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Abstract. Nowadays, machine learning (ML) is an integral component
in a wide range of areas, including software analytics (SA) and busi-
ness intelligence (BI). As a result, the interest in custom ML-based soft-
ware analytics and business intelligence solutions is rising. In practice,
however, such solutions often get stuck in a prototypical stage because
setting up an infrastructure for deployment and maintenance is consid-
ered complex and time-consuming. For this reason, we aim at structur-
ing the entire process and making it more transparent by deriving an
end-to-end framework from existing literature for building and deploy-
ing ML-based software analytics and business intelligence solutions. The
framework is structured in three iterative cycles representing different
stages in a model’s lifecycle: prototyping, deployment, update. As a
result, the framework specifically supports the transitions between these
stages while also covering all important activities from data collection
to retraining deployed ML models. To validate the applicability of the
framework in practice, we compare it to and apply it in a real-world
ML-based SA/BI solution.

Keywords: Machine learning · Software analytics · Business
intelligence

1 Introduction

A vast amount of data is produced by software-intensive systems every day. As a
result, software providers often try to gain insights from data using software ana-
lytics [23] or business intelligence [24] (SA/BI) tools. As existing tools are typi-
cally quite generic and can often not provide the desired depth of product-specific
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and stakeholder-targeted information, there is often a need for customized soft-
ware analytics or business intelligence (SA/BI) solutions that leverage the full
potential of modern machine learning (ML) techniques.

However, as such solutions are used as internal systems for monitoring or
decision-making, these are often not perceived as something of direct customer
value by managers. This results in a lack of priority, time and, resources assigned
to setup and maintain ML-based SA/BI solutions [15]. In addition to that, the
effort of going beyond a prototypical analysis and deploying it to and maintaining
it in production is perceived as extremely high [15,30]. Paired with a lack of
expertise in this domain, which is often the case if the actual product is not
related to ML [6], custom ML-based SA/BI solutions are rarely deployed in
production [15]. Nevertheless, this is considered crucial in order to continuously
gain valuable insights and use it for actual decision making [21].

To address this, we conduct a literature review of important domains related
to ML, specifically data management and processing, model building, and model
deployment. The results are then used to derive a framework for building end-to-
end ML-based SA/BI solutions consisting of three iterative cycles: a prototyping
cycle, a deployment cycle, and an update cycle. To validate the applicability
of the framework in practice, we compare it to and apply it in a real-world,
customized ML-based SA/BI solutions.

The contribution of this paper is an end-to-end approach that covers all
steps from data collection to retraining deployed ML models while at the same
time taking the different conceptual stages into consideration (prototypical,
deployment, and update). By specifically addressing the transition between these
stages, our framework supports practitioners in advancing their prototypical
analysis to a deployed and continuously retrained ML model.

The remainder of this paper is structured as follows: First, we outline the
background of our study in Sect. 2. In Sect. 3 we provide an overview of the
research method and the study design. The results of the literature review are
presented in Sect. 4, before introducing the framework in Sect. 5. The framework
validation is outlined in Sect. 6, followed by a conclusion in Sect. 7.

2 Background

The term software analytics (SA) describes analytics performed on software data
to generate valuable insights for various stakeholders, from managers to software
engineers, that ultimately support their decision making [6,23]. Related to this,
the field of business intelligence (BI), sometimes also referred to as business
analytics, applies data mining techniques to operational data in order to derive
high-quality information for managerial decision making [24].

With its increase in popularity, artificial intelligence soon became an integral
part of SA and BI solutions [7,11]. As a result, many companies aim at getting
the most out of their data by running ML-based analyses on it. While some
knowledge can be extracted using out-of-the-box tools, more in-depth analyses
often require custom ML solutions.
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In many cases, these custom solutions start out as a prototypical analysis or
a proof of concept [15,30]. However, in order to make actual use of the results,
they need to be provided in a continuous manner by deploying the model to
production and retraining the model on a regular basis [21]. Precisely this is
the point at which custom ML-based SA/BI solutions often get stuck. In a
previous study [15], we identified a vicious circle that frequently prevents an
end-to-end implementation of such analyses. One of the key issues is that an
ineffective prototypical analysis can often not prove the value that it could deliver
in production, leading to a lack of priority, time, and resources assigned to the
topic [15].

Moreover, in the context of SA and BI there is often a lack of expertise in
data engineering, data analytics, and in building an infrastructure for both [6,15].
For this reason, the framework presented in our study aims at compensating this
to some extent by providing a structured approach for the transition between
prototypical analysis and productively usable analysis.

3 Research Method and Study Design

As an end-to-end development of ML-based SA/BI solutions requires broad
knowledge that is distributed across several, well-researched domains, we selected
a deductive research approach for our study. Deductive approaches rely on exist-
ing theories for building hypotheses which are then confirmed or rejected using
real-world observations [28]. The overall research process is outlined in Fig. 1.

Literature Review

• Identification of research
topics

• Selection & quality
assessment of studies

• Extraction of relevant
information

Model Derivation

• Extraction of key activities
from literature

• Buildingmodel by
connecting and
systematically arranging
activities from relevantfields

Model Validation

• Comparison andapplication
of framework to real-world
SA/BIsolution

• Semi-structured expert
interviews

Fig. 1. Research process

As a first step, we conducted a literature review [18] which serves as the foun-
dation for our study. Based on the requirements of our framework, we identified
three overarching categories that comprise the results of our review: data man-
agement and processing, model building, and model deployment. To achieve our
research goal, we queried common scientific libraries (IEEXplore, ACM Digital
Library, ScienceDirect, Springer Link) using search terms related to the respec-
tive categories: data (quality, cleaning, preprocessing, transformation, manage-
ment, continuous extraction) and machine learning model (training, evaluation,
deployment [pipeline], management, serving).

As inclusion criteria we defined 1) research papers that outline approaches
and/or challenges in data management and processing, model building, or model
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deployment; and 2) case studies and experience reports describing concrete
actions and processes for at least one of the categories. We excluded non-scientific
contributions (e.g. posters or presentations/talks) and studies that were not writ-
ten in English.

Next, we extracted all mentioned activities and challenges out of each selected
paper and accumulated the results to common activities and challenges based
on the frequency of occurrences. In order to derive a framework for productively
applying ML in SA/BI solutions, we merged and systematically arranged the
key activities of the investigated domains.

To validate the applicability of the framework in practice, we first compare
it to the current state of a real-world ML-based SA/BI solution being developed
for an industrial platform provider. In a second step, we utilize the framework to
strategically plan and direct the upcoming activities. To achieve this, we collab-
orated with two software architects and two product managers of the platform.
The product managers are the future user of the system and, therefore, provided
us with a specific use case while the software architects supported us in build-
ing the ML-based SA/BI solution. The platform itself is based on Amazon Web
Services1 (AWS). For this reason, we utilize existing AWS services for imple-
menting and deploying our solution. In order to get a comprehensive picture of
all the activities, we interviewed the stakeholders in several recap sessions to
gain a detailed understanding of individual steps that we could not directly be
involved in due to company processes.

4 Literature Review

4.1 Data Management and Processing

The most important prerequisite for training accurate ML models is providing
high-quality training data [26,29]. At the same time, assembling high-quality
data sets, and engineering and selecting appropriate features based on it, is very
time-consuming and requires a vast amount of effort and resources [14].

As a result, we investigate the common activities (see Table 1) in data man-
agement and data processing required for a successful application in machine
learning systems as well as the challenges (see Table 2) that come with these
activities. The identified activities can be grouped into six overarching categories:
1) Data preparation; 2) data cleaning; 3) data validation; 4) data evaluation; 5)
data serving; and 6) extract, transform, and load (ETL) tasks.

During the data preparation, raw input data is examined for suitable features
before being transformed (e.g. aggregations of one or more raw input data fields)
into training data [4,5,14,21,26,27]. Next, the data is cleaned by filtering out
uncorrelated data [10,26], specifying quality rules, detecting errors, inconsisten-
cies and anomalies [4,8,19], and fixing these errors [8,19,26,36].

To guarantee a successful preparation and cleaning of the data, each batch of
data needs to be validated based on its properties [4,5,26,27,29,36] and potential

1 https://aws.amazon.com/.

https://aws.amazon.com/
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dependencies [26], deviations [5,26], or impact of features on model accuracy or
performance [14,26] need to be identified.

Once a model is trained, the goal of data evaluation is to evaluate the choice
and encoding of the data based on the results produced by a model trained on the
data, for instance by performing sanity checks [14,26]. After a suitable solution
was found, the newly emerging input data needs to be transformed to so-called
serving data which is processible by the model [4,26]. This usually involves the
same transformation steps as required for the training data. After the serving
data was successfully processed by the model, it is channeled back as training
data for future iterations [26].

In order to execute the aforementioned steps in an iterative and continuous
manner, automated ETL tasks need to be set up. This involves the extraction
of data from its source, transporting it to a processing pipeline, transforming it
to target values, and finally making it accessible to and loadable by respective
machine learning models [13,34,35].

Table 1 provides a detailed overview of common activities in data manage-
ment and data processing grouped into six categories.

Table 1. Common activities in data management and processing for machine learning

Activity Publications

Data preparation

Identification of features and their properties based on raw data [14,21,26]

Transformation of input data to training data [4,5,14,26,27]

Data cleaning

Investigating and understanding effect of cleaning data on model accu-
racy & filtering out uncorrelated data

[10,26]

Ensure data quality, specification of (quality) rules & actions for rules [4,8,19]

Detection of data errors [8,19]

Definition of data fixes & execution of error repairs [8,19,26,36]

Data validation

Triggering validation pipeline for each batch of data [5,29,36]

Generation of descriptive statistics of data, checking data properties
based on specified schema/patterns & identification of errors or anoma-
lies in training data

[4,5,26,27,29,36]

Identification of features with significant impact on model accuracy [14,26]

Identification of dependencies to other data sources or infrastructure [26]

Comparison of training and serving data to identify potential deviations [5,26]

Data evaluation

Performing sanity checks on data [26]

Evaluation of choice and encoding of data based on model results [14,26]

(continued)
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Table 1. (continued)

Activity Publications

Data serving

Transformation of serving input data to serving data processible by

model

[4,26]

Channeling serving data back as training data [26]

Extract, transform, load (ETL)

Extraction of data from sources [13,34,35]

Transportation of data to processing pipeline (e.g. for data cleaning or
filtering)

[13,34,35]

Transformation of source data to target values [13,34,35]

Loading of cleaned & transformed data [13,34,35]

As a natural consequence, these activities also entail a couple of challenges
which are presented in Table 2 and mostly related to 1) data understanding; 2)
data preparation; 3) data cleaning; and 4) data validation.

Table 2. Common challenges in data management and processing

Category Challenge
DU Set expectations of data; How to know something (e.g. a distribution) is “right”?

[26]
DU Analysis of features in conjunction [26]
DU Understanding if data reflects reality [26]
DU Identification of sources of data errors [26]
DC Dealing with data inconsistency, missing features, unit changes,. . . [26], [29], [36]
DC & DV Dealing with dynamic data environments (constantly changing constraints) [10],

[29], [36]
DV Formulation of understandable and actionable alerts [4], [26]
DP Engineering set of features most predictive of the label [26]
DP Unused data due to data overload / too much data to be processed [14]
DP Feature experiments (e.g. different combinations of input features to examine their

predictive value) affect multiple stakeholders (e.g. software or site reliability engi-
neers responsible for pipeline) [26]

DP & DC Merging data from multiple sources & deal with unstructured data [8], [10], [13],
[16], [29]

DP, DC & DV Achieving scalability of data processing and error detection in distributed settings
[8], [10], [19]

Data understanding = DU, data cleaning = DC, data validation = DV, data preparation = DP

4.2 Model Building

In the model building phase, one or multiple models are prepared, built, and
evaluated based on the previously generated input features. This is typically
an iterative process that involves running an analysis, evaluating the results,
and adapting or optimizing parameters and input features until an adequate
solution is found [14,22,33]. Table 3 outlines common activities that are part of
this process.
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Table 3. Common activities in model preparation, building, and evaluation

Activity Publications

Model preparation

Selection of appropriate analysis/model type [14,17,21,27]

Selection of input features [4,12,14,21]

Model building

Splitting input data into training and test set [14,21]

Model training on training data [4,14,21,25,27,31,33]

Application of model to test data [4,14,21,31,33]

Model evaluation

Quality evaluation based on test results (e.g. accuracy, pre-
cision, recall, F1-score)

[4,14,21,25,27,31,33]

Decision: accept or rework model (e.g. by adapting input
features or model parameters)

[3,14,21]

Initially and based on the respective problem to solve, appropriate analysis
techniques and model types need to be selected as part of the model preparation
[14,17,21,27]. For instance, if the input data is labeled and the goal is to classify
data according to these labels, a supervised ML technique (e.g. logistic regression,
support vector machines etc.) can help to achieve this. On the other side, if the
requirement is to group unlabeled objects by their similarity, an unsupervised app-
roach (e.g. k-means clustering, hierarchical clustering etc.) is the better choice.

Oftentimes, it is not advisable to use all available features as input features
for the selected model as this can create noise and cause a decrease in model
accuracy [14]. This results in the need for feature selection techniques that aim
at identifying the most relevant input features for a given model [4,12,14,21].

Once the input data is filtered according to the determined feature relevance,
a training and a test data set need to be created as part of the model building
phase [14,21]. In a next step, the training set is used to train a model that was
selected to solve a specific problem [4,14,21,25,27,31,33]. Before being able to
validate the quality of the model, it is applied on the test set to investigate how
it performs on previously unseen data [4,14,21,31,33].

Consequently, the results of this step can be used for the model evaluation.
There are several metrics that support practitioners in assessing the quality of
their models, for instance by calculating the accuracy, precision, recall, or F1-
score [4,14,21,25,27,31,33]. Based on the evaluation results, the model can either
be accepted as a reasonable solution or it needs to be reworked, for example by
adapting the parameters or input features that are used for training the model
[3,14,21].

This iterative process is often accompanied by several challenges. Table 4
summarizes a few of these challenges that we feel like are most important for
our study. The presented challenges are categorized in model preparation, model
building, and model evaluation.
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Table 4. Common challenges in model preparation, building, and evaluation

Category Challenge
MP Selecting appropriate model types for a specific problem [1], [14], [20]
MP Dealing with too many (irrelevant) input features [14]

MP Coordination and communication of involved stakeholders
(e.g. ML specialists, software engineers,...) [1], [2], [20]

MB Avoidance of overfitting [14]
MB Debugging of ML models [1], [2], [32]

ME Defining quality specifications (e.g. ”when is the prediction
quality good enough?”, ”is the model save to serve?” [4]

Model preparation = MP, model building = MB, model evaluation = ME

4.3 Model Deployment and Serving

In order to fully leverage the benefits of ML to gain valuable insights, it is crucial
to go beyond prototypical analyses by deploying models in production where they
are actually used [21]. It has even been observed that “organizations that make
the most of machine learning are those that have in place an infrastructure that
makes experimenting with many different learners, data sources, and learning
problems easy and efficient” [14].

For that reason, we summarize the common activities in model deployment
and model serving in Table 5.

Deployment infrastructures for ML models often consist of multiple com-
ponents each responsible for a specific task and executable as an automated

Table 5. Common activities in model deployment and model serving

Activity Publications

Components

Component for model validation (before serving & often coupled with data
validation)

[4,9,25]

Component for continuous model evaluation & monitoring (performance,
quality,...)

[4,9,25,27]

Component or serving solution to deploy model in production [4,9,21]

Component for monitoring pipelines (checkpoint after each pipeline) [27,31]

Setups

Setup model lifecycle management (to keep overview of deployed models) [9,33]

Setup workflow manager for job coordination [9,21]

Process

Loading new model before unloading old model [25]

Validation of model and serving infrastructure (incl. reliability checks)
before pushing to production environment

[4,9,25]

Continuous application of model to (new) serving data [9,21,27]

Continuous model evaluation / monitoring [4,9,25,27]

Rollback in case of errors [25,27]

Periodically update models [9,21]
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workflow coordinated by a workflow manager. Besides the component that han-
dles the actual deployment of models in production [4,9,21], it is advisable to
have additional components for validating the model before deployment [4,9,25],
for continuously evaluating and monitoring the model after being deployed in
production [4,9,25,27], and for monitoring if all pipelines are up and running as
expected [27,31].

In addition to the components, a few setups are required for automating the
deployments while keeping an overview of the deployed models. For one, a model
lifecycle management should be set up that allows the comparison and monitor-
ing of models over time and provides information on the currently deployed mod-
els [9,33]. For another, the jobs required to deploy a model can be coordinated
an executed using a workflow manager [9,21]. After triggering the workflow, the
model is updated in an automated manner and in case of errors a predefined
rollback plan is executed.

In general, the process of model deployment and model serving requires the
following steps which are typically encapsulated in respective components: First,
a new model is loaded for deployment before unloading the old model [25]. In
a next step, the model as well as the serving infrastructure are validated (e.g.
reliability checks) before pushing the new model to the production environment
[4,9,25].

Once the model is deployed to production, it can be used and continuously
applied to newly emerging serving data [9,21,27]. In order to guarantee that the
model works as expected, a continuous evaluation and monitoring of the model
is required [4,9,25,27]. In case the model does not behave as expected, a rollback
plan is executed and typically the current model is replaced by a previous well-
working version of the model [25,27]. Following this process, models can be
periodically updated and deployed to production [9,21].

Analogously to data management and model building, model deployment
and model serving also entails several challenges. Four of the key challenges
are presented in Table 6. The challenges are categorized into infrastructure and
model -specific topics.

Table 6. Common challenges in model deployment and model serving

Category Challenge
I Integration of third-party packages or tools [21], [30]
I Brittle pipelines / “pipeline jungle” [21], [30]
M Managing and monitoring multiple models [9], [30], [33]
M Dealing with expected and unexpected variations during model evaluation [4], [30]
Infrastructure = I, model = M

5 Framework Derivation

Based on the insights gained from the literature review, we derive a framework
for supporting an end-to-end development and deployment of ML models in the
context of software analytics and business intelligence (see Fig. 2).
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Fig. 2. Framework for productively applying machine learning (Color figure online)

While the literature review examines the topics data management and pro-
cessing, model building, and model deployment and serving individually, in reality
a separation of the three is not that trivial. In fact, for building end-to-end solu-
tions the fields are very much interrelated as the activities depend on each other
and sometimes even overlap.

Oftentimes, ML projects start out as a prototypical analysis due to a lim-
ited amount of time and resources [15,30]. In order to use and actually benefit
from the ML model, it needs to be deployed to a production environment which
can be time and cost-intensive but nonetheless crucial [21,30]. To avoid the
deployed models from being outdated, it is important to provide a functional-
ity for dynamically deploying new models or iteratively retraining and updating
existing models [9,21].

As a result, we identify three iterative cycles which are passed through during
an end-to-end development of ML solutions and, therefore, serve as the main
dimensions in our framework: 1) Prototyping cycle (blue), 2) deployment cycle
(green), and 3) update cycle (orange).

5.1 Prototyping Cycle

In software analytics and business intelligence, relevant input data typically
emerges from multiple sources that need to be extracted, set in relation, and
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stored in a common data storage [15]. As part of the data preparation, potential
input features can be identified and extracted based on a snapshot of raw data
[14,21,26]. To ensure a sufficient data quality, a couple of data cleaning activities
need to be performed (e.g. filtering, consistency checks, or other error detection
techniques and repairs) [4,8,19,26,36].

Depending on the overarching goal of the analysis, appropriate ML models
have to be selected that are suitable to achieve a specific task [14,17,21,27].
Based on the selected model, it is recommended to apply feature selection tech-
niques to the input data set to identify a subset of the most relevant input
features [4,12,14,21]. This subset is then extracted from the overall data set and
the values of each input features are standardized. Before training the model,
the respective subset should be split into a training and a test data set (usually
70%/30% or 80%/20%) [14,21].

Training the model using training data and testing it on test data, allows
an examination of how well the model performs on previously unseen data [4],
[14,21,31,33]. Based on the test results, the choice of model parameters and input
features should be evaluated [4,14,21,25,27,31,33]. If the evaluation indicates a
decent quality of the model (e.g. based on accuracy, precision, recall, and F1-
score), it can be cleared for deployment. Otherwise, the cycle is run through
again and the model is reworked until its quality reaches a desired level.

5.2 Deployment Cycle

Taking a ML model to production involves much more than only model deploy-
ment. For one, a ETL job needs to be set up that continuously extracts, trans-
forms, and loads the latest input and serving data [13,34,35]. Before a new model
is deployed, it is loaded and validated to avoid errors of faulty behavior in the
production environment [4,9,25].

For each batch of new data a data validation pipeline is triggered that checks
the data for anomalies [5,29,36]. After one or more iterations, the update cycle
can be entered at this point in case the model needs to be retrained which is
evaluated during the model evaluation later on.

Analogous to the training data, the new input data is transformed to serving
data [4,26]. This involves data cleaning, feature extraction and standardization.
In a next step, the model can be applied to the new and preprocessed data
[9,21,27].

Since both data and model behavior evolves over time, it is crucial to con-
tinuously evaluate the model performance and its input data [4,9,25,27]. If the
model does not perform as expected, a retraining of the model is triggered for
the next iteration [9,21].

In addition to this, the results of the analysis need to be visualized. By
explaining the results as intuitively as possible, users of SA/BI solution will be
able to understand and interpret the results and turn it into actionable insights
[15]. In the last step before the cycle is repeated from the beginning, the recently
processed serving data is channeled back as training data which will be included
in upcoming retrainings of the model [26].
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Since these steps are typically automated in one or multiple pipelines, it is
important to implement several checkpoints along the way, that continuously
monitor and check whether each task is working properly [27,31]. In case of
errors or anomalies, an alert should be sent to the respective stakeholder.

5.3 Update Cycle

As a natural consequence of constantly evolving data, the model’s accuracy can
start to decrease some time after being deployed [21]. As soon as this is detected
during the model evaluation in the deployment cycle, a retraining of the model
will be triggered after the upcoming data validation.

An updated data set is created that consists of the initial training data as well
as the new serving data that was channeled back as training data [26]. Analogous
to the initial training only the relevant input features are extracted, standardized
and split into a training and a test set. The model is retrained based on the new
training set and tested on the test set respectively [4,14,21,31,33].

Based on the results, the model’s input features and parameters needs to be
evaluated before deciding whether to improve the model’s quality in an addi-
tional iteration or whether to clear it for deployment and add both the current
and the new model to the model management [4,14,21,25,27,31,33]. The latter
enables a clear overview of all models and allows an easy rollback in case of
erroneous behavior in production.

6 Framework Validation

In order to validate the applicability of our framework in practice, we use a
real-world ML-based SA/BI solution that is currently being developed for an
industrial platform provider to 1) compare the activities of the framework to
the actual activities executed in practice; and 2) to strategically plan and direct
upcoming activities to finalize the end-to-end implementation.

6.1 Current Status

At the beginning of our collaboration, the product managers were interested in
running customized analyses on their customers’ usage data. Specifically, when-
ever a customer’s action triggers a request to the platform or one of its appli-
cations, it is tracked in the platform and app usage logs. The platform itself
is based on AWS. Therefore, we decided to setup the custom ML-based SA/BI
solution using the existing AWS infrastructure and services.

Currently, the platform and app usage logs produce 100 GB of data every
day. For this reason, the data is aggregated and stored in a compressed format
(26 GB per day) in AWS S3 buckets2. The log data is available for the past 1.5
years and, in addition to that, we also have access to the sales data that keeps
track of which customer purchased what kind of licenses.
2 https://aws.amazon.com/s3/.

https://aws.amazon.com/s3/
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Prototyping Cycle. As the future users of the system, the product managers
were interested in analyzing customer churn for the applications hosted on the
platform as a first use case.

In the beginning, we focus on one specific application to build a first proto-
type. Therefore, we identify potential input features based on the information
that is available in the logs (e.g. user id, http status code, relative URL path) and
pre-filter the data by the selected application. We setup a script that extracts
and aggregates the input features on customer level (n=174 ) while enriching
and labeling it with the sales data (binary label for churn/non-churn).

Next, we applied several different supervised ML models (support vector
machines, decision trees, logistic regression, neural network) to the data set in
an iterative manner. We apply principal component analysis to the standard-
ized input data in order to identify the most relevant subset of features, before
splitting the data set into a training and a test set.

Based on this, the models were trained on the training data and tested using
the test set. It took us several iterations and experiments with different models,
model parameters and input features before ending up with the final model that
is being deployed in the upcoming step.

Deployment Cycle. At the current state of our ML-based SA/BI solution,
we have not yet completed the deployment cycle. Before being able to deploy
the model, we had to come up with an efficient, reliable and robust solution for
handling the enormous amounts of data (100 GB per day). It was a complex
task to get an overview of the data, to define which fields to keep for long-term
storage, and finally to specify the format to store it in.

After coming up with a concept for this, one of the software architects setup
pipelines that continuously extract, transform, compress and load the latest log
data into a S3 bucket using the specified format. In addition to that, he also setup
data validation pipelines that check each batch of new data for anomalies and
inconsistencies. It is important to continuously monitor all pipelines. During one
of the interviews, the software architect explains that “we have to make sure the
pipelines are not failing for whatever reasons and if they’re failing we’re notified
and can restart them”. Moreover, they need to ensure that “the pipeline elements
that are doing the preprocessing are always up and triggered at appropriate
times”. The software architect also notes that it “requires a lot of engineering
effort to keep the pipeline running in a correct manner.”

After the data pipelines are set up, we load and deploy our ML model using
Amazon SageMaker3. The SageMaker modules for Python offer out-of-the-box
functionalities for deploying ML models to an AWS instance that are accessible
via an API (see Fig. 3).

3 https://aws.amazon.com/sagemaker/.

https://aws.amazon.com/sagemaker/
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Fig. 3. Model deployment in Amazon SageMaker

Findings - current status: The activities identified in literature are consistent with
the activities we had to perform for successfully implementing our prototype, setting
up continuous data extraction, processing and validation pipelines, and deploying our
model; it is important to accept that prototyping is an iterative process; continuous
checkpoints after each automated task are crucial

6.2 Planning and Evolution

In order to use the deployed model to make actual predictions, we now plan and
execute the remaining steps following the presented framework.

Deployment Cycle. In the upcoming step, the model is applied to new serving
data. This constitutes a bit of a challenge as up until now all extracted data is
stored in the same S3 bucket. As a result, we now need to create an additional
S3 bucket for storing the serving data. In order to preprocess the newly emerged
data to serving data, we can reuse the script created during prototyping for
transforming and extracting the input features out of the raw data.

In order to continuously evaluate the model in production, we setup Amazon
SageMaker’s Model Monitor that provides summary statistics, detects concepts
drifts and indicates when a model needs to be retrained. In order to perform
potential retrainings on the newest data available, we transfer the data from the
serving S3 bucket to the training S3 bucket once it was processed by the model.
Lastly, we plan to visualize the results in Amazon QuickSight4.

Update Cycle. For continuous updates of models, AWS offers the Step Func-
tions Data Science SDK5 for Amazon Sagemaker to automate model retraining
and deployment. An ETL job is setup to extract and preprocess the latest data.
Following this, a new model is trained and evaluated. If the model accuracy is
above a certain threshold (e.g. 90%), a new endpoint is created for deployment
and the model is added to the model management.

4 https://aws.amazon.com/quicksight/.
5 https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html.

https://aws.amazon.com/quicksight/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-python-sdk.html
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Findings - planning and evolution: the framework supported us in keeping an
overview of remaining tasks; by following the cycles and activities in the framework
the definition of the roadmap and next steps was efficient and easy; we were able
to quickly identify errors or missing components in our original approach (storage of
training and serving data)

7 Conclusion

Gaining customized insights on product or usage behavior can be a valuable asset
for many stakeholders involved in software-intensive businesses which results in
a need for ML-based SA/BI solutions. Building and, more importantly, deploy-
ing and maintaining such solutions is, however, time-consuming, complex and
burdensome as it requires knowledge from several different domains.

For this reason, we scanned existing literature on data management and
processing, model building, and model deployment to derive a framework that
comprises all key activities from data collection to retraining of deployed models.
In addition to that, our framework is structured in three iterative cycles: a
prototyping cycle, deployment cycle, and an update cycle. These cycles resemble
stages in the lifecycle of a ML model and by outlining the transitions between
stages, our framework specifically guides the journey from a prototypical analysis
to a productively running ML model.

The results of the validation indicate that the activities of the framework are
consistent with the activities performed in practice. Moreover, the framework
is a practical tool to keep an overview of all required steps and to efficiently
define and plan upcoming activities. Moreover, we observed that the separation
of activities across the conceptual phases creates the perception that the overall,
potentially overwhelming process now consists of several smaller ones that are
easier to handle.

One limitations of our study is the development state of our ML-based SA/BI
solution. As we are still in the process of implementing parts of the deployment
and update cycle, we are only partially able to compare the framework’s activ-
ities to the activities executed in practice. Further research could, therefore, be
dedicated to a long-term validation of the framework based on already estab-
lished SA/BI solutions and to identifying remaining challenges and needs for
more in-depth guidance by practitioners to adapt the framework to their needs.
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28. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case study research in software
engineering: guidelines and examples. Wiley, Hoboken (2012)

29. Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F., Grafberger, A.:
Automating large-scale data quality verification. Proc. VLDB Endow. 11(12),
1781–1794 (2018)

30. Sculley, D.: Hidden technical debt in machine learning systems. In: Advances in
neural information processing systems, pp. 2503–2511 (2015)

31. Sparks, E.R., Venkataraman, S., Kaftan, T., Franklin, M.J., Recht, B.: Key-
stoneML: Optimizing pipelines for large-scale advanced analytics. In: 2017 IEEE
33rd International Conference on Data Engineering (ICDE), pp. 535–546. IEEE
(2017)

32. Tata, S., et al.: Quick access: building a smart experience for google drive. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1643–1651 (2017)

33. Vartak, M., et al.: ModelDB: a system for machine learning model management.
In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics (2016)

34. Vassiliadis, P.: A survey of extract-transform-load technology. Int. J. Data Ware-
hous. Min. (IJDWM) 5(3), 1–27 (2009)

35. Vassiliadis, P., Simitsis, A.: Extraction, transformation, and loading. Encycl.
Database Syst. 10, 1–10 (2009)

36. Volkovs, M., Chiang, F., Szlichta, J., Miller, R.J.: Continuous data cleaning. In:
30th International Conference on Data Engineering, pp. 244–255. IEEE (2014)

https://doi.org/10.1007/978-3-540-48716-6_9

	An End-to-End Framework for Productive Use of Machine Learning in Software Analytics and Business Intelligence Solutions
	1 Introduction
	2 Background
	3 Research Method and Study Design
	4 Literature Review
	4.1 Data Management and Processing
	4.2 Model Building
	4.3 Model Deployment and Serving

	5 Framework Derivation
	5.1 Prototyping Cycle
	5.2 Deployment Cycle
	5.3 Update Cycle

	6 Framework Validation
	6.1 Current Status
	6.2 Planning and Evolution

	7 Conclusion
	References




