weather system of the study area and the available data are discussed in Sect. 34.2.
Section 34.3 overviews the Gath-Geva algorithm considered to segment the seasons
in this study. In Sect. 34.4, the shift, dispersion, and trend of the Monsoon season
for the urban Guwahati are presented. Section 34.5 summarizes and concludes the
paper.

34.2 Description of the Study Area and the Data

Guwahati city is the fastest growing city in northeast India and is a part of Kamrup
District in Assam (India). The geographic location of the Guwahati city is between
26° 4′ 45′′ and 26° 13′ 25′′ North Latitude and between 91° 34′ 25′′ and 91° 52′ 00′′
East Longitude. The city experiences a subtropical and humid climate. Guwahati
receives an annual mean rainfall of 1729 mm and an average annual temperature of
23.5 °C. The urban Guwahati experiences monsoon season from June to September
and contributes 63% of the annual rainfall which has the highest contribution among
the four seasons. The contribution of premonsoon (1 March–31 May), postmonsoon
(1 October–31November) andwinter (1 December–28 February) is 28, 7.4 and 2.4%
of the annual rainfall, respectively.

Daily rainfall data from 1980 to 2009 were collected from Regional Meteoro-
logical Centre, Guwahati. Daily maximum and minimum temperature data for the
period 1980–2009 were obtained from the SWAT database website (http://globalwea
ther.tamu.edu/). Tables 34.2 and 34.3 shows the statistical description of rainfall and
temperature data respectively for the period 1980–2009 for Guwahati city.

34.3 Segmentation of the Time-Series Data Using
Gath-Geva (GG) Segmentation Algorithm

The fuzzy clustering algorithm was considered to segment the time-series climate
data. The clustering algorithm performs a simultaneous identification of local proba-
bilistic principal component analysis (PPCA)models andmeasures the homogeneity
of the segments (Abonyi et al. 2005). The algorithm favors contiguous clusters in
time and can detect changes in the hidden structure of multivariate time-series. The
details of the GG segmentation algorithm are as follows.

Consider a time series of n samples denoted as T = {xk |1 ≤ k ≤ n} where k =
1, . . . . . . , n and xk = [

x1,k, x2,k, . . . . . . . . . . . . . . . . . . , xn,k
]T

labeled by time points

http://globalweather.tamu.edu/
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Table 34.2 Statistical description of rainfall of Guwahati city for 1980–2009

Month/Season Total mean
rainfall (mm)

Average rainy
days

Standard deviation
(mm)

Coefficient of
variation

January 11.7 1.13 15.1 129.0

February 23.1 2.33 21.5 92.8

March 57.9 4.67 41.6 71.8

April 179.2 10.17 111.9 62.4

May 242.2 13.37 128.9 53.2

June 290.8 14.33 121.1 41.6

July 323.5 15.83 112.3 34.7

August 273.5 13.07 136.8 50.0

September 196.7 9.8 84.8 43.1

October 109.5 4.67 90.3 82.5

November 15.3 0.97 21.8 142.6

December 6.0 0.6 8.4 139.6

Annual 1729.5 90.94 256.4 14.8

Premonsoon 479.4 28.21 150.3 31.3

Monsoon 1084.5 53.03 226.7 20.9

Postmonsoon 124.7 5.64 89.4 71.6

Winter 40.9 4.06 29.7 72.5

t1, t2, . . . . . . . . . . . . , tn . The time series T is partitioned to c-segments represented
as tni where 1 ≤ i ≤ c which satisfies 1 = tn0 < tn1 < · · · · · · · · · < tnc = tn .
The time points tn0 , tn1 , . . . . . . . . . , tnc and the interval

[
tni−1 , tni

]
are the segment

boundaries and segments respectively. The crisp segmentation cost is formulated as
an optimization problem which minimizes the variance of the segment resulting in
the following equation (Abonyi et al. 2005; Wang et al. 2012):

costcrisp(t) =
N∑

k=1

c∑

i=1

βi (tk)D
2(xk, vxi

)
(34.1)

where D2
(
xk, vxi

)
is the distance between the center of the ith cluster (vxi ) and xk data

point. βi (tk) ∈ {0, 1} stands for the crisp membership of the kth data point in the ith
segment.

βi (tk) =
{
1 i f tni−1 < tk < tni ;
0, otherwise.

(34.2)

Since defining a crisp boundary is not practical for most of the time series segmen-
tation applications, Abonyi et al. (2005) have introduced a Gaussian membership
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Table 34.3 Statistical description of the temperature of Guwahati city for 1980–2009

Month/Season Minimum
temperature
(°C)

Maximum
temperature
(°C)

Mean
temperature
(°C)

Standard
deviation (°C)

Coefficient of
variation

January 3.59 30.21 22.23 4.24 19.05

February 12.73 35.18 26.07 3.18 12.20

March 19.92 38.07 30.89 2.98 9.64

April 20.83 41.40 32.70 3.70 11.33

May 20.74 40.62 32.70 3.56 10.90

June 22.92 41.14 32.26 3.46 10.71

July 22.51 39.19 31.26 2.72 8.70

August 23.77 38.81 31.50 2.74 8.71

September 20.55 37.69 30.45 2.68 8.81

October 17.66 34.84 28.65 3.02 10.56

November 10.84 31.84 26.13 2.52 9.65

December 1.96 29.79 22.20 5.21 23.48

Annual 1.08 33.52 23.55 4.92 20.89

Premonsoon 16.74 32.68 25.69 2.78 10.82

Monsoon 20.18 33.52 27.41 1.74 6.35

Postmonsoon 6.05 29.24 22.00 2.81 12.77

Winter 1.08 27.02 17.13 3.67 21.42

function for the time series data. Within the Gaussian membership function Ai (tk),
the time coordinate is considered as an additional variable that divides the time series
into fuzzy segments. Where,

Ai (tk) = exp

(

−1

2

(
tk − vti

)2

σ 2
i,t

)

(34.3)

The new Fuzzy segmentation parameter βi (tk) is defined as,

βi (tk) = Ai (tk)
c∑

j=1
A j (tk)

∈ [0, 1] (34.4)

The objective function is modified as the sum of the weighted squared distances
between zk and ηi where zk = [

tk, xTk
]T

and ηi is the cluster prototype. The objective
function (J) is based on the assumption that the data points can be modeled as a
mixture of multivariate Gaussian distribution (Abonyi et al. 2005; Wang et al. 2012).
Where the objective function J is,



34 Identification of Historical Shift, Dispersion, and Trend … 399

J =
n∑

k=1

c∑

i=1

(
μi,k

)m
D2(zk, ηi ) (34.5)

where μi,k represents the degree of membership of the observed data. “m” (m ∈
[1,∞)) is the weighting component that decides the fuzziness of the cluster (usually
m = 2). The distance D2(zk, ηi ) is inversely proportional to the probability of the
data points zk belongs to the ith cluster. As the time variable tk is independent of xk ,
the distance measure D2(zk, ηi ) is defined as (Abonyi et al. 2005; Wang et al. 2012).

p
(
zk

/
ηi

) = 1

D2(zk, ηi )
= αi × p

(
tk

/
ηt
i

) × p
(
xk

/
ηx
i

)
(34.6)

where,

αi = Priori probability of the cluster, p(ηi )

p
(
tk

/
ηt
i

) = Distance between kth data point and the center of the ith segment (vti )

p
(
tk

/
ηt
i

) = G
(
tk; vti , σ 2

i,t

) = 1
√
2πσ 2

i,t

exp

(

−1

2

(
tk − vti

)2

σ 2
i,t

)

σ 2
i,t = Variance of Gaussian function G

(
tk; vti , σ 2

i,t

)

p
(
xk

/
ηx
i

) = Distance between the cluster prototype (ηi ) and the data in the feature
space

p
(
xkη

x
i

) = G
(
xk; vxi , Fx

i

)

= 1

(2π)r/2
√
det

(
Fx
i

) exp
(

−1

2

(
xk − vxi

)T (
Fx
i

)−1(
xk − vxi

))

vxi = Center of Gaussian function G
(
xk; vxi , Fx

i

)

Fx
i = Covariance of Gaussian function G

(
xk; vxi , Fx

i

)

R = Rank of Covariance matrix, Fx
i .

Abonyi et al. (2005) developed the GG clustering algorithm based time series
segmentation using Lagrange multipliers, and the objective function is given as

J̄ =
n∑

k=1

c∑

i=1

(
μi,k

)m
D2(zk, ηi ) +

n∑

k=1

λk

(
c∑

i=1

μi,k − 1

)

(34.7)
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where λk is the Lagrange multiplier and μi,k is the membership degree of data point
xk to the ith cluster (i = 1,……, c) and μi,k is subjected to the following constraint

μi,k ∈ [0, 1],∀i, k; 0 <

n∑

k=1

μi,k,∀i;
c∑

i=1

μi,k = 1,∀k (34.8)

34.3.1 Time-Series Segmentation Using Modified Gath-Geva
Algorithm

The rainfall and temperature data were averaged for every 3 years from 1980 to 2009.
The modified Gath-Geva algorithm was applied to the rainfall, maximum temper-
ature, and minimum temperature such that to get the segments of homogeneous
climatic conditions. The parameters of the Gath-Geva algorithm were adjusted in
such a way that the final number of segments is five for each observation period.
The final segments were assumed to be the non-rainy season, premonsoon season,
monsoon season, postmonsoon season, and nonrainy season. Figure 34.2 shows the
seasons obtained for every three years from 1980 to 2009. For further analyses,
the center and standard deviation of each season on the time scale were determined.
Corresponding to each season, themean rainfall intensitywas estimated over a period
of μ ± 1.5 × σ , where μ is the center of a season and σ is the standard deviation
at the time scale, and performed the trend analyses. The detailed information of the
shift, dispersion, and trend of the Monsoon season is given in the following section.

34.4 Determination of the Shift, Dispersion, and Trend
of the Monsoon Season

This section analyses the shift, dispersion, and trend of theMonsoon season over past
30 years from 1980 to 2009 for urban Guwahati. The shift of the Monsoon season
is determined by tracking the movement of the position of the central tendency of
the seasons over the years. The dispersion is measured through the coefficient of
variation of the segment length (period of the season) over the years. The trend of
the rainfall during the monsoon season was also analyzed with the behavior of the
average rainfall within the segment over the years. The average was determined for
a period within the segment of length μ ± 1.5× σ , where μ is the center of a season
and σ is the standard deviation at the timescale.
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Fig. 34.2 The final segments after applying the modified Gath-Geva algorithm



402 A. Suresh and P. Sreeja

Fig. 34.2 (continued)

34.4.1 Analysis of the Shift/Creep of the Season

The analysis of the deviation of the center of the season with the time has shown a
nonsignificant shift of the seasons over time. Figure 34.3 shows the shift of seasons
corresponding to premonsoon,monsoon, andpostmonsoon seasons. It is evident from
the figures that the seasons are creeping to other seasons. Table 34.4 shows the statis-
tics of the shift in the premonsoon, monsoon, and postmonsoon seasons. The analysis
shows a nonsignificant shift in every season. The premonsoon and monsoon seasons
shift backward (i.e., early occurrence of the premonsoon and monsoon seasons),
whereas the postmonsoon seasons show a forward shift (i.e., late occurrence of the
post-monsoon season). The premonsoon occurs early by 4.236 days/3-years whereas
the Monsoon season occurs early by 2.306 days/3-years. The postmonsoon season
occurs late by 2 days/3-years.

Fig. 34.3 Analysis of the shift of season; a shift of premonsoon, b shift of Monsoon, c shift of
postmonsoon

Table 34.4 Statistics of the
season shift analysis

Season Estimated slope Standard error

Premonsoon −4.236 2.016

Monsoon −2.306 1.101

Postmonsoon 2.382 1.206
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Fig. 34.4 Analysis of the dispersion of the seasons. a Dispersion of premonsoon. b Dispersion of
Monsoon. c Dispersion of the postmonsoon

Table 34.5 Statistics of season dispersion analysis

Season Estimated slope Standard error

Premonsoon 0.001 0.008

Monsoon 0.014 0.006

Postmonson 0.007 0.002

34.4.2 Analysis of the Dispersion of the Season

The dispersion of the season is measured through the coefficient of variation of the
length of the segment (duration of the season) over the years. Figure 34.4 shows the
dispersion of the premonsoon, monsoon, and postmonsoon seasons. The monsoon
and postmonsoon seasons show a nonsignificant dispersion of the seasons.

Table 34.5 shows the statistics of the dispersion analysis of the seasons. All the
seasons have shown positive dispersion which indicates the spread of the seasons.

34.4.3 Trend Analysis

The trend of the rainfall during the premonsoon, monsoon, and the postmonsoon
season was analyzed, and a nonsignificant decrease in rainfall was observed for
all the seasons. The rainfall during the premonsoon season shows a nonsignificant
rainfall decrement by 0.237 mm/3-years. The monsoon rainfall decreases by 0.170
mm/3-years and the postmonsoon season have a rainfall decreasing rate of 0.077
mm/3-years. All these decrement rates are statistically insignificant. Figure 34.5
shows the results corresponding to rainfall trend analysis results for different seasons.

The rainfall during the premonsoon season shows a nonsignificant rainfall decre-
ment by 0.237 mm/3-years. The monsoon rainfall decreases by 0.170 mm/3-years
and the postmonsoon season have a rainfall decreasing rate of 0.077 mm/3-years.
All these decrement rates are statistically insignificant (Table 34.6)
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Fig. 34.5 Analysis of the trend of seasons. a Pre-Monsoon. bMonsoon. c Post-Monsoon

Table 34.6 Statistics of trend analysis

Season Estimated slope Standard error

Premonsoon −0.237 0.220

Monsoon −0.170 0.132

Postmonsoon −0.077 0.145

34.5 Summary and Conclusion

Analysis of the shift and dispersion of the seasons with crisp boundaries for the
season may not be appropriate since it may not provide a clear idea of the migration
behavior of seasons over the timescale. The present study utilizes the fuzzy sets to
segments the time-series climate data into different seasons instead of considering
crip boundaries. The parameters of the GG algorithm were adjusted in such a way
to obtain five segments after the segmentation process. The segments obtained from
GG segmentation were assumed to be the nonrainy season, premonsoon season,
monsoon season, postmonsoon season, and nonrainy season. From the creep anal-
ysis, it was noticed an early occurrence of the premonsoon and monsoon seasons
and a late occurrence of the postmonsoon season. The rate of shift of seasons was
observed as−4.236,−2.306, and 2.383 days/3-years for the premonsoon, monsoon,
and postmonsoon seasons, respectively. The premonsoon, monsoon, and postmon-
soon seasons have shown a positive dispersion that indicates spread of the seasons. A
nonsignificant decreasing trend in rainfall was observed for the three seasons with a
rate of 0.237, 0170, and 0.077 mm/3-years, respectively, for premonsoon, monsoon,
and postmonsoon. The present study clearly shows the evidence of the shift and
dispersion of the monsoon season for urban Guwahati.
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Chapter 35
Analysis of Intensity–Duration–
Frequency and Depth–Duration–
Frequency Curve Projections Under
Climate Variability

Manish Kumar Sinha, Klaus Baier, Rafig Azzam, M. K. Verma,
and Ramakar Jha

Abstract This study focuses on the design of intensity–duration–frequency (IDF)
curves under climate variability for the Raipur city in Chhattisgarh state, Central
India. Design of IDF curve is the process of design of rainfall by the frequency
analysis using historical rainfall data. The originality of this study comes with the
attention of temporal rainfall variability consideration in design rainfall. To track the
inherent rainfall events, shorter duration rainfall data have been used. As the shorter
duration rainfall data will give the precise number of rainy events which may be
ignored in larger duration rainfall events. The insight of the result gives the asses
to check the vulnerability of the hydraulic structure as well as planning, designing
and operation under climate uncertainty. The Gumbels extreme value distribution
is used to find the design intensity for different durations and different intensities
at different return periods. The annual maximum series of precipitation intensity
for each duration is obtained and K-S & Chi-Square tests were performed to check
the fitness of the rainfall data. To consider the nonstationarity of the rainfall, time
series is divided into two parts from the change point. Trend of each series represents
the change in intensity of the rainfall with time. These results are explaining the
importance of the adaptation of changed climate.
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35.1 Introduction

The present study is a part of ongoing research “Impact of urbanization on water
resources” atDepartment ofEngineeringGeology andHydrogeologyRWTHAachen
University Germany. The problem under consideration for this study is the anomaly
in changing rainfall pattern in an urban area, which causes the urban hydraulic struc-
tures vulnerable to this changing climate. This study focuses particularly the impact
of increasing urban heat which is caused by increasing urbanization and resulting
imperviousness and built-up areas on rainfall extremes.

In developing countries like India, the present hydraulic systems (urban wastew-
ater drains) are not adequate to drain off the storm water quickly under adverse
climate conditions. It is not only caused by its capacity but also caused by the selec-
tion of design rainfall. This problem could be related to the change of area in respect
of urban development and the change of climatic condition. The effect of change in
landuse, vehicle exhaust, dust particle and many more related to urban development
may have a considerable effect on the local climate. On the other hand, due to climate
change effect, the increased rainfall intensity will make the area vulnerable to the
flood anomaly. Hence, the combine effect of increased surface runoff and the high-
intensity rainfall will make the area susceptible to flooding. Therefore, consideration
of the importance of the city and vulnerability to flooding, for sound designing of the
drainage system, knowledge of proper rainfall intensity for different return periods
is necessary. The focus of this study was to provide the projection for design rainfall
intensity under climate uncertainty.

To identify the design rainfall value for the hydraulic structure, frequency analysis
has been done. The Intensity–Duration–Frequency (IDF) curve was used to perform
frequency analysis to graphically represent the projected rainfall intensities. But the
basic assumption of the no nonstationarity of the meteorological data is now having a
big question mark in the frequency analysis. Because any time-series data may have
a trend either increasing or decreasing due to the effect of climate change with in a
similar return level. The sensitivity of the time series toward the overall trend in past
rainfall data is ignored in IDF analysis. This study was the attempt to understand the
influence of existence of trend/shift in rainfall data on account of climate uncertainty.

Shrestha et al. (2017) have been accepted the fact that those IDFs developed
from past climatic scenarios cannot be valid for future climatic conditions unless
the IDFs were updated to the future climate trends. There is a need to evaluate the
climate-induced change in pattern, intensity and frequency of extreme rainfall events
before embarking on any system performance analysis. A very popular Gumbels
extreme value (GEV) distribution has been used in this study (Shrestha et al. 2017;
Fadhel et al. 2017; Rasel and Islam 2015; DeGaetano and Castellano 2017; Huang
et al. 2016; Madsen et al. 2009; Sivapalan and Blöschl 1998; Tfwala et al. 2017)
and many authors used GEV for the preparation of IDF curves. Since the effect of
climate uncertainty has been ignored due to its fundamental assumption of data no
nonstationarity, IDF/design rainfall has to be updated. It is the demand of the situation
that the process of development of design rainfall should have the component that
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considers the shift of the rainfall events there by modifying the IDF curves for the
optimal designing and operation of urban infrastructures.

35.2 Study Area

This study has been carried out a developing city Raipur of Chhattisgarh state in
India. Raipur area has a tropical wet and dry climate; temperatures remain moderate
throughout the year (Figs. 35.1, 35.2, 35.3 and 35.4), except from March to June,
which can be extremely hot. The temperature in April–May sometimes rises above
48 °C. These summer months also have dry and hot winds (Sinha et al., 2019). In
summers, the temperature can also go up to 50 °C. Winters last from November to
January and are mild, although lows can fall to 8 °C (Jaiswal et al. 2015; Meshram
et al. 2017). The average (1980–2007) potential evapotranspiration varies from
104 mm in December to 258 mm in April. South west monsoon contributes more
than 85% of the total rainfall. The annual normal rainfall of the area is ~1200 mm
(CGWRD 2013; Khavse et al. 2015; Mukherjee et al. 2011).

Fig. 35.1 Location map of the study area
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Fig. 35.2 IDF andDDF curves of Raipur city derived usingGEV:with no nonstationary component
(Data-base:1980–2016:15 min storm interval)

35.3 Materials and Methods

Data Collection

Figure 35.1 shows the location map of the study area indicating the Raipur urban
planning area and Raipur catchment area. The rain gauge locations are also presented
in Fig. 35.1. The rainfall data collection and gauging station information are given in
Table 35.1. The rainfall data of 15 min interval was utilized to develop IDF relations
were as all other rainfall data were used to check the data consistency and to evaluate
climate shift and trend analysis.

Homogeneity test and trend analysis were performed in the time series of year
1980–2016. It was found that 1993 was the year of significant change point-based
on applied hypothesis. The present paper only covers the impact of climate shift on
IDF curves considering change point at year 1993. The data set was divided in two
parts before and after year 1993; which was later used in IDF curve assessment.

Gumbel’s Extreme Value Distribution

Gumbel (1958) showed that the n largest values of subsamples asymptotically follow
an extreme value type 1 (EV1) distribution. This distribution, also known as the
Gumbel Extreme Value distribution or double negative exponential distribution, is
widely used for frequency analysis of floods, maximum rainfall, etc. This distribution
is essentially a log-normal distribution with constant skewness (approximately 1.14).
Let a series of large number of (N) observations of random variable be subdivided
into n subsamples of size m each, such that N = nm. Each subseries shall have two
extreme values: one maximum and one minimum. Its PDF and CDF are as follows:

f (x) = αe(−α(x−β)−e(−α(x−β))); −∞ < x < ∞; −∞ < β < ∞; α > 0
(35.1)

F(x) = e(−e(−α(x−β))) (35.2)
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15 min 30 min 45 min

1 hr 2 hr 3 hr

4 hr 5 hr 6 hr

12 hr 16 hr 24 hr

Fig. 35.3 Probability plot of modeled versus empirical frequencies of rainfall intensity for various
durations of GEV
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IDF for P2 series DDF for P2 series

IDF for P3 series DDF for P3 series

Fig. 35.4 Impact of climate variability on IDF and DDF curves of Raipur city derived using GEV

where α, and β are scale and location parameters. The estimates of parameters using
the method of moments are: α = 1.283/σx ; β = x̄ − 0.45σx . According to Gumbel,
the probability that an event with magnitude larger than x0 occurs is (Subramanya
2013):

Prob(X ≥ x0) = 1 − e[−e(−y)]; y = α(x − β) (35.3)

where, y is the reduced variate and substituting the values of β and α.

y = 1.283(x − x̄)/σx + 0.577 (35.4)

The expression for the reduced variate y for return period T is:

y = −
[
0.834 + 2.303 log

(
log

T

T − 1

)]
(35.5)

Now, variate x can compute with return period T and for the “n” finite length of
series:

xT = x̄ + knσn−1 (35.6)
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kn = (yT − ȳn)

sn

where σ n−1 is the standard deviation of the sample of size n. yn and sn are reduced
mean and reduced standard deviations which are functions of n. Values of these can
be obtained from standard tables that are widely available. Note that as n → ∞, yn
→ 0.577 and sn → 1.2825 (Subramanya 2013).

Goodness-of-Fit Test

The goodness-of-fit test is used to test if sample data fit a distribution from a
certain population, goodness-of-fit of a probability distribution can be tested by
comparing the theoretical and sample values of the relative frequency or the cumu-
lative frequency function. In this study, two testes were applied Chi-Square and
Kolmogorov–Smirnov test to check the test fitness of GEV distribution.

Both tests are nonparametric test that is used to find out how the observed value
of a given rainfall is significantly different from the expected value. In goodness of
fit test, the sample data are divided into intervals, then the number of points that fall
into the interval is compared, with the expected number of points in each interval.
In the Chi-square and K–S tests, the null hypothesis makes a statement concerning
how many cases are to be expected in each category if this hypothesis is correct. The
Chi-square statistic is defined as

χ2 =
∑
i

(Oi − Ei )
2

Ei
(35.8)

where, Oi is the observed number of cases in category i, and Ei is the expected
number of cases in category i. This Chi-square statistic is obtained by calculating the
difference between the observed number of cases and the expected number of cases
in each category.

Similar to Chi-square test, K–S test is used to decide if a sample comes from a
hypothesized continuous distribution. Assume that we have a random sample x1,…,
xn from some distribution with CDF F(x). The empirical CDF is denoted by

Fn(x) = 1

n
[Number of observation ≤ x] (35.9)

D = max
1≤i≤n

(
F(xi ) − i − 1

n
,
i

n
− F(xi )

)
(35.10)

The KS statistic (D) is based on the largest vertical difference between the
theoretical and the empirical cumulative distribution function.
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Hypothesis Testing

The null and the alternative hypotheses are: H0 is the data follow theGEVdistribution
and HA is vice versa. The hypothesis regarding the distributional form is rejected at
the chosen significance level (α) if the test statistic is greater than the critical value
obtained from a table. The fixed values of α (0.2, 0.1 and 0.05) are used to evaluate
the H0 at various significance levels. A value of 0.05 is typically used in this study for
making concluding remarks. The P-value, in contrast to fixed α values, is calculated
based on the test statistic, and denotes the threshold value of the significance level
in the sense that the H0 will be accepted for all values of α less than the P-value.

35.4 Result

The result of GEV provides the projected intensities of annual rainfall maxima used
for 15, 30, 45 min, 1–6, 12, 16 and 24 h duration at 2, 5, 10, 25, 50 and 100-year
return period. From Fig. 35.2, it has been seen that the higher the return period higher
will be the intensity of rainfall and this will start getting reduced when the duration
gets increases. Therefore, it is required to have the knowledge of shorter duration
rainfall (like 1 h, 30 min, 15 min, etc.) events so that the expected anomaly of high
intensity rainfall could be track at the required return period.

It has been seen that the shorter duration rainfall (15 min) will give the precise
number of rainfall events because in a day it is possible to have more than one events
of same duration and also, possible to have the one events of different intensities.
Therefore, rainfall data in daily time step may mislead the rainfall intensity and the
distribution of rainfall throughout the day. Rainfall is a natural phenomenon and
without knowing its actual distribution of duration and intensity it is highly difficult
to access the reliable projection of the design rainfall. Due to the climate uncertainty
intensification of rainfall in shorter duration is one of the major problems in Raipur
city (Guha et al. 2017).

The fitness of the data was checked for the Gumble’s extreme value distribution
by performing K–S and Chi-Square Goodness of fit tests. These tests were done at
the significance level of 0.20, 0.10 and 0.05. K–S test has failed the 15 min rainfall
data at 0.2 significance level and Chi-square test failed the rainfall data at 0.20, 0.10
and 0.05 significance level, which represents that the 15 min data are not good to be
fit in the Gumble’s extreme value distribution. The 30 min rainfall data failed to fit
in GEV as Chi-square test for 0.20 and 0.10 significance level rejects the hypothesis,
and the 12 h rainfall not fit the Chi-square at 0.20 significance level. So, the results
of these rejected data may give the ambiguous result (Table 35.2).

Figure 35.3 depicts the probability plot of modeled and empirical frequencies of
rainfall intensity of the following duration used. These plots graphically represent
the deviation of the modeled frequency. Probability plots help to easily understand
the fitness of the data with the probability density function. It can be clearly seen
that the plots for 15 min, 30 min and 12 h are not perfectly matched with the straight
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Table 35.2 Results goodness of fit test of fitted GEV distribution (including values of location
and shape parameters) using K–S and Chi-square test for 37 years at 0.2, 0.1 and 0.05 significance
levels

K–S test Significance level for 37 sample size

S
no.

Duration Parameters Statistic p-value Rank a 0.20 0.10 0.05

1 15 min σ = 7.7379,
μ = 9.1943

0.1930 0.1110 6 Critical
value

0.1719 0.1965 0.2183

Reject? Yes No No

2 30 min σ = 12.201,
μ = 17.071

0.1560 0.2990 7 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

3 45 min σ = 12.265,
μ = 24.169

0.0940 0.8730 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

4 l h σ = 13.449,
μ = 29.797

0.0860 0.9250 7 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

5 1.5 h σ = 14.054,
μ = 39.817

0.0750 0.9740 3 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

6 2 h σ = 13.827,
μ = 47.067

0.0840 0.9370 3 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

7 3 h σ = 17.378,
μ = 56.025

0.0890 0.9050 5 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

8 4 h σ = 20.194,
μ = 62.894

0.0720 0.9830 4 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

9 5 h σ = 22.709,
μ = 68.683

0.0930 0.8740 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

10 6 h σ = 25.764,
μ = 73.845

0.0910 0.8910 4 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

11 7 h σ = 27.394,
μ = 77.571

0.0910 0.8900 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

12 8 h σ = 28.966,
μ = 81.087

0.1410 0.4130 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

(continued)
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Table 35.2 (continued)

K–S test Significance level for 37 sample size

S
no.

Duration Parameters Statistic p-value Rank a 0.20 0.10 0.05

13 10 h σ = 35.475,
μ = 87.131

0.0880 0.9120 5 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

14 11 h σ = 38.81,
μ = 90.02

0.1000 0.8190 7 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

15 12 h σ = 42.172,
μ = 92.743

0.1140 0.6820 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

16 16 h σ = 52.913,
μ = 101.06

0.0880 0.9140 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

17 24 h σ = 55.66,
μ = 106.0

0.0950 0.8620 6 Critical
value

0.1719 0.1965 0.2183

Reject? No No No

chi2 test Significance level for 37 sample size

Statistic p-value Rank α 0.20 0.10 0.05

20.1900 0.0005 6 Critical value 5.989 7.779 9.488

Reject? Yes Yes Yes

9.0100 0.0609 5 Critical value 5.989 7.779 9.488

Reject? Yes Yes No

2.7940 0.5929 7 Critical value 5.989 7.779 9.488

Reject? No No No

1.2380 0.7440 7 Critical value 4.642 6.251 7.815

Reject? No No No

0.5150 0.9720 4 Critical value 5.989 7.779 9.488

Reject? No No No

2.6310 0.6214 5 Critical value 5.989 7.779 9.488

Reject? No No No

0.3310 0.9541 1 Critical value 4.642 6.251 7.815

Reject? No No No

2.3190 0.8035 5 Critical value 7.289 9.236 11.07

(continued)
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Table 35.2 (continued)

chi2 test Significance level for 37 sample size

Statistic p-value Rank α 0.20 0.10 0.05

Reject? No No No

0.2890 0.9905 4 Critical value 5.989 7.779 9.488

Reject? No No No

1.4250 0.6997 7 Critical value 4.642 6.251 7.815

Reject? No No No

0.4080 0.9387 1 Critical value 4.642 6.251 7.815

Reject? No No No

1.1000 0.8943 6 Critical value 5.989 7.779 9.488

Reject? No No No

2.6040 0.7607 5 Critical value 7.289 9.236 11.07

Reject? No No No

2.2370 0.6922 5 Critical value 5.989 7.779 9.488

Reject? No No No

6.1570 0.1877 7 Critical value 5.989 7.779 9.488

Reject? Yes No No

2.2830 0.6839 7 Critical value 5.989 7.779 9.488

Reject? No No No

2.0130 0.5697 7 Critical value 4.642 6.251 7.815

Reject? No No No

line of probability density function. Hence the fitness of 15 min, 30 min and 12 h
duration is not significant to use for Gumble’s extreme value frequency analysis.

Figure 35.4 shows the IDF and DDF curves for the series Time 1 and Time 2. The
variation of the projected intensities is different for both the series as it can be seen
from the curves that the maximum value of intensity for Time 1 (1980–1993) series
for 100 years return period is 96 mm/hr whereas for Time 2 (1994–2016) series is
212 mm/hr. The projected intensities were confined in the range between 45 mm/hr
and 96 mm/hr for the 2, 5, 10, 25, 50 and 100 years return period in Time-1 series.
On the other hand, Time-2 series expands its range on the higher side between 51
and 212 mm/h for the 2, 5, 10, 25, 50 and 100 years return period. Therefore, from
Figs. 35.2 to 35.4, it can be clearly seen that the IDF and DDF curves are required
to update with the new dataset at particular time interval.

The change in any component of a hydrological system will affect the other
component of the system as the process is inherently dependent on each other. The
physical change and the meteorological change of the area in a system were having
temporal as well as spatial effect on the process/performance of the system. The
temporal change in weather data will try to develop the nonstationary trend. In
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(B) :  with non-stationary component

(A) :  no non-stationary component

Fig. 35.5 Extreme Rainfall time series in left side; Graphical view of GEV distribution fitted with
two parts of the time series namely: Time 1 and Time 2 in right side

this study to access the non-stationarity of the rainfall data, the time series (1980–
2016) was broken into two parts in Time 1 (1980–1993) and Time 2 (1994–2016).
In Fig. 35.4a, both the time series are analyzed without consideration of the non-
stationarity. As depicted in the graph, the intensity remains same for both the series,
and when nonstationarity takes into account both the series Time 1 and Time 2 are
individually show the different trends in Fig. 35.5 as the intensities are getting on
higher side. This result will provide the quantified change in the rainfall intensity.
Therefore, it is necessary to consider the nonstationary behavior of the time series.

35.5 Conclusion

The effect of climate change in urban area can be seen as the change in urban
landcover due to which the local changed temperature makes the area vulnerable to
the effect of urban heat island. In this study, the increased frequency of high-intensity
rainfall for smaller duration was utilized for frequency analysis. The time series of
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rainfall data (1980–2016) of 37 years was used to prepare the IDF and DDF curves.
To check the nonstationarity of the rainfall data, time series was divided into two
parts as Time 1 and Time 2. The trend of the time series provides the information
of change in projection of IDF curves. This result will inform the change in design
rainfall value, which can be directly used in the field for the design purpose. From
this study, it can be concluded that the area under the study is needed to update the
IDF curves in respect of present change in climate scenario.
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Chapter 36
Changes in Monthly Hydro-Climatic
Indices for Middle Tapi Basin, India

Priyank J. Sharma, P. L. Patel, and V. Jothiprakash

Abstract The present study examines the changes in monthly streamflows and their
linkages with rainfall variability in the Middle Tapi basin (MTB), India. The Middle
Tapi basin (area ≈ 32,920 km2) is part of Tapi basin (area ≈ 65,145 km2) located
in the western part of central India. The Girna, Bori and Panjhara rivers are the
major gauged tributaries of the Tapi River in the Middle Tapi basin. The stream-
flow data of eight stream gauging stations on the Tapi River and its tributaries for
the period 1973–2013 were collected and analyzed. The non-parametric Modified
Mann–Kendall (MMK) and Spearman’s Rho (SR) tests have been used to evaluate
the trends in mean monthly streamflows and total monthly rainfall series for all
the stream gauging stations. Further, the Sen’s slope estimator test is employed to
compute the slope of trendmagnitude and percentage changes in the trend. The trends
in mean streamflow exhibited spatial homogeneity, wherein, decreasing trends are
observed at all stations in the MTB during June (except Savkheda stream gauging
station) and August months; while, spatial heterogeneity is observed for July and
September months. The total monthly rainfall exhibited dichotomic fluctuations in
their trends,wherein, largely increasing trendhas been reported for theAugustmonth,
and decreasing trend is observed for the September month across theMTB. The anal-
ysis carried out in the present study would enhance the understanding of the hydro-
climatic interactions and influence of climate variability on streamflows within the
Middle Tapi basin.
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36.1 Introduction

The changes in hydro-climatic variables have impacts on the intensity and frequency
of extreme events, which are vulnerable to the environment and human society
(Thornton et al. 2014). The detection of trends in streamflows has received larger
attention of the hydrologic community in the recent past (Lettenmaier et al. 1994;
Zhang et al. 2001) due to the risingwater demands for human consumption, irrigation,
hydropower generation and sustenance of aquatic ecosystems. The streamflow or
runoff, which is considered to be the response of a watershed, assimilates the impact
of changes in different atmospheric variables over a basin. The observed changes
in precipitation and temperature, if found consistent, then they will be reflected to
some degree in the streamflow at the basin scale (Kliment et al. 2011). The analysis
of trends in hydro-climatic variables such as precipitation, temperature, evapotran-
spiration, soil moisture, streamflow, etc. has been extensively reported by different
researches over the past decade (Tian et al. 2010; Han et al. 2013; Abeysingha et al.
2016; Langat et al. 2017; Pan et al. 2018). Masih et al. (2011) analyzed the stream-
flow variables, viz., mean annual and monthly flows, 1- and 7-day maximum and
minimum flows, timing of the 1-day maxima and minima, and the number and dura-
tion of high and low flow pulses, for the Karkheh basin in Iran and concluded that
observed trends were spatially non-uniform, however, the decrease or increase in
the streamflow trends was largely related to the precipitation changes in the basin.
Tehrani et al. (2018) carried out the trend analysis of hydro-climate variables such
as temperature, precipitation, and streamflow to derive useful information in under-
standing the hydrological changes associated with climate variability. Their study
exhibited statistically significant relationships between precipitation and streamflow
trends (p value <0.05) and showed that region was heading towards a more severe
drought situation. The Middle Tapi basin has agriculture as predominant land use,
wherein almost 76% of basin area is under seasonal/perennial irrigation. Further, the
Middle Tapi basin receives lower rainfall compared to Upper and Lower Tapi basins.
Thus, lesser water availability and greater water demand for agriculture and domestic
uses often lead to water scarcity issues in the basin. The present study focuses upon
the detection of trends and variability in the hydro-climatic indices in the Middle
Tapi basin, India.

36.2 Study Area

The Tapi river is the second largest west-flowing river originating from the Indian
Peninsular region. The Tapi basin (area ≈ 64,145 km2) is further delineated into
upper, middle and lower Tapi basins. The middle Tapi basin (MTB) extends from
Hathnur dam toUkai dam, covering a geographical area of 32,925 km2, see Fig. 36.1.
The Girna, Bori and Panjhara sub-catchments also fall under Middle Tapi basin. In
MTB, the Tapi river covers a distance of 297 km and flows mostly through the
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Fig. 36.1 Index map of Middle Tapi basin

plains of Khandesh region and contributes to the Ukai reservoir. The stream gauging
stations along the Tapi River in MTB are Savkheda, Gidhade, Sarangkheda and Ukai
dam, see Fig. 36.1. The Girna River is the second largest tributary of the Tapi River,
which flows eastwards to join Tapi River, after covering a distance of 260 km. The
Girna sub-catchment drains an area of 10,061 km2, which is almost one-third of
the MTB area. The stream gauging stations on the Girna River are Girna dam and
Dapuri. The Bori and Panjhara Rivers are ephemeral in nature and carry very low
discharge compared to the Girna River. The Bori and Panjhara sub-catchments drain
2850 km2 and 3257 km2 areas respectively (Jain et al. 2007). The Tapi basin receives
about 90% of total rainfall during the monsoon months from June to September, of
which around 50% is received in July and August months only (Sharma et al. 2018).
The basin receives occasional rain during the post-monsoon period (October and
November) and very scanty rainfall in rest of the periods. The Middle Tapi basin
exhibits considerable spatial variability in rainfall, wherein the north western region
(near Ukai dam and Navapur) receives highest rainfall around 1159.0 mm, while
the south western region (around Kalvan and Malegaon) receives lowest rainfall of
around 625.0 mm. The normal rainfall in the Middle Tapi basin is reported to be
766.7 mm.

The daily observed streamflowdata for the streamgauging stations viz., Savkheda,
Gidhade, Sarangkheda, Dapuri, Malkheda and Morane were collected from Central
Water Commission (CWC), Tapi Division, Surat. The daily inflows into Ukai and
Girna reservoirs were collected from Ukai Civil Circle, Ukai and Tapi Irrigation
Development Corporation (TIDC), Jalgaon. Further, the daily rainfall data of 24
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Table 36.1 Definition of hydro-climatic indices used in present study

Hydro-climatic indices Notation Definition

June mean streamflow QJUN The mean streamflow observed during June month
(m3/s)

July mean streamflow QJUL The mean streamflow observed during July month
(m3/s)

August mean streamflow QAUG The mean streamflow observed during August
month (m3/s)

September mean streamflow QSEP The mean streamflow observed during September
month (m3/s)

June total rainfall RJUN The total rainfall recorded during June month (mm)

July total rainfall RJUL The total rainfall recorded during July month (mm)

August total rainfall RAUG The total rainfall recorded during August month
(mm)

September total rainfall RSEP The total rainfall recorded during September month
(mm)

and 26 rain gauge stations in Upper and Middle Tapi basins, respectively, were
collected from India Meteorological Department (IMD), Pune and CWC, Surat. The
hydro-climatic indices adopted in the present study are defined in Table 36.1.

36.3 Methodology

The methodology adopted in the present study is discussed as under:

(i) Input the observed daily streamflows and rainfall data for the stream gauging
stations and rain gauges used in present study.

(ii) Analyze the rainfall–runoff behaviour in the middle Tapi basin by computing
annual values of runoff coefficient.

(iii) Derive the mean monthly streamflow series for all the stream gauging stations
and total lumped rainfall for the sub-catchments represented by each stream
gauging station using Thiessen’s polygon method.

(iv) Analyze the nature and significance of trends in time series of hydro-climatic
variables using Modified Mann-Kendall (MMK) and Spearman’s Rho (SR)
tests (Mann 1945; Kendall 1975; Lehmann 1975).

(v) Estimate the trend magnitude and percentage change in trends using the Sen’s
slope estimator test (Hirsch et al. 1982; Yue and Hashino 2003).
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36.4 Results and Discussions

36.4.1 Rainfall–Runoff Relationship

The observed daily streamflow for the streamgauging stations, reported inTable 36.2,
was used to derive the mean monthly streamflow time series. The lumped rainfall
for the sub-catchments represented by each stream gauging station was computed
from the daily station rainfall using Thiessen’s Polygon approach for that period. The
rainfall and runoff depths were then computed for each stream gauging station for
the monsoon months viz., June, July, August and September months. The variability
of monthly rainfall and runoff depths for different stream gauging stations are shown
in Fig. 36.2. From Fig. 36.2, it can be seen that rainfall exhibits high sub-seasonal
variability, wherein, the rainfall is higher during July andAugustmonths compared to
the June and September months. Further, it is also seen that Girna, Bori and Panjhara
sub-catchments receive lesser rainfall compared to the rest of MTB, see Table 36.2
and Fig. 36.2. The runoff depth has been found to increase gradually and attains
highest value during the August month due to comparatively higher soil moisture
levels than other months. The higher rainfall during the June and July months does
not produce much runoff due to higher infiltration losses on account of lower soil
moisture content within the catchment. Sharma et al. (2018) highlighted that in upper
Tapi basin (UTB), the higher summer temperatures resulted into drying of the soil
and thus much of the rainwater during the early phase of monsoon is infiltrated into
the dry soil, thereby, resulting in reduced overland flow. The MTB has been found
to exhibit similar climatic and topographic characteristics as that of UTB, hence, the
above reasoning shall also be applicable for observed seasonal runoff variations in
MTB. The annual runoff coefficients for the stream gauging stations on the main

Table 36.2 Statistical analysis of observed streamflows in Middle Tapi basin

Stream
gauging
station

River Drainage
area (km2)

Data
availability

Mean
annual
runoff
depth
(mm)

Mean
annual
rainfall
depth
(mm)

Mean annual
runoff
coefficient
(mm/mm)

Savkheda Tapi 48,136 1973–2004* 157.6 805.6 0.20

Gidhade Tapi 54,750 1973–2013 147.9 786.7 0.19

Sarangkheda Tapi 58,400 1978–2013 139.0 778.3 0.18

Ukai dam Tapi 62,225 1975–2013 155.6 795.5 0.20

Girna dam Girna 4729 1973–2013 106.4 669.4 0.16

Dapuri Girna 8901 1973–2004* 48.7 681.6 0.07

Malkheda Bori 1830 1978–2004* 43.9 644.1 0.07

Morane Panjhara 1933 1978–2004* 63.4 574.6 0.11

*Data length available and reported in the present study
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Fig. 36.2 Monthly rainfall and runoff depths for the stream gauging stations in Middle Tapi basin
during a June, b July, c August and d September months

Tapi River were found to be higher than those on its tributaries, see Table 36.2. A
sudden drop in the annual runoff coefficient for the most downstream gauging station
on Girna River at Dapuri (C = 0.07) vis-à-vis Girna dam (C = 0.16) is due to the
regulating effect of Girna reservoir on the streamflows of Girna River. The Girna
reservoir exercises significant controlling effect on the downstream flows, wherein,
the spillway gates were operated only on ten occasions since its operation in 1969.

36.4.2 Trends in Hydro-Climatic Indices

The monthly streamflows in the Girna river (at both stations) are reported to be
decreasing during the monsoon months, viz., June, July, August and September,
with significant decrease during the June month at Girna dam (ZMMK = −1.97),
see Fig. 36.3. The monthly rainfall, however, reported increasing trends at Girna
dam during August and September months, while, at Dapuri during the June and
Septembermonths. For the remaining period, the rainfall at both the stations exhibited
decreasing trend. However, the runoff has been found to decrease at both the stations
during all the 4 months. The decreasing trends in streamflows during all monsoon
months, even with minor increasing trends of rainfall during August and September
months in Girna sub-catchment, could be due to abstraction of streamflows from the
minor storage structures, which have come up in the sub-catchment in the recent
past.
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Fig. 36.3 MMK Z-statistic values of mean monthly streamflow and total monthly rainfall for
a Savkheda, b Gidhade, c Sarangkheda, d Ukai dam, e Girna dam, f Dapuri, g Malkheda and
h Morane stream gauging stations

The streamflowatMalkheda along theBori River reported decreasing trend during
June,August andSeptembermonths,while significant decreasing trend (at 5%signif-
icance level) was reported during the June month (ZMMK = −3.09). The July stream-
flow reported very slightly increasing trend having slope of trend magnitude (β) as
0.03 m3s−1/year. Further, the streamflow exhibited decreasing trend during June,
August and September months for Morane along the Panjhara River, while no trend
was reported during the July month. On other hand, the monthly rainfall for Bori
and Panjhara sub-catchments were found to increase during all the months, except
during August month. However, significant increasing trend in rainfall for Panjhara
sub-catchment was observed during June month (ZMMK = 2.17).

The streamflows in the Tapi River exhibited significant decreasing trend at
Gidhade (ZMMK = −3.42), Sarangkheda (ZMMK = −5.20) and Ukai dam (ZMMK

= −2.23) during the June month, whereas marginal increasing trend was observed
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at Savkheda (ZMMK = 0.82), see Fig. 36.3. The reported decreasing/increasing trends
in streamflows at aforesaid stations are in line with respective decreasing/increasing
trends in the rainfall in their sub-catchments. The nature of trends in other month
streamflows, are invariably, at all stream gauging stations in line with trends in rain-
fall in their respective sub-catchments except during July and September months at
Gidhade stream gauging station. The decreasing trend in streamflows at Gidhade
stream gauging station during July month is in contradiction with increasing trends
in rainfall at the same station. Such reverse trends are due to major decreasing trend
in streamflows at upstream stream gauging stations at Savkheda on main Tapi River
and Dapuri stream gauging station on Girna River. Similarly, marginal decreasing
trends in streamflows during September month due to significant increasing trend in
rainfall at Gidhade stream gauging station could be due to abstraction of streamflows
on main Tapi River in Hathnur reservoir and minor hydraulic structures on ungauged
tributaries upstream of Gidhade for the conservation purposes in the fag end of the
monsoon.

36.4.3 Changes in Magnitude and Percentage Change
of Trends

The magnitude of trend slope and percentage change in trends with respect to mean
is computed for all the hydroclimatic indices analyzed in the present study. The Sen’s
slope value β is computed using the relationship given by Hirsch et al. (1982) and
the percentage change in the trend has been calculated using β value as suggested by
Yue and Hashino (2003). The percentage change in trend, either positive or negative,
within 0–15% is quantified as ‘nominal’, between 15 and 30%as ‘moderate’, between
30 and 45% as ‘severe’, and >45% as ‘very severe’. The results of Sen’s slope
estimator tests on mean monthly streamflow series are shown in Table 36.3. From
Table 36.3, it is evident that the streamflows are consistently decreasing at all the
stations during June and August months. The percentage change in streamflow trend
during June andAugust months was found to be negatively severe and very severe for
most stations. Compared with changes in streamflow trends, the changes in rainfall
trends exhibited less severity across the study area during the period of analysis
indicating the possibility of anthropogenic influences on the streamflows in the basin.
The information of streamflow and rainfall changes and their magnitudes would be
useful to the agricultural community in planning the appropriate cropswithin selected
sub-catchments (Table 36.4).
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Table 36.3 Results of Sen’s slope estimator test for mean monthly streamflow series

Stream gauging 
station

QJUN QJUL QAUG QSEP

β
(m3s-1

/year)

%
change

β
(m3s-1

/year)

%
change

β
(m3s-1

/year)

%
change

β
(m3s-1

/year)

%
change

Savkheda 0.42 8.7 -8.73 -57.7 -35.24 -102.6 -9.03 -35.3

Gidhade -2.47 -88.6 -6.31 -46.1 -28.88 -94.4 -3.48 -15.4

Sarangkheda -5.65 -153.6 2.10 13.4 -20.93 -62.7 10.09 40.4

Ukai dam -4.53 -85.6 0.38 2.1 -10.95 -29.7 8.84 33.1

Girna dam -0.23 -89.4 -0.30 -41.6 -0.61 -44.0 -0.17 -14.1

Dapuri -0.13 -41.7 -0.50 -80.2 -0.97 -59.6 -0.45 -26.5

Malkheda -0.09 -84.6 0.03 23.3 -0.01 -2.3 0.20 47.4

Morane -0.08 -44.3 0.00 0.5 -0.12 -20.6 -0.01 -2.3

Legend:
(% change 
in trend) < -45% -45 –

(-30)%
-30 –

(-15)%
0 –

(-15)% 0 – 15% 15 – 30% 30 – 45% > 45%

Table 36.4 Results of Sen’s slope estimator test for total monthly rainfall series

Stream 
gauging station

RJUN RJUL RAUG RSEP

β
(mm

/year)

%
change

β
(mm

/year)

%
change

β
(mm

/year)

%
change

β
(mm

/year)

%
change

Savkheda 1.5 33.7 -0.2 -3.4 -2.2 -30.6 -0.1 -1.4

Gidhade -0.3 -9.6 0.8 15.6 -1.3 -24.5 1.4 42.3

Sarangkheda -0.7 -19.7 1.5 24.6 -2.0 -34.2 2.2 59.2

Ukai dam -1.0 -27.0 1.1 18.7 -1.1 -20.3 1.6 46.6

Girna dam -0.2 -7.2 -0.3 -8.1 0.3 9.3 0.5 13.9

Dapuri 0.7 16.8 -1.7 -35.3 -1.0 -20.9 0.1 1.3 

Malkheda 1.4 30.0 0.7 11.9 -1.3 -22.9 1.8 42.9

Morane 3.9 86.1 0.1 1.9 -1.4 -30.6 2.0 53.3

Legend:
(% change 
in trend) < -45% -45 –

(-30)%
-30 –

(-15)%
0 –

(-15)% 0 – 15% 15 – 30% 30 – 45% > 45%

36.5 Conclusions

The following key conclusions derived from the foregoing study are as follows:

(i) The rainfall and runoff exhibited considerable spatial and temporal variability
across the middle Tapi basin. The runoff response was found to be very low
during the June and July months due to higher infiltration losses on account of
lower soil moisture levels.

(ii) The annual runoff coefficient for the stream gauging stations on the main Tapi
River has been found to be higher than those on the tributaries, wherein the
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Girna reservoir was found to exhibit significant influence on downstream flows
in the Girna River, i.e., at Dapuri stream gauging station.

(iii) The trends in mean monthly streamflows at all stream gauging stations are in
line with the trends in rainfall in respective sub-catchments except at Gidhade
stream gauging station. The reverse trends in streamflows vis-à-vis rainfall
trends at Gidhade stream gauging station are due to possible anthropogenic
influences in the upstream sub-catchments.

(iv) The percentage change in mean monthly streamflow trend during June and
August months was found to be negatively severe and very severe for most
stations across the MTB.

(v) The overall decreasing trends in streamflows in MTB on main Tapi River and
its tributaries may have the severe consequences on the existence of aquatic
systems in the river in future.
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Chapter 37
Multiobjective Automatic Calibration
of a Physically Based Hydrologic Model
Using Multiobjective Self-Adaptive
Differential Evolution Algorithm

Saswata Nandi and M. Janga Reddy

Abstract The physically based hydrological models require the estimation of
various model parameters through calibration. Several past studies that focused on
parameter estimation of hydrological models have found that no single objective
performance criterion is adequate for matching different essential characteristics of
the observation data. Since physically based hydrological models simulate many
of the catchment hydrological processes, it needs to define multiple performance
criteria to effectively use the information from various datasets and application of
multiobjective optimization for attaining Pareto optimal solutions. In the present
study, a Multiobjective Self-adaptive Differential Evolution algorithm (MOSaDE)
is applied to perform multiobjective calibration of hydrological models. MOSaDE
is an advancement of well-known Differential Evolution (DE) algorithm, using the
notion of Pareto dominance, fast nondominated sorting approach, diversity preser-
vation using crowding distance and elitist strategy of joining parent and offspring
population. The parameter self-adaptation strategy in theMOSaDE also increases the
robustness of the algorithm and alleviate the needs of computationally demanding
sensitivity analysis of the algorithm parameters. Themethodology is verified for cali-
bration of Variable Infiltration Capacity (VIC) model, which is a popular physically
based hydrological model, for a case study in Krishna basin, in India and the results
are found to be promising.

Keywords Hydrological modeling · VIC · MOSaDE · Calibration ·
Multiobjective optimization

37.1 Introduction

Over the last few decades, the application of hydrological models in water resource
management and hydrological studies has increased tremendously.With the advance-
ment of computational facilities, hydrological models have evolved from simple
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conceptual models to complex process based fully distributed models, which can
simulate the various catchment processes using physical laws and also can consider
the spatial distribution of such processes. Past studies have highlighted the advan-
tages of such physically based distributed hydrologicalmodels and their utilization of
spatially varying model parameters and input forcing variables (Beven 1985). Relia-
bility of thesemodel predictions is often dependent on their parameterization scheme
and the structure of the hydrological model. However, generally few of the model
parameters are always associated with difficulty regarding their direct measurement
from the field and need to be estimated. This initiates the needs to implement some
parameter estimation schemes or calibration procedures, which can help finding the
appropriate values of those unknown parameters to increase the model performance.
Traditionally, a manual calibration approach is applied to estimate the unknown
parameter values, where trial and error parameter adjustments are implemented for
matching the model behavior with observations. Moreover, the performance of the
calibrated model is also dependent on understanding of the modelers and behavior of
variousmodel parameters, whichmakes this calibration approach tedious and subjec-
tive in nature. Large number ofmodel parameters inmodern hydrologicalmodels and
their highly nonlinear behaviors for simulating the hydrological processes possess
further difficulty for the efficient application of manual calibration practices.

To overcome the discussed difficulties of manual calibration approach, automated
calibration methods of hydrological models are introduced, which are found to be
effective when a model has multiple parameters that are needed to be estimated and
different parameters of themodel are strongly inter-related (Ryu 2009). For automatic
calibration, typically a stochastic optimization algorithm is coupled with hydrolog-
ical models to identify the optimal parameter values enabling the model to simulate
outputs that are closely associated with the observations. The evolutionary algo-
rithms, for example, genetic algorithms (GA), particle swarm optimization (PSO),
and shuffled complex evolution method (SCE-UA) are frequently applied for hydro-
logical model calibration (Duan et al. 1992; Jha et al. 2006; Jung and Karney 2006).
For implementation of such optimization techniques, various performance measures
have been used for identifying the various aspects of model behaviors. For instance,
Root Mean Square Error (RMSE) is a popular measure for evaluating the accuracy
of a model in a way to minimize the disagreement between the model simulations
and observations for the high flow values, while mean squared logarithmic error
(MLSE) is used to give more focus on matching low flows from the model. There-
fore, there exist different performance measures to match the different character-
istics of the observation data sets, which are competitive among themselves. For
this reason, increasing a model accuracy considering one measure may result into
degrading model accuracy for other performance measures. This led to the beginning
of multiobjective calibration approach for hydrological model application, where
several competitive model performance measures and their trade-off relationships
are explored.

For solving multiobjective problems, there exist two broad approaches are:
aggregation-based approach and Pareto-based approach. In aggregation-based
approaches, multiple objectives are combines into a single objective using some
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weighting rules, whereas in Pareto-based approach, a set of trade off solutions (or
nondominated solutions) are identified by simultaneously considering all the objec-
tives. Recent studies considering calibration of hydrological models have givenmore
attention for Pareto-based multiobjective schemes. One of the effective methods
based on Pareto schemes for solving multiobjective problem is Multi-Objective
Differential Evolution (MODE), an extension of Differential Evolution (DE) algo-
rithm,which is found to be very effective for variouswater resources system planning
and operations (Reddy and Kumar 2007). In spite of several merits, it is hardly used
in calibration problems of the hydrologic models. Nevertheless, the skillful perfor-
mance of DE based algorithm relies on appropriate setting of its control parameters
such as mutation factor and crossover probability, which are problem dependent and
may require a lot of computational effort in tuning those parameters. Since DE itself
is a self-learning scheme, DE can evolve the control parameters (mutation factor F
and crossover rate CR). Therefore, this study incorporates a self-adaptation scheme
for MODE which will dynamically adjust the control parameters during its execu-
tion. The present study aimed to instigate MOSaDE algorithm for parameter esti-
mation of physically based Variable Infiltration Capacity (VIC) hydrological Model.
The procedures of formulating the MOSaDE algorithm, specification of calibration
criteria are presented and illustrated with a case study in the upper Krishna river
sub-basin, India.

The remaining paper is presented as follows: Sect. 2 presents the various steps
involved inMOSaDEalgorithm, and brief description of theVIChydrologicalmodel.
Section 3 gives details about the study location and various types of data. Finally, the
results of the study are presented in Sect. 4, and conclusion from the study is drawn
in Sect. 5.

37.2 Methodology

37.2.1 MOSaDE Algorithm

Multiobjective self-adaptive differential evolution (MOSaDE) algorithm is an
advancement of previously SaDE for optimization problem involving multiobjective
using the concept ofMODEpresented byReddy andKumar (2007). Similar to SaDE,
the MOSaDE automatically adapts the two control parameters (mutation factor and
cross over probability) of the algorithm for generation of new trial vector (child popu-
lation). The notion of Pareto dominance is incorporated within the SaDE to solve
problems with multiple conflicting objectives. The notion of crowding distance and
fast nondominated sorting is adopted fromNSGA II (Deb et al. 2002) formaintaining
diversity among the drawn solution and to sort the solutions in distinct groups or
fronts. Various steps for the MOSaDE algorithm are given below.
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i. Generate NP initial population
(
Vi,0 = {v1i,0, v2i,0, ..., vDi,0}

)
randomly from the

possible ranges of the decision variables. Here v j
i,0 denotes the initial value of

jth decision variable in the ith individual, and D denotes the dimension of the
problem. Create an empty external archive EAR = �.

ii. Mutation factorFi and Crossover rateCRi for each individual are set according
to:

Fi = Ni (0.5, 0.3)

CRi = Ni (0.5, 0.1)
(37.1)

where,Ni(0.5,0.3) represents a Gaussian random number with mean as 0.5 and
standard deviation of 0.3.

iii. First, evaluate each member of NP individuals, and then perform nondom-
inating sorting in the current population to fill the external archive with
nondominated solutions. Initialize the generation number G as 0.

iv. To generate NP child vectors from the NP parent vectors, first mutation for
each individual is performed according to:

Ui,G = Vrand1,G + Fi (Vrand2,G − Vrand3,G) (37.2)

whereUi,G = {
U 1

i,G,U 2
i,G, ...,UD

i,G

}
is themutant vector, andVrand1,G,Vrand2,G

and Vrand3,G are arbitrarily selected individuals within the current generation.
Next crossover is executed to produce trial vectors by the following equation:

x j
i,G =

{
u j
i,G if rd j ≤ CRi,G or ( j = rand j )

v j
i,G otherwise

(37.3)

where x j
i,G , u

j
i,G and v j

i,G are the jth parameter from generation G for ith
trial vector, ith mutant vector, and ith population vectors respectively; rd j

is uniformly distributed between [0,1]; and randj is a random value in between
[1,D].

v. Compute the fitness function values for each trial vector generated.
vi. Compare fitness function each trial vector with its corresponding parent vector.

If a parent dominates, then discard the child vector. If a child dominates a parent
vector, then replace the parent with child vector. If both of them are nondomi-
nated then store the child vector in a temporary population.Combine the tempo-
rary population with the current population and choose NP member from the
current generation using a dynamic crowding operator with the nondominated
sorting strategy. Empty the temporary population and update external archive
EAR with nondominated solutions from the current generation and also make
a check for dimension of EAR, so the size of EAR should not exceeds the
predefined the maximum size (Emax) of EAR.
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vii. The values of F and CR are revised by mean of evolution. First, note the F
and CR values guiding the child vectors to the next generation for every 10
generations, and subsequently revised mean F and mean CR are computed
by averaging those successful F and CR values, respectively. These revised
mean F and mean CR are used to generate updated F and CR values for each
individual as computed before with the previous standard deviation values.

viii. Increase the generation number by one, i.e., G + = 1. Examine the stopping
criterion (e.g., achieved maximum number of iterations), stop the algorithm in
case stopping criteria is fulfilled or else proceed with step (iv) and repeat steps
(iv) to (vii).

37.2.2 VIC Hydrological Model

The VIC model is formulated at University of Washington, which is a macroscale
hydrologic model and has been widely used in various hydrological studies at global
as well as regional scale (Liang et al. 1994). Being a physics basedmodel, it can solve
both the complete energy and water balances equations to simulate surface runoff,
baseflow, canopy interception, snow pack, evapotranspiration, andmany other output
fluxes for each model grid at various temporal scale (i.e., monthly, daily, sub-daily).
Another distinctive characteristic of this model is its consideration for multiple soil
layers and multiple elevation bands within a single model grid, nonlinear baseflow
estimation, representation of subgrid variability of different vegetation classes, and
notion of variable infiltration curve.

The grid-based VIC model divides the study area into uniform grid cells, which
are further divided into M types of land cover, where m = M (or the last tile) is the
bare soil and m = 1, 2,…,(M − 1) indicates (M − 1) different vegetation tiles. The
evapotranspiration, which is sum of bare soil evaporation, vegetation transpiration,
and canopy evaporation, is calculated from each grid cells by means of Penman–
Monteith equation. Among the three layers of soil in theVIC, the bottommost layer is
only responsible for baseflow,which receives it, the soilmoisture from the layer above
it by means of gravitational flow. The top and middle layers characterize the bare
soil evapotranspiration and soil dynamic response from the received precipitation,
respectively. The VIC model uses the variable infiltration curve to characterize soil
surface response, which can be formulated as:

c = cm
[
1 − (1 − FA)

1
bi

]
(37.4)

where, cm represents maximum infiltration capacity; c denotes the infiltration
capacity, bi is a parameter for controlling the shape of infiltration capacity curve;
and FA represent fractional area where infiltration capacity is below the potential
infiltration rate.
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Water balance for each grid in the model was estimated by the principle of conser-
vation of mass (i.e., the water entering a grid essentially leaves the grid and/or stored
within the grid) and the dividing of incoming rainfall into runoff, evapotranspiration
and water storage in the soil. Thus, the water balance can be expressed as:

dS

dt
= R − ET − RO (37.5)

where R, ET, RO, and dS/dt are amount of rainfall, evapotranspiration, total runoff
and change of soil water respectively.

The VIC hydrological model produces various output fluxes at each individual
model grids. As no routing system is incorporated in the model, a separate runoff
model by Nijssen et al. (1997) is used along with the VIC hydrological model to
transfer the runoff generated from each grid to the outlet of the watershed.

37.2.3 Design of VIC Model Calibration

This study aims to assess the suitability of the proposed MOSaDE-based parameters
estimation approach and also to investigate the effect of consideration of various
objectives on the overall calibration efficiency. One key element for any calibration
framework is to characterize the distinguished hydrological processes by choosing
suitable objective functions. Therefore, past studies regarding hydrological models
have employed a wide range of objective functions for problem of parameter esti-
mation. For instance, Madsen et al. (2002) have suggested that choice of objective
functions should emphasize the high and lowflows simultaneously. Therefore, Nash–
Sutcliffe model efficiency (NSE) and logarithmic Nash–Sutcliffe model efficiency
(LNSE) are chosen as the two conflicting objectives in this study for the current
multiobjective parameter estimation problem.NSE andLNSE can bemathematically
expressed as below:

NSE = 1 −
∑N

t=1

(
Qsim,t − Qobs,t

)2

∑N
t=1

(
Qobs,t − Qobs

)2 (37.6)

LN SE = 1 −
∑N

t=1

(
ln

(
Qsim,t

) − ln
(
Qobs,t

))2

∑N
t=1

(
ln

(
Qobs,t

) − ln
(
Qobs

))2 (37.7)

where,N is the number of time steps;Qobs,t andQsim,t are the observed and simulated

runoff values at time i; and
−

Qobs represents the average observed runoff.
The objective function NSE is used to put emphasis on the high flows, while the

LNSE emphasizes the low flow values. Therefore, a trade-offs exist between these
two criteria used for the calibration, which is helpful in many instances. For example,
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Table 37.1 Details of the seven chosen VIC model parameters, units, description, and ranges

Parameter Description Units Range

bi Infiltration parameter dimensionless 0.0–0.4

Ds Baseflow parameter1 fraction 0.0–1.0

Dsmaxmm/day0–30 Maximum baseflow mm/day 0–30

Ws Baseflow parameter2 fraction 0.0–1.0

d1 Thickness of first soil layer meters 0–0.5

d2 Thickness of second soil layer meters 0.5–1.5

d3 Thickness of third soil layer meters 0.5–2.0

1 indicates fraction of the Dsmax where which non-linear baseflow occurs
2 indicates fraction of maximum soil moisture where non-linear baseflow occurs

one may look for parameter set suitable for flood simulation, while not much atten-
tion for low flows and vice versa. Generally, seven parameters of VIC hydrological
model are considered for calibration, which are: i) binflt controls the shape of infiltra-
tion capacity curve which in turn adjusts the partitioning of incoming precipitation
into infiltration and runoff. (a higher value of binflt suggests lower infiltration and
more runoff), ii) Ws and Ds are responsible for controlling the baseflow and decide
the departing speed of baseflow from the third soil layer, iii) Dsmax represents the
maximum velocity of baseflow, and iv) d1, d2 and d3, represent the depth of the
soil layers and controls the proportion of transpiration, direct runoff and baseflow
from the availablewater (thicker soil layers signifies slow runoff process) (Liang et al.
1994). The ranges of seven model parameters chosen in the present work are adopted
from VIC documentation and user manual and details of the seven parameters are
shown in Table 37.1.

37.3 Case Study

37.3.1 Study Area

The study area chosen in the current study is located in upper Krishna sub-basin,
Maharashtra, India. The study area comprises Karad Tahsil of Satara district and
some parts of Patan Tahsil. The study area falls in between Latitude 17o00′ N to
18o15′ N and Longitude 73°30 E to 74o30′ E. The study area and its location are
shown in Fig. 37.1.The size of the study area is around 5462 km2. The study area
receives an annual average precipitation of nearly 1118 mm. The average elevation
is 650 m from mean sea level.
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Fig. 37.1 Location map of the study area

37.3.2 Data Used

Daily precipitation (0.25° × 0.25°) and temperature data (1° × 1o) are taken from
Indian Meteorological Department (IMD). Wind speed data are collected at 2.5° ×
2.5° scale from National Centres for Environmental Prediction (NCEP). Soil Data
were taken from Food and Agricultural Organization’s (FAO) harmonized world
soil database at 30 arc second (~1 km) spatial resolution. Global land cover map
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from Advanced Very High-Resolution Radiometer (AVHRR) was obtained from
University of Maryland (1 km × 1 km). SRTM (90 m) DEM was collected from
National Remote Sensing Centre of India. The data of daily observed streamflow at
Karad station (basin outlet) were obtained from the WRIS-India.

37.4 Results and Discussion

In the study, the VIC model and the routing model were operated at daily time scale
for the time period of 1995–1999. For the application of VICmodel, the catchment is
divided into grids of 0.25° spatial resolution. The VIC hydrological model produces
various output fluxes (e.g., surface runoff, baseflow, evapotranspiration etc.) at each
individual model grids. As no routing system is incorporated in the model, a separate
runoff model by Nijssen et al. Therefore, to obtain the daily streamflows at the outlet
(i.e., Karad Station) of the studied basin, a separate routing model was assigned.
To calibrate the VIC model using MOSaDE algorithm, population size and external
archive size of the MOSaDE were set to 50 and 100 respectively.

37.4.1 Objective Function Values and Approximated Pareto
Front

Figure 37.2 shows the obtained Pareto front from the MOSaDE-based proposed
parameter estimation scheme. It can be realized from the figure that the values of the
two objective functions vary widely in the solutions from the Pareto front, indicating
the fact that both the NSE and LNSE objective functions cannot be simultaneously
improved by any single solution. The reason behind such trade-off is that improve-
ment of NSE values will emphasize on matching the peak flows, which will thereby
put less focus on the low flow simulation, resulting in a higher LNSE values, and
vice versa. From the Fig. 37.2, it can also be seen that all the final solutions were in
the first front or nondominated, and also uniformly distributed, which indicates the
efficiency of the proposed methodology.

The daily NSE value in the final solutions ranged from 0.62 to 0.70, while the
LNSE values varied from 0.1121 to 0.1361. This represents a satisfactory perfor-
mance of the model considering NSE values, as various past studies have reported
that a model can be considered to be calibrated well for streamflow simulation if
daily NSE ≥ 0.60 (Krause et al. 2005). However, low flow simulation from the
model was not quite skillful as it can be seen from the LNSE objective function
values. In Fig. 37.2, the best single criterion solutions are represented by the points
on the furthest ends of the Pareto fronts. Between these two extreme solutions, there
exists other solutions with varying degree of trade-offs between NSE and LNSE
Objective function values. Therefore, the users can choose a solution depending on
their interest.
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Fig. 37.2 Approximate Pareto front for VIC model using MOSaDE based on NSE and LNSE

37.4.2 Parameter Identifiability Analysis

The maximum and minimum values of the optimal parameter values from the 100
nondominated solutions generated by MOSaDE for the calibration of VIC model is
displayed in Table 37.2.

The identifiability analysis in hydrological modeling refers to finding the optimal
model structure and parameter sets that are most illustrative for a catchment of
consideration. Therefore, estimation of appropriate parameter sets will support such
model identification process. For identifiability analysis of VIC model parameters,
all the parameter sets from Pareto front were considered. Then those parameter
combinations are normalized between 0 and 1 using the given range of parameter
values from Table 37.1, and shown in Fig. 37.3, where normalized parameter values
are presented along the ordinate and the seven VIC model parameters are plotted

Table 37.2 Ranges of
optimal VIC model
parameters obtained from
calibration using MOSaDE

Parameter Initial Range Minimum Value Maximum Value

binfilt 0.00001–0.4 0.01 0.23

Ds 0.0–1.0 0.003 0.004

Dsmax 0–30 27.8 30

Ws 0.0–1.0 0.72 0.87

d1 0–0.5 0.10 0.10

d2 0.5–1.5 0.89 0.93

d3 0.5–2.0 0.55 1.22
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Fig. 37.3 Normalized parameter spread obtained from the MOSaDE-based calibration of VIC
hydrological model

along the x-axis. Each grey line across the graph represents one member of final
nondominated solutions. The two extreme solutions on the Pareto are shown by the
blue and red lines in Fig. 37.3, and they represent the best parameter combination
with respect to NSE (high flow) and LNSE (low flow) criterion.

It is promising to see the Pareto solutions have a tendency to stay closely (specially,
Ds, Dsmax, d1 and d2) in the parameter space. However, a large variability is also
observed in certain parameters (e.g., binfilt , d3, and Ws), which are responsible for
deciding the shape of the simulated hydrograph, indicating a sign of the high uncer-
tainty associated with those parameters. By looking at red line and the blue in
Fig. 37.3, it can be realized that concentrating on one between the two objectives
results into different parameter combinations. A trend is also ostensible when going
through the Pareto front solutions. For example, d3 decreases for increasing NSE
(high flow), while binfilt and Ws increases with increase in NSE.

Correlation in the estimated model parameters indicates nonidentifiability of the
parameters (Kuczera andMroczkowski 1998). Therefore, the correlation of the seven
VIC parameters from the Pareto optimal solution is given in Table 37.3. Few param-
eters have shown correlation value above 0.6 and one pair has correlation coefficient

Table 37.3 Correlation between the VIC parameters resulting from the Pareto optimal solutions
of MOSaDE algorithm

Parameter binfilt Ds Dsmax Ws d1 d2 d3

binfilt 1 −0.47 −0.67 0.67 −0.03 −0.02 −0.97

Ds – 1 0.22 −0.32 0.05 0.05 0.46

Dsmax – – 1 −0.36 0.12 −0.16 0.66

Ws – – – 1 0.10 −0.19 −0.80

d1 – – – – 1 −0.21 0.01

d2 – – – – – 1 0.01

d3 – – – – – − 1
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more than 0.90. High correlations between d3, binfilt , andWs can be seen from Table
37.3, which suggest nonidentifiability of these parameters. A wide spread of these
three parameters can also be seen from Fig. 37.3, indicating their poor identifiability.
However, correlation between other parameters is quite low, which refers that most of
the VIC model parameters are well defined and suitable for optimization algorithms.
Apparently, this analysis is carried out with two objective functions and therefore
more efforts by using different optimization function combinations will certainly
help to get more understanding of the parameter identifiability problem.

37.4.3 Runoff Simulation

A comparison of simulated flows (grey shaded area) from Pareto-optimal solutions
obtained by MOSaDE algorithm and observed hydrograph (black dashes) is shown
in Fig. 37.4. As the disagreement between the various parameter set in the obtained
Pareto front was found to be smaller (almost equal for most of the parameters
excluding binfilt , d3, andWs), simulated hydrographs produced a very narrow range.
Another reason for the narrow ranges in the simulated hydrograph might be asso-
ciated to the idea of equifinality in hydrological model calibration (Beven, 1993),
which states that different parameter sets can produce equally fit system output.
Therefore, the narrow ranges in simulated hydrograph obtained by theMOSaDE can
be due to the equifinality in VIC model calibration.

From Fig. 37.4, it can be seen that the larger uncertainty in the simulated flows
is more during the low flows and recession periods as the hydrograph uncertainty
ranges do not cover the observed flows during these periods. Therefore, the VIC
model presented for the present study is more skillful to simulate the high flows than
the low flows or recession flows. Nevertheless, it is apparent from Fig. 37.4 that the
simulated streamflow’s capture the trend of observation flows very well.

Fig. 37.4 Comparison of simulated flows from Pareto-optimal solutions with observed flow during
1995–1999 at Karad Hydro-observations Station
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37.5 Conclusions

Parameter estimation of the hydrological models is considered as one of the most
significant problems in the field of hydrology. Past studies have suggested that tradi-
tional single-objective calibration of hydrological models is often not sufficient to
characterize the various features of hydrological system. Therefore, a multiobjective
optimization method is employed in this study, which is an extension of SaDE, for
performing the multiobjective calibration of VIC hydrological model in an efficient
manner. The Nash–Sutcliffe efficiency and logarithmic Nash–Sutcliffe efficiency are
chosen as the two objective functions to capture the characteristics of low and high
flows simultaneously. Results from the study showed that the employedmethodology
performed well in the present case study. The uniform spread of Pareto front solu-
tions provides more flexibility for stakeholders to select an appropriate parameter set
based on their priorities. Furthermore, parameter identifiability analysis was carried
to get more insight into the model structure and parameter interactions. Few param-
eters were found to be poorly identifiable, which might be caused due to reasons like
equifinality of the calibration problem,multi-modality or even the choice of objective
functions. Nevertheless, results from the study strongly support the viability of the
proposed MOSaDE-based calibration methodology as an alternative for parameter
estimation of complex hydrological models.
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Chapter 38
Adaptive Neuro-Fuzzy Inference
System-Based Yield Forecast Using
Climatic Variables

Kalpesh Borse and P. G. Agnihotri

Abstract Crop yield is affected by climate, prevailing during crop season and inputs
applied. As such modeling, the cause and effect relationship between yield and these
factors could provide an approach for pre-harvest yield forecast. Prediction of impacts
ofClimateChange (CC)on cropyields requires amodel and its parameters, howcrops
respond to climate. Predictions from various models often disagree with the climatic
variables and its impact. A common method is used to quantify impacts of CC is
statistical models trained on historical yields and some simplified measurements of
weather parameters, such as growing season average temperature and precipitation.
CC is a really big apprehension to the entire world. Its direct impact on crop growth
and yield is very important to understand. In the present study, the Fuzzy logic crop
yield model was developed by considering different climatic variables. Tempera-
ture, rainfall, evaporation, humidity parameters were considered for the crop yield
model. The model was developed by considering the 15-year crop yield data and
the same period for the climatic variables. The triangular membership function is
being adopted in the fuzzy model. In this study, a fuzzy rule-based system (FRBS)
using the Takagi Sugeno-Kang approach has been used for developing the crop yield
model. Model is validated by the coefficient of correlation and found that there is
more than 0.9 coefficient of correlation between observed and evaluated yield.

Keywords Adaptive Neuro-Fuzzy inference system (ANFIS) · Crop yield ·
Climate change modeling · Fuzzy logic · Fuzzy rule-based system (FRBS)

38.1 Introduction

Farming is one of the main sectors to be impacted by different sources, such as
climatic changes, soil attributes, seasonal changes, etc. Crop yield prediction is based
on various kinds of data collected and extracted by using data mining techniques
and different sources that are useful for the development of the crop. It is an art of
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forecasting crop and the quantity of yield in advance. Prediction of the crop yield can
be extremely useful for the farmers and stakeholders. They can indenture their crop
prior to harvest if they have an idea of the amount of yield they can expect, which
gives often securing a more competitive price than if they were to wait until after
harvest. The involvement of experts in the prediction of crop yield leads to issues
such as lack of knowledge about natural events, the negation of personal perception
and fatigue, etc.; such issues can be overcome by using the models and decision tools
for crop yield prediction.

In a country such as India, it is possible to cultivate a large number of crops due
to diverse climatic conditions. Among these crops such as rice (Oryza sativa L.)
is an important food crop of the country. The total area under cultivation of Rice
431.96 (lakh hectors) (22.6% of the gross cropped area) and the total production
of rice is 110.15 million tonnes during the year 2017–18 (Annual Report 2017–18,
Department of Agriculture, GOI) constituting about 42.9% of total food production
(Economic Survey 2017–2018).

The prediction of crop yield quantifies by using three major unbiased methods (i)
biometrical characteristics (ii)weather variables and (iii) agricultural inputs (Agrawal
et al. 2001). These methods can be used individually or in combination, to give a
complex model. Prediction is a substantial aid in actual and efficient planning and is
a more important aspect for a developing economy such as ours so that acceptable
planning exercise is started formaintainable growth, overall development and poverty
mitigation. Prediction of crop yield is of enormous utility to the government and
planners in the formulation and implementation of various policies relating to food
procurement, storage, distribution, price, import-export, etc. Some studies have been
carried out to prediction of crop yield using weather parameters (Huda et al. 1975;
Chowdhury and Sarkar 1981). However, such prediction studies based on statistical
models need to be done on a constant basis and for different agro-climatic zones
due to observable effects of changing environmental conditions and weather shifts
at different locations and areas. Then, there is a need to developed area-specific
forecasting models based on time series data to help the policymakers for taking
effective decisions to counter adverse situations in food production.

In the recent period, soft computing techniques such as an artificial neural network
(ANN), fuzzy logic, genetic algorithm and chaos theory have been extensively
applied in the sphere of prediction and time series modeling. Adaptive neuro-fuzzy
inference system (ANFIS), which is the integration of neural networks and fuzzy
logic, has the potential to capture the benefits of both these fields in a single frame-
work. ANFIS utilizes philological information from the fuzzy logic as well as the
learning capability of an ANN.

This study was carried out to develop ANFIS based crop yield model based
on the climatic constraints. ANFIS model was developed by considering the
different combinations of climatic constraints. Detail explanation was given in the
methodology section below.
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38.2 Materials and Methods

38.2.1 Study Area

This study was carried out to develop prediction models for predicting the yield of
Kharif rice at Nashik taluka of Nashik district of Maharashtra state in India. It is
located at 20.33° N latitude and 73.25° E longitudes. It has a dry season from early
October tomid-June and awet season from June to earlyOctober. The annual average
rainfall of this region is about 713.50mm,which is subjected to large variation.Yearly
yield data of rice (kg/ha) for 27 years (w.e.f. 1987–88 to 2014–15) was collected from
the Department of Agriculture, Maharashtra State. Figure 38.1 shows the location
map of the study area.

The time series daily climatic data of 27 years (from 1987–88 to 2014–15)
were collected fromWRDHP, Nashik (M.S.). Five climate parameters were studied;
namely average daily temperature (T °C), average daily relative humidity (Rh%),

Fig. 38.1 Location map of study area
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average daily total rainfall (P), the average weekly number of rainfall days (n) and
average daily pan evaporation (E). Moreover, daily weather data related to Kharif
(the autumn harvest is also known as the summer or monsoon crop in India) crop
seasons starting from a fortnight before sowing up to one month before harvest were
utilized for the development of models in the present study; therefore, the weather
data for rice crop (Kharif season), from May 21 to October 22 in each year were
employed.

38.3 Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

ANFIS is a fuzzy algorithm based on Takagi Sugeno-Kang (TSK) fuzzy inference
system (Jang et al. 1997; Loukas 2001). ANFIS is a powerful soft computing tech-
nique works based on the principle of two powerful computing techniques that is
Artificial Neural Network (ANN) and Fuzzy logic. ANFIS utilizes philological infor-
mation from the fuzzy logic as well as the learning capability of an ANN for auto-
matic fuzzy if-then rule generation and parameter optimization. An ANFIS input
interference panel in MATLAB is shown in Fig. 38.2.

ANFIS has a lot of advantages over individual computing tools such as the FUZZY
system and ANN. In the FUZZY system, making rules is very important; whole
predictions are based on how one makes the rules. If parameters involved more
than one, it would become more completed to make all such rules. ANFIS solves
this matter by taking the help of ANN. ANN optimizes the parameters and makes
the rules. These rules are fetched into the FUZZY inference system. ANFIS presents
some linearity with respect to some of its parameters; hence it increases the overhead
of the computation process without increasing the efficiency. Optimization of fuzzy
rules is also not so efficient as compared to manual rules making hence predictions
are subjected to more uncertainty.

Fig. 38.2 ANFIS input panel
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Fig. 38.3 Rice yield over time

38.4 Methodology

38.4.1 Model Input

Model parameters were selected based on the constraints which affect crop growth.
In this particular study, parameters are purely climatic. Many experts have consid-
ered the parameters other than the climatic but the problem with the other param-
eters not easily available or very long experimentations are required. This study
demonstrates the development of the crop yield model purely based on the climatic
parameters such as Average rainfall (mm), Maximum Rainfall (mm), Total Rainfall
(mm),MinimumAvg. Temperature (°C),MaximumAvg. Temperature (°C), Average
Temperature (°C), Average Evaporation (mm), Relative humidity (%) are studied and
a combination was tried to formulate the best model.

Among all the above-listed parameters, different combinations were tried to
predict the crop yield and the most effective parameters were selected for the
prediction of crop yield. Variation of crop yield over time is as shown in Fig. 38.3.

38.5 Result and Discussion

Among all the eight available Fuzzy membership functions, the product of two
sigmoidal functions (psigmf) was used and hybrid optimization was applied while
training the variables.

38.5.1 Model Training

The model was developed mainly base on the Maximum Rainfall (mm), Minimum
Avg. Temperature (°C), Maximum Avg. Temperature (°C), Average Evaporation
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Fig. 38.4 Optimized results

(mm), Relative humidity (%). The selected error was zero while developing the
model and reached zero at epoch 2 as shown in Fig. 38.4. From the model. Model
characteristics were as shown in figure because it has the lesser error 0.00995 from
the same number of epochs.

38.5.2 Model Validation

By selecting the independent set of data of the parameters mentioned in the model,
predicted the crop yield and results are as shown in the Fig. 38.5.

Figure 38.6 shows the coefficient of correlation between observed and predicted
yield it can be seen that R2 is greater than 0.9.

Fig. 38.5 Model performance
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Fig. 38.6 Coefficient of correlation between observed and predicted yield

38.6 Conclusion

In this study, an ANFIS based model was developed for the crop yield prediction
based on climatological parameters such as Maximum Rainfall (mm), Minimum
Avg. Temperature (°C), Maximum Avg. Temperature (°C), Average Evaporation
(mm), Relative humidity (%). With the help of listed parameters, the model was
developed and the combination was tried to formulate the best model. All the param-
eter combination is performing to greater accuracy. The model was performing at an
accuracy of 0.0099 kg/hectare accuracy. Coefficient of correlation between observed
and predicted yield it can be seen that R2 is greater than the 0.9. From the above
results, one can conclude that the application of soft computing techniques to the
prediction of crop yield has high accuracy and precise estimation.
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Chapter 39
Impact of Climate Change
on Hydrological Parameters

Arunima Priyadarsini Patnaik and Bandita Naik

Abstract The increasing rate of global surface temperature is going to have a signif-
icant impact on local hydrological regimes and thus on water resources; this leads
to the assessment of water resources potential resulting from the climate change
impacts. The main parameters that are closely related to climate change are temper-
ature, precipitation and runoff. Therefore, there is a growing need for an integrated
analysis that can quantify the impacts of climate change on various aspects of water
resources. Quantifying the impacts of land-use change and land cover practices on the
hydrological response of a watershed have been an area of interest for hydrologists in
recent years as this information could serve as a basis for developing soundwatershed
management interventions. The degree and type of land cover influence the rate of
infiltration, runoff, and consequently the volumes of surface runoff and total sediment
loads transported from a watershed. It often results in significant degradation of land
resources such as loss of soil by erosion, nutrient leaching and organic matter deple-
tion. However, very few studies in India have used the physically-based hydrological
models along with the land use/land cover change conditions. Hence in this current
work SWAT model has been used to assess the impact of LU/LC changes on daily
and monthly streamflow of Mahanadi River Basin of Sambalpur region. The results
of the study indicated that the though land-use patterns have changed, resulting in an
increase in agricultural, barren and buildup land and decrease in forest cover leading
to an increase in the runoff, but changes have not occurred as significantly as the
changes in annual streamflow. However, the number of days of high-intensity rain-
fall has increased over a decade, which, along with the land-use changes, explains
the increase in streamflow.
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39.1 Introduction

General

Water is the foremost part of all living things and a major force constantly shaping
the human lives on the earth. It is also a key factor in the air conditioning of the earth
for human existence and in influence the progress of civilization. Among all natural
resources, water is one of the most important and significant resources found on
earth. The redistribution of water through the hydrological cycle is also responsible
for the climate of any place, such as daily fluctuations of temperature, precipitation
and wind speed and these type of changes in the ecosystem affect the hydrological
cycle. Over the last 100 years, Odisha is facing extreme weather conditions in the
form of natural disasters (flood, drought, heatwaves, earthquakes and cyclones). The
natural calamities affected 25 of 30 districts of Odisha which results in damages,
loss of properties and loss of human lives. Therefore is a necessity to study the
impact of climate change on water resource in this region. An increase or decrease
in precipitation pattern can result in an increase in the frequency of flood, droughts
and change in water quality. Therefore, it is necessary to carry out analysis to find
out calibration and validation of two climatic parameters, that is, temperature and
precipitation.

The National Water Policy of India (2002) acknowledges that national perspec-
tives are needed to regulate the improvement and management of water resources
so that the scarce water resources can be developed and conserved on a balance
and environmentally sound basis. Impact of land-use changes, watershed develop-
ment to soil loss and growth of population, water quality and quality is among the
most worthy topic in a watershed. The hydrological cycle can be distributed due to
changes in land-use by alternating the base flow and annual mean discharge of the
basin. The hydrological model plays an important role in simulating the process of
rainfall-runoff, soil erosion under different situations. The impact of climate change
is going to be most serving in developing countries due to poor capacity.

A hydrological model SWAT (Soil and Water Assessment Tool) model is used
in the present analysis. This model is a physically-based, continuous-time model,
developed by Dr. Arnold for United USDA-ARS (Agricultural Research Service).
The SWAT model is used to simulate or predict runoff of different basins, sediment
yield and pollution loading in watersheds. The model has the ability to use for small
watersheds as well as the major river basin systems. It is distributed in a time interval
hydrological model with an Arc GIS interface. Automated model calibration and
validation check.
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39.2 Study Area

Mahanadi River is the sixth-largest river in India and one of the major interstate
east-flowing river in peninsular India. The Mahanadi basin lies between the latitude
of 19°20′N to 23°35′N and longitude of 80°30′E to 86°50’E. Mahanadi basin is
physically surrounded on the north by Central India hills, by the Eastern Ghats in
the South and East and by Maikala hill range in the West. The total catchment area
of the basin is 141600 km2. The river enters Odisha through the Jharsuguda district
subsequent to covering about a portion of its aggregate length. Before Sambalpur, it
meets its tributary Ib. The Ib,which is the third biggest tributary ofMahanadi, ascends
in town Pandrapt, Region Raighar (Chhattishgarh) and channels Raigarh region of
Chhattisgarh and three districts of Odisha, to be specific Sundargarh, Jharsuguda and
Sambalpur. After Sambalpur, the Mahanadi stream takes a southerly turn and it is
joined by the Ong. The Ong flows towards Sartaipali, Padampur and Bijepur territory
of Balangir and Bargarh area of Odisha. Physically, the basin is bounded in the north
by the Central India Hills, the Eastern Ghats in the south and east, and the Maikala
Hill Range in the west, lying within geographical co-ordinates of 80°30’ E to 86°50’
E and 19°20’N to 23°35’N. The location of the study area is shown in Fig. 39.1.

Fig. 39.1 Location of study area Source India WRIS website)
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39.2.1 Rainfall

Based on the Indian Meteorological Department’s (IMD) annual district rainfall
figures from 1901 to 2000, the calculated average rainfall in the Mahanadi basin is
1406 mm. Overall, the Mahanadi basin is a high rainfall region, the lowest annual
average being 1080 mm in the Kawardha district of Chhattisgarh, while the Jashpur
district of Odisha has the highest annual average rainfall of 1653 mm. The western
portion of the basin bordering Maharashtra receives the lowest rainfall. The central
part of the basin receives moderate rainfall, while the northern, southern and delta
regions experience the highest rainfall in the basin. Plots the seasonal distribution of
rainfall in the basin.Most parts of the basin receive 80–90%of its annual rainfall from
the southwest monsoon (i.e., from June to September). However, the amount of rain-
fall received is dependent on location in the basin. For example, as compared to the
other parts of the basin, the districts located near the delta receive less rainfall (about
60–70% average annual rainfall) between June and September, but receivemore rain-
fall (about 10–22% annual rainfall) from the northeast monsoon (i.e., from October
to December). The districts with higher rainfall between October and December also
show a marginal increase in the rainfall during March to May as compared to the
basin average for this period. Figure 39.2 shows the Seasonal distribution of rainfall
as a percentage of the annual average.

IMD’s 100-year district-level data was also used to generate trends in the rainfall
in the respective districts. Figure 39.3 shows a map of the linear trends observed on

Fig. 39.2 Seasonal distribution of rainfall as a percentage of the annual average
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Fig. 39.3 Trends in annual rainfall in the Mahanadi basin. Source District level 100 years IMD
data

plotting the 112 years (1901–2012) IMD district-level data set. The majority of the
districts in the basin show a reducing trend computed from the long-term average
rainfall. Only two districts each show a constant trend and an increasing trend.

39.2.2 Temperature

Daily temperature (maximum,minimumandmean) gridded data (1° x 1°) for 36 years
(1969–2004) collected from IMD has been analyzed. Average monthly temperature
variation for 36 years (1969–2004) is given in Fig. 39.4. Three parameters, namely
minimum, maximum and mean temperature, indicate that December and January
are the coldest months with a minimum temperature of 12°C. April and May are the
hottest months in this region, where the maximum temperature ranges from 39°C to
40°C. As compared to the eastern portion and delta area, the western portion records
the lowest and highest temperatures during winter and summer, respectively. The
highest day temperature recorded in the basin is 50.3°C in June 2003.
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Fig. 39.4 Monthly average temperature (1969–2004) (CWC Report-2014)

39.2.3 Land-Use and Land Cover

Mahanadi valley is best known for its fertile soil and flourishing agriculture, which
preliminary depends on a network of canals that arise from the river. Rice, oilseeds
and sugarcane are the principal crops cultivated inMahanadi valley. The basin has an
area of about 79,900 km2, which is about 57%of the basin area and 4%of the total area
of the country. Except in the coastal plains of Odisha, the basin has an extensive area
under forests. The sparse vegetation of the highlands contrasts with the moderately
luxuriant vegetation of the river valleys. The coastal plains of Odisha, with a high
incidence of rainfall, are predominantly rice growth areas. The land utilization pattern
of theMahanadi river basin comprises 37.275% forest area, 10.432% cultivated area,
91.137% areawith other uncultivated land excluding fallow land, 4.967% fallow land
and 38.187% net snow areas as shown in Fig. 39.5. The cultivated area is the total
area used for sowing two or more crops in one calendar year. The net snow area
is the area of snow for each crop but is counted only once. Out of the total annual
irrigation water demand of 11 km2 in the basin, the Kharif season utilizes 7 km2 and
Rabi season uses 4 km2. Major land-use and associated water use changes that have
taken place in the basin in the twentieth century are related to intensive irrigation
of agricultural areas. In the last decade since 2004–05, land cropped in the Kharif
season only (i.e., largely rain-fed land) has decreased marginally to 30% and land
cropped twice or thrice (i.e., irrigated land) has increased substantially, from about
8–15%. The largest increases in irrigated land are in the plains of Chhattisgarh, with
the development of major irrigation projects in the upper reaches of the Mahanadi
and Seonath rivers. Fallow lands in the basin have decreased from about 17% to
about 11% (15,507 km2) in the last five years or so. This is in contrast to the MoA
data, which shows that fallow and cultural wastelands have increased from 7% to
about 9% (14,011 km2).
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Fig. 39.5 Land-use and land cover data for the Mahanadi river basin
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39.3 Methodology

39.3.1 Soil and Water Assessment Tool (SWAT)

The soil and water assessment tool (SWAT) is a continuous, long term, physically
based conceptualmodel. Thismodel operates at basin scale ondaily time steps. SWAT
model predicted for impacts of the land-use management, sediment and agricultural
chemical yield for the development of the physically-based model. It stimulates the
hydrologic cycle in two phases; land phase and routing phase. The land phase aims to
control the amount of water, sediment, nutrient and pesticides loading. The routing
phase aims to define the movement of water, sediments, etc., through the channel
network of the watershed. It is a model with Arc GIS interface which has been
developed by the USDA-ARS and the Blackland Research and Extension Center.
In this SWAT model, the total catchment is firstly divided into sub-basins or sub-
watersheds based on the topographic regions assumed to be lumping further divided
into a series of HRUs (Hydrological response units) on the basis of soil, slope and
land-use combinations. The Green-Ampt infiltration method is one of the options
that this model offers to compute excess precipitation at the HRU level, the other
one being the NCRS curve number method. Simulations are carried out for the
components of the hydrological cycle, nutrient cycles, sediment yield and aggregate
for the sub-basins. The SWAT model can be selected based on the data availability,
provides the users with various options when the simulation is conducted for the
hydrological parameters. The runoff model formed in SWAT is lumped at the sub-
basin level because it computes an average value for spatially varied surface runoff.
This one is the limitation of the SWATmodel. A SWATCUP (SWATCalibration and
Uncertainty procedure) model integrate various calibration and uncertainty analysis
using the same interface. The SWATCUPmodel can run SUFI2, GLUE and Parasol.
The SWAT project contains input data and one calibrationmethod to allow the user to
run a calibration program until convergence is reached. User can save the calibration
iteration for later use. Figure 39.6 shows the SWAT Model Flow Diagram.

39.4 Results and Discussion

Using Arc SWAT software DEM map, land-use map have been represented. By
using SWAT-CUP sensitivity analysis of flow parameters, simulated, calibrated and
validated results are observed. Monthly calibration and validation for streamflow
were performed after conducting sensitivity analysis. The sensitivity analysis was
performed to determine the optimal parameters best-fitted values based upon the
observed data collected from the study area. Seventeen (2000–2016) year’s mete-
orological and observed streamflow data were used for calibration and validation.
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Fig. 39.6 SWAT model flow diagram

Also, analysis of land-use change and climate change and environmental impact
assessment observed and modeled the discharge. Figures 39.7, 39.8 and 39.9 show
the DEM map, Land-use the land cover map and Watershed delineation of study
area, respectively.

Fig. 39.7 DEM map
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Fig. 39.8 Land-use land cover map

Fig. 39.9 Watershed delineation of the study area
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Maps Obtain From Input Data

See Figs. 39.7, 39.8 and 39.9.

39.4.1 Sensitivity Analysis

Six parameters were considered for sensitivity analysis to identify the most sensitive
parameters. The sensitive parameters which are obtained from the sensitivity were
further carried out for calibration. The ranges of various flow calibration were refer-
ring to the SWAT CUP from the previously studied journals and user manual. The
best-fitted values, which ranges of the parameter for the catchment, have been repre-
sented in Table 39.1. Figure 39.10 shown the Sensitivity analysis of flow calibration
parameters.

Table 39.1 Ranges and best-fitted values of flow calibration parameters

Sl no. Flow calibration parameters Qualifier Minimum Maximum Fitted value

1 Curve Number (CN2) r_ −0.5 0.5 −0.3257

2 Base flow alpha factor (ALPHA_BF) v_ 0 1 0.121564

3 Groundwater delay(days)
(GW_DELAY)

v_ 30 350 200.01

4 Threshold depth of water(mm)
(GWQMN)

v_ 0 5000 4219.125

5 Groundwater revap coefficient
(GW_REVAP)

v_ 0.02 0.3 0.392711

6 Soil evaporation compensation factor
(ESCO)

v_ 0.01 1 0.512134

Fig. 39.10 Sensitivity analysis of flow calibration parameters
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39.5 Conclusion

The study area for the present work is a catchment of the Mahanadi river basin.
The present study has been conducted for the Mahanadi middle basin area of Ib
tributary. SWAT model has been used, which runs under the Arc GIS interface and
themodel input in the formof runoff discharge for the basin. The simulation discharge
value calibrates with the observed discharge for the time period of 2003–2011 and
validation time period 2012–2016. Four sub-basin and five HRUs are found to exist
in the region from the delineation result from Arc SWAT. For the SWAT-CUP model
for six parameters taken for the calibration and validation of model analysis and
the flow, calibration parameters are considered from the literature review and self-
interpretation.
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Chapter 40
Morphometric Analysis of Kosi River
Basin, Bihar, India Using Remote Sensing
and GIS Techniques

Niraj Kumar and Ramakar Jha

Abstract The present research work is aimed at studyingmorphological parameters
of the Kosi basin, considering its importance in understanding hydrological behavior.
For this purpose, radar data, that is, SRTM 1 Arc-Second Global elevation (30 m), is
processed usingArcGIS 10.2 software for the analysis. TheArcSWATTool is used as
an add-in in ArcGIS 10.2 to delineate the watershed and to generate stream networks.
For analyzing the basin, several morphological parameters, namely linear aspects,
areal aspects and relief aspects, are estimated. In this study, the drainage basin is
7th order with a lower mean bifurcation ratio of 2.21, indicating a structurally less
disturbed basin. The form factor, elongation ratio and circulatory ratio show irregular
and elongated basin shape. A low drainage density of 0.86 km/km2 indicates coarse
drainage texture and highly permeable subsoil materials. Lower stream frequency
reveals gentle ground slope, less runoff and more infiltration. Lower relief aspect
values justify the basin is in the valley region. This study is of greater importance
in the geomorphological study of the basin and in other future investigations like
prioritization of various sub-basins in the Kosi River basin.

Keywords Kosi river · SRTM ·Morphological parameters · Linear aspects · Areal
aspects · Relief aspects

40.1 Introduction

The river basin is the area of land drained by a river and its tributaries. It consists
of all the surfaces of land drained by the mainstream channel and several tribu-
taries. In order to understand the hydrological behavior of the basin, morphometric
analysis of the drainage basin and its stream networks play an important role. The
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morphometric analysis of river basins is widely studied by researchers across the
world since the origin of the concept in the year 1932. Horton (1932) was the first
who introduced the morphometric analysis of river basin; the idea was later devel-
oped by many researchers. Horton (1932), Smith (1950) andMiller (1953) explained
geomorphology as the science of landform origin and evolution and further recom-
mended various parameters for the study of the morphology of the basin. Strahler
(1964) explained that the morphometric analysis of a river basin provides a quanti-
tative description of the drainage system, which is an important aspect of the char-
acterization of basins. Clarke (1996) defined geomorphometry as the measurement
and analysis of the surface of the earth and landform’s dimensions. Jones (1999)
studied morphometry and observed that the morphometric parameters affect catch-
ment streamflow patterns through their influence on concentration time. Earlier, the
researchers were using the conventional method for studying themorphometric char-
acteristics of the basin; but with time, remote sensing and GIS technique gained the
interest of researchers since it is a powerful tool for estimating the basin characteris-
tics. The results obtained from remote sensing and GIS technique are more reliable
and accurate; thus it is considered as themost effective tool.Avinash et al. (2011) have
conducted the analysis of morphometric parameters for prioritization of sub-basins
of Gurpur River. Yadav et al. (2014) have used remote sensing and GIS technique for
morphometric analysis of Upper Tons basin of Northern Foreland of Peninsular India
using the CARTOSAT satellite images. Choudhari et al. (2018) have conducted a
study to identify the morphometric parameters of the Mula river basin, Maharashtra,
to prioritize the sub-basins for groundwater potential. Many researchers (Singh and
Singh 2011; Akbari et al. 2012; Soni et al. 2013; Choudhari et al. 2018) have used
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for
estimating the morphometric parameters due to the high spatial resolution of the
images.

In the present study, the hydrological behavior of the Kosi river basin has been
conducted. Kosi River is known as “Sorrow of Bihar,” as it is responsible for the
highest number of flood incidents in the region in the last 30 years. The river has
shifted nearly 150 km in the westward direction with extensive flooding in the basin
region during the last 200 years (Gole and Chitale 1966). The main reason for this
westward movement and frequent flooding in the region is due to sedimentation of
the basin (Wells and Dorr 1987). The cause of the sedimentation in the basin region
and shifting characteristics of the river is due to the hydrological behavior of the
basin.

Keeping the above facts in mind, the present study aims to evaluate and
analyze the various morphometric parameters of the Kosi river basin in Bihar using
remote sensing and GIS technique. This study will be helpful in understanding the
hydrological behavior of the basin.
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40.2 Study Area

The Kosi River is one of the major tributaries of the Ganga River. It flows in the
North Bihar plain, covering an area of 11175.68 km2. The Kosi River originates
in the Himalayan region in Nepal; after draining a large area in Tibet and Nepal,
it enters into Bihar (India) region near Bhimnagar and joins the Ganga river near
Kurshela, Katihar district, Bihar. The drainage basin is located between latitudes
25.35°–26.36° N and longitudes 86.53°–87.59° E (Fig. 40.1). The region is plain
and the maximum elevation of the study area is 91 m. The Kosi basin has 29 sub-
watersheds. The slope in the basin ranges from 0 to 35°. Ten districts of Bihar fall
in the drainage basin.

40.2.1 Data Source

For the purpose of the morphometric analysis of the Kosi basin Shuttle Radar Topog-
raphyMission (SRTM) 1, Arc-Second Global elevation data with a spatial resolution
of 30 m is processed using ArcGIS 10.2 software. These data have been extracted
from the United States Geological Survey (USGS) EarthExplorer portal (http://srtm.
usgs.gov/mission.php).

Fig. 40.1 Location of the study area with district boundaries

http://srtm.usgs.gov/mission.php
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40.3 Methodology

The analysis consisted of several steps, which include study area selection; data
collection (radar data from USGS EarthExplorer); watershed delineation and extrac-
tion of river basin boundary; extraction of stream networks of the basin; estimation
of various morphometric parameters; interpretation of the results; and hydrological
behavior of Kosi River basin (Fig. 40.2).

For this purpose, ArcGIS 10.2 software (ArcMap10.2) is used. The ArcSWAT
Tool is used as an add-in in ArcGIS10.2 software to delineate the watershed and to
generate stream networks. Spatial Analyst tool extensions such as Hydrology tool
and Surface tool are used in ArcMap 10.2 for the analysis.

Since the basin region is large, four sets of data have been extracted,
namely SRTM1N25E0876V3, SRTM1N25E087V3, SRTM1N26E086V3 and
SRTM1N26E087V3 from the USGS EarthExplorer portal. These Digital Elevation

Fig. 40.2 Methodology
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Models (DEM) aremosaicked usingArcGIS 10.2 software to get a singleDEMrepre-
senting the entire basin. The projection for the whole analysis of the Kosi river basin
is WGS 1984 UTM Zone 44 N. The mosaicked DEM is processed using ArcGIS
10.2 software for the extraction of the basins and the stream networks. The Clip
tool under raster processing in Data Management tool extension is used for clip-
ping the projected mosaic DEM within the basin boundary to generate basin DEM.
Further, the projected basinDEM is processed using various tools, say fill, flow direc-
tion, flow accumulation, stream order raster and stream order vector, stepwise under
Hydrology tool in Spatial Analyst tool extension in ArcMap 10.2. The final step
of the processing of the basin DEM is the stream network generation. The streams
are obtained through the following steps like conditional (for flow accumulation),
stream order and stream to feature under hydrology tool extension in ArcMap 10.2.
The generated stream network shows the order of the streams.

The delineated basin and stream networks provide important results like length,
area, perimeter, and stream number. These data are analyzed using standard formulas
suggested by various scientists, namely Gravelius (1914), Horton (1932, 1945),
Miller (1953), Schumm (1956), Strahler (1957, 1964), Hadley and Schumm (1961),
Nookaratnam et al. (2005) as mentioned in Table 40.1 to compute the morphome-
tric parameters. The study of the various morphometric parameters and comparing
their values with standard values suggested by researchers helps in understanding
the hydrological behavior of the Kosi river basin.

40.4 Results and Discussion

In the present study, various morphometric parameters are computed and these
parameters are categorized under three heads, namely basin characteristics, linear
aspects, areal aspects and relief aspects of the basin. These parameters are compared
with standard values to understand the hydrological behavior of the Kosi river basin.

A. Basin Characteristics:

The basin length, basin perimeter and basin area are the most important param-
eters for the hydrologic design of a basin as these basin characteristics are required
to compute the various morphological parameters. From the analysis conducted
for basin characteristics, it is found that the basin length is high, having a value
of 261.429 km, which indicates the elongated shape of the basin. Moreover, the
basin area is 11175.679 km2 and the basin perimeter of Kosi basin is 985.876 km
(Table 40.2).

B. Linear Aspects of the Basin:

The linear aspects characterize the basin depending on the stream networks, drainage
pattern and order of the streams. In this study, the parameters, namely stream order,
stream length, mean stream length, stream length ratio and bifurcation ratio, are
determined to understand the linear aspects of the basin.
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Table 40.1 The formula used for computations of various morphometric parameters and their
references

Morphometric
parameters

Formula/definition References

Basin characteristics

Basin length, Lb
(km)

Lb = 1.312A0.568 where Lb = Basin length (km)
A = Area of the basin (km2)

Nookaratnam et al.
(2005)

Linear aspects

Stream order (u) Hierarchical rank Strahler (1964)

Stream Length (Lu) Length of the stream Horton (1945)

Mean stream length
(Lsm)

Lsm = Lu
Nu

where Lu = Mean stream length of a given order
(km), Nu = Number of stream segment

Horton (1945)

Stream length ratio
(RL)

RL = Lu
Lu−1

where Lu = Total stream length of order (u) Lu−1
= The total stream length of its next lower order

Horton (1945)

Bifurcation Ratio
(Rb)

Rb = Nu
Nu+1

where Nu = Number of stream segments present
in the given order Nu+1 = Number of segments of
the next higher order

Schumm (1956)

Mean bifurcation
ratio (Rbm)

Rbm = Average of bifurcation ration of all orders Schumm (1956)

Areal aspects

Form factor (Rf) R f = A
L2
b
where A = Area of the basin (km2)

Lb = Basin length (km)

Horton (1932, 1945)

Elongation ratio
(Re)

Re=Dia of circle having area of basin
Basin Length

Re = 2
√

A
π

Lb
where A = Area of the basin (km2)

Lb = Basin length (km)

Schumm (1956)

Circularity ratio
(Rc)

Rc = Basin area
Circle area having perimeter of basin

Rc = 4π A
P2 where A = Area of the basin (km2)

P = Perimeter (km)

Miller (1953), Strahler
(1964)

Shape factor (Bs) Bs = 1
R f

= L2
b
A where Lb = Basin length (km)

A = Area of the basin (km2)

Horton (1932)

(continued)

Stream Order (u):

Strahler (1964), has proposed that the smallest fingertip tributaries are designated
as 1st order; these two or more 1st order channels join to form 2nd order channel
segments; these two or more 2nd order join to form 3rd order channel segments
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Table 40.1 (continued)

Morphometric
parameters

Formula/definition References

Compactness
co-efficient (Cc)

Cc = Basin Perimeter
Perimeter of circle having basin area

Cc = 0.2821P√
A

where P = Perimeter (km)
A = Area of the basin (km2)

Gravelius (1914)

Drainage density
(Dd) (km/km2)

Dd = Lu
A

where Lu = Total length of stream (km)
A = Area of the basin (km2)

Horton (1932, 1945)

Length of overland
flow (Lo) (km2/km)

Lo = 1
2Dd

where Dd = Drainage density (km/km2)

Horton (1945)

Constant of channel
maintenance
(km2/km)

C = 1
Dd

where Dd = Drainage density (km/km2)

Schumm (1956)

Stream frequency
(Fs) (Streams/km2)

Fs = Nu
A

where Nu = Total number of streams of all order
A = Area of basin (km2)

Horton (1932, 1945)

Relief aspects

Basin relief (R) (m) R = H − h where H = Maximum elevation in
meter
h = Minimum elevation in meter

Hadley and Schumm
(1961)

Relief ratio (Rr) R f = R
Lb

where R = Basin relief
Lb = Basin length‘(m)

Schumm (1956)

Ruggedness
number (Rn)

Ro = R ∗ Dd
where R = Basin relief
Dd = Drainage density

Schumm (1956)

Table 40.2 Basin
characteristics of Kosi River
and their values

Sl. no. Morphometric
parameters

Symbol

Basin characteristics

1 Basin area A 11175.679 km2

2 Basin perimeter P 985.876 km

3 Basin length Lb 261.429 km

and so on. The highest order stream will be the one through which all discharge
and sediment pass. In the present study, Strahler’s Stream Ordering system, which
is slightly modified by Horton’s system, has been followed for ranking the stream
segments because of its simplicity. From this study, it is observed that ten sub-basins
are of 4th order; six sub-basins are of 5th order; eight sub-basins are of 6th order and
the rest four sub-basins are of 7th order. Thus, the entire Kosi basin is of 7th order,
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as shown in Fig. 40.3, indicating the degree of streams branching within the basin
region.

Stream Length (Lu):

Stream length (Lu) of a channel is a dimensional property that reveals the surface
runoff characteristics of a drainage network. Stream length of channel usually
decreases with increasing stream order as obtained in this study (Fig. 40.4). Short
length streams are representative of areas with large slopes and finer texture, whereas
longer length is generally indicative of low gradients. In this study, the plot of log
stream Length w.r.t. stream order showed the linear pattern, which indicates the

Fig. 40.3 Stream order map of Kosi River Basin showing basin is of 7th order
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Fig. 40.4 The plot of stream length versus stream order

Fig. 40.5 Geometric relationship b/w stream orders and log of stream lengths

homogeneous rock material subjected to weathering erosion characteristics of the
basin (Fig. 40.5).

Mean Stream Length (Lsm):

In the present study, Horton’s law of stream length is used to compute mean stream
length. For different basins, the mean stream length values are different as it is
proportional to the size and topography of the basins. From this study, it is observed
that mean stream length values for the basins have not much variation (Table 40.3).

Stream Length Ratio (RL):

In the present study, the mean stream length ratio value is observed to be 1.02, which
is due to the slope and topography of these basins. The average stream length ratio
value of the 6th order streams has a higher value compared to the other streams. This
indicates that the area drained by 6th order streams is more permeable, gentler than
streams of other orders.

Bifurcation Ratio (Rb):

The bifurcation ratio represents the branching pattern of the drainage network in a
given watershed. In the present study, the basin has a lower mean bifurcation ratio of
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Table 40.3 Linear aspects of Kosi River and their values

Sl. no. Morphometric
parameters

Symbol

Linear aspects

1 Stream order u 1 2 3 4 5 6 7

2 Stream
number

Nu 3371 1527 905 475 298 77 39

3 Bifurcation
ratio

Rb – 1/2 2/3 3/4 4/5 5/6 6/7

4 Mean
bifurcation
ratio

(Rb)bmean 2.21

5 Stream length Lu 4681.9 2210.1 1394.8 705.0 424.3 111.0 59.9

6 Mean stream
length

Lsm 1.39 1.45 1.54 1.48 1.42 1.44 1.54

2/1 3/2 4/3 5/4 6/5 7/6

7 Stream length
ratio

RL 1.04 1.06 0.96 0.96 1.01 1.07 –

8 Mean stream
length ratio

(RL)mean 1.02

2.21, indicating structurally less disturbed basins with high permeability and without
any distortion in the drainage pattern

C. Areal Aspects of the Basin:

The analysis conducted for areal aspects consists of two parts, namely, shape char-
acteristics and drainage characteristics. The shape characteristics include form
factor, elongation ratio, circulatory ratio, basin shape factor, and compactness coef-
ficient. The form factor outlines the form of the drainage basin. The smaller the
value of form factor, the more elongated will be the basin, that is, the basin will
be long narrow, having larger lengths. Elongation ratio values vary from 0 (in a
highly elongated shape with high relief) to 1 (in a circular shape with low relief).
The circulatory ratio is much influenced by the stream length, stream frequency
and stream gradient of a different order. The circulatory ratio value varies from 0
(elongated shape) to 1 (circular shape), where value >0.5 suggests that the basin is
more or less circular in shape. Basin shape factor is a measure of basin shape irreg-
ularity. The compactness coefficient is the relationship of the shape of the drainage
basin to a circle. If the value of the basin shape factor and compactness coefficient
is unity, then the basin would be a perfect circle. From the analysis conducted for
shape characteristics, it is found that the form factor of 0.16, elongation ratio of
0.46, the circulatory ratio of 0.14, the basin shape factor of 6.12 and compactness
coefficient of 2.63 show irregular and elongated basin shape with high permeability
and moderate slope in the region (Table 40.4).
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Table 40.4 Areal aspects of Kosi River and their values

Sl. no. Morphometric parameters Symbol

Areal aspects

1 Form factor Rf 0.164

2 Elongation ratio Re 0.456

3 Circulatory ratio Rc 0.144

4 Shape factor Bs 6.116

5 Compactness co-efficient C 2.631

6 Drainage density Dd 0.858

7 Length of overland flow Lo 0.583

8 Constant of channel maintenance Cc 1.166

9 Stream frequency Fs 0.599

The drainage characteristics include drainage density, length of overland flow,
stream frequency and constant of channel maintenance. Drainage density is an
important indicator of the linear scale of landform elements in stream eroded topog-
raphy, which indicates the closeness of spacing of the channels. Drainage density
varies with a wide dimension of geologic and climatic environments such that the
low value occurs in the regions of highly permeable subsoil materials under dense
vegetative cover with low relief, whereas the high value occurs in the region of weak
impermeable sub-surface materials under sparse vegetative cover with high relief. In
the present study, a low drainage density of 0.86 km/km2 indicates coarse drainage
texture and highly permeable subsoil under dense vegetative cover with low relief.
Length of overland flow is used to describe the length of a flow path of water
over the ground surface before it reaches the definite stream channels. Mathemat-
ically, it is half of the reciprocal of drainage density. Here, the basin has a higher
value; thus the region has longer flow paths, gentle ground slope, leads to less runoff
and high infiltration. Constant of channel maintenance depends on the perme-
ability, rock type, vegetation cover, relief and duration of erosion; mathematically,
it is the inverse of drainage density. The higher value of Stream frequency (>2.0
streams/km2) shows steep slopes, less permeable rock materials, greater runoff, less
infiltration, sparse vegetation and high relief conditions, whereas vice versa for low
values (<1.0 streams/km2). In the present study, a lower stream frequency of 0.60
streams/km2 and a higher constant of channel maintenance of 1.17 km2/km reveals
gentle ground slope, less runoff and more infiltration.

D. Relief Aspects of the Basin:

The relief aspects of the basin include basin relief, relief ratio and ruggedness
number.Basin relief controls the streamgradient and, therefore, influences the flood
pattern and the amount of sediment that can be transported (Hadley and Schumm
1961). From the analysis conducted for relief aspects, it is found that the basin
has a lower basin relief value of 91 m and a lower relief ratio value (Table 40.5).
Ruggedness number indicates the structural complexity of the terrain. Its low value



480 N. Kumar and R. Jha

Table 40.5 Relief aspects of
Kosi River and their values

Sl. no. Morphometric parameters Symbol

Relief aspects

1 Basin relief R 91

2 Relief ratio Rr 0.00035

3 Ruggedness number Rn 0.07806

justifies the low basin relief condition. This shows that the basin is in the valley
region, which also validates the findings of the present study.

40.5 Conclusions

The present study has proved that the Remote Sensing and Geographic Informa-
tion System technique is more efficient in watershed delineation and calculation of
morphometric parameters as it provides reliable and accurate results. The Kosi river
basin has stream order varying from 1 to 7, and the stream length is maximum in 1st
order streams, showing a maximum number of streams in the lower order. The linear
aspects of the basin, namely stream order, stream length ratio, bifurcation ratio, etc.,
indicate that the basin has a dendritic drainage pattern, high permeability and no
structural control. The form factor, elongation ratio and circulatory ratio show more
irregular, elongated and non-circular basin shapes. The drainage characteristics of
the basin reveal that the basin has a coarse drainage texture and high permeable
subsoil materials under dense vegetative cover. High length of overland flow and
lower stream frequency is the indication of a long flow path of the basins with gentle
ground slope, less runoff and more infiltration. The relief aspects justifying that the
basin is in the valley region. Based on this study, prioritization of various sub-basins
may be carried out, which will be very helpful in water, soil and natural resource
management.

This study is of greater importance in the geomorphological study of the basin and
further investigations in the prioritization of sub-basins of the Kosi River basin. The
prioritization of sub-basins will be helpful in identifying the groundwater potential
in the region. The results obtained in this study will be helpful in the generation of
thematic maps of drainage, slope and elevation for flood risk mapping of the basin
region. The results are also important for an extensive field survey.
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Chapter 41
Simulation of Impact of Climate Change
on the Performance of a Reservoir
System in Eastern India

Satabdi Saha, Debasri Roy, and Rajib Das

Abstract The work deals with the impact of changing climate on performance
of DVC (Damodar Valley Corporation), reservoir system (Fig. 41.1) (comprising
Tilaiya, Maithon, Konar and Panchet dams (multipurpose dams), Tenughat dam
(single purpose) and Durgapur barrage on river Damodar of India using HEC-5, a
simulation model for reservoir operation (developed by HEC, USA). The projected
climate has been taken from projected climate output (A1B scenario) of Regional
Climate Model PRECIS of Hadley Centre, UK prepared under IPCC (Intergovern-
mental Panel on Climate Change). Integrated operation and reservoir guide/ rule
curve of DVCAuthority was used from 1st of June (water year starting date in India)
for a future period (2018–2024). Simulations were executed for 1985–1990 (baseline
period) and for 2018–2024 (future period) with changed climate data (with current
demand and projected demand). The system performance (on a seasonal basis) using
“Performance Indices” (viz. volume reliability, time reliability, flood control index)
for the future scenario (with current demand) became better than that for base-
line condition in four seasons for Panchet reservoir. Reliability of meeting demands
(M&I) in November and December in 2020 (with 58% increased projected inflow in
comparison to baseline) with projected demand showed improvement (by 14%) over
those in October and in months of January to May in 2020 at Maithon reservoir. It
was noted that remarkably increased projected inflow (unseasonal) into the Panchet
(by 1286.8%) and Maithon (by 1014.4%) reservoirs with reference to a baseline
condition in March and May of 2022, respectively, caused flooding (unseasonal and
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high) downstream Panchet reservoir and bank full flow (unseasonal) downstream
Maithon dam in March and May. The results from the study would guide concerned
authorities for operating reservoirs for anticipated climate change.

Keywords Climate change · Reservoir operation · Performance indices · HEC-5
model · Guide curve

41.1 Introduction

Changing climate is currently an issue of great concern. Expected consequences of
changed climate are the modification of the hydrological cycle, leading to change in
rainfall pattern, increase in quantum and frequency of floods [6] and intensification
of drought and associated water issues [5]. Thus, climate change can impact reservoir
operation reasonably (and consequently on its performance) as the operation which
caters to various water demands as also control flood, is dependent on climate and
weather. South Asia (including India), which is houses poor people, emerges to be
vulnerable to changed climate and associated adverse socio-economic effects.

In this background, thework reports impact of changed climate onDVC (Damodar
Valley Corporation) reservoir system performance (Fig. 41.1) located on Damodar
river in India using simulationmodels (HEC-5 1998&HEC-HMS3.4) (developed by
HEC, USA). HEC-HMS (Hydrologic Modeling System) model was adopted for the
generation of inflow to the reservoir system. Simulationmodel HEC-5was employed
to analyze DVC system performance in fulfilling demands along with controlling
flood under changing climate (with both existing and projected demands) using
volume reliability, time reliability, flood indices.

Some studies are discussed here.
Ahmadi et al. (2015) studied the performance of Karoon-4 dam in Iran for future

periods (using the output of HadCM3 climate model (A2 emission scenario) and
adopting optimization algorithm, NSGA-II for optimization of operation rules of
the reservoir in conjunction with hydrologic model IHACRES. The result indicated
increased reliability and reduced vulnerability for the generation of hydropower with
adaptive management strategy (under climate change).

François et al. (2015) estimated the changed performance of multiobjective reser-
voirs (French Alps) using Dynamic Programming with clear, short, far-sighted
management policies for multimodel climatic simulations for SRES-A1B scenario.
Changes in hydro-meteorological variables rather than the changes in management
strategy affected the system performance appreciably.

Li et al. (2010) investigated the impact of changing climate (based on Coupled
Global Climate Model data) on flow and reservoir performance in, Northern
American Prairie watershed. The analysis unveiled an increase of occurrence of
high peak flow, an increase of volume of available water and also high reliability of
existing operation rules for drought protection, controlling of the flood.
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Minville et al. (2010) studied the impact of changing climate on reservoir opera-
tions (medium-term) for Peribonka water system Quebec, Canada. The projections
indicated an increase of inflow, early flow peaks, greater flow volumes for spring
flood and sensitiveness of reservoir to operating rules with the conclusion that rules
be reviewed for considering modified seasonal hydrological regime.

41.2 Study Area

India’s first river development project, DVC, was developed on the river Damodar.
Damodar, with three tributaries—Bokaro, Konar and Barakar—is an important trib-
utary system of Bhagirathi- Hugli (distributory of Ganga). The four dams namely
Tilaiya (on river Barakar), Konar (on river Konar), Maithon (on river Barakar, down-
stream Tilaiya dam) and Panchet (on river Damodar) and Durgapur barrage (on river
Damodar, downstream confluence of Barakar river and Damodar river) (Figs. 41.1,
41.2) were commissioned in 1953–1959. Tenughat dam (a single purpose reservoir)
was commissioned in 1978 on Damodar river, upstream Panchet dam.

Fig. 41.1 DVC system (Topographical view)
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Fig. 41.2 Outline Plan of DVC system

41.3 Data Acquisition

Reservoir operation data, flow, release from the reservoir (1996–2013), Muskingum
routing parameters, channel capacity, characteristic curves of the reservoir, guide
(or rule) curves of the reservoir, the demand of water (Fig. 41.3) were obtained from
DVC Authority. (0.5 × 0.5°) grid wise rainfall for 1978–2007 and grid wise (1 ×
1°) daily mean temperature for 1985–2007 were obtained from National Climatic
Centre, IMD, Pune. Daily rainfall and temperature, A1B scenario of PRECIS model
(0.44° × 0.44° lat./long.—grid wise) was obtained for 2018–2024 from IITM,
GoI, Pune. Other meteorological data (daily-1985–2007), namely relative humidity,

Fig. 41.3 Baseline and projected water demands in MCM at reservoirs and barrage (BS denotes
baseline scenario and PS denotes projected scenario)
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actual sunshine hours, wind speed, were obtained from IMD, GoI, Kolkata and those
for 2014–2025 were obtained from IITM, GoI, Pune. Information on the current,
future demand for water was taken from the report prepared by WAPCOS (Water
and Power Consultancy Services 2010).

41.4 Methodology

41.4.1 HEC-HMS Model

HEC-HMS model simulates the precipitation-runoff process of the watershed by
disintegrating the hydrologic cycle in pieces. Many common methods of hydrology
have been considered in the model. This model was used for generating inflow to the
reservoir system (HEC-HMS 2000).

41.4.2 HEC-5 Model

TheHEC-5model simulates reservoir operation (river network) for controlling flood,
supplying water, generation of hydropower and preserving water quality.

41.4.3 Performance Indices

The impact assessment was done using ‘Performance Indices’ for 1 June to 30
September (1st season), October (2nd season), 1 November to 31 December (3rd
season), 1 January to 31May (4th season) separately to consider variability in inflow,
the pattern of water demand, rule curve operation for four seasons.

The performance indices are:

1. Volume reliability (RI0)—Ratio of released water volume and target demand.
2. Time reliability (RI1)—Ratio of stages for which demands could be met and the

total stages in the simulation.
3. Flood Index (RI2)—Ratio between stages for which river overflows bank and

stages for which pool level lies in the flood storage zone.

41.5 Result and Discussions

The system performance (on a seasonal basis) for the future scenario (with current
demand) became better than that for baseline conditions in four seasons for the
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Panchet reservoir. Reasonably good local catchment flow and releases from upstream
reservoirs viz., Tenughat and Konar reservoirs (due to sufficient inflow in respec-
tive catchments) helped to maintain reliability level as that of baseline scenario for
Panchet reservoir.

However, a decrease of volume reliability (by 49 and 48%) and time reliability (by
51 and 55%) (Fig. 41.4a–d) with reference to baseline period was noted at Panchet
reservoir in meeting at site projected M&I demands in 4th season of 2019 and 2020
respectively. Poor performance in both years is driven by corresponding high water
requirements projected for the future.

Also, the study indicated decreased volume and time reliabilities with current
demand (by 31 and 65%) and future demand (by 35 and 61%) (Fig. 41.4a–d) over
the corresponding baseline condition for Maithon reservoir in 2nd season of 2020.
The analysis unveiled that decrease of projected inflow (by 80%) in 2020 and rule
curve bounded operation in 2nd season (for both existing and future conditions)
resulted in poor performance for the Maithon reservoir. Further, rule curve bounded
operation, projected demand and decrease of projected inflow (by 75%) in 2023 in
2nd season led to decrease of volume (by 33%) and time (by 31%) reliabilities for
Maithon reservoir in 2023.

Again, reliability of meeting M&I demands in 3rd season of 2020 (with 58%
increased projected inflow with reference to that of baseline) with projected demand
showed improvement (by 14%) (not shown) over that of 2nd season and 4th season
in 2020 at Maithon reservoir. But still, the performance was unable to be restored
to that of the baseline scenario. This is due to the detrimental effect of the future
(increased) demands as reliability is limited by available inflow and high demand.

Decreased of projected inflow at Durgapur Barrage in 4th season, 2019 (by
15.84%) in and in 2nd season, 2020 (by 17.42%) resulted in poor performance with
projected demand—the volume reliability was found to decrease by 56 and 62%
in 4th season and by 19 and 41% (Fig. 41.4a–d) in 2nd season of 2019 and 2020
respectively. Guide curve bounded operation in Maithon and Panchet reservoirs in
2nd season and enhanced demand resulted in poor performance (decrease of relia-
bility) for at site demand of Durgapur Barrage. However, with current demand and
projected flow, reliability remained unchanged for Durgapur Barrage.

It was noted that remarkably increased projected inflow (4th season) into the
Panchet (by 1286.8%) and Maithon (by 1014.4%) (Fig. 41.6a–d) reservoirs with
reference to a baseline condition in March and May of 2022 respectively caused
flooding (4th season) downstream Panchet reservoir and bank full flow (4th season)
downstream Maithon reservoir in March and May.

An increase of volume reliabilities in 4th season (by 7–35% and by 26–27%)
was noted at Maithon and Panchet reservoirs due to the aforementioned increased
projected inflow. Remarkably good performance (increased by 4–56% compared to
baseline period) was noted in the case of Konar reservoir in 2nd season and 3rd
season of future years (not shown).

Highflow spanning over four days in 4th season of 2022 fromKonar, Tenughat and
Panchet catchments caused flooding downstream Panchet reservoir for one day only
due to elegant flood control operation executed by reservoirs during the full duration
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Fig. 41.4 (a–d) Performance indices in baseline and projected years for reservoir system
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Fig. 41.5 End of period storage on 31 May in baseline and projected years at Maithon and Panchet
reservoirs

of high flow event. High flow for three consecutive days in March 2023 in the upper
stretch of river Damodar system caused flooding downstream Panchet reservoir for
one day and kept flood storage in Panchet reservoir full for six consecutive days.

A decrease of volume reliability (by 14% with reference to baseline period) was
noted in 1st season of 2023 (not shown) with projected demand at Panchet reservoir.
Comparatively low inflow (by 44% with reference to the baseline period) was noted
during this period.

End of period storage atMaithon reservoir at the end of 4th seasonwas found to be
increased (by 49%with reference to baseline period) in 2021 and 2022 (Fig. 41.5) due
to increased projected inflow in 4th season (Fig. 41.6a–d) (by 407% and 1014.35%
with reference to baseline inflow) in 2021 and 2022 respectively. This led to compar-
atively better performance (volume reliabilities increased by 12% and by 35% with
reference to volume reliabilities in 4th season of other projected years) in 2021 and
2022, respectively, at Maithon reservoir.

41.6 Conclusions

Simulations of the impact of changing climate on the performance of the DVC
reservoir system were executed for the baseline period (1985–1990) and future
period (2018–2024) (with current demand and projected demand) with the simu-
lation models HEC-HMS and HEC-5. The impact assessment was executed with
performance indices (volume reliability, time reliability and flood index) for four
seasons. The analysis unveiled the following aspects.

The system performance (on a seasonal basis) for the future scenario (with current
demand) becamebetter than that for the baseline period in four seasons for thePanchet
reservoir. Again, reliability of meeting M&I projected demands in 3rd season in
2020 (with 58% increased projected inflow with reference to that of baseline) with
projected demand showed improvement (by 14%) over that of 2nd season and 4th
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Fig. 41.6 (a–d) Percentage of projected inflow with reference to a baseline condition in 1st, 2nd,
3rd and 4th season respectively
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season in 2020 atMaithon reservoir. It was noted that remarkably increased projected
inflow (4th season) into the Panchet (by 1286.8%) and Maithon (by 1014.4%) reser-
voirs with reference to baseline period inMarch andMay of 2022 respectively caused
flooding (4th season) downstream Panchet reservoir and bank full flow (4th season)
downstream Maithon reservoir in March and May.

The results from the study would guide concerned authorities for operating
reservoirs for expected climate change.
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Chapter 42
Assessing the Impact of Spatial
Resolution on Land Surface Model Based
on Hydrologic Simulations

Aiendrila Dey and Renji Remesan

Abstract Though land surface models (LSMs) are originally developed for repre-
senting water fluxes, carbon fluxes and energy fluxes between land and atmosphere,
recently LSMs are being used for hydrological simulation because it has some posi-
tive traits in comparison to conventional hydrological models. In this study, the
Joint UK Land Environment Simulator (JULES), a land surface scheme of the Met
Office Unified Model (UM), is implemented to study the effect of different spatial
resolutions on streamflow simulation at the Krishna River basin (catchment area
2,60,000 km2), India. The meteorological datasets used here are WFDEI (WATCH-
Forcing-Data-ERA-Interim) global data at the resolution of 1° × 1° and 2° × 2°.
The simulation is run for 2001–2008 period with 3 years (2001–2003) of spin-up
with 50 spin-up cycle and further simulation of years from 2004–2008. To assess the
performance of the stream flow simulation, appropriate statistical parameters such as
mean error (ME), root-mean-square-error (RMSE), percentage BIAS (PBIAS) are
used to see error statistics. The study results indicate that spatial resolution of routing,
driving and ancillary data has a significant effect on model output at the river basin
scale. Though we have implemented the simulations in coarser resolutions, such
studies on hydrological fluxes with a change of spatial resolution are important to
know associated uncertainties with driving data and routing data resolution selection,
this, in turn, would also help researchers to make meaningful management decisions
to deal with future water security issues.

Keywords JULES · Input resolution · Krishna River basin · India

42.1 Introduction

Water is the most vital element for humans and all other living beings, and its
availability is getting diminished drastically due to various factors, especially in
developing countries. Owing to monsoon rainfall and glacial snowmelt, India is well
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nourishedwith freshwater, but the temporal and spatial variations of freshwater avail-
ability are highly dynamic; Existing water use pattern in the country is also getting
distorted by the combined effect of climate change and other anthropogenic aspects
(Mall et al. 2006). Some studies have shown strong evidences of the impact of land
use and climate changes onwater resources in various parts of the Indian subcontinent
with compounded effects of changes in cropping pattern, land use and land cover,
over exploitation of groundwater etc. which have influenced hydrological processes
and hydrological behavior of river basins (Mall et al. 2006; Rahman and Rosolem
2017). Most of the Indian River basins are densely populated and intensively culti-
vated regions, so even a small change in climate and land use land cover can make
an enormous effect on the hydrology of the basin (Dwarakish and Ganasri 2015).
Thus, reliable prediction and understanding of climate change impact on hydrological
fluxes and comprehensive assessment of future water availability through integrated
models are a matter of greater importance in Indian scenarios.

To account for multifaceted complex hydrological issues in river basins, policy-
driven outputs from hydrological and land surface models are encouraged and
employed (George et al. 2009). Different hydrological models are available in the
literature for determining future climate change impact on hydrological fluxes in
Indian River basins. But the hydrological parameters in models are very sensitive
to the spatial resolution of input data. Vema et al. (2018) observed the impact of
different spatial resolution gridded precipitation data and varying sub-basin sizes
on river basin discharge and sediment yield on the SWAT model. They noticed that
sediment yield and peak flow of hydrograph decreased with finer resolution precip-
itation data. Haddeland et al. (2002) applied the VIC model to Arkansas-Red and
Columbia River basin and observed that total runoff decreases with the increase in
spatial resolution. Fu et al. (2011) discussed how recharge, stream discharge, runoff
and groundwater head have changedwith six different spatial resolution precipitation
input at Alergaarde catchment in Denmark with the help of the MIKE SHE model.
So, from past studies, it can be said that it is very important to choose a correct spatial
resolution for simulating hydrological variables, especially in the case of large scale
hydrological models and land surface models. In recent years, land surface models
are getting popularized for estimating hydrological fluxes; thus, this study focusing
on hydrological simulations with JULES LSM, which has the capability to simulate
energy, water and carbon fluxes at different spatial and temporal scales.

In this study, we have applied the JULES land surface model to study the hydro-
logical behaviour in the Krishna river basin at default settings. This study further
explored the influence of scaling aspects on river flow prediction when the JULES
model is driven with two different spatial resolutions (1° × 1°, 2° × 2°) input data.
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42.2 Study Area

Krishna is the fourth largest river basin in India, lies in the Southern Indian peninsula,
located between 73°17′ to 81°9′ east longitudes and 13°10′ to 19°22′ north latitudes
covers three states of Karnataka, Andhra Pradesh and Maharashtra and serves a
population of approximately 70 million (George et al. 2009). The length of the
Krishna River is 1300 km and the drainage area of this basin is 258,948 km2. It
originates from the Western Ghats near Jor village of Satara district of Maharashtra
at an altitude of 1337 m just north of Mahabaleshwar. The main tributaries of this
river are Ghataprabha River, Malaprabha River, Bhima River, Tungabhadra River
and Musi River. The cultivable area of this basin is about 203,000 km, which is
75.86% of the total basin area.

42.3 Materials and Methods

42.3.1 JULES Model

JULES, a third-generation LSM represents energy, water and carbon flux exchanges
between the land surface (Slevin et al. 2015) and atmosphere and also represents
some other gasses such as ozone and methane. In JULES total of nine surface types,
that is, five plant functional types (Needle leaf trees, Broadleaf trees, C4 (tropical)
grass, shrubs), C3 (temperature) grass, and four non-vegetation types (Inland Water,
Urban, Land-ice, Bare soil) are normally used. For representing each surface type,
the tile approach is used, and for each tile, separate energy balance is calculated
(Rahman and Rosolem 2017). JULES consider four layers of soil column in the
subsurface. The thickness of the soil column is 0.1, 0.25, 0.65 and 2 m, respectively,
varying from the top layer to bottom layer (Tsarouchi et al. 2014). Darcy–Richards’s
equation is used for the calculation of water exchange between soil layers (Tsarouchi
et al. 2014). In this model, precipitation is partitioned into canopy interception and
through fall (Tsarouchi et al. 2014). The potential evaporation is estimated by the
Penman-Monteith equation and it is assumed that canopy evaporation will occur at
the potential rate (Tsarouchi et al. 2014). So, it is very advantageous to use JULES
model because it has a flexible and modular structure where one can introduce new
elements of science as well as new modules into the model (Best et al. 2011). The
input driving data required by JULES are incoming short wave radiation, longwave
radiation, precipitation, temperature, specific humidity, wind speed and surface pres-
sure (Tsarouchi et al. 2014). Spatial datasets, that is, soil properties (hydraulic and
thermal parameter values), land cover and DEM-derived gridded flow directions and
accumulated areas, are the ancillary data required by JULES.

Two schemes (TOPMODEL and PDM) are introduced in JULES to represent sub-
grid scale heterogeneity in soilmoisture. TOPMODEL is amore complicated scheme
that depends on the topographic information to calculate saturation excess runoff and
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represents heterogeneity throughout the soil column (Best et al. 2011). PDM is much
simpler than TOPMODEL scheme and represents heterogeneity only on the top soil
layer depends upon soil water content, soil water content at saturation and shape
parameter. TOPMODEL is suitable for calculating water table and wetland fractions
and PDM is suitable for representing surface runoff. Two river routing model, Total
Runoff Integrating Pathway (TRIP) and Rapid Flow Model (RFM) is included in
JULES 2011, which follows 1-D kinematic wave equation described by Bell et al.
(2007) and Dadson et al. (2011), (MacKellar et al. 2013).

42.3.2 Data Sets

In this paper, we use driving data from WATCH-Forcing-Data-ERA-Interim
(WFDEI) to drive JULESLSM.WFDEI is the updatedversionofWFDdatasets based
on ERA-Interim reanalysis data available for the period of 1979–2012 (Weedon et al.
2014) at 3 hourly time steps.WFDEI datasets have two precipitation products-GPCC
version 6 and 7 (Global Precipitation Climatology Centre) and CRU TS3.1/TS3.21
(Climate Research Unit at the University of East Anglia). These two precipitation
data are referred as WFDEI-GPCC and WFDEI-CRU. The driving datasets avail-
able in WFDEI are- 10 m wind speed (ms−1), 2 m temperature, surface pressure,
2 m specific humidity, Downward shortwave radiation flux, Downward longwave
radiation flux, rainfall rate and snowfall rate (Weedon et al. 2014).

Soil properties, land cover classification data, vegetation fraction, TOPMODEL
parameters are used in this model at two horizontal spatial resolution (2° × 2°, 1° ×
1°) provided by Slevin et al. (2017). In this dataset, HarmonizedWorld Soil Database
version 1.2 was used for calculating different soil parameters such as soil hydraulic
properties, soil thermal properties, etc. (Slevin et al. 2017).

42.3.3 Model Experiments

In this study, JULES LSM is simulated for the period of 2001–2008 with 3-year
spin-up period using different resolution meteorological datasets Two different reso-
lution (1° longitude × 1° latitude and 2° longitude × 2° latitude) used in this study
for evaluating the impact of spatial resolution variability on hydrological fluxes. A
complete input dataset (land use and soil map, model parameters, time series of the
meteorological dataset) has been allotted for each grid point. It is mandatory to reach
the equilibrium state for the model before each run. For initialization of the model
internal state and achieving its equilibrium spin-up period plays an important role
(Tsarouchi et al. 2014). In this paper, 3 years (2001–2003) of the spin-up period
is used with 50 spin-up cycles. After completion of each spin-up cycle, the model
ensures its equilibrium by comparing the value of soil moisture and soil temperature
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at the beginning of the cycle. If the value of simulated soil moisture and soil temper-
ature is less than 1 kg/m2 and 1%, respectively, then the model is considered to be
fully spun-up and then it continues to do the main simulation (Zulkafli et al. 2013).

42.4 Results and Discussion

In this study, the Total Runoff Integrating Pathways (TRIP) river flow routing scheme
has been applied to the Krishna river basin for streamflow simulation. Model simu-
lated daily streamflow hydrograph is compared with observed data at two gauging
stations (Karad and Wadenapally) of the Krishna basin. To study the effect of spatial
resolution on the JULES model derived streamflow output, the observed data is
compared with modelled data by means of statistical parameters like mean error
(ME), root-mean-square-error (RMSE), and percentageBIAS (PBIAS).WhileKarad
lies on the upstream side of theKrishna basin,Wadenapally is at the downstream loca-
tion. Figure 42.1 shows the model simulated daily streamflow values with observed
data at Karad gauging station at two different spatial resolutions.

The figure indicates that the temporal pattern of the streamflow hydrograph is
well evaluated by the model in the upstream Karad gauging station at 1° resolution.
Though at both spatial resolutions, the model estimates the timing of peaks and
recession limb reasonably well, the peak value is underestimated at 1˚ resolution and
the streamflow response is overestimated at 2˚ spatial resolution. The value of co-
relation co-efficient is 0.448 and 0.432 at 1° and 2° resolution, respectively. JULES
model showed a different behavior at the downstream location of the basin. The
comparison between daily observed and simulated streamflow at the Wadenapally
gauging station is shown in Fig. 42.2. This figure indicates that model shows very
poor performance at theWadenapally gauging station compared to theKarad gauging
station at both resolutions as the model is not able to take the effect of storage
structure on streamflow hydrograph. As shown in Fig. 42.2 JULES underestimate
the streamflow response at 1° resolution with large negative bias in summer season
and post-monsoon season and overestimate at 2° resolution with large positive bias
in monsoon and winter season.

The temporal pattern is also notwell captured by themodel at 1° resolution and the
simulated peak is formed just before the observed peak. Flow routing at large spatial
scales can result in an overestimation of high flows (Arora et al. 2001); this could be
the reason for larger positive bias in 2° resolution. The co-relation co-efficient is 0.296
and 0.339 at 1° and 2° spatial resolution, respectively. The root mean square error
(RMSE) and mean error (ME) for both river basins at 1° resolution and 2° resolution
are shown in Table 42.1. If we perform the flood routing at 5–25 km spatial resolution
just like in traditional hydrological applications, JULES performance may improve
considerably. Another important thing to note that this study has not performed
calibration of flood routing parameters separately for the Krishna basin; instead, we
are using default values.
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Fig. 42.1 Observed and simulated streamflow hydrograph at Karad gauging station during 2004–
2008 periods a at 1° resolution b at 2° resolution

The values indicate that the model calculates the streamflow better at winter and
summer months compared to monsoon and post-monsoon periods. This itself indi-
cates that more refinement is needed on parameters that decide base flow. The RMSE
andME values are quite high for both resolutions at theWadenapally gauging station
compared to the Karad gauging station. The model settings with default parame-
ters indicate a clear connection with the hydrological performance of JULES and
model/input grid resolutions. The differences in results from upstream and down-
stream gauging stations indicate the scale influence of river flow routing scheme in
the JULES. A detailed diagnostic approach of model evaluation needs to be done to
see overall water balance predicted by JULES model focusing on other components
like soil moisture, evapotranspiration and base flow. However, the model simulated
values presented in this paper are very preliminary results and future improvement
by parameterization will be done for better prediction of hydrological fluxes.
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Fig. 42.2 Observed and simulated streamflow hydrograph at Wadenapally gauging station during
2004–2008 periods a at 1° resolution b at 2° resolution

42.5 Conclusion

This study has applied JULES in the Krishna River basin to investigates how effec-
tively this model represents the hydrological fluxes and water balance at different
spatial scales (1° × 1°, 2° × 2°) with default settings. Our preliminary results indi-
cate that though, our current preliminary settings are failing to reach peak values
properly, the JULES model can be considered as a promising alternative for large
scale simulation in base flow dominated Indian rivers like Krishna if driven in proper
spatial-temporal scales. When we have driven the model for river runoff simulation
with 1° routing data, the model performance was better with 1° than 2° resolutions,
which would get better if further simulated with a high resolution routing grid. It
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Table 42.1 Streamflow statistics for different seasons when the JULES model simulated at 1° and
2° resolution during 2004–2008 periods

Gauging station Resolution Performance score DJF MAM JJA SON

Karad 1° ME −22.05 34.79 399.9 239.45

RMSE 26 195.31 765.28 332

PBIAS −81.61 106.85 56.54 174.5

2° ME 3.94 294.2 4058.95 1425.24

RMSE 32.11 916.63 4864.2 1,986

PBIAS 14.58 903.55 573.89 1,039

Wadenapally 1° ME −141.09 286.86 914.95 −198.75

RMSE 178.01 603.42 2669.06 1151.27

PBIAS −79.92 289.25 61.11 −13.26

2° ME 163.21 804.62 10471.33 7146.305

RMSE 335.65 1454.02 11828.8 8457.49

PBIAS 92.45 811.32 699.39 476.86

DJF = December to February, MAM = March to May, JJA = June to August, SON = September
to November

shows that the resolution of river routing data is crucial in better hydrology represen-
tation in JULES and the modeler needs to ensure that the model has an appropriate
river routing geometry representation before actual simulation. In short, our study
indicates that hydrologic predictions may become unreliable with large uncertainties
at river basins if the model is not properly selecting river routing, driving and ancil-
lary data resolution. It directs to the need for further research on JULES to identify
the correct resolution of the model grid and routing grid for the Krishna basin to
represent the hydrological functions effectively.
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Chapter 43
Infilling Missing Monthly Maximum
and Minimum Temperature Dataset
by EM Algorithm Followed
by Distribution Based Statistical
Assessment Using Eight Absolute
Homogeneity Tests

P. Kabbilawsh, D. Sathish Kumar, and N. R. Chithra

Abstract In the current research, missing value analysis and tests for the pres-
ence of homogeneity were applied to the temperature records obtained from seven
meteorological observatories spread throughout the state of Kerala. The monthly
mean maximum and mean minimum temperature datasets of observatories managed
by the Indian Meteorological Department (IMD) for the period 1969–2015 were
considered. During analysis, every observatory was studied independently and those
observatories which are having missing values for five continuous years, and more
were rejected. The missing records were estimated using the Expectation Maxi-
mization Algorithm (EMA). The infilled dataset needs to be hydrologically as well
as statistically stable for later hydrological and meteorological assessments. The
reliability of datasets was tested using eight statistical absolute homogeneity tests.
Before applying the homogeneity tests on the datasets, their assumptions must be
fulfilled; one predominant assumption is regarding the normal distribution of the
dataset. Thereby, the datasets are checked for normality behaviour by four statis-
tical tests, namely Skewness z-ratio, Kurtosis z-ratio, Kolmogorov–Smirnov (KS)
and Shapiro–Wilk (SW) test. Out of 14 datasets consisting of seven mean monthly
maximumand sevenmeanmonthlyminimum temperature, ten datasetswere found to
be normal at 95% level of confidence (LOC) and the rest four were highly skewed and
kurtotic. Following the normality tests, eight statistical absolute homogeneity tests
were applied individually on the annual scale by which non-homogeneous stations
were detected and eliminated. The datasets which resembled normal behaviour were
tested using parametric homogeneity tests such as Linear Regression, Student’s t-
test, Cumulative Deviation and Worsley Likelihood Ratio test. Out of normally
distributed datasets, only three datasets were statistically homogenous at 99% LOC,
and seven datasets failed to clear the homogeneity test. Remaining four non-normally
distributed datasets was checked for homogeneity by applying non-parametric tests,
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such as Distribution-Free CUSUM, Rank-Sum,Median Crossing and Turning Points
test. Out of four datasets, three were homogenous at 99% LOC and one failed
homogeneity test.

Keywords Expectation Maximization Algorithm (EMA) · Test for normality ·
Skewness and kurtosis z-ratio · Parametric and non-parametric homogeneity test ·
Kolmogorov–Smirnov (KS) and Shapiro–Wilk (SW) test

43.1 Introduction

A large number of studies have been carried out in the last decade on the global,
continental and regional level for long-term temperature variations (Hänsel et al.
2016); following it several attempts have been made to develop a model for under-
standing and extrapolating the temperature variations (Mohanty et al. 1997). The four
deciding factors in the development of a precise model are the length of data, amount
of missing values in the observatories used for regional level analysis, adequacy
of the number of stations occupying the study area and the quality of the dataset.
The quality of temperature datasets decides the accuracy and reliability of model
outcomes in studies related to climate change, drought modelling, flood modelling
and modelling associated with hydrologic and meteorological studies. Long-term
datasets are termed as ‘homogenous’ when the values present in the dataset undergo
changes in their respective indigenous pattern byvariations causedonlydue to climate
variability or climate change or climate resilience. Inhomogeneities are non-climatic
induced changes or alterations in the indigenous model of long-term time series.
Inhomogeneities may be caused due to change in traditional methodology followed
formeasuring the parameter (rainfall, temperature, humidity, the percentage of partic-
ulate matter), sudden changes in conditions in the area surrounding the station or a
decrease in the infallibility of the measuring device.

In the current study, the Expectation-Maximization algorithm (EMA) is applied
as a point estimator for filling data gaps. Maximum Likelihood Estimation (MLE) is
a statistical method for finding the parameters of any particular probability model.
EMA is an iterative MLE method that can infill unobserved/missing or incomplete
data. The literature indicates that EMA is generally applied for two specific cases.
Thefirst case iswhen long-term time-series datasets have gaps because of shortfalls or
errors while observations are recorded. The second case is when likelihood estimates
of the parameter of the function are determined by taking into consideration that
function has an inherent latent behaviour.

Techniques used for infilling data gaps can be classified into two approaches.
First one is the distribution-based approach (DIBA), and latter one is the data-based
approach (DABA). The statistical algorithm is rewritten to enhance the estimate of
missing values and estimates of particular distribution, which are all determined
on one stage in DIBA, Whereas in DABA, filling the data gaps is the first step,
on completion of which it proceeds to the second stage (which is the estimation
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of the distribution parameter). EMA behaves both as DIBA and DABA depending
upon the application. If EMA is applied to obtain parameter estimation in relation
to a particular incident, then EMA can be termed as DIBA. EMA is used to obtain
standard results such as variance, covariance matrix and vector of means, which is
then used as input data for analysis in proceeding the step; this makes EMA more of
a DABA.

Application of EMA as a data filling technique is not much explored in hydrolog-
ical and meteorological studies. A few examples of EMA in the area of hydrology
is listed here. A comparative analysis of artificial neural schemes and EMA was
performed (Nelwamondo et al. 2007) and proved that EMA is better suitedwhen there
is little or no interdependency between the input variables. Simulated surface temper-
ature, a typical climate data setwas used to demonstrate the applicability ofEMAover
traditional non-iterative methods and proved it leads to better estimates (Schneider
2001). EMA was used to fill missing monthly temperature values of stations using
adjacent stations as reference stations, and subsequently, the performance of infilled
data was analysed by several statistical criteria such as correlation coefficient, effi-
ciency and normalised root mean square error (Firat et al. 2010). EMA was used to
develop a new daily rainfall model that used concurrent values of the surrounding
station to increase the accuracy of estimation, which was completely different from
the conventional daily rainfall generation scheme (Ahn 2009). EMA along with
singular value decomposition performed well for patching monthly rainfall, which
was concluded based on their performance test (Makhuvha et al. 1997). Fromall these
recommendations, EMAwas applied in the current study for effectively handling data
gaps.

43.2 Expectation Maximization Algorithm (EMA)

Inverse dependence among the model’s parameter and the missing data values forms
the basis of formulation in EMA. The inherent assumption of EMA is missing values
are missing completely at random (MCAR), which implies the probability of unob-
served/missing data is independent of the missing values itself (Rubin 1976). The
EMA is comprised of two stages: The Expectation stage (E-stage) and the Maxi-
mization stage (M-stage). Considering the available observed/present data and along
with distribution’s parameter estimates, E-stage finds the predicted expectation of
the missing value. The M-stage determines the model’s parameter estimates in order
to maximise the value of the full data log-likelihood function from the E-stage. The
two stages are continuously applied again and again consecutively until the iteration
converges. For each cycle, EMA updates the measure θn, of the latent parameter θ

for n number of iterations.
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43.3 Check for Assumption of Normality

A normal distribution is a type of distribution that is always symmetrical about the
mean of the population and has the shape of a bell-curved in nature. Many parametric
statistical tests require the dependent variable to be at least approximately normally
distributed to some extent. Normality tests are those which are applied to the given
sample data to check whether the given sample data belongs to a normally distributed
population and also measure the degree of normality behaviour. The following are
the basic requirements for a dataset to be termed as normally distributed.

• The dataset should be continuous, and the measure of the dataset should be scale
type and not ordinal or nominal in nature.

• The Skewness and Kurtosis value for a particular dataset should be of a smaller
magnitude and preferably closer to zero.Aminor deviation fromzero is acceptable
when the overall values are not large enough in comparison to their respective
standard error.

• The Skewness and Kurtosis are divided by standard errors, and they are termed
as Skewness and Kurtosis z-scores, respectively (Cramer and Duncan 1998). The
z-score should not be significantly different from the required LOC (such as 95%
or 99%).

• The null hypothesis of the Shapiro–Wilk (SW) and Kolmogorov–Smirnov (KS)
normality tests is that data are normally distributed (Razali and Wah 2011). In
order to reject the null hypothesis p-value should be greater than the α-value. If so,
then we fail to reject the null hypothesis and the data are approximately normal.

43.4 Homogeneity Test

The homogeneity tests are broadly classified as ‘Absolute techniques’ which makes
use of series data itself and ‘Relative techniques’ which makes use of informa-
tion obtained from surrounding observatory, commonly known as reference obser-
vatories. Literature survey reveals that there are many relative and absolute tech-
niques. However, in comparison to relative techniques, absolute techniques have
been frequently used due to the non-availability of an observatory in the surrounding
area and mathematical complexity invovled in applying relative methods (Wijn-
gaard et al. 2003). Absolute techniques are preferred over relative techniques as
they are developed to reduce the effect of autocorrelation in meteorological datasets
(precipitation and temperature). The absolute techniques are further classified as
the distribution based and non-distribution-based techniques, depending on their
normality behaviour. Eight well-known homogeneity tests have been selected to test
the datasets. Out of eight tests four were applied to those datasets that cleared the
normality test and rest four were applied to those datasets that failed to clear the
normality test.
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Distribution-based absolute homogeneity tests applied are Cumulative Deviation
test, Worsley’s likelihood ratio test, Student’s t-test and Linear Regression test. Non-
distribution based absolute homogeneity tests used are Distribution Free CUSUM
Test, Rank sum test, Turning points test and Median crossing test.

43.4.1 Distribution-Based Absolute Homogeneity Test

The following test needs the dataset to be normally distributed and it’s termed as
parametric tests.

43.4.1.1 Cumulative Deviation Test

This test checks whether the average of two parts of a dataset is significantly different
(for an unknown time of change). This test’s main function is to find a change in the
average value of a time series dataset after q observations.

E(xi ) = μ i = 1, 2, 3 . . . q (1)

E(xi ) = μ + � i = q + 1, q + 2, . . . n

where μ is the average of the dataset belonging to the series before the change point
and� is the change in the average value. The cumulative deviations from the average
values are calculated as:

S∗
0 = 0 S∗

k =
k∑

i=1

(xi − x̄) k = 1, 2, 3 . . . n (2)

and the rescaled adjusted partial sums are obtained by dividing the S∗
k values by the

standard deviation:

S∗∗
k =

{
S∗
k

Dk

}

D2
x =

n∑

i=1

(xi − x̄)2

n
(3)

The test statistic Q is: Q = max|S∗∗
k | and is determined for every single year,

with the largest score expressing the most probable change point. A negative score
of S∗

k expresses that the second part of the dataset has a larger average value than the
earlier part and vice versa.
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43.4.1.2 Worsley Likelihood Ratio Test

This test checks if the average of values in two sections of a dataset is different (for
an unknown time of change). The function of this test is to find a change point in
series, the average value after n observations and to calculate the value of S*k. It also
weighs the value of S*k by depending on their relative position in the time series. If
the outcome of the series is negative, it means the second part of the series has a
higher average value in comparison to its earlier part and vice versa.

Z∗
k = S∗

k

[K (n − k)]0.5
Z∗∗
k =

{
Z∗
k

Dx

}
(4)

The test statistic is given by W = (n−2)0.5V
(1−V 2)0.5

where V = max|Z∗∗
k |

Several comprehensive materials on the Student’s t-test, Distribution-free
CUSUM test and Linear regression test are available which address the definition,
derivation, graphical plots and criterion with clarity (Shao and Zhang 2010).

43.4.2 Non-distribution Based Absolute Homogeneity Test

The following test does not need the dataset to be normally distributed and it is
termed as non-parametric tests.

43.4.2.1 Rank-Sum Test

The method breaks the series into two parts and checks whether the median in two
different periods is different. The data is ranked from smallest to largest. In the case
of ties, average values are used. The number of data values in the smaller group is
given as n and while the larger group is given by m. A test statistic s is defined as the
sum of ranks of observation in the smaller group, the theoretical mean and standard
deviation of s under Ho is given by

μ =
{
n(N + 1)

2

}

σ =
[
nm(N + 1)

12

]0.5

(5)

The standardised form of the test statistic Zrs is computed as:



43 Infilling Missing Monthly Maximum and Minimum Temperature Dataset … 509

Zrs =
{
s − 0.5 − μ

σ

}
if s > 0

Zrs =0 if s = 0

Zrs =
{
s + 0.5 − μ

σ

}
if s < 0 (6)

43.4.2.2 Median Crossing Test

The n time series values are replaced by 0 if xi< xmedian and by 1 if xi> xmedian. If
the time series data come from a random process, then m (the number of times 0 is
followed by 1 or 1 is followed by 0) is approximately normally distributed with:

μ = (n − 1)
/
2

σ = (n − 1)
/
4 (7)

The z-statistic is, therefore, given by (critical test statistic values for various
significance levels can be obtained from the normal probability tables):

Z = |m − μ|σ 0.5 (8)

43.4.2.3 Turning Points Test

The dataset consisting of n values are assigned a score of one if xi-1< xi> xi+1 or if
xi-1> xi< xi+1., else they are given a value as 0. The number of times 1 appears (m) is
approximately normally distributed with:

μ = 2(n − 1)
/
3

σ = 16(n − 29)
/
3 (9)

The z-statistic is, therefore (critical test statistic values for various significance
levels can be obtained from normal probability tables):

Z = |m − μ|σ 0.5 (10)
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43.5 Study Area and Available Data

The state of Kerala is located approximately between 8°15’N and 12°50’N lati-
tudes and between 74°50’E and 77°30’E longitudes. As the monsoon enters the
Indian sub-continent through Kerala, the state is widely recognized as “Gateway of
summer monsoon” over India. The mean maximummonthly temperature (MMAX),
highest maximummonthly temperature (HMAX), mean maximummonthly temper-
ature (MMIN), lowest minimum monthly temperature (LMIN), date of occurrence
of HMAX and LMIN, number of occasions of temperature value more than MMAX
and lower than MMIN, respectively, for seven stations for the period 1969–2015
covering the entire state of Kerala was provided by Indian Meteorological Depart-
ment (IMD). The spatial locations of the observation sites are shown in Fig. 43.1.

Fig. 43.1 Location of seven meteorological observatories
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The time gap (1969–2015) was decided by assessing the records of the observa-
tories for using as many gauging sites as possible. The mean maximum monthly
temperature (MMAX) and lowest minimum monthly temperature (LMIN) records
are calculated by averaging the dailymaximum andminimum temperature data at the
stations. Following the same procedure, annual maximum andminimum temperature
are averaged values ofMMAX and LMIN. The number of missing values inMMAX,
HMAX, MMIN, LMIN are 98, 98, 132 and 121, respectively. The total number of
monthly values available was 14575. The total number of values estimated by EMA
was 449 monthly values, which accounted for 2.98% of overall data (Table 43.1).

43.6 Result and Discussion

The annual and seasonal mean values are used for climate change and climate vari-
ability analysis. Therefore all four test statistics namely—Skewness z-ratio, Kurtosis
z-ratio,Kolmogorov-Smirnov(KS) andShapiro-Wilk(SW) test statisticmust be satis-
fied for a series to be fit and termed as normally distributed. The methodology is
depicted in the flow chart shown in Fig. 43.2.

43.6.1 Normality Test Result

The test procedure for checking the normality is explained using the mean minimum
monthly temperature (MMIN) belonging to Trivandrum airport station. From
Table 43.2, it is possible to conclude that the Kurtosis value of south-west monsoon
(−0.938), pre-monsoon (0.312) and winter season (0.960) and its corresponding
Kurtosis z-ratio also lie within permissible limits (−1.96, 1.96). Whereas, for the
post-monsoon season (−2.078), the value is less than −1.96 (95% LOC). The
other three statistics, obtained from, skewness z-ratio (0.118), Kolmogorov–Smirnov
(0.153), Shapiro–Wilk (0.135) tests indicate that the series is normally distributed.
In the current study, only annual mean maximum and maximum temperature are
used. Therefore, the test statistics of annual minimum and maximum temperatures
are only needed to be taken into consideration for deciding the behaviour of distri-
bution. All the four statistics are within limits for MMIN variable belonging to
Trivandrum airport station, and thereby the time-series can be considered to be
normally distributed. Therefore, parametric homogeneity test can be applied to it. A
similar analysis was carried out for all seven stations, and the results are presented
in Table 43.3. For the Trivandrum airport station (MMAX), the Skewness z-ratio
(0.032) and Kurtosis z-ratio (−0.405) is close to zero. The p-values of KS (0.2) and
SW (0.346) tests are greater than the α-value (0.05) by a big margin. Only post-
monsoon Kurtosis z-ratio (−2.922) is lesser than 95% (1.96) and 99% (2.34) LOC.
The distribution is said to be a normal distribution. For Thiruvananthapuram station,
MMIN dataset, the kurtosis z-ratio (−1.924) passed the test by a small margin. Other
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Fig. 43.2 The methodology followed in the current study

test statistics obtained from KS (0.2), SW (0.611) and skewness z-ratio (−0.046)
are within limits. For the post-monsoon datatset, Skewness z-ratio (−2.248) is less
than 1.96 (95% LOC). Although the distribution is slightly skewed, it is generally
considered as the normal distribution (Table 43.3).

The four test statistics-Skewness z-ratio, Kurtosis z-ratio, Kolmogorov–Smirnov,
Shapiro–Wilk obtained for the MMAX dataset, for annual as well as for all four
seasons are within acceptable limits and thereby, it is considered as normally
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Table 43.1 Amount of missing data present in various meteorological observatories

Station name Start
year

End
year

N* Number of values

MMAX HMAX MMIN LMIN

P* M* P* M* P* M* P* M*

1 Kozhikode 1969 2015 47 564 0 564 0 564 0 564 0

2 Cannanore 1981 2015 34 404 16 404 16 404 16 404 16

3 Alleppy 1969 2015 47 549 15 548 16 548 16 549 15

4 Punalur 1969 2015 47 532 32 534 30 503 61 510 54

5 Kottayam 1973 2011 43 500 16 498 18 496 20 498 18

6 Thiruvananthapuram 1969 2015 47 564 0 564 0 564 0 564 0

7 Trivandrum airport 1969 2015 47 545 19 546 18 545 19 546 18

Total number of missing values 98 98 132 121

N*, Total number of years
P*, Number of monthly temperature values present
M*, Number of monthly temperature values missing

distributed. It is completely fit to be tested by all parametric tests. For Kottayam
MMIN dataset Skewness z-ratio (−3.482), Kurtosis z-ratio (2.268) does lie within
95% LOC (−1.96 to 1.96). The p-value of the KS test (0.014) and SW test (0.001) is
less than the α-value (0.05). The distribution is highly skewed as well as kurtotic to be
termed as a normal distribution. Similar tests were carried out for all other stations,
and the results are tabulated (Table 43.3). Out of fourteen datasets, ten datasets were
found to be normally distributed and the rest four were found to be non-normally
distributed.

43.6.2 Classification of the Results Based on Homogeneity
Tests

In all eight absolute homogeneity tests, the null hypothesis assumes the dataset
to be homogenous in nature, and the alternative hypothesis is claimed to be non-
homogeneous in nature. We aim to fail the test statistic so that we can fail to reject
the null hypothesis for the series to homogenous. After applying eight homogeneity
tests on seven selected stations for the temperature dataset, the results were classified
into three categories. The subjective explanation of the three categories is as follows,
and it is benchmarked with reference to the inter-annual standard deviation of testing
variable series.

Category 1: ‘Effective’—three and more out of four tests fail to reject the null
hypothesis. The amount of inhomogeneities and its effect on series is negligible
and adequately less in comparison to the inter-annual standard deviation of testing
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Table 43.3 Results of normality test for the annual minimum and maximum temperature of all the
seven stations

Station name Type of
variable

Skewness
z-ratio

Kurtosis
z-ratio

KS SW Type of
distribution

Trivandrum airport MMAX 0.032 −0.405 0.200 0.346 Normal

Thiruvananthapuram MMIN −0.046 −1.924 0.200 0.611 Normal

Thiruvananthapuram MMAX −0.925 −1.079 0.157 0.118 Normal

Kottayam MMIN −3.482 2.268 0.014 0.001 Non-Normal

Kottayam MMAX −3.850 4.106 0.003 0.001 Non-Normal

Punalur MMIN −1.628 1.611 0.200 0.179 Normal

Punalur MMAX −1.628 1.611 0.200 0.179 Normal

Alleppy MMIN −4.291 4.452 0.001 0.000 Non-Normal

Alleppy MMAX 1.706 0.937 0.153 0.113 Normal

Cannanore MMIN 0.925 0.508 0.200 0.340 Normal

Cannanore MMAX 0.925 0.508 0.200 0.340 Normal

Kozhikode MMIN −0.813 −0.232 0.200 0.675 Normal

Kozhikode MMAX 2.859 1.360 0.019 0.008 Non-Normal

variable series that they will largely escape detection. We can conclude the series is
statistically significant for climate change analysis.

Category 2: ‘Insecure’—only two tests out of four tests reject the null hypothesis
and the rest two fail to reject the null hypothesis. The magnitude of inhomogeneity
is more than the acceptable level given by the inter-annual standard deviation of
the testing variable series. Further trend or variability analysis should be done after
applying some correction factors, and results should be evaluated more critically
from the aspect of the presence of possible inhomogeneities.

Category 3: ‘Dubious’—none of the tests fails to reject the null hypothesis. The
magnitude of inhomogeneity present outstrips the level given by the inter-annual
standard deviation of the testing variable series. Further trend or forecasting analysis
carried onwould give borderline outcomes and should be considered to be counterfeit
in nature. Thereby, it would be better to ignore these datasets for further statistical
analysis.

43.6.3 Homogeneity Test for Non-Normally Distributed
Datasets

The distribution-free CUSUM test for the Kozhikode station had a break in the year
1996, and the value of deviation was 20, which is more than an acceptable limit
of 11.175. The dataset rejects the null hypothesis and the data shows a statistically
significant step at 99% LOC. For the rank-sum test, the year 1992 was chosen as
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Table 43.4 Results of non-parametric homogeneity tests for non-normally distributed dataset

Station name Type of
data

Distribution-free
CUSUM test

Rank
sum test
(year of
break =
1992

Median
crossing
test

Turning
points test

Result

Y* D*

Kozhikode MMAX 1996 20 −5.097 5.013 −1.411 Dubious

Alleppy MMAX 1981 13 −1.224 2.654 −2.117 Effective

Kottayam MMIN 2003 11 −1.173 2.469 −2.341 Effective

Kottayam MMAX 1994 8 1.883 2.160 −2.341 Effective

Y*—Year of break and D*—Deviation

the break year since it is in the middle of the gap period. The value of rank-sum
z-statistic for the Kozhikode station is −5.097, which is less than −2.567, which is
unacceptable for α-value of 99%LOC. It means themedian of 1969–1991 and 1992–
2015 is significantly different. The z-score of median crossing test for the Kozhikode
station is 5.013, which is more than 2.576 at 99% LOC, which indicates that the
datasets are not obtained by a random process. Turning test z-score is−1.411, which
lies within the limit. Since the time-series of Kozhikode failed to clear at least two
tests, it is not considered as homogeneous. In the current classification, it would be
called dubious in nature (Table 43.4). For the rest three stations, at least three test
statistics were passed by the station. For example, Alleppy had a CUSUM z-score
of 13 and failed to fall within the limit of 11.175 by a small margin. However, the
other three test statistics were within limits and, thereby, the station was termed as
homogenous and effective as per classification followed here (Table 43.4).

43.6.4 Homogeneity Tests for Normally Distributed Datasets

The linear regression test statistic value for the Kozhikode MMAX variable is 8.912,
which is more than the acceptable value of 2.692 (99% LOC). It means data shows
statistically significant increasing change at α-value less than 0.01, and it rejects the
null hypothesis (Table 43.5). The student t-test gave a value of 3.56, which is more
than 2.69 (99%LOC). The inference is that themean value of the dataset in the period
1969–1991, and 1992–2015 is statistically significant at α-value less than 0.01, and
thereby it rejects the null hypothesis.

For cumulative deviation test statistic value is 2.526,which ismore than the accept-
able value of 1.514 (99% LOC). It means data shows a statistically significant step
jump at the year 1994 at α-value less than 0.01, and thereby it rejects the null hypoth-
esis. A positive value of the result means that the average value of the time period
1969–1994 is smaller than that of 1994–2015. Similarly, for the Worsley Likelihood
Ratio test statistic value was 7.040, which is more than an acceptable limit of 3.29
(99% LOC). Overall, Kozhikode MMAX datasets reject the null hypothesis in all
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Table 43.5 Results of parametric homogeneity tests for normally distributed dataset

Station name Type of
data

Linear
regression

Worsley
likelihood
ratio

Student’s
t-test

Cumulative
deviation test

Result

Y* V* Y* V*

Kozhikode MMIN 8.912 1994 7.0406 3.560 1994 2.526 Dubious

Cannanore MMAX 7.544 1985 5.934 -2.828 1994 2.074 Dubious

Cannanore MMIN 2.582 2012 4.998 1.411 2011 1.194 Effective

Alleppy MMIN -2.234 2000 4.36 1.395 1999 1.752 Insecure

Punalur MMAX 0.774 1985 1.412 0.056 1986 0.681 Effective

Punalur MMIN 0.803 1984 4.44 0.372 1976 1.269 Effective

Thiruvananthapuram MMAX 12.168 1994 8.318 -2.63 1993 2.656 Dubious

Thiruvananthapuram MMIN 4.205 2008 4.94 0.067 2004 1.627 Dubious

Trivandrum airport MMAX 5.09 1978 6.376 0.059 1986 1.961 Dubious

Trivandrum airport MMIN 6.261 1993 5.915 0.043 1993 2.263 Dubious

Y*—Year of break and V*—Values

four statistics, and therefore the series is termed as non-homogenous falling under
the dubious category. The datasets of Cannanore (MMAX), Thiruvananthapuram
(MMAX andMMIN) and Trivandrum airport (MMAX andMMIN) rejected the null
hypothesis for four test statistics. The datasets are non-homogeneous and fall under
the dubious category as per classification followed. In the case of Alleppy (MMIN)
dataset, both linear regression and the Student’s t-test-statistic are within the accept-
able limit and fail to reject the null hypothesis. However, the dataset rejected the null
hypothesis for cumulative deviation and Worsley likelihood ratio tests. Overall, out
of four statistical tests, the dataset failed to clear two tests. Therefore, the series is
categorized as non-homogenous and falling under insure category.

Cannanore (MMIN) and Punalur (MMAX and MMIN) have at least three test
statistic results within acceptable limits. Thereby, the datasets are considered as
homogenous and fall under the category ‘effective’. Out of ten datasets, six
datasets fall under the category ‘dubious’, one falls under the category ‘secure’,
and the remaining three datasets are under the category ‘effective’.

43.7 Conclusion

Investigating meteorological and hydrological variables in order to understand and
find inherent latent behaviour helps to predict, forecast, andmodel the climatic system
and its variation. To obtain decisive and trustworthy outcomes, input data needs to
be homogenous in nature. In the current study undertaken, right from infilling data,
narrowing down the distribution type and the performances of homogeneity tests
were questioned.
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As a further study in continuation of this research, performances of homogeneity
test under high autocorrelation could be analysed. Simulation tests for deciding the
right homogeneity test for structural breaks in a series in relation to a reference series
can be carried out. Once the irregularity is detected based on the outcomes of the
test, the series needs to be homogenised.
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Chapter 44
Multisite Monthly to Daily Naturalised
Streamflow Disaggregation Using Daily
Flow Pattern Hydrograph

Vivek Verma

Abstract Conservation and preservation of environmental wildlife and fisheries
became an important criterion in this era. Therefore, the environmental protection
flow standards for major river basins and estuaries have been established in the state
of Texas enacted by federal laws. The environmental flow issues can be addressed
effectively and efficiently on a daily time step, and thus, a new technique, daily
flow pattern hydrograph, is developed and implemented for disaggregating monthly
naturalised streamflows to daily while preserving monthly volumes. Constitution of
flow pattern hydrograph emphasises numerous issues such as the impact of water
resources development at upstream, comparative analyses of availableflows, geology,
hydrology, the geographical location of gaging stations, etc. The previous parametric
and nonparametric studies dealing with streamflow disaggregation methods mostly
preserve spatial and temporal statistical characteristics such as variance, skewness
andmaximumandminimumvalues. This study has been conducted from the perspec-
tive of capturing low flows, and therefore a statistical parameter, duration curve, also
known as flow frequency metric, is employed to evaluate and analyse the result. This
study is performed for the Trinity River basin located at the state of Texas. However,
this technique can be employed in any other river basin irrespective of its shape, and
size.

44.1 Introductions and Background

The Texas Commission on Environmental Quality (TCEQ), earlier known as Texas
Natural ResourceConservationCommission (TNRCC), and its ten contractors devel-
oped Water Availability Modelling (WAM) system during 1997–2004 adjourned by
the Texas Legislature in 1997 (Wurbs 2005; Wurbs 2006). WAM system consists
of a generalised Water Right Analysis Package (WRAP) simulation model, input
datasets for all river basins of Texas and other supporting databases. The software,
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input files and other relevant information are publicly available at https://ceprofs.
civil.tamu.edu/rwurbs/wrap.htm.

The Water Right permit system maintained by TCEQ administers new permits
or revises old, existing permits using the WAM system. WAM system is routinely
applied by the water community (private consulting firms, water districts, river
authorities and others) on a monthly time step to evaluate and analyse available
water quantity. This is also useful for assessing local and regional planning. Texas
Water Development Board (TWDB) utilises theWAM system for statewide planning
activities.

Senate Bill 2 (SB2) enacted by the 77th Texas Legislature in the year 2001
with the prime focus on balancing human water requirements as well as preserving,
conserving and maintaining aquatic flora and fauna, wildlife and fisheries. This led
to systematic studies, also known as Texas Instream Flow Program (TIFP), related
to flow regimes incorporating numerous environmental factors such as water quality,
habitat, hydrology, biology, basically encompassing awide range of interdisciplinary
studies to support ecological environment.

The detailed studies conducted for TIFP in SB2 was consuming lots of time as it
was incorporating various above-mentioned environmental variables. Thus, Senate
Bill 3 (SB3) enacted by the 80th Texas Legislature was passed in the year 2007 to
quickly establish environmental instream flow standards and recommendations for
all the river basins and estuaries of Texas according to the best available science. The
refinements of these adopted studies are to be conducted every 10 years.

Assessment of aforementioned established environmental streamflow standards
requires monitoring of low flows, which can be addressed adequately on a daily time
step. Previously, theWAMsystemwas routinely applied by thewater community on a
monthly time step. Thus, this recent inclusion to support and analyse environmental
instream flows was the prime motivation to expand WAM monthly system from
the perspective of capturing low flows, which leads to systematic study of numerous
approaches adopted in the literature for disaggregating monthly streamflows to daily.
Most of them are cited below with their adopted strategies and applications.

Earlier hydrological models preserved statistical parameters at the annual time
scale by linking the past only through statistics at the annual level (Valencia and
Schaake 1972, 1973). This model has been modified and improved by linking past
through current values obtained after disaggregation (Mejia and Rousselle 1976).
A new algorithm is presented for simultaneously disaggregating flows at number
of locations along the drainage network. The probability distribution of disaggre-
gated flows is approximated with the help of monthly flow patterns using k nearest
neighbour nonparametrically (Kumar et al. 2000).

A nonparametric stochastic technique was employed for streamflow disaggrega-
tion. Annual or monthly flows are generated for a long period of analysis based on
historical flows, which are then disaggregated to daily preserving statistical char-
acteristics (Prairie et al. 2007; Nowak 2010). The elementary method was adopted
for disaggregating both regulated and unregulated streamflow by preserving both
statistical parameters as well as mass balance (Acharya and Ryu 2014).

https://ceprofs.civil.tamu.edu/rwurbs/wrap.htm
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Parametric and nonparametric models, are the two classical aforementioned
approaches widely used in the literature. These techniques preserve statistical char-
acteristics such as mean, median, skew, variance and other properties resulting from
disaggregating coarser (monthly/annually) to finer (daily/monthly/weekly) stream-
flows. However, little work has been done by researchers for disaggregating monthly
flows to daily from the perspective of capturing low flows. Therefore, this research
work explores a new avenue for developing and implementing a new technique,
with the point of view of capturing low flows, which utilises daily flow pattern
hydrograph for disaggregating monthly naturalised flows to daily while preserving
monthly volumes.

Daily flow pattern hydrograph is a pattern representing actual existing conditions
that disaggregates monthly naturalised flows to daily in the ratio of its constituted
flows, which requires comparative analyses of distinct available flows at gaging
stations. The results of which are evaluated with the help of the duration curve,
discussed in the next paragraph. Those flows were adopted in the formulation of the
daily flow pattern hydrograph, which represents actual river basin flow characteris-
tics. The composition of daily flow pattern hydrograph requires significant time and
expertise in the field of hydrology. It is applicable for disaggregating both regulated
and unregulated streamflows in a watershed.

The results obtained by disaggregating monthly flows to daily are analysed with
the help of the flow duration curve, also known as flow frequency metrics. It is
widely used by water resources engineers for comparing flow characteristics across
the river basin and watersheds (Vogel and Fennessey 1995). It is a good indicator and
particularly used for capturing low flows and thus adopted for evaluating the results
(Vogel and Fennessey 1994; Smakhtin 2001). Additionally, it provides geologic
characteristics of drainage basins (Searcy 1959).

A flow duration curve exhibits the relationship between the exceedance frequen-
cies and the magnitude of mean flows. The exceedance frequencies in percentage
represent a number of days average discharge equalled or exceeded the indicated
magnitudes during the day (Singh 1971). It is computed on the basis of Weibull
formula

P = m

N + 1
∗ 100% (1)

where P is Exceedance frequencies, m is rank and N is the sample size.

44.2 Study Area

Trinity river basin is situated in the state of Texas. It originates near Texas–Oklahoma
border at north and confluences at Galveston Bay east of Houston. It is the largest
river basinwith its watershed (18,000 squaremiles) entirely enclosedwithin the State
of Texas. Mean annual precipitation ranges from 36 inches at headwater to 52 inches
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Fig. 44.1 Selected gaging stations at Trinity River basins

near its confluence point. The control points (gaging stations) 8TRRO (Trinity River
at Romayor) and 8TRRS (Trinity River near Rosser), as illustrated in Fig. 44.1, are
selected in this technical paper for two reasons. First, it has a relatively long period
of observed streamflow records and second establishment of environmental instream
flow standard as per SB3.

44.3 Methodology

Systematics study of the geographical location of gaging stations, the impact of
water resources development at upstream, comparative analyses of available flows,
geology, hydrology, regulation of upstreamflows, etc., are performed for each gaging
station for formulating daily flow pattern hydrographs. However, these selected
gaging stations do not have any missing flows. However, many stations that have
missing flows were addressed with the help of available streamflows from other
nearby gaging stations, based on the criteria of reflecting actual river flow characteris-
tics.Gaging stations having a long period ofmissingflow recordswere discarded. The
impact of upstream development is particularly important and illustrated in Fig. 44.2,
which represents streamflow hydrograph at gaging station Evadale located in Neches
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Fig. 44.2 USGS Daily gage flows at Evadale on Neches River, TX

river basin. Frequent high flows and simultaneous low flows are observed during
1920–1960s. The frequency of high flows reduces and low flows become slightly
higher after the 1960s. It seems from the streamflow vs time graph that upstream
development may take place around the 1960s which regulated the streamflows.

Once-daily flow pattern hydrograph is constituted, they are inputted to the
WRAP/WAM modelling system, which disaggregates monthly naturalised flows to
daily while preserving monthly volumes.

44.4 Results and Discussion

The frequency analysis has been done for USGS gage, USACE and WAM daily
flows and presented through Tables 44.1 and 44.2, developed within HEC-DSSVue.
The first column in these tables represents daily flows obtained from USGS gaging
stations. The second column illustrates the US Army Corps of Engineers (USACE)
daily unregulated flows obtained from USGS gage flow by removing the effects of
their multi-purpose flood operating reservoirs. Trinity river basins have eight such
reservoirs in total.

Flow pattern hydrograph is constituted with the help of these flows, which
becomes the input for the WRAP/WAM model. The third column illustrates the
daily naturalised flows obtained by disaggregatingmonthly naturalised flows to daily.
Similarly, the fourth and fifth column represents the same thing as that of column 1
and 3, respectively, but for a different hydrological period of analysis, that is, from
2010 to 2015.

Flow frequency metrics are divided into two subperiods, that is, from 1940–2009
to 2010–2015. This division depends upon the period of analysis of available data of
streamflows. The following statistical metrics are presented in Tables 44.1 and 44.2:
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Table 44.1 Flow frequency metrics for control point 8TRRO

Statistical parameters 8TRRO Trinity River at Romayor

Frequency Metrics 1940–2009 Frequency Metrics
2010–2015

USGS USACE WAM USGS WAM

Daily Daily Daily Daily Daily

(cfs) (cfs) (cfs) (cfs) (cfs)

Mean 8167 9731 9128 7775 8890

SD 11798 14176 13558 13845 18261

Min 104 129 0.0 697 0.0

Max 117000 154419 175475 71800 264175

Percentage exceedance

0.2% 78290 109882 99461 70965 140858

0.5% 62716 87852 83443 69488 111753

1% 55300 70670 66102 66350 89944

2% 45300 53962 51836 59550 77804

5% 32800 36428 35096 43350 47015

10% 23400 25001 23933 24200 21960

15% 18100 18667 18055 16850 14652

20% 13500 14821 14160 8880 11162

30% 7680 9575 8992 4210 5975

40% 4570 6253 5859 2500 3611

50% 2800 4315 3915 1780 2374

60% 2000 3025 2648 1460 1809

70% 1450 2132 1763 1240 1319

80% 1060 1449 1076 1120 483

85% 910 1138 768 1050 287

90% 726 853 525 1030 66

95% 495 594 275 968 0

98% 339 406 102 907 0

99% 255 320 26 876 0

99.5% 197 267 0 833 0

99.8% 149 229 0 821 0

• The average magnitude of mean daily flows.
• Standard deviation (SD) of daily flows.
• The minimum value of daily flow.
• The maximum value of daily flow.
• Daily streamflows are analogous to the exceedance frequencies, calculated on the

basis of the Weibull formula.
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Table 44.2 Flow frequency metrics for control point 8TRRS

Statistical parameters 8TRRS Trinity River near Rosser

Frequency metrics 1940–2009 Frequency metrics
2010–2015

USGS USACE WAM USGS WAM

Daily Daily Daily Daily Daily

(cfs) (cfs) (cfs) (cfs) (cfs)

Mean 3239 4012 3740 3847 3973

SD 5806 9359 9079 7244 11856

Min 64 4 0.0 481 0.0

Max 133000 171289 189464 67600 139642

Percentage exceedance

0.2% 48945 93773 84070 58788 115674

0.5% 34800 63226 59151 47508 92842

1% 27000 46290 45289 37954 61992

2% 19262 31598 30258 27908 44195

5% 13150 16547 15903 17585 20641

10% 9060 9486 9005 11400 6698

15% 6570 6296 5894 7141 4442

20% 4700 4460 4152 4304 2991

30% 2450 2604 2394 1890 1741

40% 1450 1722 1529 1230 1196

50% 1020 1180 1022 976 759

60% 818 849 710 849 503

70% 639 614 457 766 209

80% 471 410 247 710 27

85% 393 326 170 683 0

90% 300 260 96 650 0

95% 182 186 7 620 0

98% 140 132 0 589 0

99% 126 101 0 567 0

99.5% 116 75 0 552 0

99.8% 107 52 0 540 0

It is evident from Table 44.1 (Frequency Metrics 1940–2009) that maximum flow
increases respectively in observed, unregulated and naturalised flow (USGS, USACE
and WAM). Whereas the mean flow is minimum (8,167 cfs) for observed flow and
maximum (9,731 cfs) for unregulated flow.Themeanflowof naturalised flow is 9,128
cfs. It is clear that the naturalised and unregulated flows are very near to the observed
flow. The standard deviation (SD) of these flows are very close. This statistical
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analysis indicates that naturalised flow generated by WRAP/WAM model is very
close to the observed flows. However, it encounters some zeroes while capturing
very low flows, particularly while capturing exceedance frequencies of 99.5 and
99.8%. This is due to the reason that monthly flows generated from theWRAP/WAM
simulation model produce zero flows, especially during drought periods (1960s,
1990s and 2010s). Therefore, disaggregating nil monthly flows will result in zero
daily naturalised flows, which is apparent from Frequency Metrics of 1940–2009
and 2010–2015.

An almost similar trend is observed in Trinity River near Rosser, as illustrated
in Table 44.2. Mean flow increases in observed, naturalised and unregulated flow
(USGS, USACE and WAM), respectively. Standard deviation is similar for unreg-
ulated and naturalised flows but varies substantially when compared with observed
flows. SD of these flows is almost two times SD of observed flows. As already
discussed above, daily naturalised flows obtained from disaggregatingWRAP/WAM
monthly naturalised were not able to capture very low flows because monthly natu-
ralised flows generated from WRAP/WAM simulation model are zero, and thus
disaggregating zero monthly flows will result in zero daily flows, irrespective of any
flow pattern hydrograph, which is evident from the Frequency Metrics 1940–2009
and 2010–2015.

44.5 Conclusion

Texas streamflow is highly variable temporally and spatially, including exceptional
floods and droughts with seasonal variations. Thus, the general compilation strategy
for daily flow pattern hydrograph is discussed in this article, which is applicable
for any other basins in the world. It disaggregates monthly flows to daily from the
perspective of capturing lowflows. Previous studies related to disaggregation focused
on replicating statistical characteristics of watersheds. This is a generalised technique
that has been applied for disaggregating regulated and unregulated streamflows.
Daily flow pattern hydrograph has been formulated depending upon the different
sites, location, availability of data and other variable factors. The sources of daily
flows may vary between sites depending upon data availability and hence suitable
strategy has been adopted for different control points. Different pragmatic issues such
as flow alterations, filling in gaps of missing data, etc., have been substituted with
other available flows (with similar river basin characteristics) for that specific time
period on the basis of replicating actual river basin flow characteristics. This paper
demonstrates an effective and efficient technique for generating daily naturalised
flows using flow pattern hydrograph, which addresses the environmental instream
flow issues effectively. Daily flow pattern hydrograph has got its own utilities in
water resources engineering.



44 Multisite Monthly to Daily Naturalised Streamflow … 527

References

Acharya A, Ryu JH (2014) Simple method for streamflow disaggregation. J Hydrol Eng 19(3):509–
519

Kumar DN et al (2000) Multisite disaggregation of monthly to daily streamflow. Water Resourc
Res 36(7):1823–1833

Mejia JM, Rousselle J (1976) Disaggregation models in hydrology revisited. Water Resourc Res
12(2):185–186

Nowak K et al. (2010) A nonparametric stochastic approach for multisite disaggregation of annual
to daily streamflow. Water Resourc Res 46(8):n/a–n/a

Prairie J et al (2007) A stochastic nonparametric technique for space-time disaggregation of
streamflows. Water Resourc Res 43(3):n/a–n/a

Searcy JK (1959) Flow-duration curves, US Government Printing Office Washington
Singh KP (1971) Model flow duration and streamflow variability. Water Resourc Res 7(4):1031–
1036

Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3):147–186
Valencia DR, Schaake JC (1972) A disaggregation model for time series analysis and synthesis.
School of Engineering, Massachusetts Institute of Technology

Valencia DR, Schaake JC (1973) Disaggregation processes in stochastic hydrology. Water Resourc
Res 9(3):580–585

Vogel RM, Fennessey NM (1994) Flow-duration curves. I: new interpretation and confidence
intervals. J Water Resourc Plann Manag 120(4):485–504

VogelRM,FennesseyNM(1995)Flowduration curves II: a reviewof applications inwater resources
planning. JAWRA J Am Water Resourc Assoc 31(6):1029–1039

Wurbs RA (2005) Texas water availability modeling system. J Water Resourc Plann Manag
131(4):270–279

Wurbs RA (2006) Methods for developing naturalized monthly flows at gaged and ungaged sites.
J Hydrol Eng 11(1):55–64



Chapter 45
Error Analysis of TMPA Near Real-Time
Precipitation Estimates for an Indian
Monsoon Region

Ashish Kumar and RAAJ Ramsankaran

Abstract Timely measurement of precipitation across a large area is essential for
flood/drought/landslide forecasting. Satellite-based precipitation estimates (SPEs)
are one of the promising sources of precipitation data for the above mentioned near
real-time (NRT) applications. However, these estimates have inherent errors and
uncertainty. Hence, it is crucial to assess and quantify them to support effective NRT
applications. Therefore, as a pilot study, the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) version-7
(V7) product is evaluated during the monsoon of 2002–2013 across a large river
basin called Krishna River Basin, located in South-central part of India. It shall
be noted that this is the first of its kind study in India. Here, the Total Error in
TMPA 3B42RT is decomposed into individual error components such as Hit Error,
Miss Precipitation and False Precipitation. The obtained error components are then
analyzed spatially and intensity wise. Our results indicate that the leading source
of error in TMPA 3B42RT is Hit Error, which shows significant spatial differences
between the orographic region and non-orographic regions of the basin. Intensity
wise, the TMPART-V7 overestimates very light to moderate precipitation and vice
versa for heavy to very heavy precipitation. However, TMPA-RT V7 has excellent
detection ability for heavy to very heavy precipitation.
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45.1 Introduction

‘Precipitation’ is one of the most important components of the hydrological cycle.
Particularly, Real Time (RT) precipitation in finer spatial and temporal scale is indis-
pensable for applications such as flood forecasting, drought monitoring, etc. Rain
gauge data is considered as a reliable source for such type of applications. However,
its distribution is scarce and uneven in most of the developing nations like India,
Bangladesh, etc. Furthermore, most often, it is not available in near real-time to be
utilized in disaster preparedness. Due to the emergence of remote sensing technology,
several sources of RT global precipitation data (PERSIANN; Sorooshian et al. 2000,
CMORPH; Joyce et al. 2004, TMPA; Huffman et al. 2007, IMERG; Huffman et al.
2014) are available in the public domain. Hence, RT Satellite-based Precipitation
Estimates (SPEs) can be an alternate choice for real-time applications.

As satellites do not measure precipitation directly, instead of retrieving it from
remote sensing observations (brightness temperatures), there is a need for a compre-
hensive evaluation of SPEs with observed precipitation datasets to know their accu-
racy. Plenty of evaluation studies have been carried out at different spatial and
temporal scales across the world (Dinku et al. 2007; Bharti et al. 2016, etc.). Most
of these studies use conventional measures (e.g., linear correlation coefficient, mean
error, mean absolute error, bias, root mean square error, probability of detection,
false alarm ratio, critical success index, equitable threat score, etc.) to assess the
error. However, the mentioned measures are unable to capture entire error character-
istics in SPEs due to the complex nature of the errors (Tian et al. 2009; Tang et al.
2015).

Practically, two-stages are involved in the retrieval process of SPEs. The first
stage is screening, i.e., detection of raining and non-raining areas and the second
stage is to establish a relationship between the observed brightness temperatures
and rain rates. The errors can be introduced in either of the processes. Two types
of errors are present in the screening process. If raining areas are not detected, it
will result in Miss Precipitation. At the same time, if no-raining areas are mistakenly
considered as raining ones, it could lead to False Precipitation. On the other hand,
even, when the raining areas are correctly detected, there still exist retrieval errors
in converting the brightness temperature to rain rate (i.e., Hit Error). The nature
of errors in both the stages are different and thus, it is imperative to separate the
errors into various components like Miss Precipitation, False Precipitation and Hit
Error. It would be extremely helpful for end-users as well as algorithm developers
to get a better understanding of the entire error characteristics of SPEs. Tian et al.
(2009) have given a promising scheme for decomposition and analysis of errors (Miss
Precipitation, False Precipitation and Hit Error) of the SPEs. Recently, some of the
researchers (Gebregiorgis et al. 2012; Yong et al. 2016) have included this scheme
in their study to get in-depth information regarding the error characteristics of SPEs.

Some of the studies (Yong et al. 2014; Himanshu et al. 2017) mentioned that
SPEs are underestimating heavy precipitation intensity and overestimating light to
moderate precipitation intensity. However,most of these studies have investigated the
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dependency of the precipitation intensity on conventional statistical measures such
as bias and RMSE only but not on different individual error components. To the best
of our knowledge, such type of detailed studies is not available for any of the Indian
river basins. In view of the above, the main goal of this study is to carry out a detailed
error analysis of a RT satellite-based precipitation Estimates over a larger river basin
in India. Accordingly, the present study focuses on two aspects (i) Decomposition of
the Total Error into independent error components and (ii) Intensity analysis of the
independent error components.

This article is organised into six sections. Following this introduction section,
a description of the study area and the data used are presented in Sects. 45.2 and
45.3, respectively. The methodology used in this research is introduced in Sect. 45.4.
Then, in Sect. 45.5, the obtained results of the error analysis are presented. Finally,
the summary and major conclusions arrived by the obtained results as well as the
recommendations suggested for future studies, are given in Sect. 45.6.

45.2 Study Area

The test site for this study is the Krishna River Basin (KRB), one of the largest river
basins in India,which is about 250,000 sq-km.The extent ofKRB lies between 73°17′
to 81°9′ East longitudes and 13°10′ to 19°22′ North latitudes (Fig. 45.1). The mean
annual precipitation of KRB is around 859 mm (Ministry of Water Resources 2014).
However, it varies from less than 400 mm in the north-west to a maximum of more

Fig. 45.1 Geographical location (left) and elevation profile (right) of the Krishna River Basin, India
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than 3000 mm on the western periphery and 1000 mm in the deltaic region. KRB
receives approximately 80–85% of the total annual precipitation during southwest
Monsoon (~15th June to 14th October). KRB is extremely vulnerable to floods every
year (National Rainfall Area Authority 2011). In addition, the terrain of KRB is very
complex due to the presence of different types of landform zones, that is, hilly terrain
(orographic region) on thewestern periphery, a plateau region in the interior basin and
plains on the deltaic portion. KRB also has a noticeable variation in topography, as
shown in Fig. 45.1. This basin is mostly dominated by a semi-arid region. However,
a dry sub-humid area in the deltaic region, arid in the rain-shadow eastern parts of
the western periphery and a little humid band (North to South) along the western
periphery are also present. Significant spatial variability of precipitation, complexity
in terrain and high vulnerability of floods make the KRB a suitable study site for the
assessment of RT SPEs. Another important reason for selecting KRB is that it is a
snow-free basin because RT SPEs have significant limitations over snow-fed basins.

45.3 Datasets

The observed precipitation for assessment is obtained from the IndianMeteorological
Department (IMD) for the monsoon of 2002–2013. It is a fine resolution (0.25° ×
0.25°) gridded daily precipitation (at 3 GMT) dataset over India developed by Pie
et al. (2014). This gridded daily precipitation data is prepared by comparatively well
spread rain gauge stations over the Indian land region following thorough, rigorous
quality control. Several studies (Prakash et al. 2015; Shah and Mishra 2015, etc.)
have been conducted and used this IMD Gridded Precipitation as reference data for
assessment of satellite-based precipitation estimates. IMD gridded precipitation is
the certified officially released product to use in hydrological and meteorological
applications over the Indian land region at the present time. Although IMD Gridded
precipitation has inherently interpolation error, for larger-scale analysis, this gridded
precipitation shall be considered as one of the reliable products across India.

The satellite-based real-time precipitation TMPA3B42-RT Version 7 (Hereafter
referred as 3B42RT) is used in the present study. Although, Global Precipitation
Measurement (GPM) era multi-satellite product IMERG at very finer resolution is
available, but not used in the present study due to its shorter span of data availability.
Availability of 3B42RT in near real-time (within 6–9 h of the observation) to the
end-users make it suitable for real-time applications such flood monitoring, drought
monitoring, landslide monitoring. 3B42RT relies on microwave observations from
the low orbiting satellites. The spatial and temporal gaps in the microwave observa-
tions are filled with infrared (IR) data in it. The spatial and temporal resolution of
3B42RT are 0.25° × 0.25° and 3-hourly.
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45.4 Methodology

The framework of the study is shown in Fig. 45.2. Both the precipitation datasets
such as IMD and 3B42RT are acquired for the monsoon of 2002–2013. IMD accu-
mulates daily precipitation ending at 0300 UTC. Hence, we estimated daily precipi-
tation from three-hourly 3B42RT precipitation products ending at the same time for
the sake of homogeneity in the analysis. Estimation of the different error compo-
nents is carried out in the subsequent step following Tian et al. (2009). Under this
scheme, Total Error is decomposed into three independent error components, that
is, Hit Error, Miss Precipitation and False Precipitation. According to this scheme,
if S (unit: mm/day) and O (unit: mm/day) are the satellite-based precipitation esti-
mates (3B42RT) and observed precipitation (IMD) respectively, then the different
independent error components for each grid are obtained by the following equations
(Eqs. 45.1, 45.2 and 45.3)

False Precipitation (mm/day) = S − O, when S>Oand O= 0 (45.1)

Fig. 45.2 Framework of the
methodology
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Miss Precipitation (mm/day) = S − O, when S=Oand O> 0 (45.2)

Hit Error (mm/day) = S − O, when S>Oand O> 0 (45.3)

Total Error (mm/day) = Hit Error + Miss Precipitation+False Precipitation
(45.4)

Also, Total Error is linked with independent error components by the following
equation (Eq. 45.4)

Once the independent error components are obtained, the errors have been
analysed spatially, and intensity wise as described in the following sub-sections.

45.4.1 Spatial Analysis of Errors

Spatial analysis has been carried out to understand the spatial variation of independent
error components, including the Total Error in different parts of the basin. The error
components (Hit Error,Miss Precipitation and False Precipitation) andTotal Error for
each day in each grids are quantified by Eqs. 45.1, 45.2, 45.3 and 45.4, respectively.
Then, average error components, including the Total Error are quantified at each of
the grid.

45.4.2 Intensity Distribution of Errors

A clear understanding of the variation of errors (Hit Error, Miss Precipitation, False
Precipitation and Total Error) with precipitation intensity is needed to find out the
precipitation intensity forwhich under/overestimation,Miss/False Precipitation exist
in 3B42RT. For this analysis, we computed the distribution of Miss, False, Hit and
Total Precipitation amount as functions of precipitation intensity (mm/day). Classi-
fication of Precipitation intensity bin is based on the Indian Meteorological Depart-
ment 2017 (Appendix 1). In this analysis, for each precipitation intensity classes,
the accumulated IMD observed precipitation and the corresponding accumulated
3B42RT precipitation are estimated. Finally, the obtained accumulated values are
rescaled by the number of months (12) and grids (355) for clear visualization.
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45.5 Results and Discussion

Results of the error analysis are presented in this section. The analysis is categorized
asmentioned in Sect. 45.4, that is, spatial analysis of errors and intensitywise analysis
of errors.

45.5.1 Spatial Analysis of Errors

The spatial pattern of errors is shown in Fig. 45.3a–d. Each figure represents
the monsoonal average of the Total Error and its three independent error compo-
nents: Hit Error, Miss Precipitation and False Precipitation. 3B42RT overestimates
(Fig. 45.3a) the observed precipitation in most parts of the basin except the western

Fig. 45.3 Error components for monsoon seasonal-average: a Total error; b Hit error; c Missed
precipitation; and d False precipitation
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periphery/orographic region, where it shows considerable underestimation (repre-
sented by blue colour). Similar spatial characteristics (i.e., overestimation and under-
estimation) as Total Error (Fig. 45.3a) observed in Hit Error (Fig. 45.3b) also in most
parts of the basin indicates that the major contribution to the Total Error is from
Hit Error. A substantial difference in Hit Error (Fig. 45.3b) is noticed in the basin,
that is, an underestimation on the western periphery/orographic region and overes-
timation in other parts of the basin. These underestimations during hit events in the
western periphery/orographic region may be caused due to the problem in 3B42RT
sensors for accurate quantification of precipitation intensity in orographic regions.
Moreover, the amount of Miss Precipitation (Fig. 45.3c) is considerably high in
the western periphery/orographic region as compared with other parts of the basin.
This is probably due to the inability of current satellite precipitation retrievals in
detecting the warm rain processes or short-lived convective storms over orographic
regions. Unlike the other error components, the spatial pattern of False Precipitation
(Fig. 45.3d) exhibits an almost uniform pattern across the basin.

45.5.2 Intensity Distribution of Errors

In this section, the intensity distribution of Total Precipitation, Hit Precipitation,
Miss Precipitation and False Precipitation are plotted in Fig. 45.4a–c. Total Precipi-
tation (Fig. 45.4a) and Hit Precipitation (Fig. 45.4b) of 3B42RT shows a significant
overestimation for very light to moderate precipitation (< 35.5 mm/day) and under-
estimation for heavy to very heavy precipitation (64.5–244.5 mm/day). The above-
obtained results of overestimation/underestimation are consistent with past studies
(Tang et al. 2014; Yong et al. 2016) carried out in other parts of the world. The
problem of overestimation and underestimation mainly arise due to the non-unique
relation between brightness temperature (TB) and precipitation intensity. Mostly,
Detection errors (Miss and False Precipitation) are observed for the intensities up to
rather heavy precipitation (< 64.5 mm/day) indicates the excellent detection ability
for heavy to very heavy precipitation.

45.6 Conclusions and Recommendations

Spatial analysis shows that the Estimation Error (Hit Error) is the major source
of total error in 3B42RT and its magnitude varies considerably across the KRB.
Severe underestimations present in the orographic regions of the basin indicate that
the TRMM sensors and/or 3B42RT algorithm are unable to quantify the orographic
precipitation. Along with estimation error, detection error particularly, Miss Precip-
itation is also found to be a serious problem in the orographic region. Likewise,
intensity analysis indicates that the overestimation issue in the estimation stage (hit
event) exists in light to moderate precipitation and vice versa for heavy to very heavy
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Fig. 45.4 Intensity distribution (horizontal axis represents the precipitation intensity and vertical
axis represents the rescaled accumulated daily precipitation in each bin)
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Table 45.1 Classification of
rainfall according to India
Meterological Department,
India

Classes Rainfall in a day (mm)

Very light rain 1–2.4

Light rain 2.5–7.5

Moderate 7.6–35.5

Rather heavy 35.6–64.4

Heavy 64.5–124.4

Very heavy 124.5–244.5

Extremely heavy >244.5

Source India Meteorological Department (2018) (http://imd.gov.
in/section/nhac/wxfaq.pdf) (accessed on 13th July 2018)

precipitation events. However, 3B42RT has excellent detection ability in heavy to
very heavy precipitation.

Considering these research findings, it is found that the 3B42RT error components
vary spatially and precipitation intensity-wise in KRB during monsoon season. It
shall be noted that this study alone is not sufficient to make changes in the 3B42RT
algorithm; nevertheless, it endorses that similar studies have to be carried out for
different SPEs in different basins before using them for any applications such as flood
modelling, drought monitoring, etc. Such analysis shall help us to better understand
the behavior of that satellite rainfall product’s error components in a given region
so that one can make efficient use of available SPEs. It shall be noted that though
this study is performed on 3B42RT products, it will be useful for GPM products
as well because the GPM products are based on the 3B42RT algorithms. It is also
recommended that further studies should include the influence of other factors, such
as topography, climate and season on error components of SPE products.

Supportive Information

See Table 45.1
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Chapter 46
Comparison of Selection of Predictors
for Statistical Downscaling
of Precipitation Using Different
Statistical Techniques

Kumar Keshav, Vivekanand Singh, and Roshni Thendiyath

Abstract Selection of predictors for statistical downscaling is crucial for estab-
lishing the best relationship between predictors (such as Relative humidity, Geopo-
tential height, u-wind, specific humidity, etc.) and predictand (such as precipitation,
temperature, etc.). In this paper, the statistical method (factor analysis, correlation
coefficient, etc.) are used for selecting the best predictors for downscaling predic-
tand. The selection of potential predictors enhances the performance, computational
times and model outputs. The Bagmati river basin, Bihar, India, is a highly flood-
prone area. During rains, the Bagmati river carries a discharge much in excess of the
channel capacity and brings a huge quantity of debris and sediment from the erodible
slopes of the Himalayan. Due to this, the Bagmati river basin is selected for the study
to compare different statistical techniques. In this study, 33 years (i.e., from 1981
to 2014) National Centers for Environmental Prediction/National Center for Atmo-
spheric Research (NCEP/NCAR) reanalysis outputs data and 33 years observed rain-
fall data from Indian Meteorological Department (IMD) Pune are used for different
predictors. After comparing different statistical methods, factor analysis gave a better
result than other statistical methods.

Keywords Downscaling · Factor analysis · Predictand · Potential predictor

46.1 Introduction

There are many factors that influence precipitation, which is unpredictable and very
difficult to select variables/factors that affect precipitation. Various factor gener-
ates a number of data. The massive data generation, which is experienced in many
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real-world applications nowadays, calls for multivariate methods for data analysis.
Consideration of various factor increases the computational time, reduces the effi-
ciency, performance, and output of the model. Implementation of statistical tech-
niques reduces the computational time and increases the efficiency of the model.
In order to minimize the influence of such noisy variables, some data reduction is
usually necessary, variable selection method.

General Circulation Models (GCMs) provide the future estimations of different
emission impacts, including the changes in precipitation and temperature of the
earth’s system, but for the regional studies, their resolution is too coarse for any
analysis because in this resolution significant amount of information which includes
the regional topography, etc., is ignored. GCM is a coarse resolution (Sylwia 2014)
model up to 3.5˚ * 3.5˚ or 300 * 300 km grid resolution. It is composed of many
homogeneous grid cells that represent horizontal and vertical areas on the globe, but
the output from theGCMmodel cannot be directly fed into the hydrological model as
these models perform well on local climate variables like precipitation, temperature.

Downscaling is the method of establishing a relationship between coarse-
resolution GCM variables such as air temperature, geopotential heights, relative
humidity, specific humidity, u wind, v wind, etc., and local climate variable such as
precipitation, temperature, dewpoint, etc. This can be done bydynamical or statistical
downscaling (Harpham and Wilby 2005). Dynamical downscaling uses RCM that
takes the output from GCM directly and gives information about the more complex
topography of the area at a higher resolution. Since error associated with dynamical
downscaling and the complexity involved in it is higher than statistical downscaling,
this method limited its use. While statistical downscaling though involves huge data
requirements, but it is easier to operate and the error associated with it is also less.
Statistical downscaling can be done by using transfer function, weather generator or
by weather typing. The statistical downscaling using transfer function is the most
efficient method of downscaling as it establishes a non-linear relationship between
predictors (NCEP data) and the predictand (observed data) and its high potential for
complex, non-linear, time-varying input and output.

Selection of predictors for statistical downscaling is crucial for establishing the
best relationship between predictors (such as Relative humidity, Geopotential height,
u-wind, specific humidity, etc.) and predictand (such as precipitation, temperature,
etc.). In this paper, a statistical method (factor analysis, correlation coefficient, etc.)
are used for selecting the best predictors for downscaling predictand. Factor analysis
can help us establish that sets of observed variables are, in fact, all measuring the
same underlying factor (perhaps with varying reliability) and so can be combined to
form amore reliable measure of that factor. Factor analysis is a collection of methods
used to examine how underlying constructs influence the responses on a number of
measured variables. There are basically two types of factor analysis: exploratory
and confirmatory. Exploratory factor analysis (EFA) attempts to discover the nature
of the constructs influencing a set of responses. Confirmatory factor analysis (CFA)
tests whether a specified set of constructs is influencing responses in a predicted way.

Chitra and Thampi (2013) used the ANN technique to study the GCM perfor-
mance in two rain gauge stations, one in the Chaliyar river basin in Kerala and
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other stations close to it for two monsoon period southwest monsoon and south
eat monsoon. Potential predictors for these two seasons was determined based on
the correlation coefficient between NCEP data and observed data and also between
NCEP and GCM data and separate model were developed for each season. GCM
model used for simulation in this paper was third-generation CGCM3 for the twen-
tieth century, 20 C3M. Simulated GCM data were corrected for biases and errors.
Fiseha et al. (2012) presented his paper on statistical downscaling of precipitation
and temperature in the Upper Tiber basin. This method utilized regression-based
technique and stochastic weather generator Long Ashton Research Station Weather
Generator (LARS-WG), compared their performance and estimated the strength of
themodel. HadCM3, GCMpredictions of A2 and B2 scenarios were used to simulate
the future predictions. Regression-based technique produced quite a fair result for
precipitation and maximum and minimum temperature except for a few extremities.
Cheng (2012) downscaled eight GCM’s with regression-based downscale technique
to project changes in the frequency of future daily streamflow events for a selected
weather station for various meteorological sites in Canada in four selected river
basins. This study thus added an extra application to determine a return period for
daily streamflow.

Flood in north Bihar is a continuous and recurrent unabated phenomenon since
the origin of the Himalayan Rivers, which transverse in these areas. The floods in
Bihar are caused due to the southwestmonsoon.NorthBihar comprises of the alluvial
plain of the Gangetic basin and is drained by a number of rivers originating from
Nepal and outfalls into the Ganges. Bagmati River is one of these rivers. During
rains, these rivers carry discharge much in excess of the channel capacity and bring
a huge quantity of debris and sediment from the erodible slopes of Himalayan. After
emerging from the hills, their slope remains fairly steep, which gradually becomes
flattered towards the plains; thereby the velocity decreases, resulting in deposition
of silt in river beds, particularly in the flatter reaches. This reduces the capacity of
the river to carry the flood discharge and the floodwater overtops the bank causing
inundation of the adjoining areas. It also happens sometimes that the river erodes its
bank and changes the course abruptly, thus opening up new channels and causing
damage to neighboring areas. There are some pockets in Bihar which are perennially
waterlogged. This river is very vulnerable to high current and much devastation
during a flood in the downstream reached for which hydrological studies have to be
carried out. Flood is mostly happened due to precipitation. So, the Downscaling of
precipitation depends on the selection of potential predictors.

46.2 Study Area and Data Used

The Bagmati River is a perennial river of Nepal and India, especially of North-Bihar.
The Bagmati River originates from Shivpuri ranges of hills in Nepal at latitude 27o

47′ N and longitude 85o 17′E, and 16 km North-East of Kathmandu at an altitude of
1500maboveMeanSeaLevel. TheBagmatiRiver flows south-westerly 10-kilometer
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along the Kathmandu Valley, which is mainly rice-pattie in terraces up the slope. A
number of obstructive rock surface obstruct the flow down in the valley; among these,
the Pashupatinath Temple is constructed upon. After crossing the temple, the river
flows south across the plain, where it is linked by the Monahara River and bends
west direction. In Kathmandu, the river flows into many old important locations.
Bagmati River joins river Kosi on the downstream side at Badlaghat and ultimately
gets in into the Ganges. Its total length is 589 km and the total catchment area is
14384 km2. From this area, 6500 km2 falls in the Bihar region. It passes nearly
195 km in Nepal and rests 394 km in Bihar. It is one of the main rivers of north Bihar,
known for large streams and much destruction during the flood. Major tributaries are
Lakhandei, Lalbakeya and Adhwara group of rivers. The average annual rainfall of
Bagmati Basin, including Adhwara, is 1255 mm.

For this study, monthly rainfall data of 34 years, that is, from 1981 to 2014, at five
rain gauge stations, namely Dheng, Kamtaul, Muzzafarpur, Benibag and Hayaghat
in Bagmati river basin have been used. Another set of meanmonthly data of 32 years,
that is, from 1981 to 2014, is obtained from NCEP/NCAR REANALYSIS project
for the area under consideration at different pressure levels (1000 mb to 100 mb). A
relationship is established between observed IMD data, which form the predictant
(Wetterhall et al. 2005) and NCEP data by product-moment correlation formula
(Chitra andThampi 2013) and factor analysismethod to obtain the potential predictor.
These potential predictors are the atmospheric variables at a different pressure level,
which is best correlated with the observed data taken.

46.3 Methodology

46.3.1 Selection of Potential Predictor

There are many factors that influence precipitation, which is unpredictable and very
difficult to select variables/factors that affect precipitation. Various factor gener-
ates a number of data. The massive data generation, which is experienced in many
real-world applications nowadays, calls for multivariate methods for data analysis.
Consideration of various factor increases the computational time, reduces the effi-
ciency, performance, and output of the model. Implementation of statistical tech-
niques reduces the computational time and increases the efficiency of the model.
In order to minimize the influence of such noisy variables, some data reduction is
usually necessary, variable selection method. The selection of predictors for statis-
tical downscaling is crucial for establishing the best relationship between predictors
(such as Relative humidity, Geopotential height, u-wind, specific humidity, etc.) and
predictant (such as precipitation, temperature, etc.). Two statistical techniques are
used to find out the best predictors for downscaling the precipitation. The first tech-
nique is the Pearson product-moment correlation and another technique is factor
analysis.
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46.3.2 Pearson Product-Moment Correlation

The correlation coefficient between these set of data is calculated based on the
product-moment correlation coefficient formula as given below:

ρxy =
∑N

n=1 (xt − x̄)(yt − ȳ)

Nσxσȳ
(46.1)

where,

xt =predictant, yt = predictor, ρxy = correlation coefficient

σy =standard deviation of predictor, N= total number of data

In statistical problem, Pearson product-moment correlation evaluates the linear
correlation between two variables in a population X and Y and gives a value between
−1 to +1 developed by Karl Pearson from a related idea by Francis Galton in the
1880s. Here + signifies total positive correlation, that is, all data points lying on
the same side of the line for which X increases when Y increases, −1 signifies
total negative correlation, that is, total data points lying on the line and for which Y
increases if X decreases and 0 signifies non-linear correlation between the variables
as shown in the Fig. 46.1.

Fig. 46.1 Example of scatter diagram with different value of correlation
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46.4 Factor Analysis

Factor analysis is a technique that is used to reduce a large number of variables
into fewer numbers of factors. This technique extracts maximum common variance
from all variables and puts them into a common score. As an index of all variables,
we can use this score for further analysis. Factor analysis is part of the general
linear model (GLM) and this method also assumes several assumptions: there is a
linear relationship, there is no multicollinearity, it includes relevant variables into
the analysis, and there is a true correlation between variables and factors.

Factor loading: Factor loading is basically the correlation coefficient for the
variable and factor. Factor loading shows the variance explained by the variable on
that particular factor. In the SEM approach, as a rule of thumb, 0.7 or higher factor
loading represents that the factor extracts sufficient variance from that variable.

Eigenvalues: Eigenvalues is also called characteristic roots. Eigenvalues show
variance explained by that particular factor out of the total variance. From the
commonality column, we can know how much variance is explained by the first
factor out of the total variance. For example, if our first factor explains 68% variance
out of the total, this means that 32% variance will be explained by the other factor.

Factor score: The factor score is also called the component score. This score is
all row and columns, which can be used as an index of all variables and can be used
for further analysis. We can standardize this score by multiplying a common term.
With this factor score, whatever analysis we will do, we will assume that all variables
will behave as factor scores and will move.

Criteria for determining the number of factors: According to the Kaiser Crite-
rion, Eigenvalues is a good criterion for determining a factor. If Eigenvalues is greater
than one, we should consider that a factor and if Eigenvalues is less than one, then we
should not consider that a factor. According to the variance extraction rule, it should
be more than 0.7. If the variance is less than 0.7, then we should not consider that a
factor.

Rotation method: The rotation method makes it more reliable to understand
the output. Eigenvalues do not affect the rotation method, but the rotation method
affects the Eigenvalues or percentage of variance extracted. There is a number of
rotation methods available: (1) No rotation method, (2) Varimax rotation method,
(3) Quartimax rotation method, (4) Direct oblimin rotation method, and (5) Promax
rotation method. Each of these can be easily selected in SPSS, and we can compare
our variance explained by those particular methods.
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46.5 Result and Discussion

46.5.1 Selection of Potential Predictor by Pearson Product
Moment Correlation

Potential predictors like geopotential heights, relative humidity, specific humidity, air
temperature at different pressure level available in the NCEP/NCAR REANALYSIS
model is correlated with observed mean monthly precipitation obtained from IMD,
Pune. A value between 0.5 to 1.0 is considered a good correlation, and therefore
those variables are selected as potential predictors for precipitation. The calculation
for Potential predictor obtained for precipitation is shown in Table 46.1.

In Table 46.1, the correlation matrix is generated between rainfall and air temper-
ature at different pressure levels (i.e., 250–1000 mb). Correlation of air temperature
at different pressure levels is a good correlation with rainfall, but air temperature at
250 and 300 mb shows the best correlation, that is, 0.6998 and 0.6987 among other
pressure level air temperature and air temperature at 500 mb pressure shows the least
correlation with rainfall whose value is 0.5534. In Table 46.2 show the correlation
value of all the predictors at different pressure level (i.e., 100–1000 mb) with rain-
fall. In Table 46.2, Geopotential height at pressure level at 100, 150, 200, 250, 300
and 400 mb shows the good correlation with precipitation and geopotential height at
1000, 925, 850 and 700 mb shows a poor correlation with precipitation.

46.5.2 Selection of Potential Predictor by Factor Analysis

Potential predictors like geopotential heights, relative humidity, specific humidity,
air temperature at different pressure level available in NCEP/NCAR REANALYSIS
model is factor analysed with observed mean monthly precipitation obtained from
IMD, Pune and select the number of factors that influence/affect the precipitation.
The following table shows the Eigenvalue and Factor pattern in Tables 46.3 and 46.4

In Table 46.3, among three factors f1, f2 and f3. f1 has eigenvalue greater than
1 and other factor f2 and f3 have eigenvalue less than 1. Variability of factor, f1 is
91.0269% and other factors shows the variability only 8.98%. So, The Factor, whose
eigenvalue is greater than 1 and Variability is nearest to 100% has been selected. In
Table 46.4, by considering factor f1, the factor pattern of all the predictors are shown.
From the above Table 46.4, specific humidity at pressure level 600 and 700mb has
the value 0.9963 and 0.9918, which is very close to 1. it shows that these two factors
affect precipitation more.

Similarly, factor analysis can be done on other predictors and results are shown
below in Table 46.5.

From Table 46.5, Geopotential height (Geop) at pressure level 50 mb and 70 mb
is selected as a potential predictor, which shows value, that is, 0.9934 and 0.9968
very close to 1. Specific humidity (SH) at pressure levels 600 mb and 700 mb is
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Table 46.2 Potential predictor for precipitation

Pressure level
(mb)

Geopotential
heights

Air temperature Relative humidity Specific humidity

1000 −0.66 0.55 0.66 0.73

925 −0.67 0.57 0.66 0.73

850 −0.68 0.6 0.69 0.74

700 −0.42 0.65 0.73 0.75

600 0.28 0.68 0.74 0.76

500 0.54 0.69 0.7 0.75

400 0.62 0.7 0.64 0.74

300 0.66 0.7 0.44 0.73

250 0.67 0.69

200 0.68 0.14

150 0.69 −0.29

100 0.7 −0.29

Table 46.3 Eigenvalues f1 f2 f3

Eigenvalue 8.1924 0.2100 0.0044

Variability (%) 91.0269 2.3334 0.0486

Cumulative (%) 91.0269 93.3603 93.4089

Table 46.4 Factor pattern of
rainfall and specific humidity
at different pr. level

f1

RAINFALL 0.7581

SH 300mb 0.9477

SH 400mb 0.9589

SH 500mb 0.9773

SH 600mb 0.9961

SH 700mb 0.9913

SH 850mb 0.9818

SH 925mb 0.9777

SH 1000mb 0.9749

selected as a potential predictor, which shows value, that is, 0.9961 and 0.9913, very
close to 1. Relative humidity (rh) at pressure levels 600 mb and 700 mb is selected as
the potential predictor, which shows value, that is, 0.9550 and 0.9675 close to 1. Air
temperature (air temp) at pressure level 600 mb and 700 mb is selected as a potential
predictor, which shows value, that is 0.9901 and 0.9892 close to 1.



550 K. Keshav et al.

Table 46.5 Potential Predictor for Precipitation by factor analysis

f1 f1 f1

RAINFALL 0.6914 RAINFALL 0.6846 RAINFALL 0.7581

Geop250mb 0.9724 Geop10mb 0.9392 SH 300mb 0.9477

Geop300mb 0.9700 Geop20mb 0.9715 SH 400mb 0.9589

Geop400mb 0.9549 Geop30mb 0.9799 SH 500mb 0.9773

Geop500mb 0.8937 Geop50mb 0.9934 SH 600mb 0.9961

Geop600mb 0.6281 Geop70mb 0.9968 SH 700mb 0.9913

Geop700mb −0.3298 Geop100mb 0.9864 SH 850mb 0.9818

Geop850mb −0.8840 Geop150mb 0.9718 SH 925mb 0.9777

Geop925mb −0.9110 Geop200mb 0.9626 SH 1000mb 0.9749

Geop1000mb −0.9141

f1 f1 f1

RAINFALL 0.7320 Rainfall 0.6802 rainfall 0.5198

rh300 0.6516 airtemp250mb 0.9369 airtemp10mb 0.3883

rh400 0.8967 airtemp300mb 0.9510 airtemp20mb 0.9115

rh500 0.9595 airtemp400mb 0.9630 airtemp30mb 0.8341

rh600 0.9550 airtemp500mb 0.9764 airtemp50mb 0.4484

rh700 0.9675 airtemp600mb 0.9901 airtemp70mb −0.0663

rh850 0.9518 airtemp700mb 0.9892 airtemp100mb −0.2064

rh925 0.9203 airtemp850mb 0.9485 airtemp150mb 0.2151

rh1000 0.9162 airtemp925mb 0.9253 airtemp200mb 0.7087

airtemp1000mb 0.9005

46.6 Conclusions

Pearson product-moment correlation approach between rainfall and predictors (i.e.,
geopotential height, air temperature, relative humidity, specific humidity) at different
pressure level, that is, from 100 to 1000mb gives positive correlation value between
0.5 and 0.75.Many predictors have the same correlation value. It is difficult to choose
the best predictor for predictand (precipitation). So, factor analysis can be done to
refine the Pearson product-moment correlation result in a better way. Using factor
analysis, among three factors f1, f2 and f3. f1 has eigenvalue greater than 1 and other
factor f2 and f3 have eigenvalue less than 1. The variability of factor, f1 is 91.0269%
and other factors show the variability only 8.98%. So, The Factor, whose eigenvalue
is greater than 1 and variability is nearest to 100% has been selected. Factor pattern
of rainfall with other predictors give a better value, which is nearer to 1. Geopotential
height (Geop) at pressure level 50 mb and 70 mb is selected as a potential predictor,
which shows value, that is, 0.9934 and 0.9968 very close to 1. Specific humidity
(SH) at pressure levels 600 mb and 700 mb is selected as a potential predictor, which
shows value, that is, 0.9961 and 0.9913 very close to 1. Relative humidity (rh) at
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pressure levels 600 mb and 700 mb is selected as a potential predictor, which shows
value, that is, 0.9550 and 0.9675 close to 1.

Finally, after a comparison of the two statistical methods, factor analysis gave a
better and clear figure than the Pearson product-moment correlation approach.
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